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Chapter 21 Methods of analysis

1. Introduction to methods of analysis
This chapter describes simple statistical methods that are likely to be most useful for the basic analysis of intervention
trials. Usually, a statistician will be closely involved in the design and analysis of a trial, and the more advanced
analytical techniques that they might employ are not covered in this chapter. For more information on such
techniques, the reader is referred to statistical texts such as Armitage and Berry (1987), Kirkwood and Sterne (2003),
and Rothman et al. (2008). However, the methods presented in this chapter should enable the analysis of the main
results of a trial. More advanced statistical techniques usually result in relatively small changes in the estimates of
effect sizes through multivariate and associated analyses. Also, armed with the methods in this chapter, the reader
should be in a good position to interpret and check the analyses reported in published studies.

The methods that are going to be used to analyse a trial should be considered at the time the trial is set up, so all of the
appropriate data are collected and are assembled in a form suitable for the planned analyses. It is a common
requirement nowadays for the statistical analysis plan to be fully developed, before any blinding in a trial is broken
and in advance of a ‘frozen’ data set being prepared for analysis. Such plans are discussed in Section 3.

The choice of an appropriate method of analysis of a trial depends on the type of outcome measure which is of
interest. The different types of outcome measure are discussed in Section 2, which also includes a brief review of the
concepts of confidence intervals (CIs) and statistical tests. In Sections 4, 5, and 6, methods are described which are
appropriate for the analyses of data in the form of proportions, rates, and means, respectively. RCTs have been
recommended as the method of choice for determining the effects of an intervention, because such trials generally
avoid the problem of confounding. Sometimes, however, particularly in small trials, there may be differences between
the randomized groups, with respect to factors that might affect the outcome of interest, but which are unrelated to the
intervention under test. If there has been a proper randomization process, any such differences should rise by chance
only. If the trial is large, it is unlikely that there will be any important imbalance in this respect between the
randomized groups. In small trials, such chance differences may have a larger effect, and, in such circumstances, it
may be important to adjust for any potential confounding due to these chance differences. In addition, where
randomization is not feasible, any attempt to draw conclusions about the effects of an intervention must make
allowance for possible confounding factors, and simple methods for doing this are described in Section 7. The
analysis of trials in which interventions are allocated to groups, rather than individuals, is discussed in Section 8. How
the results of a trial may be used to assess the possible public health impact of an intervention is considered in Section
9.

2. Basics of statistical inference

2.1. Types of outcome measure

The appropriate method of statistical analysis depends on the type of outcome measure that is of interest. An outcome
in an intervention study can usually be expressed as a proportion, rate, or mean. For example, in a trial of a modified
vaccine, an outcome measure of interest may be the proportion of vaccinated subjects who develop a protective level
of antibodies. In a trial of multi-drug therapy for tuberculosis, the incidence rates of relapse, following treatment, may
be compared in the different study groups under consideration. In a trial of an anti-malarial intervention, it may be of
interest to compare the mean packed cell volume (PCV) at the end of the malaria season in those in the intervention
group and those in the comparison group.

2.2. Confidence intervals

An estimate of an outcome measure calculated in an intervention study is subject to sampling error, because it is
based on only a sample of individuals and not on the whole population of interest. The term sampling error does not
mean that the sampling procedure or method of randomization was applied incorrectly, but that, when random
sampling is used to decide which individuals are in which group, there will be an element of random variation in the
results. The methods of statistical inference allow the investigator to draw conclusions about the true value of the
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outcome measure on the basis of the information in the sample. In general, the observed value of the outcome
measure gives the best estimate of the true value. In addition, it is useful to have some indication of the precision of
this estimate, and this is done by calculating a confidence interval for the estimate. The CI is a range of plausible
values for the true value of the outcome measure, based on the observations in the trial. It is conventional to quote the
95% confidence interval (also called 95% confidence limits). This is calculated in such a way that there is a 95%
probability that the CI includes the true value of the outcome measure.

Suppose the true value of the outcome measure is ø and that this is estimated from the sample data as ø^. The 95%
CIs to be presented here are generally of the form ø^±1.96×SE(ø^)where SEø^ denotes the standard error of the
estimate. This is a measure of the amount of sampling error to which the estimate is susceptible. One of the factors
influencing the magnitude of the standard error, and hence the width of the CI, is the sample size; the larger the
sample, the narrower the CI.

The multiplying factor 1.96, used when calculating the 95% CI, is derived from tables of the Normal distribution. In
this distribution, 95% of values are expected to fall within 1.96 standard deviations of the mean. In some
circumstances, CIs, other than 95% limits, may be required, and then different values of the multiplying factor are
appropriate, as indicated in Table 21.1.

When analysing means, the multiplying factor sometimes has to be increased to allow for additional errors in
estimating the standard error (see Section 5).

2.3. Statistical tests

As well as calculating a CI to indicate a range of plausible values for the outcome measure of interest, it may be
appropriate to test a specific hypothesis about the outcome measure. In the context of an intervention trial, this will
often be the hypothesis that there is no true difference between the outcomes in the groups under comparison. (For
this reason, the hypothesis is often referred to as the null hypothesis.) The objective is thus to assess whether any
observed difference in outcomes between the study groups may have occurred just by chance, due to sampling error.

A statistical test is used to evaluate the plausibility of the null hypothesis. The sample data are used to calculate a
quantity (called a statistic) which gives a measure of the difference between the groups, with respect to the outcome(s)
of interest. The details of how the statistic is calculated vary, according to the type of outcome measure being
examined, and are given in Sections 4 to 6. Once the statistic has been calculated, its value is referred to an
appropriate set of statistical tables, in order to determine the p-value (probability value) or statistical significance of
the results. The p-value measures the probability of obtaining a value for the statistic as extreme as the one actually
observed if the null hypothesis were true. Thus, a very low p-value indicates that the null hypothesis is likely to be
false.

For example, suppose, in a trial of a vaccine against malaria, an estimate of the efficacy is obtained of 20%, with an
associated p-value of 0.03. This indicates that, if the vaccine had a true efficacy of zero, there would only be a 3%
chance of obtaining an observed efficacy of 20% or greater.

The smaller the p-value, the less plausible the null hypothesis is as an explanation of the observed data. For example,
on the one hand, a p-value of 0.001 implies that the null hypothesis is highly implausible, and this can be interpreted
as very strong evidence of a real difference between the groups. On the other hand, a p-value of 0.20 implies that a
difference of the observed magnitude could quite easily have occurred by chance, even if there were no real difference
between the groups. Conventionally, p-values of 0.05 and below have been regarded as sufficiently low to be taken as
reasonable evidence against the null hypothesis and have been referred to as indicating a statistically significant
difference, but it is preferable to specify the actual size of the p-value attained, so that readers can draw their own
conclusions about the strength of the evidence.

While a small p-value can be interpreted as evidence for a real difference between the groups, a larger non-significant
p-value must not be interpreted as indicating that there is no difference. It merely indicates that there is insufficient
evidence to reject the null hypothesis, so that there may be no true difference between the groups. It is never possible
to prove the null hypothesis. Depending on the size of the study and the observed difference between the groups under
comparison, the CI on the difference provides a range of plausible values in which the true difference might lie, which
may include a zero difference.

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-1/?report=objectonly
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Too much reliance should not be placed on the use of statistical tests. Usually, it is more important to estimate the
effect of the intervention and to specify a CI around the estimate to indicate the plausible range of effect than it is to
test a specific hypothesis. In any case, a null hypothesis of zero difference is often of no practical interest, as there
may be strong grounds for believing the intervention has some effect, and the main objective should be to estimate
that effect.

