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1 Approximations to the twin prime conjecture
before 2000

In the present work we will give a survey about some new results concerning small

gaps between consecutive primes. In the following let P denote the set of the primes,

𝑝𝑛 the 𝑛𝑡ℎ prime and 𝑑𝑛 the 𝑛𝑡ℎ difference between consecutive primes, that is,

𝑑𝑛 = 𝑝𝑛+1 − 𝑝𝑛. (1.1)

The famous Twin Prime Conjecture,

𝑑𝑛 = 2 infinitely often, (1.2)

would answer the most important problem about the smallest values of 𝑑𝑛 which oc
curs infinitely often. However, we will investigate also various conjectures and results

which do not follow from (1.2).

We will also discuss the well-known generalization of (1.1), formulated in 1849 by

de Polignac [18]:

𝑑𝑛 = 2𝑘 infinitely often for any 𝑘 ∈ ℤ+. (1.3)

We will call an even number 2𝑘 a Polignac number if 𝑑𝑛 = 2𝑘 infinitely often.
Polignac’s conjecture (1.2) can be formulated with this definition as

Polignac Conjecture. Every even number is a Polignacnumber.

The most important weaker form of the Twin Prime Conjecture and the Polignac

conjecture is the
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Bounded Gap Conjecture. Wehave lim inf
𝑛→∞

𝑑𝑛 < ∞, or, equivalently, there is at least one

Polignacnumber.

If we are looking for small gaps between consecutive primes, then the starting

point is that the Prime Number Theorem,

𝜋(𝑥) ∼ 𝑥
log 𝑥 ∼

𝑥

∫
2

𝑑𝑡
log 𝑡 , (1.4)

implies (in fact, it is even equivalent to)

lim
𝑁→∞

1
𝑁

𝑁

∑
𝑛=1

𝑑𝑛
log 𝑛 = 1. (1.5)

Therefore we have

𝛥1 := lim inf
𝑛→∞

𝑑𝑛
log 𝑛 ≤ 1. (1.6)

On the other hand, any estimate of type

𝛥1 < 1 (1.7)

is already non-trivial.

Equation (1.7) was proved first under the assumption of the Generalized Riemann

Hypothesis (GRH) in an unpublished work of Hardy and Littlewood in 1926 (see [19])

providing the conditional estimate

𝛥1 ≤ 2
3 under GRH. (1.8)

The first unconditional estimate was shown only in 1940 by Paul Erdős [5], who

proved

𝛥1 ≤ 𝑐1 < 1, (1.9)

with an effective but unspecified value 𝑐1 < 1. After various refinements of (1.9), a large

step was done by the unconditional estimate

𝛥1 < 0.467 (1.10)

of Bombieri and Davenport [2] in 1966 based on the large sieve of Bombieri [1]. After

several smaller sharpenings, Helmut Maier improved (1.10) in 1988 to

𝛥1 < 0.2486 (1.11)

using his famousmatrix method [16].

The mentioned results before 2000 left open the question whether 𝛥1 = 0, which
can be formulated as the

Small Gap Conjecture. 𝛥1 = 0.
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2 Distribution of values of 𝑑𝑛/ log 𝑛
The Small Gap Conjecture is equivalent to the fact that the number zero belongs to the

set of limit points of the sequence {𝑑𝑛/ log 𝑛}∞𝑛=1. In the following, let 𝐽 denote this set,
i.e.

𝐽 = { 𝑑𝑛
log 𝑛}



. (2.1)

Erdős [6] and independently Ricci [20] proved that 𝐽 has positive Lebesgue mea

sure and Erdős formulated the conjecture that every nonnegative number is a limit

point of the sequence {𝑑𝑛/ log 𝑛}, that is,
𝐽 = [0,∞). (2.2)

However, the paradoxical situation was that no finite limit point of 𝐽was known. (The
result∞ ∈ 𝐽 was already known by the result of Westzynthius [23].)

We would like to remark here that neither the Twin Prime Conjecture nor the Poli-

gnac Conjecture would imply any limit point of the sequence 𝑑𝑛/ log 𝑛 beyond the sin
gle number zero.

3 Results between 2000 and 2010
The Small Gap Conjecture, equivalently 0 ∈ 𝐽, was shown finally in a joint work with

D.A. Goldston and C. Y. Yıldırım in 2005.

Theorem A ([9], [10]). lim inf
𝑛→∞

𝑑𝑛
log 𝑛 = 0.

Somewhat later we showed the above in a much stronger quantitative form as

Theorem B ([11]). lim inf
𝑛→∞

𝑑𝑛
(log 𝑛)1/2(log log 𝑛)2 < ∞.

The method of proof of Theorem A provided a surprisingly strong estimate con

cerning small values of 𝑑𝑛, the truth of the already mentioned Bounded Gap Conjec

ture, if we suppose that primes are sufficiently uniformly distributed in arithmetic pro

gressions. In order to formulate the result we need the following

Definition. Primes have an admissible distribution level 𝜗 if
∑

𝑞≤𝑋𝜗−𝜀

max
𝑎

(𝑎,𝑞)=1

 ∑
𝑝≤𝑋

𝑝≡𝑎(mod 𝑞)

log 𝑝 − 𝑋
𝜑(𝑞)

 ≪𝐴,𝜀

𝑋
(log𝑋)𝐴 (3.1)

for any constants 𝐴 > 0, 𝜀 > 0 and any𝑋 > 2.
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Concerning known results about admissible distribution levels 𝜗 for the primes,

the strongest result is due to Bombieri [1] and A. I. Vinogradov [22], the celebrated

Bombieri–Vinogradov Theorem. This asserts that the value 𝜗 = 1/2 is an admissible

distribution level for the primes.

The strongest possible conjecture about the maximal distribution level of the

primes was expressed by Elliott and Halberstam ([4]) right after the proof of the

Bombieri–Vinogradov theorem.

Elliott–Halberstam Conjecture (EH). 𝜗 = 1 is an admissible distribution level for the

primes.

