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Abstract: In the second half of the 1990s Christian Mauduit and András Sárközy [86]
introduced a new quantitative theory of pseudorandomness of binary sequences.
Since then numerous papers have been written on this subject and the original theory
has been generalized in several directions. Here I give a survey of some of the most
important results involving the new quantitative pseudorandommeasures of finite bi-
nary sequences. This area has strong connections to finite fields, in particular, some
of the best known constructions are defined using characters of finite fields and their
pseudorandommeasures are estimated via character sums.
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1 Introduction
In the twentieth and twenty-first centuries various pseudorandom objects have been
studied in cryptography and number theory since these objects are widely used in
modern cryptography, in applications of the Monte Carlo method and in wireless
communication (see [39]). Different approaches and definitions of pseudorandom-
ness can be found in several papers and books. Menezes, Oorschot and Vanstone [95]
have written an excellent monograph about these approaches. The most frequent-
ly used interpretation of pseudorandomness is based on complexity theory; Gold-
wasser [38] has written a survey paper about this approach. However, recently the
complexity theory approach has been widely criticized. One problem is that in this
approach usually infinite sequences are tested while in the applications only finite
sequences are used. Another problem is that most results are based on certain un-
proved hypotheses (such as the difficulty of factorization of integers). Finite pseu-
dorandom [0,1) sequences have been studied by Niederreiter and others (see, for
example, [103–106]). Niederreiter [107] also studied random number generation and
quasi-Monte Carlo methods and their connections.
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44 Katalin Gyarmati

In the second half of the 1990s, Christian Mauduit and András Sárközy [86] intro-
duced a new constructive approach, in which the pseudorandomness of finite binary
sequences is well characterized, and they also constructed binary sequences (and
later other pseudorandom objects) with strong pseudorandom properties. In order to
characterize the pseudorandomness of binary sequences Mauduit and Sárközy intro-
duced new quantitative pseudorandommeasures. Although earlier certain statistical
tests (see, for example, [95]) already existed and one could determine whether a se-
quence passes these tests or not, the pseudorandom properties of the sequence were
not classified. We also mention that by using these tests it was possible to test a se-
quence after generating it (a posteriori testing), but we did not have any a priori result
which guaranteed the applicability of the sequence before generating it. There are
two fundamental problems with a posteriori testing. Firstly, it could be quite lengthy
to check whether or not a sequence passes these tests and it is much faster if certain
properties of the construction guarantee that these tests are always passed for cer-
tain theoretical reasons (a priori testing). Secondly, in the case of a posteriori testing
we always test only one certain, very special property of the sequence and nothing is
known about the other pseudorandom properties. By using the pseudorandom mea-
sures of Mauduit and Sárközy it is possible to control several pseudorandom proper-
ties of sequences and it is also possible to measure their quality. In [118] Rivat and
Sárközy estimated the outcome of certain basic statistical tests by the pseudorandom
measuresW and C� (see Section 2 below; the precise definitions of these tests can be
found, for example, in [95]). In [122] Sárközy gave a survey of this new constructive
theory of pseudorandomness. In the present survey we will focus mostly on pseu-
dorandom measures; we will study the most important properties of these measures
and their connections with other cryptographic tools.

2 Definition of the PseudorandomMeasures
In [86] Mauduit and Sárközy introduced the following pseudorandom measures in
order to study the pseudorandom properties of finite binary sequences:

Definition 2.1. For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N,
write

U(EN, t, a, b) =
t∑
j=0

ea+jb .

Then the well-distribution measure of EN is defined as

W(EN) = max
a,b,t

∣∣U(EN, t, a, b)∣∣ = max
a,b,t

∣∣∣∣ t∑
j=0

ea+jb
∣∣∣∣ ,

where the maximum is taken over all a,b, t such that a,b, t ∈ N and 1 ≤ a ≤
a+ tb ≤ N.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 16.10.19 13:24



Measures of Pseudorandomness 45

The well-distribution measure studies how close are the frequencies of the +1’s
and −1’s in arithmetic progressions (for a binary sequence with strong pseudoran-
dom properties these two quantities are expected to be very close). But often it is also
necessary to study the connections between certain elements of the sequence. For
example, if the subsequence (+1,+1) occurs much more frequently than the sub-
sequence (−1,−1), it may cause problems in the applications, and we cannot say
that our sequence has strong pseudorandom properties. In order to study connec-
tions of this type Mauduit and Sárközy [86] introduced the correlation and normality
measures:

Definition 2.2. For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N
and forD = (d1, . . . , d�)with non-negative integers 0 ≤ d1 < · · · < d�, write

V(EN,M,D) =
M∑
n=1

en+d1 . . . en+d� .

Then the correlation measure of order � of EN is defined as

C�(EN) = max
M,D

∣∣V(EN,M,D)∣∣ = max
M,D

∣∣∣∣ M∑
n=1

en+d1 . . . en+d�

∣∣∣∣ ,
where the maximum is taken over all D = (d1, . . . , d�) and M such that 0 ≤ d1 <
· · · < d� < M + d� ≤ N.

