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"And just as with food he does not seek simply the
larger share and nothing else, but rather the most
pleasant, so he seeks to enjoy not the longest period of

time, but the most pleasant. " .....

"For we recognize pleasure as theftrst good innate in

us, and from pleasure we begin every act of choice and

avoidance, and to pleasure we return again, using the

feeling as the standard by which we judge every good.

And since pleasure is the first good and natural to us,

for this very reason we do not choose every pleasure,

but sometimes we pass over many pleasures, when
greater discomfort accrues to us as the result of them;

and similarly we think many pains better than
pleasures. "....

"Every pleasure then because of its natural kinship to

us is a good, yet not every pleasure is to be chosen: even

as every pain is an evil, yet not all are always of a

nature to be avoided. Yet by a scale ofcomparison and

by consideration of advantages and disadvantages 1-1ie

must fonn our judgement on all these matters. "

Epicurus (341-270 BC). Letter to Menoeceus.

Citations from translation in: C. Baily. ([ 926), EpiCllrus.

The Extant Remains. Oxford Univ. Press. Oxford.
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PREFACE

The title "Changing Choices" of this monograph refers on the one hand to changed
choices of geometries for the multidimensional analyses of judgmental and preferential
choice data and on the other hand to dynamics of judgmental and preferential choice.
The monograph contains a coherent theory of judgment, preference, risk decision,
choice conflict, and their dynamics. As retrospectively discussed, the theory might
potentially unify diverse domain theories in psychology, despite the specific and remote
origin of the theory. Its origin lies in the analysis and modelling of road-user risks. In
orderto explain individual traffic-risk behaviour, we conceptually fannulated the frame
of reference theory of road-user risk in 1990. Now it is mathematically refOlIDulated
as the risk-adaptation theory in chapter 8. This traffic-risk theory is based on Helson's
adaptation-level theory and on conflicting, single-peaked preference functions for
traffic risks, whereby it describes an adaptively shifting indifference midrange of risks
and increasingly negative risk evaluations below and above that indifference range. The
mathematical formulation of that theory with a zero-valued risk-indifference range
requires a grounded, metric specification of judgmental and preferential functions of
stimulus dimensions with dynamic function parameters, because individual traffic
behaviour is just an example of human perception, judgment, and behavioural choice
dynamics. Motivated by the search for their metric foundation we have been able to
derive these metric function and parameter specifications from an integration of
existing theories in psychophysical, mathematical, and experimental psychology as well
as learning, motivation, and preference theories.

In chapter I the historical background of choice theory in philosophy,
psychology, and econometrics is discussed and further analysed in search of function
properties that may specify a metric choice theory. The qualitative function
requirements and some metric properties are mainly derived from adaptation-level
theory and learning theory. As outlined in chapter 2, these function properties and some
basics of psychophysics and response theory yield the necessary and sufficient
conditions for a metric theory of unidimensional judgment and preference. In that
chapter we specify the metric functions that transform stimulus scales to comparable
sensation scales and comparable sensation scales to response scales for magnitude
judgment and dissimilarity evaluation or to valence scales for (monotone or single
peaked) preference evaluation. In chapter 2, based on Bower's stimulus coding theory
and Teghtsoonian' s analyses of the relationships between Stevens' power exponent, the
Weber fraction, and employed stimulus range, we derive weighted and translated
Fechnerian sensation dimensions of intensity-comparable sensations that are invariant
under linear transfonnation of their underlying Fechnerdimensions. Their dimensional
weighing and translation depend both on the adaptation level of Helson's adaptation
level theory, while the weighing and translation for valence-comparable sensations
depend also on the ideal point of Coombs' unfolding theory. Exponential
transfonnations of comparable sensations define distinctly power-raised stimulus
fraction dimensions, whereby Steven's power exponents of subjective stimulus
magnitudes equal the weights of intensity-comparable sensation dimensions.
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The multidimensional exposition is given in chapters 3, 4 and 5. In chapter 3
we detennine the geometric relationship between stimulus and sensation spaces, where
hyperbolic spaces of comparable sensations correspond to power-raised, Euclidean
stimulus fraction spaces and flat spaces ofcomparable sensations to power-raised. non
Euclidean stimulus fraction spaces. Other stimulus geometries than Euclidean or non
Euclidean geometries are to be excluded by physical theory. It implies that Fechner's
and Stevens' psychophysics are not contradictory, but only other geometric
representations of the same. The derived response and valence functions ofcomparable
sensation dimensions define metric space transfonnations of sensation spaces to
response or valence spaces, whereby their permissible geometries also are detennined.
In chapter 4 it is shown that individual response spaces are open involution geometries
of power-raised, Euclidean or non-Euclidean stimulus fraction geometries. Chapter 5
demonstrates that monotone valences are defined by an ideal axis in individual
response spaces. while single-peaked valence spaces are open-hyperbolic. if the
stimulus space is EUclidean, or are open Finsler geometries, if the stimulus geometry
is non-Euclidean. The alternative transformations of stimulus or object-attribute spaces
to response or valence spaces depend on the three alternative stimulus geometries
(Euclidean, hyperbolic, or double-elliptic)and individual parameters, but all individual
evaluation spaces yield (conditionally) rotation-invariant. open geometries. The
distance metric of each open response geometry is the same as for the corresponding
stimulus geometry, but only the open-hyperbolic geometry of single-peaked valences
exhibits the same distance metric as their corresponding hyperbolic sensation spaces
(if the stimulus space is Euclidean). The other two single-peaked valence spaces are
open Finsler geometries that have absolute curvatures that decrease with increased
distances to the ideal point. while they correspond to flat sensation spaces (if the
stimulus space is non-Euclidean). The space transfonnations with individual parameters
of the common object space to individually different, open response or valence spaces
have far reaching consequences for the multidimensional analyses of (dis)similarities
or preferences and for cognition and preference theory, because the existing
multidimensional analyses generally assume an infinite and flat (Euclidean or
Minkowskian) geometry. The psychological evaluation spaces of the common object
space are open spaces that differ individually by finite projection transfonnations of
individually weighted sensation spaces from individually different perspectives. Open
response geometries also differ from the open geometries for single-peaked
preferences. These open evaluation spaces are characterised on the one hand by
common transformation types of a common object space, specifying the mathematical
theory of human cognition and preference, and on the other hand by individual
parameters for these transfonnations. Individual parameters represent meaningful
individual differences and are solvable by inverse transfonnations ofevaluation spaces
from several individuals to a common Euclidean object space that is either the stimulus
space or the logarithmic-transformed, non-Euclidean stimulus space as a Fechnerian
sensation space. New methods for the multidimensional analyses of individual
dissimilarity or preference data for each of the pennissible response or valence
geometries are described in chapters 4 and 5.
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The reader may skip chapter 6 without loss of understanding, because in that
chapter we only discuss as by-product of our theory the measurement-theoretical
implications. It is shown that recent developments in axiomatic measurement theory
(homogeneous measurement between singular points) are in line with the open
measurement spaces of responses and valences. We compare axiomatic measurement
theory with oursubstantive theory of metric-isomorphic stimulus space transformations
that specify distinctly transformed-extensive measurements for subjective stimulus
magnitudes, comparable sensations, responses, monotone valences, and single-peaked
valences. It is argued that comparable sensation spaces exhibit a kind of dimensional
invariance that is comparable to the dimensional invariance of physics, where the
exponential transfonnations of comparable sensation spaces define distinctly power
raised stimulus fraction spaces (for subjective stimulus magnitudes) with rotational
power-exponents. The metric transfonnations of comparable sensation spaces to open
response or valence spaces specify metrically isomorphic response or valence
measurements between a singular or distinct maximum and a singular minimum, which
enables the meaningful formulation of quantitative theory for judgment and choice, in
contrast to the interval scale measurement of multidimensional scaling or unfolding
analyses of (dis)similarily and preference data.

In chapter 7 we describe the consequences of the adaptation-level dependence
of perception, cognition. preference in order to specify the dynamic aspects of the
presented theory and also compare our theory predictions with some empirical results
in the psychological research literature. Our theory provides an insightful explanation
and integrative theory of the differences between the optical and visual spaces by the
dimensional adaptation-level dependence of the three-dimensional involution of the
Euclidean optical space to the open-Euclidean response space of visual perception.
Also the dynamic aspects ofjudgment and preference are caused by the dependence of
individual adaptation levels on previous and ongoing stimulation andlor by the task
and context-dependent selection of cognitive reference levels from memory. The
judgmental and preferential choice dynamics are mathematically specified and their
predictions are compared with empirical research on: I) multidimensional scaling
(MDS) analyses of (dis)similarity data, 2) MDS-based models of confusion or
categorisation probabilities, and 3) risky choice probability models. We show that
intransitive and/or asymmetric (dis)similarities and intransitive preferences are
explained and consistently predicted by stimulus- and/or task-dependent shifts of
adaptation level. It specifies a dynamic relativity theory for perception,judgment, and
preference. Also some empirical results from existing MDS-analyses in perception and
cognition as well as several issues in perception and cognitive theory are shown to be
blurred by methodological artifacts of existing MDS-analysis methods.

In chapter 8 intra-individual choice conflicts and dilemma behaviour are
described as special cases of the general theory, while also some developmental and
cultural phenomena are tentatively modelled by the psychophysical response and
valence theory. It is predicted that actual preferences in reality are often not choices for
cognitively most preferred objects, but will be choices for objects located between the
adaptation point (representing what already is or can be easily realised) and the ideal
point (representing what is cognitively most-preferred). Behavioural preferences in real
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life are often of an intra-individually conflicting nature, where the ambivalence is
caused by negative, monotone valences for costs and efforts of choice realisations and
positive, single-peaked valences of cognitively preferred choices. Choice dilemmas
from conflicting, single-peaked valences may also arise, if the attribute dimensions of
choices are strongly dependent. An example of such conflicting, single-peaked valences
is presented by the risk-adaptation theory of road user risks, wherein the combination
of oppositely oriented, single-peaked valence functions derives from the stimulus
environment of road users by the completely negative dependence between aversive
sensations of crash, injury, and traffic-fine threats and satisfying sensations of arousal
need. driving fun, and travel utility. It describes the dynamic risk behaviour of
individual road users by a dynamically shifting indifference midrange of risks and
increasingly negative risk valences outside that range. The risk-adaptation theory
integrates three existing theories of traffic risks. while several observed traffic risk
aspects and the exponential decay of collective traffic risks over time are only well
explained and predicted by risk-adaptation theory, Moreover, models for the analysis
of progressively changing choices over time, - according to our theory caused by time
dependent stimulus-exposure changes -, are presented and partially verified by the
decay of collective traffic risks as function of time-dependent traffic growth. Lastly,
based on a generalisation of the inherent dependence between traffic growth and
adaptive decay of traffic risks and emission rates. we describe a general theory of
technological evolution and adaptation in this chapter. The predicted long term
developments of industrial growth and environmental pollution by that general theory
markedly differ from the doom predictions by the politically influential, but
questionable system models for world developments of industrial growth and
environmental pollution.

It is tried to write this monograph for readers with a psychological. or
econometric, or social science background. Some understanding of multidimensional
scaling analysis methods and limited knowledge of mathematics is assumed, but no
advanced knowledge of modem geometry. What the reader needs most is theoretical
interest. The text would be considerably shortened by a theory exposition in
mathematical propositions and theorems and by using differential geometry and
advanced mathematics. But this monograph aims to be readable for other persons than
mathematical psychologists. Therefore, most mathematics are given in segregated
subsections that can be skipped without loss of understanding, since their main results
are explained in the text and illustrated by graphics. Also the mathematical subsections
are kept as simple as possible by only using hyperbolic, trigonometric, and simple
functional expressions and some usual matrix algebra. asking for no more than
undergraduate understanding of mathematics. Only some new or essential proofs are
given, other relevant proofs are referenced. Literature references mainly are to authors
oforiginal research and theory contributions with significance for our theory. Since the
reference list is already long, we refer not to related, empirical research that has no
added value for our theory. Apart from some historically relevant, old references and
several recent ones to handsome overviews and handbooks, the referenced literature
predominately is from the second half of the 20l~ century, because only few recently
published articles or books have additional relevance for our theory.
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CHAPTERl

THE FOUNDAnON OF CHOICE THEORY

"... where there is pleasure and pain there is necessarily
also desire... "

Aristotle. De Anima, [4236].

"Pains are the carrelotives of actions injurious to the
organism, while pleasures are the correlatives of
actions conducive to its welfare. "

Spencer, H. (1870). Principles of psychology. Vo!' r.
(p. 279). William and Norgats, London.
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1.1. Hedonistic rools of choice theory

Actions of man can be seen as approach or avoidance behaviour, based on judgmental
and preferential choices for action. These actions are conceived as responses to external
stimuli andlor internally produced sensations. But without the necessary and sufficient
principles that describe and explain the differences between individual behaviours in
identical stimulus situations no theory in psychology can predict behaviour. Such a
theory asks at least that gaps between behaviour and cognition theories in psychology
are bridged. This study attempts to provide that bridge by the psychophysical response
and valence theory ofthis monograph. Psychophysics, adaptation-level theory, learning
and behaviour theory, utility and subjective expected utility theories, response theory,
and unfolding theory provide the cornerstones for this integrated theory of judgmental
and preferential choice, but its roots are found in ancient hedonistic philosophy and in
the psychology of pleasantness and unpleasantness from before World War 11.

1.1.1. Ancient hedonism
The Greek philosopher Aristippos of Cyrene, pupil of Socrates and founder of the
Cyrenic school (about 435 to 270 BC), is the oldest source referring to pleasantness as
the aim of life. According to Aristippos, perception and knowledge can be misleading;
the only thing we can be sure of are our own feelings. Therefore, the mind must guide
us to find optimal pleasantness as the only real value in life (Mannebach, 1961).
Cyrenic philosophy is the forerunner of the more refined hedonistic ethics of Epicurean
philosophy. The Epicurean school, founded by Epicums (341-270 BC), existed into the
t <t century BC with Lucretius, writer of 'De rerum natura', as its last philosopher. In
Epicurean philosophy the maintenance of personal well being and mental tranquillity,
based on lasting effects of pleasantness ('hedone') and above all the avoidance of pain
and fear, is the only and highest goal in life. A healthy way of life, the fulfilment of
primary needs, close friendships, and the avoidance of pain and threats will serve that
goal (Baily, 1926; Leopold, 1976). Epicurean hedonism distinguishes between limited
and unlimited desires. In their natural origin all desires are limited and based on
perceptual and bodily sensations, but vain imagination of fear and irrational anxiety can
cause unlimited desires, such as greed and accumulation of wealth and power.
Aristotle (Politics 1.9) distinguishes exchangeable and nonexchangeable values, where
exchangeable values are the basis of unlimited desire, while nonexchangeable values
are (over)saturating in their prolonged acquisition and, thereby, specify limited desires.
He reasons that the desire for money is unlimited, due to its exchange value
independent of specific natural needs (Politics, 1.8: 13-15). Aristotle, gives no further
explanation, but Epicurean ethics explain unlimited desires by anticipatory dueat
avoidance and postponement of death. Against the threat of death men also seek
material security, which according to Epicurean philosophy is vain and irrational, since
death can't be sensed (Konstan, 1973). Only pains and harm that can be sensed must
be avoided, but not all if a greater pleasure follows from them, Not short tenn
pleasures, but lasting feelings of well being must be obtained by weighing out
advantages and disadvantages of acts. Epicurean philosophy faded away under the
influence of Christianity, but was reconsidered after the medieval period and revived
as psychological philosophy in the second half of the 18'h century.
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1.1.2. Western revival ofhedonism
Epicurean hedonism influenced Hobbes and Hume, but Hartley, the founder of
psychological doctrine of associationism, more explicitly formulated a philosophical
psychology of emotions as internally produced sensations of pleasures and pain that
become associated with perceptual sensations (Hartley, 1749). In psychological
associationism, behaviour is based on associations between matofic responses and
aggregates of perceptual and affective sensations; approach behaviour results from
positive, and avoidance behaviour from negative affects. Epicurean hedonism became
a utilitarian principle by Bentham, who according to Boring (1950) got his hedonism
from Hume and his associationism from Hartley. Bentham (1779) stated that "nothing
can act of itselfas a motive but rhe ideas ofpleasure and pain" and that action is self
interested, but also optimised by "rhe greatest good to the greatest number", whereby
hedonism also became a political doctrine. Spencer (1870) linked evolution theory with
hedonism by stating that survival of organisms is correlated with avoidance of pain and
attainment of pleasure. Spencer and Bentham regard these behaviours as the basic
correlatives of human and societal misery and welfare. Aristotle's and Epicurus' views
that all natural desires are limited in origin are similar to the modern psychological
notion of single-peaked pleasantness of sensation intensity. This single-peakedness
seems for the first time explicitly formulated by Joseph Priestly (1775), the discoverer
of oxygen and writer on Hartley's theory of mind. Priestly formulated for temperature:

"moderate degree ofwarmth is pleasant, and the pleasure increases with the heat
to a certain degree, at which it begins to be painful; and beyond this the pain
increases with the degree ofheat, just as the pleasure had done before."

1.1.3. Emerging scientific hedonism
Experimental research on sensations and preference goes back to Fechner (1871, 1876)
in his study on aesthetics. Many efforts in German introspective-experimental research
concerned hedonic tone as the relationship between stimuli and the attribute of
pleasantness and unpleasantness. Acurve that relates hedonic tone to stimulus intensity
is first pictured in a textbook byWundt (1874), as represented by figure I below.

Pleasant

maximum
hedonic tone

stimulus
intensity

Unpleasant

Figure 1. Wundt's single-peaked preference curve.



5

In this figure of the schematic Wundt curve the pleasantness increases with stimulus
intensity up to some point and then decreases toward the point where the intensity
becomes unpleasant, while the unpleasantness increases with higher intensities. Wundt
did not derive his graphic description as a result of experimental observations. but as
a qualitative curve from general knowledge and self-introspection. After Fe<:hner and
Wundt, the experimental study of pleasantness and unpleasantness came into being
(Beebe-Center. 1932). Single-peaked curves that describe the data obtained from
experimental research on pleasantness for intensity of many different stimulus
modalities are given in numerous reports (Beebe-Center, 1951: Pfaffmann, 1960:
Berlyne, 1960, 1971; Berlyne and Madsen, 1973; Zuckerman, 1979a,b). Thefollowing
description of results shows the range of stimulus modalities with single-peaked
preference. An early experimental report of Lehmann (1892) quantitatively describes
that fingers of human subjects feel most pleasant in water heated between 35° and 40°
Celsius, begin to feel definitely unpleasant in water of above 45° to 50° Celsius, and
cause pain in higher heated water. Animals and humans prefer saccharine solutions in
water when the concentration is somewhat above the sensation threshold, but the
preference wanes and turns into aversion if the sweetness of the solution is raised, The
reactions to salty solutions yield similar results, as did the taste judgments of humans
for water with increasing concentrations of bitter and sour substances (Engel, 1928;
Pfaffmann, 1960). Moderate intensities of illumination are pleasant and promote
investigatory behaviour, but very intense light is aversive (Berlyne, 1960). The amount
of exploratory behaviour is shown to be related to complexity of stimulus situations
with a certain level of complexity where below and above the amount of exploratory
behaviour falls off (Dember and Earl, 1957). Also puzzles and musical compositions
have shown to yield a single-peaked curve for pleasantness of complexity (Walker,
1973). In general also the preference for the intensity of risk sensations is shown to be
single-peaked (Zuckerman, 1979a, b).

Up to the first World War hedonistic theories, including Freud's highly
hypothetical brand from his "pleasure principle" and "reality principle" (Freud, 1911),
are characterised by the circular reasoning that preference behaviour strives for
pleasure. At the edge of the behaviouristic revolution, McDougal1 (1926) called this
reasoning a teleological fallacy, but acknowledged the role of pleasure and pain in
learning by asserting (McDougall, 1908, p,43):

"pleasure and pain are not in themselves springs ofaction <> they serve rather
to modify instinctiveprocesses, pleasure tending to sustain and prolong any mode
ofaction, pain to cut it short".

Later this became the essence of modem neurophysiological explanation of
reinforcement in learning theory, as shown in section 1.5. Under the influence of
behaviouristic psychology as well as operationalism and logical empiricism in
philosophy of science:

"the hedonistic delta in psycJwlogy branches in the behaviour-theory stream and
the scaling-theory stream",

according to a description by Berlyne and Madsen (1973). The early approaches of the
scaling stream for preferential choice not only is found in different psychological
theories, but also in econometric utility theory. Both are followed up first in the next
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two sections, where also Siegel's (1957) approach to an integration of qualitative
achievement theory and econometric utility theory is discussed. In the last two
subsections of this section we discuss aspects of the behaviour-theory stream in order
to investigate the answers to open questions from the scaling-theory stream (about
slope, level, and origin of functions that may specify some kind of Wuodt curve). In
chapter 2 the analytic-mathematical integration of the results from both streams leads
to our metric functions for the transfonnation of stimulus to sensation intensities and
of sensations scales to response- and preference-strength scales.

1.2. Expected utility theory and level of aspiration

Utility theory, originally advocated by Bemoulli in 1738 (translation in Sommer. 1954),
discussed by Ramsay (1931). and fully formalised by Von Neumann and Morgenstem
(1947) and Savage (1954) is a mathematical theory for the maximisation of expected
utility for decisions with uncertain outcomes. According to this theory a rational
individual ought by his decisions to maximise (the sum of) the product of the
probability associated with the outcome of choice alternatives and the subjective
outcome values as utility. This classical, expected utility theory has been modified
(Adams, 1960) by stochastic utility and subjective probability. In order to describe
choice behaviour, subjective probability and imperfect discrimination of utility
differences have been introduced in a probabilistic theory of subjectiveexpected utility.
In this choice theory, originally fonnulated by Luce (I 959b) and Marschak (1960),
subjective outcome probabilities and stochastic properties of monotone utility
transfonnations of values modify the nonnative to a descriptive theory (Luce and
Suppes, 1965). The qualitative psychological theory on the level of aspiration (Lewin
et al., 1944), a popular topic in German psychology before World War II and
extensively studied during and after that war in the USA, has been related to expected
utility theory by Siegel (1957). Here below we discuss with regard to a metric
foundation of the Wundt curve some relevant aspects of econometric utility theory,
aspiration-level theory, and their integration by Siegel and co-researchers, while a more
complete overview of the diverse models for preferential choices between alternatives
with uncertain outcomes is given in subsection 7.4.2.

1.2.1. Econometric utility theory
In econometric theory utility of goods is a monotone function of their monetary values.
Since every obtained good can be exchanged against money. the utility of more goods
does not decrease. So under equal outcome probability the choice alternative with the
highest monetary value should be chosen and if alternatives ofdifferent amounts of the
same good are equally probable then also the alternative with a highest amount should
be chosen on rational grounds. Only if higher amounts are less probable to obtain, a
choice for more probable, lower amounts would be rational, since then the expected
utility (product of probability and monotonic transformed value) for higher amounts
can become lower. As mentioned in section 1.1.1., Aristotle already noticed that
exchange value is the basis for unlimited desire. In the economic world, where anything
is exchangeable against money, more of anything that can be sold is to be preferred.
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The effects of satiation (diminishing increases of hedonic value for equal added
amounts) are well acknowledged in econometric theory, but saturation (decreasing
pleasantness) and oversaturation (increasing unpleasantness) for more of the same is
excluded from econometric choice theory. From an economic point of view, excess of
goods can always be sold on an unsaturated market and with that money other desired
goods could be bought. Because money can't aversaturate in economic theory,
economists don't need utility functions that decrease after some optimal amount.
Although the financial position as neutral reference level of an individual (financial
"status quo") may influence the utility of money as well as satiation for money may
reduce the utility increases for added same amounts of money, more money always
means more utility, A dependence of utility functions on an individual reference
parameter is found in Kapteyn's (1977) theory of preference formation. Figure 2 shows
how Kapteyn's utility functions depend on individual spending level of income {normal
probability function of In(x.) with mean In(x) and standard deviation s}.,

1.0 l-------::::-;:::::OO~----=:::::::::===~==::::=====utilityl

= 0.3
n(xl = 2.4

=0.3
In(x) = 3.1

s'" 0.3
In(Xl = 3,8

0.5 +--.+--f------/

income xoL.-"--''''------,-JLL J- ---=='-''--
10 20 30 40 50 60 70

Figure 2. Individual utility functions a/money for different individual parameters.
(adapted/mm Kapteyn, 1977, p. 51).

In Kapteyn's theory individual utility is described by a cumulative log-normal
probability function of monetary value that is located at the financial "status quo" as
the usually affordable spending level of the individual income. Utility satiation
becomes expressed by the logarithmic transformation of money. Kapteyn' s preference
fonnation theory implies choice dynamics that are depend on changes of the financial
status quo, which choice dynamics are similar to our metric preference theory that will
be derived from theory-grounded properties of adaptation-level theory, learning theory,
and response theory in this and the next chapter.

1.2.2. Psychological valence and level ofaspiration
Many aspects of life concern preferences with attributes that have nonexchangeable
values, while application of utility theory to all kinds of preferences contradicts
psychological research on the single-peakedness of pleasantness for more of the same
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attribute. Achievement aspirations of individuals are also shown to be limited.
Achievement tasks not only show satiation of aspirations, but after its maximum level
the aspiration for higher achievements declines to lower strengths as a saturation
phenomenon. An optimal level of aspiration for the achievement of tasks with varying
difficulty seems first to be researched by Yerkes and DodsoD (1908) and is called the
Yerkes-Dodson law in a review by Broadhurst (1959). The concept of aspiration level
for which individuals settle was introduced by Dembo (1931) and has extensively been
researched around World War 11. A review is given by Frank (1941) and two articles
on the theoretical concept are from Festinger (1942) and Lewin, Dembo, Festinger and
Sears (Lewin et al. 1944). They describe the aspiration level as a function of (I) 'the
seeking of success', (2) 'the avoiding of failure', and (3) 'the factors of their probability
judgements'. For tasks from a range of difficulties Festinger (1942) distinguished
valences of success (V,) and failure (Vi) and expected probabilities of success (P) and
failure (Pr= I - P,). Assuming relationships with difficulty to be ogival for valences and
linear for probabilities (figure 3a), Festinger derived a "force function" (j) to achieve
a difficulty level (L), as illustrated in figure 3b.

la"
difficulty

Figure 3a. The set of valence and probability curves of Festinger.

aspiration
v lue

aspiration
level

task

'":"""'---------------;;;;;;::;i;-- dificulty
easy difficult

Figure 3b. The resultant force from figure 3a (Festinger, 1942, p. 24 J).
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In quasi-algebraic terms Festinger (1942, p. 239) writes:

f = p ·v - p 'V (1)
L s,L s,L f,L f,L

with level of aspiration as maxI! }. Festinger did not give
explicit mathematical terms for h!s ogival valence functions.

Festinger (1942) wrote:
"Changes in position ofthe valence curves along the abscissa and changes in the
slope will affect the point at which the resultant curve reaches its maximum.
<>Such changes in the position and magnitudes of the various curves can and
do take place during a succession ofryials, e.g., by learning, better acquaintance,
etc. Such changes can also be induced by arbitrarily setting the positions v/the
valence curves for the individual by making him compare himself with other
individuals (p.242). <>When the individual is told what others have scored <>
he has two sets of standards before him: his own, which up to this time he has
been using, and those of the group. The more potent (relative weight) the group
standards are, the greater should be the magnitude of the shifts (p.247)."

Festinger's experiments concerned changes of valence curve locations and slopes. He
showed well fitting predictions from different levels of aspiration induced by influences
of previous tasks and reference groups. The influence of reference groups is nowadays
the heart of the attitude theory of reasoned action (Ajzen and Fishbein, 1980). Child
and Whiting (1954) draw five conclusions from the research on level of aspiration:
- Success generally leads to a raised level of aspiration and failure to a lowered one.
- The stronger the success, the greater the probability of a raised level of aspiration

and the stronger the failure, the greater the probability of a lowered one.
Shifts in level of aspiration partially depend on changes in ability to attain goals.
Failure more likely than success leads to avoidance of setting a level of aspiration.
Effects of failure on the level of aspiration are more varied than those of success.

1.2.3. Expected utility and level ofaspiration
Siegel (1957) tried to unify the qualitative theory of aspiration level and the fonnal
theory of expected utility. He showed that concepts in the level of aspiration theory are
equivalent to concepts in the theory of subjective expected utility (Davidson, Siege!.
and Suppes, 1957). Siege! firstly equated, somewhat implicitly, zero subjective utility
with the present position of a person choosing new alternatives. Secondly, he rendered
the subjective probability of successful outcomes and the expected success judgement
as equal. Thirdly the valences of success and failure are seen as equivalent to the
positive and negative subjective utilities ofchoice outcomes. Lastly he defined the level
of aspiration as a position on the objective difficulty scale for which holds that (I) its
lower position bound is neutral subjective utility (where below subjective utility is
negative) and (2) its upper position bound is associated with the largest distance of
positive expected utilities between equally spaced difficulty of tasks. Siegel's analysis
implies that subjective utility and success probabilities are detennined by oppositely
oriented, monotone S-shaped functions of task difficulty, as shown in figure 4a.
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Figure 4b. Subjective expected utility as aspiration curve resulting from figure 4a.
(an idealisation based on Siegel ,1957)



The idealised version of Siegel' s analysis in figures 4a and 4b is
llBthernatically described by logistic success probability

- (x, - x )
p,=(l+e ~ 0]-1,

11

(2a)

Here p, is the probability of a success outcome i with some objective
difficu~tyvalue x, and where the moderately easy task difficulty x has
a subjective utility value of zero. Siegel's subjective utility s8ale,
denoted by u., has negative and positive values. The idealisation of
Siege1 1 s (1957) utility function has a negative, linear relation with
success probability, while also U,= 0 for K.= x . With the arbitrary
normalisation for subjective utilIty to -1 ind ~l, this leads to

- (x - x )
u,=1-2[1+8 i 0j-l=1_2p, (2b), ,

The resulting preference or subjective expected utility curve as an
achievement aspiration function becomes

V,=p,·u,=p.(1-2p.) (2c)
~ ~ ~ ~ ~

The level of aspiration has a maximum of 0.125 at a success probability
of 0.25. Since here the probability of 0.50 corresponds again with
neutral subjective utility, where the increase of the subjective utility
is also maximal, we see for equally spaced alternatives on difficulty
scales that the largest neighbouring distance with positive subjective
utility indeed tends to coincide with the aspiration level as maximum
level of subjective expected utility.