Our previously mentioned result can be formulated as follows:

Theorem C ([10]). If there is an admissible level 𝜗 > 1/2 of the distribution of primes,
then

lim inf
𝑛→∞

𝑑𝑛 ≤ 𝐶(𝜗) < ∞. (3.2)

In particular, if the Elliott–Halberstam conjecture is true, then

lim inf
𝑛→∞

𝑑𝑛 ≤ 16. (3.3)

Theorem A implies for any 𝜀 > 0 an infinitude of prime gaps satisfying

𝑑𝑛 < 𝜀 log 𝑛. (3.4)

However, it left open the interesting problem whether (3.4) occurs with a positive fre

quency for any given 𝜀 > 0. Goldston and Yıldırım [13] showed that this is true if

𝜀 > 1/4. We have to mention that Maier’s method [16], leading to a slightly smaller

gap of size (1.11), did not yield small gaps with a positive frequency (unlike the result

(1.10) of Bombieri–Davenport [2], which in fact, did).

4 Recent results
The aim of the present section is to give a survey about the most recent results in this

area. The first result is a sharpening of the hitherto best estimate of Theorem B.

Theorem 4.1. lim inf
𝑛→∞

𝑑𝑛
(log 𝑛)3/7(log log 𝑛)4/7 < ∞.

The next one is a common generalization of Theorem C and the celebrated result

of Green and Tao [14] according to which there are arbitrarily long (finite) arithmetic

progressions in the sequence of primes. We need the same conditions as in Theorem C

but the consequence is stronger.
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Theorem 4.2 ([17]). For every 𝜗 ∈ (1/2, 1] there is an integer 𝐶(𝜗) and a positive even

number 𝑑 ≤ 𝐶(𝜗)with the following property. If the primes have an admissible level 𝜗 of
distribution, then for any positive integer 𝑘 we have a 𝑘-term arithmetic progression of

primes {𝑝∗
𝑖 }𝑘𝑖=1 such that 𝑝∗

𝑖 + 𝑑 is the prime following𝑝∗
𝑖 for all elements of the progres

sion. If the Elliott–Halberstam conjecture is true, i.e. 𝜗 = 1, or, at least 𝜗 > 0.971, then
the above is true with a 𝑑 ≤ 16.

Aswementioned earlier, the existence of an admissible level 𝜗 > 1/2 for the distri
bution of primes implies the Bounded Gap Conjecture (cf. Theorem C), consequently

the existence of at least one Polignac number. However, we can prove more under the

same condition, namely

Theorem 4.3 ([17]). If 𝜗 > 1/2 is an admissible level of distribution of the primes, then
Polignacnumbers have a positive lower density at least 𝑐(𝜗).

The same assumption 𝜗 > 1/2 gives also further information about the limit points

𝐽 of the sequence {𝑑𝑛/ log 𝑛}∞𝑛=1. Thus, under the above deep hypothesis we obtain fur
ther progress in the problem of Erdős beyond the fact 0 ∈ 𝐽 (following fromTheorem A

unconditionally).

Theorem 4.4. If 𝜗 > 1/2 is an admissible level of distribution of the primes, then we

have a number 𝐶1(𝜗) (depending in an ineffective way on 𝜗) such that
[0, 𝐶1(𝜗)] ⊂ 𝐽. (4.1)

Concerning the frequency of small gaps, i.e. the gaps satisfying

𝑑𝑛 < 𝜀 log 𝑝𝑛 (4.2)

for a small but fixed 𝜀 > 0, we could show in a joint work with D. Goldston and C.

Yıldırım the following

Theorem 4.5 ([12]). The sequence 𝑆𝜀 of indices satisfying (4.2) has a positive lowerden
sity for any 𝜀 > 0.

5 Main ideas of the proofs of Theorems A, B, C
The first step in proving TheoremsA–C is to investigate the following far-reaching gen

eralization of the Twin Prime Conjecture. This was formulated more than a hundred

years ago in a qualitative form by Dickson [3] and nearly two decades later (probably

independently) in a quantitative form byHardy and Littlewood [15]. In the formulation

of the conjecture we shall call a 𝑘-tuple H = {ℎ𝑖}𝑘𝑖=1 of different nonnegative integers
admissible if for any prime 𝑝 H does not cover all residue classes mod 𝑝.
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Conjecture DHL. IfH is admissible, then there are infinitelymany values 𝑛 such that all
𝑛 + ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑘) are simultaneously primes.

The next step is the formulation of a weaker form of the above DHL Conjecture

(which is weaker than Polignac’s conjecture and it is equivalent toDHL in the simplest

case 𝑘 = 2).

Conjecture DHL (𝑘, 2). IfH is an admissible𝑘-tuple, then there are 𝑖, 𝑗 ∈ {1, 2, ..., 𝑘} such
that for infinitely many values 𝑛we have 𝑛 + ℎ𝑖 ∈ P, 𝑛 + ℎ𝑗 ∈ P.

We remark that the truth of the conjecture DHL (𝑘, 2) for any particular 𝑘 implies

the Bounded Gap Conjecture.

The strategy is to attack the above Conjecture DHL (𝑘, 2) for some large values of

𝑘. We will miss it (thereby also the Bounded Gap Conjecture) just by a hairbreadth.

However, this will help us to prove Theorem A and will immediately furnish a proof of

the conditional Theorem C.

Let us consider the product

PH(𝑛) =
𝑘

∏
𝑖=1

(𝑛 + ℎ𝑖). (5.1)

If we try to attack the original very deep conjecture DHL for any given 𝑘 ∈ ℤ+ it is

plausible to use the weights of Selberg’s sieve,

𝑎𝑛 = { 1
𝑘! ∑

𝑑|PH(𝑛)
𝑑≤𝑅

𝜇(𝑑) (log 𝑅
𝑑 )

𝑘

}
2

𝑛 ∈ [𝑁, 2𝑁) (5.2)

with some 𝑅 ≤ 𝑁1/2.

In fact, we can evaluate the sum of these weights for 𝑛 ∈ [𝑁, 2𝑁) and obtain for

𝑅 ≤ 𝑁1/2(log𝑁)−𝑐(𝑘) the asymptotic

𝐴𝑁 := ∑
𝑛∈[𝑁,2𝑁)

𝑎𝑛 ∼ 𝑁
𝑘!S(H)(log𝑅)𝑘, (5.3)

where𝜈𝑝 = 𝜈𝑝(H)denotes the number of different residue classes covered byHmod 𝑝
and

S(H) := ∏
𝑝

(1 − 𝜈𝑝(H)
𝑝 ) (1 − 1

𝑝)
−𝑘

. (5.4)

We note thatS(H) > 0 if and only ifH is admissible.

Let us denote by 𝜒P(𝑛) the characteristic function of primes, i.e.