Definition 2.3. For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N
and for X = (x1, . . . , x�) ∈ {−1,+1}� write

T(EN ,M,X) =
∣∣{n : 0 ≤ n < M, (en+1, en+2, . . . , en+�) = X}

∣∣ .
Then the normality measure of order � of EN is defined as

N�(EN) = max
M,X

∣∣∣T(EN,M,X)−M/2�∣∣∣ ,
where the maximum is taken over all X = (x1, . . . , x�) ∈ {−1,+1}�, and M such
that 0 < M ≤ N − � + 1.

We remark that infinite analogs of the functionsU,V and T have been studied be-
fore (see, for example, [19, 66] and [111]), but the quantitative analysis of pseudoran-
dom properties of finite sequences started with the work of Mauduit and Sárközy [86].

The combined (well-distribution correlation) pseudorandom measure [86] is
a common generalization of well-distribution and correlation measures. This mea-
sure has an important role in the multidimensional extension of the theory of pseu-
dorandomness (see Section 9).
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46 Katalin Gyarmati

Definition 2.4. For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N
and forD = (d1, . . . , d�)with non-negative integers 0 ≤ d1 < · · · < d� write

Z(EN,a,b, t,D) =
t∑
j=0

ea+jb+d1 . . . ea+jb+d� .

Then the combined (well-distribution correlation) measure of order � of EN is defined
as

Q�(EN) = max
a,b,t,D

∣∣Z(EN,a, b, t,D)∣∣ = max
a,b,t,D

∣∣∣∣ t∑
j=0

ea+jb+d1 . . . ea+jb+d�

∣∣∣∣ ,
where the maximum is taken over all a,b, t and D = (d1, . . . , d�) such that all the
subscripts a+ jb + di belong to {1,2, . . . ,N}.

When introducing their quantitative pseudorandom measures, the starting point
of Mauduit and Sárközy was to balance the requirements possibly optimally. They
decided to introduce functions that are real-valued and positive, and the pseudoran-
dom properties of the sequence are characterized by the sizes of the values of these
functions. It was also an important requirement that one should be able to present
constructions for which these measures can be estimated well. It turned out that the
measuresW andC� do not only satisfy these criteria, but later Rivat and Sárközy [118]
showed that if the values ofW and C� are “small”, then the outcome of many (previ-
ously used a posteriori) statistical tests is guaranteed to be (nearly) positive.

Although byW , C�, N� andQ� many pseudorandom properties of the sequence
can be characterized, obviously not all of them can. For example, in [45] the sym-
metry measure was introduced in order to study symmetry properties of finite binary
sequences (later the symmetry measure was generalized by Sziklai [125]). In [135]
Winterhof gave an excellent survey on different pseudorandommeasures and certain
constructions. This is a fast developing area and many papers have been published;
there are too many to list all of them here. However, introducingmore andmore pseu-
dorandom measures, can make it quite lengthy to handle all these measures. Thus it
is important to determine a not too large set of certain basic pseudorandommeasures,
which can guarantee the adequate security in the applications. The present research
shows that the measures described in this section satisfy these criteria. The most
studied measures areW and C�, and many papers use only these measures.

In the next section we will show that for a random-type sequence (i.e. for a se-
quence with strong pseudorandom properties) the well-distribution and correlation
measures are expected to be small.

3 Typical Values of PseudorandomMeasures
In [16] Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy formulated the following
principle: “The sequence EN is considered a ‘good’ pseudorandom sequence if these
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Measures of Pseudorandomness 47

measures W(EN) and C�(EN) (at least for ‘small’ �) are ‘small’.” Indeed, the secu-
rity of many cryptographic schemes is based on the property that the frequencies of
the −1’s and +1’s are about the same in certain “regular” subsequences of the used
pseudorandom binary sequence EN ∈ {−1,+1}N .

In [18] Cassaigne, Mauduit and Sárközy proved that for the majority of the se-
quences EN ∈ {−1,+1}N the measures W(EN) and C�(EN) are around N1/2 (up to
some logarithmic factors). Later Alon, Kohayakawa, Mauduit, Moreira and Rödl [5]
improved on these bounds:

Theorem 3.1. Suppose that we choose each EN ∈ {−1,+1}N with probability 1/2N .
For all ε > 0 there existN0 = N0(ε) and δ = δ(ε) > 0 such that forN > N0 we have

P
(
δ
√
N < W(EN) < 1

δ
√
N
)
> 1− ε .

Theorem 3.2. Suppose that we choose each EN ∈ {−1,+1}N with probability 1/2N .
Then for all 0 < ε < 1/16 there is a constant N0 = N0(ε) such that for N > N0 we
have

P
(

2
5

√
N log

(
N
�

)
< C�(EN) <

7
4

√
N log

(
N
�

))
> 1− ε .