The merit of Siegel's (1957) analysis is threefold. Firstly, the attempt to fonnalise and
operationalise the level of aspiration theory. Secondly, the notion of zero subjective
utility as the neutral value of the attained present position on the task difficulty scale.
Lastly, the notion of level of aspiration as optimal preference point on the evaluation
scale at some detennined positiveexpected utility difference from zero expected utility.
The notion of bipolar utility with a detennined zero point is absent in the classical
measurement approach of utility as a semi-definite positive scale (Luce and Suppes,
1965), but the failure to describe gambling behaviour (Luce, 1992) has led to the rank
and sign-dependent measurement model of utility (Luce, 2000) with a distinct zero
point and larger utility losses than utility gains for equal objective loss and gain values.
It axiomatises the utility measurement in the (cumulative) prospect theory (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1992) that is further discussed in section
6.1.3. Especially the last two notions of Siegel bring the dynamics of choice behaviour
into the picture. Festinger (1942) referred to learning of tasks and better task
acquaintance as changes in present positions and argued that such changes cause a shift
in level of aspiration. Also Siegel noted such dynamics and referred to Simon's so
called 'satisfycing' principle (Simon, 1955) stating that an individual does not choose
after the exhaustive evaluation of all alternatives, but chooses the first satisfactory
choice alternative at hand. Siegel (1957, p. 261) noticed that 'satisfycing' choices yield
shifts in level of aspiration by writing that:
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"such changes would tend to guarantee the existence ofsatisfactory solutions to the
choice situationJorfailure to discover initially satisfying altematives would depress
the level ofaspiration and thereby bring satisfactory solutions into existence".

What is important from level of aspiration research is that choice behaviour is dynamic
and relative. The momentary attained level by realised choices and habituation to
experiences of that attained level play an important role in new preferences. Before the
late seventies of the last century the notion of these dynamics in preference formation
has been largely absent in psychological and econometric preference theory. However,
dynamics are acknowledged in the preference-formation theory (Kapteyn, 1977), the
prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman, 1992), and
implicitly in the rank- and sign-dependent utility theory of Luce (2000).

1.2.4. Single-peaked preference curves
Although the aspiration curve of Siegel's (1957) analysis yields a single-peaked
preference curve, the missing issue in utility theory and Siegel's interpretation of level
of aspiration is that the pleasantness of sensation intensities (without any outcome
uncertainty)generally is single-peaked. If inherently single-peaked valences had been
taken into account, it would have been natural to equate maximum hedonic value for
that scale with level of aspiration at the ideal scale point. In the absence of single
peaked preference functions in econometric theory, it must handle phenomena of
oversaturation by pairs ofopposing utility functions, as implicitly Siegel seems to have
done. An example is the single-peaked preference for hours work per day in jobs,
which can be treated as a combined result of strict monotone utility functions for
earnings (increasing with hours) and for physical labour (decreasing with hours). In
multi-attribute utility theory single-peaked dimensions have to be represented by a
combination of two such perfectly negative correlated attributes. In view of the
existence of inherently single-peaked valence functions for attribute scales, it may be
conjectured that the use of mixtures of additive and multiplicative utilities in multi
attribute utility analysis for preferences of complex alternatives (Keeny and Raiffa,
1976) contains a redundancy of perfectly negative correlated attributes.

According to Coombs and Avrunin (1977), there have been two barriers for
research progress on preferences. One is the preference variability found across
individuals (they don't like same things), in contrast to individual magnitude
judgements that are often similar. Yet individuals are almost as consistent in their
preference evaluations as in their magnitude judgements. The other barrier is that
preferences are generally judged by order of alternatives for which no unit of
measurement and no distinct zero point are present. Only after the theory of unfolding
analysis was developed by Coombs (1950,1964), the analysis and measurement of
variables underlying preferential choice could make real progress. The basic
assumptions of unfolding analysis of are twofold. Firstly, alternatives ofchoice objects
are assumed to have common scale values on attribute dimensions. Secondly
individuals are assumed to have different imaginary ideal object locations on these
attribute dimensions as dimensional points with maximum valence of single-peaked
valence functions for these dimensions. The individual single-peaked functions maybe
differently shaped. but if symmetrically decreasing on both sides of the peak at the ideal
object then the preference rank order of unidimensional choice objects has to be the
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order of the objects after folding that scale at the individual ideal point where the
single-peaked preference function has its maximum. If individuals have stable ideal
points that are differently located on a scale for the choice objects then the individual
preference rank orders are different and consistent. Unfolding these rank orders,
assuming individuals have the same underlying scale of alternatives, not only yields
rank order locations of their ideal points, but also reveals fank order relations between
scale distances for enveloping pairs of alternatives on the scale. Diagram 1 gives a
simple unidimensional illustration of unfolding analysis for four alternatives (A to D)
and three individuals (I, J and K).

I J K

~ L, I-, r
A B C 0

c ?I
Preference order of I: B CAD (I I

B A

(9 ?
Preference order of J: C BAD

& I
A

( 1:
?

Preference order of K: C D B A

& 1
Diagram 1. Illustration ofunidimensional preference unfolding

Rank order relations between distances of alternatives enable one to detennine rather
narrow ranges for the locations of alternatives on the underlying attribute dimensions.
Such hyper-ordered distance scales are semi-memc scales that may approximate the
precision of interval scales. The preference rank orders of me, J and K can only yield
the unfolded scale order A, B, C, D, while distance AB must be smaller than distance
CD, because the preference fank orders of I, J, and K also imply that the midpoint of
BC precedes the midpoint of AD. For more alternatives and enough different
preference orders of individuals, the richness of the order information on midpoints in
the unfolding analysis leads to a scaling with fairly precise scale locations of ideal
points and alternatives. Such dense hyper-orders of scale distance yields a so-called
semi-metric ordered or hyper-ordinal scale that approximates the measurement level
of an interval scale, although only rank order is the characteristic of the data. If all ideal
points would be located outside the range of the alternatives then, clearly, the
preference function needs not to be single-peaked, but can be monotonically increasing
or decreasing. Unfolding analysis has been extended to more dimensions (Coombs,
1964). Multidimensional unfolding methods for independent attribute dimensions with
non-metric single-peaked preference functions have been developed, all related to the
original ideas of Shepard (1962a,b) for the multidimensional space representation of
ordered distances. Different algorithms and criteria for optimisation of solutions have
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resulted in several analysis methods of multidimensional scaling (MDS) or unfolding,
such as developed by Kruskal (1964a,b), Guttman (1968), Lingoes (1973), Carroll and
Chang (1970), Takane. et aL (1977), De Leeuw and Heiser (1977, 1980. 1982), Heiser
(1981, 1995), Heiser and De Leeuw (1981), and Groenen (1993). Already for some
decades MDS and unfolding analysis are usual research tools in psychology and other
domains (Shepard et al. 1972), including consumer preference (Green and Raa, 1972).
Most varieties ofmultidimensional scaling and unfolding techniques are now described
in study books (Cox and Cox, 1994; Borg and Groenen, 1997). They seem more
parsimonious than multi-attribute utility models (Keeny and Raiffa, 1976) that have to
use multiplicative interactions between negative and positive utility dimensions in order
to describe single-peaked functions of dimensions. In chapters 4 and 5 the validity of
existing MDS and unfolding methods is further discussed and questioned, while
appropriate multidimensional analysis methods, also for spaces with mixed monotone
and single-peaked functions, are described.

1.3. Foundations of Berlyne and Coombs revisited

Although many research is based on single-peakedness of preference functions, only
few studies concern the foundation of single-peakedness itself. Festinger's (1942)
qualitative analysis of level of aspiration and Siegel's (1957) integration with expected
utility can be seen as first studies that contain a more fundamental account of single
peakedness and preference dynamics. However, without an intervening probability
function and if both underlying valence ogives of Festinger are conceived as bipolar
functions with a certain distance between their origins, then their multiplication also
yields a single-peaked preference curve with negative valences on both sides of a range
with a maximum valence in between. Multiplicativity of two underlying, oppositely
oriented, bipolar, ogival functions with a distance between their origin locations is
sufficient, but this construction of the single-peaked valence function requires
theoretical justification. In the sequel and the next chapter that justification is given,
based on a critical analysis of empirical evidence in psychological theory and research.

1.3.1. Berlyne'sJoundation
A general account on the ubiquity of single-peakedness is presented by Berlyne (1960;
1971, ch. 8) inhis theoretical foundation for single-peakedness by the arousal potential
activation as a Wundt curve of hedonic value. Berlyne (1973, p.18, 20) writes:

"" students ofbrain functions, ofanil1U1l behaviour, and ofhuman behaviour IUlve
been led 10 postulate two mutunl!y counteracting systems, one productive of
rewarding and pleasurable effects, approach movements, and positive feedback,
whereas the other acts in the opposite directions. <> One can make afew plausible
asswnptions about the way these two systems work, especially the assumption for
which afairamount oJevidence can be cited, that it takes more arousalpotential
to activate the negative or aversion system than the positive or reward system
(bold face letters are ours). These assumptions enable one to represent rhe degrees
ofactivation ofthe two systems as functions ofarousal potential by the two ogival
curves in Fig. 1-2 (below copied as figure 5). <> ifwe subtract the ordinates ofthe
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aversion-system curvefrom the ordinates virile reward-system curve, we obtain the
curve <> which has precisely the shape a/the curve introduced by Wundt in 1874
(here figure 1 on p.4), <> this interpretation a/the Wundtcurve relates hedonic
value to 'arousal potential', which it will be remembered, means something like
'stimulus strength' defined in tenns of specifiable stimulus properties."

Activity of
primary
reward
system

AROUSAL POTENTiAL

Activity of
aversion
system

Region A

(positive effect
only)

Region B
(positive and
negative effects
positive
predominant)

Region,-CC---
(positive and negative
effects; negative
predominant)

Figure 5. Activation ofreward and aversion systems as functions ofstimulus intensity
(adaptedjrom Berlyne and Madsen, 1973 p. 19).

It will be noted that the Wundt curve only results if the assumption of ogival curves
with different location and different asymptotic levels hold. Evidence from nine studies
up to 1971 for the assumption of difference in location, referred in the bold printed part
of the above citation, is presented by Berlyne (1971, ch. 8). Although the evidence for
different scale locations of reward-system and aversion-system curves is convincing,
while also ogival shaped curves very well can be deduced by the nonnal distribution
reasoning of Berlyne, there remain other questionable, but crucial aspects of the
underlying curves. The first question concerns Berlyne's reference (1973, notes p.18
and p. 20) to an inverted-U shaped curve with negative hedonic value at both extremes
ofWundt's curve. An inverted-U shaped curve has been hypothesised by Hebb (1955)
and Eysenck (1967). Although Berlyne acknowledged that deprivation of stimulation
can be unpleasant, it is not generated by his assumptions. The second questionable
aspect is that negative hedonic value at high stimulus levels can only arise if the
asymptotic level of the reward system is lower than the absolute value of the asymptotic
negative level of the aversion system. Berlyne (1971, p. 89) remarked that there is no
direct evidence for this assumption, but that it seems plausible. However, Berlyne's
derivation fails to explain a negative hedonic tone for oversaturating stimulus intensity.
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A third question mayconcem the slopes for the two cUTves.lfthe level of the aversion
system curve is not higher, then a single-peaked curve still is possible if the slope of the
reward-system curve is steeper than the slope of the decreasing aversion~systemcurve.
Since slope and level are not empirically justified, the derivation of Berlyne remains
questionably. The fourth and last question to be answered is whether the sum of reward
and aversion system outcomes detennines the single-peaked curve or some other
combination principle.

Mathematically the Wundt curve seems to be based by Berlyne (1971, p.87)
= underlying curves of figure 5 as the sum of positively and negatively
weighted =rma.l probability functions with different means and weights
and equal variances. The difference in sign and mean seem empirically
sustained, but not the higher weight for the negative function, nor the
equal variances. Equivalently, the difference of two weighted logistic
probability functions could be used, which writes as

-(s,- I.l )/0 -(s - I.l )/0
v = is (1 + e 1 r r fl_ is (l + e 1 a a)-l (3)

, r a
for v, as valence and s, as sensation intensity. Berlyne' s assumptions
can tJ specified by paraTheter restrictions for the slope by weights l/a,
levels is, and locations I.l (with index r for the reward system and index
a for the aversion system) that satisfy:

condition (4a)

condition (4b)

condition (4c)

< •
a

,
r

rank order of levels

rank order of locations

equality of slopesand

and
I.lr '" I.la
a a

r a
while v is a sum of a positive reward and negative aversion function
of exp(§.) as stimulus intensity, Condition 4b seems empirically
justified, but additivity and conditions 4a and 4c not, Condition 4c in
Berlyne's derivation is too strong, since ex > ex also yields a single
peak.ed wundt curve. If ex > a then I.l '= I.l rwoul~ suffice to generate a
wundt curve, but the latt~r ec£tality dmtr£dicts Berlyne' s assumptions.

A single-peaked wundt curve only asks for condition (4a)and

rank order of ratios I.l /0. '" I.l /0. condition (5)
r r a a

Notice that the additive formula (3) reserrbles formula (1) of Festinger
for logistic functions as opposite, ogival valence curves in figure 3,
Festinger's interpretation of shifts in level of aspiration can be based
on changes of I.l /0. and/or I.l /0. . For logistic valence curves in (1) of
Festinger's fmfuul~, conditton'S and changes of its curve midpoints can
explain shifts. Success prObabilities need to decrease with increased
scale values in formula (1) and are replaced by parameters is in formula
(3), but then would not satisfy condition (4a).

1.3.2. Coombs' foundation
A second theoretical foundation for single-peakedness is from Coombs and Avrunin
(1977). They present mathematical conditions whereby two opposite functions describe
a single-peaked function. They derive a single-peaked Wundt curve from their
assumption that "good things satiate and bad things escalate" with more of the same
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attribute. They implicitly assume an identical origin for both functions and ground their
Wundt curve only on difference in shape of functions for 'good and bad things' of an
attribute. Coombs and Avrunin illustrate their derivation by the example of the duration
of vacation. The longer the vacation the less its satisfaction (a function of time which
levels off), while longer vacations not only cost more, but also have increasingly
negative effects of beingaway from home, friends and business. These negative effects.
although small at first, become more and more serious (as ever increasing, 000

saturating function of time). With regard to the difference in concave and convex shape
of underlying curves, Coombs and Avrunin (1977) noticed that one may adapt to the
underlying unpleasantness of more exposure to the same stimuli, whereby the
escalation of aversion may turn into a diminishingly negative function. They simply
state that single-peakedness is guaranteed if adaptation to the bad is slower than the
satiation to the good. Their single-peaked curves generate from escalation of the bad
and satiation of the good by assuming slower adaptation to the increased bad than
satiation to the increased good with identical origins for these underlying process
curves, which is illustrated by figure 6 below.

utility (xl

'11, satiation
to the good

xx

l(x) = 11 (x) - 12(x) }
a single peaked function ",j".~--~

~--~~---

Figure. 6. Single-peakednessfrom satiation and adaptation (t=time).
(adapted from Coombs and Avrunin, 1977)

The curves of figure 6 could be described by

-x. la -x, la
v. = B ( 1 - e l r') _ B ( 1 _ e l a) (7)

, r a
where symbols have identical meaning as in formula (3), but in tenns of
Coombs and Avrunin the index r refers to the 'good things' function and
index a to the 'bad things' function. The mathematical description for
a single-peaked function from two such functions by Coorrbs and Avrunin
(1977) allow for other functions than the ones in fonnula (7), which
is only one possibility for the curves of figure 6. The authors give
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several possible metric functions of K, as examples. Also formula (3)
under condition 4a and 5 with l.l = l.l wilt fall in the class of functions
that satisfy here. r a

Formula (7) contains no location parameters, while the origin of v. as
single-peaked function with identical origins for the two underl}ing
functions is the origin of scale K,. In order to define a single-peaked
function as Wundt curve, formula 1nl must satisfy:

rank order of levels IS < f,
r a

rank order of slopes a > a
r a

condition (9)

With regard to the identical origin of the underlying curves in figure 6, one may refer
to the contradictory evidence of Berlyne (1971) who examined nine studies with higher
stimulus intensity locations for the aversion-system curve origin than for the reward
system. Coombs and Avrunin (1977) don't touch the question of curve origins or
location parameters of the underlying antagonistic curves for individual preference. In
their theory extension for preference bargains between individuals (Coombs and
Avnmin, 1988) a parameter for the origin difference in preference comparison between
individuals is introduced, but no account of their individual origin location is given.
The slope difference of underlying curves is questioned by the authors themselves, but
the question on which evidence one may assume a slower adaptation to the bad than
satiation to the good, remains open. The shape of curves in figure 6 could be justified
by the questionable functions of Hull's (1943) habit strength learning or the derivation
may fit the exponentialleaming functions from the linear-operator theory of learning
(Bush and Mosteller, 1955). These exponential curves, however, differ from Berlyne's
assumption of underlying ogival curves. The study of learning curves remains open
with respect to exponential or ogivalleaming functions (Sternberg, 1963 p. 37), but
neurophysiological results (Olds, 1973) and connectionistic models (Gluck, 1992)
support ogival functions. With respect to slope differences of underlying curves in
figure 6, Coombs and Avrunin (1977) only state that less adaptation to the bad than
satiation to the good guarantees single peakedness. They give a reference to Miller's
(1959) theoretical treatment of approach-avoidance conflicts, which could be seen as
an implicit reference for difference in adaptation to the bad and satiation to the good.
Miller's conflict theory is based on a difference in generalisation gradients for
avoidance and approach responses, where the decline of the gradient for avoidance is
steeper. A difference in these gradients may resemble differences in habituation, but
Miller's conflict theory only says that anticipated punishment dominates over
anticipated rewards. It does not explain a difference between adaptation and satiation
as concepts for habituation to good and bad things. Cognitive objects become good or
bad by learning, but adaptation and satiation are primarily psychophysical and not
learning phenomena, as shown in the sequel. Adaptation as affective habituation is
discussed in the next section, where it is shown that adaptation is a
(neurophysiological) desensitisation phenomenon for repeated exposure to same
stimulus intensities. In the next following section we derive from learning theory the
antagonistic function properties for expected good and bad of stimulus intensities.
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1.3.3. The quest for grounded properties
In order to obtain a single-peaked curve, differences in slopes and asymptotic levels of
two underlying monotone functions are assumed by Berlyne and by Coombs and
Avrunin, but there seems to be no evidence for such differences in slopes and levels,
as Berlyne already noticed. Professional sportsmen show that they can shift their limit
levels for fatigue, exhaustion, and pain far beyond the nonnallevels by training. Thus,
depending on the exposures to intensity levels the limit levels can shift. Also
individuals, who are exposed to extremely harmful circumstances that can't be avoided,
have shown that adaptation to bad things need not to be less than habituation to good
things. Such rare occasions can be found in history. For example, the heroic endurance
of extreme tortures or the endurance of life-threatening circumstances in concentration
camps in World War n. The example of the soldier who amputated his own leg on the
Napoleon battle field in Russia even demonstrates that the prospective prevention of
death can lead to a purposive action with temporary almost unlimited pain intensity.
The rarity of such forced exposures to the intensely bad, in contrast to the frequent
exposure to the mildly good, must not be confused with a difference between limits for
punishment aversion and reward satisfaction of stimulus intensities.

Although oppositely oriented, monotone functions for underlying antagonistic
processes, such as those from Festinger, or Berlyne, or Coombs and Avrunin, are quite
acceptable, their construction of a single-peaked function seems not well grounded. The
questions on asymptotic level, shape or slope for the underlying processes functions are
not answered by the theoretical foundations of Festinger, or Berlyne, or Coombs and
Avrunin. Only the opposition of underlying function curves and Berlyne's difference
between their origin locations seem to be empirically justified. Difference between
origin locations contradicts the derivation of Coombs and Avrunin, but also parts of
Berlyne's derivation remain questionable. Moreover, the actual existence of a single
peaked preference curve with two-sided negative hedonic values, as Hebb (1955) and
Eysenck (1967) for sensory underdeprivation and oversaturation have described, can't
be explained by the derivations of Berlyne or Coombs and Avrunin. The basic question
is whether it is possible to derive a single-peaked valence function from antagonistic
process functions without assuming matters for which there is no empirical evidence.
In the next section the nature of adaptation is investigated. Adaptation turns out to be
no aspect of underlying curve slopes, as Coombs and Avrunin have assumed, but of
dynamic reference level as the average sensation intensity of previous stimulation that
also detennines a location of hedonic-neutral value for a preference curve (habitual
level of affective stimulation). It is shown that stimuli below adaptation level give rise
to responses with hedonic aspects that are opposite to stimuli above adaptation level,
which for antagonistic underlying functions with different origins may induce a single
peaked (inverted-U shaped) preference curve with two-sided negative valences.

In the next following, learning-theoretical section it is argued that the two
underlying processes for reward and punishment are specified by opposite and
synunetric process functions with an intensity distance for their activation, but that
there is no evidence for a difference in their slope or level. On the basis of properties
for the underlying process functions, as derived from experimentally and
neurophysiologically sustained theories ofadaptation-level theory and modern learning
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theory (subsequently discussed in the next sections of this chapter), and some metric
properties from psychophysics and response theory (discussed in the next chapter), it
indeed will be shown that a metric single-peaked preference curve can almost uniquely
be derived. Its mathematical derivation is given in the next chapter, but firstly we
discuss the fundamental properties for that derivation by examining research results and
theories that are relevant for the foundation of valence functions in preferential choice

1.4. Adaptation-level theory and properties for choice theory

Phenomena of adaptation and its dynamic consequences in perception, affection and
behaviour are studied in many experiments. Early theoretical descriptions are found in
Wertheimer (1912) and Beebe-Center (1929). Wertheimer discussed spatio-temporal
adaptation in 'Gestalt'-theoretical research, which he called 'spatial level adaptation'.
Beebe-Center studied sequential adaptation to affective qualities and she gave it the
somewhat misguiding name of'the law of affective equilibrium'. The more quantitative
theory is fonnulated by Helson (1964), who called it 'adaptation-level theory'. His
accidental observation of a green-red reversal under adaptation to red light (Helson,
1938) was the origin for the theory and numerous experiments in many behavioural
domains have verified Helson's theory. Nowadays the concept of adaptation level
seems almost disappeared in psychology, but it was extensively researched in the sixties
and early seventies of the last century. Nonetheless, its application can still be found
in psychology and in social system theory (Hanken, 1981, Hanken and Reuver, 1981).

1.4.1. Relativity of sensations
We all are aware of perceptual adaptation, such as adaptation to darkness. Adaptation
to light takes time and extends over an amazingly wide intensity range of illumination.
The brightness intensity of the sunlight-adapted eye compared with the dark-adapted
one is about 100,000 times higher (Hecht, 1938). The concept of adaptation is,
however, much richer than adaptative desensitising to increased stimulus intensity on
one dimension. Adaptation not only can sensitise. as the example of adaptation to red
shows by its increased sensitivity for green, but is also a simultaneous process for
perceptual, affective and cognitive sensation dimensions. In order to explain this and
to show the evidence for adaptation-level theory, since its first theoretical fonnulation
(Helson, 1948), we cite Helson (1964) himself:

'The level of adaptation is the pooled effect of three classes of stimuli: 1) focal
stimuli; 2) background or contextual stimuli; and 3) residual stimuli (p. 58).
Adaptation level is defined as a weighted geometric mean ofall stimuli impinging
upon the organismfrom witJwut and all stimuli affecting behnviourfrom within (p.
59). Action (and enjoyment) comes notfrom situations giving rise to neutral states
of the organism but rather from disparity between stimulation and prevailing
adaptation level. Magnitude ofresponse depends [lpon this difJerencefrom level, not
only in perceptual phenomena but in emotional and motivational states as well (p.
49). The division into three classes (focal, background and residual) is largely a
matterofconvenience and depends upon the 'sense' ofthe experimenlalsituotion (p.
59). The weighted logarithmic mean <> is affected by both range and density ofa
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set of values <> increases less rapidly <> incorporates the law ofdiminishing
return <> is aftrs! good approximation to the relation between stilnI~{us intemity
and magnitude ofsensation or response (Fechner's law) <> an easy andconvenient
base with which to start (p. 60). Adaptation level as a weighted mean immediately
implies that every stimulus dispLaces level more or less in its own direction,
providing that counteracting residHals are notoperative. Ifa stimulus is above level,
the leveL is displaced upward; ifbelow level downward; and if it coincides, it does
not change level. <> especially repeated stimulation, negates itselfto some degree
by reducing its distance from level. The fact that adaptation level is a weighted
mean ofexternal and internal stimuli implies that influence ofone class ofstimuli
may be counteracted by sufficient emphasis on other classes of stimuli (p. 61).
Organisms are space-time averaging mechanisms in which all dimensions ofobjects
and events contribute differentially to the formntion of levels. Among the more
obvious and important weighing factors are area, intensity, frequency, nearness,
recency, orderofstimulation, and affective quality. Less obvious butoften important
in fIXing levels are task, instructions, self-instructions, organic states, cognitive
systems, and genetic factors. Cognitive acts, senso-motoric responses, skills, and
learning are differentially affected byfocal, background, and residual stimuli and
hence are fimctions of prevailing level no less than perception and judgement.
Similar considerations apply to affective and emotional behaviour. Just as
individual levels are established with respect to prevailing conditions, so group
levels, conceived as weighted means ofindividual levels, are established (p.63). <>
internal sources ofstimulation are often more important than external sources in
detennining adaptation levels <> pre-existing affective levels and cognitive systems
have greater weight than do stimulus dimensions in the detennination of many
responses <> usually they are neither manipulated as independent variables nor
evaluated as dependent variables (p. 93). "

The central aspect of adaptation-level theory is that all sensations are relative, i.e. based
on the difference between sensation intensity of stimuli and the existing adaptation
level from previous stimuli. Consequently, sensation intensities are dependent on
previous spatial-temporal stimulus configurations and, therefore, the sequential order
of stimulation has effects on perception and evaluation. Stimuli coinciding with the
existing adaptation level are neutral or ineffective; stimuli above that level elicit one
kind of response, and stimuli below level elicit an opposite kind of response.

Mathematically fOrrmllated, adaptation level (a) is the geanetric mean
of three stimulus classes: focal stimuli x, contextual stimuli r, and
residual or motivational stimuli m. Helson, 1964, pp. 58~61 and 200-203)
defined

or

where

b = xp'cq'mr

a = In(b) : p -In(>:)

p+q+r:1

+ q ·In(c) + r ·In(m)

(lOa)

(lOb)
(lOc)

and In(x) : L w. ·In(x.l I LW,: 1 (lOd)
i~l ~ ~ '.1 ~

which makes {lOd) a weighted geometric mean, where w, may be an
exponential decay function of i as serial time order~of x, .

r
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1.4.2. Ubiquity ofadaptation level
Adaptation-level theory has been very useful in psychophysics. It simplified the
explanation of complicating results on Fechner's law and on Stevens' power law in
psychophysics (Carso, 1971). It explains many other matters, like assimilation and
contrast effects that were first differently conceived, reciprocity of frequency and
magnitude, as well as serial effects of stimulus-presentation order in judgement
(Helson, 1964; Appley, 1971). Serial effects in magnitude estimation nicely illustrate
the concept and dynamics of adaptation level. For example, a weight of 500 grams,
lifted in random series of 300, 400, and 500 grams, is judged to be heavier than in
random series of 500, 600, and 700 grams. In the study of perception adaptation-level
theory explains phenomena of aftereffects, colour conversion, size and fonn
distortions, illusions, figure ground reversals, over- and underestimation in perception
of distance or duration (Helson, 1964; Appley, 1971), and velocity or motion (Drosler,
1978). It also explains parts of selective perception in hearing and vision by the
sensitising aspect for stimulus intensities that neighbour the adaptation level (Eimas and
Miller, 1978). Cross-modality matching, stimulus identification, and correction of
distorted stimuli can be explained by similarity of differences from adaptation level
(Bower, 1971 ;Capehart et a1.1969; Howard, 1978). Also some aspects in the fonnation
of Gestalt properties are explained by adaptation-level theory, as Restle (1978)
ingeniously showed by the relativity of organisation in visual judgment experiments.
Bevan and Gaylord (1978) have argued that adaptation-level phenomena are
sufficiently explained by perceptual processes of the passive perceiver and that
adaptation-level theory is not a cognitive theory. However, adaptation-level theory
concerns judgment responses to stimuli and as such relates to properties of judgement
and perception. Broadbent (1971) convincingly showed that adaptation can't fully be
explained by adaptive filtering of incoming stimuli alone, but must be also explained
by adaptive changes in the so-called 'pigeonholing' process of assigning available
response categories to stimuli. Broadbent's approach brings cognitive theory in line
with adaptation-level theory, whereby errors in vigilance tasks are explained by
Broadbent's processes of filtering and pigeonholing (Broadbent, 1971). Also the
vigilance studies of Bevan (Bevan eta!. 1967; Hardesty and Bevan, 1965) are modelled
by adaptation-level theory for anticipation and arousal in vigilance tasks.

