
The Information Retrieval Series

Krisztian Balog

Entity-
Oriented
Search

The Information Retrieval Series Volume 39

Series Editors

ChengXiang Zhai

Maarten de Rijke

Editorial Board

Nicholas J. Belkin

Charles Clarke

Diane Kelly

Fabrizio Sebastiani

More information about this series at http://www.springer.com/series/6128

http://www.springer.com/series/6128

Krisztian Balog

Entity-Oriented Search

Krisztian Balog
University of Stavanger
Stavanger, Norway

ISSN 1387-5264
The Information Retrieval Series
ISBN 978-3-319-93933-9 ISBN 978-3-319-93935-3 (eBook)
https://doi.org/10.1007/978-3-319-93935-3

Library of Congress Control Number: 2018946540

© The Editor(s) (if applicable) and the Author(s) 2018, This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-93935-3
http://creativecommons.org/licenses/by/4.0/

Szüleimnek

Preface

I have not yet reached my goal. . . But I forget what is behind,
and I struggle for what is ahead. I run toward the goal, so I can
win the prize of being called to heaven. This is the prize God
offers because of what Christ Jesus has done.

(Philippians 3:12–14, CEV)

The idea of writing this book stemmed from a series of tutorials that I gave with
colleagues on “entity linking and retrieval for semantic search.” There was no single
text on this topic that would cover all the material that I wished to introduce to
someone who is new to this field. With this book, I set out to fill that gap. I hope that
by making the book open access, many will be able to use it and benefit from it.

For me, writing this book, in many ways, was like running a marathon. No one
forced me to do it, yet I thought that—for some reason—it’d be a good idea to
challenge myself to do it. Then, along the way, there comes inevitably a point where
one asks: Why am I doing this to myself? But then, in the end, crossing the finish
line certainly feels like an accomplishment. In time, this experience might even be
remembered as if it was a walk in the park.1 In any case, it was a good run.

I wish to express my gratitude to a number of people who played a role in
making this book happen. First of all, I would like to thank Ralf Gerstner, executive
editor for Computer Science at Springer, for seeing me through to the successful
completion of this book and for always being a gentleman when it came to my
deadline extension requests. I also want to thank the Information Retrieval Series
editors Maarten de Rijke and ChengXiang Zhai for the comments on my book
proposal.

A very special thanks to Jamie Callan and to anonymous Reviewer #2 for review-
ing the book and for making numerous valuable suggestions for improvements.

The following colleagues provided feedback on drafts of specific chapters at
various stages of completion, and I would like to thank them for their insightful
comments: Marek Ciglan, Arjen de Vries, Kalervo Järvelin, Miguel Martinez, Edgar

1Note to self: No, it wasn’t.

vii

viii Preface

Meij, Kjetil Nørvåg, Doug Oard, Heri Ramampiaro, Ralf Schenkel, Alberto Tonon,
and Chenyan Xiong.

I want to thank Edgar Meij and Daan Odijk for the collaboration on the entity
linking and retrieval tutorials, which planted the idea of this book. Working with
you was always easy, enjoyable, and fun. My gratitude goes to all my co-authors for
the joint work that contributed to the material that is presented in this book.

I am especially grateful to the Department of Electrical Engineering and
Computer Science at the University of Stavanger for providing a pleasant work
environment, where I could devote a substantial amount of time to writing this book.

I would like to thank my PhD students for giving me their honest opinion and
offering constructive criticism on drafts of the book. They are, in gender-first-then-
alphabetical order: Faegheh Hasibi, Jan Benetka, Heng Ding, Darío Garigliotti,
Trond Linjordet, and Shuo Zhang. Special thanks, in addition, to Faegheh for the
thorough checking of technical details and for suggestions on the organization of
the material; to Darío for tidying up my references; to Jan for prettifying the figures
and illustrations; to Trond for injecting entropy and for the careful proofreading
and numerous suggestions for language improvements; to Shuo and Heng for the
oriental perspective and for telling me that I use too many words.

Last but not least, I want to thank my friends and family for their outstanding
support throughout the years. You know who you are.

Stavanger, Norway Krisztian Balog
April 2018

Website

http://eos-book.org

This book is accompanied by the above website. The website provides a variety of
supplementary material, corrections of mistakes, and related resources.

ix

http://eos-book.org

Contents

1 Introduction . 1
1.1 What Is an Entity? .. 2

1.1.1 Named Entities vs. Concepts . 3
1.1.2 Properties of Entities . 4
1.1.3 Representing Properties of Entities . 5

1.2 A Brief Historical Outlook. 6
1.2.1 Information Retrieval . 7
1.2.2 Databases . 8
1.2.3 Natural Language Processing . 9
1.2.4 Semantic Web. 10

1.3 Entity-Oriented Search . 11
1.3.1 A Bird’s-Eye View. 11
1.3.2 Tasks and Challenges . 14
1.3.3 Entity-Oriented vs. Semantic Search . 15
1.3.4 Application Areas . 16

1.4 About the Book .. 17
1.4.1 Focus . 17
1.4.2 Audience and Prerequisites . 17
1.4.3 Organization . 18
1.4.4 Terminology and Notation . 19

References .. 20

2 Meet the Data . 25
2.1 The Web . 26

2.1.1 Datasets and Resources. 27
2.2 Wikipedia . 28

2.2.1 The Anatomy of a Wikipedia Article . 29
2.2.2 Links . 32
2.2.3 Special-Purpose Pages. 33
2.2.4 Categories, Lists, and Navigation Templates 33
2.2.5 Resources . 35

xi

xii Contents

2.3 Knowledge Bases . 36
2.3.1 A Knowledge Base Primer . 37
2.3.2 DBpedia . 40
2.3.3 YAGO . 45
2.3.4 Freebase . 46
2.3.5 Wikidata . 47
2.3.6 The Web of Data . 48
2.3.7 Standards and Resources . 51

2.4 Summary.. 51
References .. 52

Part I Entity Ranking

3 Term-Based Models for Entity Ranking . 57
3.1 The Ad Hoc Entity Retrieval Task . 58
3.2 Constructing Term-Based Entity Representations 59

3.2.1 Representations from Unstructured Document
Corpora.. 61

3.2.2 Representations from Semi-structured Documents 67
3.2.3 Representations from Structured Knowledge Bases 69

3.3 Ranking Term-Based Entity Representations . 74
3.3.1 Unstructured Retrieval Models . 75
3.3.2 Fielded Retrieval Models . 79
3.3.3 Learning-to-Rank .. 82

3.4 Ranking Entities Without Direct Representations 85
3.5 Evaluation . 86

3.5.1 Evaluation Measures . 86
3.5.2 Test Collections . 88

3.6 Summary.. 94
3.7 Further Reading . 94
References .. 95

4 Semantically Enriched Models for Entity Ranking . 101
4.1 Semantics Means Structure . 103
4.2 Preserving Structure . 104

4.2.1 Multi-Valued Predicates . 105
4.2.2 References to Entities . 107

4.3 Entity Types . 111
4.3.1 Type Taxonomies and Challenges . 111
4.3.2 Type-Aware Entity Ranking .. 113
4.3.3 Estimating Type-Based Similarity . 113

4.4 Entity Relationships . 116
4.4.1 Ad Hoc Entity Retrieval . 116
4.4.2 List Search . 118
4.4.3 Related Entity Finding . 120

Contents xiii

4.5 Similar Entity Search. 124
4.5.1 Pairwise Entity Similarity . 126
4.5.2 Collective Entity Similarity . 130

4.6 Query-Independent Ranking . 133
4.6.1 Popularity . 134
4.6.2 Centrality. 135
4.6.3 Other Methods . 138

4.7 Summary.. 139
4.8 Further Reading . 139
References .. 140

Part II Bridging Text and Structure

5 Entity Linking . 147
5.1 From Named Entity Recognition Toward Entity Linking 148

5.1.1 Named Entity Recognition . 149
5.1.2 Named Entity Disambiguation .. 150
5.1.3 Entity Coreference Resolution . 151

5.2 The Entity Linking Task . 152
5.3 The Anatomy of an Entity Linking System . 152
5.4 Mention Detection. 154

5.4.1 Surface Form Dictionary Construction . 155
5.4.2 Filtering Mentions .. 156
5.4.3 Overlapping Mentions . 157

5.5 Candidate Selection . 157
5.6 Disambiguation .. 159

5.6.1 Features . 159
5.6.2 Approaches . 164
5.6.3 Pruning .. 172

5.7 Entity Linking Systems . 172
5.8 Evaluation . 174

5.8.1 Evaluation Measures . 174
5.8.2 Test Collections . 175
5.8.3 Component-Based Evaluation . 179

5.9 Resources . 180
5.9.1 A Cross-Lingual Dictionary for English Wikipedia

Concepts . 180
5.9.2 Freebase Annotations of the ClueWeb Corpora 180

5.10 Summary.. 181
5.11 Further Reading . 182
References .. 183

xiv Contents

6 Populating Knowledge Bases . 189
6.1 Harvesting Knowledge from Text . 191

6.1.1 Class-Instance Acquisition .. 192
6.1.2 Class-Attribute Acquisition . 195
6.1.3 Relation Extraction . 195

6.2 Entity-Centric Document Filtering . 197
6.2.1 Overview .. 198
6.2.2 Mention Detection . 199
6.2.3 Document Scoring . 200
6.2.4 Features . 203
6.2.5 Evaluation .. 207

6.3 Slot Filling . 212
6.3.1 Approaches . 213
6.3.2 Evaluation .. 215

6.4 Summary.. 215
6.5 Further Reading . 216
References .. 216

Part III Semantic Search

7 Understanding Information Needs . 225
7.1 Semantic Query Analysis . 226

7.1.1 Query Classification . 226
7.1.2 Query Annotation.. 228
7.1.3 Query Interpretation . 231

7.2 Identifying Target Entity Types . 232
7.2.1 Problem Definition . 233
7.2.2 Unsupervised Approaches.. 234
7.2.3 Supervised Approach .. 236
7.2.4 Evaluation .. 236

7.3 Entity Linking in Queries . 239
7.3.1 Entity Annotation Tasks . 240
7.3.2 Pipeline Architecture for Interpretation Finding 242
7.3.3 Candidate Entity Ranking .. 243
7.3.4 Producing Interpretations . 246

7.4 Query Templates . 252
7.4.1 Concepts and Definitions . 253
7.4.2 Template Discovery Methods . 255

7.5 Summary.. 260
7.6 Further Reading . 261
References .. 261

8 Leveraging Entities in Document Retrieval . 269
8.1 Mapping Queries to Entities . 270
8.2 Leveraging Entities for Query Expansion .. 272

8.2.1 Document-Based Query Expansion . 273
8.2.2 Entity-Centric Query Expansion .. 274

Contents xv

8.2.3 Unsupervised Term Selection . 275
8.2.4 Supervised Term Selection . 276

8.3 Projection-Based Methods .. 279
8.3.1 Explicit Semantic Analysis . 280
8.3.2 Latent Entity Space Model . 282
8.3.3 EsdRank .. 283

8.4 Entity-Based Representations. 285
8.4.1 Entity-Based Document Language Models 285
8.4.2 Bag-of-Entities Representation . 287

8.5 Practical Considerations . 292
8.6 Resources and Test Collections . 292
8.7 Summary.. 293
8.8 Further Reading . 293
References .. 294

9 Utilizing Entities for an Enhanced Search Experience 299
9.1 Query Assistance . 299

9.1.1 Query Auto-completion . 300
9.1.2 Query Recommendations . 302
9.1.3 Query Building Interfaces . 310

9.2 Entity Cards . 312
9.2.1 The Anatomy of an Entity Card. 313
9.2.2 Factual Entity Summaries . 314

9.3 Entity Recommendations . 319
9.3.1 Recommendations Given an Entity . 320
9.3.2 Personalized Recommendations . 322
9.3.3 Contextual Recommendations . 325
9.3.4 Explaining Recommendations . 327

9.4 Summary.. 331
9.5 Further Reading . 332
References .. 332

10 Conclusions and Future Directions . 337
10.1 Summary of Progress . 338

10.1.1 Data . 338
10.1.2 Retrieval Methods . 338
10.1.3 Understanding and Interacting with Users 339

10.2 A Peek into the Future . 340
10.3 Future Research Directions . 343

10.3.1 Understanding and Interacting with Users 344
10.3.2 Complex Information Needs and Task Completion 345
10.3.3 Data and Knowledge . 346

10.4 Concluding Remarks . 346
References .. 347

Index . 349

Acronyms

EF Entity frequency
EL Entity linking
ELQ Entity linking in query
ER Entity retrieval
IEF Inverse entity frequency
INEX Initiative for the Evaluation of XML Retrieval
IR Information retrieval
KB Knowledge base
KG Knowledge graph
KR Knowledge repository
LM Language models
LTR Learning-to-rank
NLP Natural language processing
SDM Sequential dependence model
SERP Search engine result page
SPO Subject-predicate-object (triple)
TREC Text Retrieval Conference

xvii

Notation

Throughout this book, unless stated otherwise, the notation used is as follows:

Symbol Meaning
c(x) Total count of x

c(x;y) Count of x in the context of y

c(x,y;z) Number of times x and y co-occur in the context of z

d Document (d ∈ D)

D Document collection

Dq(k) Top-k ranked documents for query q

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Eq(k) Top-k ranked entities for query q

K Knowledge base (set of SPO triples)

Le Set of links of an entity e

lx Representation length of x (lx =∑t∈V c(t;x))

q Query

t Term (string token, t ∈ V)

Te Types of entity e (Te ⊂ T)

T Type taxonomy

V Vocabulary of terms

|X| Cardinality of set X

Z Normalization factor

1(x) Binary indicator function (returns 1 if x is true, otherwise 0)

xix

Chapter 1
Introduction

Search engines have become part of our daily lives. We use Google (Bing, Yandex,
Baidu, etc.) as the main gateway to find information on the Web. With a certain type
of content in mind, we may search directly on a particular site or service, e.g., on
Facebook or LinkedIn for people, organizations, and events; on Amazon or eBay
for products; or on YouTube or Spotify for music. Even on our smartphones, we are
increasingly reliant on search functionality to find contacts, email, notes, calendar
entries, apps, etc. We have grown accustomed to expect a search box somewhere
near the top of the screen, and we have also increased our expectations of the quality
and speed of the responses to our searches.

On the highest level of abstraction, the field of information retrieval (IR)
is concerned with developing technology for matching information needs with
information objects. What we put in the search box, i.e., the query, is an expression
of our information need. It may range from a few simple keywords (e.g., “Bond
girls”) to a proper natural language question (e.g., “What are good digital cameras
under $300?”). The search engine then responds with a ranked list of items, i.e.,
information objects. Traditionally, these items were documents. In fact, IR has been
seen as synonymous with document retrieval by many. The past decade, however,
has seen an enormous development in search technology. As regular users, we have
witnessed first-hand the transitioning of search engines into “answering engines.”
Today’s contemporary web search engines return rich search result pages, which
include direct displays of entities, facts, and other structured results instead of
merely a list of documents (“ten blue links”), as illustrated in Fig. 1.1. A primary
enabling component behind these advanced search services is the availability
of large-scale structured knowledge repositories (called knowledge bases), which
organize information around specific things or objects (which we will be referring
to as entities). The objective of this book is to give a detailed account of the
developments of a decade of IR research that have enabled us to search for “things,
not strings.”

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_1&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_1

2 1 Introduction

Fig. 1.1 An example of a rich search result page from the Google search engine. The panel on the
right-hand side of the page is an example of an entity card

1.1 What Is an Entity?

Informally, an entity is a “thing” or “object” that can be referred to. Common
types of entities include, e.g., people, organizations, products, locations, and events.
Producing a precise definition, as we shall see, turns out to be quite challenging. A
commonly accepted definition of an entity is as follows:

An entity is an object or concept in the real world that can be distinctly identified.

However, this definition is not without complications. Let us take the entity
“Superman” as an example. Does it refer to the fictional comic book superhero,
to the comic book itself, or to the actor who is playing the character in the
movie adaptation? Entity identity is a hard question to tackle. Part of the issue
is related to defining “the” (real) world. Any attempt to resolve this is likely to
lead to a long philosophical debate about “existence.” Therefore, we will resort to
a more pragmatic and data-oriented approach. For that, we go all the way back

1.1 What Is an Entity? 3

to database management systems of the 1970s, where the importance of entities,
as meaningful units for organizing information, has been recognized. The entity-
relationship (ER) model proposed by Chen [11] in 1976 is a high-level conceptual
data model that “incorporates some of the important semantic information about
the real world” [11]. The ER model revolves around real-world entities and the
associations among them. Both entities and relationships are described by means of
their properties (attribute-value pairs). Further, an entity is an instance of a given
entity type (i.e., a semantic class). We capture these key facets of entities in the
following definition:

Definition 1.1 An entity is a uniquely identifiable object or thing, character-
ized by its name(s), type(s), attributes, and relationships to other entities.

We circumvent the “existential” questions by restricting our universe to some
particular registry of entities, which we will refer to as the entity catalog. Thus,
we consider that an entity “exists” if an only if it is an entry in the given entity
catalog.

Definition 1.2 An entity catalog is collection of entries, where each entry is
identified by a unique ID and contains the name(s) of the corresponding entity.

The entity catalog defines the universe of entities by providing entities with unique
identifiers. While this alone can turn out to be surprisingly useful, we typically have
more knowledge about entities (regarding their types, attributes, and relationships).
We will shortly come back to the question of how to represent this knowledge, in
Sect. 1.1.3.

1.1.1 Named Entities vs. Concepts

Entities are most commonly thought of as real-world objects represented by a proper
noun. There are, in fact, two main classes of entities that may be distinguished:

• Named entities are real-world objects that can be denoted by a proper noun.
Examples include specific persons, locations, organizations, products, events,
etc.

• Concepts are abstract objects, including, but not limited to, mathematical and
philosophical concepts (e.g., “distance,” “axiom,” “quantity”), physical concepts
and natural phenomena (e.g., “gravity,” “force,” “wind”), psychological concepts
(e.g., “emotion,” “thought,” “identity”), and social concepts (e.g., “authority,”
“human rights,” “peace”).

4 1 Introduction

These two classes generally correspond to the dichotomy between concrete and
abstract objects in philosophy. It is worth noting that the distinction between
concrete/abstract objects has a curious status in contemporary philosophy, with
many plausible ways of drawing the line between the two [34].

As far as our work is concerned, this distinction is mostly of a philosophical
nature. From a technical perspective, the exact same methods may be used for
named entities and/or concepts. Thus, unless stated otherwise, whenever we write
entity in this book, we mean both of them. Nevertheless, the focus of practical
application scenarios is, more commonly than not, restricted to named entities.

1.1.2 Properties of Entities

We shall collectively refer to all information associated with an entity (e.g., the
unique identifier, names, types, attributes, and relationships) as entity properties.
Let us now explore each of these properties in a bit more detail.

Unique identifier: Entities need to be uniquely identifiable. There must be a one-
to-one correspondence between each entity identifier (ID) and the (real-world
or fictional) object it represents (i.e., within a given entity catalog; the same
entity may exist under different identifiers in other catalogs). Examples of entity
identifiers from past IR benchmarking campaigns include email addresses for
people (within an organization), Wikipedia page IDs (within Wikipedia), and
unique resource identifiers (URIs, within Linked Data repositories).

Name(s): Entities are known and referred to by their name—usually, a proper
noun. Unlike IDs, names do not uniquely identify entities; multiple entities may
share the same name (e.g., “Michael Jordan”). Also, the same entity may be
known by more than a single name (e.g., “Barack Obama,” “President Obama,”
“Barack Hussein Obama II”). These alternative names are called surface forms
or aliases. Humans can easily resolve the ambiguity of entity references from
the context of the mention most of the time. For machines, automatically
disambiguating entity references presents many challenges.

Type(s): Entities may be categorized into multiple entity types (or types for
short). Types can also be thought of as containers (semantic categories) that
group together entities with similar properties. An analogy can be made to object-
oriented programming, whereby an entity of a type is like an instance of a class.
The set of possible entity types are often organized in a hierarchical structure,
i.e., a type taxonomy. For example, the entity Albert Einstein is an instance of the
type “scientist,” which is a subtype of “person.”

Attributes: The characteristics or features of an entity are described by a set of
attributes. Different types of entities are typically characterized by different sets
of attributes. For example, the attributes of a person include the date and place of
birth, weight, height, parents, spouses, etc. The a Attributes of a populated place
include latitude, longitude, population, postal code(s), country, continent, etc.

1.1 What Is an Entity? 5

Notice that some of the items in these lists are entities themselves, e.g., locations
or persons. We do not treat those as attributes but consider them separately, as
relationships. Attributes always have literal values; optionally, they may also
be accompanied by data type information (such as number, date, geographic
coordinate, etc.).

Relationships: In the words of Booch [9]: “an object by itself is intensely
uninteresting.” Relationships describe how two entities are associated to each
other. From a linguistic perspective, entities may be thought of as proper
nouns and relationships between them as verbs. For example, “Homer wrote
the Odyssey” or “The General Theory of Relativity was discovered by Albert
Einstein.” Relationships may also be seen as “typed links” between entities.

1.1.3 Representing Properties of Entities

Information about entities can be represented and stored in semi-structured or in
structured form.

Definition 1.3 A knowledge repository (KR) is a catalog of entities that
contains entity type information, and (optionally) descriptions or properties
of entities, in a semi-structured or structured format.

Wikipedia is a classic example of a knowledge repository. Each article in Wikipedia
is an entry that describes a particular entity. Articles are also assigned to categories
(which can be seen as entity types) and contain hyperlinks to other articles (thereby
indicating the presence of a relationship between two entities, albeit not the type of
the relationship). Wikipedia articles also contain information about attributes and
relationships of entities, but not in a structured form.

To organize and store information about entities in a structured form, one
needs a knowledge representation model. The Resource Description Framework
(RDF), which we will discuss in detail in Sect. 2.3.1.2, is the prevalent standard for
describing entities (and, more generally, resources). An entity can be represented as
a set of RDF statements. These statements may be seen as facts or assertions about
that entity. A knowledge base is a structured knowledge repository for storing and
organizing statements about entities.

Definition 1.4 A knowledge base (KB) is a structured knowledge repository
that contains a set of facts (assertions) about entities.

According to our definition, all knowledge bases are also knowledge repositories,
but the reverse is not true.

6 1 Introduction

Fig. 1.2 Illustration of the relationship between entity catalog, knowledge repository, and knowl-
edge base, each complementing and extending the previous concept. The entity properties marked
with * are mandatory

<dbr:Kimi_Raikkonen >

<foaf :name > "Kimi Räikkönen "
<dbo:birthPlace > <dbr:Espoo >
<dbo:nationality > <dbr:Finland >
<dct:description > "Finnish race driver"
<dbo:birthDate > "1979 -10 -17"
<rdf:type > <dbo:RacingDriver >
<dct:subject > <dbc:Finnish_racing_drivers >
<dct:subject > <dbc:Ferrari_Formula_One_drivers >
<rdfs :comment > "Kimi -Matias Räikkönen [...] nicknamed "The Ice Man",

is a Finnish racing driver currently driving for
Ferrari in Formula One . [...]"

Listing 1.1 Excerpt from the DBpedia knowledge base entry of KIMI RÄIKKÖNEN

Conceptually, entities in a knowledge base may be seen as nodes of a graph, with
the relationships between them as (labeled) edges. Thus, especially when this graph
nature is emphasized, a knowledge base may also be referred to as a knowledge
graph (KG). Figure 1.2 shows the relationship between these concepts.

To give an idea of what a knowledge base entry of an entity looks like, we refer
to Listing 1.1. This particular example is from DBpedia knowledge base, showing
an excerpt from the entry of the entity KIMI RÄIKKÖNEN who is displayed on the
entity card in Fig. 1.1. We are going to cover knowledge bases and the RDF model
in greater detail in Chap. 2.

1.2 A Brief Historical Outlook

Before delving into the topic of entity-oriented search, it is important to put things
in historical context. Therefore, in this section, we present a broad perspective on
developments within multiple fields of computer science, in particular information
retrieval (IR), databases (DB), natural language processing (NLP), and the Semantic

1.2 A Brief Historical Outlook 7

Web (SW). Even though they have developed largely independently of each other,
concentrated on separate problems, and operated on different types of data, they
seem to converge on a common theme: entities as units for capturing, storing,
organizing, and accessing information.

1.2.1 Information Retrieval

According to an early definition by Salton [35] from 1968, “Information retrieval
is a field concerned with the structure, analysis, organization, storage, searching,
and retrieval of information.” From its inception, IR has always kept a strong focus
on evaluating the effectiveness of systems: “determining the relevance of items,
retrieved by a search engine, relative to a user’s information need” [36]. The launch
of the Text REtrieval Conference (TREC) series in 1992, co-sponsored by the US
National Institute of Standards and Technology (NIST) and the US Department of
Defense, has had a profound impact on the field, by standardizing retrieval evalua-
tion through the creation of large test collections. TREC was followed by Asian and
European sister events, the NII Test Collection for IR Systems (NTCIR) in 1999, and
the Conference and Labs of the Evaluation Forum (CLEF, formerly Cross-Language
Evaluation Forum) in 2000. These benchmarking campaigns follow an annual cycle.
Each edition features a number of specific tasks, which are thematically organized
into different “tracks.” By looking at the development of these tracks, one can get a
good overview of how the focus of research in IR has shifted over the years.

Up to the mid-1990s, the field has primarily focused on documents as the unit
of retrieval. Driven by the motto “users want answers, not documents,” a new front
of IR research has emerged with the arrival of the TREC Question Answering track
in 1999. Question answering systems respond with a short, focused answer to a
question formulated in natural language, e.g., “Who invented the paper clip?” or
“How many calories are there in a Big Mac?” The expert finding task at TREC
Enterprise track (2005–2008) concentrated on answering a more specific type of
question: “Who are the experts on topic X?” Here, the input is a keyword query,
specifying the area of expertise (e.g., “XML schema”), and the system answers this
by returning a ranked list of people. The INEX Entity Ranking (2007–2009) and the
TREC Entity (2009–2011) tracks broadened the scope of answers (from people)
to arbitrary entity types, laying the groundwork for the area of entity retrieval.
With the transitioning from documents to entities as the units of retrieval also
came an increased reliance on structured data sources, known as knowledge bases.
The TREC Knowledge Base Acceleration track (2012–2014) aimed at developing
technology that can aid humans in maintaining and expanding information stored
about entities in knowledge bases.

In addition to research developments in academia, the search industry (and
especially major web search engines, like Google) has also played an prominent
role in shaping the field. Search has become a commodity, and users have grown
accustomed to expressing their information needs using short keyword queries, and

8 1 Introduction

Table 1.1 Comparison of database systems and information retrieval, based on [40]

Database systems Information retrieval

Data type Numbers, short strings Text

Foundation Algebraic/logic based Probabilistic/statistics based

Search paradigm Boolean retrieval Ranked retrieval

Queries Structured query languages Free text queries

Evaluation criteria Efficiency Effectiveness (user satisfaction)

User Programmer Nontechnical person

getting—most of the time—relevant results almost instantly. At the same time, the
massive volumes of usage data collected from users allows for improved methods,
by harnessing the “wisdom of the crowds.” As Liu [24] explains, “given the amount
of potential training data available, it has become possible to leverage machine
learning technologies to build effective ranking models.” Such models exploit a
large number of features by means of discriminative learning, known as “learning-
to-rank” [24].

1.2.2 Databases

“A database management system is a software system that enables the creation,
maintenance, and use of large amounts of data” [1]. This definition suggests that
database systems and information retrieval have a lot in common. This is indeed the
case, yet DB and IR emphasize very different aspects of information management.
Databases contain highly structured data, which is queried by expert users (i.e.,
programmers) using formal query languages, like SQL. The focus is on precise
query processing and efficiency. IR systems, on the other hand, “understand queries
as approximate, best-effort formulations of the user’s information needs” [40].
Search is an interactive process, which often involves multiple query reformulations
upon the inspection of results. Table 1.1 summarizes the traditional differences
between DB and IR systems. Given the complementary foci and techniques in DB
and IR, the two fields can benefit from each other’s developments. For instance, IR
can profit from efficient indexing structures, whereas DB can make use of natural
language search interfaces and probabilistic ranking mechanisms from IR. While the
traditional boundaries between these two fields still exist, they are getting blurred.
Entity retrieval is a cross-over application area between IR and DB that requires
flexible ranking on text, categorical, and numerical attributes. Additionally, the
search also needs to be able to cope with “no answers” and “too many answers.”
Searching online product catalogs is a good illustrative example, where users issue
keyword queries but also use various filters (e.g., via faceting) to narrow down the
scope of results. Many of these queries could be answered more or less exactly, but
many others will require probabilistic scoring and ranking.

1.2 A Brief Historical Outlook 9

As we have already discussed in Sect. 1.1, it has been realized very early on in
the database field that entities offer a disciplined way of handling data. The entity-
relationship approach of Chen [11] was originally proposed as a semantic data
model, to provide a better representation of real-world entities. Entity-relationship
diagrams, which are built up of entities, relationships, and attributes, are now
normally used as a conceptual modeling technique [7]. The field of databases
recognized the need for an entity-centric view of web content about the same
time as IR did [13, 40]. The recent focus in databases—within our interest area—
has primarily been on developing indexing schemes that facilitate efficient query
processing [10, 12], and on interpreting queries with the help of structured data, i.e.,
translating keyword queries to structured queries [18, 31, 38, 41].

Additionally, the field of databases also deals with a range of data integration
and data quality problems, such as record linkage (a.k.a. entity resolution) [14, 16]
or schema mapping [33]. We consider these being outside the scope of this book.

1.2.3 Natural Language Processing

Most research in natural language processing (or computational linguistics) aims
to capture the meaning of text. One might divide NLP problems into (1) low-level
parsing and segmentation tasks, (2) linguistic annotations, and (3) end-user applica-
tions. Common text parsing and segmentation tasks include sentence breaking, word
segmentation, stemming, and lemmatization. Linguistic annotation tasks include
part-of-speech tagging, word sense disambiguation, named entity recognition and
disambiguation, coreference resolution, temporal tagging, semantic role labeling,
and dependency parsing. These annotations are meant to yield deeper representa-
tions that are closer to meaning and may be exploited in real-world applications.
End-user applications include, among others, information extraction, machine
translation, text summarization, sentiment analysis, and question-answering. For
us, the most relevant of these is information extraction (IE), which “refers to
the automatic extraction of structured information such as entities, relationships
between entities, and attributes describing entities from unstructured sources” [37].

There are two main modes in which an IE system may be deployed: one is to
annotate text with the identified mentions of structured information, another is to
populate a knowledge base with the extracted information. Information extraction is
narrower in scope than full text understanding—which is still beyond our capabil-
ities today. Nevertheless, identifying entities and relationships makes it possible to
capture, to a large extent, what a given piece of text is about. Furthermore, entities
can serve as a pivot for connecting unstructured text and structured knowledge
bases. While rooted in NLP, the problem area of extracting structured information
from unstructured sources now engages the IR, DB, machine learning, and Web
communities as well. Over time, the scope of IE systems was expanded to include
the extraction of not only atomic elements (entities and relations) but of higher-order
structures as well, such as tables and lists [15, 25, 29].

10 1 Introduction

Up until the late 1980s, most NLP systems employed rule-based approaches,
which relied heavily on linguistic theory. Then came the “statistical revolution,”
introducing machine learning algorithms for language processing that could learn
from manually annotated corpora [22]. The current state of the art “draws far more
heavily on statistics and machine learning than it does on linguistic theory” [22].
Today, a broad range of robust, efficient, and scalable techniques for shallow NLP
processing (as opposed to deep linguistic analysis) are available [30].

1.2.4 Semantic Web

The Semantic Web is a relatively young field, especially compared to the other
three (IR, DB, NLP). The term was coined by Tim Berners-Lee, referring to an
envisioned extension of the original Web. While the original Web is a medium of
documents for people (i.e., the Web of Documents), the Semantic Web is meant to
be a Web of “actionable information,” i.e., an environment that enables intelligent
agents to carry out sophisticated tasks for users. The Semantic Web is “a Web
of relations between resources denoting real world objects, i.e., objects such as
people, places and events” [19]. The challenge of the Semantic Web, as explained
in the 2001 Scientific American by Berners-Lee et al. [6], is “to provide a language
that expresses both data and rules for reasoning about the data.” Thus, from the
late 1990s and throughout the 2000s, a great deal of effort was expended toward
establishing standards for knowledge representation. Several important technologies
were introduced:

• The Universal Resource Identifier (URI), to be able to uniquely identify “things”
(i.e., entities, which are called resources);

• The eXtensible Markup Language (XML), to add structure to web pages;
• The Resource Description Framework (RDF), to encode meaning in a form of

(sets of) triples;
• Various serializations for storing and transmitting RDF data, e.g., Notation-3,

Turtle, N-Triples, RDFa, and RDF/JSON;
• The SPARQL query language, to retrieve and manipulate RDF data;
• A large palette of techniques to describe and define vocabularies, including the

RDF Schema (RDFS), the Simple Knowledge Organization System (SKOS), and
the Web Ontology Language (OWL).

These technologies together form a layered architecture, referred to as the Semantic
Web Stack.

In terms of large-scale, agent-based mediation with heterogeneous data, the
Semantic Web is a dream that has not (yet) come true. The Semantic Web move-
ment, nevertheless, has resulted in structured data on a previously unprecedented
scale. As a terminological distinction, Semantic Web is often used to refer to the
various standards and technologies, while the data that is being published using
Semantic Web standards is called Linked Data or the Web of Data. Linked data may

1.3 Entity-Oriented Search 11

be exposed as semantic mark-up embedded within HTML pages or as entire datasets
(i.e., knowledge bases) published as RDF (e.g., DBpedia or Wikidata). A key idea
is that resources that refer to the same real-world entity may be interlinked across
different sources.

Ontologies, for automated inference or for integrating heterogeneous data, have
seen little adoption in the search industry. Recent efforts are geared toward speaking
the same language using a shared vocabulary. Schema.org is a collaborative activity
by major search providers (including Google, Microsoft, Yahoo, and Yandex) in
order to define a standard for semantic markup. At the time of writing, over 10
million sites use Schema.org to mark up their web pages and email messages.

Regarding information access, it was realized that formal, structured query
languages, like SPARQL, are unsuitable for ordinary users, who would prefer simple
keyword search. Thus, the Semantic Web community has adopted IR-style ranking
models for retrieving specific entities [8, 17, 27].

1.3 Entity-Oriented Search

We use the term entity-oriented search to refer to a broad range of information
access tasks where entities are used as information objects, instead of or in addition
to documents.

Definition 1.5 Entity-oriented search is the search paradigm of organizing
and accessing information centered around entities, and their attributes and
relationships.

The significance of this information access paradigm is twofold:

• From a user perspective, entities are natural units for organizing information. We
care about and mostly think in terms of real-world things and their connections.
Allowing users to interact with specific entities offers a richer and more effective
user experience than what is provided by conventional document-based retrieval
systems.

• From a machine perspective, entities allow for a better understanding of search
queries, of document content, and even of users (e.g., their context and prefer-
ences). Entities enable search engines to be more intelligent.

1.3.1 A Bird’s-Eye View

Figure 1.3 shows a high-level overview of an entity-oriented search system. At first
glance, one might say that this looks a lot like any conventional (i.e., document-

12 1 Introduction

Fig. 1.3 Architecture of an entity-oriented search system

oriented) retrieval system. While that observation is indeed valid from this distance,
there is a single, yet important difference on the data end. The document collection
is complemented with a knowledge repository. The knowledge repository contains,
at the bare minimum, an entity catalog: a dictionary of entity names and unique
identifiers. Typically, the knowledge repository also contains the descriptions and
properties of entities in semi-structured (e.g., Wikipedia) or structured format
(e.g., Wikidata, DBpedia). Commonly, the knowledge repository also contains
ontological resources (e.g., a type taxonomy).

Next, we briefly look at the three main components depicted on Fig. 1.3, moving
from left to right.

1.3.1.1 Users and Information Needs

Users may articulate their information needs in many different ways. These are
sometimes referred to as search paradigms [4]. Traditionally, keyword, structured,
and natural language queries are distinguished [4]. We complement this list with
two additional categories.

Keyword queries Thanks to major web search engines, keyword queries have
become the “dominating lingua franca of information access” [2]. Keyword
queries are also known as free text queries: “a query in which the terms of
the query are typed freeform into the search interface, without any connecting
search operators (such as Boolean operators)” [26]. Keyword queries are easy to
formulate, but—by their very nature—are imprecise.

Structured queries Structured data sources (databases and knowledge bases) are
traditionally queried using formal query languages (such as SQL or SPARQL).
These queries are very precise. However, formulating them requires a “knowl-
edge of the underlying schema as well as that of the query language” [3].
Structured queries are primarily intended for expert users and well-defined,
precise information needs.

1.3 Entity-Oriented Search 13

Keyword++ queries We use the term keyword++ query (coined in [3]) to refer
to keyword queries that are complemented with additional structural elements.
For example, when users supply target categories or various filters via faceted
search interfaces, those extra pieces of input constitute the ++ part. With well-
designed user interfaces, supplying these does not induce a cognitive load on the
user. Keyword++ queries may be seen as “fielded” keyword queries.

Natural language queries Information needs can be formulated using natural
language, the same way as one human would express it to another in an everyday
conversation. Often, natural language queries take a question form. Also, such
queries are increasingly more spoken aloud with voice search, instead of being
typed [28].

Zero-query The traditional way of information access is reactive: the search
system responds to a user-initiated query. Proactive systems, on the other hand,
“anticipate and address the user’s information need, without requiring the user
to issue (type or speak) a query” [5]. The zero-query search paradigm can be
expressed with the slogan “the query is the user.” In practice, the context of the
user is used to infer information needs.

Sawant and Chakrabarti [39] refer to queries typically sent to search engines
as “telegraphic queries.” These are not well-formed grammatical sentences or
questions. Keywords could also be described as “shallow” natural language queries.
For example, most users would simply issue “birth date neil armstrong.” With voice
search being increasingly more prevalent, especially on mobile devices, alterna-
tively, the user could ask the question: “When was Neil Armstrong born?” Bast
et al. [4] point out that “keyword search and natural language search are less clearly
delineated than it may seem.” The distinction often depends on the processing
technique used rather than the query text itself. In this book, we will concentrate on
keyword (and keyword++) queries. We note that the same techniques may be applied
for natural language queries as well (but will likely yield suboptimal results).

1.3.1.2 Search Engine

At this high-level perspective, the search engine consists of two main parts: the
user interface and the retrieval system. The former takes care of the interaction
with the user, from the formulation of the information need to the presentation
of search results. The “single search box” paradigm became extremely popular
thanks to major web search engines. Recently, natural language interfaces have also
been receiving increased attention. These allow users to pose a (possibly complex)
question in natural language (instead of merely a list of keywords). The retrieval
system interprets the search request and compiles a response. Modern web search
engine result pages are composed of a ranked list of documents (web pages),
entity cards, direct answers, and other knowledge panels, along with further entity
recommendations and suggestions for query reformulations. In vertical search, the
result list comprises a ranked list of entities, possibly grouped by entity type. Our
main focus in this book will be on how to generate entity-oriented responses.

14 1 Introduction

1.3.1.3 Data

We distinguish between three main types of data.

Unstructured data can be found in vast quantities in a variety of forms: web
pages, spreadsheets, emails, blogs, tweets, medical records, etc. Without making
any assumptions about the format, all these may be treated as textual documents,
i.e., a sequence of words.

Semi-structured data is characterized by the lack of rigid, formal structure. Typ-
ically, it contains tags or other types of markup to separate textual content from
semantic elements. Semi-structured data is “self-describing,” i.e., “the schema is
contained within the data and is evolving together with the content” [3].

Structured data adheres to a predefined (fixed) schema and is typically orga-
nized in a tabular format—think of relational databases. The schema serves as
a blueprint of how the data is organized, describes how real-world entities are
modeled, and imposes constraints to ensure the consistency of the data.

In Fig. 1.3, the document collection is an unstructured or semi-structured data
source. The knowledge repository may be either in semi-structured (e.g., RDF) or
in structured format (e.g., a relational database). One of the challenges in entity-
oriented search is that information about a given entity has to be collected and
aggregated across noisy, heterogeneous, and potentially conflicting data sources,
both unstructured and structured.

1.3.2 Tasks and Challenges

Next, we identify a number of specific tasks, and related challenges, that we will
be concerned with in this book. These can be organized around three main thematic
areas. In fact, these themes largely correspond to the three parts of the book.

1.3.2.1 Entities as the Unit of Retrieval

According to various studies, 40–70% of queries in web search mention or target
specific entities [20, 23, 32]. These queries commonly seek a particular entity,
albeit often an ambiguous one (e.g., “harry potter”) or a list of entities (e.g.,
“doctors in barcelona”). Such queries are better answered by returning a ranked
list of entities, as opposed to a list of documents. We refer to this as the task
of entity retrieval. There are three main challenges involved here: (1) how to
represent information needs, (2) how to represent entities (using both unstructured
and structured datasets), and (3) how to match those representations. One of the
most exciting opportunities in entity retrieval is how to leverage the additional
structure associated with entities in the knowledge repository—attributes, types, and
relationships—to improve retrieval effectiveness.

1.3 Entity-Oriented Search 15

1.3.2.2 Entities for Knowledge Representation

Entities help to bridge the gap between the worlds of unstructured and structured
data: they can be used to semantically enrich unstructured text, while textual sources
may be utilized to populate structured knowledge bases.

Recognizing mentions of entities in text and associating these mentions with the
corresponding entries in a knowledge base is known as the task of entity linking.
Entities allow for a better understanding of the meaning of text, both for humans and
for machines. While humans can relatively easily resolve the ambiguity of entities,
based on the context in which they are mentioned, for machines this presents many
difficulties and challenges.

The knowledge base entry of an entity summarizes what we know about that
entity. As the world is constantly changing, so are new facts surfacing. Keeping up
with these changes requires a continuous effort from editors and content managers.
This is a demanding task at scale. By analyzing the contents of documents in
which entities are mentioned, this process—of finding new facts or facts that need
updating—may be supported, or even fully automated. We refer to this as the
problem of knowledge base population.

1.3.2.3 Entities for an Enhanced User Experience

Besides being meaningful retrieval and information organization units, entities can
improve the user experience throughout the entire search process. This starts with
query assistance services that can aid users in articulating their information needs.
Next, entities may be utilized for improved content understanding, by connecting
entities and facts to queries and documents. For example, they make it possible to
automatically direct requests to specific services or verticals (sites dedicated to a
specific segment of online content). When presenting retrieval results, knowledge
about entities may be used to complement the traditional document-oriented search
results (i.e., the “ten blue links”) with various information boxes and knowledge
panels (like it is shown in Fig. 1.1). Finally, entities may be harnessed for providing
contextual recommendations. See, e.g., the “People also search for” section on
Fig. 1.1.

1.3.3 Entity-Oriented vs. Semantic Search

Entity-oriented and semantic search are often mentioned in the same context, and
even treated as casual synonyms by many. The question inevitably arises: What is
the difference between the two (if any)?

There is no agreed definition of semantic search, in fact, the term itself is highly
contested. One of the first published references to the term appeared in a 2003 paper
by Guha et al. [19]: “Semantic Search attempts to augment and improve traditional

16 1 Introduction

search results (based on Information Retrieval technology) by using data from the
Semantic Web.” Since the Semantic Web is primarily organized around real-world
objects and their relationships, according to this definition, entity-oriented search
could indeed be seen as synonymous with semantic search. According to a more
recent definition attributed to John [21], “Semantic Search is defined as search for
information based on the intent of the searcher and contextual meaning of the search
terms, instead of depending on the dictionary meaning of the individual words in the
search query.”

We prefer to take a broader view on semantic search, which is as follows.

Definition 1.6 Semantic search encompasses a variety of methods and
approaches aimed at aiding users in their information access and consumption
activities, by understanding their context and intent.

This definition emphasizes the overall high-level objective, an improved user
experience, without restricting the techniques to explicit semantics. This definition
includes, among others, implicit semantics, such as term dependencies, topic
models, or latent space models. Furthermore, we do not limit semantic search to the
traditional keyword-based search paradigm. As such, proactive recommendations
also fall under the umbrella of semantic search. Simply put, semantic search is
broader than entity-oriented search. Entities, nonetheless, play a leading role in it.

Throughout this book, our notion of semantics will be the following: references
to meaningful, i.e., machine understandable (ontological or linguistic) structures.

1.3.4 Application Areas

Where can entity-oriented search technology be applied? Obviously, web search is
the most prominent application area, but it is certainly not the only one. Entities play
a major role in a wide range of information access scenarios, including enterprise
search, domain-specific and vertical search (e.g., e-commerce, automotive industry,
medical search, legal information, scholarly literature, job search, and travel), social
networking, and intelligence services. Unlike web search, most of these focus on a
single or at most a handful of entity types in a given domain. Furthermore, entities
have an important function in question answering systems and in personal digital
assistants.

1.4 About the Book 17

1.4 About the Book

The book aims to cover all facets of entity-oriented search—where “search” can
be interpreted in the broadest sense of information access—from a unified point of
view, and provide a coherent and comprehensive overview of the state of the art.
This work is the first synthesis of research in this broad and rapidly developing
area. Selected topics are discussed in depth, with the intention of establishing
foundational techniques and methods for future research and development. A range
of other topics are treated at a survey level, with numerous pointers to relevant
literature for those interested. We also identify open issues and challenges along
the way, and conclude with a roadmap for future research.

1.4.1 Focus

The book is firmly rooted in information retrieval, and it thus bears the characteris-
tics of the field. Developments are motivated and driven by specific use-cases, with
theory, evaluation, and application all being interconnected. A strong focus on data
is maintained throughout the book—after all, it is the data that dictates to a large
extent what can be done.

We deliberately refrain from reporting evaluation results from specific studies;
the absolute values of those evaluation scores may be largely influenced by, among
others, the various data (pre-)processing techniques, choice of tools, and parameter
settings. A direct comparison of results from different studies (performed by
different groups/individuals) may thus be misleading. Nevertheless, we indicate
overall performance ranges on standard benchmark suites. A great deal of attention
is given to evaluation methodology and to available resources, such as datasets,
software tools, and frameworks.

To remain focused, we shall follow a language agnostic approach and use
English as our working language (as, indeed, most test collections are in English).
Languages with markedly different syntax, morphology, or compositional semantics
may need additional processing techniques. The discussion of those is outside the
scope of this book.

1.4.2 Audience and Prerequisites

The primary target audience of this book are researchers and graduate students. It is
our hope that readers with a theoretical inclination will find it as useful as will those
with a practical orientation.

An understanding of basic probability and statistics concepts is required for most
models and algorithms that are discussed in the book. A general background in

18 1 Introduction

information retrieval (i.e., familiarity with the main components of a search engine
and traditional document retrieval models, such as BM25 and language models, and
with basics of retrieval evaluation) is sufficient to follow the material. Further, a
basic understanding of machine learning concepts and algorithms for supervised
learning is assumed. It was our intention to make the book as self-contained as
possible. Therefore, standard retrieval models, learning-to-rank methods, and IR
evaluation measures will be briefly explained when we come across them for the
first time, in Chap. 3.

1.4.3 Organization

The book is divided into three main parts, sandwiched by introductory and
concluding chapters.

• The first two chapters, Introduction and Meet the Data, introduce the basic
concepts, provide an overview of entity-oriented search tasks, and present the
various types and sources of data that will be used throughout the book.

• Part I deals with the core task of entity ranking: given a textual query, possibly
enriched with additional elements or structural hints, return a ranked list of
entities. This core task is examined in a number of different flavors, using both
structured and unstructured data collections, and various query formulations. In
all these cases, the output is a ranked list of entities. The main questions guiding
this part are:

– How to represent entities and information needs, and how to match those
representations?

– How to exploit unique properties of entities, namely, types and relationships,
to improve retrieval performance?

Specifically, Chap. 3 introduces models purely for the text-based ranking of
entities. Chapter 4 presents advanced models capable of leveraging structured
information associated with entities, such as entity types and relationships. As
these two chapters build on each other, the reader is advised to read them
sequentially.

• Part II is devoted to the role of entities in bridging unstructured and structured
data. The following two questions are addressed:

– How to recognize and disambiguate entity mentions in text and link them to
structured knowledge repositories?

– How to leverage massive volumes of unstructured (and semi-structured) data
to populate knowledge bases with new information about entities?

Chapters 5 and 6 may be read largely independent of each other and of other
chapters of the book.

1.4 About the Book 19

• Part III explores how entities can enable search engines to understand the
concepts, meaning, and intent behind the query that the user enters into the
search box, and provide rich and focused responses (as opposed to merely a
list of documents)—a process known as semantic search. As we have discussed
earlier, semantic search is not a single method or approach, but rather a collection
of techniques. We present those techniques by dividing them into three broad
categories: understanding information needs (Chap. 7), leveraging entities in
document retrieval (Chap. 8), and utilizing entities for an enhanced search
experience (Chap. 9). Chapters 7–9 are relatively autonomous and can be read
independently of each other, but they build on concepts and tools from Parts I
and II.

• The final chapter, Conclusions and Future Directions, concludes the book by
discussing limitations of current approaches and suggests directions for future
research.

1.4.4 Terminology and Notation

This section provides a detailed description of the terminological and notational
conventions that will be used throughout the book.

Terminology Great care has been taken to use the following “reserved keywords”
only in their explicitly defined senses.

• Entity description: Textual (term-based) entity representation created with the
purpose of retrieval.

• Entity mention: Text span that is referring to a specific entity.
• Knowledge repository: A semi-structured or structured data collection that

contains a catalog of entities with unique identifiers, along with other information
about entities (such as entity descriptions, entity types, and links between
entities). Examples include Wikipedia, DBpedia, Freebase, etc.

• Knowledge base: A structured knowledge repository that contains facts (asser-
tions) about entities (including specific attributes and relationships). In this book,
these facts are represented as a set of subject-predicate-object (SPO) triples,
according to the RDF data model. For example, DBpedia is a knowledge base,
but Wikipedia is not.

• Knowledge graph: When viewed as a graph, we refer to a knowledge base as a
knowledge graph. This name is reserved for the contexts where the graph nature
of the data is utilized.

• Term: Atomic unit of text tokenization and indexing (i.e., a “word”).

Typography We adhere to certain typographical conventions.

• Whenever referring to a particular entity, the name of that entity is typeset in
small capitals, e.g., JOHN SMITH.

20 1 Introduction

• We typeset queries in italics, e.g., “example search query.” We include these
queries in verbatim, as they appear in the given dataset, i.e., without correcting
grammar or capitalization.

• When quoting data from a knowledge repository, it is typeset in typewriter

font.

Selected definitions, key concepts, and ideas are highlighted in gray boxes
throughout the book.

Mathematical Notation We adopt the following notational conventions.

• Sequences of elements of the same type (such as vectors, lists, etc.) are denoted
as 〈x1, . . . ,xn〉.

• Tuples, i.e., ordered collections of elements of different types, are denoted as
(x1, . . . ,xn).

• Set-like variables are denoted by capital calligraphic letters, e.g., D for docu-
ments, E for entities, T for the taxonomy of types, V for the vocabulary of terms,
etc. Graphs represent an exception with vertices and edges denoted as V and E,
respectively (as the calligraphic versions of those letters are already taken).

• Matrices are denoted by bold capital roman letters (e.g., A) and vectors are
denoted by bold small roman letters (e.g., w).

• We occasionally use the semicolon to group the input variables of a function,
to show which are specific to the given target (before semicolon) and which are
more contextual (after semicolon). For example, c(t,e;d) denotes the number of
times the term t and entity e co-occur in a particular document d . The semicolon
is not more than a reading aid, and there is no mathematical difference between
the comma and the semicolon.

• Some functions, like weight (w()), score (score()), or similarity (sim()), are
formulated differently in the various works that this book draws upon. However,
these functions are named similarly (though their arguments may vary) because
they play similar roles in their respective contexts.

• Performance measures are typeset in roman font, e.g., F1 or NDCG.
• The symbol × denotes multiplication, while · is reserved for the dot product.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level. 1st edn.
Addison-Wesley Publishing Co. (1995)

2. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: walking back and
forth for mining query templates. In: Proceedings of the 19th international conference on
World wide web, WWW ’10, pp. 1–10. ACM (2010). doi: 10.1145/1772690.1772692

https://doi.org/10.1145/1772690.1772692

References 21

3. Balog, K.: Semistructured data search. In: Ferro, N. (ed.) Bridging Between Information
Retrieval and Databases, Lecture Notes in Computer Science, vol. 8173, pp. 74–96. Springer
(2014). doi: 10.1007/978-3-642-54798-0_4

4. Bast, H., Buchhold, B., Haussmann, E.: Semantic search on text and knowledge bases. Found.
Trends Inf. Retr. 10(2-3), 119–271 (2016). doi: 10.1561/1500000032

5. Benetka, J.R., Balog, K., Nørvåg, K.: Anticipating information needs based on check-in
activity. In: Proceedings of the 10th ACM International Conference on Web Search and Data
Mining, WSDM ’17, pp. 41–50. ACM (2017). doi: 10.1145/3018661.3018679

6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43
(2001)

7. Beynon-Davies, P.: Database Systems. 3rd edn. Palgrave, Basingstoke, UK (2004)
8. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In:

Proceedings of the 10th International Conference on The Semantic Web, ISWC ’11, pp. 83–97.
Springer (2011). doi: 10.1007/978-3-642-25073-6_6

9. Booch, G.: Object Oriented Design with Applications. Benjamin-Cummings Publishing Co.,
Inc. (1991)

10. Chakrabarti, S., Kasturi, S., Balakrishnan, B., Ramakrishnan, G., Saraf, R.: Compressed data
structures for annotated web search. In: Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, pp. 121–130. ACM (2012). doi: 10.1145/2187836.2187854

11. Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976). doi: 10.1145/320434.320440

12. Cheng, T., Chang, K.C.C.: Beyond pages: Supporting efficient, scalable entity search with dual-
inversion index. In: Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pp. 15–26. ACM (2010). doi: 10.1145/1739041.1739047

13. Cheng, T., Yan, X., Chang, K.C.C.: EntityRank: Searching entities directly and holistically. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07, pp.
387–398 (2007)

14. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Trans. on Knowl. and Data Eng. 24(9), 1537–1555 (2012). doi: 10.1109/TKDE.2011.127

15. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping tables and lists
in HTML documents. In: Proceedings of the 11th International Conference on World Wide
Web, WWW ’02, pp. 232–241. ACM (2002). doi: 10.1145/511446.511477

16. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE
Trans. on Knowl. and Data Eng. 19(1), 1–16 (2007). doi: 10.1109/TKDE.2007.9

17. Fetahu, B., Gadiraju, U., Dietze, S.: Improving entity retrieval on structured data. In: In
Proceedings of the 14th International Semantic Web Conference. Springer (2015). doi:
10.1007/978-3-319-25007-6_28

18. Ganti, V., He, Y., Xin, D.: Keyword++: A framework to improve keyword search over entity
databases. Proc. VLDB Endow. 3(1-2), 711–722 (2010). doi: 10.14778/1920841.1920932

19. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th Inter-
national Conference on World Wide Web, WWW ’03, pp. 700–709. ACM (2003). doi:
10.1145/775152.775250

20. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings of
the 32nd international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’09, pp. 267–274. ACM (2009)

21. John, T.: What is semantic search and how it works with Google search (2012)

https://doi.org/10.1007/978-3-642-54798-0_4
https://doi.org/10.1561/1500000032
https://doi.org/10.1145/3018661.3018679
https://doi.org/10.1007/978-3-642-25073-6_6
https://doi.org/10.1145/2187836.2187854
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/1739041.1739047
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/511446.511477
https://doi.org/10.1109/TKDE.2007.9
https://doi.org/10.1007/978-3-319-25007-6_28
https://doi.org/10.14778/1920841.1920932
https://doi.org/10.1145/775152.775250

22 1 Introduction

22. Johnson, M.: How the statistical revolution changes (computational) linguistics. In: Proceed-
ings of the EACL 2009 Workshop on the Interaction Between Linguistics and Computational
Linguistics: Virtuous, Vicious or Vacuous?, ILCL ’09, pp. 3–11. Association for Computational
Linguistics (2009)

23. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects. In: Proceedings of
the 21st international conference on World Wide Web, WWW ’12, pp. 589–598. ACM (2012).
doi: 10.1145/2187836.2187916

24. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)
25. Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: Automatic table metadata extraction and

searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on
Digital Libraries, JCDL ’07, pp. 91–100. ACM (2007). doi: 10.1145/1255175.1255193

26. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

27. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using BM25F for
semantic search. In: Proceedings of the 3rd International Semantic Search Workshop,
SEMSEARCH ’10. ACM (2010). doi: y10.1145/1863879.1863881

28. Pichai, S.: Google I/O 2016 keynote (2016)
29. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random

fields. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’03, pp. 235–242. ACM (2003). doi:
10.1145/860435.860479

30. Piskorski, J., Yangarber, R.: Information extraction: Past, present and future. In: Multi-source,
Multilingual Information Extraction and Summarization, pp. 23–49. Springer (2013). doi:
10.1007/978-3-642-28569-1_2

31. Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.: Interpreting keyword queries over web
knowledge bases. In: Proceedings of the 21st ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’12, pp. 305–314. ACM (2012). doi:
10.1145/2396761.2396803

32. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of
the 19th international conference on World wide web, WWW ’10, pp. 771–780. ACM (2010).
doi: 10.1145/1772690.1772769

33. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pp. 73–84. ACM (2012). doi: 10.1145/2213836.2213846

34. Rosen, G.: Abstract objects. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy
(Spring 2017 Edition) (2017)

35. Salton, G.: Automatic Information Organization and Retrieval. McGraw Hill Text (1968)
36. Sanderson, M.: Test collection based evaluation of information retrieval systems. Found.

Trends Inf. Retr. 4(4), 247–375 (2010). doi: 10.1561/1500000009
37. Sarawagi, S.: Information extraction. Found. Trends databases 1(3), 261–377 (2008). doi:

10.1561/1900000003
38. Sarkas, N., Paparizos, S., Tsaparas, P.: Structured annotations of web queries. In: Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pp. 771–782. ACM (2010). doi: 10.1145/1807167.1807251

39. Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response ranking. In:
Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 1099–
1109. ACM (2013). doi: 10.1145/2488388.2488484

https://doi.org/10.1145/2187836.2187916
https://doi.org/10.1145/1255175.1255193
https://doi.org/y10.1145/1863879.1863881
https://doi.org/10.1145/860435.860479
https://doi.org/10.1007/978-3-642-28569-1_2
https://doi.org/10.1145/2396761.2396803
https://doi.org/10.1145/1772690.1772769
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1561/1500000009
https://doi.org/10.1561/1900000003
https://doi.org/10.1145/1807167.1807251
https://doi.org/10.1145/2488388.2488484

References 23

40. Weikum, G.: DB & IR: both sides now. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’07, pp. 25–30. ACM (2007).
doi: 10.1145/1247480.1247484

41. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: A survey. IEEE Data
Eng. Bull. 33(1), 67–78 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/1247480.1247484
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Meet the Data

This chapter introduces the basic types of data sources, as well as specific datasets
and resources, that we will be working with in later chapters of the book. These
may be placed on a spectrum of varying degrees of structure, from unstructured to
structured data, as shown in Fig. 2.1.

Fig. 2.1 The data spectrum

On the unstructured end of the spectrum we have plain text. Typically, these are
documents written in natural language.1 As a matter of fact, almost any type of data
can be converted into plain text, including web pages, emails, spreadsheets, and
database records. Of course, such a conversion would result in an undesired loss
of internal document structure and semantics. It is nevertheless always an option to
treat data as unstructured, by not making any assumptions about the particular data
format. Search in unstructured text is often referred to as full-text search.

On the opposite end of the spectrum there is structured data, which is typically
stored in relational databases; it is highly organized, tabular, and governed by a strict
schema. Search in this type of data is performed using formal query languages, like
SQL. These languages allow for a very precise formulation of information needs,
but require expert knowledge of the query language and of the underlying database
schema. This generally renders them unsuitable for ordinary users.

The data we will mostly be dealing with is neither of two extremes and
falls somewhere “in the middle.” Therefore, it is termed semi-structured. It is

1Written in natural language does not imply that the text has to be grammatical (or even sensible).

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_2&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_2

26 2 Meet the Data

Table 2.1 Comparison of unstructured, semi-structured, and structured data search

Unstructured Semi-structured Structured

Unit of retrieval Documents Objects Tuples

Schema No Self-describing Fixed

Queries Keyword Keyword++ Formal languages

characterized by the lack of a fixed, rigid schema. Also, there is no clear separation
between the data and the schema; instead, it uses a self-describing structure (tags or
other markers). Semi-structured data can be most easily viewed as a combination of
unstructured and structured elements. Let us point out that text is rarely completely
without structure. Even simple documents typically have a title (or a filename, that
is often meaningful). In HTML documents, markup tags specify elements such
as headings, paragraphs, and tables. Emails have sender, recipient, subject, and
body fields. What is important to notice here is that these document elements or
fields may or may not be present. This differs from structured data, where every
field specified by the schema ahead of time must be given some permitted value.
Therefore, documents with optional, self-describing elements naturally belong to
the category of semi-structured data. Furthermore, relational database records may
also be viewed as semi-structured data, by converting them to a set of hierarchically
nested elements. Performing such conversions can in fact simplify data processing
for entity-oriented applications. Using a semi-structured entity representation, all
data related to a given entity is available in a single entry for that entity. Therefore,
no aggregation via foreign-key relationships is needed. Table 2.1 summarizes data
search over the unstructured-structured spectrum.

The remainder of this chapter is organized according to the main types of data
sources we will be working with: the Web (Sect. 2.1), Wikipedia (Sect. 2.2), and
knowledge bases (Sect. 2.3).

2.1 The Web

The World Wide Web (WWW), commonly known simply as “the Web,” is probably
the most widely used information resource and service today. The idea of the Web
(what today would be considered Web 1.0) was introduced by Tim Berners-Lee
in 1989. Beginning in 2002, a new version, dubbed “Web 2.0” started to gain
traction, facilitating a more active participation by users, such that they changed
from mere consumers to become also creators and publishers of content. The early
years of the Web 2.0 era were landmarked by the launch of some of today’s biggest
social media sites, including Facebook (2004), YouTube (2005), and Twitter (2006).
Finally, the Semantic Web (or Web 3.0) was proposed as an extension of the current
Web [3, 20]. It represents the next major evolution of the Web that enables data to be
understood by computers, which could then perform tasks intelligently on behalf of

2.1 The Web 27

Table 2.2 Publicly available web crawls

Name Time period Size #Documents

ClueWeb09 fulla Jan 2009–Feb 2009 5 TB 1B

ClueWeb09 (Category B) 230 GB 50M

ClueWeb12b Feb 2012–May 2012 5.6 TB 733M

ClueWeb12 (Category B) 400 GB 52M

Common Crawlc May 2017 58 TB 2.96B

KBA stream corpus 2014d Oct 2011–Apr 2013 10.9 TB 1.2B

Size refers to compressed data
ahttps://lemurproject.org/clueweb09/
bhttps://lemurproject.org/clueweb12/
chttp://commoncrawl.org/2017/06/may-2017-crawl-archive-now-available/
dhttp://trec-kba.org/kba-stream-corpus-2014.shtml

users. The term Semantic Web refers both to this as-of-yet-unrealized future vision
and to a collection of standards and technologies for knowledge representation (cf.
Sect. 1.2.4).

Web pages are more than just plain text; one of their distinctive characteristics
is their hypertext structure, defined by the HTML markup. HTML tags describe
the internal document structure, such as headings, paragraphs, lists, tables, and so
on. Additionally, HTML documents contain hyperlinks (or simply “links”) to other
pages (or resources) on the Web. Links are utilized in at least two major ways.
First, the networked nature of the Web may be leveraged to identify important or
authoritative pages or sites. Second, many of the links also have a textual label,
referred to as anchor text. Anchor text is “incredibly useful for search engines
because it provides some extra description of the page being pointed to” [23].

2.1.1 Datasets and Resources

We introduce a number of publicly available web crawls that have been used in the
context of entity-oriented search. Table 2.2 presents a summary.

ClueWeb09/12 The ClueWeb09 dataset consists of about one billion web pages
in 10 languages,2 collected in January and February 2009. The crawl aims to be
a representative sample of what is out there on the Web (which includes SPAM
and pornography). ClueWeb09 was used by several tracks of the TREC conference.
The data is distributed in gzipped files that are in WARC format. About half of
the collection is in English; this is referred to as the “Category A” subset. Further,
the first segment of Category A, comprising about 50 million pages, is referred to

2English, Chinese, Spanish, Japanese, French, German, Portuguese, Arabic, Italian, and Korean.

https://lemurproject.org/clueweb09/
https://lemurproject.org/clueweb12/
http://commoncrawl.org/2017/06/may-2017-crawl-archive-now-available/
http://trec-kba.org/kba-stream-corpus-2014.shtml

28 2 Meet the Data

as the “Category B” subset.3 The Category B subset also includes the full English
Wikipedia. These two subsets may be obtained separately if one does not need the
full collection.

ClueWeb12 is successor to the ClueWeb09 web dataset, collected between
February and May 2012. The crawl was initially seeded with URLs from
ClueWeb09 (with the highest PageRank values, and then removing likely SPAM
pages) and with some of the most popular sites in English-speaking countries (as
reported by Alexa4). Additionally, domains of tweeted URLs were also injected
into the crawl on a regular basis. A blacklist was used to avoid sites that promote
pornography, malware, and the like. The full dataset contains about 733 million
pages. Similarly to ClueWeb09, a “Category B” subset of about 50 million English
pages is also made available.

Common Crawl Common Crawl5 is a nonprofit organization that regularly crawls
the Web and makes the data publicly available. The datasets are hosted on Amazon
S3 as part of the Amazon Public Datasets program.6 As of May 2017, the crawl
contains 2.96 billion web pages and over 250 TB of uncompressed content (in
WARC format). The Web Data Commons project7 extracts structured data from
the Common Crawl and makes those publicly available (e.g., the Hyperlink Graph
Dataset and the Web Table Corpus).

KBA Stream Corpus The KBA Stream Corpus 2014 is a focused crawl, which
concentrates on news and social media (blogs and tweets). The 2014 version
contains 1.2 billion documents over a period of 19 months (and subsumes the 2012
and 2013 KBA Stream Corpora). See Sect. 6.2.5.1 for a more detailed description.

2.2 Wikipedia

Wikipedia is one of the most popular web sites in the world and a trusted source
of information for many people. Wikipedia defines itself as “a multilingual, web-
based, free-content encyclopedia project supported by the Wikimedia Foundation
and based on a model of openly editable content.”8 Content is created through the
collaborative effort of a community of users, facilitated by a wiki platform. There
are various mechanisms in place to maintain high-quality content, including the
verifiability policy (i.e., readers should be able to check that the information comes

3The Category B subset was mainly intended for research groups that were not yet ready at that
time to scale up to one billion documents, but it is still widely used.
4http://www.alexa.com/.
5http://commoncrawl.org/.
6https://aws.amazon.com/public-datasets/.
7http://webdatacommons.org/.
8https://en.wikipedia.org/wiki/Wikipedia:About.

http://www.alexa.com/
http://commoncrawl.org/
https://aws.amazon.com/public-datasets/
http://webdatacommons.org/
https://en.wikipedia.org/wiki/Wikipedia:About

2.2 Wikipedia 29

from a reliable source) and a clear set of editorial guidelines. The collaborative
editing model makes it possible to distribute the effort required to create and
maintain up-to-date content across a multitude of users. At the time of writing,
Wikipedia is available in nearly 300 languages, although English is by far the most
popular, with over five million articles. As stated by Mesgari et al. [15], “Wikipedia
may be the best-developed attempt thus far to gather all human knowledge in one
place.”

What makes Wikipedia highly relevant for entity-oriented search is that most
of its entries can be considered as (semi-structured) representations of entities. At
its core, Wikipedia is a collection of pages (or articles, i.e., encyclopedic entries)
that are well interconnected by hyperlinks. On top of that, Wikipedia offers several
(complementary) ways to group articles, including categories, lists, and navigation
templates. In the remainder of this section, we first look at the anatomy of a regular
Wikipedia article and then review (some of the) other, special-purpose page types.
We note that it is not our aim to provide a comprehensive treatment of all the types of
pages in Wikipedia. For instance, in addition to the encyclopedic content, there are
also pages devoted to the administration of Wikipedia (discussion and user pages,
policy pages and guidelines, etc.); although hugely important, these are outside our
present scope of interest.

2.2.1 The Anatomy of a Wikipedia Article

A typical Wikipedia article focuses on a particular entity (e.g., a well-known
person, as shown in Fig. 2.2) or concept (e.g., “democracy”).9 Such articles typically
contain, among others, the following elements (the letters in parentheses refer to
Fig. 2.2):

• Title (I.)
• Lead section (II.)

– Disambiguation links (II.a)
– Infobox (II.b)
– Introductory text (II.c)

• Table of contents (III.)
• Body content (IV.)
• Appendices and bottom matter (V.)

– References and notes (V.a)
– External links (V.b)
– Categories (V.c)

9We refer back to Sect. 1.1.1 for a discussion on the difference between entities and concepts.

30 2 Meet the Data

Fig. 2.2 The Wikipedia page of MICHAEL SCHUMACHER

2.2 Wikipedia 31

The lead section of a Wikipedia article is the part between the title heading and the
table of contents. It serves as an introduction to the article and provides a summary
of its contents. The lead section may contain several (optional) elements, including
disambiguation links, maintenance tags, infobox, image, navigational boxes, and
introductory text. We will further elaborate on the title, infobox, and introductory
text elements below.

The main body of the article may be divided into sections, each with a section
heading. The sections may be nested in a hierarchy. When there are at least four
sections, a navigable table of contents gets automatically generated and displayed
between the lead section and the first heading.

The body of the article may be followed by optional appendix and footer sections,
including internal links to related Wikipedia articles (“see also”), references and
notes (that cite sources), further reading (links to relevant publications that have
not been used as sources), internal links organized into navigational boxes, and
categories.

2.2.1.1 Title

Each Wikipedia article is uniquely identified by its page title. The title of the page is
typically the most common name for the entity (or concept) described in the article.
When the name is ambiguous, the pages of the other namesakes are disambiguated
by adding further qualifiers to their title within parentheses. For instance, MICHAEL

JORDAN refers to the American (former) professional basketball player, and the
page about the English footballer with the same name has the title MICHAEL

JORDAN (FOOTBALLER). Note that the page title is case-sensitive (except the first
character). For special pages, the page title may be prefixed with a namespace,
separated with a colon, e.g., “Category:German racing drivers.” We will look at
some of the Wikipedia namespaces later in this section.

2.2.1.2 Infobox

The infobox is a panel that summarizes information related to the subject of the
article. In desktop view, it appears at the top right of the page, next to the lead
section; in mobile view it is displayed at the very top of the page. In the case
of entity pages, the infobox summarizes key facts about the entity in the form
of property-value pairs. Therefore, infoboxes represent an important source for
extracting structured information about entities (cf. Sect. 2.3.2). A large number
of infobox templates exist, which are created and maintained collaboratively, with
the aim to standardize information across articles that belong to the same category.
Infoboxes, however, are “free form,” meaning that what ultimately gets included
in the infobox of a given article is determined through discussion and consensus
among the editors.

32 2 Meet the Data

Schumacher holds many of Formula One’s [[List of Formula One driver records|

driver records]], including most championships , race victories, fastest laps ,

pole positions and most races won in a single season - 13 in [[2004 Formula

One season|2004]] (the last of these records was equalled by fellow German

[[Sebastian Vettel]] 9 years later). In [[2002 Formula One season|2002]],

he became the only driver in Formula One history to finish in the top three

in every race of a season and then also broke the record for most consecutive

podium finishes. According to the official Formula One website, he is

"statistically the greatest driver the sport has ever seen".

Listing 2.1 Wikitext markup showing internal links to other Wikipedia pages

2.2.1.3 Introductory Text

Most Wikipedia articles include an introductory text, the “lead,” which is a
brief summary of the article—normally, no more than four paragraphs long.
This should be written in a way that it creates interest in the article. The
first sentence and the opening paragraph bear special importance. The first
sentence “can be thought of as the definition of the entity described in the
article” [11]. The first paragraph offers a more elaborate definition, but still
without being too detailed. DBpedia, e.g., treats the first paragraph as the “short
abstract” and the full introductory text as the “long abstract” of the entity (cf.
Sect. 2.3.2).

2.2.2 Links

Internal links are an important feature of Wikipedia as they allow “readers to deepen
their understanding of a topic by conveniently accessing other articles.”10 Listing 2.1
shows the original wiki markup for the second paragraph of the introductory text
from Schumacher’s Wikipedia page from Fig. 2.2. Links are created by enclosing
the title of a target page in double square brackets ([[...]]). Optionally, an
alternative label, i.e., anchor text, may be provided after the vertical bar (|).
Linking is governed by a detailed set of guidelines. A key rule given to editors
is to link only the first occurrence of an entity or concept in the text of the
article.

The value of links extends beyond navigational purposes; they capture semantic
relationships between articles. In addition, anchor texts are a rich source of entity
name variants. Wikipedia links may be used, among others, to help identify and
disambiguate entity mentions in text (cf. Chap. 5).

10https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking.

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

2.2 Wikipedia 33

2.2.3 Special-Purpose Pages

Not all Wikipedia articles are entity pages. In this subsection and the next, we
discuss two specific kinds of special-purpose pages.

2.2.3.1 Redirect Pages

Each entity in Wikipedia has a dedicated article and is uniquely identified by the
page title of that article. The page title is the most common (canonical) name of
the entity. Entities, however, may be referred to by multiple names (aliases). The
purpose of redirect pages is to allow entities to be referred to by their name variants.
Additionally, redirect pages are also often created for common misspellings of entity
names. Redirect pages have no content themselves, they merely act as pointers from
alternative surface forms to the canonical entity page. Whenever the user visits a
redirect page, she will automatically be taken to the “main” article representing
the entity. For example, pages redirecting to UNITED STATES include acronyms
(U.S.A., U.S., USA, US), foreign translations (ESTADOS UNIDOS), misspellings
(UNTIED STATES), and synonyms (YANKEE LAND). Mind that Wikipedia page
titles are unique, thus each redirect may refer to a single entity, i.e., the most popular
entity with that name (e.g., OBAMA redirects to BARACK OBAMA).

2.2.3.2 Disambiguation Pages

Disambiguation pages serve a reverse role: They are created for ambiguous names
and list all entities that share that name. That is, they enumerate all possible mean-
ings of a name. Disambiguation pages are always suffixed by “(disambiguation)”
in the title. For example, the BENJAMIN FRANKLIN (DISAMBIGUATION) page lists
eight different people, four ships, seven art and literature productions, along with a
number of other possible entities, including the $100 bill and various buildings.

2.2.4 Categories, Lists, and Navigation Templates

Wikipedia offers three complementary ways to group related articles together:
categories, lists, and navigation templates. These are independent of each other, and
each method follows a particular set of guidelines and standards. It is not uncommon
that a topic is simultaneously covered by a category, a list, and a navigation template.
For example, the “Formula One constructors” article is grouped in all three ways:
as a category, a list, and a template.

34 2 Meet the Data

2.2.4.1 Categories

Categories mainly serve navigational purposes: they provide navigational links for
the reader to browse sets of related pages; see V.c on Fig. 2.2. Each Wikipedia article
should be assigned to at least one category; most articles are members of several
categories. Each article designates to what categories it belongs, and the category
page is automatically populated based on what articles declare membership to that
category.

Category pages can be distinguished from regular articles by the “Category:”
prefix in the page title. That is, a category is a page itself in the Category namespace
(all other content we have discussed so far is in the main namespace). Each category
page contains an introductory text (that can be edited like an article), and two
automatically generated lists: one with subcategories and another with articles that
belong to the category. Different kinds of categories may be distinguished, with the
first two being of primary importance:

• Topic categories are named after a topic (usually corresponding to a Wikipedia
article with the same name on that topic), e.g., “Formula One.”

• Set categories are named after a particular class (usually in plural), e.g., “German
racing drivers.”

• Set-and-topic categories are a combination of the above two types, e.g., “Formula
One drivers of Brawn.”

• Container categories only contain other categories.
• Universal categories provide a comprehensive list of articles that are otherwise

divided into subcategories, e.g., “1969 births.”
• Administration categories are mainly used by editors for management purposes,

e.g., “Clean up categories.”

Categories are also organized in a hierarchy; each category should be a subcategory
of some other category (except a single root category, called “Contents”). This
categorization, however, is not a well-defined “is-a” hierarchy, but a (directed)
graph; a category may have multiple parent categories and there might be cycles
along the path to ancestors. There are various alternative ways to turn this graph into
a tree, depending on where we start, i.e., what are selected as top-level categories.
Below are two possible starting points:

• Fundamental categories11 define four fundamental ontological categories: phys-
ical entities (“physical universe”), biological entities (“life”), social entities
(“society”), and intellectual entities (“concepts”).

• Wikipedia’s portal for Categories12 provides another starting point with a set of
27 main categories covering most of the knowledge domains.

11https://en.wikipedia.org/wiki/Category:Fundamental_categories.
12https://en.wikipedia.org/wiki/Portal:Contents/Categories.

https://en.wikipedia.org/wiki/Category:Fundamental_categories
https://en.wikipedia.org/wiki/Portal:Contents/Categories

2.2 Wikipedia 35

According to Wikipedia’s guidelines, the general rule to categorization, apart from
certain exceptions, is that an article (1) should be categorized as low down in the
category hierarchy as possible and (2) should usually not be in both a category and
its subcategory.

2.2.4.2 Lists

Lists, as contrasted with categories, provide a means for manual categorization of
articles. Lists have a number of advantages over categories. They can be maintained
from a centralized location (at the list page itself), and there is more control over
the presentation of the content (order of items, formatting, etc.). Importantly, they
can also include “missing” articles, that is, items that do not have a Wikipedia page
yet. Unfortunately, lists are more difficult to process automatically. Also, for some
topics (e.g., people from a particular country), lists would be infeasible to maintain,
due to the large number of entries.

2.2.4.3 Navigation Templates

Navigation templates are manual compilations of links that may be included in
multiple articles and edited in a central place, i.e., the template page. They provide
a navigation system with consistent look and organization for related articles.
Navigation templates are meant to be compact and should offer a useful grouping
of the linked articles (e.g., by topic, by era, etc.); for that, they may use custom
formatting, beyond standard lists or tables. Template inclusion is bidirectional: every
article that includes a given navigation template should also be contained as a link
in that template. Like categories and lists, templates can also be utilized, e.g., for
the task of completing a set of entities with other semantically related entities.

2.2.5 Resources

Wikipedia is based on the MediaWiki software,13 which is a free open source
wiki package. MediaWiki uses an extensible lightweight wiki markup language.
Wikipedia may be downloaded in various formats, including XML and SQL dumps
or static HTML files.14 Page view statistics are also made publicly available for
download.15 Wikipedia’s content is also accessible via the MediaWiki API in

13https://www.mediawiki.org.
14https://dumps.wikimedia.org/.
15https://dumps.wikimedia.org/other/analytics/.

https://www.mediawiki.org
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/other/analytics/

36 2 Meet the Data

various formats (including JSON and XML).16 There exists a broad selection of
tools for browsing, editing, analyzing, and visualizing Wikipedia.17 In addition to
the official MediaWiki parser, a number of alternative and special-purpose parsers
have been created.18

2.3 Knowledge Bases

It is important to realize that Wikipedia has been created for human consumption.
For machines, the content in this form is hardly accessible. Specifically, it is not a
machine-readable structured knowledge model. In our terminology, Wikipedia is a
knowledge repository.

The first usage of the term knowledge base is connected to expert systems,
dating back to the 1970s. Expert systems, one of the earliest forms of (successful)
AI software, are designed to solve (or aid humans in solving) complex problems,
such as medical diagnosis, by reasoning about knowledge [6]. These systems have
rather different data needs than what is supported by relational databases (“tables
with strings and numbers”19). For such systems, knowledge needs to be represented
explicitly. A knowledge base is comprised of a large set of assertions about the
world. To reflect how humans organize information, these assertions describe
(specific) entities and their relationships. An AI system can then solve complex
tasks, such as participating in a natural language conversation, by exploiting the
KB.20

One of the earliest attempts at such an AI system was the Cyc project that started
in 1984 with the objective of building a comprehensive KB to represent everyday
commonsense knowledge. The development has been ongoing for over 30 years
now and is still far from finished. The main limitation of Cyc is that it relies on
human knowledge engineers. In a system with ever-growing complexity, it becomes
increasingly difficult to add new objects. While the Cyc project is still alive, it
appears that manually codifying knowledge using formal logic and an extensive
ontology is not the way forward with respect to the ultimate goal of natural language
understanding.

Knowledge bases are bound to be incomplete; there is always additional infor-
mation to be added or updated. Modern information access approaches embrace
this inherent incompleteness. A KB is often regarded as a “semantic backbone”
and used in combination with unstructured resources. Instead of relying on large

16https://www.mediawiki.org/wiki/API:Main_page.
17https://en.wikipedia.org/wiki/Wikipedia:Tools.
18https://www.mediawiki.org/wiki/Alternative_parsers.
19We admit that this is a gross oversimplification.
20To make this possible, the AI system also requires an ontology (a finite set of rules governing
object relationships) and a (logical) inference engine.

https://www.mediawiki.org/wiki/API:Main_page
https://en.wikipedia.org/wiki/Wikipedia:Tools
https://www.mediawiki.org/wiki/Alternative_parsers

2.3 Knowledge Bases 37

ontologies, generally a rather lightweight approach is taken by using some form of
subsumption (“is-a”) ontology. When the emphasis is on the relationships between
entities, a knowledge base is often referred to as a knowledge graph.

There exist general purpose as well as domain-specific knowledge bases. DBpe-
dia and YAGO are academic projects that each derive a KB automatically from
Wikipedia. Freebase is a community-curated KB that was the open core of
Google’s Knowledge Graph. It was, however, closed down in 2015 and the data
is currently being transferred to Wikidata. All major search providers have their
own proprietary knowledge base. Examples include Google’s Knowledge Graph,21

Microsoft’s Satori,22 and Facebook’s Entity Graph.23 Unfortunately, there is very
little information available about these beyond popular science introductions.

Before discussing a number of specific knowledge bases, we first explain some
fundamentals.

2.3.1 A Knowledge Base Primer

Knowledge bases will be instrumental to most tasks and approaches that will
be discussed in this book. Thus, in this section, we explain the core underlying
concepts, as well as the RDF data model for representing knowledge in a structured
format.

A knowledge base may be divided into two layers:

• On the schema level lies a knowledge model, which defines semantic classes
(i.e., entity types), the relationships between classes and instances, properties
that (instances of) classes can have, and possibly additional constraints and
restrictions on them (e.g., range of allowed values for a certain property). Classes
are typically organized in a subsumption hierarchy (i.e., a type taxonomy).

• The instance level comprises a set of assertions about specific entities, describing
their names, types, attributes, and relationships with each other.

The predominant language on the Web for describing instances is RDF, which
we shall introduce in greater detail in Sect. 2.3.1.2. The KB schema may be
encoded using a declarative language, such as RDFS (for expressing taxonomical
relationships)24 or OWL (for full-fledged ontological modeling).25

21https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html.
22https://blogs.bing.com/search/2014/03/31/150-million-more-reasons-to-love-bing-everyday/.
23http://www.technologyreview.com/news/511591/facebook-nudges-users-to-catalog-the-real-
world/.
24https://www.w3.org/TR/rdf-schema/.
25https://www.w3.org/OWL/.

https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://blogs.bing.com/search/2014/03/31/150-million-more-reasons-to-love-bing-everyday/
http://www.technologyreview.com/news/511591/facebook-nudges-users-to-catalog-the-real-world/
http://www.technologyreview.com/news/511591/facebook-nudges-users-to-catalog-the-real-world/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL/

38 2 Meet the Data

2.3.1.1 Knowledge Bases vs. Ontologies

In information retrieval and natural language processing, knowledge bases have
become central to machine understanding of natural language over the past decade.
More recently, and especially in the search industry, often the term knowledge graph
is used. In the fields of artificial intelligence and the Semantic Web, people have
been using ontologies for similar, or even more ambitious, goals since the 1990s.
The question naturally arises: What is the difference between a knowledge base and
an ontology? Is it only a matter of choice of terminology or is there more to it?
The simple answer is that a knowledge base can be represented as an ontology. For
example, the YAGO knowledge base refers to itself as an ontology [21]. But the two
are not exactly the same.

To understand the difference, we should first clarify what an ontology is.
The word carries several connotations, depending on the particular discipline and
research field. Perhaps the most widely cited definition is by Gruber [9], which states
that “an ontology is an explicit specification of a conceptualization.” According to
Navigli [16], “an ontology is a set of definitions in a formal language for concepts
that describe the world of interest, including the relationships that connect these
concepts.” Put simply, an ontology is a means to formalizing knowledge. Building
blocks of an ontology include (1) classes (or concepts), (2) objects (or instances),
(3) relations, connecting classes and objects to one another, (4) attributes (or
properties), representing relations intrinsic to specific objects, (5) restrictions on
relations, and (6) rules and axioms, which are assertions in a logical form [16].
The conceptual design of an ontology revolves around the possible concepts and
relations that are to be encoded. The instance level (i.e., individual objects) may not
even be involved in the process or included in the ontology. Knowledge bases, on
the other hand, place the main emphasis on individual objects and their properties.
The formal constraints imposed by the ontology on those objects are only of interest
when the knowledge base is being populated with new facts.

In summary, both knowledge bases and ontologies attempt to capture a useful
representation of a (physical or virtual) world, with the overall objective to solve
(complex) problems. Ontologies are schema-oriented (“top-down” design) and
focus on describing the concepts and relationships within a given domain with
the highest possible expressiveness. Conversely, knowledge bases are fact-oriented
(“bottom-up” design), with an emphasis on describing specific entities.

2.3.1.2 RDF

The Resource Description Framework (RDF) is a language designed to describe
“things,” which are referred to as resources. A resource denotes either an entity
(object), an entity type (class), or a relation. Each resource is assigned a Uniform
Resource Identifier (URI), making it uniquely and globally identifiable. Each RDF
statement is a triple, consisting of subject, predicate, and object components.

2.3 Knowledge Bases 39

• The subject is always a URI, denoting a resource.
• The predicate is also a URI, corresponding to a relationship or property of the

subject resource.
• The object is either a URI (referring to another resource) or an (optionally typed)

literal.

Consider the following piece of information:

Michael Schumacher (born 3 January 1969) is a retired German racing driver, who raced
in Formula One for Ferrari.

It may be represented as the following set of RDF statements (often referred to
as SPO triples, for short). Each triple represents an atomic factual statement in the
knowledge base. URIs are enclosed in angle brackets and are shortened for improved
readability (see Table 2.4 for the full URIs of the namespaces dbr, foaf, etc.); literal
values are in quotes.

<dbr:Michael Schumacher> <foaf:name> "Schumacher, Michael"

<dbr:Michael Schumacher> <dbo:birthPlace> <dbr:West Germany>

<dbr:Michael Schumacher> <dbo:birthDate> "1969-01-03"

<dbr:Michael Schumacher> <rdf:type> <dbo:RacingDriver>

<dbr:Michael Schumacher> <dct:subject> <dbc:Ferrari Formula One drivers>

Note that the expressivity of the RDF representation depends very much on
the vocabulary of predicates. This particular example is taken from DBpedia
(which we shall introduce in detail in the next section), where the object
<dbc:Ferrari Formula One drivers> identifies a certain category of entities
and the predicate <dct:subject> assigns the subject entity to that category. Using
the DBpedia Ontology, there is (currently) no way to express this relationship more
precisely, emphasizing that the person was driving for that team but not anymore.

Mind that a relationship between two entities is a directed link (labeled with
a predicate). For instance, the fact that SCHUMACHER won the 1996 SPANISH

GRAND PRIX may be described as either of the following two statements:

<dbr:1996 Spanish Grand Prix> <dbp:firstDriver> <dbr:Michael Schumacher>

<dbr:Michael Schumacher> <dbp:firstDriverOf> <dbr:1996 Spanish Grand Prix>

In reality, only the first one is an actual triple; the second is a made up example, as
there is no <dbp:firstDriverOf> predicate in DBpedia. Even if there was one,
this second triple would only introduce redundant information. What is important
here is that information pertinent to a given entity is contained in triples with that
entity standing as either subject or object. When the entity stands as object, the triple
may be reversed by taking the inverse of the predicate, like:

<dbr:Michael Schumacher> is <dbp:firstDriver> of <dbr:1996 Spanish Grand Prix>

40 2 Meet the Data

Fig. 2.3 Excerpt of an RDF graph (taken from DBpedia). URIs (i.e., entities) are represented by
rounded rectangles, literals (i.e., attribute values) are denoted by shaded rectangles

Conceptually, the set of RDF triples forms a large, directed, labelled graph (referred
to as the RDF graph). Each RDF triple corresponds to a pair of nodes in the graph
(subject and object), connected by an edge (predicate). Figure 2.3 displays the graph
corresponding to the triples from our running example.

Note that RDF describes the instance level in the knowledge base. To cope with
the knowledge base schema (concepts and relations), an ontology representation
language is needed, such as RDFS or OWL. Essentially, what RDFS and OWL
provide are vocabularies for ontological modeling. RDFS (RDF Schema) provides
a vocabulary for encoding taxonomies and is often preferred when lightweight
modeling is sufficient. OWL (Web Ontology Language) builds upon RDFS and
comes with the full expressive power of description logics. For the serialization,
storage, and retrieval of RDF data we refer to Sect. 2.3.7.

2.3.2 DBpedia

In layman’s terms, DBpedia26 is a “database version of Wikipedia.” More precisely,
DBpedia is a knowledge base that is derived by extracting structured data from
Wikipedia [12]. One powerful aspect of DBpedia is that it is not a result of
a one-off process but rather of a continuous community effort, with numerous
releases since its inception in 2007. Over the years, DBpedia has developed into an
interlinking hub in the Web of Data (which will be discussed in Sect. 2.3.6). Another
distinguishing feature of DBpedia is that it is available in multiple languages. We
base our discussion below on the latest release that is available at the time of
writing, DBpedia 2016-10, and especially on the English version. For an overview
of DBpedia’s evolution over time and for details on the localized versions, we refer
to [12]. Due to DBpedia’s importance as a resource, we shall provide an in-depth
treatment of its main components.

26http://dbpedia.org/.

http://dbpedia.org/

2.3 Knowledge Bases 41

2.3.2.1 Ontology

The DBpedia Ontology is a cross-domain ontology that has been manually created
based on the most frequently used Wikipedia infoboxes (cf. II.b on Fig. 2.2).
The current version contains 685 classes, which are organized in a six-level deep
subsumption hierarchy. The ontology is intentionally kept this shallow so that it can
be easily visualized and navigated. Each class within the ontology is described by a
number of properties; for each property, the range of possible values is also defined.
Figure 2.4 shows a small excerpt from the DBpedia Ontology.

The maintenance of the ontology is a community effort that is facilitated by the
DBpedia Mappings Wiki. Using this wiki, users can collaboratively create and edit
mappings from different infobox templates to classes and properties in the DBpedia
Ontology. These mappings are instrumental in extracting high-quality data as they
alleviate problems arising from the heterogeneity of Wikipedia’s infoboxes. We
elaborate more on this in the following subsection. Crowdsourcing turned out to be
a powerful tool for extending and refining the ontology. The number of properties
has grown from 720 in 2009, to 1650 in 2014, and to 2795 in 2016. The number
of classes has increased at a similar pace, from 170 in 2009, to 320 in 2014, and
to 685 in 2016. The current version of DBpedia describes 4.58 million entities, out
of which 4.22 million are classified in the ontology. The largest ontology classes

Fig. 2.4 Excerpt from the DBpedia Ontology. Classes are represented by rounded rectangles
where arrows with solid lines indicate subclass relationships (from subclass to superclass).
Properties are denoted by the dashed arrows with black labels. Value types are shown in gray
boxes. Unless specifically indicated, classes/values are in the dbo namespace (cf. Table 2.4)

42 2 Meet the Data

include persons (1.4M), places (735k), creative works like music albums and films
(411k), and organizations (241k).

2.3.2.2 Extraction

The DBpedia extraction framework follows a pipeline architecture, where the input
is a Wikipedia article and the output is a set of RDF statements extracted from that
article. The framework encompasses a number of different purpose-built extractors;
some of these are designed to grab a single property (e.g., the abstract or a link to an
image depicting the entity), while others deal with specific parts of Wikipedia pages
(e.g., infoboxes). The DBpedia extractors can be categorized into four main types:

Raw infobox extraction The most important source of structured information
are the infoboxes. These list the main facts about a given entity as property-
value pairs. The raw infobox extractor directly translates all Wikipedia infobox
properties to DBpedia predicates. There is no normalization performed either
on properties (i.e., RDF predicates) or values (i.e., RDF objects). This generic
extraction method provides complete coverage of all infobox data. The predicates
with the dbp prefix in the example triples in Sect. 2.3.1.2 are the results of this
raw infobox extraction.

Mapping-based infobox extraction One major issue with infoboxes is incon-
sistency. A wide range of infobox templates are used in Wikipedia, which
evolve over time. As a result, the same type of entity may be described by
different templates; these templates may use different names for the same
property (e.g., birthplace vs. placeofbirth). Further, attribute values may
be expressed using a range of alternative formats and units of measurement. In
order to enforce consistency, which is an important dimension of data quality,
a homogenization of properties and values is necessary. This normalization (or
homogenization) is done against the DBpedia Ontology and is made possible
by the community-provided mappings specified in the DBpedia Mappings Wiki.
Not only are predicates normalized but literal object values are also canonicalized
to basic units according to the assigned datatypes. The mapping-based approach
significantly increases the quality compared to the raw infobox data. The RDF
statements generated by this extractor can be distinguished by the dbo prefix of
the predicates.

Feature extraction A number of specialized extractors are developed for the
extraction of a single feature from an article. These include, among others,
abstract, categories, disambiguations, external links, geo-coordinates, homepage,
image, label, page links, and redirects; we refer to Table 2.3 for the descriptions
of these.