We remark that while it is important that for a binary sequence with strong pseu-
dorandom properties these measures should be “small”, lower bounds are not re-
quired (this will be justified by the results of Section 4, where the minimum values
of these measures are studied). In many applications it is enough to guarantee that
W(EN) and C�(EN) are o(N), but for the best constructions EN ∈ {−1,+1}N it is
proved thatW(EN)� N1/2 logN, C�(EN)� N1/2(logN)A� (see Section 6).

4 Minimum Values of PseudorandomMeasures
Write

m(N) = min
EN∈{−1,+1}N

W(EN) , M�(N) = min
EN∈{−1,+1}N

C�(EN) .

The estimate ofm(N) is a classical problem. In 1964 Roth [119] proved thatm(N)�
N1/4. Upper bounds form(N) were given by Sárközy [32] and Beck [9]. Finally Ma-
toušek and Spencer [78] showed thatm(N)� N1/4.

The value of M�(N) depends on the value of the order �. Cassaigne, Mauduit
and Sárközy [18] proved that M�(EN) � (�N logN)1/2. The results of [5] improved
the implied constant factor (see Theorem 3.2 in the previous section). On the other
hand, first Cassaigne, Mauduit and Sárközy [18] proved thatM�(N)� log(N/�) for
even �. This was improved considerably by Alon, Kohayakawa,Mauduit, Moreira and
Rödl in [4] and [67], where the best lower bound is the following:
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48 Katalin Gyarmati

Theorem 4.1. If � is even then

M�(N) ≥
√

1
2

[ N
�+ 1

]
.

The proof of the theorem used deep linear algebraic tools, and later Anan-
tharam [7] simplified the proof, but he obtained a slightly (by a constant factor)
weaker result.

Cassaigne, Mauduit and Sárközy [18] noticed that the minimumvalues of correla-
tion of odd order can be very small. Namely, for the sequence EN = (−1,+1,−1,+1,
. . .) ∈ {−1,+1}N we have C�(EN) = 1 for odd �, since

en+1+d1 · · · en+1+d� = (−en+d1) · · · (−en+d�) = (−1)�en+d1 · · · en+d� .

Thus ∣∣∣∣ M∑
n=1

en+d1 · · · en+d�
∣∣∣∣ = |1− 1+ 1− 1+ · · ·| =

⎧⎨⎩1 ifM is odd,
0 ifM is even.

So C�(EN) = 1 and thusM�(N) = 1 for odd �. Cassaigne, Mauduit and Sárközy [18]
also observed that although for the sequence EN = (−1,+1,−1,+1, . . .), C3(EN)
is 1, the correlation measure of order 2 is large: C2(EN) = �N2 �. By solving prob-
lems of Cassaigne, Mauduit and Sárközy [18] and Mauduit [79], in [48] I proved
that C2(EN)C3(EN) � N2/3 always holds. Later Anantharam [8] proved that
C2(EN)C3(EN) � N. By the methods of the proofs it is possible to compare cor-
relation measures of odd and even order. With Mauduit we proved the following
sharp result in [51]:

Theorem 4.2. There is a constant ck,� depending only on k and � such that if

C2k+1(EN) < ck,�N1/2 ,

then
C2k+1(EN)2�C2�(EN)2k+1 � N2k+1 ,

where the implied constant factor depends only on k and �.

This theorem has the following consequences:

Corollary 4.3. If C2k+1(EN) = O(1), then C2�(EN)� N , where the implied constant
factor depends on k and �.

Corollary 4.4.
C2k+1(EN)C2�(EN)� Nc(k,�)

where the implied constant factor depends only on k and � and where

c(k, �) =
⎧⎨⎩1 if k ≥ �,

1
2 +

2k+1
4� if k < � .
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Measures of Pseudorandomness 49

The minimum of the normality measure was studied in [4] and [67], but there is
a huge gap between the lower and upper bounds.

5 Connection between PseudorandomMeasures
It is a problem of basic importance to study the connections between the different
pseudorandom measures. For example, Mauduit and Sárközy [86] proved that the
normality measure can be bounded by the maximum of correlation measures:

Theorem 5.1.
N�(EN) ≤ max

1≤t≤�
Ct(EN) .

Since the normalitymeasures can be estimated by the correlationmeasures, most
of the papers do not handle the normality measures separately, just they give non-
trivial upper bounds for the well-distribution and correlation measures.

Cassaigne, Mauduit and Sárközy [18] compared correlation measures of different
orders:

Theorem 5.2. Suppose that 2 ≤ k | � and EN ∈ {−1,+1}N . Then

Ck(EN)� N1−k/� (C�(EN))k/� .
If k � �, it is possible to construct a sequence EN for which Ck(EN) is large but

C�(EN) is small:

Theorem 5.3. Suppose that 2 ≤ k, � and k � �. Then there is a sequence EN ∈
{−1,+1}N for which

Ck(EN) >
N
k
− 1− 54k2 logN ,

C�(EN) < 27k2�N1/2 logN .

Indeed in [18], Theorem 5.2 and Theorem 5.3 were proved in a sharper form.
The well-distribution measure can be estimated by the correlation measures

of even order. In [92] Mauduit and Sárközy proved that for all sequences EN ∈
{−1,+1}N we have

W(EN) ≤
√
NC2(EN) .