The application ofadaptation-level theory to judgement, preferential choice, and
risk behaviour, asks for the validity of that theory for cognitive processes or processes
based on covert responses and internally produced mediating sensations. Imagination
as a complex of covert response sensations is a common concept in learning theoretical
approaches to cognitive psychology, but explicit reference to adaptation-level theory
is not always apparent in that context. We therefore examine the evidence for the
applicability ofadaptation-level theory in the contextof learning and judgment theories
more closely, which is also necessary in order to understand the dynamics of
preferential and judgmental behaviour. Puzzlingphenomena in stimulus generalisation,
transposition and reversal of learned responses, effectiveness of reinforcers, and cross
dimensional response transfer are successfully explained by adaptation-level theory.
Already in the 1966-edition of the classical textbook "Theories of Learning" Hilgard
and Bower conclude that adaptation-level theory:
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"implies a relativistic view afreinforcement <> is a conception that makes contact
also with the economists' notion of utility and even more obviously with the
cognitive theorists' notion of expectancy. The effect on behaviour of a given
outcome is seen as dependent upon its relation to an internal norm derived via a
pooling processfrom series alprior outcomes encountered in a given situation (p.
418) < > may be applied to both positive and negative reinforcement (p. 5J8). "

Adaptation-level theory also applies to habituation in motivation and social theory
(Nuttin, 1980; Berlyne and Madsen, 1973). McClelland and co-researchers
(McClelland et aI., 1953) have formulated an adaptation-level theory of motivation.
Anderson's (1981) theory of information integration is a multidimensional adaptation
level theory of attitude change by consistent and repeated information supply.
Adaptation-level theory in the study of affective values is reviewed by Helson (1973).
The relevance of adaptation-level theory for societal values is discussed by Brickman
and Campbell (1971). In studies on choice or judgment under uncertainty the concept
of adaptation level is often unmentioned, but many described types of bias. anchoring
or framing for judgment under uncertainty are adaptation-level effects. Bias by
anchoring adjustments can directly be described as adaptation-level effects. For
instance, a presentation of 3 red and 7 white balls from an urn before a draw of 7 red
and 3 white balls yields a systematic underestimation of the 50% red balls in the urn.
Bias from availability can also be explained by adaptation-level effects on self
produced internal sensations as cognitive stimulation. For example, the question
whether there are more English words with a 'k' in third position than beginning with
a 'k' is incorrectly answered with a beginning 'k'. This incorrect judgment is explained
if a difference in frequency level is thought to be formed by response sensations of
relevant words searched in memory. The framing by the status quo in the prospect
theory of Kahneman and Tversky (1979) on subjective expected utility clearly is a
phenomenon that is predicted by adaptation-level theory. The related ambiguity theory
of Einhorn and Hogarth (1985) of decisions under uncertainty is based on a cognitive
adaptation level. Hogarth (1987, p.99-101) formulates:

"First, people are asswned to encode outcomes as deviationsfrom a reference point.
<> a person's status quo often provides a natural reference point.<> The second
characteristic ofthe valuefimction is that its shape captures the lWtion that people are
more sensitive to differences between outcomes the closer they are to the reference
point.<>The third characteristic of the value function is that it is steeper for losses
than for gains...people are asswned to assess ambiguous probabilities by first
anchoring on some value ofthe probability and then adjusting thisfigure by mentally
simulating or imagining other values the probability could take. The net effect ofthis
simulation process is then aggregated with the WIchor to reach an estimate".

It will be clear that this psychology of decision making implies adaptation-level theory
as cognitive judgements based on sensations with respect to reference levels.

Relevant for preference and risk behaviour also is the evidence Helson (1964)
gathered from many studies that unperceived stimulus changes can shift the adaptation
level also. albeit less than perceived changes. Conscious perceptibility is not a criterion
for the application of adaptation-level theory, because unperceived changes in stimulus
intensity and repeated stimulus intensities below perception threshold can also
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influence the fonnation of adaptation levels that underlie judgements. Effects of
unperceived stimulus intensities and intensity changes will depend on their frequency
and their integration over time according to Bloch's (1885) law. Prolonged unperceived
stimulus intensity changes will in the long run have an effect on adaptation levels of
sensation scales for judgmental and preferential choice. For example, a small gradual
decrease in very low accident probability of road users will be not consciously
perceived, but it reduces the risk-adaptation level and, thereby, the same traffic
situations are judged as relatively safer or riskier than before (Koomstra, 1990).

1.4.3. Time frames ofadaptation
Two important, sometimes misconceived aspects of adaptation-level theory, need to be
discussed. The first misconception leads to the erroneous insight that adaptation level
can be equated with equilibrium level in homoeostatic processes. The attainment of
stable levels must not be confused with the theory of adaptation-level fonnation.
Adaptation levels are dynamic reference levels, due to the ongoing changing nature of
the give-and-take of responses to and stimuli from the environment and from affective
response sensations within the individual. As Helson (1964, p. 54) remarked:

"adaptation-level theory differs from the principle of iwmeostasis because it
stresses changing levels."

The second misconception is that adaptation levels are conceived as momentary levels.
This need not be so. Watchmakers feel weights heavier than weight lifters (Anderson,
1975, p. 94). Actors attribute causes of actions less to dispositions of persons than
watchers of plays (Appley, 1971). Individuals are consistently judged taller by short
people than by tall, or older by young people than by old (Hinckley and Rethlingshafer,
1951; Rethlingshafer and Hinckley, 1963). Long-lasting effects of induced adaptation
levels are also obtained in sensory deprivation studies (Solomon et aI., 1961).

No fully clear picture of the neurophysiological processes that explain the
diversity of adaptation-level phenomena is available. However, it is well established
that intensity of signal transduction in receptor and nerve systems is not based on the
absolute stimulus intensities, but on their sensation intensity difference from the
(changing) adaptation-level, due to signal transduction in synaptic nerve systems that
desensitise for constant excitation levels by the biochemical processes in these cell
systems (Hebb, 1949; Eccles, 1966; Powers, 1974; Bolis, eta!' 1984; Grossberg, 1982;
Bryne, 1987; Groves and Rebec, 1988). As Foss (1989) concluded:

"Adaptation by feedback loops prevents receptor saturation, reduces distortion,
stabiLizes gain and makes the system sensitive to change, not to level ofsignal."

Already an overview of Posner (1975) on adaptive processes in the central nerve
system JXlints to long tenn changes of adaptation level, related to midbrain processes
for slow tonic shifts in thresholds, and short-tenn effects of adaptation-level changes,
related to thalamic processes for phasic shifts in thresholds. Nowadays these
phenomena are experimentally observed and neurophysiologically well described by
short-term synaptic potentiation (Zucker, 1989) and long-term synaptic potentiation
(Teyler and Di Scenna, 1987; Linden and Routtenberg, 1989; Malenka et al. 1989).
Referring to the psychological experiments and analyses of Broadbent (1971) one may
distinguish three time-scales for adaptation-level shifts that correspond to the processes
of 'categorisation', 'pigeon holing' and 'filtering' in respectively cortical. subcortical
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or thalamic, and peripheral processing of signals. Changes in each process operate on
different time scales. Firstly, rather lasting adaptation levels derive from thecumulative
effects from long term stable stimuli in the personal environment and may be conceived
to be related to 'categorisation' as a slow process requiring long term experience and
learning. These processes are most likely located in a 'structural tracing' of the cortex.
Guilford (1959 p. 44) equated lasting effects of the residual component in Helson's
definition of adaptation level with traits in personality theory. Secondly, according to
Broadbent's view, temporary shifts in the nervous system state would produce changes
in ·pigeonholing'. A process by which changes in motivational states as well as
temporary stable changes from the stimulus environment may be coupled to temporary
shifts in adaptation level. These processes seem to be of a subcortical nature, but act
upon association and senso-motoric units in the cortex. Lastly, momentaryfluctuating
adaptation levels from ever-changing peripheral stimuli seem mainly based on
'filtering' and partially on 'pigeonholing' in Broadbent's (1971) information process
theory. Inhibition and facilitation of excitation in peripheral and thalamic nerve systems
may relate to 'filtering' and in subcortical systems to 'pigeonholing'. How these
processes are neurophysiologically described is not important, but important is that
changing adaptation-levels apply to:

developmental changes in neural processes for learning, cognition, and motivation
as well as long term consistent changes in external stimuli with effects on
developmentally lasting frames for judgement and preference;

- temporary changes in day- or task-related stimulus contexts and motivational states
with effects on temporary frames for judgement and preference;

- momentary ongoing changes of stimulus intensities and associated incentives with
effects on momentary frames for judgement and preference.

Focal perceptual and affective sensations change conditionally to semi-stable
contextual and motivational states, while the internal focal affective sensations also
partially can depend on intensities of focal perceptual stimuli as a focal complex of
internal response sensations. Conditionally to its temporary stable level, the adaptation
level for focal external and affective internal stimuli will shift by the flow of focal
stimuli itself. Long term developmental changes in contextual or motivational states
may also shift the conditional adaptation level in the long run. Progressive changes in
momentary levels of external and affective stimulation evidently contribute also to
progressive changes in adaptation level. In order to express these differences in time
scales for multidimensional shifts in adaptation levels the averaging fonnulation of
Helson may be adjusted somewhat. Momentary adaptation levels are to be seen as
conditional to context and motivation with other change time-scales. Affective
sensations also depend on sensory stimuli, because affective adaptation levels regard
sensory dimensions to which the affective dimensions are conditioned.

It is more appropriate to adjust the formulation of Helson given in
formula (lOa) to (lad) somewhat, by

akl (c,m) = In[bkl (c,m)l = rWik'ln[xikl (c,m)) (Ha)
,."

where a is a conditional adaptation level on a dimension k of focal
externaf stiITn.llus intensities x

ik
Wlder constant conditions (c,m) for
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context and motivational states. The weights Wik are subject to the same
constraints as in (lOd).

Generally affective stimuli x. on affection dimension h can depend on
intensity levels of focal senS1:J~ stimulation x .. This is expressed by
the conditional adaptation level a

h
for affecffon as

ahl (c,m,a
k

) = if w.h·ln[x.hl (c,m,ak'l
,~l l l

(llb)

where the ever changing sensations = affection dimension h are to be
distinguished from the temporary or developmentally changing, but
momentary stable, motivational states ffi. In the same way the sensory
dimension k is to be distinguished from temporary stable states of
sensory context c, but a can quickly shift by changes in a if
affective dimension h ishconditioned to sensation dimensionkk.

1.4.4. Hedonic value properties from adaptation-level theory
Based on the general applicability of adaptation-level theory and its relevance for
perception, judgment and affect, there is no doubt about the justification of its
application in a theory of judgement, preference, and risk. Adaptation-level theory
implies two general properties of sensation scales and corresponding hedonic properties
of affective sensation scales. Firstbipolarity ofsensations, because sensations are only
effective by their positive or negative deviation from adaptation level. Second dynamic
reidtivity of sensations, because the adaptation level changes with the stimulus
exposure. Bipolarity and dynamic relativity of sensations for a sensation dimension
explain how past perceptions influence the perception of next perceptions. Identical
properties of affective habituation for sensations on hedonic dimensions explain also
how experienced affections influence the hedonic value of new emerging affections.
A theoretical foundation of preference, therefore, has to incorporate the bipolarity and
dynamic relativity properties of sensations in order to explain how acts of judgmental
or preferential choice influence the evaluation of next choices and how experiences of
risks influence the riskiness of new risks.

Hedonic sensations for reward and aversion expectancies can become associated
to perceptual sensations. Negative hedonic value not only is observed for aversive
stimuli, but also from less reward than usually obtained or expected. On the basis of
dynamic relativity of sensory and hedonic sensations, the mean sensation level of
previously obtained external stimuli and the mean of their associated hedonic
sensations constitute an adaptation level in the two-dimensional plane of sensation
intensities for sensory sensations of perceptual stimulus intensities and for hedonic
sensations associated to these perceptual stimuli. Thus, one sensation intensity level
that also defines a turning point of negative to positive hedonic value is the adaptation
level for sensory stimuli. But there may exist other levels than the adaptation level
around which higher or lower stimulus intensities turns the associated hedonic value
from positive to negative. They are called hedonic reference levels, because of their
neutral hedonic value. Some relatively high stimulus intensity may become
oversaturating and relatively low stimulus intensity may become characterised by
underdeprivation, where both are experienced as unpleasant, while stimulus intensities
lower than saturating level and higher than deprivation level become pleasant. These



27

high or low stimulus intensities where the hedonic value turns from positive to negative
define also hedonic-neutrallevels. Such hedonic-neutral saturation or deprivation levels
generally coincide not with the adaptation level, but will be located at more or less
extremely high or low levels of stimulus intensity scales. Saturation or deprivation
levels will not be influenced by the usual variety cffocal stimulation and, therefore, are
viewed as rather stable, acquiredor innate levels. Under which conditions their stability
may hold is further discussed in section 1.6., where it is also argued that no other
hedonic-neutrallevels are to be observed on stimulus or attribute dimensions. For the
moment it will be evident that there always is a hedonic-neutral adaptation level. while
there may additionally apply hedonic-neutral saturation or deprivation levels. On a
dimension with adaptation and saturation levels pleasantness above adaptation level
increases with sensation intensity until maximum hedonic value is reached, while
further increased sensation intensity reduces the pleasantness until intensities above
saturation level create unpleasantness.

valence
+

aspiration
level

o f- --cI.--__"'06 -,\__---"~e~'~'~"~io"'--

\

i eal I intensity
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adaptation saturation
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Figure 7. Schematic single-peakedness with negative valences at both sides

Following the tenninology of Festinger and Coombs, maximum valence of the single
peaked preference curve could be called the 'level of aspiration' and its position on the
underlying sensation scale the 'ideal point'. In the analysis ofpreferences that are based
on single-peakedness ofhedonic value curves. as in Coombs'( 1964) unfolding analysis,
it is assumed that the individually different ideal points are static or have static central
distribution values. However, relativity of sensations implies that the adaptation level
of sensory and hedonic sensations as well as its contextual and motivational conditions
will change individually. Individually changed stimulus intensities and/or changed
conditions cause shifts in individual adaptation levels, but generally not in the
sensation-scale location of the saturation or deprivation level with zero hedonic value.
A changed adaptation level in a metric single-peaked valence function with another
fixed hedonic-neutral value also implies a smaller change of the sensation level with



28

maximum valence. Therefore. changes of adaptation level also imply that the ideal
point changes somewhat, whereby non-random presentations of choice alternatives
moves the ideal point, because such stimuli change the adaptation level. Individual
dynamics of adaptation level cause individual dynamics in choice behaviour and
aspirations. Due to their dependent effect~, changes in adaptation level and in level of
aspiration or ideal point are sometimes merged (Payne et al., 1980; Hogarth, 1987, p.
99-100). Referring to research on acceptance of errors in task performance by Payne
and Hauty (1955a,b) and himself, Helson (1949, p.118) states:

"The conceptofpar or tolerance for error has certain points in common with the
concept of level ofaspiration. In so far as explicitly formulated standards are
concerned, the concepts seem to be identical. But in addition we stress implicit
standards that are established more or less automatically... Level ofaspiration
according to this view goes into the pool offactors affecting behaviour and, in
turn, is affected by prevailing adaptations."

In order to describe how a given change in adaptation level causes how much shift of
the ideal point, one needs more than a rank-order level of measurement for the single
peaked function. The schematic curve of figure 7 has, besides rank order infonnation,
two zero-hedonic scale values at adaptation and saturation levels on the underlying
sensation scale with the ideal point in between. We need to search additional properties
for an empirically sustained construction of a metric single-peaked preference curve,
which properties can be found in learning theory.

1.5. Learning theory and properties for choice theory

The concept of reinforcement in learning theory goes back to Thorndike's (1903, 1932)
trial-and-error learning from the beginning of the 20th century. Thorndike's first
fonnulation of his "law of effect" is most succinct (Thomdike, 1903, p, 203):

"Any act which in a given situation produces satisfaction becomes associated with that
situntion, so that, when the situatl'on recurs, the act is more likely tllnlI bqore to recur".

Also in Pavlov's (1928) classical conditioning reinforcement applies to kinds of stimuli
that promote the learning of responses on which the stimuli are consequent In both
types of learning (instrumental conditioning of elicited responses to provided stimuli
and operant conditioning of emitted responses to accidental or provided stimuli), the
responses become associated by contiguous reward (Hilgard and Bower, 1966). The
longer the time elapsing between response and reward, the less the probability that
stimuli elicit the responses that are aimed to be rewarded. On the one hand rewards that
are contiguous to a specific response given on varying intensities of stimulus
dimensions contribute to the occurrence of that specific response over the
multidimensional intensity range of these stimuli (generalisation learning). On the other
hand rewards contiguous to a specific response in the presence of specific stimuli and
not rewarding that specific response in the presence of similar but different stimuli,
restricts the recurrence of that specific response to a narrow stimulus intensity range
(discrimination learning). Differential reinforcement strategies, aimed at selected types
or selected chains of responses to specified stimulus ranges, have shown to be effective
for the mastering of behaviour patterns by discrimination and generalisation learning.
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Punishment is a negative reinforcer with opposite effects of reward. Punishments of
responses on specific stimuli result in decreased probability of such responses to these
stimuli. Comparable generalisation and discrimination effects as for rewards apply to
negative reinforcements of punishment. Their main difference is that rewards specify
which links between responses and stimuli are strengthened, while punishments only
specify which links are weakened. Rewards elicit and punishments block behaviours.

1.5.1. Contiguity and reinforcement
In contiguity theories of learning, like Talman's sign learning (Talman, 1938) and
Guthrie's contiguity learning (Guthrie, 1935), association is the primary principle and
reinforcement a derived principle. In these theories not rewards and punishments, but
the occurrence frequency of external stimuli and contingent responses strengthen the
respective responses. This view is in contrast to the theories in which strength of drives
and amount of need satisfaction from consequences of responses reinforce the
association between stimuli and responses (Hull, 1943: Spence, 1951, Miller, 1951).
In Mowrer's (l960a) two-factor theory and Gray's (1975) two-process theory of
learning this controversy between the primacy of the contiguity or the reinforcement
principle is resolved in the sense that rewards and punishment are linked respectively
with facilitation and inhibition of nerve signal transduction, which influences the
contiguous association probability of sensations and responses. In modem learning
theory rewards promote and punishments deter the internal contiguity of signals by
central brain processes of signal facilitation and inhibition, similar to Berlyne's reward
and aversion systems. The facts (I) that withholding of regularly obtained reward or
punishment shows opposite effects of their previous effects and (2) that intennitted
reinforcement shows more stable and lasting learning results, have led to the view that
learned behaviour is governed by expectations. In this neo-behaviouristic view the
response activity depends on what consequences a person expects and on how
consequences are valuated. The tenn "incentive value" is the designation forthe "utility
evaluation", which links learning theory to the theories of choice and decisions. In
incentive theories of learning (Logan, 1960) response strength is determined by a
combined level of response-produced sensations of positive and negative utilities of
response outcomes. These utility expectations of response outcomes are internally
mediating sensations that occur prior to overt responses, as learned linkages between
sensations of external stimuli and internally anticipated response sensations (Mowrer,
I960a). Anticipatory response sensations can elicit mediating affection signals which
in turn can amplify or suppress overt responses. The learned chain from external
stimulus S with sensation s to overt response R with outcome 0 becomes mediated by
internal anticipation of a conditioned response R, denoted by r, that may elicit an
anticipatory outcome sensation, denoted by so' where s" in turn may elicit an anticipated
reward or punishment response of outcome 0 on R. This is shown in diagram 2,
wherein Estes' (1969) stimulus sampling theory in S-R-O learning and Mowrer's
(1960a) learning theory of mediating response sensations for anticipated affective and
cognitive responses are combined.
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Diagram 2. Intervening anticipatory respollse sensations in S-R-O learning

Anticipatory outcome sensation So can generate affective responses and sensations,
denoted by fa and s,. which become learned,mediating chain elements to external
response R. Notice that mediating, affective response sensations with positive or
negative hedonic value respectively facilitate or inhibit the signal transduction. For
example the external stimuli with sensations S may elicit positive response sensations
fa - Sa (+) and the internal responses r with anticipated outcome sensations s" also may
elicit negative response sensations fa - sa(-). The occurrence of an overt response R to
external stimulus S requires a combined throughput of positive s,(+) and negative sa<-)
affections that is still sufficiently positive to elicit the overt response R. These learning
theoretical accounts are incorporated in Grossberg's neural network theory of learning
(Grossberg, 1969, 1982). Figure 8 shows Grossberg's minimal neural network of
anticipatory response sensations in learning.
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Figure 8. A minimal neural network with antagonistic affection effects
(adapted from Grossberg, 1972, p.56).

The neural network diagram of figure 8 simulates that the release of an overt response
is facilitated or suppressed, depending on the relative strengths of positive and negative
affection signals from mediating response sensations that are conditioned to an external
stimulus. Grossberg's theory extends that theory and the neurophysiological behaviour
theory of Hebb (1949) by his mathematical theory of signed neural networks
(Grossberg, 1969, 1971, 1982). Moreover, self-produced chains of perceptual
sensations from one's own overt responses and internal response sensations with a
connotative nature, like verbal stimuli and imaginative sensations, interact with loops
of perceptual and affective sensations. The internal signal representations are
anticipatory response sensations of a perceptual, connotative or affective nature or
combinations of such response sensations. They act as covertly mediating connotative
and affective signals in intervening signal chains for the response production of
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learned, complex behaviour. In modern learning theory cybernetic scanning loops,
sampling of stimuli, and overt responses are linked with positive and negative
reinforcements as accompaniments that respectively promote and inhibit cognitive and
overt response pattems (Bower, 1976; Estes. 1982). Information processing theory
(Miller et al, 1960) and learning theory (Bower and Hilgard, 1981) are combined in the
leamingof complex verbal behaviour (Mowrer, 1960b; Staats and Staats, 1963; Staats
1968) and social behaviour (Bandum, 1976, 1978).

Nowadays neural network theory(Arbib, 2003), connectionist theory ofleaming
(Healy at aL 1992), and computational theory of parallel distributed processing
(Rummelhart and McClelland, 1986; McClelland and Rummelhart, 1986) are highly
interrelated. Computational connection theory of learning goes back to Steinbuch's
learning matrixes (Steinbuch. 1959. 196Ia,b), Widrow's adaptive switching circuits
(Widrow and Haft. 1960; Widrow, 1960), Rosenblatt-Minsky Perceptrons (Minsky and
Papert, 1969), and early learning-simulation models (Koornstra, 1969), but is enriched
by Grossberg's (1982) neural network theory and advances in neuroscience (Adelman
and Smith, 2004; Arbib, 2003). The parallel processing of signals in so-called hidden
layers with adaptive connections of contiguous signals and feedback from the output
buffer, corresponds to mediated response sensations in learning theory. A multilayer
learning system with so-called 'back-propagation oferrors' is sufficient forthe learning
in connotative perception. In the computational and neural network theories of learning
external stimuli (input) and overt responses (output) are related by layers with
connection nodes that have ogival functions for the connection strength (Hopfield.
1984). This is consistent with mathematical theories of response and learning functions
(Luce, 1959b; Sternberg, 1963), as further discussed in chapter 2. Computational
networks (Hopfield and Tank. 1985) learn unknown relations between input and
desired output signals by externally controlled feedback from differences between
generated and desired output. Adaptive network models oflearning (Gluck and Bower,
1988a,b; Gluck, 1992; Grossberg and Carpenter, 2002) in connectionisr theory can
predict categorisation, pattern recognition, and probability learning, but don't model the
single-peaked preferences of affective behaviour. Computational network models, in
partial contrast to Grossberg's neural network theory, are restricted to recognition and
connotation. Although the computational network extension to the decision field theory
(Busemeyer and Townsend, 1993; Busemeyer, and Diederich, 2002) can describe
affective choice dynamics by input-dependent and stochastic weight changes in a
Markovian diffusion process for the signal input and throughput to the network output,
but contains no intrinsic single-peakedness of valences. In animals and man internal
needs generate drive-related reinforcements that also influence the signal processing
in their nerve systems by facilitation and/or inhibition of the signal transduction, which
differs from the externally provided feedback orcontexteffects in connectionist theory.
All human signal processing is influenced by affective signal facilitation or inhibition
(Olds and Glds, 1965; Berlyne, 1971; OIds, 1973; Olst et aI., 1980, Grossberg et al.
1999) dependent on the positive or negative response reinforcements that are associated
to stimulus intensities. Facilitation or inhibition not only increases or respectively
reduces the internal contiguity association of signals, but their sequential occurrence
also causes single-peakedness of preference strength for stimulus intensity.
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1.5.2. Pleasantness and unpleasantness and two-process learning theory
Basic to learning theory remains reinforcement that facilitates or inhibits responses to
certain stimulus intensities. Gray's two-process learning theory (Gray, 1975) and the
referenced neurophysiological research show evidence for two opposite mechanisms.
One facilitating mechanism for signals associated with pleasantness and one inhibitory
mechanism for signal sassociated with unpleasantness. Expected reward or punishment
associated to stimulus intensities activates these mechanisms respectively. On the one
hand stimUlus-response patterns that produce expected reward are strengthened by the
evoked facilitation mechanism, because such facilitation increases the simultaneous
occurrence probability of their signal patterns in the nervous system. On the other hand
stimulus-response patterns that produce expected punishment are weakened by the
evoked inhibition mechanism, because reducing the simultaneous occurrence
probability of these signal patterns. The adaptive states of the two mechanisms depend
on internal conditions of need satisfaction, but the learning of stimulus-response
relations is only based on the principle of contiguity in the covert signal processing
within the nervous system. Contiguity of stimuli and responses, as in Guthrie's learning
theory (Guthrie, 1935), is a necessary, but not a sufficient learning principle. Also
reinforcement, as a principle that additionally determines the internal contiguous
association of sensations and responses, has to be taken into account. In terms of neural
network theory, reinforcement amplifies or reduces the association between internally
contiguous signals and, thereby, determines the signal processing to responses. The
higher the reward expectancy from overt responses the more connected these responses
become with sensations that initially have evoked these responses and subsequently
evoke their anticipatory reward-outcome sensations, where activation of the central
signal facilitation process is relative to reward expectancy. Opposite effects hold for
activation of the inhibition mechanism relative to the degree of expected punishment
from responses. This means not that individuals always consciously seek reward and
avoid punishment, because often autonomously generated after a stimulus-response
pattern is (over)learned. In real life such unconscious stimUlus-response patterns are
more common than generally is assumed.

In the course of learning any signal processing from perceptual sensations to
motoric responses becomes influenced by the facilitation or inhibition mechanisms. The
reward mechanism provides" go" signals and the punishment mechanism "stop" signals,
while their interaction determines the response strength, as Gray (1975) shows in his
two-process learning theory. The "go" and "stop" processes are symmetricallyopposite
processes, where the conditioned reward and punishment expectancy subsequently
activates the respective response facilitation and inhibition. As an example of the "go"
and "stop" processes that by their sequential activation operate in a delayed way
simultaneously, one may take the drinking response of thirsty animals to water supply.
The drinking response intensity depends on anticipatory reward stimulation from the
thirst senses of the mouth and on anticipatory punishment stimulation from the
saturation senses in the stomach. The thirst signals from the mouth activate the 'go'
process and the saturation signals from the stomach the 'stop' process. The underlying
flow structure of Gray's two-process learning theory is copied in figure 9.
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Figure. 9. Gray's two-process model: inputs t+ 1 ar state t (Gray, 1975, p. 347).

Pfaffmann (1960) already suggested independent activation of reward and aversion
mechanisms, when he discussed preference for concentrations of sucrose or salt
solutions. Although the afferent discharges of signals increased with concentration,
higher concentration inverted the preference to subsequent aversion for high
concentrations. Pfaffmann hypothesised an intervening "stop-system" that operates in
such a way that initially elicited, efferent responses are blocked by the "stop-system"
at high stimulus intensity. The two-process learning theory of Gray (1975) describes
a conditioning of 'stop' signals to response sensations that dominate over the ongoing
activation of 'go' signals. Biofeedback (Bakker, 1978) of separate activation and
subsequent simultaneity of facilitation and inhibition processes at different sensation
intensities with dominance of inhibition over facilitation, explains instrumental
response conditioning (Miller. 1969; Obristet aI., 1974). Berlyne (1971. p. 84) writes:

"The evidence shows that the aversion system, when active, inhibits the <... >
reward system and diminishes the effecls on behaviour that are attributed to that
system. BUI there is no evidence that the activity in the <... > reward system
inhibits the aversion system."

or citing Zuckerman (1979b, p. 192), who refers to Olds and Olds (1965):
"stimulation in the negative reinforcement area blocks response in the positive
reinforcement area, but the converse is notfound."
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These quotations concern the one way dominance in hypocampal brain circuits, but the
same dominance is observed for sympathetic over parasympathetic circuits. The
neurotransmitter from the sympathetic to the parasympathetic systems is noradrenaline,
while within each system the transmission is based on acetylcholine. Only sympathetic
postganglion ends connect with parasympathetic ganglia and there the noradrenaline
inhibits the eliciting acetylcholine activity in spinal and peripheral parasympathetic
neurons (Shade and Ford, t965), while the reverse is absent. This is illustrated by next
diagram 3 (adapted from Schade, 1967).

PREGANGlION
PARASYMP.
NEURON

SYMP.
GANGLION

POSTGANGLlON
SYMP. NEURON

.-::: PARASYMP.
GANGLION

Diagram 3. Sympathetic inhibition on parasympathetic transmission

The notion that parasympathetic responses arouse feelings of pleasantness and
sympathetic responses feelings of unpleasantness, is an old one and is not tagged with
any particular name (Morgan and Stellar, 1950 p. 255). It seems that Landis (1934) was
the first who experimentally tested this hypothesis and systematically reviewed its
evidence. Although the evidence is mainly affinnative, it is not unanimously so.
Affective inhibition can be a sympathetic inhibition of parasympathetic responses, but
such affective facilitation exists not, while both affective inhibition and facilitation of
signal processing exist in the hypocampal brain. In view of the inhibition effects of
expected punishment and facilitation effects of expected reward, generalised reward
and punishment expectancies and their neural effects are covered by the connotations
of pleasantness and unpleasantness. Therefore, affective inhibition and facilitation are
accompanied or generated by feelings of unpleasantness and pleasantness.