The statistical tests presented here are two-sided tests. This means that, when the p-value is computed, it measures the
probability (if the null hypothesis is true) of observing a difference as great as that actually observed in either
direction (i.e. positive or negative). It is usual to assume that tests are two-sided, unless otherwise stated, though not
all authors adhere to this convention. A full discussion of the relative merits of one-sided and two-sided tests is given
in Armitage and Berry (1987) and Kirkwood and Sterne (2003).

3. Statistical analysis plan
A common mistake in the planning of a trial is to delay consideration of the analyses until the data become available.
It is essential that the main analyses that will be undertaken are planned at the design stage, as this provides several
major benefits. First, it encourages a clearer understanding of the basic questions to be answered and thus assists with
the formulation of clear and specific objectives. For example, in a vaccine trial, a simple comparison of the numbers
of cases of the disease occurring over a 5-year period in the vaccinated and unvaccinated groups may answer the
question of the magnitude of any protective effect. A comparison of the incidence rates of disease in vaccinated and
unvaccinated individuals in the first, second, third, fourth, and fifth years after vaccination can be used to answer a
rather different question, namely, whether the protective effect is constant over the 5-year period.

A second benefit of considering the analyses at the design stage is that it necessitates specification of what data need
to be recorded. The investigator can check that arrangements have been made to measure and record all variables that
will be needed in the analyses. Also, and perhaps as importantly, it may become clear that some variables will not be
needed, and these can then be omitted from the study.

The process of planning the analyses may identify also the importance of subgroup analyses. In a vaccine trial, for
example, it may reveal a need to assess the efficacy of the vaccine in children vaccinated at different ages. This may
have major implications for the choice of sample size, as the need for age-specific estimates of efficacy requires a
much larger sample in each age group than would be needed if only an overall estimate of efficacy was wanted.

Finally, advanced planning of the analyses is desirable to ensure that adequate arrangements have been made for data
handling, the necessary computer software is available, and sufficient time for data cleaning and analysis has been
allowed for in the study schedule.

Prior to any formal statistical analyses of the kinds discussed from Section 4 onwards, it is essential to perform simple
tabulations of data and to construct simple diagrams to summarize the information that has been collected. Simple
statistical package computer programs, such as Epi-Info (<http://wwwn.cdc.gov/epiinfo>) or STATA
(<http://www.stata.com>), greatly facilitate doing this. The investigator should use these simple approaches to gain a
good understanding of the data collected, before embarking on more complex analyses. These simple analysis
methods are not described further in this manual, but they are discussed in most good textbooks on medical statistics
(for example, Armitage and Berry, 1987; Kirkwood and Sterne, 2003).

If the results of a trial are to be used for submission to an appropriate authority to grant a licence for a new drug or
vaccine, the licensing authorities will require that a statistical analysis plan (SAP) is developed as a separate
document, to be completed after finalizing the protocol and before the code is broken for who is in the intervention
and control groups (if it is a blinded trial). The SAP should contain a technical and detailed description of the
principal analyses to be conducted on the trial data, which has more detail than would typically be included in the trial
protocol. The plan should include detailed procedures for conducting the statistical analysis of the primary and
secondary outcome variables and of other relevant data. Often, the licensing authority will require a copy of the SAP
for them to examine and approve in advance of a trial being analysed.

It is good practice to prepare a SAP for any trial, even if the results are not to be used for product licensing. In
addition to any necessary review by licensing authorities, the SAP should be reviewed and approved by the trial
steering committee and also often by the trial data safety and monitoring committee (DSMC). A formal record should
be kept of when the statistical analysis plan was finalized, as well as when the final data set was ‘frozen’ and when the
trial was unblinded.

http://wwwn.cdc.gov/epiinfo
http://www.stata.com/
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It is common to develop the computer programs for conducting the SAP in advance of breaking the treatment code.
To check that these are working properly, some analysts assign study participants at random to intervention or control
groups (irrespective of which group they were actually in) and run the programs on these ‘test’ data. In this way, they
are able to check that the final tables are in an appropriate format to be interpreted, once the code is broken.
Conducting such a ‘dummy run’ analysis generally greatly speeds the analysis and interpretation of the trial, once the
data are finalized.

Often, when an analysis is conducted, further analyses will be appropriate and prompted by an initial examination of
the study results, rather than being pre-planned in the SAP. Such analyses are often called ‘exploratory’. They were
not specifically planned in advance but were prompted by examination of the trial findings. Such exploratory analyses
are sometimes informative and may suggest new hypotheses, but it is important to distinguish them from the analyses
that were included in the SAP, as they were suggested by the data, rather than being planned in advance of the code
being broken. It is generally wise to interpret the results of such exploratory analyses with caution.

4. Analysis of proportions

4.1. Confidence interval for a single proportion

Methods appropriate for the analysis of proportions are used when the outcome of interest is a binary (‘yes/no’)
variable (for example, the proportion of individuals who develop a disease). The standard error of a proportion p,
calculated from a sample of n subjects, is estimated as √[p(1−p)/n] For example, if the prevalence of splenomegaly in
a random sample of 200 children from a population is found to be 0.40 (40%) (i.e. 80 had splenomegaly), the standard
error (SE) is given by:

SE(p)=√(0.40×0.60/200)=0.035(3.5%).

The 95% CI for a proportion is given by p±1.96×SE(p) In the example, the 95% CI is ×0.035 or (0.33, 0.47), i.e. 33–
47%. There is a 95% chance that the true prevalence of splenomegaly in the population from which the sample of 200
was taken was between 33% and 47%.

4.2. Difference between two proportions

Suppose now that the objective is to compare the proportions observed in two groups of individuals, as is typically the
case in a trial, comparing outcomes in an intervention and control group. The standard error of the difference between
two proportions p  and p , based on n  and n  observations, respectively, is estimated approximately as:

√{p¯(l−p¯)[(1/n1)+(1/n2)]}

where p¯=(n1p1+n2p2)/(n1+n2).

For example, if the proportions to be compared are 90/300 (30%) and 135/300 (45%), the observed difference
between the two proportions is −0.15, p¯=0.375, and the standard error of the difference is given by:

√{0.375×0.625[(1/300)+(1/300)]}=0.040.

The 95% CI for the difference between the proportions is given by(p1−p2)±1.96×SE. In the example, this gives
(−0.15)±1.96(0.040)i.e. (−0.23, −0.07), or −23% to −7%.

To test the null hypothesis that there is no true difference between the two proportions, the data are first arranged in a
2 × 2 table, as in Table 21.2.

In the table, a is the number in group 1 who experiences the outcome of interest. The expected value of a, E(a), and
the variance of a, V(a), are calculated under the hypothesis of no difference between the two groups:

E(a)=m1n1/N (21.1),

V(a)=n1n2m1m2/[N2(N−1)] (21.2)

1 2 1 2

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-2/?report=objectonly
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The chi-squared(χ2)statistic is then calculated. This gives a measure of the extent to which the observed data differ
from those expected if the two proportions were truly equal.

χ2=(|a−E(a)|−0.5)2/V(a) (21.3)

where |a−E(a)| indicates the absolute value of [a−E(a)].

The calculated value of χ2is compared with tables of the chi-squared distribution with one degree of freedom (df). If it
exceeds 3.84, then p < 0.05, indicating some evidence of a real difference in the proportions. If it exceeds 6.63, then p
< 0.01, and there is strong evidence of a difference.

In the example, a = 90; E(a) = (225)(300)/600 = 112.50; and V(a) = (300 × 300 × 225 × 375)/(600 × 600 × 599) =
35.215. Thus χ2=(|90−112.50|−0.5)2/35.212=13.74 From tables of the chi-squared distribution, a p-value of 0.0002 is
obtained, indicating a difference as large as that observed would be very unlikely to arise by chance if there really was
no difference between the two groups.