Later in [42] and [44] this inequality was generalized by me to correlation measures
of any even order.:

Theorem 5.4. For all sequences EN ∈ {−1,+1}N we have

W(EN)� N1−1/(2�) (C2�(EN)
)1/(2�) . (5.1)

In [42] I also proved that (5.1) is sharp apart from the implied constant factor.
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6 Constructions
FirstMauduit and Sárközy [86] studied the well-distribution and correlationmeasures
of a finite binary sequence. Their construction was the following:

Construction 6.1. Let p be a prime number, N = p − 1 and define the Legendre-se-
quence EN = (e1, e2, . . . , eN) ∈ {−1,+1}N by

en =
(
n
p

)
,

where ( ·p ) denotes the Legendre symbol.

Then by Theorem 1 in [86] for the sequence EN defined in Construction 6.1 we
have

W(EN)� N1/2 logN and C�(EN)� N1/2 logN .

After their first paper [86] on pseudorandomness, Mauduit and Sárközy contin-
ued with a series of papers ([16–18, 87–89]) in which they tested several construc-
tions. Since then numerous constructions have been given, see, for example, [21, 23,
26, 28, 29, 36, 41, 71–73, 75, 82, 109, 112, 113, 116, 121]. We remark that the majority of
these constructions are of modular type. It would be interesting to give a construc-
tion which is not of modular type, but (nearly) optimal bounds can be proved for its
pseudorandommeasures.

First for fixedN most constructions produced only a single sequence of lengthN;
however, in many applications one needs many pseudorandom binary sequences. In
2004 Goubin, Mauduit and Sárközy [40] succeeded in constructing large families of
pseudorandom binary sequences based on the Legendre symbol. Their construction
was the following:

Construction 6.2. Let K ∈ N, p be a prime number and denote by P the set of poly-
nomials f(x) ∈ Fp[x] of degree k, where 0 < k ≤ K and which have no multi-
ple zero in Fp (=the algebraic closure of Fp). For f ∈ P define the binary sequence
Ep(f) = (e1, . . . , ep) by

en =
⎧⎨⎩
(
f(n)
p

)
for (f(n), p) = 1 ,

+1 for p | f(n) .
(6.1)

LetF = {Ep(f) : f ∈ P}.

ClearlyF is a large family of pseudorandom binary sequences. Goubin, Mauduit
and Sárközy [40] proved that, under some not too restrictive conditions on the poly-
nomials f , the sequences Ep(f) have strong pseudorandom properties:

Theorem 6.3. Let p, P and F be defined as in Construction 6.2 and for f ∈ P define
Ep = Ep(f) ∈ F by (6.1). Let k be the degree of f . Then

W(Ep)� kp1/2 logp .
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Moreover, assume that for � ∈ N one of the following assumptions holds:
(i) � = 2;
(ii) � < p and 2 is a primitive root modulo p;
(iii) (4k)� < p.
Then we also have

C�(Ep)� k�p1/2 logp .

We remark that several important a posteriori tests (indicated by the 1.4-sts. pack-
age of the National Institute of Standards and Technology) were checked by Rivat and
Sárközy [118] by computer for many sequences generated by Construction 6.2. In each
case they obtained that the sequence passes all these tests.

The next construction was based on the discrete logarithm [43]:

Construction 6.4. Let K ∈ N, p be an odd prime number, and denote by P′ the set of
polynomials f(x) ∈ Fp[x] of degree k, where 0 < k ≤ K. Let g be a primitive root
modulo p and define indn by n ≡ gindn (mod p) and 1 ≤ indn ≤ p − 1. For
f ∈ P′ define the binary sequence Ep−1(f) = (e1, . . . , ep−1) by

en =
⎧⎨⎩+1 if 1 ≤ indf(n) ≤ (p − 1)/2

−1 if (p + 1)/2 ≤ indf(n) ≤ p − 1 or p | f(n) .

LetF′ = {Ep(f) : f ∈ P′}.

This construction is nearly as good as Construction 6.2, the only problem is that
it is slow to compute en, since no fast algorithm is known to compute indn. In [44]
this construction was slightly modified such that the sequences in the new construc-
tion can be generated faster. Since then many other constructions of large families of
pseudorandom sequences have been given (see, for example, [22, 24, 34, 35, 40, 43,
44, 59, 69, 74, 81, 84, 96–98, 117, 123, 127]).

Most constructions use finite fields and character sums over it (see the survey
paper [127] for the most frequently used character sum estimates). One of the main
tools in estimating the pseudorandom measures is Weil’s theorem [133]:

Lemma 6.5. Suppose that Fq is a finite field, χ is a non-principal character of order d
over it, f ∈ Fq[x] has s distinct roots in Fq and it is not a constant multiple of the d-th
power of a polynomial over Fq . Then:∣∣∣∣ ∑

n∈Fq
χ(f(n))

∣∣∣∣ ≤ (s − 1)p1/2 .