1.5.3. Hedonic value properties from learning theory
Choice behaviour is also based on learned behaviour and learned responses are
generated by stimulation and facilitation and/or inhibition of neural transmission.
Facilitation is activated by expected reward and, therefore, is associated with
pleasantness, while expected punishment activates inhibition and is associated with
unpleasantness. The hedonic aspects of these two processes will be called hedonic
processes, which are expressed by hedonic response sensations as opposite, hedonic
value functions of sensation intensity. The implications of modern learning theory for
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the foundation of a preference theory are manifold. Firstly, it requires bipoltJrity of
sensations and hedonic values. Secondly, the two oppositely oriented, ogival functions
that transform sensation intensities with respect to different reference levels as origins
describe a function reflection and also define that the underlying, forward and
backward oriented, hedonic value functions have oppositeeffectsymmetrv, Thirdly, the
function reflection and symmetry define an anti-symmetry of the two underlying
hedonic value functions. Fourthly, there is a distance between the sensation reference
levels that define the hedonic neutral origins of the two hedonic value functions.
Fifthly, it describes a subsequent activation and partial activation simultaneity of the
two hedonic processes. Lastly, the negative hedonic values of one function show a
dominance over the positive hedonic values of the other function, if simultaneously
activated. Given the bipolarity of the anti-symmetric hedonic value functions around
hedonic neutral sensation levels at some distance, the properties of simultaneity and
dominance can only be consistently combined to one metric hedonic function for the
whole range of sensation intensities if the two underlying hedonic functions combine
in a multiplicative way, because negative times positive values are always negative,
where negative plus positive values can be positive, while negative times negative
values don't exist by the anti-symmetry and origin distance of the underlying, hedonic
value functions. Moreover, multiplicative function effects are empirically sustained,
because if responses to the same stimuli are positively and negatively reinforced in a
random way then the effect is reciprocal suppression (Grossberg, 1972a, p. 44; Berlyne,
1971, p. 84; Zuckennan, 1979b, p. 192) and not the additive effect from oppositely
reinforced drive strengths, as supposed in Hull's (1943) learning theory. Hence, we
derive a symmetrically single-peaked preference function from the intra-dimensional
multiplicativity of two underlying, bipolar, oppositely oriented, symmetric ogival,
hedonic value functions with a distance between their origin locations.

Summarised: the learning theoretical properties of hedonic value functions that
transform a unidimensional sensation scale to single-peaked hedonic values are anti
symmetry, distance, and multiplicativity for the underlying, ogival functions of
sensation intensity. The combination of these properties with the scale properties of
bipolarity and relativity from adaptation-level theory (section 1.4.4.) implies that the
single-peaked preference function is symmetric and has negative hedonic extremes on
both sides, as Hebb (1955) already assumed. Modern adaptive network theory of
learning with ogival connection-strength functions may satisfy bipolarity and relativity,
because reinforcement establishes learned adjustments of expected values (Gluck,
1992), but single-peakedness for expected values is impossible in adaptive network
theory by the absence of mu1tiplicativity of oppositely oriented, ogival functions.
Referring to the schematic single-peaked curve of figure 7, it follows that the sensation
intensity at the ideal point defines a positive valence maximum for the sensation
midpoint of the adaptation and saturation or deprivation level. At the low and high
extremes of sensation intensity the hedonic value becomes diminishingly reduced to
equal negative minima. Thus, that schematic single-peaked curve must become
specified by a combination of two bipolar ogival functions that satisfy the properties
of anti-symmetry, distance between function origins, and muhiplicativity.
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These properties from adaptation-level and learning theories don't sustain the
derivations of the single-peaked preference curve by Berlyne or Coombs and Avrunin.
The anti-symmetry and distance properties violate the foundation of the single-peaked
preference curve by Coombs and Avrunin (1977), because they assumed asymmetry
(different slopes) of opposing hedonic value functions with the same origin. Moreover,
their additive combination also violates the multiplicativity property. A distance
between sensation scale origins of two opposing ogival functions is incorporated in the
derivation of Berlyne, but Berlyne's (1971, Berlyne and Madsen, 1973) derivation
recognises not the intrinsic bipolarity of each ogival function, nor fully incorporates
their anti-symmetry, and violates theirmultiplicativityby the additive combination. As
will be shown in chapter 2, hedonic bipolarity around two hedonic-neutral reference
levels and the hedonic function properties of anti-symmetry, distance and
multiplicativity, as well as some basics of mathematical psychophysics and response
theory almost uniquely determine the metric formulation of the single-peaked function.
Dynamics of judgement and preference from adaptation-level shifts also are discussed
in that chapter (section 2.3.). Firstly, however, the nature of sensation scales that
exhibit hedonic values is investigated in order to understand the natural constraints for
the response function and the types of hedonic value functions.

1.6. Hedonic properties and function types of sensation scales

Evolution provided mankind with congenital aversion for perceptual stimuli that have
intensities either above some saturation or below some deprivation level, respectively
at a rather high or rather low level of stimulus intensity, as aversion for oversaturation
or underdeprivation. Some modalities seem congenitally aversive for any stimulus
intensity. Stimuli that show such congenital aversion probably are only kinds of stimuli
that influence nerve potentials by direct electric or chemical contact, which always
produce sensations of pain, nausea or repulsion. As such it are stimulus modalities that
are to be conceived as stimulus dimensions without a deprivation level. Apart from
these modalities most other physical stimulus intensities show aversion above or below
some congenital saturation or respectively deprivation level. This holds for all
modalities with an energetic intensity, but no congenitally determined aversion applies
to stimuli thal are characterised by extensiveness, such as optical length, depth and
height. The research evidence supports a congenital reward system that not only can be
triggered by sensations that satisfy primary needs for food, warmth, stimulus arousal,
etc., but also by sensations of relief from pain, nausea, and oversaturation or
underdeprivation of energetic stimulus intensities.

1.6.1. Congenitdl tuklptation and saturation or deprivation
Lasting underdeprivation oroversaturation of sensory stimuli congenitally deteriorates
human perception. Lasting lack of sensory stimuli (lasting arousal underdeprivation)
or lasting exposure to extremely high stimulus intensities (lasting arousal
oversaturation) cause malfunction or eventually death. This not only is a general aspect
of the nervous system (Berlyne, 1971) for arousal by any stimulus intensity in the non
damaging range between adaptation and saturation or deprivation levels, but also for
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specific stimulus modalities within a non-damaging intensity range. General absence
of nerve stimulation reduces the growth of connections (and deteriorates existing
connections) between nerve dendrites (Bok, 1961), while specific sensory deprivations
can cause lasting damages in specific perception and motoric responses (Solomon et
al., 1961). Absence of neural stimulation prohibits nerves to regenerate after nerve
lesions, while the energy of a too high stimulus intensity destroys the functioning of
nerve cells and sensory receptors. The sensory nerve systems for specific modalities
may show nerve potentia]s in different receptors for low and high intensities (Morgan
and Stellar, 1950), which signalise these aversive intensity levels. Sometimes this is
organised within the same sense organ (e.g. the ear), but this is no necessity. For
example, thirst deprivation is signalised by senses in the mouth and saturating liquid
supply is sensed in the stomach. A similar but somewhat more complicated dual
perception system is observed for temperature stimuli. It is known for a long time
(Bernhard and Granit, 1946) that maximum high local potentials are shown around
16°C for cooling of the skin and around 3TC for warming of the inside body in
humans, while baseline potentials between 20° and 30°C are observed along the
temperature gradient from skin to inside body. The survival value of internal
homeostasis process for temperature is apparent, because internally or overtly eliciting
compensatory responses that keep the organism away from damaging temperatures.

Every sensation scale of stimuli with energy as intensity measure is
characterised by congenital aversion above or below some intensity level, probably with
the exception for direct electric or chemical modalities with pain, nausea and repulsive
olfaction sensations that have no deprivation level. Oversaturation or underdeprivation
is unpleasant, while moderate intensities either above deprivation or below saturation
level is pleasant. In case of intrinsic aversion stimuli (pain, nausea, repulsive olfaction),
a decreasing sensation intensity is pleasant. Hence one must assume that neutral
hedonic levels congenitally exist either at the upper or lower boundary of a range of
pleasant sensations with the adaptation level as the only oilier boundary limit, where
the lower boundary may coincide with just noticeable level of stimulus intensity
(absence or zero sensations). For sensations with a negative ambience a neutral
hedonic level is the deprivation level at a Iow stimulus intensity and for sensations with
a positive ambience such a neutral hedonic level is the saturation level at a high
stimulus intensity. The maximum hedonic value is reached at the ideal point that is
located at the midpoint of the saturation or deprivation and the adaptation levels. It will
be noticed that notall sensory stimulus modalities are determined by energy magnitudes
as intensity measure. In the same way as spatial stimuli also colour and pitch receptors
as wavelength-specialised senses enrich perception and behaviour with connotative
capabilities. Spatial and wavelength stimulus aspects can be transmitted with equal
energy levels of stimuli, due to the specialisation of their receptors with a pattern
dependent signal processing. The stimulation of receptor fields for such modalities,
therefore, is independent of il~ energy measure and no congenital deprivation or
saturation is apparent for these modalities, but adaptation to these kinds of sensations
is present. For other stimuli, such as luminosity of light or decibels of sound with
energetic intensity measures, not only the universal adaptation phenomenon applies, but
also the phenomena of saturation or deprivation.



]8

Aversion phenomena for energetic intensity modalities seem congenitally
produced by innate responses to sensation intensities outside the range of normal
sensory stimulation. These aversive sensation intensities monotonically increase with
the intensity deviation from the congenitally determined neutral level at either a low or
high intensity. Thirst and hunger are examples for two-sided sensation aversion for too
much and too few. The same holds for sensations from energetic stimuli of light or
sound, although their aversive stimulation on very low intensity becomes only aversive
after long term deprivation. Some kinds of electric and chemical stimuli don't have
specialised receptors, but their direct nerve contact influences nerve potentials and then
only aversion for non-zero and increasing intensities of stimuli is present. However,
apart from stimuli with direct nerve contact, intensity levels of stimuli from the natural
environment can be classified in three hedonic categories: (I) aversion below some
relatively low (deprivation or adaptation) level of sensation intensity, (2) aversion
above some much higher (adaptation or saturation) level of sensation intensity, and (3)
appreciation of sensation intensities between the adaptation level and the deprivation
or saturation level with maximum appreciation at their sensation midpoint. From this
congenitally hedonic nature of energetic and bodily stimuli we obtain unidimensional
sensation scales with locally monotone, hedonic value functions that have oppositely
positive and negative ambiences around hedonic-neutral levels and with positive
hedonic values in between. If stimuli from the natural environment or intemal body
provide aversive sensations below a relatively low stimulus intensity then some self
produced responses may provide increased stimulus intensities. Such response
produced higher intensities have positive survival value. In animals and man internal
cybernetic feedback systems emerged in the course of evolution, which autonomously
provide such internal reactivity or instinctive behaviourpattems. For higher vertebrates
and man overt responses can produce sensory intensities that are positively reinforcing,
where learned behaviour will provide such rewarding sensation levels. By adaptation
to higher intensity levels the deprivation level becomes latent and the adaptation level
at a somewhat higher intensity level takes over the neutral hedonic role of the
deprivation level, while the saturation level remains stable on a much higher sensation
level. In this way a sensation scale with positive ambience emerges, where sensations
below adaptation level are unpleasant and somewhat above adaptation level pleasant,
but large sensation increases above the ideal sensation level create less pleasantness
than sensations around ideal level, while further increased sensations above the
saturation level become more and more unpleasant. This hedonic scale type with a
single peak and positive ambience is denoted as type +11. Numerous examples of
congenitally hedonic phenomena are of this type. Sensations for concentrations of
many substances in liquids and foods, such as salt, sucrose, etc. as well as for gaseous
concentrations of perfumes clearly are such positive ambience scales with an optimal
pleasantness at an ideal level between their adaptation and saturation levels, as also are
sound or light sensations, although less obvious due to their relatively high congenital
saturation level. So type +11 scales are congenital scales of many stimulus modalities.

If stimulus intensities become aversive sensations above some intensity level
then some self-produced responses may decrease the sensation intensities of their
otherwise highly or increasingly aversive sensation intensities. Such response-produced
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lower sensation intensities are positively reinforcing sensations. Apart from
evolutionary developed feedback systems of innate internal responses and instinctive
behaviour patterns, also overt behaviours are learned that provide a lower level of
sensation than the natural level of aversive stimulus intensity from the environment or
body would provide otherwise. Thereby, the role of the saturation level becomes latent
by adaptation to the lower self-produced stimulus intensity levels and the downward
shifted adaptation level replaces its function. Sensations above adaptation level then
become aversive, while incase there also exists aversion below a relatively much lower
level the congenital deprivation level remains stable on that much lower sensation level
than the adaptation level, In this way a sensation scale with negative ambience develops
as a scale for which sensations above adaptation level are unpleasant and somewhat
below that level pleasant. But the initially increasing pleasantness from sensations
below adaptation level inverts to less pleasantness if the lowering of sensation intensity
passes the ideal point, while further decreased sensation intensities below the
deprivation level become increasingly unpleasant. It is classified as a type -11 scale.
because it is a retlected type +11 scale. Scale type -11 evolves probably seldom from a
congenital process for stimuli of a purely sensory nature. However, it is observed in
antagonistic, congenital processes for temperature stimuli. The pleasantness of cooling
sensations on the outside skin in a hot summer is a scale type -11 by its pleasantness of
cooling sensations below adaptation level. Its pleasantness can be counteracted by the
type +11 unpleasantness from cooling sensations below adaptation level for the inside
body wannth, while also unpleasantness for warming above the saturation level of the
inside body exists. A congenital inversion of pleasantness from decreasing sensation
intensities to unpleasant sensations seems absent without such antagonistic processes,
but by learned association such type -11 scales may hold for many sensation scales of
cognitive attributes.

If for a negative ambience scale no deprivation level is present then decreasing
sensations below adaptation level are always more pleasant and increasing sensations
above adaptation level are more and more unpleasant. Such sensations scales are
classified as scale type -I and their reflected scales as scale type +I. Examples of
congenital type -I sensation scales for stimuli of a sensory nature are found in
intensities of electric shock, many chemical stimuli and most types of pinching pressure
stimuli, because they always produce pain or nausea above some relatively very low
adaptation level where below sensations are pleasant, while deprivation levels are
absent. Also some response-produced, internal body sensations may generate
congenitally negative ambience scales of type -I without deprivation levels, such as
fatigue. The reflected type +1 without saturation level and with pleasant sensations
above adaptation level seems not to exist congenitally for energetic stimuli. Leamed
associations between sensations of energetic stimulus dimensions and other sensory or
cognitive sensation dimensions lead to similar hedonic functions of type I or type 11 for
sensory sensations with non-energetic stimuli or for cognitive sensation dimensions.
Thereby, cognitive sensations that become negatively associated with type -I scales can
establish learned type +1 scales. Before we further discuss these matters, we summarise
the types of hedonic functions in the table below.
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Table J. Hedonic function types ofsensation scales

In the course of evolution there emerged in some cases different receptors for different
intensities of the same energetic stimulus scale, where each receptor field has a
different intensity range for pleasant sensations with increasing aversion below its own
lower and above its own upper level. An example is already given for the outside·skin
and inside-body receptors for temperature stimuli with different, ideal temperature
sensations (relatively cool for the skin and relatively wann for the body). On such a
sensation scale with antagonistic type 11 sensations the adaptation level is located
between two underlying ideal points of each receptor field for the same stimulus
modality. In the example of temperature stimuli the antagonistic sensation functions
apply to the outside skin and the inside body temperature, each with a single-peaked
maximum for optimal temperature and where the outside-skin has a deprivation level
and the inside-body a saturation level of thennal sensation intensity. The fact that
temperatures at relatively high levels for the skin also mean relatively low temperature
levels for the body can be seen as a perfect negative correlation between two sensation
dimensions as opposite deviations from the adapted level for that thennal sensation
dimension. Such complete dependence of underlying sensations with oppositely single
peaked ambiences for a single stimulus dimension constitutes the general case of two
ideal points, -one above and one below adaptation level. It may give rise to choice
dilemmas by its intra-individual ambivalence or to a preference indifference range
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around the adaptation leveL Scales that are characterised by dimensional combinations
of different scale types are classified as type III scales. The congenital case for
temperature with an ambivalent indifference range for temperature sensations derives
from dependent dimensions of type -11 and type +11, but a sensation scale more often
will be a dimensional combination of type 1I (either type ~II or +II) and type I (either
type +1 or type -I), where such a scale will generally show an asymmetrically single
peaked function for its hedonic values. Dimensional combinations of types +1 and -I
sensation scales define again sensation scales of type +1 or type -I, depending on which
underlying type dominates or becomes a hedonic indifference scale by an equally
weighted addition of their oppositely signed hedonic values.

1.6.2. Cognitive saturation and deprivation
Sensations from stimulus dimensions with anon-energetic extensiveness measure, such
as colour, pitch and spatial sensations, can get by conditioning to sensations of
energetic stimulus dimensions an acquired positive or negative ambience, apart from
the general arousal aspect of all kinds of stimulus modalities as a congenitally
determined dimension of type II (Berlyne, 1971). Examples are the individually
different appreciations of colours. pitch of sounds or music, shapes, and wideor narrow
space sensations. Cognitive attributes can also acquire positive or negative ambiences
for their sensation scales by learned association with dimensional complexes of sensory
stimuli. Cognitive attributes that become positively associated with congenitally
positive ambience scales acquire also the aspects of positive ambience. If positively
associated with a sensory type +11 dimension then also the cognitive attribute gets
dimensional sensations that are pleasant above adaptation level and below saturation
level with an ideal point between these levels, while decreasing sensation intensities for
cognitive attributes below adaptation level or increasing sensation intensities above
saturation level become more and more unpleasant. Cognitive attribute sensations that
are negatively associated with congenitally positive ambience scales become negative
ambience dimensions. Thus in case of a negative association with a sensory type +11
dimension we have a cognitive sensation dimension with an ideal point that is located
at the midpoint of the adaptation and the 'reversed saturation level'. Such a 'reversely
conditioned' or reflected saturation level becomes a deprivation level on a negative
ambience scale of such cognitive attributes. A cognitively acquired deprivation level
will generally be located at a very low sensation level, because the reflection of the
saturation level is with respect to the adaptation level on the sensation scale to which
the cognitive attribute is negatively associated by learning. Its deprivation level might
even be located on a subliminal sensation level.

Effects of sensory deprivation for type +1 sensation scales (monotonic, positive
ambience) must be distinguished from effects of deprivation for type -11 sensation
scales ( single-peaked, negative ambience). In sensory deprivation experiments
(Solomon et aI., 1961) the unpleasantness is a hedonic negative response sensation to
sensation intensities far below the adaptation level. The longer the sensory deprivation
lasts the more the adaptation level moves to the absolute sensation threshold as just
noticeable level on type +1 scales, while still increased unpleasantness is observed in
prolonged sensory deprivation. This provides evidence for the here described nature of
type +1 scales with a latent congenital deprivation level where below the adaptation
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can't shift. For cognitive attribute sensations of type -IT (negative ambience with ideal
points below adaptation level) we may have questions about (1) the existence of a
noticeably low deprivation level and (2) the possibility of unpleasant sensations below
deprivation level at such scales. Deprivation of sensations for cognitive type -11
sensation scales (single-peaked. negative ambience), such as mental stress, danger,
loneliness, fear, seems hardly unpleasant, but can it be excluded that just noticeable
sensations become less pleasant than some very low, but still noticeable level of
sensations? Can absence or unnoticeably low levels of cognitive sensations with such
a negative ambience be experienced as a qualitatively negative absence of affective
sensations? Generally one hardly has any reduced pleasantness. nor unpleasant
experiences from extremely low sensations for such cognitive attributes of type -n,
whereby they may reduce to type -I (no ideal and no deprivation points and, thus. no
less pleasantness or unpleasantness below any point). But introspection can be
misleading, therefore, an objective reasoning is needed.

Negative conditioning of response sensations to sensory scales of type +11 may
hold for sensations of danger, specific fears, mental stress, and the like. If such
conditioning takes place then the pattern of response sensations also must contain a
conditioned reversal of associated hedonic sensations that accompany the
unconditioned sensation intensities. This implies a reflection of the associated hedonic
sensation intensities with respect to the adaptation level. Thereby, one obtains that the
saturation level at a high sensation intensity on the unconditioned sensation scale with
positive ambience becomes a reflected. neutral hedonic level at a low intensity level on
the conditioned sensation scale with negative ambience. Comparable pleasantness and
unpleasantness as around the unconditioned saturation level are then reversely expected
around a low intensity level on a conditioned scale with negative ambience, which
turning point from positive to negative affections rightly constitutes a deprivation level.
According to this line of reasoning a deprivation level on a cognitive attribute scale
with negative ambience is quite well conceivable. If it is established by generalisation
learning then it could be that conditioned deprivation level may even be located below
the just-noticeable level on the cognitive sensation scale, because the corresponding
saturation level on the sensory sensation scale with positive ambience will generally
be far above adaptation level. The reflection of the saturation level with respect to the
adaptation level as a conditioned deprivation level on a cognitively associated type-II
sensation scale will be located far below adaptation level. Thereby, a conditioned
deprivation level can even be located on a subliminal level, but never below the
absolute threshold, while the ideal point may still be located between the adaptation and
just noticeable sensation level on such a negative ambience scale. Therefore. decreasing
pleasantness from a low noticeable ideal to a just unnoticeable level is acceptable for
such negative ambience scales. while the implied unpleasantness at unnoticeably low
sensation levels can't be experienced. So, although there may not exist congenital type
-11 scales, there may exist cognitive attribute scales of type -11.

The actual existence of such learned, cognitive type -11 scales may be illustrated
by the appealing example of danger. Danger sensations generally have a negative
ambience and. since absence of danger is usually not experienced as unpleasant, one
may be inclined to classify danger as a type -I scale. However. this would be incorrect,
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because individuals with high scores on the sensation seeking trait do experience low
and extremely high danger levels as unpleasant in several contexts (Zuckerman, 1979a).
Therefore, the negative ambience of danger must be a single-peaked type -II scale. The
absence of unpleasantness at low danger levels for most individuals only means that
their ideal danger level is close to the just noticeable sensation level of danger, while
individuals with high sensation seeking scores have their ideal danger level far above
the just noticeable danger level. If rewards become regularly associated with extremely
high danger sensations, as for example applies to stunt men, then the danger adaptation
level becomes located below the ideal danger level, whereby danger sensations then
even acquire a type +11 nature (single-peaked, positive ambience). It illustrates that the
positive or negative reinforcement expectations of response sensations detennine the
positive or negative ambiences of single-peaked, cognitive attribute sensations. In
laboratory experiments more than two hedonic neutral levels may become conditioned
to the one sensation scale by reinforcement schedules with respect to multiple intensity
levels. In contrast to the discussed example of skin and body temperature sensations
with a neutral adaptation gradient between a neutral deprivation level for skin
temperature and a neutral saturation level for body temperature, here we mean more
than two hedonic neutral levels for the same receptor field. For example, in experiments
of shock avoidance learning, wherein two experimenter-controlled levels of shock
intensities are used for warning signals of shock relief, also two different, neutral
saturation levels for shocks could be established. However, we assume it to be almost
impossible that such multiple saturation (or deprivation) levels are established by
reinforced stimuli in natural environments. If they would be established in specific
environments then they would generate response inconsistency that has negative
survival value and, thereby, would have been eliminated in the course of evolution.
Only evolutionary selected combinations of different receptor fields with positive and
negative ambiences for the same sensation dimension have emerged (e.g.: skin and
body temperature) and then give rise to homoeostatic ambivalence. Specific contexts
may impose a situational dependence of generally independent positive and negative
ambience dimensions and then cause a conflicting ambivalence for the combination of
dimensions with opposite ambiences. Only such a combination of type -11 and type +11
dimensions can produce a sensation midrange with hedonic-neutral values and
increasingly negative, hedonic values outside that range.

Singie-peakedness ofhedonic values, however, needs not to hold forevery kind
of cognitive sensation intensity that is conditioned to sensory sensations. There not only
exists congenital type -I sensation scales (monotonic negative ambience, no single
peakedness), but also cognitive ones. A cognitive type -I scale may be acquired by
positive conditioning of a cognitive attribute to sensations with a congenital type-I
scale, such as pain or nausea. Moreover, a cognitive type -I attribute can also result
from secondary conditioning to cognitive type -I sensations. For example, anxiety, as
general fear without an object, can generate from the secondary conditioning of
generalised response sensations that accompany experiences of unpleasantness
sensations of fear and threat for various objects and situations, whereby anxiety
becomes independent from the specific sensory modalities that originally cause the
associated fears or threats. Since reduced intensities of anxiety remain unpleasant, the
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cognitive attribute of anxiety constitutes a type -I sensation scale. By association
learning also cognitive scales with a positive ambience without a saturation level (no
single-peakedness) can exist. Such type +1 scales can derive from the negative
conditioning to congenital or cognitive type -I sensations or by a secondary positive
conditioning to other, already learned. cognitive type +1 sensations, despite the general
absence ofcongenital type +1 sensations for sensory modalities. As discussed in section
1.1.1, already ancient philosophers mention that objects with exchangeable values have
cognitive attributes of type +1, such as monetary value or control power over other
individuals. Increases of such attributes are always pleasant, either by the positive
reinforcement from their use in the suppression of type -I sensations or by the positive
reinforcement from their use in the attainment of pleasant type +1 of type +11
sensations. Due to the exchange values of attributes that contribute to the attainment
of pleasantness from other sensations, such attributes have no saturation level. Thus,
although type +1 scales seem not to exist for sensory modalities, they are possible for
attributes with socially or economically exchangeable values. Nonetheless, internal
response sensations of type +1 exist, but only in combination with counteracting
response sensations of type -I and operating together they constitute the type +11 or type
-II scales for the sensation modality that elicit these opposite response-sensations. For
example, the type +1 response sensation from water supply in the thirsty mouth and the
type -I response sensations from water supply to the saturating stomach describe a
congenital type +11 scale for sensations from drinking of water. For other sensation
dimensions similar matters arise by an antagonistic combination of internally produced
response sensations from different receptor fields for the same stimulus modality. This
internal antagonism for the same stimulus scale and the derived property of intra
dimensional multiplicativity leads to the conjecture that the single-peaked hedonic
value function for sensations scales of type +11 must be derived from the multiplication
of differently located, ogival functions for underlying type +1 and type -I response
sensations from the same stimulus dimension. Its underlying type +1 function is located
at the adaptation level and its underlying type -I function at a higher located saturation
level on the same sensation scale, which then satisfies the earlier derived bipolarity,
anti-symmetry and distance properties. Examples for congenital type -11 scales are hard
to imagine and may not exist, as also congenital sensations of type +1 seem not to exist.
However, cognitive type -11 scales do exist by the multiplicative combination of a
cognitive type +1 function located at a relatively low deprivation and a cognitive type
-I function at a higher located adaptation level on the cognitive sensation scale. We
conjecture that intra-dimensional multiplication of two underlying hedonic functions
located at different sensation intensities, as symmetrically ogival functions of type +1
and type -I with different origins, describe symmetrically single-peaked, hedonic value
functions of type +11 or type -11 for sensation dimensions with ideal points as midpoints
of the underlying function origins.

1.6.3. Sensation dimensions and hedonic value functions
Combinations of type I and/or type 11 scales are denoted as type III scales. Mixtures of
hedonic function types I and 11 are obtained for rotated dimensions in a sensation plane
with a type I and a type 11 dimension. In chapters 5, 7 and 8 we discuss asymmetric
single-peaked functions that derive from weighted mixtures of type 1 and 11 functions
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and in chapter 7 we apply such mixtures in the modelling of gamble preferences. In
chapter 8 we also discuss sensation dimensions with opposite hedonic value functions
of type 11, where special attendance is given to the interesting case of situations wherein
usually independent sensation dimensions with type +11 and type -11 hedonic values
become strongly dependent. The latter combination constitutes an ambivalent sensation
dimension with an intra-dimensional preference cootliet, because there are two
underlying ideal points, one below and one above the adaptation level. As later
discussed in chapter 8, the underlying type -11 and type +11 dimensions for such type
III scales define equal distances between the adaptation level and each of the two
underlying ideal points, whereby the underlying, oppositely oriented, symmetrically
single-peaked valence functions yield by their valence additivity a hedonic indifference
interval and increasingly negative hedonic values outside that zero-valued indifference
intervaL In chapter 8 this type III scale is applied in the analysis of road traffic risks.
Metric properties, such as rotationally weighted combination of hedonic functions of
sensation dimensions and zero-valued indifference intervals from combinations of
antagonistic, hedonic value functions, can only be derived after we have specified:
I. the metric function for the transfonnation of stimulus to sensation intensities,
2. metric functions for the hedonic value of unidimensional sensations,
3. the geometries of stimulus or sensation spaces,
4. and, thereby, the geometries of response or preference spaces,
which are the subjects of the next chapters 2 to 6.