Statistical extraction The extractors in this last group are not part of the DBpedia
“core.” They were created with the intent to provide resources that can support
computational linguistics tasks [14]. Unlike the core extractors, which are
essentially rule-based, these employ statistical estimation techniques. Some of

2.3 Knowledge Bases 43

Table 2.3 A selection of specific feature extractors in DBpedia

Name Predicate Description

Abstract dbo:abstract The first lines of the Wikipedia article

Categories dc:subject Wikipedia categories assigned to the article

Disambiguation dbo:wikiPageDisambiguates Disambiguation links

External links dbo:wikiPageExternalLink Links to external web pages

Geo-coordinates georss:point Geographical coordinates

Homepage foaf:homepage Link to the official homepage of an instance

Image foaf:depiction Link to the first image on the Wikipedia page

Label rdfs:label The page title of the Wikipedia article

Page links dbo:wikiPageWikiLink Links to other Wikipedia articles

Redirect dbo:wikiPageRedirects Wikipedia page to redirect to

See Table 2.4 for the URI prefixes

them deviate further from the regular extractors in that they aggregate data from
all Wikipedia pages as opposed to operating on a single article. The resulting
datasets include grammatical gender (for entities of type person), lexicalizations
(alternative names for entities and concepts), topic signatures (strongest related
terms), and thematic concepts (the main subject entities/concepts for Wikipedia
categories).

2.3.2.3 Datasets and Resources

The output of each DBpedia extractor, for each language, is made available as a
separate dataset. All datasets are provided in two serializations: as Turtle (N-triples)
and as Turtle quads (N-Quads, which include context). The datasets can be divided
into the following categories:

• DBpedia Ontology: The latest version of the ontology that was used while
extracting all datasets.

• Core datasets: All infobox-based and specific feature extractors (including the
ones listed in Table 2.3) belong here.

• Links to other datasets: DBpedia is interlinked with a large number of knowledge
bases. The datasets in this group provide links to external resources both on the
instance level (owl:sameAs), e.g., to Freebase and YAGO, and on the schema
level (owl:equivalentClass and owl:equivalentProperty), most notably
to schema.org.

• NLP datasets: This last group corresponds to the output of the statistical
extractors.

Namespaces and Internationalization The generic DBpedia URI namespaces
are listed in the upper block of Table 2.4. As part of the internationalization
efforts, some datasets are available both in localized and in canonicalized version.

44 2 Meet the Data

Table 2.4 Main URI namespaces used in DBpedia

Prefix URL Description

DBpedia namespaces

dbr http://dbpedia.org/resource/ One-to-one mapping between Wikipedia
articles and DBpedia resources

dbp http://dbpedia.org/property/ Properties from raw infobox extraction

dbo http://dbpedia.org/ontology/ DBpedia Ontology

External namespacesa

dc http://purl.org/dc/elements/1.1/ Dublin core

foaf http://xmlns.com/foaf/0.1/ Friend of a friend (FOAF)

georss http://www.georss.org/georss/ Geographically encoded objects for RSS

owl http://www.w3.org/2002/07/owl# W3C web ontology language

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# Standard W3C RDF vocabulary

rdfs http://www.w3.org/2000/01/rdf-schema# Extension of the basic RDF vocabulary
aThe list is not intended to be exhaustive

The localized datasets include everything from the given language’s Wikipedia
and use language-specific URIs (http://<lang>.dbpedia.org/resource/ and
http://<lang>.dbpedia.org/property/). The canonicalized datasets, on the
other hand, only contain resources that exist in the English edition of Wikipedia as
well; here, the generic (language-agnostic) URI namespace is used.

SPARQL Endpoint The various datasets are not only available for download but
can also be accessed and queried via a public SPARQL endpoint.27 The endpoint is
hosted using the Virtuoso Universal Server.

DBpedia Live Content on Wikipedia is changing. For example, in April 2016,
there were 3.4M edits on the English Wikipedia.28 New DBpedia versions are
released fairly regularly, at least once per year. However, for certain applications
or usage scenarios, this rate of updating might be too slow. Instead of the infrequent
batch updates, a live synchronization mechanism would be preferable. DBpedia
Live29 is a module that does exactly this: It processes Wikipedia updates real-time
and keeps DBpedia up-to-date. DBpedia Live offers a separate SPARQL endpoint.30

Additionally, the “changesets” (added and removed triples) are made available and
can be applied on top of a local copy of DBpedia with the help of a sync tool.31

27http://dbpedia.org/sparql.
28https://stats.wikimedia.org/EN/SummaryEN.htm.
29http://live.dbpedia.org/.
30http://live.dbpedia.org/sparql.
31https://github.com/dbpedia/dbpedia-live-mirror.

http://dbpedia.org/sparql
https://stats.wikimedia.org/EN/SummaryEN.htm
http://live.dbpedia.org/
http://live.dbpedia.org/sparql
https://github.com/dbpedia/dbpedia-live-mirror

2.3 Knowledge Bases 45

2.3.3 YAGO

YAGO32 (which stands for Yet Another Great Ontology) is a similar effort to
DBpedia in that it extracts structured information from Wikipedia, such that
each Wikipedia article becomes an entity. Although they share similar aims, the
underlying systems and philosophy are quite different. While DBpedia stays close
to Wikipedia and aims to simply provide an RDF version of it, YAGO focuses on
achieving high precision and consistent knowledge. Instead of relying on mappings
collaboratively created by a community, YAGO’s extraction is facilitated by expert-
designed declarative rules. Each fact in YAGO is annotated with a confidence value.
According to an empirical evaluation, the accuracy of the contained facts is about
95% [21].

2.3.3.1 Taxonomy

Another key difference between DBpedia and YAGO lies in the typing of entities.
While DBpedia employs a small, manually curated ontology, YAGO constructs a
deep subsumption hierarchy of entity types by connecting Wikipedia categories
with WordNet concepts. WordNet33 is a large lexical resource that groups words
into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept;
ambiguous words (i.e., words with multiple meanings) belong to multiple synsets.

Wikipedia categories are organized in a directed graph, but this is not a strict
hierarchy (cf. Sect. 2.2.4.1). Moreover, the relations between categories merely
reflect the thematic structure. “Thus, the hierarchy is of little use from an ontological
point of view” [21]. Hence, YAGO establishes a hierarchy of classes, where the
upper levels are based on WordNet synsets and the leaves come from (a subset of
the) Wikipedia leaf categories. This results in over 568K entity types, hierarchically
organized in 19 levels.

2.3.3.2 Extensions

There have been two major extensions to the original YAGO knowledge base.
YAGO2 [10] anchors knowledge in time and space, i.e., places entities and facts
on their spatial and temporal dimension. Specifically, timestamps are defined for
four main entity types: people, groups, artifacts, events. It is argued that “these
four types cover almost all of the cases where entities have a meaningful existence
time” [10]. Location is extracted for entities that have a “permanent spatial extent
on Earth” [10], such as countries, cities, mountains, and rivers. A new super-

32http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/.
33http://wordnet.princeton.edu/.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://wordnet.princeton.edu/

46 2 Meet the Data

class (yagoGeoEntity) is introduced to the YAGO taxonomy, which groups
together all geo-entities. Geo-entities are harvested from two sources: Wikipedia
(based on associated geographical coordinates) and GeoNames34 (a freely available
geographical database). In summary, YAGO2 associates over 30 million facts with
their occurrence time, and over 17 million facts with the location of occurrence. The
time of existence is known for 47% and the location is known for 30% of all entities.
According to a sample-based manual assessment, YAGO2 has a precision of 95%.

YAGO3 [13] extends YAGO to multiple languages, by running the YAGO
extraction system on different language editions of Wikipedia. This brings in one
million new entities and seven million facts over the original (English-only) YAGO.

2.3.3.3 Resources

YAGO is publicly available for download in TSV or Turtle formats, either in its
entirety or just specific portions.35 The YAGO type hierarchy is also offered in
DBpedia as an alternative to the DBpedia Ontology. Mappings (i.e., “same-as”
links) between YAGO and DBpedia instances are provided in both directions.

2.3.4 Freebase

Freebase36 is an open and large collaborative knowledge base [5]. It was launched in
2007 by the software company Metaweb, which was acquired by Google in 2010.
Freebase “was used as the open core of the Google Knowledge Graph” [19]. In
December 2014, Google announced that it would shut down Freebase and help with
the transfer of content from Freebase to Wikidata.37 The migration process is briefly
elaborated on in the next subsection.

The content of Freebase has been partially imported from open data sources,
such as Wikipedia, MusicBrainz,38 and the Notable Names Database (NNDB).39

Another part of the data comes from user-submitted wiki contributions. Freebase
encouraged users to create entries for less popular entities (which would have not
made it to Wikipedia). Instead of using controlled ontologies, Freebase adopted a
folksonomy approach, in which users could use types much like tags. Each type has
a number of properties (i.e., predicates) associated with it.

34http://www.geonames.org.
35http://yago-knowledge.org.
36https://developers.google.com/freebase/.
37https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc.
38https://musicbrainz.org/.
39http://www.nndb.com/.

http://www.geonames.org
http://yago-knowledge.org
https://developers.google.com/freebase/
https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc
https://musicbrainz.org/
http://www.nndb.com/

2.3 Knowledge Bases 47

Google has made some important data releases using Freebase, specifically,
entity annotations for the ClueWeb09 and ClueWeb12 corpora (cf. Sect. 5.9.2) and
for the KBA Stream Corpus 2014 (cf. Sect. 6.2.5.1). The latest Freebase dump, from
31 March 2015, is still available for download. It contains 1.9 billion triples and
about 39 million entities (referred to as topics in Freebase).

2.3.5 Wikidata

Wikidata40 is a free collaborative knowledge base operated by the Wikimedia
Foundation [22]. Its goal is to provide the same information as Wikipedia, but in
a structured format. Launched in October 2012, Wikidata “has quickly become
one of the most active Wikimedia projects” [22]. As of 2017, it has over 7K
active monthly contributors (those making at least 5 edits per month). Unlike the
previous KBs we have discussed, Wikidata does not consider statements as facts, but
rather as claims, each having a list of references to sources supporting that claim.
Claims can contradict each other and coexist, thereby allowing opposing views to
be expressed (e.g., different political positions). Essentially, claims are property-
value pairs for a given item, which is Wikidata lingo for an entity. There is support
for two special values: “unknown” (e.g., a person’s exact day of death) and “no
value” (e.g., Australia has no bordering countries); these cases are different from
data being incomplete. Claims can also have additional subordinate property-value
pairs, called qualifiers. Qualifiers can store contextual information (e.g., the validity
time for an assertion, such as the population of a city in a certain year, according
to a particular source). Importantly, Wikidata is multilingual by design and uses
language-independent entity IDs.

Wikidata relies on crowdsourced manual curation to ensure data quality. With the
retirement of Freebase, Google decided to offer the content of Freebase to Wikidata.
This migration, which is still underway at the time of writing, is not without
challenges. One of the main difficulties is rooted in the “cultural” differences
between the two involved communities; they “have a very different background,
subtly different goals and understandings of their tasks, and different requirements
regarding their data” [19]. One specific challenge is that Wikidata is eager to have
references for their statements, which are not present in Freebase. Such references
are obtained from the Google Knowledge Vault [8], then checked and curated
manually by Wikidata contributors using a purpose-built tool, called the Primary
Sources Tool; we refer to [19] for details. As of June 2017, Wikidata contains over
158 million statements about 26.9 million entities. Wikidata offers copies of its

40https://wikidata.org/.

https://wikidata.org/

48 2 Meet the Data

Fig. 2.5 Result snippet from a Google search result page

<section class ="ar_recipe_index full -page" itemscope
itemtype ="http://schema.org/Recipe">

<link href="http:// allrecipes.com/recipe /132929/ easy -chicken -satay/"
itemprop ="url" />

<meta itemprop =" mainEntityOfPage" content ="True" />

Listing 2.2 Excerpt from a recipe’s HTML page annotated with Microdata meta tags. Source:
http://allrecipes.com/recipe/132929/easy-chicken-satay/

content for download in JSON, RDF, and XML formats,41 and also provides access
via a search API.42

2.3.6 The Web of Data

The amount of structured data available on the Web is growing steadily. A large part
of it is contained in various knowledge bases, like DBpedia and Freebase. In addi-
tion, increasingly more data is being exposed in the form of semantic annotations
added to traditional web pages using metadata standards, such as Microdata, RDFa,
and JSON-LD. There is a strong incentive for websites for marking up their content
with semantic metadata: It allows search engines to enhance the presentation of the
site’s content in search results. An important standardization development was the
introduction of schema.org, a common vocabulary used by major search providers
(including Google, Microsoft, and Yandex) for describing commonly used entity
types (including people, organizations, events, products, books, movies, recipes,
etc.). Figure 2.5 displays a snippet from a Google search result page; Listing 2.2
shows an excerpt from the HTML source of the corresponding HTML page with
Microdata annotations.

Historically, data made available in RDF format was referred to as Semantic Web
data. One of the founding principles behind the Semantic Web is that data should be
interlinked. These principles were summarized by Berners-Lee [2] in the following
four simple rules:

41http://www.wikidata.org/wiki/Wikidata:Database_download.
42https://query.wikidata.org/.

http://allrecipes.com/recipe/132929/easy-chicken-satay/
http://www.wikidata.org/wiki/Wikidata:Database_download
https://query.wikidata.org/

2.3 Knowledge Bases 49

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information.
4. Include links to other URIs, so that people can discover more things.

The term Linked Data (LD) refers to a set of best practices for publishing structured
data on the Web. The key point about Linked Data is that it enables to connect
entities (or, generally speaking, resources) across multiple knowledge bases. This
is facilitated by a special “same-as” predicate, <owl:sameAs>, basically saying
that the subject and object resources connected by that predicate are the same.
For example, the following two statements connect the representations of the entity
MICHAEL SCHUMACHER across DBpedia, Freebase, and Wikidata:

<dbr:Michael Schumacher> <owl:sameAs> <fb:m.053w4>

<dbr:Michael Schumacher> <owl:sameAs> <wikidata:Q9671>

These “same-as” links connect all Linked Data into a single global data graph. Mind
that the term Linked Data should be used to describe the publishing practice, not the
data itself. A knowledge base published using LD principles should be called Linked
Dataset. To avoid the terminological confusion, we shall refer to the collection of
structured data exposed on the Web in machine understandable format as the Web
of Data (emphasizing the difference in nature to the traditional Web of Documents).
Linked Open Data (LOD) may also be used as a casual synonym, emphasizing the
fact that Linked Data is released under an open license. Figure 2.6 shows the Linked
Open Data cloud, where edges indicate the presence of “same-as” links between two
datasets (knowledge bases). Notice that DBpedia is a central hub here.

2.3.6.1 Datasets and Resources

In this book, we focus on two particular data collections, BTC-2009 and Sindice-
2011, that have been used in the information retrieval community for entity-oriented
research. For a more extensive list of datasets, tools, and Linked Data resources, see
http://linkeddata.org/.

BTC-2009 The Billion Triples Challenge 2009 dataset (BTC-2009)43 was created
for the Semantic Web Challenge in 2009 [4]. The dataset was constructed by
combining the crawls of multiple semantic search engines during February–March
2009. It comprises 1.1 billion RDF triples, describing 866 million distinct resources,
and amounts to 17 GB in size (compressed).

43https://km.aifb.kit.edu/projects/btc-2009/.

http://linkeddata.org/
https://km.aifb.kit.edu/projects/btc-2009/

50 2 Meet the Data

F
ig
.2

.6
E

xc
er

pt
fr

om
th

e
L

in
ki

ng
O

pe
n

D
at

a
cl

ou
d

di
ag

ra
m

20
14

,b
y

M
ax

Sc
hm

ac
ht

en
be

rg
,

C
hr

is
ti

an
B

iz
er

,A
nj

a
Je

nt
zs

ch
,a

nd
R

ic
ha

rd
C

yg
an

ia
k.

So
ur

ce
:

ht
tp

://
lo

d-
cl

ou
d.

ne
t/

http://lod-cloud.net/

2.4 Summary 51

Sindice-2011 The Sindice-2011 dataset [7] was created in 2011 for the TREC
Entity track [1] with the aim to provide a more accurate reflection of the at-the-
time current Web of Data. The data has been collected by the Sindice semantic
search engine [18] between 2009 and 2011. Sindice-2011 contains 11 billion
RDF statements, describing 1.7 billion entities. The dataset is 1.3 TB in size
(uncompressed).

2.3.7 Standards and Resources

RDF, RDFS, and OWL are all standards of the World Wide Web Consortium
(W3C),44 which is the main international standards organization for the World Wide
Web. There exist numerous serializations for RDF data, e.g., Notation-3, Turtle, N-
Triples, RDFa, and RDF/JSON. The choice of serialization depends on the context
and usage scenario. For example, Turtle is probably the easiest serialization to use
for human consumption and manipulation. If large volumes of data need to be
interchanged between systems, then producing data dumps in N-Triples format is
a common choice. If only HTML documents are produced, then RDFa is preferred.
SPARQL45 is a structured query language for retrieving and manipulating RDF data,
and is also a W3C standard. Triplestores are special-purpose databases designed for
storing and querying RDF data. Examples of triplestores include Apache Jena,46

Virtuoso,47 and RDF-3X [17].

2.4 Summary

This chapter has introduced the different kinds of data, from unstructured to
structured, that we will be using in the coming chapters. The order in which we
have discussed them—first the Web, then Wikipedia, and finally knowledge bases—
reflects how the research focus in entity-oriented search is shifting toward relying
increasingly more on structured data sources, and specifically on knowledge bases.
Knowledge bases are rich in structure, but light on text; they are of high quality, but
are also inherently incomplete. This stands in stark contrast with the Web, which
is a virtually infinite source of heterogeneous, noisy, and text-heavy content that
comes with limited structure. Their complementary nature makes the combination
of knowledge bases and the Web a particularly attractive and fertile ground for
entity-oriented (re)search.

44https://www.w3.org/.
45https://www.w3.org/TR/sparql11-query/.
46https://jena.apache.org/.
47https://virtuoso.openlinksw.com/.

https://www.w3.org/
https://www.w3.org/TR/sparql11-query/
https://jena.apache.org/
https://virtuoso.openlinksw.com/

52 2 Meet the Data

References

1. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The
Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012)

2. Berners-Lee, T.: Linked data (2009)
3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43

(2001)
4. Bizer, C., Mika, P.: Editorial: The semantic web challenge, 2009. Web Semantics: Science,

Services and Agents on the World Wide Web 8(4) (2010)
5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively

created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1247–1250.
ACM (2008). doi: 10.1145/1376616.1376746

6. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experiments
of the Stanford Heuristic Programming Project (The Addison-Wesley Series in Artificial
Intelligence). Addison-Wesley Publishing Co. (1984)

7. Campinas, S., Ceccarelli, D., Perry, T.E., Delbru, R., Balog, K., Tummarello, G.: The Sindice-
2011 dataset for entity-oriented search in the web of data. In: 1st International Workshop on
Entity-Oriented Search, EOS ’11 (2011)

8. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S.,
Zhang, W.: Knowledge Vault: A web-scale approach to probabilistic knowledge fusion. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pp. 601–610. ACM (2014). doi: 10.1145/2623330.2623623

9. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),
199–220 (1993). doi: 10.1006/knac.1993.1008

10. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and temporally
enhanced knowledge base from Wikipedia. Artificial Intelligence 194, 28–61 (2013). doi:
10.1016/j.artint.2012.06.001

11. Kazama, J., Torisawa, K.: Exploiting Wikipedia as external knowledge for named entity
recognition. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’07,
pp. 698–707. Association for Computational Linguistics (2007)

12. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P., Hellmann, S.,
Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web Journal (2012)

13. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: A knowledge base from multilingual
Wikipedias. In: Seventh Biennial Conference on Innovative Data Systems Research, CIDR
’15 (2015)

14. Mendes, P.N., Jakob, M., Bizer, C.: DBpedia for NLP: A multilingual cross-domain knowledge
base. In: Proceedings of the Eight International Conference on Language Resources and
Evaluation, LREC ’12. ELRA (2012)

15. Mesgari, M., Okoli, C., Mehdi, M., Nielsen, F.Å., Lanamäki, A.: “The sum of all human
knowledge”: A systematic review of scholarly research on the content of Wikipedia. Journal
of the Association for Information Science and Technology 66(2), 219–245 (2015). doi:
10.1002/asi.23172

16. Navigli, R.: Ontologies. In: Mitkov, R. (ed.) Ontologies. Oxford University Press (2017)
17. Neumann, T., Weikum, G.: RDF-3X: a risc-style engine for RDF. Proc. VLDB Endow. 1(1),

647–659 (2008). doi: 10.14778/1453856.1453927
18. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: Sindice.com:

a document-oriented lookup index for open linked data. Int. J. Metadata Semant. Ontologies
3(1), 37–52 (2008). doi: 10.1504/IJMSO.2008.021204

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/10.1002/asi.23172
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.1504/IJMSO.2008.021204

References 53

19. Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase to
Wikidata: The great migration. In: Proceedings of the 25th International Conference on World
Wide Web, WWW ’16, pp. 1419–1428. International World Wide Web Conferences Steering
Committee (2016). doi: 10.1145/2872427.2874809

20. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent Systems
21(3), 96–101 (2006). doi: 10.1109/MIS.2006.62

21. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A core of semantic knowledge. In:
Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 697–
706. ACM (2007). doi: 10.1145/1242572.1242667

22. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledge base. Commun. ACM
57(10), 78–85 (2014). doi: 10.1145/2629489

23. Zhai, C., Massung, S.: Text Data Management and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. ACM and Morgan & Claypool (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2872427.2874809
https://doi.org/10.1109/MIS.2006.62
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/2629489
http://creativecommons.org/licenses/by/4.0/

Part I
Entity Ranking

Part I is dedicated to the problem of entity ranking: Given an input query, return a
ranked list of entities. Entity ranking is a multifaceted problem involving a variety of
interrelated factors, such as the task at hand (ad-hoc entity ranking, list completion,
related entity finding, etc.), query formulation (from keyword-only to queries with
additional components, such as target types or example entities), and data source
(unstructured, semi-structured, structured, as well as their combinations). Chapter 3
considers keyword queries and focuses on obtaining term-based representations for
entities, referred to as entity descriptions. Once created, these entity descriptions
can be ranked using traditional document-based retrieval models. Chapter 4 presents
semantically informed retrieval models that utilize specific characteristics of entities
(attributes, types, and relationships) for retrieval. Some of these methods assume a
semantically enriched keyword++ query. The entity ranking methods discussed in
this part lay the foundations for all the various approaches discussed in the rest of
the book. As we will see, entity ranking turns out to be an indispensable tool to
address many sub-tasks in the systems that we will subsequently discuss.

Chapter 3
Term-Based Models for Entity Ranking

We have established in Chap. 1 that entities are natural and meaningful units of
retrieval. To recap, according to our working definition, an entity is a uniquely
identifiable “thing,” a typed object, with name(s), attributes, and relationships to
other entities. Examples of some of the most frequent types of entities include
people, locations, organizations, products, and events. Returning specific entities,
instead of a mere list of documents, can provide better answers to a broad range of
information needs. The way these information needs are expressed may vary from
short keyword queries to full-fledged natural language questions (cf. Sect. 1.3.1.1).
In this chapter, we adhere to the “single search box” paradigm, which accepts “free
text” search queries, and simply treat queries as sequences of words, referred to
hereinafter as terms. The task we are going to focus on is ad hoc entity retrieval:
answering a one-off free text query, representing the user’s underlying information
need, with a ranked list of entities. The fundamental question we are concerned with
then is: How do we perform relevance matching of queries against entities?

In Chap. 2, we have introduced large-scale knowledge repositories, like Wiki-
pedia and DBpedia, that are devoted to organizing information around entities
in a (semi-)structured format. Having information accumulated about entities in
a knowledge repository is indeed helpful, yet it is not a prerequisite. As we
shall see later in this chapter, it is possible to rank entities without (pre-existing)
direct representations, as long as they can be recognized and identified uniquely in
documents. The main idea of this chapter can be summarized as follows: If textual
representations can be constructed for entities, then the ranking of these represen-
tations (“entity descriptions”) becomes straightforward by building on traditional
document retrieval techniques (such as language models or BM25). Accordingly,
the bulk of our efforts in this chapter, described in Sect. 3.2, will revolve around
assembling term-based entity representations from various sources, ranging from
unstructured to structured. In the simplest case, these entity representations are
based on the bag-of-words model, which considers the frequency of words but
disregards their order. We will also introduce an extension to multiple document
fields, as a mechanism for preserving some of the structure associated with entities.

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_3&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_3

58 3 Term-Based Models for Entity Ranking

Table 3.1 Example entity
search queries taken from
various benchmarking
campaigns [4]

Query

martin luther king

disney orlando

Apollo astronauts who walked on the Moon

Winners of the ACM Athena award

EU countries

Hybrid cars sold in Europe

birds cannot fly

Who developed Skype?

Which films starring Clint Eastwood did he direct himself?

Finally, we will detail how to preserve term position information, which allows for
employing more sophisticated proximity-aware ranking models.

Section 3.3 presents baseline retrieval models for ranking term-based represen-
tations. Readers familiar with traditional document retrieval techniques may choose
to skip this section. In Sect. 3.4, we take a small detour and consider a different
retrieval approach in which entities are not modeled directly. Evaluation measures
and test collections are discussed in Sect. 3.5.

3.1 The Ad Hoc Entity Retrieval Task

Entity retrieval is the task of answering queries with a ranked list of entities. Ad hoc
refers to the standard form of retrieval in which the user, motivated by an ad hoc
information need, initiates the search process by formulating and issuing a query.1

The search query might come in a variety of flavors, ranging from a few keywords
to proper natural language questions; see Table 3.1 for examples. Adhering to the
“single search box” paradigm, we do not make any assumptions about the specific
query format and accept any written or spoken text that is entered in a search box.
This free text input is then treated as a sequence of keywords (without any query
language operators, such as Boolean operators). We further assume that a catalog of
entities is available, which contains unique identifiers of entities. For matching the
query against entities in the catalog, both unstructured and structured information
sources may be utilized. The formal definition of the task, then, is as follows.

Definition 3.1 Given a keyword query q and an entity catalog E , ad
hoc entity retrieval is the task of returning a ranked list of entities
〈e1, . . . ,ek〉,ei ∈ E with respect to each entity’s relevance to q . The relevance
of entities is inferred based on a collection of unstructured and/or (semi-)
structured data.

1More precisely, ad hoc refers to the nature of the information need, i.e., “a temporary information
need that might disappear once the need is satisfied” [78].

3.2 Constructing Term-Based Entity Representations 59

How to go about solving this task? We can build on the extensive body of work on
document retrieval that has established models and algorithms for matching queries
against documents. One way to frame the problem of entity ranking is to imagine
that an entity description or “profile” document is to be compiled for each entity
in the catalog, which contains all there is to know about the given entity, based
on the available data. Once those descriptions are created, entities can be ranked
using existing document retrieval algorithms. We detail these two steps, constructing
and ranking term-based entity representations, in Sects. 3.2 and 3.3, respectively.
Alternatively, entity retrieval may also be approached without requiring explicit
representations to be built for each entity. This possibility is discussed in Sect. 3.4.

Before we proceed further, a note of clarification on entity identifiers vs.
representations. Strictly speaking, we return a ranked list of entity identifiers and
establish relevance based on each entity’s representation. Since the identifier of an
entity is uniquely associated with its representation, for convenience, we disregard
the distinction in our notation and simply write e for an entity or its identifier.

3.2 Constructing Term-Based Entity Representations

The first step in addressing the problem of ad hoc entity retrieval is to create a
“profile” document for each entity in our catalog, which includes all that we know
about that entity. This will serve as the textual representation of the given entity,
referred to as entity description for short. One can assemble entity descriptions
by considering the textual contexts, from a large document collection, in which
the entities occur. For popular entities, such descriptions may already be readily
available (think of the Wikipedia page of an entity). Also, there is a large amount of
information about entities organized and stored in knowledge bases in RDF format.
Reflecting the historical development of the field, we will proceed and consider
the underlying data sources in exactly this order: unstructured document corpora
(Sect. 3.2.1), semi-structured documents (Sect. 3.2.2), and structured knowledge
bases (Sect. 3.2.3).

For all types of data sources, our main focus will be on estimating term
count, denoted as c(t;e), which is the number of times term t appears in the
description constructed for entity e. With that at hand, we can define standard
components of (bag-of-words) retrieval models analogously to how they are defined
for documents:

• Entity length (le) is the total number of terms in the entity description:

le =
∑

t∈V
c(t;e) .

60 3 Term-Based Models for Entity Ranking

Table 3.2 Notation used in this chapter

Symbol Meaning

c(x;y) Count (raw frequency) of x in y

c(x,y;z) Number of times x and y co-occur in z

co(x,y;z) Number of times x and y co-occur in z in that exact order

cw(x,y;z) Number of times x and y co-occur in z in an unordered window of size w

d Document (d ∈ D)

D Document collection

e Entity (e ∈ E)

E Entity catalog (set of all entities)

f Field (f ∈ F)

F Set of fields

fe Field f of entity e

K Knowledge base

lx Length of x (lx =∑t∈V c(t;x))

lx Mean representation length of x

q Query (bag of terms t∈q �⇒c(t;q)>0 or sequence of terms q = 〈q1, . . . ,qn〉)
t Term (t ∈ V)

V Vocabulary of terms

w(e,d) Weight of association between entity e and document d

xt Sequence of terms in x (xt = 〈t1, . . . ,tlx 〉)

• Term frequency (TF) is computed as the normalized term count in the entity
description:

TF(t,e) = c(t;e)
le

, (3.1)

but other TF weighting variants (e.g., log normalization) may also be used.
• Entity frequency (EF) is the number of entities in which a term occurs:

EF(t) = |{e ∈ E : c(t;e) > 0}| .

• Inverse entity frequency (IEF) is defined as:

IEF(t) = log
|E |

EF(t)
, (3.2)

where |E | is the total number of entities in the catalog.

We shall also discuss how the sequential ordering of terms may be preserved in
entity descriptions, which is needed for proximity-based retrieval models.

Table 3.2 summarizes the notation that will be used throughout the chapter.

3.2 Constructing Term-Based Entity Representations 61

<head>

<title>Formula One Surprise: Schumacher Is Second</title>

...

<classifier class="indexing_service " type="descriptor">

Automobile Racing</classifier>

<classifier class="indexing_service " type="descriptor">

Belgian Grand Prix</classifier>

<classifier class="online_producer " type="taxonomic_classifier ">

Top/News/Sports</classifier>

...

<person class="indexing_service ">Raikkonen, Kimi</person>

<person class="indexing_service ">Schumacher, Michael</person>

...

</head>

<body>

...

<p>One of the most predictable Formula One seasons yielded one of the most

unpredictable of races yesterday in the Belgium Grand Prix at Spa -Francorchamps ,

where , for the first time this year , Michael Schumacher completed a race in a

position other than first.</p>

<p>His second -place finish to Kimi Raikkonen, though , was all he needed to

win his seventh driver ’s title.</p>

<p>"Of course , I would have preferred to have taken the title with a win ,

but it was not possible," he said. "The better man won today , but I am quite

happy with what I have achieved."</p>

...

</body>

Listing 3.1 Excerpt from an article (ID: 1607874) from The New York Times Annotated
Corpus [67]

3.2.1 Representations from Unstructured Document Corpora

Let us consider a setting where ready-made entity descriptions are unavailable. This
is typical of a scenario when one wants to find entities in an arbitrary document
collection, like a web crawl or an enterprise’s intranet. How can entity descriptions
be constructed in this case? This question has been extensively studied in the context
of expert finding [3],2 and the approach we shall present below is based on the
concept of candidate models [2].

The main idea is to have documents annotated with the entities that are referenced
in them, and then use documents as a proxy to connect terms and entities.
Annotations may be performed on the document level, like tags (see Listing 3.1),
or on the level of individual entity occurrences, referred to as entity mentions (see
Fig. 3.1). We discuss each of those cases in turn. For now, we take it for granted that
entity annotations, either on the document or on the mention level, are available to
us. These may be provided by human editors or by a fully automated (entity linking)
process.3

2In expert finding (a.k.a. expert search), the task is to automatically identify, based on a document
collection, people who are experts on a given query topic; see Sect. 3.5.2.1.
3We will come back to this issue in Chap. 5, which is devoted entirely to the problem of annotating
text with entities.

62 3 Term-Based Models for Entity Ranking

The 2004 Belgian Grand Prix (formally the LXI Belgian Grand Prix) was a Formula_One
motor race held on 29 August 2004, at the Circuit_de_Spa-Francorchamps, near the town
of Spa, Belgium. It was the 14th race of the 2004_Formula_One_Season. The race was
contested over 44 laps and was won by Kimi_Raikkonen, taking his and McLaren’s only
race win of the season from tenth place on the grid. Second place for Michael_Schumacher
won him his seventh world championship, after beating third-placed Rubens_Barrichello.

Fig. 3.1 Illustration of mention-level entity annotations; terms representing entities are in bold-
face. The text is from Wikipedia: https://en.wikipedia.org/wiki/2004_Belgian_Grand_Prix

Using documents as a bridge between terms and entities, term counts can be
computed using the following general formula:

c̃(t;e) =
∑

d∈D
c(t,e;d) w(e,d) . (3.3)

Here, we use tilde to emphasize that c̃(t;e) values are pseudo-counts; in later parts
of the chapter we will not necessarily make this distinction. The method underlying
Eq. (3.3) bases the term pseudo-count c̃(t;e) on the number of co-occurrences
between a term and an entity in a particular document, c(t,e;d), weighted by the
strength of the association between the entity and the document, w(e,d). These two
components depend on the granularity of entity annotations (i.e., whether document-
level or mention-level), as we shall detail in the next two subsections.

3.2.1.1 Document-Level Annotations

Listing 3.1 shows an excerpt from an article from The New York Times Annotated
Corpus. As part of The New York Times’ indexing procedures, the article has been
manually tagged by a staff of library scientists with persons, places, organizations,
titles, and topics, using a controlled vocabulary [67]. This particular example serves
as an illustration of the case where we know which entities are mentioned in the
document, but we do not have information about the positions or frequencies of
those mentions.

The process of creating an entity’s description may be viewed as simply
concatenating the contents of all documents that are tagged with the given
entity.

Formally, let e ∈ d denote the fact that e is mentioned in d . For convenience, we
introduce the shorthand notation De for the set of documents that are annotated
with entity e: De ={d ∈D : e∈ d}. The components of Eq. (3.3) are then estimated
as follows.

https://en.wikipedia.org/wiki/2004_Belgian_Grand_Prix

3.2 Constructing Term-Based Entity Representations 63

Term-document-entity co-occurrences are equal to the term count in the document
if it mentions the entity, and are zero otherwise:

c(t,e;d) =
{

c(t;d), e ∈ d

0, e �∈ d .

Document-entity weights are taken to be binary:

w(e,d) =
{

1, e ∈ d

0, e �∈ d .
(3.4)

This naïve approach (also known as the Boolean model of associations [5]) is based
on rather strong simplifying assumptions. It does not matter (1) where and how
many times the entity e is mentioned in the document, and (2) what other entities
occur (and how many times) in the same document. However, given the limited
information we have (and especially that we do not have the frequencies of entity
mentions), this choice is reasonable. Experimental results have shown that this
simple method is robust and surprisingly effective [2].

Putting our choices together, term pseudo-counts can be computed according to:

c̃(t;e) =
∑

d∈De

c(t;d) .

While pseudo-counts suffice for bag-of-words retrieval models, for proximity-aware
retrieval models, term position information needs to be preserved. An easy way of
implementing this is by constructing entity descriptions indeed as a concatenation
of all documents that mention a given entity. Although the ordering of documents
is unimportant, it is vital to keep track of document boundaries (e.g., by inserting
NIL-terms between each pair of subsequent documents).

3.2.1.2 Mention-Level Annotations

It is not unreasonable to assume that all entity mentions within documents are
annotated (with unique identifiers from the entity catalog). Imagine that all entity
mentions are replaced with the corresponding entity ID tokens; see Fig. 3.1 for an
example. It is important to emphasize that here we assume that all entity occurrences
are annotated in documents. With manually annotated documents, that is often not
the case; e.g., Wikipedia guidelines dictate that only the first appearance of each
entity is to be linked in an article. How can we estimate the term pseudo-counts in
Eq. (3.3) then?

A general principle for creating semantic representations of words was summa-
rized by the British linguist J.R. Firth in his often-quoted statement: “You shall
know a word by the company it keeps” [31]. The same principle can also be applied
to entities: We shall represent an entity by the terms in its company, i.e., terms

64 3 Term-Based Models for Entity Ranking

... for his ninth victory of 2001. Michael_Schumacher, who had clinched his fourth ...
... On lap 14, Takuma Sato hit Michael_Schumacher’s car from behind, causing both to ...

Michael_Schumacher won the season-opening Formula ...
... which paved the way for the Michael_Schumacher era of Ferrari dominance ...
... started 1-2 ahead of Ferrari’s Michael_Schumacher.

Fig. 3.2 Example contexts in which a given entity is mentioned; mentions of the entity are
replaced with the entity ID and are typeset in boldface. These contexts collectively represent the
entity

within a window of text around the entity’s mention. Figure 3.2 illustrates this idea
by showing a set of snippets mentioning a certain entity; the combination of all such
contexts across the document collection produces an accurate representation of the
entity. This idea dates back to Conrad and Utt [24], who extracted and combined
all paragraphs in a corpus, mentioning a given entity, to represent that entity. Ten
years later, Raghavan et al. [62] provided a more formal framework to construct
bag-of-words representations of entities by considering fixed sized word windows
surrounding entity mentions.

To formalize this idea we introduce the following notation. Let dt = 〈t1, . . . ,ti,
. . . ,tld 〉 be a document, where 1, i, and ld are absolute positions of terms within d ,
and ld is the length of the document. Let 1d(i,t) be an indicator function that returns
the value 1 if the term at position i in d is t , and 0 otherwise. We further assume that
entity occurrences have been replaced with unique identifiers that behave as regular
terms (i.e., are not broken up into multiple tokens). Accordingly, 1d (i,e) will yield
the value 1 if entity e appears at position i in d , and 0 otherwise.

Term-Document-Entity Co-occurrences We can use positional information, i.e.,
the distance between terms and entity mentions, to weigh the strength of co-
occurrence between t and e. There are a number of different ways to accomplish
this; we will detail two specific approaches.

Fixed-Sized Windows For any particular window size w, we set c(t,e;d) to the
number of times term t and entity e co-occur at a distance of at most w in
document d:

c(t,e;d) =
ld∑

i=1

1d(i,t)

ld∑

j=1
|i−j |≤w

1d (j,e) . (3.5)

Prior work has used window sizes ranging from 20 to 250 [2].

Proximity Kernels The previous approach can be taken one step further by captur-
ing the intuition that terms closer to the mention of an entity should be given more
importance than terms appearing farther away. Petkova and Croft [60] formalize this
intuition using proximity kernels. A proximity kernel is a function that is used for
distributing the “count” of a term that appears at position i across other positions.

3.2 Constructing Term-Based Entity Representations 65

Fig. 3.3 Illustration of proximity kernels. Image is based on [60]

As Lv and Zhai [46] explain, “we would like to pretend that the same word has also
occurred at all other positions with a discounted count such that if the position is
closer to i, the propagated count for word w at that position would be larger than
the propagated count at a position farther away, even though both propagated counts
would be less than one.” Figure 3.3 shows various proximity kernels with i = 100.
The proximity-aware term-entity co-occurrence in a given document is defined as:

c(t,e;d) = 1

Z

ld∑

i=1

1d(i,t)

ld∑

j=1

1d (j,e) k(i,j) ,

where k(i,j) is a proximity-kernel function and Z serves as a normalizing constant,
which may be omitted. Note that these counts will no longer be integers, but real
numbers.

The simplest kernel is the constant function, which ignores all position informa-
tion and thus corresponds to the bag-of-words representation: k(i,j) = 1/ld . The
passage kernel corresponds to the fixed-sized window approach in Eq. (3.5):

k(i,j) =
{

1, |i − j | ≤ w

0, otherwise .

Any non-uniform, non-increasing function can be considered as a proximity-based
kernel. Following [46, 60], we present two such kernel functions:

• Gaussian kernel:

k(i,j) = exp
(−(i − j)2

2σ 2

)
.

66 3 Term-Based Models for Entity Ranking

• Triangle kernel:

k(i,j) =
{

1 − |i−j |
σ

, |i − j | ≤ σ

0, otherwise .

Both these kernels involve a single parameter σ , which controls the shape of the
kernel curves, i.e., how quickly the propagation of terms tails off. Petkova and Croft
[60] compared three non-uniform kernels (Gaussian kernel, triangle kernel, and step
function) and found them to deliver very similar empirical performance, with no
significant differences among them.

Document-Entity Weights The default option for estimating the strength of the
association between a document and an entity is to repeat what we have done
before for document-level annotations, in Eq. (3.4), by setting w(e,d) to either 0
or 1. This time, however, we have more information to base our estimate on. We
want w(e,d) to reflect not merely the presence of an association between an entity
and a document, but also the strength of that association. This specific task has
been studied in [5], in the context of expert finding, where the authors proposed to
use well-established term weighting schemes from IR, like TF-IDF. The rationale
behind TF-IDF is that a term that is mentioned frequently in a document is important
to that document (TF), whereas it becomes less important when it occurs in many
documents (IDF). This sounds a lot like what we would need, only that we need it
for entities, not for terms.

Imagine, for a moment, that all regular (non-entity) word tokens have been
filtered out from all documents in our collection; documents now are comprised
of entities only. Those entities could then be weighted as if they were terms. This
is exactly how we will go about implementing “entity weighting.” Since TF-IDF is
based on a bag-of-words representation, we do not need to actually remove regular
terms. The only information we need is the frequency of mentions of an entity in
a document, c(e;d). Using the notation from earlier, this entity frequency can be
computed as:

c(e;d) =
ld∑

i=1

1d(i,e) .

We can then define the document-entity weight as follows:

w(e,d) = c(e;d)
∑

e′∈d c(e′;d)
log

|D|
|De| , (3.6)

where De is the set of documents that are annotated with entity e, and |D| denotes
the total number of documents in the collection.

3.2 Constructing Term-Based Entity Representations 67

Fig. 3.4 Web page of the movie THE MATRIX from IMDb (http://www.imdb.com/title/
tt0133093/)

The same objective may also be accomplished using language models, where
smoothing with the background model plays the role of IDF. The interested reader
is referred to Balog and de Rijke [5] for details.

3.2.2 Representations from Semi-structured Documents

A significant portion of web content is already organized around entities. There exist
many sites with a large collection of web pages dedicated to describing or profiling
entities—think of the Wikipedia page of MICHAEL SCHUMACHER from Chap. 2,
for instance (cf. Fig. 2.2). Another example is shown in Fig. 3.4, this time a web page
of a movie from the Internet Movie Database (IMDb). Documents that represent
entities are rarely just flat text. Wikipedia pages are made up of elements such as
title, introductory text, infobox, table of contents, body content, etc. (cf. Fig. 2.2).
The IMDb page in Fig. 3.4 has dedicated slots for movie name, synopsis, cast, rat-
ings, etc. In fact, all web pages are annotated with structural markup using HTML.

The standard way of incorporating the internal document structure into the
retrieval model is through the usage of document fields. Fields correspond to specific
parts or segments of the document, such as title, introductory text, infobox, etc. in
the case of Wikipedia, or movie name, synopsis, directors, etc., in the case of IMDb.

http://www.imdb.com/title/tt0133093/
http://www.imdb.com/title/tt0133093/

68 3 Term-Based Models for Entity Ranking

Table 3.3 Fielded entity description created for THE MATRIX, corresponding to Fig. 3.4

Field Content

Name The Matrix

Genre Action, Sci-Fi

Synopsis A computer hacker learns from mysterious rebels about the true nature of
his reality and his role in the war against its controllers

Directors Lana Wachowski (as The Wachowski Brothers), Lilly Wachowski (as
The Wachowski Brothers)

Writers Lilly Wachowski (as The Wachowski Brothers), Lana Wachowski (as
The Wachowski Brothers)

Stars Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss

Catch-all The Matrix Action, Sci-Fi A computer hacker learns from mysterious
rebels about the true nature of his reality and his role in the war against
its controllers. Lana Wachowski (as The Wachowski Brothers), Lilly
Wachowski (as The Wachowski Brothers) Lilly Wachowski (as The
Wachowski Brothers), Lana Wachowski (as The Wachowski Brothers)
Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss

Fields can be defined rather flexibly; certain parts of the document may be consid-
ered for multiple fields or not assigned to any field at all. Furthermore, not all fields
can necessarily be found in all documents (e.g., a relatively small portion of movie
pages have an “awards” section; for most movies this would be empty, and therefore,
is not even shown). This is why we consider these representations semi-structured,
and not structured; we do not require them to follow a rigid, formal schema.

Let F denote the set of possible fields and f ∈F denote a specific field. We write
fe to refer to field f in the description of entity e. The contents of these fields are
typically extracted using wrappers (also called template-based extractors), which
are designed specifically to deal with a particular type of document (e.g., Wikipedia
or IMDb pages) [41]. (To reduce the effort and maintenance cost associated with
developing wrappers manually, automated wrapper induction has been an active area
of research, see, e.g., [28].) Assuming that the contents of fields have been obtained,
we can define term statistics as before, but this time all computations take place on
the field-level, as opposed to the document-level. Specifically, we let c(t;fe) be the
number of times term t appears in field f of the description of e, and lfe is the total
number of terms in that field.

Table 3.3 shows the fielded entity description corresponding to Fig. 3.4. Notice
that in addition to the regular fields, a special “catch-all” field has also been
introduced, which amasses the contents of all fields (or sometimes of the entire
document).4 The rationale behind having a catch-all field is twofold. First, it can
be used to narrow the search space by filtering entities that are potentially good
candidates for a given query, and consider only those for scoring (thereby improves

4Fields provide a non-exclusive and non-complete partitioning of the document’s content, therefore
the union of all fields does not necessarily equal the whole document.

3.2 Constructing Term-Based Entity Representations 69

Fig. 3.5 Excerpt from an RDF graph. Rounded rectangles represent entities (URIs) and shaded
rectangles denote attributes (literal values)

efficiency). Second, fielded entity descriptions are often sparse. When computing
the relevance between an entity and a query, a more robust estimate can be obtained
by combining the field-level matching scores with an entity-level matching score,
enabled by the catch-all field (hence it improves effectiveness).

While our focus in this section has been on a setting where documents have a one-
to-one correspondence with entities, fielded representations may also be realized
when entity descriptions are created by aggregating information from multiple
documents (cf. Sect. 3.2.1). The only difference is that the term pseudo-counts need
to be computed on the field-level as opposed to the document-level. (That is, a given
field in the description of an entity, fe, is constructed by concatenating the contents
of the respective field, fd , from all documents in the collection that mention e.)

3.2.3 Representations from Structured Knowledge Bases

Over the past few years, an increasing amount of structured data has been published
(and interlinked) on the Web. We have introduced some large general-purpose
knowledge bases, including DBpedia and Freebase, in Sect. 2.3. These organize
information around entities using the RDF data model (cf. Sect. 2.3.1.2). To recap,
each entity is uniquely identified by its URI (Uniform Resource Identifier) and
its properties are described in the form of subject-predicate-object (SPO) triples.
Conceptually, a set of SPO triples forms a directed graph, where each edge is
labelled with a URI (the predicate) and each node is either a URI or a literal. Our
focus, here, is on the immediate vicinity of the entity node: nodes that are directly
connected to it (irrespective of the direction of the edge), as shown in Fig. 3.5. Or,
in terms of SPO triples, we consider all those triples where the entity appears either
as subject or object. How can we turn this into a term-based entity representation?

Let us note, before we continue with answering the above question, that while
our focus will be on RDF data, from the perspective of constructing term-based
entity representations, this is conceptually no different from having data stored in
relational databases, where the same information is available through fields and
foreign-key relationships.

70 3 Term-Based Models for Entity Ranking

Table 3.4 Excerpt from the fielded entity description of AUDI A4, corresponding to Fig. 3.5

Field Content

Name Audi A4

Name variants Audi A4 . . . Audi A4 Allroad

Attributes The Audi A4 is a compact executive car produced since late 1994 by the
German car manufacturer Audi, a subsidiary of the Volkswagen Group
[. . .]

. . . 1996 . . . 2002 . . . 2005 . . . 2007

Types Product . . . Front wheel drive vehicles . . . Compact executive cars . . .

All wheel drive vehicles

Outgoing relations Volkswagen Passat (B5) . . . Audi 80

Incoming relations Audi A5

<foaf:name> Audi A4

<dbo:abstract> The Audi A4 is a compact executive car produced since late 1994 by the
German car manufacturer Audi, a subsidiary of the Volkswagen Group
[. . .]

Catch-all Audi A4 . . . Audi A4 . . . Audi A4 Allroad . . . The Audi A4 is a
compact executive car produced since late 1994 by the German car
manufacturer Audi, a subsidiary of the Volkswagen Group [. . .] . . . 1996
. . . 2002 . . . 2005 . . . 2007 . . . Product . . . Front wheel drive vehicles
. . . Compact executive cars . . . All wheel drive vehicles . . . Volkswagen
Passat (B5) . . . Audi 80 . . . Audi A5

Values coming from different SPO triples are separated by “. . . ” For the sake of illustration, we
consider <foaf:name> and <dbo:abstract> as “top predicates,” which are also included on
their own. The other fields are the result of predicate folding

The goal is to obtain entity descriptions by assembling text from all SPO triples
that are about a given entity. In the previous section, we have discussed how to
represent entities using a fielded structure. Can the same technique be used here?
It would seem logical, as predicates naturally correspond to fields. There is one
important difference though. Earlier we had only a handful of fields; even in the case
of fairly detailed entity pages, the number of entity properties (i.e., fields) would be
in the 10s. On the other hand, the number of distinct predicates in a knowledge base
is typically in the 1000s. Yet, most entities have only a small number of predicates
associated with them. The huge number of possible fields, coupled with the sparsity
of the data, makes the estimation of field weights computationally prohibitive.

A commonly used workaround is predicate folding: grouping predicates together
into a small set of predefined categories. This way, we are back to having a handful
of fields in the entity descriptions, and the estimation of field weights may be carried
out without problems. Predicates may be grouped based, among other alternatives,
on their type [54, 59] or on their (manually determined) importance [12]. Table 3.4
shows the fielded entity description created for our example entity. In what follows,
we shall discuss the main steps involved with obtaining such representations from
RDF data.

3.2 Constructing Term-Based Entity Representations 71

3.2.3.1 Predicate Folding

Deciding which predicates to fold is a hard and still open problem. Two main
predicate mapping schemes may be distinguished in past work: based on predicate
importance or based on predicate type. Blanco et al. [12] employ the first scheme
and differentiate between three types of fields according to weight levels: impor-
tant, neutral, and unimportant. Important and unimportant predicates are selected
manually, with the remainder being neutral. Grouping based on predicate type has
been the more dominant approach. The following fields have been identified (with
interpretations slightly varying across different studies). Unless stated otherwise,
the entity appears as the subject of the SPO triple and the object is the field value
(with URIs resolved, which is explained in Sect. 3.2.3.2). In our examples, we will
use the namespaces from DBpedia (cf. Table 2.4).

• Name contains the name(s) of the entity. The two main predicates mapped to
this field are <foaf:name> and <rdfs:label>. One might follow a simple
heuristic and additionally consider all predicates ending with “name,” “label,”
or “title” [54].

• Name variants (aliases) may be aggregated in a separate field. In DBpedia, such
variants may be collected via Wikipedia redirects (via <dbo:wikiPageRedi-

rects>) and disambiguations (using <dbo:wikiPageDisambiguates>). Note
that in both these cases some simple inference is involved.5 This field may also
contain anchor texts of links to the entity (via <dbo:wikiPageWikiLinkText>

in DBpedia) or names of the entity in other knowledge bases (collected via
<owl:sameAs> relations).

• Attributes includes all objects with literal values, except the ones already included
in the name field. In some cases, the name of the predicate may also be included
along with the value, e.g., “founding date 1964” [81] (vs. just the value part,
“1964”).

• Types holds all types (categories, classes, etc.) to which the entity is assigned;
commonly, <rdf:type> is used for types. In DBpedia, <dct:subject> is used
for assigning Wikipedia categories, which may also be considered as entity types.
In Freebase, the “profession” attribute for people or the “industry” attribute for
companies have similar semantics.

• Outgoing relations contains all URI objects, i.e., names of entities (or resources
in general) that the subject entity links to; if the types or name variants fields
are used, then those predicates are excluded. As with attributes, values might be
prefixed with the predicate name, e.g., “spouse Michelle Obama” [81].

• Incoming relations is made up of subject URIs from all SPO triples where the
entity appears as object.

5In DBpedia, the triple (e′,<dbo:wikiPageRedirects>,e) records the fact that entity e′ redirects
to entity e. The name of e′ is contained in a triple (e′,<foaf:name>,e′name) (or using the
<rdfs:label> predicate). Putting these two together, e′name will be a name variant of e. Similarly,
name variants can also be inferred from disambiguations.

72 3 Term-Based Models for Entity Ranking

Table 3.5 Entity fields used in prior work

Field [55] [54] [80] [59] [81] [37]

Name � � � � � �
Name variants �
Attributes � � �
Types � � �
Outgoing relations � � � �
Incoming relations � �
Top predicates �
Catch-all � � �

• Top predicates may be considered as individual fields, e.g., Hasibi et al. [37]
include the top-1000 most frequent DBpedia predicates as fields.

• Catch-all (or content) is a field that amasses all textual content related to the
entity.

The example in Table 3.4 includes all these fields.
In Table 3.5, we summarize various field configurations that have been used in

a selection of prior work. Notably, using as few as two fields, name and content,
it is possible to achieve solid performance [55]. This setting, often referred to as
“title+content,” is also regarded as a common baseline [37, 81]. The importance of
other fields can vary greatly depending on the type of queries [81].

3.2.3.2 From Triples to Text

Predicate folding governs how SPO triples in a knowledge base, (s,p,o) ∈ K,
should be mapped to entity description fields. It remains to be specified how to
turn these triples into a text-based field representation. There are two triple patterns
that contain information directly related to an entity e: (1) outgoing relations, where
the entity stands as the subject of the triple, i.e., (e,p,o), and (2) incoming relations,
where the entity stands as the object of the triple, i.e., (s,p,e). Let Mout(p) and
Min(p) be the mapping functions for outgoing and incoming relations labeled with
predicate p; these return a set of target fields to which p is mapped (and they return
∅ if the predicate is not mapped to any field).

Using a bag-of-words representation, the frequency of a term in a given entity
field is calculated by considering both the object values of outgoing relations and
the subject values of incoming relations:

c(t;fe) =
∑

(e,p,o)∈K
f∈Mout(p)

c(t;o)+
∑

(s,p,e)∈K
f∈Min(p)

c(t;s) ,

where c(t;o) and c(t;s) are the raw frequencies of term t in the object and subject,
respectively.

3.2 Constructing Term-Based Entity Representations 73

To preserve term position information, essentially the subject/object values need
to be concatenated across the set of triples that contain the entity. The sequence of
terms within a given entity field may be written as:

fet =
⋃

(e,p,o)∈K
f∈Mout(p)

ot

⋃

(s,p,e)∈K
f∈Min(p)

st ,

where
⋃

is the string concatenation operator.6 The sequence of terms in the object
and subject elements of SPO triples are denoted as ot and st , respectively. Note that
triples are a set, thus the order in which they are concatenated is of no importance.
(That means that the order that is preserved here refers to the sequence of terms
within each SPO element.)

Resolving URIs Recall that object values are either URIs or literals. Literals can be
treated as regular text, so they do not need any further processing. URIs, however,
are not suitable for text-based search. Consider for instance the full URI of our AUDI

A4 example, which is http://dbpedia.org/resource/Audi_A4. Depending on the pre-
processing and analysis steps applied during indexing, it may be tokenized as a
single term, which will not match any query terms (other than that exact string). Or,
it might be tokenized, e.g., as http dbpedia org resource Audi A4, which
does contain the terms “Audi” and “A4,” but also a lot of noise in addition. Mind
that not all entity URIs are as friendly as the ones in DBpedia. The same entity in
Freebase has the URI http://rdf.freebase.com/ns/m.030qmx, which is unfit for text-
based search, no matter what pre-processing is applied. Since the names of entities
(or of resources, in general) are contained in the knowledge base, we can replace
URIs with the name of the entity (or resource) that they point to. This is what we
refer to as URI resolution.

The specific predicate that holds the name of a resource depends on the RDF
vocabulary used. Commonly,7 <foaf:name> or <rdfs:label> are used. Let us
take the following SPO triple as an example, which specifies the type of entity:

<dbr:Audi A4> <rdf:type> <dbo:MeanOfTransportation>

The corresponding resource’s name is contained in the object element of this triple:

<dbo:MeanOfTransportation> <rdfs:label> "mean of transportation"

Basically, we replace the boldfaced part of the first triple with the boldfaced part
of the second triple, and we do this each time the object of a triple is a URI.
(Additionally, we might also want to resolve certain subject URIs.) We note that
there may be situations where the URI cannot be resolved, e.g., if it points to a

6This operator is assumed to insert a number of NIL-terms between subsequent strings, in order to
delineate values originating from different triples.
7That is, using the FOAF or RDFS vocabularies.

http://dbpedia.org/resource/Audi_A4
http://rdf.freebase.com/ns/m.030qmx

74 3 Term-Based Models for Entity Ranking

resource outside the knowledge base. In that case, we need to fall back to some
default URI tokenization scheme (e.g., remove protocol:// prefixes and split on
URI delimiters).

Let us take note of some of the prime limitations of term-based representations
that are manifested here. By replacing unique entity identifiers with regular terms,
much of the power of this semantically rich knowledge gets lost. For example, we
can use only a single name for an entity, even though it might have multiple name
variants or aliases. And that is just the name. There is a whole lot more information
associated with an entity identifier. We will discuss models in Chap. 4 that preserve
the semantics by going beyond a term-based representation.

3.2.3.3 Multiple Knowledge Bases

So far, we have considered a single knowledge base. The Web of Data, as we have
explained in Sect. 2.3.6, enables different knowledge bases to be connected via the
<owl:sameAs> predicate, which defines an equivalence relation between a pair of
entities (resources). For a given entity e, we let E be the set of entity URIs such
that each URI in E is connected to at least one other URI in E via a same-as link
(∀ei ∈ E : ∃ej (ei,sameAs,ej) ∨ (ej,sameAs,ei)). During the construction of the
fielded entity description of e, instead of only considering triples where e appears
as subject or object, we now need to consider all triples where any of the URIs in E

appears as subject or object.

3.3 Ranking Term-Based Entity Representations

Now that we have constructed term-based representations of entities, we turn to the
task of ranking them with respect to their relevance to a search query q . This can
be viewed as the problem of assigning a score to each entity in the entity catalog:
score(e;q). Entities are then sorted in descending order of their scores. We note that
in practice we are typically interested only in returning the top-k results; for that, the
calculation of scores (a procedure also known as query processing) can be optimized
to significantly decrease response time. For example, entities that do not match any
of the query terms can safely be ignored. Further performance optimization can
be achieved via specialized indexing data structures, see, e.g., [18, 19, 22]. The
description of these techniques is beyond the scope of this book.

Our focus in this section is on different ranking models and algorithms for scor-
ing entities. Retrieval models are formal representations of the process of matching
queries and entities. Since we are ranking term-based entity representations—or,
as we call them, entity descriptions—the models we employ are well-known from
document retrieval. While we will be referring to entities instead of documents,
the only change in technical terms is replacing d with e in the equations. Readers
already familiar with standard retrieval models may wish to skip this section. The

3.3 Ranking Term-Based Entity Representations 75

reason we briefly discuss these models, apart from our general aim of being self-
contained, is that we will present various extensions to them in Chap. 4. For a more
in-depth treatment, we refer to an IR textbook, such as Manning et al. [49], Croft
et al. [26], or Zhai and Massung [78].

3.3.1 Unstructured Retrieval Models

We present three effective and frequently used retrieval models: language models,
BM25, and sequential dependence models.

3.3.1.1 Language Models

A probabilistic formulation of the ad hoc entity retrieval task is to estimate the
probability of a particular entity e being relevant to the input query q , P(e|q).
Instead of estimating this probability directly, we apply Bayes’s rule to rewrite it
as follows:

P(e|q) = P(q|e)P (e)

P (q)

rank= P(q|e)P (e) . (3.7)

For simplicity, we take the entity prior, P(e), to be uniform,8 which means that the
ranking of entities boils down to the estimation of the query likelihood, P(q|e). To
avoid numerical underflows, the computation of this probability is performed in the
log domain:9

scoreLM(e;q) = log P(q|e) =
∑

t∈q

c(t;q) log P(t|θe) . (3.8)

where c(t;q) denotes the frequency of term t in query q and P(t|θe) is an entity
language model. The model θe captures the language usage associated with the
entity and represents it as a multinomial probability distribution over the vocabulary
of terms. To avoid assigning zero probabilities to terms, the empirical entity
language model, P(t|e), is combined with a background (or collection) language
model, P(t|E). Using the Jelinek-Mercer smoothing method, this becomes the
following linear interpolation:

P(t|θe) = (1 − λ)P (t|e) + λP(t|E) , (3.9)

8We shall present various entity priors in the next chapter, in Sect. 4.6.
9This means that retrieval scores will be negative numbers, where a higher (i.e., closer to zero)
number means more relevant.

76 3 Term-Based Models for Entity Ranking

where the smoothing parameter λ controls the influence of the background model.
Both components are taken to be maximum likelihood estimates:

P(t|e) = c(t;e)
le

, P (t|E) =
∑

e∈E c(t;e)
∑

e∈E le
,

where c(t;e) is the frequency of term t in the entity’s description and le is the length
of the entity’s description (measured in the number of terms).

Notice that according to Eq. (3.9), all entities receive the same amount of
smoothing. Intuitively, entities with richer representation (i.e., longer descriptions,
which means larger le) would require less smoothing. Dirichlet prior smoothing (or
Bayesian smoothing) implements this idea by setting:

P(t|θe) = c(t;e)+ μP(t|E)

le + μ
. (3.10)

Here, the amount of smoothing applied is controlled by the μ parameter. The choice
of the smoothing method and smoothing parameter can have a considerable impact
on retrieval performance [77]. Generally, a μ value between 1500 and 2500 is a
good default setting.

3.3.1.2 BM25

Another popular and effective model is BM25. It is also a probabilistic model but
differs considerably from language models. BM25 can be derived from the classical
probability ranking principle [65], but the actual retrieval function may be seen as
a variant of the vector space model. For its historical development and theoretical
underpinnings, the interested reader is referred to Robertson and Zaragoza [63]. We
use the following variant:10

scoreBM25(e;q) =
∑

t∈q

c(t;q)
(k1 + 1) c(t;e)

k1(1 − b + b le
le

)+ c(t;e) IEF(t) . (3.11)

where le is the mean entity representation length across the entity catalog (le =∑
e∈E le/|E |). Further, k1 and b are free parameters, where k1 calibrates the term

frequency saturation (typically chosen from the range [1.2,2]) and b ∈ [0,1]
controls the representation length normalization (commonly set to 0.75). It should
be noted that using the common default parameter values can yield suboptimal

10Several dialects of BM25 have been used in the literature. We present what we believe is the most
common variant, which includes an extra (k1 + 1) component to the numerator of the saturation
function. As explained in [63], “this is the same for all terms, and therefore does not affect the
ranking produced.”

3.3 Ranking Term-Based Entity Representations 77

retrieval performance for BM25, especially when entity descriptions are created
from a KB [38].

3.3.1.3 Sequential Dependence Models

The previous two models employ a bag-of-words representation of both entities
and queries, which means that the order of terms is ignored. The Markov random
field (MRF) model [52] provides a sound theoretical framework for modeling term
dependence, thereby going beyond the bag-of-words assumption. MRF approaches
are a family of undirected graphical models, which belong to the more general class
of linear feature-based models [53]. A Markov random field is constructed from a
graph G, which consists of an entity node e and query nodes qi . The edges of the
graph define the dependence semantics between nodes. The MRF ranking function
is defined as the posterior probability of e given the query, parameterized by Λ. It is
computed as a linear combination of feature functions over the set of cliques in G:

PΛ(e|q)
rank=

∑

c∈CG

λcf (c) .

The sequential dependence model (SDM) is one particular instantiation of the MRF
model, which strikes a good balance between effectiveness and efficiency. SDM
assumes dependence between neighboring query terms. The graphical representa-
tion is depicted in Fig. 3.6. Potential functions are defined for two types of cliques:
(1) 2-cliques involving a query term and the entity, and (2) cliques containing two
contiguous query terms and the entity. For the latter type of cliques, there are two
further possibilities: either the query terms occur contiguously in the document
(ordered match) or they do not (unordered match). The SDM ranking function is
then given by a weighted combination of three feature functions, based on query
terms (fT), exact match of query bigrams (fO), and unordered match of query
bigrams (fU):

scoreSDM(e;q) =λT

n∑

i=1

fT (qi;e)

+ λO

n−1∑

i=1

fO(qi,qi+1;e)

+ λU

n−1∑

i=1

fU (qi,qi+1;e) .

Notice that the query is no longer represented as a bag of terms but as a sequence
of terms q = 〈q1, . . . ,qn〉. The feature weights are subject to the constraint
λT + λO + λU = 1. The recommended default setting is λT = 0.85, λO = 0.1,

78 3 Term-Based Models for Entity Ranking

Fig. 3.6 Sequential
dependence model (SDM) for
three query terms

q1 q2 q3

e

and λU = 0.05. In the presence of training data, the λ weights can be learned using
grid search (exhaustive search over the parameter space) or the Coordinate Ascent
algorithm (coordinate-level hill climbing); we refer to Metzler and Croft [53] for
further details.

Below, we define the three feature functions based on language modeling
estimates using Dirichlet prior smoothing.11

• Unigram matches are estimated using (smoothed) entity language models:

fT (qi;e) = log P(qi |θe) ,

where P(qi |θe) is given in Eq. (3.10).
• For ordered bigram matches, the feature function is defined as:

fO(qi,qi+1;e) = log

(
co(qi,qi+1;e)+ μPo(qi,qi+1|E)

le + μ

)

,

where co(qi,qi+1;e) denotes the number of times the terms qi,qi+1 occur in
this exact order in the description of e. The background language model is a
maximum likelihood estimate:

Po(qi,qi+1|E) =
∑

e∈E co(qi,qi+1;e)
∑

e∈E le
.

• For unordered bigram matches we set:

fU(qi,qi+1;e) = log

(
cw(qi,qi+1;e)+ μPw(qi,qi+1|E)

le + μ

)

,

where cw(qi,qi+1;e) counts the co-occurrence of terms qi and qi+1 in e, within
an unordered window of w term positions. Typically, a window size of 8 is used,
which corresponds roughly to sentence-level proximity [52]. The background
language model is estimated as:

Pw(qi,qi+1|E) =
∑

e∈E cw(qi,qi+1;e)
∑

e∈E le
.

11Other weighting models may also be used with cliques; see Metzler [51] for BM25 weighting
functions.

3.3 Ranking Term-Based Entity Representations 79

3.3.2 Fielded Retrieval Models

Next, we present extensions of the previously introduced models—language mod-
els, BM25, and sequential dependence models—that consider multiple fields.

3.3.2.1 Mixture of Language Models

According to the mixture of language models (MLM) [57] approach, a separate
language model is estimated for each entity field f :

P(t|θfe) = (1 − λf)P (t|fe)+ λf P (t|fE) ,

where λf is a field-specific smoothing parameter. Both components are maximum
likelihood estimates and are defined similarly as before, but with term counts limited
to a certain field:

P(t|fe) = c(t;fe)

lfe

, P (t|fE) =
∑

e∈E c(t;fe)
∑

e∈E lfe

.

For Dirichlet prior smoothing the computations follow similarly, by replacing e and
E with fe and fE , respectively, and making the smoothing parameter field-specific
μf in Eq. (3.10).

Once field language models are created, they are combined together into a single
entity-level model using a linear mixture:

P(t|θe) =
∑

f∈F
αf P(t|θfe) , (3.12)

where αf is the weight (or importance) of field f , such that
∑

f∈F αf = 1. In
the absence of training data, field weights can be set uniformly or following some
heuristic; e.g., proportional to the field length (measured as the sum of field lengths
of the given field type, i.e., αf ∝ ∑e lfe). When training data is available and the
number of fields is small, grid search is possible (i.e., sweeping over the parameter
space [0,1] for each αf in, say, 0.1 steps). Alternatively, parameters may be trained
using the Coordinate Ascent algorithm [53]. When the number of fields is large, one
might perform retrieval using a single field at a time, then set αf proportional to the
retrieval performance of the corresponding field.

3.3.2.2 Probabilistic Retrieval Model for Semi-Structured Data

A different alternative for setting field weights is proposed by Kim et al. [40], called
probabilistic retrieval model for semi-structured data (PRMS), which hinges on the

80 3 Term-Based Models for Entity Ranking

Table 3.6 Example mapping probabilities computed on the IMDb collection, taken from [40]

t = “Meg” t = “Ryan” t = “war” t = “redemption”

f P (f |t) f P (f |t) f P (f |t) f P (f |t)
Cast 0.407 Cast 0.601 Genre 0.927 Title 0.983

Team 0.381 Team 0.381 Title 0.070 Location 0.017

Title 0.187 Title 0.017 Location 0.002 Year 0.000

following key points: (1) instead of using a fixed (static) field weight for all terms,
field weights are determined dynamically on a term-by-term basis; and (2) field
weights can be established based on the term distributions of the respective fields.

Formally, the static field weight αf in Eq. (3.12) is replaced with the probability
of mapping term t to the given entity field f , simply referred to as the mapping
probability, P(f |t):

P(t|θe) =
∑

f∈F
P(f |t)P (t|θfe) ,

By applying Bayes’ theorem and using the law of total probability we get:

P(f |t) = P(t|f)P (f)

P (t)
= P(t|f)P (f)
∑

f ′∈F P(t|f ′)P (f ′) . (3.13)

The prior P(f) can be used to incorporate, e.g., domain-specific background
knowledge, or left to be uniform. The probability of a term given a field, P(t|f),
is conveniently estimated using the background language model of that field, i.e.,
P(t|f) ∼= P(t|fE).

Table 3.6 presents an example of mapping probabilities computed using PRMS.
It is important to note that PRMS assumes a homogeneous collection where fields
can be characterized by distinctive term distributions, and works well only when
these conditions are met [27].

3.3.2.3 BM25F

The fielded variant of BM25, commonly referred to as BM25F, uses a weighted
variant of term frequencies:12

scoreBM25F(e;q) =
∑

t∈q

c(t;q)
(k1 + 1) c̃(t;e)

k1 + c̃(t;e) IEF(t) . (3.14)

12This version is according to Robertson and Zaragoza [63] and allows for field-specific b

parameters, as opposed to the simpler version in [64]. We kept the (k1 + 1) term in the numerator
to be consistent with Eq. (3.11).

3.3 Ranking Term-Based Entity Representations 81

The weighted term frequencies are calculated as a linear combination of term
frequencies across the different fields, with field-specific normalization applied:

c̃(t;e) =
∑

f∈F
αf

c(t;fe)

1 − bf + bf
lfe

lf

,

where c(t;fe) is the frequency of t in field f of entity e, αf are the field weights,
bf are the field length normalization parameters, and lf is the mean length of field
f across the entity catalog. Note that the IEF component in Eq. (3.14) does not use
field information.

3.3.2.4 Fielded Sequential Dependence Models

The main idea behind the fielded extension of SDM is to base the feature function
estimates on term/bigram frequencies combined across multiple fields, much in the
spirit of MLM and BM25F. Here, we present the fielded sequential dependence
model (FSDM) by Zhiltsov et al. [81], which combines SDM and MLM. Similarly,
SDM can also be combined with BM25F; for the BM25F-SD scoring function we
refer to Broder et al. [14].

As before, we need to define three feature functions: for single terms, ordered
bigrams, and unordered bigrams. For single term matches, we use the (log) MLM-
estimated probability:

fT (qi;e) = log
∑

f∈F
wT

f P(t|θfe) .

The feature functions for unordered and ordered bigram matches are as follows:

fO(qi,qi+1;e) = log
∑

f∈F
wO

f

co(qi,qi+1;fe)+ μf Po(qi,qi+1|fE)

lfe + μf

,

fU (qi,qi+1;e) = log
∑

f∈F
wU

f

cw
u (qi,qi+1;fe)+ μf Pw

u (qi,qi+1|fE)

lfe + μf

.

Notice that the background models and smoothing parameters have all been made
field-specific. We can reasonably use the same smoothing parameter value for a
given field for all types of matches (i.e., μf does not have a superscript). With that,
FSDM will have 3 + 3 × |F | free parameters: λT , λO , λU , plus the field mapping
weights (wT

f ,wO
f ,wU

f) for each field. Even with using only a handful of fields, this
results in a large number of free parameters.

Hasibi et al. [37] propose a parameter-free estimation of field mapping weights
by using field mapping probability estimates from PRMS, cf. Eq. (3.13). The same
estimation method can also be applied to ordered and unordered bigrams. In addition

82 3 Term-Based Models for Entity Ranking

to reducing the number of free parameters to 3 (as only the λ weights will need to be
set now), employing the mapping probability P(f |.) comes with another important
benefit. Instead of using the same (fixed) weight w

{T ,O,U }
f for all terms/bigrams

within a field, the field mapping probability specifies field importance for each
term/bigram individually.

3.3.3 Learning-to-Rank

Learning-to-rank (LTR) approaches represent the current state of the art in doc-
ument retrieval (as well as for many other retrieval tasks) as they can effectively
combine a large number of potentially useful signals from multiple sources [42].
Their downside is that performance is heavily dependent on the amount of training
material available. The application of LTR to entity ranking goes as follows.

Each query-entity pair is represented as a feature vector, where features are
designed to capture different relevance signals. The optimal way of combining
these signals is then learned through discriminative training. The training data is
composed of a set of (entity, query, relevance) triples. From this data, a set of training
instances {(xq,e,rq,e)} is created, where xq,e ∈ Rm is an m-dimensional feature
vector representing the query-entity pair (q,e) and rq,e ∈ N is the corresponding
label indicating how relevant the entity is to the query. Relevance can be binary,
i.e., {0,1}, or graded, e.g., {0, . . . ,4}, representing the scale from non-relevant to
highly relevant. The objective is to learn a ranking model h(q,e) = h(x) that gives a
real-valued score to a given query-entity pair, or equivalently, to the corresponding
feature vector x. The scores assigned to each entity by the learned function then
determine the ranking of entities for the query.

There is a separate feature function φi(q,e) corresponding to each element of
the feature vector, i.e., xq,e = 〈φ1(q,e), . . . ,φm(q,e)〉. The performance of learning
highly depends on the choice of features (just like for any other machine learning
task). In fact, much of the focus in IR revolves around designing and selecting
effective features (a process commonly referred to as feature engineering), whereas
machine learning algorithms are applied out-of-the-box.

3.3.3.1 Features

Generally, three groups of features are distinguished:

• Query features depend only on the query and have the same value across all
entities for a given query. These are meant to help characterize the type of the
query.

• Entity features depend only on the entity and capture some aspect of its general
importance. Typically, these features are based on some indicator of “popularity,”
e.g., the total number of views, “likes,” incoming/outgoing links (possibly

3.3 Ranking Term-Based Entity Representations 83

Table 3.7 Term-based features for entity ranking

Group Feature Description

Q |q| Length of the query

Q
∑

qi
IEF(qi,f) Sum IEF of query terms, computed w.r.t. field f

E lfe
Length of field f in the description of entity e

Q-E
∑

qi
TF(qi,fe) Sum TF of query terms for a given field

Q-E
∑

qi
TF(qi,fe)IEF(qi,f) Sum TF-IEF of query terms for a given field

Q-E scoreLM(q;fe) LM score of query computed on field f

Q-E scoreMLM(q;e) MLM score of query (considering all fields)

Q-E scoreBM25(q;fe) BM25 score of query computed on field f

Q-E scoreBM25F(q;e) BM25F score of query (considering all fields)

Q-E scoreSDM(q;fe) SDM score of query computed on field f

Q-E scoreFSDM(q;e) FSDM score of query (considering all fields)

Q-E QCE(q,e) Whether the query contains the name of the entity

Q-E ECQ(q,e) Whether the name of entity contains the query

Q-E EEQ(q,e) Whether the name of entity is equal to the query

Group is either of query features (Q), entity features (E), or query-entity features (Q-E)

involving some propagation, like PageRank), etc. This group also includes simple
statistics about the entity’s representation, such as the number of terms in various
entity description fields. Notice that the values of these features would be the
same for all queries, thus we can think of this group of features as an estimate of
“how relevant the entity would be to any query.”

• Query-entity features are the largest and most important type of features, as they
capture the degree of matching between the query and the entity. Basic features
include (1) simple term statistics of query terms with some aggregator function
(min, max, or average) and (2) scores of unsupervised ranking algorithms applied
to different entity representations (i.e., fields). More complex features would
encompass the overall retrieval score computed by some entity retrieval method
(e.g., MLM, BM25F, or FSDM). Retrieval models can be instantiated with dif-
ferent parameter settings to generate multiple features (e.g., different smoothing
methods and parameters for language modeling approaches). Additionally, if user
feedback data is available, various click-based statistics for the query-entity pair
would also be incorporated under this feature group.

In this chapter we only consider term-based features, which are summarized in
Table 3.7. This selection (which is by no means complete) includes features that
have been proposed in the literature for document retrieval [20, 61] or entity
ranking [21, 50]. Note that the choice of fields F depends on the actual entity
representation (cf. Sect. 3.2); whenever we write f or fe in Table 3.7 it actually
implies |F | features, one for each field f ∈ F . In Chaps. 4 and 7, we will introduce
additional features that go beyond the term level.

Feature values are often normalized to be in the [0,1] range for a given query.
One simple technique to achieve that, without making any assumptions about how

84 3 Term-Based Models for Entity Ranking

the values are distributed, is called min-max normalization:

x̃i = xi − min(x)

max(x)− min(x)
,

where x1, . . . ,xn are the original values for a given feature and for a given query,
and x̃i is the transformed feature value for the ith instance.

3.3.3.2 Learning Algorithms

When learning a ranking model from training data, the objective is to minimize the
expected value of some loss function. Ranking algorithms can be divided into three
categories based on the choice of loss function:

• Pointwise approaches consider a single entity at a time for a given query
and attempt to approximate the relevance value or label, independent of the
other candidate entities for that query. Many standard regression and classifi-
cation algorithms can be directly used for pointwise learning-to-rank. Random
Forests [13] and Gradient Boosted Regression Trees (GBRT, a.k.a. MART) [33]
are among the most widely used approaches.

• Pairwise approaches look at a pair of entities and try to learn a binary classifier
that can tell which of the two entities should be ranked first. The objective for
the ranker is to minimize the number of inversions in the ranking compared to
the ground truth. Commonly used pairwise algorithms include RankSVM [39],
RankBoost [32], RankNet [15], and GBRank [79].

• Listwise approaches are similar to the pairwise approach, but they aim to optimize
the ordering of the entire result list. Loss functions for listwise approaches tend to
get more complex compared to pointwise or pairwise approaches. Representative
listwise algorithms include Coordinate Ascent [53], ListNet [17], AdaRank [76],
LambdaRank [16], and LambdaMART [75].

3.3.3.3 Practical Considerations

Note that computing features for all query-entity pairs is not only computationally
prohibitive, but also unnecessary. For each query there is a small number of relevant
entities (compared to the total number of entities in the catalog). Therefore, it is
sufficient to consider only a sample of entities for each query. In practice, sampling
is typically performed by using an unsupervised model (e.g., LM or BM25) to
obtain an initial ranking and taking the top-k results. Features are computed only
for the set of “possibly relevant” entities that are identified in this first-pass (or
initial) retrieval round (both during training and when applying the model). The
final ranking for an unseen query is determined in a second-pass retrieval round,
by computing the features for the top-k initially retrieved entities and applying the
model that was learned on the training data. This essentially means re-ranking the

3.4 Ranking Entities Without Direct Representations 85

initial results. “Minimizing the number of documents [entities] for which features
are calculated provides efficiency advantages, particularly if some features are
expensive to compute” [48]. The optimal value of k can vary greatly depending
on the task and the document collection; we refer to Macdonald et al. [48] for a
study on document retrieval. For ad hoc entity retrieval, k is typically set between
100 and 1000 [21, 37].

3.4 Ranking Entities Without Direct Representations

Up until this point, we have ranked entities by creating term-based representations
(entity descriptions) for them. We have further made the point, illustrated with
examples, that ready-made descriptions are available for many entities and creating
entity representations from these is straightforward. There are cases, however, when
creating explicit entity representations is not desired or simply not possible. An
example of such a scenario is an enterprise setting, where users may be permitted
only to access a certain subset of documents, based on their access levels. Creating
all entity descriptions for each individual user would be highly ineffective.

In this section, we will consider the retrieval process in a slightly different
way, in which entities are not modeled directly. Instead, documents are modeled
and queried, then entities associated with the top-ranked documents are considered
(hence this strategy has been termed document model in [1]). As before, we shall
assume that documents have been annotated with entities. Formally, the scoring of
entities is performed according to the following equation:

score(e;q) =
∑

d∈Dq

score(d;q) w(e,d) ,

where score(d;q) expresses the document’s relevance to the query and can be
computed using any existing document retrieval method (LM, BM25, SDM, etc.).
As before, w(e,d) is the association weight between entity e and document d (cf.
Eq. (3.4)). The summation is done over the set Dq , which contains all documents
that bear any relevance to the query q (i.e., score(d;q) > 0). The efficiency of this
approach can be further improved by restricting Dq to the top-k relevant documents.
Finally, user permissions can be easily handled here by limiting Dq to documents
that the user is allowed to access. This general formalism encompasses all methods
that rank entities using documents returned by a document search engine, including,
e.g., Voting models [47].

An appealing feature of the document-based entity ranking method is that it
can be implemented with limited effort on top of an existing document search
engine; see Algorithm 3.1. Provided that associated entities can effectively be
looked up for each document (i.e., where w(e,d) > 0), the added overhead over
standard document retrieval is minimal. That lookup can be conveniently performed

86 3 Term-Based Models for Entity Ranking

Algorithm 3.1: Document-based entity ranking
Input: query q, document-entity association weights w

Output: scoring of entities

1 score(d;q) ← perform standard document retrieval
2 Dq ← {d : score(d;q) > 0} /* may be further restricted */

3 score(e;q) ← 0 for all entities /* initialize entity scores */

4 foreach d ∈ Dq do
5 foreach e : w(e,d) > 0 do
6 score(e;q) ← score(e;q) + score(d;q)w(e,d)

7 end
8 end

using an inverted index structure (storing the associated entities, along with the
corresponding weights, for each document).

With mention-level entity annotations, a proximity-based variant is also possible
(even though an efficient implementation of that idea can be challenging). The
interested reader is referred to Balog et al. [2] for details.

3.5 Evaluation

The evaluation of ad hoc entity retrieval is analogous to that of ad hoc document
retrieval. Given a ranked list of items, the relevance of each item is judged with
respect to the input query (and independently of all other items). Various rank-based
measures can be used to measure how effective the system was at ranking results
for a given query; we present a number of such measures in Sect. 3.5.1. We note
that the main focus here is on effectiveness (i.e., the “goodness” of the ranking);
efficiency (i.e., how “quickly” it is done) will not be discussed. Over the past decade,
a number of evaluation campaigns have addressed the problem of entity ranking in
various flavors. A major focus of these efforts is to build reusable test collections to
facilitate further research and development. We review these benchmarking efforts
in Sect. 3.5.2.

3.5.1 Evaluation Measures

Evaluation is performed by using rank-based measures: average precision and
reciprocal rank in case of binary relevance assessments, and normalized discounted
cumulative gain in case of graded relevance judgments. Set-based measures may
also be used, specifically, precision at rank cutoff k, where k is typically small, i.e.,
P@10 or P@20. Below, we present the definitions of these measures. For an in-depth
treatment of evaluation measures and for guidance on how to conduct statistical

3.5 Evaluation 87

significance testing, the reader is encouraged to consult any standard IR textbook,
e.g., Zhai and Massung [78, Chapter 9] or Croft et al. [26, Chapter 8].

Let us first consider the case of binary relevance, where Rel denotes the set of
relevant entities for a given query (with all entities outside Rel being non-relevant).
Let L = 〈e1, . . . ,en〉 be the ranked list of entities returned for a given query.
Precision at rank k (P@k) is the fraction of the top-k ranked results that are relevant:

P(k) = |{e1, . . . ,ek} ∩ Rel|
k

.

Average precision (AP) is computed by averaging the precision values from each
rank position where a relevant result was retrieved:

AP(L) = 1

|Rel|
n∑

i = 1
ei ∈ Rel

P(i) .

There are situations when there is only a single relevant result (e.g., the user searches
for a particular entity by its name). The reciprocal rank (RR) measure is defined as
the reciprocal of the rank position r at which the first relevant result was found: 1/r

(and 0 if no relevant result was retrieved).
In case of multi-level (or graded) relevance, we let ri be the relevance level

(“gain”) corresponding to the ith ranked entity, ei . The discounted cumulative gain
(DCG) of a ranking is defined as:

DCG(L) = r1 +
n∑

i=2

ri

log2 i
.

Each result’s gain is “discounted” by dividing it with the log of the corresponding
rank position. This way highly ranked results (which users are more likely to
inspect) contribute more to the overall score than lowly ranked results. Note that
DCG values vary depending on the number of relevant results. Normalized dis-
counted cumulative gain (NDCG) scales the score to the range [0,1] by computing:

NDCG(L) = DCG(L)

IDCG
,

where IDCG is the ideal DCG for a particular query: sorting entities in decreasing
order of relevance, and computing the DCG of that ranking. NDCG is often reported
at a given rank cutoff, e.g., NDCG@10 or NDCG@20.

All the above measures are computed for a single query. To summarize overall
system performance across a set of test queries, the average (arithmetic mean) over
the individual query scores is taken. For average precision and reciprocal rank, these
averaged measures are given a distinctive name, mean average precision (MAP) and
mean reciprocal rank (MRR), respectively.

88 3 Term-Based Models for Entity Ranking

3.5.2 Test Collections

In IR, the use of test collections is the de facto standard of evaluation. A test
collection consists of (1) a dataset, (2) a set of information needs (i.e., queries
or topics), and (3) the corresponding relevance assessments (i.e., ground truth).
Large-scale test collections are typically developed within the context of community
benchmarking campaigns. The first of those benchmarks was the Text Retrieval
Conference (TREC), organized by the US National Institute of Standards and
Technology (NIST) in 1992 [72]. TREC operates on an annual cycle, completing
the following sequence each year:

1. TREC provides a test dataset and information needs. Traditionally, each infor-
mation need is provided as a topic definition, which consists of a query, which is
the input to the search engine, and a more elaborate description and/or narrative,
to guide human judges during the relevance assessment process.

2. Participants develop and run their retrieval systems on the test data and submit
their rankings. Typically, participants can enter multiple submissions (“runs”),
allowing for a comparison across different methods or parameter settings.

3. TREC pools the individual results, obtains relevance assessments, and evaluates
the submitted systems.

4. TREC organizes a conference for participants to share their experiences.

TREC has had, and continues to have, a profound impact on the IR community [66].
Also, the TREC campaign style has been followed by several other benchmarking
initiatives.

In this section, we present a number of benchmarking evaluation campaigns
that have addressed the task of entity ranking in some form. Each of these has
its peculiarities, and there are some fine details that we will omit here. As we go
through these efforts in chronological order, we invite the reader to observe how the
focus is shifting from unstructured to semi-structured and then to structured data
sources. Table 3.8 provides an overview. At the end of this section, in Sect. 3.5.2.7,
we introduce a derived test suite that combines queries and relevance assessments
from multiple benchmarking campaigns.

3.5.2.1 TREC Enterprise

The TREC (Text Retrieval Conference) 2005–2008 Enterprise track [8, 25] featured
an expert finding task, where a single type of entity was sought: people, who are
experts on a given topic (specified by the query). The task is situated in a large
knowledge-intensive organization, such as the World Wide Web Consortium (W3C)
or the Commonwealth Scientific and Industrial Research Organisation (CSIRO).
The document collection is the enterprise’s intranet and people are uniquely
identified by their email addresses. While a small number of people have personal
homepages, the vast majority of persons are not represented as retrievable units.

3.5 Evaluation 89

Table 3.8 Entity retrieval test collections

Campaign, track/task Entity ID Data collection Query type #Queries

INEX XER 2007 [73] Wikipedia page Wikipedia Keyword++ 28+46

INEX XER 2008 [30] Wikipedia page Wikipedia Keyword++ 35

INEX XER 2009 [29] Wikipedia page Wikipedia Keyword++ 55

TREC Entity 2009 REF [9] Homepage(s) Web (ClueWeb09B) Keyword++ 20

TREC Entity 2010 REF [6] Homepage(s) Web (ClueWeb09) Keyword++ 47

TREC Entity 2010 ELC [6] URI Linked Data (BTC-2009) Keyword++ 14

TREC Entity 2011 REF [7] Homepage(s) Web (ClueWeb09) Keyword++ 50

TREC Entity 2011 ELC [7] URI Linked Data (Sindice-2011) Keyword++ 50

SemSearch 2009 ES [36] URI Linked Data (BTC-2009) Keyword 92

SemSearch 2010 ES [10] URI Linked Data (BTC-2009) Keyword 50

SemSearch 2010 LS [10] URI Linked Data (BTC-2009) Keyword 50

INEX LD 2012 Ad Hoc [74] Wikipedia page Wikipedia-LOD (v1.1) Keyword 100

INEX LD 2012 Ad Hoc [35] Wikipedia page Wikipedia-LOD (v2.0) Keyword 144

QALD-1 [43] URI DBpedia (v3.6) Natural lang. 50+50

QALD-2 [43] URI DBpedia (v3.7) Natural lang. 100+100

QALD-3 [23] URI DBpedia (v3.8) Natural lang. 100+99

QALD-4 [69] URI DBpedia (v3.9) Natural lang. 200+50

QALD-5 [70] URI DBpedia (2014) Natural lang. 340+59

QALD-6 [71] URI DBpedia (2015) Natural lang. 400+150

DBpedia-Entity [4] URI DBpedia (v3.7) Mixed 485

DBpedia-Entity v2 [38] URI DBpedia (2015-10) Mixed 467

Keyword++ refers to queries that are enriched beyond the query string. The last column shows the number
of test queries; when training queries are also provided, we use the syntax x+y, where x and y are the number
of training and test queries, respectively

Two principal approaches to expert finding were proposed early on [1], which laid
the foundations for much of the research we presented in this chapter: (1) profile-
based models (building term-based entity representations, cf. Sect. 3.2) and (2)
document-based models (ranking entities without building explicit representations,
cf. Sect. 3.4). Given the specialized nature of the expert finding task (i.e., entities
being restricted to a single type), we do not include the TREC Enterprise test
collections in Table 3.8. For an overview of work on the broader subject of expertise
retrieval, we refer to Balog et al. [3].

3.5.2.2 INEX Entity Ranking

The INEX (Initiative for the Evaluation of XML Retrieval) 2007–2009 Entity
Ranking (XER) track [29, 30, 73] used Wikipedia as the data collection, where
entities are represented and identified uniquely by their corresponding Wikipedia
article. Two tasks are distinguished: entity ranking and list completion. Both tasks
seek a ranked list of entities (e.g., “olympic classes dinghy sailing” or “US presidents

90 3 Term-Based Models for Entity Ranking

since 1960”), but the input formulations differ. In addition to the free text query, the
topic definition includes target entity types (Wikipedia categories) for the entity
ranking task and a small set of example entities for the list completion task. As
such, we have an enriched keyword++ query as input. Mind that in this chapter, we
have only considered the keyword part of queries. Techniques for exploiting those
additional query components (target types or example entities) will be discussed in
Chap. 4.

The 2007 test collection [73] consists of 46 queries; additionally, a set of 28
training queries was also made available to participants. Twenty-five of the test
queries are created specifically for XER. The rest (including all training queries) are
derived from the INEX Ad Hoc track and have a different interpretation of relevance
(e.g., for the query “Bob Dylan songs,” articles related to Bob Dylan, The Band,
albums, cities where Bob Dylan lived, etc., are also considered relevant). Because
of that, most (but not all) of these ad hoc topics were re-assessed as XER topics. As
pointed out by de Vries et al. [73], “often surprisingly many articles that are on topic
for the ad hoc track are not relevant entities.” One particular example is list pages,
which are not entities, and therefore are not considered as relevant entity results.

For the 2008 edition [30], 35 genuine XER topics were created. The 2009
track [29] switched to a newer Wikipedia dump and considered a set of 60 queries
from the previous 2 years. All these queries were re-assessed, and the ones with
too few (less than 7) or too many (more than 74) results were removed, leaving 55
queries in total.

3.5.2.3 TREC Entity

The TREC Entity track was launched in 2009 [9] with the aim to perform entity-
oriented search tasks on the Web. The track introduced the related entity finding
(REF) task, which asks for entities of a specified type that engage in a given
relationship with a given source entity. This particular problem definition was
motivated by the fact that many entity queries could have very large answer sets
on the Web (e.g., “actors playing in hollywood movies”), which would render the
assessment procedure problematic. In the first edition of the track, possible target
entity types were limited to three: people, organizations, and products. An example
query is “airlines that currently use Boeing 747 planes,” where Boeing 747 is the
input entity and the target type is organization. Here, we consider only the free
text part of the query; the input entity and target type may be viewed as semantic
annotations (keyword++), which we will exploit in Chap. 4. The data collection is a
web crawl (ClueWeb09B) and entities are identified by their homepages (URLs).
An entity might have multiple homepages, including its Wikipedia page. Entity
resolution, i.e., grouping homepages together that represent the same entity, was
addressed at evaluation time.