More precisely, the proofs of Theorem 6.3 and several other theorems (involving
estimates of pseudorandom measures of different modular type constructions) are
based on incomplete sums of multiplicative and additive characters. Such results can
be derived fromWeil’s theorems on complete character sums (see, e.g. Lemma 6.5) by
using a method of Vinogradov [131] (see also [64, 114, 126]).
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Although many constructions exist, Construction 6.2 is one of the best: we have
optimally good bounds for the pseudorandom measures and the elements of the se-
quences can be generated fast. In the next section we will analyze structural proper-
ties of large families of pseudorandom binary sequences.

7 Family Measures
In many applications it is not enough if our family F is large. For example, if F
contains many sequences but they differ only in the last few bits, then one cannot
use more than one sequence from the family. So it is very important to guarantee
that the family F has a “rich”, “complex” structure, there are many “independent”
sequences in it which are “far apart.” Thus one needs quantitative measures to study
the structural properties of families of binary sequences. The first familymeasurewas
introduced by Ahlswede, Khachatrian, Mauduit and Sárközy in [1]:

Definition 7.1. Suppose that F is a family of binary sequences EN = (e1, e2, . . . ,
eN) ∈ {−1,+1}N and (ε1, ε2, . . . , εj) ∈ {−1,+1}j is a fixed binary sequence of
length j (for some j ≤ N), and let 1 ≤ i1 < i2 < · · · < ij ≤ N. If we consider binary
sequences EN = (e1, e2, . . . , eN) ∈ {−1,+1}N with

ei1 = ε1 , ei2 = ε2 , . . . , eij = εj , (7.1)

then (7.1) is said to be a specification of length j (of the binary sequence EN ).

Definition 7.2. The family complexity or briefly f -complexity of a family F of bi-
nary sequences EN ∈ {−1,+1}N is defined as the greatest integer j such that for
any specification (7.1) (of length j) there is at least one EN ∈ F which satisfies it.
The f -complexity of F is denoted by Γ(F). (If there is no j ∈ N with the property
above, we set Γ(F) = 0.)

Note that an easy consequence of the definition is

Proposition 7.3.

Γ(F) ≤ log
∣∣F∣∣

log 2
. (7.2)

Ahlswede, Khachatrian, Mauduit and Sárközy [1] showed that for the family F
defined in Construction 6.2, the f -complexity Γ(F) is large. Later Gyarmati [47] im-
proved on their lower bound by showing that Γ(F) > c log |F| with some explicit
constant c; we note that by (7.2), this estimate is best possible apart from the value
of this constant c, and thus the f -complexity of this family is optimally large (apart
from the constant factor). Since then the family complexity of many other construc-
tions were also studied by several authors. In [85] Mauduit and Sárközy gave a survey
paper on family complexity.
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Measures of Pseudorandomness 53

Another important tool for studying the pseudorandomness of families of binary
sequences is the notion of collision (see, for example, [10, 95, 129, 130]):

Assuming that N ∈ N, S is a given set (e.g. a set of certain polynomials or the
set of all the binary sequences of a given length much less than N), to each s ∈ S we
assign a unique binary sequence

EN = EN(s) = (e1, . . . , eN) ∈ {−1,+1}N ,

and letF = F(S) denote the family of the binary sequences obtained in this way:

F = F(S) = {EN(s) : s ∈ S} . (7.3)

Definition 7.4. If s ∈ S, s′ ∈ S, s �= s′ and

EN(s) = EN(s′) , (7.4)

then (7.4) is said to be a collision in F = F(S). If there is no collision in F = F(S),
thenF is said to be collision free.

In other words, F = F(S) is collision free if we have |F| = |S|. It turns out that
in the best constructions, the families of pseudorandom binary sequences are colli-
sion free. If F is not collision free but the number of collisions is “small”, then they
may cause only minor problems in the applications. A good measure of the number
of collisions is the following:

Definition 7.5. The collision maximumM = M(F , S) is defined by

M = M(F ,S) = max
EN∈F

|{s : s ∈ S, EN(s) = EN}|

(i.e. M is the maximal number of elements of S representing the same binary se-
quence EN , andF = F(S) is collision free if and only ifM(F , S) = 1).

Another important family requirement is the avalanche effect (see, e.g. [10, 33, 65,
129, 130]) which studies that by changing a few bits of the seed how many elements
of the output sequence will change.

Definition 7.6. If in (7.3) we have S = {−1,+1}�, and for any s ∈ S, changing any
element of s changes “many” elements of EN(s) (i.e. for s �= s′ many elements of
the sequences EN(s) and EN(s′) are different), then we speak about an avalanche
effect, and we say that F = F(S) possesses the avalanche property. If N → ∞ and
for any s ∈ S, s′ ∈ S, s �= s′ at least (1

2 − o(1))N elements of EN(s) and EN(s′) are
different, thenF is said to possess the strict avalanche property.