If any of the quantities E(a), E(b), E(c), or E(d) (for example, E(b)=m2n2/N) are less than 5.0 and N is less than 40,
theχ2test is invalid, and a test called ‘Fisher’s exact test’ should be used instead (Kirkwood and Sterne, 2003).

4.3. Ratio of two proportions

The ratio of two proportions is sometimes referred to as the relative risk (R). To construct a CI for a relative risk, the
natural logarithm of the estimate of the relative risk is computed (Table 21.2):

loge(R)=loge(p1/p2)=loge[(a/n1)/(c/n2)].

Its standard error is estimated by:

SE[loge(R)]=√{[b/(an1)]+[d/(cn2)]} (21.4).

The 95% CI for log (R) is given by loge(R)±1.96and the 95% CI for the relative risk is obtained by taking anti-
logarithms.

In the example given in Table 21.2, the relative risk is estimated as0.30/0.45=0.667 andloge(R)=−0.405The
SE[log (R)] is estimated as √{[210/(90 × 300)] + [165/(135 × 300)]} = 0.109, and the 95% CI for log (R) is given by
−0.405 + 1.96(0.109), i.e. (−0.619, −0.191). Taking anti-logarithms, the 95% CI for the relative risk is (0.538, 0.826).

4.4. Trend test for proportions

Sometimes, it is of interest to examine whether there is a trend in a series of proportions associated with different
levels of some underlying characteristic. For example, consider the proportion of leprosy patients who report regularly
to collect their monthly drug supply from a clinic when the accessibility of the clinic is rated as very poor, poor, fair,
or good (Table 21.3).

A ‘score’ (x ) is assigned for each kind of clinic, of which the value relates to the level of accessibility. For example,
‘0’ has been assigned to those with ‘very poor’ accessibility and ‘3’ to those with ‘good’ accessibility. A test for the
trend in the proportions a1/n1, a2/n2, a3/n3, and a4/n4is provided by testing, as a chi-squared with one df, the
expression:

χ2=N[(NΣaixi)−(AΣnixi)]2/{A(N−A)[(NΣnixi2)−(Σnixi)2]} (21.5).

For example, suppose the data are as shown in Table 21.3 (the respective percentages of regular attenders in the four
rows are 20%, 30%, 50%, and 60%). The value of χ2is:

150[(150×125)−(63×245)]2/{63×87[(150×555)−2452]}=12.95

which is highly significant (p = 0.0003), based on a χ2test with one df. It may be concluded therefore that there is
strong evidence that the regularity of drug collection increases with the accessibility of the clinic.

e

e e

i
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5. Analysis of rates

5.1. Risks, rates, and person-time-at-risk

The terms ‘risk’ and ‘rate’ are often used rather loosely and interchangeably to describe the frequencies of events in
epidemiological studies. Usually, this is of no great consequence, but, in some circumstances, the distinction is
important and, in particular, may affect the way in which a study is analysed. A risk is essentially a proportion, or
equivalently a probability. The numerator consists of the number of individuals who experience the event of interest
(say, develop the disease) in a defined period. The denominator consists of the total number of individuals who were
followed for the defined period, some of whom experienced the event of interest (for example, developed the disease)
and the remainder of whom did not (ignoring, for the moment, complications that might arise if some individuals are
lost to follow-up). A rate takes into account both the number of persons at risk and also the duration of observation
for each person. In the simplest case, the numerator is the number of individuals who experience the event of interest
during the study period (i.e. the same as the numerator for a risk), but the denominator is expressed as the person-time
(for example, person-years or person-days) at risk for the individuals in the study.

For example, if 120 persons are observed for 3 years and 40 of them die at some time during the period, and none are
otherwise lost to follow-up, the risk of death over the 3 years is estimated as 40/120 = 0.33, whereas the death rate is
estimated as 40/(the number of person-years-at-risk). The denominator for the rate calculation is (80 × 3) + (40 × 1.5)
= 300 years, as 80 persons were ‘at risk’ for the full 3-year period, and 40 were at risk until they died (which, on
average, is likely to have been about halfway through the follow-up period if deaths occurred uniformly over the
period). Thus, the death rate is 40/300 = 0.133 per person-year-at-risk (which is not the same as the risk of death
during the 3 years of 0.33 divided by 3).

Mathematically, it is straightforward to convert rates to risks, and vice versa, if it may be assumed that the rates are
constant over time (see, for example, Breslow and Day, 1980). The reason for discussing the distinction in this chapter
is that different methods of statistical analysis are appropriate for risks and rates. As mentioned in Section 4, risks are
proportions, and thus the methods described in that section are applicable. Modifications of these methods are
necessary for the analysis of rates.

Rates are useful if different individuals in a study have been followed for different periods. This may arise if
recruitment to the study population is staggered over time, but follow-up is to a common date, or if individuals are
lost to follow-up at different times (for example, because of death, migration, or non-co-operation).

An example of the computation of person-years-at-risk in a large study is given in Table 21.4. In this study, a census
was done of the study population on the 1 November each year, and the number of persons remaining at risk was
ascertained.

Alternatively, the exact period of follow-up may be known for each subject in the study (if the dates of entry and exit
are available for each person), in which case these periods would be summed to derive the total person-years-at-risk.

Another situation in which rates, rather than risks, may be more appropriate is when each individual may be at risk of
experiencing the event of interest more than once during the study period (for example, an episode of diarrhoea). The
incidence rate in the study population would be calculated as the total number of events (for example, episodes of
diarrhoea) for those in the study divided by the total person-time-at-risk (which, in this case, would not end at the first
episode). Responses such as this can always be converted to a risk by expressing the outcome as the proportion of
individuals who experience more than a specified number of events (for example, one or more episodes of diarrhoea),
but, in doing this, some information is lost, with a consequent reduction in the power of the study to detect a
difference between groups being compared. The analysis of rate data of this kind (where one individual may
experience more than one episode of disease) is not straightforward, as the approach depends upon whether it is
reasonable to assume that, once an individual has experienced one event, he or she is no more or less likely to
experience another event than anyone else in the same intervention group (say, of the same age and sex). Usually, it is
not reasonable to make this assumption, as it is frequently found that susceptibility and exposure to disease vary
considerably between individuals in ways that cannot be predicted. A simple way out of the analytical problem is to
classify individuals, according to whether or not they experienced any events or not. If this is done, the data can either
be analysed as a proportion (using the methods given in Section 4) or the individual can be excluded from follow-up
for purposes of analysis, from the time the first event occurs (i.e. they are not counted as ‘at risk’ after the first event),
and the methods given in Sections 5.2 to 5.5 can be used.

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-4/?report=objectonly
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5.2. Confidence interval for a rate

Suppose e is the number of events that occurred during the study period, and the total person-years-at-risk during the
period was y. (Note that the period does not have to be measured in ‘years’; it could be in, for example, days, weeks,
or months.) The event rate (r) is estimated by e/y. For example, suppose 5000 patients who have received a new
tuberculosis (TB) vaccine have been followed for 5 years, but, due to losses in follow-up, the total person-years-at-
risk is 20 000 (instead of the nearly 25 000 that would have been appropriate if every patient—except the cases whose
follow-up period would be counted up to the time they developed TB—had been followed up throughout the 5 years).
If the number of new cases of TB that were detected during the follow-up was 80, the estimated incidence rate of TB
would be 80/20 000 = 0.0040/person-year, i.e. four per thousand person-years.

The standard error of a rate (r) is, √(r/y) and the approximate 95% CI for the rate is given by r 1.96√(r/y). Thus, in the
TB example, the 95% CI for the TB incidence rate is:

0.0040±1.96√(0.0040/20 000)=0.0040±0.0009,

i.e. 3.1–4.9 per thousand person-years.