In 2010 [6], a number of changes were implemented to the REF task. First, the
document collection was extended to the English portion of ClueWeb09 (approx.
500 million pages). Second, Wikipedia pages were no longer accepted as entity

3.5 Evaluation 91

homepages (to make the task more challenging), and the notion of entity homepage
was made more precise by making a distinction between primary and relevant
entity homepages. Third, a new task, entity list completion (ELC) was introduced.
It addresses essentially the same problem as REF, but there are some important
differences: (1) entities are represented by their URIs in a Linked Data crawl (BTC-
2009, cf. Sect. 2.3.6.1), (2) a small number of example entities are made available,
and (3) target types are mapped to the most specific class within the DBpedia
Ontology. A subset of the 2009 REF topics were recycled, with previously identified
relevant entities manually mapped to URIs in BTC-2009 and given out as examples.

The 2011, final edition of the track [7] made some further changes to the REF
task, including that (1) only primary entity homepages are accepted (i.e., relevance
is binary) and (2) target type is not limited anymore. For the ELC task a new
larger Semantic Web crawl, Sindice-2011, was introduced (cf. Sect. 2.3.6.1), which
replaced the BTC-2009 collection. The task definition remained the same as in 2010,
but only ClueWeb homepages were provided for example entities and these were
not mapped manually to Linked Data URIs. The REF 2010 topics were reused and
known relevant answers were offered as example entities. Additionally, a Linked
Data variant of the REF task (REF-LOD) was also proposed, using URIs instead of
homepages for entity identification; this variant of the task, however, attracted little
interest among participants.

3.5.2.4 Semantic Search Challenge

The Semantic Search Workshop series organized a challenge (SemSearch) in 2010
and 2011 [10, 36], sponsored by Yahoo!, where participants were required to answer
ad hoc entity search queries over structured data collected from the Web (i.e.,
Linked Data). Entities are identified by their URIs. The dataset is BTC-2009, which
combines the crawls of multiple semantic search engines (cf. Sect. 2.3.6.1). Two
separate search tracks are distinguished. Entity search queries (2010 and 2011) seek
information on one particular entity, e.g., “YMCA Tampa” or “Hugh Downs.” The
target entity is often an ambiguous one, e.g., “Ben Franklin,” which may refer to
the person or to the ship named after him. These queries were sampled from web
search engine logs. List search queries (2011 only) describe sets of entities, where
target entities are not named explicitly in the query. Examples include “Arab states
of the Persian Gulf ” and “Matt Berry tv series.” These queries were created by the
challenge organizers.

Relevance assessments for both tracks were gathered via crowdsourcing. We
note that unlike TREC and INEX practice, assessors for the entity search track
were presented only with the keyword query (without a more detailed description
of the underlying information need). For list search queries, crowd workers were
additionally provided with the reference list of correct answers (obtained through
manual searching by the organizers). In follow-up work, Blanco et al. [11] showed
that crowdsourced judgments are repeatable (i.e., using a different pool of judges 6
months later led to the same evaluation results) and reliable (even though crowd

92 3 Term-Based Models for Entity Ranking

workers mark somewhat relevant many of the items that expert judges would
consider irrelevant, this does not change the relative ordering of systems).

3.5.2.5 INEX Linked Data

In 2012, INEX introduced the Linked Data track [74] with the aim to investigate
retrieval techniques over a combination of textual and highly structured data. The
data collection consists of Wikipedia articles, enriched with RDF properties from
knowledge bases (DBpedia and YAGO2). Relevant to this chapter is the classic ad
hoc task, where information needs are formulated using keyword queries. Results
are Wikipedia articles, each uniquely identified by its page ID. Queries come from
three main sources: (1) a selection of the worst performing topics from past editions
of the INEX Ad Hoc track, (2) query suggestions related to some general concepts,
obtained from Google (e.g., queries generated for “Vietnam” include “vietnam war
movie,” “vietnam food recipes,” and “vietnam travel airports”), and (3) natural
language Jeopardy-style questions (e.g., “Niagara Falls source lake”). Assessments
for (1) were taken from previous INEX editions; for (2) and (3) they were collected
using crowdsourcing.

The 2013 edition of the track [35] changed the format of the reference collection
and employed newer data dumps. The 2013 query set is a combination of (1) INEX
2009 and 2010 Ad Hoc topics and (2) natural language Jeopardy topics. As before,
assessments were taken over from the previous years, for (1), and were collected
using crowdsourcing, for (2).

3.5.2.6 Question Answering over Linked Data

Question Answering over Linked Data (QALD) is a series of evaluation campaigns,
co-located with the European Semantic Web Conference (ESWC), on answering
natural language questions over Linked Data [43]. Questions are of varying
complexity and ask either for literal answers (Boolean, date, number, or string),
e.g., “How many students does the Free University in Amsterdam have?” or for
a list of resources, i.e., entities (identified by URIs), e.g., “Which presidents of the
United States had more than three children?” Note that for us, questions of the latter
type (seeking entities) are of particular interest. A gold standard SPARQL query
was constructed manually for each question; the results of that query constitute the
ground truth against which systems are evaluated.

The first instantiations of the challenge focused on answering English language
questions from a single knowledge base, in particular DBpedia and MusicBrainz
(a collaborative open-content music database). Later installments of the challenge
focused on multilingual question answering (from QALD-3), extending the task to
multiple, interlinked datasets (from QALD-4), hybrid question answering, which
require information from both structured data and unstructured data (from QALD-
4), and statistical question answering over RDF data cubes (QALD-6). Table 3.8

3.5 Evaluation 93

Table 3.9 Breakdown of the
DBpedia-Entity v2 test
collection [38] by query
categories

Category Type #queries R1 R2

SemSearch ES Named entities 113 12.5 3.0

INEX-LD Keyword queries 99 23.5 9.2

ListSearch List of entities 115 18.1 12.7

QALD-2 NL questions 140 28.4 29.8

Total 467 21.0 14.7

R1 and R2 refer to the average number of relevant and highly
relevant entities per query, respectively

shows, for each QALD edition, the total number of questions for all tasks (including
hybrid QA), where DBpedia is used as the underlying knowledge base.

3.5.2.7 The DBpedia-Entity Test Collection

Balog and Neumayer [4] compiled the DBpedia-Entity test collection by synthesiz-
ing queries from a number of the above-presented benchmarking campaigns into a
single query set and mapping known relevant answers to the DBpedia knowledge
base. This amounts to a diverse query set ranging from short keyword queries
to natural language questions. As part of the normalization, only the free text
parts of queries are considered. That is, any additional markup, type information,
example entities, etc., that may be available in the original task setup are ignored
here. Further, relevance is taken to be binary. DBpedia-Entity has been used
in recent work as a standard test collection for entity retrieval over knowledge
bases [21, 44, 56, 81].

Recently, Hasibi et al. [38] introduced an updated and extended version, referred
to as the DBpedia-Entity v2 test collection. It uses a more recent version of DBpedia
(2015-10) and comes with graded relevance judgments. Relevance assessments
were collected via crowdsourcing and were then further curated manually by expert
annotators, resulting in a high-quality dataset. Queries are further subdivided into
four categories, with statistics presented in Table 3.9:

• SemSearch ES queries are from the Semantic Search Challenge, searching for a
particular entity, like “brooklyn bridge” or “08 toyota tundra.”

• INEX-LD consists of IR-style keyword queries from the INEX 2012 Linked Data
track, e.g., “electronic music genres.”

• List Search comprises queries from the Semantic Search Challenge (list search
task), the INEX 2009 Entity Ranking track, and the TREC 2009 Entity track,
seeking a list of entities, e.g., “Professional sports teams in Philadelphia.”

• QALD-2 contains natural language queries that are from the Question Answering
over Linked Data challenge, e.g., “Who is the mayor of Berlin?”

94 3 Term-Based Models for Entity Ranking

3.6 Summary

This chapter has introduced techniques for ranking entities in various datasets,
ranging from unstructured documents to structured knowledge bases. Most of our
effort has concentrated on constructing term-based representations of entities, which
can then be ranked using traditional document retrieval techniques. Despite their
simplicity, unstructured entity representations with bag-of-words retrieval models
usually provide solid performance and a good starting point. The current state of the
art is to employ fielded entity representations and supervised learning. According to
a recent benchmark, this can yield a moderate, around 10%, relative improvement
over unstructured and unsupervised models when entity retrieval is performed over
a knowledge base [38]. Much larger differences can be observed across different
query types. Queries seeking a particular entity are today tackled fairly successfully,
while the same models perform 25–40% worse on more complex queries, such
as relationship queries or natural language questions. Clearly, there is room for
improvement, especially on the latter types of queries. Generally, careful data
cleansing and pre-processing accounts for more than more sophisticated retrieval
methods [55]. This is not surprising, as this likely applies to most information
processing applications. There is no universal recipe—every collection has to be
dealt with on a case-by-case basis.

Crucially, we have not really tapped into any specific characteristic of entities
yet, such as types or relationships. That will follow in the next chapter.

3.7 Further Reading

In this chapter, we have limited ourselves to using “flat structures,” i.e., entity fields
are treated as a set, without taking into account the hierarchical relationships that
may exist between them. Hierarchical structures have been studied in the context
of element-level XML retrieval, see, e.g., [45, 58]. Neumayer et al. [54] consider
hierarchical field structures for entity retrieval, but according to their experiments,
these do not yield any performance improvements over flat structures. The different
types of entity representation we have looked at in this chapter were built from a
single type of data: unstructured, semi-structured, or structured. It is also possible
to construct hybrid representations. For example, Graus et al. [34] combine various
entity description sources, including a knowledge base, web anchors, social media,
and search queries. Ranking without direct entity representations is also feasible, as
we have discussed in Sect. 3.4. Schuhmacher et al. [68] implement this document-
based strategy in a learning-to-rank framework and employ four types of features:
mention, query-mention, query-entity, and entity-entity.

References 95

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise
corpora. In: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’06, pp. 43–50. ACM (2006). doi:
10.1145/1148170.1148181

2. Balog, K., Azzopardi, L., de Rijke, M.: A language modeling framework for expert finding.
Inf. Process. Manage. 45(1), 1–19 (2009a). doi: 10.1016/j.ipm.2008.06.003

3. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf.
Retr. 6(2-3), 127–256 (2012a). doi: 10.1561/1500000024

4. Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: Proceedings of
the 36th international ACM SIGIR conference on Research and development in Information
Retrieval, SIGIR ’13, pp. 737–740. ACM (2013). doi: 10.1145/2484028.2484165

5. Balog, K., de Rijke, M.: Associating people and documents. In: Proceedings of the IR
Research, 30th European Conference on Advances in Information Retrieval, ECIR’08, pp.
296–308. Springer (2008). doi: 10.1007/978-3-540-78646-7_28

6. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity track. In:
Proceedings of the Nineteenth Text REtrieval Conference, TREC ’10. NIST (2011)

7. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The
Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012b)

8. Balog, K., Soboroff, I., Thomas, P., Craswell, N., de Vries, A.P., Bailey, P.: Overview of the
TREC 2008 Enterprise track. In: Proceedings of the 17th Text REtrieval Conference, TREC
’08. NIST (2009b)

9. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC
2009 Entity track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09.
NIST (2010)

10. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Duc, T.T.: Entity
search evaluation over structured web data. In: Proceedings of the 1st International Workshop
on Entity-Oriented Search, EOS ’11, pp. 65–71 (2011a)

11. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Tran, T.: Repeatable
and reliable semantic search evaluation. Web Semant. 21, 14–29 (2013)

12. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In:
Proceedings of the 10th International Conference on The Semantic Web, ISWC ’11, pp. 83–97.
Springer (2011b). doi: 10.1007/978-3-642-25073-6_6

13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
doi: 10.1023/A:1010933404324

14. Broder, A., Gabrilovich, E., Josifovski, V., Mavromatis, G., Metzler, D., Wang, J.: Exploiting
site-level information to improve web search. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM ’10, pp. 1393–1396. ACM
(2010). doi: 10.1145/1871437.1871630

15. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.:
Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference
on Machine Learning, ICML ’05, pp. 89–96. ACM (2005). doi: 10.1145/1102351.1102363

16. Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In:
Proceedings of the 19th International Conference on Neural Information Processing Systems,
NIPS ’06, pp. 193–200. MIT Press (2006)

17. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise approach to
listwise approach. In: Proceedings of the 24th International Conference on Machine Learning,
ICML ’07, pp. 129–136. ACM (2007). doi: 10.1145/1273496.1273513

https://doi.org/10.1145/1148170.1148181
https://doi.org/10.1016/j.ipm.2008.06.003
https://doi.org/10.1561/1500000024
https://doi.org/10.1145/2484028.2484165
https://doi.org/10.1007/978-3-540-78646-7_28
https://doi.org/10.1007/978-3-642-25073-6_6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1871437.1871630
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1273496.1273513

96 3 Term-Based Models for Entity Ranking

18. Chakrabarti, S., Kasturi, S., Balakrishnan, B., Ramakrishnan, G., Saraf, R.: Compressed data
structures for annotated web search. In: Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, pp. 121–130. ACM (2012). doi: 10.1145/2187836.2187854

19. Chakrabarti, S., Puniyani, K., Das, S.: Optimizing scoring functions and indexes for proximity
search in type-annotated corpora. In: Proceedings of the 15th International Conference on
World Wide Web, WWW ’06, pp. 717–726. ACM (2006). doi: 10.1145/1135777.1135882

20. Chapelle, O., Chang, Y.: Yahoo! Learning to Rank Challenge overview. In: Proceedings of the
Yahoo! Learning to Rank Challenge, pp. 1–24 (2011)

21. Chen, J., Xiong, C., Callan, J.: An empirical study of learning to rank for entity search. In: Pro-
ceedings of the 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’16, pp. 737–740. ACM (2016). doi: 10.1145/2911451.2914725

22. Cheng, T., Chang, K.C.C.: Beyond pages: Supporting efficient, scalable entity search with dual-
inversion index. In: Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pp. 15–26. ACM (2010). doi: 10.1145/1739041.1739047

23. Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngonga Ngomo, A.C., Walter, S.: Multilingual
question answering over Linked Data (QALD-3): Lab overview. In: Information Access
Evaluation. Multilinguality, Multimodality, and Visualization: 4th International Conference of
the CLEF Initiative, CLEF 2013, Valencia, Spain, September 23–26, 2013. Proceedings, pp.
321–332. Springer (2013). doi: 10.1007/978-3-642-40802-1_30

24. Conrad, J.G., Utt, M.H.: A system for discovering relationships by feature extraction from
text databases. In: Proceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’94, pp. 260–270. Springer (1994)

25. Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC-2005 Enterprise track. In:
Proceedings of the 14th Text REtrieval Conference, TREC ’05. NIST (2006)

26. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. 1st
edn. Addison-Wesley Publishing Co. (2009)

27. Dalton, J., Huston, S.: Semantic entity retrieval using web queries over structured RDF data.
In: Proceedings of the 3rd International Semantic Search Workshop, SEMSEARCH ’10 (2010)

28. Dalvi, N., Kumar, R., Soliman, M.: Automatic wrappers for large scale web extraction. Proc.
VLDB Endow. 4(4), 219–230 (2011). doi: 10.14778/1938545.1938547

29. Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 Entity Ranking
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation,
Lecture Notes in Computer Science, vol. 6203, pp. 254–264. Springer (2010). doi:
10.1007/978-3-642-14556-8_26

30. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity
Ranking track. In: Advances in Focused Retrieval: 7th International Workshop of the
Initiative for the Evaluation of XML Retrieval (INEX 2008), pp. 243–252 (2009). doi:
10.1007/978-3-642-03761-0_25

31. Firth, J.R.: A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (special
volume of the Philological Society) 1952-59, 1–32 (1957)

32. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining
preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

33. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of
Statistics 29, 1189–1232 (2000)

34. Graus, D., Tsagkias, M., Weerkamp, W., Meij, E., de Rijke, M.: Dynamic collective entity
representations for entity ranking. In: Proceedings of the Ninth ACM International Con-
ference on Web Search and Data Mining, WSDM ’16, pp. 595–604. ACM (2016). doi:
10.1145/2835776.2835819

35. Gurajada, S., Kamps, J., Mishra, A., Schenkel, R., Theobald, M., Wang, Q.: Overview of
the INEX 2013 Linked Data track. In: CLEF 2013 Evaluation Labs and Workshop, Online
Working Notes (2013)

36. Halpin, H., Herzig, D.M., Mika, P., Blanco, R., Pound, J., Thompson, H.S., Tran, D.T.:
Evaluating ad-hoc object retrieval. In: Proceedings of the International Workshop on
Evaluation of Semantic Technologies, IWEST ’10 (2010)

https://doi.org/10.1145/2187836.2187854
https://doi.org/10.1145/1135777.1135882
https://doi.org/10.1145/2911451.2914725
https://doi.org/10.1145/1739041.1739047
https://doi.org/10.1007/978-3-642-40802-1_30
https://doi.org/10.14778/1938545.1938547
https://doi.org/10.1007/978-3-642-14556-8_26
https://doi.org/10.1007/978-3-642-03761-0_25
https://doi.org/10.1145/2835776.2835819

References 97

37. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval.
In: Proceedings of the 2016 ACM on International Conference on the Theory of Information
Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406

38. Hasibi, F., Nikolaev, F., Xiong, C., Balog, K., Bratsberg, S.E., Kotov, A., Callan, J.: DBpedia-
Entity v2: A test collection for entity search. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, pp.
1265–1268. ACM (2017). doi: 10.1145/3077136.3080751

39. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’02, pp. 133–142. ACM (2002). doi: 10.1145/775047.775067

40. Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured data. In:
Proceedings of the 31th European Conference on IR Research on Advances in Information
Retrieval, pp. 228–239. Springer (2009). doi: 10.1007/978-3-642-00958-7_22

41. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web data
extraction tools. SIGMOD Rec. 31(2), 84–93 (2002). doi: 10.1145/565117.565137

42. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)
43. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating question answering over Linked Data.

Web Semantics: Science, Services and Agents on the World Wide Web 21, 3–13 (2013). doi:
10.1016/j.websem.2013.05.006

44. Lu, C., Lam, W., Liao, Y.: Entity retrieval via entity factoid hierarchy. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), ACL ’15,
pp. 514–523. Association for Computational Linguistics (2015). doi: 10.3115/v1/P15-1050

45. Lu, W., Robertson, S., MacFarlane, A.: Field-weighted XML retrieval based on BM25. In:
Proceedings of the 4th International Conference on Initiative for the Evaluation of XML
Retrieval, INEX ’05, pp. 161–171 (2006). doi: 10.1007/11766278_12

46. Lv, Y., Zhai, C.: Positional language models for information retrieval. In: Proceedings of
the 32nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’09, pp. 299–306. ACM (2009). doi: 10.1145/1571941.1571994

47. Macdonald, C., Ounis, I.: Voting for candidates: Adapting data fusion techniques for
an expert search task. In: Proceedings of the 15th ACM international conference on
Information and knowledge management, CIKM ’06, pp. 387–396. ACM (2006). doi:
10.1145/1183614.1183671

48. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank for web search.
Inf. Retr. 16(5), 584–628 (2013). doi: 10.1007/s10791-012-9209-9

49. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

50. Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In: Proceedings
of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp.
563–572. ACM (2012). doi: 10.1145/2124295.2124364

51. Metzler, D.: A Feature-Centric View of Information Retrieval. Springer (2011)
52. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings

of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’05, pp. 472–479. ACM (2005). doi: 10.1145/1076034.1076115

53. Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval. Inf. Retr. 10(3),
257–274 (2007). doi: 10.1007/s10791-006-9019-z

54. Neumayer, R., Balog, K., Nørvåg, K.: On the modeling of entities for ad-hoc entity search in
the Web of Data. In: Proceedings of the 34th European conference on Advances in Information
Retrieval, ECIR ’12, pp. 133–145. Springer (2012a). doi: 10.1007/978-3-642-28997-2_12

55. Neumayer, R., Balog, K., Nørvåg, K.: When simple is (more than) good enough: Effective
semantic search with (almost) no semantics. In: Proceedings of the 34th European conference
on Advances in Information Retrieval, ECIR ’12, pp. 540–543. Springer (2012b). doi:
10.1007/978-3-642-28997-2_59

https://doi.org/10.1145/2970398.2970406
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/775047.775067
https://doi.org/10.1007/978-3-642-00958-7_22
https://doi.org/10.1145/565117.565137
https://doi.org/10.1016/j.websem.2013.05.006
https://doi.org/10.3115/v1/P15-1050
https://doi.org/10.1007/11766278_12
https://doi.org/10.1145/1571941.1571994
https://doi.org/10.1145/1183614.1183671
https://doi.org/10.1007/s10791-012-9209-9
https://doi.org/10.1145/2124295.2124364
https://doi.org/10.1145/1076034.1076115
https://doi.org/10.1007/s10791-006-9019-z
https://doi.org/10.1007/978-3-642-28997-2_12
https://doi.org/10.1007/978-3-642-28997-2_59

98 3 Term-Based Models for Entity Ranking

56. Nikolaev, F., Kotov, A., Zhiltsov, N.: Parameterized fielded term dependence models for ad-hoc
entity retrieval from knowledge graph. In: Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 435–444.
ACM (2016). doi: 10.1145/2911451.2911545

57. Ogilvie, P., Callan, J.: Combining document representations for known-item search. In:
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’03, pp. 143–150. ACM (2003). doi:
10.1145/860435.860463

58. Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval. In:
Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) Advances in XML Information Retrieval,
Third International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX
2004, Lecture Notes in Computer Science, vol. 3493, pp. 224–237. Springer (2005). doi:
10.1007/11424550_18

59. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using BM25F for
semantic search. In: Proceedings of the 3rd International Semantic Search Workshop,
SEMSEARCH ’10. ACM (2010). doi: 10.1145/1863879.1863881

60. Petkova, D., Croft, W.B.: Proximity-based document representation for named entity retrieval.
In: Proceedings of the sixteenth ACM conference on Conference on information and knowl-
edge management, CIKM ’07, pp. 731–740. ACM (2007). doi: 10.1145/1321440.1321542

61. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: A benchmark collection for research on
learning to rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010). doi:
10.1007/s10791-009-9123-y

62. Raghavan, H., Allan, J., Mccallum, A.: An exploration of entity models, collective classifi-
cation and relation description. In: KDD Workshop on Link Analysis and Group Detection,
LinkKDD ’04, pp. 1–10 (2004)

63. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond.
Found. Trends Inf. Retr. 3(4), 333–389 (2009). doi: 10.1561/1500000019

64. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields.
In: Proceedings of the 13th ACM conference on Information and knowledge management,
CIKM ’04, pp. 42–49 (2004). doi: 10.1145/1031171.1031181

65. Robertson, S.E.: The probability ranking principle in information retrieval. Journal of
Documentation 33, 294–304 (1977)

66. Sanderson, M.: Test collection based evaluation of information retrieval systems. Found.
Trends Inf. Retr. 4(4), 247–375 (2010). doi: 10.1561/1500000009

67. Sandhaus, E.: The New York Times Annotated Corpus. Tech. rep. (2008)
68. Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through

text and knowledge. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, CIKM ’15, pp. 1461–1470. ACM (2015). doi:
10.1145/2806416.2806480

69. Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.C., Cabrio, E., Cimiano, P., Walter, S.:
Question answering over Linked Data (QALD-4). In: Cappellato, L., Ferro, N., Halvey, M.,
Kraaij, W. (eds.) Working Notes for CLEF 2014 Conference (2014)

70. Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.C., Cabrio, E., Cimiano, P., Walter, S.:
Question answering over Linked Data (QALD-5). In: Cappellato, L., Ferro, N., Jones, G., San
Juan, E. (eds.) Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum
(2015)

71. Unger, C., Ngomo, A.C.N., Cabrio, E.: 6th Open Challenge on Question Answering over
Linked Data (QALD-6). In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) Semantic
Web Challenges: Third SemWebEval Challenge at ESWC 2016, Heraklion, Crete, Greece,
May 29 - June 2, 2016, Revised Selected Papers, pp. 171–177. Springer (2016). doi:
10.1007/978-3-319-46565-4_13

72. Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval.
The MIT Press (2005)

https://doi.org/10.1145/2911451.2911545
https://doi.org/10.1145/860435.860463
https://doi.org/10.1007/11424550_18
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.1145/1321440.1321542
https://doi.org/10.1007/s10791-009-9123-y
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/1031171.1031181
https://doi.org/10.1561/1500000009
https://doi.org/10.1145/2806416.2806480
https://doi.org/10.1007/978-3-319-46565-4_13

References 99

73. de Vries, A.P., Vercoustre, A.M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX
2007 Entity Ranking track. In: Proceedings of the 6th Initiative on the Evaluation of XML
Retrieval, INEX ’07, pp. 245–251. Springer (2008). doi: 10.1007/978-3-540-85902-4_22

74. Wang, Q., Kamps, J., Camps, G.R., Marx, M., Schuth, A., Theobald, M., Gurajada, S., Mishra,
A.: Overview of the INEX 2012 Linked Data track. In: CLEF 2012 Evaluation Labs and
Workshop, Online Working Notes (2012)

75. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information retrieval
measures. Inf. Retr. 13(3), 254–270 (2010). doi: 10.1007/s10791-009-9112-1

76. Xu, J., Li, H.: AdaRank: A boosting algorithm for information retrieval. In: Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’07, pp. 391–398. ACM (2007). doi: 10.1145/1277741.1277809

77. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to informa-
tion retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004). doi: 10.1145/984321.984322

78. Zhai, C., Massung, S.: Text Data Management and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. ACM and Morgan & Claypool (2016)

79. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting method
and its application to learning ranking functions for web search. In: Proceedings of the 20th
International Conference on Neural Information Processing Systems, NIPS ’07, pp. 1697–
1704. Curran Associates Inc. (2007)

80. Zhiltsov, N., Agichtein, E.: Improving entity search over Linked Data by modeling
latent semantics. In: Proceedings of the 22nd ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’13, pp. 1253–1256. ACM (2013). doi:
10.1145/2505515.2507868

81. Zhiltsov, N., Kotov, A., Nikolaev, F.: Fielded sequential dependence model for ad-hoc entity
retrieval in the Web of Data. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’15, pp. 253–262. ACM (2015).
doi: 10.1145/2766462.2767756

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-540-85902-4_22
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/984321.984322
https://doi.org/10.1145/2505515.2507868
https://doi.org/10.1145/2766462.2767756
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Semantically Enriched Models for Entity
Ranking

Most of our efforts in the previous chapter have revolved around constructing term-
based representations of entities. These representations can then be ranked using
direct adaptations of existing document retrieval models. On the one hand, the
resulting approaches are robust and effective across a broad range of application
scenarios. On the other hand, these term-based models have little awareness of
what it takes to be an entity. Perhaps the most exciting challenge and opportunity
in entity retrieval is how to leverage entity-specific properties—attributes, types,
and relationships—to improve retrieval performance. This requires a departure from
purely term-based approaches toward more semantically informed representations.
This change of direction is supported by the emergence of knowledge bases over
the past decade (cf. Sect. 2.3). Knowledge bases organize information about entities
in a structured and semantically meaningful way. For us, semantics is taken to
be synonymous with structure (more precisely, with references to meaningful
structure). Our efforts in this chapter are driven by the following question: How
can one leverage structured knowledge repositories in entity retrieval?

At its core, the entity ranking task (and most IR tasks for that matter) boils down
to the problem of matching representations. That is, computing similarities between
representations of queries (information needs) and those of entities (information
objects). The question then becomes: How to preserve and represent structure
associated with entities? Importantly, to be able to make use of richer (i.e., semantic)
entity representations during matching, queries also need to have correspondingly
enriched representations. For example, if types of entities are represented as
semantic units, as opposed to sequences of words, then we also need to know the
target types of the query. For now, we shall assume that we are provided with such
enriched queries, which will be referred to as keyword++ queries.

In this chapter, we will look at semantically enriched entity retrieval in several
flavors. Table 4.1 presents an overview of the different tasks, and serves as a
roadmap to this chapter. Many of these tasks have been proposed and studied in
the context of some benchmarking campaign. As we shall see, some of the most

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_4

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_4&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_4

102 4 Semantically Enriched Models for Entity Ranking

Table 4.1 Overview of various entity ranking tasks addressed in this chapter

Task Query formulation Section Benchmark

Ad hoc entity retrieval Keyword 4.2.1

Keyword 4.4.1

Keyword++ (query entities) 4.2.2

Keyword++ (target types) 4.3 INEX Entity Ranking

List search Keyword 4.4.2 SemSearch Challenge

Related entity finding Keyword++ (input entity, target type) 4.4.3 TREC Entity

Similar entity search Keyword++ (example entities)a 4.5 INEX Entity Ranking
aThe query may or may not have a keyword component (referred to as example-augmented vs.
example-based search, respectively)

Table 4.2 Notation used in this chapter

Symbol Meaning

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Eq Set of query entities

Eq (k) Top-k ranked entities for query q

f Field (f ∈ F)

F Set of fields

fe Field f of entity e

K Knowledge base

Le Links of entity e (i.e., set of nodes connected to e in the knowledge graph)

q Keyword query

q̃ Keyword++ query (q̃ = (q,Xq,Yq, . . .))

(s,p,o) Subject-predicate-object (SPO) triple ((s,p,o) ∈ K)

T Type taxonomy

Te Set of types assigned to entity e

Tq Set of target types (a.k.a. query types)

y Entity type (y ∈ T)

effective approaches are tailor-made and highly specialized for the particular task.
This chapter is mainly organized around the various aspects of entities that are
utilized: properties generally (Sect. 4.2), then more specifically types (Sect. 4.3) and
relationships (Sect. 4.4). In Sect. 4.5, we consider the task of similar entity search,
which revolves around comparing representations of entities. Finally, in Sect. 4.6,
we show that structure can also be exploited in a static (query-independent) fashion.
Table 4.2 summarizes the notation used throughout this chapter.

4.1 Semantics Means Structure 103

4.1 Semantics Means Structure

Our objective in this chapter is to build semantically enriched entity retrieval
models. We introduce the following working definition of semantics: “references
to meaningful structures.” What we mean by that is that specific entities, types,
or relationships are recognized and identified uniquely, with references to an
underlying knowledge repository, as opposed to being treated as mere strings. This
makes it possible to search by meaning rather than just literal matches.

Semantically enriched entity retrieval models extend the representation of
entities from mere sequences of terms to include information about specific
attributes, types, and relationships, and leverage this structured information
when matching entities against information needs (queries).

This semantic enrichment needs to be woven through all elements of the retrieval
process. In order to make use of rich entity representations, the retrieval model has
to utilize these additional structures during matching. To be able to do that, queries
also need to be enriched. See Fig. 4.1a vs. b for the illustration of the difference
between term-based and semantic entity retrieval models.

The enrichment of queries may happen on the users’ side or may be performed
automatically. The former is typically facilitated through various query assistance
services, such as facets or query auto-completion. For expressing complex informa-
tion needs, custom user interfaces may also be built (see, e.g., [9, 36]). While such
interactive query-builders offer the same expressivity as structured query languages
(like SQL and SPARQL), they share the same disadvantages as well: users need
to receive some training on how to use the tool. The other alternative is to rely on
machine understanding of queries, i.e., to obtain semantic enrichments by automatic
means. We will look at this direction in detail in Chap. 7. Finally, hybrid approaches
that combine human and machine annotations are also possible.

Our focus in this chapter is not on the mechanics of query enrichment. We
assume an enriched query as our input; how exactly it was obtained is presently
immaterial for us. We make the following distinction for notational convenience.

Fig. 4.1 (a) Ranking entities using term-based representations. (b) Semantically enriched entity
ranking by incorporating structure

104 4 Semantically Enriched Models for Entity Ranking

We use q̃ for a semantically enriched, i.e., keyword++, query. When referring to
the keyword component of the query, we shall write q . In many cases, our input
query will be a tuple q̃ = (q,Xq,Yq, . . .), where X and Y are the additional query
components or “enrichments” (e.g., target types or example entities). A typical
approach, which we shall encounter several times throughout this chapter, is to build
multiple representations of both entities and queries, in addition to the term-based
one. Each of these additional “parallel representations” is designated to preserve the
semantics associated with a specific entity property (e.g., types or relationships).
Then, a given candidate entity is scored against the query based on each of these
representations. Finally, these scores are combined, e.g., linearly:

score(e;q̃) = λt scoret (e;q)+ λX scoreX(e;Xq)+ λY scoreY (e;Yq)+ . . . ,

where scoret (e;q) is the term-based retrieval score (using methods from the
previous chapter), and the other score components correspond to the various other
representations (X,Y, . . .).

One important detail that needs attention when using the above formulation is
that the different similarity scores need to be “compatible,” i.e., must have the same
magnitude. A simple technique to ensure compatibility is to normalize the top-k
results (using the same k value across the different score components) by the sum
of the scores for that query, and assign a zero score to results below rank k:

score′x(e;q) =
{ 1

Z
scorex(e;q), e ∈ Eq(k)

0, otherwise ,

where Eq(k) denotes the set of top-k results (entities) for query q and the
normalization coefficient is set to Z =∑e∈Eq(k) scorex(e;q).

4.2 Preserving Structure

In this section, we look at how to preserve (and exploit) the rich structure associated
with entities in a knowledge base. We will assume that each entity is stored as a set
of SPO triples (cf. Sect. 2.3.1.2). Recall that the subject and predicate are always
URIs, while the object can be a URI or a literal value. Previously, in Chap. 3, we
have built fielded entity descriptions by grouping multiple predicates together into
each field. The corresponding object values have been concatenated and set as that
field’s value. Further, we have replaced object URIs with the primary name (or label)
of the given object (cf. Table 3.4). The resulting term-based entity representations
are well suited for use with existing retrieval methods. On the other hand, most of
the rich structure that is associated with an entity has been lost in the process.

We will now modify our approach in order to preserve the semantic information
encapsulated in SPO triples. Two specific issues will be covered. The first is the case
of multi-valued predicates (i.e., triples with the same subject and predicate, but with

4.2 Preserving Structure 105

multiple object values). While these are implicitly handled to some extent when
using proximity-aware retrieval models (cf. Sect. 3.3.2.4), we will address “multi-
valuedness” more explicitly in Sect. 4.2.1. The second is the case of URI-valued
objects, which are references to other entities. Instead of simply replacing these with
the corresponding entity names and treating them as terms, we will consider them as
first-class citizens and distinguish them from regular terms when constructing entity
representations (Sect. 4.2.2).

4.2.1 Multi-Valued Predicates

For the issue of multi-valued predicates, we will continue to use a term-based entity
representation. Accordingly, all entity properties may be seen as attributes (since
types and related entities are also “just strings” in this case). The one adjustment
we make is that we keep each predicate as a separate field, instead of folding
predicates together. Thus, each field corresponds to a single predicate. Some of
the predicates are multi-valued, i.e., have more than a single value. For example,
a person may have multiple email addresses and most movies have multiple actors.
Campinas et al. [14] present an extension to BM25F, called BM25MF, for dealing
with multi-valued fields. Even though we focus exclusively on BM25F here, we note
that similar extensions may be developed for other fielded retrieval models as well.

For convenience, we repeat how term frequencies are aggregated across different
fields according to the original BM25F formula (cf. Sect. 3.3.2.3):

c̃(t;e) =
∑

f∈F
αf

c(t;fe)

1 − bf + bf
lfe

lf

.

Recall that for a given field f , αf is the field’s weight, bf is a field length normal-
ization parameter, and lf is the average length of the field; these values are the same
for all entities in the catalog. For a specific entity, e, c(t;fe) is the frequency of term
t in field f that entity and lfe is the length of the field (number of terms).

According to the multi-valued extension BM25MF, the entity term frequency
becomes:

c̃(t;e) =
∑

f∈F
αf

c̃(t;fe)

1− bf + bf
|fe|
|f |

.

Here, |fe| is the cardinality of field f of e, while |f | denotes the average cardinality
of field f across all entities in the catalog. Field cardinality refers to the number
of distinct values in a field. Term frequencies are computed with respect to a given
entity field according to:

c̃(t;fe) =
∑

v∈fe

αv
c(t;fe,v)

1 − bv + bv
lv
lf

,

106 4 Semantically Enriched Models for Entity Ranking

where c(t;fe,v) is the term frequency within the specific field value v. The length
of the value, lv , is measured in the number of terms. Finally, αv and bv are value-
specific weights and normalization parameters, respectively.

4.2.1.1 Parameter Settings

For setting the field and value weight parameters (αf and αv), Campinas et al.
[14] introduce a number of options, both query-independent and query-dependent.
It is also possible to combine multiple weighting methods (by multiplying the
parameters produced by each of the methods).

Recall that each field in the entity description corresponds to a unique predicate
(URI). We write pf to denote the predicate value that is assigned to field f . Field
weights can be defined heuristically based on pf , using a small set of regular
expressions:1

αf =

⎧
⎪⎪⎨

⎪⎪⎩

2.0, pf matches .�[label|name|title|sameas]$
0.5, pf matches .�[seealso|wikilinks]$
0.1, pf matches <rdf: [0-9]+>

1.0, otherwise .

Alternatively, the field and value weight parameters may be estimated based on the
portion of query terms covered. Note that this way αf and αv are set in a query-
dependent manner. Query coverage measures the portion of query terms that are
contained in the field or value. Additionally, it also considers the importance of
terms, based on their IEF value. Formally:

αx(q) =
∑

t∈x∩q IEF(t)2

∑
t∈q IEF(t)2

,

where x stands for either f or v.
Another way of setting the value weight parameter is based on the notion of value

coverage, which reflects the portion of terms for a given field value that match the
query. To compensate for the differences in value lengths, the following formula is
used:

αv(q) = α

1 + (α − 1)
[∑

t∈v∩q c(t;fe,v)

lv

]B
,

where α ∈ (0,1) is a parameter that imposes a fixed lower bound, to prevent short
values gaining a benefit over long values, and B is a parameter that controls the

1We use the prefixed version for the rdf namespace; see Table 2.4 for the full URL.

4.2 Preserving Structure 107

effect of coverage. “The higher B is, the higher the coverage needs to be for the
value node [field value] to receive a weight higher than α” [14].

On top of field length normalization (bf), the BM25MF ranking function offers
an additional normalization on the field’s cardinality (bv). Based on the experiments
in [14], bf ∈ [0.4,0.7] and bv ∈ [0.5,0.8] generally provide good overall
performance (although there can be considerable differences across datasets).

4.2.2 References to Entities

Until this point, we have replaced the references to related entities (i.e., URI
object values of SPO triples) with terms; specifically, with the primary names of
the corresponding entities. This enhances the “findability” of entities by means of
keyword queries. At the same time, a large part of the underlying structure (and
hence semantics) gets lost in this translation. Consider in particular the issue of
entity ambiguity. This has already been resolved in the underlying knowledge base,
thanks to the presence of unique identifiers. Replacing those identifiers with the
associated names re-introduces ambiguity.

Hasibi et al. [25] propose to preserve these entity references by employing a
dual entity representation: On top of the traditional term-based representation, each
entity is additionally represented by means of its associated entities. We will refer to
the latter as entity-based representation. The idea is illustrated in Fig. 4.2. We will
come back to the issue of field selection for building these fielded representations.

Crucially, to be able to make use of the proposed entity-based representation,
we need to likewise enrich the term-based query with entity annotations. We shall
assume that there is some query annotation mechanism in place that recognizes
entities in the query and assigns unique identifiers to them (the dashed arrow in

Fig. 4.2 Illustration of dual term-based and entity-based entity representations. On the left,
predicate-object pairs are shown for a given subject entity (ANN DUNHAM). In the middle are the
corresponding term-based and entity-based representations. On the right is the query, which also
has a dual representation. Multi-valued fields are indicated using square brackets ([. . .]). URIs are
typeset in monospace font. Matching query terms/entities are highlighted. Figure is based on [25]

108 4 Semantically Enriched Models for Entity Ranking

Fig. 4.2). These query entities may be provided by the user (e.g., by using query
auto-completion and clicking on a specific entity in the list of suggestions) or
by some automatic entity linking method (see Sect. 7.3). The details of the query
annotation process are not our focus here.

Formally, our input keyword++ query is a tuple q̃ = (q,Eq), where q =
〈q1, . . . ,qn〉 is the keyword query (sequence of terms) and Eq = {e1, . . . ,em} is a set
of entities recognized in the query, referred to as query entities (possibly an empty
set). Further, we assume that each of the query entities e ∈ Eq has an associated
weight w(e,q), reflecting the confidence in that annotation. These weights play a
role when annotations are obtained automatically; if query entities are provided by
the user then they would all be assigned w(e,q) = 1.

There are several possibilities to combine term-based and entity-based rep-
resentations during matching. Hasibi et al. [25] propose a theoretically sound
solution, referred to as ELR (which stands for entity linking incorporated retrieval).
It is based on the Markov random field (MRF) model [40], and thus may be
applied on top of any term-based retrieval model that can be instantiated in the
MRF framework. In our discussion, we will focus on the sequential dependence
model (SDM) variant (we refer back to Sect. 3.3.1.3 for details). ELR extends the
underlying graph representation of SDM with query entity nodes; see the shaded
circles in Fig. 4.3. Notice that query entities are independent of each other. This
introduces a new type of clique: 2-cliques between the given entity (that is being
scored) and the query entities. Denoting the corresponding feature function as
fE (ei;e) and the associated weight as λE , the MRF ranking function is defined
as:

PΛ(e|q̂)
rank= λT

n∑

i=1

fT (qi;e)

+ λO

n−1∑

i=1

fO(qi,qi+1;e)

+ λU

n−1∑

i=1

fU(qi,qi+1;e)

+ λE

m∑

i=1

fE (ei;e) .

Fig. 4.3 Graphical
representation of the ELR
model [25] for a query with
three terms and two query
entities

q1 q2 q3

e

e1 e2

4.2 Preserving Structure 109

There is, however, a crucial difference between term-based and entity-based
matches, which we need to take account of. As explained in Hasibi et al. [25],
“the number of cliques for term-based matches is proportional to the length of the
query (n for unigrams and n− 1 for ordered and unordered bigrams), which makes
them compatible (directly comparable) with each other, irrespective of the length
of the query.” This is why the SDM parameters are outside the summations and
can be trained without having to deal with query length normalization. The same
cannot be done with λE , for two reasons. First, the number of query entities varies
and is independent of the length of the query (e.g., a short but ambiguous keyword
query may have several query entities, while a long natural language query might
have only a single one). Second, query entities have different weights (confidence
scores) associated with them, and these should be taken into consideration (this is of
particular importance when automatic query annotation is used). To overcome the
above issues, the λ parameters are rewritten as parameterized functions over each
clique:

λT (qi) = λT
1

n
,

λO(qi,qi+1) = λO

1

n− 1
,

λU (qi,qi+1) = λU
1

n− 1
,

λE (ei) = λE
w(ei,q)

∑m
j=1 w(ej,q)

.

Using these parametrized λ functions, and factoring constants out of the summa-
tions, the final ranking function becomes:

PΛ(e|q̂)
rank= λT

n

n∑

i=1

fT (qi;e)

+ λO

n− 1

n−1∑

i=1

fO(qi,qi+1;e)

+ λU

n− 1

n−1∑

i=1

fU(qi,qi+1;e)

+ λE
∑m

j=1 w(ej,q)

m∑

i=1

w(ei,q) fE (ei;e) .

We subject the free parameters to the constraint λT + λO + λU + λE = 1. Notice
that by setting λO and λU to zero, the above model is an extension of unigram

110 4 Semantically Enriched Models for Entity Ranking

language models, LM, MLM, and PRMS. Otherwise, it extends SDM and FSDM.
The default parameter values in [25] are (1) λT = 0.9 and λE = 0.1 for unigram
language models and (2) λT = 0.8, λO = 0.05, λU = 0.05, and λE = 0.1 for
sequential dependence models (SDM and FSDM).

The last component of the model that remains to be defined is the feature
function fE (ei;e). Before that, let us briefly discuss the construction of entity-based
representations, as the choices we make there will have an influence on the feature
function. Let ẽ denote the entity-based representation of entity e. Each unique
predicate from the set of SPO triples belonging to e corresponds to a separate field
in ẽ, and F̃ denotes the set of fields across the entity catalog. Unlike for terms-
based representations, we do not fold predicates together here. When computing
the degree of match between a candidate entity e that is being scored and a query
entity ei , we take a weighted combination of field-level scores (for each field
in ẽ). There are two important differences compared to a traditional term-based
representation. Firstly, each entity appears at most once in each field (because of
how we mapped SPO triples to fields). Secondly, if a query entity appears in a field,
then it shall be regarded as a “perfect match,” independent of what other entities
are present in the same field. Using our example from Fig. 4.2, if the query entity
<dbp:Barack Obama> is contained in the <dbo:child> field of the entity ANN

DUNHAM, then it is treated as a perfect match (since it should not matter how many
other children she has). Driven by the above considerations the feature function is
defined as:

fE (ei;e) = log
∑

f∈F̃
wE

f

(

(1− λ) 1(ei,fẽ)+ λ

∑
e′∈E 1(ei,fẽ′)

|{e′ ∈ E : fẽ′ �= ∅}|
)

,

where the linear interpolation implements the Jelinek-Mercer smoothing method
(using λ = 0.1 in [25]), and 1(e,fẽ) is a binary indicator function, which is 1 if ei

is present in the entity field fẽ and otherwise 0. The background model part of the
interpolation employs a notion of (fielded) entity frequency; the number of entities
in the catalog that contain ei in field f is divided by the total number of entities for
which that field is non-empty.

Finally, for setting the field weights wE
f , we employ dynamic mapping using

PRMS, exactly the same way as we did for terms (cf. Eq. (3.13)), but using entity
identifier (URI) tokens instead of terms. Setting the field weights in this manner has
a number of advantages: (1) there are no additional free parameters to be trained and
(2) the importance of fields is chosen dynamically for each query entity (depending
on which fields it typically occurs in).

We note that the ELR model we discussed here may be applied to entity types
as well (as those are also represented with a URI value as object in SPO triples).
However, since types are conceptually different from related entities, they shall
receive special treatment in the next section.

4.3 Entity Types 111

4.3 Entity Types

One distinctive characteristic of entities is that they are typed. Each entity in a
knowledge base in principle has a type, or multiple types, assigned to it. These types
are often organized hierarchically in a type taxonomy. Types may also be referred to
as categories, e.g., in an e-commerce context.

In this section, we will assume a keyword++ input query that takes the form q̃ =
(q,Tq), where q is the keyword query and Tq is a set of target types (also referred to
as query types). Like with query entities in the previous section, these types may be
provided by the user (e.g., through the use of faceted search interfaces, see Fig. 4.4)
or identified automatically (cf. Sect. 7.2). An abstraction of this very scenario has
been studied at the INEX Entity Ranking track [19, 20, 54], where a keyword query
is complemented with a small number of target types. There, Wikipedia categories
were used as the type taxonomy. An example INEX topic is shown in Listing 4.1.

Having knowledge of the target types of the query, retrieval results may be
filtered or re-ranked based on how well they match these target types. There are,
however, a number of complicating factors, which we shall elaborate upon below.

4.3.1 Type Taxonomies and Challenges

When the type taxonomy is flat and comprises of only a handful of types (such
as in the Airbnb example in Fig. 4.4 (left)), the usage of type information is rather
straightforward: A strict type filter may be employed to return only entities of the
desired type(s). Many type taxonomies, however, are not like that. They consist of
a large number of types that are organized in a multi-layered hierarchy. The type
hierarchy is transitive, i.e., if entity e is of type y and y is a subtype of z, then e is

Fig. 4.4 Entity type filters on the SERP in AirBnb (Left) and eBay (Right)

112 4 Semantically Enriched Models for Entity Ranking

Table 4.3 Overview of type taxonomies corresponding to different knowledge repositories

DBpediaa Freebaseb Wikipediac YAGO

#types 713 1719 1,333,352 568,672

Depth 7 2 N/A 19

#top-level types 22 92 N/A 61

#leaf-level types 561 1626 662,609 549,775

Avg. #types/entity 2.8 4.4 4.5 12.2
aVersion 2015-10
bLatest available dump (2015-03-31)
cCorresponding to DBpedia version 2015-10

<inex_topic topic_id ="132 ">

<title >living nordic classical composers </title >

<description >I want a list of living classical composers , who are born in

nordic countries .</description >

<narrative >Iceland , Denmark , Sweden , Norway and Finland are the Nordic

countries . They share quite a similar musical heritage . Therefore , a set of

contemporary living Nordic composers are sought .</narrative >

<categories >

<category id="47342">21st century classical composers </category >

<category id="39380">finnish composers </category >

<category id="37202">living classical composers </category >

</categories >

</inex_topic >

Listing 4.1 Example topic definition from the INEX 2008 Entity Ranking track. Systems only
use the contents of the <title> and <categories> tags, <description> and <narrative>

are meant for human relevance assessors to clarify the query intent

also of type z. The root node of the hierarchy is often a generic concept, such as
“object” or “thing.” There might be less “well-behaved” type systems (Wikipedia
categories being a prime example), where types do not form a well-defined “is-
a” hierarchy (i.e., the type taxonomy is a graph, not a tree). Table 4.3 shows the
type taxonomies corresponding to four popular large-scale knowledge repositories.
Dealing with hierarchical type taxonomies brings a set of challenges, related to the
modeling and usage of type information.

Concerning the user’s side, in many cases the user has no extensive knowledge of
the underlying type taxonomy. One real-life example is provided in Fig. 4.4 (right),
displaying the category filters shown on eBay in response to the query “gps mount.”
It is not necessarily obvious which of these categories should be picked (especially
since this interface only allows for selecting a single one). The INEX topic example
in Listing 4.1 also identifies a very specific (albeit incomplete) set of categories; for
other topics, however, the target type(s) may be more wide-ranging. For example,
for another INEX query, “Nordic authors who are known for children’s literature,”
a single target category “writers” is provided. Thus, the target types provided by the
user might be very broad or very narrow.

4.3 Entity Types 113

There are also issues on the data side. Type assignments of entities, particularly
in large entity repositories, are imperfect. Types associated with an entity may
be incomplete or missing altogether, wrong types may be attributed, and type
assignments may be done inconsistently across entities. The type taxonomy may
suffer from various coverage and quality problems too. It is often the case that
certain branches of the taxonomy are very detailed, while for specific entities there
is no matching category other than the root node of the hierarchy, which is overly
generic to be useful. The upshot is as follows:

In many application scenarios, which involve a type system (taxonomy) with
more than a handful of possible categories, target type information should be
treated as “hints” rather than as strict filters.

4.3.2 Type-Aware Entity Ranking

We model type-based similarity as a separate retrieval component. The type-aware
scoring formula can be written in the form of a linear mixture [3, 32, 45, 47]:

score(e;q̃) = λ scoret (e;q)+ (1 − λ) scoreT (e;Tq) ,

where the first component, scoret (e;q), is the term-based similarity between entity
e and the keyword part of the query. This score may be computed using any of
the methods from the previous chapter. The second component, scoreT (e;Tq),
expresses the type-based similarity between the entity and the set of target types
Tq . The interpolation parameter λ is chosen empirically.

Alternatively, the type-aware score may also be written as a multiplication of the
components:

score(e;q̃) = scoret (e;q)× scoreT (e;Tq) .

Since the relative influence of the individual components cannot be adjusted, this
formulation is primarily used for type-based filtering of search results. We shall see
an example for this sort of usage in Sect. 4.4.3.

4.3.3 Estimating Type-Based Similarity

Let us next consider a number of different ways of establishing the similarity
between an entity and a set of target types, that is, estimating scoreT (e;Tq). Note
that relevant entities may not be associated with the provided target types. This is
alleviated by leveraging hierarchical relationships of types in the taxonomy (either

114 4 Semantically Enriched Models for Entity Ranking

explicitly in the scoring formula or by expanding the types of the entity and/or the
query). The choice of method to use depends on the particular application scenario
and type taxonomy.

Term-Based Similarity One simple solution is to join the labels of the corre-
sponding entity types in a separate field and measure the similarity between the
labels of target types and this field using any term-based retrieval model; see,
e.g., [18]. Considering the example in Listing 4.1, the bag-of-words type query
becomes “21st(1) century(1) classical(2) composers(3) finnish(1) living(1),” where the
numbers in the superscript denote the query term frequency. The advantage of this
method is that a separate type field is often distinguished anyway in the fielded
entity description (cf. Table 3.5), thus no extra implementation effort is involved on
the entity side. Further, the hierarchical nature of the type taxonomy can be easily
exploited by expanding the type query with labels of subcategories, siblings, etc.
The disadvantage is that we are limiting ourselves to surface-level matches.

Another variant of this idea is to represent types in terms of their “contents”
(not just by their labels). This content-based representation can be obtained by
concatenating the descriptions of entities that belong to that type; see, e.g., [32]. A
term-based type query is formulated the same way as before, and is scored against
the content-based representation.

Set-Based Similarity Since both the target types and the types of an entity are sets
(of type identifiers), it is natural to consider the similarity of those sets. Pehcevski
et al. [45] measure the ratio of common types between the set of types associated
with an entity (Te) and the set of target types (Tq):

scoreT (e;Tq) = |Te ∩ Tq |
|Tq | .

Both the entity and target types may be expanded using ancestor and descendant
categories in the type taxonomy.

Graph-Based Distance Raviv et al. [47] propose to base the type score on the
distance of the entity and query types in the taxonomy:

scoreT (e;Tq) = e−αd(Tq,Te) ,

where e stands for the mathematical constant that is the base of the natural logarithm
(not to be confused with entity e), α is a decay coefficient (set to 3 in [47]), and
d(Tq,Te) is the distance between the types of the query and the types of entity e,
computed as follows:

d(Tq,Te) =
{

0 , Tq ∩ Te �= ∅
min

(
dmax, miny∈Tq,z∈Te d(y,z)

)
, otherwise .

In words, if the query and entity share any types then their distance is taken to be
zero; otherwise, their distance is defined to be the minimal path length between all

4.3 Entity Types 115

pairs of query and entity types (denoted as d(y,z) for types y and z). Additionally,
there is a threshold on the maximum distance allowed, in case the query and entity
types are too far apart in the taxonomy (dmax, set to 5 in [47]).

Probability Distributions Balog et al. [3] model type information as probability
distributions over types, analogously to the idea of language modeling (which is
about representing documents/entities as probability distributions over terms). Let
θTq and θTe be the type models (i.e., probability distributions) corresponding to the
query and entity, respectively. The type-based similarity then is measured in terms
of the distance between the two distributions:

scoreT (e;Tq) = max
e′∈E

KL(θTq ||θTe′)− KL(θTq ||θTe) .

The distance function employed is the Kullback–Leibler (KL) divergence; the
maximum distance is used for turning this into a similarity function.

Type models are represented as multinomial distributions.2 The probability of
a type y given an entity is estimated analogously to unigram language models
employing Dirichlet prior smoothing. Mind that we denote individual types as y

(so as not to be confused with terms):

P(y|θTe) =
1(y ∈ Te)+ μT P(y|E)

|Te| + μT
,

where 1(y ∈ Te) takes the value 1 if y is one of the types assigned to entity e, and
otherwise equals to 0. The total number of types assigned to e is denoted as |Te|.
The smoothing parameter μT is set to the average number of types assigned to an
entity across the catalog. Finally, the background (catalog-level) type model is the
relative frequency of the type across all entities:

P(y|E) =
∑

e∈E 1(y ∈ Te)
∑

e∈E |Te| .

The types of the query are also modeled as a probability distribution. In the simplest
case, we can set it according to the relative type frequency in the query:

P(y|θTq) =
1(y ∈ Tq)

|Tq | .

2Since types are binary assignments, the attentive reader might wonder why not use a multivariate
Bernoulli distribution instead. That is certainly a possibility, which the reader is invited to explore.
General reasons for using a multinomial distribution include that it is simpler to understand, easier
to implement, and appears to be more efficient [38]. Our specific reason is that the same statistical
distribution is used for modeling the query; when employing query expansion techniques, we need
to be able to capture the importance of a given type (as opposed to its mere presence/absence).

116 4 Semantically Enriched Models for Entity Ranking

Since each type appears at most once in the query, this basically means distributing
the probability mass uniformly across the query types. Considering that input type
information may be very sparse, it makes sense to enrich the type query model (θTq)
by (1) considering other types that are relevant to the keyword query, or (2) applying
(pseudo) relevance feedback techniques (analogously to the term-based case) [3].

4.4 Entity Relationships

Relationships, or “typed links,” are another unique characteristic of entities. Many
information needs involve searching for entities based on the relationships between
them. Consider, e.g., the queries “teammates of Michael Schumacher,” “wives of
Tom Cruise,” or “astronauts who landed on the Moon.” In this section, we discuss
approaches for utilizing relationship information for entity retrieval. We look at
three particular variants of the entity ranking task. We start with classical ad hoc
search using keyword queries (Sect. 4.4.1). Next, we consider list search, where we
still use a keyword query, but we have an additional piece of information, namely,
that the query seeks a list of entities (Sect. 4.4.2). Finally, we discuss related entity
finding, where the input is a keyword++ query, which includes an input entity and a
target type (Sect. 4.4.3).

Depending on the task, we may view the knowledge repository as a knowledge
graph. There, each entity is a node that is connected to other resources3 via labeled
directed edges (i.e., predicates).

4.4.1 Ad Hoc Entity Retrieval

To begin with, we consider the standard ad hoc entity retrieval task (using conven-
tional keyword queries). However, instead of relying only on term-based ranking,
we will additionally exploit the structure of the knowledge graph. Specifically, we
present the approach proposed by Tonon et al. [52], where (1) a set of seed entities
are identified using term-based entity retrieval, and then (2) edges of these seed
entities are traversed in the graph in order to identify potential additional results.

Let Eq(k) denote the set of top-k entities identified using the term-based retrieval
method; these are used as seed entities. Let Êq denote the set of candidate entities
that may be reached from the seed entities. Tonon et al. [52] define a number
of graph patterns, which are expressed as SPARQL queries. Scope one structured
queries look for candidate entities that have direct links to the seed entities, i.e.,

follow the pattern e′
p
� e, where e′ is a seed entity, e is a candidate entity, and the

3We say resources because in addition to entities and types, the graph may contain other types of
URI-nodes as well (e.g., general concepts or disambiguations).

4.4 Entity Relationships 117

two are connected by predicate p. Based on the predicate, four different variations
are considered, such that each extends the set of predicates from the one above:

• Same-as links. The <owl:sameAs> predicate connects identifiers that refer to the
same real-world entity.

• Disambiguations and redirects. Disambiguations (<dbo:wikiPageDisambi-
guates>) and redirects (<dbo:wikiPageRedirects>) to other entities are also
incorporated.

• Properties specific to user queries. An additional set of predicates that connect
seed and candidate entities is selected empirically using a training dataset. These
include generic properties, such as Wikipedia links (<dbp:wikilink>) and
categories (<dct:subject>), as well as some more specific predicates, like
<dbo:artist> or <dbp:region>.

• More general concepts. On top of the predicates considered by the previous
methods, links to more general concepts (predicate <skos:broader>) are also
included.

An extension of the above approach is to look for candidate entities multiple hops
away in the graph. Mind that the number of candidate entities reached potentially
grows exponentially with distance from the seed entity. Therefore, only scope two

queries are used in [52]. These queries search for patterns in the form of e′
p1� x

p2�
e, where x can be an entity or a type standing in between the seed entity e′ and the
candidate entity e. The connecting graph edges (predicates p1 and p2) are selected
from the most frequent predicate pairs.

According to the results in [52], using the second type of scope one queries (i.e.,
same-as links plus Wikipedia redirects and disambiguations) and retrieving k = 3
seed entities performs best. The resulting set of candidate entities may be further
filtered based on a pre-defined set of predicates [52]. For each of the candidate
entities e ∈ Êq , it is kept track of which seed entity it was reached from. Noting that
there may be multiple such seed entities, we let Ee′,e denote the set of seed entities
that led to e.

Finally, retrieval scores are computed according to the following formula:

score(e;q) = λ scoret (e;q)+ (1 − λ)
∑

e′∈Ee′,e

scoret (e;e′,q) .

The first component is the term-based retrieval score of the entity. The second
component is the sum of the retrieval scores of the seed entities e′ that led to entity
e. The interpolation parameter λ is set to 0.5 in [52].

118 4 Semantically Enriched Models for Entity Ranking

4.4.2 List Search

Next, we consider a specific flavor of ad hoc entity retrieval, where the user is
seeking a list of entities. That is, we are supplied with an extra bit of information
concerning the intent of the query. We are not concerned with how this knowledge
is obtained; it could be an automatic query intent classifier or it could be the
user indicating it somehow. This scenario was addressed by the list search task of
the Semantic Search Challenge in 2011 [10] (cf. Sect. 3.5.2.4). Examples of such
queries include “Apollo astronauts who walked on the Moon” and “Arab states of
the Persian Gulf.” Notice that queries are still regular keyword queries, which means
that existing term-based entity ranking approaches are applicable (which is indeed
what most challenge participants did). Below, we discuss a tailored solution that
performs substantially better than conventional entity ranking methods.

The SemSets model by Ciglan et al. [15] is a three-component retrieval model,
where entities are ranked according to:

score(e;q) = scoreC(e;q)× scoreS(e;q)× scoreP (e;q) . (4.1)

We detail each of the three score components below.

Candidate Entity Score To identify candidate entities that are possible answers to
the query, the process starts with a standard (term-based) entity ranking step (using
any model of choice from Sect. 3.3). Let Eq(k) denote the set of top-k ranked entities
and let rank(e,q) ∈ [0..k−1] indicate the rank position of these entities (lower rank
means higher relevance). The “base” entity score is set inversely proportional to the
rank position:

scoreB(e;q) =
{

1 − rank(e,q)
k

, e ∈ Eq(k)

0 , otherwise .

The base scores are then propagated in the knowledge graph, following the principle
of the activation spreading. Ciglan et al. [15] restrict the spreading to only one hop
from the given vertices (and use k = 12 base entities). Accordingly, the candidate
score becomes:

scoreC(e;q) = scoreB(e;q)+
∑

(s,p,o)∈K
s=e′,o=e

scoreB(e′;q) .

Thus, each entity receives, in addition to its base score, the sum of base scores of all
entities that link to it. Optionally, spreading may be restricted to a selected subset of
predicates. The candidate set comprises of entities with a non-zero candidate score:
EC = {e : scoreC(e;q) > 0}. Entities outside this set would receive a final score of
zero because of the multiplication of score components in Eq. (4.1), and therefore
are not considered further.

4.4 Entity Relationships 119

Semantic Set Score A key idea in this model is the concept of semantic sets
(SemSets): “sets of semantically related entities from the underlying knowledge
base” [15]. Intuitively, members of a music band or companies headquartered in the
same city would constitute SemSets. We shall first explain how SemSets are used
for scoring entities, and then detail how they can be obtained.

The SemSets score of an entity is calculated as a sum of the relevance scores of
all SemSets it belongs to:

scoreS(e;q) = 1 + b
(∑

S∈Sq

∑

e∈S

score(S;q)
)

,

where Sq are the candidate semantic sets for the query and b is a boost parameter (set
to 100 in [15]). For a given SemSet S, the relevance score score(S;q) is established
based on its similarity to the query. A term-based representation of the set is built by
concatenating the descriptions of all entities that belong to that set: St = ⋃e∈S et ,
where et is the term-based representation of e. This representation can then be
scored against the query using any standard text retrieval model.

The selection of candidate semantic sets is based on their overlap with the set of
candidate entities. That is, a certain fraction of the SemSet’s member entities must
also be in the candidate entity set identified for the query. Denoting the set of all
possible SemSets as S, the set Sq of candidate SemSets for the query is given by:

Sq = {S ∈ S : |S ∩ EC |
|S| ≥ γ } ,

where γ is a threshold parameter (set to 0.7 in [15]).
The construction of possible SemSets S is governed by two graph patterns,

illustrated in Fig. 4.5:

(a) Vertices (entities) with outgoing edges, labeled with the same predicate, to the
same object (or, in terms of SPO triples: (�,p,o)). For instance, Wikipedia cat-
egories are examples of sets of this type, i.e., the predicate is <dct:subject>
and the object is a given category (e.g., <dbc:People who have walked-

on the Moon>).

Fig. 4.5 Two graph patterns
for forming semantic sets
(SemSets) of entities. Figure
is based on [15]

120 4 Semantically Enriched Models for Entity Ranking

(b) Vertices (entities) with incoming edges, labeled with the same predicate, from
the same subject (SPO pattern (s,p,�)). For example, members of some music
band (predicate <dbo:bandMember>) constitute a semantic set of this type.

A problem with the above constructions is that the number of possible SemSets is
huge and becomes impractical to handle. Arguably, not all types of edges (predi-
cates) are equally useful. Thus, set formation may be restricted to specific predi-
cates. It is shown in [15] that using only two types of predicates, Wikipedia category
memberships (<dct:subject>) and Wikipedia templates (<dbp:wikiPageUses-
Template>), provides solid performance. This is not surprising, since Wikipedia
categories and templates are complementary, manually curated lists of semantically
related entities (cf. Sect. 2.2). Alternatively, sets may be filtered automatically, using
graph structural measures [15].

Principal Entity Relatedness The third score component considers the distance
of a given entity from the principal entity of the query. Entities in the query are
recognized using a dictionary-based approach (cf. Sect. 7.3). Then, the entity with
the highest confidence score is selected as the principal entity of the query. (It might
also happen that no entities are recognized in the query, in which case this score
component is ignored.) The principal entity relatedness score is defined as:

scoreP (e;q) = 1 + c × sim
(
e,eq

)
,

where eq denotes the principal entity of the query, c is a boost parameter (set to 100
in [15]), and sim(e,e′) is a graph structural similarity measure. Specifically, entities
are represented in terms of their neighbors in the knowledge graph and the cosine
similarity of the corresponding vectors is computed. Other possible measures of
pairwise entity similarity will be discussed in Sect. 4.5.1.

4.4.3 Related Entity Finding

Taking the previous task one step further, one may explicitly target a class of queries
that mention a focal entity and seek for entities that are related to that entity.
The TREC Entity track in 2009 introduced the related entity finding (REF) task
as follows: “Given an input entity, by its name and homepage, the type of the
target entity, as well as the nature of their relation, described in free text, find
related entities that are of target type, standing in the required relation to the input
entity” [7].

Formally, the input keyword++ query is q̃ = (q,eq,yq), where q is the keyword
query (describing the relation), eq is the input entity, and yq is the target type.
An example REF query is show in Listing 4.2. There are several possibilities for
defining the input entity and target type. At the first edition of the TREC Entity
track, homepages were used as entity identifiers and the target type could be either
person, organization, or product. Later editions of the track also experimented,

4.4 Entity Relationships 121

<query>
<num>7</num>
<entity_name>Boeing 747</entity_name>
<entity_URL>clueweb09 -en0005 -75 -02292</entity_URL>
<target_entity>organization</target_entity>
<narrative>Airlines that currently use Boeing 747 planes .</narrative>

</query>

Listing 4.2 Example topic definition from the TREC 2009 Entity track. Entities are identified
by their homepages in a web crawl. The narrative tag holds the keyword query q, the input
entity eq and the target entity type yq are specified by the entity URL and target entity tags,
respectively

Fig. 4.6 Related entity finding pipeline

among other things, with using a Linked Data crawl for entity identification and
lifting the restrictions on target types [5, 6]. Here, we will consider a simplified
version of the task assuming that (1) entities are equipped with unique identifiers
and come from a given catalog (knowledge repository) and (2) the target type is
from a handful of possible coarse-grained categories, such as person, organization,
product, or location.

Even though we use a knowledge repository for identifying entities, that reposi-
tory, as a single source of data, is often insufficient for answering entity relationship
queries. For the ease of argument, let us assume that the said repository is a general-
purpose knowledge base (like DBpedia or Freebase). First, the number of distinct
predicates in a KB is very small compared to the wide range of possible relationships
between entities. For instance, the “[airline] uses [aircraft]” relationship from our
topic example is not recognized in DBpedia. Second, even if the given relationship
is recognized in the KB, the KB may be incomplete with regards to a specific entity.
Therefore, for the REF task, we will complement the knowledge base with a large
unstructured data collection: a web corpus. We shall assume that this web corpus
has been annotated with entity identifiers from the underlying entity catalog.

Commonly, the REF task is tackled using a pipeline of three steps: (1) identifying
candidate entities, (2) filtering entities that are of incorrect type, and (3) computing
the relevance of the (remaining) candidates with respect to the input entity and
relation. This pipeline is shown in Fig. 4.6.

Bron et al. [12] address the REF task using a generative probabilistic model.
Entities are ranked according to the probability P(e|q,eq,yq) of entity e being rele-
vant. Using probability algebra (Bayes’ theorem) and making certain independence
assumptions, the following ranking formula is derived:

P(e|q,eq,yq)
rank= P(e|eq)P (yq |e)P (q|e,eq) , (4.2)

122 4 Semantically Enriched Models for Entity Ranking

Fig. 4.7 Generative model
for related entity finding
by Bron et al. [12]

eq

eq

yq

where P(e|eq), P(yq |e), and P(q|e,eq) correspond to the candidate selection, type
filtering, and entity relevance steps of the pipeline, respectively. The graphical
representation of the model is shown in Fig. 4.7. We note that this is only one of the
many possible ways to go about modeling this task. Nevertheless, the components
that make up the scoring formula in Eq. (4.2) are rather typical.

4.4.3.1 Candidate Selection

The first step of the pipeline is concerned with the identification of candidate
entities. At this stage the focus is on achieving high recall, in order to capture all
entities that are possible answers to the query. In Bron et al. [12], this is done through
a so-called co-occurrence model, P(e|eq), which reflects the degree of association
between a candidate entity e and the input entity eq . Let a(e,eq) be a function (to
be defined) that expresses the strength of association between a pair of entities. The
co-occurrence probability is then estimated according to:

P(e|eq) = a(e,eq)
∑

e′∈E a(e′,eq)
.

In order to arrive at a reliable estimate, the function a(e,eq) is based on co-
occurrence statistics of the two entities in a large web corpus. Let c(e) denote
the number of documents in which e occurs and let c(e,eq) denote the number of
documents in which e and eq co-occur.

There are many possible ways to set the association function. One of the simplest
options is to compute the maximum likelihood estimate:

aMLE(e,eq) = c(e,eq)

c(eq)
.

Another alternative, which was reported to perform best empirically in [12], is using
the χ2 hypothesis test (to determine “if the co-occurrence of two entities is more
likely than just by chance” [12]):

aχ2(e,eq) = |D| (c(e,eq)c(ē,q̄e)− c(e,q̄e)c(ē,eq)
)2

c(e)c(eq) (|D| − c(e))
(|D| − c(eq)

) ,

4.4 Entity Relationships 123

where |D| is the total number of documents in the collection, and ē and q̄e indicate
that e and eq do not occur.

Rather than relying on the mere co-occurrence of two entities in documents, one
might want to consider “stronger evidence.” Requiring that the two entities cross-
link to each other constitutes one particular solution. Specifically, the anchor-based
co-occurrence method in [12] takes account of how many times one entity appears
in the anchor text of the other entity’s description (e.g., the Wikipedia page of that
entity). The co-occurrence probability in this case is estimated as:

P(e|eq) = 1

2

c(e,eq)
∑

e′∈E c(e′,eq)
+ 1

2

c(eq,e)
∑

e′∈E c(e′,e)
,

where c(e,eq) is the number of times entity e occurs in the anchor text in the
description of eq . For the sake of simplicity, both linking directions are taken into
consideration with the same weight.

At the end of the candidate selection step, entities with a non-zero P(e|eq) value
are considered for downstream processing. Commonly, this set is further restricted
to the top-k entities with the highest probability.

4.4.3.2 Type Filtering

Earlier, in Sect. 4.3, we have discussed type-aware entity retrieval and have pre-
sented various ways of comparing target types of the query with types of entities.
The very same methods can be used here as well, for estimating the type component,
P(yq |e), which expresses the probability that entity e is of type yq . In our
earlier scenario, however, it was assumed that target types from the corresponding
taxonomy are provided explicitly. Here, the target types are only given as coarse-
grained categories (such as person, organization, product, or location). Selecting the
appropriate types from the type taxonomy is part of the task.

One strategy for dealing with this is to establish a mapping from each possible
coarse-grained input type to multiple categories in the type taxonomy. Such
mapping may be constructed using a handful of simple rules. For example, using
Wikipedia categories as the underlying type taxonomy, Kaptein et al. [33] map the
person target type to categories that (1) start with “People,” (2) end with “births” or
“deaths,” and (3) the category “Living People.” This initial mapping may be further
expanded by adding descendent types until a certain depth according to the type
taxonomy [12].

Another strategy is to infer target types from the keyword query directly [34].
We will detail these methods in Sect. 7.2.

124 4 Semantically Enriched Models for Entity Ranking

4.4.3.3 Entity Relevance

The last part of the pipeline is responsible for determining the relevance of
entities. In Bron et al. [12], it is expressed as P(q|e,eq), the likelihood that the
relation contained in the keyword query is “observable” in the context of an input
and candidate entity pair. This context is represented as the entity co-occurrence
language model, θe,eq . The query is scored against this model by taking the product
over individual query terms:

P(q|θe,eq) =
∏

t∈q

P (t|θe,eq)
c(t;q) .

The probability of a term given the entity co-occurrence language model is estimated
using the following aggregation:

P(t|θe,eq) =
1

|De,eq |
∑

d∈De,eq

P (t|θd) ,

where De,eq is the set of documents, or document snippets, in which e and eq co-
occur, and θd is the (smoothed) language model corresponding to document d .

As a matter of choice, the conditional dependence of the query on the input
entity may be dropped when computing entity relevance, like it is done in [22].
Thus, P(q|e,eq) ∼= P(q|e). Then, the query likelihood P(q|e) may be estimated
using entity language models, which we have already discussed in Chap. 3 (cf.
Sect. 3.3.1.1).

4.5 Similar Entity Search

Similar entity search is the task of ranking entities given a small set of example
entities. One might imagine a specialized search interface that allows the user to
explicitly provide a set of example entities. A more practical scenario is to construct
the set of entities via implicit user interactions, by taking the entities that the user
viewed or “dwelled on” during the course of her search session. These examples
may complement the keyword query, which we shall call example-augmented
search, or serve on their own as the expression of the user’s information need, which
will be referred to as example-based search. The keyword++ query may be written
as q̃ = (q,Eq), where Eq is a set of example entities. Note that q may be empty.

Example-augmented search has been studied at the INEX 2007–2009 Entity
Ranking track [19, 20, 54] under the name list completion. Listing 4.3 shows an
example INEX list completion topic. Example-based search (also known as set
expansion) is considerably harder than example-augmented search, because of the
inherent ambiguity. In the lack of a keyword query, there are typically multiple

4.5 Similar Entity Search 125

<inex_topic topic_id ="88">

<title >Nordic authors who are known for children ’s literature </title >

<description >I want a list of Nordic authors who are known for children ’s

literature .</description >

<narrative >Each answer should be the article about a Danish , Finnish ,

Icelandic , Norwegian or Swedish author that has distinguished himself or

herself among others by writing stories or fiction for children . (A possible

query in a library setting .)</narrative >

<entities >

<entity id="13550">Hans Christian Andersen </entity >

<entity id="37413">Astrid Lindgren </entity >

<entity id="49274">Tove Jansson </entity >

</entities >

</inex_topic >

Listing 4.3 Example topic definition from the INEX 2009 Entity Ranking track. Systems only
use the contents of the <title> and <entities> tags, <description> and <narrative> are
meant for human relevance assessors to clarify the query intent

possible interpretations. Take, for instance, the following three example entities:
CANON, SONY, and NIKON. The underlying information need may be “camera
brands” or “multinational corporations headquartered in Japan” or something else.
Domain-specific applications of example-based search include, for instance, finding
people with expertise similar to that of others within an organization [4, 28]. A more
generic application area is concept expansion for knowledge base population (cf.
Chap. 6).

As we have already grown accustomed to it in this chapter, we will employ a
two-component mixture model:

score(e;q̃) = λ scoret (e;q)+ (1− λ) scoreE(e;Eq) ,

where scoret (e;q) is the standard text-based retrieval score and scoreE(e;Eq) is
the example-based similarity. This general formula can encompass both flavors
of similar entity search. In the case of example-based search, where the input
comprises only of Eq , the interpolation parameter λ is set to 0. For example-
augmented search, 0 ≤ λ ≤ 1, with the exact value typically set empirically. Bron
et al. [13] adjust λ on a per-query basis, depending on which of the text-based
and example-based score components is more effective in retrieving the example
entities.

Our main focus in this section is on estimating the example-based similarity
component, scoreE(e;Eq). Before we delve in, a quick note on terminology. To
make the distinction clear, we will refer to the entity e that is being scored as the
candidate entity, and the set Eq of examples complementing the keyword query as
example entities (or seed entities).

Next, we discuss two families of approaches. Pairwise methods consider the
similarity between the candidate entity and each of the example entities (Sect. 4.5.1).

126 4 Semantically Enriched Models for Entity Ranking

Collective methods, on the other hand, treat the entire set of examples as a whole
(Sect. 4.5.2).

4.5.1 Pairwise Entity Similarity

A simple and intuitive method is to take the average pairwise similarity between the
candidate entity e and each of the example entities e′ ∈ Eq :

scoreE (e;Eq) = 1

|Eq |
∑

e′∈Eq

sim(e,e′) .

This approach is rather universal, as it boils down to the pairwise entity similarity
function, sim(). This similarity is of fundamental importance, which extends well
beyond this specific task. The choice of the entity similarity measure is closely
tied to, and constrained by, the entity representation used. We discuss a range of
options below, organized by the type of entity representation employed. Note that
the combination of multiple similarity measures is also possible.

4.5.1.1 Term-Based Similarity

Perhaps the most conventional method is to compare term-based representations
of entities (i.e., entity descriptions, cf. Chap. 3). Sometimes, this is referred to as
topical similarity. Let e denote the term vector corresponding to entity e:

e = 〈w(t1,e), . . . ,w(tm,e)〉 , (4.3)

where m is the size of the vocabulary, t1 . . . tm are the distinct terms in the
vocabulary, and w(tj,e) is the weighted term frequency of tj . Typically, a TF-IDF
weighting scheme is used. A standard way of comparing two term vectors is using
the cosine similarity:

simcos(e,e
′) = e · e′

‖ e ‖ ‖ e′ ‖ =
∑m

i=1 w(ti,e) w(ti,e
′)

√∑m
i=1 w(ti,e)2

√∑m
i=1 w(ti,e′)2

.

Instead of using individual terms (unigrams), the vector representation may also be
made up of n-grams or keyphrases [27, 28]. Specifically, Hoffart et al. [27] introduce
the keyphrase overlap relatedness (KORE) measure, and present approximation
techniques, based on min-hash sketches and locality-sensitive hashing, for efficient
computation.

4.5 Similar Entity Search 127

4.5.1.2 Corpus-Based Similarity

Entity similarity may be established based on co-occurrence statistics in some
corpus of data. This corpus may be a collection of documents, in which case entities
are represented by the set of documents mentioning them. LettingDe and De′ denote
the set of documents in which entities e and e′ occur, respectively, the similarity of
the two document sets can be measured, e.g, using the Jaccard coefficient:

simJac(e,e
′) = |De ∩De′ |

|De ∪De′ | .

Other co-occurrence-based similarity functions include the maximum likelihood
estimate and the χ2 hypothesis test, which we have already discussed in
Sect. 4.4.3.1.

It is also possible to consider co-occurrences on the sub-document level, e.g., in
lists [26, 48] or tables [55]. As another option, a corpus of query log data may also
be utilized for the same purpose [26].

4.5.1.3 Distributional Similarity

The conventional term-based representation (also called one-hot representation)
allows only for exact word matches. Consider the following oversimplified example,
for the sake of illustration. Let us assume that entity A has a single term in its
representations, “apple,” and entity B also has a single term in its representation,
“orange.” These two entities would have a similarity of 0 according to any standard
term-based similarity measure (like the Jaccard coefficient or cosine similarity). Yet,
arguably, the similarity of “apple” to “orange” should be higher than, say, that of
“apple” to “chess.” With the traditional term-based representation, it is not possible
to make this distinction. This, in fact, is one of the fundamental challenges in IR,
known as the vocabulary mismatch problem. The overall idea behind distributed
representations (or distributional semantics) is to represent each word as a “pattern.”
Words are embedded into a continuous vector space such that semantically related
words are close to each other.4

Word vector representations of terms, a.k.a. word embeddings, are obtained from
large text corpora using neural networks. The embedding (or latent factor) vector
space has low dimensionality, typically in the order of 200–500. At the time of
writing, the two dominating methods for computing word vector representations are

4Distributional representations and distributed representations are both used, and in this case,
both are correct. The former has to do with the linguistic aspect, “meaning is context,” i.e., items
with similar distributions (i.e., context words) have similar meanings. The latter refers to the idea
of having a compact, dense, and low dimensional representation; a single component of a vector
representation does not have a meaning on its own, i.e., it is distributed among multiple vector
components. Word embeddings have both these properties.

128 4 Semantically Enriched Models for Entity Ranking

Word2vec [41] and Glove [46]. Both these implementations are publicly available,
and may be run on any text corpus. A variety of pre-trained word vectors are also
available for download; these may be used off-the-shelf.5,6

Let us now see how these word embeddings can be used for entities. One way
to compute the distributed representation of an entity is to take the weighted sum
of distributed word vectors for each term in the entity’s term-based representation.
Variants of this idea may be found in recent literature, see, e.g., [49, 53, 56].
Formally, let n be the dimensionality of the embedding vector space. We write
ē = 〈ē1, . . . ,ēn〉 to denote the distributed representation of entity e—this is what we
wish to compute. Let T be an m× n dimensional matrix, where m is the size of the
vocabulary; row j of the matrix corresponds to the distributed vector representation
of term tj (i.e., is an n-dimensional vector). The distributed representation of entity
e can then be computed simply as:

ē = eT ,

where e denotes the term-based entity representation, cf. Eq. (4.3). The above
equation may be expressed on the element level as:

ēi =
m∑

j=1

ejTji .

One way to look at this transformation is that an m-dimensional representation is
compressed into an n-dimensional one (where m � n), in such a way that entities
that are more similar become closer in this lower dimensional space. The similarity
of two entities in the embedding vector space is computed using simcos(ē,ē′).

4.5.1.4 Graph-Based Similarity

Viewing entities as nodes in a knowledge graph gives rise to another family of
similarity functions. One way to establish similarity between two entities is based
on the set of other nodes that they are connected to, the idea being that “two objects
are similar if they are related to similar objects” [30]. Let Le denote the set of
nodes connected to e, where connectedness may be interpreted as (1) incoming
links (nodes that link to e), (2) outgoing links (nodes linked by e), or (3) the union
of incoming and outgoing links of e. For entity e′, Le′ is defined analogously. Then,
it is possible to measure the similarity of the two link sets, Le and Le′ , e.g., using
the Jaccard coefficient [26]. The Wikipedia link-based measure (WLM) [42] gives

5https://code.google.com/archive/p/word2vec/.
6http://nlp.stanford.edu/projects/glove/.

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

4.5 Similar Entity Search 129

another quantification of semantic relatedness of two entities, based on the same
idea of the overlap between links; see Eq. (5.4) in Sect. 5.6.1.3 for details.

Instead of using only the direct neighbors of entities, like the above measures do,
one might consider their distance in the knowledge graph. One way of establishing
similarity is by setting it inversely proportional to the minimum (weighted) distance
of the two entities [50]. Alternatively, the problem may be approached as that of
propagating similarity from an entity node through graph edges, using some variant
of graph walk [30, 43]. Graph edge weights can be set uniformly, manually, or
automatically (using some weighting function [50] or a learning procedure [43]).

4.5.1.5 Property-Specific Similarity

In addition to the above methods, which are generally applicable, similarity
measures may be tailored to individual properties. This may be imagined as having
a distinct entity representation corresponding to each particular property, such as
entity name or type. These property-level similarities are then combined, e.g., as:

sim(e,e′) =
∑

i

λisimi (e,e
′) ,

where simi (e,e
′) is a similarity function for property i and λi is the corresponding

weight (importance of that property). Weights may be set manually (based on
domain knowledge) or learned from training data. We note that any of the similarity
functions from above may be used as simi (e,e

′).
A distinguished property is entity type (or category), which naturally provides a

grouping of similar entities; here, similarity is understood in an ontological sense.
We refer back to Sect. 4.3.3 for various ways of establishing type similarity (where
Tq is to be replaced with Te′). Note that type-based similarity is only effective in
telling apart entities that are of a different kind, e.g., people vs. products. It needs
to be combined with other similarity measures when the two entities belong to the
same semantic category (e.g., racing drivers). Effectiveness further depends on the
granularity of type information, i.e., how detailed the type taxonomy is.

A range of options exists for particular domains or applications. For example,
Balog [2] introduces similarity measures for specific product attributes. Product
names are compared using various string distance measures, both character-based
(e.g., Levenshtein or Jaro-Winkler distance) and term-based (e.g., Jaccard or Dice
coefficient). For product prices, the relative value difference is used. Another exam-
ple, for geospatial entities, is given in [51], for matching the location coordinates of
entities.

130 4 Semantically Enriched Models for Entity Ranking

4.5.2 Collective Entity Similarity

We now switch to collective methods, which consider the set of example entities
as a whole. One simple solution, which works for some but not all kinds of
entity representations, is to take the centroid of example entities, and compare it
against the candidate entity (using a similarity function corresponding to that kind
of representation). Here, we introduce two more advanced methods, which make
explicit use of the structure associated with entities.

4.5.2.1 Structure-Based Method

Bron et al. [13] employ a structured entity representation, which is comprised of
the set of properties of the entity. Given an entity e, and the set of SPO triples that
contain e, each triple yields a property r by removing the entity in question from
that triple. (If the data is viewed as a knowledge graph, these properties correspond
to the nodes adjacent to the entity, along with the connecting edges.) Formally, the
structured representation of a given entity e is defined as:

ẽ = {r = (p,o) : (e,p,o) ∈ K} ∪ {r = (s,p) : (s,p,e) ∈ K} .

For example, given the entity MICHAEL SCHUMACHER, with a set of RDF triples
from Sect. 2.3.1.2, the structured representation of this entity becomes:

ẽ = {(<foaf:name>, "Michael Schumacher"),

(<dbo:birthPlace>, <dbr:West Germany>),

(<dbr:1996 Spanish Grand Prix>, <dbp:firstDriver>),

. . .
}
.

Under this representation, the set of example entities Eq becomes a set of set of
properties: Ẽq = {ẽ1, . . . ,ẽ|Eq |}. The similarity between the entity e and the set
of examples is estimated by marginalizing over all properties of the entity and
considering whether they are observed with the examples:

scoreE(e;Eq) = P(ẽ|Ẽq) =
∑

r∈ẽ

P (r|θEq) =
∑

r∈ẽ

∑|Eq |
i=1 1(r,ẽi)

∑|Eq |
i=1

∑
r∈ẽi

1(r,ẽi)
,

where 1(r,ẽi) is a binary indicator function which is 1 if r occurs in the represen-
tation of ẽi and is 0 otherwise. The denominator is the representation length of the
seed entities, i.e., the total number of relations of all seed entities.

4.5 Similar Entity Search 131

4.5.2.2 Aspect-Based Method

In their approach called QBEES, Metzger et al. [39] aim to explicitly capture the
different potential user interests behind the provided examples. Each entity e is
characterized based on three kinds of aspects:

• Type aspects, AT (e), include the set of types that the entity is an instance of, e.g.,
{<dbo:Person>, <dbo:RacingDriver>, <dbo:FormulaOneRacer>, . . . }.

• Relational aspects, AR(e), are the predicates (edge labels) connecting the
entity to other non-type nodes (irrespective of the direction of the edge), e.g.,
{<dbo:birthPlace>, <dbp:firstDriver>, <dbo:championships>, . . . }.

• Factual aspects, AF (e), are relationships to other entities, i.e., other
entity nodes incident to the entity, along with the connecting edges,7

e.g., {(<dbo:birthPlace>, <dbr:West Germany>), (<dbr:1996 Spanish

Grand Prix>, <dbp:firstDriver>), . . . }.

The basic aspects of an entity is the union of the above three kinds of aspects:
A(e) = AT (e) ∪AR(e) ∪AF (e). A compound aspect of an entity is any subset of
its basic aspects: Ae ⊆ A(e).

For each basic aspect a, the entity set of an aspect, Ea , is a set of entities that
have this aspect: Ea = {e ∈ E : a ∈ A(e)}. This concept can easily be extended
to compound aspects. Let EA be the set of entities that share all basic aspects in A:
EA = {e ∈ E : a ∈ A(e) ∀a ∈ A}.

A compound aspect A is maximal aspect of an entity e iff

1. EA contains at least one entity other than e;
2. A is maximal w.r.t. inclusion, i.e., extending this set with any other basic aspect

of e would violate the first condition.

We write M(e) to denote the family (i.e., collection) of all maximal aspects of e.
Next, we extend all the above concepts from a single entity to the set of example

entities Eq . Let A(Eq) denote the set of basic aspects that are shared by all example
entities: A(Eq) = ∩e∈EqA(e). A compound aspect A is said to be a maximal aspect
of the set of example entities Eq iff

1. EA contains at least one entity that is not in Eq ;
2. A is maximal w.r.t. inclusion.

The family of all maximal aspects of Eq is denoted as M(Eq).
The ranking of entities is based on the fundamental observation that for a given

set of example entities Eq , the most similar entities will be found in entity sets of
maximal aspects of Eq . One of the main challenges in similar entity search, i.e.,
in computing scoreE(e;Eq), is the inherent ambiguity because of the lack of an
explicit user query. Such situations are typically addressed using diversity-aware

7This is similar to the structured entity representation in the previous subsection, the difference
being that only entity nodes are considered (type and literal nodes are not).

132 4 Semantically Enriched Models for Entity Ranking

Algorithm 4.1: QBEES [39]
Input: set of example entities, Eq

Output: top-k similar entities, ER

1 ER ← ∅
2 M(Eq) ← maximal aspects of Eq

3 Filter M(Eq) by type constraints
4 Rank M(Eq)

5 while |ER| < k and |M(Eq)| > 0 do
6 A∗ ← top ranked aspect (A∗ ∈M(Eq))
7 E∗ ← {e ∈ E : e ∈ EA∗,e �∈ Eq ∪ ER}
8 e∗ ← arg maxe∈E∗ score(e)
9 ER ← ER ∪ {e∗}

10 update ranking of M(Eq)

11 end

approaches. That is, constructing the result set in a way that it covers multiple
possible interpretations of the user’s underlying information need.

In QBEES, these possible interpretations are covered by the compound aspects.
Further, the concept of maximal aspect is designed such that it naturally provides
diversity-awareness. This is articulated in the following theorem.

Theorem 4.1 Let A1(Eq) and A2(Eq) be two different maximal aspects of Eq . In
this case, A1(Eq) and A2(Eq) do not share any entities, except those in Eq : A1(Eq)∩
A2(Eq) \ Eq = ∅.

We omit the proof here and refer to [39] for details. According to the above theorem,
the partitioning provided by the maximal aspects of Eq can guide the process of
selecting a diverse set of result entities ER that have the highest similarity to Eq .

We detail the key steps of the procedure used for selecting top-k similar entities,
shown in Algorithm 4.1.

• Finding the maximal aspects of the example entities. From the aspects shared
by all example entities, A(Eq), the corresponding family of maximal aspects,
M(Eq), is computed. For that, all aspects that are subsets of A(Eq) need to be
considered and checked for the two criteria defining a maximal aspect. For further
details on how to efficiently perform this, we refer to [39].

• Constraining maximal aspects on typical types. It can reasonably be assumed
that the set of example entities is to be completed with entities of similar types.
Therefore, the set of typical types of the example entities, TEq . To determine TEq ,
first, the types that are shared by all example entities are identified (according
to a predefined type granularity). Then, only the most specific types in this set
are kept (by filtering out all types that are super-types of another type in the set).
Maximal aspects that do not contain at least one of the typical types (or their
subtypes) as a basic aspect are removed.

• Ranking maximal aspects. “The resulting maximal aspects are of different
specificity and thus quality” [39]. Therefore, a ranking needs to be established,

4.6 Query-Independent Ranking 133

and maximal aspects will be considered in that order. Metzger et al. [39]
discuss various ranking functions. We present one particular ranker (cost), which
combines the (normalized) “worth” of aspects with their specificity:

cost(A) = 1

EA

× val(A)
∑

A′∈M(Eq) val(A′)
.

Recall that EA is the set of entities that share all basic aspects in A. Thus, the
first term expresses the specificity of an aspect (the larger the set of entities EA,
the less specific aspect A is). The value of a compound aspect is estimated as a
sum of the value of its basic aspects. The value of a basic aspect is its “inverse
selectivity,” i.e., aspects with many entities are preferred:

val(A) =
∑

a∈A

(1− 1

Ea

) .

• Selecting an entity. An entity is picked from the top ranked aspect’s entity set.
That is, if A∗ is the top ranked aspect, then an entity is selected from EA∗ .
Entities in EA∗ are ranked according to their (static) importance, score(e), which
can be based on, e.g., popularity. (We discuss various query-independent entity
ranking measures in Sect. 4.6.) Aspects that cannot contribute more entities to
the result list (i.e., EA \ Eq ∪ ER = ∅) are removed. If the objective is to provide
diversification, the aspects are re-ranked after each entity selection. Metzger et al.
[39] further suggest a relaxation heuristic; instead of removing a now empty
maximal aspect, it may be relaxed to cover more entities from “the same branch
of similar entities.” A simple relaxation strategy is to consider each of the basic
aspects a and either dropping it or replacing it with the parent type, if a is a type
aspect.

4.6 Query-Independent Ranking

Up until this point, we have focused on ranking entities with respect to a query. In
a sense, all entities in the catalog have had an equal chance when competing for the
top positions in the ranked result list. There are, however, additional factors playing
a role, which are independent of the actual query.