To study the avalanche property, one may introduce the following quantitative
measure:
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Definition 7.7. If N ∈ N, EN = (e1, . . . , eN) ∈ {−1,+1}N and E′N = (e′1, . . . , e′N) ∈
{−1,+1}N ∈ {−1,+1}N , then the distance d(EN, E′N) between EN and E′N is defined
by

d(EN, E′N) =
∣∣{n : 1 ≤ n ≤ N, en �= e′n}

∣∣
(a similar notion is introduced in [10]; this is a variant of the Hamming distance).
Moreover, ifF is a family of the form (7.3), then the distance minimumm(F) of F is
defined by

m(F) = min
s,s′∈S
s �=s′

d(EN(s), EN(s′)) .

Thus the family F in (7.3) is collision free if and only ifm(F) > 0, and F pos-
sesses the strict avalanche property if

m(F) ≥
(

1
2 − o(1)

)
N .

In [129] Tóth studied the Legendre symbol construction described in Construc-
tion 6.2 and she showed that a variant of the family defined there (she replaced the
condition deg f(x) ≤ K by deg f(x) = K) is collision free if K < p1/2/2 and it pos-
sesses the strong avalanche effect for p → ∞, K = o(p1/2). In [130] she also studied
a further construction using additive characters and she showed that there are many
collisions in it, but a large subfamily of it possesses the strong avalanche property.

8 Linear Complexity
Cryptographic applications require pseudorandom sequences which are “unpre-
dictable” in a certain sense. Kolmogorov [68] and Chaitin [20] introduced the notion
of Kolmogorov complexity, which is roughly speaking the length of the shortest com-
puter program which generates the given sequence in a fixed Turing machine. From
this point of view, a sequence can be considered a bad pseudorandom sequence if its
Kolmogorov complexity is “small”. Unfortunately, in practice, it is usually hopeless
to compute the Kolmogorov complexity for a fixed sequence, thus this definition can-
not be used in the applications. In this section we analyze a related measure, linear
complexity, which is a computable measure. Mainly we will study the connection
between linear complexity and other pseudorandom measures.

Feedback shift registers, in particular linear feedback shift registers are used in
many cryptographic stream ciphers (see, e.g. [95]). The linear feedback shift registers
(LFSR) have many equivalent definitions, here I use one from [132]:

Definition 8.1. The linear feedback shift register is a sequence of 0–1 bits (s1, s2, . . . ,
s�, c1, . . . , c�)with c1 = 1. The output of the LFSR is the infinite sequence (s1, s2, . . .)
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where si(∈ {0,1}) for i > � is defined by the following equation:

si =
�∑
j=1

cjsi−�−1+j (mod 2) .

An LFSR L(s1, s2, . . . , s�, c1, . . . , c�) is said to generate an infinite sequence s =
(s1, s2, . . .) if s is the output sequence of L(s1, s2, . . . , s�, c1, . . . , c�). The linear com-
plexity of an infinite sequence s, denoted by L(s), is defined as follows:
(1) If s is the zero sequence (0,0,0, . . .), then L(s) = 0.
(2) If no LFSR generates s, then L(s) = ∞.
(3) Otherwise L(s) is the length of the shortest LFSR that generates s.

For finite sequence s ∈ {0,1}N , the linear complexity L(s) is the length of the
shortest LFSR that generates an infinite sequence whose first N bits form the finite
sequence s.

The relationship between linear complexity and Kolmogorov complexity was
studied in [13, 132]. The linear complexity is an important cryptographic characteris-
tic of sequences (see the monographs and surveys [27, 93, 95, 102, 108, 128, 134]). An
excellent historical survey on the linear complexity is given in [115]. Here I mention
only some of the most important properties of the linear complexity: It is known [120]
that the linear complexity of a truly random bit sequence s = (s1, s2, . . . , sN) ∈
{0,1}N is (1 + o(1))N2 . Based on this fact a sequence with low linear complexity is
usually considered a “bad” pseudorandom sequence.

Using the Berlekamp–Massey algorithm (which is due to Massey [77] and based
on an earlier algorithm of Berlekamp [12]), it is possible to calculate the value of the
linear complexity of a fixed finite sequence. The linear complexity is usually defined
for 0 − 1 sequences (note that it can be defined similarly in the case of sequences of
elements of Fq orZm), but in this survey we studymostly±1 sequences. This problem
can be easily avoided: there is a natural bijectionϕ : {−1,+1}N → {0,1}N . Namely,
if the sequence EN ∈ {−1,+1}N is given, thenϕ(EN) can be defined by

ϕ(EN) = ϕ((e1, e2, . . . , eN)) = SN = (s0, s1, . . . , sN−1) ∈ {0,1}N

with si =
1− ei+1

2
(or equivalently (−1)si = ei+1) for i = 0,1, . . . ,N − 1 .