𝜒P(𝑛) = 1 if 𝑛 ∈ P, 𝜒P(𝑛) = 0 if 𝑛 ∉ P. (5.5)

Then we can investigate the frequency of those 𝑛 ∼ 𝑁 for which 𝑛 + ℎ𝑖 ∈ P, i.e.
𝜒P(𝑛 + ℎ𝑖) = 1 for any given ℎ𝑖 ∈ H, or more generally of those 𝑛 for which 𝑛 + ℎ ∈ P
with some ℎ ∉ H.
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It turns out that in order to be able to evaluate the sum

𝐵𝑁(ℎ) := ∑
𝑛∈[𝑁,2𝑁)

𝑎𝑛𝜒P(𝑛 + ℎ) (5.6)

we need a much stronger condition than 𝑅 ≤ 𝑁1/2(log𝑁)−𝑐(𝑘), namely 𝑅 ≤ 𝑁(𝜗−𝜀)/2

(which is only in the hypothetical case 𝜗 = 1, i.e. in case of the truth of the Elliott–

Halberstam Conjecture near to the bound𝑁1/2(log𝑁)−𝑐(𝑘), which is the barrier for the
evaluation of 𝐴1 in (5.3)).

If the evaluation of the quantities 𝐴𝑁 and 𝐵𝑁(ℎ) is successful, we can investigate

the average weighted number of primes among {𝑛+ℎ𝑖}𝑘𝑖=1 if 𝑛 runs through the interval
[𝑁, 2𝑁).

In case of ℎ𝑖 ∈ H we obtain

𝐵𝑁(ℎ𝑖) ∼ 2𝑁
(𝑘 + 1)!S(H) (log𝑅)𝑘+1

log𝑁 ∼ 2𝐴𝑁

𝑘 + 1 ⋅ log 𝑅
log𝑁. (5.7)

Hence, if we choose the maximal possible 𝑅, namely, we set

𝑅 = 𝑁(𝜗−𝜀)/2, (5.8)

then we obtain

𝐵𝑁(ℎ𝑖)
𝐴𝑁

∼ 𝜗 − 𝜀
𝑘 + 1 ,

𝑘∑
𝑖=1

𝐵𝑁(ℎ𝑖)
𝐴𝑁

∼ 𝑘
𝑘 + 1(𝜗 − 𝜀) (5.9)

which is unfortunately less than 1 even under the assumption of the Elliott–Halber

stam conjecture and unconditionally it is even less than 1/2.
However, if we consider the weaker conjecture DHL (𝑘, 2), we have no heuristic

reason to consideronly the𝑘-dimensional Selberg’s sieve,which is a truncatedversion

of

𝛬𝑘(PH(𝑛)) = 1
𝑘! ∑

𝑑|PH(𝑛)

𝜇(𝑑) (log PH(𝑛)
𝑑 )

𝑘

(5.10)

which approximates the situation

𝑛 + ℎ𝑖 ∈ P, 𝑖 = 1, 2, . . . , 𝑘. (5.11)

This observation opens the door towards the introduction of other, higher dimen

sional sieves, or, equivalently, to the introduction of a larger class of possible weights

depending on a new parameter ℓ ≥ 0. Thus, let us consider the new weights in the

form

𝑎(𝑛, 𝑅,H𝑘, ℓ) := ( 1
(𝑘 + ℓ)! ∑

𝑑≤𝑅
𝑑|𝑃H(𝑛)

𝜇(𝑑) log𝑘+ℓ 𝑅
𝑑)

2

(5.12)

and the analogous quantities 𝐴𝑁(ℓ), 𝐵𝑁(ℎ, ℓ) instead of (5.3), (5.6), corresponding to
the case ℓ = 0.
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The new quantities can be evaluated too, if 𝑘 and ℓ are fixed, 𝑁 → ∞ and 𝑅 =
𝑁(𝜗−𝜀)/2. (It is sufficient to suppose 𝑅 ≤ 𝑁(𝜗−𝜀)/2 but larger values of 𝑅 yield better

results.) However, surprisingly enough, we obtain nearly twice as many primes in a

𝑘-tuple 𝑛 +H on average if 𝑛 runs through the interval [𝑁, 2𝑁) under the simple con

dition that ℓ and 𝑘/ℓ are both simultaneously large (for example ℓ = [√𝑘] and 𝑘 is

large). We obtain, namely, in case of ℎ𝑖 ∈ H in place of (5.3), (5.7) and (5.9)

𝐴𝑁(ℓ) ∼ 𝑁
(𝑘 + 2ℓ)!(

2ℓ
ℓ )S(H𝑘)(log 𝑅)𝑘+2ℓ, (5.13)

𝐵𝑁(ℎ𝑖, ℓ) ∼ 𝑁
(𝑘 + 2ℓ + 1)!(

2ℓ + 2
ℓ + 1 )S(H𝑘) log 𝑅

log𝑁(log 𝑅)𝑘+2ℓ. (5.14)

Consequently we obtain for any fixed 𝜀 > 0 instead of (5.9) the better asymptotics

𝐵𝑁(ℎ𝑖, ℓ)
𝐴𝑁(ℓ) ∼ 2(𝜗 − 𝜀)

𝑘 + 2ℓ + 1 (1 − 1
2ℓ + 2) , (5.15)

𝑘∑
𝑖=1

𝐵𝑁(ℎ𝑖, ℓ)
𝐴𝑁(ℓ) ∼ 2(𝜗 − 𝜀) (1 − 2ℓ + 1

𝑘 + 2ℓ + 1) (1 − 1
2ℓ + 2) > 2(𝜗 − 2𝜀) (5.16)

if 𝑘 > 𝐶𝜀−2, ℓ = [√𝑘/2], for example.