For the sake of illustration, let us consider the task of searching on an e-
commerce site. Let us imagine that for some search query there are two or more
products that have the same retrieval score, i.e., they are equally good matches. This
could happen, for instance, because those products have very similar names and
descriptions. It might also happen that the user is not issuing a keyword query, but
is browsing the product catalog by product category or brand instead. In this case,
the selected category or brand is the query, for which a complete and perfect set of

134 4 Semantically Enriched Models for Entity Ranking

results may be returned (i.e., all entities that belong to the selected category/brand
are equally relevant). In both the above scenarios, the following question arises:
How can we determine the relative ranking of entities that have the same relevance
to the query?

Intuitively, the ranking of products in the above example could be based on which
(1) has been clicked on more, (2) has been purchased more, (3) has a better consumer
rating, (4) has a better price, (5) is a newer model, etc., or some combination of these.
Notice that all these signals are independent of the actual query.

Query-independent (or “static”) entity scores capture the notion of entity
importance. That is, they reflect the extent with which a given entity is
relevant to any query.

Let us refer back to the language modeling approach from the previous chapter
(Sect. 3.3.1.1). There, we rewrote the probability P(e|q) using Bayes’ theorem. We
repeat that equation (Eq. (3.7)) here for convenience:

P(e|q) = P(q|e)P (e)

P (q)

rank= P(q|e)P (e) .

Back then, we ignored the second component, P(e), which is the prior proba-
bility of the entity. As we can see, the generative formulation of the language
modeling framework offers a theoretically principled way of incorporating the
query-independent entity score.

Generally, the query-independent entity score may be incorporated into any
retrieval method by way of multiplication of the (original) query relevance score:

score′(e;q) = score(e)× score(e;q) .

Since score(e) is independent of the actual query, it can be computed offline and
stored in the entity index (hence then name static score).

In this section, we present two main groups of query-independent measures,
which revolve around the notions of popularity and centrality. Multiple query-
independent features may be combined using a learning-to-rank approach [16].

4.6.1 Popularity

Intuitively, the popularity of an entity is an indicator of its importance. It may be
expressed as a probability:

P(e) = c(e)
∑

e′∈E c(e′)
,

4.6 Query-Independent Ranking 135

where c(e) is some measure of popularity. Options for estimating c(e) include the
following:

• Aggregated click or view statistics over a certain period of time [39]. One useful
resource is the Wikipedia page view statistics, which is made publicly available.8

• The frequency of the entity in a large corpus, like the Web. This may be
approximated by using the entity’s name as a query and obtaining the number
of hits from a web search engine API [16]. Alternatively, the name of the
entity can be checked against a large and representative n-gram corpus to see
how often it was used [16]. One such resource is the Google Books Ngram
Corpus [37].9 When the web corpus is annotated with specific entities, it is
possible to search using entity IDs, instead of entity names; see Sect. 5.9.2 for
web corpora annotated with entities from Freebase.

In addition to the above “universal” signals, there are many possibilities in specific
domains, e.g., in an e-commerce setting, the number of purchases of a product; in
academic search, the number of citations of an article; on a social media platform,
the number of likes/shares, etc.

4.6.2 Centrality

Entity centrality can be derived from the underlying graph structure using (adap-
tations of) link analysis algorithms, like PageRank [11] and HITS [35]. In this
section, we focus on the PageRank algorithm, due to its popularity, and discuss its
application to entities. For similar work using the HITS algorithm, see, e.g., [8, 23].

4.6.2.1 PageRank

Web pages can be represented as a directed graph, where nodes are pages and edges
are hyperlinks connecting these pages to each other. PageRank assigns a numerical
score to each page that reflects its importance. The main idea is that it is not only
the number of incoming links that matters but also the quality of those links. Links
that originate from more important sources (i.e., pages with high PageRank score)
weigh more than unimportant pages. Another way to understand PageRank is that
it measures the likelihood of a random surfer landing on a given web page. The
random surfer is assumed to navigate on the Web as follows. In each step, the user
either (1) moves to one of the pages linked from the current page or (2) jumps to a
random web page. The random jump also ensures that the user does not get stuck
on a page that has no outgoing links.

8http://dumps.wikimedia.org/other/pagecounts-raw/.
9http://books.google.com/ngrams.

http://dumps.wikimedia.org/other/pagecounts-raw/
http://books.google.com/ngrams

136 4 Semantically Enriched Models for Entity Ranking

The PageRank score of an entity is computed as follows:

PR(e) = α

|E | + (1 − α)

n∑

i=1

PR(ei)

|Lei |
, (4.4)

where α is the probability of a random jump (typically set to 0.15 [11]), e1 . . . en are
the entities linking to e, and |Lei | is the number of outgoing links of ei . Notice
that PageRank is defined recursively, thus needs to be computed iteratively. In
each successive iteration, the PageRank score is determined using the PageRank
values from the previous iteration. Traditionally, all nodes are initialized with
an equal score (i.e., 1/|E |). The final values are approximated fairly accurately
even after a few iterations. Notice that the PageRank scores form a probability
distribution (

∑
e∈E PR(e) = 1). Therefore, the iterative computation process may

also be interpreted as propagating a probability mass across the graph. It is common
to use quadratic extrapolation (e.g., between every fifth iteration) to speed up
convergence [31].

4.6.2.2 PageRank for Entities

A number of variations and extensions of PageRank have been proposed for entities.
We shall take look at a selection of them below. The first important question that
needs to be addressed is: How to construct the entity graph?

• Using unstructured entity descriptions, references to other entities need to be
recognized and disambiguated (see Chap. 5). Directed edges are added from each
entity to all the other entities that are mentioned in its description.

• In a semi-structured setting, e.g., Wikipedia, links to other entities might be
explicitly provided.

• When working with structured data, RDF triples define a graph (i.e., the
knowledge graph). Specifically, subject and object resources (URIs) are nodes
and predicates are edges.

In the remainder of this section, we shall concentrate on the structured data setting.
Recall that nodes in an RDF graph include not only entities but other kinds of
resources as well (in particular entity types, cf. Fig. 2.3). Since it is not pages but
resources that are being scored, Hogan et al. [29] refer to the computed quantity
as ResourceRank. Instead of computing static scores on the entire graph, Resource-
Rank computes PageRank scores over topical subgraphs (resources matching the
keyword query and their surrounding resources).

It can be argued that the traditional PageRank model is unsuitable for entity
popularity calculation because of the heterogeneity of entity relationships [44].
ObjectRank [1] extends PageRank to weighted link analysis, applied to the problem
of keyword search in databases. ObjectRank, however, relies on manually assigned
link weights. This makes the approach applicable only in restricted domains (e.g.,

4.6 Query-Independent Ranking 137

academic search). Nie et al. [44] introduce PopRank, to rank entities within a
specific domain. A separate popularity propagation factor (i.e., weight) is assigned
to each link depending on the type of entity relationship. For example, in their case
study on academic search, the types of entities involved are authors, papers, and
conferences/journals. The types of relationships between entities include cited-by,
authored-by, and published-by. It is problematic to manually decide the propagation
factors for each type of relationship. Instead, partial entity rankings are collected
from domain experts for some subsets of entities. The setting of propagation factor
then becomes a parameter estimation problem using the partial rankings as training
data. This method is applicable in any vertical search domain, where the number
of entity types and relationships is sufficiently small (product search, music search,
people search, etc.).

The quality of ranking may be improved by taking the context of data into
account. When working with RDF, this context is the provenance or source of data.
Hogan et al. [29] extract a context graph from the RDF graph and compute PageR-
ank scores on this graph, referred to as ContextRank. Further, by inferring links
between contexts and resources (as well as between contexts), a combined graph
can be created. This graph contains both resource and context nodes. ReConRank
refers to the PageRank scores computed on this unified graph. ReConRank captures
the “symbiotic relationship between context authority and resource authority” [29].

4.6.2.3 A Two-Layered Extension of PageRank for the Web of Data

The heterogeneity of data is further increased when moving from a single knowledge
base to the Web of Data, which is comprised of multiple datasets. Instead of
considering only the ranks of entities, the dataset where that entity originates from
should be also taken into account. Additionally, computing popularity scores on a
graph of that scale brings challenges.

Delbru et al. [17] propose a two-layered extension of PageRank. Their method,
called DING, operates in a hierarchical fashion between the dataset and entity layers.
The top layer is comprised of a collection of inter-connected datasets, whereas the
bottom layer is composed of (independent) graphs of entities; see Fig. 4.8 for an
illustration. The hierarchical random surfer model works as follows:

1. The user randomly selects a dataset.
2. Then, the user may choose and perform one of these actions:

(a) Select randomly an entity in the current dataset.
(b) Jump to another dataset by following a link from the current dataset.
(c) End the browsing.

According to the above model, the computation is performed in two stages. First,
the importance of the top level dataset nodes (DatasetRank) are calculated. The
rank score of a dataset is composed of two parts: (1) the contribution from the
other datasets via incoming links, and (2) the probability of selecting the dataset

138 4 Semantically Enriched Models for Entity Ranking

Fig. 4.8 A two-layer model for computing entity importance in the Web of Data. Dashed edges
on the entity layer represent inter-dataset links; these are aggregated to form weighted links on the
dataset layer. Figure is based on [17]

during a random jump (which is set proportional to its size). Then, in a second stage,
the importance of entities within a given dataset (local entity rank) are computed.
Local entity rank is PageRank applied on the intra-links of the dataset. Delbru et al.
[17] further introduce an unsupervised link weighting scheme (LF-IDF, motivated
by TF-IDF), which assigns high importance to links with high frequency within a
given dataset and low dataset frequency across the collection of datasets. Mind that
the computation of the local entity ranks can be performed independently for each
dataset (and thus can easily be parallelized). The two scores are combined using the
following equation:

scoreDING(e) = r(D) r(e)
|D|

∑
D′ |D′| ,

where r(D) is DatasetRank and r(e) is the local entity rank. The last term in
the equation serves as a normalization factor. Since the magnitude of local entity
ranks depends on the size of the dataset (recall that

∑
e∈E r(e) = 1), entities in

small datasets will receive higher scores than in large datasets. This is compensated
by taking the dataset size into account, where |D| denotes the size of dataset D

(measured in the number of entities contained).

4.6.3 Other Methods

Without detailed elaboration, we mention a number of other query-independent
methods that have been proposed in the literature. Instead of centrality, more simple
frequency-based measures may be used, which can be extracted from the knowledge

4.8 Further Reading 139

graph. These include the number of subjects, objects, distinct predicates, etc., for at
most k steps away from the entity node [16]. Alternatively, one may not even need
to consider the graph structure but can obtain statistics from the set of RDF triples
that contain a given entity. For example, how many times does the entity occur as a
subject in an RDF triple where the object is a literal [16]?

4.7 Summary

This chapter has introduced semantically enriched models for entity retrieval. In
the various entity retrieval tasks we have looked at, the common theme has been to
exploit specific properties of entities: attributes, types, and relationships. Typically,
this semantic enrichment is operationalized by combining the term-based retrieval
score with one or multiple property-specific score components. Utilizing entity
attributes and relationships is shown to yield relative improvements in the 5–20%
range [14, 25, 52]. Exploiting entity type information is even more rewarding, with
relative improvements ranging from 25% to well over 100% [3, 15, 47].

While these results are certainly encouraging, a lot remains to be done. First,
most of the approaches we have presented in this chapter were tailored to a rather
specific entity retrieval task, making assumptions about the format/characteristics of
the query and of the underlying user intent. It is an open question whether a “one
size fits all” model can be developed, or if effort might be better spent by designing
task-specific approaches and automatically deciding which one of these should be
used for answering a given input query. Second, we have assumed a semantically
enriched query as input, referred to as keyword++ query, which explicitly provides
query entities, types, etc. Obtaining these “enrichments” automatically is an area
of active research (which we will be discussing in Chap. 7). Third, the potential of
combining structured and unstructured data has not been fully explored and realized.
Instead of performing this combination inside the retrieval model, an alternative is
to enrich the underlying collections. Annotating documents with entities can bring
structure to unstructured documents, which in turn can help populate knowledge
bases with new information about entities. In Part II, we will discuss exactly how
this strategy of annotating documents, and consequently populating knowledge
bases, can be accomplished.

4.8 Further Reading

It is worth pointing out that there are many additional factors beyond topical rel-
evance to consider in real-life applications. One particular example is e-commerce
search, where the quality of images has shown to have an impact on which results get
clicked [21, 24]. Another example scenario is that of expert search, where it has been

140 4 Semantically Enriched Models for Entity Ranking

shown that contextual factors (e.g., availability, experience, physical proximity) also
play a role [28].

References

1. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search
in databases. In: Proceedings of the Thirtieth International Conference on Very Large Data
Bases - Volume 30, VLDB ’04, pp. 564–575. VLDB Endowment (2004)

2. Balog, K.: On the investigation of similarity measures for product resolution. In: Proceedings
of the Workshop on Discovering Meaning On the Go in Large Heterogeneous Data, LHD-11
(2011)

3. Balog, K., Bron, M., De Rijke, M.: Query modeling for entity search based on terms,
categories, and examples. ACM Trans. Inf. Syst. 29(4), 22:1–22:31 (2011a)

4. Balog, K., de Rijke, M.: Finding similar experts. In: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’07, pp. 821–822. ACM (2007). doi: 10.1145/1277741.1277926

5. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity track. In:
Proceedings of the Nineteenth Text REtrieval Conference, TREC ’10. NIST (2011b)

6. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The
Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012)

7. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC
2009 Entity track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09.
NIST (2010)

8. Bamba, B., Mukherjea, S.: Utilizing resource importance for ranking semantic web query
results. In: Proceedings of the Second International Conference on Semantic Web and
Databases, SWDB ’04, pp. 185–198. Springer (2005). doi: 10.1007/978-3-540-31839-2_14

9. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Semantic full-text search with Broc-
coli. In: Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, pp. 1265–1266. ACM (2014). doi:
10.1145/2600428.2611186

10. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Duc, T.T.: Entity
search evaluation over structured web data. In: Proceedings of the 1st International Workshop
on Entity-Oriented Search, EOS ’11, pp. 65–71 (2011)

11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh
International World-Wide Web Conference, WWW ’98 (1998)

12. Bron, M., Balog, K., de Rijke, M.: Ranking related entities: Components and analyses.
In: Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, CIKM ’10, pp. 1079–1088 (2010). doi: 10.1145/1871437.1871574

13. Bron, M., Balog, K., de Rijke, M.: Example-based entity search in the web of data. In:
Proceedings of the 35th European conference on Advances in Information Retrieval, ECIR
’13, pp. 392–403. Springer (2013). doi: 10.1007/978-3-642-36973-5_33

14. Campinas, S., Delbru, R., Tummarello, G.: Effective retrieval model for entity with multi-
valued attributes: BM25MF and beyond. In: Proceedings of the 18th International Conference
on Knowledge Engineering and Knowledge Management, EKAW ’12, pp. 200–215. Springer
(2012). doi: 10.1007/978-3-642-33876-2_19

15. Ciglan, M., Nørvåg, K., Hluchý, L.: The SemSets model for ad-hoc semantic list search. In:
Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 131–
140. ACM (2012). doi: 10.1145/2187836.2187855

https://doi.org/10.1145/1277741.1277926
https://doi.org/10.1007/978-3-540-31839-2_14
https://doi.org/10.1145/2600428.2611186
https://doi.org/10.1145/1871437.1871574
https://doi.org/10.1007/978-3-642-36973-5_33
https://doi.org/10.1007/978-3-642-33876-2_19
https://doi.org/10.1145/2187836.2187855

References 141

16. Dali, L., Fortuna, B., Duc, T.T., Mladenić, D.: Query-independent learning to rank for
RDF entity search. In: Proceedings of the 9th International Conference on The Seman-
tic Web: Research and Applications, ESWC’12, pp. 484–498. Springer (2012). doi:
10.1007/978-3-642-30284-8_39

17. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical link analysis
for ranking web data. In: Proceedings of the 7th International Conference on The Semantic
Web: Research and Applications - Volume Part II, ESWC’10, pp. 225–239. Springer (2010).
doi: 10.1007/978-3-642-13489-0_16

18. Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities in
Wikipedia is difficult, sometimes. Information Retrieval 13(5), 534–567 (2010a). doi:
10.1007/s10791-010-9135-7

19. Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 Entity Ranking
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation,
Lecture Notes in Computer Science, vol. 6203, pp. 254–264. Springer (2010b). doi:
10.1007/978-3-642-14556-8_26

20. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity
Ranking track. In: Advances in Focused Retrieval: 7th International Workshop of the
Initiative for the Evaluation of XML Retrieval (INEX 2008), pp. 243–252 (2009). doi:
10.1007/978-3-642-03761-0_25

21. Di, W., Sundaresan, N., Piramuthu, R., Bhardwaj, A.: Is a picture really worth a thousand
words? - on the role of images in e-commerce. In: Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM ’14, pp. 633–642. ACM (2014). doi:
10.1145/2556195.2556226

22. Fang, Y., Si, L.: Related entity finding by unified probabilistic models. World Wide Web 18(3),
521–543 (2015). doi: 10.1007/s11280-013-0267-8

23. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking semantic web data by tensor
decomposition. In: Proceedings of the 8th International Semantic Web Conference, ISWC ’09,
pp. 213–228. Springer (2009). doi: 10.1007/978-3-642-04930-9_14

24. Goswami, A., Chittar, N., Sung, C.H.: A study on the impact of product images on user clicks
for online shopping. In: Proceedings of the 20th International Conference Companion on World
Wide Web, WWW ’11, pp. 45–46. ACM (2011). doi: 10.1145/1963192.1963216

25. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval.
In: Proceedings of the 2016 ACM on International Conference on the Theory of Information
Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406

26. He, Y., Xin, D.: SEISA: Set expansion by iterative similarity aggregation. In: Proceedings
of the 20th International Conference on World Wide Web, WWW ’11. ACM (2011). doi:
10.1145/1963405.1963467

27. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: Keyphrase overlap
relatedness for entity disambiguation. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pp. 545–554. ACM
(2012). doi: 10.1145/2396761.2396832

28. Hofmann, K., Balog, K., Bogers, T., de Rijke, M.: Contextual factors for finding similar
experts. Journal of the American Society for Information Science and Technology 61(5), 994–
1014 (2010). doi: 10.1002/asi.v61:5

29. Hogan, A., Harth, A., Decker, S.: ReConRank: A scalable ranking method for semantic web
data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems
(2006)

30. Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, pp. 538–543. ACM (2002). doi: 10.1145/775047.775126

31. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for
accelerating pagerank computations. In: Proceedings of the 12th International Conference
on World Wide Web, WWW ’03, pp. 261–270. ACM (2003). doi: 10.1145/775152.775190

https://doi.org/10.1007/978-3-642-30284-8_39
https://doi.org/10.1007/978-3-642-13489-0_16
https://doi.org/10.1007/s10791-010-9135-7
https://doi.org/10.1007/978-3-642-14556-8_26
https://doi.org/10.1007/978-3-642-03761-0_25
https://doi.org/10.1145/2556195.2556226
https://doi.org/10.1007/s11280-013-0267-8
https://doi.org/10.1007/978-3-642-04930-9_14
https://doi.org/10.1145/1963192.1963216
https://doi.org/10.1145/2970398.2970406
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1002/asi.v61:5
https://doi.org/10.1145/775047.775126
https://doi.org/10.1145/775152.775190

142 4 Semantically Enriched Models for Entity Ranking

32. Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for entity ranking.
Artificial Intelligence 194, 111–129 (2013). doi: 10.1016/j.artint.2012.06.003

33. Kaptein, R., Koolen, M., Kamps, J.: Result diversity and entity ranking experiments: anchors,
links, text and Wikipedia. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC
’09. NIST (2010a)

34. Kaptein, R., Serdyukov, P., De Vries, A., Kamps, J.: Entity ranking using Wikipedia as a pivot.
In: Proceedings of the 19th ACM international conference on Information and knowledge
management, CIKM ’10, pp. 69–78. ACM (2010b). doi: 10.1145/1871437.1871451

35. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632
(1999). doi: 10.1145/324133.324140

36. Li, X., Li, C., Yu, C.: EntityEngine: Answering entity-relationship queries using shal-
low semantics. In: Proceedings of the 19th ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’10, pp. 1925–1926. ACM (2010). doi:
10.1145/1871437.1871766

37. Lin, Y., Michel, J.B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic annotations
for the Google books Ngram corpus. In: Proceedings of the ACL 2012 System Demonstrations,
ACL ’12, pp. 169–174. Association for Computational Linguistics (2012)

38. Losada, D.E., Azzopardi, L.: Assessing multivariate Bernoulli models for information retrieval.
ACM Trans. Inf. Syst. 26(3), 17:1–17:46 (2008). doi: 10.1145/1361684.1361690

39. Metzger, S., Schenkel, R., Sydow, M.: QBEES: Query-by-example entity search in semantic
knowledge graphs based on maximal aspects, diversity-awareness and relaxation. J. Intell. Inf.
Syst. 49(3), 333–366 (2017). doi: 10.1007/s10844-017-0443-x

40. Metzler, D., Croft, W.B.: A Markov Random Field model for term dependencies. In:
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM (2005). doi:
10.1145/1076034.1076115

41. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words
and phrases and their compositionality. In: Proceedings of the 26th International Conference
on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc.
(2013)

42. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM ’08, pp. 509–518 (2008). doi:
10.1145/1458082.1458150

43. Minkov, E., Cohen, W.W.: Improving graph-walk-based similarity with reranking: Case studies
for personal information management. ACM Trans. Inf. Syst. 29(1), 4:1–4:52 (2010). doi:
10.1145/1877766.1877770

44. Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-level ranking: Bringing order to web objects.
In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp.
567–574. ACM (2005). doi: 10.1145/1060745.1060828

45. Pehcevski, J., Thom, J.A., Vercoustre, A.M., Naumovski, V.: Entity ranking in Wikipedia:
utilising categories, links and topic difficulty prediction. Information Retrieval 13(5), 568–600
(2010). doi: 10.1007/s10791-009-9125-9

46. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:
Empirical Methods in Natural Language Processing, EMNLP ’14, pp. 1532–1543 (2014)

47. Raviv, H., Carmel, D., Kurland, O.: A ranking framework for entity oriented search
using Markov Random Fields. In: Proceedings of the 1st Joint International Workshop
on Entity-Oriented and Semantic Search, JIWES ’12, pp. 1:1–1:6. ACM (2012). doi:
10.1145/2379307.2379308

48. Sarmento, L., Jijkuon, V., de Rijke, M., Oliveira, E.: “More like these”: Growing entity
classes from seeds. In: Proceedings of the Sixteenth ACM Conference on Conference on
Information and Knowledge Management, CIKM ’07, pp. 959–962. ACM (2007). doi:
10.1145/1321440.1321585

49. Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through
text and knowledge. In: Proceedings of the 24th ACM International on Conference on

https://doi.org/10.1016/j.artint.2012.06.003
https://doi.org/10.1145/1871437.1871451
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/1871437.1871766
https://doi.org/10.1145/1361684.1361690
https://doi.org/10.1007/s10844-017-0443-x
https://doi.org/10.1145/1076034.1076115
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1877766.1877770
https://doi.org/10.1145/1060745.1060828
https://doi.org/10.1007/s10791-009-9125-9
https://doi.org/10.1145/2379307.2379308
https://doi.org/10.1145/1321440.1321585

References 143

Information and Knowledge Management, CIKM ’15, pp. 1461–1470. ACM (2015). doi:
10.1145/2806416.2806480

50. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: Proceed-
ings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14,
pp. 543–552 (2014). doi: 10.1145/2556195.2556250

51. Sehgal, V., Getoor, L., Viechnicki, P.D.: Entity resolution in geospatial data integration. In:
Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic
Information Systems, GIS ’06, pp. 83–90. ACM (2006). doi: 10.1145/1183471.1183486

52. Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured
search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 125–134.
ACM (2012). doi: 10.1145/2348283.2348304

53. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain
entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for
Computational Linguistics (2015)

54. de Vries, A.P., Vercoustre, A.M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX
2007 Entity Ranking track. In: Proceedings of the 6th Initiative on the Evaluation of XML
Retrieval, INEX ’07, pp. 245–251. Springer (2008). doi: 10.1007/978-3-540-85902-4_22

55. Wang, C., Chakrabarti, K., He, Y., Ganjam, K., Chen, Z., Bernstein, P.A.: Concept expansion
using web tables. In: Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pp. 1198–1208. International World Wide Web Conferences Steering Committee
(2015). doi: 10.1145/2736277.2741644

56. Yang, L., Guo, Q., Song, Y., Meng, S., Shokouhi, M., McDonald, K., Croft, W.B.: Modeling
user interests for zero-query ranking. In: Proceedings of the 38th European Conference on IR
Research, ECIR ’16, pp. 171–184. Springer (2016). doi: 10.1007/978-3-319-30671-1_13

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2806416.2806480
https://doi.org/10.1145/2556195.2556250
https://doi.org/10.1145/1183471.1183486
https://doi.org/10.1145/2348283.2348304
https://doi.org/10.1007/978-3-540-85902-4_22
https://doi.org/10.1145/2736277.2741644
https://doi.org/10.1007/978-3-319-30671-1_13
http://creativecommons.org/licenses/by/4.0/

Part II
Bridging Text and Structure

Combining structured and unstructured information is key to improving search
breadth and quality. In Part I, we have seen how unstructured and structured data
representations can be blended on the retrieval level. In this part, our focus is on
the interconnectivity between unstructured and structured data on the dataset level.
Entities play a central role in this process, as they help to bridge the gap between the
world of unstructured data and the world of structured data. On the one hand, textual
content can be enriched by annotating mentions of specific entities with unique
identifiers from an underlying knowledge repository, a process commonly known
as entity linking. On the other hand, knowledge bases can be extended by extracting
structured information from unstructured and semi-structured sources, an activity
often referred to as knowledge base population. Ultimately, the two complementary
tasks of entity linking and knowledge base population can together be used to set up
the necessary resources for the approaches discussed in the final part of the book.

Chapter 5
Entity Linking

Machine-understanding of text is an extremely challenging problem. The impor-
tance of named entities in this regard has been acknowledged early on in natural
language processing research; being able to identify entities in a document is a key
step towards understanding what the document is about. Like words, entity names
can be ambiguous and the same entity may be referred to by many different names.
Human readers can use their prior knowledge in combination with the context of a
particular entity mention (i.e., a text span referring to an entity) to make a decision
between the possible choices; for machines, the automatic disambiguation of entity
mentions presents many difficulties and challenges. A key enabling component
in this process is the availability of large-scale knowledge repositories (such as
Wikipedia and various knowledge bases). Having a reference catalog of entities,
which are equipped with unique identifiers, the ambiguity of the recognized entity
mentions can be resolved by assigning (“linking”) them to the corresponding entries
in the entity catalog. For instance, there are at least three different Freebase IDs
that may be assigned to the mention “Ferrari,” depending on whether it refers to
the Italian sports car manufacturer (/m/02 kt), their racing division that competes
in Formula One (/m/0179v6), or the founding father Enzo Ferrari (/m/0gc0s).
The topic of this chapter, entity linking, is the task of annotating an input text with
entity identifiers from a reference knowledge repository (KR). The output of this
annotation process is illustrated in Fig. 5.1.

Linking entities in unstructured text to a structured knowledge repository can
greatly empower users in their information consumption activities. For instance,
readers of a document can acquire contextual or background information with a
single click or can gain easy access to related entities. Entity annotations can also
be used in downstream processing to improve retrieval performance or to facilitate
better user interaction with search results. We shall look at some of these usages in
detail in Part III. Finally, semantic enrichment of documents with entities can prove
useful in a number of other text processing tasks as well, including summarization,

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_5

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_5&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_5

148 5 Entity Linking

Fig. 5.1 Example of text annotated with entities from Wikipedia. Blue underlined text indicates
the linked entity mentions. Text is taken from https://en.wikipedia.org/wiki/Michael_Schumacher

text categorization, topic detection and tracking, knowledge base population, and
question answering.

In this chapter our focus is on long text, where it is implicitly assumed that there
is in principle always enough context to resolve all entity mentions unambiguously.
We discuss the case of short text, such as tweets and search queries, that can possibly
have multiple interpretations, in Chap. 7.

The remainder of this chapter is organized as follows. We begin by situating
entity linking in the broader context of entity annotation problems in Sect. 5.1.
Next, Sect. 5.2 presents an overview of the entity linking task, which is commonly
approached as a pipeline of three components. The following sections elaborate
on these components: mention detection (Sect. 5.4), candidate selection (Sect. 5.5),
and disambiguation (Sect. 5.6). Section 5.7 provides a selection of prominent,
publicly available entity linking systems. Evaluation measures and test collections
are introduced in Sect. 5.8. We list some useful large-scale resources in Sect. 5.9.

5.1 From Named Entity Recognition Toward Entity Linking

The importance of named entities has long been recognized in natural language
processing [64]. Before discussing various approaches to solving the entity linking
task, this introductory section gives a brief overview of a range of related entity
annotation tasks that have been studied in the past. Table 5.1 provides an overview.

https://en.wikipedia.org/wiki/Michael_Schumacher

5.1 From Named Entity Recognition Toward Entity Linking 149

Table 5.1 Overview of named entity recognition and disambiguation tasks

Task Recognition Assignment

Named entity recognition Entities Entity type

Named entity disambiguation Entities Entity identifier/NIL

Wikification Entities and concepts Entity identifier/NIL

Entity linking Entities Entity identifier

<LOC>Silicon Valley </LOC> venture capitalist <PER>Michael Moritz </PER>
said that today ’s billion -dollar "unicorn " startups can learn from
<ORG>Apple</ORG> founder <PER>Steve Jobs</PER>.

Listing 5.1 Text annotated with ENAMEX entity types

5.1.1 Named Entity Recognition

The task of named entity recognition (NER) (also known as entity identification,
entity extraction, and entity chunking) is concerned with detecting mentions of
entities in text and labeling them each with one of the possible entity types.
Listing 5.1 shows an example.

Traditionally, NER has focused on three specific types of proper names: person
(PER), organization (ORG), and location (LOC). These are collectively known as
ENAMEX types [78]. Proper names falling outside the standard ENAMEX types are
sometimes considered under an additional fourth type, miscellaneous (MISC). From
an information extraction point of view, temporal expressions (TIMEX) and certain
types of numerical expressions (NUMEX) (such as currency and percentages) may
also be considered as named entities [78] (primarily because the techniques used
to recognize them can be similar). The ENAMEX types only allow for a coarse
distinction, whereas for certain applications a more fine-grained classification of
entities may be desired. Question answering, in particular, has been a driving
problem for the development of type taxonomies. Sekine et al. [71] developed an
extended named entity hierarchy, with 150 entity types organized in a tree structure.
In follow-up work, they extended their hierarchy to 200 types [70] and defined
popular attributes for each category to make their type taxonomy an ontology [69].
This approach, however, “relies heavily on an encyclopedia and manual labor” [69].
That is, why in recent years, (existing) type systems of large-scale knowledge
bases have been leveraged for NER. For instance, Ling and Weld [53] introduced
a (flat) set of 112 types manually curated from Freebase types, while Yosef et al.
[83] derived a fine-grained taxonomy with 505 types, organized in a 9 levels deep
hierarchy, from YAGO.

NER is approached as a sequence labeling problem, where a categorical label
(entity type or not-an-entity) is to be assigned to each term. The dominant technique
is to train a machine-learned model on a large collection of annotated docu-
ments. Widely used sequence labeling models are hidden Markov models [86] and

150 5 Entity Linking

conditional random fields [23]. Commonly used features include word-level features
(word case, punctuation, special characters, word suffixes and prefixes, etc.),
character-level n-grams, part-of-speech tags, dictionary lookup features (whether
the term is present in a dictionary, often referred to as gazetteer list), and document
and corpus features (other entities, position in document, meta information, corpus
frequency, etc.). We refer to Nadeau and Sekine [64] for a detailed overview of
traditional NER techniques. Recently, neural networks have been shown to achieve
state-of-the-art performance without resorting to hand-engineered features [50, 54].

Named entity recognition is a basic functionality in most NLP toolkits (e.g.,
GATE,1 Stanford CoreNLP,2 NLTK,3 or Apache OpenNLP4). NER techniques have
been evaluated at the MUC, IREX, CoNLL, and ACE conferences.

5.1.2 Named Entity Disambiguation

Named entity disambiguation (NED), also called named entity normalization or
named entity resolution, is the task of disambiguating entity mentions by assigning
entity identifiers to them from some catalog. It is usually assumed that entity
mentions have already been detected in the input text (i.e., it has been processed
by a NER system). NER is closely related to word sense disambiguation (WSD),
which is one of the earliest problems in natural language processing. WSD is
the process of identifying in what sense (meaning) a word is being used in the
given context, when the word has multiple meanings [65]. The possible senses are
assigned from some dictionary or thesaurus (typically, WordNet [59]). This way, one
can decide, e.g., “whether the word ‘church’ refers to a building or an institution in a
given context” [12]. WSD evaluations exclude proper noun disambiguation (that is
addressed separately in NED). It is easy to see that NED and WSD share similarities:
they attempt to resolve language ambiguity by mapping words or phrases to unique
identifiers. However, there are at least two key differences. First, the input in WSD
is a single token (e.g., “church”), while in NED it may be a sequence of tokens (e.g.,
“Church of England”) or an abbreviation (e.g., “CofE”). Second, WSD assumes that
each possible word sense has an entry in the dictionary and candidate senses are
provided directly; since “named entity mentions vary more than lexical mentions
in WSD” [32], candidate entity generation (i.e., identifying the set of entities
that the mention possibly refers to) is a critical step in NED. Furthermore, entity
mentions without a corresponding catalog entry need are annotated with a special
NIL identifier. Nevertheless, the two tasks may be seen as analogous, and early NED
approaches were indeed inspired by WSD research [58].

1https://gate.ac.uk/.
2http://stanfordnlp.github.io/CoreNLP/.
3http://www.nltk.org/.
4https://opennlp.apache.org/.

https://gate.ac.uk/
http://stanfordnlp.github.io/CoreNLP/
http://www.nltk.org/
https://opennlp.apache.org/

5.1 From Named Entity Recognition Toward Entity Linking 151

The advent of Wikipedia has facilitated large-scale entity recognition and
disambiguation by providing a comprehensive catalog of entities along with other
invaluable resources (specifically, hyperlinks, categories, and redirection and dis-
ambiguation pages; cf. Sect. 2.2). The work by Bunescu and Paşca [2] was the first
to perform named entity disambiguation using Wikipedia and was soon followed by
others [12, 58].

Within the general problem area of named entity disambiguation, a number of
more specific tasks can be distinguished, cf. Table 5.1. Mihalcea and Csomai [58]
define wikification as “the task of automatically extracting the most important words
and phrases in the document, and identifying for each such keyword the appropriate
link to a Wikipedia article.” The entity linking task is to assign mentions of entities
in a document to entity identifiers in a reference knowledge repository. We make
a conscious distinction between wikification and entity linking, emphasizing that
the latter considers only proper names, while the former includes concepts too.
Nevertheless, the techniques for the two are essentially the same. We also wish to
point out that named entity disambiguation and entity linking are often considered
to be synonymous in the NLP community; we make a distinction between the two
because of the following important differences:

• Most NED datasets mark up entity mentions explicitly and supply these as part
of the input; entity linking is also concerned with the detection of these mentions
in the input text.

• Recognizing out-of-KR entities and marking them as NIL is an important sub-
problem within NED; in entity linking a “closed world” assumption is typically
made, i.e., all “possible meanings of a name are known upfront” [37].

We present evaluation methodology and resources in Sect. 5.8.

5.1.3 Entity Coreference Resolution

Another task related to but different from named entity disambiguation is entity
coreference resolution. Here, entity mentions are to be clustered “such that two
mentions belong to the same cluster if and only if they refer to the same entity” [75].
In this task, “there is no explicit mapping onto entities in a knowledge base” [36].
The task is addressed in two flavors: within-document and cross-document coref-
erence resolution. Coreference resolution has been evaluated at the MUC and ACE
conferences. We refer to Ng [66] for a survey of approaches.

152 5 Entity Linking

5.2 The Entity Linking Task

Definition 5.1 Entity linking is the task of recognizing entity mentions in text
and linking them to the corresponding entries in a knowledge repository.

For simplicity, we will refer to the input text as a document. Consider, e.g., the
mention “Ferrari” that can refer to any of the entities FERRARI (the Italian sports
car manufacturer), SCUDERIA FERRARI (the racing division), FERRARI F2007
(a particular model with which Ferrari competed during the 2007 Formula One
season), or ENZO FERRARI (the founder), among others. Based on the context
in which the mention occurs (i.e., the document’s content), a single one of these
candidate entities is selected and linked to the corresponding entry in a knowledge
repository. Our current task, therefore, is limited to recognizing entities for which a
target entry exists in the reference knowledge repository. Further, it is assumed that
the document provides sufficient context for disambiguating entities.

Formally, given an input document d , the task is to generate entity annotations for
the document, denoted by Ad , where each annotation a ∈ Ad is given as a triple a =
(e,mi,mt): e is an entity (reference to an entry in the knowledge repository), and mi

and mt denote the initial and terminal character offsets of the entity’s mention in d ,
respectively. The linked entity mentions in Ad must not overlap.

Unless pointed out explicitly, the techniques presented below rely on a rather
broad definition of a knowledge repository: It provides a catalog of entities, each
with one or more names (surface forms), links to other entities, and, optionally,
a textual description. The attentive reader might have noticed that we are here
using the term knowledge repository as opposed to knowledge base. This is on
purpose. The reference knowledge repository that is most commonly used for entity
linking is Wikipedia, which is not a knowledge base (cf. Sect. 2.3). General-purpose
knowledge bases—DBpedia, Freebase, and YAGO—are also frequently used, since
these provide sufficient coverage for most tasks and applications. Also, mapping
between their entries and Wikipedia is straightforward. Alternatively, domain-
specific resources may also be used, such as the Medical Subject Headings (MeSH)
controlled vocabulary.5

We refer to Table 5.2 for the notation used throughout this chapter.

5.3 The Anatomy of an Entity Linking System

Over the years, a canonical approach to entity linking has emerged that consists of
a pipeline of three components [4, 32], as shown in Fig. 5.2.

5https://www.nlm.nih.gov/mesh/.

https://www.nlm.nih.gov/mesh/

5.3 The Anatomy of an Entity Linking System 153

Table 5.2 Notation used in this chapter

Symbol Meaning

a Annotation (a = (e,mi,mt) ∈ Ad)

Ad Entity annotations for document d

d Document

de Textual representation (entity description) of entity e

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Ed Set of all candidate entities in the document d

Em Set of candidate entities for mention m

Es Set of entities denoted by the surface form s

Le Set of links of an entity e

m Mention (text span) (m ∈Md)

Md Set of mentions for document d

n(m,e) Number of times e is a link target of m

s Surface form (s ∈ S)

S Surface form dictionary

Fig. 5.2 Entity linking pipeline

Mention detection The first component, also known as extractor or “spotter,” is
responsible for the identification of text snippets that can potentially be linked
to entities. Commonly, mention detection is based on an extensive dictionary of
entity names and variations thereof, which we will refer to as (entity) surface
forms. Mention detection is closely related to the problem of named entity
recognition (cf. Sect. 5.1.1) and can indeed be performed with the help of NER
techniques. Since only mentions detected by the extractor are considered for
subsequent processing in the pipeline, the emphasis here is on achieving high
recall.

Candidate selection Next, a set (or ranked list) of candidate entities is generated
for each mention. This component is sometimes referred to as the searcher.
Given that the next step (disambiguation) is typically the computationally most
expensive one of all, “an ideal searcher should balance precision and recall to
capture the correct entity [for each mention] while maintaining a small set of
candidates” [32].

Disambiguation Finally, in the disambiguation step, a single best entity (or none)
is selected for each mention, based on the context. This task can be framed as a
ranking problem: Given a mention along with the set of candidate entities for that
mention, rank candidates based on their likelihood of being the correct referent
for the mention. The assigned score can be interpreted as the confidence in the
linking, and the annotation (mention-entity pair) may be rejected if its score falls

154 5 Entity Linking

below a certain (user-defined or machine-learned) threshold. This threshold may
also be used to balance the trade-off between precision and recall. Alternatively,
disambiguation may be approached as an inference problem, with the objective
of optimizing the coherence among all entity linking decisions in the document.

In the following three sections, we look at each of the processes corresponding to
the components in Fig. 5.2 in detail.

Before we continue, we note that the organization of the entity linking task along
these steps is the most commonly used, but certainly not the only possibility. One
particular alternative is where only two stages are distinguished: entity detection
and disambiguation [2]. With this approach, mention detection and candidate
selection are essentially performed jointly in a single step—a reasonable choice
when detection is performed using dictionary-based methods.

5.4 Mention Detection

The first component in the entity linking pipeline is responsible for the detection of
entity mentions in the document.

Definition 5.2 A mention is a text span (contiguous sequence of terms) in the
document that refers to a particular entity. The referred entity may or may not
exist in the reference knowledge repository.

Formally, for an input document d , the set of mentions Md is to be identified, where
each mention m ∈ Md is defined by its initial and terminal character offsets. Bear
in mind that the scope of this task is restricted to entities that are contained in the
knowledge repository. For that reason, virtually all modern entity linking systems
rely on a dictionary of known surface forms to detect mentions; see, e.g., [2, 12,
22, 37, 49, 57, 68]. In a sense, we work under a controlled vocabulary setting; if
the text span under consideration does not match any entry in the dictionary then
it will not be recognized as a mention, and, consequently, will not be linked to any
entity. Therefore, it is vitally important for the dictionary of surface forms to be
extensive, including common variations, nicknames, abbreviations, etc. We detail
the construction of the surface form dictionary in Sect. 5.4.1.

Assuming that this surface form dictionary S has been constructed, mention
detection works as follows. The input document is parsed and all possible text spans
are checked if they are present in S. Text spans are typically token n-grams at length
≤ n, with n set between 6 and 8. Figure 5.3 illustrates the process. This kind of
lexicon-based string matching can be performed efficiently using, e.g., the Aho–
Corasick algorithm [1]. To reduce the number of unnecessary dictionary lookups,
and thereby increase the efficiency and throughput of mention detection, certain
snippets may be disregarded. For example, a system might be instructed not to
annotate common words or text spans that are only composed of verbs, adjectives,

5.4 Mention Detection 155

Fig. 5.3 Illustration of dictionary-based mention detection. Detected mentions are boldfaced. The
boxes show some of the mentions being looked up (indicated by arrows) in the surface form
dictionary. Note the overlaps between mentions

adverbs, and prepositions [57]. Moreover, one might employ simple heuristics, for
instance, restrict detection to words that have at least one capitalized letter [16].

Another approach to mention detection is to use NER techniques from natural
language processing (cf. Sect. 5.1.1) to identify text spans (typically noun phrases)
that refer to named entities; see, e.g., [9, 37, 68]. In this case, an additional
string comparison step is involved, where the detected mentions are to be matched
against known entity surface forms using some string similarity measure, e.g.,
edit distance [85], character Dice score, skip bigram Dice score, or Hamming
distance [14]. Mentions that do not match any of the dictionary entries, even under
a relaxed matching criteria, are likely to denote new, out-of-KR entities.

In practice, it is often desirable that mention detection works directly on the
raw text, before any of the standard pre-processing steps, such as tokenization,
stopword removal, case-folding, etc., would take place. Sentence boundaries and
capitalization can provide cues for recognizing named entities.

5.4.1 Surface Form Dictionary Construction

Dictionary-based mention detection relies on known surface forms of entities. These
surface forms, also known as name variants or aliases, are organized in a dictionary

156 5 Entity Linking

structure (map), S : s → Es , where the surface form s is the key and it is mapped
to the set Es of entities.

The reference knowledge repository that entity linking is performed against
might already contain a list of name variants for each entity. Below, we focus on the
scenario where such lists of aliases are either unavailable or need to be expanded,
and discuss how entity surface forms may be obtained from a variety of sources.

Collecting Surface Forms from Wikipedia Wikipedia is a rich resource that has
been heavily utilized for extracting name variants. For a given entity, represented by
a Wikipedia article, the following sources may be used for collecting aliases:

• Page title is the canonical (most common) name for the entity (cf. Sect. 2.2.1.1).
• Redirect pages exist for alternative names (including spelling variations and

abbreviations) that are frequently used to refer to an entity (cf. Sect. 2.2.3.1).
• Disambiguation pages contain a list of entities that share the same name (cf.

Sect. 2.2.3.2).
• Anchor texts of links pointing to the article can be regarded as aliases of the

linked entity (cf. Sect. 2.2.2).
• Bold texts from first paragraph generally denote other name variants of the entity.

Recall that not all Wikipedia pages represent entities. With the help of a small set
of heuristic rules, it is possible to retain only those Wikipedia articles that refer to
named entities (i.e., entities with a proper name title) [2].

Collecting Surface Forms from Other sources The idea of using anchor texts
may be generalized from inter-Wikipedia links to links from (external) web
pages pointing to Wikipedia articles; one such dictionary resource is presented in
Sect. 5.9.1.

The task of identifying name variants is also known as the problem of entity
synonym discovery. Synonyms might be identified by expanding acronyms [84], or
leveraging search results [7, 14] or query click logs [6, 8] from a web search engine.

5.4.2 Filtering Mentions

The surface form dictionary can easily grow (too) large, since, in principle, it
contains all strings as keys that have ever been used as anchor text for a link
pointing to an entity. While our main focus is on recall, it is still desirable to
filter out mentions that are unlikely to be linked to any entity. In this subsection
we present two Wikipedia-based measures that may be used for that. Notice that
we intentionally call this procedure “filtering mentions,” as opposed to “filtering
surface forms:” it may be performed early on in the pipeline (i.e., even during the
construction of the surface form dictionary) or later, as part of candidate selection
or disambiguation.

5.5 Candidate Selection 157

In their seminal work, Mihalcea and Csomai [58] introduce the concept of
keyphraseness, which is an estimate of how likely it is that a given text span will
be linked to an entity:

P(keyphrase|m) = |Dlink(m)|
|D(m)| , (5.1)

where |Dlink(m)| is the number of Wikipedia articles where m appears as an anchor
text of a link, and |D(m)| is the number of Wikipedia articles that contain m.

It is essentially the same idea that is captured under the notion of link probability
in [22]:

P(link|m) = nlink(m)

n(m)
, (5.2)

where nlink(m) is the number of times mention m appears as an anchor text of a link,
and n(m) denotes the total number of times mention m occurs in Wikipedia (as a
link or not).

The main difference between keyphraseness and link probability is that the
former considers at most one occurrence (and linking) of a mention per document,
while the latter counts all occurrences. (An analogy can be drawn to document
frequency vs. term frequency in term importance weighting.) To get a more reliable
estimate, it is common to discard mentions that are composed of a single character,
made up of only numbers, appear too infrequently in Wikipedia (e.g., less than five
times [58]), or have too low relative frequency (e.g., P(link|m) < 0.001 [22]).

5.4.3 Overlapping Mentions

It should be pointed out that the recognized mentions may be overlapping (cf.
Fig. 5.3), while the final entity annotations must not overlap. To deal with this, either
of two main strategies is employed: (1) containment mentions are dealt with in the
mention detection phase, e.g., by dropping a mention if it is subsumed by another
mention [29] or by selecting the mention with the highest link probability [22], or
(2) overlapping mentions are kept and the decision is postponed to a later stage
(candidate selection or disambiguation).

5.5 Candidate Selection

The detection of entity mentions is followed by the selection of candidates for each
mention. Let Em denote the set of candidate entities for mention m. Potentially,
all entities with surface forms matching the mention are candidates: Em = {e :
m ∈ Se}. However, as Mendes et al. [57] point out, “candidate selection offers a
chance to narrow down the space of disambiguation possibilities.” Selecting fewer

158 5 Entity Linking

Fig. 5.4 Ranking candidate entities based on commonness

candidates can greatly reduce computation time, but it may hurt recall if performed
too aggressively. In the process of entity linking, candidate selection plays a crucial
role in balancing the trade-off between effectiveness and efficiency. Therefore,
candidate selection is often approached as a ranking problem: Given a mention m,
determine the prior probability of an entity e being the link target for m: P(e|m).
The probabilistic interpretation comes naturally here as it emphasizes the fact that
this estimate is based only on the mention, a priori to observing its context. We note
that this estimate does not have to be an actual probability; any monotonic scoring
function may be used. The top ranked candidate entities, based on a score or rank
threshold, are then selected to form Em.

A highly influential idea by Medelyan et al. [56] is to take into account the
overall popularity of entities as targets for a given mention m in Wikipedia. The
commonness of an entity e is defined as the number of times it is used as a link
destination for m divided by the total number of times m appears as a link. In other
words, commonness is the maximum-likelihood probability of entity e being the
link target of mention m:6

P(e|m) = n(m,e)
∑

e′∈E n(m,e′)
. (5.3)

Commonness, while typically estimated using Wikipedia (see, e.g., [22, 61]), is not
bound to that. It can be based on any entity-annotated text that is large enough to
generate meaningful statistics. Using Wikipedia is convenient as the links are of high
quality and can be extracted easily from the wiki markup, but a machine-annotated
corpus may also be used for the same purpose (see Sect. 5.9.2). We also note that
commonness may be pre-computed and conveniently stored in the entity surface
form dictionary along with the corresponding entity; see Fig. 5.4.

6The attentive reader may notice the similarity to link probability in Eq. (5.2). The difference is that
link probability is the likelihood of a given mention being linked to any entity, while commonness
is the likelihood of a given mention referring to a particular entity.

5.6 Disambiguation 159

It has also been shown that commonness follows a power law distribution with a
long tail of extremely unlikely aliases [61]. Thus one can safely discard entities at
the tail end of the distribution (0.001 is a sensible threshold).

5.6 Disambiguation

The last step, which is the heart and soul of the entity linking process, is
disambiguation: selecting a single entity, or none, from the set of candidate entities
identified for each mention. The simplest solution to resolving ambiguity is to
resort to the “most common sense,” i.e., select the entity that is most commonly
referred to by that mention. This is exactly what the commonness measure, which
was discussed in the previous section, captures; see Eq. (5.3). Despite being a naïve
solution, it “is a very reliable indicator of the correct disambiguation” [68]. Relying
solely on commonness can yield correct answers in many cases and represents a
solid baseline [43]. For accurate entity disambiguation, nevertheless, we need to
incorporate additional clues.

Modern disambiguation approaches consider three types of evidence: prior
importance of entities and mentions, contextual similarity between the text
surrounding the mention and the candidate entity, and coherence among all
entity linking decisions in the document.

We start off in Sect. 5.6.1 by presenting a set of features for capturing the above
three types of evidence. Next, in Sect. 5.6.2, we discuss specific disambiguation
approaches that combine this evidence in some way (e.g., using supervised learning
or graph-based approaches). The selection of the single best entity for each mention
may optionally be followed by a subsequent pruning step: rejecting low confidence
or semantically meaningless annotations. We discuss pruning in Sect. 5.6.3.

5.6.1 Features

We discuss features by dividing them into three main groups:

• Prior importance features may rely on the entity alone, f (e), or the mention and
the entity in combination, f (e,m). In either case, the score is estimated based on
prior importance without taking the mention’s context into account.

• Contextual features are guided by the intuition that the context surrounding an
ambiguous entity mention provides valuable additional information for disam-
biguating it. These features could be written as f (e,m;d), emphasizing that the
context is based on the input document. Since we process one document at a
time, we will omit d for notational convenience, and simply write f (e,m).

160 5 Entity Linking

Table 5.3 Features for entity disambiguation

Group Feature Description

Prior importance (context-independent)

P (keyphrase|m) Keyphraseness (likelihood of m being linked)

P (link|m) Link probability (likelihood of m being linked)

P (e|m) Commonness (the probability of e being the link target of m)

Plink(e) Fraction of links in the knowledge repository pointing to e

Ppageviews(e) Fraction of (Wikipedia) page views e receives

Contextual

simF (m,e) Similarity between the context of a mention dm and the

entity’s description de according to some similarity function

F (e.g., cosine, Jaccard, dot product, KL divergence, etc.)

Entity-relatedness

WLM(e,e′) Wikipedia link-based measure, a.k.a. relatedness

PMI(e,e′) Pointwise mutual information

Jaccard(e,e′) Jaccard similarity

χ2(e,e′) χ2 statistic

P (e′|e) Conditional probability

• Entity-relatedness features aim at measuring the degree of semantic relatedness
between a pair of entities, f (e,e′). The ultimate goal is to measure the coherence
of entity annotations in a document; as we shall see later, this boils down to
pairwise entity relatedness.

We discuss these feature groups in turn, highlighting some of the most effective
features within each. Table 5.3 provides an overview. The reader will note the large
number of features, which reflects the broad diversity of factors that need to be taken
into account for effective disambiguation. Unfortunately, there is no systematic and
comprehensive feature comparison available. The decision on what features to use
(or design) should take into account the characteristics of the particular dataset and
examine the trade-off between effectiveness and efficiency.

5.6.1.1 Prior Importance Features

The first group of features consider a single mention m and/or entity e, where e is
one of the candidate annotations for that mention, e ∈ Em. Neither the text nor other
mentions in the document are taken into account, hence the context-independence.
We have already introduced keyphraseness (Eq. (5.1)), link probability (Eq. (5.2)),
and commonness (Eq. (5.3)), which all belong to this category. These are all related
to the popularity of a mention or the popularity of a particular entity given a mention.

5.6 Disambiguation 161

To measure the popularity of the entity itself, we present two simple estimates.
The first feature is link prior, defined as the fraction of all links in the knowledge
repository that are incoming links to the given entity [68]:

Plink(e) = |Le|
∑

e′∈E |Le′ | ,

where |Le| denotes the total number of incoming links entity e has. In the case of
Wikipedia, Le is the number of all articles that link to the entity’s Wikipedia page.
In the case of a knowledge base, where entities are represented as SPO triples, it is
the number of triples where e stands as object.

Entity popularity may also be estimated based on traffic volume, e.g., by utilizing
the Wikipedia page view statistics of the entity’s page [29]:

Ppageviews(e) = pageviews(e)
∑

e′∈E pageviews(e′)
,

where pageviews(e) denotes the total number of page views (measured over a certain
time period).

When mention detection is performed using NER as opposed to a dictionary-
based approach, the match between the mention and the candidate entity’s known
surface forms should also be considered. Common name-based similarity features
include, among others, whether (1) the mention matches exactly the entity name,
(2) the mention starts or ends with the entity name, (3) the mention is contained
in the entity name or vice versa, and (4) string similarity between the mention and
the entity name (e.g., edit distance) [72]. Additionally, the type of the mention, as
detected by the NER (i.e., PER, ORG, LOC, etc.), may be compared against the
type of the entity in the knowledge repository [14].

5.6.1.2 Contextual Features

One of the simplest and earliest techniques is to compare the surrounding context of
a mention with the textual representation (entity description) of the given candidate
entity [2, 12]. The context of a mention, denoted as dm, can be a window of text
around the mention, such as the sentence or paragraph containing the mention, or
even the entire document. The textual representation of the entity, denoted as de, is
based on the entity’s description in the knowledge repository. As disambiguation is
most commonly performed against Wikipedia, it could be, e.g., the whole Wikipedia
entity page [2], the first description paragraph of the Wikipedia page [49], or the top-
k terms with the highest TF-IDF score from the entity’s Wikipedia page [68].7

7Entity descriptions may also be assembled from a document collection, cf. Sect. 3.2.1. However,
those approaches assume that some documents have already been annotated with entities.

162 5 Entity Linking

Both the mention’s context and the entity are commonly represented as bag-of-
words. Let simF (m,e) denote the contextual similarity between the mention and the
entity, using some similarity function F . There is a range of options for the function
F , with cosine similarity being the most commonly used, see, e.g., [2, 49, 57, 68]:

simcos(m,e) = dm · de

‖ dm ‖ ‖ de ‖ ,

where dm and de are the term vectors corresponding to the mention’s and entity’s
representations. Other options for the similarity function F include (but are
not limited to): dot product [49], Kullback–Leibler divergence [37], or Jaccard
similarity (between word sets) [49].

The representation of context does not have to be limited to bag-of-words.
It is straightforward to extend the notion of term vectors to concept vectors, to
better capture the semantics of the context. Concepts to embed as term vectors
could include, among others, named entities (identified using NER) [14], Wikipedia
categories [12], anchor text [49], or keyphrases [37].

Additional possibilities to compute context similarity include topic modeling [67,
84] and augmenting the entity’s representation using an external corpus [52].

5.6.1.3 Entity-Relatedness Features

In addition to the textual context around a mention, other entities that co-occur
in the document can also serve as clues for disambiguation. It can reasonably be
assumed that a document focuses on one or at most a few topics. Consequently,
the entities mentioned in a document should be topically related to each other. This
topical coherence is captured by developing some measure of relatedness between
a pair of entities. The pairwise entity relatedness scores are then utilized by the
disambiguation algorithm to optimize coherence over the set of candidate entities in
the document. Notice that we have already touched upon this idea briefly earlier, in
Sect. 5.6.1.2, when considering named entities as context. The key difference is that
there named entities were treated as string tokens while here we consider the actual
entities (given by their identifiers) that are candidates for a particular mention.

Milne and Witten [60] formalize the notion of semantic relatedness for entity
linking by introducing the Wikipedia link-based measure (WLM), which in later
works is often referred to simply as relatedness. Modeled after the normalized
Google distance measure [10], a close relationship is assumed between two entities
if there is a large overlap between the entities linking to them:

WLM(e,e′) = 1 − log (max(|Le|,|Le′ |))− log(|Le ∩ Le′ |)
log(|E |)− log (min(|Le|,|Le′ |)) , (5.4)

where Le is the set of entities that link to e and |E | is the total number of entities. If
either of the entities has no links or the two entities have no common links, the score

5.6 Disambiguation 163

Fig. 5.5 Obtaining the Wikipedia link-based measure between MICHAEL SCHUMACHER and
SCUDERIA FERRARI from incoming Wikipedia links (only a selection of links is shown). Solid
arrows represent shared links

is set to zero. Figure 5.5 provides an illustration. While relatedness has originally
been proposed for incoming Wikipedia links, it may also be considered for outgoing
links [68] or for the union of incoming and outgoing links [5]. Also notice that we
can equivalently work with relationships in a knowledge base.8

Milne and Witten’s relatedness measure is the most widely used one and is
regarded as the state of the art (see, e.g., [22, 34, 37, 49, 61, 68]), but there are
other options, including the Jaccard similarity [30], pointwise mutual information
(PMI) [68], or the χ2 statistic [5]. Notice that all these are symmetric, i.e., f (e,e′) =
f (e′,e) for a particular relatedness function f .

Ceccarelli et al. [5] argue that “a relatedness function should not be symmetric.”
For example, the relatedness of the UNITED STATES given NEIL ARMSTRONG

is intuitively larger than the relatedness of NEIL ARMSTRONG given the UNITED

STATES. One effective asymmetric feature they introduce is the conditional proba-
bility of an entity given another entity:

P(e′|e) = |Le′ ∩ Le|
|Le| .

There is obviously a large number of ways one could define relatedness. As we shall
see later (in Sect. 5.6.2), having a single relatedness function is preferred to keep
the disambiguation process simple (or at least not to make it more complicated).
Ceccarelli et al. [5] show that various relatedness measures (a total of 27 in their
experiments) can effectively be combined into a single relatedness score using a
machine learning approach.

8There is a link from e1 to e2 if there exists an SPO triple where e1 appears as subject and e2
appears as object (the predicate is not considered).

164 5 Entity Linking

All the features we have presented here so far are based on links. The main
reason for favoring link-based features over content-based ones is that the former
are cheaper to compute. We need to keep in mind, however, that for entities that do
not have many links associated with them (e.g., long-tail entities or entities that have
been only recently added to the knowledge repository), these techniques do not work
very well. In those cases, one can estimate the semantic relatedness between a pair
of entities based on (1) the similarity of the contexts in which they occur (e.g., using
keyphrases [36] or n-grams [73]) or (2) the assigned types (e.g., by considering their
distance in the type hierarchy [73]).

5.6.2 Approaches

Formally, the disambiguation task is to find the assignment of entities to mentions in
a given document: � :Md → E

⋃{∅}, where ∅ denotes the NIL entity assignment.
We shall now present various methods and algorithms for establishing this mapping.

Effective disambiguation needs to combine local compatibility (which
includes prior importance and contextual similarity) and coherence with the
other entity linking decisions in the document.

The overall objective function thus can be written as:

�∗ = arg max
�

(∑

(m,e)∈�

φ(m,e)+ ψ(�)
)

,

where φ(m,e) denotes the local compatibility between the mention and the assigned
entity, ψ(�) is the coherence function for all entity annotations in the document, and
� is a solution (set of mention-entity pairs). This optimization problem is shown to
be NP-hard [37, 49, 68, 73], therefore approaches need to resort to approximation
algorithms and heuristics.

We distinguish between two main disambiguation strategies, based on whether
they consider mentions (1) individually, one mention at a time, or (2) collectively,
all mentions in the document jointly.

Individual disambiguation approaches most commonly cast the task of entity
disambiguation as a ranking problem. Each mention is annotated with the highest
scoring entity (or as NIL, if the highest score falls below a given threshold):

�∗
local(m) = arg max

e∈Em

score(e;m) . (5.5)

As discussed earlier, this ranking may be based on a prior popularity (i.e., common-
ness) alone: score(e;m) = P(e|m). For effective disambiguation, however, it is key

5.6 Disambiguation 165

Table 5.4 Entity disambiguation approaches

Approach Context Entity interdependence

Most common sense None None

Individual local disambiguation Text None

Individual global disambiguation Text and entities Pairwise

Collective disambiguation Text and entities Collective

to consider the context of the mention. Learning-to-rank approaches are well suited
for combining multiple signals and have indeed been the most popular choice for
this task, see, e.g., [2, 14, 68, 73, 84, 85]. It is important to point out that the fact that
mentions are disambiguated individually does not imply that these disambiguation
decisions are independent of each other. The interdependence between entity linking
decisions may be ignored or may be incorporated (in a pairwise fashion). We refer
to these two variants as local and global approaches, respectively.

Instead of considering each mention individually, once, one might attempt to
jointly disambiguate all mentions in the text. Collective disambiguation typically
involves an inference process where entity assignments are iteratively updated until
some target criterion is met. Table 5.4 provides an overview of approaches.9

A final note before we enter into the discussion of specific methods. It is
generally assumed (following the one sense per discourse assumption [26]) that
all the instances of a mention refer to the same entity within the document. If
that assumption is lifted, one might employ an iterative algorithm that shrinks the
disambiguation context from document to paragraph or even to the sentence level,
if necessary [12].

5.6.2.1 Individual Local Disambiguation

Early entity linking approaches [2, 58] focused on local compatibility based
on contextual features, such as the similarity between the document and the
entity’s description. Statistics extracted from large-scale entity-annotated data (e.g.,
Wikipedia), i.e., prior importance, can also be incorporated in the local compatibility
score. That is, score(e;m) = φ(e,m). The local compatibility score can be written
in the form of a simple linear combination of features:

φ(e,m) =
∑

i

λifi(e,m) , (5.6)

9Certain approaches from the literature are not immediately straightforward to categorize. We are
guided by the following simple rule: It is individual disambiguation if a candidate entity is assigned
a score once, and that score does not change. In the case of collective disambiguation, the initially
assigned score changes over the course of multiple successive iterations.

166 5 Entity Linking

where fi(e,m) can be either a context-independent or a context-dependent feature
(see Sects. 5.6.1.1 and 5.6.1.2), and λi is the corresponding feature weight. Note that
other entity assignments in the document are not taken into consideration.

The idea is to learn the “optimal” combination of features (which is not limited to
being a linear combination) from training data. Working within a learning-to-rank
framework, each entity-mention pair becomes an instance, described by a feature
vector. In the training dataset, the target label is set to 1 for the correct entity and 0
for all other candidate entities.

5.6.2.2 Individual Global Disambiguation

Entity linking can be improved by considering what other entities are mentioned
in the document, an idea that was first proposed by Cucerzan [12]. The underlying
assumption is that “entities are correlated and consistent with the main topic of
the document” [27]. Cucerzan [12] attempts to find an assignment of entities to
mentions such that it maximizes the similarity between each entity in the assignment
and all possible disambiguations of all other mentions in the document. This can
be incorporated as a feature function f (e,m;d̃), where d̃ is a high-dimensional
extended document vector that contains all candidate entities for all other mentions
in the document.10 The function then measures the similarity as a scalar product
between the entity and the extended document given a particular representation (e.g.,
topic words or IDs). A disadvantage of this approach is that the extended document
vector contains noisy data, as it includes all the incorrect disambiguations as well.

Another disambiguation strategy, proposed by Milne and Witten [61], is to
first identify a set of unambiguous mentions. These are then used as context to
disambiguate the other mentions in the document. The two main features used
for disambiguation are commonness (Eq. (5.3)) and relatedness (Eq. (5.4)). The
disadvantage of this approach is the assumption that there exist unambiguous
mentions (which, in practice, translates to documents needing to be sufficiently
long).

The general idea behind global approaches is to optimize the coherence of the
disambiguations (entity linking decisions). A true global optimization would be NP-
hard, however a good approximation can be computed efficiently by considering
pairwise interdependencies for each mention independently. For this reason, the
pairwise entity relatedness scores (which we have introduced in Sect. 5.6.1.3) need
to be aggregated into a single number. This number will tell us how coherent the
given candidate entity is with the rest of the entities in the document. We discuss
two specific realizations of this idea.

Ratinov et al. [68] first perform local disambiguation and use the predictions
of that system (i.e., the top ranked entity for each mention) in a second, global

10Following Cucerzan [12], we use the distinctive notation d̃ to “emphasize that this vector contains
information that was not present in the original document.”

5.6 Disambiguation 167

disambiguation round. Let E� denote the set of linked entities identified by the
local disambiguator. The coherence of entity e with all other linked entities in the
document is given by:

ψj(e,E�) =
∑

e′∈E�

e′ �=e

gj (e,e
′) , (5.7)

where gj is a particular pairwise entity relatedness function. We may now extend
our scoring function with a second component consisting of global features:

score(e;m) =
∑

i

λifi(e,m)

︸ ︷︷ ︸
φ(e,m)

+
∑

j

(
λj

∑

e′∈E�

e′ �=e

gj (e,e
′)

︸ ︷︷ ︸
ψj (e,E�)

)
.

The λi and λj coefficients are trained using supervised learning.
An alternative approach is given by Ferragina and Scaiella [22], capitalizing on

the fact that commonness and Milne and Witten’s relatedness are the two most
important features. Their system, called TAGME, introduces a voting mechanism,
illustrated in Fig. 5.6, that allows for the combination of these two features, without
involving supervised learning. Similarly to Cucerzan [12], a score for a given
mention-entity pair is determined by a “collective agreement” between the entity
and all possible disambiguations of all other mentions in the document, but in
TAGME this is achieved computationally much more efficiently (specifically, time
complexity is linear in the number of mentions [21]). Formally, given the set of all
mentions in the document Md , the score of a candidate entity e for a particular
mention m is defined as:

score(e;m) =
∑

m′∈Md

m′ �=m

vote(m′,e) . (5.8)

Fig. 5.6 TAGME’s voting mechanism. Solid lines connect mentions with the respective candidate
entities. A given candidate entity (indicated with the thick border) receives votes from all candidate
entities of all mentions in the text (dashed lines)

168 5 Entity Linking

The vote function estimates the agreement between the given entity e and all
candidate entities of mention m′. It is computed as the average relatedness between
each possible disambiguation e′ of m′, weighted by its commonness score:

vote(m′,e) =
∑

e′∈Em′ WLM(e,e′)P (e′|m′)
|Em′ | .

Simply returning the entity with the highest score, as defined by Eq. (5.8), is
insufficient to obtain an accurate disambiguation, it needs to be combined with
other features. For example, this score could be plugged into Eq. (5.6) as a feature
function fi . Another possibility is proposed in [22] in the form of a simple but robust
heuristic. Only the highest scoring entities are considered for a given mention, then
the one with the highest commonness score among those is selected:

�(m) = arg max
e∈Em

{P(e|m) : e ∈ topε[score(e;m)]} . (5.9)

That is, the score defined in Eq. (5.8) merely acts as a filter. According to Eq. (5.9),
only entities in the top ε percent of the scores are retained (with ε set to 30% in [21]).
Out of the remaining entities, the most common sense of the mention will be finally
selected.

Individual disambiguation approaches are inherently limited to incorporating
interdependencies between entities in a pairwise fashion. This still enforces some
degree of coherence among the linked entities, while remaining computationally
efficient. Next, we will look at how to model and exploit interdependencies globally.

5.6.2.3 Collective Disambiguation

The main difference when moving from individual to collective disambiguation
is how the maximization of coherence between all entity linking decisions in the
document is attempted. As we have already pointed out, this optimization is NP-
hard. Kulkarni et al. [49] were the first to undertake direct optimization by turning
it into a binary integer linear program, and then relaxing it to a linear program (LP).
Coherence is measured as the sum of pairwise relatedness between all pairs of linked
entities in the document. They show that LP relaxations often give optimal integral
solutions. Kulkarni et al. [49] also present a direct greedy hill-climbing approach
as an alternative to linear programming, which is comparable both in speed and
accuracy to linear programming relaxation.

More recent approaches use a graph structure for collective disambiguation, an
idea that was proposed by two independent groups, at about the same time [34, 37].
Mention–entity and entity–entity relations in a document can naturally be repre-
sented as a weighted (undirected) graph (termed referent graph in [34]). The node

5.6 Disambiguation 169

set contains all mentions and all candidate entities corresponding to those mentions.
There are two types of edges:

• Mention–entity edges capture the local compatibility between the mention and
the entity. Edge weights w(m,e) could be measured using a combination of
context-independent and context-dependent features, as expressed in Eq. (5.6).

• Entity–entity edges represent the semantic relatedness between a pair of entities.
Edge weights, w(e,e′), are set based on Milne and Witten’s relatedness (cf.
Eq. (5.4)) [34, 37], but other entity-relatedness functions may also be used.

This graph representation is illustrated in Fig. 5.7. While there is no additional type
of evidence compared to what was considered before (namely, local compatibility
and pairwise entity relatedness), this representation allows for various graph algo-
rithms to be applied. We note that the graph construction might involve additional
heuristics (e.g., “robustness tests” in [37]); we omit these in our discussion.

Hoffart et al. [37] pose the problem of entity disambiguation as that of finding
a dense subgraph that contains “all mention nodes and exactly one mention-entity
edge for each mention.” They propose a greedy algorithm, shown in Algorithm 5.1,
that starts from the full graph and iteratively removes the entity node with the lowest
weighted degree (along with all its incident edges), provided that each mention node
remains connected to at least one entity. The weighted degree of an entity node,
wd(e) is defined as the sum of the weights of its incident edges. The density of the
graph is measured as the minimum weighted degree among its entity nodes. From
the graphs that are produced in each iteration, the one with the highest density is
kept as the solution. This ensures that weak links are captured and the solution is
not dominated by a few prominent entities with very high weighted degree.

Fig. 5.7 Graph representation for collective disambiguation. Mention nodes are shaded, entity
nodes are rounded rectangles. Note that the dashed arrows are not part of the graph. Thick lines
indicate the correct mention-entity assignments. Example is taken from [34]

170 5 Entity Linking

A number of heuristics are applied to ensure that the algorithm is robust. In a pre-
processing phase, entities that are “too distant” from the mention nodes are removed.
For each entity, the distance from the set of mention nodes is computed as a sum
of the squared shortest path distances. Then, only the k × |Md | closest entities are
kept (Ec), where |Md | is the number of mentions in the document, and k is set
to 5 based on experiments. This smaller graph is used as the input to the greedy
algorithm. At the end of the iterations, the solution graph may still contain mentions
that are connected to more than one entity. The final solution, which maximizes
the sum of edge weights, is selected in a post-processing phase. If the graph is
sufficiently small, it is feasible to exhaustively consider all possible mention-entity
pairs. Otherwise, a faster local (hill-climbing) search algorithm may be used.

Han et al. [34] employ a different graph-based algorithm, random walk with
restarts [79], for collective disambiguation. “A random walk with restart is a
stochastic process to traverse a graph, resulting in a probability distribution over
the vertices corresponding to the likelihood those vertices are visited” [31].

Algorithm 5.1: Graph-based entity disambiguation [37]
Input: weighted graph G of mentions and entities
Output: result graph with one edge per mention

/* pre-processing phase */

1 foreach entity node e do
2 diste ← sum of (weighted) shortest paths to each mention
3 end
4 keep entities Ec with lowest diste, drop the others

/* main loop */

5 objective ← mine∈Ec
wd(e)/|Ec |

6 while G has non-taboo entity do
/* entity is taboo if last candidate for any mention */

7 e ← non-taboo entity with lowest wd(e)

8 Ec ← Ec \ e

9 remove e with all its incident edges from G

10 mwd ← mine∈Ec wd(e)

|Ec |
11 if mwd > objective then
12 solution ← G

13 objective ← mwd
14 end
15 end

/* post-processing phase */

16 if feasible then
17 process solution by enumerating all possible mention-entity pairs
18 else
19 process solution by local search
20 end

5.6 Disambiguation 171

Let v be a starting vector (initial evidence), holding the prior importance
associated with each mention node:

v(m) = TFIDF(m)
∑

m′∈Md
TFIDF(m′)

,

where TFIDF(m) is the TF-IDF score of mention m.11 For entity nodes v(e) =
0. Notice that this formulation assumes a directed graph, with edges going from
mentions to entities, but not the other way around.

Given the initial evidence, it is propagated through the two types of edges in
the graph. We write T to denote the evidence propagation matrix. The evidence
propagation ratio from a mention to its candidate entities is defined as:

T(m → e) = w(m → e)
∑

e′∈Em
w(m → e′)

,

and between entities is defined as:

T(e → e′) = w(e → e′)
∑

e′′∈Ed
w(e → e′′)

.

Let ri be a vector holding the probability distribution over nodes at iteration i,
corresponding to the likelihood that those nodes are visited. Initially, it is set to
be the starting (initial evidence) vector: r0 = v. Then, the probability distribution is
updated iteratively until convergence:

ri+1 = (1 − α) ri T+ α v ,

where α is the restart probability (set to 0.1 in [34]).
Once the random walk process has converged to a stationary distribution r, the

referent entity for mention m is determined according to:

�(m) = arg max
e∈Em

φ(m,e) r(e) ,

where φ(m,e) is the local compatibility between the mention and the entity,
according to Eq. (5.6).

In conclusion, collective disambiguation approaches tend to perform better than
individual ones, and they work especially well “when a text contains mentions
of a sufficiently large number of entities within a thematically homogeneous
context” [37]. On the other hand, the space of possible entity assignments grows
combinatorially, which takes a toll on efficiency, in particular for long documents.

11The TF component is the normalized frequency of the mention in the document, while the IDF
part can be computed using Wikipedia or the Google N-gram dataset.

172 5 Entity Linking

5.6.3 Pruning

Candidate annotations produced by the disambiguation phase can possibly be
pruned to discard meaningless or low-confidence annotations. The simplest possible
solution is to control this by a confidence threshold; if score(e;m) < τ then back
off from annotating mention m. The threshold τ can be learned from training data.

More advanced ways to pruning are also conceivable; we highlight three of
those here. Milne and Witten [60] employ a machine learned classifier to retain
only entities that are “relevant enough” to be linked in the sense of what a
human editor would consider annotation-worthy (for instance, in Wikipedia, only
the first occurrence of an entity is linked). The set of features includes link
probability, relatedness, disambiguation confidence, and location and spread of
mentions. Ratinov et al. [68] approach pruning as an optimization problem: They
decide, for each mention, whether switching the top-ranked disambiguation to NIL
would improve the objective function. Finally, Ferragina and Scaiella [22] define
the coherence of entity e with all other candidate entity annotations in the text as:

coherence(e,E�) = 1

|E�| − 1

∑

e′∈E�

e′ �=e

WLM(e,e′) ,

where E� is the set of linked entities. For each entity, this coherence score is com-
bined with link probability (either as a simple average or as a linear combination)
into a pruning score ρ, which is then checked against the pruning threshold.

5.7 Entity Linking Systems

Table 5.5 presents a selection of prominent entity linking systems that have been
made publicly available. Their brief summaries follow below.

Table 5.5 Overview of publicly available entity linking systems

System Reference KR Online demo Web API Source code

AIDAa YAGO2 Yes Yes Yes (Java)

DBpedia Spotlightb DBpedia Yes Yes Yes (Java)

Illinois Wikifierc Wikipedia No No Yes (Java)

TAGMEd Wikipedia Yes Yes Yes (Java)

Wikipedia Minere Wikipedia No No Yes (Java)
ahttp://www.mpi-inf.mpg.de/yago-naga/aida/
bhttp://spotlight.dbpedia.org/
chttp://cogcomp.cs.illinois.edu/page/download_view/Wikifier
dhttps://tagme.d4science.org/tagme/
ehttps://github.com/dnmilne/wikipediaminer

http://www.mpi-inf.mpg.de/yago-naga/aida/
http://spotlight.dbpedia.org/
http://cogcomp.cs.illinois.edu/page/download_view/Wikifier
https://tagme.d4science.org/tagme/
https://github.com/dnmilne/wikipediaminer

5.7 Entity Linking Systems 173

• AIDA [37] performs collective disambiguation using a graph-based approach,
which we detailed in Sect. 5.6.2.3. Annotations are done against the YAGO2
knowledge base.

• DBpedia Spotlight [57] implements a rather straightforward local disambiguation
approach; vector space representations of entities are compared against the
paragraphs of their mentions using the cosine similarity. Instead of using standard
IDF, Mendes et al. [57] introduce the inverse candidate frequency (ICF) weight
and employ TF-ICF term weighting. They annotate with DBpedia entities, which
can be restricted to certain types or even to a custom entity set defined by a
SPARQL query.

• Illinois Wikifier [68], a.k.a. GLOW, implements both local and (individual)
global disambiguation; their global disambiguation approach is discussed in
Sect. 5.6.2.2. In version 2 of their system, Cheng and Roth [9] focus on
eliminating mistakes that are “obvious” (to humans) by better understanding the
relational structure of the text (e.g., resolving coreference).

• TAGME [22] is one of the most popular entity linking systems. It has been
designed specifically for efficient annotation of short texts, but it is shown to
deliver competitive results on long texts as well. TAGME’s one-mention-at-a-
time global disambiguation approach is detailed in Sect. 5.6.2.2. The authors
have also published an extended report [21] with more algorithmic details and
experiments. We further refer to [35] for additional notes on reproducibility.

• Wikipedia Miner [61] is a seminal entity linking system that was first to combine
commonness and relatedness for (local) disambiguation. It was also the first
system with an open-sourced implementation and with wikification provided as
a web service (at the time of writing, it is no longer available). See [62] for more
technical details and experimental results.

The above selection concentrates on systems that are accompanied by a scholarly
publication detailing the underlying methods and approaches. There is a large
number of annotation services offered by commercial parties, including but not
limited to: AlchemyAPI,12 AYLIEN Text Analysis API,13 Google Cloud Natural
Language API,14 Microsoft Entity Linking service,15 Open Calais,16 and Rosette
Entity Linking API.17

12http://www.alchemyapi.com/.
13http://aylien.com/.
14https://cloud.google.com/natural-language/.
15https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service.
16http://www.opencalais.com.
17https://www.rosette.com/function/entity-linking/.

http://www.alchemyapi.com/
http://aylien.com/
https://cloud.google.com/natural-language/
https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service
http://www.opencalais.com
https://www.rosette.com/function/entity-linking/

174 5 Entity Linking

5.8 Evaluation

In this section, we introduce evaluation measures and test collections.

5.8.1 Evaluation Measures

The overall (end-to-end) performance of an entity linking system is evaluated
by comparing the system-generated annotations against a human-annotated gold
standard. The measures are set-based: precision, recall, and F-measure. Precision
is computed as the fraction of correctly linked entities that have been annotated
by the system, while recall is the fraction of correctly linked entities that should
be annotated. Since these measures are typically computed over a collection of
documents, they can be either micro-averaged (aggregated across mentions) or
macro-averaged (aggregated across documents).

Let us formalize these notions. We write Ad to denote the annotations generated
by the entity linking system and Âd to denote the reference (ground truth)
annotations for a single document d . Further, let AD include all annotations for a set
D of documents: AD = ∪d∈DAd . Analogously, ÂD is the collection of reference
annotations for D. Micro-averaged precision and recall are then defined as:

Pmic = |AD ∩ ÂD|
|AD| , Rmic = |AD ∩ ÂD|

|ÂD|
,

where |AD∩ÂD| denotes the number of matching annotations between the systems
and the gold standard (to be defined more precisely later).

Macro-averaged precision and recall are computed as follows:

Pmac = 1

|D|
∑

d∈D

|Ad ∩ Âd |
|Ad | , Rmac = 1

|D|
∑

d∈D

|Ad ∩ Âd |
|Âd |

.

The F-measure is computed from the overall precision (P) and recall (R):

F1 = 2 P R

P+ R
. (5.10)

When entity mentions are also given as input to the entity linking system, accuracy
is used to assess system performance. Accuracy is defined as the number of correctly
linked entity mentions divided by the total number of entity mentions. Thus, in this
case, accuracy = precision = recall = F1.

When comparing annotations, the linked entities must match, but we may decide
to be lenient with respect to their mentions, i.e., the mention offsets. Let a =
(e,mi,mt) be an annotation generated by the system and â = (ê,m̂i,m̂t) be the

5.8 Evaluation 175

corresponding reference annotation. We define an indicator function for perfect
match (PM) as follows:

matchPM(a,â) =
{

1, e = ê, mi = m̂i, mi = m̂i

0, otherwise .

Alternatively, we can lessen the requirements for mentions such that it is sufficient
for them to overlap. For example, “the Madison Square” and “Madison Square
Garden” would be accepted as a match as long as they link to the same entity. The
indicator function for relaxed match (RM) is defined as:

matchRM(a,â) =
{

1, e = ê, [mi,mt] overlaps with [m̂i,m̂t]
0, otherwise .

Using either flavor of the match function, the number of matching annotations is
computed as:

|A ∩ Â| =
∑

a∈A,â∈Â
match(a,â) .

5.8.2 Test Collections

Early work used Wikipedia both as the reference KR and as the ground truth for
annotations [12, 58, 61]. Using Wikipedia articles as input documents, the task is
to “recover” links that were created by Wikipedia contributors. Over the years, the
focus has shifted toward entity linking “in the wild,” using news articles or web
pages as input. This subsection presents the various test collections that have been
used in entity linking evaluation. We discuss resources developed by individual
researchers and those devised at world-wide evaluation campaigns separately. The
main test collections and their key characteristics are summarized in Table 5.6.

5.8.2.1 Individual Researchers

Cucerzan [12] annotated 20 news articles from MSNBC with a total of 755 linkable
entity mentions, out of which 113 are NIL (i.e., there is no corresponding Wikipedia
article). Milne and Witten [61] used a subset of 50 documents from the AQUAINT
text corpus (a collection of newswire stories). Following Wikipedia’s style, only
the first mention of each entity is linked and only the most important entities are
retained. Unlike others, they annotated not only proper nouns but concepts as well.
Kulkarni et al. [49] collected and annotated over hundred popular web pages from

176 5 Entity Linking

Table 5.6 Entity linking and wikification test collections

Name Reference Document Annotations

KR type(s) #Docs type #Mentions Alla NILb

Individual researchers

MSNBC [12] Wikipedia News 20 Entities 755 Yes Yes

AQUAINT [61] Wikipedia News 50 Entities and concepts 727 No No

IITB [49] Wikipedia Web pages 107 Entities 17,200 Yes Yes

ACE2004 [68] Wikipedia News 57 Entities 306 Yes Yes

CoNLL-YAGO [37] YAGO2 News 1393 Entities 34,956 Yes Yes

Evaluation campaigns

TAC EL 2009 [74] Wikipedia News 3904 Entities 3904 No Yes

TAC EL 2010 [45] Wikipedia News and web 2240 Entities 2240 No Yes

TAC EL 2011 [51] Wikipedia News and web 2250 Entities 2250 No Yes

TAC EL 2012 [20] Wikipedia News and web 2229 Entities 2229 No Yes

TAC EL 2013 [18] Wikipedia News and web 2190 Entities 2190 No Yes

TAC ELD 2014 [19] Wikipedia News and web 138 Entities 5598 Yes Yes

TAC ELD 2015 [17] Freebase News and web 167 Entities 15,581 Yes Yes

ERD Challenge [3] Freebase Web pages 200 Entities Unknown Yes No
aWhether all entity mentions are annotated in the documents
bWhether out-of-KR entities are annotated as NIL

a handful of domains (sport, entertainment, science and technology, and health).
Annotators were instructed to be as exhaustive as possible; this resulted in a total
of 17,200 entity mentions with 40% of them annotated as NIL. Ratinov et al. [68]
took a subset of the ACE 2004 Coreference dataset as a starting point and annotated
mentions (specifically, “the first nominal mention of each co-reference chain” [68])
using crowdsourcing. Hoffart et al. [37] created a dataset based on the CoNLL 2003
Named Entity Recognition task. They annotated 1393 Reuters newswire articles
with entities from YAGO2. The collection is split into train, test-A, and test-B
partitions. Notably, the original dataset has since been extended to include the
corresponding Wikipedia and Freebase entity identifiers as well. Guo and Barbosa
[31] released a newer version of the MSNBC, AQUANT, and ACE2004 datasets,
with the annotations aligned to the 2013 June version of Wikipedia.18

5.8.2.2 INEX Link-the-Wiki

The Link-the-Wiki track ran at INEX between 2007 and 2010 [40–42, 80] with the
objective of evaluating link discovery methods. The assumed user scenario is that of
creating a new article in Wikipedia; a link discovery system can then automatically
suggest both outgoing and incoming links for that article. Note that link detection

18http://www.cs.ualberta.ca/~denilson/data/deos14_ualberta_experiments.tgz.

http://www.cs.ualberta.ca/~denilson/data/deos14_ualberta_experiments.tgz

5.8 Evaluation 177

here is approached as a recommendation task, and—unlike in traditional entity
linking—it is assumed that a human editor will process the results. Evaluation was
performed by selecting an existing Wikipedia article and eradicating all links to and
from that page (“orphaning” it), thereby simulating that this is the new document
that is being added. The recommended links were assessed manually through a
purpose-built interface (with the links originally present in Wikipedia also added to
the pool of assessed results). The task is addressed both at the document level (i.e.,
document-to-document links) and at the element level (i.e., for each prospective
anchor, ranking “best entry points” within target documents). System performance
is measured using standard IR measures (e.g., MAP). The 2009 and 2010 editions of
the track also experimented with a different encyclopedia (Te Ara). That collection,
albeit much smaller in size, makes the linking task markedly more complex than
using Wikipedia for the reasons that (1) it does not include hyperlinks at all and
(2) articles do not represent entities. Since the INEX Link-the-Wiki setup is quite
different from our interpretation of the entity linking task, we do not include it in
Table 5.6. For further details, we refer to [39].

5.8.2.3 TAC Entity Linking

Entity linking has been running since 2009 at the Knowledge Base Population
(KBP) track of the Text Analysis Conference (TAC) [44–47, 55]. Since the track’s
inception, the task setup has undergone several changes. We start by presenting the
initial setting (from 2009) and then discuss briefly how it evolved since.

The Entity Linking (EL) task at TAC KBP is to determine for a given mention
string, originating from a particular document, which KB entity is being referred
to, or if the entity is not present in the reference KB (NIL). Thus, the focus is on
evaluating a single mention per document (referred to as query), which is identified
in advance, rather than systematically annotating all mentions. The mentions are
selected manually by “cherry-picking” those that they are sufficiently confusable,
i.e., they have either zero or several KB matches. Additionally, entities with
numerous nicknames and shortened or misspelled name variants are also targeted.
Entities are either of type person (PER), organization (ORG), or geopolitical entities
(GPE). The reference KB is derived from Wikipedia and is further restricted to
entities having an infobox. From 2010, web data was also included in addition to
newswire documents. An optional entity linking task was also conducted, where
systems can only utilize the attributes present in the KB and may not consult the
associated Wikipedia page (thereby simulating a setting where a salient and novel
entity appears that does not yet have a Wikipedia page). The 2011 edition saw the
introduction of two new elements: (1) clustering together NIL mentions (referring to
the same out-of-KB entity) and (2) cross-lingual entity linking (“link a given entity
from a Chinese document to an English KB” [44]). The cross-lingual version was
extended with Spanish in 2012.

In 2014, the task was broadened to end-to-end entity linking and also got
re-branded as Entity Discovery and Linking (EDL). Participating systems were

178 5 Entity Linking

required to automatically identify (and classify) all entity mentions, link each entity
mention to the KB, and cluster all NIL mentions [46]. In 2015, the EDL task was
expanded from monolingual to trilingual coverage (English, Chinese, and Spanish),
extended with two additional entity types (location and facility), and the knowledge
repository changed from Wikipedia to a curated subset of Freebase.

Monolingual EDL corresponds to our notion of the entity linking task, except for
the two additional subtasks it addresses: (1) classifying entity mentions according to
entity types and (2) clustering NIL mentions. These are not intrinsic to entity linking
but are important for knowledge base population (which is the ultimate goal of TAC
KBP). Evaluation for these subtasks is isolated from entity linking performance.
Another key difference in EDL, compared to conventional entity linking, is that
EDL focuses only on a handful of entity types.

In Table 5.6 we list the number of test queries (i.e., mentions) for the monolingual
entity linking task; additionally, a number of training queries were also made
available both as part of the evaluation campaign and in follow-up work [14].

5.8.2.4 Entity Recognition and Disambiguation Challenge

The Entity Recognition and Disambiguation (ERD) Challenge was organized in
2014 by representatives of major web search engine companies, in an effort to
make entity linking evaluation more realistic [3]. There are two main differences
in contrast to TAC KBP. First, entity linking systems are evaluated in an end-to-
end fashion, without providing mention segmentations. Second, each participating
team was required to set up a web service for their entity linking system, such that
processing times can be measured.

In the “long text” track, the documents to be annotated were pages crawled
from the Web (see Sect. 7.3.4.4 for the “short text” track). The reference knowledge
repository was Freebase, with entities restricted to specific types and to those having
an associated English Wikipedia page. Only proper noun entities are annotated.
A set of 100 documents was made available for development and a disjoint set
of additional 100 documents was used for testing. Half of the documents were
sampled from general web pages, the other half were news articles from msn.
com. Evaluation was performed by sending an “evaluation request” to the server
hosting the challenge. The evaluation server then sent a set of documents to the
participating team’s web service for annotation. The returned results were evaluated,
with evaluation scores posted on the challenge’s leaderboard. Online evaluation took
place over a period of time and was divided into train and test phases.

This type of live, online evaluation has its advantages and disadvantages.
Asking participants to provide their entity linking system as a service ensures an
absolutely fair comparison since (1) the process is completely automated with no
possibility of human intervention and (2) annotations for test documents are not
released (eliminating the risks of overfitting to a particular test collection). The
main drawback is that evaluation is subject to the availability of the evaluation
service. Further, as only overall evaluation scores are made available, a detailed

msn.com
msn.com

5.8 Evaluation 179

success/failure analysis of the generated annotations is not possible. At the time of
writing, the evaluation service is no longer available.19

5.8.3 Component-Based Evaluation

The pipeline architecture (cf. Fig. 5.2) makes the evaluation of entity linking systems
especially challenging. The main research focus often lies in the disambiguation
component, which is the heart of the entity linking process and lends itself to
creative algorithmic solutions. However, disambiguation effectiveness is largely
influenced by the preceding steps. The fact that improvements are observed on
the end-to-end task does not necessarily mean that one disambiguation approach
is better than another; it might be a result of more effective mention detection,
candidate entity ranking, etc. In general, a fair comparison between two alternative
approaches for a given component of an entity linking system can only be made if
they share all other elements of the processing pipeline.

The first systematic investigation in this direction was performed by Hachey et al.
[32], who implemented and compared three systems: two of the early seminal entity
linking systems [2, 12] and the top performing system at TAC 2009 EL [82]. A
surprising finding of their study is that much of the variation between the studied
systems originates from candidate ranking and not from disambiguation.

Ceccarelli et al. [4] introduced Dexter,20 an open source framework for entity
linking, “where spotting, disambiguation and ranking are well separated and easy to
isolate in order to study their performance” [4]. Dexter implements TAGME [22],
Wikipedia Miner [61], and the collective linking approach of Han et al. [34].

Cornolti et al. [11] developed and made publicly available the BAT-Framework21

for comparing publicly available entity annotation systems, namely: AIDA [37],
Illinois Wikifier [68], TAGME [22], Wikipedia Miner [61], and DBpedia Spot-
light [57]. These systems are evaluated on a number of test collections correspond-
ing to different document genres (news, web pages, and tweets). Linking is done
against Wikipedia. Building on top of the BAT-Framework, Usbeck et al. [81]
introduced GERBIL,22 an open-source web-based platform for comparing entity
annotation systems. GERBIL extends the BAT-Framework by being able to link
to any knowledge repository, not only to Wikipedia. It also includes additional
evaluation measures (e.g., for dealing with NIL annotations). Any annotation
service can easily be benchmarked by providing a URL to a REST interface that
conforms to a given protocol specification. Finally, GERBIL provides persistent
URLs for experimental settings, thereby allowing for reproducibility and archival
of experimental results.

19http://web-ngram.research.microsoft.com/erd2014/.
20http://dexter.isti.cnr.it.
21http://acube.di.unipi.it/bat-framework/.
22http://gerbil.aksw.org.

http://web-ngram.research.microsoft.com/erd2014/
http://dexter.isti.cnr.it
http://acube.di.unipi.it/bat-framework/
http://gerbil.aksw.org

180 5 Entity Linking

5.9 Resources

Section 5.7 has introduced entity linking systems that are made publicly available as
open source and/or are exposed as a web service (cf. Table 5.5). With these, anyone
can annotate documents with entities from a given catalog. We have also discussed
benchmarking platforms and test collections in Sect. 5.8. These are essential for
those that wish to develop and evaluate their own entity linking system and compare
it against existing solutions. This section presents additional resources that may
prove useful when building/improving an entity linking system. It could, however,
also be the case that one’s interest lies not in the entity linking process itself, but
rather in the resulting annotations. In Sect. 5.9.2, we present a large-scale web crawl
that has been annotated with entities; this resource can be particularly of use for
those that are merely “users” of entity annotations and wish to utilize them in
downstream processing for some other task.