5.3. Difference between two rates

Suppose it is required to compare event rates in two groups, and the number of events and the person-years-at-risk in
the two groups are as in Table 21.5.

The standard error of the difference between two rates is given by:√(r1/y1+r2y2) and the 95% CI on the difference is
given by(r1−r2)±1.96SE.

Thus, for the example, the 95% CI on the rate difference of the vaccinated, compared to the unvaccinated, group in
Table 21.5 is:

(0.0041−0.0084)±1.96√[(0.0041/19 470)+(0.0084/19 030)]=−0.0043±0.0016            =−0.0059 to −0.0027

i.e. −5.9 to −2.7/1000/year.

To perform a statistical test, it is necessary to calculate a test statistic, which may be done along similar lines to those
described in Section 4.2. If e  is the observed number of events among those in group 1 (say, those vaccinated), then:

Expected value of

e1=E(e1)=ey1/y (21.7).

Variance of

e1=V(e1)=ey1y2/y2 (21.8).

Then:

χ2=(|e1−E(e1)|−0.5)2/V(e1) (21.9).

And the value of χ2is looked up in tables of the χ2distribution, with one df, to assess the p-value.

In the example shown in Table 21.5, e1=80E(e1)=240×19  470/38  500=121.37 andV(e1)=
(240×19  470)/(38  500×38  500)=59.99

Thus, χ2=(|80−121.37|−0.5)2/59.99=27.84 and p < 0.000001, indicating that the difference is highly unlikely to have
arisen by chance.

5.4. Ratio of two rates

1
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In some situations, the ratio of two rates will be of greater interest than their difference. For example, vaccine efficacy
is usually calculated from a ratio. The test of the null hypothesis is identical in the two situations (i.e. the difference is
zero, or the ratio is unity), but the CIs are calculated in a different way.

The ratio of two rates, sometimes called the relative risk, but more correctly called the relative rate, is(e1/y1)/(e2/y2),
and the standard error of the logarithm of this ratio is approximated by√[(1/e1)+(1/e2)]. In the example given in Table
21.5, the ratio of the rates is 0.489 (corresponding to a vaccine efficacy of 51.1%), and the standard error of the
logarithm of the ratio is√[(1/80)+(1/160)]=0.1369The 95% CI of the logarithm of the ratio is given
by−0.715±1.96(0.1369) i.e. −0.983 to −0.447. Thus, the 95% CI for the ratio of the two rates is 0.37–0.64 (or the 95%
CI on the estimate of vaccine efficacy is from 36% to 63%, i.e. 100(1−0.64) to 100(1−0.37).

5.5. Trend test for rates

Directly analogous to the trend test for proportions described in Section 4.4, there is a similar test for a trend in rates.
Suppose data have been collected from the time since the start of a study to the first attack of malaria among children
of different ages, and it is of interest to test whether the attack rate declines with age. The data may be summarized, as
in Table 21.6.

A ‘score’ has been assigned to each group. In the example, the scores have been taken as the mid points of the
different age groups (for example, those aged 1–2 years range in age from 1.00 to 2.99 years).

A test for trend in the attack rates in the three age groupse1/y1e2/y2ande3/y3 is provided by testing the expression,
asχ2with one df:

χ2={[Σeixi−[(e/y) Σyixi]}2/{(e/y2)[yΣyixi2−(Σyixi)2]} (21.10).

For example, suppose the malaria attack rates (attacks/weeks-at-risk) were as in Table 21.6, then the value of χ2is:

{205−[(60/500)1975]}2/{(60×5002)  [(500×9537.5)−19752]}=4.91

which has an associated p-value of 0.03, and thus there are grounds for believing that, in the study area, the risk of a
malaria attack declined with increasing age.

6. Analysis of mean values

6.1. Confidence interval for a mean

If the outcome measure is taken as the mean x¯ of a sample of n observations, for example, the weights of a sample of
newborn infants, the standard error of the mean is given by σ/√nwhere σ is the standard deviation of the variable
measured (for example, weights of newborn infants) in the population from which the sample of n observations was
taken. The 95% CI on the mean is given by x¯±1.96(σ/√n).

In general, σ (the standard deviation in the population) will not be known but must be estimated, based on the n
observations in the sample. Thus, the estimate of σ is subject to sampling error also, and this must be taken into
account in the computation of the CI on the mean. This is done by using a multiplying factor in the CI calculation
taken from tables of the t-distribution, rather than from tables of the ‘Normal’ distribution, on which Table 21.1 was
based. The value of the multiplying factor will depend on the size of the sample from which the standard deviation
was estimated. For example, for 95% CIs, appropriate multiplying factors for sample sizes of 10, 20, 50, and 100 are
2.26, 2.09, 2.01, and 1.98, respectively. (Note that, in using the tables, the values of t are given for different ‘degrees
of freedom’. In the situation considered here, the degrees of freedom correspond to the sample size minus one, i.e. n −
1.) If the sample size is 30 or more, little error is introduced by using the value of 1.96 derived from the normal
distribution when calculating 95% CI, rather than the appropriate t-value.

If the estimate of the standard deviation, based on the sample, is s, the 95% CI on the mean is given byx¯±t(s/√n) For
example, if the mean birthweight of 25 infants was 3.10 kg and the standard deviation of the weights in the sample
was 0.90 kg, the 95% CI would be given by3.10±2.06(0.90/√25)i.e. 2.73 − 3.47 kg, where the multiplying factor 2.06
is taken from a table of the t-distribution corresponding to 24 df.

6.2. Difference between two means
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In a trial, it is very common to want to compare the means of observations in different groups, for example, to
compare observations from an intervention group with those from a control group. Suppose that two groups are to be
compared and the means are x¯1andx¯2respectively, and the corresponding standard deviations observed in the
groups are s  and s . The standard error of the difference between the means is given by √{s[(1/n1)+(1/n2)])}, where s
is the pooled estimate of the standard deviation, based on the observations from the two groups. s is estimated as:

s=√{[(n1−1)s12+(n2−1)s22]/(n1+n2−2)}.

The 95% CI for the difference between the means is given by:

(x¯1−x¯2)±ts√[(1/n1)+(1/n2)]

where t is taken from a table of the t-distribution with (n1+n2−2) df.

For example, suppose erythrocyte sedimentation rates (ESRs) were measured in an intervention group and in a control
group, as shown in Table 21.7. The standard deviation s may be calculated as √{[(9×2.412)+
(11×2.542)]/(10+12−2)}=2.48 and the 95% CI on the difference is given by:

(9.7−6.5)±{(2.09×2.48)√[1/10)+(1/12)]}=3.2±2.2=1.0−5.4.

To test the null hypothesis that there is no true difference in the mean ESRs between the two groups, a statistical test
must be performed. A test statistic is calculated to assess the probability of the observed results (or more extreme) if
there really is no difference between the two groups. The difference of the means divided by the standard error of the
difference gives a value of a test statistic that may be looked up in tables of the t-distribution with(n1+n2−2)df.

For the example in Table 21.7, the test statistic=(x¯1−x¯2)/{s√[(1/n1)+(1/n2)]}=3.01 The associated p-value is
0.0035, i.e. if there really is no effect of the intervention on ESRs, the chance of observing a difference in the means
as large or larger than that in the study is 0.35% (i.e. not impossible, but rather unlikely!).

6.3. Analysis of more than two groups

If a study involves the comparison of observations in more than two groups, it is necessary to generalize the methods
given in Section 6.2. This is straightforward but is beyond the scope of this book, and the reader is referred to
standard statistical texts, such as that by Armitage and Berry (1987) or Kirkwood and Sterne (2003), for details. The
relevant sections to which to refer are those on ‘one-way analysis of variance’.