The result (5.16) immediately yields that choosing the weighted average implied

by the weights in (5.12) we obtain on average for 𝑛 ∈ [𝑁, 2𝑁) more than one prime

among {𝑛 + ℎ𝑖}𝑘𝑖=1 if we suppose the crucial condition
𝜗 > 1/2 (5.17)

which implies Theorem C or more generally DHL (𝑘, 2) for 𝑘 > 𝐶0(𝜗).
However, in the unconditional case we have only 𝜗 = 1/2 by the Bombieri–Vino

gradov theorem. Hence we obtain, say, more than

1 − 4𝜀 (5.18)

primes on average for 𝑛 ∈ [𝑁, 2𝑁) among {𝑛 + ℎ𝑖}𝑘𝑖=1, so we fail by a hairbreadth to

prove the Bounded Gap Conjecture (or Conjecture DHL (𝑘, 2) for some large bounded

values of 𝑘).
On the other hand, we have still the possibility to count the weighted number of

primes in a short interval

ℎ ∈ [1,𝐻], 𝐻 = 𝜂 log𝑁, ℎ ∉ H𝑖, (5.19)

where𝜂 is a small positive constant. An argument, similar to that yielding (5.13)–(5.14)

gives in this case for any admissible 𝑘-tupleH𝑘

𝐵𝑁(ℎ, ℓ) ∼ 𝐴𝑁(ℓ)
log𝑁

S(H𝑘 ∪ ℎ)
S(H𝑘) , (5.20)
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consequently
𝐻∑

ℎ=1,ℎ∉H
𝑘

𝐵𝑁(ℎ, ℓ)
𝐴𝑁(ℓ) ∼ (

𝐻

∑
ℎ=1,ℎ∉H

𝑘

S(H𝑘 ∪ ℎ)
S(H𝑘) ) 1

log𝑁. (5.21)

In the original work [10] a beautiful result of Gallagher [8]

∑
H

𝑘
⊂[1,𝐻],|H

𝑘
|=𝑘

S(H𝑘) ∼ 𝐻𝑘

𝑘! (𝑘 fix,𝐻 → ∞) (5.22)

was used along with an averaging over all possible 𝑘-tuplesH𝑘 ∈ [1,𝐻] to obtain on

average over 𝑛 ∈ [𝑁, 2𝑁) further 𝜂 primes among 𝑛 + ℎ with ℎ ∈ [1,𝐻] \ H𝑘 which

finally led to more than one prime in some interval

[𝑛, 𝑛 + 𝜂 log𝑁] if 𝜂 > 4𝜀 (5.23)

with a suitable 𝑛 ∈ [𝑁, 2𝑁), 𝑁 > 𝑁0(𝜀). This proved Theorem A, the relation 𝛥1 = 0.
However, it might be interesting to note that Gallagher’s estimate can be avoided and

one can show (even in a simpler way) for any fixed admissibleH𝑘 either the relation

𝑆(H𝑘, 𝐻) :=
𝐻

∑
ℎ=1,ℎ∉H

𝑘

S(H𝑘 ∪ ℎ)
S(H𝑘) ∼ 𝐻,

or in a simpler way the weaker inequality

𝑆(H𝑘, 𝐻) > 𝑐∗𝐻 for 𝐻 > 𝐻0(𝑘) (5.24)

with a suitable absolute constant 𝑐∗ > 0, which is still enough to show Theorem A. We

obtain a particularly simple proof if we show (5.24) just for some suitably chosen H𝑘

(for any large 𝑘), which is again sufficient for the proof of Theorem A.

The proof of the quantitative Theorem B is based on the same ideas but it also re

quiresmany further ideas and is technicallymuchmore complicated.We just mention

that in [11] we apply similar weights but the parameters 𝑘 and ℓ tend to infinity with
𝑁 as

𝑘 ≍ √log 𝑁
(log log 𝑁)2 , ℓ ≍ √𝑘. (5.25)

Furthermore, we have to replace Gallagher’s theorem (5.22) with an inequality

(shown in a completely different way) which is still valid if

𝑘 < 𝜀𝐻/ log𝐻 (5.26)

(for which range (5.22) is probably no longer true).

Additionally we have to replace Bombieri–Vinogradov’s theorem by a more gen

eral one which gives a non-trivial estimate also in the case when themoduli run only

through a sparse sequence, namely through the multiples of a given modulus

𝑀 ≤ 𝑋𝑐/ log log 𝑋. (5.27)
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6 Main ideas of the proofs of Theorems 4.1–4.5
Aswementioned in the last section, theproof of Theorem 4.2 needed a choice of 𝑘, ℓ →
∞ as 𝑁 → ∞ (in the way given in (5.25)). This represented the essentially optimal

choice of theparameters𝑘, ℓ if weworkwithweights of type (5.12). It turnedout already
in [10] that for concrete small values of 𝑘 (like for 𝑘 = 6 in case of (EH), i.e. 𝜗 = 1) it
might bemore advantageous to substitute the expression (log 𝑥)𝑘+ℓ in (5.12) by a linear
combination of similar terms with different values of ℓ (like ℓ = 0 and ℓ = 1 in case of

𝑘 = 6, 𝜗 = 1). This idea is crucial in obtaining Theorem 4.1, where a suitably chosen

polynomial

𝑃(log 𝑥) =
𝐿
2

∑
ℓ=𝐿

1

𝑏ℓ(log 𝑥)𝑘+ℓ, 𝐿1, 𝐿2 ≍ 𝐿 ≍ 𝑘1/3 (6.1)

is used in the definition of the weight corresponding to 𝑎(𝑛, 𝑅,H𝑘, ℓ) and 𝑘 is chosen
instead of (5.25) as

𝑘 ≍ (log𝑁)3/7(log log 𝑁)4/7. (6.2)

At first sight it may seem paradoxical that a linear combination of weights per

forms better than the best term itself. However, the newweight 𝑎𝑛, induced by𝑃(log 𝑥)
in (6.1), is itself not a linear combination of the earlier weights 𝑎𝑛(ℓ). In fact, the rela
tion between them is

𝑎𝑛 = (
𝐿
2

∑
ℓ=𝐿

1

𝑐ℓ√𝑎𝑛(ℓ))
2

, 𝑐ℓ = 𝑏ℓ(𝑘 + ℓ)! . (6.3)

The proofs of the further Theorems 4.2–4.5 are naturally different and require sev

eral new ideas. However, they all need an important common basis. This base is that

the weights 𝑎𝑛 are concentrated on integers with the property that all prime factors of

all ‘coordinates’ 𝑛 + ℎ𝑖 (𝑖 = 1, . . . , 𝑘) are at least of size 𝑁𝜂 with a small constant 𝜂 > 0
(depending on 𝑘). This can be expressed by Lemma 4 of [17] which we formulate here

as

Main Lemma. Let 𝑁𝑐
0 < 𝑅 ≤ 𝑁1/(2+𝜂)(log𝑁)−𝑐1, 𝜂 > 0. Then we have for the weights in