5.9.1 A Cross-Lingual Dictionary for English Wikipedia
Concepts

Recall that a key source of entity surface forms is anchor texts from intra-Wikipedia
links (cf. Sect. 5.4.1). The same idea could be extended to inter-Wikipedia links,
by considering non-Wikipedia web pages that link to Wikipedia articles. The
resource constructed by Spitkovsky and Chang [76] (Google) does exactly this. In
addition, they also collect links that point to non-English versions of a given English
Wikipedia article. (Notice that the mappings are to all Wikipedia articles, thus there
is no distinction made between concepts and entities.) The end result is a cross-
lingual surface form dictionary, with names of concepts and entities on one side and
Wikipedia articles on the other. The dictionary also contains statistical information,
including raw counts and mapping probabilities (i.e., commonness scores). This
resource is of great value for the reason that it would be difficult to reconstruct
without having access to a comprehensive web crawl. See Table 5.7 for an excerpt.

5.9.2 Freebase Annotations of the ClueWeb Corpora

ClueWeb09 and ClueWeb12 are large-scale web crawls that we discussed earlier
in this book (see Sect. 2.1.1). Researchers from Google annotated the English-
language web pages from these corpora with entities from the Freebase knowledge

5.10 Summary 181

Table 5.7 Excerpt from the dictionary entries matching the surface form (s) “Hank Williams”
from the Cross-Lingual Dictionary for English Wikipedia Concepts [76]

Entity (e) P (e|s)
Hank Williams 0.990125

Your Cheatin’ Heart 0.006615

Hank Williams, Jr. 0.001629

I 0.000479

Stars & Hank Forever: The American Composers Series 0.000287

I’m So Lonesome I Could Cry 0.000191

I Saw the Light (Hank Williams song) 0.000191

Drifting Cowboys 0.000095

Half as Much 0.000095

Hank Williams (Clickradio CEO) 0.000095

Table 5.8 Excerpt from the Freebase Annotations of the ClueWeb Corpora (FACC)

Mention Byte offsets Entity (e) P (e|m,d) P (e|d)

PDF 21089, 21092 /m/0600q 0.997636 0.000066

FDA 21303, 21306 /m/032mx 0.999825 0.000571

Food and Drug Administration 21312, 21340 /m/032mx 0.999825 0.000571

base [25], and made these annotations publicly available.23,24 The system that
was used for generating the annotations is proprietary, and as such there is no
information disclosed about the underlying algorithm and techniques. It is known,
however, that the annotations strove for high precision (which, by necessity, is at the
expense of recall) and are of generally high quality. Table 5.8 shows a small excerpt
with the annotations created for one of the ClueWeb12 web pages. It can be seen
from the table that in addition to the mention (given both as a text span and as byte
offsets in the file) and the linked entity, there are two types of confidence scores.
The first one (P(e|m,d)) is the posterior of an entity given both the mention and
the context, while the second one (P(e|d)) is the posterior that ignores the mention
string and only considers the context of the mention.

5.10 Summary

This chapter has dealt with the task of entity linking: annotating an input text
with entity identifiers from a reference knowledge repository. The canonical entity
linking approach consists of a pipeline of three components. The first component,

23http://lemurproject.org/clueweb09/.
24http://lemurproject.org/clueweb12/.

http://lemurproject.org/clueweb09/
http://lemurproject.org/clueweb12/

182 5 Entity Linking

mention detection, is responsible for identifying text spans that may refer to an
entity. This is commonly performed using an extensive dictionary of entity surface
forms provided in the reference knowledge repository (and possibly augmented with
additional name variants from external sources). The second component, candidate
selection, restricts the set of candidate entities for each mention, by eliminating
those that are unlikely to be good link targets for that mention (even though one
of their surface forms matches the mention). The third component, disambiguation,
selects a single entity (or none) from the set of candidate entities identified for each
mention. For effective disambiguation, one needs to consider the local compatibility
between the linked entity and its context as well as the coherence between the
linked entity and all other entities linked in the document. Two main families of
approaches have been delineated, based on whether they perform disambiguation
for each mention individually in a single pass or for all entity mentions collectively,
using some iterative process. The former is more efficient (an order of magnitude
faster), while the latter is more accurate (up to 25% higher F1-score, depending on
the particular dataset).

A direct comparison of entity linking systems, based on the reported evaluation
scores, is often problematic, due to differences in task definition and evaluation
methodology. Further, it is typically difficult to untangle how much each pipeline
component has contributed to the observed differences. There are standardization
efforts addressing these issues, such as GERBIL [81], by providing an experimental
platform for evaluation and diagnostics on reference datasets. According to the
results in [81], the best systems reach, depending on the dataset, an F1-score of 0.9.

We have stated that the task of entity linking is one part of the bridge between
unstructured and unstructured data. So, how does entity linking enable the task of
knowledge base population? Once a document has been found to mention a given
entity, that document may be checked to possibly discover new facts with which
the knowledge base entry of that entity may be updated. The practical details of
this approach will be discussed in the next chapter. Entity annotations can also be
utilized to improve document retrieval, as we shall see in Chap. 8.

5.11 Further Reading

Nadeau and Sekine [64] survey the first 15 years of named entity recognition,
from 1991 to 2006. An excellent recent survey about entity linking by Shen et al.
[72] covers much of the same material as this chapter, with some further pointers.
Entity linking is still a very active area of research, with new approaches springing
up. Due to space considerations, we did not include approaches based on topic
modeling (i.e., LDA-inspired models), see, e.g., [33, 38, 48, 67]. Most recently,
semantic embeddings and neural models are gaining popularity in this domain
too [24, 28, 77, 87]. Instead of relying on fully automatic techniques, Demartini et al.
[13] incorporate human intelligence in the entity linking process, by dynamically
generating micro-tasks on an online crowdsourcing platform.

References 183

Both entity linking and word sense disambiguation address the lexical ambiguity
of language; we have discussed the similarities and differences between the two
tasks in Sect. 5.1.2. Moro et al. [63] bring the two tasks to a common ground and
present a unified graph-based approach to entity linking and WSD. Motivated by the
interdependencies of entity annotation tasks, Durrett and Klein [15] develop a joint
model for coreference resolution, named entity recognition, and entity linking.

Finally, in this chapter we have concentrated entirely on a monolingual setting.
Cross-lingual entity linking is currently being investigated at the TAC Knowledge
Base Population track; for further details, we refer to the TAC proceedings.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Commun.
ACM 18(6), 333–340 (1975). doi: 10.1145/360825.360855

2. Bunescu, R., Paşca, M.: Using encyclopedic knowledge for named entity disambiguation.
In: Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, EACL ’06, pp. 9–16. Association for Computational Linguistics
(2006)

3. Carmel, D., Chang, M.W., Gabrilovich, E., Hsu, B.J.P., Wang, K.: ERD’14: Entity
recognition and disambiguation challenge. SIGIR Forum 48(2), 63–77 (2014). doi:
10.1145/2701583.2701591

4. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Dexter: An open source
framework for entity linking. In: Proceedings of the Sixth International Workshop on
Exploiting Semantic Annotations in Information Retrieval, ESAIR ’13, pp. 17–20. ACM
(2013a). doi: 10.1145/2513204.2513212

5. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Learning relatedness measures
for entity linking. In: Proceedings of the 22nd ACM International Conference on Conference
on Information & Knowledge Management, CIKM ’13, pp. 139–148. ACM (2013b). doi:
10.1145/2505515.2505711

6. Chakrabarti, K., Chaudhuri, S., Cheng, T., Xin, D.: A framework for robust discovery of
entity synonyms. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’12, pp. 1384–1392. ACM (2012). doi:
10.1145/2339530.2339743

7. Chaudhuri, S., Ganti, V., Xin, D.: Exploiting web search to generate synonyms for entities.
In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pp.
151–160. ACM (2009). doi: 10.1145/1526709.1526731

8. Cheng, T., Lauw, H.W., Paparizos, S.: Entity synonyms for structured web search. IEEE
Transactions on Knowledge and Data Engineering 24(10), 1862–1875 (2012). doi:
10.1109/TKDE.2011.168

9. Cheng, X., Roth, D.: Relational inference for wikification. In: Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1787–1796. Association
for Computational Linguistics (2013)

10. Cilibrasi, R.L., Vitanyi, P.M.B.: The Google similarity distance. IEEE Transactions on
Knowledge and Data Engineering 19(3), 370–383 (2007). doi: 10.1109/TKDE.2007.48

11. Cornolti, M., Ferragina, P., Ciaramita, M.: A framework for benchmarking entity-annotation
systems. In: Proceedings of the 22nd International Conference on World Wide Web, WWW
’13, pp. 249–260. ACM (2013). doi: 10.1145/2488388.2488411

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/2701583.2701591
https://doi.org/10.1145/2513204.2513212
https://doi.org/10.1145/2505515.2505711
https://doi.org/10.1145/2339530.2339743
https://doi.org/10.1145/1526709.1526731
https://doi.org/10.1109/TKDE.2011.168
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1145/2488388.2488411

184 5 Entity Linking

12. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, EMNLP-CoNLL ’07, pp. 708–716. Association
for Computational Linguistics (2007)

13. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: ZenCrowd: Leveraging probabilistic rea-
soning and crowdsourcing techniques for large-scale entity linking. In: Proceedings of the 21st
International Conference on World Wide Web, WWW ’12, pp. 469–478. ACM (2012). doi:
10.1145/2187836.2187900

14. Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation for knowledge
base population. In: Proceedings of the 23rd International Conference on Computational
Linguistics, COLING ’10, pp. 277–285. Association for Computational Linguistics (2010)

15. Durrett, G., Klein, D.: A joint model for entity analysis: Coreference, typing, and linking. In:
Transactions of the Association for Computational Linguistics, vol. 2, pp. 477–490 (2014)

16. Eckhardt, A., Hreško, J., Procházka, J., Smrf, O.: Entity linking based on the co-
occurrence graph and entity probability. In: Proceedings of the First International Workshop
on Entity Recognition and Disambiguation, ERD ’14, pp. 37–44. ACM (2014). doi:
10.1145/2633211.2634349

17. Ellis, J., Getman, J., Fore, D., Kuster, N., Song, Z., Bies, A., Strassel, S.M.: Overview of
linguistic resources for the TAC KBP 2015 evaluations: Methodologies and results. In:
Proceedings of the 2015 Text Analysis Conference, TAC ’15. NIST (2015)

18. Ellis, J., Getman, J., Mott, J., Li, X., Griffitt, K., Strassel, S.M., Wright, J.: Linguistic resources
for 2013 knowledge base population evaluations. In: Proceedings of the 2013 Text Analysis
Conference, TAC ’13. NIST (2013)

19. Ellis, J., Getman, J., Strassel, S.M.: Overview of linguistic resources for the TAC KBP 2014
evaluations: Planning, execution, and results. In: Proceedings of the 2014 Text Analysis
Conference, TAC ’14. NIST (2014)

20. Ellis, J., Li, X., Griffitt, K., Strassel, S.M., Wright, J.: Linguistic resources for 2012 knowledge
base population evaluations. In: Proceedings of the 2012 Text Analysis Conference, TAC ’12.
NIST (2012)

21. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with Wikipedia pages.
CoRR abs/1006.3 (2010a)

22. Ferragina, P., Scaiella, U.: TAGME: On-the-fly annotation of short text fragments (by
Wikipedia entities). In: Proceedings of the 19th ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’10, pp. 1625–1628. ACM (2010b). doi:
10.1145/1871437.1871689

23. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information
extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, ACL ’05, pp. 363–370. Association for Computational
Linguistics (2005). doi: 10.3115/1219840.1219885

24. Francis-Landau, M., Durrett, G., Klein, D.: Capturing semantic similarity for entity linking
with convolutional neural networks. In: Proceedings of the North American Association for
Computational Linguistics, NAACL ’16. Association for Computational Linguistics (2016)

25. Gabrilovich, E., Ringgaard, M., Subramanya, A.: FACC1: Freebase annotation of Clueweb
corpora, version 1. Tech. rep., Google, Inc. (2013)

26. Gale, W.A., Church, K.W., Yarowsky, D.: One sense per discourse. In: Proceedings of
the Workshop on Speech and Natural Language, HLT ’91, pp. 233–237. Association for
Computational Linguistics (1992). doi: 10.3115/1075527.1075579

27. Ganea, O.E., Ganea, M., Lucchi, A., Eickhoff, C., Hofmann, T.: Probabilistic bag-of-hyperlinks
model for entity linking. In: Proceedings of the 25th International Conference on World
Wide Web, WWW ’16, pp. 927–938. International World Wide Web Conferences Steering
Committee (2016). doi: 10.1145/2872427.2882988

28. Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural atten-
tion. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2619–2629. Association for Computational Linguistics (2017). doi:
10.18653/v1/D17-1277

https://doi.org/10.1145/2187836.2187900
https://doi.org/10.1145/2633211.2634349
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1075527.1075579
https://doi.org/10.1145/2872427.2882988
https://doi.org/10.18653/v1/D17-1277

References 185

29. Gattani, A., Lamba, D.S., Garera, N., Tiwari, M., Chai, X., Das, S., Subramaniam, S.,
Rajaraman, A., Harinarayan, V., Doan, A.: Entity extraction, linking, classification, and tagging
for social media: A Wikipedia-based approach. Proceedings of the VLDB Endowment 6(11),
1126–1137 (2013). doi: 10.14778/2536222.2536237

30. Guo, S., Chang, M.W., Kiciman, E.: To link or not to link? - A study on end-to-end tweet
entity linking. In: Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 1020–1030.
Association for Computational Linguistics (2013)

31. Guo, Z., Barbosa, D.: Robust entity linking via random walks. In: Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge Management,
CIKM ’14, pp. 499–508. ACM (2014). doi: 10.1145/2661829.2661887

32. Hachey, B., Radford, W., Nothman, J., Honnibal, M., Curran, J.R.: Evaluating entity linking
with Wikipedia. Artif. Intell. 194, 130–150 (2013). doi: 10.1016/j.artint.2012.04.005

33. Han, X., Sun, L.: An entity-topic model for entity linking. In: Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pp. 105–115. Association for Computational
Linguistics (2012)

34. Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: A graph-based method. In: Pro-
ceedings of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’11, pp. 765–774. ACM (2011). doi: 10.1145/2009916.2010019

35. Hasibi, F., Balog, K., Bratsberg, S.E.: On the reproducibility of the TAGME entity linking
system. In: Proceedings of the 38th European conference on Advances in Information
Retrieval, ECIR ’16, pp. 436–449. Springer (2016). doi: 10.1007/978-3-319-30671-1_32

36. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: Keyphrase overlap
relatedness for entity disambiguation. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pp. 545–554. ACM
(2012). doi: 10.1145/2396761.2396832

37. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater,
S., Weikum, G.: Robust disambiguation of named entities in text. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pp. 782–
792. Association for Computational Linguistics (2011)

38. Houlsby, N., Ciaramita, M.: A scalable Gibbs sampler for probabilistic entity linking. In:
Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 8416, pp. 335–
346. Springer (2014). doi: 10.1007/978-3-319-06028-6_28

39. Huang, W.C.D.: Evaluation framework for focused link discovery. Ph.D. thesis, Queensland
University of Technology (2011)

40. Huang, W.C.D., Geva, S., Trotman, A.: Overview of the INEX 2008 Link the Wiki track. In:
Geva, S., Kamps, J., Trotman, A. (eds.) Advances in Focused Retrieval, Lecture Notes in Com-
puter Science, vol. 5631, pp. 314–325. Springer (2009). doi: 10.1007/978-3-642-03761-0_32

41. Huang, W.C.D., Geva, S., Trotman, A.: Overview of the INEX 2009 Link the Wiki
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation,
Lecture Notes in Computer Science, vol. 6203, pp. 312–323. Springer (2010). doi:
10.1007/978-3-642-14556-8_31

42. Huang, W.C.D., Xu, Y., Trotman, A., Geva, S.: Overview of INEX 2007 Link the Wiki
track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) Focused Access to XML
Documents, Lecture Notes in Computer Science, vol. 4862, pp. 373–387. Springer (2008).
doi: 10.1007/978-3-540-85902-4_32

43. Ji, H., Grishman, R.: Knowledge base population: Successful approaches and challenges. In:
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11, pp. 1148–1158. Association for
Computational Linguistics (2011)

44. Ji, H., Grishman, R., Dang, H.T.: Overview of the TAC 2011 Knowledge Base Population
track. In: Proceedings of the 2010 Text Analysis Conference, TAC ’11. NIST (2011)

https://doi.org/10.14778/2536222.2536237
https://doi.org/10.1145/2661829.2661887
https://doi.org/10.1016/j.artint.2012.04.005
https://doi.org/10.1145/2009916.2010019
https://doi.org/10.1007/978-3-319-30671-1_32
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1007/978-3-319-06028-6_28
https://doi.org/10.1007/978-3-642-03761-0_32
https://doi.org/10.1007/978-3-642-14556-8_31
https://doi.org/10.1007/978-3-540-85902-4_32

186 5 Entity Linking

45. Ji, H., Grishman, R., Dang, H.T., Griffitt, K., Ellis, J.: Overview of the TAC 2010 Knowledge
Base Population track. In: Proceedings of the 2010 Text Analysis Conference, TAC ’10. NIST
(2010)

46. Ji, H., Nothman, J., Hachey, B.: Overview of TAC-KBP2014 Entity discovery and linking
tasks. In: Proceedings of the 2014 Text Analysis Conference, TAC ’14. NIST (2014)

47. Ji, H., Nothman, J., Hachey, B., Florian, R.: Overview of TAC-KBP2015 Tri-lingual entity
discovery and linking. In: Proceedings of the 2015 Text Analysis Conference, TAC ’15. NIST
(2015)

48. Kataria, S.S., Kumar, K.S., Rastogi, R.R., Sen, P., Sengamedu, S.H.: Entity disambiguation
with hierarchical topic models. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 1037–1045. ACM
(2011). doi: 10.1145/2020408.2020574

49. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation of Wikipedia
entities in web text. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09, pp. 457–466. ACM (2009). doi:
10.1145/1557019.1557073

50. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures
for named entity recognition. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
260–270. Association for Computational Linguistics (2016). doi: 10.18653/v1/N16-1030

51. Li, X., Ellis, J., Griffit, K., Strassel, S., Parker, R., Wright, J.: Linguistic resources for 2011
knowledge base population evaluation. In: Proceedings of the 2011 Text Analysis Conference,
TAC ’11. NIST (2011)

52. Li, Y., Wang, C., Han, F., Han, J., Roth, D., Yan, X.: Mining evidences for named entity
disambiguation. In: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pp. 1070–1078. ACM (2013). doi:
10.1145/2487575.2487681

53. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, AAAI ’12 (2012)

54. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1064–1074. Association for Computational Linguistics (2016).
doi: 10.18653/v1/P16-1101

55. McNamee, P., Dang, H.T.: Overview of the TAC 2009 Knowledge Base Population track. In:
Proceedings of the 2009 Text Analysis Conference, TAC ’09. NIST (2009)

56. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with Wikipedia. In: Bunescu, R.,
Gabrilovich, E., Mihalcea, R. (eds.) Proceedings of AAAI Workshop on Wikipedia and
Artificial Intelligence: An Evolving Synergy, vol. 1, pp. 19–24. AAAI, AAAI Press (2008)

57. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia Spotlight: Shedding light on the
web of documents. In: Proceedings of the 7th International Conference on Semantic Systems,
I-Semantics ’11, pp. 1–8 (2011)

58. Mihalcea, R., Csomai, A.: Wikify! - Linking documents to encyclopedic knowledge. In:
Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge
Management, CIKM ’07, pp. 233–242. ACM (2007). doi: 10.1145/1321440.1321475

59. Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38(11),
39–41 (1995). doi: 10.1145/219717.219748

60. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from
Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence:
An Evolving Synergy, pp. 25–30. AAAI Press (2008a)

61. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM ’08, pp. 509–518 (2008b)

62. Milne, D., Witten, I.H.: An open-source toolkit for mining Wikipedia. Artificial Intelligence
194, 222–239 (2013)

https://doi.org/10.1145/2020408.2020574
https://doi.org/10.1145/1557019.1557073
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1145/2487575.2487681
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.1145/1321440.1321475
https://doi.org/10.1145/219717.219748

References 187

63. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: A unified
approach. Transactions of the Association for Computational Linguistics 2, 231–244 (2014)

64. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae
Investigationes 30(1), 3–26 (2007). doi: 10.1075/li.30.1.03nad

65. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2), 10:1–10:69
(2009). doi: 10.1145/1459352.1459355

66. Ng, V.: Supervised noun phrase coreference research: The first fifteen years. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp.
1396–1411. Association for Computational Linguistics (2010)

67. Pilz, A., Paaß, G.: From names to entities using thematic context distance. In: Proceedings of
the 20th ACM International Conference on Information and Knowledge Management, CIKM
’11, pp. 857–866. ACM (2011). doi: 10.1145/2063576.2063700

68. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disam-
biguation to Wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pp. 1375–
1384. Association for Computational Linguistics (2011)

69. Sekine, S.: Extended named entity ontology with attribute information. In: Proceedings of the
Sixth International Language Resources and Evaluation, LREC ’08. ELRA (2008)

70. Sekine, S., Nobata, C.: Definition, dictionaries and tagger for extended named entity hierarchy.
In: Proceedings of the Fourth International Conference on Language Resources and Evaluation,
LREC ’04. ELRA (2004)

71. Sekine, S., Sudo, K., Nobata, C.: Extended named entity hierarchy. In: Third International
Conference on Language Resources and Evaluation, LREC ’02. ELRA (2002)

72. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015). doi:
10.1109/TKDE.2014.2327028

73. Shen, W., Wang, J., Luo, P., Wang, M.: LIEGE: link entities in web lists with knowledge base.
In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, pp. 1424–1432. ACM (2012). doi: 10.1145/2339530.2339753

74. Simpson, H., Strassel, S., Parker, R., McNamee, P.: Wikipedia and the web of confusable
entities: Experience from entity linking query creation for TAC 2009 Knowledge base
population. In: Proceedings of the Seventh International Conference on Language Resources
and Evaluation, LREC ’10. ELRA (2010)

75. Singh, S., Subramanya, A., Pereira, F., McCallum, A.: Large-scale cross-document coreference
using distributed inference and hierarchical models. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies
- Volume 1, HLT ’11, pp. 793–803. Association for Computational Linguistics (2011)

76. Spitkovsky, V.I., Chang, A.X.: A cross-lingual dictionary for English Wikipedia concepts. In:
Proceedings of the Eight International Conference on Language Resources and Evaluation,
LREC ’12. ELRA (2012)

77. Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling mention, context and entity
with neural networks for entity disambiguation. In: Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI’15, pp. 1333–1339. AAAI Press (2015)

78. Sundheim, B.M.: Overview of results of the MUC-6 evaluation. In: Message Understanding
Conference, MUC-6, pp. 13–31 (1995). doi: 10.3115/1072399.1072402

79. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applications. In:
Proceedings of the Sixth International Conference on Data Mining, ICDM ’06, pp. 613–622.
IEEE Computer Society (2006). doi: 10.1109/ICDM.2006.70

80. Trotman, A., Alexander, D., Geva, S.: Overview of the INEX 2010 Link the Wiki track. In:
Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds.) Comparative Evaluation of Focused
Retrieval, Lecture Notes in Computer Science, vol. 6932, pp. 241–249. Springer (2011). doi:
10.1007/978-3-642-23577-1_22

https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/2063576.2063700
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1145/2339530.2339753
https://doi.org/10.3115/1072399.1072402
https://doi.org/10.1109/ICDM.2006.70
https://doi.org/10.1007/978-3-642-23577-1_22

188 5 Entity Linking

81. Usbeck, R., Röder, M., Ngonga Ngomo, A.C., Baron, C., Both, A., Brümmer, M., Ceccarelli,
D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli,
R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann,
L.: GERBIL – general entity annotation benchmark framework. In: Proceedings of the
24th International World Wide Web Conference, WWW ’15. International World Wide Web
Conferences Steering Committee (2015). doi: 10.1145/2736277.2741626

82. Varma, V., Reddy, V.B., Kovelamudi, S., Bysani, P., Gsk, S., Kumar, N.K., B, K.R., Kumar,
K., Maganti, N.: IIIT Hyderabad at TAC 2009. In: Proceedings of the 2009 Text Analysis
Conference, TAC ’09. NIST (2009)

83. Yosef, M.A., Bauer, S., Hoffart, J., Spaniol, M., Weikum, G.: HYENA: Hierarchical type
classification for entity names. In: Proceedings of the 24th International Conference on
Computational Linguistics, COLING ’12, pp. 1361–1370. Association for Computational
Linguistics (2012)

84. Zhang, W., Sim, Y.C., Su, J., Tan, C.L.: Entity linking with effective acronym expansion,
instance selection and topic modeling. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume Three, IJCAI’11, pp. 1909–1914.
AAAI Press (2011). doi: 10.5591/978-1-57735-516-8/IJCAI11-319

85. Zheng, Z., Li, F., Huang, M., Zhu, X.: Learning to link entities with knowledge base. In:
Human Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, HLT ’10, pp. 483–491. Association for
Computational Linguistics (2010)

86. Zhou, G., Su, J.: Named entity recognition using an HMM-based chunk tagger. In: Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, pp. 473–
480. Association for Computational Linguistics (2002). doi: 10.3115/1073083.1073163

87. Zwicklbauer, S., Seifert, C., Granitzer, M.: Robust and collective entity disambiguation through
semantic embeddings. In: Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’16, pp. 425–434. ACM (2016).
doi: 10.1145/2911451.2911535

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2736277.2741626
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-319
https://doi.org/10.3115/1073083.1073163
https://doi.org/10.1145/2911451.2911535
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Populating Knowledge Bases

A knowledge base (KB) contains information about entities and their properties
(types, attributes, and relationships). In the case of large KBs, the number of
entities is in the millions and the number of facts is in the billions. Commonly,
this information is represented in the form of (sets of) subject-predicate-object
(SPO) triples, according to the RDF data model (cf. Sect. 2.3). KBs are utilized in a
broad variety of information access tasks, including entity retrieval (Chaps. 3 and 4),
entity linking (Chap. 5), and semantic search (Chaps. 7–9). Two main challenges
associated with knowledge bases are that (1) they are inherently incomplete (and
will always remain so, despite any effort), and (2) they need constant updating
over time as new facts and discoveries may turn the content outdated, inaccurate,
or incomplete.

Knowledge base population (KBP) refers to the task of discovering new facts
about entities from a large text corpus, and augmenting a KB with these facts. KBP
is a broad problem area, with solutions ranging from fully automated systems to
setups with a human content editor in the loop, who is in charge of any changes
made to the KB. Our interest in this chapter will be on the latter type of systems,
which “merely” provide assistance with the labor-intensive manual process.

Specifically, we will focus on a streaming setting, with the goal to discover and
extract new information about entities as it becomes available. This information
can then be used to augment an existing KB. This flavor of KBP has been termed
knowledge base acceleration (KBA) [27]. KBA systems “seek to help humans
expand knowledge bases [. . .] by automatically recommending edits based on
incoming content streams” [7].

There is a practical real-world motivation behind this particular problem for-
mulation. Many large knowledge repositories are maintained by a small workforce
of content editors. Due to the scarcity of human resources, “most entity profiles
lag far behind current events” [26]. For example, Frank et al. [27] show that the
median time elapsed between the publication dates of news articles that are cited
in Wikipedia articles of living people and the dates of the corresponding edits to

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_6

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_6&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_6

190 6 Populating Knowledge Bases

Fig. 6.1 Overview of knowledge base acceleration

Wikipedia is over a year. Thus, we wish to help editors stay on top of changes by
automatically identifying content (news articles, blog posts, etc.) that may imply
modifications to the KB entries of a certain set of entities of interest (i.e., entities
that a given editor is responsible for).

Accelerating the knowledge base entry of a given target entity entails two main
steps. The first is about identifying relevant documents that contain new facts about
that entity. In a streaming setting, the processing of new documents is performed in
batches, as they become available. (We note that the same techniques may be applied
in a static, i.e., non-streaming, setting as well.) We address this subtask in Sect. 6.2.
The second step concerns the extraction of facts from those documents. This is
restricted to a predefined set of entity properties, thus may be seen as the problem
of filling slots in the entity’s knowledge base entry. We focus on this subtask in
Sect. 6.3. Depending on the degree of automation, the human editor may use only
the first step and process the documents manually that were filtered by the KBA
system. Alternatively, she may operate with the extracted facts and—after reviewing
them—apply the recommended changes to the KB by a click of a mouse. Figure 6.1
illustrates the process.

Before discussing the two main components of KBA systems, we shall begin
in Sect. 6.1 with giving a brief overview of the broader problem area of extracting
structured information from unstructured data.

6.1 Harvesting Knowledge from Text 191

6.1 Harvesting Knowledge from Text

The broad goal of information extraction (IE) is to automatically extract structured
(factual) information from unstructured or semi-structured sources. While IE has
its roots in natural language processing, the topic of extracting structured data
now engages many different research communities, including those of information
retrieval and databases. There is a wide spectrum of potential input sources,
including web pages, news articles, social media and user-generated content
(blogs, tweets, reviews), corporate and medical reports, web tables, and search
queries, just to name a few. The spectrum of methods and techniques is similarly
broad, ranging from hand-written regular expressions to probabilistic graphical
models. Finally, the type of structure extracted extends from atomic units, such
as entities, types, attributes, and relationships to higher-order structures such as
lists, tables, and ontologies. For a general overview on IE, the reader is referred
to [38, 68].

The area of large-scale knowledge acquisition, i.e., extracting information related
to entities from large document corpora with the aim to build or extend a knowledge
base, has become a major research avenue over the past decade [14, 87]. There are
many dimensions along which approaches may be categorized. We highlight two
particular dimensions.

Closed vs. Open Information Extraction Traditional information extraction is
closed, in a sense that we wish to populate an existing knowledge base with
additional facts about entities, where all entities, types, and relationships already
have canonicalized (unique) identifiers assigned to them in the KB. That is,
we are not aiming to discover new entities, entity types, or relationship types,
but only instantiations of those in the form of new facts. This paradigm is
also referred to as ontology-based IE [71]. Open information extraction, on the
other hand, aims to discover new entities and new relationship types and extract
all instances of those. In other words, there is no pre-specified vocabulary, the
elements of facts are represented as textual phrases, which—at this stage—are not
linked to a knowledge base. For example, given the sentence “Born in Honolulu,
Hawaii, Obama is a US Citizen,” a closed IE system would represent the con-
tained information (using the entities and predicates from the DBpedia knowledge
base) as:1

<dbr:Barack Obama> <dbo:nationality> <dbr:United States>

<dbr:Barack Obama> <dbo:birthPlace> <dbr:Honolulu>

1We know (can infer) from the knowledge base that Honolulu is the state capital of Hawaii,
therefore it is not needed to add a third triple asserting the relationship between Obama and Hawaii.

192 6 Populating Knowledge Bases

Instead, an open IE system might extract the following two triples:

(Obama; is; US citizen)

(Obama; born in; Honolulu, Hawaii)

Non-targeted vs. Targeted Extraction Non-targeted (or unfocused) extraction
processes a data corpus (e.g., a collection of documents) in batch mode and extracts
“whatever facts it can find” [88]. In West et al. [88], it is referred to as the “push”
model. The Never-Ending Language Learner (NELL) project [49], which performs
continuous machine reading of the Web, provides one specific example of non-
targeted extraction. Targeted (or focused) extraction, on the other hand, refers to
extracting facts for specific entities (a.k.a. “slot filling”). In [88], it is referred to
as the “pull” paradigm. For example, West et al. [88] leverage question answering
techniques, and aim to learn the best set of queries to ask, to find missing entity
attributes.

The methods we will be discussing in this chapter fall under closed and targeted
information extraction. Specifically, our interest will be in filtering an incoming
stream of documents for information pertinent to a pre-defined set of entities, and
extracting values of specific properties of entities from those documents in order to
extend an existing knowledge base. Below, we briefly look at a number of other tasks
that fall within the general problem area of harvesting entity-related information
from text. These are loosely organized around entity types (Sect. 6.1.1), attributes
(Sect. 6.1.2), and relationships (Sect. 6.1.3). Note that we are not aiming for an in-
depth or exhaustive treatment of these topics here. Our goal is merely to give a
high-level overview of research in this area.

6.1.1 Class-Instance Acquisition

There is a large body of research on semantic class learning (a.k.a. hyponym extrac-
tion), which focuses on “is-A” (or “instanceOf”) relations between instances and
classes (hypernyms). In our case, instances are entities, while classes refer to entity
types (e.g., “country”) or semantic categories (e.g., “countries with nuclear power
plants”). We briefly review related work from two directions: (1) obtaining addi-
tional instances (entities) that belong to a given semantic class (entity type) and (2)
obtaining (additional) semantic classes (entity types) for a given instance (entity).

6.1.1.1 Obtaining Instances of Semantic Classes

Concept expansion is the problem of expanding a seed set of instances that belong to
the same semantic class with additional instances. Set expansion is a closely related

6.1 Harvesting Knowledge from Text 193

task, where the underlying semantic class is not defined explicitly via a textual label,
only implicitly through the seed set of examples. The inherent ambiguity of the
seeds makes set expansion a considerably harder task than concept expansion. Both
concept and set expansion are commonly cast as a ranking task: Given a set of seed
instances and (optionally) a class label, return a ranked list of instances that belong
to the same target class.

One particular application of class-instance acquisition techniques is to extend
tail types or categories of knowledge bases. We note that this is similar to the task
of similar entity search (using the class label as the keyword query), which we
have discussed in Sect. 4.5. However, since the overall goal here is KB expansion,
the ranking is performed over a different data source than the KB, such as web
documents [59] (often accessed via general-purpose web search engines [85, 86]),
HTML tables [82], HTML lists [33], search queries [57], or a combination of
multiple sources [61]. We note that many of the concept expansion approaches
concentrate on noun phrases as instances, which are not necessarily entities (e.g.,
“red,” “green,” and “blue” are instances of the concept “colors”). Moreover, even
when specifically entities are targeted, they may be identified only via their surface
forms (noun phrases), and not as unique identifiers. In that case, an additional
linking step is required to anchor them in a knowledge base [52]. When entities
are coming from a knowledge base, then the class-instance acquisition process may
incorporate additional semantic constraints, by considering entity properties in the
KB [77].

Regarding the size of the seed set, Pantel et al. [59] show that “only few seeds
(10–20) yield best performance and that adding more seeds beyond this does not on
average affect performance in a positive or negative way.” Vyas et al. [81] investigate
the impact that the composition of seed sets has on the quality of set expansions
and show that seed set composition can significantly affect expansion performance.
They further show that, in many cases, the seed sets produced by an average (i.e.,
not expert) editor are worse than randomly chosen seed sets. Finally, they propose
algorithms that can improve the quality of set expansion by removing certain entities
from the seed set. Inevitably, the lists generated by set expansion systems will
contain errors. Vyas and Pantel [80] propose semi-supervised techniques, which
require minimal annotation effort, to help editors clean the resulting expanded sets.

6.1.1.2 Obtaining Semantic Classes of Instances

Reversing the concept expansion task, we now take a particular instance as input
and seek to obtain semantic classes for that instance. In the context of knowledge
bases, this problem is known as entity typing: Given an entity as input, automatically
assign (additional) types to that entity from a type catalog. This task is addressed in
two flavors: when the entity already exists in the KB and when it does not.

We start with the task of assigning types to entities that are already in the
knowledge base. It is shown in [60] that, while seemingly a straightforward
approach, traditional reasoning cannot be used to tackle this problem, due to the

194 6 Populating Knowledge Bases

incompleteness and noisy nature of large-scale KBs. Gangemi et al. [30] extract
types for DBpedia entities, based on the corresponding natural language definitions
of those entities in Wikipedia (i.e., Wikipedia abstracts). Their approach relies on
a number of heuristics and makes heavy use of Wikipedia’s markup conventions.
A more general approach is to frame the type prediction task as a hierarchical
multi-label classification problem (“hierarchical because we assume the types to
be structured in a hierarchy, and it is a multilabel problem because instances are
allowed to have more than one type” [46]). Paulheim and Bizer [60] exploit links
between instances in the knowledge base as indicators for types, without resorting to
features specific to any particular KB. Melo et al. [46] present a top-down prediction
approach and employ local classifiers and local feature selection per node. “The
local training sets are created including the instances belonging to the target class
as positive examples and the instances belonging to its sibling classes as negative
examples” [46]. This method is shown to improve scalability without sacrificing
performance.

The other flavor of entity typing is when the entity is not present in the KB. This
is closely related to the task of identifying emerging or tail entities, i.e., entities that
are not (yet) prominent enough to be included in a human-curated knowledge base.
Often, a tail entity is informally defined as not being present in Wikipedia [43, 50,
52]. Fine-grained typing of entities has been long established as a subtask in named
entity recognition [25, 69] (cf. Sect. 5.1.1). These early works, however, are limited
to flat sets of several dozen types. It has been only more recently that entity typing
is performed against type systems of large-scale knowledge bases, i.e., hierarchical
type taxonomies with hundreds of types [43, 52, 92]. Lin et al. [43] introduce
the unlinkable noun phrase problem: Given a noun phrase that cannot be linked
to a knowledge base, determine whether it is an entity, and, if so, return its fine-
grained semantic types. To decide whether the noun phrase is an entity, they train
a classifier with features primarily derived from mentions of the noun phrase over
time in a timestamped corpus (specifically, the Google Books Ngram Corpus [47]).
In stage two, the semantic type of a noun phrase is predicted by (1) finding the
textual relations it occurs with, (2) finding linked entities that share the same
textual relations, and (3) propagating types from those linked entities. HYENA [92]
employs a multi-label classification approach, using a rich set of mention, part-of-
speech, and gazetteer features. The PEARL system [52] considers typed relational
patterns (learned by PATTY [53]) and the type signatures of patterns the new entity
occurs with (e.g., “〈singer〉 released 〈album〉” or “〈person〉 nominated for

〈award〉”). This is similar in spirit to Lin et al. [43], but the patterns in [43] are
not typed. Additionally, PEARL attempts to resolve inconsistencies among the
predicted types using integer linear programming. Mohapatra et al. [50] point out
the synergy between named entity linking and entity typing: “knowing the types
of unfamiliar entities helps disambiguate mentions, and words in mention contexts
help assign types to entities.” Mohapatra et al. [50] present a bootstrapping system
for solving the two tasks jointly.

6.1 Harvesting Knowledge from Text 195

6.1.2 Class-Attribute Acquisition

Another area of automatic knowledge acquisition concerns the discovery of relevant
attributes (and relationship types) of classes. For example, for the class “country,”
the set of attributes includes “capital city,” “population,” “currency,” etc. The task
is commonly formulated as a ranking problem: Given an input class label, return a
ranked list of attributes. Candidate attributes are generally obtained by employing
an instance-driven extraction strategy, i.e., by “inspecting the attributes of individual
instances from that class” [58], thereby enjoying access to substantially more input
data. We will look at attribute extraction for specific instances (entities) in Sect. 6.3.
Alternatively, attributes may be extracted by using only the class label, without the
set of instances, see, e.g., [78, 79].

A broad variety of data sources have been utilized, including web docu-
ments [78], web tables [12, 91], web search query logs [56, 58], and Wikipedia
category labels [54]. Methods for attribute extraction range from simple extraction
patterns [4] and term frequency statistics [58, 78] to probabilistic topic modeling
techniques [64].

6.1.3 Relation Extraction

Relation extraction refers to the task of extracting relationships between entities
from a data collection (usually, from documents). Relationships are generally
defined in the form of tuples, however, most relation extraction systems focus
on binary relationships between named entities; these take the form of subject-
predicate-object triples (e.g., “X marriedTo Y” or “X locatedIn Y”). Early
work has focused on pre-defined relationships between pairs of entities. Traditional
relation extraction benchmarking campaigns include the Message Understanding
Conference (MUC-7, template relations task [15]) and the Automatic Content
Extraction program (ACE, relation detection and characterization task [18]).
Relation extraction is naturally approached by learning a binary classifier, using
feature-based approaches [39, 96] or kernel methods [11, 95]. These supervised
models can achieve high accuracy, but they require lots of hand-labeled training
data. Moreover, they do not generalize to different (new) relationships.

To overcome these limitations, semi-supervised approaches, and in particular
boostrapping, have been proposed and gained attention. The idea behind bootstrap-
ping is to learn new extraction patterns by using previous instances extracted by the
system as training data. More specifically, the general bootstrapping algorithm, for
a given relationship, is as follows:

1. Take as input a small number of seed tuples (i.e., pairs of entities) that engage in
the required relationship.

2. Find occurrences of seed tuples in documents and extract contextual patterns.
3. Identify the best (top-k) patterns and add those to the pattern set.

196 6 Populating Knowledge Bases

Fig. 6.2 Bootstrapping for relation extraction

4. Find new instances of the relationship using the pattern set.
5. Add those instances to the tuple set and repeat from step 2.

The output is a set of tuples along with a set of patterns. Alternatively, the process
may also be initialized with a small set of golden seed patterns (extraction rules),
instead of the seed tuples [22] (and then start the bootstrapping process with step
4). See Fig. 6.2 for an illustration. Early examples of bootstrapping systems are
DIPRE [10], Snowball [2], and KnowItAll [22]. More recent approaches include
SOFIE [71] and NELL [14] . All these systems learn extractors for a predefined
set of relationship types. While they clearly need less labeled data than supervised
approaches, extending them to new relationships still requires seed data.

Distant supervision (also called weak supervision) uses a knowledge base
to provide a “training set of relations and entity pairs that participate in those
relations” [48]. Wu and Weld [89] applied this idea to learn relationships from
Wikipedia, by matching attributes from infoboxes to corresponding sentences
in the article. Others have used Freebase facts to train relational extractors on
Wikipedia [48] or on a news corpus [65]. According to the distant supervision
assumption, if two entities engage in a certain relationship, then any sentence
containing those two entities might express that relationship [48]. Or, in a stronger
form, “all sentences that mention these two entities express that relation” [65]. It
has been argued that this assumption is too strong, and various refinements have
been proposed [65, 76]. Riedel et al. [65] employ the following relaxation: “if
two entities participate in a relation, at least one sentence that mentions these
two entities might express that relation” [65], thereby casting the problem as a
form of multi-instance learning. Surdeanu et al. [76] assume that a mention of
two entities together expresses exactly one relationship, but the two entities might
be related with different predicates across different mentions. This corresponds
to a multi-instance multi-label learning setting. Distant supervision is shown
to be scalable [35]. However, the training data is noisy and does not contain
explicit negative examples. We further note that training data generation requires
high-quality entity linking. State-of-the-art systems, such as Google’s Knowledge
Vault [19] and DeepDive [70], employ distant supervision and probabilistically
combine results from multiple extractors.

6.2 Entity-Centric Document Filtering 197

Open information extraction is an alternative paradigm, pioneered by the Text-
Runner system [8], which employs self-supervision; training examples are generated
heuristically using a small set of extraction patterns. The idea was taken up
and developed further in a number of influential systems, including WOE [90],
ReVerb [24], R2A2 [23], OLLIE [44], and ClausIE [16]. Open IE methods are
domain-independent and very scalable but also highly susceptible to noise. Note that
unlike previous approaches, they do not use canonical names for relationships, i.e.,
are “schema-less.” To be able to use the extracted relationships for KB expansion,
the natural language relation phrases need to be aligned with (i.e., mapped to)
existing knowledge base predicates; see, e.g., [13].

All the above methods are based on the idea of two named entities appearing in
the same sentence. Some systems operate on the level of entity mentions (identified
by a named entity recognizer), while others ground entities in a knowledge base
(by performing entity linking). For the purpose of KBP, the latter one is more
convenient. Finally, while most systems operate on unstructured text, there are also
other sources that provide relational information, e.g., web tables [12, 42].

6.2 Entity-Centric Document Filtering

Document filtering is the task of identifying documents from a stream, from
which relevant information can be extracted. This problem dates back to the Topic
Detection and Tracking (TDT) track of the Text Retrieval Conference (TREC),
which focused on finding and following events in broadcast news stories [3]. In
this section, we are focusing on an entity-centric variant of the document filtering
task. Unlike traditional filter topics, which are defined by a set of keyword queries,
entities are described by (semi-)structured entries in a knowledge repository.

Definition 6.1 Entity-centric document filtering is the task of analyzing a
time-ordered stream of documents and assigning a score to each document
based on how relevant it is to a given target entity.

Consider the following scenario. A human content editor is responsible for the
maintenance of the entries of one or multiple entities in a knowledge repository,
e.g., Wikipedia. The filtering system monitors a stream of documents (news articles,
blog posts, tweets, etc.) and identifies those that contain novel information pertinent
to the target entities. Each document is assigned a (relevance) score; whenever the
editor checks the system, which may be several times a day or once a week, the
system presents a relevance-ordered list of documents that have been discovered
since the last time the system was checked. The editor reviews some or all of these
documents; the stopping criterion may be a score threshold or her time available.

198 6 Populating Knowledge Bases

Upon examining a document, the editor may decide to make changes to the KR
entry of a given target entity. That document will then serve as provenance, i.e., the
change made in the knowledge repository can be tracked back to this document as
the original source. For example, in Wikipedia, changes are substantiated by adding
a citation; the corresponding source is listed at the bottom of the article under the
“References” section.

An abstraction of the above scenario was studied at the Knowledge Base Accel-
eration track at TREC 2012–2014, termed as cumulative citation recommendation:
Filter a time-ordered corpus for documents that are highly relevant to a predefined
set of entities [27]. One particularly tricky aspect of this task—and many other IR
problems for that matter—is how to define relevance. At TREC KBA, it was initially
based on the notion of “citation worthiness,” i.e., whether a human editor would cite
that document in the Wikipedia article of the target entity. This was later refined by
requiring the presence of new information that would change an already up-to-date
KR entry, rendering that document “vital.” See Sect. 6.2.5.2 for details. We note
that the need for this type of filtering also arises in other domains besides KBA, for
instance, in social media, for business intelligence, crisis management, or celebrity
tracking [97].

One of the main challenges involved in the entity-centric filtering task is how
to distinguish between documents that are only tangentially relevant and those that
are vitally relevant to the entity. Commonly, this distinction is captured by training
supervised learning models, leveraging a rich set of signals as features, to replicate
human judgments.

The attentive reader might have noticed that we are talking about knowledge
repositories here, and not about knowledge bases. This is on purpose. For the
document filtering task, we are unconcerned whether knowledge is in semi-
structured or in structured format, since it is the human editor that needs to make
manual updates to the entity’s (KR or KB) entry.

6.2.1 Overview

Formally, the entity-centric filtering task is defined as follows. Let D be a time-
ordered document stream and e be a particular target entity. The entity-centric
filtering system is to assign a numerical score, score(d;e), to each document d ∈ D.

Figure 6.3 shows the canonical architecture for this task. For each document in
the stream, the processing starts with an entity detection step: Does the document
mention the target entity? (That is, for a single target entity. In the case of multiple

Fig. 6.3 Entity-centric document filtering architecture

6.2 Entity-Centric Document Filtering 199

Table 6.1 Notation used in
Sect. 6.2

Symbol Meaning

a Entity aspect (a ∈ A)

A Set of entity aspects

d Document (d ∈ D)

D Collection (stream) of documents

e Entity (e ∈ E)

h Time (measured in hours)

Le Set of entities e links to

Td Publication time of document d

Te Type of entity e

target entities, this step has to be performed for each entity.) If the answer is yes,
then, as a second step, the document needs to be scored do determine its relevance
(“citation-worthiness”) with respect to the target entity; otherwise, it is no longer of
interest (i.e., gets zero assigned as score).

The mention detection component is discussed in Sect. 6.2.2. For document
scoring, we present both unsupervised and supervised approaches in Sect. 6.2.3.
State-of-the-art systems employ supervised learning based on a rich array of
features; we present a selection of effective features in Sect. 6.2.4. Table 6.1
summarizes the notation used in this section.

6.2.2 Mention Detection

This step is responsible for determining whether a particular document contains a
mention of a given target entity. Since this operation needs to be performed for all
pairs of streaming documents and target entities, efficiency is paramount here. We
wish to obtain high recall, so as not to miss any document that is potentially of
interest. At the same time, we would also like to keep the number of false positives
low. Therefore, much as it was done for entity linking in Sect. 5.4, mention detection
relies on known surface forms of the target entity. We let Se denote the set of known
surface forms for entity e, where s ∈ Se is a particular surface form. By definition,
each entity has at least one canonical name, therefore Se �= ∅. With Se at hand,
determining whether the document mentions the entity is conceptually as simple as:

mentions(d,e) =
{

1, ∃ s ∈ Se : contains(d,s)

0, otherwise ,

where contains(d,s) denotes a case-insensitive string matching function that
searches for string s in d .

The only remaining issue concerns the construction of the set of surface forms.
For entities that already have an entry in the knowledge repository, this is readily

200 6 Populating Knowledge Bases

available. For example, Balog et al. [7] extract surface forms (aliases) from
DBpedia. For certain entity types, name variants may be generated automatically by
devising simple heuristics, e.g., using only the last names of people [7] or dropping
the type labels of business entities (“Inc.,” “Co.,” “Ltd.,” etc.). Finally, considering
the KBA problem setting, it is reasonable to assume that a human knowledge
engineer would be willing to manually expand the set of surface forms. This was
also done at TREC KBA 2013, where the oracle baseline system relied on a hand-
crafted list of entity surface forms [26].

6.2.3 Document Scoring

Next, we need to estimate score(d;e) for document d , which, as we know,
potentially contains the target entity e. For convenience, we shall assume that
this score is between 0 and 1.2 Further, we assume that, for each target entity,
a set of documents and corresponding (manually assigned) relevance labels are
made available as training data. We distinguish between non-relevant (R0) and
relevant documents, where relevance has two levels. Following the latest TREC
KBA terminology (cf. Sect. 6.2.5.2), we shall refer to the lower relevance level (R1)
as useful and the higher relevance level (R2) as vital.

It is worth pointing out that none of the document scoring techniques we will
discuss attempt to explicitly disambiguate the mentioned entities (i.e., no entity
linking is performed). The reason is that entity disambiguation requires the presence
of either a textual description or relationship information about the given entity (cf.
Sect. 5.6). In the KBA context, where target entities are often long-tail entities, this
information is not necessarily available (yet) in the knowledge repository.

6.2.3.1 Mention-Based Scoring

A simple baseline approach, which was employed at TREC KBA, is to assign a
score “based on the number of matches of tokens in the name” [28]. That is, the
longest observed mention of e in the document is considered, normalized by the
longest known surface form of e, thereby producing a score in (0,1]. Formally:

score(d;e) = max({ls : s ∈ Se,contains(d,s)})
max({ls ′ : s′ ∈ Se}) ,

where ls denotes the character length of surface form s.

2At TREC KBA, the score needs to be in the range (0,1000], but mapping to that scale is
straightforward.

6.2 Entity-Centric Document Filtering 201

Other simple mention-based scoring formulas may also be imagined, e.g., based
on the total number of occurrences of the entity in the document.

6.2.3.2 Boolean Queries

Efron et al. [21] perform filtering by developing highly accurate Boolean queries,
called sufficient queries, for each entity. A sufficient query is defined as a “Boolean
query with enough breadth and nuance to identify documents relevant to an entity
e without further analysis or estimation.” Essentially, the mention detection and
scoring steps are performed jointly, by using a single Boolean query per target
entity. Specifically, a sufficient query consists of two parts: (1) a constraint clause,
which is the surface form of the entity, and (2) a refinement clause, which
is a set of zero or more n-grams (bigrams in [21]), selected from the set of
relevant training documents. An example query, expressed using the Indri query
language, is

#band(#1(phyllis lambert) #syn(#1(canadian architect) #1(public

art))) ,

where #1 matches as an exact phrase, #band is a binary AND operator, and #syn

enumerates the elements of the refinement clause. That is, the document must
contain the name of the entity (constraint clause) and any of the n-grams that are
listed in the refinement clause.

The same idea may also be expressed in terms of our framework (cf. Fig. 6.3),
by viewing the constraint clause as the mention detection step, and the refinement
clause as a Boolean scoring mechanism that assigns either 0 or 1 as score.

6.2.3.3 Supervised Learning

The predominant approach to entity-centric filtering is to employ supervised
learning. The notion of citation-worthiness “is not a precise definition that can easily
be captured algorithmically” [7]. It is a combination of multiple factors that make a
document useful/vital. The idea, therefore, is to focus on capturing and extracting as
many of these contributing factors as possible, as features. Then, we let a machine
learning algorithm figure out how to best combine these signals based on a manually
labeled set of training documents. We shall discuss specific features in Sect. 6.2.4.
For now, our concern is the supervised learning part, i.e., what type of model we
want to train and how.

The entity-centric filtering task may be approached both as a classification
and as a ranking problem. In the former case, a binary decision is made,
where the classifier’s confidence may be translated into a relevance score.
In the latter case, relevance is directly predicted, and thresholding is left to
the end user, i.e., she decides when to stop in the ranked list. We look at
these two possibilities in more detail below. In terms of performance, ranking-
based approaches were found to perform better in [6]. Later studies, however,

202 6 Populating Knowledge Bases

have shown that it varies whether classification or ranking is more effective,
depending on the (sub-)set of features used and on the relevance criteria that are
targeted [31, 83].

Classification Balog et al. [7] propose two classification methods, referred to as 2-
step and 3-step classification approaches. The first step, in both cases, corresponds
to the mention detection phase, which may also be seen as a binary classification
decision (whether the document contains the target entity or not). This is then
followed by one or two additional binary classification steps. The 2-step approach
makes a single classification decision to decide whether the document is vital or not.
The 3-step approach first tries to separate non-relevant documents from relevant
ones (R0 vs. R1 or R2), and in a subsequent step distinguish between useful and
vital documents (R1 vs. R2). See Fig. 6.4 for an illustration. Notably, the same set
of features are used in all classification steps. The difference lies in how documents
get labeled as positive/negative instances during training. In 2-step classification,
non-relevant documents constitute the negative class, while vital documents are the
positive class; useful documents are not used so as not to “soften the distinction
between the two classes that we are trying to separate” [7]. In 3-step classification,
the “Relevant?” decision uses non-relevant and relevant documents as negative and
positive instances, respectively, while the “Vital?” decision uses useful and vital
documents as negatives and positives, respectively.

According to the experiments reported in [7], these two methods deliver very
similar performance, making the simpler 2-step approach the recommended choice.
We note that this stance may need to be revisited depending on the amount of
training data available.

Fig. 6.4 Multi-step classification approaches proposed in [7]. Each box represents a binary
classifier. The dashed box corresponds to the mention detection step

6.2 Entity-Centric Document Filtering 203

Learning-to-Rank Filtering may also be approached as a learning-to-rank prob-
lem: Estimate a numerical score for a document-entity pair. We refer back to
Sect. 3.3.3 for a crash course on learning-to-rank. It is simpler than classification-
based approaches in the sense that there is no additional mapping involved, i.e., the
target score directly corresponds to the relevance level. Balog and Ramampiaro [6]
compared pointwise, pairwise, and listwise learning-to-rank approaches and found
that the pointwise approach yielded the best performance.

Global vs. Entity-SpecificModels Another issue is whether to train a single global
model, which is used for all target entities, or a separate entity-specific model for
each entity. Commonly, the former option is selected [6, 7, 63, 83], as there is limited
training data available for any individual entity. Also, the global model generalizes
to previously unseen entities. Wang et al. [84] argue that “these models ignore the
distinctions between different entities and learn a set of fixed model parameters
for all entities, which leads [to] unsatisfactory performance when dealing with a
diverse entity set.” Therefore, they propose an entity-type-dependent discriminative
mixture model, which involves an intermediate latent layer to model each entity’s
distribution across entity types.

6.2.4 Features

We present a selection of features from [7, 63], organized into the following four
main groups:

• Document features estimate the “citation worthiness” of the document, indepen-
dent of the target entity.

• Entity features capture characteristics of the target entity, based on its entry in the
knowledge repository.

• Document-entity features express the relation between a particular document and
the target entity.

• Temporal features model events happening around the target entity.

We discuss each feature group in turn. Table 6.2 provides a summary. We note
that these features may be used both with binary classification and learning-to-rank
approaches (cf. Sect. 6.2.3.3).

6.2.4.1 Document Features

Simple document features include various measurements of length, the document’s
source, and its language [7]. Reinanda et al. [63] consider several intrinsic character-
istics of a document to help identify vital documents. In particular: informativeness,
entity-saliency, and timeliness.

204 6 Populating Knowledge Bases

Table 6.2 Overview of features for the entity-centric document filtering task

Group Feature Description Src. Val.

Document features

lfd
Length of doc. field f (title, body, anchors) S N

len(d) Length of d in number of chunks or sentences S N

src(d) Document source (news, social, linking, etc.) S C

lang(d) Whether the document’s language is English S B

aspectSim(d,a) Similarity between d and aspect a S, KR N

numEntities(d) Number of unique entities mentioned in d S N

numMentions(d) Total number of entity mentions in d S N

timeMatchY(d) Number of temporal expressions matching the S N

document’s creation year

timeMatchYM(d) Number of temporal expressions matching the S N

document’s creation year and month

timeMatchYMD(d) Number of temporal expressions matching the S N

document’s creation year, month, and day

Entity features

Te Type of the entity (PER, ORG, etc.) KR C

le Length of the entity’s description KR N

|Le| Number of related entities KR N

Document-entity features

n(fd,e) Number of mentions of e in document field f S N

firstPos(d,e) Term position of the first mention of e in d S N

firstPosNorm(d,e) firstPos(d,e) normalized by the document length S N

lastPos(d,e) Term position of the last mention of e in d S N

lastPosNorm(d,e) lastPos(d,e) normalized by the document length S N

spread(d,e) Spread (distance between first and last mentions) S N

spreadNorm(d,e) spread(d,e) normalized by the document length S N

numSentences(d,e) Number of sentences mentioning e S N

mentionFrac(d,e) Mentions of e divided by all entity mentions in d S N

simJac(d,e) Jaccard similarity between d and e S, KR N

simcos(d,e) Cosine similarity between d and e S, KR N

simKL(d,e) KL divergence between d and e S, KR N

numRelated(fd,e) Number of unique related entities mentioned in

document field f S N

Temporal features

sv(e) Average hourly stream volume S N

svh(e) Stream volume over the past h hours S N

Δsvh(e) Change in stream volume over the past h hours S N

isBurstSvh(e) Whether there is a burst in stream volume S B

wpv(e) Average hourly Wikipedia page views U N

(continued)

6.2 Entity-Centric Document Filtering 205

Table 6.2 (continued)

Group Feature Description Src. Val.

wpvh(e) Wikipedia page views volume in the past h hours U N

Δwpvh(e) Change in Wikipedia page views volume U N

isBurstWpvh(e) Whether there is a burst in Wikipedia page views U B

burstValue(d,e) Document’s burst value, based on Wikipedia page U N

views

Source can be stream (S), knowledge repository (KR), or usage data (U). Value can be numerical
(N), categorical (C), or Boolean (B)

The intuition behind informativeness features is that a document that is rich in
facts is more likely to be vital. One way to measure this is to consider the aspects of
entities that are mentioned in the document, where aspects are defined as “key pieces
of information with respect to an entity” [63]. The set of aspects A is constructed by
taking the top-k (k = 50 in [63]) most common section headings (with stopwords
removed) of Wikipedia articles belonging to a set of categories of interest (here,
Person or Location). Then, a textual representation of each entity aspect a ∈ A is
constructed by aggregating the contents of those sections. Finally, the cosine similar-
ity between bag-of-words representations of document d and aspect a are computed:

aspectSim(d,a) = cos(d,a) .

Reinanda et al. [63] also consider relations from both open and closed information
extraction systems, but those are reported to perform worse than Wikipedia aspects.

Entity-saliency refers to the notion of how prominent the target entity is in
the document, by considering other entities mentioned in the document. Here,
we only consider two simple features of this kind that do not depend on the
specific target entity. One is the number of unique entities mentioned in the
document (numEntities(d)), the other is the total number of entity mentions in d

(numMentions(d)).
The timeliness of a document captures “how timely a piece of information

mentioned in the document is” [63]. It is measured by comparing the document’s
creation/publication time, Td (which is obtained from document metadata), with the
temporal expressions present in the document. Specifically, the following equation
counts the occurrences of the year of the document’s creation time appearing in d:

timeMatchY(d) = count(year(Td),d) .

Similarly, (year and month) and (year, month, and date) expressions of Td are also
counted:

timeMatchYM(d) = count(yearmonth(Td),d) ,

timeMatchYMD(d) = count(yearmonthday(Td),d) .

206 6 Populating Knowledge Bases

6.2.4.2 Entity Features

These features capture our knowledge about a given target entity e, including (1) the
type of the entity (Te)3; (2) the length of the entity’s description in the knowledge
repository (le); and (3) the number of related entities |Le|, where Le is defined as the
set of entities that e links to [7]. Alternative interpretations of Le are also possible.

6.2.4.3 Document-Entity Features

Document-entity features are meant to express how vital a given document d is
for the target entity e. We assume a fielded document representation, which would
typically include title, body, and anchors fields. Several features are developed in [7]
to characterize the occurrences of the target entity in the document, including the
total number of mentions in each document field, the first and last position of
mentions in the document’s body, and the spread between the first and last mentions.
To measure entity-salience, Reinanda et al. [63] calculate the number of sentences
mentioning the target entity and the fraction of the target entity’s mentions with
respect to all entity mentions in the document. All these features may be computed
for both full and partial entity name matches (i.e., requiring the detection of one of
the surface forms for a full match and considering only the last names of people for
a partial match) [7].

A second group of features looks at the similarity between the term-based
representations of the target entity (i.e., the entity’s description in the knowledge
repository, e.g., the Wikipedia article corresponding to the entity) and the document,
employing various similarity measures (cosine, Jaccard, or KL divergence) [7].
Finally, we may also take into consideration what other entities, related to e, are
mentioned in the document [7]. Formally:

numRelated(fd,e) =
∑

e′∈Le

1(n(fd,e
′)) ,

where Le is the set of related entities, and 1(n(fd,e
′)) is 1 if entity e′ is mentioned

in field f of document d , otherwise 0.

6.2.4.4 Temporal Features

Temporal features attempt “to capture if something is happening around the target
entity at a given point in time” [7]. The volume of mentions of the entity in the
streaming corpus offers one such temporal signal. Another—independent—signal
may be obtained from an usage log that indicates how often people searched for

3Unlike in other parts of the book, type here is not a set but is assumed to take a single value (PER,
ORG, LOC, etc.).

6.2 Entity-Centric Document Filtering 207

or looked at the given entity. For example, Balog et al. [7] leverage Wikipedia
page view statistics for that purpose. In both cases, the past h hours are observed
in a sliding windows manner (h = {1,2,3,6,12,24}), to detect changes or bursts.
Formally, let sv(e) denote the stream volume of entity e, i.e., the average number
of documents mentioning e per hour. This is computed over the training period and
serves as a measure of the general popularity of the entity. Further, svh(e) is the
number of documents mentioning e over the past h hours. The change relative to the
normal volume, over the past h hours, is expressed as:

Δsvh(e) = svh(e)

h× sv(e)
.

All these “raw” quantities, i.e., sv(e), svh(e), and Δsvh(e), are used as features.
In addition, Balog et al. [7] detect bursts by checking if Δsvh(e) is above a given
threshold τ , which they set to 2:

isBurstSvh(e) =
{

1, Δsvh(e) ≥ τ

0, otherwise .

For Wikipedia page views, the definitions follow analogously, using the page view
count instead of the number of documents mentioning the entity. Alternatively,
Wang et al. [83] define the burst value for each document-entity pair as follows:

burstValue(d,e) = N × wpvd(e,Td)
∑N

i=1 wpvd(e,i)
, (6.1)

where N is the total number of days covered by the stream corpus, wpvd(e,i) is the
number of page views of the Wikipedia page of entity e during the ith day of the
streaming corpus, and Td refers to the date when document d was published (Td ∈
[1..N]). We note that this formulation considers information “from the future” (i.e.,
beyond the given document’s publication date); this may be avoided by replacing N

with Td in Eq. (6.1).

6.2.5 Evaluation

We discuss the evaluation of entity-centric filtering systems as it was carried out at
the TREC 2012–2014 Knowledge Base Acceleration track.

6.2.5.1 Test Collections

For each edition of the TREC KBA track, a streaming test collection was developed.
Content from the 2012 corpus is included in the 2013 corpus. Similarly, the 2013
corpus is subsumed by the 2014 one. The document collection is composed of

208 6 Populating Knowledge Bases

Table 6.3 TREC KBA test collections for entity-centric document filtering

Name Time period Size #Docs #Target entities

Stream Corpus 2012 [27]a Oct 2011–Apr 2012 1.9TB 462.7M 29

Stream Corpus 2013 [26]b Oct 2011–Feb 2013 6.5TB 1B 141

Stream Corpus 2014 [28]c Oct 2011–Apr 2013 10.9TB 1.2B 109

Size is for compressed data
a http://trec-kba.org/kba-stream-corpus-2012.shtml
b http://trec-kba.org/kba-stream-corpus-2013.shtml
c http://trec-kba.org/kba-stream-corpus-2014.shtml

three main sources: news (global public news wires), social (blogs and forums),
and linking (content from an URL-shortening service). The 2013 and 2014 versions
include additional substreams of web content. The streaming corpus is divided into
hourly batches, allowing entities to evolve over time.

The 2014 corpus adds to the previous two versions not only in terms of
duration but also in terms of NLP tagging information, by deploying BBN’s
Serif NLP system [9]. The official corpus (listed in Table 6.3) is tagged
with the recognized named entities. An extended version (16.1 TB in size)
also contains within-document coreference resolution and dependency parsing
annotations. In both cases, annotations are available only for the (likely)
English documents. Furthermore, Google has released Freebase annotations
for the TREC KBA 2014 Stream Corpus (FAKBA1).4 A total of 9.4 billion
entity mentions are recognized and disambiguated in 394M documents.
The format is identical to that of the ClueWeb Freebase annotations, cf.
Sect. 5.9.2.

The set of target entities for 2012 consists of 27 people and 2 organizations from
Wikipedia. The 2013 set focuses on 14 inter-related communities of entities, a total
of 98 people, 19 organizations, and 24 facilities from Wikipedia and Twitter. The
2014 entities are primarily long-tail entities that lacked Wikipedia entries; 86 people,
16 organizations, and 7 facilities were hand-picked from within a given geographic
region (between Seattle and Vancouver).

6.2.5.2 Annotations

The annotation guidelines evolved over the years. Initially, human annotators
were given the following instructions: “Use the Wikipedia article to identify
(disambiguate) the entity, and then imagine forgetting all info in the Wikipedia
article and asking whether the text provides any information about the entity” [27].

4http://trec-kba.org/data/fakba1/.

http://trec-kba.org/kba-stream-corpus-2012.shtml
http://trec-kba.org/kba-stream-corpus-2013.shtml
http://trec-kba.org/kba-stream-corpus-2014.shtml
http://trec-kba.org/data/fakba1/

6.2 Entity-Centric Document Filtering 209

Documents were annotated along two dimensions: (1) whether it mentions the target
entity explicitly and (2) whether it is relevant. The annotation matrix is shown
in Fig. 6.5, where rows correspond to mentions and columns denote the level of
relevance. The relevance levels were defined as follows:

• Garbage: not relevant, e.g., spam.
• Neutral: not relevant, i.e., no information can be learned about the target entity.
• Relevant: relates indirectly to the target entity, e.g., discusses topics or events that

likely impact the entity.
• Central: relates directly to the target entity, i.e., the entity is a central figure in

the mentioned topics or events. The document would be cited in the Wikipedia
article of the entity.

For the 2013 edition, the instructions given to the assessors were revised, in order
to make a better distinction between the two highest relevance levels. The “central”
judgment was replaced by “vital,” reserving this rating to documents that would
trigger changes to an already up-to-date KR entry. The second highest rating
level was also renamed, from “relevant” to “useful,” to include documents that
are “citation-worthy as background information that might be used when writing
an initial dossier but do not present timely or ‘fresh’ changes to the entity” [26].
That is:

• Useful: contains citation-worthy background information that should be included
in the entity’s KR entry.

• Vital: presents timely information that would imply changes to an already up-to-
date KR entry.

According to Frank et al. [26], these changes “removed a large area of subjectivity
in the notion of ‘citation-worthiness”’ (as observed by the increased inter-annotator
agreement). However, deciding what to include in the entity’s KR entry and
what up-to-dateness means still involves subjective judgment. For less noteworthy
entities there seems to be increased subjectivity, hence lower inter-annotator
agreement [28].

Theoretically speaking, a document may be relevant, even if it does not mention
the target directly (e.g., through relations to other entities mentioned in the

Fig. 6.5 Document
annotation matrix from the
TREC KBA track. The goal is
to identify vital documents
(top right corner). The labels
in parentheses correspond to
the 2012 terminology

210 6 Populating Knowledge Bases

document). In practice, relevance without an explicit mention of the target entity
rarely happens. In 2014, the annotations were simplified by dropping the “mention”
dimension; the “useful” and “vital” ratings imply that the entity was mentioned in
the document.

Crucially, for all three editions of the TREC KBA track, the judgments were
performed pre-hoc, i.e., there might be relevant documents (true positives) that were
not seen by annotators. The recall of annotations is estimated to be over 90% [27].
Documents that are not primarily English were discarded. Furthermore, there is no
novelty requirement, i.e., all documents that report the same event within a given
timeframe are deemed citation-worthy. That timeframe is decided subjectively by
the assessor; generally, less than a week and more than an hour. Annotations for an
early portion of the stream are provided as training data.

6.2.5.3 Evaluation Methodology

Systems are required to process the stream corpus in chronological order, in
hourly batches, and assign a confidence score in (0,1000] to each citation-worthy
document. At any given point in time, systems may only access information
about entities from the past. Evaluation uses set-based measures: F1-measure
and scaled utility. See Eq. (5.10) for the definition of the F1-measure. Scaled
utility is a measure from general information filtering that measures a system’s
ability to accept relevant and reject non-relevant documents from a stream [66].
Formally,

SU = max(T11NU,MinNU)− MinNU

1 − MinNU
, (6.2)

where T11U is the linear utility, which gives a credit of 2 for a relevant document
retrieved (i.e., true positives) and a debit of 1 for a non-relevant document retrieved
(i.e., false positives):

T11U = 2 × TP− FP .

A normalized version is computed using:

T11NU = T11U

MaxU
,

where MaxU is the maximum possible utility:

MaxU = 2 × (TP+ FN) .

Finally, MinNU in Eq. (6.2) is a tunable parameter, set to −0.5.

6.2 Entity-Centric Document Filtering 211

Fig. 6.6 Scoring of documents for a given target entity, using a cutoff value of 400. Figure is based
on [6]

To be able to apply the above set-based measures, the output of the filtering
system needs to be divided into positive and negative sets (which are then compared
against the positive/negative classes defined in the ground truth). It is done by
employing a confidence threshold τ . Documents with a confidence score ≥ τ are
treated as positive instances, while all remaining documents are negatives. This idea
is illustrated in Fig. 6.6. At TREC KBA, a scoring tool sweeps the confidence cutoff
between 0 and 1000 in steps of 50. For each entity, the highest performing cutoff
value is chosen, then F1/SU scores are averaged over the set of all target entities
(i.e., macro-averaging is used). Alternatively, a single cutoff value may be applied
for all entities [6]. The strictness of evaluation is considered on two levels: (1) only
central/vital documents are accepted as positive, and (2) both relevant/useful and
central/vital documents are treated as positives.

6.2.5.4 Evaluation Methodology Revisited

The official TREC KBA evaluation methodology is time-agnostic. Even though
systems process the stream corpus in hourly batches, evaluation considers all
returned documents (above the threshold) as a single set, thereby ignoring the
streaming nature of the task. Intuitively, not all time batches (e.g., hourly periods)
are equally important; e.g., some might be high intensity burst periods, while others
hardly contain any relevant documents. Additionally, the cutoff threshold τ is a
free parameter; it remains an open issue how to set it in a way that it enables a
fair comparison between systems. Furthermore, the actual ranking of documents
within a given batch (which are above the cutoff threshold) is not taken into account.
Dietz et al. [17] present a time-aware evaluation framework, which is composed of
three main elements: (1) slicing the entire evaluation period into time batches, (2)
evaluating the performance of each batch using standard rank-based measures, (3)
aggregating the batch evaluation results into a single system-level score.

212 6 Populating Knowledge Bases

Fig. 6.7 Time-aware evaluation of document filtering systems proposed by Kenter et al. [40].
Systems A and B have the same average performance (dashed line), however, A degrades over
time while B improves. The solid straight line is the fitted trend line. Systems are compared in
terms of “estimated end-point performance” (the large dots)

Kenter et al. [40] argue that a crucial aspect of the document filtering task, which
sets it apart from other document classification problems, is how the performance of
a system changes over time. They propose to capture if a system improves, degrades,
or remains the same over time, by employing trend analysis. The idea is to measure
performance at regular time intervals, using any existing evaluation measure (either
set-based or rank-based). Then, by fitting a straight line to these data points, one can
estimate the expected performance of the system at the end of the evaluation period.
This “estimated end-point performance” can serve as the basis of comparison across
systems; see Fig. 6.7.

6.3 Slot Filling

Once documents that potentially contain new information about a given target entity
have been identified, the next step is to examine the contents of those documents for
new facts. The extracted facts can then be used to populate the knowledge base entry
of the target entity. (Notice the shift from a knowledge repository to a knowledge
base, as we shall now operate on the level of specific facts.) We look at one particular
variant of this task, which assumes that the set of predicates (“slots”) that are of
interest is provided.

Definition 6.2 Slot filling is the task of extracting the corresponding values
for a pre-defined set P of predicates, for a given target entity e, from a
previously identified set of documents De.

Stating the problem in terms of SPO triples, we are to find triples (e,p,o), where e is
the target entity, p ∈ P is one of the target predicates (slots), and the object value o is
to be extracted fromDe. The resulting triples (facts) can then be used to populate the

6.3 Slot Filling 213

Table 6.4 Entity attributes targeted at the TAC 2009 KBP slot filling task [45]

Entity type Attributes

Person alternate names; age; date and place of birth; date, place, and cause of
death;

national or ethnic origin; places of residence; spouses, children, parents,

siblings, and other familial relationships; schools attended; job titles;

employers; organizational memberships; religion; criminal charges

Organization alternate names; political or religious affiliation; top members/employees;

number of employees; members; member of; subsidiaries; parents;
founder; date founded;

date dissolved; location of headquarters; shareholders; website

Geo-political entity alternate names; capital; subsidiary organizations; top employees;

active political parties; when established; population; currency

KB. Note that, depending on the object’s value, a distinction can be made between
attributes (objects with a literal value) and relationships (where the object is another
entity). In this section, we shall assume that objects are strings (literals), hence we
are always targeting attributes. Consequently, we will refer to the predicates for
which values are to be found as attributes and to the corresponding object values as
slot values. These values may subsequently be linked within the knowledge base.
We also note that relationship extraction is typically separately addressed through a
dedicated set of techniques, which we have already surveyed in Sect. 6.1.3.

As an illustration, Table 6.4 lists the attributes that were targeted by the slot
filling task of the Knowledge Base Population (KBP) track at the 2009 Text Analysis
Conference (TAC). According to the categorization scheme presented in Sect. 6.1,
slot filling is a closed and targeted information extraction task. We are targeting
specific entities and are interested in a closed set of attributes.

6.3.1 Approaches

There are two main groups of approaches to slot filling: (1) pattern-based methods,
which extract and generalize lexical and syntactic patterns (semi-)automatically [41,
72, 93], and (2) supervised classification methods, which consider entities and
candidate slot values as instances and train a classifier through distant supervi-
sion [1, 67, 73]. Here, we will focus exclusively on the latter group, as it is more
relevant to our entity-oriented perspective.

Training data for slot filling consists of documents that are explicitly marked up
with slot values. The challenge is that such training datasets are restricted in size.
Thus, “traditional supervised learning, based directly on the training data, would
provide limited coverage” [36]. On the other hand, the facts that are already in the
knowledge base can be exploited to produce training examples [48].

214 6 Populating Knowledge Bases

Fig. 6.8 Slot filling architecture using distant supervision

Figure 6.8 shows the architecture of a typical slot filling system that involves
distant supervision [73, 75]. The steps of the training phase, for a given attribute
p ∈ P , are the following.

1. Finding sentences in the document collection that mention entities with already
existing values for attribute p in the KB. The slot value candidates are identified
in these sentences using an extended named entity recognizer. This extended
recognizer should be able to detect text spans that are possible values of the
targeted attribute and label those with a type (e.g., temporal expressions, job
titles, religion, etc.).

2. All sentences that contain an entity and its corresponding slot value from
the KB, are positive training examples. All other sentences, which contain a
candidate slot value with the matching type (e.g., a temporal expression) but
not with the correct slot value from the KB, are taken as negative training
examples.

3. A classifier is trained on entity and slot value candidate pairs. It can be a global
multi-class classifier for all attributes or multiple binary classifiers for each
individual attribute. Commonly, three main groups of features are used: (i)
information about the entity and the slot value candidate (e.g., terms and the
type of the slot value candidate as labeled by the extended NER); (ii) surface
features (e.g., terms surrounding the entity and the slot value candidate); (iii)
syntactic features (e.g., dependency path between the entity and the slot value
candidate) [75].

6.4 Summary 215

Applying the learned model involves the following steps:

1. Retrieving sentences that mention the target entity.
2. Extracting candidate slot values using the extended named entity recognizer.
3. Classifying the target entity and candidate slot value pairs according to the

learned model.
4. A final inference step decides what slot values to return as output. For example,

certain attributes can take only a single value (e.g., age or city of birth) while
others can take a list of values (e.g., parents or alternate names). If multiple
slot values are extracted for the same attribute, then those decisions need to be
merged. One can return the slot value with the highest overall score or the one
with the highest combined score. Additionally, a confidence threshold may be
applied; slot values below that threshold are discarded.

6.3.2 Evaluation

The slot filling task has been addressed at the Web People Search (WePS) evaluation
campaign, targeting only persons [5], and at the Knowledge Base Population track
of the Text Analysis Conference (TAC KBP), targeting persons, organizations, and
geo-political entities [37, 45, 74]. For details of the test collections, evaluation
methodology, and evaluation metrics, we refer to the overview papers of the
respective campaigns [5, 74].

Slot filling remains to be an extremely challenging task. According to the 2014
TAC KBP evaluation results, the best performing team achieved an F1-score of 0.36,
which is approximately at 52% of human annotator performance [74].

6.4 Summary

This chapter has addressed the topic of populating knowledge bases with new facts
about entities. We have approached this task using a two-step pipeline. The first
component, entity-centric document filtering, aims to identify documents, from
an incoming stream, that contain information that would trigger an update to a
given entity’s entry in the knowledge repository. The second component, slot filling,
focuses on extracting new facts about an entity from a given input document. More
specifically, for a pre-defined set of predicates, this component aims to find the
values corresponding to those predicates.

When it comes to making actual updates to a knowledge base, one could argue
that manual curation by humans is, and will remain, indispensable. Otherwise,
systems could enter into a vicious cycle of feeding themselves false information
that they themselves would be generating. The techniques presented in this chapter,
however, represent crucial tools to support knowledge engineers and to help them
perform their work effectively.

216 6 Populating Knowledge Bases

Knowledge bases are (some of) the core building blocks of next generation search
engines. As we shall see in Part III, they can be utilized, among other tasks, to help
understand users’ information needs, improve the ranking of documents, present
rich search results, aid users in formulating their queries, and recommend related
content.

6.5 Further Reading

The automatic updating and expansion of knowledge bases still presents a number
of challenges. A knowledge base can never be truly complete and up-to-date. In
reality, some information is changing so rapidly that it would be difficult (or hardly
meaningful) to materialize it in a knowledge base. Examples include movie sales,
stock prices, or chart positions of songs. Preda et al. [62] refer to it as active
knowledge, and propose to gather and integrate data from web services on the fly,
transparently to the user, as if it was already contained in the knowledge base.
In a recent study, Galárraga et al. [29] make the first steps toward predicting the
completeness of certain properties of objects in a KB.

Cold start knowledge base population refers to the ambitious goal of constructing
a KB from raw input data (e.g., a document collection). Cold start KBP encompasses
a number of subtasks, including the discovery of emerging entities [32, 34], the
clustering of entity mentions, relation extraction, and slot filling. Knowledge can
also be inferred from what is already in the knowledge graph, without resorting to
external sources, referred to as the problem of link prediction. For example, if we
know that “playerA playsFor teamX” and “playerB teamMates playerA,”
then “playerB playsFor teamX” may be inferred. We refer to Nickel et al. [55]
for an overview of approaches.

Another active area is concerned with the quality of data. Nakashole and Mitchell
[51] compute believability, i.e., the likelihood that a given statement is true. Dong
et al. [20] evaluate the trustworthiness of sources by the correctness of their factual
information. They show that trustworthiness is almost orthogonal to the popularity
of the source. For example, many websites with high PageRank scores are “gossip
sites,” and generally are considered less reliable. Conversely, some less popular
websites contain very accurate information. Zaveri et al. [94] present a survey of
data quality issues for Linked Data.

References

1. Adel, H., Roth, B., Schütze, H.: Comparing convolutional neural networks to traditional models
for slot filling. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL ’16, pp.
828–838. Association for Computational Linguistics (2016)

References 217

2. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: Proceedings of the Fifth ACM Conference on Digital Libraries, DL ’00, pp. 85–94. ACM
(2000). doi: 10.1145/336597.336644

3. Allan, J.: Topic detection and tracking: Event-based information organization. Kluwer
Academic Publishers (2002)

4. Almuhareb, A., Massimo, P.: Finding attributes in the web using a parser. In: Proceedings of
the Corpus Linguistics Conference (2005)

5. Artiles, J., Borthwick, A., Gonzalo, J., Sekine, S., Amigó, E.: Weps-3 evaluation campaign:
Overview of the web people search clustering and attribute extraction tasks. In: CLEF 2010
LABs and Workshops, Notebook Papers, 22–23 September 2010, Padua, Italy (2010)

6. Balog, K., Ramampiaro, H.: Cumulative citation recommendation: Classification vs. ranking.
In: Proceedings of the 36th international ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’13, pp. 941–944 (2013). doi: 10.1145/2484028.2484151

7. Balog, K., Ramampiaro, H., Takhirov, N., Nørvåg, K.: Multi-step classification approaches
to cumulative citation recommendation. In: Proceedings of the 10th Conference on Open
Research Areas in Information Retrieval, OAIR ’13, pp. 121–128 (2013)

8. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI’07, pp. 2670–2676. Morgan Kaufmann Publishers Inc. (2007)

9. Boschee, E., Weischedel, R., Zamanian, A.: Automatic information extraction. In: Proceedings
of the International Conference on Intelligence Analysis (2005)

10. Brin, S.: Extracting patterns and relations from the world wide web. In: Selected Papers from
the International Workshop on The World Wide Web and Databases, WebDB ’98, pp. 172–183.
Springer (1999)

11. Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In:
Proceedings of the Conference on Human Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pp. 724–731. Association for Computational
Linguistics (2005). doi: 10.3115/1220575.1220666

12. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: Exploring the power of
tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008). doi: 10.14778/1453856.1453916

13. Cai, Q., Yates, A.: Large-scale semantic parsing via schema matching and lexicon extension.
In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics,
ACL ’13, pp. 423–433. Association for Computational Linguistics (2013)

14. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an
architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth
Conference on Artificial Intelligence (AAAI 2010) (2010)

15. Chinchor, N.A.: Overview of MUC-7/MET-2. In: Proceedings of the 7th Message Understand-
ing Conference, MUC-7 (1998)

16. Del Corro, L., Gemulla, R.: Clausie: Clause-based open information extraction. In: Proceed-
ings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 355–366. ACM
(2013). doi: 10.1145/2488388.2488420

17. Dietz, L., Dalton, J., Balog, K.: Time-aware evaluation of cumulative citation recommendation
systems. In: SIGIR 2013 Workshop on Time-aware Information Access (TAIA2013) (2013)

18. Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., Weischedel, R.: The
automatic content extraction (ACE) program – tasks, data, and evaluation. In: Proceedings of
the Fourth International Conference on Language Resources and Evaluation, LREC ’04. ELRA
(2004)

19. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S.,
Zhang, W.: Knowledge Vault: A web-scale approach to probabilistic knowledge fusion. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pp. 601–610. ACM (2014). doi: 10.1145/2623330.2623623

20. Dong, X.L., Gabrilovich, E., Murphy, K., Dang, V., Horn, W., Lugaresi, C., Sun, S., Zhang, W.:
Knowledge-based trust: Estimating the trustworthiness of web sources. Proc. VLDB Endow.
8(9), 938–949 (2015). doi: 10.14778/2777598.2777603

https://doi.org/10.1145/336597.336644
https://doi.org/10.1145/2484028.2484151
https://doi.org/10.3115/1220575.1220666
https://doi.org/10.14778/1453856.1453916
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.14778/2777598.2777603

218 6 Populating Knowledge Bases

21. Efron, M., Willis, C., Sherman, G.: Learning sufficient queries for entity filtering. In: Proceed-
ings of the 37th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’14, pp. 1091–1094. ACM (2014). doi: 10.1145/2600428.2609517

22. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soderland, S.,
Weld, D.S., Yates, A.: Web-scale information extraction in knowitall: (preliminary results).
In: Proceedings of the 13th International Conference on World Wide Web, WWW ’04, pp.
100–110. ACM (2004). doi: 10.1145/988672.988687

23. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information
extraction: The second generation. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume One, IJCAI’11, pp. 3–10. AAAI Press (2011).
doi: 10.5591/978-1-57735-516-8/IJCAI11-012

24. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction.
In: Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLP ’11, pp. 1535–1545. Association for Computational Linguistics (2011)

25. Fleischman, M., Hovy, E.: Fine grained classification of named entities. In: Proceedings of
the 19th International Conference on Computational Linguistics - Volume 1, COLING ’02, pp.
1–7. Association for Computational Linguistics (2002). doi: 10.3115/1072228.1072358

26. Frank, J.R., Bauer, S.J., Kleiman-Weiner, M., Roberts, D.A., Tripuraneni, N., Zhang, C., Ré,
C., Voorhees, E.M., Soboroff, I.: Evaluating stream filtering for entity profile updates for TREC
2013. In: Proceedings of The Twenty-Second Text REtrieval Conference, TREC ’13 (2013)

27. Frank, J.R., Kleiman-Weiner, M., Roberts, D.A., Niu, F., Zhang, C., Ré, C., Soboroff, I.:
Building an entity-centric stream filtering test collection for TREC 2012. In: The Twenty-First
Text REtrieval Conference Proceedings, TREC ’12 (2012)

28. Frank, J.R., Kleiman-Weiner, M., Roberts, D.A., Voorhees, E.M., Soboroff, I.: Evaluating
stream filtering for entity profile updates in TREC 2012, 2013, and 2014. In: Proceedings
of The Twenty-Third Text REtrieval Conference, TREC ’14 (2014)

29. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in
knowledge bases. In: Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, WSDM ’17, pp. 375–383. ACM (2017). doi: 10.1145/3018661.3018739

30. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Auto-
matic typing of DBpedia entities. In: Proceedings of the 11th International Conference on The
Semantic Web, ISWC ’12, pp. 65–81. Springer (2012)

31. Gebremeskel, G.G., He, J., de Vries, A.P., Lin, J.J.: Cumulative citation recommendation: A
feature-aware comparison of approaches. In: 25th International Workshop on Database and
Expert Systems Applications, DEXA ’14, pp. 193–197 (2014)

32. Graus, D., Odijk, D., de Rijke, M.: The birth of collective memories: Analyzing emerging
entities in text streams. arXiv preprint arXiv:1701.04039 (2017)

33. He, Y., Xin, D.: SEISA: Set expansion by iterative similarity aggregation. In: Proceedings
of the 20th International Conference on World Wide Web, WWW ’11. ACM (2011). doi:
10.1145/1963405.1963467

34. Hoffart, J., Altun, Y., Weikum, G.: Discovering emerging entities with ambiguous names. In:
Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, pp. 385–
396. ACM (2014). doi: 10.1145/2566486.2568003

35. Hoffmann, R., Zhang, C., Weld, D.S.: Learning 5000 relational extractors. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp.
286–295. Association for Computational Linguistics (2010)

36. Ji, H., Grishman, R.: Knowledge base population: Successful approaches and challenges. In:
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11, pp. 1148–1158. Association for
Computational Linguistics (2011)

37. Ji, H., Grishman, R., Dang, H.T.: Overview of the TAC 2011 Knowledge Base Population
track. In: Proceedings of the 2010 Text Analysis Conference, TAC ’11. NIST (2011)

38. Jiang, J.: Information Extraction from Text, pp. 11–41. Springer (2012). doi:
10.1007/978-1-4614-3223-4_2

https://doi.org/10.1145/2600428.2609517
https://doi.org/10.1145/988672.988687
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-012
https://doi.org/10.3115/1072228.1072358
https://doi.org/10.1145/3018661.3018739
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/2566486.2568003
https://doi.org/10.1007/978-1-4614-3223-4_2

References 219

39. Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum entropy
models for extracting relations. In: Proceedings of the ACL 2004 on Interactive Poster and
Demonstration Sessions, ACLdemo ’04. Association for Computational Linguistics (2004).
doi: 10.3115/1219044.1219066

40. Kenter, T., Balog, K., de Rijke, M.: Evaluating document filtering systems over time. Inf.
Process. Manage. 51(6), 791–808 (2015). doi: 10.1016/j.ipm.2015.03.005

41. Li, Y., Chen, S., Zhou, Z., Yin, J., Luo, H., Hong, L., Xu, W., Chen, G., Guo, J.: PRIS at
TAC2012 KBP track. In: Text Analysis Conference, TAC ’12. NIST (2012)

42. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables using
entities, types and relationships. Proc. VLDB Endow. 3(1–2), 1338–1347 (2010). doi:
10.14778/1920841.1921005

43. Lin, T., Mausam, Etzioni, O.: No noun phrase left behind: Detecting and typing unlinkable
entities. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12,
pp. 893–903. Association for Computational Linguistics (2012)

44. Mausam, Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for
information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, pp. 523–534. Association for Computational Linguistics (2012)

45. McNamee, P., Dang, H.T., Simpson, H., Schone, P., Strassel, S.: An evaluation of technologies
for knowledge base population. In: Proceedings of the International Conference on Language
Resources and Evaluation, LREC ’10 (2010)

46. Melo, A., Paulheim, H., Völker, J.: Type prediction in RDF knowledge bases using hier-
archical multilabel classification. In: Proceedings of the 6th International Conference on
Web Intelligence, Mining and Semantics, WIMS ’16, pp. 14:1–14:10. ACM (2016). doi:
10.1145/2912845.2912861

47. Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., Team, T.G.B., Pickett, J.P.,
Holberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.:
Quantitative analysis of culture using millions of digitized books. Science (2010)

48. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without
labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2 - Volume 2, ACL ’09, pp. 1003–1011. Association for Computational Linguistics
(2009)

49. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Dalvi, B.,
Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N.,
Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X.,
Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI-15) (2015)

50. Mohapatra, H., Jain, S., Chakrabarti, S.: Joint bootstrapping of corpus annotations and entity
types. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’13, pp. 436–446. Association for Computational Linguistics (2013)

51. Nakashole, N., Mitchell, T.M.: Language-aware truth assessment of fact candidates. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
ACL ’14, pp. 1009–1019 (2014)

52. Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of emerging entities. In:
51st Annual Meeting of the Association for Computational Linguistics, ACL ’13, pp. 1488–
1497. ACL (2013)

53. Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy of relational patterns with
semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12,
pp. 1135–1145. Association for Computational Linguistics (2012)

https://doi.org/10.3115/1219044.1219066
https://doi.org/10.1016/j.ipm.2015.03.005
https://doi.org/10.14778/1920841.1921005
https://doi.org/10.1145/2912845.2912861

220 6 Populating Knowledge Bases

54. Nastase, V., Strube, M.: Decoding Wikipedia categories for knowledge acquisition. In:
Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 2, AAAI’08,
pp. 1219–1224. AAAI Press (2008)

55. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016). doi:
10.1109/JPROC.2015.2483592

56. Paşca, M.: Organizing and searching the World Wide Web of facts – step two: Harnessing the
wisdom of the crowds. In: Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, pp. 101–110. ACM (2007a). doi: 10.1145/1242572.1242587

57. Paşca, M.: Weakly-supervised discovery of named entities using web search queries. In:
Proceedings of the 16th ACM conference on Conference on information and knowledge
management, CIKM ’07, pp. 683–690. ACM (2007b). doi: 10.1145/1321440.1321536

58. Paşca, M., Van Durme, B.: What you seek is what you get: Extraction of class attributes from
query logs. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence,
IJCAI’07, pp. 2832–2837. Morgan Kaufmann Publishers Inc. (2007)

59. Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.M., Vyas, V.: Web-scale distributional
similarity and entity set expansion. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2 - Volume 2, EMNLP ’09, pp. 938–947.
Association for Computational Linguistics (2009)

60. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Proceedings of the 12th
International Semantic Web Conference - Part I, ISWC ’13, pp. 510–525. Springer (2013).
doi: 10.1007/978-3-642-41335-3_32

61. Pennacchiotti, M., Pantel, P.: Entity extraction via ensemble semantics. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume
1, EMNLP ’09, pp. 238–247. Association for Computational Linguistics (2009)

62. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.: Active
knowledge: Dynamically enriching RDF knowledge bases by web services. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pp. 399–410. ACM (2010). doi: 10.1145/1807167.1807212

63. Reinanda, R., Meij, E., de Rijke, M.: Document filtering for long-tail entities. In: Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management,
CIKM ’16, pp. 771–780. ACM (2016). doi: 10.1145/2983323.2983728

64. Reisinger, J., Paşca, M.: Latent variable models of concept-attribute attachment. In: Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL
’09, pp. 620–628. Association for Computational Linguistics (2009)

65. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled
text. In: Proceedings of the 2010 European Conference on Machine Learning and Knowledge
Discovery in Databases: Part III, ECML PKDD’10, pp. 148–163. Springer (2010)

66. Robertson, S., Soboroff, I.: The TREC 2002 Filtering track report. In: Proceedings of the
Eleventh Text Retrieval Conference, TREC ’02 (2002)

67. Roth, B., Barth, T., Wiegand, M., Singh, M., Klakow, D.: Effective slot filling based on shallow
distant supervision methods. In: Text Analysis Conference, TAC ’13. NIST (2013)

68. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3), 261–377
(2007). doi: 10.1561/1900000003

69. Sekine, S., Nobata, C.: Definition, dictionaries and tagger for extended named entity hierarchy.
In: Proceedings of the Fourth International Conference on Language Resources and Evaluation,
LREC ’04. ELRA (2004)

70. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge base
construction using deepdive. Proc. VLDB Endow. 8(11), 1310–1321 (2015). doi:
10.14778/2809974.2809991

71. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for information
extraction. In: Proceedings of the 18th International Conference on World Wide Web, WWW
’09, pp. 631–640. ACM (2009). doi: 10.1145/1526709.1526794

https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1145/1242572.1242587
https://doi.org/10.1145/1321440.1321536
https://doi.org/10.1007/978-3-642-41335-3_32
https://doi.org/10.1145/1807167.1807212
https://doi.org/10.1145/2983323.2983728
https://doi.org/10.1561/1900000003
https://doi.org/10.14778/2809974.2809991
https://doi.org/10.1145/1526709.1526794

References 221

72. Sun, A., Grishman, R., Xu, W., Min, B.: New York University 2011 system for KBP slot filling.
In: Text Analysis Conference, TAC ’11. NIST (2011)

73. Surdeanu, M., Gupta, S., Bauer, J., McClosky, D., Chang, A.X., Spitkovsky, V.I., Manning,
C.D.: Stanford’s distantly-supervised slot-filling system. In: Text Analysis Conference, TAC
’11. NIST (2011)

74. Surdeanu, M., Ji, H.: Overview of the English Slot Filling track at the TAC2014 Knowledge
Base Population evaluation. In: Text Analysis Conference, TAC ’14. NIST (2014)

75. Surdeanu, M., McClosky, D., Tibshirani, J., Bauer, J., Chang, A.X., Spitkovsky, V.I., Manning,
C.D.: A simple distant supervision approach for the TAC-KBP slot filling task. In: Text
Analysis Conference, TAC ’10. NIST (2010)

76. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning
for relation extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, pp. 455–465. Association for Computational Linguistics (2012)

77. Talukdar, P.P., Pereira, F.: Experiments in graph-based semi-supervised learning methods for
class-instance acquisition. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pp. 1473–1481. Association for Computational
Linguistics (2010)

78. Tokunaga, K., Kazama, J., Torisawa, K.: Automatic discovery of attribute words from web
documents. In: Proceedings of the Second International Joint Conference on Natural Language
Processing, IJCNLP ’05, pp. 106–118 (2005). doi: 10.1007/11562214_10

79. Van Durme, B., Qian, T., Schubert, L.: Class-driven attribute extraction. In: Proceedings of the
22nd International Conference on Computational Linguistics - Volume 1, COLING ’08, pp.
921–928. Association for Computational Linguistics (2008)

80. Vyas, V., Pantel, P.: Semi-automatic entity set refinement. In: Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, NAACL ’09, pp. 290–298. Association for Computational
Linguistics (2009)

81. Vyas, V., Pantel, P., Crestan, E.: Helping editors choose better seed sets for entity set expansion.
In: Proceedings of the 18th ACM Conference on Information and Knowledge Management,
CIKM ’09, pp. 225–234. ACM (2009). doi: 10.1145/1645953.1645984

82. Wang, C., Chakrabarti, K., He, Y., Ganjam, K., Chen, Z., Bernstein, P.A.: Concept expansion
using web tables. In: Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pp. 1198–1208. International World Wide Web Conferences Steering Committee
(2015a). doi: 10.1145/2736277.2741644

83. Wang, J., Song, D., Liao, L., Lin, C.Y.: BIT and MSRA at TREC KBA CCR track 2013. In:
Proceedings of The Twenty-Second Text REtrieval Conference, TREC ’13 (2013)

84. Wang, J., Song, D., Wang, Q., Zhang, Z., Si, L., Liao, L., Lin, C.Y.: An entity class-dependent
discriminative mixture model for cumulative citation recommendation. In: Proceedings of
the 38th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15, pp. 635–644. ACM (2015b). doi: 10.1145/2766462.2767698

85. Wang, R.C., Cohen, W.W.: Iterative set expansion of named entities using the web. In:
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM ’08,
pp. 1091–1096. IEEE Computer Society (2008). doi: 10.1109/ICDM.2008.145

86. Wang, R.C., Cohen, W.W.: Automatic set instance extraction using the web. In: Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09,
pp. 441–449. Association for Computational Linguistics (2009)

87. Weikum, G., Hoffart, J., Suchanek, F.: Ten years of knowledge harvesting: Lessons and
challenges. IEEE Data Eng. Bull. 39(3), 41–50 (2016)

88. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion
via search-based question answering. In: Proceedings of the 23rd International Conference on
World Wide Web, WWW ’14, pp. 515–526. ACM (2014). doi: 10.1145/2566486.2568032

https://doi.org/10.1007/11562214_10
https://doi.org/10.1145/1645953.1645984
https://doi.org/10.1145/2736277.2741644
https://doi.org/10.1145/2766462.2767698
https://doi.org/10.1109/ICDM.2008.145
https://doi.org/10.1145/2566486.2568032

222 6 Populating Knowledge Bases

89. Wu, F., Weld, D.S.: Autonomously semantifying Wikipedia. In: Proceedings of the Sixteenth
ACM Conference on Conference on Information and Knowledge Management, CIKM ’07, pp.
41–50. ACM (2007). doi: 10.1145/1321440.1321449

90. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp. 118–127.
Association for Computational Linguistics (2010)

91. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: Infogather: Entity augmentation and
attribute discovery by holistic matching with web tables. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, pp. 97–108. ACM
(2012). doi: 10.1145/2213836.2213848

92. Yosef, M.A., Bauer, S., Spaniol, J.H.M., Weikum, G.: HYENA: Hierarchical type classification
for entity names. In: Proceedings of COLING 2012, pp. 1361–1370 (2012)

93. Yu, D., Li, H., Cassidy, T., Li, Q., Huang, H., Chen, Z., Ji, H., Zhang, Y., Roth, D.: RPI-
BLENDER TAC-KBP2013 knowledge base population system. In: Text Analysis Conference,
TAC ’13. NIST (2013)

94. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for
linked data: A survey. Semantic Web 7(1), 63–93 (2016). doi: 10.3233/SW-150175

95. Zhao, S., Grishman, R.: Extracting relations with integrated information using kernel meth-
ods. In: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, pp. 419–426. Association for Computational Linguistics (2005). doi:
10.3115/1219840.1219892

96. Zhou, G., Su, J., Zhang, J., Zhang, M.: Exploring various knowledge in relation extrac-
tion. In: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, pp. 427–434. Association for Computational Linguistics (2005). doi:
10.3115/1219840.1219893

97. Zhou, M., Chang, K.C.C.: Entity-centric document filtering: Boosting feature mapping
through meta-features. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, CIKM ’13, pp. 119–128. ACM (2013). doi:
10.1145/2505515.2505683

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/1321440.1321449
https://doi.org/10.1145/2213836.2213848
https://doi.org/10.3233/SW-150175
https://doi.org/10.3115/1219840.1219892
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.1145/2505515.2505683
http://creativecommons.org/licenses/by/4.0/

Part III
Semantic Search

Semantic search is not a single method or approach but rather a collection of
techniques that, in combination, enable search engines to understand the concepts,
meaning, and intent behind the query that the user enters into the search box and
provide not only more accurate search results but also an overall improved search
experience. In keeping with our orientation toward entities, we will discuss three
specific themes under this broad umbrella. Chapter 7 is centered on the topic of
understanding the user’s information need. After all, it is quite hard to satisfy the
user unless we know what she is looking for. Next, in Chap. 8, we leverage entities
to improve on the classic task of ad hoc document retrieval, by going beyond
lexical term matching. Finally, in Chap. 9, we look at techniques that facilitate better
interaction between the user and the search system, by aiding the user in expressing
her information need, presenting rich search results, and suggesting related content
for further exploration. By addressing these broad themes with specific solutions
based on entities, we show how the concept of entities and the associated techniques
can enhance all user-facing elements of search engines.