Hence we may define the linear complexity of the binary sequence EN ∈ {+1,−1}N
by

L(EN) = L(ϕ(EN)) .
Brandstätter and Winterhof [14] showed that the linear complexity of a binary

sequence EN can be estimated in terms of the correlation measures of the sequence:

Theorem 8.2. IfN ≥ 2 and EN is a binary sequence then we have

L(EN) ≥ N − max
1≤k≤L(EN)+1

Ck(EN) .
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Using this inequality they were able to give (in some cases quite strong) lower
estimates for the linear complexity of binary sequences occurring in certain construc-
tions. While this theorem may give quite good estimates for linear complexity, it has
the disadvantage that it also uses correlations of high order which can be very difficult
to estimate. Thus Andics [8] proved another inequality which uses the correlation of
order 2 only (but it usually gives a weak lower bound):

Theorem 8.3. IfN ∈ N and EN is a binary sequence then we have

2L(EN) ≥ N − C2(EN) .

Further results related to the pseudorandommeasures and linear complexity can
be found in several works (see, e.g. the papers of Winterhof and co-authors [6, 14, 15,
25, 37, 93, 94, 124, 128, 134]).

9 Multidimensional Theory
In the recent years, the one-dimensional theory of pseudorandomness has been ex-
tended to several dimensions. For example, when we would like to encrypt a digital
map or image by the multidimensional analog of the Vernam cipher, then instead of
a pseudorandom binary sequence we need a two or more dimensional pseudorandom
binary lattice as a keystream. The multidimensional theory of pseudorandomness
was developed by Hubert, Mauduit and Sárközy [62]. They introduced the following
definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are integer
numbers between 0 andN − 1:

InN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0,1, . . . , N − 1}} .
This set is called an n-dimensional N-lattice or briefly N-lattice. Next they extended
this definition to more general lattices in the following way: Let u1,u2, . . . ,un be n
linearly independent vectors, where the i-th coordinate of ui is a non-zero integer,
and the other coordinates of ui are 0, so ui is of the form (0, . . . ,0, zi,0, . . . ,0). Let
t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N. Then we will call the set

BnN =
{
x = x1u1 + · · · + xnun : xi ∈ N∪ {0} , 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n
}

an n-dimensional boxN-lattice or briefly a boxN-lattice.
In [62] the definition of binary sequences is extended to more dimensions by con-

sidering functions of type

ex = η(x) : InN → {−1,+1} .

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly simpli-
fy the notation by writing η(x) = η(x1, . . . , xn). These functions are called bina-
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ryN-lattices or briefly binary lattices. One may visualize a binary lattice as the lattice
points of theN-lattice replaced by the two symbols + and −.

In [62] Hubert, Mauduit and Sárközy introduced the following pseudorandom
measure of binary lattices (here we will present the definition in a slightly modified
but equivalent form):

Definition 9.1. Let
η : InN → {−1,+1}

be a binary lattice. Define the pseudorandommeasure of order � of η by

Q�(η) = max
B,d1,...,dk

∣∣∣∣ ∑
x∈B

η(x+ d1) · · ·η(x+ d�)
∣∣∣∣ ,

where the maximum is taken over all distinct d1, . . . ,d� ∈ InN and box N-lattice B
such that B + d1, . . . , B + d� ⊆ InN .

Then η is said to have strong pseudorandom properties, or briefly, it is consid-
ered a “good” pseudorandom lattice if for fixed n and � and “large” N the measure
Q�(η) is “small” (much smaller than the trivial upper bound Nn). This terminology
is justified by the fact that, as it was proved in [62], for a truly random binary lattice
defined on InN and for fixed � the measureQ�(η) is “small” (less thanNn/2 multiplied
by a logarithmic factor).

Recently severalmultidimensional constructions have been given for latticeswith
strong pseudorandom properties, see, for example, [52, 60–62, 70, 83, 91, 99, 100].

Some one-dimensional theorems can be generalized to the multidimensional
case. For example, we studied the properties of the multidimensional pseudorandom
measures in [53–58]. In particular, in [58] we compared the one-dimensional pseudo-
random measures with the two or more dimensional pseudorandom measures and
we showed that the study of the multidimensional measures cannot be reduced to
one-dimensional ones, so indeed it was necessary to develop the multidimensional
theory. In [55–57] we introduced the multidimensional analog of the normality, corre-
lation and symmetry measures. We studied the connection between multidimension-
al pseudorandom measures of different orders and we proved the multidimensional
analog of Theorem 5.1. We also studied the minimal values of the multidimensional
pseudorandommeasures. In [46] further multidimensional pseudorandommeasures
were introduced. In [53] and [54] the notions of family complexity, collision and
avalanche effect were extended and studied in the multidimensional case.

10 Extensions
Pseudorandom binary sequences have many further generalizations. For example,
Mauduit and Sárközy [90], Ahlswede, Mauduit and Sárközy [2, 3], Bérczi [11], Mar-
zouk and Winterhof [76] and Mérai [101] studied the case of sequences of k symbols.
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Hubert and Sárközy [63] studied the case of p-pseudorandom binary sequences, i.e.
the case when the binary sequences simulate the binomial distribution of parame-
ter p. Niederreiter, Rivat and Sárközy [110] studied pseudorandom sequences of bi-
nary vectors. In [30] and [31] Dartyge and Sárközy started to study pseudorandom
subsets of {1,2, . . . ,N} and Zn. In [49] and [50] we studied pseudorandom binary
functions on rooted plane trees. The connection between pseudorandom binary and
[0,1) sequences was analyzed in [80] by Mauduit, Niederreiter and Sárközy.
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[32] P. Erdős and A. Sárközy, Some solved and unsolved problems in combinatorial number theory,
Math. Slovaca 28 (1978), 407–421 (p. 415).