(5.12) for any ℓ ≤ 𝑘 and any admissible 𝑘-tupleH𝑘

∑
𝑛∈[𝑁,2𝑁)

∃𝑝<𝑁𝜂,𝑝|PH(𝑛)

𝑎(𝑛, 𝑅,H𝑘, ℓ) ≪𝑘 𝜂 ∑
𝑛∈[𝑁,2𝑁)

𝑎(𝑛, 𝑅,H𝑘, ℓ). (6.4)

This resultmakes it possible to reduce the summation in all proofswith abounded

value of 𝑘 to numbers 𝑛 where all elements of {𝑛 + ℎ𝑖}𝑘𝑖=1 are almost primes. This in

formation provides a significant help in the proofs of Theorems 4.2–4.5. We have, for

example, for these numbers automatically

𝑎(𝑛, 𝑅,H𝑘, ℓ)
(log𝑘+ℓ 𝑅)2 ≪𝑘,ℓ,𝜂 1, (6.5)
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while all other 𝑛 values having a small prime factor of 𝑃H(𝑛) can be neglected. This

property is, in fact, crucial in the proofs of Theorems 4.2 and 4.5.

7 Proof of Theorem 4.1
The difference compared with the proof of Theorem B, that is Theorem 2 of [11], is that

instead of a weight function of type

(log 𝑅
𝑑

log 𝑅)
𝐾+ℓ

, 𝐾 ≍ √log𝑁
(log log𝑁)2 , ℓ ≍ √𝐾 (7.1)

we use a linear combination of such type weights,

�̃� ( log 𝑅
𝑑

log 𝑅)
𝐾+ℓ

, �̃�(𝑥) =
𝐿
2

∑
ℓ=𝐿

1

𝑏ℓ𝑥𝐾+ℓ (7.2)

where the parameters now satisfy

𝐾 = 𝑐0 ( log𝑁
log2 𝑁)

3/7

, 𝐿1, 𝐿2 ≍ 𝑀 = ⌈𝐶1𝐾1/3/6⌉ (7.3)

where log𝜈 𝑥 denotes the 𝜈-fold iterated logarithm, 𝑐0 is a small constant, 𝐶1 is a large

one.

Since the proof of Theorem 2 in [11] uses the conditions (cf. (4.1)–(4.2) of [11])

𝐾 ≤ 𝑐√log𝑁
(log2 𝑁)2 , ℓ1, ℓ2 ≍ √𝐾, (7.4)

we will first check the needed changes for the proofs of the modified Theorems 4 and

5 of [11] under the new condition:

ℓ1, ℓ2 ≍ 𝑀 ≍ 𝐾1/3. (7.5)

This requires to check Sections 5–11 of [11] under the new condition (7.5). In contrast

to Section 5 we will now choose

𝛿0 = 𝑀
𝐾 log2 𝑁 . (7.6)

After a careful checking of Sections 5–10 we find that the results of Sections 6–9 and

themost part of Section 10 remain valid and only (10.1), Lemma 9 and Section 11 need

any revision. (We remark here two small errors in the original work [11]. First, in the 3rd

line of (8.3) 𝑗 has to be replaced by 𝑗 and in (8.9) log3 𝑁 has to be replaced by log2 𝑁,

but the last inequalities of both formulae remain unchanged valid.)
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According to the new definition of 𝛿0 in (7.6) we obtain now by (7.12) of [11] instead

of (10.1) with the contours L0 and L
 defined in (5.3) of [11]:

|𝐷(𝑠, −𝑠)| ≤ 𝑒𝐶𝑀𝐷(0, 0) for 𝑠 ∈ L0. (7.7)

Consequently, this implies togetherwith Lemma8 instead of theoriginal Lemma9

the corresponding inequality

|𝐷(𝑠, −𝑠)| ≤ 𝑒𝐶𝑀 max{1, |𝑡|}−(𝑎+𝑏)/2𝐷(0, 0) for 𝑠 ∈ L. (7.8)

Wecannow turn to thenecessary changes in Section 11. Thenew form of Lemma9,

the above (7.8), means that in (11.1) we have now

|𝐷(𝑠, −𝑠)| ≤ 𝑒𝐶𝑀𝐷(0, 0) for 𝑠 ∈ L (7.9)

(instead of the old |𝐷(𝑠, −𝑠)| ≤ 𝑒𝐶√𝐾𝐷(0, 0)) and so we can change 𝑒𝐶√𝐾 to 𝑒𝐶𝑀 in the

2nd and 3rd lines of (11.1) too. So we have now

𝐵𝑗 (𝑠,H1,H2) ≪ 𝑒𝐶𝑀 (𝐶𝐾2 log2 𝑁)𝑗
 𝛿−(𝑢+𝑣)0

|𝑠|2 𝐷(0, 0), (7.10)

and consequently we obtain instead of (11.2) of [11] now

𝐶
𝑗(H1,H2) ≪ 𝑒𝐶𝑀 (𝐶𝐾2 log2 𝑁)𝑗



𝛿−(𝑢+𝑣+1)0 𝐷(0, 0). (7.11)

Due to 𝑢, 𝑣 ≍ 𝑀 and (7.6) we obtain in place of (11.3)–(11.4)

𝐼2,1 ≪ 𝑒𝐶𝑀𝐷(0, 0)𝛿−(𝑢+𝑣+1)0 (log𝑅)𝑑−1
(𝑑 − 1)!

𝑑−1

∑
𝑗=0

(𝐶𝐾2 log2 𝑁
log 𝑅 )

𝑗

(7.12)

≪ 𝑒𝐶(𝑢+𝑣)𝐷(0, 0)(log 𝑅)𝑑−1 (𝐾𝑀−1 log2 𝑁)𝑢+𝑣+1
(𝑑 − 1)!

≪ 𝐷(0, 0)(log 𝑅)𝑑+𝑢+𝑣
(𝑑 + 𝑢 + 𝑣)! (𝐶𝐾2𝑀−1 log2 𝑁

log 𝑅 )
𝑢+𝑣+1

≪ 𝐷(0, 0)(log 𝑅)𝑑+𝑢+𝑣
(𝑑 + 𝑢 + 𝑣)! (log𝑁)−𝑀/50

and

𝐼2 ≪ 𝐷(0, 0)(log 𝑅)𝑑+𝑢+𝑣
(𝑑 + 𝑢 + 𝑣)! (log𝑁)−𝑀/50 + 𝑒−𝑐√log 𝑁. (7.13)

The final few lines of Section 11, including the crucial formula (11.5) remain there

fore unchanged valid. Consequently, the original Theorem 4 of [11] remains valid un

der the new choice (7.3) of the parameters. The same refers to Theorem 5 of [11] since

the evaluation of the crucial integral there is obtained by the above modification of

Sections 5–11 of [11] and no change is required in the formulation of the modified
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Bombieri–Vinogradov type theorem (Theorem 6 of [11] in Section 12 or in the argu

ments of Section 13), yielding the proof of Theorem 4.5.