Chapter 7
Understanding Information Needs

Understanding what the user is looking for is at the heart of delivering a quality
search experience. After all, it is rather difficult to serve good results, unless we can
comprehend the intent and meaning behind the user’s query. Query understanding is
the first step that takes place before the scoring of results. Its overall aim is to infer a
semantically enriched representation of the information need. This involves, among
others, classifying the query according to higher-level goals or intent, segmenting
it into parts that belong together, interpreting the query structure, recognizing
and disambiguating the mentioned entities, and determining if specific services or
verticals1 should be invoked. Such semantic analysis of queries has been a long-
standing research area in information retrieval. In Sect. 7.1, we give a brief overview
of IR approaches to query understanding.

In the rest of the chapter, we direct our focus of attention to representing infor-
mation needs with the help of structured knowledge repositories. The catchphrase
“things, not strings” was coined by Google when introducing their Knowledge
Graph.2 It aptly describes the current chapter’s focus: Capturing what the query
is about by automatically annotating it with entries from a knowledge repository.
These semantic annotations can then be utilized in downstream processing for result
ranking (see Chap. 4) and/or result presentation. Specifically, in Sect. 7.2, we seek
to identify the types or categories of entities that are targeted by the query. In
Sect. 7.3, we perform entity linking in queries, which is about recognizing specific
entity mentions and annotating them with unique identifiers from the underlying
knowledge repository. Additionally, we consider the case of unresolvable ambiguity,
when queries have multiple possible interpretations.

1A vertical is a specific segment of online content. Some of the most common verticals include
shopping, travel, job search, the automotive industry, medical information, and scholarly literature.
2https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html.

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_7

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_7&domain=pdf
https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://doi.org/10.1007/978-3-319-93935-3_7

226 7 Understanding Information Needs

Finally, in Sect. 7.4 we automatically generate query templates that can be used
to determine what vertical services to invoke (e.g., weather, travel, or jobs) as well
as the parameterization (attributes) of those services.

7.1 Semantic Query Analysis

The purpose of this section is to provide an overview of the range of tasks and
techniques that have been proposed for semantic query analysis. These methods all
aim to capture the underlying intent and meaning behind the user’s query. Each of
these techniques addresses query understanding from a specific angle, has its own
particular uses, and is often complementary to the other means of query analysis.
Query understanding is a vast area, one which would probably deserve a book on
its own. In this chapter, we will discuss in detail only a selection of query analysis
techniques, chosen for their relevance to an entity-oriented approach. In contrast,
this section is meant to help see those methods in a broader perspective.

In particular, we will look at three groups of approaches.

• Query classification is the task of automatically assigning a query to one
or multiple pre-defined categories.

• Query annotation is about generating semantic markup for a query.
• Query interpretation aims at determining the meaning of a query as a

whole, by finding out how the segmented and annotated parts of the query
relate to each other.

7.1.1 Query Classification

Query classification is the problem of automatically assigning a query to one or
multiple pre-defined categories, based on its intent or its topic.

7.1.1.1 Query Intent Classification

The first group of techniques aims to classify queries into categories based on the
underlying user intent. Jansen and Booth [38] define user intent as “the expression
of an affective, cognitive, or situational goal in an interaction with a Web search
engine.” When we talk about user intent, we are more concerned with how the goal
is expressed and what type of resources the user desires to fulfill her information
need than with the goal itself (which is something “external”) [38].

7.1 Semantic Query Analysis 227

In his seminal work, Broder [16] introduced a taxonomy of query intents for web
search, according to the following three main categories of user goals:

• Navigational, where the intent is to reach a particular site (“take me to X”).
• Informational, where the intent is to acquire information about a certain topic

(“find out more about X”).
• Transactional, where the intent is to perform some web-mediated activity

(purchase, sell, download, etc.).

Broder’s categorization is broadly accepted and is the most commonly used one.
Rose and Levinson [63] classify queries into informational, navigational, and
resource categories, with further finer-grained subcategories for informational and
resource queries. Jansen et al. [39] employ a three-level classification, based on
[16] and [63], and elaborate on how to operationalize each category. Lee et al. [43]
classify queries as navigational or informational using past user-click behavior and
anchor-link distribution as features.

There are many other ways to categorize user intent. For example, Dai et al.
[21] detect whether the query has a commercial intent by training a binary classifier,
using the content of search engine result pages (SERPs) and of the top ranked pages.
Ashkan and Clarke [4] use query-based features along with the content of SERPs
to classify queries along two independent dimensions: commercial/noncommercial
and navigational/informational. Zhou et al. [83] predict the vertical intent of queries,
such as image, video, recipe, news, answer, scholar, etc.; this is also related to the
problem of vertical selection in aggregated search [3]. There have been studies
on specific verticals, e.g., identifying queries with a question intent, which can
be successfully answered by a community question answering vertical [75], or
determining news intent, in order to integrate content from a news vertical into web
search results [22]. Yin and Shah [81] represent generic search intents, for a given
type of entity (e.g., musicians or cities), as intent phrases and organize them in a
tree. An intent phrase is a word or phrase that frequently co-occurs with entities of
the given type in queries. Phrases that represent the same intent are grouped together
in the same node of the tree (e.g., “songs” and “album” for musicians); sub-concepts
of that intent are represented in child nodes (e.g., “song lyrics,” “discography,” or
“hits”). Hu et al. [35] classify search intent by mapping the query onto Wikipedia
articles and categories, using random walks and explicit semantic analysis [25].

7.1.1.2 Query Topic Classification

User goals may also be captured in terms of topical categories, which may be
regarded as a multiclass categorization problem. The query topic classification task,
however, is considerably more difficult than other text classification problems, due
to data sparsity, i.e., the brevity of queries.

One landmark effort that inspired research in this area was the 2005 KDD Cup
competition. It presented the Internet user search query categorization challenge:
Classify 800,000 web queries into 67 predefined categories, organized in a two-

228 7 Understanding Information Needs

level hierarchy. For each query, participants may return a set of up to five categories
(the order is not important). Evaluation is performed in terms of precision, recall,
and F1-score. Participants were given only a very small set of 111 queries with
labeled categories, necessitating creative solutions. We refer to Li et al. [48] for an
overview. In a follow-up study to their winning solution, Shen et al. [68] present a
method that uses as intermediate taxonomy (the Open Directory Project, ODP3), as
a bridge connecting the target taxonomy with the queries to be classified. Another
key element of their solution is that they submit both search queries and category
labels to a web search engine to retrieve documents, in order to obtain a richer
representation for the queries. The same idea of issuing the given query against a
web search engine and then classifying the highest scoring documents is employed
by Gabrilovich et al. [24] for classifying queries onto a commercial taxonomy
(which is intended for web advertising). The main differences with [68] is that they
(1) build the query classifier directly for the target taxonomy, which is two mag-
nitudes larger (approx. 6000 nodes), and (2) focus on rare (“tail”) queries. Instead
of viewing it as a text categorization problem, Ullegaddi and Varma [76] approach
query topic classification as an IR problem and attempt to learn category rankings
for a query, using a set of term-based features. They also use ODP as an intermediate
taxonomy and utilize documents that are assigned to each category. Again, the query
is submitted against a web search engine, then the top-k highest weighted terms are
extracted from the highest ranked documents to enrich its representation.

A related task is that of classifying questions in community-based question
answering sites; we refer to Srba and Bielikova [70, Sect. 5.3] for an overview.
In Sect. 7.2, we discuss the problem of identifying the target types of entity-oriented
queries, with reference to a given type taxonomy.

7.1.2 Query Annotation

Query annotation is an umbrella term covering various techniques designed to
automatically generate semantic markup for search queries, which can contribute
to a better understanding of what the query is about. Query annotation includes
a number of tasks, such as phrase segmentation, part-of-speech and semantic
tagging, named entity recognition, abbreviation disambiguation [79], and stopword
and “stop structure” detection [37]. Many of these annotation tasks have been
studied by the databases and natural language processing communities as well.
Most approaches focus on a particular annotation task in isolation. However, given
that these annotations are often related, it is also possible to obtain them jointly by
combining several independent annotations [9, 29]. Below, we lay our attention on
two of the most important and widely studied query annotation tasks: segmentation
(structural annotations) and tagging (linguistic and semantic annotations). We shall
discuss entity annotations of queries in detail in Sect. 7.3.

3http://dmoz.org/.

http://dmoz.org/

7.1 Semantic Query Analysis 229

7.1.2.1 Query Segmentation

Query segmentation is the task of automatically grouping the terms of the query into
phrases. More precisely, a segmentation s for the query q consists of a sequence of
disjunct segments 〈s1, . . . ,sn〉, such that each si is a contiguous subsequence of q

and the concatenation of s1, . . . ,sn equals q . For example, the query “new york
travel guides” may be segmented as “[new york] [travel guides].”

One of the first approaches to web query segmentation is by Risvik et al. [62],
who segment queries based on connexity, which is defined as a product of the
segment’s frequency in a query log and the mutual information within the segment.
Pointwise mutual information, as a measure of word association, has been used in
many of the later studies as well, computed either on the term level [40] or on the
phrase level [36, 71], and is commonly used as a baseline. Bergsma and Wang [11]
employ a supervised learning approach, where a classification decision, whether to
segment or not, is made between each pair of tokens in the query. They use three
groups of features: context features (preceding and following tokens in the query,
if available), dependency features (POS tags), and statistical features (frequency
counts on the Web). Another important contribution of this work is a manually
annotated gold standard corpus (Bergsma-Wang-Corpus, BWC) comprising 500
queries sampled from the AOL query log dataset. BWC has been used as a standard
test collection for query segmentation in subsequent work [15, 30, 47, 71]. Rather
than using a supervised approach that requires training data, Tan and Peng [71]
suggest an unsupervised method that uses n-gram frequencies from a large web
corpus as well as from Wikipedia. Many other works adopt a similar rationale
for segmentation, e.g., Huang et al. [36] use web-scale n-gram language models,
while Mishra et al. [56] exploit n-gram frequencies from a large query log. Hagen
et al. [30] present a simple frequency-based method, relying only on web n-gram
frequencies and Wikipedia titles, that achieves comparable performance to state-
of-the-art approaches while being less complex and more robust. Further, Hagen
et al. [30] enrich the Bergsma-Wang-Corpus by means of crowdsourcing; they also
introduce the Webis Query Segmentation Corpus, which is a larger sample from
the AOL query log, consisting of 50k queries. Finally, there is a line of work on
segmenting queries based on retrieval results, the idea being that it is hard to make
a segmentation decision based on the query terms alone. Instead, one can bootstrap
segmentation decisions based on the document corpus, using the top retrieved
results [8] or snippets [15]. Note that these methods involve an extra retrieval round
for obtaining the segmentation.

Evaluating against manual annotations “implicitly assumes that a segmentation
technique that scores better against human annotations will also automatically lead
to better IR performance” [65]. Instead, Saha Roy et al. [65] propose a framework
for extrinsic evaluation of query segmentation. This involves assessing how well
the given segmentation performs on the end-to-end retrieval task, while treating the
retrieval algorithm as a black box. Their results confirm that segmentation indeed
benefits retrieval performance. Further, they find human annotations to be a good
proxy, yet “human notions of query segments may not be the best for maximizing

230 7 Understanding Information Needs

retrieval performance, and treating them as the gold standard limits the scope for
improvement for an algorithm” [65].

7.1.2.2 Query Tagging

It is possible to obtain semantically more meaningful segments than what is yielded
by query segmentation techniques. Query tagging (or semantic tagging) refers to the
process of annotating query terms with labels from a predefined label set. Part-of-
speech (POS) tagging is one of the basic techniques in natural language processing
to capture the meaning of text. The task is to label each word with a tag that describes
its grammatical role, such as noun (NN), verb (VB), adjective (JJ), etc. POS tags
may have different granularity; it is possible, e.g., to distinguish between singular
(NN) and plural (NNS) nouns or between regular (RB), comparative (RBR), and
superlative (RBS) adverbs. On regular text, POS tagging can be performed with high
accuracy; e.g., the Stanford POS tagger [74], one of the most widely used systems,
achieves 97% accuracy on the Penn Treebank-3 corpus [52]. Applied to short
queries, that tend to lack proper grammar, punctuation, or capitalization, existing
NLP techniques are much less successful [6]. Based on a manually annotated
sample of queries from a commercial search engine, Barr et al. [6] show that the
distribution of POS tag types in queries is rather different from that of standard
(edited and published) text. Specifically, they find that among keyword queries the
“most common tag is the proper noun, which constitutes 40% of all query terms,
and proper nouns and nouns together constitute 71% of query terms” [6], while
many standard POS tags (e.g., verbs and determiners) seldom appear in web search
queries. In query annotation, therefore, a great emphasis is placed on detecting noun
phrases and entities. Barr et al. [6] further show that tagger performance is severely
affected by the lack of capitalization in queries.

Bendersky et al. [8] mark up queries using three types of annotations:
capitalization, POS tags, and segmentation indicators. Rather than relying on
the query itself, they draw on the (latent) information need behind the query
and leverage the document corpus using pseudo relevance feedback techniques.
In follow-up work, instead of solving the above annotation tasks in isolation,
Bendersky et al. [9] perform them jointly and leverage the dependencies between
the different types of markup.

Another line of work focuses on the identification of “key concepts” (i.e., the
most important noun phrases) in verbose natural language queries. By assigning
higher weights to these key concepts during document scoring, one can attain better
retrieval effectiveness. Bendersky and Croft [7] use the noun phrases in the query
as candidate concepts and use a supervised machine learning approach to classify
each as being a key concept or not, and set a concept’s importance based on the
classifier’s confidence score. Features include corpus-based frequency statistics,
computed from the document collection, from an external collection (Google n-
grams [14]), and also from a large query log.

Query tagging may also be performed with respect to an underlying domain-
specific schema. It is often assumed that queries have already been classified onto

7.1 Semantic Query Analysis 231

a given domain (like movies, books, products, etc.). The task then is to assign
each query term a label indicating which field it belongs to [46, 51]. A great
deal of attention has been directed toward the product search domain, “since this
is one representative domain where structured information can have a substantial
influence on search experience” [46] (not to mention the obvious commercial value).
Nevertheless, the proposed methods should be applicable to other domains as well.
In the product search domain, the set of fields comprises type, brand, model,
attribute, etc. It is possible to construct field-specific lexicons from a knowledge
repository that enumerate all possible values for each field. A simple lexicon-based
approach, however, is insufficient due to ambiguity (e.g., “iphone” may refer to
model or to attribute) and the presence of out-of-vocabulary terms [46]. Li et al. [46]
approach query tagging as a sequential labeling task and employ semi-supervised
conditional random fields (CRF). A small amount of hand-labeled queries are
combined with a large amount of queries with derived labels, which are obtained
in an unsupervised fashion (by leveraging search click-through data in conjunction
with a product database). Manshadi and Li [51] present a hybrid method, which
consists of a generative grammar model and parser, and a discriminative re-ranking
module. Li [44] further distinguishes between the semantic roles of the constituents
in noun phrase queries and makes a distinction between intent heads (corresponding
to attribute names) and intent modifiers (referring to attribute values). For example,
given the query “alice in wonderland 2010 cast,” “cast” is the intent head, while
“alice in wonderland” and “2010” are intent modifiers, with labels title and year,
respectively. Li [44] uses CRF-based models with transition, lexical, semantic
(lexicon-based), and syntactic (POS tags) features. Pound et al. [61] annotate queries
with semantic constructs, such as entity, type, attribute, value, or relationship. This
mapping is learned from an annotated query log, using a CRF model with part-of-
speech tags as features.

7.1.3 Query Interpretation

Instead of labeling individual query terms (or sequences of terms), query interpre-
tation (a.k.a. semantic query understanding) aims to determine the meaning of the
query as a whole, by figuring out how the segmented and annotated query tokens
relate to each other and together form an “executable” expression.

NLP approaches to question answering assume that the user’s input is a grammat-
ically well-formed question, from which a logical form (λ-calculus representation)
can be inferred via semantic parsing [10, 80]. Viewing the knowledge base as a
graph, these logical forms are tree-like graph patterns; executing them is equivalent
to finding a matching subgraph of the knowledge graph.

In contrast, the database and IR communities generally operate with “tele-
graphic” queries. Due to the inherent ambiguity of such short keyword queries,
systems typically need to evaluate multiple possible interpretations. In databases,
the objective is to map queries to structured data tables and attributes; this task

232 7 Understanding Information Needs

may also be referred to as structured query annotation [66]. For example, the
query “50 inch LG lcd tv” could be mapped to the table “TVs,” with attributes
diagonal=“50 inch,” brand=“LG,” and TV_type=“lcd.” We note that this is very
similar to the problem of query tagging, which we have discussed in the previous
subsection [44, 46, 51]. Nevertheless, there are two main differences. First, query
tagging involves supervised or semi-supervised learning (typically using a CRF-
based model), while the works on query interpretation presented here strive for an
unsupervised solution. Second, query tagging does not describe how the various
recognized semantic constructs interact; capitalizing on that structured data is
organized in tables, the methods here do not allow for arbitrary combinations of
attributes. Commonly, a two-tier architecture is employed, consisting of an offline
and an online component [26, 59, 61, 66]. A collection of structured query templates
are generated offline by mining patterns automatically from query logs. In the
online component, all plausible interpretations are generated for an incoming query,
where an interpretation is represented as a semantically annotated query and a query
template. These interpretations are then scored to determine a single one that most
likely captures the user’s intent.

Very similar techniques are used in web search for querying specific verticals,
by identifying the domain (vertical) of interest and recognizing specific attributes;
we discuss some of these techniques in Sect. 7.4. Generally speaking, compared to
NLP and databases, the goals in IR approaches to entity retrieval are somewhat more
modest. The structural interpretation of queries consists of identifying mentions
of entities and target types, with respect to an underlying knowledge base; see
Sects. 7.2 and 7.3. The remaining “un-mapped” query words are used for scoring
the textual descriptions of candidate entities. Notably, instead of aiming for a
single “best” query interpretation, the system ranks responses for each possible
interpretation, and then takes a weighted combination of scores over all interpre-
tations [33, 67].

7.2 Identifying Target Entity Types

One way to understand the meaning behind a search query is to identify the entity
types that are targeted by the query. In other words, we wish to map the query to a
small set of target types (or categories), which boils down to the task of estimating
the relevance of each type with respect to the query. The top-ranked types can then
be leveraged in the entity ranking model (as we have seen earlier in this book, in
Sect. 4.3) or offered to the user as facets. The latter form of usage is very typical,
among others, on e-commerce sites, for filtering the search results; see Fig. 7.1 for
an illustrative example. We note that the methods presented in this section are not
limited to type taxonomies of knowledge bases, but are applicable to other type
categorization systems as well (e.g., product categories of an e-commerce site).

7.2 Identifying Target Entity Types 233

Fig. 7.1 Product categories displayed on Amazon in response to the query “gps mount”

7.2.1 Problem Definition

The problem of finding the target entity type(s) of the query can be formulated in
different ways. The entity type ranking task, introduced by Vallet and Zaragoza [77],
is as follows: Given an input query q , return a ranked list of entity types from a set T
of possible types. Balog and Neumayer [5] investigate a variant of this task, called
hierarchical target type identification (HTTI), which considers the hierarchical
nature of entity type taxonomies. They aim to “find the single most specific type
from an ontology [type taxonomy] that is general enough to cover all entities that are
relevant to the query” [5]. Garigliotti et al. [27] refine this task definition (HTTIv2)
to allow for a query to possibly have multiple “main” target types, provided they
are sufficiently different, i.e., they lie on different branches in the type taxonomy.
Furthermore, a query is also allowed to not have any target types, by assigning a
special NIL-type. We adopt the revised task definition in [27], which is as follows:

Definition 7.1 Target entity type identification is the task of finding the target
types of a given input query, from a type taxonomy, such that these types
correspond to most specific types of entities that are relevant to the query.
Target types cannot lie on the same branch in the taxonomy. If no matching
entity type can be found in the taxonomy, then the query is assigned a special
NIL-type.

234 7 Understanding Information Needs

Table 7.1 Notation used in Sect. 7.2

Symbol Meaning

c(t;x) Count of term t in x (x can be, e.g., an entity e or a type y)

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Eq (k) Top-k ranked entities for query q

q Query (q = 〈q1, . . . ,qn〉)
t Term

T Type taxonomy

Te Set of types assigned to entity e

y Entity type (y ∈ T)

Approached as a ranking problem, target entity type identification is the task of
estimating the relevance of an entity type y ∈ T given a query q , expressed
as score(y;q). We present both unsupervised and supervised approaches in
Sects. 7.2.2 and 7.2.3. Note that the NIL-type element of the problem is currently
not considered. The different variants of the task definition essentially boil down to
how the relevance assessments are obtained. We discuss this in Sect. 7.2.4. Table 7.1
summarizes the notation used in this section.

7.2.2 Unsupervised Approaches

According to one strategy, referred to as the type-centric model in [5], a term-based
representation is built explicitly for each type; types can then be matched against the
query using existing document retrieval models. Another strategy is to rank entities
with respect to the query and then determine each type’s relevance by considering
the retrieval scores of entities of that type [41, 77]. Since types are not modeled
directly, this approach is referred to as the entity-centric model [5].

An analogy can be drawn between these two approaches and the methods we
have looked at earlier in the book for ranking entities. Specifically, the type-
centric model corresponds to constructing term-based entity representations from
documents mentioning those entities (Sect. 3.2), while the entity-centric model is
akin to ranking entities without direct representations (Sect. 3.4). Essentially, one
simply needs to replace entities with types and documents with entities in the
equations. Zhang and Balog [82] further generalize these two retrieval strategies
as design patterns for ranking arbitrary objects, called early fusion and late fusion,
respectively.

7.2.2.1 Type-Centric Model

We construct a term-based representation (“type description”) for each type, by
aggregating descriptions of entities that are assigned that type. Then, those type

7.2 Identifying Target Entity Types 235

representations can be ranked using conventional document retrieval methods. The
term pseudo-counts for a type are computed using the following formula:

c̃(t;y) =
∑

e∈E
c(t;e) w(e,y) , (7.1)

where c(t;e) is the count of term t in the description of entity e and w(e,y) denotes
the entity-type association weight. This latter quantity may be interpreted as the
importance of entity e for type y. A naïve but effective option is to set this weight
uniformly across all entities that are typed with y:

w(e,y) =
{

1
|{e′:y∈Te′ }|, y ∈ Te

0, y �∈ Te ,
(7.2)

where Te denotes the set of types assigned to entity e. Substituting Eq. (7.2) back to
Eq. (7.1) we get:

c̃(t;y) = 1

|{e : y ∈ Te}|
∑

e∈E
1(y ∈ Te) c(t;e) ,

where 1(y ∈ Te) returns 1 if entity e has y as one of its assigned types, otherwise
returns 0. As the rewritten equation shows, this particular choice of entity-type
association weighting merely serves as a normalization factor, so that types have
comparable term pseudo-counts (representation lengths), irrespective of the number
of entities that belong to them.

Given the term-based type representation, as defined by c̃(t;y), types can be
ranked using any standard retrieval method. Following [82], the final scoring may
be formulated (for bag-of-words retrieval models) as:

scoreTC(y;q) =
n∑

i=1

score(qi;c̃,ϕ) , (7.3)

where score(qi;f̃ ,ϕ) assigns a score to each query term qi , based on the term
pseudo-counts c̃, using some underlying term-based retrieval model (e.g., LM or
BM25), which is parameterized by ϕ.

7.2.2.2 Entity-Centric Model

Instead of building a direct term-based representation of types, the entity-centric
model works as follows. First, entities are ranked based on their relevance to the
query. Then, the score for a given type y is computed by aggregating the relevance
scores of the top-k entities with that type:

scoreEC(y;q) =
∑

e∈Eq (k)

score(e;q) w(e,y) , (7.4)

236 7 Understanding Information Needs

where Eq(k) denotes the set of top-k ranked entities for query q . The retrieval score
of entity e is denoted by score(q;e), which can be computed using any of the entity
retrieval models discussed in Chaps. 3 and 4. The entity-type association weight,
w(e,y), is again as defined by Eq. (7.2). One advantage of this approach over the
type-centric model is that it can directly benefit from improved entity retrieval.
Also, out of the two unsupervised approaches, the entity-centric model is the more
commonly used one [5, 41, 77].

7.2.3 Supervised Approach

Balog and Neumayer [5] observe that “the type-centric model tends to return
more specific categories [types], whereas the entity-centric model rather assigns
more general types.” The complementary nature of these two approaches can be
exploited by combining them. Additionally, one can also incorporate additional
signals, including taxonomy-driven features [73] and various similarity measures
between the type label and the query [78]. Table 7.2 presents a set of features for
the target entity type identification task, compiled by Garigliotti et al. [27].

Here, we only detail two of the best performing features, both of which are based
on distributional similarity between the type’s label and the query. The first one,
simAggr, considers the centroids of embedding vectors of terms in the type’s label
and terms in the query:

simAggr(y,q) = cos(y,q) ,

where y and q denote the respective centroid vectors.
The second one, simMax, takes the maximum pairwise similarity between terms

in the type’s label and in the query:

simMax(y,q) = max
ty∈y,tq∈q

cos(ty,tq) ,

where ty and tq are the embedding vectors corresponding to terms ty and tq ,
respectively. In both cases, pre-trained 300-dimensional Word2vec [55] vector
embeddings were used. Further, the set of terms considered is limited to “content
words” (i.e., nouns, adjectives, verbs, or adverbs) [27].

7.2.4 Evaluation

Next, we present evaluation measures and test collections for the target entity type
identification task.

7.2 Identifying Target Entity Types 237

Table 7.2 Features for target entity type identification

Group Feature Description

Baseline features

scoreTC(y;q) Type-centric type score (cf. Eq. (7.3))a

scoreEC(y;q) Entity-centric type score (cf. Eq. (7.4))a,b

Type taxonomy features

depth(y) Hierarchical level of y, normalized by the taxonomy
depth

children(y) Number of children of type y in the taxonomy

siblings(y) Number of siblings of type y in the taxonomy

numEntities(y) Number of entities in the KB with type y

(|{e ∈ E : y ∈ Te}|)
Type label features

ly Length of (the label of) type y in terms

sumIDF(y) Sum of IDF for terms in (the label of) type y

(
∑

t∈y IDF(t))

avgIDF(y) Avg. of IDF for terms in (the label of) type y

(1
ly

∑
t∈y IDF(t))

simJAC(y,q) Jaccard similarity between terms of the type label and
of the query

simJACnouns(y,q) Jaccard similarity between the type and the query,
restricted to terms that are nouns

simAggr(y,q) Cosine sim. between the centroid embedding vectors of
q and y

simMax(y,q) Max. cosine similarity of the embedding vectors
between each pair of query and type label terms

simAvg(y,q) Avg. cosine similarity of the embedding vectors
between each pair of query and type label terms

a Instantiated using both BM25 and LM as the underlying term-based retrieval model
b Instantiated with multiple cutoff thresholds k ∈ {5,10,20,50,100}

7.2.4.1 Evaluation Measures

Being a ranking task, type ranking is evaluated using standard rank-based measures.
The ground truth annotations consist of a small set of types for each query, denoted
as T̂q . It might also be the case that a query has no target types (T̂q = ∅); in that
case the query might be annotated with a special NIL-type. Detecting NIL-types,
however, is a separate task, which is still being researched, and which we do not
deal with here. That is, we assume that T̂q �= ∅. The default setting is to take type
relevance to be a binary decision; for each returned type y, it either matches one
of the ground truth types (1) or not (0). The evaluation measures are mean average
precision (MAP) and mean reciprocal rank (MRR). We shall refer to this as strict
evaluation.

However, not all types of mistakes are equally bad. Imagine that the target
entity type is racing driver. Then, returning a more specific type (rally driver)
or a more general type (athlete) is less of a problem than returning a type from

238 7 Understanding Information Needs

a completely different branch of the taxonomy (like organization or location).
Balog and Neumayer [5] accommodate this by introducing lenient evaluation, where
relevance is graded and near-misses are rewarded. Specifically, let d(y,ŷ) denote the
distance between two types, the returned type y and the ground truth type ŷ, in the
taxonomy. This distance is set to the number of steps between the two types, if they
lie on the same branch (i.e., one of the types is a subtype of the other); otherwise,
their distance is set to ∞. With the help of this distance function, the relevance level
or gain of a type can be defined in a linear fashion:

r(y) = max
ŷ∈T̂q

(
1 − d(y,ŷ)

h

)
,

where h is the depth of the type taxonomy. Notice that we consider the closest
matching type from the set of ground types T̂q . Alternatively, distance may be turned
into a relevance level using an exponential decay function:

r(y) = max
ŷ∈T̂q

(
b−d(y,ŷ)

)
,

where b is the base of the logarithm (set to 2 in [5]). If d(y,ŷ) = ∞, then the
value of the exponential is taken to be 0. In the lenient evaluation mode, the final
measure is normalized discounted cumulative gain (NDCG), using the above (linear
or exponential) relevance gain values.

7.2.4.2 Test Collections

Balog and Neumayer [5] annotated 357 entity-oriented search queries with a single
target type, using the DBpedia Ontology as the reference type taxonomy. These
queries are essentially a subset of the ones in the DBpedia-Entity collection (cf.
Sect. 3.5.2.7). According to their task definition, an “instance of” relation is required
between the target type and relevant entities (as opposed to mere “relatedness,” as
in [77]). The guideline for the annotation process was to “pick a single type that
is as specific as possible, yet general enough to cover all correct answers” [5]. For
33% of the queries, this was not possible because of one of the following three main
reasons: (1) the query has multiple (legitimate) target types; e.g., “Ben Franklin”
is a Person but may also refer to the ship (MeanOfTransportation) or the musical
(Work); (2) there is no appropriate target type in the taxonomy for the given query;
or (3) the intent of the query is not clear.

In follow-up work, Garigliotti et al. [27] annotated the complete set of queries
from the DBpedia-Entity collection, in accordance with their revised task definition
(cf. Sect. 7.2.1). Correspondingly, queries can have multiple target types or none
(NIL-type option). The relevance assessments were obtained via crowdsourcing,
using a newer (2015-10) version of the DBpedia Ontology as the type taxonomy.
Around 58% of the queries in the collection have a single target type; the rest of the
queries have multiple (mostly two or three) target types, including the NIL-type.

7.3 Entity Linking in Queries 239

7.3 Entity Linking in Queries

Identifying entities in queries is another key technique that enables a better
understanding of the underlying search intents. According to Guo et al. [28], over
70% of queries in web search contain named entities. The study by Lin et al.
[49] reports a lower number, 43%, albeit using different annotation guidelines. The
bottom line is that by being able to recognize entities in queries, the user experience
can be improved for a significant portion of search requests (e.g., by enhanced result
ranking or presentation). In Chap. 5, we have dealt in detail with the problem of
entity linking, i.e., annotating documents with entities from a reference knowledge
repository. Why can we not simply apply the same techniques to search queries?
The reasons are at least threefold.

• One challenge is that queries are very short, typically consisting only of a few
terms, and lack proper spelling and grammar. There is experimental evidence
showing that methods perform substantially worse on very short and poorly
composed texts (tweets) than on longer documents (news) [18, 50]. What is more,
even methods that are designed in particular for short text perform significantly
worse on queries than those that are specifically devised for queries [19].

• Another fundamental difference is that when documents are annotated with
entities, “it is implicitly assumed that the text provides enough context for each
entity mention to be resolved unambiguously” [32]. For queries, on the other
hand, there is only limited context, or none at all.4 It may be impossible to
annotate entity mentions unambiguously in the case of queries. That is, a given
query segment can possibly be linked to more than a single entity, leading to
multiple legitimate interpretations of the query.

• Finally, obtaining entity annotations for queries is an online process that needs
to happen during query-time, under serious time constraints. This is unlike
annotating documents, which is typically performed offline. Therefore, we
are not necessarily looking for the most effective solution, but for “one that
represents the best trade-off between effectiveness and efficiency” [34].

The task of annotating queries with entities has been studied in a number of different
flavors; we start with presenting an overview of these in Sect. 7.3.1. Then, in
Sect. 7.3.2, we introduce a unified pipeline approach. The two main components
of this pipeline are detailed in Sects. 7.3.3 and 7.3.4. Table 7.3 shows the notation
used in this section.

4Search history information may provide contextual anchoring; this, however, is often unavailable.
For example, if it is the first query in a search session, with no information about the previous
searches of the user (which corresponds to the commonly studied ad hoc search scenario), then the
query text is all we have.

240 7 Understanding Information Needs

Table 7.3 Notation used in
Sect. 7.4

Symbol Meaning

A Annotation (set of mention-entity pairs)

C Candidate entity annotations (ordered list)

e Entity (e ∈ E)

E Entity catalog (set of all entities)

I Query interpretation (I = {A1, . . . ,An})
lx Length of x (number of terms)

m Entity mention

Mq Set of entity mentions identified in query q

q Query

t Term

7.3.1 Entity Annotation Tasks

We distinguish between three entity annotation tasks, formulated for queries rather
than for regular text. Table 7.4 highlights the differences between them, along with
some illustrative examples.

• Named entity recognition is the task of identifying mentions of named
entities and tagging the mentions with their respective types.

• Semantic linking seeks to find a ranked list of entities that are semantically
related to the query string.

• Interpretation finding aims to discover all plausible meanings of the query;
each interpretation consists of a set of non-overlapping and semantically
compatible entity mentions, linked to a knowledge repository.

7.3.1.1 Named Entity Recognition

The task of named entity recognition in queries (NERQ) is analogous to the problem
of named entity recognition in text (NER, cf. Sect. 5.1.1), namely: Identify named
entities in the query text and classify them with respect to a set of predefined types
from a taxonomy. NERQ was introduced and first studied by Guo et al. [28], who
employed topic modeling techniques with weak supervision (WS-LDA). Pantel
et al. [58] expanded upon this work by incorporating latent user intents and click
signals.

7.3 Entity Linking in Queries 241

Table 7.4 Comparison of various entity annotation tasks for queries

Named entity Semantic Interpretation

recognition linking finding

Result format Set/ranked list Ranked list Sets of sets

Explicit entity mentions? Yes No Yes

Mentions can overlap No Yes Nob

Evaluation criteria Recognized entitiesa Relevant entities Interpretations

Evaluation measures Set/rank-based Rank-based Set-based

Examples
“obama mother” “obama”/PER BARACK OBAMA

{{BARACK OBAMA}}

ANN DUNHAM

“new york pizza “new york”/LOC NEW YORK CITY
{{NEW YORK CITY,

manhattan” “manhattan”/LOC NEW YORK-STYLE PIZZA MANHATTAN},
MANHATTAN {NEW YORK-STYLE PIZZA,

MANHATTAN PIZZA MANHATTAN}}

. . .

a Along with their respective types
b Not within the same interpretation

7.3.1.2 Semantic Linking

Semantic linking refers to the task of identifying entities “that are intended or
implied by the user issuing the query” [53]. This problem was introduced as query
mapping by Meij et al. [53] and is also known as semantic mapping [32] and as
(ranked) concepts to Wikipedia [18]. As the name we have adopted suggests, we
seek to find entities that are semantically related to the query. Notably, the entities
to be linked are meant for human and not for machine consumption (e.g., to help
users acquire contextual information or to provide them with valuable navigational
suggestions [53]). Therefore, we are not so much interested in detecting the specific
entity mentions in the query, nor do we require the returned entities to form a
coherent set. Further, an entity may be semantically related (i.e., relevant) even
if it is not explicitly mentioned in the query. Take, e.g., the query “charlie sheen
lohan,” for which ANGER MANAGEMENT (TV SERIES) would be a relevant entity.
Mind that this is different from the task of entity retrieval; our goal is not to answer
the user’s underlying information need with a ranked list of entities, but to identify
entities that are referenced (either explicitly or implicitly) in the query.

7.3.1.3 Interpretation Finding

Interpretation finding is the query counterpart to entity disambiguation, where the
inherent ambiguity of queries is addressed head-on. A query “can legitimately
have more than one interpretation” [17], where an interpretation is a set of “non-
overlapping linked entity mentions that are semantically compatible with the query

242 7 Understanding Information Needs

Fig. 7.2 Entity linking in queries pipeline

text” [17]. For example, the query “new york pizza manhattan” might be interpreted
as the user wanting to eat a pizza in the MANHATTAN borough of NEW YORK

CITY, or the user desiring a specific pizza flavor, NEW YORK-STYLE PIZZA,
also in MANHATTAN. Interpretation finding aims at machine understanding of
queries. The resulting annotations are utilized in the subsequent ranking process.
A pioneering effort in this area was the Entity Recognition and Disambiguation
(ERD) Challenge in 2014, organized by representatives of major web search engine
companies [17]. Our ultimate interest in this section is on interpretation finding. In
the next subsection, we shall present a pipeline architecture for addressing this task.

7.3.2 Pipeline Architecture for Interpretation Finding

We present a pipeline architecture for entity linking in queries, i.e., for the
interpretation finding task, shown in Fig. 7.2. Notice that it is very similar to the
one we employ for entity linking for documents (see Sect. 5.3). One important
characteristic of this pipeline approach is it unifies the three tasks we discussed in
the previous section under a common framework and shows how these tasks build
on each other.

• The first step, mention detection, can be performed exactly the same way for
queries as it is done for documents, i.e., using an extensive dictionary of entity
surface forms; see Sect. 5.4.

• The candidate entity ranking step, as the name suggests, produces a ranking of
candidate entities for the query. Specifically, given a set of mentions as input from
the previous step, it emits a list of mention-entity pairs ordered by their degree
of semantic relatedness to the query. Notice that this step directly translates to
the task of semantic linking. One thing to point out here is that for the semantic
linking task the actual mentions are ignored (i.e., for each entity only the highest
scoring mention counts), while for interpretation finding the mentions also need
to be passed along.

• Finally, producing interpretations is the query counterpart of the disambiguation
component in conventional entity linking. The candidate entities identified in the
previous step are used to form one or multiple query interpretations, where each
interpretation consists of a set of semantically coherent entity linking decisions,
with non-overlapping entity mentions.

7.3 Entity Linking in Queries 243

In the next two subsections, we look at the candidate entity ranking and inter-
pretation finding steps in detail. The details of mention detection are relatively
straightforward, as it is done analogously to entity linking in documents; see
Sect. 5.4.

7.3.3 Candidate Entity Ranking

Given a query q , the problem of candidate entity ranking is to return a ranked list
of entities 〈e1, . . . ,ek〉 from an entity catalog E that are semantically related to the
query. We shall assume that a set Mq of entity mentions has already been identified
in the query (see Sect. 5.4 for methods). For each mention m ∈ Mq , let Em denote
the set of candidate entities, i.e., entities that have a surface form matching m.
This candidate set may be further restricted to entities above a certain commonness
threshold (cf. Sect. 5.5). For example, in [32], a commonness threshold of 0.1 is
used. The goal, then, is to rank all candidate entities mentioned in q , Eq = {e :
e ∈ Em,m ∈ Mq}, based on score(e;q,m), their semantic relatedness to the query.
Below, we present both unsupervised and supervised solutions for estimating this
score. Additionally, in Sect. 7.3.3.3, we introduce the “piggybacking” technique,
which is directed to alleviating the brevity of queries.

7.3.3.1 Unsupervised Approach

Hasibi et al. [32] propose to rank entities by combining term-based similarity score
with the commonness measure, using the following formula:

score(e;q,m) = P(e|q,m) ∝ P(e|m)P(q|e) .

For the commonness computation, P(e|m), we refer back to Eq. (5.3). While written
as a probability, the term-based similarity, P(q|e), may in fact be computed using
any of the methods we presented in Chap. 3. What is important is that if the final
task is interpretation finding, these scores need to be comparable across queries.
One specific instantiation of this approach, referred to as MLMcg in [32], estimates
P(q|e) using the query length normalized language model similarity [42]:

P(q|e) =
∏

t∈q P (t|θe)
P (t |q)

∏
t∈q P (t|E)P (t |q)

, (7.5)

where P(t|θe) and P(t|E) are the entity and collection language models, respec-
tively, computed using the mixture of language models (MLM) approach, cf.
Sect. 3.3.2.1. P(t|q) is the term’s relative frequency in the query (c(t;q)/lq).

244 7 Understanding Information Needs

Table 7.5 Features for candidate entity ranking

Group Feature Description

Mention

lm Length of mention m (number of terms)

|Em| Number of candidate entities for the mention

P (link|m) Link probability (cf. Eq. (5.2))

nameMatch(m) Number of entities with a surface form equal to mention m

partialMatch(m) Number of entities with a surface form partially matching m

Entity

redirects(e) Number of Wikipedia redirect pages linking to the entity

links(e) Number of in/out-links of the entity in the knowledge graph

pageRank(e) PageRank of e in the knowledge graph

pageViews(e) Number of (Wikipedia) page views e received

Mention-entity

P (e|m) Commonness (the probability of e being the link target of m)

contains(m,e) Whether the mention contains a surface form of the entity

contains(e,m) Whether a surface form of the entity contains the mention

equals(e,m) Whether a surface form of the entity equals the mention

editDist(m,e) Edit distance between the mention and the (best matching)

surface form of the entity

firstPos(e,m) Position of the first occurrence of the mention in the entity’s

description in the knowledge repository

sim(m,fe) Similarity between m and field f of the entity (cf. Sect. 3.3)

Query

lenRatio(m,q) Mention to query length ratio (lm/ lq)

contains(q,e) Whether the query contains a surface form of the entity

contains(e,q) Whether a surface form of the entity contains the query

equals(e,q) Whether a surface form of the entity equals the query

sim(q,e) Similarity between the query and entity (cf. Sect. 3.3)

sim(q,fe) Similarity between q and field f of the entity (cf. Sect. 3.3)

7.3.3.2 Supervised Approach

Using a supervised learning approach, each (entity, query, mention) triple is
described using a set of features. Table 7.5 displays a selection of features, assem-
bled from the literature [19, 34, 54]. These are organized into four main groups:

• Mention features represent the characteristics of the specific mention.
• Entity features draw only from entity properties.
• Mention-entity features capture the binding between mentions and entities.
• Query features express query-mention and query-entity relationships.

We note that our assortment of features is by no means exhaustive. Also, we
have limited ourselves to features that can be computed from publicly available
resources; we refer to Blanco et al. [12] for additional query log-based features.

7.3 Entity Linking in Queries 245

The supervised ranking model is trained on a set of labeled examples; for each
mention and candidate entity pair, the target label is 1 if the entity is the correct link
target of the given mention and is 0 otherwise.

7.3.3.3 Gathering Additional Context

One of the main challenges when annotating queries with entities is the lack of
context. Meij et al. [53] develop features based on previous queries that the user
issued in the same session. This method, however, is subject to the availability of
session history. (Also, these features do not seem to make a significant contribution
to the best results in [53].) Cornolti et al. [19] employ the so-called piggybacking
technique (first introduced in [64]): Submitting the query to a web search engine
API, and using the returned result snippets as additional context for entity disam-
biguation. The top-ranked result snippets are usually of very high quality, thanks
to “sophisticated algorithms that leverage huge indexed document collections (the
whole web), link graphs, and log analysis” [19]. The piggybacking technique has an
additional benefit of being able to automatically correct spelling errors, by accessing
the spelling correction feature of web search APIs. On the downside, it should be
pointed out that the reliance on an external search service can seriously hinder
the efficiency of the annotation process. Furthermore, there is no control over the
underlying document ranking algorithm (which may change without notice).

Specifically, Cornolti et al. [19] retrieve the top 25 snippets using the original
query. In addition to that, they also concatenate the original query with the string
“wikipedia” and take the first 10 snippets, with the intention to boost results from
Wikipedia. These search engine results are then used both for identifying candidate
entities and for scoring them. Candidate entities are recognized in two ways:

1. Wikipedia articles occurring in the top-ranked results can be directly mapped to
entities.

2. Annotating the result snippets with entities (using an entity linker designed for
short text; Cornolti et al. [19] use WAT [60]) and keeping only those annotations
that overlap with bold-highlighted substrings (reflecting query term matches) in
the snippets.

In the candidate entity scoring phase, this information is utilized via various
features, including the frequency and rank positions of mentions in snippets.

7.3.3.4 Evaluation and Test Collections

As we have explained earlier, the candidate entity ranking component of our pipeline
corresponds to the semantic linking task. It is evaluated as a ranking problem,
using standard rank-based measures, such as (mean) average precision and (mean)
reciprocal rank. For each entity, only the highest scoring mention is considered:

score(e;q) = arg max
m∈Mq

score(e;q,m) .

246 7 Understanding Information Needs

Table 7.6 Test collections for evaluating semantic linking

Name Reference KR #Queries #Queries Annotations Sessions

total ≥1 annot. can overlap considered

YSQLEa Wikipedia 2653 2583 Yes Yes

GERDAQ [19]b Wikipedia 1000 889 No No
a Yahoo! Webscope L24, https://webscope.sandbox.yahoo.com/
b http://acube.di.unipi.it/datasets/

At the time of writing, two publicly available test collections exist, which are
summarized in Table 7.6.

Yahoo Search Query Log to Entities (YSQLE) The dataset consists of 2635
web search queries, out of which 2583 are manually annotated with entities from
Wikipedia. The annotations have been performed within the context of a search
session (there are 980 sessions in total). Each linked entity is aligned with the
specific mention (query span). Additionally, a single entity for each query may
be labeled as “main,” if it represents the main intent of the query. For example, the
query “France 1998 final” is annotated with three entities: FRANCE NATIONAL

FOOTBALL TEAM, FRANCE, and 1998 FIFA WORLD CUP FINAL, the last one
being the main annotation.

GERDAQ This collection, created by Cornolti et al. [19], consists of 1000
queries sampled from the KDD-Cup 2005 dataset [48]. The queries were
annotated with Wikipedia entities via crowdsourcing, in two phases (first recall-
oriented, then precision-oriented). The resulting dataset was then randomly split
into training, development, and test sets, comprising 500, 250, and 250 queries,
respectively. Each entity mention is linked to the highest scoring entity, according
to the human annotators. Entity annotations do not overlap; entities below a
given score threshold are discarded. On average, each query is annotated with
two entities.

7.3.4 Producing Interpretations

In conventional entity linking, the generated annotations comprises a set of (seman-
tically compatible) mention-entity pairs: A = {(m1,e1), . . . ,(mk,ek)}, where ei

is the entity corresponding to mention mi , and mention offsets must not overlap.
In the context of queries, we shall refer to one such possible entity annotation
as interpretation. Due to ambiguity, a query might have more than a single
interpretation. Therefore, the objective of this component is to produce a set of query
interpretations, I = {A1, . . . ,An}, where Ai is an interpretation.

We shall assume that all entity mentions in the query have been recognized
and scored in a prior step (cf. Sect. 7.3.3). We shall refer to these as candidate
annotations, and denote them as the list C = 〈(m1,e1,s1), . . . ,(mk,ek,sk)〉, where
each annotation is a triple consisting of mention mi , entity ei , and score si . The list

https://webscope.sandbox.yahoo.com/
http://acube.di.unipi.it/datasets/

7.3 Entity Linking in Queries 247

Algorithm 7.1: Greedy interpretation finding [32]
Input: Candidate annotations C, score threshold τ

Output: Interpretations I
1 C′ ← prune(C,τ)

2 C′ ← pruneContainmentMentions(C′)
3 I ← createInterpretations(C′)
4 return I

5 Function createInterpretations(C):
6 I ← ∅
7 for (m,e,s) ∈ C ordered by s do
8 h ← False
9 for Ai ∈ I do
10 if ¬ hasOverlap(m,Ai) then /* Add to existing interpretation */

11 Ai ← Ai ∪ {(m,e)}
12 h ← True
13 end
14 end
15 if ¬h then /* Create new interpretation */

16 I ← I ∪ {(m,e)}
17 end
18 end
19 return I

C is ordered by decreasing score. Further, C may be truncated to a certain number of
elements (top-k) or to annotations above a minimum score threshold. The task, then,
is to form the set of interpretations I, given the candidate annotations C as input.

We note that if one is to find only a single most likely interpretation, that can
be done using existing entity linking methods (esp. using those that have been
developed for annotating short text, such as TAGME [23] or WAT [60]). Even
studies that address entity linking in queries often resort to the simpler problem
of finding a single interpretation [12, 19]. Specifically, the top interpretation may
be created greedily, by adding candidate annotations in decreasing order of score,
as long as (1) they do not overlap and (2) the scores are above a given threshold
(SMASH-S [19]). Alternatively, entity annotations may be selected using dynamic
programming, such that they maximize the overall query likelihood [12]. In both
cases, entity linking decisions are made individually, independently of each other
(other than the constraint of non-overlapping). Our interest here, nevertheless,
is focused on finding multiple interpretations, and we present both unsupervised
(Sect. 7.3.4.1) and supervised (7.3.4.2) approaches for that.

7.3.4.1 Unsupervised Approach

Hasibi et al. [32] present the greedy interpretation finding (GIF) algorithm, shown in
Algorithm 7.1, which consists of three steps: (1) pruning, (2) containment mention
filtering, and (3) set generation. In the first step, the algorithm takes all candidate

248 7 Understanding Information Needs

annotations and discards those with a score below the threshold τ . The threshold
parameter is used to control the balance between precision and recall. In the second
step, containment mentions are filtered out, by keeping only the highest scoring
one. For instance, “kansas city mo,” “kansas city, ” and “kansas” are containment
mentions; only a single one of these three is kept. Finally, interpretations are built
iteratively, by processing the filtered candidate annotations C′ in decreasing order
of score. A given mention-entity pair (m,e) is added to an existing interpretation
Ai , if m does not overlap with the mentions already in Ai ; in the case multiple such
interpretations exist, the pair (m,e) will be added to all of them. Otherwise, a new
interpretation is created from the mention-entity pair. The GIF algorithm, despite
its simplicity, is shown to be very effective and is on par with considerably more
complex systems [34]. Its performance, however, crucially depends on that of the
preceding candidate entity ranking step.

7.3.4.2 Supervised Approach

The main idea behind the collective disambiguation approach is to carry out a joint
analysis of groups of mention-entity pairs, rather than greedily selecting the highest
scoring entity for each mention. This idea can be realized by considering multiple
possible candidate interpretations of the query and then applying supervised
learning to select the most likely one(s). If the goal is to find multiple interpretations,
then it is cast as a binary classification problem. If the objective is to find only the
single most likely interpretation, then it may be approached as a ranking (regression)
task.

As we have pointed out in Sect. 5.6.2.3, the joint optimization of entity annota-
tions in text is an NP-hard problem. However, since queries are typically short, it
is possible to enumerate all sensible combinations of entities. Specifically, Hasibi
et al. [34] consider only the top-k candidate annotations for forming interpretations.
The value of k can be chosen empirically, based on the effectiveness of the
underlying candidate entity ranking component. In [34] k = 5 is used; less effective
candidate entity ranking approaches may be compensated for by choosing a larger
k value. Let A1, . . . ,An denote the candidate interpretations, which are generated
by enumerating all possible valid (non-overlapping) combinations of mention-entity
pairs from the candidate annotations C. For a given interpretation Ai , we let Ei be
the set of linked entities in that interpretation: Ei = {e : (m,e) ∈ Ai}.

The key challenge, then, is to design features that can capture the coherence of
multiple entity annotations in the query. Two main groups of features are employed
in [19, 34]:

• Entity features express the binding between the query and the entity and depend
only on the individual entity (and not on other entities mentioned in the query).
The top block of Table 7.7 lists entity features that are used in [34]. We note that
other features that have been introduced for the candidate entity ranking step may
also be used here (see Table 7.5). These features are computed for each entity that

7.3 Entity Linking in Queries 249

Table 7.7 Features for producing interpretations

Group Feature Description

Entity

links(e) Number of out-links of the entity in the knowledge graph

P (e|m) Commonness (the probability of e being the link target of m)

score(e;q) Score from the candidate entity ranking step

iRank(e,q) Inverse rank from the candidate entity ranking step (1/rank(e,q))

sim(q,e) Similarity between the query and entity (cf. Sect. 3.3)

contextSim(q,e) Contextual similarity between the query and entity, where context

is the “rest” of the query, without the entity mention

Interpretation

min(Ri) Minimum relatedness among entities in Ei

max(Ri) Maximum relatedness among entities in Ei

Pco(Ei) Co-occurrence probability of entities in a Web corpus (Eq. (7.6))

H(Ei) Entropy of Ei (Eq. (7.7))

sim(q,Ei) Similarity between the query and Ei (Eq. (7.8))

coverage(Ai,q) Mention coverage (Eq. (7.9))

is part of a given candidate interpretation (e ∈ Ei), then aggregated by taking the
minimum, maximum, or average of the individual values. Thus, each of these
features is computed three times, using the three different aggregators.

• Interpretation features aim to capture the coherence of the set of linked entities
in a given (candidate) interpretation (Ai). These are computed collectively for all
linked entities in the interpretation (Ei). A selection of interpretation features are
listed in the bottom block of Table 7.7. We briefly explain them below.

– For relatedness features, we let Ri be the set of all pairwise relatedness scores
between all entities in Ei :

Ri = {rel(ek,el) : ek,el ∈ Ei,ek �= el} ,

where rel(ek,el) is a measure of entity-relatedness; commonly WLM related-
ness or Jaccard similarity is used (see Sect. 5.6.1.3 for other options). We take
the minimum and the maximum of the values in Ri as two features.

– The co-occurrence probability of all the entities in Ei may be estimated using
a large web corpus:

Pco(Ei) =
|⋂e∈Ei

De|
|D| , (7.6)

whereDe is the set of documents in which e occurs, and |D| is the total number
of documents in the corpus. With the help of this probability, the entropy of Ei

may be calculated as:

H(Ei) = −Pco(Ei) log Pco(Ei)− (1 − Pco(Ei)) log(1 − Pco(Ei)) . (7.7)

250 7 Understanding Information Needs

– The similarity between Ei and the query is calculated similarly to Eq. (7.5),
but using a language model of all entities in the interpretation, instead of that
of a single entity:

P(q|Ei) =
∏

t∈q P (t|θEi
)P (t |q)

∏
t∈q P (t|E)P (t |q)

, (7.8)

where the interpretation language model is estimated according to:

P(t|θEi
) = 1

|Ei |
∑

e∈Ei

P (t|θe) .

– Mention coverage is the ratio of the query that is annotated, i.e., the length of
all entity mentions over the length of the query:

coverage(Ai,q) =
∑

(m,e)∈Ai
lm

lq
, (7.9)

where lm and lq denote mention and query length, respectively.

7.3.4.3 Evaluation Measures

Let Î = {Â1, . . . ,Âm} denote the set of interpretations of query q according to the
ground truth, and let I = {A1, . . . ,An} denote the system-generated interpretations.
For comparing these two sets, Carmel et al. [17] define precision and recall as:

P = |I ∩ Î|
|I| , R = |I ∩ Î|

|Î| .

Hasibi et al. [32] point out that “according to this definition, if the query does
not have any interpretations in the ground truth (Î = ∅) then recall is undefined;
similarly, if the system does not return any interpretations (I = ∅), then precision
is undefined.” Therefore, they define precision and recall for interpretation-based
evaluation as follows:

Pint =

⎧
⎪⎨

⎪⎩

|I ∩ Î|/|I|, I �= ∅
1, I = ∅,Î = ∅
0, I = ∅,Î �= ∅ .

Rint =

⎧
⎪⎨

⎪⎩

|I ∩ Î|/|Î|, Î �= ∅
1, Î = ∅,I = ∅
0, Î = ∅,I �= ∅ .

7.3 Entity Linking in Queries 251

An interpretation is taken to be correct only if it matches all the entities of an
interpretation in the ground truth exactly. For simplicity, the correctness of the
mention offsets are not considered. Formally:

|I ∩ Î| =
∑

Ai∈I,Âj∈Î
match(Ai,Âj) ,

where

match(Ai,Âj) =
{

1, {e : e ∈ Ai} = {e : e ∈ Âj }
0, otherwise .

This evaluation is rather strict, as partial matches (for a given interpretation) are not
given any credit. Alternatively, Hasibi et al. [32] propose a lenient evaluation that
rewards partial matches. The idea is to combine interpretation-based evaluations
(from above) with conventional entity linking evaluation, referred to as entity-based
evaluation. Let EI denote the set of all entities from all interpretations returned by
the entity linking system, EI = ∪i∈[1..n]{e : e ∈ Ai}. Similarly, let the set ÊI contain
all entities from all interpretations in the ground truth, ÊI = ∪j∈[1..m]{e : e ∈ Âj }.
Then, precision and recall are defined as follows:

Pent =

⎧
⎪⎨

⎪⎩

|EI ∩ ÊI |/|EI |, EI �= ∅
1, EI = ∅,ÊI = ∅
0, EI = ∅,ÊI �= ∅ .

Rent =

⎧
⎪⎨

⎪⎩

|EI ∩ ÊI |/|ÊI |, ÊI �= ∅
1, ÊI = ∅,EI = ∅
0, ÊI = ∅,EI �= ∅ .

Finally, the overall precision and recall, in lenient evaluation, are defined as a linear
combination of interpretation-based and entity-based precision and recall:

P = Pint + Pent

2
, R = Rint + Rent

2
.

For simplicity, precision and recall are averaged with equal weights, but a weight
parameter could also be introduced here. The F-measure (for any definition of
precision and recall above) is computed according to Eq. (5.10).

So far, we have defined evaluation measures for a single query. For computing
precision, recall, and F-measure over a set of queries, the (unweighed) average of
the query-level scores is taken (i.e., macro-averaging is used).

252 7 Understanding Information Needs

Table 7.8 Test collections for interpretation finding

Name Reference KR #Queries #Queries #Queries

total ≥1 annot. ≥1 interp.

ERD-dev [17] Freebase 91 45 4

Y-ERD [32]a Freebase 2398 1256 9
a http://bit.ly/ictir2015-elq

7.3.4.4 Test Collections

There are two publicly available test collections for interpretation finding evalua-
tion; see Table 7.8 for a summary.

ERD-dev The “short text” track of the Entity Recognition and Disambiguation
(ERD) Challenge [17] provided a live evaluation platform for the interpretation
finding task. A development set of 91 queries is made publicly available; of these,
45 queries have non-empty entity annotations. The test set comprises 500 queries;
because of the live evaluation, the annotations for these queries are not available
for traditional offline evaluation (we refer to Sect. 5.8.2.4 for a discussion on the
live evaluation platform). The gold standard annotations are created manually, in
accordance with the following three rules [17]: (1) for each entity, the longest
mention is used, (2) only proper noun entities are annotated, and (3) overlapping
mentions are not allowed within a single interpretation.

Y-ERD Hasibi et al. [32] created a larger test set based on the YSQLE collection
(cf. Sect. 7.3.3.4). Following a set of guidelines, based on and expanding upon
those of the ERD Challenge, they grouped independent entity annotations into
semantically compatible sets of entity linking decisions, i.e., interpretations.
Queries are annotated on their own, regardless of search sessions.

One observation that can be made from Table 7.8 is that very few queries actually
have multiple interpretations. This explains why systems that returned only a single
interpretation could end up being the best contenders at the ERD Challenge [17].
It remains an open question whether this is a limitation of currently available test
collections, or if it is worth expending algorithmic effort toward finding multiple
interpretations.

7.4 Query Templates

A large fraction of queries follow certain patterns. For instance, when people search
for jobs, a frequently used query pattern is “jobs in 〈location〉,” where 〈location〉 is
a variable that can be instantiated, e.g., by a city (“jobs in seattle”), region (“jobs in
silicon valley”), or country (“jobs in the UK”). From these patterns, templates may
be inferred, which may be used for interpreting queries. As defined by Bortnikov
et al. [13], “a template is a sequence of terms that are either text tokens or variables
that can be substituted from some dictionary or taxonomy.” To be consistent with

http://bit.ly/ictir2015-elq

7.4 Query Templates 253

Fig. 7.3 (a) Flight search widget shown on Google in response to the query “flights svg ams.” (b)
Weather widget on Bing for the query “weather amsterdam”

our earlier terminology we will use the expression token, which can be either a term
(word) or an attribute (variable). In our examples, we mark attribute tokens as 〈. . . 〉.

Templates provide structured interpretations of queries and have numerous
advantages:

• Templates allow us not only to identify the target domain (vertical) of the query
(such as flights or weather) but also to make parameterized requests to them, by
mapping parts of the query to appropriate attributes of the given service. These
services can then display various widgets or direct displays on the SERP, such as
the ones shown in Fig. 7.3.

• Templates generalize well and can match queries that have not been observed in
training data or search logs.

• Templates are very efficient in terms of online performance (only simple
dictionary look-ups are required).

Such query templates may be crafted manually, e.g., by using regular expressions.
Manual template building, however, has obvious limitations, due to the large variety
of possible query formulations. A more scalable approach is to extract templates
automatically from search logs. Based on Agarwal et al. [1], we formally introduce
some concepts central to this problem in Sect. 7.4.1, followed by an explanation of
methods that can be used for mining query templates from query logs in Sect. 7.4.2.
Table 7.9 summarizes the notation used in this section.

7.4.1 Concepts and Definitions

Our objective is to direct queries to specific services or verticals, which will be
referred to as domains. We begin by characterizing the schema of a given domain.

Definition 7.2 (Domain Schema) The schema of a given domain D is a pair
SD = (A,W), where A = {a1, . . . ,an} is a set of attributes and W =

254 7 Understanding Information Needs

Table 7.9 Notation used in
Sect. 7.4

Symbol Meaning

A Set of attributes

L Search log (L = (Q,S,C))

D Domain

q Query (q ∈ Q)

Q Set of queries in the search log

Q0 Set of seed domain queries

QD Domain queries (queries relevant for D)

Qs Set of click-through queries of site s

Qu Set of queries instantiated by template u

s Site (s ∈ S)

S Set of sites

SD Domain schema (SD = (A,W))

u Query template (u ∈ U)

U Template universe

Uq Set of templates generated by query q

V Vocabulary of terms

W Vocabulary of possible attribute values

{W(a1), . . . ,W(an)} is the vocabulary of the possible instances (i.e., values) of
each of the attributes.

For example, attributes in the jobs domain may include A = {company,location,
category}. The vocabulary of the company attribute includes names of all entities
that appear as possible values for that attribute: W(company) = {“Apple”, “Micro-
soft”, “Audi”, . . . }. Some attributes, like category, may require their own domain-
specific dictionary.

Definition 7.3 (Query Template) A query template u is a sequence of tokens u =
〈u1, . . . ,un〉, where each token ui is either a term or an attribute: ui ∈ V ∪A, where
V is a vocabulary of terms and A is the set of possible attributes. We further require
that at least one of the template tokens is an attribute: ∃ ui ∈ A.

For example, “jobs in 〈location〉,” consists of two terms and an attribute. This tem-
plate can instantiate different queries. The inverse operation is template generation:
Given a query, what templates can be generated from it?

Definition 7.4 (Template Instantiation and Generation) Given a query template
u = 〈u1, . . . ,un〉 and a query q = 〈q1, . . . ,qm〉, the template u instantiates q , or,
equivalently, query q generates u, with respect to the domain schema SD , if n = m

and for each token position i ∈ [1,n],
• if token i in the template is an attribute, then query term qi matches one of the

possible instances of that attribute: ui ∈ A �⇒ qi ∈W(ui),
• otherwise (if token i in the template is a term), the query and template tokens are

equal: ui �∈ A �⇒ qi = ui ∈ V .

7.4 Query Templates 255

Fig. 7.4 Template generation and instantiation

The set of queries instantiated by template u is denoted by Qu. The templates
generated from query q are denoted by Uq . See Fig. 7.4 for a visual illustration.

Note that the vocabulary of a given attribute, according to the domain schema, may
contain not only unigrams but n-grams as well (e.g., “new york”). When such an
n-gram attribute instance is matched in the query, we treat it as a single query token.

To see an example of template generation, consider the query q =“accounting
jobs in new york.” According to our jobs domain schema, “accounting” is an
instance of the category attribute and “new york” is an instance of the location
attribute. This query can therefore generate the following three templates:

ua =“〈category〉 jobs in new york,”

ub =“accounting jobs in 〈location〉,”
uc =“〈category〉 jobs in 〈location〉.”

Thus, Qq = {ua,ub,uc}.

7.4.2 Template Discovery Methods

Template discovery is the task of finding “good” templates (according to some
quality measure, such as precision, recall, or F1-score) from a search log L, for a
given domain D. Approaching this task as a ranking problem, the output is a ranked
list of templates, sorted by a template score.

We shall assume that the search log L = (Q,S,C) provides a set Q of queries
with click-throughsC to a set S of sites. Specifically, let Qs denote the click-through
queries of site s ∈ S, i.e., Qs = {q : q ∈ Q,clicks(q,s) > 0}, where clicks(q,s)

is the number of times a result originating from site s was clicked in response to q

(over some time period). We shall further assume that we are given a seed set Q0 of
domain queries, i.e., queries that resulted in clicks on target pages.

Since our interest is in discovering templates for a given domain D, we shall
generate templates that match domain queries, i.e., queries that are relevant for that
domain. We write QD to denote the set of domain queries (QD ⊆ Q). Let U denote
the template universe, i.e., templates that can be generated by at least one q ∈ QD .
Formally: U = {u : ∃ q ∈ QD,u ∈ Qq}.

256 7 Understanding Information Needs

Algorithm 7.2: Classify & match [1]
Input: L = (Q,S,C), SD , Q0, τ

Output: Templates u, ranked by score(u)

1 classify Q to QD , trained on Q0, thresholded by τ

2 U ← {u : u ∈ Qq,∀ q ∈ QD}
3 foreach u ∈ U do
4 compute score(u)

5 end
6 return U sorted by score(u) /* Pu, Ru, or F1u */

7.4.2.1 Classify&Match

Agarwal et al. [1] introduce a natural baseline algorithm, called Classify&Match,
which operates in two stages. First, domain queries QD are separated from all
queries Q in the query log using automatic classification. Specifically, a query
classifier is trained on the seed domain queries Q0 using the method from [45],
with a threshold τ applied on the results. In the second stage, for each template
u ∈ U is scored against the (estimated) set of domain queries QD , using precision,
recall, or F-measure as score(u). See Algorithm 7.2.

Quality Measures To be able to measure the quality of a given template u, we
establish precision and recall, analogously to the standard retrieval measures. The
“target” set is the collection of domain queries, QD . We shall assume that this set is
clearly identified (e.g., by taking all queries that resulted in clicks on a set of target
pages). The “matched” set is Qu, i.e., queries that are instantiated by the template.
The precision of template u is the fraction of Qu that falls within QD:

Pu = QD ∩Qu

Qu

. (7.10)

The recall of template u is the fraction of QD that is covered by Qu:

Ru = QD ∩Qu

QD

. (7.11)

Ultimately, the overall quality of a template needs to be measured by a combination
of precision and recall, e.g., by using the F-measure (F1u, cf. Eq. (5.10)).

7.4.2.2 QueST

While simple and intuitive, the above naïve baseline approach suffers from two
shortcomings. First, queries are ambiguous and click-throughs are noisy by nature;
deterministically separating domain and non-domain queries is problematic.
Instead, probabilistic modeling is needed that can encapsulate the fuzziness

7.4 Query Templates 257

Fig. 7.5 QST graph based on a toy-sized search log. Example is taken from [1]

of domain relevance. Second, search logs are not only noisy but also sparse.
By separating template mining into two separate stages, an important (indirect)
connection between sites and templates is lost. To overcome these issues, Agarwal
et al. [1] present an iterative inferencing framework, called QueST, over a tripartite
graph of queries, sites, and templates. Precision and recall is defined for each
type of node. The process of template discovery can then be seen as propagating
precision and recall across the query-site-template graph using random walks. We
shall elaborate on the details below.

QSTGraph Queries, sites, and templates are represented as a tripartite graph (QST
graph) GQST = (V ,E), where the vertices are V = Q ∪ S ∪ U , and there are two
types of edges E, with w(x,y) denoting the edge weight between nodes x and y:

• Query-site edges: For each query q that clicks to site s, there is an edge with the
click-through frequency as weight: ∀ s,∀ q ∈ Qs : w(q,s) = clicks(q,s).

• Query-template edges: For each query q that instantiates template u, there is an
edge in between with weight 1: ∀ u ∈ U,∀ q ∈ Qu : w(q,u) = 1.

Figure 7.5 displays the QST graph for a toy-sized example.

Probabilistic Modeling In practice, due to query ambiguity and noisy click-
throughs, the crisp separation of queries into target domains is rather problematic
(e.g., the query “microsoft” might be in job or in product). Therefore, we shall
generalize the deterministic notions of precision and recall from the previous
subsection to probabilistic measures. Let match(q,x) denote the event that query q

and x are semantically matching, where x may be a template u, a site s, or a domain
D. Further, we let P(match(q,x)) be the probability of semantic relevance between
q and x. Precision in Eq. (7.10) can then be rewritten in the “match” notation as the

258 7 Understanding Information Needs

Algorithm 7.3: QueST [1]
Input: L = (Q,S,C), SD , Q0, P0, R0
Output: Templates u, ranked by score(u)

1 U ← {u : u ∈ Qq,∀ q ∈ QD}
2 construct GQST given Q, S, U , C
3 Ru,Rq,Rs ← QuestR on GQST with R0 /* inference recall */

4 Pu,Pq,Ps ← QuestP on GQST with P0 /* inference precision */

5 return U sorted by score(u) /* Pu, Ru, or F1u */

following conditional probability:

Pu = P (match(q,D),match(q,u))

P (match(q,u))
= P (match(q,D)|match(q,u)) .

Similarly, recall in Eq. (7.11) is rewritten as:

Ru = P (match(q,D),match(q,u))

P (match(q,D))
= P (match(q,u)|match(q,D)) .

Next, we extend the notions of precision and recall to sites and queries. This
is needed for being able to perform integrated inferencing on queries, sites, and
templates. The precision and recall of a site is modeled analogously to that of
templates. That is, precision measures how likely queries match domain D given
that they match site s; for recall, it is the other way around. Formally:

Ps = P (match(q,D)|match(q,s)) ,

Rs = P (match(q,s)|match(q,D)) .

The precision of a query q is simply its probability of matching the domain. The
recall of q is the fraction of domain queries that are actually q .

Pq = P (match(q,D)) ,

Rq = P
(
q ′ = q|match(q ′,D)

)
.

Inference Framework Let us remember our ultimate goal, which is to estimate
precision Pu and recall Ru for each template u ∈ U . As part of the integrated
inferencing process, we will also estimate precision and recall for other types of
vertices in the QST graph, i.e., for queries (Pq , Rq , ∀ q ∈ Q) and for sites (Ps ,
Rs , ∀ s ∈ S). The QueST algorithm, shown in Algorithm 7.3, infers precision and
recall for each vertex, then ranks templates by precision, recall, or the combined
F-measure. This process of propagating precision and recall may be interpreted
as random walks in opposite directions on the QST-graph. See Fig. 7.6 for an
illustration.

7.4 Query Templates 259

Fig. 7.6 Inferencing precision and recall. QuestP is for precision and propagates backward.
QuestR is for recall and propagates forward. Dashed arrows signify random walks

Key to this semi-supervised learning process is to have a small set of seed queries
Q0. Each of these queries q0 ∈ Q0 is labeled with precision P̂q0 , indicating how
likely it is to fall within the target domain D. As it is infeasible for users to provide
seed recall, it is estimated as precision normalized across all seed queries:

R̂q0 =
P̂q0

∑
q ′∈Q0

P̂q ′
.

These initial precision and recall values get propagated in the QST-graph through
a set of inferencing equations, which we shall present below. For the derivation of
these equations, we refer to [1]. The algorithm is reported to converge in four to five
iterations [1].

QuestP Estimating Pu may be thought of as the probability of reaching the target
domain D in a (backward) random walk starting from u; see Fig. 7.6 (left). We take
as input the initial precision estimates for the seed queries, P̂q0,q0 ∈ Q0. Based
on this seed knowledge, the precision Pv of every vertex v ∈ VG is determined by
propagating precision from its neighboring vertices. The following three equations
specify inference for template vertices (Q → U), site vertices (Q → S), and query
vertices (U → Q ∧ S → Q), respectively.

Pu =
∑

q∈Qu

w(q,u)
∑

q ′ w(q ′,u)
Pq ,

Ps =
∑

q∈Qs

w(q,s)
∑

q ′ w(q ′,s)
Pq ,

Pq =
{

P̂q, if q ∈ Q0

α
∑

u∈U
w(q,u)∑
u′ w(q,u′)Pu + (1 − α)

∑
s∈S

w(q,s)∑
s′ w(q,s ′) Ps, otherwise .

260 7 Understanding Information Needs

The parameter α controls the relative importance of templates and sites in inferring
the precision of queries (α = 0.5 in [1]). Note that for seed queries q ∈ Q0, the
initial precision P̂q is taken as “ground truth” and will not change.

QuestR The inference of probabilistic recall follows a very similar process. We
may think of Ru as the probability of arriving at node u in a (forward) random
walk starting from given seeds q0 ∈ Q0 originating from a hidden domain D;
see Fig. 7.6 (right). Recall is distributed to neighboring nodes using the following
inference equations:

Ru =
∑

q∈Qu

w(q,u)
∑

u′ w(q,u′)
Rq ,

Rs =
∑

q∈Qs

w(q,s)
∑

s ′ w(q,s′)
Rq ,

Rq = β1R̂q + β2

∑

u∈U

w(q,u)
∑

q ′ w(q ′,u)
Ru + (1 − β1 − β2)

∑

s∈S

w(q,s)
∑

q ′ w(q ′,s)
Rs .

Notice that, unlike for precision, the recall of seed queries will also get re-estimated.
Parameters β1 and β2 specify the relative importance of the different sources, R̂q ,
Ru, and Rs , when estimating Rq (with β1 = 0.1 and β2 = 0.45 in [1]).

7.5 Summary

The question driving this chapter has been how to obtain a semantically enriched
representation of the user’s information need from a keyword query. We have
looked at three specific forms of enrichment, all of which are semantic annotations
performed with the help of a knowledge repository. First, we have discussed how
to annotate queries with target types from a type taxonomy. Second, we have
performed entity linking on queries in a number of flavors, from merely recognizing
entity mentions to forming coherent interpretation sets. Third, we have generated
query templates, which provide structured interpretations of queries by mapping
parts of the query to the specific entity attributes. These structured interpretations
can then be used to make parameterized requests to particular search services (e.g.,
verticals). Having thus enriched the user’s query with inferred information about
their underlying information need, the response to that query can be made more
effectively.

References 261

7.6 Further Reading

There is a rich and diverse body of research on understanding search queries that
was not possible to compress into this chapter. One important practical issue that
we have not discussed is spell checking. According to Cucerzan and Brill [20],
roughly 10–15% of Web search queries contain spelling errors. It is therefore
strongly recommended to perform spelling correction before commencing any of the
query analysis steps. For example, Blanco et al. [12] report on a 3% improvement
in entity linking performance, ascribed to spelling correction. Query refinement
(also known as query modification) refers to the automated process of changing ill-
formed queries submitted by users before scoring results. It includes tasks such as
spelling error correction, word splitting, word merging, phrase segmentation, word
stemming, and acronym expansion [29].

Han et al. [31] address the limitations of machine-based methods for query
interpretation by utilizing crowdsourcing in a hybrid crowd-machine framework.

The methods we have presented in this chapter do not make use of the searcher’s
context, such as age, gender, topic, or location. To a large extent, it is because
this type of information is unavailable in public test collections. Contemporary
web search engines leverage contextual information by serving personalized search
results according to the user’s profile [69, 72]. This, however, is typically done by
designing specific ranking features [2]. For example, Murnane et al. [57] utilize
personal context for named entity disambiguation by modeling user interests with
respect to a personal knowledge context (using Wikipedia).

References

1. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: Walking back and
forth for mining query templates. In: Proceedings of the 19th international conference on
World Wide Web, WWW ’10, pp. 1–10. ACM (2010). doi: 10.1145/1772690.1772692

2. Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting
web search result preferences. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’06, pp. 3–10.
ACM (2006). doi: 10.1145/1148170.1148175

3. Arguello, J., Diaz, F., Callan, J., Crespo, J.F.: Sources of evidence for vertical selection. In:
Proceedings of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’09, pp. 315–322. ACM (2009). doi: 10.1145/1571941.1571997

4. Ashkan, A., Clarke, C.L.A.: Characterizing commercial intent. In: Proceedings of the 18th
ACM Conference on Information and Knowledge Management, CIKM ’09, pp. 67–76. ACM
(2009). doi: 10.1145/1645953.1645965

5. Balog, K., Neumayer, R.: Hierarchical target type identification for entity-oriented queries.
In: Proceedings of the 21st ACM international conference on Information and knowledge
management, CIKM ’12, pp. 2391–2394. ACM (2012). doi: 10.1145/2396761.2398648

https://doi.org/10.1145/1772690.1772692
https://doi.org/10.1145/1148170.1148175
https://doi.org/10.1145/1571941.1571997
https://doi.org/10.1145/1645953.1645965
https://doi.org/10.1145/2396761.2398648

262 7 Understanding Information Needs

6. Barr, C., Jones, R., Regelson, M.: The linguistic structure of English web-search queries.
In: Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLP ’08, pp. 1021–1030 (2008)

7. Bendersky, M., Croft, W.B.: Discovering key concepts in verbose queries. In: Proceedings
of the 31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’08, pp. 491–498. ACM (2008). doi: 10.1145/1390334.1390419

8. Bendersky, M., Croft, W.B., Smith, D.A.: Structural annotation of search queries using
pseudo-relevance feedback. In: Proceedings of the 19th ACM international conference on
Information and knowledge management, CIKM ’10, pp. 1537–1540. ACM (2010). doi:
10.1145/1871437.1871666

9. Bendersky, M., Croft, W.B., Smith, D.A.: Joint annotation of search queries. In: Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, pp. 102–111. Association for Computational Linguistics (2011)

10. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer
pairs. In: Empirical Methods in Natural Language Processing, EMNLP ’13, pp. 1533–1544.
Association for Computational Linguistics (2013)

11. Bergsma, S., Wang, Q.I.: Learning noun phrase query segmentation. In: Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, EMNLP-CoNLL ’07, pp. 819–826. Association
for Computational Linguistics (2007)

12. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for queries. In:
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining -
WSDM ’15, pp. 179–188. ACM (2015). doi: 10.1145/2684822.2685317

13. Bortnikov, E., Donmez, P., Kagian, A., Lempel, R.: Modeling transactional queries via
templates. In: Proceedings of the 34th European Conference on Advances in Information
Retrieval, ECIR ’12, pp. 13–24. Springer (2012). doi: 10.1007/978-3-642-28997-2_2

14. Brants, T., Franz, A.: Web 1T 5-gram Version 1 LDC2006T13 (2006)
15. Brenes, D.J., Gayo-Avello, D., Garcia, R.: On the fly query entity decomposition using

snippets. CoRR abs/1005.5 (2010)
16. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
17. Carmel, D., Chang, M.W., Gabrilovich, E., Hsu, B.J.P., Wang, K.: ERD’14: Entity

recognition and disambiguation challenge. SIGIR Forum 48(2), 63–77 (2014). doi:
10.1145/2701583.2701591

18. Cornolti, M., Ferragina, P., Ciaramita, M.: A framework for benchmarking entity-annotation
systems. In: Proceedings of the 22nd International Conference on World Wide Web, WWW
’13, pp. 249–260 (2013). doi: 10.1145/2488388.2488411

19. Cornolti, M., Ferragina, P., Ciaramita, M., Rüd, S., Schütze, H.: A piggyback system for joint
entity mention detection and linking in web queries. In: Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, pp. 567–578. International World Wide Web
Conferences Steering Committee (2016). doi: 10.1145/2872427.2883061

20. Cucerzan, S., Brill, E.: Spelling correction as an iterative process that exploits the collective
knowledge of web users. In: Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’04 (2004)

21. Dai, H.K., Zhao, L., Nie, Z., Wen, J.R., Wang, L., Li, Y.: Detecting online commercial intention
(OCI). In: Proceedings of the 15th International Conference on World Wide Web, WWW ’06,
pp. 829–837. ACM (2006). doi: 10.1145/1135777.1135902

22. Diaz, F.: Integration of news content into web results. In: Proceedings of the Second ACM
International Conference on Web Search and Data Mining, WSDM ’09, pp. 182–191. ACM
(2009). doi: 10.1145/1498759.1498825

https://doi.org/10.1145/1390334.1390419
https://doi.org/10.1145/1871437.1871666
https://doi.org/10.1145/2684822.2685317
https://doi.org/10.1007/978-3-642-28997-2_2
https://doi.org/10.1145/2701583.2701591
https://doi.org/10.1145/2488388.2488411
https://doi.org/10.1145/2872427.2883061
https://doi.org/10.1145/1135777.1135902
https://doi.org/10.1145/1498759.1498825

References 263

23. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by
Wikipedia entities). In: Proceedings of the 19th ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’10, pp. 1625–1628. ACM (2010). doi:
10.1145/1871437.1871689

24. Gabrilovich, E., Broder, A., Fontoura, M., Joshi, A., Josifovski, V., Riedel, L., Zhang, T.:
Classifying search queries using the web as a source of knowledge. ACM Trans. Web 3(2),
5:1–5:28 (2009). doi: 10.1145/1513876.1513877

25. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based
explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI’07, pp. 1606–1611. Morgan Kaufmann Publishers Inc. (2007)

26. Ganti, V., He, Y., Xin, D.: Keyword++: A framework to improve keyword search over entity
databases. Proc. VLDB Endow. 3(1–2), 711–722 (2010). doi: 10.14778/1920841.1920932

27. Garigliotti, D., Hasibi, F., Balog, K.: Target type identification for entity-bearing queries. In:
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17. ACM (2017). doi: 10.1145/3077136.3080659

28. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings of
the 32nd international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’09, pp. 267–274. ACM (2009). doi: 10.1145/1571941.1571989

29. Guo, J., Xu, G., Li, H., Cheng, X.: A unified and discriminative model for query refine-
ment. In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’08, pp. 379–386 (2008). doi:
10.1145/1390334.1390400

30. Hagen, M., Potthast, M., Stein, B., Bräutigam, C.: Query segmentation revisited. In:
Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pp. 97–
106 (2011). doi: 10.1145/1963405.1963423

31. Han, J., Fan, J., Zhou, L.: Crowdsourcing-assisted query structure interpretation. In: Proceed-
ings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13,
pp. 2092–2098. AAAI Press (2013)

32. Hasibi, F., Balog, K., Bratsberg, S.E.: Entity linking in queries: Tasks and evaluation. In:
Proceedings of the 2015 International Conference on The Theory of Information Retrieval,
ICTIR ’15, pp. 171–180. ACM (2015). doi: 10.1145/2808194.2809473

33. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval.
In: Proceedings of the 2016 ACM on International Conference on the Theory of Information
Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406

34. Hasibi, F., Balog, K., Bratsberg, S.E.: Entity linking in queries: Efficiency vs. effectiveness.
In: Proceedings of the 39th European conference on Advances in Information Retrieval, ECIR
’17, pp. 40–53. Springer (2017). doi: 10.1007/978-3-319-56608-5_4

35. Hu, J., Wang, G., Lochovsky, F., Sun, J.t., Chen, Z.: Understanding user’s query intent with
Wikipedia. In: Proceedings of the 18th International Conference on World Wide Web, WWW
’09, pp. 471–480. ACM (2009). doi: 10.1145/1526709.1526773

36. Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F., Giles, C.L.: Exploring web
scale language models for search query processing. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW ’10, pp. 451–460. ACM (2010). doi:
10.1145/1772690.1772737

37. Huston, S., Croft, W.B.: Evaluating verbose query processing techniques. In: Proceedings of
the 33rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’10, pp. 291–298. ACM (2010). doi: 10.1145/1835449.1835499

38. Jansen, B.J., Booth, D.: Classifying web queries by topic and user intent. In: Proceedings of
the 28th of the international conference extended abstracts on Human factors in computing
systems, CHI EA ’10, pp. 4285–4290. ACM (2010)

https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1513876.1513877
https://doi.org/10.14778/1920841.1920932
https://doi.org/10.1145/3077136.3080659
https://doi.org/10.1145/1571941.1571989
https://doi.org/10.1145/1390334.1390400
https://doi.org/10.1145/1963405.1963423
https://doi.org/10.1145/2808194.2809473
https://doi.org/10.1145/2970398.2970406
https://doi.org/10.1007/978-3-319-56608-5_4
https://doi.org/10.1145/1526709.1526773
https://doi.org/10.1145/1772690.1772737
https://doi.org/10.1145/1835449.1835499

264 7 Understanding Information Needs

39. Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational, and
transactional intent of web queries. Inf. Process. Manage. 44(3), 1251–1266 (2008). doi:
10.1016/j.ipm.2007.07.015

40. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: Proceedings of
the 15th International Conference on World Wide Web, WWW ’06, pp. 387–396. ACM (2006).
doi: 10.1145/1135777.1135835

41. Kaptein, R., Serdyukov, P., De Vries, A., Kamps, J.: Entity ranking using Wikipedia as a pivot.
In: Proceedings of the 19th ACM international conference on Information and knowledge
management, CIKM ’10, pp. 69–78. ACM (2010). doi: 10.1145/1871437.1871451

42. Kraaij, W., Spitters, M.: Language models for topic tracking. In: Croft, W., Lafferty, J.
(eds.) Language Modeling for Information Retrieval, The Springer International Series on
Information Retrieval, vol. 13, pp. 95–123. Springer (2003)

43. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In: Proceedings
of the 14th International Conference on World Wide Web, WWW ’05, pp. 391–400. ACM
(2005). doi: 10.1145/1060745.1060804

44. Li, X.: Understanding the semantic structure of noun phrase queries. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp. 1337–
1345. Association for Computational Linguistics (2010)

45. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs. In: Proceed-
ings of the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’08, pp. 339–346. ACM (2008). doi: 10.1145/1390334.1390393

46. Li, X., Wang, Y.Y., Acero, A.: Extracting structured information from user queries with semi-
supervised conditional random fields. In: Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’09, pp. 572–579.
ACM (2009). doi: 10.1145/1571941.1572039

47. Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation using clickthrough
for information retrieval. In: Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’11, pp. 285–294. ACM (2011).
doi: 10.1145/2009916.2009957

48. Li, Y., Zheng, Z., Dai, H.K.: KDD CUP-2005 report: facing a great challenge. SIGKDD Explor.
Newsl. 7(2), 91–99 (2005)

49. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects. In: Proceedings of
the 21st international conference on World Wide Web, WWW ’12, pp. 589–598. ACM (2012).
doi: 10.1145/2187836.2187916

50. Liu, X., Zhang, S., Wei, F., Zhou, M.: Recognizing named entities in tweets. In: Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, HLT ’11, pp. 359–367. Association for Computational Linguistics
(2011)

51. Manshadi, M., Li, X.: Semantic tagging of web search queries. In: Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pp. 861–869.
Association for Computational Linguistics (2009)

52. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of
English: The Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993)

53. Meij, E., Bron, M., Hollink, L., Huurnink, B., de Rijke, M.: Mapping queries to the linking
open data cloud: A case study using DBpedia. Web Semant. 9(4), 418–433 (2011)

54. Meij, E., Weerkamp, W., De Rijke, M.: Adding semantics to microblog posts. In: Proceedings
of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp.
563–572. ACM (2012). doi: 10.1145/2124295.2124364

https://doi.org/10.1016/j.ipm.2007.07.015
https://doi.org/10.1145/1135777.1135835
https://doi.org/10.1145/1871437.1871451
https://doi.org/10.1145/1060745.1060804
https://doi.org/10.1145/1390334.1390393
https://doi.org/10.1145/1571941.1572039
https://doi.org/10.1145/2009916.2009957
https://doi.org/10.1145/2187836.2187916
https://doi.org/10.1145/2124295.2124364

References 265

55. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words
and phrases and their compositionality. In: Proceedings of the 26th International Conference
on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc.
(2013)

56. Mishra, N., Saha Roy, R., Ganguly, N., Laxman, S., Choudhury, M.: Unsupervised query
segmentation using only query logs. In: Proceedings of the 20th International Con-
ference Companion on World Wide Web, WWW ’11, pp. 91–92. ACM (2011). doi:
10.1145/1963192.1963239

57. Murnane, E.L., Haslhofer, B., Lagoze, C.: RESLVE: leveraging user interest to improve entity
disambiguation on short text. In: Proceedings of the 22nd International Conference on World
Wide Web, WWW ’13 Companion, pp. 81–82. ACM (2013). doi: 10.1145/2487788.2487823

58. Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling.
In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Long Papers - Volume 1, ACL ’12, pp. 563–571. Association for Computational Linguistics
(2012)

59. Paparizos, S., Ntoulas, A., Shafer, J., Agrawal, R.: Answering web queries using structured data
sources. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, pp. 1127–1130. ACM (2009). doi: 10.1145/1559845.1560000

60. Piccinno, F., Ferragina, P.: From TagME to WAT: A new entity annotator. In: Proceedings
of the First International Workshop on Entity Recognition & Disambiguation, ERD ’14, pp.
55–62. ACM (2014). doi: 10.1145/2633211.2634350

61. Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.: Interpreting keyword queries over web
knowledge bases. In: Proceedings of the 21st ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’12, pp. 305–314. ACM (2012). doi:
10.1145/2396761.2396803

62. Risvik, K.M., Mikolajewski, T., Boros, P.: Query segmentation for web search. In: Proceedings
of the 12th International Conference on World Wide Web, WWW ’03 (2003)

63. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proceedings of the
13th International Conference on World Wide Web, WWW ’04, pp. 13–19 (2004). doi:
10.1145/988672.988675

64. Rüd, S., Ciaramita, M., Müller, J., Schütze, H.: Piggyback: Using search engines for robust
cross-domain named entity recognition. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pp. 965–975
(2011)

65. Saha Roy, R., Ganguly, N., Choudhury, M., Laxman, S.: An IR-based evaluation framework
for web search query segmentation. In: Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 881–890.
ACM (2012). doi: 10.1145/2348283.2348401

66. Sarkas, N., Paparizos, S., Tsaparas, P.: Structured annotations of web queries. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pp. 771–782 (2010). doi: 10.1145/1807167.1807251

67. Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response ranking. In:
Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 1099–
1109 (2013). doi: 10.1145/2488388.2488484

68. Shen, D., Sun, J.T., Yang, Q., Chen, Z.: Building bridges for web query classification.
In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’06, pp. 131–138. ACM (2006). doi:
10.1145/1148170.1148196

69. Speretta, M., Gauch, S.: Personalized search based on user search histories. In: Proceedings
of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, WI ’05, pp. 622–
628. IEEE Computer Society (2005). doi: 10.1109/WI.2005.114

70. Srba, I., Bielikova, M.: A comprehensive survey and classification of approaches for commu-
nity question answering. ACM Trans. Web 10(3), 18:1–18:63 (2016). doi: 10.1145/2934687

https://doi.org/10.1145/1963192.1963239
https://doi.org/10.1145/2487788.2487823
https://doi.org/10.1145/1559845.1560000
https://doi.org/10.1145/2633211.2634350
https://doi.org/10.1145/2396761.2396803
https://doi.org/10.1145/988672.988675
https://doi.org/10.1145/2348283.2348401
https://doi.org/10.1145/1807167.1807251
https://doi.org/10.1145/2488388.2488484
https://doi.org/10.1145/1148170.1148196
https://doi.org/10.1109/WI.2005.114
https://doi.org/10.1145/2934687

266 7 Understanding Information Needs

71. Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and
Wikipedia. In: Proceedings of the 17th international conference on World Wide Web, WWW
’08, pp. 347–356. ACM (2008). doi: 10.1145/1367497.1367545

72. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests
and activities. In: Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’05, pp. 449–456. ACM (2005).
doi: 10.1145/1076034.1076111

73. Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer, K., Cudré-Mauroux, P.:
Contextualized ranking of entity types based on knowledge graphs. Web Semant. 37–38, 170–
183 (2016). doi: 10.1016/j.websem.2015.12.005

74. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with
a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology -
Volume 1, NAACL ’03, pp. 173–180. Association for Computational Linguistics (2003). doi:
10.3115/1073445.1073478

75. Tsur, G., Pinter, Y., Szpektor, I., Carmel, D.: Identifying web queries with question intent.
In: Proceedings of the 25th International Conference on World Wide Web, WWW ’16, pp.
783–793. International World Wide Web Conferences Steering Committee (2016). doi:
10.1145/2872427.2883058

76. Ullegaddi, P.V., Varma, V.: Learning to rank categories for web queries. In: Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM ’11,
pp. 2065–2068. ACM (2011). doi: 10.1145/2063576.2063891

77. Vallet, D., Zaragoza, H.: Inferring the most important types of a query: A semantic approach.
In: Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’08, pp. 857–858. ACM (2008). doi:
10.1145/1390334.1390541

78. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain
entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for
Computational Linguistics (2015)

79. Wei, X., Peng, F., Dumoulin, B.: Analyzing web text association to disambiguate abbreviation
in queries. In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’08, pp. 751–752 (2008). doi:
10.1145/1390334.1390485

80. Yih, S.W.t., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph generation:
Question answering with knowledge base. In: Proceedings of the Joint Conference of the 53rd
Annual Meeting of the ACL and the 7th International Joint Conference on Natural Language
Processing of the AFNLP. ACL - Association for Computational Linguistics (2015)

81. Yin, X., Shah, S.: Building taxonomy of web search intents for name entity queries. In:
Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 1001–
1010. ACM (2010). doi: 10.1145/1772690.1772792

https://doi.org/10.1145/1367497.1367545
https://doi.org/10.1145/1076034.1076111
https://doi.org/10.1016/j.websem.2015.12.005
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.1145/2872427.2883058
https://doi.org/10.1145/2063576.2063891
https://doi.org/10.1145/1390334.1390541
https://doi.org/10.1145/1390334.1390485
https://doi.org/10.1145/1772690.1772792

References 267

82. Zhang, S., Balog, K.: Design patterns for fusion-based object retrieval. In: Proceedings of the
39th European conference on Advances in Information Retrieval, ECIR ’17. Springer (2017).
doi: 10.1007/978-3-319-56608-5_66

83. Zhou, K., Cummins, R., Halvey, M., Lalmas, M., Jose, J.M.: Assessing and predict-
ing vertical intent for web queries. In: Proceedings of the 34th European conference
on Advances in Information Retrieval, ECIR’12, pp. 499–502. Springer (2012). doi:
10.1007/978-3-642-28997-2_50

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-319-56608-5_66
https://doi.org/10.1007/978-3-642-28997-2_50
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Leveraging Entities in Document
Retrieval

This chapter focuses on the classic IR task of ad hoc document retrieval and
discusses how entities may be leveraged to improve retrieval performance. At their
core, all document retrieval methods compare query and document representations.
Traditionally, these representations are based on terms (words). Entities facilitate
a semantic understanding of both the user’s information need, as expressed by the
keyword query, and of the document’s content. Entities thus may be used to improve
query and/or document representations. As a first step of that process, entities
that are related to the query need to be identified, thereby establishing a mapping
between queries and entities. As we shall explain in Sect. 8.1, one may go beyond
considering only those entities that are explicitly mentioned in the query. We next
present three different families of approaches, which are illustrated in Fig. 8.1.