For the moment we conclude that sensory or cognitive, unidimensiona(
sensations are characterised by congenital or learned hedonic value functions with a
positive or negative ambience, while many sensation scales have single-peaked hedonic
value functions with a maximum hedonic value at the ideal poim as midpoint of the
adaptation and saturation or deprivation levels, due to the derived symmetry property
of the single-peaked function. Some sensation dimensions show a monotone function
for their hedonic values. Such monotone functions with a negative ambience (no
deprivation level) can be seen as hedonic value functions of sensation scales with an
ideal point at an infinitely low sensation level, as pain or anxiety might illustrate. Also
monotone functions with a positive ambience (no saturation level) can be seen as
hedonic value functions of sensation scales with the ideal point at an infinitely high
sensation level. As referred in the first subsection of this chapter, Greek philosophers
already noticed that there are limited and unlimited desires. Unlimited desires are based
on sensation scales with a monotone, hedonic value function that has only one neutral
value point at the adaptation level, while limited desires are based on sensation scales
with a symmetrically single-peaked, hedonic value function with two neutral values:
one at the adaptation level and the other at the saturation or deprivation level. We
derived from adaptation-level and learning theories the properties that any single
peaked preference function has to satisfy, as discussed in sections lA and 1.5.
According to the derived multiplicativity property, a single-peaked preference function
is to be obtained by the multiplication of their underlying, symmetric ogival, hedonic
value functions. How a metric formulation of symmetric single-peaked preference
functions can be constructed from the mathematical psychology of psychophysics and
response theory is shown in the next chapter.
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CHAPTER 2

PSYCHOPHYSICAL RESPONSE AND VALENCE THEORY

"The introduction of cognitive and perceptual factors
into decision theory may lead to the construction of
more complicated choice models. At the same time sI/ch
models are likely to provide a more adequate account of
human decision processes. "

C.H. Coombs, et al. (1970). Mathematical Psychology.
(p. 164). Prentice-Hall, Englewood Cliffs, NI
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2.1. Psychophysical scaling and response theory

In this chapter the derivations of almost unique, metric expressions for judgmental and
preferential responses are formulated, as respectively magnitude and hedonic value
functions of sensation intensity. On the one hand these derivations are based on the
function properties derived in chapter 1, notably the properties from adaptation-level
theory and learning theory, where from it follows in summary that:
• physical stimuli give rise to sensations intensities that are relative with respect to

individually neutral reference levels;
• in the neural throughput from stimulus receptor fields to overt responses, relative

sensations become conditioned to congenital or learned overt responses and to their
anticipatory response sensations. The anticipatory response sensations are
connotative sensations for judgmental responses or affective sensations for the
pleasantness or unpleasantness of respectively anticipated reward or punishment,
where the preference strength is expressed by the hedonic value function for
pleasantness or unpleasantness of sensations;
judgmental response and monotonic preference strengths are symmetric ogival
functions of sensation differences from individual adaptation levels. The single
peaked preference strength of sensations is a hedonic function that derives from
multiplication of oppositely oriented, bipolar, and symmetric-ogival functions with
the adaptation level as origin for one ogival function and the deprivation or
saturation level as origin for the other ogival function. The reflected orientation,
bipolarity, symmetry, and origin distance of the underlyingogival functions defines
a single-peaked preference function that is symmetric with positive maximum at the
ideal point as midpoint of the adaptation and saturation or deprivation levels, while
sensations below deprivation and above adaptation level or above saturation and
below adaptation level have diminishingly negative-increasing, hedonic values.

On the other hand metric expressions of the symmetric-ogival functions are to be
detennined by the relationships between stimulus and sensation intensities and between
sensation intensities and judgmental magnitude responses or monotonic preference
strengths. The higher the hedonic value of sensations is the stronger becomes the
preference or approach behaviour and the lower their hedonic value is the stronger
becomes the dislike or avoidance behaviour. Referring to Lewin's (1938, 1942) field
theory of valences for actions, the hedonic values will be called valences in the sequel.

2.1.1. Stimulus and sensation intensity scales
According to Fechner's (1860) law (Guilford, 1954, ch.2; Luce and Galanter, 1963a,
ch..2; Boring, 1950, ch. 14) sensation intensity is measured by logarithmic stimulus
intensity. Citing Fechner (1851), as translated by Scheerer (1987, p. 203):

"lfthe strength ofthe physical activity .. is measured by its energy fJ .. and ifits
change, assuming an infinitely small pan, is named dp, then the accompanying
change in the intensity ofthe mental activity .. is not proponional to the energy
change dp, but to the relative change dfJlp .. by corresponding summation ofthe
accompanying relative increments, i.e., by means vfthe integral /dfJIfJ .. ,where
the mental energy of the initial element must be known, ... the required mental
intensity y .. will be y =log(fJlb}, where b denotes the value ofpfor which y =D."
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Fechner defined the sensation scale origin y :::: In(x Ill) = 0 to correspond to the
absolute just noticeable stimulus threshold x ~ :::: 1, $hereby y. = 0 for x./Il < x Ill.
Fechner also assumed just noticeable sensatign differences (jnd}to be con~tant fo~ all
jnd's above y asjnd(j>i) = In[(x. + tlx.)/x.] = a, where Fechner took 0: as scale unit
for his sensati~n scales with origirl y . As e~idence for the constancy of jnd's over the
whole range of sensations, Fechner( Ps60) referred to Weber's (1834) finding (see also:
Boring, 1950, ch 14) that a just noticeable increment Ilx.llJ of stimulus intensity x./)l
is a constant fraction K = t:..x.lx., which is called Weber'~ law. In the psychophysibl
literature the reference to Weber's law as evidence for Fechner's law has been
criticised (Luce and Edwards, 1958; Pfanzagl, 1962; Krantz, 1971; Falmagne, 1985;
Laming, 1997). Firstly, the transition from sensationjnd's to stimulus differentials is
questionable or even unfounded (Dzhafarov and Colonius, 1999, p. 245). A just
noticeable increment may not be detenninistic, but a stochastic increment with a certain
discrimination probability. For the first time Pfanzagl (1962) proved that the
differential stimulus derivation of Fechner's jnd holds for the integration of the
discrimination probability function over ajustnoticeable sensation increment. Thereby,
Weber's law implies not Fechner's law, as already argued by Elsass (1886). Secondly,
the sensation origin as absolute just-noticeable sensation and also the sensation jnd's
can vary, because both are shown to depend on the stimulus adaptation level of the
stimulus range, as noticed already by Aubert (1865). However, if we take Fechner's jnd
as the just noticeable sensation difference from adaptation level then Fechner's jnd
corresponds to the discrimination probability between p. = Y2 for stimulus x./~ and
discrimination probability p. > 1/2 for its just-noticably in~reased stimulus inteftsity as
x./Il = (1 + K.. )·x./~. For the tbgistic discrimination probability as function ofFechner's
Idgarithmic.J,\im~li (Luce, 1959b; Luce and Galanter, 1963a, sec. 3.2) we obtain

P·li =1/[1 + exp(y. - y.)] =1/[1 + exp(ll)]:=: tI[l + x./x.) = 1/[1 + (I + K .. )],
J J 1 J 1 JI

whereby II = In(! + K.. ). Writing stimuli as exponential function of Fechner sensations
exp[o.(y. - y )], we J}e that the differential stimulus, as derivative d(X./I1) divided by
level x.At, e~uals 0.. Thereby, if stimulus x./Il = (I + K .. Hx./l1) is thejust-noticeably
increas~dstimulus of x./~ then In(x./x.) =lrl( I + K..) =jHd(/- y.) =0.. IfFechner'sjnd
II is constant then K.. ~ K, also intlependently rtbm any disc~imination probability
function. Thus, in coJirastto Cobb's (1932) conjecture that Weber and Fechner's laws
are independent laws, Fechner's constantjnd a for sensations as logarithmic stimuli
implies Weber's constant fraction K.. = K, although Weber's law implies notFechner's
law. Whether Fechner's law for stodlastic Weber fractions uniquely implies the logistic
discrimination probability function will be discussed later in chapter 4, where it is
shown that theCauchy probability function (Wilks, 1962, p. 130) can be the only other
function that satisfies a constant jnd for the integration of the discrimination probability
function over a just noticeable sensation increment, but in the sequel we only use
Luce's (1959b) logistic discrimination probabilities as function ofFechnerian sensation
differences from an adapted reference level.

Since the value of the just noticeable stimulus depends on the adaptation leveL
while also Weber fractions are only constant for stimulus intensities fairly above the
just noticeable and fairly below the saturating stimulus intensity, also Fechner's scale
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unit and/or origin may vary if the momentary stimulus context changes or concerns just
noticeable differences at extremely low or high stimulus intensities. Thus, Fechner
sensations may only conditionally define an interval-scale measurement. Since the
Fechner scale unit is modality-dependent (Weber's fraction differs for different
modalities) and can also be location-dependent (the just-noticeable sensation
differences are not constant), each dimensional Fechner scale would become a variably
curved dimension (Dzharfarov and Calonius, 1999). Such dimensional scales define
a so-called Finsler space (Busemann, 1942; Rund, 1959; Asanov, 1985; Matsumoto,
1986) that has variable curvatures in contrast to flat or non-Euclidean spaces.
Nonetheless, for midrange-stimulus contexts Fechner sensations as logarithmically
transfonned ratio scales of stimulus intensities define interval scales with fixed origins
and scale onits that remain, however, arbitrarily defined, unless theoretically justified
and uniquely solvable unit and origin parameters in the logarithmic transfonnation of
stimulus ratio-scales define sensation scales that are invariant under linear
transfonnations of Fechner's logarithmic stimulus scales. In the sequel we derive such
parameter specifications for unidimensional sensation scales as logarithmically
transfonned stimulus dimensions that nicely describe the satiation phenomena, whereby
stimulus differences above adaptation level are judged smaller than the same stimulus
differences below that level. For example, the sensation difference In(7) - In(6) equals
almost half the sensation difference In(4) -In(3).

I Weber (1834, 1835) found by cutaneous sensitivity experiments that

Jnd(x "X, )= K ·x. (K = constant) (12a)
Jk lk k lk k

where x, is a stimulus intensity i for modality k and ~ the constant
Weber flKction of just noticeable stimulus increments. Fechner's (1851)

invention was firstly that sensations are measurable by some function
of stimulus intensities and secondly that a constant Weber fraction is
implied if sensations are inversely transformed to stimuli by exponents

I and jnd' s of sensations are constant. Since the differential of function
I f [ (y, - a) led is only constant for the exponential function, Fechner
I defitied stimuli as exponentially transformed sensations (Feclmer was
I a panpsychistic philosopher, who believed that mind and matter are two

faces of the same). We write Fechner's inverse law as

x I~ ,
ik ' k

(12b)

Here O:k as constant-assumed sensation jnd defines Fechner's sensation
scale unit, while Fechner (1860) also took the stimulus-scale unit ~

as threshold by taking a = In{x I~) = 0 as absolute just-notiCeabl~
sensation. Thereby, Fechn~r deri{?~d seemingly without loss of generality

(12c)

If the sensation origin is not constant, which empirically is the case
for shifting adaptation levels, then the sensation scale can't be
defined in Fechner's way. We take the sensation scale of (12b)as an
interval scale with yet undefined scale unit 0: and origin a . We write
its interval-scale sensations as k k
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Sik = (Y
ik

- akl/a
k

= In(xik!l\)/a
k

" (l2d)

The sensation scale with a = 1 and a = In(x /u
k

) = 0 as absolutely
just-noticeable level will~ called ~ Fechne~ksensationscale.

There exists an alternative psychophysical function that is often favoured above
Fechner's logarithmic function of the ratio scale for stimuli, whereby Fechner's law
defmes an interval-scale measurement of sensations. That alternative is Stevens' (1957,
1960, 1961, 1975) powerlaw. Stevens' psychophysical law states that a power function
of the ratio scale for stimulus intensity is proportional to its subjective magnitude,
whereby the subjective stimulus magnitude becomes z. =: (x.Jll{ Stevens fannulated
his law on the basis of fraction judgments for stimulLs mlgnitudes with respect to
target stimuli, where the fraction judgments fit a power function of stimulus intensities
for many different modalities (Stevens, 1957; Stevens and Galanter, 1957).

Stevens' psychophysical law states that subjective intensity is a
power-raised stimulus intensity, written as,

zik" (xi/Pk) k. (l3a)

Stevens' power law (13a) and Fechner'S log law (12c,d) are also related.
This is evident by taking the logarithm of (13a)

Yik " In(zik) " 'k·ln(xi/'\.)· (13b)

So Fechner's sensations are log-linear transformations of the power
raised stimuli of Stevens' law, but the inverse of the power exponent
lie 1= 0" ,,In(l + :r;,l differs from Fedmer's jnd as modified Weber
fra~tionk5e' while tne stimulus-scale unit]1 1= 1 " x k needs also not
to equal Fechner's absolute stimulus threshold. 0

Stevens claimed that Fechner's law has to be repealed (Stevens, 1961) and the
controversy has not been resolved. There exist extensive bodies of different
experimental data, whereof each kind only supports one of the two laws and further
empirical research analyses seem useless for the termination of the debate. The
experimental evidence for Fechner's law, apart from mean category ratings with equal
appearing intervals, concerns just noticeable differences, For Stevens'law the data are
gathered by methods for the subjective estimation of apparent magnitudes or fractions
of stimuli with relatively large intensity differences. Apart from the critique that
logarithmic and power functions of stimulus scales are hardly distinguishable for many
modalities (Treisman, 1964a,b; Wagenaar, 1975), each body of experimental data can
be considered as convincing, Therefore, one should not ask which transformation
function is correct, but whether there exists an explanation for the difference of
functions by the difference in experimental methods, This would ask for an explanation
either by Stevens' power law for the logarithmic function of data from the studies based
on small stimulus differences and on mean category scaling or by Fechner's logarithmic
law for the power function of data from studies based on apparent fraction estimation,
Since the data in support of Fechner's law, apart from data for mean category scaling,
concern the perception of equality or difference for pairs of neighbouring stimuli
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without any intervening judgment of subjective stimulus magnitudes, it seems
implausible that Fechner's logarithmic function is influenced by an intervening effect
of the method. The data in support of Steven's power function require the cognitive
operation of fraction judgment. whereby the reverse may hold. One method of apparent
magnitude judgment consists of an adjustment of a stimulus intensity to an apparent
numerical ratio of another presented stimulus intensity (for example: manipulate a light
dimmer until a light has twice or half the apparent brightness of a presented light). In
the other method of so-called direct scaling the judgment consists of numerical value
assignments to apparent magnitudes of randomly presented stimuli with intensities in
a range between two standard stimuli with given numerical values (for example: a low
intensity is given the magnitude of to and a high intensity the magnitude of 100 and
stimulus intensities in between have to be given magnitude numbers with respect to the
prior assigned values for the extreme stimuli). Subjects in these experiments need a
cognitive process of metric magnitude assignment for their fraction judgments, as
Wagenaar (1975) has argued. Apparent magnitudes of stimulus intensities with
arbitrary scale units, such as weights in grammes or kilograms, length in centimetres
or yards, illumination in lumen or microlux, etc., must be viewed as the result of a
matching between cognitive magnitude sensations and the sensations of the evaluated
stimulus intensities that are both a psychophysical function ofrespectively the objective
numerical scale values and stimulus intensities.IfFechner's law applies and individuals
learn to attach metric values to cognitive magnitude sensations that are logarithmic to
a numerical scale then the metric values for apparent magnitude responses to stimulus
intensities are the learned numerical values that correspond to cognitive magnitude
sensations. Thereby, cognitive magnitude sensations as logarithmic number scale are
matched with the logarithmic stimulus intensity by their weighted sensation equality
and expressed by the assignments of metric values that correspond to cognitive
magnitude sensations. This is supported by the linear function between apparent
'numerousness' or magnitude of spot patterns and the logarithm of the objective
number of spots in the patterns by Guilford's (1954, p. 204) scaling method of equal
appearing category intervals. One may assume that this is also the reason why the
diameters of money coins are purposelessly designed according to the logarithm of the
objective coin values. It also may be the reason why laymen make wrong inferences
from magnitude scales of sound volumes and earth quakes, since laymen don't realise
that decibels and Richter's scale are already logarithmic scales of physical intensity. As
Wagenaar (1975) suggested implicitly, fraction judgment can be seen as a matching of
a particular sensation modality with cognitive (learned and generalised) sensations of
magnitude. Such a matching between a magnitude sensation scale as the logarithm of
a metric ratio scale and a sensation intensity scale as logarithm of a ratio scale for
stimulus intensities gives an equality matching by weighing of their logarithmic scales.
The weighted equal ity between logarithmically transfonned ratio scales implies a power
function for the relationship between their original ratio scales with arbitrary scale
units. Thus, it follows that Stevens' power law for fractionation data can be derived
from Fechner's law. This is noticed earlier by Ekman (1964) and for cross-modality
matching by Luce and Galanter (1963b, sec. 4.3.), where Stevens' power and Fechner's
logarithmic functions both give a power function for matched stimulus scales.
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A logarithmic transfonnation of metric magnitudes to magnitude sensations
explains also why Fechner's law fits the means of ordered categories in the scaling by
so-called equal appearing category intervals. This scaling procedure is a questionable
methodology from a measurement-theoretical point of view, because it relates averaged
rank order values of category intervals to sensation intensity. Still it shows stable
interval-scale results as linear transfonnations of logarithmic stimulus intensities,
independent of instructions and labels of categories, number of categories, and
distribution of stimulus intensities (Luce and Galanter, 1963b, sec 3.2. ) as long as the
subjects are asked to make the ordered category intervals subjectively equal by
instruction. It can be conceived as a successive ordering of approximately equal
intervals on a scale for matched magnitude sensation of subjects who randomly differ
only in precision of location and constancy of interval widths. Under these conditions
the mean of rank numbers assigned by the experimenter to the equal appearing
successive categories of subjects will become a rather precise interval scale for the
logarithmic sensation scale. If this is the case and Fechner's law holds, then the means
of ordered numbers for successive categories must show a quite good linear relation
with the logarithm of the stimulus intensity scale, despite the questionable methodology
of that method. Fonnulated in another way: ifFechner' s law applies then (I) an average
equalityof intervals formagnitudes of sensations with its arithmetic number assignment
by the experimenter in the mean category scaling method yields a logarithmic stimulus
scale and (2) the matching of logarithmic transfonned number and stimulus scales for
the methods offractionation and direct scaling defines a power-raised numerical scale
for the subjective stimulus magnitudes. These hypotheses are in accordance with the
suggestion of Torgerson (1961) that individuals use "exponential series for fraction
estimation and arithmetic series for difference estimation", although our theoretical
explanation differs from Torgerson's ad hoc assumption.

Suppose nwnerical magnitudes n.l).1 relate by generalised leaning to
Fechner magnitude sensations rn~, where according to formula (12d):,

rn, = In(n,/1-1)/a =[In(n.) ~ alia with In(]1) = a (Uc)" ,
We conjecture that subjects cognitively match sensations m. to sensation
intensities of a stimulus modality. Stevens, however, taKes responses
n./]1 for sensation intensity as subjective magnitude. So by (13a) ,
aecording to Stevens (1957, 1960), we have

!Stevens' .direct (Ud)
hypothesls: n i = Yik

(Ue)- a ]
k'

n./]1 =,
or

In(n. ),
According to the above conjecture, subjects learn a generalised scale of
magnitude sensations that is matched with sensation scale s, , whereby
rn, = s, and applying Fechner's law also to scale k of stimuiJ\ x. one
wf-ites~kcorrbining (Uc) and {l2d} for a matching of the Cognitiv~k
magnitude sensations with sensations s, k of stimulus intensities x. ,

, ,k

[In (n ) - a] 10: = [In (x ) _ a l/o: IFechnerian matching
i ik k k hypothesis: rni=Y

ik
(13f)
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We see that the equivalence of (Ut) and (De) defines

(139)

So, Stevens' power law derives from Fechner's law, if an intervening
matching with cognitive magnitude sensations guides the method of
fractionation judgments, wher-e a/a = 1 defines that the power exponents

f . 1 hk . k h"' ho Stevens are proportlona to t e loverse mate 109 welg t (i,k'

The power exponent for the matching function in cross-modality matching ought to be
identical to the ratio of the power exponents from separately obtained power exponents
by Stevens' fraction judgment or direct scaling methods. This has empirically been
proved to be correct (Stevens, 1959), but the power parameter for the matching
function in its derivation from Fechner's law is only a still unspecified matehingweight
for the equivalence of two sensation scales. Therefore, Luce and Galanter (1963b, p.
280) favoured Stevens' power function as the psychophysical law. However, since each
law is sustained by experimental data with different methodologies, the hypothesis of
an interveningFechnerian matching of perceptual and cognitive magnitude sensations 
whereby fractionation scaling yields Stevens' power law as result of Fechner's
logarithmic law - presents a consistent explanation of all the evidence.
• Firstly, 'yes-no' difference responses to almost just noticeable differences without

magnitude judgments have supported almost constant Weber fractions ever after
Weber's first experiments in 1834, which constancy is implied by Fechner's law.

• Secondly, Steven's direct scaling can be regarded as matching of perceptual
sensations with cognitive magnitude sensations, whereby Stevens' power function
follows from Fechner's law, as demonstrated in the above mathematical section.

• Thirdly, scaling by equal appearing category intervals can be regarded as a
cognitive process of subjective equal interval estimation on a Fechnerian sensation
scale of cognitive magnitudes, whereby logarithmic stimulus intensity and scaling
by equal appearing category intervals define linearly related scales.

Therefore, Stevens' power law derives from Fechner' law as a matching law of sensory
sensations with cognitive magnitude sensations, whereby Stevens's subjective stimulus
magnitudes express in power-raised stimulus tenns what Fechner's psychophysics
describes by weighted sensation terms. As discussed in chapter 3, we may conclude that
Stevens and Fechner express the same in spaces with different geometries, where
Stevens by the implied matching of Fechnerian magnitude and perceptual sensations
has honoured Fechner in implicitly repeating and not repealing Fechner's law.

2.1.2. Comparable sensations and subjective stimulus magnitudes
Up to now the unit and scale origin of sensation measurements in the derivations are
not psychologically meaningful and distinct parameters. The integration of Helson's
adaptation-level theory and Fechnerian psychophysics partially changes that situation.
According to Helson's (1964) adaptation-level theory, discussed in section 1.4,
sensations are sensation differences from adaptation level. The order of presented
stimuli may influence that adaptation level, because the adaptation level is defined by
a geometric averaging of previous stimuli on the physical scale or by an arithmetic
averaging of previous sensations on a Fechner scale. Since adaptation is an averaging
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process on the sensation scale, the same physical intensity difference from the adapted
level on low levels of physical intensity scales are sensed larger than those on high
levels. That is why adaptation to the dark lasts longer than adaptation to bright light.
However, we will not discuss response-time research. because it would unnecessarily
complicate our psychophysical response theory. Michels and Helson (1949) have
argued that adaptation-level theory implies a significant change of the interpretation of
Fechner's law. They state that the actual sensations are proportional to the logarithm
of the ratio of the presented stimulus intensity and the stimulus adaptation level. Thus,
where Fechner (1851, 1860) defined sensations for modality k by

\k = InC\k/xok)/ak
for stimuli x'k with absolute stimulus threshold x k and u

k
as just noticeable sensation

difference, tHere Helson takes 0

sik = Tk.ln(xiklbk) = (Yik - ak)/(uk/u)

for stimuli x'
k

with stimulus adaptation level b
k

and stimulus- and context-dependent
weight T

k
= hx/~). But we derived Stevens' power exponent T = (alU

k
) as ratio of

matching weights I/a for cognitive magnitude sensations and ~Uk for sensations of
modality k, as shown in the last mathematical section. Thus, Helson replaces Fechner's
stimulus threshold x k/f.\ by the stimulus adaptation level bk/llk, both with arbitrary
scale unit )..lk' In theOsequel we will define the adaptation level a

k
= InCbk/x k) as a

conditionally constant distance on a Fechnerian scale y'k = In(x. Ix k)' wliereux III
is not Fechner's absolute stimulus threshold, but ajusl noticeai.fe ~bmulus levJ\kfua~
depends on the adaptation level. Here distance a

k
is assumed to be constant if the

presented stimuli are randomly selected frama known stimulus set and stimulus context
is stable. Stimulus threshold x k 2: X k for just noticeable sensation InCx'k/x k) = 0
may vary with employed stimul~s rang~, because its sensation distance frarti ada1;iation
level equals the distance to the sensation-range midpoint. Here this is immaterial,
because without loss of generality

\k = \,[In(xiklx uk) - In(bklxuk)] = (Yik - ak)/(ak/a).

This expresses the bipolarity and relativity of sensations, because the actual sensations
s'k are then proportional to the difference between the Fechnerian sensation y'k and
e\lsting adaptation level a

k
on sensation dimension k, The tenn individual or Fetliner

Helson sensation is used for this Fechnerian sensation difference, if constant adaptation
levels are individually different. Also individually different weights for sensation scales
may apply, which individual weights become distinctly defined, constant scale unit
parameters, as shown in the sequel. By their exponential transfonnations the subjective
stimulus magnitudes z'k=exp(s'k) become equivalently expressed by a power function
of the ratio of stimulu~ IOtensit~and the adaptation level as

'k
zik= exp(sik) = exp[(Yik - ak)Calak)] = (\klbk) .

We may view subjective stimulus magnitudes z'k as a power function of the so-called
rectangular Euclidean co-ordinate x.klb

k
of a hyperbolic sensation co-ordinate s'k with

origin Yik- ak = 0 that correspondho zik = xik/bk = 1. So Stevens did not dJscribe
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sensation dimensions, but power-raised stimulus dimensions as subjective stimulus
magnitudes that represent sensation dimensions in another geometry. Although both
measures represent the same, they are representations in different geometries. This is
further discussed in chapter 3, where we demonstrate that either a power-raised
Euclidean stimulus space corresponds to a weighted hyperbolic sensation space or a
power-raised non-Euclidean stimulus space to a weighted Euclidean sensation space.

Notice that Fechner-Helson sensations no longer depend on the unit of the ratio
scale of stimulus intensity, but depend on the individual adaptation level as the
sensation scale value of the geometric average of randomly presented stimuli or for
cognitive objects as stimuli the Fechner-Helson sensations depend on average of
memorised sensations of previously experienced, similar objects. Thus, there are no
objective sensations, but individual sensations as relative values defined by differences
between logarithmically transformed stimulus intensities and the individual adaptation
level, which individual sensations without a defined scale unit are called Fechner
Helson sensations. The individual adaptation levels, however, can be common and
constant for sensations from an identical stimulus context. In Stevens' (1957,1960)
studies the stimulus set is constant and randomly presented stimuli are compared with
an anchor stimulus or anchor stimuli at the stimulus range bounds of the stimulus set.
Thereby, the adaptation level of individuals will approximately be the same as Fechner
sensation of the geometric average of repeated anchor and presented stimuli, where that
average mainly depends on the anchor stimulus or anchor stimulus pair (Guilford.
1954, p.333). In studies wherein a stimulus set is shown prior to the evaluation of its
randomly presented stimuli without any anchor stimulus the adaptation level will equal
the average sensation of the stimuli. Although the adaptation level of randomly
presented stimuli may vary somewhat by the influence of the most recently presented
stimuli. averaged over individuals the adaptation level of randomly presented
perceptual stimuli will be the average sensation level of the stimuli. Helson (1964)
verified this by using Guilford's (1954, p.204-205) category scaling of subjective
numerousness for spot patterns on card squares of2.5 x 2.5 inches with a number n. of
spots that ranged from n. =: 15 to n. =: 75. Guilford found I, ,

c. =: 9.41·log lo(n.) - 9.36, ,
where c. is the median of assigned order numbers of the equal appearing categories for
stimuluJ i, where Guilford numbered the ordered, equal appearing categories from I
to 9. The log-linear relationship with correlation r =: .998 is almost perfect. Guilford
took Fechner's law as

c. =: A·loglO(n.ln )
, , 0

with n as perception threshold of spot number, where loglO(n ) =: .9.36/9.41 =: 0.995.
Since ?his gives n =: 9.9, Guilford (1954, p. 206) wonderelhow a almost 10 spots
could be the per~eption threshold. However, according to the Fechner-Helson
psychophysical function, sensations are deviations from the average Fechner sensation
of the stimuli. Since Helson's modification defines that the average sensation to
correspond to the median category number 5, while scale c. is linearly undetermined,
Guilford's log-linear relationship becomes written as I
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[c. - 5]/9.41 = !oglO(n.) - (9.36 + 5)/9.41 = loglO(n.) - 1.526,, , ,
which is written in Napierian logarithms as

[c. - 5]/4.09 = 10(0.) - 3.51., ,
For m. = [c. - 5J/a and weighted sensations [10(0.) - a ]/a it rewrites as
lie 1 n n

m. = [In(n.) - a lIeu la ) = [10(0.) - 3.51]/0.244
I 1 n n C I

et la ::: 0.244 and a = 3.51.
n c n

If Helson's modification of Fechner's law is correct, then a should be the logarithm
of the geometric mean of spot numbers. Since the spot numBers range from 15 to 74,
the logarithm of the geometric average is Y21n( 15·74) = 3.506. Rounded of to 3.51 this
indeed equals a =In(b ) for geometric average spot numberb =exp(3.506) =33.315.
Thus, Guilfordns ]og-llhear relationship verifies the Fechner~elson psychophysical
function. Moreover, since

we obtain
m . :::: In(n . fb )/(a la ) and m :=: In(n fb )/(0. la ),

mm mmn ne max maxn ne

a la :::: In(n In. )/(m - m . ).
n c max mm max mm

Thus, if the log-linear relationship fits well then Helson' s modification of Fechner's
law also implies that the factor a la :::: .244 must approximate the ratio of range
bounds for Fechner-Helson sensati'6nfln(n.fb ) and means m. of the equal appearing
categories that were arbitrary numbered frok ~ to 9. The two lowest and highest spot
numbers (15, J6) and (74,69) have mean category numbers of respectively 1.84 and 8.21
in Guilford's (1954, p.203) study, whereby category range (m - m . ):::: 6.37. The
range of logarithmic spot numbers In(n In,):::: In(7l.5/l5.~~1.~Thereby, we
see that their range ratio 1.53/6.37:::: O.~ifimT~~d closely approximates a la :=: 0.244.
Since the category range (m - m _ ) varies with the arbitrary numb~ri~g of the
categories, the value a 10. :::: .2~. is Wb~ a meaningful parameter in contrast to a . We
conclude that this ref8nnTtlated analysis of Guilford's study confinns the Fec9mer
Helson psychophysical function, because the fitted and theoretically expected
parameters are almost identical, despite the questionable scaling method by mean rank
order numbers of equal appearing category intervals.