Since Section 14 is independent of the others, we have to turn our attention to the

last section, Section 15, which finishes the proof of Theorem 2 of [11].

Themajor change in Section 15 arises from the use of theweight function with the

polynomial

�̃�(𝑥) = 𝑃𝐾(𝑥) =
2𝑀

∑
ℓ=𝑀
2∤ℓ

𝑔 ( ℓ
𝑀)(𝐾

2 )
ℓ 𝑥𝐾+ℓ
(𝐾 + ℓ)! , 𝑔(𝑦) = (𝑦 − 1)4(2 − 𝑦)4 (7.14)

which was analyzed in the last section of [7] where we proved that (see (34) of [7])

𝐷𝐾 (𝐾 + 𝐶1𝐾1/3) − 4𝐸𝐾 ≥ 0 (7.15)

with the notation

𝐷𝐾 =
2𝑀

∑
ℓ
1
=𝑀
2∤ℓ

1

2𝑀

∑
ℓ
2
=𝑀
2∤ℓ

2

𝑔( ℓ1
𝑀) 𝑔( ℓ2

𝑀) (𝐾/2)ℓ1+ℓ2𝐾!
(𝐾 + ℓ1 + ℓ2 + 1)!(

ℓ1 + ℓ2 + 2
ℓ1 + 1 ) (7.16)

𝐸𝐾 =
2𝑀

∑
ℓ
1
=𝑀
2∤ℓ

1

2𝑀

∑
ℓ
2
=𝑀
2∤ℓ

2

𝑔( ℓ1
𝑀) 𝑔( ℓ2

𝑀) (𝐾/2)ℓ1+ℓ2𝐾!
(𝐾 + ℓ1 + ℓ2)!(

ℓ1 + ℓ2
ℓ1 ), (7.17)

which corresponds to (43)–(44) in [7].

We would like to mention that in the argument of Soundararajan [21] he works

with a weight function of type (we defined 𝑃H(𝑛) = 𝐾∏
𝑖=1

(𝑛 + ℎ𝑖) in (5.1))

𝑎𝑛,1 = ∑
H⊂[1,ℎ]
|H|=𝐾

( ∑
𝑑|𝑃H(𝑛),𝑑≤𝑅

𝜇(𝑑)𝑃𝐾 ( log(𝑅/𝑑)
log 𝑅 ))

2

. (7.18)

In contrast to this, we used in our works [10], [11] more complicated weights of the

form

𝑎𝑛,2 = ( ∑
H⊂A
|H|=𝐾

∑
𝑑|𝑃H(𝑛)
𝑑≤𝑅

𝜇(𝑑)𝑃𝐾 (log(𝑅/𝑑)
log 𝑅 ))

2

; (7.19)

however, with the simple polynomial 𝑃(𝑥) = 𝑥𝐾+ℓ, ℓ ≍ √𝐾. (A is in our case an arbi

trary set of integers ≤ 𝑁 with𝐻 elements, so similar to but more general than (7.18).)

In the present work we will use weights of type (7.19) with the polynomial (7.14).

The different structures of the weights (the order of squaring and summation over

𝑘-tuples H𝑘) actually yield different optimization problems for the polynomial 𝑃(𝑥)
but the difference is not significant in the most crucial case when we consider (after

squaring in (7.19)) pairsH1,H2 when (H1 ∪H2) \ (H1 ∩H2) is relatively small in size.
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This is the reason why despite the different optimization problems we can use here

the polynomial from [7], which is quasi-optimal for the weights of type (7.18).

Additionally we remark that the question of optimization of weights of type (7.19)

cannot be formulated in such a simple and nice way as in the case of the weights of

type (7.18), analyzed in [21] and [7]. We also note that some nice functions can replace

the polynomial 𝑃𝐾(𝑥) but it is hard to predict in advance what sort of properties we ex
actly need for the function in question so that the asymptotic evaluation of the quan

tities 𝐴𝑁 and 𝐵𝑁(ℎ) in (5.3)–(5.6) should be possible. We just mention here that the

case 𝐾 ≍ √log𝑁, ℓ = 𝐾𝛼, 𝛼 > 1/2 would already cause serious problems in [11], even

in the simple case of 𝑃(𝑥) = 𝑥𝐾+ℓ.
Finally, we remark that although the optimization problems are similar at weights

of type (7.18) and (7.19) the final result for gaps between consecutive primes would be

much weaker in case of the use of weights of type (7.18), namely (log𝑁)3/5+𝜀 compared

to our present (log𝑁)3/7+𝜀. (In case of 𝑃(𝑥) = 𝑥𝐾+ℓ the two methods yield gaps of size

atmost (log𝑁)2/3+𝜀 in case of (7.18), whereas (7.19) led to gap size of at most (log𝑁)1/2+𝜀
in [11], quoted as Theorem B here.)

Theproof of ournew result follows closely thearguments of Section 15 of [11], how

ever the final result for the analogueof the crucial quantity 𝑆𝑅 in (15.9) (the analogue of
𝑆𝑅 in (10.1) of [10]) is more complicated due to the use of the polynomial �̃�(𝑥) = 𝑃𝐾(𝑥).
Additionally, we have to change the value of most parameters. Whatmakes the proce

dure more difficult is the fact that Section 15 relies on Section 10 of [10], so its proof is

already not self-contained in [11] either. Belowwewill describe the necessary changes

compared to Section 15 of [11] (all numbers of formulae beginning with 14 or 15 refer

to [11]).