• Expansion-based methods utilize entities as a source of expansion terms to enrich
the representation of the query (Sect. 8.2).

• Projection-based methods treat entities as a latent layer, while leaving the
original document/query representations intact (Sect. 8.3).

• Entity-based methods consider explicitly the entities that are recognized in docu-
ments, as first-class citizens, and embrace entity-based representations in “duet”
with traditional term-based representations in the retrieval model (Sect. 8.4).

This particular order corresponds to the temporal evolution of research in this
area, where the tendency toward more and more explicit entity semantics is clearly
reflected. Throughout this chapter, we shall assume that both queries and documents
have been annotated with entities, using entity linking techniques we have discussed
before (see Chap. 5 for documents and Sect. 7.3 for queries). A particular challenge
involved here is how to deal with the uncertainty of these automatic annotations.

In practice, necessitated by efficiency considerations, all methods described in
this chapter are implemented as re-ranking mechanisms. The details are found in
Sect. 8.5. Finally, we present standard datasets and useful resources in Sect. 8.6. We
refer to Table 8.1 for the notation used throughout this chapter.

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_8

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_8&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_8

270 8 Leveraging Entities in Document Retrieval

Fig. 8.1 Three main ways to leverage entities for improved document retrieval. The represen-
tations are bag-of-words (BoW), bag-of-entities (BoE), and latent entity space (LES). The main
difference between projection-based (b) and entity-based (c) methods is that the former treats
entities as a latent layer between queries and documents, while the latter explicitly models
the entities mentioned in the document and complements the traditional bag-of-words (BoW)
representations with bag-of-entities (BoE) representations

Table 8.1 Notation used in
this chapter

Symbol Description

c(t;x) Count (raw frequency) of term t in the x

d Document (d ∈ D)

D Collection of documents

Dq (k) Top-k ranked documents in response to query q

e Entity (e ∈ E)

E Entity catalog (set of all entities)

Eq (k) Top-k ranked entities in response to query q

Eq Set of query entities

lx Length of the description of x (lx =∑t∈x c(t;x))

q Query (q = 〈q1, . . . ,qn〉)
t Term (t ∈ V)

T Type taxonomy

Te Set of types assigned to e

V Vocabulary of terms

8.1 Mapping Queries to Entities

A common component that is shared by all approaches that follow later in this
chapter is the mapping of queries to entities. The goal is to identify a set of entities
that may be semantically related to the query.1 We shall refer to this set Eq of related
entities as query entities. Naturally, not all query entities are equally strongly related
to the query. Therefore, we use the probability P(e|q) to express the likelihood of

1Notice that this is highly related to the task of ad hoc entity retrieval (cf. Chap. 3), as well as to the
candidate entity ranking and semantic linking subtasks in query entity annotation (cf. Sect. 7.3).

8.1 Mapping Queries to Entities 271

entity e being related to query q . The estimation of this probability may be based on
(1) entities mentioned in the query, (2) entities retrieved directly from a knowledge
base, and/or (3) entities retrieved indirectly, through pseudo-relevant documents.
Let us look at these in order.

• Entities mentioned in the query. The presence of an entity mention in the query
provides a unique opportunity for improving the understanding of the user’s
information need [5]. Entities can be identified and disambiguated using entity
linking techniques, cf. Sect. 7.3. Let Eq be the set of entities that have been
identified in query q . For each of the query entities e ∈ Eq , we let scoreELQ(e;q)

be the associated confidence score. We note that the annotated entity mentions
may overlap (i.e., we are not concerned with forming interpretation sets). For
queries that are associated with a specific entity (i.e., |Eq | = 1), it makes
sense to use that entity’s description as pseudo-feedback information [56]. More
generally, we consider a single entity that has the highest annotation score:

P(e|q) =
{

1 , e = arg maxe∈Eq
scoreELQ(e;q)

0 , otherwise .
(8.1)

Further generalization to an arbitrary number of entities can easily be done, by
introducing a minimum confidence threshold on the annotations:

P(e|q) =
{ 1

Z
scoreELQ(e;q) , scoreELQ(e;q) > γ

0 , otherwise ,

where γ is a score threshold parameter, and Z is a normalization factor, such that
0 ≤ P(e|q) ≤ 1. Additionally, entities relevant to those mentioned in the query
may also be considered [34].

• Entities retrieved from a knowledge base. An alternative route may be taken by
querying a knowledge base directly for relevant entities [18]. We let scoreER(e;q)

be the relevance score of entity e given q . This score may be computed
using any of the entity retrieval methods introduced in Chap. 3. For pragmatic
considerations, only the top-k entities are considered, denoted as Eq(k). P(e|q)

then becomes:

P(e|q) =
{ 1

Z
scoreER(e;q) , e ∈ Eq(k)

0 , otherwise ,

where Z is a normalization coefficient.

• Entities from pseudo-relevant documents. The third method uses the top-ranked
documents retrieved in response to the query, in the spirit of pseudo relevance
feedback [40]. This corresponds to the setting of ranking entities without direct
representations (cf. Sect. 3.4). Formally:

P(e|q) ∝
∑

d∈Dq(k)

P (e|d)P (d|q) , (8.2)

272 8 Leveraging Entities in Document Retrieval

where Dq(k) denotes the set of top-k highest scoring documents retrieved in
response to query q , P(d|q) corresponds to document d’s relevance to the query,
and P(e|d) is the probability of observing the entity in d . P(e|d) may be taken
as a maximum-likelihood estimate:

P(e|d) = c(e;d)
∑

e′∈d c(e′;d)
,

where c(e;d) is the number of times entity e occurs in document d . Additionally,
the frequency of e across the document collection may also be taken into account
(to demote entities that occur in too many documents) by adding an IDF-like
component, see Eq. (3.6). One alternative to relying on maximum-likelihood
estimation is presented by Meij et al. [40], who re-estimate the probability mass
of the entities using parsimonious language models.

We note that entity relevance may be estimated selectively or jointly using the above
methods, depending on the type of the query. For example, Xu et al. [56] employ
Eq. (8.1) for queries that can be associated with a single entity; for other queries, the
top-k ranked documents are considered, i.e., Eq. (8.2) is used.

8.2 Leveraging Entities for Query Expansion

Keyword queries are typically too short to describe the underlying information need
accurately. Query expansion is one of the classical techniques used in document
retrieval, dating all the way back to the 1970s [43]. The idea is to supplement the
keyword query with additional terms, thereby having a more elaborate expression of
the underlying information need. These additional terms may be extracted from doc-
uments that are deemed relevant. In most cases, however, there is no explicit feed-
back from the user as to which documents are relevant and which are not. Instead,
one may “blindly” assume that the top-ranked documents are relevant, and extract
expansion terms from these. This technique is known as pseudo (or blind) relevance
feedback and has been thoroughly investigated in the past. In general, pseudo rele-
vance feedback helps more queries than it hurts [39]. Clearly, it can only be effective
when the initial set of retrieved documents is good, otherwise it merely introduces
noise. Prior work has demonstrated the benefits of exploiting external collections
for query expansion [2, 20, 49]. In this section, we will leverage a knowledge base
as an external resource, and utilize entities for query expansion. This can bring in
external semantic signals that may not be available within feedback documents.

First, in Sect. 8.2.1, we describe how traditional document-based feedback
works. The aim of that section is to show how an expanded query model θ̂q can
be constructed and subsequently used for retrieval. Next, in Sect. 8.2.2, we present
a general framework for performing entity-centric query expansion, i.e., estimating
θ̂q with the help of entities. A core component of this framework is term selection,
which may be approached using either unsupervised or supervised methods. These
are discussed in Sects. 8.2.3 and 8.2.4, respectively.

8.2 Leveraging Entities for Query Expansion 273

8.2.1 Document-Based Query Expansion

To give an idea of how traditional (term-based) pseudo relevance feedback works,
we present one of the most popular approaches, the relevance model by Lavrenko
and Croft [33]. This method assumes that there exists some underlying relevance
model R, which generates both the query and the relevant documents. Then, based
on the observed query q (which is a sample from R), we attempt to learn the
parameters of R. The probability of drawing a term t from R is approximated with
the probability of observing that term, given the query:

P(t|R) ≈ P(t|q1, . . . ,qn) .

Lavrenko and Croft [33] present two methods for estimating this conditional
probability. The better performing of the two, referred to as RM1, assumes that
the terms in the query and in relevant documents are sampled identically and
independently from the relevance model (i.i.d. sampling):

P(t|R) ∝
∑

d∈Dq(m)

P (d)P (t|θd)

n∏

i=1

P(qi |θd) , (8.3)

where Dq(m) is the set of top-m highest ranked documents for the original query,
according to some retrieval model (commonly query likelihood, i.e., P(q|θd)).2

These are used as evidence for estimating the relevance model, with m typically set
between 10 and 50 [1, 17, 37, 56]. The prior document probability, P(d), is usually
assumed to be uniform. The term probabilities P(t|θd) and P(qi |θd) are smoothed
term probabilities from the document’s language model (cf. Sect. 3.3.1.1).

The number of expansion terms has a direct impact on retrieval efficiency.
Therefore, in practice, only the top-k expansion terms with the highest probability
are used for expansion, with k typically ranging between 10 and 50 (see, e.g., [1,
5, 17]). Thus, the top-k highest scoring terms according to Eq. (8.3) are taken to
form the expanded query model θ̂q (with the probabilities renormalized such that
∑

t P (t|θ̂q) = 1).
To avoid the query shifting too far away from the user’s original intent (an issue

known as topic drift), it is common to define the final query model θq as a linear
combination of the maximum likelihood and expanded query models [59]:

P(t|θq) = (1 − λ)
c(t;q)

lq
+ λP(t|θ̂q) , (8.4)

2We use m to denote the number of feedback documents, as the variable k will be used for the
number of feedback terms.

274 8 Leveraging Entities in Document Retrieval

Fig. 8.2 Entity-based query
expansion. Query entities
(Eq) are utilized to add and
re-weigh terms in the original
query q, resulting in an
expanded query model θq

t

t

t

t

t

t

t

t

d

q

Eq

θq

where c(t;q) is the number of times t occurs in q , lq is the total number of terms
in the query, and λ is a mixture parameter. This parameter controls the influence of
the expanded query model and is typically in the range [0.4,0.6] (see, e.g., [1, 56]).
The combination of RM1 with the original query in Eq. (8.4) is commonly referred
to in the literature as RM3 [37]. RM3 is widely regarded as a state-of-the-art model
for pseudo relevance feedback.

Finally, the combined query model θq is used in a second retrieval round to obtain
the final document ranking. For example, using the query likelihood retrieval model
(a.k.a. the standard language modeling approach) the scoring of documents is done
according to:3

log P(q|θd) =
∑

t∈q

P (t|θq) log P(t|θd) ,

where P(t|θd) is the probability of term t in the (smoothed) language model of
document d . Note that any other retrieval model can be used for obtaining the final
document ranking by using θq as a (weighted) query.

8.2.2 Entity-Centric Query Expansion

Given that our focus is on entities, the question we ask is this: Can we use
entities, instead of documents, for estimating an expanded query model? The idea
of entity-centric query expansion is illustrated in Fig. 8.2, where the expanded query
model θq is estimated by utilizing the set of query entities Eq .

As a general framework, we follow the method proposed by Meij et al.
[40], where query expansion is formulated as a double translation process: first,
translating the query to a set of relevant entities, then considering the vocabulary
of terms associated with those entities as possible expansion terms to estimate the

3This formula can be derived by replacing the query term count c(t;q) in Eq. (3.8) with the
probability of the term given the query language model, P (t |θq). Note that this scoring is rank-
equivalent to measuring the Kullback–Leibler divergence between the document and the query
term distributions (KL(θq ||θd)) [1].

8.2 Leveraging Entities for Query Expansion 275

expanded query model. Formally:

P(t|θ̂q) ∝
∑

e∈Eq

P (t|e,q)P (e|q) . (8.5)

Most existing approaches can be instantiated into Eq. (8.5). The first component,
P(t|e,q), expresses how strongly term t is associated with entity e given q . Meij
et al. [40] further impose a conditional independence assumption between the term
and the query. That is, once an entity is selected for a query, the probability of the
expansion term depends only on that entity: P(t|e,q) ∼= P(t|e). This distribution
governs how terms are sampled from the description of e. We shall refer to it as
term selection. The second component, P(e|q), identifies entities to be used for
query expansion and corresponds to the relevance of e given the query. This latter
component we have already discussed in Sect. 8.1. Therefore, we shall now focus on
the estimation of P(t|e,q), considering both unsupervised and supervised methods.

8.2.3 Unsupervised Term Selection

The probability distribution P(t|e) is estimated by selecting expansion terms from
the description or surface forms of a given query entity (e ∈ Eq). (Notice that term
selection here depends only on the entity, and not on the original query.)

Entity Description One of the simplest ways to perform term selection is to
pick the most important terms from the entity’s term-based representation, which
we refer to as the entity description. Following our notation from before and
assuming a single-field entity representation, we write c(t;e) to denote the count
(raw frequency) of term t in the description of e. Further, we introduce the shorthand
notation w(t,e) for the importance of term t given e. Commonly, this is estimated
using the TF-IDF (here: TF-IEF) weighting scheme:

w(t,e) = TF(t,e)× IEF(t) ,

where term frequency TF and inverse entity frequency IEF have been defined in
Eqs. (3.1) and (3.2), respectively. Another popular choice is to use entity language
models, i.e., w(t,e) = P(t|θe). (We refer back to Sect. 3.3.1.1 for the construction
of entity language models.) Once term scores are computed, P(t|e) is formed by
taking the top-k terms and re-normalizing their scores:

P(t|e) =
{ 1

Z
w(t,e) , t ∈ V(k)

0 , otherwise ,

where V(k) is the set of top-k terms with the highest score, and Z is a normalization
coefficient. Xu et al. [56] further exploit the structured nature of entity descriptions,
by taking a linear combination of term scores across multiple entity fields. When

276 8 Leveraging Entities in Document Retrieval

the entity does not have a ready-made description available in the knowledge
repository, terms may be sampled from documents that mention the entity [40].
Instead of considering entity-term co-occurrences on the document level, they may
be restricted to smaller contexts, such as the sentence mentioning the entity or a fixed
sized window of words around the entity mention [18]. The key difference between
the above methods is how the entity description is obtained; we have covered all
these variants earlier in the book, in Chap. 3.

Surface Forms Another approach is to use the various surface forms (aliases) of
the query entities as expansion terms [18, 34]. The main intuition behind doing
so is that by including the different ways an entity can be referred to (i.e., its
“synonyms”), documents relevant to that entity can be retrieved more effectively.
Name variants of an entity can be conveniently enumerated as a separate field in its
description. Then, the estimation of P(t|e) is performed as before, except that the
term importance score is based on c(t;fn), instead of c(t;e), where fn is the field
holding the name variants of e.

8.2.4 Supervised Term Selection

So far, it has been implicitly assumed that all expansion terms are useful and
benefit retrieval performance, when added to the original query. This assumption
was challenged by Cao et al. [8], who showed that not all expansion terms are
actually valuable. Some terms are neutral (do not affect performance), while others
are in fact harmful. They further demonstrated that it is difficult to tell apart good
expansion terms from bad ones based solely on term distributions. One needs to
incorporate additional signals to be able to select useful expansion terms. Therefore,
Cao et al. [8] propose to combine multiple features using supervised learning to
predict the usefulness of expansion terms. This task may be formulated as a binary
classification problem (separating good expansion terms from bad ones) [8] or cast
as a ranking problem (ranking expansion terms based on their predicted utility) [5].
We follow the latter approach and specifically focus on ranking expansion terms
given a particular query entity e and the query q . The resulting term importance
score score(t;e,q) may be plugged into Eq. (8.5) as an estimate of P(t|e,q). Note
that the dependence of the expansion term on the original query is kept.

8.2.4.1 Features

Brandão et al. [5] present five specific feature functions for entity-based query
expansion. The order in which we discuss them corresponds to their usefulness
(from most to least useful).

The first two features are simple statistical measures of term frequency, which
rely on fielded entity descriptions. Term frequency is the total number of times t

occurs across the set Fe fields of the entity:

8.2 Leveraging Entities for Query Expansion 277

TF(t,e) =
∑

fe∈Fe

c(t;fe) .

The term spread feature measures the spread of a term across multiple fields, by
counting in how many different fields the term occurs:

TS(t,e) =
∑

fe∈Fe

1(c(t;fe) > 0) ,

where 1() is a binary indicator function.
Term proximity accounts for the proximity between an expansion term and the

original query terms in the description of the entity:

TP(t,q,e) =
n∑

i=1

m∑

w=1

cw(t,qi;e)
2w−1 ,

where cw(t,qi;e) is the total number of co-occurrences of terms t and qi , within an
unordered window size of w, in the description of e. In [5], entities are represented
by their Wikipedia pages, and windows are measured in terms of sentences, up to
m = 5.

The last two features are taxonomic, utilizing the types of entities. Let Et denote
the set of entities that contain the term t: Et = {e′ ∈ E : c(t;e′) > 0}. Further,
let Ee be the set of entities that share at least one type with the query entity e:
Ee = {e′ ∈ E : Te ∩ Te′ �= ∅}. The similarity between the sets of related entities Et

and Ee may be measured using Dice’s coefficient:

DC(t,e) = 2
|Et ∩ Ee|
|Et | + |Ee| .

Another option is to use mutual information:

MI(t,e) =
{
|Et ∩ Ee| log |Et∩Ee|

|Et |×|Ee |, |Et ∩ Ee| > 0

0, otherwise .

All the above features score candidate expansion terms with respect to a given
query entity. It is also possible to leverage information associated with entities in
a knowledge base, without utilizing query entities directly. A specific example of
such an approach is given by Xiong and Callan [52], who select expansion terms
that have similar type distributions with that of the query.

The type distribution of a term is estimated according to:

P(y|θt) = P(t|y)
∑

y ′∈T P(t|y ′) ,

278 8 Leveraging Entities in Document Retrieval

where T is the type taxonomy and the term probability of a type P(t|y) is
approximated based on the term’s frequency in the descriptions of all entities with
that type:

P(t|y) =
∑

e∈y c(t;e)
∑

e∈y le
.

Similarly, the type distribution of the query is estimated according to:

P(y|θq) = P(q|y)
∑

y ′∈T P(q|y ′) ,

where P(q|y) is the product of the query terms’ likelihood given type y:

P(q|y) =
∏

qi

P (qi |y) .

Then, expansion terms are selected based on the similarity of their type distributions
θt to the type distribution of the query θq , measured by negative Jensen–Shannon
divergence:

scoreJSD(t;q) = −1

2
KL(θq ||θq,t)− 1

2
KL(θt ||θq,t) , (8.6)

where

P(y|θq,t) = 1

2

(
P(y|θq)+ P(y|θt)

)
.

Notice that the estimate in Eq. (8.6) depends only on the query and not on the
query entities. Further note that all unsupervised term importance estimates from
Sect. 8.2.3 can also be used as features in supervised term selection.

8.2.4.2 Training

To be able to apply supervised learning, target labels are required. The question
is: How to measure if a term is a good expansion term? Cao et al. [8] propose to
identify the ground truth labels of terms according to their direct impact on retrieval
effectiveness. Formally, the gain attained by appending the candidate expansion
term t to the original query q (denoted by the ⊕ operator) is measured as:

δ(t) = ζ(q ⊕ t)− ζ(q)

ζ(q)
,

where ζ can be any standard IR evaluation measure, such as MAP or NDCG. Then,
terms above a certain threshold (0.005 in [8]) may be considered as good expansion
terms (target label +1), while the rest being bad terms (target label −1).

Instead of measuring the direct impact of terms with respect to some retrieval
measure, Xiong and Callan [52] use their influence on ranking scores. We write

8.3 Projection-Based Methods 279

R+ and R− to denote the set of relevant and irrelevant documents for query q ,
respectively. Further, score(d;q) denotes the retrieval score of document d for q .
The gain from a term over the retrieved documents is then calculated as:

δ(t) = 1

|R+|
∑

d∈R+

(
score(d;q ⊕ t)− score(d;q)

)

− 1

|R−|
∑

d∈R−

(
score(d;q ⊕ t)− score(d;q)

)
.

Xiong and Callan claim that this latter formulation “reflects an expansion term’s
effectiveness more directly” [52]4 and performs better experimentally.

8.3 Projection-Based Methods

Traditional keyword-based IR models have an inherent limitation of not being able
to retrieve (relevant) documents that have no explicit term matches with the query.
While query expansion can remedy this to some extent, the limitation still remains.
Concept-based retrieval methods attempt to tackle this challenge by relying on
auxiliary structures to obtain semantic representations of queries and documents
in a higher-level concept space. Such structures include controlled vocabularies
(dictionaries and thesauri) [28, 47], ontologies [9], and entities from a knowledge
repository [23]. Our interest here is in the latter group.

The overall idea is “to construct a high-dimensional latent entity space, in which
each dimension corresponds to one entity, and map both queries and documents to
the latent space accordingly” [35]. The relevance between a query and a document
is then estimated based on their projections to this latent entity space. This approach
allows to uncover hidden (latent) semantic relationships between queries and
documents. See Fig. 8.1b for an illustration.

This idea is related to that of topic modeling, as developed in latent semantic
indexing [19] and latent Dirichlet allocation [3]. While topic models can now
be computed on web-scale [32], their utility to improve retrieval effectiveness is
limited. For example, Yi and Allan [57] have demonstrated that relevance models
(cf. Sect. 8.2.1) consistently outperform more elaborate topic modeling methods.
Latent entity representations, on the other hand, may be obtained at a relatively
low cost, are easy to interpret, and have been clearly shown to improve retrieval
effectiveness.

In this section, we present three specific approaches for ranking documents using
latent entity representations.

4It is more direct in the sense that changes in a given evaluation metric only happen if a given
expansion term manages to affect the ranking scores to an extent that documents exchange
positions.

280 8 Leveraging Entities in Document Retrieval

8.3.1 Explicit Semantic Analysis

Explicit semantic analysis (ESA) is an influential concept-based retrieval method
by Gabrilovich and Markovitch [26], where “the semantics of a given word are
described by a vector storing the word’s association strengths to Wikipedia-
derived concepts” [23]. Unlike in latent semantic analysis (LSA) [21], the use of a
knowledge repository gives meaningful interpretation to each element (concept) in
the vector representation, hence the name “explicit.” Work on ESA has primarily
focused on using Wikipedia as the underlying knowledge repository [22, 23, 25, 26].
Nevertheless, it may be used with any other knowledge repository, provided that
it has a sufficient coverage of concepts and concepts have textual descriptions
associated with them. For terminological consistency, we will continue to use
the term “entity” instead of “concept,” when referring to entries of a knowledge
repository,5 but follow the terminology “concept vector” and “concept space” from
the original work.

8.3.1.1 ESA Concept-Based Indexing

The semantic representation of a given term t is a concept vector of length |E |:
t = 〈w(e1,t), . . . ,w(e|E|,t)

〉
,

where each element of the vector corresponds to an entity in the knowledge
repository and its value quantifies the strength of the association between term
t and the given entity. For a given term-entity pair, w(e,t) is computed by taking
the TF-IDF weight of t in the description of e (in ESA, the Wikipedia article
of e). Further, cosine normalization is applied to disregard differences in entity
representation length:

w(e,t) = TFIDF(t,e)
√∑

t ′∈V TFIDF(t ′,e)2
.

The semantic representation of a given piece of text (bag of terms) is computed by
taking the centroid of the individual terms’ concept vectors. Formally, the concept
vector corresponding to input text z is given by z = 〈w(e1,z), . . . ,w(e|E|,z)〉. Each
element of this vector represents the relatedness of the corresponding entity to the
input text. The value of the j th vector element is calculated as:

w(ej,z) = 1

lz

∑

t∈z

c(t;z) w(ej,t) ,

where lz is the length of z and c(t;z) is the number of times term t appears in z. See
Fig. 8.3 for an illustration.

5We refer back to Sect. 1.1.1 for the difference between concepts and entities.

8.3 Projection-Based Methods 281

Fig. 8.3 Semantic representation of a piece of text (z) using explicit semantic analysis (ESA) [26]

Given that these concept-based vectors are sparse, with most weights being zero,
they can be efficiently represented using an inverted index. These inverted index
representations of concept vectors are further pruned by retaining only the top-k
entities with the highest weights. In [23], this cutoff is applied to both term and
text concept vectors (t and z, respectively), with k set to 50. This helps to eliminate
spurious and insignificant entity associations and also reduces index size.

8.3.1.2 ESA Concept-Based Retrieval

The semantic similarity between query q and document d may be computed by
mapping both to the ESA concept space, and taking the cosine similarity of their
concept vectors. That is, score(q;d) = cos(q,d), where q and d denote the concept
vectors corresponding to q and d , respectively.

One issue that arises here is that long documents are difficult to map to the
concept space. As Egozi et al. [23] explain, “a small part of a long document
might be relevant to the current query, but the semantics of this part may be
underrepresented in the concepts vector for the full document.” The proposed
solution, motivated by prior work on passage-based retrieval [7], is to break up
the document into shorter passages. In [23], passages are of fixed length and
overlapping. Each passage, s ∈ d , is represented by its own concept vector, s, and
matched against the query. The final retrieval score combines the full document’s
similarity score with that of the best performing passage:

scoreESA(q;d) = cos(q,d)+ max
s∈d

cos(q,s) .

Due to the fact that queries are short and noisy, the initially generated query concept
vector needs further refinement. Egozi et al. [23] propose to utilize the idea of
pseudo relevance feedback for this purpose. First, keyword-based retrieval (using q)
is performed on the passage level. Then, the top-k passages are treated as pseudo-
relevant (i.e., positive) examples, while the bottom-k passages are taken to be
pseudo-non-relevant (i.e., negative) examples. Then, a subset of the initial query
entities is selected, based on the positive and negative example passages, resulting

282 8 Leveraging Entities in Document Retrieval

in a modified query q′. Finally, documents are ranked using the refined concept-
based query q′. We refer to [23] for further details on how to select which entities
to retain in the modified query concept vector.

8.3.2 Latent Entity Space Model

Liu and Fang [35] present the latent entity space (LES) model, which is based on a
generative probabilistic framework. The document’s retrieval score is taken to be a
linear combination of the latent entity space score and the original query likelihood
score:6

scoreLES(q;d) = α
∑

e∈E
P(q|e)P (e|d)

︸ ︷︷ ︸
LES score

+(1 − α) P (q|d) . (8.7)

In the absence of labeled training data, Liu and Fang [35] suggest to set interpolation
parameter α to a value between 0.5 and 0.7. The latent entity space score is
calculated as a linear combination over latent entities (e ∈ E) and involves the
estimation of two components: query projection, P(q|e), and document projection,
P(e|d). Next, we detail the estimation of these two probabilities.

Query Projection The probability P(q|e) may be interpreted as the likelihood of
the query q being generated by entity e. A straightforward option is to base this
estimate on the language model of the entity, θe. This language model may be
constructed from the entity’s description (cf. Sect. 3.3.1.1). The query projection
probability is then computed by taking a product over the query terms (which is
essentially the query likelihood score of the entity):

P(q|e) =
∏

t∈q

P (t|θe)
c(t;q) .

Another approach to estimating this probability is to leverage the set of query
entities Eq (which we have obtained in Sect. 8.1) in a pairwise manner:

P(q|e) ∝
∑

e′∈Eq

sim(e,e′) P (e′|q) , (8.8)

where sim(e,e′) may be any symmetric pairwise similarity measure (in [35] the
cosine similarity between θe and θe′ is used; see Sect. 4.5.1 for other possibilities),
and P(e′|q) is the query association probability for e′.

Liu and Fang [35] find that the latter, entity-similarity-based method works
better than the former, unigram-based approach. Using Eq. (8.8) implies that the
summation in Eq. (8.7) can be restricted to the set of query entities Eq as opposed to

6In [35], the scores of the two components are re-normalized to make them compatible.

8.3 Projection-Based Methods 283

Table 8.2 Features used in EsdRank [51]

Group Description

Query-entity features

P (e|q) Query-entity association probability (cf. Sect. 8.1)

scoreER(e;q) Entity retrieval score (relevance of e given q)

sim(Te,Tq) Type-based similarity between the entity (Te) and the query (Tq)

maxSim(e,Eq) Max. pairwise similarity between e and other query entities e′ ∈ Eq

avgSim(e,Eq) Avg. pairwise similarity between e and other query entities e′ ∈ Eq

Entity-document features

sim(e,d) Textual similarity between e and d

sim(Te,Td) Type-based similarity between the entity (Te) and the document
(Td)

numMentioned(E i
e,d) Number of related entities (at most i hops from e) mentioned in d

Other features

IDF(e) IDF score of the entity (based on the number of documents that are
annotated with e)

quality(d) Quality score of d (document length, SPAM score, PageRank, etc.)

Note that many of these features are instantiated multiple times, using different similarity methods
or parameter configurations

the entire entity catalog E , which will have a significant positive effect on efficiency.
It is further shown in [35] that the quality of entity language models θe can have a
significant impact on end-to-end retrieval performance.

Document Projection The probability P(e|d) may be interpreted as the projection
of document d to the latent entity space. It may be estimated using existing docu-
ment retrieval models, e.g., by computing entity likelihood (i.e., the probability of e

generated from the language model of d). Liu and Fang [35] estimate P(e|d) based
on the negative cross-entropy between the document and entity language models:

P(e|d) = exp (−CE(θe ‖ θd)) = exp
(∑

t∈V
P(t|θe) log P(t|θd)

)
.

8.3.3 EsdRank

The idea of using entities as a bridge between documents and queries may also
be expressed in a discriminative learning framework. Xiong and Callan [51]
introduce EsdRank for ranking documents, using a combination of query-entity
and entity-document features. These correspond to the notions of query projection
and document projection components of LES, respectively, from before. Using
a discriminative learning framework, additional signals can also be incorporated
easily, such as entity popularity or document quality. Next, we present these main
groups of features, which are summarized in Table 8.2. We then continue by briefly
discussing the learning-to-rank algorithm used in EsdRank.

284 8 Leveraging Entities in Document Retrieval

8.3.3.1 Features

Query-entity features include the following:

• Query entity probability, which can be computed by different methods in the
query-to-entity mapping step (cf. Sect. 8.1).

• Entity retrieval score, which may be computed by using any standard retrieval
model (such as LM, BM25, SDM) to score the query against the entity’s
description (in the case of unstructured entity representations) or a given entity
field (in the case of structured entity representations).

• Type-based similarity between the target types of the query, Tq , and the types
of the entity, Te. The former may be computed using the target type detection
methods we presented in Sect. 7.2, while the latter is provided in the knowledge
base. Specifically, Xiong and Callan [51] consider the top three types identified
for the query.

• Entity similarity considers the similarity between the candidate entity and
other query entities in a pairwise manner. Then, these pairwise similarities
are aggregated by taking their maximum or average.

Entity-document features comprise the following:

• Text-based similarity is measured between the document and the entity
description (or fields thereof). These may be computed, e.g., by using cosine
similarity or by applying standard retrieval models (LM, BM25, SDM, etc.) to
score documents by treating the entity description as the search query.

• Type-based similarity may be computed between documents and entities, simi-
larly to how it is done for queries and entities. Assigning types to the document
may be approached as a multiclass classification problem or as a ranking problem
(as it was done for queries in Sect. 7.2). Ultimately, the top-k types, i.e., with the
highest confidence score, are considered for the document (k = 3 in [51]).

• Graph-based similarity considers the relationships of the entity. Let E i
e denote

the set of entities that are reachable from entity e in i hops, where i ∈ [0..2] and
E0

e = {e}. Then, graph-based similarity in [51] is measured by the number of
entities in E i

e that are mentioned in d .

Other features may include, among others:

• Entity frequency, which reflects the popularity of the entity within the corpus and
can be measured, e.g., using IDF.

• Document quality indicators, such as document length, URL length, SPAM
score, PageRank score, number of inlinks, etc.

8.3.3.2 Learning-to-RankModel

Xiong and Callan [51] introduce Latent-ListMLE, which extends the ListMLE [50]
method. ListMLE is a listwise learning-to-rank algorithm that uses a parametric

8.4 Entity-Based Representations 285

model to estimate the probability of a document ranking being generated by a query.
Then, it employs maximum likelihood estimation (MLE) to find the parameters
that maximize the likelihood of the best ranking. One important assumption that
ListMLE makes, to keep the optimization problem tractable, is that the probability
of a document being ranked at a given position i is independent from all those
documents that are ranked at earlier positions, 1 . . . i − 1.

Latent-ListMLE extends ListMLE by adding a latent layer of candidate entities in
the generation process. Similarly to ListMLE, it is assumed that the probabilities of
selecting entities and documents at each position are independent of those that have
been selected at earlier positions. However, instead of conditioning the document
ranking probability directly on the query, first entities are sampled based on the
query, then the probability of a document ranking is conditioned on the sampled
entities. The probability of a document ranking d = 〈d1, . . . ,dk〉 given q is:

P(d|q;w,θ) =
k∏

i=1

∑

e∈Eq

P
(
di |e,Dq(i,k)

)
P(e|q) ,

where Dq (i,k) = {di, . . . ,dk} is the set of documents that were not ranked in
positions 1, . . . ,i − 1. The parameters of the model, w and θ , are learned using
MLE and the EM algorithm. We refer to Xiong and Callan [51] for the details.

8.4 Entity-Based Representations

The main difference between the approaches in the previous section and those
that will follow below is that instead of projecting documents to a latent entity
layer, we will make use of explicit entity annotations of documents. We shall
assume that the document has been annotated by some entity linking tool. The
resulting set Ed of entities will be referred to as document entities. Entities may
be blended with terms in a single representation layer, such as it is done in
entity-based language models (Sect. 8.4.1). Alternatively, a separate bag-of-entities
representation may be introduced and combined with the traditional bag-of-terms
representation (Sect. 8.4.2).

8.4.1 Entity-Based Document Language Models

Raviv et al. [42] introduce entity-based language models (ELM), which consider
individual terms as well as term sequences that have been annotated as entities (both
in documents and in queries). They implement this idea by extending the vocabulary
of terms (V) with entities (E). We shall write x to denote a vocabulary token, which
here may be a term or an entity, x ∈ V ∪ E . Further, we write c(x;d) to denote

286 8 Leveraging Entities in Document Retrieval

the (pseudo) count of x in document d . The representation length of the document
is then given by ld = ∑x∈d c(x;d). The maximum likelihood estimate of token x

given d is defined as:

P(x|d) = c(x;d)

ld
. (8.9)

This maximum likelihood estimate is then smoothed with a background (collection-
level) language model analogously to how it is done for unigram language models,
e.g., using Dirichlet smoothing:

P(x|θd) = c(x;d)+ μP(x|D)

ld + μ
, (8.10)

where μ is a smoothing parameter, and the collection language model is also a
maximum likelihood estimate, computed over the set D of documents:

P(x|D) =
∑

d∈D c(x;d)
∑

d∈D ld
.

What remains to be defined is how the token pseudo-counts are computed. Raviv
et al. [42] propose two alternatives:

• Hard confidence-level thresholding Only those entity annotations are consid-
ered in the document that are above a given (pre-defined) threshold τ ∈ [0,1].
That is, the pseudo-count of token x is (1) the raw frequency of the term in the
document, if the token is a term, and (2) the total number of mentions of the entity
in the document with a minimum annotation confidence of τ , if x is an entity:

c̃(x;d) =
{

λ c(x;d) , x ∈ V
(1 − λ)

∑ld
i=1 1(xi = x,scoreEL(xi;d) ≥ τ) , x ∈ E ,

where xi refers to the token at position i in the document and scoreEL(xi;d) is
the entity linking confidence associated with that token. The binary indicator
function 1() returns 1 if its argument evaluates to true, otherwise returns 0. The
λ parameter controls the relative importance given to term vs. entity tokens.

• Soft confidence-level thresholding Instead of considering only entity
annotations above a given threshold and treating them uniformly, the second
method recognizes all entities that are linked in the document and weighs them
by their corresponding confidence levels:

c̃(x;d) =
{

λ c(x;d) , x ∈ V
(1 − λ)

∑ld
i=1 1(xi = x) scoreEL(xi;d) , x ∈ E .

8.4 Entity-Based Representations 287

The ranking of documents is based on the negative cross-entropy (CE) between the
query and document language models:7

scoreELM(d;q) = −CE(θq ||θd) =
∑

x∈V∪E
P(x|θq) log P(x|θd) ,

where the query language model θq is a maximum-likelihood estimate (as in
Eq. (8.9), but by replacing q with d). The document language model θd is instanti-
ated by Eq. (8.10).

8.4.2 Bag-of-Entities Representation

Entity-based language models use a single representation layer, in which terms
and entities are mixed together. We shall now discuss a line of work by Xiong et
al. [53–55], where the term-based and entity-based representations are kept apart
and are used in “duet.” That is, queries and documents are represented in the term
space as well as in the entity space. The latter is referred to as the bag-of-entities
representation. Recall that we have already discussed this idea in the context of the
ad hoc entity retrieval task in Sect. 4.2.2.8

8.4.2.1 Basic Ranking Models

Xiong et al. [53] present two basic ranking models based on bag-of-entities
representations.

• Coordinate Match ranks documents based on the number of query entities they
mention:

scoreCM(d;q) =
∑

e∈Eq

1
(
c(e;d) > 0

)
. (8.11)

• Entity Frequency also considers the frequency of query entities in documents:

scoreEF(d;q) =
∑

e∈Eq

c(e;q) log c(e;d) . (8.12)

7Note that scoring based on cross-entropy CE(θq ||θd) is rank-equivalent to scoring based on
Kullback–Leibler divergence KL(θq ||θd) [58].
8Interestingly, the idea of a bag-of-entities representation was proposed independently and
published at the same conference by Hasibi et al. [30] and Xiong et al. [53] for entity retrieval
and document retrieval, respectively.

288 8 Leveraging Entities in Document Retrieval

Fig. 8.4 Overview of the explicit semantic ranking (ESR) model [55]. The steps are: (1) entity
linking in queries (1a) and in documents (1b); (2) computing pairwise entity similarities; (3) max
pooling along the query dimension; (4) bin-pooling; (5) ranking documents using the histogram
counts as features

These ranking functions are used to re-rank the top-k documents retrieved by a
standard term-based retrieval model (k = 100 in [53]). Despite their simplicity, both
models were shown to significantly outperform conventional term-based retrieval
models [53].

8.4.2.2 Explicit Semantic Ranking

The explicit semantic ranking (ESR) [55] model incorporates relationship infor-
mation from a knowledge graph to enable “soft matching” in the entity space.
Figure 8.4 depicts an overview of the approach.

ESR first creates a query-document entity similarity matrix S. Each element
S(e,e′) in this matrix represents the similarity between a query entity e ∈ Eq and a
document entity e′ ∈ Ed :

S(e,e′) = cos(e,e′) ,

where e is the embedding vector of entity e. In [55], entity embeddings are trained
based on neighboring entities (i.e., entity relationships) in a knowledge graph.

ESR performs two pooling steps. The first one is max-pooling along the query
dimension:

s(d) = max
e∈Eq

S(e,Ed) .

The second step is bin-pooling (introduced as matching histogram mapping in [29]),
to group and count the number of document entities according to the strength of their
matches to the query:

Bi(q,d) = log
∑

j

1(sti ≤ sj (d) < edi) , (8.13)

8.4 Entity-Based Representations 289

Fig. 8.5 Query-document
matching in the word-entity
duet framework [54] q d

qt dt

deqe

where [sti,edi) is the score range for the ith bin, and Bi(q,d) is the number of
entities that fall into that bin. The bin ranges in [55] are [0,0.25), [0.25,0.5),
[0.5,0.75), [0.75,1), [1,1]. Negative bins are discarded. The rightmost bin with
range [1,1] counts the exact matches in the entity space, while the other bins
correspond to various degrees of soft matches. The resulting bin scores Bi are fed
as features to a standard learning-to-rank model.

8.4.2.3 Word-Entity Duet Framework

Most recently, Xiong et al. [54] present the word-entity duet framework, which
also incorporates cross-space interactions between term-based and entity-based
representations, leading to four types of matches. The idea is illustrated on Fig. 8.5,
where qt and dt denote the bag-of-words, while qe and de denote the bag-of-entities
representations of the query and the document, respectively. Each element in these
vectors corresponds to the frequency of a given term/entity in the query/document.
Based on these representations, query-document matching may be computed in four
different ways:

• Query terms to document terms (match(qt,dt)): This corresponds to traditional
term-based matching between a query and a document, and can be computed
using standard retrieval models (e.g., LM or BM25) on various document fields
(title and body in [54]).

• Query entities to document terms (match(qe,dt)): Relevance matching is
performed by using the names or descriptions of query entities as (pseudo-
)queries, and employing standard retrieval models to score them against the
document (title or body fields).

• Query terms to document entities (match(qt,de)): Similar in spirit to the
previous kind of matching, the relevance between the query text and document
entities is estimated by considering the names and descriptions of those entities.
However, since the document may mention numerous entities, only the top-k
ones with the highest relevance to the query are considered. Specifically, Xiong
et al. [54] consider the top three entities from the document’s title field and the
top five entities from the document’s body.

• Query entities to document entities (match(qe,de)): Matches in the entity space
can be measured using the coordinate match and entity frequency methods, cf.
Eqs. (8.11) and (8.12). Additionally, matches can also be considered by using
entity embeddings from a knowledge graph. In particular, Xiong et al. [54] learn

290 8 Leveraging Entities in Document Retrieval

entity embeddings using the TransE model [4] and then use the ESR matching
histogram scores (cf. Eq. (8.13)) as query-document ranking features.

The four-way matching scores from above are combined in a feature-based ranking
framework.

8.4.2.4 Attention-Based Ranking Model

A main challenge with entity-based representations is the inherent uncertainty of
automatic query entity annotations. It is inevitable that some entity mentions will be
mistakenly linked, especially in short queries. Consequently, documents that match
these (erroneous) entities would end up being promoted in the ranking. Xiong et al.
[54] address this problem by developing an attention mechanism that can effectively
demote noisy query entities.

A total of four attention features are designed, which are extracted for each
query entity. Entity ambiguity features are meant to characterize the risk associated
with an entity annotation. These are: (1) the entropy of the probability of the
surface form being linked to different entities (e.g., in Wikipedia), (2) whether
the annotated entity is the most popular sense of the surface form (i.e., has the
highest commonness score, cf. Eq. (5.3))), and (3) the difference in commonness
scores between the most likely and second most likely candidates for the given
surface form. The fourth feature is closeness, which is defined as the cosine
similarity between the query entity and the query in an embedding space. Specif-
ically, a joint entity-term embedding is trained using the skip-gram model [41]
on a corpus, where entity mentions are replaced with the corresponding entity
identifiers. The query’s embedding is taken to be the centroid of the query terms’
embeddings.

We write Φqt ,dt , Φqe,dt , Φqt ,de , and Φqe,de to refer to the four-way query-
document features in the word-entity duet framework (cf. Sect. 8.4.2.3). Attention
features are denoted as ΦAttn. Using these five groups of features, the AttR-Duet
model aims to learn a ranking function score(d;q) that will be used for re-ranking
an initial set of candidate documents.

The architecture of AttR-Duet is shown in Fig. 8.6. The model takes four matrices
as input: Rt , Re, At , and Ae. In the following, we will suppose that the query
contains n words q = 〈q1, . . . ,qn〉 and there are m query entities Eq = {e1, . . . ,em}.
Rt and Re are ranking features for terms and entities, respectively. The rows of these
matrices are made up of the word-duet feature vectors corresponding to each query
term/entity:

Rt (qi, :) = Φqt ,dt (qi) Φqt ,de (qi)

Re(ej, :) = Φqe,dt (ej) Φqe,de (ej) ,

where is a vector concatenation operator. At and Ae are attention features for
terms and entities, respectively. Recall that the main objective is to handle the

8.4 Entity-Based Representations 291

Fig. 8.6 Architecture of the AttR-Duet model [54]. The left side models query-document
matching using the four-way term-entity features. The right side models the importance of query
entities via attention features. The combination of these two yields the final document score

uncertainty of query entity annotations. Therefore, for terms, uniform attention is
used; for entities, we employ the attention features introduced above:

At (qi, :) = 1

Ae(ej, :) = ΦAttn(ej) .

The matching part (left side of Fig. 8.6) consists of two convolutional neural
networks (CNNs), one for matching query terms (Rt) and another for matching
query entities (Re) against the document d . The convolution is applied on the
term/entity dimension, “assuming that the ranking evidence from different query
words [terms] or entities should be treated the same” [54]. Using a single CNN
layer, one filter, and a linear activation function, the matching scores of terms and
entities can be written as the following linear models:

ft (qi) = wm
t ·Rt (qi, :)+ bm

t

fe(ej) = wm
e ·Re(ej, :)+ bm

e ,

where · is the dot product; ft and fe are n- and m-dimensional vectors, respectively;
{wm

t ,wm
e ,bm

t ,bm
e } are the matching parameters to learn.

The attention part (right side of Fig. 8.6) also contains two CNNs, one for query
terms (At) and one for query entities (Ae), using the same convolution idea as
before. Using a single CNN layer and ReLU activation (to ensure non-negative
attention weights), the attention weights on terms and entities can be written as:

αt(t) = ReLU
(
wa

t · At (t, :)+ ba
t

)

αe(e) = ReLU
(
wa

e · Ae(e, :)+ ba
e

)
,

where {wa
t ,w

a
e,b

a
t ,b

a
e } are the attention parameters to learn.

The final model, AttR-Duet, combines the matching and attention scores as:

scoreAD(d;q) = ft · αt + fe · αe .

292 8 Leveraging Entities in Document Retrieval

The matching part and attention parts of the model are learned simultaneously, by
optimizing pairwise hinge loss:

L(q,R+,R−) =
∑

d∈R+

∑

d ′∈R−
[1− score(d;q)+ score(d ′;q)]+ ,

where R+ and R− denote the set of relevant and non-relevant documents, respec-
tively, and []+ is the hinge loss.

8.5 Practical Considerations

Efficiency is a key concern when serving search results. Compared to traditional
term-based approaches, the computational overhead involved with the presented
approaches stems from two components: (1) identifying the query entities, and
(2) leveraging query entities in document scoring. Modern entity linking tools can
already handle (1) with low latency, cf. Sect. 7.3. As for (2), document scoring is
typically implemented as a re-ranking mechanism. That is, an initial retrieval is
performed using the original query and a standard retrieval method, such as BM25
or LM. Then, the top-k scoring documents are re-ranked using the more advanced
retrieval method. This is the same standard practice as in learning-to-rank [38].
Using a smaller k can result in markedly improved efficiency compared to a larger k.
At the same time, using lower k values limits the scope, and hence potential, of the
advanced method. A typical k value used in published work is around 100 [35, 51].

The efficiency of query expansion methods (Sect. 8.2) can be strongly affected
by the number of expansion terms used (e.g., Meij et al. [40] consider maximum ten
expansion terms). For approaches that operate with entity-based representations of
documents (Sects. 8.4 and 8.3) entity annotations of documents can be performed
offline and the linked entities can be stored in an inverted index structure. Similarly,
entity descriptions can be constructed and indexed offline.

8.6 Resources and Test Collections

Experimental evaluation is commonly conducted using the test suites of the
TREC 2009–2014 Web track [11–16], which employ the ClueWeb09 and
ClueWeb12 collections. Additionally, the Robust04 newswire collection has
also been used, with a set of topics from the ad hoc task in TREC 6–8
(#301–450) and topics developed for the TREC 2003–2004 Robust track (#601–
700) [48]. See Table 8.3 for an overview. The reference knowledge base is
typically Freebase, due to the availability of Freebase-annotated versions of the
ClueWeb corpora, released by Google, referred to as the FACC1 dataset [27];
see Sect. 5.9.2. In addition to document annotations, the FACC1 dataset also

8.8 Further Reading 293

Table 8.3 Test collections for evaluating document retrieval methods that leverage entities

Document collection #Documents TREC topics #Queries

Robust04 528k Ad hoc #301–450, Robust #601–700 250

ClueWeb09-B 50M Web #1–#200 200

ClueWeb12-B13 52M Web #201–#300 100

contains manual entity annotations for the TREC 2009–2012 Web track queries.
These annotations are limited to explicitly mentioned entities; 94 out of the
200 queries contain an entity. Dalton et al. [18] provide manually revised query
annotations to improve recall, resulting in 191 of the 200 queries containing an
entity.9 For obtaining automatic entity annotations, TAGME [24] is a popular
choice.

8.7 Summary

In this chapter, we have focused on leveraging entities for ad hoc document
retrieval. The guiding principle behind these approaches is to obtain a semantically
richer representation of the user’s information need by identifying entities that
are related to the query. This knowledge can then be utilized in the document
retrieval process in various ways. In particular, we have discussed three families
approaches: (1) expansion-based, which uses entities as a source for expand-
ing the query with additional terms; (2) projection-based, where the relevance
matching between a query and a document is performed by projecting them to
a latent space of entities; and (3) entity-based, where explicit semantic represen-
tations of queries and documents are obtained in the entity space to augment
the term-based representations. Moving from (1) to (2) and then from (2) to
(3) corresponds to making increasingly more explicit use of entities, which, as
it turns out, also translates to increasingly higher retrieval effectiveness. Entity-
based representations, according to the current state of the art, can outperform a
language modeling baseline by over 80% and a strong learning-to-rank baseline
by over 20% in terms of NDCG@20, measured on the ClueWeb09-B collec-
tion [54].

8.8 Further Reading

It is also possible to combine the different perspectives of the discussed methods in a
hybrid approach. For example, the EQFE method by Dalton et al. [18] uses explicit
entity annotations of documents and performs query expansion based on entities
and their properties (types and categories). Thereby, it bears some characteristics of

9http://ciir.cs.umass.edu/downloads/eqfe/.

http://ciir.cs.umass.edu/downloads/eqfe/

294 8 Leveraging Entities in Document Retrieval

both entity-based representations and expansion-based methods. However, they do
not use query expansion in the conventional sense (i.e., creating an expanded query
model), but rather expand ranking features which are combined in a learning-to-rank
approach.

Entity-based text representation may be utilized in many other tasks, e.g.,
computing document similarity [44], text classification [10], or question answer-
ing [6, 45]. Medical search is another prominent example for the use of controlled
vocabulary representations, with a lot of work conducted in the context of the TREC
Genomics track [31, 36, 46].

References

1. Balog, K., Weerkamp, W., de Rijke, M.: A few examples go a long way: Constructing query
models from elaborate query formulations. In: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval, SIGIR ’08, pp.
371–378. ACM (2008). doi: 10.1145/1390334.1390399

2. Bendersky, M., Metzler, D., Croft, W.B.: Effective query formulation with multiple information
sources. In: Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining, WSDM ’12, pp. 443–452 (2012). doi: 10.1145/2124295.2124349

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–
1022 (2003)

4. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings
for modeling multi-relational data. In: Proceedings of the 26th International Conference on
Neural Information Processing Systems, NIPS’13, pp. 2787–2795. Curran Associates Inc.
(2013)

5. Brandão, W.C., Santos, R.L.T., Ziviani, N., de Moura, E.S., da Silva, A.S.: Learning to expand
queries using entities. J. Am. Soc. Inf. Sci. Technol. pp. 1870–1883 (2014)

6. Cai, L., Zhou, G., Liu, K., Zhao, J.: Large-scale question classification in cQA by leveraging
Wikipedia semantic knowledge. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11, pp. 1321–1330. ACM (2011). doi:
10.1145/2063576.2063768

7. Callan, J.P.: Passage-level evidence in document retrieval. In: Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’94, pp. 302–310. Springer (1994)

8. Cao, G., Nie, J.Y., Gao, J., Robertson, S.: Selecting good expansion terms for pseudo-relevance
feedback. In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’08, pp. 243–250. ACM (2008).
doi: 10.1145/1390334.1390377

9. Castells, P., Fernandez, M., Vallet, D.: An adaptation of the vector-space model for ontology-
based information retrieval. IEEE Trans. on Knowl. and Data Eng. 19(2), 261–272 (2007). doi:
10.1109/TKDE.2007.22

10. Chang, M.W., Ratinov, L., Roth, D., Srikumar, V.: Importance of semantic representation:
Dataless classification. In: Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 2, AAAI’08, pp. 830–835. AAAI Press (2008)

11. Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the TREC 2009 Web track. In: The
Eighteenth Text REtrieval Conference Proceedings, TREC ’09. NIST Special Publication 500-
278 (2010)

12. Clarke, C.L.A., Craswell, N., Soboroff, I., V. Cormack, G.: Overview of the TREC 2010 Web
track. In: The Nineteenth Text REtrieval Conference Proceedings, TREC ’10. NIST Special
Publication 500-294 (2011)

https://doi.org/10.1145/1390334.1390399
https://doi.org/10.1145/2124295.2124349
https://doi.org/10.1145/2063576.2063768
https://doi.org/10.1145/1390334.1390377
https://doi.org/10.1109/TKDE.2007.22

References 295

13. Clarke, C.L.A., Craswell, N., Soboroff, I., Voorhees, E.M.: Overview of the TREC 2011 Web
track. In: The Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST Special
Publication 500-296 (2012)

14. Clarke, C.L.A., Craswell, N., Voorhees, E.M.: Overview of the TREC 2012 Web track. In: The
Twenty-First Text REtrieval Conference Proceedings, TREC ’12. NIST Special Publication
500-298 (2013)

15. Collins-Thompson, K., Bennett, P., Diaz, F., Clarke, C.L.A., Voorhees, E.M.: TREC 2013 Web
track overview. In: The Twenty-Second Text REtrieval Conference Proceedings, TREC ’13.
NIST Special Publication 500-302 (2014)

16. Collins-Thompson, K., Macdonald, C., Bennett, P., Diaz, F., Voorhees, E.M.: TREC 2014 Web
track overview. In: The Twenty-Third Text REtrieval Conference Proceedings, TREC ’14.
NIST Special Publication 500-308 (2015)

17. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. 1st
edn. Addison-Wesley Publishing Co. (2009)

18. Dalton, J., Dietz, L., Allan, J.: Entity query feature expansion using knowledge base
links. In: Proceedings of the 37th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’14, pp. 365–374. ACM (2014). doi:
10.1145/2600428.2609628

19. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inf. Sci. Technol. 41(6), 391–407 (1990)

20. Diaz, F., Metzler, D.: Improving the estimation of relevance models using large external
corpora. In: Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’06, pp. 154–161. ACM (2006).
doi: 10.1145/1148170.1148200

21. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Info. Sci. Tech. 38(1), 188–230 (2004). doi:
10.1002/aris.1440380105

22. Egozi, O., Gabrilovich, E., Markovitch, S.: Concept-based feature generation and selection
for information retrieval. In: Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 2, AAAI’08, pp. 1132–1137. AAAI Press (2008)

23. Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-based information retrieval using explicit
semantic analysis. ACM Trans. Inf. Syst. 29(2), 8:1–8:34 (2011)

24. Ferragina, P., Scaiella, U.: TAGME: On-the-fly annotation of short text fragments (by
Wikipedia entities). In: Proceedings of the 19th ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’10, pp. 1625–1628. ACM (2010). doi:
10.1145/1871437.1871689

25. Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using Wikipedia:
Enhancing text categorization with encyclopedic knowledge. In: Proceedings of the 21st
National Conference on Artificial Intelligence - Volume 2, AAAI’06, pp. 1301–1306. AAAI
Press (2006)

26. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language
processing. J. Artif. Int. Res. 34(1), 443–498 (2009)

27. Gabrilovich, E., Ringgaard, M., Subramanya, A.: FACC1: Freebase annotation of Clueweb
corpora, version 1. Tech. rep., Google, Inc. (2013)

28. Gonzalo, J., Verdejo, F., Chugur, I., Cigarrin, J.: Indexing with WordNet synsets can improve
text retrieval. In: Proceedings of the COLING/ACL’98 Workshop on Usage of WordNet for
NLP, pp. 38–44 (1998)

29. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-
hoc retrieval. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM ’16, pp. 55–64. ACM (2016). doi:
10.1145/2983323.2983769

30. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity
retrieval. In: Proceedings of the 2016 ACM on International Conference on the
Theory of Information Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi:
10.1145/2970398.2970406

https://doi.org/10.1145/2600428.2609628
https://doi.org/10.1145/1148170.1148200
https://doi.org/10.1002/aris.1440380105
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2970398.2970406

296 8 Leveraging Entities in Document Retrieval

31. Hersh, W., Voorhees, E.: TREC genomics special issue overview. Inf. Retr. 12(1), 1–15 (2009).
doi: 10.1007/s10791-008-9076-6

32. Jagerman, R., Eickhoff, C., de Rijke, M.: Computing web-scale topic models using an
asynchronous parameter server. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’17, pp. 1337–
1340. ACM (2017). doi: 10.1145/3077136.3084135

33. Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of the 24th
annual international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’01, pp. 120–127. ACM (2001). doi: 10.1145/383952.383972

34. Liu, X., Chen, F., Fang, H., Wang, M.: Exploiting entity relationship for query expansion in
enterprise search. Inf. Retr. 17(3), 265–294 (2014). doi: 10.1007/s10791-013-9237-0

35. Liu, X., Fang, H.: Latent entity space: A novel retrieval approach for entity-bearing queries.
Inf. Retr. 18(6), 473–503 (2015). doi: 10.1007/s10791-015-9267-x

36. Lu, Z., Kim, W., Wilbur, W.J.: Evaluation of query expansion using mesh in pubmed. Inf.
Retr. 12(1), 69–80 (2009). doi: 10.1007/s10791-008-9074-8

37. Lv, Y., Zhai, C.: A comparative study of methods for estimating query language models with
pseudo feedback. In: Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pp. 1895–1898. ACM (2009). doi: 10.1145/1645953.1646259

38. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank for web
search. Inf. Retr. 16(5), 584–628 (2013). doi: 10.1007/s10791-012-9209-9

39. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

40. Meij, E., Trieschnigg, D., de Rijke, M., Kraaij, W.: Conceptual language models
for domain-specific retrieval. Inf. Process. Manage. 46(4), 448–469 (2010). doi:
http://dx.doi.org/10.1016/j.ipm.2009.09.005

41. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran
Associates Inc. (2013)

42. Raviv, H., Kurland, O., Carmel, D.: Document retrieval using entity-based language models. In:
Proceedings of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’16, pp. 65–74. ACM (2016). doi: 10.1145/2911451.2911508

43. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART
Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Inc.
(1971)

44. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In:
Proceedings of the 7th ACM International Conference on Web Search and Data Mining,
WSDM ’14, pp. 543–552. ACM (2014). doi: 10.1145/2556195.2556250

45. Srba, I., Bielikova, M.: A comprehensive survey and classification of approaches for commu-
nity question answering. ACM Trans. Web 10(3), 18:1–18:63 (2016). doi: 10.1145/2934687

46. Stokes, N., Li, Y., Cavedon, L., Zobel, J.: Exploring criteria for successful query expansion in
the genomic domain. Inf. Retr. 12(1), 17–50 (2009). doi: 10.1007/s10791-008-9073-9

47. Voorhees, E.M.: Using wordnet to disambiguate word senses for text retrieval. In: Proceedings
of the 16th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’93, pp. 171–180. ACM (1993). doi: 10.1145/160688.160715

48. Voorhees, E.M.: The TREC Robust retrieval track. SIGIR Forum 39(1), 11–20 (2005). doi:
10.1145/1067268.1067272

49. Weerkamp, W., Balog, K., de Rijke, M.: Exploiting external collections for query expansion.
ACM Trans. Web 6(4), 18:1–18:29 (2012). doi: 10.1145/2382616.2382621

50. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank: Theory
and algorithm. In: Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pp. 1192–1199. ACM (2008). doi: 10.1145/1390156.1390306

51. Xiong, C., Callan, J.: Esdrank: Connecting query and documents through external semi-
structured data. In: Proceedings of the 24th ACM International on Conference on

https://doi.org/10.1007/s10791-008-9076-6
https://doi.org/10.1145/3077136.3084135
https://doi.org/10.1145/383952.383972
https://doi.org/10.1007/s10791-013-9237-0
https://doi.org/10.1007/s10791-015-9267-x
https://doi.org/10.1007/s10791-008-9074-8
https://doi.org/10.1145/1645953.1646259
https://doi.org/10.1007/s10791-012-9209-9
https://doi.org/http://dx.doi.org/10.1016/j.ipm.2009.09.005
https://doi.org/10.1145/2911451.2911508
https://doi.org/10.1145/2556195.2556250
https://doi.org/10.1145/2934687
https://doi.org/10.1007/s10791-008-9073-9
https://doi.org/10.1145/160688.160715
https://doi.org/10.1145/1067268.1067272
https://doi.org/10.1145/2382616.2382621
https://doi.org/10.1145/1390156.1390306

References 297

Information and Knowledge Management, CIKM ’15, pp. 951–960. ACM (2015a). doi:
10.1145/2806416.2806456

52. Xiong, C., Callan, J.: Query expansion with freebase. In: Proceedings of the 2015 International
Conference on The Theory of Information Retrieval, ICTIR ’15, pp. 111–120. ACM (2015b).
doi: 10.1145/2808194.2809446

53. Xiong, C., Callan, J., Liu, T.Y.: Bag-of-entities representation for ranking. In: Proceedings
of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR
’16, pp. 181–184. ACM (2016). doi: 10.1145/2970398.2970423

54. Xiong, C., Callan, J., Liu, T.Y.: Word-entity duet representations for document ranking. In: Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’17, pp. 763–772. ACM (2017a). doi: 10.1145/3077136.3080768

55. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge
graph embedding. In: Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pp. 1271–1279. International World Wide Web Conferences Steering Committee
(2017b). doi: 10.1145/3038912.3052558

56. Xu, Y., Jones, G.J.F., Wang, B.: Query dependent pseudo-relevance feedback based
on Wikipedia. In: Proceedings of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’09, pp. 59–66 (2009). doi:
10.1145/1571941.1571954

57. Yi, X., Allan, J.: A comparative study of utilizing topic models for information retrieval. In:
Proceedings of the 31th European Conference on IR Research on Advances in Information
Retrieval, ECIR ’09, pp. 29–41. Springer-Verlag (2009). doi: 10.1007/978-3-642-00958-7_6

58. Zhai, C.: Statistical language models for information retrieval A critical review. Found. Trends
Inf. Retr. 2(3), 137–213 (2008)

59. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information
retrieval. In: Proceedings of the 10th international conference on Information and knowledge
management, CIKM ’01, pp. 403–410. ACM (2001). doi: 10.1145/502585.502654

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2806416.2806456
https://doi.org/10.1145/2808194.2809446
https://doi.org/10.1145/2970398.2970423
https://doi.org/10.1145/3077136.3080768
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1145/1571941.1571954
https://doi.org/10.1007/978-3-642-00958-7_6
https://doi.org/10.1145/502585.502654
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Utilizing Entities for an Enhanced Search
Experience

Over the past decade, search engines have not only improved the quality of search
results, but also evolved in how they interact with users. Modern search engines
provide assistance to users throughout the entire search process, from formulating
their information needs to presenting results and recommending additional content.
This chapter presents a selection of topics, where entities are utilized with the overall
aim of improving users’ search experiences.

First, in Sect. 9.1, we discuss techniques for assisting users with articulating their
information needs. These include query assistance services, such as query auto-
completion and query suggestions, and specialized query building interfaces. Next,
in Sect. 9.2, we turn to the question of result presentation. In conventional document
retrieval, the standard way of serving results is to display a snippet for each
document, consisting of its title and a short summary. This summary is automatically
extracted from the document with the aim of explaining why that particular
document is relevant to the query at hand. Moving from documents to entities as
the unit of retrieval, the question we need to ask is: How can one generate dynamic
summaries of entities when displaying them as search results? Finally, in Sect. 9.3,
we describe entity recommendation methods that present users with contextual
suggestions, encourage exploration, and allow for serendipitous discoveries. We
study the related entity retrieval problem in different flavors, depending on what
kind of input is available to the recommendation engine. Furthermore, we address
the question of explaining the relationship in natural language between entities
presented to the user. We refer to Table 9.1 for the notation used in this chapter.

9.1 Query Assistance

Chapter 7 dealt with query understanding from the machine’s point of view. In this
section, we bring the user’s perspective to the forefront. How can a semantic search

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_9

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_9&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_9

300 9 Utilizing Entities for an Enhanced Search Experience

Table 9.1 Notation used in this chapter

Symbol Meaning

e Entity (e ∈ E)

E Graph edges

Eq Set of entities linked in query q (Eq ⊂ E)

Es Set of entities clicked in session s (Es ⊂ E)

Fe Knowledge base facts about entity e

q Query

Q Query log (set of unique queries)

Qs Set of queries issued within search session s

s Search session (s ∈ S)

S Set of search sessions

t Term (t ∈ V)

T Type taxonomy

Te Types of entity e

u Query template (u ∈ U)

U Set of templates

Uq Set of templates for query q

V Graph vertices

y Entity type (t ∈ T)

system assist the user in the process of articulating and expressing her information
need? First, we discuss automatic methods that provide users with query suggestions
while they are typing their query (Sect. 9.1.1) or after the query has been submitted
(Sect. 9.1.2). Then, we present examples of specialized query building interfaces
that enable users to formulate semantically enriched (keyword++) queries, by
explicitly marking entities, types, or relationships (Sect. 9.1.3).

9.1.1 Query Auto-completion

Query auto-completion (QAC) provides users with query suggestions as they enter
terms in the search box. Query auto completion is a common feature in modern
search engines; see Fig. 9.1 for an illustration. It helps users to express their search
intent as well as to avoid possible spelling mistakes [15].

Most systems rely on the wisdom of the crowds, i.e., suggest completions
(matching the entered prefix) that have been most popular among users in the past,
based on query logs [5]. Typically, QAC is viewed as a ranking problem, where the
aim is “to return the user’s intended query at the top position of a list of [candidate]
query completions” [15].

Formally, we let q0 be the incomplete query that the user has typed in so far and
qs be a suggested candidate query suffix. Let c(q0 ⊕ qs) be the number of times

9.1 Query Assistance 301

Fig. 9.1 Query auto-completion in the Google search engine

we observe the query q0 ⊕ qs issued in the query log Q, where ⊕ is the string
concatenation operator. The baseline approach to QAC, referred to as most popular
completion in [5], is to rank suggestions according to:

score(qs;q0) = P(qs |q0) = c(q0 ⊕ qs)
∑

q0⊕qs′ ∈Q c(q0 ⊕ qs ′)
.

Given that many information needs revolve around entities, entities can be leveraged
to improve query auto-completion.

9.1.1.1 Leveraging Entity Types

Meij et al. [32] focus on a specific subset of queries that can be decomposed
into entity and refiner components, such as “ASPIRIN side effects” or “BRITNEY

SPEARS video” (refiners typeset in italics). They show that exploiting the type of
entities being sought can improve QAC for rare queries. Specifically, we let q0 = e,
where the query entity e is recognized using entity linking techniques (cf. Sect. 7.3).
Further, let Te denote the entity types assigned to e in the knowledge base. Their
best performing model (called M1 in [32]) looks at the most likely completion for a
given entity type y ∈ Te:

score(qs;q0) = P(qs |y) = c(qs,y)
∑

q0⊕qs′ ∈Q c(qs ′,y)
,

where c(qs,y) is the number of times we can observe completion qs with an entity
of type y in the query log. Note that entities commonly have multiple types assigned
to them. Selecting a single “best” type y out of the types of the query entity is an

302 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.2 Query suggestions offered by the Bing search engine for the query “amsterdam things to
see”

open issue that is not dealt with in [32]. Instead, they evaluate performance for all
possible types and then choose the type that led to the best performance on the
training set.

9.1.2 Query Recommendations

Unlike “as-you-type” query auto-completion, which assists users during the articu-
lation of their information need, query recommendations (a.k.a. query suggestions)
are presented on the SERP once an initial query has been issued. The idea is to help
users formulate more effective queries by providing suggestions for the next query.
These suggestions are semantically related to the submitted query and either dive
deeper into the current search direction or move to a different aspect of the search
task [37]. Query suggestions are an integral feature of major web search engines
and an active area of research [10, 11, 18, 25, 37, 43, 46]. Figure 9.2 shows query
recommendations in action in a major web search engine.

Generating query recommendations is commonly viewed as a ranking problem,
where given an input query q , the task is to assign a score to each candidate
suggestion q ′, score(q ′;q). Like QAC, query recommendation also relies on the
wisdom of the crowds by exploiting query co-occurrences and/or click-through
information mined from search logs. While log-based methods work well for
popular queries, it is a challenge for them to ensure coverage (i.e., provide
meaningful suggestions) for rare queries. Most query assistance services perform
poorly, or are not even triggered, on long-tail queries, simply because there is little
to no historical data available for them. In this section, we will discuss methods that
alleviate this problem by utilizing entities in a knowledge base.

We start by presenting the query-flow graph (QFG) method [10] in Sect. 9.1.2.1,
which is a seminal approach for generating query recommendations. Then, in
Sects. 9.1.2.2–9.1.2.4, we introduce various extensions to the QFG approach that
tap into specific characteristics of entities, such as types and relationships. All these
methods rely on the ability to recognize entities mentioned in queries. We refer back
to Sect. 7.3 for the discussion of techniques for entity linking in queries. The set Eq

denotes the entities identified in query q .

9.1 Query Assistance 303

9.1.2.1 Query-Flow Graph

The query-flow graph (QFG), proposed by Boldi et al. [10], is a compact represen-
tation of information contained in a query log. It is a directed graph G = (V ,E,W),
where the set V of vertices is the distinct set Q of queries contained in a query
log, plus two special vertices, vs and vt , representing the start and terminal states
of sessions: V = Q ∪ {vs,vt }. A session is defined as a “sequence of queries of
one particular user within a specific time limit” [10]. Commonly, the session time
limit is taken to be 30 min. Further, E ⊆ V × V is a set of directed edges and
W : E → (0,1] is a weighting function assigning a weight w(qi,qj) to each edge
(qi,qj) ∈ E. Two queries, qi and qj , are connected with a directed edge (qi → qj),
if there is at least one session in the log in which qi and qj are consecutive.

The key aspect of the construction of the query-flow graph is how the weighing
function connecting two queries, w(qi,qj), is defined. A simple and effective
solution is to base it on relative frequencies of the query pair appearing in the query
log. Specifically, the weight of the edge connecting two queries is computed as:

w(qi,qj) =
{ 1

Z
c(qi,qj) , (c(qi,qj) > τ) ∨ (qi = vs) ∨ (qj = vt)

0 , otherwise ,

where c(qi,qj) is the number of times query qj follows immediately qi in a session.
The normalization coefficient Z is set to such that the sum of outgoing edge weights
equals to 1 for each vertex, i.e.,

∑
j w(qi,qj) = 1. Thus, weight w(qi,qj) may be

seen as the probability that qi is followed by qj in the same search session. This
normalization may be viewed as the transition matrix of a Markov chain. Figure 9.3
shows an excerpt from a query-flow graph.

Fig. 9.3 Example of a query-flow graph, based on [10]. Note that not all outgoing edges are
reported (thus, the sum of outgoing edges from each vertex does not reach 1). The terminal state
vertex (vt) is distinguished using a gray background

304 9 Utilizing Entities for an Enhanced Search Experience

Based on this graph-based representation, query recommendations can
be obtained by performing proximity-based top-k vertex retrieval, either
neighborhood-based or path-based. A simple recommendation scheme is to pick, for
an input query q , the top-k vertices connected with the largest edge weights. How-
ever, as observed by Boldi et al. [10], this method tends to drift off toward popular
but unrelated queries. A better recommendation would be to pick the most important
query q ′ relative to the initial query q . The recommendation algorithm proposed
in [10] is a random walk with restart to a single vertex: a random surfer starts at
the initial query q , and at each step either (1) follows one of the outlinks from the
current vertex with probability α or (2) jumps back to q with probability 1−α. This
process may also be viewed as applying “a form of personalized PageRank, where
the preference vector is concentrated in a single node [vertex]” [10]. More formally,
the process is described as computing the transition matrix A of a Markov chain:

A = αP+ (1 − α)1iᵀq ,

where P is the row-normalized weight matrix of the query-flow graph, 1 is the
identity matrix, and ij is a “one-hot” vector whose entries are all zeroes, except for
the j th vector whose value is 1. The parameter α is chosen to be 0.85 in [10]. A has a
unique stationary distribution vector v, such that vᵀA = v. This distribution, called
the random-walk score relative to q , can be computed using the power iteration
method. Then, the highest scoring queries can be returned as the most relevant
query suggestions for q . Notably, if the top-scoring query is the termination vertex
vt , then it means that the query chain is most likely to end at that point. In that case,
it may be wise not to offer any query suggestions to the user.

Instead of using the raw random walk scores, Boldi et al. [10] propose to use a
weighting scheme, so as to avoid returning very common queries as suggestions.
The variant that yields the best recommendations in their experiments is given by
the following formula:

score(q ′;q) = rwq(q ′)
√

rw(q ′)
, (9.1)

where rwq(q ′) is the random walk score of the query q ′ with respect to q

(personalized PageRank [26]) and rw(q ′) is the random walk score of q ′ computed
using a uniform preference vector (no personalization, i.e., starting at random at any
vertex).

Having introduced the QFG approach, we shall next look at a number of exten-
sions that utilize entities in a knowledge base, in order to improve recommendations
for long-tail queries.

9.1.2.2 Exploiting Entity Aspects

Reinanda et al. [39] define entity aspects as a set of refiners that represent the same
search intent in the context of an entity. For example, for the entity BARCELONA

F.C., the refiners “live,” “live streaming,” and “live stream” represent the same

9.1 Query Assistance 305

search intent, i.e., they amount to one particular aspect of that entity. For each entity
e, Reinanda et al. [39] mine a set of aspects Ae = {a1, . . . ,am} from a search
log. First, the set of queries mentioning that entity, Qe ⊂ Q, is identified using
entity linking. Then, refiners r (referred to as query contexts in [39]) are extracted
by removing the mention of the entity from the queries. Next, refiners that express
the same intent are clustered together. Clustering relies on the pairwise similarity
between two refiners, sim(ri,rj), which is taken to be the maximum of the following
three types of similarity:

• Lexical similarity, estimated by the Jaro-Winkler distance between ri and rj .
• Semantic similarity, using the cosine similarity of word embeddings of the

refiners, cos(ri,rj). Specifically, the vector representation of a refiner, ri , is
computed as the sum of Word2vec [33] vector of each term within.

• Click similarity, obtained using the cosine similarity between the vectors of
clicked sites.

For clustering refiners, hierarchical agglomerative clustering with complete linkage
is employed. Refiners are placed in the same cluster if their similarity is above a
given threshold. By the end of this step, each cluster of refiners corresponds to an
entity aspect.

The mined aspects are used for query recommendations as follows. During the
construction of the query-flow graph, a distinction is made between queries that
contain a mention of an entity (i.e., are entity-bearing) and those that are not. For an
entity-bearing query, the mentioned entity e and the refiner r are extracted.1 Then, r
is matched against the appropriate entity aspect, by finding the aspect ai ∈ Ae that
contains r as its cluster member, r ∈ ai . This way, semantically equivalent queries
are collapsed into a single entity aspect vertex in the modified query-flow graph.
Non-entity-bearing queries are handled as in the regular query-flow graph, i.e., each
unique query corresponds to a vertex.

For an incoming new query, the process of generating recommendations works
as follows. First, entity linking is performed on the query to decide if it is entity-
bearing. Then, the query is matched against the appropriate graph vertex (using the
same procedure that was used during the construction of the query-flow graph).
Finally, recommendations are retrieved from the query-flow graph.2 Note that entity
aspect vertices may contain multiple semantically equivalent queries. In that case, a
single one of these is to be selected (for each vertex), e.g., based on query popularity.
This approach (referred to as QFG+A) is shown to achieve small but consistent and
significant improvements over generic QFG query recommendations.

1In this work, a single “main” entity is selected from each query (due to the fact that the average
query length is short, most queries mention just one entity or none).
2Reinanda et al. [39] use the simple recommendation scheme, based on raw edge weights.
However, it is also possible to apply random walks using the weighting scheme proposed in [10],
as is given in Eq. (9.1).

306 9 Utilizing Entities for an Enhanced Search Experience

9.1.2.3 Entity Types

An obvious limitation of query-flow graphs is that they cannot make recommenda-
tions for long-tail or previously unseen queries. Szpektor et al. [46] alleviates this
limitation by enhancing query-flow graphs with query templates.3 Templates are
defined by replacing the entity mention in the query by a placeholder, which is an
entity type. For example, the queries “New York hotels,” “Los Angeles hotels,” and
“Paris hotels” may be abstracted into a “〈city〉 hotels” query template. Then, general
recommendation rules, like “〈city〉 hotels” → “〈city〉 restaurants,” may be extracted
from query logs. Using such rules, it is possible to generate the recommendation
“Yancheng restaurants” for the input query “Yancheng hotels,” even if none of those
queries have been observed before. Next, we detail the elements of this approach.

Generating Query Templates Each query q in the query log Q is considered for
template construction. Given a query, every word n-gram (up to length 3 in [46]) is
checked whether it refers to an entity. If yes, then that query segment of the query is
replaced with the type(s) of the corresponding entity to produce the corresponding
template(s). Here, entity types are not taken to be a flat set but are considered to exist
in a hierarchical type taxonomy. We let T̃e denote the most specific type(s) that entity
e is assigned to in the knowledge base. For example, using the DBpedia Ontology
as the type taxonomy, the entity ALBERT EINSTEIN has a single most-specific type
T̃e = {Scientist}. By definition, the distance between an entity and (one of) its most
specific type(s) is set to 1. Since the type taxonomy is a subsumption hierarchy (cf.
Sect. 2.3.1), if entity e is an instance of type y, then it will also be an instance of all
supertypes of y. We let T̂e denote the set of all supertypes of the types in T̃e. For
the example entity ALBERT EINSTEIN, T̂e = {Person,Agent} (since Scientist is a
subtype of Person, which is a subtype of Agent). Thus, the type assignments of an
entity are partitioned into most specific types and their supertypes (i.e., Te = T̃e∪ T̂e

and T̃e ∩ T̂e = ∅). Further, d(y,y ′) is defined as the shortest path distance between
types y and y ′ in the type taxonomy. The distance function d(e,y) between entity e

and type y is then defined as follows:

d(e,y) =

⎧
⎪⎨

⎪⎩

1, y ∈ T̃e

1 + min
y ′∈T̃e

d(y,y ′) , y ∈ T̂e

∞, otherwise .

For example, d(ALBERT EINSTEIN,Scientist) = 1, d(ALBERT EINSTEIN,

Person) = 2, and d(ALBERT EINSTEIN,Agent) = 3.

3The notion of query templates is similar to that in [1] (cf. Sect. 7.4), with two main differences:
(1) Templates here are defined over a taxonomy of entity types as opposed to attributes and (2)
they are defined globally, i.e., are not restricted to any particular domain/vertical (such as travel or
weather).

9.1 Query Assistance 307

The set of templates constructed from a given query q is denoted as Uq . Each
template u ∈ Uq is associated with a confidence score w(u,q), which expresses how
well u generalizes q . Intuitively, the higher a type is located in the type hierarchy, the
higher the risk of the corresponding template over-generalizing the query. Thus, the
confidence score can be set to be exponentially decaying with the distance between
entity e and type y:

w(q,u) = αd(e,y) , (9.2)

where α is the decay rate (set to 0.9 in [46]). Note that template scoring in Eq. (9.2)
does not take into account the uncertainty associated with the type-annotation of the
query. The intuition is that by considering the transitions between templates (based
on subsequent queries from which they were generated) in a sufficiently large query
log, noise will be eliminated and meaningful transition patterns will surface. This
will be explained next.

Extending the Query-Flow Graph In the extended query-flow graph, referred to
as query-template flow graph, vertices represent not only queries but templates as
well. We let the set U denote all templates that are generated by queries in the
search log: U = ⋃

q∈Q Uq . In addition to query-to-query transition edges (Eqq)
of the original query-flow graph, we now have two additional types of edges: (1)
query-to-template edges (Equ) and (2) template-to-template edges (Euu).

• There is a directed edge between query q and template u iff u ∈ Uq . The
corresponding edge weight w(q,u) is set proportional to the query-template
confidence score, which is given in Eq. (9.2).

• There is a directed edge between templates ui and uj iff (i) they have the same
placeholder type and (ii) there is at least one supporting edge (qi,qj) ∈ Eqq such
that ui ∈ Uqi , uj ∈ Uqj , and the substituted query segment is the same in qi and
qj . The set of all support edges is denoted as Es(ui,uj). Then, the edge weight
between ui and uj is set proportional to the sum of edge weights of all supporting
query pairs:

w(ui,uj) ∝
∑

(qi,qj)∈Es(ui,uj)

w(qi,qj) .

For example, for the template-to-template edge “〈city〉 hotels” → “〈city〉 restau-
rants,” the set of support edges includes {“Paris hotels” → “Paris restaurants,”
New York hotels” → “New York restaurants,” . . . }.

Normalization is performed in both cases to ensure that the outgoing edge weights
of graph vertices sum up to 1.

GeneratingQuery Recommendations Using the regular query-flow graph, candi-
date query recommendations q ′ for an input query q would be those for which there
exists a directed edge (q,q ′) ∈ Eqq. With the extended query-template flow graph,

308 9 Utilizing Entities for an Enhanced Search Experience

candidate recommendations also include queries that have not been observed in the
logs before but can be instantiated via a template. Specifically, there needs to be a
mapping edge (q,u) ∈ Equ and a template-to-template transition edge (u,u′) ∈ Euu,
such that by instantiating u′ with the entity extracted from q , it yields q ′ as the result.
Then, candidate recommendations are scored according to the following formula:

score(q ′;q) = w(q,q ′)+
∑

u∈Uq

(u,u′)∈Euu
ins(u′,q,u)=q ′

w(q,u) w(u,u′) ,

where ins(u′,q,u) denotes the query that is the result of instantiating template u′
based on query q and template u. Given that edge weights are normalized, the
resulting score will be in the range [0,1] and “can be interpreted as the probability
of going from q to q ′ by one of the feasible paths in the query-template flow
graph” [46].

9.1.2.4 Entity Relationships

Bordino et al. [12] extend the query-flow graph with entity relationship information,
and Huang et al. [25] capitalize on this idea for generating query recommendations.
Suppose that two queries qi and qj appear in the same session and they mention
entities ei and ej , respectively. Then, in addition to the flow from qi to qj in
the query-flow graph, we can also utilize the relationships between ei and ej in
the knowledge base. More formally, the enhanced graph, referred to as EQGraph
in [12], has query vertices VQ and entity vertices VE , with query-to-query edges
Eqq, entity-to-query edges Eeq, and entity-to-entity edges Eee. See Fig. 9.4 for an
illustration.

Fig. 9.4 Entity-query graph (EQGraph), extending the regular query-flow graph with entities from
a knowledge base

9.1 Query Assistance 309

Entity-to-Query Edges Each entity is connected to all the queries that mention it.
The edge between entity e and query q is given a weight proportional to the relative
frequency of that query in the log:

w(e,q) = c(q)
∑

q ′:e∈Eq′ c(q
′)

,

where c(q) is the number of times q appears in the query log, and Eq ′ denotes the
set of entities that are extracted from q ′ via entity linking. Note that the outgoing
edge weights sum up to one for each entity vertex.

Entity-to-Entity Edges Edge weights w(e,e′) represent the transition probability
between a pair of entities e and e′. Bordino et al. [12] derive these weights based
on the query log, by considering all query-to-query transitions q → q ′, where q

mentions e and q ′ mentions e′:

w(e,e′) = 1 −
∏

(q,q ′)∈Eqq

(e,q),(e′,q ′)∈Eeq

(
1 − w(q,q ′)

|Eq | × |Eq ′ |
)
.

This formulation distributes the probability mass uniformly among the possible
(|Eq | × |Eq ′ |) entity-to-entity transitions derived from q → q ′.

Generating Query Recommendations Huang et al. [25] generate query recom-
mendations by computing personalized PageRank [26] on the EQGraph, starting
from entities. The core of their approach lies in the idea that instead of considering
the entities that are mentioned in the query (Eq), they consider related entities from
the knowledge graph. This set of related entities, denoted as ER, is derived based
on the notion of meta-paths [45]. A meta-path M in the knowledge graph is a
sequence of entity types y1, . . . ,yn connected by predicates (i.e., relationship types)

p1, . . . ,pn−1, such that M = y1
p1−→ y2 . . . yn−1

pn−1−→ yn. Each of these meta-paths
represents a specific direct or composite (“multi-hop”) relationship between two
entities. Two entities may be connected by multiple meta-paths; a natural approach,
followed in [25], is to select the shortest meta-path between them to represent their
relationship. Let M be the set of meta-paths over the entity types in the KG, and
My ⊂ M be the set of outgoing meta-paths for type y. Related entities are collected
by performing a path-constrained random walk [29] on knowledge graph predicates,
with each meta-path M ∈ My , for each of the types associated with the linked
entities in the query (y ∈ Te,e ∈ Eq). Each of these related entities e ∈ ER

accumulates weight, w(e), based on the various meta-paths it can be reached on.
See Algorithm 9.1 for the detailed procedure.