Of course, it is always possible to use the methods given in Section 6.2 to compare groups, just two at a time. This is a
reasonable approach, but some caution must be exercised when interpreting the findings, as the chances of finding at
least one pair to be significantly different (for example, p < 0.05) may be substantial, even if there are, in truth, no
differences between the groups. To illustrate this, suppose six groups are being compared. In an analysis of variance,
the question is asked: ‘Considered as a whole, is the variation between the means observed in the six groups more
than might be expected to arise by chance if there were no differences in the true means?’. This question may be
answered with one statistical test in an analysis of variance, and the null hypothesis may, or may not, be rejected on
the basis of this one test. Suppose, however, it was decided to examine all possible pairs of comparisons of the groups.
There are 15 possible pairs, and, if a t-test was done on each pair, there is a reasonable chance that at least one
comparison would be found to be ‘p < 0.05’ by chance alone, because of the number of different tests that had been
performed. There are ways of adjusting the significance levels to allow for this effect, and the reader is referred to
standard texts again for a discussion of ‘the multiple comparison problem’.

7. Controlling for confounding variables

7.1. The nature of confounding variables

A risk factor for the disease under study that is differentially distributed among the groups receiving different
interventions in which the disease incidence is being compared is called a confounding factor. Unless the trial is very
small, confounding factors are not likely to bias the comparisons between intervention and control groups in
randomized trials, as the process of randomization ensures that any such factors, whether known or unknown, will be

1 2
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equally distributed in the different groups (apart from random variation). In studies in which those in the different
groups have not been allocated at random, the control of confounding factors is a critical component in the analysis.
For example, consider a comparative study of TB incidence in persons who received BCG in a routine vaccination
programme and those who were not vaccinated. BCG coverage is often higher in urban areas and, independently of
any effect of BCG, those living in urban areas also tend to have a higher incidence of TB because of overcrowding
and other environmental factors. In this instance, residential status (rural/urban) could be a confounding factor, and, if
it is not taken into account in the analyses, any protective effect of BCG against TB might be underestimated.
Consider the hypothetical situation depicted in Table 21.8, which shows the incidence of TB over a 10-year period in
BCG-vaccinated and unvaccinated individuals in urban and rural areas.

BCG coverage is appreciably higher in the urban population (80%) than in the rural population (50%). Also, in
unvaccinated persons, the incidence of TB is higher in the urban population (20 per thousand over 10 years) than in
the rural population (10 per thousand). In consequence, although BCG vaccine efficacy is 50% in both urban and rural
areas, the estimate obtained from a comparative study, in which the place of residence is ignored, is only 41%. This
difference is due to the confounding effect of the place of residence on the estimate of efficacy (the place of residence
being related to both the disease incidence and, independently, to the prevalence of vaccination).

7.2. Adjusting for confounding variables

A powerful way of removing the effect of a confounding variable is to restrict comparative analyses to individuals
who share a common level of the confounding variable and then to combine the results across the different levels in
such a way so as to avoid bias. Thus, in the example in Table 21.8, if the vaccine efficacy was first estimated
separately for rural and urban dwellers, and then the two estimates were to be combined, the estimate of efficacy
obtained (50%) would be free of the confounding bias of the place of residence. In general, to control for
confounding, the study population is divided into a number of strata. Within each stratum, individuals share a
common level of the confounding variable. Estimates of risk, rate or mean differences, or ratios are made within each
stratum, and the resulting estimates are then pooled in some way across strata, in order to obtain an overall measure of
the effect which is free of any confounding due to the variable on which the stratification was made. Such
stratification may be carried out on several confounding variables simultaneously (for example, age and sex).

If it is known, when a study is planned, that it will be necessary to allow for confounding variables in the analysis, it
is desirable to give consideration to this at the design stage, both in terms of the information which must be collected
and because it will require an increase in the required sample sizes (to achieve the desired statistical power, see
Chapter 5). Usually, the necessary increase in sample size to allow for confounding variables is not great (for
example, less than 20%), and often the information needed for these sample size calculations is not available before
the study starts anyway. Formal methods for calculating sample sizes, allowing for adjustment for confounding
variables, are given in Breslow and Day (1987).

7.3. Adjusting risks

7.3.1. Overall test of significance

After stratifying on the basis of the confounding variable(s), the analysis is conducted one stratum at a time, and then
the results are pooled. In the ith stratum, the data may be depicted, as shown in Table 21.9.

To test the hypothesis that the relative risk is 1 in all strata or equivalently that the risk difference is zero in each
stratum, a generalization of the method given in Section 4.2 may be used. The statistical test is known as the Mantel–
Haenszel test.

In the ith stratum:

Expected value of

ai=E(ai)=m1in1i/Ni (21.11).

.

Variance of
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ai=V(ai)=n1in2im1im2i/[Ni2(Ni−1)] (21.12).

.

An overall test of the null hypothesis that the relative risk is unity is given by calculating χ2=(|Σai−ΣE(ai)|−0.5)2/
ΣV(ai) where the summation is over all strata, which may be tested for statistical significance using tables of the chi-
squared distribution with one df.

The calculations are illustrated in Table 21.10, with data on disease incidence rates in vaccinated and unvaccinated
individuals in three areas—urban, semi-urban, and rural.

Σai=530; ΣE(ai)=738; ΣV(ai)=284.21.

Thus:

χ2=(|530−738]−0.5)2/284.21=151.49.

Thus, there is very strong evidence against the null hypothesis, as p < 0.000001 (from tables of the chi-squared
distribution).

7.3.2. Pooled estimate of risk difference

If it is considered that the risk difference (rather than the risk ratio) is likely to be constant across different strata, a
pooled estimate of the common risk difference may be required. This is obtained by taking a weighted average of the
risk differences in each stratum, weighting each by the inverse of its variance (as this may be shown to give the ‘best’
estimate of the common risk difference).

In the ith stratum, the risk difference is:

di=p1i−p2i=(ai/n1i)−(ci/n2i)

and the variance of the risk difference is:

V(di)={pi(1−pi)[(1/n1i)+(1/n2i)]}

(as given also in Section 4.2), where:

pi=[n1ip1i+n2ip2i]/(n1i+n2i)=(ai+ci)/(n1i+n2i).

Now, let wi=1/V(di).

The pooled estimate of the common risk difference is given by d=Σwidi/Σwi For the data in the example given in
Table 21.10, the computations for the common risk difference are shown in Table 21.11.

Pooled estimate of the common risk difference d=Σwidi/Σwi=−0.0083

7.3.3. Pooled estimate of risk ratio

A pooled estimate of the common risk ratio R across strata may be obtained, using the following formulae.

In the ith stratum, the risk ratio is given by:

Ri=(ai/n1i)/(ci/n2i)=ain2i/(cin1i) (21.13).

A pooled estimate across all strata is given by:

R=Σ(ain2i/Ni)/Σ(cin1i/Ni).
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Thus, for the example in Table 21.10:

R={[(160)(4000)/20 000]+(170)(16 000)/40 000] +[(200)(40 000)/80 000]}/{[(80)(16 000)/20 000]+[(240)
(24 000)/40 000]+[(400)(40 000)/80 000]}=200/408=0.49.

7.3.4. Confidence intervals

The easiest way of obtaining CIs on the estimates of the common risk difference or the common risk ratio is to use the
‘test-based’ method (Miettinen, 1976).

The approximate 95% CI on the risk difference is given by:

d(1±1.96/√χ2) (21.15).

Thus, in the example in Tables 21.10 and 21.11, the confidence limits are:

−0.0083(1±1.96/√151.49)=−0.0096 to −0.0070.

The 95% CI on the logarithm of the relative risk is given by:

logeR(1±1.96/√χ2) (21.16).

In the example, the confidence limits are:

loge(0.49)(1±1.96/√151.49)=−0.8269 to −0.5998.