We do not change the values of 𝑅, 𝜃, 𝜉 and 𝑉 given in (15.2) but in place of

(15.3)–(15.5) we choose in accordance with (7.3) (with a sufficiently small constant

𝑐0 and a large enough 𝐶1) and the last section of [7]

𝐾 = 𝑐0 ( log𝑁
log2 𝑁)

3/7

, 𝑀 = ⌈𝐶1𝐾1/3/6⌉, 𝜑 = 𝑀
𝐾 , (7.20)

𝑥 = 1
100𝜑2 = 𝐾2

100𝑀2
= log 𝑅

𝐻 ∼ log𝑁
4𝐻 , (7.21)

𝑓(𝑟) = (𝐾
𝑟 )

2

𝑥𝑟 , 𝑟0 = 𝐾(1 − 9𝜑) = 𝐾 − 9𝑀, 𝑟1 = 𝐾(1 − 7𝜑) = 𝐾 − 7𝑀. (7.22)

Under this choice we have 𝑓(𝑟 + 1) < 𝑓(𝑟) for 𝑟 > 𝑟0 and
𝑓(𝑟1)
𝑓(𝑟0)

= ∏
𝑟
0
<𝑟≤𝑟

1

{𝑥 (𝐾 − 𝑟 + 1
𝑟 )

2

} ≤ (( 9𝜑
1 − 7𝜑)

2

𝑥)
2𝑀

≤ 𝑒−𝑀/3
(7.23)

analogously to (15.16); furthermore we have with 𝐶2 = 25
36

𝐶2
1𝑐−

4

3

0 from (7.21)

𝐻 ∼ 25 log 𝑁 ⋅ 𝑀2

𝐾2
∼ 25

36𝐶2
1𝐾− 4

3 log𝑁 = 𝐶2(log𝑁)3/7(log2 𝑁)4/7. (7.24)
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This choice of parameters implies that 𝑘 log2 𝑁/𝐻 will be smaller than any posi

tive constant if 𝑐0 is chosen sufficiently small and 𝑘 ≤ 2𝐾 arbitrary. Consequently, by

Lemma 16 of [11] we obtain for the average of the singular series

𝑆∗A(𝑘) = 1
𝐻𝑘

∑
H⊂A,|H|=𝑘

S(H) (7.25)

(cf. (14.6)–(14.7) of [11])

𝑆∗A(𝑘 + 1) ≥ 𝑒−1/40𝑆∗A(𝑘), (7.26)

hence in analogy with (15.18)

𝑆∗A(2𝐾 − 𝑟0)
max
𝐾≥𝑟>𝑟

1

𝑆∗
A
(2𝐾 − 𝑟) > 𝑒−9𝑀/40. (7.27)

The formulae (7.23) and (7.27) together yield for any𝐾 ≥ 𝑟 > 𝑟1
𝑓(𝑟)𝑆∗A(2𝐾 − 𝑟) < 𝑓(𝑟1)𝑆∗A(2𝐾 − 𝑟0)𝑒9𝑀/40 < 𝑓(𝑟0)𝑆∗A(2𝐾 − 𝑟0)𝑒−𝑀/10. (7.28)

Using the notation 𝜃(𝑛) = log 𝑛 if 𝑛 ∈ P and 𝜃(𝑛) = 0 otherwise, we can evaluate

the crucial quantity

𝑆𝑅 = ∑
H

1
⊂A

|H
1
|=𝐾

∑
H

2
⊂A

|H
2
|=𝐾

2𝑀

∑
ℓ
1
=𝑀
2∤ℓ

2

2𝑀

∑
ℓ
2
=𝑀
2∤ℓ

2

𝑔( ℓ1
𝑀) 𝑔( ℓ2

𝑀) (𝐾
2
)ℓ1+ℓ2

(𝐾 + ℓ1)!(𝐾 + ℓ2)! (7.29)

× ∑
𝑁<𝑛≤2𝑁

𝑛∈𝐴(H
1
)∩𝐴(H

2
)

𝛬𝑅(𝑛;H1, ℓ1)𝛬𝑅(𝑛;H2, ℓ2)( ∑
ℎ∈A

𝜃(𝑛 + ℎ) − log(3𝑁))

by the aid of the modified Theorems 4 and 5 of [11] for all pairs H1,H2 ⊂ A, |H𝑖| = 𝑘,
where now

𝛬𝑅(𝑛;H, ℓ) = ∑
𝑑|𝑃H(𝑛)
𝑑≤𝑅

𝜇(𝑑) (log 𝑅
𝑑

log 𝑅)
𝐾+ℓ

; (7.30)

the difference to 𝛬𝑅(𝑛;H, ℓ) in (3.6) of [11] is just in the normalization by the divi

sion with (log 𝑅)𝐾+ℓ. Using the same argumentation as in Section 10 of [10] or, equiva

lently, that of Section 15 of [11] we obtain for the contribution of all pairs H1,H2 with

|H1 ∩ H2| = 𝑟 instead of (15.9)–(15.10) of [11], taking into account also the different

normalization

𝑆𝑅 ≥
𝐾

∑
𝑟=0

𝑓(𝑟)𝑆∗A(2𝐾 − 𝑟)𝐹𝐾,𝑟 (7.31)

with

𝐹𝐾,𝑟 =
2𝑀

∑
ℓ
1
=𝑀
2∤ℓ

1

2𝑀

∑
ℓ
2
=𝑀
2∤ℓ

2

𝑔( ℓ1
𝑀)𝑔 ( ℓ2

𝑀) (𝐾/2)ℓ1+ℓ2𝑟!
(𝑟 + ℓ1 + ℓ2)!(

ℓ1 + ℓ2
ℓ1 ) (7.32)

× {(ℓ1 + ℓ2 + 1)(ℓ1 + ℓ2 + 2)
(ℓ1 + 1)(ℓ2 + 1) ⋅ 𝐾

𝑟 + ℓ1 + ℓ2 + 1 − 4 + 𝑂((log2 𝑁
log 𝑁 )

5/14

)}.
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If 𝑟 < 𝑟1 = 𝐾 − 7𝑀 then we will show that 𝐹𝐾,𝑟 is positive and consequently so is

𝑓(𝑟)𝑆∗A(2𝐾 − 𝑟)𝐹𝐾,𝑟. The connection between 𝐹𝐾,𝑟,𝐷𝐾 and 𝐸𝐾 (see (7.15)–(7.16)) is

𝐹𝐾,𝐾 = 𝐾𝐷𝐾 − 4𝐸𝐾(1 + 𝑂((log2 𝑁
log𝑁 )

5/14

)). (7.33)

(This is whywe asserted that the weights of type (7.18) and (7.19) lead to slightly differ

ent but similar optimization problems.) First we note that it is easy to see that

𝐹𝐾,𝑟 > 0 for 𝑟 ≤ 𝐾(1 − 3
𝑀) , (7.34)

since in this case the quantity in the brackets is already positive. Using the notation

ℓ1 + 1 = 𝑢, ℓ2 + 1 = 𝑣 ∈ (𝑀, 2𝑀] we have, namely, in this case

(𝑢 + 𝑣)(𝑢 + 𝑣 − 1)
𝑢𝑣 ⋅ 𝐾

𝑟 + 𝑢 + 𝑣 − 1 ≥ (4 − ( 1
𝑢 + 1

𝑣)) ⋅ 𝐾
𝐾 (1 − 2

𝑀
) (7.35)

≥ 4 (1 − 1
2𝑀)(1 + 2

𝑀) ≥ 4 + 4
𝑀 > 4 + 1

(log𝑁)1/7 .