For sensations s'k of stimuli x'
k

for modality k with b
k

as geometric stimulus
av:rage or In(b

k
) :::: ~ is arithmetic a1verage of In(\k)' the Fechner-Helson function

wntes as
\k:::: (Yik-ak)/ak :=: [In(\klJ-\Hn(bkl)Jk)]lak :::: In(\klbk)lak"

The Fechner-Helson sensations as logarithmic ratios of the stimulus intensities and
stimulus adaptation level depend not on the measurement unit)Jk of stimulus scale k.
Stevens' power function for magnitude evaluations ofcompared sensory sensations not
only requires a magnitude evaluation of the sensation deviations from a common
adaptation level, but also a weighing of sensation differences for the equality matching
with magnitude sensation differences. The comparability weighing of Fechner-Helson
sensations defines intensity-comparable sensations by the weighted matching with
cognitive magnitude sensations, where according to our derivations the matching
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weight equals the almost constant value of Stevens' power exponent for each modality.
Poulton (1967, 1968) argued that the different sizes of power exponents for different
modalities "are merely afunction ofthe experimental conditions lUlderwhich they were
determine{[', According to Poulton, the most important condition is the ratio of
maximum and minimum intensities of the stimuli employed in the studies. The size of
the power exponent would then seem a 'procedural artifact', which is supported by the
reported high rank correlation between power exponent size and the ratio of the
stimulus range values (Poulton, 1967; lanes and Woskow, 1962) for different
modalities in many studies ofStevens and co-researchers. Teghtsoonian (1971) analysis
shows a curved relationship between power exponents and ratio of range values for
employed stimulus intensities with Pearson correlation r= 0.935 between predicted and
observed power exponents for 24 different modalities with different ranges and power
exponents. Different employed ranges for the same modality show (Teghtsoonian,
1973) that the power exponents only are weakly influenced by stimulus range. Since
inter- and intra-modal power exponents are quite differently influenced by different
ranges, the power exponents are not 'procedural artifacts' of employed ranges. Notice
that logarithm of the ratio for two subjective stimulus magnitudes in Stevens power
exponent expression yields

In(ziklzjk) = sik - Sjk = ck.ln(\k/xjk)·

Teghtsoonian (1971) takes x'k = xk as the maximum and x'k = x
k

_as the minimum
intensity of the employed stirhulus rtnge for his relationship ~etween power exponent
and. employed stimulus range. Rewritten for range values zik = zk+ and z'k= zk_ it
defmes the power exponent by J

ck = In(zk/zk)lln(xk/x k),

where In(zk Iz
k
) is a modality-specific parameter. However, Teghtsoonian showed

that In(zk 7!k) = loglO(z Iz_) = 1.53 is virtually constant and, thus, a modality
independe"tt parameter in the relationship

c
k

= 1.53/Iog,o(xk/xk
).

with correlation r = .935 between experimentally obtained and predicted power
exponents of 24 different modalities. Thus, although the ratios of employed stimulus
range bounds varied from 1.15 for electric shock to 13.82 for brightness, the subjective
stimulus magnitude range is almost constant as 10glO(z le) = 1.53 ± 0.04. Since the
power exponent c

k
equals the weight factor of intensity-comparable sensations, the

comparability weight is proportional to the inverse of the employed sensation range.
The range of perceptual modalities differs naturally in upper and lower intensity limits.
Also their just noticeable stimulus levels markedly differ in energetic level, although
diminishingly decreasing by gradual adaptation to the lower range bound of employed
stimuli (Hecht, et aI., 1937; Bartley, 1951: Licklider, 1951; Pfaffmann, 1951). Most
studies used a fairly wide stimulus-intensity range, but Teghtsoonian (1971, p.74)
remarked that maximum ranges from absolute threshold stimulus x . to just not
damaging stimulus x are likely not used. He reasoned. based JilmeWminishingly
decreasing power eX~6'R~'hts for higher located stimulus ranges of the same modality,
that the maximum power exponent is better expressed by c

k
= 1.53/Iog]o(x

k
/x

k
) plus
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a range-dependent factor. But, since ratio f
k

:::: [logJO(x
k

IX
k

)/loglOex Ix .)
varies with the cognitive magnitude ranges as ratio r :::: loglO(z-1z_)/ln({' mrz .k')~~e
rather define that change of their corresponding p~wer expori"ents by alNbp2N¥ional
factor r < I. Expressed in Napierian logarithm

m
In(z /z. )=!n(lO)·!oglO(z /z_)/r =2.30-1.53/r =3.52(r ,

max mm + m ill ill

whereby the relation between power exponent and stimulus range is written by r < 1
m

" 'k ::: 3.52/[r .In(x
k

Ixk ·)],
ill ,max ,mm

where In(x Ix. ) is the maximum sensation range that corresponds with the
maximum t:iWg~ l~(zlln Iz . ) of cognitive magnitude sensations. Assuming that the
maximum sensation m.::fge'W~s the same midpoint as employed sensation ranges with
the adaptation point as midpoint, it follows that we may write

'k:=: In(bklx k):=: V2ln(x k Ixk ·)·u ,max, mm
Steven's power exponent T

k
equals aJa

k
as the weight factor of intensity-comparable

sensations In(xiklbk)/a
k

that cognitively match with magnitude sensations In(n(b)/a,
whereby

\. r
m

:=: (a· rm)/a
k

:=: 3.52/(2·a
k

):=: 1.76/a
k

.

a
k

:=: (a·r
m

ll.76)·a
k
,

where I/o. is the Stevens power exponent for magnitude estimation of metric
magnitude. Attneave (1962) and Rule (1969, 1971) found power exponents with an
average of .40 and a range between .50 and .33 for apparent magnitude estimates of
metric quantity. Power exponents of .33 to.5 for metric quantity may imply that the
sensations of cognitive quantity are a mixture of volume and area sensations, because
volume raised to power 1/3 and area raised to power 1/2 is length, where sensations of
length may correspond to the cognitive magnitude sensations for the matching in
fraction estimates. Generalised cognitive quantity as mixture of area and volume is in
line with the findings of Piaget (1963) that conservation of quantity in varying three
dimensional fonns is difficult for youngsters and too difficult below the age of 12
years. The cognitive magnitude sensations of metric magnitudes then should be equal
to the sensations of length or distance. This is sustained by the average power exponent
of unity for magnitude estimation of lengths and distances, where the power exponents
reduce from 1.l2 to .88 for ranges of small line lengths to very large distances, as
reported in studies of Stevens and Galanter (1957); Ono (1967), Mashhour and
Hosman (1968), and Teghtsoonian (1973). Since T :=: I defines a matching of
cognitive magnitude sensations m. with averaged lerrlgth and distance sensations,
cognitive magnitudes equal averagJd length and distance sensations with a :=: 1. The
power exponent of length for stimulus ranges ln(length /Iength _ ) > 4 decreases to
its limit 1: ·r :=: .88 (Teghtsoonian, 1973), whereby~ax:=: .88 N''lhe factor for the
maximumIl}a/&e of cognitive magnitudes. The meaninWof (l :=: I and r :=: .88 is
important, because it defines the inverse weight for intensity-comparable semations as:
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Thereby Stevens' power exponents equal twice the inverse value of the adaptation level
on the Fechnerian sensation scale. The weighted Fechner-Helson sensations become
intensity-comparable sensation magnitudes that are defined by

$ik = [In(xiklbk)]I~ :=: 2[Yik - ak)Jak :::: 2[Yik/ak - 1]

for ~ :=: Yla
k

and rewritten for \. = In(bk/x
uk

) by

\k = 2[ln(xiklxuk) - lo(bk/xuk)]/ln(bk/xuk) = 2[Yik/ak - 1J

for Fechnerian sensation Y"k = In(x·k/x ) with adaptation level a = In(bk/x ), where
x k is the just noticeable sbmulus leve~for the sensation threshofct In(x

nk
) ~b. Notice

ttrat the comparably weighted Fechner-Helson sensations are expressedoy the ratio of
differences and a fixed distance on the Fechner scale Y'

k
= In(x·k/x k)' whereby

intensity-comparable sensations are invariant under Linedr transjorm~tions of the
underLying Fechner scaLe. The significance of this invariance for measurement in
psychology is further discussed in chapter 6, but it may already be clear that the
measurement of intensity-comparable sensations s'k is invariant under changes of scale
unit and origin of the underlying interval scale otJFechner sensations.

The relationship between estimated power exponents and employed stimulus
ranges in the magnitude estimation ofStevens and co-researchers holds across different
stimulus modalities, despite the marked differences in the physical intensity ranges of
the different modalities. Thus, the judgmental range of subjective stimulus magnitudes
of all modalities appears to be approximately constant, as Teghtsoonian (1971)
concluded. However, we add that this must be due to the implicit matching with a
common range of cognitive magnitude sensations in the studies of Stevens and co
workers. Teghtsoonian (1973) also showed that intra-modal changes of the geometric
range of the employed physical stimulus intensities only has a minor effect on the
estimated size of the power exponent. Although the power exponent of Stevens
decreases somewhat with increases of the range for presented stimulus intensities of the
same modality in experiments using fractionation or direct magnitude estimation, these
experiments yield almost stable power exponents. For et = I and u

k
= Yza

k
we have

\ = aJetk = 2/ak= 21 In(bklxuk)'

whereby a rather stable value!k of power exponents in Stevens magnitude estimations
implies that the distance between adaptation level In(bk/~k) and the just noticeable
sensation levelln(x k!fl

k
) = 0 has to remain also rather stable. It means that the just

noticeable stimuluJ! Intensity x k/~k changes its position on stimulus scale k
approximately as much as the g~ometric average stimulus intensity b

k
for shifted

stimulus ranges. This may very well hold for the usually employed stimulus ranges well
above the absolute stimulus threshold of perception. However, since the just noticeable
levelln(x k/l-lk) can't shift below the absolute sensation threshold In(x klll.k)' it is also
to be expdt:led"from the reciprocal relationship between power exponen?anoadaptation
level that the size of the power exponent increases somewhat if the intra-modal
stimulus range decreases and the more so the closer the upper range level becomes to
the absolute stimulus threshold x . This is also empirically shown to be the case.
Already Stevens and Poulton (1958fobtained by the magnitude estimations of 1000 Hz
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tones of 40,20,10, and 6 db above absolute threshold with respect to a standard of
100 db that the four estimated power exponents increased respectively from .46, .52,
.60 to .67, while Teghtsoonian (1973) reported power exponent sizes of .88, ,90, .91,
and .97 for apparent distance of objective distances that range respectively from 5 to
480, 10 to 450, 5 to IlO and 5 to 37 ft in outdoor setting. Similar matters hold for
somewhat shifting power exponents of loudness and apparent length (Teghtsoonian,
1973). The variation of average power exponents between different modalities ranges
from 2.5 for electric shock to 0.30 for monocular brightness. Due to the
neurophysiologically differing ranges of perception organs for different stimulus
modalities the variation of power exponents within modalities can indeed be small
compared to the variation of power exponents between different modalities.

For z'k as subjective stimulus magnitudes we derive from, ,
k

zik=: exp(sik):::: (xiklbk)

'k
zik + o(zik):::: exp[sik + o(sik)]:::: [xiklbk + o(xiklbk)] ,

that the ratio of these expressions defines
'k

I + o(zik)/zik :::: exp[o(sik)] :::: (I + o(\k)lx ikJ •

Here o(x·k)/x'k.:::: Kk is Weber's (834) fraction and 'kStevens' power exponent, while
Teghts06nian\ 1971, 1974) also derived from the relationship between Weber fractions
and Stevens power exponents in nine pairs of studies with similar stimulus conditions
that l)(zik)/z'

k
:::: 0.03 is constant within rounding off errors < 1.0041. The modality

indepenaent1constancy of magnitude fraction l)(z'k)/z. k.:::: o(z.)/z. has been an implicit
assumption of Brentano (1874) who described p~rceb'fion ofstifuuli not as sensation
intensity, but as a mental act that immanently relates to physical objects ( Boring, 1950,
p.356-361, Stevens, 1975, p. 234; Staddon, 1978). The constancy of o(z.)/z. has been
seen by Teghtsoonian (974) as more evidence for Stevens power funJtio~ than for
Fechner's logarithmic function. However, according to our derivation of weighted,
intensity-comparable Fechner-Helson sensations, Stevens' reference to Brentano's
constant fraction is just an analog of a constant interval 0 as the just noticeable
difference Und) of cognitive magnitude sensations that equl}ils the jnd of intensity
comparable sensations as well as the product of Stevens' power exponent and the
modified Weber fraction of stimulus intensities of each modality, because the
logarithm of the last expression above yields

I) :::: o(s'k) :::: 'tk·lnO + K
k

):::: In[l + o(z.)/z.] :::: In[ I + .03] :::: .0296m I , ,

for all modalities k with o(s'k):::: o[2(y'k- ak)/ak] for different weights 2/a
k

of intensity
comparable sensation inten's,ties. Codstancy cif &(z.)/z.:::: .03 in magnitude estimations
for all moda!ities is not surprising at all, becausJ dJriving from the matching with
cognitive magnitude withjnd 0 :::: .0296 that remains equal for any modality k that is
matched with cognitive magnitllde. Constantjnd 0 ::: .0296 for magnitude sensations
and the fraction constancy of 8z./z. of numericafassigned values, thus, only mean
constantjust noticeable differencek fbrcognitive magnitude sensations that are matched
with sensationjnd's ofmodalities in the magnitude estimation of these modalities. For
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ratio 'il/ak of two modalities we obtain

'lI/ak = li'h = In[l + Khl/ln[l + KkJ:::: In(xh/xh_)/ln(xk/xk_)·

If x'h is the metric magnitude x'h= z. == exp(m.) for m. as cognitive magnitude
sens~itions then Th :::: 1, Om:::: lod + K~], and In~xh+JxhJ =lo(z/z_):::: m+- rn_,
whereby

Tk ::::: om/1nl I + "k] =0.296/10[1 + Kkl = In(z/z_)/ln(xk/xk),

'k']n(xk ('k )/8 = (m - ffi_)/& = In(x
k

h
k

)/In[l + KkJ+-m+ ill +-
It says that magnitude estimation of stimulus intensities is defined by a matching of a
number of jnd's,) for cognitive magnitude sensations with an equal number of jnd's
In[l + K

k
] for sensTtions of a stimulus modality k with respect to m. = a and x·

k
:::: b

k
"

Moreover, from the estimates om :::: .0296 and In(z/2_) :::: ill+- m~:::: 332 we 6btain

l/om:::: 11.0296:::: 33.784 and z/z_::: exp(3.52):= 33.784.

So from Teghtsoonian's (1971,1974) analyses we see that the constantjnd;) also
detennines the ratio of metric magnitude-range values z Iz_. Summarisi:Pg the
empirically sustained integration of Helson's (1964) adaptation-level theory and
Fechnerian psychophysics, we regard Teghtsoonian' s findings ofconstant;)(z.)lz. := .03
and In(z Iz_):= 3.52 as finn evidence for the hypothesis that the subjective1stilnulus
magnituctes of Stevens' psychophysics are based on matching of weighted Fechner
Helson sensations with cognitive magnitude sensations as generalised sensations of line
lengths and distances. Thereby, Stevens' power exponents equal twice the inverse value
of the adaptation level for randomly presented stimuli.

Referring to fOTImlla (lll and taking b as momentarily static, geometric
mean of the stimuli x, on scale k up to time t and a as corresponding
adaptation level on sJ}fsation scale yik one obtains t~e adaptation level
as:

n. n.
a = \'" Y /n = In(b ) = [rln(x 1J/ok Hlikt k __ 1 ik t (14)

where n denotes the number of successive stimuli x on scale k in time
interval t. For simplicity of presentation we ass~ that stimuli are
randomly sampled from a stimulus set with a geometric stimulus mean that
defines an arithmetic sensation mean. We also assume that a prior
existing adaptation level is irrelevant. emitting individual indexes,
the sensation s'k of stimulus intensity x'k becomes according to
adaptation-level theory 1

(15a1

(l5b)

or
2 (Yik - ak)/~ = 2ln(x

ik
/b

k
l/a

k
2/a 2(y. - a l/a s.

(x/b1 k=e lk k k=elk
ik k

where the weight is determined by ;@k for a as adaptation level of
intensity-comparable sensation scales s ik' k
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Sensations as weighted differences from adaptation level specifies two
types of invariance. One with respect to the unit of the physically
measured stimulus scale, as (Isb) shows. The other invariance is with
respect to linear transformations of their Fechner sensation scales.
Suppose Y. is linear transformed as w .y, + U , then an intensity-
comparabl~ksensationscale becomes: k lk k

2[(w
k

' Yik
+ Uk} - (wk·a

k
+ ukJl/(wk·a

k
) = 2 (Y

ik
- akl/a

k
(15c)

where the transformation parameters w and u cancel out. Intensity
comparable sensations of (15c2) show ~ thirdkinvariance. Oppositely
signed sensations of stimulus fractions with respect to x, /b = 1 can
only be the sensations for an inverse stimulus fraction. Miskfollows
from (15c) as

2/a -2(y - a l/a -5
(bk/xik) k e ik k k = e ik (l5d)

Hereby, the absolute magnitude of individual sensations as sensation
distances to individual adaptation levels remain the same whether a
stimulus is represented by rragnitudes of an aspect or by magnitudes of
the opposite aspect as its inverse values, which does not hold for the
power function of Stevens. Since these kinds of invariance are based on
the integration of Helson's adaptation-level theory and Fechner's
psychophysics, we call (1Sa) or (ISb) the Fechner-Helson psychophysical
function, whereof inverse stimulus values also correspond to reflected
sensations with the individual adaptation level a

k
= 0 as origin.

Using (ISa) and (ISb) we obtain

In(xi/u
k

)

In (bk/u
k

)
- 1 (15e)

where independently of measurement unit J.l the value of u is defined
by u /J.l as just noticeable stimulus level that depends o~ b /J.l as
adap~ation level of an individual. It defines again the invarltance under
linear transformation of Y.k= In{X.k!ll), due to its ratio of differences
In (x, /ll) - In (b /IJ.) and di~il:~:ance Ifr(b /J.l) - In (~/IJ.) . Thus, any stimulus
rati6

k
scale may ~pplY to (l5e) , while the unit of sensation scales equals

half the interval between adaptation level In (b /J.l) and just noticeable
level In (~/IJ.) = o. Although akin to Fechner's ltssumption, we only take
J.l = u , but don't assume that ~ is constant by defining In(u /IJ.) = 0 as
varyi~g, just noticeable sensatlon level, where In (b/u) > In'f-ukhll = o.

Notice also that Stevens' power exponent equals: = 2/a , whereby the
power-raised stimulus scale of (15c) is then written as k

2/a 2 (y - a ) /a s,
Ix /b) k = e ik k k = e lk (ISf)

ik k
Suppose we take the psychophysical function as Stevens' power function
(13a) and assume that adaptation-level theory applies then we obtain

. , ,
[(xi/J.l) kj/[(b/J.l} kJ = {Xi/b

k
} k (lSg)

Thus, Stevens' psychophysics and adaptation-level theory are compatible.
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Stimulus-produced changes in adaptation level may explain the observed
distortions from Fechner's function {12b} or from Stevens' function
(Ba) in the magnitude estimations by fractionation, due to order and
spacing effects of stimulus presentations or to anchoring effects of
standard stimuli (Corso, 1971). Since adaptation level can't decrease
below the absolute just-noticeable level, the so-called bias parameter
in psychophysical scaling becomes defined by changes of adaptation
level bk/uk for different stimulus selections.

However, (159) differs from threshold corrections as subtraction factor,
suggested by Luce and Galanter {l963b, p.281}. Moreover, a subtraction
correction for Stevens' power function in (159) gives inconsistencies,
if applied to psychophysical generalisation (Luce and Galanter, 1963b,
sec. 4.5) . The conclusion is that (lSb) with 1 = 2ja for Stevens' power
function and (lSa) for Fechner's logarithrnickfunctton give the only
consistent integration of psychophysics and adaptation-level theory.

The exponential transfonnation of intensity-comparable sensations defines a power
raised stimulus fraction scale that has its adaptation level as unit of the stimulus scale,
whereby intensity-comparable sensation scales don't depend on the measurement unit
of the stimulus scales. Luce ([959a) has proven that a psychophysical function can only
be the power function, if both scales are ratio scales with dependent parameters. But
our derivations imply that the power exponent and the scale unit of stimuli are both
defined by the Fechner scale value of adaptation level, because defining also the origin
and scale unit of comparable sensations. Moreover, due to the integration of Fechner's
psychophysical function and Helson' sadaptation-level theory, the inverse stimulus and
the stimulus itself have equal absolute sensation values and reversed signs, because the
stimulus intensity of the adaptation level is by definition unity for the stimulus fraction
scale x.k/bk' This psychologically required invariance and sign reflection of sensation
intensilles Tor reciprocal stimuli, -for example attribute In(x./b) as complexity and
In(b/x.) = -In(x./b) as simplicity of the same object-, derive ndt from Stevens' power
functibn. So adkptation-level theory and the invariance for stimulus-scale unit as well
as the invariance of absolute sensations for mutually reciprocal stimuli are only
consistent with the Fechner-Helson function. Intensity-comparable sensations become
weighted by twice the inverse of the adaptation level distance to the just noticeable
sensation. This ratio of variable Fechnerian sensation differences and fixed Fechnerian
distance is invariant under linear transfonnations of the underlying Fechner scale and,
thereby, enables cross-modality matching. Since for the first time Bower (1971)
described a stimulus coding theory, remotely akin to the Krantz-Shepard relation theory
of cross-modality matching (Krantz, 1972; Shepard, 1978, 1981), wherein Bower
postulated that stimulus comparability is based on an equality of weighted sensation
differences from adaptation level, we will denote the comparably weighted Fechner
Helson sensations as Bower sensations. Without the adaptation level as common
reference point and without a weighing to intensity-comparable sensations, cross
modality matching could never yield consistent results. Arbitrarily scaled interval
measurements of Fechner sensations and their cross-modality matching would define
an arbitrary power function for the matched stimulus scales. For this reason Luce and
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Galanter (l963b, p. 280) favoured Stevens' power law. However, for comparable
sensations the translation and weighing are not arbitrary, because translated to distinct
adaptation levels of individuals and meaningfully weighted by twice the inverse of the
distance between adaptation and just noticeable levels for each modality, as discussed
before and in the mathematical section above. For stimulus scales that are matched with
metric magnitude it yields a constant matching power exponent as twice the inverse of
the logarithm of the ratio of the adaptation and just noticeable stimulus levels for each
modality. Since Stevens and his co-workers find rather constant power exponents for
their fractionation method of magnitude scaling for employed stimulus range that are
not close to the absolute thresholds of modalities, we also have rather constant ratios
of adaptation and just noticeable stimulus levels. However, changing target stimuli and
non-random sequential stimulus presentations inevitably has to change the adaptation
level, which yields a basis for psychophysical dynamics by Helson's adaptation-level
theory. Sensations as changing differences from a shifting adaptation level for identical
stimuli, explain several controversial disparities (Luce and Galanter, 1963a, 1963b)
from Fechner's or Stevens' law. So-called distortions by bias of Stevens' power
function are shown to be effects of adaptation-level shifts produced by the stimuli
themselves (Corso, 1971). For example, adjusting a stimulus to half the intensity of a
target yields a higher intensity than matching a stimulus to a target stimulus with half
the intensity of the former target stimulus.

2.1.3. Comparable sensations and responses
According to the discussion of section 1.5. and the integration of adaptation-level
theory and learning theory, all learned evaluation responses, -thus, also the magnitude
judgment response -, have to be a function of intensity-comparable sensations.
Therefore, response theory has to be integrated with Helson's adaptation-level theory,
which requires that the response function concerns a transformation of comparable
sensation differences from adaptation level. Capehart and co-authors (Capehart et aI.,
1969) have formulated and verified such an integration in their stimulus equivalence
theory based on a generalisation function of compared sensation differences from
adaptation level that may shift in a stimulus-dependent way.

In Thustone's comparative judgment (Thurstone, 1927a, 1959) the normal
probability function of logarithmic stimuli determines the probability of judging a
stimulus larger than a reference stimulus. For discrimination with equal-assumed
standard deviations of sensations it constitutes a model that is called Thurstone's case
V model. In the alternative response theory of Luce (I 959b), based on his choice
axiom. the logistic probability function of a sensation difference with respect to the
sensation of the reference stimulus defines the discrimination probability. Logistic
response probability function has been shown to apply to detection and recognition
(Luce, 1963), discrimination (Luce and Galanter, I963a), and psychophysical scaling
(Luce and Galanter, 1963b), which function is also used in learning theory (Sternberg,
1963) and utility theory (Luce and Suppes, 1965). In view of error in response data
Thurstone's normal probability function (case V) is hardly distinguishable from the
logistic probability function (Luce and Galanter, I963a, p. 221). The normal
probability function for logarithmic transformed stimulus intensities equals the
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cumulative log-normal distribution function that is used by Kapteyn (1977) for the
utility curves of figure 2 in chapter 1. The integration of the normal distribution
function, however, defines no explicit response function. Therefore, and for reasons
of the geometric representation of multidimensional responses as transformed sensation
spaces, discussed in chapter 4, we use the logistic probability function of Luce's
response theory. Figure IQ shows the logistic probability function for discrimation
responses with respect to a reference stimulus at p = 50.
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Figure 10. The logistic response probability for discrimination

Also in the beta-model of learning (Luce. 1959b) the frequency of learned responses
is a logistic function of the frequency of learning trials (Sternberg, 1963). This function
applies also to neural measurements ofperipheral and brain reactions on stimuli relative
to adaptation (Pribram, 1971) and underlying brain processes in learning (Olds, 1973).
In the studies of Logan (1960) and Premack (1971) on the relationship between amount
of reinforcement and stimulus intensity in learning trials have shown that learned
stimulus-response patterns relate stimulus intensities and response strength in the same
way as correct response probabilities are related to frequency of learning trials. The
application of cumulative normal or logistic probability function in learning, however,
can be questioned because other response models without an inflexion of the learning
curve equally well describe many learning results (Sternberg, 1963 p. 37). This may be
due to generalisation from earlier learning, whereby the first part of the learning curve
generally remains unobserved,.

According to Shepard (1958a) generalisation depends on the reinforcement
schedule. Many results verify this (Staddon, 1983). One-sided logistic generalisation,
as shown in figure 11, is to be observed if reward, non-reward and punishment are in
that order obtained for increasingly deviating sensation intensity (Shepard, 1958a)
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Figure 11. Logistic response curve/or unilaterally reinforced generalisation.

The function curves of figures 10 and 11 are translated curves, where here the
probability of equivalence responses with respect to the reference stimulus approaches
unity instead of half. The choice axiom and the logistic function for discrimination and
generalisation as well as their scaling implications are treated by Luce and Galanter
(Luce, 1959; Luce. 1963, sec. 1.2.; Luce and Galanter, 1963a, sec 3.2. and 4.2.; Luce
and Galanter, 1963b, sec. 4.5.), but are also discussed in chapter 7 of this monograph.

The logistic response probability function of figures 10 and 11 for a
reference level of sensation y and response probabilities P. to the
relative sensation value Y

ik
- ~k is expressed by lk

(16a)

For a scale unit of dimension k of unity we unify the expressions for
discrimination responses of figure 10 with p. I (y, "y )" 0.5 and
generalisation responses of figure 11 with p.l~ (ylk~ yk) ~ 1. In terms
of (15d) with a

k
and b

k
replaced by Yk and x~kit Mcome~ written by

~Yn[_(y - Y ) = x Ix as_.".. ik k kik

(16b)

Exponential generalisation applies if generalisation learning is restricted to positively
reinforced stimuli above a reference level. Exponential generalisation (Shepard, 1958b;
1987) is described by an exponential decay function of the sensation distance from the
reference sensation. If stimuli above some reference level become rewarded, then the
probability of expected reward responses becomes the complement of the exponential
generalisation curve for intensities above a reference level, as shown in figure 12.
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Figure 12. Expected reward response curve for rewards above target sensation y

Anticipatory responses of expected reward for sensations become also associated with
positive hedonic sensations. The vertical axis of figure 12, therefore, also expresses
standardised hedonic response-sensation values that are associated to perceptual
sensations. If punishments are increasingly given below a particular intensity level,
then the expected aversion response curve is reversely derived as shown in figure 13.

o .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-----------.-----.-.-._.