And thus the confidence limits on the relative risk are 0.44 to 0.55.

7.4. Adjusting rates

The computations for adjusting rates are very similar to those for adjusting risks and involve only some changes to the
formulae given in Section 7.3.

Suppose the results observed in the ith stratum are as shown in Table 21.12.

7.4.1. Overall test of significance

In the ith stratum, e1i is the number of individuals who developed disease in group 1.

Expected value of

e1i=E(e1i)=eiy1i/yi (21.17).

Variance of

e1i=V(e1i)=eiy1iy2i/yi2 (21.18).

An overall test of significance (that the common rate ratio is unity or the common rate difference is zero) is given by:

χ2=(|Σe1i−ΣE(e1i)|−0.5)2/ΣV(e1i) (21.19)

where the summation is over all strata.

The value calculated should be looked up in tables of the chi-squared distribution with one df.

7.4.2. Pooled estimate of rate difference

In the ith stratum, the rate difference is:
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di=r1i−r2i=(eii/y1i)−(e2i/y2i).

Its estimated variance is:

V(di)=(r1i/y1i+r2i/y2i).

Letwi=1/V(di)then the estimate of the common rate difference across all strata is given by:

d=∑widi/∑wi.

7.4.3. Pooled estimate of rate ratio

In the ith stratum, the rate ratio is:

Ri=r1i/r2i=(eii/y1i)/(e2i/y2i)=e1iy2i/(e2iy1i).

A pooled estimate of the common rate ratio is given by:

R=Σ(e1iy2i/yi)/Σ(e2iy1i/yi) (21.20).

7.4.4. Confidence intervals

The 95% CI on the common rate difference is given by:

d(1±1.96/√χ2) (21.21).

The 95% CI on the logarithm of the common rate ratio is given by:

logeR(1±1.96/√χ2) (21.22).

Example: In Table 21.13, the numerical computations are illustrated, as before, with data on the disease incidence in
vaccinated and unvaccinated individuals in three areas: urban, semi-urban, and rural.

Overall test of significance:

χ2=(|Σe1i−ΣE(e1i)|−0.5)2/ΣV(e1i) (21.23)

=(|245−359|−0.5)2/138.40=93.08(p<0.000001).

The estimation of the common rate difference is shown in Table 21.14

d=∑widi/∑wi=−0.0066.

The 95% CI on the common rate difference is:

d(1±1.96/√χ2)=−0.0066(1±1.96/√93.08) (21.24)

=−0.0079 to −0.0053.

The estimate of the common rate ratio is:

 R=Σ(e1iy2i/yi)/Σ(e2iy1iyi)={[(80)(2000)/10 000]+[(85)(8000)/20 000]+[(80)(20 000)/40 000]}/{[(40)
(8000)/10 000]+[(120)(12 000)/20 000]+    [(200)(20  000)/40 000]}=90/204=0.44.

The 95% confidence limits on the logarithm of the common rate ratio is:

logeR(1±1.96/√χ2)=loge(0.44)(1±1.96/√93.08)=−0.988 to −0.654.
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Taking the anti-logarithm, the 95% confidence limits on the common rate ratio are 0.37 to 0.52.

7.5. Adjusting means

If the outcome variable is a quantitative measure, other than a risk or rate, adjustment for the effects of a confounding
variable involves performing a stratified t-test.

A numerical example is given in Table 21.15 where the comparison is between subjects using mosquito nets
(intervention group) and those not using them (control group), and the outcome measure (x) is the number of episodes
of malaria over a period of 1 year. In this example, age is considered as the confounding variable, and the
stratification has been made by dividing the study subjects into three age groups. The size of each subgroup has been
made small to simplify the computations for illustrative purposes.

The data may be represented algebraically for those in the ith stratum, as shown in Table 21.16.

An estimate of the common difference in response between the intervention and control groups is obtained by
calculating a weighted average of the differences within each stratum:

d=Σwidi/Σwi

wherewi=[n1in2i/(n1i+n2i)]

Differencedi=x¯1−x¯2.

Thus, in the example:

d={[(−0.75)32/12]+[(−0.45)132/23]+[(−0.20)50/15]}/{(32/12)+(132/23)+(50/15)}=−5.25/11.75=−0.45.

An overall test of significance is obtained by calculating a test statistic as:

Σwidi/[s√Σwi]

wheres=√{[∑(n1i−1)s1i2 +∑(n2i−1)s2i2]/∑(n1i+n2i−2)} and the value of the test statistic can be compared with
tables of the t-distribution with∑(n1i+n2i−2)df.

In the example:

s=√(23.0265/44)=0.7234.

The test statistic (44 df) is:

−5.25[0.7234×√(11.74)]=−2.12.

The absolute value is larger than 2.02, which is the tabulated 5% value for t with 44 df. Thus, there is statistically
significant evidence regarding the efficacy of intervention; the reduction in the average number of episodes of malaria
is estimated as 0.45 per child per year. The 95% confidence limits on the difference are given by:

(Σwidi/Σwi)±ts/Σwi (21.26)

where t is taken from tables of the t-distribution for 95% confidence limits with∑(n1i+n2i−2)df.

Thus, the 95% confidence limits are:

−0.45±2.02/(0.723)/√(11.74)=0.88 to−0.02 episodes/year/child.

If it is thought that the intervention is likely to affect the response measured in a relative, rather than an absolute,
fashion (i.e. a constant percentage reduction in the number of malaria attacks, rather than a constant absolute
reduction in the number of malaria attacks), then it would be appropriate to transform the data initially by taking
logarithms of the number of attacks (or, say, log (number of attacks + 0.1) to avoid zero numbers) and to perform the
calculation on the transformed values.

.

e
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8. Analyses when communities have been randomized
In some intervention studies, communities, rather than individuals, are used as the unit of randomization. If this has
been done, it is inappropriate to base analyses on responses of individuals, ignoring the fact that randomization was
over larger units. An appropriate method of analysis would be to summarize the response in each sampling unit by a
single value and analyse these summary values as though they were individual values.

The analysis of such trials, often called ‘cluster randomized trials’, is not straightforward, and only simple methods
for performing statistical tests are given here. A comprehensive discussion of the design and analysis of such trials is
given in Hayes and Moulton (2009).

8.1. Calculation of standardized responses

Often, trials in which communities have been randomized suffer from problems with confounding variables. If the
number of units randomized is large, confounding variables are likely to balance out between groups, but, if the
number of units is small (as may be the case when communities have been randomized, even though the number of
individuals in each community is large), confounding may be a potentially serious problem, and some adjustment
should be made in the analysis. One method of doing this is by standardization.

Within each community, the sampled population is divided into strata on the basis of the confounding variable(s) (for
example, age and sex groups). The average value of the outcome measure is computed for those in each stratum (for
example, a disease incidence rate). A weighted average of the rates in the different strata is then computed to give a
single ‘standardized’ measure for the community, the weights being based on some ‘standard’ population. The same
standard population is used for each community, and thus the standardized measures for each community are not
biased by the differential composition of each community, with respect to the confounding variable that is being
standardized for.

This method is called the ‘direct’ method of standardization. If the number of individuals in some strata is small, it
may be better to use the ‘indirect’ method, and details of both are given (see Armitage and Berry (1987) for a more
detailed discussion of these methods).

Consider a community in which disease risks p  have been measured for individuals in k strata (for example, age
groups). This may be represented in Table 21.17. Also shown are the corresponding data for a ‘standard’ population.
For example, this might be chosen as the combined data for all communities in the study.

The directly standardized disease risk for the community (standardized to the standard population) is given by:
(∑piNi)/∑Ni

The indirectly standardized disease risk for the community is given by: [∑ai/(∑niPi)]/(A/N)

Having calculated standardized values for each community, the means of the standardized values for the intervention
communities may be compared with those for the control communities, using a simple t-test (see Section 6.2).