In the crucial case

𝐾 − 3𝐾
𝑀 < 𝑟 < 𝑟1 = 𝐾 − 7𝑀 (7.36)

the evaluation and estimation of 𝐹𝐾,𝑟 is nearly exactly the same as that of 𝐷𝐾 and 𝐸𝐾

in the last section of [7] leading to (7.15). The only difference outside the brackets is the

change
ℓ
1
+ℓ

2

∏
𝑖=1

1
𝐾 + 𝑖 = 𝑗(𝐾) to

ℓ
1
+ℓ

2

∏
𝑖=1

1
𝑟 + 𝑖 = 𝑗(𝑟) (7.37)

but the two quantities are in case of (7.36) of the same order of magnitude, namely,

𝑗(𝐾) = 𝑗(𝑟) (1 + 𝑂( 1
𝑀))

4𝑀

≍ 𝑗(𝑟). (7.38)

This means that the procedure in [7] yields for these values of 𝑟, similarly to (7.15) for

any 𝑟with (7.36)
2𝑀

∑
ℓ
1
=𝑀
2∤ℓ

1

2𝑀

∑
ℓ
2
=𝑀
2∤ℓ

2

𝑔 ( ℓ1
𝑀)𝑔 ( ℓ2

𝑀) (𝐾
2
)ℓ1+ℓ2 𝑟!

(𝑟 + ℓ1 + ℓ2)!

× {(ℓ1 + ℓ2 + 1)(ℓ1 + ℓ2 + 2)
(ℓ1 + 1)(ℓ2 + 1) ⋅ 𝐾 + 𝐶1𝐾1/3

𝐾 + ℓ1 + ℓ2 + 1 − 4} ≥ 0. (7.39)

If we show that for 𝑟 < 𝑟1 = 𝐾 − 7𝑀 the above quantity in the brackets is smaller than

the one appearing in the definition of 𝐹𝐾,𝑟 in (7.32) for any pair (ℓ1, ℓ2), then 𝐹𝐾,𝑟 > 0
holds, since the termsoutside thebrackets in (7.39) are all positive. Taking into account

𝑀 = ⌈𝐶1𝐾1/3/6⌉, it is sufficient to show

𝐾 + 6𝑀
𝐾 + ℓ1 + ℓ2 + 1 < 𝐾

𝑟 + ℓ1 + ℓ2 + 1 + 𝑂 (log2 𝑁
log𝑁 )

5/14

. (7.40)
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Let

𝑟 = 𝐾 − 𝛥, 𝛥 > 7𝑀, 𝑚 = ℓ1 + ℓ2 + 1 ∈ (2𝑀, 4𝑀). (7.41)

Then we have

𝐾 + 6𝑀
𝐾 + 𝑚 − 𝐾

𝐾 − 𝛥 + 𝑚 < 6𝑀(𝐾 − 𝛥 + 𝑚) − 𝐾𝛥
(𝐾 + 𝑚)(𝐾 − 𝛥 + 𝑚) (7.42)

< 6𝑀𝐾 − 7𝑀𝐾
2𝐾2

= − 𝑀
2𝐾 < − 1

(log 𝑁)2/7 ,

which thereby proves (7.40) and so settles the case 𝑟 < 𝑟1.
The analysis of the last section of [7] teaches us that the maximal possible order

of magnitude of |𝐹𝐾,𝑟| does not change significantly for 𝑟 ∈ [𝑟1, 𝐾], so due to the strong
decrease of the additional factor𝑓(𝑟)wehave in view of (7.28) in fact a similar inequal

ity to (7.28) if we multiply all terms with the corresponding 𝐹𝐾,𝑟, namely for 𝑟 > 𝑟1 we
have, say

𝐹𝐾,𝑟𝑓(𝑟)𝑆∗A(2𝐾 − 𝑟) < 𝐹𝐾,𝑟
0

𝑓(𝑟0)𝑆∗A(2𝐾 − 𝑟0)𝑒−𝑀/20. (7.43)

This shows (cf. (7.29)–(7.32))

𝑆𝑅 > 0. (7.44)

This means that for some 𝑛 ∈ (𝑁, 2𝑁] we have
∑
ℎ∈A

𝜃(𝑛 + ℎ) − log(3𝑁) > 0 (7.45)

and so we have ℎ1, ℎ2 ∈ A with 𝑛 + ℎ1, 𝑛 + ℎ2 ∈ P, therefore two primes 𝑝, 𝑝 with

𝑝 − 𝑝 = ℎ1 − ℎ2 ∈ A − A. In the general formulation of Theorem 4.2, A ⊆ [1,𝑁] ∩ 𝑁
was any sequence with𝐻 elements, where

𝐻 ≥ 𝐻0 = 𝐶(log𝑁)3/7(log2 𝑁)4/7. (7.46)

In particular we can takeA = [1,𝐻] yielding two primes 𝑝, 𝑝 with 0 < 𝑝 − 𝑝 < 𝐻0 .

Added in proof for (06/30/2013 and 10/30/2013). Very recently Yitang Zhang (Bounded

Gaps between Primes, Ann. of Math., to appear) succeeded in showing by an essential

refinement of the methods sketched in the present paper and by an additional use

of the fact that only smooth numbers have a significant effect for the sieving process

(Y. Motohashi and J. Pintz, A Smoothed GPY sieve, Bull. London Math. Soc. 40 (2008)

no. 2, 298–310) that bounded gaps between primes occur infinitely often. The original

bound 70 million is now diminished slightly below 5000 by the Polymath 8 project of

T. Tao.
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