-0.25

-0.5

-0.75

~,~~~~~
-3 _2.7 ·2.4 -2.1 -18 -15 -12 -0.9 -0.6 -0.3 0

sensation difference Yi - Y < 0

Fig. 13. Expected aversion-response curve for punishments below target sensation y

By weight l/w for strength of associated reinforcement the curve
for reward e4§ectancy responses of figure 12 becomes written as

e
-(Yik- Ykl/wk

vikl (Yik" Yk ) = 1 - (17a)

and curve for aversion expectancy responses of figure 13 as

- (Y - yk)/w
kvikl (y

ik
< Y

k
) = -1 + e ik
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The monotone functions of figure 12 and 13 resemble the functions ofLuce (2000) in
his axiomatic measurement of rank- and sign-dependent utility for gains or losses.
Luce's utility measurement is relative to a status quo level with zero utility, which is
our neutral adaptation leveL The differences are that Luce replaces our relative
sensations by objective gain or loss values that are evaluated with respect to the 'status
quo' and introduces for subjectively smaller gains than losses of equal value amounts
a smaller limit for positive gain utilities than for negative loss utilities. We further
discuss Luce's utility measurement in section 6.1.3., but already remark that if relative
value sensations, instead of objective gain or loss values, would be used then no
smaller utility limit for gains than losses is needed, because the utility for gains
becomes already smaller than the negative utility for equal losses by the logarithm of
objective values and translation to value-sensation differences from adaptation leveL

2.2. Metric response and monotone valence functions

2.2.1. The response and monotone valence function
A single valence function for expected reward or punishment with a logistic shape can
be derived from the exponential curves for expected reward or punishment. We may
assume some generalisation for rewards and punishments that are more or less
consistently conditioned respectively to sensations above and below a reference level,
whereby some symmetrically diminishing expectancy of punishment above and reward
below reference level occurs. The curves of figures 12 and 13 under such diminishing
generalisation around their connection pointas reference level become combined to the
hyperbolic tangent function with the reference level as origin. In accordance with
Shepard's (1958a) generalisation functions and our ogival symmetry and bipolarity for
reward and punishment expectancy, the hyperbolic tangent function equals the logistic
probability function that is multiplied by 2 and translated by -1, as shown by figure 14.,
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Figure 14. The hyperbolic tangent as response or monotone valence junction
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This hyperbolic tangent function is called the forward monotone valence function of
preferential responses. Since it equals the linear transformed logistic probability
function of figure 10, it also describes the judgmental response function.

The hyperbolic tangent function for positive values aoove and negative
values of responses or monotone valenc€s below level a of an intenisty
comparable sensation dimension is written (Courant, f960, p.184) by

(lBa)

(19)

Since (IBa) and (16a) are related by

V
ik

= 2Pik - 1, (lab)

it defines the hyperbolic tangent function as the linear transformed
logistic probability function for discrimination responses Taking r,
for v we also have the evaluative response r for sensations witrrk

respe~~ to adaptation level. Expression {IBa} il§ thus the evaluative
response function and the preference function for monotone valences. For
b = exp{a ) and substituting (16b) in {l8b} we rewrite the response
ffinction rk also as function of stimuli with power exponent ~ = 2/a
for sensad~n dimension k with adaptation level a

k
k k

, ,
1 ~ tb/x

ik
) k 1 - (Xi/b

k
) k

1 + (b/xik)"k I + {Xi/bk;'k

where we see that individual responses to stimuli may only differ by
the influence of the location of the stimulus adaptation level b

k
.

In projective geometry (Busemann and Kelly, 1953; Coxeter, 1957) a point
r is a projectivity of a point x if r is a linear fraction of x,

(20)

For r = r, and x = (b Ix. )1~ in (20) it becomes identical to (19) if
a = b = c1lf -d = 1. ~re§-~ion (20) for b = c and a = -d describes a
hyperbolic involution. By its unit parameters this linear fraction
function describes a projectivity of a line onto itself with respect
to unit point x, Ib = 1, whereby responses are hyperbolic involutions
of stimuli with -\-~sp~ct to the stimulus adaptation point xik/bk = 1 that
corresponds to r

ik
= O.

Formula (20) with -r = r and x = {b lx, )"lk for b = -c and a = d gives
an elliptic projectiviqJ-.kWhether ankelttptiC projectivity could also
apply to judgement or preference responses is discussed in chapter 4.

In order to obtain figure 14 from figure 10 one multiplies the vertical axis by two and
translate it by minus unity. This linear transfonnation of the logistic response
probabilities in figures 10 is the hyperbolic tangent function of sensation intensity. The
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same applies to figure 11, but there the reference level is then shifted to the midpoint
of the generalisation response curve. The midpoint is the inflexion point where its
derivative turns from negative to positive, while it also is the point where below
expected punishment or non-reward dominates over expected reward for responses and
where above the reverse applies. Thus, the midpoint also represents the neutral valence
of balanced punishment and reward expectancy from sensations below and above the
sensation level with zero valence. As such it corresponds to the adaptation level as the
average sensation of the presented stimuli and as level of sensation intensity that, by
affective adaptation becomes also a neutral valence point. Therefore, the hyperbolic
tangent function applies as well to the evaluative responses as to preference responses
for a sensation scale with a forward monotone valence function around adaptation
level. Theonly difference between evaluative response and monotone valence functions
for the same sensation dimension may be expressed by a weight for preference
relevance of responses. We discuss this further in section 5.1, where we specify the
preference weights by projection cosines with the ideal axis in response spaces.

A monotone valence function can be interpreted in two consistent ways. Firstly,
valences follow from the evaluation of the hedonic sensation expectancies. Here, the
vertical axis of figure 14 becomes the hedonic value of the primary sensation intensities
on the horizontal axis. Secondly with respect to responses, valences are the hedonic
values of affective response sensations that by learning are associated to the primary
sensations of responses that were reinforced by reward or punishment. The negative
hedonic values then become associated with responses to sensations that below
adaptation level are not rewarded and/or punished and positive hedonic values with the
responses to sensations that above adaptation level are rewarded and/or not punished,
whereby the hedonic values of sensations become proportional to the evaluative
response curve. These interpretations illustrate that it is immaterial whether one views
reward and aversion expectancy as aspects of responses or as aspects of sensations, as
this is also irrelevant for generalisation (Luce and Galanter, 1963b, p. 284) where
generalisation can be fonnulated as response as well as sensation generalisation.

In case of an evaluative response function for the magnitude judgment of
stimuli, we see no justification for the inverse response function of responses as
objective scales of response magnitudes, as it is supposed to be in the classical Bradley
Terry-Luce response theory. Firstly, response as well as sensation scales are relative
scales with respect to individually different adaptation levels, whereby both are thus
relative and subjectively different and not objective scales. Secondly, such an inverse
response function should return the individual sensation scale (if it concerns the inverse
transfonnation of responses to sensation values) or a power-raised stimulus fraction
scale of subjective stimulus magnitudes (if itconcems the inverse of the transfonnation
of responses to stimulus values). The hyperbolic tangent function specifies a response
function with individual parameters for the subjective evaluation responses of stimulus
intensities and also becomes the bipolar utility function with zero utility at adaptation
level (sections 1.2. to 1.4.) as an individual function for monotone valences of
monetary values. Therefore, we describe judgmental responses and preferential
responses for objects with monotone valences by the same hyperbolic tangent function
of individual sensations, where the evaluation is with respect to the adaptation level as
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individual scale origin in accordance with adaptation-level theory. The individual
evaluations of stimuli not only are dependent on the individual adaptation level, but the
slope of the evaluation function is also steepest at the adaptation level as function
midpoint and origin. Thereby, the adaptation level expresses on the one hand
assimilation effects of responses by its pooling of previous sensations and on the other
hand also sensitisation effects of responses for sensations around adaptation level.

The hyperbolic tangent function nicely illustrates how individual differences in
the evaluation of distances between positions on a sensation scale are caused by
differences in individual adaptation levels. For example, suppose we have some
sensation scale with equal distances between successive alternatives A (=1.0),
8(=1.75), C(=2.5), D(=3.25), and E(=4.0). Our psychophysical response theory
postulates that the Fechnerian sensation scale is transformed to a subjective evaluation
response scale by a hyperbolic tangent function with the adaptation level as origin. An
individual adapted to a position between B and the midpoint of Band C (say at 2.0)
evaluates the distances by rank order BC > AB > CD > DE. An individual adapted to
a position between D and the midpoint of C and D (say at 3.0) shows an evaluation
wherein the distance rank order becomes quite different: CD> DE > BC > AB. Such
adaptation level-dependent distances were found in a study (unpublished) on
dissimilarities between academic positions judged by individuals with different
academic positions at Leiden University in the mid sixties of the 20th century. The
dissimilarity between the own and next lower position was judged larger than between
the own and next higher position and both larger than all other adjacent position
dissimilarities. This invalidates the assumption of a common evaluation scale. The
common Fechner sensation scale of academic positions is translated to adaptation level
of the own academic position and then monotonically different-transformed around the
adaptation level of each individual to evaluation-response scales. Therefore, unless
individuals have common adaptation levels, evaluation-response scales of individuals
are different. Although sensation transformations by hyperbolic tangent functions with
different adaptation levels as origin influence not the rank order of response values,
they do change the rank order of judged distances between scale positions. The
example of dissimilarities between academic positions demonstrates that the rank order
of judged object distances generally is not shared by individuals, only the rank order
of judged objects themselves on an unidimensional scale is the same for individuals,
due to the monotone transformation with individually different origins.

In multidimensional scaling (MDS) analyses of (dis)similarities, where
dissimilarities are represented by distances between objects in dimensioanlly scaled
spaces, the object distances are often assumed to be identical for different individuals.
The dependence of the monotone evaluation functions on the individual adaptation
levels, however, violates a common rank order of distances between pairs of evaluated
objects in the solved space by MDS, unless individual adaptation levels are the same.
In the proposed integration of response theory and adaptation-level theory the
differences in individual adaptation levels systematically predict violations of common
rank order of evaluated scale or space distances. A MDS-analysis that is based on
minimised violations of dissimilarity rank orders by the rank order of common object
distances must assume that the individual adaptation levels for the dissimilarity
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judgments are identical (which could hold for experiments wherein perceptual stimuli
from a prior-known stimulus set are randomly presented) or must assume that the
judgment spaces are common spaces. The last alternative is a fallacy, because
dissimilarities are represented by individually different response space distances, if
adaptation levels are different. Also monotone preference strength is not described by
common sensation scales. but by individual different scales of ideal response axes. The
consequences for preference analysis of objects with monotone valence functions are
similar to those for response analyses. Less serious, but comparable consequences
follow for multidimensional unfolding analyses of preferences for objects with single
peaked valence functions, as discussed in section 2.3. and chapter 5.

2.2.2. The generalised mon%ne valence function
According to the hedonic typology of sensation scales, discussed in section 1.6. and in
contrast to the response function, hedonic value magnitudes can be expressed by
valence functions for sensations around different reference levels and not only around
the adaptation level of a presented stimulus set in a preference evaluation task. As
described in section 1.6., zero valence values not only are observed at adaptation level,
but also at the sensation intensity of saturation or deprivation levels. The hyperbolic
tangent function of figure 14 not only describes a metric relationship between
sensations and valences around adaptation level, but may also describe the local
valences around other hedonic-neutral reference levels of sensations. A forward
monotone valence function describes pleasantness of sensations above the reference
level and unpleasantness below that level. This holds for the valence evaluation of
sensations around the adaptation level on a positive ambience scale, but also if
sensations are evaluated with respect to a deprivation level on the positive ambience
scale, because in both cases stimulus intensities below reference level become
unpleasant and stimulus intensities somewhat above pleasant. Hence two reference
levels for relative sensations with a locally forward oriented monotone valence function
can be identified: either an adaptation or a deprivation level. The slopes of valence
functions at adaptation or deprivation level are assumed to be identical, because we
have no justification for locally different sensation scale units. The forward monotone
valence function is displayed by the function curve of figure 14 with asymptotic limits
nonnalised to -I and + I and a neutral midpoint that corresponds to adaptation or
deprivation level on the sensation dimension.

For some deprivation level d on the sensation scale and deprivation
level f on stimulus intensify scale of modality k, their relationship
is give~ by Fechner's logarithmic function as

d
k

= In (f
k

) , (21a)

while d s a holds by definition.
The gen~rallknotonevalence function is by (19) for (17d) written as

vikl (Yk=\.' ak ) = tanh[{y
ik

- yk)/akJ = tanh(?':is
ik

} (21b)

If level y is changed to deprivation level d then for Y. :> d also
k k ~k ,k

v. Id:> 0, where we here have forward monotone valence functlon for

s€~sahons sik 2(Y
ik

- dk}/a
k ·
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In section 1.6., where we discussed the hedonic value typology ofsensation scales, zero
valences not only are conceived at adaptation and saturation levels, but also at
adaptation and deprivation levels as hedonic-neutral reference levels, where either the
deprivation or saturation level can become latent, dependent on the ambience of the
sensation scale. Monotone valence functions for sensations with a negative ambience
define sensations to be pleasant above and pleasant below reference level. This means
a reflection of the monotone valences for the sensation scale, which reverses the
orientation of the valence function of figure 14, as shown in figure 15.,
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Figure 15. The backward monotone valence function.

Forward or backward monotone valence functions (figures 14 and 15) are
mathematically described below by respectively a positive or negative hyperbolic
tangent function of the same sensations with respect to a reference level as an
individual translation parameter for Fechner sensation scales.

For a saturation level s on the sensation scale k and saturation level
z on the stimulus inten~ity scale, the relationship between physical
~d psychological saturation level, according to Fechner's law, yields

(22a)

The response function as backward monotone valence function for stimuli
below saturation level Yk=sk becomes the negative expression of (18b) as

v I (y =s ) = 1 - 2'p I"
ikkk ikk

(22b)

The backward monotone valence function with respect to saturation level
sk is obtained analogous to (21}as:

vikl (yk=sk) = -tanh[{yik- Sk)/akl (23b)

where Y
k

= sk is the reference level on a scale with negative ambience.

Similar to (19) we can express forward and backward monotone valence
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Moreover, as discussed further in sections 4.2. and 5.2 the expressions
(24a) , (24b) and (19) show that monotone valence axes and evaluative
response dimensions are projective involutions of stimulus dimensions
on its own dimensions, since (24a, b) as well as (19) are expressions for
a geometric projectivity of a line onto itself as hyperbolic involutions
of a line with respect to a lUlit point (Busenmm and Kelly, 1953).
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I functions in stimulus terms. We obtain for 'k = 1 the forward valence
I function in stimulus terms as

I 1 Xk!Xik 1 Xi/~

I

Vikl [Xk=bk,fkl = 1 + ~/Xik -1 + xik/~

where ~= b is the stimulus representation of the hedonic adaptation
I level or ~~ f

k
the stimulus value of a deprivation level.

I Correspondingly we may obtain the backward monotone valence function for

1

1 ~= s~1~~u:h:aSl~~muolfusa V:::r::l::el~~~l~h~:P~:t:~t~:e~or xk= zk
1 - Xlk/~ Xlk/~ - 1

I
-Vlkl [xk=bk'ZkJ = - 1 + Xi/X

k
= X1/"k + 1 (24b)

The Slgn dlfference 10 (24a) and (24b) deflnes dlfferent orlentatlons.
I The monotone preference function of (24a) and the response functions of
I (19) only differ by the kind of reference level. For responses it is
I the adaptation level on a perceptual or cognitive sensation scale k, and
I for monotone valences it is the hedonic adaptation level on an affective
I sensation scale associated to perceptual or cognitive sensation scales.

I
I
I
I
I
I

The hyperbolic tangent functions with individual adaptation levels as origin may
represent dynamically changing valences for sensation scales with changing adaptation
levels. In the theory of economic preference fonnation of Kapteyn (1977), the metric
utility function for money is taken to be the log-normal cumulative distribution
function. The location parameter in his cumulative log-normal function for utility is
determined by the achieved financial position of an individual and serves as the
cognitive reference level forcomparison. This dynamic location parameter as achieved
status quo is comparable to the shifting adaptation level. Also the logarithm in the log
normal function for utility of money is consistent with Fechner's law, This consistency
is not accidentally, since Fechner's 19!11centurycontribution to psychophysics (Fechner,
1851,1860) and aesthetics as preferential psychophysics (Fechner, 1871, 1876) was
also inspired by Bemoulli who in his famous 18'h century contribution to utility theory
(Bemoulli, 1738) transformed money by the logarithmic function in order to express
the relatively diminishing utility for increasing money as his solution for the St.
Petersburg paradox. In Kapteyn's theory (1977) the log-normal function is
characterised by two parameters: a dynamic location parameter on the scale for the
utility function and a standard deviation as the measurement unit of scale that
determines the slope of the utility function. Similar to Kapteyn's analysis. dynamic
changing valences are obtained by the location and weight parameters in our monotone
valence function with a location parameter for the shifting adaptation level on the
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sensation scale and a level-dependent weight parameter for the sensation differences
from adaptation level. The log-normal utility functions used by Kapteyn (1977) in his
dynamic theory of preference formation are pictured in figure 2. Since the logistic and
cumulative normal probability functions are very similar, also the hyperbolic tangent
function of figure 14 for monotone valences and the vertically displaced, cumulative
normal probability function of logarithmic income scales of figure 2 are so similar that
it is not possible to determine by empirical data with some error which of these curves
fits better. However, the integral of the normal distribution has the disadvantage that
it can't be written as an explicit function. For reasons of geometric transfonnation of
sensation spaces to evaluative response or monotone valence spaces with transitive
distance orders, discussed later in chapters 4, 5, and 6, we need an explicit function that
also is geometric projection function to space dimensions with a constant or zero
curvature. Since the hyperbolic tangent function is such a geometric projection
function, it is a suitable function for the projective space transfonnation of sensations
to response space dimensions and to monotone valence space axes. As demonstrated
in chapter 4 the arctangent function is the only other alternative for a response function
that also is a geometric projection function to space dimensions with a constant
curvature and a linear transfonnation of another (the Cauchy) probability function for
discrimination responses. In chapters 4 and 6 we also show that the hyperbolic tangent
and arctangent are the only two pennissible projection functions that can transfonn
sensation spaces to response spaces. Therefore, the hyperbolic tangent is one of the two
unique alternatives of the response or monotone valence function.

These judgmental response or monotone valence functions are metric functions
of sensation scales and by the inverse of the weighted Fechner-Helson function for
stimuli also metric functions of power-raised stimulus-fraction scales (power exponent
't = 2/ln(b/u) for fraction scale x./b with x./b = I as individually scaled adaptation-level
stimulus). The functions are rrlonotonic

l
, since the functions are strictly increasing

functions (or strictly decreasing functions, if reflected for backward monotone valence
functions) of the sensation or stimulus scale. Due to the logarithmic stimulus
transfonnation, the forward monotone valences and responses diminishingly increase
the less the higher the stimulus intensity becomes and, thereby, exhibits the so-called
satiation phenomenon. Also due to the logarithmic stimulus transfonnation the forward
monotone valence function (figure 14) as utility function for a monetary value scale is
steeper for losses below reference level than for gains above reference level. It shows
the asymmetric satiation effects of utility theory, referred in sections 1.2 to 1.4. These
effects are obviously reversed for the backward oriented, monotone valence function
curve of figure 15. If the sensation scales are such that no preferential oversaturation
or underdeprivation exists, then the forward or backward valence functions are
symmetrically monotonic with respect to their zero valence at adaptation level and
apply to the whole range of sensation intensities. If preferential oversaturation or
underdeprivation is present then the valence function is single-peaked, where the
single-peaked valence function is to be derived from the multiplication of two
oppositely oriented, monotone valence functions that are located at the deprivation and
adaptation levels or at the adaptation and saturation levels, as indicated in chapter I and
analytically specified in the next section.



2.3. Metric single-peaked valence functions

If preference function is characterised by single-peakedness and neutral valence at
adaptation level and saturation or deprivation levels then oppositely oriented monotone
valence functions may apply to ranges around the adaptation level and saturation or
deprivation level. Yet the forward and backward monotone valence functions around
differently located reference levels as such don't until now describe single-peaked
functions with a maximum valence at the ideal sensation point and decreasing valences
for lower and higher sensation intensities. As indicated earlier the single-peaked
valence curve ought to be derived from a multiplicative relation between two opposing
monotone valence functions either on a scale with positive or negative ambience. In the
ordinal preference unfolding function of Coombs (1964) the ideal point at the
maximum ofa single-peaked, ordinal preference function is the only essential reference
point. In section 1.3 it was shown how Coombs conceived the single-peakedness as a
result of slower aversion adaptation than reward satiation. However, we have shown
that satiation is a phenomenon of the logarithmic sensation scale, while adaptation is
a different phenomenon that concerns the pooling of previous sensations as reference
point for the bipolarity of sensations. Contrary to the derivation of single-peakedness
by Coombs, satiation and adaptation processes both apply to expected reward and
punishment sensations. In the later formulated extension ofCoombs' preference theory
to a theory of interpersonal conflict (Coombs and Avrunin, 1988) the status quo (e.g.
an adaptation level with zero valence) and the ideal points are both fundamental
reference points in the ordinal analysis of interpersonal choice conflicts. but in
Coombs' ordinal data analysis of individual preferences zero valence points have no
meaning. Ordinal functions, although weaker in assumptions, are also weaker in
predictive power compared to a metrically fonnulated function that can become
violated more easily. But, as shown in chapter 5. individual preference rank orders as
rank order of distances between choice objects and individual ideal points in
individually different, single-peaked valence spaces can be represented by monotonic
transformed distances in individually weighted spaces of a Fechner sensation space.

2.3.1. Metric single-peakedness derivedfrom basic principles
As indicated by the citation on the front page of this chapter and as Coombs once
remarked: "knowledge is bought by assumptions" (in 1966 at the Nuffic summer-course
on psychological measurement, see: Coombs, 1966). Additional assumptions above
rank order for a theoretically sustained, metric function for single-peaked valences
could bring such a gain in knowledge on preference behaviour. Such additional
assumptions are already made for the forward and backward, metric valence functions.
These assumptions are based on principles from adaptation-level theory, learning
theory, psychophysics and response theory. In the derivation of single-peaked valence
function the same principles and the learning theoretical principles of symmetry and
opposition as well as distance in location and multiplicativity of underlying bipolar
monotone functions, derived in section 1.5, are taken into account. The metric single
peaked valence function follows from the multiplication of the symmetric, opposing
and differently located, bipolar monotone valence functions. This metric single-peaked
valence function becomes specified by the learning-theoretical properties of partial
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simultaneity and independence of process activation and dominance of the aversion
over the reward-system processes. As discussed in section 1.5, simultaneity,
independence and dominance for two bipolar, symmetric, and oppositely oriented
system functions are only well expressed by a multiplicative operation between these
two functions with a distance between their function origins. The dominance of
expected aversion over expected reward only is a necessary result of the function
multiplication, because only the multiplicative combination of positive and negative
function values yield always a negative result. Therefore, the mUltiplication of two
opposing monotone valence functions located at two distinct reference levels on a
sensation scale must be the appropriate single-peaked valence function for the whole
range of sensation scales. Indeed the multiplication of a forward monotone valence
function at adaptation level and a backward monotone valence function at saturation
level or the multiplication of a backward monotone valence function at adaptation level
and a forward monotone valence function at deprivation level yield that single-peaked
preference function of type +11 or type -11, both with negative valences at both function
extremes. Itdetennines a maximum valence at the ideal point, where the anti-symmetry
of the underlying monotone functions defines the ideal sensation point to be the
midpoint of the two reference levels with zero valence. These two reference levels with
zero valence are as fundamental as the ideal point for preference analyses and
especially for analyses of preference dynamics, as shown in the sequel.

The single-peaked preference curve can also be explained in another, perhaps
more appealing way. As discussed for the two-process theory of learning (section
1.5.2.), positive and negative valences correspond to inhibition and facilitation
processes from the central nerve systems for aversion or reward, where these processes
are congenitally activated or by learned anticipation of reward or aversion. If the
preference curve is single-peaked, then the reward process is maximal activated by
sensations at the ideal scale point. The reward expectancy is generalised to sensations
on both sides of that ideal point. According to the description of scale type 11, the
aversion process is maximal activated at the low and high intensity extremes of the
sensation scale, where the valences become maximal negative. Due to the symmetry of
the reward and aversion system. the hedonic reward generalisations in both directions
from the ideal point are symmetrically decreasing in a S-shaped way. At the sensation
levels where the reward and aversion expectancy are balanced the valences are zero and
thus constitute the defined. hedonic neutral reference levels of the preference function
for scale type 11. These hedonic generalisations with zero valences at two reference
levels are described by the product of forward and backward monotone valence
functions located respectively at the lower and higherreference level. This construction
of single-peaked valence curves defines a metric transfonnation of a sensation scale
and by the exponential transfonnation of sensations also of a stimulus scale.

A different metric construction of a single-peaked valence function would
violate parts of validated theories in mathematical psychology (psychophysics and
response theory) andlor behaviour theory (adaptation-level theory and learning theory).
One could replace the underlying logistic probability function by the almost identical
nonnal probability function. However, for a geometric transformation of sensation
spaces to response or valence spaces, discussed in chapters 4 and 5, we need an explicit
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function expression for such an underlying probability function. Since the normal
probability function is only described by the cumulative addition of finitely small
intervals of the normal distribution and not by an explicit function, it satisfies not our
requirement. Moreover, a bipolar-transformed normal probability function as response
function of sensation dimensions would not specify response dimensions with a
constant or zero curvature, as needed for response spaces with transitivity of ordered
distances. The logistic probability function defmes by its linear transformation the
hyperbolic tangent function as the bipolar response or monotone valence function,
which function describes by its geometric projection property a known mapping of
sensation spaces to response spaces with transitive distance rank orders. In chapter 4
we investigate, as theoretical alternative for the logistic probability function, the
Cauchy probability function that corresponds after a similar linear transformation to the
arctangent function as bipolar response or monotone valence function, which function
by its inverse radial projection property also defines a known geometric mapping of
sensation spaces to response spaces with transitive distance rank orders. The single
peaked valence function as product of two hyperbolic tangent or two arctangent
functions satisfies the required properties that are derived from adaptation-level theory
and learning theory, while underlying hyperbolic tangent functions are based on the
mathematical psychology of psychophysics and response theory. Thus, the qualitative
scheme of the single-peaked function of figure 7 (section 1.4) becomes metrically
defined by the product of hyperbolic tangent functions. As shown in chapter 5, the
product of two arctangent functions is the only other consistent alternative. The
proposed response and valence functions derive from an integration of psychophysics,
adaptation-level, learning, utility, and response theories into a mathematical theory of
judgmental and preferential choice.

2.3.2. The single-peaked valence function
The product of oppositely oriented, monotone valence functions at adaptation and
saturation levels for sensation scales with a positive ambience or at deprivation and
adaptation levels for sensation scales with a negative ambience yield a theoretically
sustained and mathematically defined, metric single-peaked valence function for scale
type H. Below in figure 16 we picture the single-peaked valence function for sensation
scale with a positive ambiance, where the hyperbolic tangent function of the forward
curve in figure 14 at adaptation level is multiplied by the hyperbolic tangent function
of the backward curve in figure 15 at saturation level with a distance between
adaptation and saturation levels of five sensation-scale units. Due two the function
symmetry, the ideal point with a maximum valence is located at the midpoint of the
adaptation and saturation levels. For an enlarged distance between the adaptation and
saturation points the maximum valence at the ideal point approaches unity. Forreduced
distances the maximum valence at the ideal point decreases until it becomes a similar
shaped curve with a maximum valence of zero at the ideal point for zero distance. Thus,
for different distances between the adaptation and saturation points figure 16 becomes
a flexible valence function with a maximum valence between unity and zero at the ideal
point and with valences that symmetrically decrease towards minus unity for infinitely
remote sensations on both sides from the ideal point. For sensation scales with a
positive ambience they are denoted as forward single-peaked valence functions.
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Figure J6. The forward single-peaked preference function

If the saturation point would be infinite then also ideal point moves towards infinity.
In that case the forward single-peaked valence function equals the forward monotone
valence function of figure 14. where the maximum valence is approached towards the
positive infinity of sensation intensity. It then becomes the monotone valence function
for an unlimited preference for some attribute without a congenital or learned basis for
saturation, like economic theory assumes for utility of valued goods. However, for
finite distances between adaptation and saturation point the valence curve is single
peaked. Its symmetric shape with respect to the ideal point as midpoint of the distance
between the reference levels with zero valence follow from the learning theoretical
properties of anti-symmetry. distance, and multiplicativity of the underlying monotone
functions for signal-facilitating reward and signal-inhibiting aversion processes.
Symmetry of the single-peaked valence function must hold, because the underlying,
opposite, monotone valence functions with different origin locations concern reflected
functions of the same sensation scale. For unidimensional sensations we need not to
detennine the scale unit or dimensional weight, but for comparison of single-peaked
valence dimensions it will be clear that we need a valence-comparable weighing of
sensation dimensions. As discussed in chapter 5, their valence comparability is
achieved by dimensional weights that nonnalise the sensation distances between
dimensional adaptation and ideal points to unity. Moreover, if the deprivation and just
noticeable sensation levels coincide then the dimensional weighing for valence
comparable sensations by lid as inverse distance between adaptation and ideal levels
equals the dimensional weighing for intensity-comparable sensations by 2/a as twice
the inverse of the adaptation level, because the distance between adaptation level and
the zero~valued deprivation level then satisfies d = VUl, whereby intensity- and valence
comparable sensation scales have equal scale units.
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Let k be a sensation scale with positive arrbience. Then the metric
single-peaked valence v, for stimulus i on a sensation scale k with
positive arrbience, henc~ka <: S , is defined by the product of the
positive and negative hYPebli~ tangent functions for weighted
sensations. Hence the product of the expressions of (20) with Y "a
and of (23) with y = s . The expression for the forward single~peak~d
valence function ~come~:

(25a)

Here d represents the distance between ideal and adaptation points on
sensat~on scale y, . Its multiplication clearly expresses the symmetry
of the preferencel~urve. Formula (25a) is fully written as

The expression for the maximum valence follows by y, k = 9 as ideal
. .. 1 b) d' , 1 ksensat10n po1nt 1n 25 an 1S wr1tten as
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After the same substitution as for (24) and its analogous expression
I for stimulus saturation level z and a sign reversal one, obtains for
I ~= 1 the expression as functio~ of a stimulus scale k

I
I
I
I

I

(28c)

(28a)

(28b)

V
~

d
k

= (9
k

- a
k

) = (sk- 9
k

) = Y.1{sk -~)
we have

9
k

= Y.1(sk + a
k

} = Y.1ln{zk· bk)

as the ideal point on a sensation scale with a positive ambience.
Rewritin9 (27) for d and 9 defined by (28a) and (28b) one obtains
the maximum valence ~t forw~rd ideal point 9 as v = max{v, } by

k max 1k

{1 - e-Y.11/[1 + e-Y.1j = tanh2[~l

In econometric utility theory, based on strict monotonic increasing and positive valued
utilities, single-peakedness can only be conceived as a composition of utilities for two
completely negative-conelated attributes of choice objects. Using an earlier discussed
example, single-peakedness of preference for jobs with varying work hours per day
arises by a multiplicative composition of utility functions for two completely dependent
attributes: one monotonic increasing utility function of income for hours of work per
day and another monotonic decreasing utility function of fatigue or loss of free time
from excessive work hours per day. By iso-preference curves and value tradeoffs in the
multi-attribute utility methodology (Keeny and Raiffa, 1976), one can obtain in such
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a complicated way a recovery of single-peaked preference structure by representations
with redundant attributes, such as by the multiplicative job utility and disutility in the
example. A single-peaked preference function seems much simpler and more justified.
Moreover the single-peaked function of figure 16 satisfies all the properties of
preference from adaptation-level theory and learning theory and, therefore, constitutes
a genuine valence function for sensations as a theoretically sustained preference
function for preferential choice and approach/avoidance behaviour.