It is usually safer, however, to perform a non-parametric test if the assumptions underlying the t-test are in any doubt
(Armitage and Berry, 1987)), as it may be impossible to verify the assumptions if the study involves a small number
of communities.

8.2. Non-parametric rank sum test

Suppose there are n  communities in one group and n  in the other(n1≤n2)and a summary response has been derived
for each community. To perform a non-parametric test, consider all the(n1+n2)observations together, and rank them,
giving a rank of 1 to the smallest value and(n1+n2)to the highest. Tied ranks are allotted the mid rank of the group.
Let T  = sum of the ranks in group 1 with n  observations. Under the null hypothesis, the expectation of
T1=n1(n1+n2+1)/2. Then calculate:

T1=T1,

if T  is less than or equal to the expected value

T1=n1(n1+n2+1)−T1,

i

1 2

1 1

1

1

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-17/?report=objectonly
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if T  is more than its expected value.

T  may be compared with tabulated critical values (see Table A8 of Armitage and Berry, 1987) to determine the
statistical significance.

Consider the example shown in Table 21.18 in which age-standardized leprosy prevalence rates are compared in 12
‘intervention’ villages and ten ‘control’ villages.

The expected value of T1=n1(n1+n2+1)/2=10(10+12+1)/2=115. As T  is greater than its expectation, T  is
10(10+12+1)−142.5=87.5The critical value of T  at the 5% level of significance is 84 (from tables in Armitage and
Berry, 1987). As T  is greater than the critical value, it is concluded that the intervention has not had a statistically
significant effect (the average prevalence was 6.5 per thousand in intervention villages, and 8.7 per thousand in
control villages).

8.3. Tests on paired data

In some study designs, communities may be ‘paired’ on the basis of similarity, with respect to confounding variables
and baseline disease prevalence or incidence rates. Within each pair of communities, one receives the intervention and
the other serves as the control. If this has been done, the analysis should take the pairing into account.

First, standardized response rates are computed for each community (as discussed in Section 8.1), and then the
standardized response rates are compared using a paired t-test (Armitage and Berry, 1987) or a non-parametric test.

To perform a paired t-test for n pairs of communities, suppose d  is the difference in outcome measured between the
intervention and control unit for the ith pair. Calculate a test statistic(Σdi/n)/(s/√n)where s is the standard deviation of
the n differences. This value of the test statistic may be compared to tabulated values of the t-distribution with (n − 1)
df.

Consider the data shown in Table 21.19, which shows leprosy prevalence rates in ten pairs of communities.

The mean differenced=−19/10=−1.9and the standard deviation of the difference (s) is 2.23. Thus, the test
statistic=−1.9/(2.23/√10)=−2.69with 9 df. From tables of the t-distribution, p is <0.05, and it may be concluded that
the prevalence of leprosy is significantly lower in the intervention villages.

Alternatively, a non-parametric test may be preferred. In this instance, the appropriate such test is Wilcoxon’s signed
rank test.

The differences between each pair of villages are arranged in ascending order of magnitude of the absolute value of
the differences (i.e. ignoring the sign) and given ranks 1 to n; zero values are excluded from analysis. Any group of
tied ranks is allotted the mid rank of the group. Let:

T+ = sum of ranks of positive differences

T− = sum of ranks of negative differences.

The smaller of the two (T+ and T−) is compared with the tabulated critical value (see Table A9 of Armitage and
Berry, 1987). If it is lower than the tabulated value, it is concluded that there is a significant difference. For the data in
the table, T+=4.5and T−=40.5n=9 (excluding one zero difference). The tabulated critical 5% value is 5.
SinceT+=4.5is less than 5, it is concluded that the difference is significant at the 5% level.

9. Prevented fraction of disease
The objective of most field trials is to measure the effect of an intervention in reducing disease rates. The results of
such studies may be used to estimate the impact that an intervention might have on disease rates if it was introduced
into a public health programme. In such circumstances, the overall effect is much influenced by the coverage
achieved by the programme.

The prevented fraction among individuals exposed to an intervention measure is defined as the percentage of the
disease incidence in such individuals that has been prevented due to having received the intervention. For example, if
the efficacy of BCG vaccination against TB is 60%, among persons who receive BCG vaccination, 60% of the TB
cases that would have developed otherwise have been prevented by the vaccination. For vaccine studies, the

1

1

1 1

1

1

i

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-18/?report=objectonly
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prevented fraction is directly equivalent to the vaccine efficacy, but the former term may be used for interventions
other than vaccines.

The prevented fraction is computed by subtracting the disease risk in individuals with the intervention measure (for
example, an anti-leprosy vaccine) from the disease risk in individuals without the intervention, and expressing the
difference as a proportion of the latter. For example, if the annual incidence of leprosy is 2.8 per thousand in the
vaccinated and 4.2 in the unvaccinated, the prevented fraction is equal to [(4.2−2.8)/4.2]=0.33(or 33%).

If the relative risk (R) (of disease in those who receive the intervention, compared to those who do not) is known, the
prevented fraction may be obtained by calculating (1−R)For example, if the relative risk of developing malaria in
homes where mosquito-nets are used is a quarter of that in homes where they are not used, the prevented fraction is
equal to1−0.25, i.e. 75%.

The population prevented fraction is defined as the proportion of cases of the disease in the total population that have
been prevented by the intervention. If the relative risk (R) and the proportion of individuals in the population who
receive the intervention measure (P) are known, the population prevented fraction is obtained by calculating
P(1−R)Thus, the extent of reduction possible in disease incidence in the total population, if all individuals were to
receive the intervention measure(P=1)is (1−R)

Consider a situation in which the annual incidence of TB is 2.0 per thousand in those who do not receive BCG
vaccination and 0.8 per thousand in those who do, i.e. the relative risk in those vaccinated is0.8/2.0=0.4Table 21.20
shows the fraction of all cases prevented by the intervention, according to the disease incidence in the total population
and the vaccination coverage.
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Tables

Table 21.1 Multiplying factors for calculating CIs, based on the Normal distribution

CI (%) Multiplying factor

90 1.64

95 1.96

99 2.58

99.9 3.29
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Table 21.2 Comparison of two proportions

Group Outcome Total Proportion with outcome

Yes No

1 a (90) b (210) n  (300) p  = a/n  (0.30)

2 c (135) d (165) n  (300) p  = c/n  (0.45)

Total m  (225) m  (375) N (600)

1 1 1

2 2 2

1 2



22-4-2020 Methods of analysis - Field Trials of Health Interventions - NCBI Bookshelf

https://www.ncbi.nlm.nih.gov/books/NBK305516/?report=printable 20/37

Table 21.3 Regularity of collection of drugs by leprosy patients, according to accessibility of clinic

Accessibility of clinic Collection of drugs Total ‘Score’ x

Regular Not regular

Very poor a  (5) n  – a  (20) n  (25) 0

Poor a  (12) n – a  (28) n  (40) 1

Fair a  (25) n – a  (25) n  (50) 2

Good a  (21) n – a  (14) n  (35) 3

Total A (63) N – A (87) N (150)

i

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4
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Table 21.4 Example of the computation of person-years-at-risk in a large study

Date No. of persons under
observation

Average of successive
numbers

Years of
observation

Person-
years

(a) (b) (c) (d) (c × d)

Start
date

1 November
2004

10140

1 November
2005

9145 9642.5 1 9642.5

1 November
2006

8232 8688.5 1 8688.5

1 November
2007

7389 7810.5 1 7810.5

1 November
2008

6281 6835.0 1 6835.0

End
date

1 April 2009 5779 6030.0 5/12 2512.5

Total 35489.0

If 10140 persons were alive on 1 November 2004, and 9145 of them were known to be alive on 1 November 2005, and if losses to
follow-up occurred evenly throughout the year, there would have been, on average, (10140 + 9145)/2 = 9642.5 persons at risk on each
day during the first year, hence a total of 9642.5 person-years.