The most relevant queries, with respect to the related entities ER , are returned as
recommendations. Specifically, for each of the related entities, e ∈ ER , personalized
PageRank is performed on the EQGraph, starting from e with initial probability

310 9 Utilizing Entities for an Enhanced Search Experience

Algorithm 9.1: Related entity finding for query recommendation [25]
Input: query-flow graph, knowledge graph, query q

Output: related entities ER with weights w

1 Eq ← perform entity linking on q

2 ER ← ∅
3 foreach e ∈ Eq do
4 foreach y ∈ Te do
5 foreach M ∈My do
6 E ′ ← pathConstrainedRandomWalk(e,M)

7 foreach e′ ∈ E ′ do
8 ER ← ER ∪ {e′}
9 w(e′) ← w(e′)+ 1

|Eq |×|E ′ |
10 end
11 end
12 end
13 end
14 return ER , w

w(e). The resulting probability distributions are aggregated, and the top-k queries
with the largest aggregated score are offered as recommendations.

Note that this recommendation method considers only the entities mentioned in
the query but not the other contextual terms in the query. It means that if two queries
q and q ′ mention the same entities (Eq = Eq ′) then generated recommendations will
be exactly the same for the two.

9.1.3 Query Building Interfaces

In Chap. 4, we have seen that leveraging semantically enriched queries, referred
to as keyword++ queries, yields improved retrieval performance. Such keyword++
queries may contain annotations of specific entities, target types, or relationships.
One way to obtain those annotations is via automated techniques aimed at query
understanding—which we have discussed in Chap. 7. Alternatively, it may be
delegated to the user to provide semantic annotations for queries, and thereby more
explicitly express the underlying information need. This, however, can be challeng-
ing for ordinary users, due to their unfamiliarity with the underlying knowledge
base. Furthermore, even those that are acquainted with the knowledge base will
find it problematic to navigate the large space of entities, types, and relationships
without some support. In order to aid users in the process of formulating complex
queries, specialized query building interfaces have been proposed [6, 24, 42]. A
common feature of these systems is that they provide context-sensitive suggestions.
The STICS system offers suggestions for entities and categories, as users type query
terms; a screenshot is shown in Fig. 9.5. Schmidt et al. [42] present a corpus-

9.1 Query Assistance 311

Fig. 9.5 Screenshot of the STICS system [24], http://stics.mpi-inf.mpg.de/

Words

)4(ssercnedraG
)9(iloccorB

)3(ibarlhoK

Instances:

1 - 3 of 9

)9(tneidergnI
)9(dooF

Classes:

1 - 2 of 37 Broccoli
Ontology fact
Broccoli: is a plant; Vitamin C per 100g in mg 89.2

Document: Edible plant stem
The edible portions of Broccoli are … the leaves.

Garden cress
Ontology fact
Cabbage: is a plant; Vitamin C per 100g in mg 69

Document: Cress
Plants cultivated for their edible leaves : Garden cress …

Your Query:
Plant

occurs-with edible leaves

Vitamin C per 100g in mg

Hits: 1 - 2 of 9

> 50

occurs-with
Relations:

1 - 3 of 22

Compatible with dietary restriction
Energy per 100g

(9)
(9)

enter search terms …

+

Fig. 9.6 Screenshot of the Broccoli system [6], http://broccoli.informatik.uni-freiburg.de/

adaptive extension, where the ranking of candidate suggestions also takes into
account the underlying document collection. That is, they only suggest entities
and categories “that lead to non-empty results for the document collection being
searched” [42]. They further introduce a data structure for storing pre-computed
relatedness scores for all co-occurring entities, in order to keep response times
below 100 ms. Another example is the Broccoli system, which targets expert users
and allows them to incrementally construct tree-like SPARQL queries, using similar
techniques (i.e., corpus-based statistics) for generating suggestions [6]. Figure 9.6
presents a screenshot of the system.

http://stics.mpi-inf.mpg.de/
http://broccoli.informatik.uni-freiburg.de/

312 9 Utilizing Entities for an Enhanced Search Experience

9.2 Entity Cards

In recent years, there has been an increasing trend of surfacing structured results in
web search in the form of various knowledge panels. Being served with rich and
focused responses, users no longer need to engage with the organic (document-
oriented) search results to find what they were looking for. This marks a paradigm
shift in search engines evolving into answer engines. One group of knowledge
panels, often referred to as direct displays, provide instant answers to a range of
popular information needs, e.g., weather, flight information, definitions, or how-to
questions. Some direct displays invite users to engage and interact with them (like
currency conversion or finance answers), while others yield a clear inline answer
(such as dictionary or reference answers) with no further interaction expected. Our
focus in this section will be on another type of knowledge panel, called entity
card, which summarizes information about a given entity of interest. Unlike direct
displays, whose mere goal is to provide a succinct answer, entity cards intend to
serve an additional purpose—to present the user with an overview of a particular
entity for contextualization and further exploration.

An entity card portrays a summary of a selected entity, commonly including
the entity’s name, type, short description, a selection of key attributes and
relationships, and links to other types of relevant content.

Entity cards are an integral component of modern search engine result pages, on
both desktop and mobile devices [14, 28]. Triggered by an entity-bearing query, a
rich informational panel is displayed (typically on the top-right of the SERP on a
desktop device), offering a summary of the query entity, as shown in Fig. 9.7a, b.

It has been long known that providing query-biased snippets for documents in the
result list positively influences the user experience [49]. Entity cards may be viewed
as the counterpart of document snippets for entities, and, as we shall show in this
section, may be generated in a query-dependent fashion. It has been shown that
entity cards attract users’ attention, enhance their search experience, and increase
their engagement with organic search results [14, 36]. Furthermore, when cards are
relevant to their search task, users issue significantly fewer queries [14] and can
accomplish their tasks faster [36].

We shall begin with an overview of what is contained in an entity card. Then,
we will focus on the problem of selecting a few properties from an underlying
knowledge base that best describe the selected entity, with respect to a given query,
which will serve as the factual summary of that entity.

9.2 Entity Cards 313

Fig. 9.7 (a) Entity card in Google. (b) Entity card in Bing

9.2.1 The Anatomy of an Entity Card

Entity cards are complex information objects that are dynamically generated in
response to an entity-oriented query, after determining the intended entity for that
query (cf. Sect. 7.3). Figure 9.8 shows a card layout that is commonly used in
contemporary web search engines, comprising (1) images, (2) the name and type
of the entity, (3) a short textual description, (4) entity facts, and (5) related entities.
Additionally, depending on the type of the entity and the intent of the search query,
other components may also be included, such as maps, quotes, tables, or forms.

Most elements of entity cards have their own set of associated research chal-
lenges. An entity may be associated with multiple types in the KB. For example,
the types of ARNOLD SCHWARZENEGGER in Freebase include, among others,
tv.tv actor, sports.pro athlete, and government.politician. The prob-
lem of selecting a single “main” type to be displayed on the card has been
addressed using both context-independent [7] and context-dependent [50] methods.
For emerging entities, that already have some facts stored about them in the KB, but

314 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.8 Common entity card layout

lack a Wikipedia-style summary, natural language descriptions may be produced
automatically [17, 41]. The factual summary, a truncated view of facts about the
entity, is a central element of entity cards. We devote the remainder of this section
to this very problem. Finally, related entity suggestions typically utilize search logs
and entity co-occurrence information; we shall discuss specific methods in Sect. 9.3.
Clicking on one of the related entities typically launches a new query with the
related entity.

9.2.2 Factual Entity Summaries

The problem of generating informative entity summaries from RDF data has
generated considerable interest over the recent years [16, 22, 23, 47, 48]. Since
descriptions of entities in a knowledge base typically include hundreds of factual
statements, “for human users it becomes difficult to comprehend the data unless
a selection of the most relevant facts is provided” [47]. Below, we present the
approach by Hasibi et al. [23] that is shown to be more effective than other
relevance-oriented fact ranking methods, which employ variations of the PageRank
algorithm [16, 47, 48]. Notably, it considers facts with both entity and literal object
values.

9.2 Entity Cards 315

Let Fe denote all the facts stored about a given entity e in the knowledge base
K. That is, Fe consists of all predicate-object pairs out of those SPO triples, where
e appears as subject:

Fe = {(p,o) : (s,p,o) ∈ K,s = e} .

For notational convenience, we shall use the shorthand f to denote a single fact,
which is essentially a property-value pair; further, we shall write pf and of

to denote the predicate and object elements of the fact, respectively. Since Fe

is typically large (on the order of hundreds), the challenge is to select a small
subset of them, to be displayed in the summary section of the entity card, that
are deemed to have the highest utility for the user. Hasibi et al. [23] argue that
factual entity summaries serve a dual purpose: “they offer a synopsis of the entity
and, at the same time, can directly address users’ information needs.” Therefore,
when selecting which facts to include in the summary, one should consider both
their general importance, irrespective of any particular information need, as well as
their relevance to the given user query. These two quantities are combined under the
notion of utility. The utility of fact f is defined as a linear combination of its general
importance and its relevance to the user query q:

utility(f,q) = α importance(f)+ (1 − α) relevance(f,q) . (9.3)

For simplicity, importance and relevance are given equal weights in [23]. The
generation of factual summaries is addressed in two stages. First, facts are ranked
according to their utility. Then, the top-ranked facts are visually arranged in order
to be displayed on the entity card.

9.2.2.1 Fact Ranking

The ranking of facts is approached as a learning-to-rank problem, using two main
groups of features, aimed at capturing either the importance or the relevance of a
fact. To learn the ranking function, target labels are collected via crowdsourcing for
each dimension separately on a 3-point scale (0..2). Then, the two are combined
with equal weights (cf. Eq. (9.3)), resulting in a 5-point scale (0..4). Below, we
shall introduce some of the most effective features developed for relevance and
importance, respectively. Table 9.2 provides an overview. For a complete list of
features, we refer to [23].

Importance features are mostly based on statistics derived from the knowledge
base. We introduce the concepts of fact frequency and entity frequency, which are
loosely analogous to collection frequency and document frequency in document
retrieval. Specifically, the fact frequency of object is the number of SPO triples in
the KB with a given object value:

FFo(of) = ∣∣{(s,p,o) : (s,p,o) ∈ K,o = of }
∣
∣ .

316 9 Utilizing Entities for an Enhanced Search Experience

Table 9.2 Features for fact ranking

Group Feature Description

Importance

NEFp(f) Normalized entity frequency of the fact’s predicate

typeImp(f,e) Type-based importance of the fact’s predicate

predSpec(f) Predicate specificity

isEntity(f) Whether the fact’s object is an entity

Relevance

lexSimo(f,q) Lexical similarity between the fact’s object and the query

semSimAvgo(f,q) Semantic similarity between the fact’s object and the query

iRank(f,q) Inverse rank of the fact’s object

conLen(q) Context length

Entity frequency of predicate is the number of entities in the KB that have at least
one fact associated with them with a given predicate:

EFp(pf) = ∣∣{e ∈ E : ∃ f ′ ∈ Fe,pf ′ = pf }
∣
∣ .

Another type-aware variant of the above statistic considers only those entities that,
in addition to having the given predicate, also are of a given type y:

EFp(pf ,y) = ∣∣{e ∈ E : y ∈ Te,∃ f ′ ∈ Fe,pf ′ = pf }
∣
∣ .

Furthermore, we define the type frequency of a predicate to be:

TFp(pf) = ∣∣{y : ∃ e ∈ E,f ′ ∈ Fe,pf ′ = pf ,y ∈ Te}
∣
∣ .

With the help of these statistics, we define the following features for measuring the
importance of fact f for entity e:

• Normalized entity frequency of predicate is the relative frequency of the fact’s
predicate across all entities:

NEFp(f) = EFp(pf)

|E | ,

where |E | is the total number of entities in the KB.
• Type-based importance also considers the frequency of the fact’s predicate, but

with respect to the types of the entity. Following [52], it is estimated using:

typeImp(f,e) =
∑

y∈Te

EFp(pf ,y) log
|T |

TFp(pf)
,

where |T | is the total number of types in the KB.

9.2 Entity Cards 317

• Predicate specificity aims to identify facts with a common object value but a rare
predicate:

predSpec(f) = FFo(of) log
|E |

EFp(pf)
.

For example, the fact (capital, OTTAWA) would have relatively high predicate
specificity, given that the object is frequent, while the predicate is relatively rare.

• IsEntity is a binary indicator that is true if the fact’s object is an entity.

Relevance features capture the relevance of a fact with respect to the search query.

• Lexical similarity is measured by taking the maximum similarity between the
terms of the fact’s object and of the query using:

lexSimo(f,q) = max
t∈of ,t ′∈q

(
1 − dist(t,t ′)

)
,

where dist() is a string distance function, taken to be the Jaro edit distance in [23].
• Semantic similarity aims to address the vocabulary mismatch problem, by

computing similarity in a semantic embedding space. Specifically, we compute
the average cosine similarity between terms of the fact’s object and of the query:

semSimAvgo(f,q) =
∑

t∈of ,t ′∈q cos(t,t′)
∣
∣{t : t ∈ of }

∣
∣× |{t ′ : t ′ ∈ q}| ,

where t denotes the embedding vector corresponding to term t . Hasibi et al. [23]
use pre-trained Word2vec [33] vectors with 300 dimensions. The denominator is
the multiplication of the number of unique terms in the fact’s object and in the
query, respectively.

• Inverse rank promotes facts with an entity that is highly relevant to the query as
the object value. Entities in the KB are ranked with respect to the query. Then,

iRank(f,q) = 1

rank(of ,Ek(q))
,

where Ek(q) is the set of top-k ranked entities returned in response to q , and
rank() returns the position of an entity in the ranking (or ∞ if the entity cannot
be found among the top-k results).

• Context length is the number of query terms that are not linked to any entity:

conLen(q) = |{t : t ∈ q,t /∈ linked(q)}| ,

where linked(q) denotes the set of query terms that are linked to an entity.

318 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.9 Structure of an
entity summary displayed on
an entity card. Image is based
on [23]

9.2.2.2 Summary Generation

The ranked list of facts we just obtained is yet to be arranged into a summary that
can be presented to the user. Visually, a summary consists of a number of lines, each
subdivided into heading and value parts. Additionally, it has a maximum display
size, defined in terms of the maximum number of rows (τh) and the maximum
number of characters within each row (τw); see Fig. 9.9. A straightforward approach
is just to fill this structure with the top-ranked facts, by using the predicate label
from the KB as the heading and the subject as the value part in each line. There are,
however, some additional considerations that, if addressed, can yield higher quality
summaries.

• There might be semantically identical predicates, even within a single KB, e.g.,
<foaf:homepage>and <dbp:website> in DBpedia. Such duplicates need to be
identified and resolved, such that only one of them is included in the summary.

• There may be multiple facts with the same predicate, e.g., parents of a person or
founders of a company. While these constitute separate facts, the object values of
these so-called multi-valued predicates can be concatenated together into a single
list for display purposes.

Hasibi et al. [23] address these issues with a summary generation algorithm, shown
in Algorithm 9.2. Input to this algorithm is the list of top-k facts, generated by the
fact ranking step, denoted as F̂e. The first line of the summary generation algorithm
creates a mapping from predicates in F̂e to their human-readable labels; these are
commonly provided as part of the KB schema. Predicates that are mapped to the
same label are then recognized as semantically identical. The mapping function
may implement additional heuristics, specific to the underlying knowledge base.
The summary is built in three stages. First (lines 2–8), up to τh unique line headings
are selected. Second (lines 9–14), the values for each line are assembled. This is the
part where multi-valued predicates are grouped. Third (lines 15–24), the heading
and value parts are combined for each line.

9.3 Entity Recommendations 319

Algorithm 9.2: Summary generation [23]

Input: ranked list of facts F̂e, max height τh, max width τw

Output: entity summary lines

1 M ← predicate-name mapping from F̂e

2 headings ← [] /* Determine line headings */

3 foreach f ∈ F̂e do
4 label ← M[pf]
5 if (label �∈ headings) and (|headings| ≤ τh) then
6 headings.append

(
(pf ,label)

)

7 end
8 end
9 values ← [] /* Determine line values */

10 foreach f ∈ F̂e do
11 if pf ∈ headings then
12 values[pf].append(of)

13 end
14 end
15 lines ← [] /* Construct lines */

16 foreach (pf ,label) ∈ headings do
17 line ← label + ‘:’
18 foreach v ∈ values[pf] do
19 if len(line)+ len(v) ≤ τw then
20 line ← line+ v /* Add comma if needed */

21 end
22 end
23 lines.append(line)
24 end

9.3 Entity Recommendations

Earlier in this chapter, we have discussed tools that help users with expressing
their information needs and with getting direct answers to those needs. There
are also situations where users’ information goals are less clearly defined, and
they would just like to browse and explore, without looking for anything specific.
Examples include learning about people in the news or exploring future travel
destinations. Therefore, in addition to traditional search assistance tools, such as
query suggestions and direct answers, exploration and discovery should also be
regarded as central elements of next-generation search systems [55]. This section
presents recommendation techniques that enable exploration, with the goal of
increasing user engagement.

Specifically, our objective is to provide related entity recommendations (a.k.a.
related entity suggestions) to users, based on their context. We shall consider
multiple contexts that may serve as input data: (1) a particular entity (Sect. 9.3.1), (2)
the user’s current search session (Sect. 9.3.2), and (3) a given entity in a particular
text context (Sect. 9.3.3).

320 9 Utilizing Entities for an Enhanced Search Experience

The entity recommendation task is approached as a ranking problem: given
some context (e.g., a particular entity or a search session) as input, return a
ranked list of entities 〈e1, . . . ,ek〉 from an entity catalog E that are related to
the user’s context.

How does this problem relate to other tasks that have been discussed earlier in this
book? A core component underlying all recommendation methods is a measure
of relatedness between an input entity and a candidate entity. Pairwise entity
relatedness has already been used in entity linking, for entity disambiguation (cf.
Sect. 5.6.1.3), and those methods are applicable here as well. Another related task
is that of finding similar entities (cf. Sect. 4.5), which also boils down to a pairwise
entity measure. The similar entity finding task, however, has a different objective—
it aims to complete an input set of entities, with similar entities. Consequently, it
measures pairwise entity similarity as opposed to entity relatedness.

The degree of entity relatedness may be estimated using simple measures of
statistical association, based on entity co-occurrence information (e.g., in search
logs or in Wikipedia articles). Another family of methods makes use of entity
relationship information stored in knowledge graphs and employs graph-theoretic
measures (e.g., PageRank). Yet another group of approaches infers relatedness based
on the content (i.e., attributes or descriptions) of entities.

In addition to receiving entity recommendations, users may also be interested in
finding out why certain suggestions were shown to them. The problem of explaining
recommendations boils down to the task of generating a human-readable description
of the relationship between a pair of entities. This is discussed in Sect. 9.3.4.

9.3.1 Recommendations Given an Entity

We start by discussing the case of recommending entities related to a given input
entity. A common application scenario is that of entity cards in web search, which
are triggered by an entity-bearing query. These cards often include a “People also
search for” section, displaying entities that are related to the query entity; see
Fig. 9.8. This task may be formalized as the problem of estimating the probability
of a candidate entity e′, given an input entity e, P(e′|e).

Blanco et al. [9] present the Spark system (with previous versions of the system
described in [27, 58]), which had been powering related entity suggestions in Yahoo!
Web Search. Spark extracts several signals (over 100 features) from a variety of
proprietary and public data sources (including Yahoo!’s knowledge graph and web
search logs, and social media platforms Flickr and Twitter) and combines them
in a learning-to-rank framework. The training data consists of 47K entity pairs,
labeled by professional editors on a five-point scale. Aggarwal et al. [2] show that
comparable accuracy may be achieved by utilizing only publicly available data, in
particular, Wikipedia, and using only 16 features.

9.3 Entity Recommendations 321

Table 9.3 Features for related entity recommendation, given an input entity

Group Feature Description

Co-occurrence

P (e,e′) Joint probability (c(e,e′ ;C)/|C|)
P (e′|e) Conditional probability (c(e,e′ ;C)/c(e;C))

P (e|e′) Reverse conditional probability (c(e,e′ ;C)/c(e′;C))

PMI(e,e′) Pointwise mutual information

WLM(e,e′) Wikipedia link-based measure (cf. Eq. (5.4))

Graph-theoretic

PR(e) PageRank score of the entity (cf. Eq. (4.4))

Content-based features

cos(e,e′) Cosine similarity between vector representations of entities

Popularity

c(e;C) Frequency of the entity

P (e) Relative frequency of the entity (c(e;C)/|C|)
Unary features are computed for both e and e′. All statistics are computed over some data collection
C, where |C| denotes the total number of items (documents, queries, etc.); c(e;C) is the frequency
of entity e, i.e., the number of items in which e occurs; c(e,e′ ;C) denote the number of items in
which e and e′ co-occur

We distinguish between four main groups of features: co-occurrence features,
graph-theoretic features, content-based features, and popularity features. Popularity
features and graph-theoretic features are unary, expressing the importance of an
entity on its own. The remaining features are binary, capturing the strength of
association between two entities. Table 9.3 presents a non-exhaustive selection of
features.

Co-occurrence features Intuitively, entities that are observed to occur frequently
together are likely to be related to each other. One question here is what data
collection C to use for extracting co-occurrence information. Another question
is what co-occurrence statistic to compute based on those observations. Prior
work has considered a wide variety of data sources, including search logs [9],
web pages [3], Wikipedia [2, 35, 44], Twitter [9], and Flickr [9]. Co-occurrence
measures include joint, conditional, and reverse conditional probabilities, point-
wise mutual information, KL divergence, entropy, and the Wikipedia link-based
measure (WLM) [35].

Graph-theoretic features The most commonly used feature in this group is the
PageRank score of an entity in the knowledge graph. PageRank may also be
computed on a hyperlink graph obtained from the Web [9]. For details on
PageRank and for additional centrality measures, we refer back to Sect. 4.6.

Content-based features This set of features aims to capture the similarity
between a pair of entities based on their content. A standard approach is to
represent entities either as term vectors or embedding vectors, and then compute
the cosine similarity of those vectors. See Sect. 4.5.1 for alternative ways of
measuring pairwise entity similarity.

322 9 Utilizing Entities for an Enhanced Search Experience

Popularity features Popularity is based on the frequency of an entity in a given
data source, e.g., search queries and sessions, or number of views or clicks in web
search. Additional popularity features were discussed in Sects. 4.6.1 and 5.6.1.1.

9.3.2 Personalized Recommendations

Rather than suggesting entities related to a given input entity, in this section
we discuss methods that provide personalized entity recommendations based on
the user’s current search session. A number of approaches have been proposed
for learning models for specific domains, such as movies or celebrities [8, 57].
Such model-based methods rely on manually designed domain-dependent features,
related to specific properties of entities (e.g., the genre of a movie or how many
pop singers were viewed by a specific user). There is an obvious connection to
make here to traditional item-based recommender systems (e.g., the ones used in
e-commerce systems), such as collaborative filtering [19]. One main difference is
that in collaborative filtering approaches the user-item matrix is given. For entity
recommender systems, user preferences of entities are more difficult to observe.
Another difference is the sheer scale of data (i.e., millions of entities vs. thousands of
products in an e-commerce scenario) coupled with extreme data sparsity. Fernández-
Tobías and Blanco [20] perform personalized entity recommendations using a
purely collaborative filtering approach. Inspired by nearest neighbor techniques,
these memory-based methods exploit user interactions that are available in search
logs. Since they do not depend on descriptions or properties of entities, memory-
based methods generalize to arbitrary types of entities and scale better to large
amounts of training data than model-based methods.

Next, we present three probabilistic methods for estimating P(e′|s), the
probability of recommending entity e′ to a user based on her current search
session s.4 These methods are named after how item-to-item similarity aggregation
is performed: entity-based, query-based, or session-based. In their paper, Fernández-
Tobías and Blanco [20] define multiple alternatives for each component of these
models. Here, we will discuss a single option for each, the one that performed best
experimentally. According to the results reported in [20], the entity-based method
performs best, followed by the query-based and then the session-based approaches.

We shall use the following notation below. Let Q be the set of unique queries
in the search log and S be the set of all user sessions. For a given session s ∈ S,
Qs ⊂ Q denotes the set of queries issued and Es ⊂ E denotes the set of entities
clicked by the user within that search session.

4For notational consistency, we shall continue to denote the candidate entity recommendation,
which is being scored, by e′.

9.3 Entity Recommendations 323

9.3.2.1 Entity-Based Method

The intuition behind the first method is that an entity e′ is more likely to be relevant
to the user’s current session s if it is similar to other entities that have previously
been clicked by the user in the same session. Formally, this is expressed as:

PEB(e′|s) =
∑

e∈Es

P (e′|e)P (e|s) ,

where P(e′|e) captures the similarity between a pair of entities and P(e|s) expresses
the relevance of e given the search session s. Pairwise entity similarities are
estimated in a collaborative fashion, by measuring the co-occurrence of entities
within all user sessions using the Jaccard coefficient. To estimate the relevance of a
clicked entity e within a session s, we aggregate the importance of e for each query
q in that session, weighted by the query likelihood in that session:

P(e|s) =
∑

q∈Qs

P (e|q,s)P (q|s) . (9.4)

A given entity’s relevance may be measured based on dwell time, i.e., how much
time the user spent on examining that result, relative to all other entities that were
returned for the same query:

P(e|q,s) = dwell(e,q,s)
∑

e′∈Es
dwell(e′,q,s)

, (9.5)

where dwell(e,q,s) is the time spent on examining entity e for query q in session s.
In case the user did not click on e as a result to q , P(e|q,s) is taken to be 0.

The probability P(q|s) in Eq. (9.4) captures how important that query is within
its session. It tends to reason that more recent queries should be considered more
important, as they represent more accurately the user’s current interests (which may
have shifted over time). This notion of temporal decay is formally expressed as:

P(q|s) ∝ e−(ts−tq) , (9.6)

where e is the mathematical constant (the base of the natural logarithm), tq is the
timestamp of query q , and ts is the timestamp of the last query in the session.

9.3.2.2 Query-Based Method

The second approach works by first identifying queries from other sessions in the
search log that are potentially relevant to the current session. Then, it retrieves
entities from those sessions. Formally:

PQB(e′|s) =
∑

q∈Q
q /∈Qs

P (e′|q)P (q|s) , (9.7)

324 9 Utilizing Entities for an Enhanced Search Experience

where P(q|s) is the probability that query q is relevant to the current session s and
P(e′|q) measures how relevant e is for query q (across all sessions). Note that, in
contrast to the entity-based method, the queries q we aggregate over are not present
in the current session. Rather, these are chosen from the queries submitted by other
users, performing similar tasks. The relevance of an entity given a query is estimated
by considering all sessions in the search log that contain that query:

P(e′|q) ∝
∑

s ′∈S
P(e′|q,s)P (q|s)P (s) , (9.8)

where as before, P(e′|q,s) is measured using dwell time (cf. Eq. (9.5)) and P(q|s)
is estimated based on temporal decay (cf. Eq. (9.6)). Note that P(q|s) here expresses
the probability of choosing the query q from session s containing that query (q ∈
Qs) and is not to be confused with P(q|s) in Eq. (9.7), where it is used to capture
the relevance of a query that is not observed in the given session (q /∈ Qs). Finally,
P(s) is assumed to be uniform for simplicity.

The query relevance probability, P(q|s) in Eq. (9.7), is defined to select queries
from the search log (q ∈ Q \Qs) that are similar to the ones in the current session:

P(q|s) =
∑

q ′∈Qs

P (q|q ′)P (q ′|s) ,

where P(q|q ′) expresses the similarity between a pair of queries and is computed
based on the co-occurrence of q and q ′ within all sessions in the search log using
the Jaccard coefficient. As before, P(q ′|s) uses the temporal decay estimator (cf.
Eq. (9.6)).

9.3.2.3 Session-Based Method

The last approach works by finding sessions similar to the current session, then
recommending entities from those sessions:

PSB(e′|s) =
∑

s ′∈S
P(e′|s′)P (s′|s) ,

where P(e′|s′) is the importance of an entity given a session, computed as given
by Eq. (9.4). The pairwise session similarity, P(s′|s), is estimated based on entity
embeddings. Specifically, Fernández-Tobías and Blanco [20] use Word2vec [33]
(where sessions correspond to documents and entities within sessions correspond
to words within documents) and extract embedding vectors of dimension 100. The

9.3 Entity Recommendations 325

Fig. 9.10 An example of contextual entity recommendations. Image is based on [31]

similarity between two sessions is then computed based on the distance between the
centroids of entities within them:

P(s′|s) ∝
⎛

⎝

∥
∥
∥
∥
∥
∥

1

|Es |
∑

e∈Es

e− 1

|Es ′ |
∑

e′∈Es′
e′
∥
∥
∥
∥
∥
∥

⎞

⎠

−1

,

where e is the embedding vector corresponding to entity e.

9.3.3 Contextual Recommendations

Web search is a prominent application area for entity recommendations but is
certainly not the only one. Entity recommendation may also be offered directly
within the application where content is consumed. As one such example, Lee et al.
[31] present the scenario of a user reading a document on a tablet or e-reader device.
At some point, the user might stumble upon an entity that she wishes to learn more
about. Instead of leaving the application and switching to a web search engine to
query for that entity, the user might just highlight and tap on an entity of interest.
She will then be presented with a list of contextually relevant entities, as it is shown
in Fig. 9.10.

According to the outlined scenario, the input to the contextual entity recommen-
dation problem consists of an input entity e and some context c. Specifically, the

326 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.11 Overview of the approach by Lee et al. [31]. The input entity (e) vertex is marked black,
contextual entity vertices (Ec) are marked gray

context is a window of text around the selected entity mention (100 terms before
and after in [31]). The approach proposed by Lee et al. [31] consists of three main
steps, which are illustrated in Fig. 9.11.

1. A focused subgraph is extracted from the underlying knowledge graph G. The
vertices of this focused subgraph are V = {e}∪Ec∪E ′c, where e is the input entity,
Ec is the set of context entities, recognized in c by performing entity linking, and
E ′c is the set of entities reachable from Ec via paths of length one in the knowledge
graph. The edges between these vertices are induced from G.

2. Each candidate entity e′ in the focused subgraph is scored using two different
methods: context-selection betweenness and personalized random walk. Context-
selection betweenness (CSB) captures the extent to which the candidate entity
e′ serves as a bridge between the input entity e and the context entities Ec.
Intuitively, a higher CSB score means that the candidate entity plays a more
important role in connecting the input and context entities. Formally, CSB
considers all shortest paths between the input and context entities, which go
through the candidate entity:

CSB(e′) = 1

Z

∑

e′′ :e′∈SP(e,e′′)

w(e,e′′)
|SP(e,e′′)| × l(e,e′′)

,

where SP(e,e′′) is the set of all shortest paths between the e and e′′, and l(e,e′′)
is the length of that path. Each path between the input and a context entity is
weighted by their semantic distance, based on the Wikipedia link-based measure

9.3 Entity Recommendations 327

(WLM, cf. Eq. (5.4)):5

w(e,e′′) = max
(
WLM(e,e′′)− γ,0

)
.

The threshold γ is used for emphasizing context entities that are semantically
related to the input entity (γ = 0.5 in [31]). The normalization factor is set to:

Z =
∑

e′′∈Ec

w(e,e′′)
l(e,e′′)

.

The other scoring method is personalized random walk (PRW, a.k.a. personalized
PageRank [26]), which aims to measure the relevance of entities given the user’s
selection. To compute these scores, the random jump probabilities are initialized
as follows. The input entity vertex is assigned probability 0 < xe < 1, the context
entity vertices are assigned probability xc/|Ec|, where 0 ≤ xc ≤ xe, and all other
entity vertices are assigned probability 0. Lee et al. [31] use xe = 0.05 and
xc = 0 in their experiments, and report that xc > 0 does not lead to significant
improvements.

3. The final score for each entity vertex is computed by taking a weighted
combination of the context-selection betweenness and personalized random walk
scores:

score(e′;e,Ec) = α
|Ec|
|V | CSB(e′)+ |V | × PRW(e′) ,

where |V | is the number of vertices in the focused subgraph and α is a scaling
factor. The multipliers serve normalization purposes, making the two scores
compatible.

9.3.4 Explaining Recommendations

Thus far in this section, we have presented both non-personalized and personalized
methods for recommending related entities (e′) given an input entity (e). In addition
to the recommendations themselves, users might also be interested in finding out
why certain entities were shown to them. This brings us to answering the question:
How are the input entity and the recommended entity related? Such explanations are
offered, e.g., on entity cards in modern web search engines by hovering the mouse
over a recommended entity; see Fig. 9.12. Another typical application scenario for
explaining entity relationships is timeline generation [3].

5Mind that we define WLM as a similarity measure, as opposed to a distance measure, hence the
equation differs from the one in [31].

328 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.12 Excerpt from a
Google entity card displayed
for BARACK OBAMA. When
hovering over a related entity,
an explanation of the
relationship is shown

One of the earliest works addressing the problem of explaining the relationship
between two entities is the dbrec music recommendation system [38]. It offers
explanations in the form of a list of shared property-value pairs between the
input and recommended entities, as shown in Fig. 9.13. This form of presentation,
however, was considered as “too geeky” by 6 out of the 10 test subjects participating
in the user evaluation [38]. Instead, human-readable descriptions that verbalize the
relationship are more natural to use. The use of natural language has also shown
to improve confidence in decision-making under uncertainty [21]. Three main lines
of approaches have been proposed in prior work for generating natural language
descriptions of entity relationships: (1) by manually defining templates [3], (2)
by retrieving sentences from a text corpus [54], and (3) by automatically creating
templates for a specific relationship and then filling the template slots for a new
relationship instance [53]. Below, we briefly elaborate on the latter two.

All existing approaches solve a simplified version of the task of explaining entity
relationships, by focusing on a specific relationship between a pair of entities. This
corresponds to generating a textual description for an SPO triple, where the subject
is e, the predicate is p, and the object is e′. We shall refer to the triple (e,p,e′)
as relationship instance. When referring to predicate p, we shall use the terms
predicate and relationship interchangeably. As it is illustrated in Fig. 9.13, entities
may be connected via multiple relationships. Selecting p from the set of possible
predicates that connect two entities remains an open research challenge to date.

9.3.4.1 Explaining Relationships via Sentence Ranking

Voskarides et al. [54] approach the task as a sentence ranking problem: automati-
cally extracting sentences from a text corpus and ranking them according to how
well they describe a given relationship instance (e,p,e′).

9.3 Entity Recommendations 329

Fig. 9.13 Explanation for recommending ELVIS PRESLEY for the input entity JONNY CASH from
the dbrec music recommendation system. Figure taken from Passant [38] (C) Springer 2010,
reprinted with permission

First, a set X of candidate sentences is extracted from a corpus of documents.
In [54], this corpus is Wikipedia. Other document collections may also be used, as
long as documents are pertinent to the entities of interest. A sentence is considered
as a candidate if (1) it originates from the Wikipedia page of e or e′ and contains
a mention to the other entity or (2) it mentions both e and e′. In order to make
sentences self-contained outside the context of the source document, pronouns “she”
and “he” are replaced with the name of the respective entity. Further, sentences are
annotated with entities by performing entity linking. As an illustration, consider the
sentence “He gave critically acclaimed performances in the crime thriller Seven. . . ,”
which, after these enrichment steps, becomes “BRAD PITT gave critically acclaimed
performances in the crime thriller SEVEN. . . ”

Next, candidate sentences x ∈ X are ranked using supervised learning. Four
groups of features are employed:

• Textual features consider the importance of the sentence on the term level.
These include sentence length, aggregated IDF scores, sentence density [30], and
fractions of verbs, nouns, and adjectives.

• Entity features characterize the sentence based on the mentioned entities. These
include, among others, whether e and e′ are linked in x, and the distance between
the positions of their mentions. Another group of features focuses on other
entities mentioned in the sentence and whether those are related to e and e′.

330 9 Utilizing Entities for an Enhanced Search Experience

Fig. 9.14 Dependency graph for the sentence “Brad Pitt appeared in the American epic adventure
film Troy,” using entities and predicates from DBpedia

• Relationship features indicate whether the relationship p occurs in x. Exact term-
based matching has low coverage (e.g., “spouse” vs. “husband” or “married”),
therefore both synonym-based matches (using Wordnet) and word embeddings
(using Word2vec [33]) are considered.

• Source features describe the position of x and the number of occurrences of e

and e′ in the document from which x originates.

Voskarides et al. [54] train their models on a set of manually annotated sentences,
using a five-level graded relevance scale. They show that learning relationship-
specific models, as opposed to a single global model, can yield additional improve-
ments.

9.3.4.2 Generating Descriptions of Relationships

The previous approach is limited by the underlying text corpus, which may not
contain descriptions for certain relationship instances. Voskarides et al. [53] propose
to overcome this by automatically generating descriptions. The idea is to learn how
a given relationship p is typically expressed (in the document corpus), and create
sentence templates for that relationship. Then, for a new relationship instance, the
appropriate template can be instantiated.

As before, it is assumed that a given relationship between two entities can be
expressed as a single sentence. This sentence should mention both e and e′, and
possibly other entities that may provide additional contextual information. The
following example sentence is given as an illustration in [53] for the (BRAD PITT,
stars in, TROY) relationship instance: “Brad Pitt appeared in the American epic
adventure film Troy.” It not only verbalizes the “stars in” predicate but also mentions
other entities and attributes (the film’s genre and origin) to offer additional context.
To be able to provide such contextual information, each sentence is augmented
with an entity dependency graph. In this graph, vertices represent entities and edges
represent relationships (predicates). The graph is created by traversing paths in the
knowledge base between each pair of entities that are mentioned in the sentence.
See Fig. 9.14 for an illustration.6

6In their paper, Voskarides et al. [53] use Freebase as the underlying knowledge base and pay
special attention to compound value type (CVT) entities. CVT entities are specific to Freebase, and
are used for modeling attributes of relationships (e.g., date of a marriage). For ease of presentation,
we will not deal with CVT entities in our discussion.

9.4 Summary 331

The template creation process then takes as input, for each predicate, a set of
relationship instances, sentences describing those relationship instances, and entity
dependency graphs corresponding to those sentences. The following sequence of
steps are performed:

1. Entities sharing the same predicates are clustered together across the dependency
graphs. This will group entities of the same type, such as persons and films.

2. A compression graph GC is created from sentences where vertices are either
words or entity clusters.

3. GC is traversed for finding valid paths between all pairs of entity cluster vertices.
A path is considered valid if (i) it contains a verb and (ii) it can be observed as a
complete sentence at least once in the corpus.

4. A template is constructed from each path, which is supported by a minimum
number of sentences in the corpus.

With a set of templates at hand, generating a description for a new relationship
instance (e,p,e′) goes as follows. First, the available templates for predicate p

are ranked. Two template scoring functions are presented in [53], one based on
cosine similarity of TF-IDF term vectors and another using feature-based supervised
learning. The top-ranked template is then instantiated by filling its slots with entities
from the knowledge base. If multiple instantiations exist, then one of those is
chosen randomly. If the template cannot be instantiated, then we proceed to the
next template in the ranking.

9.4 Summary

This chapter has introduced search assistance tools that help users (1) express their
information needs, (2) get direct answers, and (3) explore related content with the
help of entities. We have started with query assistance features, such as query auto-
completion and query recommendation, which users would expect today as standard
functionality from a modern search engine. An issue with traditional methods,
which rely solely on query logs, is that of coverage. That is, they fail to provide
meaningful suggestions for long-tail queries. We have discussed how knowledge
bases may be utilized to alleviate this problem, yielding small but significant
improvements over traditional methods. Next, we have looked at entity cards, a new
type of search result presentation that has been adopted by major web search engines
and intelligent personal assistants. Each card presents a concise summary of a spe-
cific entity, and can satisfy the user’s information need directly, while also encour-
aging further engagement with search results and exploration of related content. We
have addressed, in detail, the question of which facts to highlight about an entity
in the limited screen space that is available on the card. Finally, we have presented
techniques for promoting exploratory search by recommending related entities to
users. We have further discussed how to generate a natural language explanation for
the relationship between an input entity and a recommended related entity.

332 9 Utilizing Entities for an Enhanced Search Experience

9.5 Further Reading

Web search result pages are becoming increasingly complex, featuring direct
displays, entity cards, query suggestions, advertisements, etc., arranged in a non-
linear page layout. With these novel interfaces, determining the user’s satisfaction
with the search results is becoming more difficult. Research in this area includes the
topics of evaluating whole page relevance [4], understanding how users examine
and interact with nonlinear page layouts [13, 36], and detecting search satisfaction
without clicks [28, 56].

Entity cards are the most widely used and universally applicable tools for
summarizing entity information, but there are other possibilities that could serve
users better in certain application scenarios. One such alternative that has garnered
research interest is entity timelines, which organize information associated with
an entity, arranged along a horizontal time axis. Timeline visualizations are often
coupled with interactive features to enable further exploration. For example, Rybak
et al. [40] visualize how a person’s expertise changes over the course of time. Tuan
et al. [51] and Althoff et al. [3] generate a timeline of events and relations for entities
in a knowledge base.

In this chapter, we have focused on the algorithmic aspects of generating entity
recommendations. For a study on how people interact with such recommendations,
see, e.g., [34].

References

1. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: Walking back and
forth for mining query templates. In: Proceedings of the 19th international conference on
World wide web, WWW ’10, pp. 1–10. ACM (2010). doi: 10.1145/1772690.1772692

2. Aggarwal, N., Mika, P., Blanco, R., Buitelaar, P.: Leveraging Wikipedia knowledge for entity
recommendations. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track co-
located with the 14th International Semantic Web Conference, ISWC ’15. Springer (2015)

3. Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: TimeMachine: Timeline
generation for knowledge-base entities. In: Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 19–28. ACM
(2015). doi: 10.1145/2783258.2783325

4. Bailey, P., Craswell, N., White, R.W., Chen, L., Satyanarayana, A., Tahaghoghi, S.M.M.:
Evaluating whole-page relevance. In: Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 767–768.
ACM (2010). doi: 10.1145/1835449.1835606

5. Bar-Yossef, Z., Kraus, N.: Context-sensitive query auto-completion. In: Proceedings of the
20th International Conference on World Wide Web, WWW ’11, pp. 107–116. ACM (2011).
doi: 10.1145/1963405.1963424

6. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Semantic full-text search with broc-
coli. In: Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, pp. 1265–1266. ACM (2014). doi:
10.1145/2600428.2611186

https://doi.org/10.1145/1772690.1772692
https://doi.org/10.1145/2783258.2783325
https://doi.org/10.1145/1835449.1835606
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/2600428.2611186

References 333

7. Bast, H., Buchhold, B., Haussmann, E.: Relevance scores for triples from type-like rela-
tions. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’15, pp. 243–252. ACM (2015). doi:
10.1145/2766462.2767734

8. Bi, B., Ma, H., Hsu, B.J.P., Chu, W., Wang, K., Cho, J.: Learning to recommend related entities
to search users. In: Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, WSDM ’15, pp. 139–148. ACM (2015). doi: 10.1145/2684822.2685304

9. Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity recommendations in web search.
In: Proceedings of the 12th International Semantic Web Conference, ISWC ’13, pp. 33–48.
Springer (2013). doi: 10.1007/978-3-642-41338-4_3

10. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow
graph: Model and applications. In: Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pp. 609–618. ACM (2008). doi:
10.1145/1458082.1458163

11. Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., Venturini, R.: Efficient query recommendations
in the long tail via center-piece subgraphs. In: Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp.
345–354. ACM (2012). doi: 10.1145/2348283.2348332

12. Bordino, I., De Francisci Morales, G., Weber, I., Bonchi, F.: From Machu_Picchu to “rafting
the urubamba river”: Anticipating information needs via the entity-query graph. In: Proceed-
ings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13,
pp. 275–284. ACM (2013). doi: 10.1145/2433396.2433433

13. Bota, H.: Nonlinear composite search results. In: Proceedings of the 2016 ACM on Conference
on Human Information Interaction and Retrieval, CHIIR ’16, pp. 345–347. ACM (2016). doi:
10.1145/2854946.2854956

14. Bota, H., Zhou, K., Jose, J.M.: Playing your cards right: The effect of entity cards on
search behaviour and workload. In: Proceedings of the 2016 ACM on Conference on
Human Information Interaction and Retrieval, CHIIR ’16, pp. 131–140. ACM (2016). doi:
10.1145/2854946.2854967

15. Cai, F., de Rijke, M.: A Survey of Query Auto Completion in Information Retrieval, vol. 10.
Now Publishers Inc. (2016)

16. Cheng, G., Tran, T., Qu, Y.: RELIN: Relatedness and informativeness-based centrality
for entity summarization. In: Proceedings of the 10th International Conference on
The Semantic Web - Volume Part I, ISWC’11, pp. 114–129. Springer (2011). doi:
10.1007/978-3-642-25073-6_8

17. Dalvi, B., Minkov, E., Talukdar, P.P., Cohen, W.W.: Automatic gloss finding for a knowledge
base using ontological constraints. In: Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, pp. 369–378. ACM (2015). doi:
10.1145/2684822.2685288

18. Dehghani, M., Rothe, S., Alfonseca, E., Fleury, P.: Learning to attend, copy, and generate
for session-based query suggestion. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM ’17, pp. 1747–1756. ACM (2017). doi:
10.1145/3132847.3133010

19. Desrosiers, C., Karypis, G.: A Comprehensive Survey of Neighborhood-based Recommenda-
tion Methods, pp. 107–144. Springer (2011)

20. Fernández-Tobías, I., Blanco, R.: Memory-based recommendations of entities for web search
users. In: Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, CIKM ’16, pp. 35–44. ACM (2016). doi: 10.1145/2983323.2983823

21. Gkatzia, D., Lemon, O., Rieser, V.: Natural language generation enhances human decision-
making with uncertain information. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL’ 16. The Association for Computer Linguis-
tics (2016)

https://doi.org/10.1145/2766462.2767734
https://doi.org/10.1145/2684822.2685304
https://doi.org/10.1007/978-3-642-41338-4_3
https://doi.org/10.1145/1458082.1458163
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1145/2433396.2433433
https://doi.org/10.1145/2854946.2854956
https://doi.org/10.1145/2854946.2854967
https://doi.org/10.1007/978-3-642-25073-6_8
https://doi.org/10.1145/2684822.2685288
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/2983323.2983823

334 9 Utilizing Entities for an Enhanced Search Experience

22. Gunaratna, K., Thirunarayan, K., Sheth, A.: FACES: Diversity-aware entity summarization
using incremental hierarchical conceptual clustering. In: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAI’15, pp. 116–122. AAAI Press (2015)

23. Hasibi, F., Balog, K., Bratsberg, S.E.: Dynamic factual summaries for entity cards. In:
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17. ACM (2017). doi: 10.1145/3077136.3080810

24. Hoffart, J., Milchevski, D., Weikum, G.: STICS: Searching with strings, things, and
cats. In: Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, pp. 1247–1248. ACM (2014). doi:
10.1145/2600428.2611177

25. Huang, Z., Cautis, B., Cheng, R., Zheng, Y.: KB-enabled query recommendation for
long-tail queries. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM ’16, pp. 2107–2112. ACM (2016). doi:
10.1145/2983323.2983650

26. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th Inter-
national Conference on World Wide Web, WWW ’03, pp. 271–279. ACM (2003). doi:
10.1145/775152.775191

27. Kang, C., Vadrevu, S., Zhang, R., van Zwol, R., Pueyo, L.G., Torzec, N., He, J., Chang, Y.:
Ranking related entities for web search queries. In: Proceedings of the 20th International
Conference Companion on World Wide Web, WWW ’11, pp. 67–68. ACM (2011). doi:
10.1145/1963192.1963227

28. Lagun, D., Hsieh, C.H., Webster, D., Navalpakkam, V.: Towards better measurement of
attention and satisfaction in mobile search. In: Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp.
113–122. ACM (2014). doi: 10.1145/2600428.2609631

29. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random
walks. Mach. Learn. 81(1), 53–67 (2010). doi: 10.1007/s10994-010-5205-8

30. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-
pass sieve coreference resolution system at the CoNLL-2011 Shared task. In: Proceedings of
the Fifteenth Conference on Computational Natural Language Learning: Shared Task, CONLL
Shared Task ’11, pp. 28–34. Association for Computational Linguistics (2011)

31. Lee, J., Fuxman, A., Zhao, B., Lv, Y.: Leveraging knowledge bases for contextual entity
exploration. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pp. 1949–1958. ACM (2015). doi:
10.1145/2783258.2788564

32. Meij, E., Mika, P., Zaragoza, H.: An evaluation of entity and frequency based query completion
methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’09, pp. 678–679. ACM (2009). doi:
10.1145/1571941.1572074

33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words
and phrases and their compositionality. In: Proceedings of the 26th International Conference
on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc.
(2013)

34. Miliaraki, I., Blanco, R., Lalmas, M.: From “Selena Gomez” to “Marlon Brando”: Understand-
ing explorative entity search. In: Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, pp. 765–775. International World Wide Web Conferences Steering
Committee (2015). doi: 10.1145/2736277.2741284

35. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from
Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence:
An Evolving Synergy, pp. 25–30. AAAI Press (2008)

36. Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A., Smola, A.: Measurement and
modeling of eye-mouse behavior in the presence of nonlinear page layouts. In: Proceedings
of the 22nd International Conference on World Wide Web, WWW ’13, pp. 953–964. ACM
(2013). doi: 10.1145/2488388.2488471

https://doi.org/10.1145/3077136.3080810
https://doi.org/10.1145/2600428.2611177
https://doi.org/10.1145/2983323.2983650
https://doi.org/10.1145/775152.775191
https://doi.org/10.1145/1963192.1963227
https://doi.org/10.1145/2600428.2609631
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1145/2783258.2788564
https://doi.org/10.1145/1571941.1572074
https://doi.org/10.1145/2736277.2741284
https://doi.org/10.1145/2488388.2488471

References 335

37. Ozertem, U., Chapelle, O., Donmez, P., Velipasaoglu, E.: Learning to suggest: A machine
learning framework for ranking query suggestions. In: Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12,
pp. 25–34. ACM (2012). doi: 10.1145/2348283.2348290

38. Passant, A.: Dbrec: Music recommendations using DBpedia. In: Proceedings of the 9th
International Semantic Web Conference on The Semantic Web - Volume Part II, ISWC’10,
pp. 209–224. Springer (2010)

39. Reinanda, R., Meij, E., de Rijke, M.: Mining, ranking and recommending entity aspects.
In: Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’15, pp. 263–272. ACM (2015). doi:
10.1145/2766462.2767724

40. Rybak, J., Balog, K., Nørvåg, K.: ExperTime: Tracking expertise over time. In: Proceedings of
the 37th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’14 (2014). doi: 10.1145/2600428.2611190

41. Saldanha, G., Biran, O., McKeown, K., Gliozzo, A.: An entity-focused approach to generating
company descriptions. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL ’16. The Association for Computer Linguistics (2016)

42. Schmidt, A., Hoffart, J., Milchevski, D., Weikum, G.: Context-sensitive auto-completion for
searching with entities and categories. In: Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 1097–
1100. ACM (2016). doi: 10.1145/2911451.2911461

43. Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., Nie, J.Y.: A hierarchical
recurrent encoder-decoder for generative context-aware query suggestion. In: Proceedings
of the 24th ACM International on Conference on Information and Knowledge Management,
CIKM ’15, pp. 553–562. ACM (2015). doi: 10.1145/2806416.2806493

44. Strube, M., Ponzetto, S.P.: WikiRelate! - Computing semantic relatedness using Wikipedia. In:
Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, AAAI’06,
pp. 1419–1424. AAAI Press (2006)

45. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. Proceedings of the VLDB Endowment 4(11), 992–1003
(2011)

46. Szpektor, I., Gionis, A., Maarek, Y.: Improving recommendation for long-tail queries via
templates. In: Proceedings of the 20th International Conference on World Wide Web, WWW’
11, pp. 47–56. ACM (2011).doi: 10.1145/1963405.1963416

47. Thalhammer, A., Lasierra, N., Rettinger, A.: LinkSUM: Using link analysis to summarize
entity data. In: Proc. of 16th International Web Engineering Conference, ICWE ’16, pp. 244–
261. Springer (2016). doi: 10.1007/978-3-319-38791-8_14

48. Thalhammer, A., Rettinger, A.: Browsing DBpedia entities with summaries. In: The Semantic
Web: ESWC 2014 Satellite Events, pp. 511–515 (2014)

49. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval.
In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’98, pp. 2–10. ACM (1998). doi:
10.1145/290941.290947

50. Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer, K., Cudré-Mauroux, P.:
Contextualized ranking of entity types based on knowledge graphs. Web Semant. 37–38, 170–
183 (2016). doi: 10.1016/j.websem.2015.12.005

51. Tuan, T.A., Elbassuoni, S., Preda, N., Weikum, G.: CATE: Context-aware timeline for entity
illustration. In: Proceedings of the 20th International Conference Companion on World Wide
Web, WWW ’11, pp. 269–272. ACM (2011). doi: 10.1145/1963192.1963306

52. Vadrevu, S., Tu, Y., Salvetti, F.: Ranking relevant attributes of entity in structured knowledge
base (2016)

53. Voskarides, N., Meij, E., de Rijke, M.: Generating descriptions of entity relationships. In:
Proceedings of the 39th European Conference on Information Retrieval, ECIR ’17. Springer
(2017). doi: 10.1007/978-3-319-56608-5_25

https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2766462.2767724
https://doi.org/10.1145/2600428.2611190
https://doi.org/10.1145/2911451.2911461
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/1963405.1963416
https://doi.org/10.1007/978-3-319-38791-8_14
https://doi.org/10.1145/290941.290947
https://doi.org/10.1016/j.websem.2015.12.005
https://doi.org/10.1145/1963192.1963306
https://doi.org/10.1007/978-3-319-56608-5_25

336 9 Utilizing Entities for an Enhanced Search Experience

54. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain
entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for
Computational Linguistics (2015)

55. White, R.W.: Interactions with Search Systems. Cambridge University Press (2016)
56. Williams, K., Kiseleva, J., Crook, A.C., Zitouni, I., Awadallah, A.H., Khabsa, M.: Is this

your final answer?: Evaluating the effect of answers on good abandonment in mobile
search. In: Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’16, pp. 889–892. ACM (2016). doi:
10.1145/2911451.2914736

57. Yu, X., Ma, H., Hsu, B.J.P., Han, J.: On building entity recommender systems using
user click log and Freebase knowledge. In: Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM ’14, pp. 263–272. ACM (2014). doi:
10.1145/2556195.2556233

58. van Zwol, R., Pueyo, L.G., Muralidharan, M., Sigurbjornsson, B.: Ranking entity facets based
on user click feedback. In: Proceedings of the 4th IEEE International Conference on Semantic
Computing, pp. 192–199 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2911451.2914736
https://doi.org/10.1145/2556195.2556233
http://creativecommons.org/licenses/by/4.0/

Chapter 10
Conclusions and Future Directions

Today, the importance of entities has been broadly recognized and entities have
become first-class citizens in many information access systems, including web,
mobile, and enterprise search; question answering; and personal digital assistants.
Entities have also become a meeting point for several research communities,
including that of information retrieval, natural language processing, databases, and
the Semantic Web. Many of the methods and tools we have described in this book,
such as ranking entities, recognizing and linking entity mentions in documents and
queries, or displaying entity cards, are now integral components of modern search
systems.

Is this the end of the road? Certainly not. It would be going too far to label those
core tasks, like entity ranking and entity linking, as “solved.” Obviously, there is still
(plenty of) room for improvement. Also, it is not yet clear which techniques will be
the “BM25’s” of the entity world, as stable and reliable solutions. Only time will
tell. Nevertheless, we have reached a point where these methods are “good enough”
to be used as basic building blocks in more complex systems. Perhaps it is time to
look beyond these core tasks. As we are approaching the end of this book, we shall
attempt to look into the future and gauge what lies ahead. Many of the things we
will discuss here have already begun to happen, while some other elements, or their
exact form, are more of a speculation.

In Sect. 10.1, we shall summarize our progress so far. Where are we now and how
did we get here? Then, in Sects. 10.2 and 10.3 we will attempt to look ahead and
discuss some anticipated future developments. We will conclude with some final
remarks in Sect. 10.4.

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3_10

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93935-3_10&domain=pdf
https://doi.org/10.1007/978-3-319-93935-3_10

338 10 Conclusions and Future Directions

10.1 Summary of Progress

Let us take a step back and distill the progress achieved over the past years,
organized around three main thematic areas. We shall also briefly mention open
issues; we will elaborate on some of these in more detail in Sect. 10.2.

10.1.1 Data

We start by discussing data, as developments in the data landscape have been
instrumental to the progress made thus far. Specifically, the availability of large-
scale knowledge bases has played a key role in transforming the search experience.
Many information access applications utilize knowledge bases as a rich, structured
repository of entities, and, to a lesser extent, for ontological background knowledge.
Knowledge about particular entities may be used to complement the traditional
(document-oriented) search results, allow for direct answers and various knowledge
panels, and facilitate content exploration and discovery. Knowledge bases also
enable machine understanding of natural language text, by using entities as a pivot
to connect unstructured and structured data sources (Chap. 5). In turn, massive
volumes of unstructured documents may be utilized to populate KBs with additional
entities and their properties (Chap. 6).

Open Issues Knowledge bases are inherently incomplete and keeping them up-
to-date requires a continuous effort. Automatic knowledge acquisition is an active
area of research. Open challenges include the discovery of long tail and emerging
entities, and the quality of data (correctness and trustworthiness of facts); see
Sect. 10.3.3 for further data-related issues.

10.1.2 Retrieval Methods

A significant portion of the book has been devoted to entity retrieval methods. Early
approaches build on document retrieval techniques and focus on how to adopt those
for various types of data, from unstructured to structured (Chap. 3). More recent
approaches utilize the rich structure associated with entities in knowledge bases
(Chap. 4). Many—in fact, most—of the other tasks we have addressed in this book
were also cast as ranking problems, for instance, disambiguating entities that may
refer to a particular mention in text (Sect. 5.6), filtering documents that contain vital
information about an entity (Sect. 6.2), identifying target types of a query (Sect. 7.2),
finding interpretations of a query (Sect. 7.3.4), or determining which facts to display
on an entity card (Sect. 9.2.2). For all these tasks, the current state of the art involves
a discriminative learning approach, i.e., learning-to-rank, employing a rich set of
carefully designed features.

10.1 Summary of Progress 339

Open Issues It appears to be a “safe” recipe to tackle any ranking problem by
hand-crafting a large set of features, then throwing machine learning at it. Indeed,
the importance of feature engineering is not to be underestimated. Nevertheless,
one might argue that this general approach can even get rather mechanical,
and scientifically less interesting, after a while. Neural methods, especially deep
learning, hold the promise of learning directly from raw data, without such labor-
intensive feature engineering. Extending traditional IR models to incorporate word
embeddings has already proven effective for various entity-related search tasks, see,
e.g., [5, 7, 13, 16, 17, 19]. Developing end-to-end architectures, which more fully
embrace neural modeling, is an exciting and active research direction [12, 21]. Yet,
it remains to be seen if deep learning can categorically outclass other approaches,
and whether it will surpass all other forms of machine learning and take over the
entire field of IR (as it did with computer vision, speech recognition, and machine
translation). Even if it does, one might say that all this means is that feature
engineering will get replaced by network engineering. Another issue here will surely
be the availability of training data. In that regard, industry has a distinct advantage
over academia, as target relevance labels may be derived on a much larger scale
from usage data.

While the core entity-oriented retrieval tasks described above both merit and have
the potential for further improvement, another open issue is how to combine these
into more complex useful applications. After all, our eventual goal should be aiding
users in achieving their goals, i.e., completing their tasks, which goes far beyond the
ranking of items; see Sect. 10.3.2.

10.1.3 Understanding and Interacting with Users

Users increasingly expect search engines to understand them and respond to their
information needs more directly than just serving documents matching the query
terms. Today, the search box functions more like a “request box,” and queries
are answered by rich search result pages, including direct answers and interactive
widgets (maps, currency conversion, etc.). We have looked at how to utilize entities
and types to understand information needs (Chap. 7) and to provide an enhanced
search experience (Chap. 9).

Open Issues Search has become a consumer experience. Major search engines are
continuously introducing new types of “functional” results (interactive widgets),
enabling users to do more and more, without leaving the SERP. Result presentation
and interacting with entities still offer plenty of opportunities for research and
innovation. One recent line of work focuses on actionable knowledge bases, i.e.,
identifying potential actions that can be performed on a given entity [4].

Another open issue in this area is that search (or, more broadly, information
access) is moving from desktop to mobile and from text to voice. Personal digital
assistants are increasingly being used to respond to natural language questions. We
can say that search is becoming a conversation between humans and machines; see
Sect. 10.3.1.

340 10 Conclusions and Future Directions

10.2 A Peek into the Future

In this section, we present a fictional conversation that takes place sometime in
the not-too-distant future, between a user, say a male university professor, and an
intelligent personal assistant, simply referred to as “AI.” This conversation could in
fact happen on any device, but for the sake of illustrating certain points, we shall
assume that the device is a mobile phone and that the user interacts with the device
via spoken natural language. The conversation, which will later be referred to as
scenario, is accompanied by some narrative.

The first thing to notice is that it is the AI that initiates the conversation. Based on
the user’s current activity and past behavioral patterns, it decides that now would be
a good time to address a future information need.

The AI refines the requirements iteratively by asking a series of questions. Observe
that it has knowledge of the user’s background (family situation). After having the
initial requirements clarified, it comes up with a specific suggestion:

10.2 A Peek into the Future 341

Links are boldfaced and underlined in the response text; the user could follow these
for more information. The photos are also clickable.

Two things are worth pointing out in the AI’s response. One is that it has a (certain)
sense of humor. Humor is an essential human communication behavior. The other
is that it is able to give a compact answer to the question, and backs it up with a link
to the source (evidence) that the answer was based on.

The AI presents a list of (personalized) accommodation options. After examining
the results, the user selects one of the items and asks for further information.

With this reply, the AI demonstrates some impressive summarization skills. It
focuses on aspects that are likely of interest to the user.

342 10 Conclusions and Future Directions

At this point, we are moving away from what was a kind of exploratory search
scenario to a different type of information access problem, where the AI helps to
automatically manage scheduling.

First, the AI prepares a draft of the requested email message in the user’s style. The
user can refine the text before sending. Then, the AI adds the agenda item to the
team wiki and displays a success notification received from the wiki software.

10.3 Future Research Directions 343

The AI attempts to check availability via an online booking system. Realizing that
it is currently not accessible, it decides to resort to more conventional means of
communication and calls the place over the phone. Next, it composes an email
message, combining the user’s language model with a flavor of “kind.” After
reviewing—and perhaps correcting the AI’s over-the-top romantic vibe here-and-
there—the user decides to send off the message.

With this task completed, the AI asks if it could be of any more assistance. Then, it
receives a request of a different nature.

10.3 Future Research Directions

Below, we discuss a number of directions and areas for future research. Along
the way, we will occasionally make references to certain elements of the scenario
presented in the previous section.

344 10 Conclusions and Future Directions

10.3.1 Understanding and Interacting with Users

Search Is a Conversation For many years, keyword queries have been the lingua
franca of information access. This, however, is changing. With the emergence of
the mobile-over-desktop culture of information consumption, and the advancement
in voice recognition technologies, voice search is gaining ground. In 2015, Google
reported that the volume of mobile search has surpassed that of desktop search in
several countries.1 As of 2016, around 20% of queries on Google mobile devices are
voice input in the USA [14]. Voice queries are not only longer on average than text
queries but also use richer language [9]. But there is more. Voice search facilitates
the possibility of a speech dialogue with the user. Such natural language interfaces
are already a reality, as manifested in personal digital assistants, such as the Google
Assistant, Apple’s Siri, Microsoft’s Cortana, or Amazon’s Alexa.

Conversational search offers many possibilities, such as the ability to ask the user
for clarification, if needed. It also presents many challenges, as the system no longer
returns massive search engine result pages, somewhere on which the user hopefully
finds what she was looking for. The response needs to be more “intelligent,” i.e.,
comprehensive and spot-on. In this regard, voice-based result presentation that
enables a completely hand-free interaction with the user still has a long way to
go [9]. There is also a need for novel evaluation measures that can capture user
satisfaction in a conversational setting. A good conversation entails more than just
the fulfillment of an information need; among others, it should flow and be engaging,
be just about the right length, and, occasionally, even humorous.

Anticipating Information Needs The traditional way of information access is
reactive: The system responds to a user-issued request. A proactive system, on
the other hand, “would anticipate and address the user’s information need, without
requiring the user to issue (type or speak) a query” [3]. Hence, this paradigm is also
known as zero-query search [1]. Our scenario started out with the AI proactively
bringing up a future information need. We observed proactive recommendations
in later parts of the conversation too, when considering additional criteria in
exploratory search (activities for kids) and when figuring out how to schedule
the vacation (cancelling meetings). Some of today’s personal digital assistants
are already capable of pre-fetching information cards based on users’ behavioral
patterns or upcoming events (e.g., Google Now and Microsoft Cortana). Recent
research has focused on a number of specific problems in this space, including
modeling user interests [20], predicting when users will perform a repetitive task
again in the future [15], identifying what information needs people have in a given
context [3], and determining the right context for pushing proactive recommen-
dations [6]. With intelligent devices capable of sensing the user’s environment
(location, and even pulse rate or blood pressure using wearable devices), there are
increasingly more contextual signals that may be utilized. Notably, current work

1https://adwords.googleblog.com/2015/05/building-for-next-moment.html.

https://adwords.googleblog.com/2015/05/building-for-next-moment.html

10.3 Future Research Directions 345

is limited to near-term information needs. The area of anticipating more long-term
information needs (such as reminding a user months in advance about planning a
vacation or finding a school for a child that is going to go to school next year) has
not been explored yet.

Verification and Explainability As we move away from ranked lists of items
to direct answers and summaries, it becomes crucial to allow for the verification
of the system’s responses. What is the right form of explanation? In many cases,
providing access to the raw data is sufficient. We have seen several examples of
this in our scenario, when the AI provided links to pages about weather statistics,
reviews, and calendars. In other cases, it may not be possible to refer to a
single source; then, the user should be granted access to some intermediate data
representation. It is an open issue how to make those intermediate representations
suitable for human consumption. These questions also relate to the broader problem
area of providing explanations of algorithmic decisions that significantly affect
an individual (particularly legally or financially), which is to be a human right
according to the European Union General Data Protection Regulation (“right to
explanation”), to take effect in 2018 [8].

Personalization In our scenario, we could observe a high degree of personaliza-
tion, including the interaction with the user, the generation of responses, and the
language usage when executing tasks on the user’s behalf. Personal digital assistants
are expected to deliver such a personalized user experience. To be able to do that,
they will need to get to “know” the user, her habits, preferences, and the things she
cares about. With human assistants, there is often a more-or-less clear separation
between work and private matters. This is not the case with digital assistants; most
users would likely use the same personal AI for any and all kinds of business they
encounter. This brings up many issues around trust, privacy, and data protection.
Digital assistants must be aware of the user’s momentarily situation and context too.

10.3.2 Complex Information Needs and Task Completion

Major web search engines have made a great progress with answering one-shot
queries with rich search result pages, thereby putting the bar rather high regarding
the search experience. Users now expect intelligent personal assistants to respond
with direct answers as opposed to a ranked list of results. Thus, it may be fitting
to refer to these systems no longer as search engines but as answering engines.
Intelligent agents are further capable of assisting users in “getting things done,”
such as making calendar appointments or setting reminders. However, neither web
search engines nor digital assistants have the capability yet to handle truly complex
tasks, such as the holiday planning in our scenario. These complex information
needs require a better understanding and modeling of the user’s high-level goals.
It requires no less than a paradigm shift, from answering engines to task-completion
engines [2]. Entities will continue to play a key role here, for modeling users, tasks,
and context.

346 10 Conclusions and Future Directions

10.3.3 Data and Knowledge

On-the-Fly Information Extraction Despite all automatic knowledge acquisition
efforts, there will always be long-tail entities that are not contained in any knowl-
edge base. Moreover, even if the entities in question are present in a knowledge
base, it is not possible to capture all information associated with them, due to the
finite vocabulary of knowledge base predicates. Consequently, we will continue to
come across information needs to which the answer is “out there” in some digital
form, but not yet contained in a knowledge base. For example, in our scenario, this
could be the case with some accommodations at obscure locations. These situations
may be handled by on-the-fly information extraction techniques.

Personal Knowledge Base In our scenario, the user has made numerous references
to entities he was in some way related to: “my kids,” “my wife,” “my group,”
“my espresso machine,” etc. These entities constitute the users’ personal knowledge
base, i.e., the universe of things he cares about. Throughout interactions with the
user, the entities of this universe may be mapped onto the same data representation
model that knowledge bases use. It is also possible to make “same-as” links to other
knowledge repositories that contain the same entity (e.g., the espresso machine).
Some entities, however, will reside only in the user’s personal KB. What is powerful
about this idea is that the same methods and techniques we have discussed for
general-purpose KBs are readily applicable to a personal KB. The problem thus
boils down to the automatic population and maintenance of the personal KB.

Commonsense Knowledge Knowledge bases have largely focused on accumu-
lating factual knowledge about specific entities. An intelligent system, such as a
personal digital assistant, however, needs a much broader understanding of the
world. Simple statements like “things fall down, not up” and “open the door before
entering” are obvious to humans but not to machines. To endow computers with
common sense is one of the long-standing goals of AI research. Some projects,
such as Cyc [10] or ConceptNet [11], have begun to amass large collections of such
commonsense knowledge. However, “there is still a long way to go for computers
to learn what every child knows” [18].

10.4 Concluding Remarks

Reaching the end of this book, it may be appropriate to have a moment of reflection.
Information technology has changed and will continue to change our lives. We
are increasingly more surrounded by intelligent autonomous systems (which we
like to call AI): personal assistants, self-driving cars, smart homes, etc. There are
some thought-provoking open questions here related to responsibility: If a fatal
accident happens involving an autonomous vehicle or a disastrous decision is made
based on false information served by a search engine (which perhaps retrieved

References 347

it from some underlying knowledge base), who is responsible for that? Surely,
the company behind the given product should take some responsibility. But then,
would it ultimately come down to the individual software engineer who wrote the
corresponding piece of code (or to the knowledge engineer who was responsible for
that entry ending up in the KB)? Or would the blame be put on the end user, who
did not study or consider carefully enough the terms of usage? These are important
and challenging regulatory issues on which conversations have already started.

We are now in the third AI spring, which draws mixed reactions from people:
great excitement, overblown expectations because of the hype, and fear. Techno-
logical singularity, i.e., the emergence of an (evil) artificial superintelligence that
would cause the human race to go extinct—in the author’s opinion—is merely a
dystopia that Hollywood loves to portray in speculative fiction. Technology itself is
not good or evil—it depends on how we use it. It appears though that as time goes
on, increasingly more technology will be “forced” on us. Yet, we have the free will
and responsibility decide what technology we want to use or adopt. Importantly,
technology should enable and not distract us on that awesome journey, with its
ups and downs, that is called Life. Along the way, we should take the time to
contemplate on the deeper questions of existence, being, and identity—searching
for the answers to those questions is what it means to be a human. No computer
system, however intelligent, will ever be able to do that for us.

References

1. Allan, J., Croft, B., Moffat, A., Sanderson, M.: Frontiers, challenges, and opportunities
for information retrieval: Report from SWIRL 2012 the Second Strategic Workshop on
information retrieval in lorne. SIGIR Forum 46(1), 2–32 (2012)

2. Balog, K.: Task-completion engines: A vision with a plan. In: Proceedings of the First
International Workshop on Supporting Complex Search Tasks, SCST ’15 (2015)

3. Benetka, J.R., Balog, K., Nørvåg, K.: Anticipating information needs based on check-in
activity. In: Proceedings of the 10th ACM International Conference on Web Search and Data
Mining, WSDM ’17, pp. 41–50. ACM (2017). doi: 10.1145/3018661.3018679

4. Blanco, R., Joho, H., Jatowt, A., Yu, H., Yamamoto, S.: NTCIR Actionable Knowledge Graph
task (2017)

5. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for queries. In:
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining -
WSDM ’15, pp. 179–188. ACM (2015). doi: 10.1145/2684822.2685317

6. Braunhofer, M., Ricci, F., Lamche, B., Wörndl, W.: A context-aware model for proactive
recommender systems in the tourism domain. In: Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct,
MobileHCI ’15, pp. 1070–1075. ACM (2015). doi: 10.1145/2786567.2794332

7. Garigliotti, D., Hasibi, F., Balog, K.: Target type identification for entity-bearing queries. In:
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17. ACM (2017). doi: 10.1145/3077136.3080659

8. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-making and
a “right to explanation”. ArXiv e-prints (2016)

9. Guy, I.: Searching by talking: Analysis of voice queries on mobile web search. In:
Proceedings of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’16, pp. 35–44. ACM (2016). doi: 10.1145/2911451.2911525

https://doi.org/10.1145/3018661.3018679
https://doi.org/10.1145/2684822.2685317
https://doi.org/10.1145/2786567.2794332
https://doi.org/10.1145/3077136.3080659
https://doi.org/10.1145/2911451.2911525

348 10 Conclusions and Future Directions

10. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Commun. ACM
38(11), 33–38 (1995). doi: 10.1145/219717.219745

11. Liu, H., Singh, P.: ConceptNet - A practical commonsense reasoning tool-kit. BT Technology
Journal 22(4), 211–226 (2004). doi: 10.1023/B:BTTJ.0000047600.45421.6d

12. Mitra, B., Craswell, N.: Neural models for information retrieval. ArXiv e-prints (2017)
13. Pappu, A., Blanco, R., Mehdad, Y., Stent, A., Thadani, K.: Lightweight multilingual

entity extraction and linking. In: Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining, WSDM ’17, pp. 365–374. ACM (2017). doi:
10.1145/3018661.3018724

14. Pichai, S.: Google I/O 2016 keynote (2016)
15. Song, Y., Guo, Q.: Query-less: Predicting task repetition for nextgen proactive search and

recommendation engines. In: Proceedings of the 25th International Conference on World Wide
Web, WWW ’16, pp. 543–553 (2016). doi: 10.1145/2872427.2883020

16. Van Gysel, C., de Rijke, M., Kanoulas, E.: Learning latent vector spaces for product search.
In: Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management, CIKM ’16, pp. 165–174. ACM (2016a). doi: 10.1145/2983323.2983702

17. Van Gysel, C., de Rijke, M., Worring, M.: Unsupervised, efficient and semantic expertise
retrieval. In: Proceedings of the 25th International Conference on World Wide Web, WWW
’16, pp. 1069–1079 (2016b). doi: 10.1145/2872427.2882974

18. Weikum, G., Hoffart, J., Suchanek, F.: Ten years of knowledge harvesting: Lessons and
challenges. IEEE Data Eng. Bull. 39(3), 41–50 (2016)

19. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge
graph embedding. In: Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pp. 1271–1279. International World Wide Web Conferences Steering Committee
(2017). doi: 10.1145/3038912.3052558

20. Yang, L., Guo, Q., Song, Y., Meng, S., Shokouhi, M., McDonald, K., Croft, W.B.: Modeling
user interests for zero-query ranking. In: Proceedings of the 38th European Conference on IR
Research, ECIR ’16, pp. 171–184 (2016). doi: 10.1007/978-3-319-30671-1_13

21. Zhang, Y., Mustafizur Rahman, M., Braylan, A., Dang, B., Chang, H.L., Kim, H., McNamara,
Q., Angert, A., Banner, E., Khetan, V., McDonnell, T., Thanh Nguyen, A., Xu, D., Wallace, B.,
Lease, M.: Neural information retrieval: A literature review. ArXiv e-prints (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/219717.219745
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1145/3018661.3018724
https://doi.org/10.1145/2872427.2883020
https://doi.org/10.1145/2983323.2983702
https://doi.org/10.1145/2872427.2882974
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1007/978-3-319-30671-1_13
http://creativecommons.org/licenses/by/4.0/

Index

Ad hoc entity retrieval, 58, 116
AIDA, 173
Alias, 155
Attention mechanism, 290
AttR-Duet, 290
Average precision, 87

Bag-of-entities, 287
Bayesian smoothing, 76
Blind relevance feedback, 272
BM25, 76
BM25F, 80
BM25MF, 105
Boostrapping, 195

Candidate selection, 157
ClueWeb, 27
Coherence, 166, 172
Collective disambiguation, 168
Common Crawl, 28
Commonness, 158
Concept expansion, 192
Concepts, 3
Cosine similarity, 126, 162
Cross-entropy, 283, 287
Cumulative citation recommendation, 198

Databases, 8
DBpedia, 40, 93
DBpedia Ontology, 41
DBpedia Spotlight, 173
Dirichlet prior smoothing, 76

Distant supervision, 196, 213
Distributional similarity, 127
Document filtering, 197

ELR model, 108
Entity annotation, 240
Entity card, 312
Entity catalog, 3
Entity centrality, 135
Entity coreference resolution, 151
Entity description, 59
Entity disambiguation, 159
Entity frequency, 60
Entity importance, 133
Entity language model, 75
Entity linking, 152, 239
Entity list completion, 90
Entity mention, 154
Entity name variant, 155
Entity priors, 133
Entity recommendation, 319
Entity relationships, 116
Entity similarity, 126
Entity summary, 314
Entity synonym discovery, 156
Entity type ranking, 233
Entity types, 111
Entity typing, 193
Entity-oriented search, 11
EQFE, 293
ERD Challenge, 178
EsdRank, 283
Evaluation Measures, 86
Example-augmented search, 124

© The Author(s) 2018
K. Balog, Entity-Oriented Search, The Information Retrieval Series 39,
https://doi.org/10.1007/978-3-319-93935-3

349

https://doi.org/10.1007/978-3-319-93935-3

350 Index

Example-based search, 124
Expert finding, 88
Explaining recommendations, 327
Explicit semantic analysis, 280
Explicit semantic ranking, 288

FACC, 180
Fact ranking, 315
Fielded sequential dependence models, 81
F-measure, 174
Freebase, 46

GERBIL, 179
Glove, 128
GLOW, 173

Illinois Wikifier, 173
INEX Entity Ranking track, 89, 124
INEX Linked Data track, 92
INEX Link-the-Wiki, 176
Information extraction, 9, 191
Information retrieval, 7
Interpretation finding, 241
Inverse entity frequency, 60

Jelinek-Mercer smoothing, 75

KBA Stream Corpus, 28
Keyphraseness, 157
Keyword query, 12
Keyword++ query, 12
Knowledge base, 5, 36, 37
Knowledge graph, 6, 37
Knowledge repository, 5
Kullback-Leibler divergence, 287

Language models, 75
Latent Dirichlet allocation, 279
Latent entity representations, 279
Latent entity space model, 282
Latent semantic indexing, 279
Learning-to-rank, 82
Linked Data, 10, 49
Link prior, 161
Link probability, 157
List completion, 124
List search, 118

Markov random field model, 77
Mention detection, 154
Mixture of language models, 79

Named entities, 3
Named entity disambiguation, 150
Named entity recognition, 149, 240
Name variant, 155
Natural language explanations, 327
Natural language processing, 9
Natural language query, 13
Normalized discounted cumulative gain, 87

Ontology, 38

PageRank, 135
Pairwise entity similarity, 126
Part-of-speech tagging, 230
Piggybacking, 245
Predicate folding, 70
PRMS, 79
Pseudo relevance feedback, 272

Query annotation, 228
Query auto-completion, 300
Query building interfaces, 310
Query classification, 226
Query expansion, 272
Query-flow graph, 303
Query intent, 226
Query interpretation, 231
Query recommendations, 302
Query refinement, 261
Query segmentation, 229
Query suggestions, 302
Query tagging, 230
Query templates, 252, 306
Query topic classification, 227
Question answering, 92

RDF, 5, 10, 38
Referent graph, 168
Related entity finding, 90, 120
Relatedness, 162
Relation extraction, 195
Relevance model, 273
Retrieval model, 74
RM1, 273
RM3, 274

Index 351

Scaled utility, 210
Self-supervision, 197
Semantic linking, 241
Semantic query analysis, 226
Semantic query understanding, 231
Semantic search, 15
Semantic Search Challenge, 91, 118
Semantic tagging, 230
Semantic Web, 10, 26
Sequential dependence models, 77
Set expansion, 192
Similar entity search, 124
Slot filling, 212
SPARQL, 10
Spell checking, 261
SPO triples, 39
Structured query, 12
Structured query annotation, 232
Surface form, 155

TAC, 213
TAC Entity Linking, 177
TAGME, 167, 173
Target entity type identification, 233
Test collections, 88
Topic drift, 273
TREC, 88

TREC Entity track, 90, 120
Type similarity, 113

URI, 10, 38
URI resolution, 73

Weak supervision, 196
The Web, 26
Web of Data, 10, 48
Wikidata, 47
Wikification, 151
Wikipedia, 28, 156
Wikipedia categories, 34, 120
Wikipedia link-based measure, 162
Wikipedia lists, 35
Wikipedia Miner, 173
Wikipedia templates, 35, 120
Word embedding, 127
Word-entity duet framework, 289
Word2vec, 128, 236
WWW, 26

YAGO, 45

Zero-query, 13

	Preface
	Website
	Contents
	Acronyms
	Notation
	1 Introduction
	1.1 What Is an Entity?
	1.1.1 Named Entities vs. Concepts
	1.1.2 Properties of Entities
	1.1.3 Representing Properties of Entities

	1.2 A Brief Historical Outlook
	1.2.1 Information Retrieval
	1.2.2 Databases
	1.2.3 Natural Language Processing
	1.2.4 Semantic Web

	1.3 Entity-Oriented Search
	1.3.1 A Bird's-Eye View
	1.3.1.1 Users and Information Needs
	1.3.1.2 Search Engine
	1.3.1.3 Data

	1.3.2 Tasks and Challenges
	1.3.2.1 Entities as the Unit of Retrieval
	1.3.2.2 Entities for Knowledge Representation
	1.3.2.3 Entities for an Enhanced User Experience

	1.3.3 Entity-Oriented vs. Semantic Search
	1.3.4 Application Areas

	1.4 About the Book
	1.4.1 Focus
	1.4.2 Audience and Prerequisites
	1.4.3 Organization
	1.4.4 Terminology and Notation

	References

	2 Meet the Data
	2.1 The Web
	2.1.1 Datasets and Resources

	2.2 Wikipedia
	2.2.1 The Anatomy of a Wikipedia Article
	2.2.1.1 Title
	2.2.1.2 Infobox
	2.2.1.3 Introductory Text

	2.2.2 Links
	2.2.3 Special-Purpose Pages
	2.2.3.1 Redirect Pages
	2.2.3.2 Disambiguation Pages

	2.2.4 Categories, Lists, and Navigation Templates
	2.2.4.1 Categories
	2.2.4.2 Lists
	2.2.4.3 Navigation Templates

	2.2.5 Resources

	2.3 Knowledge Bases
	2.3.1 A Knowledge Base Primer
	2.3.1.1 Knowledge Bases vs. Ontologies
	2.3.1.2 RDF

	2.3.2 DBpedia
	2.3.2.1 Ontology
	2.3.2.2 Extraction
	2.3.2.3 Datasets and Resources

	2.3.3 YAGO
	2.3.3.1 Taxonomy
	2.3.3.2 Extensions
	2.3.3.3 Resources

	2.3.4 Freebase
	2.3.5 Wikidata
	2.3.6 The Web of Data
	2.3.6.1 Datasets and Resources

	2.3.7 Standards and Resources

	2.4 Summary
	References

	Part I Entity Ranking
	3 Term-Based Models for Entity Ranking
	3.1 The Ad Hoc Entity Retrieval Task
	3.2 Constructing Term-Based Entity Representations
	3.2.1 Representations from Unstructured Document Corpora
	3.2.1.1 Document-Level Annotations
	3.2.1.2 Mention-Level Annotations

	3.2.2 Representations from Semi-structured Documents
	3.2.3 Representations from Structured Knowledge Bases
	3.2.3.1 Predicate Folding
	3.2.3.2 From Triples to Text
	3.2.3.3 Multiple Knowledge Bases

	3.3 Ranking Term-Based Entity Representations
	3.3.1 Unstructured Retrieval Models
	3.3.1.1 Language Models
	3.3.1.2 BM25
	3.3.1.3 Sequential Dependence Models

	3.3.2 Fielded Retrieval Models
	3.3.2.1 Mixture of Language Models
	3.3.2.2 Probabilistic Retrieval Model for Semi-Structured Data
	3.3.2.3 BM25F
	3.3.2.4 Fielded Sequential Dependence Models

	3.3.3 Learning-to-Rank
	3.3.3.1 Features
	3.3.3.2 Learning Algorithms
	3.3.3.3 Practical Considerations

	3.4 Ranking Entities Without Direct Representations
	3.5 Evaluation
	3.5.1 Evaluation Measures
	3.5.2 Test Collections
	3.5.2.1 TREC Enterprise
	3.5.2.2 INEX Entity Ranking
	3.5.2.3 TREC Entity
	3.5.2.4 Semantic Search Challenge
	3.5.2.5 INEX Linked Data
	3.5.2.6 Question Answering over Linked Data
	3.5.2.7 The DBpedia-Entity Test Collection

	3.6 Summary
	3.7 Further Reading
	References

	4 Semantically Enriched Models for Entity Ranking
	4.1 Semantics Means Structure
	4.2 Preserving Structure
	4.2.1 Multi-Valued Predicates
	4.2.1.1 Parameter Settings

	4.2.2 References to Entities

	4.3 Entity Types
	4.3.1 Type Taxonomies and Challenges
	4.3.2 Type-Aware Entity Ranking
	4.3.3 Estimating Type-Based Similarity

	4.4 Entity Relationships
	4.4.1 Ad Hoc Entity Retrieval
	4.4.2 List Search
	4.4.3 Related Entity Finding
	4.4.3.1 Candidate Selection
	4.4.3.2 Type Filtering
	4.4.3.3 Entity Relevance

	4.5 Similar Entity Search
	4.5.1 Pairwise Entity Similarity
	4.5.1.1 Term-Based Similarity
	4.5.1.2 Corpus-Based Similarity
	4.5.1.3 Distributional Similarity
	4.5.1.4 Graph-Based Similarity
	4.5.1.5 Property-Specific Similarity

	4.5.2 Collective Entity Similarity
	4.5.2.1 Structure-Based Method
	4.5.2.2 Aspect-Based Method

	4.6 Query-Independent Ranking
	4.6.1 Popularity
	4.6.2 Centrality
	4.6.2.1 PageRank
	4.6.2.2 PageRank for Entities
	4.6.2.3 A Two-Layered Extension of PageRank for the Web of Data

	4.6.3 Other Methods

	4.7 Summary
	4.8 Further Reading
	References

	Part II Bridging Text and Structure
	5 Entity Linking
	5.1 From Named Entity Recognition Toward Entity Linking
	5.1.1 Named Entity Recognition
	5.1.2 Named Entity Disambiguation
	5.1.3 Entity Coreference Resolution

	5.2 The Entity Linking Task
	5.3 The Anatomy of an Entity Linking System
	5.4 Mention Detection
	5.4.1 Surface Form Dictionary Construction
	5.4.2 Filtering Mentions
	5.4.3 Overlapping Mentions

	5.5 Candidate Selection
	5.6 Disambiguation
	5.6.1 Features
	5.6.1.1 Prior Importance Features
	5.6.1.2 Contextual Features
	5.6.1.3 Entity-Relatedness Features

	5.6.2 Approaches
	5.6.2.1 Individual Local Disambiguation
	5.6.2.2 Individual Global Disambiguation
	5.6.2.3 Collective Disambiguation

	5.6.3 Pruning

	5.7 Entity Linking Systems
	5.8 Evaluation
	5.8.1 Evaluation Measures
	5.8.2 Test Collections
	5.8.2.1 Individual Researchers
	5.8.2.2 INEX Link-the-Wiki
	5.8.2.3 TAC Entity Linking
	5.8.2.4 Entity Recognition and Disambiguation Challenge

	5.8.3 Component-Based Evaluation

	5.9 Resources
	5.9.1 A Cross-Lingual Dictionary for English Wikipedia Concepts
	5.9.2 Freebase Annotations of the ClueWeb Corpora

	5.10 Summary
	5.11 Further Reading
	References

	6 Populating Knowledge Bases
	6.1 Harvesting Knowledge from Text
	6.1.1 Class-Instance Acquisition
	6.1.1.1 Obtaining Instances of Semantic Classes
	6.1.1.2 Obtaining Semantic Classes of Instances

	6.1.2 Class-Attribute Acquisition
	6.1.3 Relation Extraction

	6.2 Entity-Centric Document Filtering
	6.2.1 Overview
	6.2.2 Mention Detection
	6.2.3 Document Scoring
	6.2.3.1 Mention-Based Scoring
	6.2.3.2 Boolean Queries
	6.2.3.3 Supervised Learning

	6.2.4 Features
	6.2.4.1 Document Features
	6.2.4.2 Entity Features
	6.2.4.3 Document-Entity Features
	6.2.4.4 Temporal Features

	6.2.5 Evaluation
	6.2.5.1 Test Collections
	6.2.5.2 Annotations
	6.2.5.3 Evaluation Methodology
	6.2.5.4 Evaluation Methodology Revisited

	6.3 Slot Filling
	6.3.1 Approaches
	6.3.2 Evaluation

	6.4 Summary
	6.5 Further Reading
	References

	Part III Semantic Search
	7 Understanding Information Needs
	7.1 Semantic Query Analysis
	7.1.1 Query Classification
	7.1.1.1 Query Intent Classification
	7.1.1.2 Query Topic Classification

	7.1.2 Query Annotation
	7.1.2.1 Query Segmentation
	7.1.2.2 Query Tagging

	7.1.3 Query Interpretation

	7.2 Identifying Target Entity Types
	7.2.1 Problem Definition
	7.2.2 Unsupervised Approaches
	7.2.2.1 Type-Centric Model
	7.2.2.2 Entity-Centric Model

	7.2.3 Supervised Approach
	7.2.4 Evaluation
	7.2.4.1 Evaluation Measures
	7.2.4.2 Test Collections

	7.3 Entity Linking in Queries
	7.3.1 Entity Annotation Tasks
	7.3.1.1 Named Entity Recognition
	7.3.1.2 Semantic Linking
	7.3.1.3 Interpretation Finding

	7.3.2 Pipeline Architecture for Interpretation Finding
	7.3.3 Candidate Entity Ranking
	7.3.3.1 Unsupervised Approach
	7.3.3.2 Supervised Approach
	7.3.3.3 Gathering Additional Context
	7.3.3.4 Evaluation and Test Collections

	7.3.4 Producing Interpretations
	7.3.4.1 Unsupervised Approach
	7.3.4.2 Supervised Approach
	7.3.4.3 Evaluation Measures
	7.3.4.4 Test Collections

	7.4 Query Templates
	7.4.1 Concepts and Definitions
	7.4.2 Template Discovery Methods
	7.4.2.1 Classify&Match
	7.4.2.2 QueST

	7.5 Summary
	7.6 Further Reading
	References

	8 Leveraging Entities in Document Retrieval
	8.1 Mapping Queries to Entities
	8.2 Leveraging Entities for Query Expansion
	8.2.1 Document-Based Query Expansion
	8.2.2 Entity-Centric Query Expansion
	8.2.3 Unsupervised Term Selection
	8.2.4 Supervised Term Selection
	8.2.4.1 Features
	8.2.4.2 Training

	8.3 Projection-Based Methods
	8.3.1 Explicit Semantic Analysis
	8.3.1.1 ESA Concept-Based Indexing
	8.3.1.2 ESA Concept-Based Retrieval

	8.3.2 Latent Entity Space Model
	8.3.3 EsdRank
	8.3.3.1 Features
	8.3.3.2 Learning-to-Rank Model

	8.4 Entity-Based Representations
	8.4.1 Entity-Based Document Language Models
	8.4.2 Bag-of-Entities Representation
	8.4.2.1 Basic Ranking Models
	8.4.2.2 Explicit Semantic Ranking
	8.4.2.3 Word-Entity Duet Framework
	8.4.2.4 Attention-Based Ranking Model

	8.5 Practical Considerations
	8.6 Resources and Test Collections
	8.7 Summary
	8.8 Further Reading
	References

	9 Utilizing Entities for an Enhanced Search Experience
	9.1 Query Assistance
	9.1.1 Query Auto-completion
	9.1.1.1 Leveraging Entity Types

	9.1.2 Query Recommendations
	9.1.2.1 Query-Flow Graph
	9.1.2.2 Exploiting Entity Aspects
	9.1.2.3 Entity Types
	9.1.2.4 Entity Relationships

	9.1.3 Query Building Interfaces

	9.2 Entity Cards
	9.2.1 The Anatomy of an Entity Card
	9.2.2 Factual Entity Summaries
	9.2.2.1 Fact Ranking
	9.2.2.2 Summary Generation

	9.3 Entity Recommendations
	9.3.1 Recommendations Given an Entity
	9.3.2 Personalized Recommendations
	9.3.2.1 Entity-Based Method
	9.3.2.2 Query-Based Method
	9.3.2.3 Session-Based Method

	9.3.3 Contextual Recommendations
	9.3.4 Explaining Recommendations
	9.3.4.1 Explaining Relationships via Sentence Ranking
	9.3.4.2 Generating Descriptions of Relationships

	9.4 Summary
	9.5 Further Reading
	References

	10 Conclusions and Future Directions
	10.1 Summary of Progress
	10.1.1 Data
	10.1.2 Retrieval Methods
	10.1.3 Understanding and Interacting with Users

	10.2 A Peek into the Future
	10.3 Future Research Directions
	10.3.1 Understanding and Interacting with Users
	10.3.2 Complex Information Needs and Task Completion
	10.3.3 Data and Knowledge

	10.4 Concluding Remarks
	References

	Index