[33] H. Feistel, W. A. Notz, and J. L. Smith, Some cryptographic techniques for machine-to-machine
data communications, Proc. IEEE 63 (1975), 1545–1554.

[34] J. Folláth, Construction of pseudorandom binary sequences using additive characters over
GF(2k), Period. Math. Hungar. 57 (2008), 73–81.

[35] J. Folláth, Construction of pseudorandom binary sequences using additive characters over
GF(2k). II, Period. Math. Hungar. 60 (2010), 127–135.

[36] E. Fouvry, P. Michel, J. Rivat, and A. Sárközy, On the pseudorandomness of the signs of
Kloosterman sums, J. Australian Math. Soc. 77 (2004), 425–436.

[37] M. Z. Garaev, F. Luca, Florian, I. E. Shparlinski, and A. Winterhof, On the lower bound of the
linear complexity over Fp of Sidelnikov sequences, IEEE Trans. Inform. Theory 52(7) (2006),
3299–3304.

[38] S. Goldwasser,Mathematical Foundations of Modern Cryptography: Computational Complex-
ity Perspective, ICM 2002, vol. I, 245–272.

[39] S.W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication,
Cryptography, and Radar, University Press, Cambridge, New York, Melbourne, Madrid, Cape
Town, Singapore, São Paulo, 2005.

[40] L. Goubin, C. Mauduit, and A. Sárközy, Construction of large families of pseudorandom binary
sequences, J. Number Theory 106 (2004), 56–69.

[41] E. Grant, J. Shallit, and T. Stoll, Bounds for the discrete correlation of infinite sequences on k
symbols and generalized Rudin–Shapiro sequences, Acta Arith. 140 (2009), 345–368.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 16.10.19 13:24



60 Katalin Gyarmati

[42] K. Gyarmati, An inequality between the measures of pseudorandomness, Ann. Univ. Sci.
Budapest. Eötvös Sect. Math. 46 (2003), 157–166.

[43] K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hungar. 49
(2004), 45–63.

[44] K. Gyarmati, On a fast version of a pseudorandom generator, Lecture Notes in Comput. Sci.
4123, General theory of information transfer and combinatorics, pp. 326–342, Springer,
Berlin, Heidelberg, 2006.

[45] K. Gyarmati, On a pseudorandom property of binary sequences, Ramanujan J. 8 (2004),
289–302.

[46] K. Gyarmati, On new measures of pseudorandomness of binary lattices, Acta Math. Hung. 131
(2011), 346–359.

[47] K. Gyarmati, On the complexity of a family related to the Legendre symbol, Period. Math.
Hungar. 58 (2009), 209–215.

[48] K. Gyarmati, On the correlation of binary sequences, Studia Sci. Math. Hungar. 42 (2005),
59–75.

[49] K. Gyarmati, P. Hubert, and A. Sárközy, Pseudorandom binary functions on almost uniform
trees, J. Combin. Number Theory 2 (2010), 1–24.

[50] K. Gyarmati, P. Hubert, and A. Sárközy, Pseudorandom binary functions on rooted plane trees,
J. Combin. Number Theory, to appear.

[51] K. Gyarmati and C. Mauduit, On the correlation of binary sequences, II, Discrete Math. 312
(2012), 811–818.

[52] K. Gyarmati, C. Mauduit, and A. Sárközy, Constructions of pseudorandom binary lattices,
Uniform Distribution Theory 4 (2009), 59–80.

[53] K. Gyarmati, C. Mauduit, and A. Sárközy,Measures of pseudorandomness of families of binary
lattices, I (Definitions, a construction using quadratic characters.), Publ. Math. Debrecen 79
(2011), 445–460.

[54] K. Gyarmati, C. Mauduit, and A. Sárközy,Measures of pseudorandomness of families of binary
lattices, II (A further construction.), Publ. Math. Debrecen 80 (2012), 481–504.

[55] K. Gyarmati, C. Mauduit, and A. Sárközy, Measures of pseudorandomness of finite binary
lattices, I (The measuresQk, normality.), Acta Arith. 144 (2010), 295–313.

[56] K. Gyarmati, C. Mauduit, and A. Sárközy, Measures of pseudorandomness of finite binary
lattices, II (The symmetry measures.), Ramanujan J. 25 (2011), 155–178.

[57] K. Gyarmati, C. Mauduit, and A. Sárközy, Measures of pseudorandomness of finite binary
lattices, III (Qk, correlation, normality, minimal values.), Unif. Distrib. Theory 5 (2010), 183–
207.

[58] K. Gyarmati, C. Mauduit, and A. Sárközy, Pseudorandom binary sequences and lattices, Acta
Arith. 135(2) (2008), 181–197.
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