*

*
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Table 21.5 TB incidence rates in vaccinated and unvaccinated groups

Number of events (new TB
cases)

Person-years-at-risk
(pyar)

Event rate (TB cases per 1000
pyar)

Vaccinated e  (80) y  (19470) r  (4.1)

Not
vaccinated

e  (160) y  (19030) r  (8.4)

Total e (240) y (38500) r

1 1 1

2 2 2
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Table 21.6 Malaria attack rates in children of different ages

Age of children (years) ‘Score’ x No. with malaria attack (e ) Child-weeks-at-risk (y ) Attack rate e /y

1–2 x  (= 2.0) e  (30) y  (200) 0.150

3–4 x  (= 4.0) e  (20) y  (150) 0.133

5–7 x  (= 6.5) e  (10) y  (150) 0.067

Total e (60) y (500) 0.120

i i i i i

1 1 1

2 2 2

3 3 3
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Table 21.7 ESR in an intervention and a control group

Intervention group (i = 1) Control group (i = 2)

Number of subjects (n ) 10 12

Mean ESR (x¯ )  9.7  6.5

Standard deviation (s )  2.41  2.54

i

i

i
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*

Table 21.8 TB incidence rates by BCG vaccination status and urban or rural residence

BCG vaccination status Urban Rural Both groups

Total popn. TB cases Total popn. TB cases Total popn. TB cases

No. /1000 No. /1000 No. /1000

Vaccinated 16000 160 10 40000 200 5 56000 360 6.4

Unvaccinated 4000 80 20 40000 400 10 44000 480 10.9

Vaccine efficacy 50% 50% 41%

Over a period of 10 years.

* * *
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Table 21.9 Comparison of proportions developing disease in two intervention groups for
individuals in the ith stratum

Intervention group Developed disease Did not develop disease Total

1 a b a  + b  = n

2 c d c  + d  = n

Total a  + c  = m b  + d  = m N

i i i i 1i

i i i i 2i

i i 1i i i 2i i
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Table 21.10 Disease incidence rates in urban, semi-urban, and rural areas, according to
vaccination status

Area (i ) Vaccinated Unvaccinated Grand total
(N )

E
(a )

V (a )

Cases
(a )

Non- cases
(b )

Total
(n )

Cases
(c )

Non-cases
(d )

Total
(n )

Urban (1) 160 15840 16000 80 3920 4000 20000 192 37.94

Semi-urban
(2)

170 23830 24000 240 15760 16000 40000 246 97.39

Rural (3) 200 39800 40000 400 39600 40000 80000 300 148.88

Total 530 79470 80000 720 59280 60000 140000 738 284.21

i i
i

i i 1i i i 2i
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Table 21.11 Computation of the common risk difference for the data in Table 21.10

Area p p d V (d ) w

Urban 0.0100 0.0200 −0.0100 3.705 × 10 270 × 10

Semi-urban 0.0071 0.0150 −0.0079 1.057 × 10 946 × 10

Rural 0.0050 0.0100 −0.0050 37.219 × 10 27 × 10

1i 2i i i i

–6 3

–6 3

–6 3

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-10/?report=objectonly
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Table 21.12 Disease rates in two intervention groups for individuals in the ith stratum

Intervention group Developed disease Person-years-at-risk

1 e y

2 e y

Total e y

1i 1i

2i 2i

i i
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Table 21.13 Disease incidence rates in urban, semi-urban, and rural areas, according to
vaccination status

Area (i) Vaccinated Unvaccinated Both groups E(e ) V(e )

Cases
(e )

Person-years
(y )

Cases
(e )

Person-years
(y )

Cases
(e )

Person-years
(y )

Urban (1) 80 8000 40 2000 120 10000 96 19.2

Semi-urban
(2)

85 12000 120 8000 205 20000 123 49.2

Rural (3) 80 20000 200 20000 280 40000 140 70.0

Total 245 40000 360 30000 605 70000 359 138.4

1i 1i

1i 1i 2i 2i i i
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Table 21.14 Computation of the common rate difference for the data in Table 21.13

Area (i ) r r Difference d V (d ) w  = 1/V (d )

Urban (1) 0.0100 0.0200 −0.0100 11.250 × 10 89 × 10

Semi-urban (2) 0.0071 0.0150 −0.0079 2.465 × 10 406 × 10

Rural (3) 0.0040 0.0100 −0.0060 0.700 × 10 1429 × 10

1i 2i i i i i

–6 3

–6 3

–6 3

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-13/?report=objectonly
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*

Table 21.15 Attacks of malaria in children of different ages in those using (intervention) and not
using (control) mosquito-nets

(Stratum) Age group Attacks of malaria/child (x) No. of children (n) Mean (x¯) Standard deviation (s)

(1) <2y I 1,0,2,3,1,2,1,0 8 1.25 1.0351

C 2,3,1,2 4 2.00 0.8165

(2) 2–3y I 0,1,1,2,1,1,0,2,2,1,1,0 12 1.00 0.7385

C 2,2,1,1,1,2,1,1,2,2,1 11 1.45 0.5222

(3) 4–5y I 1,0,1,1,1 5 0.80 0.4472

C 1,1,2,0,1,1,0,2,1,1 10 1.00 0.6667

I, intervention group; C, control group.

*

*
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Table 21.16 Algebraic representation of data in Table 21.15 for those in the ith stratum

Intervention group No. in group Mean Standard deviation

1 (I) n X¯1i s

2(C) n X¯2i s

1i 1i

2i 2i

https://www.ncbi.nlm.nih.gov/books/NBK305516/table/chapter-21-tableGroup-15/?report=objectonly
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Table 21.17 Disease risks in study community and in standard population in each of k strata

Stratum Study community Standard population

Total Cases Total Cases

No. Risk No. Risk

1 n a p N A P

2 n a p N A P

i n a p N A P

. . . . . . .

k n a p N A P

Total n a p N A P

1 1 1 1 1 1

2 2 2 2 2 2

i i i i i i

k k k k k k
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Table 21.18 Age-standardized leprosy prevalence rates and ranks in 12 ‘intervention’, and ten
‘control’, villages

Intervention villages Control villages

Prevalence rate/1000 Rank Prevalence rate/1000 Rank

3 1.5 10 18.5

9 15.5 13 22

8 12.5 6 7.5

6 7.5 11 21

5 5 10 18.5

5 5 7 9.5

7 9.5 8 12.5

3 1.5 8 12.5

10 18.5 5 5

8 12.5 9 15.5

10 18.5

4 3

Sum of ranks T  = 110.5 T  = 142.52 1
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Table 21.19 Leprosy prevalence rates in ten pairs of communities

Village pair no. Prevalence of leprosy (per thousand) Difference (d ) Rank (ignoring sign)

Intervention No Intervention

1 6 10 −4 8

2 9 13 −4 8

3 3 6 −3 5

4 12 11 +1 1.5

5 10 10 0

6 4 7 −3 5

7 7 8 −1 1.5

8 5 8 −3 5

9 7 5 +2 3

10 5 9 −4 8

i
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Table 21.20 Population prevented fraction, according to vaccination coverage and disease
incidence rate

Vaccination coverage
(%) (P × 100)

Disease incidence in total population (per
thousand) [0.8 P + 2.0(1 – P )]

Population prevented fraction (%)
[P (1 – R ) × 100]

0 2.00 0

20 1.76 12

40 1.52 24

60 1.28 36

80 1.04 48

100 0.80 60
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