In case of a scale with negative ambience the adaptation level is located above
the ideal point. On such type -II scales the sensations above adaptation level are
unpleasant and below pleasant, while sensations below the ideal point reduce again the
pleasantness. The construction of a single-peaked valence function on such a type-II
scale results from the multiplication of a backward monotone valence function at
adaptation level and a forward monotone valence function at the lower deprivation
level. It yields the horizontally reflected valence function of figure 16, where the
reflection point is the adaptation point. This reversed single-peaked function is called
the backward single-peaked valence function, but is identical to figure 16 with the
adaptation point replaced by the saturation point and the deprivation point by the
adaptation point. It is conceivable for scales with negative ambience that the
deprivation level coincides with the just noticeable level, but stimulus intensities at
levels towards the just-noticeable level are experienced as less pleasant than somewhat
higher stimulus intensities, while prolonged absence of stimuli may be experienced as
unpleasant underdeprivation. A deprivation level at zero stimulus level would mean that
the deprivation level is located at an infinitely negative sensation level, whereby the
ideal point as midpoint of deprivation and adaptation level would become infinitely
negative displaced. Its valence function would then reduce to a backward monotone
valence function. Therefore, we assume that a single-peaked valence function with a
negative ambiance has a deprivation level that coincides with the just noticeable level.
Since the saturation level is the reflected deprivation level, it then also follows that the
saturation level corresponds with inverse of the just noticeable stimulus intensity.

The corresponding expression for a backward directed, single-peaked
preference function of sensations i on dimension I with a negative
ambience, becomes the backward single-peaked valence function as the
product of (2I) for YI = u

I
and (23) for Y

I
= aI' while clearly u

l
< al'

Hence one obtains comparably to (2S)

v = tanh[-~(Yil- al)/dl]·tanh[~(Yil- UIl/d
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After substitution of (lSb) also for the analogous stimulus expression
with respect to deprivation level and a sign reversal, we get comparable
to (26), but for f

l
= exp(ull as stimulus deprivation point and d

l
= 1
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where the forward valence function of (26) writes as

Xik/bk - 1

Xik/bk + 1

Xi/Zk - 1

Xi/Zk + 1
(JOb)

since (30a) and (30b) are mathematically the same, only the value of zk
or i

l
= l/z1 determines what the ambience of the curve is.

For the ideal point on a sensation scale with negative arrbience one
obtains by rewriting (29b) for Y
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tanh' [~.

In case there is a reducing valence below the ideal point on a scale with negative
ambience, it implies the existence of a deprivation level below adaptation level. As
discussed in section 1.6., the deprivation level on scales of type -II will generally be at
a very low level of stimulus intensity and probably at the just noticeable level of
perception. Although there is in many cases an evident absence of unpleasantness on
extreme low values on scales with a learned negative ambience, such as mental stress,
danger. or fear arousal, absence or extremely low stimulus intensity may become less
pleasant than rather low levels of stimulus intensity in some contexts. In the
conditioning interpretation it is argued that the affective sensations around the high
sensation intensity of saturation level of type +11 scales become reversed conditioned
around a low intensity level on the conditioned sensation scales of type -11. The
deprivation level on the stimulus intensity scale in this interpretation is at the inverse
value of the stimulus intensity for the saturation level and, thus, located above the zero
stimulus leveL By this line of reasoning the negative conditioning and generalisation
of type +11 scales establishes a deprivation level on learned type -11 scales that may
locate the deprivation level on the just noticeable level, but not at the negative infinity
of the individual sensation scale.

In view of the sign reversed relation between the terms of (25bl and
(29b) one my assume that conditioning of sensations with a positive

ambience on scale k to sensations with a negative ambience on scale 1
leads to

(Y
ik

- akl/d
k

= - (Y
il

- all/d
l

where w = d Id represents the strength of the negative conditioning.
Thus 1 k

W(Y
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- akl = - (Y
il

- all (32a)
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and for saturation level sk and deprivation level u
1

one obtains

W(Y
ik

- sk) '" - (Y
H

- ull (32b)

Although this is somewhat hypothetical, in view of the established fact
that some sensations with a negative ambience are learned, self-produced
sensation responses to other sensations with a positive ambience the
distance of y, with respect to a and u very well may be neg;ltively
related with E~e distance of y to a" Jid s indeed. For k = 1 it
implies by w = 1 a reflection oif sensation s§ales. So if 1 is reflected
dimension k then stimulus levels exp (8 ) and exp (u ) are mutually
inverse scale representations of each oh,.er with thekadaptation point at
unity on a stimulus scale that is associated with positive and negative
ambience sensations. Therefore, we may define deprivation and saturation
levels as mutual inverse levels on a stimulus scale with associated
positive and negative, affective sensation dimensions.

From the mathematical description above it seems safe to assume that on a scale with
negative ambience, either a deprivation level does not exist (which would violate the
existence of type -11 scale in section 1.6.), or is located at the perception threshold of
the stimulus scale, since higher locations would have given clearer evidence for
unpleasantness at low levels of sensations with negative ambience. Since the
deprivation level is a learned level on type -11 scales, it seems impossible that the just
noticeable level can be above the deprivation level on the logarithmic stimulus scale.
If we assume that the deprivation level generally coincides with the just noticeable
sensation level then it explains why unpleasantness from sensation absence for type -11
scales is generally not experienced. The ideal point on such type -11 scales is located at
the sensation midpoint of the adaptation and just noticeable levels. Sensations below
that ideal point and above subliminal level must then be less pleasant than at ideal point
sensation, which justifies the existence of type -11 scales for sensation scales without
experiences of a deprivation level and underdeprivation.

We sununarise: if there is a finite deprivation or finite saturation level then there
is a finite ideal point and a single-peaked valence function for the sensation scale. The
ideal point with maximum valence is located at the sensation midpointofthe adaptation
and deprivation or saturation level. In the psychophysical valence theory the qualitative
concept of level of aspiration becomes the metrically defined maximum valence of the
ideal point by the metric single-peaked valence function. Judgmental and preferential
responses in this psychophysical response and valence theory are based on
psychophysics, response theory, adaptation-level theory and learning theory. As such
psychophysical response and valence theory constitutes a theory that potentially
contributes to the integration of psychophysics, choice theory, and cognitive theory in
psychology. The controversy between Stevens' and Fechner's psychophysical laws
(Stevens, 1961) can't be resolved without the cognitive concepts of generalised
magnitude sensations and sensation matching, while cognition needs a psychophysical
basis of judgment and preference.
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2.4. Dynamics of judgment and choice

Changed stimulus intensities and changes in contextual conditions cause a change in
adaptation leveL For unidimensional sensations we illustrate and fonnally detennine
the effects of changing average levels of stimulus intensities for the dynamics of
judgment and preference in this section. Their generalisation to multidimensional
spaces is discussed later in chapter 7. Neo-behaviouristic theory describes how human
actions are shaped by innate structures and by learning of stimulus-response chains that
are facilitated by reward and inhibited by punishment, also for self-reinforcing,
purposeful actions. In theory actions are thought to lead to the obtainment of expected
reward and the avoidance of expected non-reward or punishment. In psychological
reality many expectations concern conflicting expectancies for action outcomes and
with different time frames for the actualisation of the outcomes. Abnonnal behaviour
may result from distortions in the evaluation ofconflicts and time frames. Forexample
some kinds of neurotic behaviour might be explained by a higher impact of direct
reward expectancy and a smaller impact of delayed punishment expectancy than in
nonnal behaviour. In the sequel individual differences are stressed, but abnonnality in
judgment and preference are out of the scope of this monograph.

2.4.1. Dynamics from adaptation-level shifts
For the moment it is assumed that contextual and motivational conditions are not
altered and that only behaviour and sensations with regard to a single scale of sensation
intensity are of concern. If one is able to perfonn behaviour that produces sensation
intensities that are associated with more pleasantness or higher reward expectancy than
obtained in the past then newly obtained sensations are closer to the ideal point than the
older sensations. This must shift the adaptation level toward that ideal point. Changed
stimulus intensities by external sources will also change the adaptation level and ideal
JX}int. For the response function and the monotone valence function it is clear that
judgmental and preferential responses for the same stimuli will change by shifted
adaptation levels. Previous positive evaluations of individual sensations can by
adaptation level shifts become negative evaluations of the same stimuli. Changed
adaptation levels produce changes of judgmental responses and may also cause that
preferred matters may become disliked ones. It is obvious that evaluative responses and
monotone valences increase or decrease in magnitude by a shifted adaptation leveL
Their unidimensional dynamics are defined by the shifted origin locations of the
evaluation response or monotone valence function. which needs no furtberexplanation.
For the single-peaked valence function we have conjectured that the saturation or
deprivation levels on affective sensation scales are mainly derived by learned
association to congenital sensations with fixed deprivation or saturation levels, because
these congenital levels are innate. Thereby, also conditioned deprivation or saturation
levels tend to remain stable while the adaptation level may change. Nonetheless. this
may not always be the case. Cognitive saturation or deprivation levels may change by
habituation to sensations at extreme levels, but such habituation to extreme stimulus
intensities can only happen if also the adaptation level approaches the saturation or
deprivation level. For example, professional sportsmen may acquire higher tolerance
levels for muscular pain than their originaIly innate saturation level for muscular pain.
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Besides such unusual conditions we assume stable deprivation and saturation levels,
because they don't change in nonnal conditions.

One's own behaviour may strive to obtain more stimuli in the range of the ideal
point, but also external stimuli may change over time in the direction of the ideal
stimulus, whereby the adaptation point shifts towards the ideal point. After a shift in
adaptation level towards the initial ideal point the location of the new ideal point is
again the midpoint between the new adaptation and fixed saturation levels. Since the
saturation or deprivation level is not changed by stimuli between adaptation and ideal
points, the ideal point moves in the direction of the saturation level by half the amount
of the adaptation level shift. This is illustrated next by figures 17a to 17c.
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Repeated shifts of adaptation level towards the ideal point will move the ideal point in
the direction of a fixed saturation level by half the shifts of the adaptation level, while
the maximum valence level successively becomes further reduced, which in turn
reduces the tendency strength to obtain more ideal stimuli. Thus, repeated changing
positions in the direction of the saturation point makes that newly added desired
sensations will shift the adaptation level and the ideal point in an adaptive way to the
saturation level with decreasing speed. This not only occurs directly by achievements
that produce stimuli in the neighbourhood of the ideal point from the realisation of
desired choice opportunities, but also indirectly by behaviour that changes the
circumstances in order to facilitate the exposure to more ideal stimuli. Clearly an
equivalent description is possible for choice behaviour dynamics for a scale with
negative ambience and single-peaked valences. The picture then simply becomes the
horizontal reflection of figures 17a to l7c, wherein the reflected saturation level
becomes the deprivation level.

Repeating the definition of adaptation level from formula (14) for 11,;-1
events of stimulation up to time t-l and for 11,; events of stimulation up
to time t for which holds that I\ > I\-I' one writes

and (33a)

We define
(5 = a - a

k,t k,t-l
and for saturation level sk also

o=s -s
k,t k,t-l

but for a fixed saturation level 0 = o. It follows from (28)

g - 9 '" (0 + 0) /2
k,t k,t-l

but under a stable saturation level 0 '" 0 and thus

(33b)

(Dc)

that
(33d)
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9k , t - 9k , t-l = ;0 (33e)

Hence, a change in adaptation level under a fixed-assumed saturation
level, yields a decreased distance between the changed adaptation level
and changed ideal point in such a way that the change of adaptation
level causes half such a change of the ideal point.

It will be noticed that changes in the sensation values by external sources, such as more
or less forced exposure to other stimulus intensities, also changes the adaptation level.
Such changes in adaptation level can cause the same type of shift in ideal points.
External causes of exposure to changed stimulus intensities, however, may as well
change the adaptation level in an opposite direction away from the ideal point. Under
the assumption of a fixed deprivation or saturation level an adverse shift in adaptation
level will also result in half such a shift of the ideal point in the same direction as the
shifting adaptation level. It increases the distance between ideal point and adaptation
level and thus also increases the maximum valence level at the ideal point. Such
frustrating dynamics may be counteracted by cognitive down playing of the importance
of the dimension with respect to other sensation dimension. Comparison of preferences
can be represented by a preferential weighting of its sensation scale by a factor that
equals the inverse of the sensation distance between adaptation and ideal points. In the
case of a single dimension a changed preferential weight influences not the individual
choice dynamics, but in multidimensional analyses of preferences such changing
preferential weights of dimensions become meaningful and important parameters for
choice dynamics. By such preferential weight changes for sensation dimensions the
location of the ideal point in the multidimensional space of preferential choice is
altered, which can influence the preferences. Adaptively changing valence functions
can be regarded as basic functions for the adaptive dynamics in cognitive-affective
system of individuals, but also for the collective appearances of cognitive-affective
dynamics of human behaviour that is based on choices and decisions without or little
social interaction (Hanken and Reuver, 1981; Hanken. 1981).

2.4,2. Behavioural control and preference
If sensations can be completely controlled by self-produced stimuli of realised choices,
then the adaptation level is brought closer toward the desired sensation intensity of the
ideal point. For monotone valence functions this would go on forever, which expresses
the unlimited desire for such attributes. For single-peaked valence functions it means
that also the ideal point adaptively moves toward the saturation or deprivation level.
The closer the adaptation level is to the ideal point (and thus the ideal point to the
saturation or deprivation level) the lower the maximum valence becomes. which
reduces the behavioural tendency for the obtainment of new ideal sensations.
Therefore. under complete self-controllable stimuli the speed of change will be the
slower the lower the maximum magnitude of the positive valence at the ideal point is
and, thus, also the smaller the distance between the adaptation level and ideal point (or
equivalently between the adaptation and the saturation or deprivation levels) is.
However, this tendency remains positive as long as there is a distance between ideal
point and adaptation level. The response-produced stimuli with ideal intensities
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adaptively locates the dynamic adaptation level at asymptotically merging levels of
ideal point and saturation or deprivation level. which both then also must coincide with
the ideal level. Figure 18 shows the valence curve for such coinciding reference levels.
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Figure 18. Single-peaked valence curve/or coinciding levels.

In figure 18 is described for s = a = 9 by (25) or for l\.= a = 9 by
(29), whereby the single-peaked\al4hce\unCtion with coin''bd[ng ~vels
becomes the controlled valence function as

r -(y,-g)/d 12
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At y = 9 and x = p the controlled valence function reaches its zero
maxiMim, l&hile Akislf,egative for higher and lower values y, and x

lk lk

A simple example of such a preference curve with coinciding levels is a man's
preference function for belts that are identical in all respects but for length. Clearly the
valence function for belt length is single-peaked, but the valence is completely
controlled by optimally suited length and by adaptation to the usual wearing is not
positive nor negative, while longer or shorter belts have negative valences. There are
obvious examples ofa more psychophysical dynamic nature for valence functions with
a neutral maximum valence, where behavioural controlled sensations establish
coinciding levels. One such an example is the air pressure balance in the ear. A lower
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or higher air pressure outside than inside the ear is unpleasant and matched pressures
are neutral, where external changes of air pressure are controlled by dynamical
matching of inside and outside air pressure. The description of the choice behaviour on
sensation scales with negative ambience under complete behavioural control is also
illustrated by the curve of figure 18. The ambience difference only defines a different
location for the merged levels as either at the deprivation or at the saturation level.

This completes the description of the dynamics in choice behaviour for
unidimensional sensation scales. It constitutes a theory for dynamical judgment,
preference, and actions in the field of ongoing stimulation. Therefore, referring to
Lewin's valences in his field theory of actions (Lewin, 1938, 1942), we call our theory
the psychophysical response and valence theory. The dynamics of responses and
preferences are further discussed in chapter 7 after we have explored in chapters 3 to
6 what our multidimensional theory implies for stimuli with constant adaptations levels.
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CHAPTER 3

THE GEOMETRIES OF STIMULUS AND SENSATION SPACES

"Although several authors <>have suggested that non
Euclidean spaces may be appropriate, little research
has been reported on anything other than Euclidean
embeddings. There are dangers in limiting ourselves to
this familiar space. <> a good deal of judgment is
involved in deciding whether a panicular embedding is
appropriate. Bm, because ourjudgments are likely to be
influenced by our presystematic intuitions about the
nature of the space and the arrangement of the stimuli
in it, there is some/ear that we are simply perpetuating
the errors ofnaive Euclidean intuition. "

Luce, R.D. and Galanter, E. Psychophysical Scaling. Ch.
5, p. 303 in: Luce, R.D.; Bush, R.R. & Galanter, E.
(Eds.) (1963). Handbook afmathematical psychology.
Vo!. l. WHey, New York.
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3.1. Metric psychological spaces and the stimulus geometry

The metric response or monotone valence functions and the metric single-peaked
valence functions of comparable sensations yield a basis for the appropriate judgment
or preference analyses in a multidimensional object-attribute space. A multidimensional
scaling method ofjudgmental or preferential responses should reveal the psychological
response or valence spaces of individuals as functions of the sensation dimensions for
stimuli or cognitive objects (assuming that an objective attribute space of cognitive
objects is shared by individuals). Every analysis of rank order data by some
multidimensional method asks for the solution of the co-ordinate parameters for the
locations of objects or stimuli, individual adaptation levels and, where relevant, also
individual ideal points as well as individual weights for dimensions, but also needs to
detennine the geometry and dimensionality for the representation of individual data.
The judgmental responses are detennined by monotone response functions of
individually translated, weighted, and oriented sensation dimensions. Also preferences
are detennined by monotone and/or single-peaked valence functions of individually
translated, weighted and oriented sensation dimensions. But firstly, the geometryof the
stimulus space (or attribute space of cognitive objects) is transfonned by weighted
Fechner-Helson psychophysical function to individually different sensation spaces with
a common geometry that differs from the stimulus geometry. The transfonnation of a
stimulus space to individually translated and weighted spaces of comparable sensations
is a logarithmic transfonnation with individual parameters that are defined by the
adaptation and just noticeable or ideal points. Given the geometry for the stimulus
space (physical intensities and/orextensities) or the assumed-common attribute space
of cognitive objects, Fechner's logarithmic transfonnation of stimulus or attribute
dimensions detennines the geometry ofthe sensation space, while individual adaptation
levels detennine the individual translations and dimensional weights in that geometry
as their intensity-comparable sensation spaces. For cognitive objects a common
attribute space with the same geometry as the stimulus spaces is assumed to exist,
which space then derives from the inverse transfonnation of individual sensation spaces
of cognitive objects. Thus, given a geometry for the common objector stimulus space,
the geometry of the sensation space is detennined by the psychophysical transfonnation
function. The geometry of the sensation space detennines also the geometries of the
response or preference space by our metric response or valence functions, derived in
chapter 2. The geometry defines the distance metric of the space, while dissimilarities
are represented by distances between objects in individual response spaces and
preferential choices of individuals by distances between objects and an ideal point in
valence spaces. Therefore, given a geometry for the stimulus space, the metric response
or valence functions ofchapter 2 yield the foundation of the pennissible geometries for
the semi-metric multidimensional analysis of (dis)similarity judgments or preferences.

This theoretical approach differs from data-analytic driven, non-metric analyses
by multidimensional scaling (MDS) of (dis)similarities (Kruskal, I964a,b; Shephard
et al.. 1972; De Leeuw and Heiser, 1982; Meulman, 1986; Heiser, 1988; Cox and Cox,
1994; Borg and Groenen, 1997) or by multidimensional unfolding of preferences
(Coombs, 1964; Heiser, 1981, Heiser and De Leeuw, 1981, Heiser, 1989). This contrast
also applies to modern probabilistic versions (Ashby, 1992a) of these scaling methods.
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All existing MDS methods acknowledge not the different geometries of the common
object space, the individual sensation spaces, and the individual response or preference
spaces. In the relevant spaces the configurations of stimuli or objects afe represented
as points or vectors in a metric multidimensional co-ordinate system. The angles
between and lengths of vectors describe the space configuration of objects by the
endpoints of vectors from a space origin. The geometry of a multidimensional space
specifies the distance metric between space points and the projective decomposition of
vectors in co-ordinate values with some arbitrarily or meaningfully defined origin and
scale units. In a metric space with a particular distance function the object
representation generally is given in terms of independent object co-ordinate values by
some geometry-dependent projection function of object vectors.

Generally a flat and intlnite geometry (thus Euclidean or Minkowskian) is
assumed for psychological spaces, but there is no a priori justification for an infinite
and flat nature of response or valence space geometries as the relevant psychological
spaces for the analysis ofdissimilarities or preference rank orders. On the one hand one
may assume that the stimulus space for the range of the stimulus intensities and
extensities in human perception is Euclidean, although physics after Einstein tells us
that the physical geometry is non-Eudidean. On the other hand one could argue that
human perception is characterised by sensations of a seemingly Euclidean nature. It
certainly is convenient to represent analysis results in a Euclidean space (rather than in
not rotation-invariant Minkowski spaces) and not only for mathematical reasons, but
also for the understanding of analysis results. However, such representations require
that either the stimulus or the sensation space is Euclidean, because both spaces cannot
have the same geometry.

As shown in the next sections of this chapter, if the sensation space is Euclidean
or Minkowskian then the stimulus space is non-Euclidean or if the stimulus space is
Euclidean then the sensation space is hyperbolic. Since either Newtonian or possibly
relativistic physics determine the objective measurement of stimuli, other stimulus
geometries than Euclidean or non-Euclidean ones must be excluded. In this chapter it
is shown that the corresponding sensation space can only be either flat (Eudidean or
Minkowskian) of hyperbolic, while in the next following two chapters it is also shown
that open (finite) geometries of individual response or valence spaces derive from the
response or valence transformations of infinite and flat or hyperbolic sensation spaces.
Since not sensations, but responses or preferences are observed, we have to analyse
dissimilarities or preferences as individual response or valence space distances. The
geometrically appropriate multidimensional analyses are to be based on data
representations (e.g. transitively ordered dissimilarities by distances or transitive
preference rank orders by conditional object distances to ideal points) in individual
response or valence spaces with individual parameters that are solved from inverse
transformations of individual response or valence spaces to either a corrunon Euclidean
stimulus or sensation space (only hyperbolic or Euclidean and no Minkowskian
sensation spaces can be derived from these inverse transformations), which topics are
discussed respectively in chapters 4 and 5.



97

3.1.1. The Minkowski geometry for psychological spaces
The Minkowski geometry defines a r-metric for distances in flat spaces and has gained
considerable attention in psychology (Shepard, 1964. Roskam, 1968, Bezembinder,
1970, Coombs et aL 1970). The r-metric for distances a and b on independent
dimension defines space distance c in a plane to be given by { + b

r
:::: cr. For r =2 it

is the Pythagorean expression for the Euclidean geometry, wherein the square root of
the sum of squared distances on independent dimensions specifies the spacedistances.
If the Minkowski parameter r:::: 1 then it defines the city-block geometry of a space,
wherein distances are the simple sum of the dimensional distances. If r= 00 then a space
distance equals the largest dimensional distance. In textbooks on psychological data
analysis the contours of space points with equal distances to the origin in Minkowski
spaces with different r-metrics ranging from r::: I to r::: 00 are generally illustrated by
an iso-distant square for r "" I surrounded by an iso-distant circle for r ::: 2 that is
contained in the iso-distant square for r::: 00 with 90 Q rotated orientation with respect
to the iso-distant square for r::: I. Also iso-distant contours for r-metrics with r < I are
possible and have the shape of asteroids with the sharper angular points and the more
concave curved sides the closer the value r is to zero, but such iso-distant contours are
seldom pictured. Only iso-distant contours with a fixed r-metric are generally assumed
for a Minkowskian space, but in figure 19 we picture the iso-distant contours for r :::
Y2, r::: 1, r =: 1.35, r::: 2, r::: 4, and r =: 00 as ordered contours with the larger shapes for
the smaller r-metrics.

r= 1

= 1.35

.,

Figure 19. Minkowskian iso-distant contours with distance-dependent r-metrics.



The order for the shapes of varying r-metric contours in figure 19 have a special reason
that will become clear in chapter 5, where Minkowskian iso-distant contours with a
variable r-metric are shown to apply if individual iso-preference circles ina hyperbolic
sensation space are incorrectly represented in a flat space, whereby the iso-preference
circles become represented as iso-distant contours with variable r-metrics that range
from I to about 2, depending on the object distances and the distance between the
adaptation and ideal points of an individual.

Minkowski r-metrics for r ';: I satisfy the axiomatic conditions for distances
(non-negativity, symmetry and triangular inequality) allowing (I) a geometric
representation of dissimilarities between objects as distances between points that
represent the object configuration or (2) a geometric representation of preferences for
objects as distances of object points to ideal object points of individuals. Generally the
data for dissimilarities or preferences are on a rank order level of measurement, while
their analyses as distances in a space solve the configuration of object points with
distances that optimally fit the observed rank order. The axiomatic conditions for metric
distance representations are extensively treated by Krantz, Beals and Tversky (Beals
et al. 1968; Tversky and Krantz, 1970). In Minkowskian geometry the distances are not
rotation invariant, unless the r-metric for r = 2 specifies a Euclidean space. Distances
in Minkowski spaces are only invariant under translation and reflection of its co
ordinates, while distances in Euclidean and non-Euclidean (hyperbolic or elliptic)
spaces are invariant under translation and rotation of its co-ordinates. A data
representation by some multidimensional analysis as space distances is often
characterised as meaningful if the distances are invariant under rotation and translation
of the space co-ordinates (Van de Geer, 1970; Suppes, et al. 1989, ch 12). If individuals
evaluate objects or object pairs by geometric transfonnations of object-attribute spaces
with individual parameters then invariance under translation may be lost, but
conditional rotation invariance and meaningfulness can still be present. In chapter 6 we
further extensively discuss the geometric foundation and meaningfulness of
psychological measurement. For individual evaluations of objects or object pairs one
may conceive personal evaluation spaces that have individually different object
configurations, whereby there exists no common evaluation space, but only a common
evaluation geometry. A common evaluation geometry with individually different object
configurations may derive from individually different projections of a common object
or stimulus space, where these projections depend on individual adaptation-level
parameters for their projection origins and dimensional comparability weights. Rotation
and translation invariance of personal evaluation spaces should preferably hold,
because otherwise psychological measurement may become meaningless by a varying
dependence on rotations and/or translations. We assume that individuals share a
common stimulus or object space and have common types of geometric space
transformations that characterise human perception, cognition, and preference. Given
that individual parameters in such common types of geometric transformations of a
common object or stimulus space detennine personal evaluation spaces, we may apply
the inverse of these geometric transfonnations to data representations in individual
evaluation spaces in order to resolve the common object or stimulus space and the
individual parameters.
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3.1.2. Psychological relevance ofnon-Euclidean and Fins/er geometries
Non-Euclidean geometries (Busemann, 1950a, 1955: Struik, 1950; Coxeter. 1957;
Dubrovlll, et al. 1992) describe space points and distances on elliptic or hyperbolic
surfaces, which are also respectively called Riemannian or Lobachevskian spaces. The
tellll "non-Euclidean" has another meaning than not-Euclidean. Non-Euclidean spaces
define infinitely small distances to be Euclidean and are thus differentially Euclidean
geometries. Non-Euclidean geometries also satisfy the triangular distance inequality
d(a,b) + d(b,c) ;? d(a,c) and the invariance of distances under translation and rotation.
However, non-Euclidean geometries have hardly gained attention in psychology. These
geometries describe hyperbolic or spherical surfaces that have a constant curvature,
while all variably curved surfaces define spaces with a Finsler geometry, so-called after
Finsler (1918) who first explored the complexities of geometries that are not constantly
curved, and where Finsler distances need not to satisfy the triangular distance
inequality. The (pseudo-)radius of a constantly curved space surface specifies by its
inverse value a scale factor for its scaling to a non-Eudidean space with a unit radius,
which scale factor is called the curvature of the space. Thus, the curvature of distances
with a constant curvature scales such distances to distances on spheres or hyperbolic
pseudo-spheres with a (pseudo- )radius of unity. Distances on spheres or hyperbolic
surfaces with a unit (pseudo-)radius are measured by their arc lengths as respectively
cosines of elliptic distances or hyperbolic cosines of hyperbolic distances. With few
exceptions non-Eudidean geometries are not applied in the analysis of psychological
spaces. The earliest exception for elliptic geometry as relevant for psychology seems
Helmholtz (1891) who describedjust noticeable colour differences by spherical Weber
fractions, which is amended by Schn'idinger (1920) to another spherical colour metric.
The earliest exception for hyperbolic geometry as relevant for psychology seems
Luneburg's research and theory on the hyperbolic nature of binocular vision (Luneburg,
1947). A more general application exception is found in the data-analytic approach of
Van de Geer (1970), who discussed the geometric properties and algebraic space
solution of dissimilarity distances in elliptic and hyperbolic spaces and applied these
non-Eudidean geometries in psychological data analysis. Van de Geer analysed several
sets of metric (dis)similarity data as distances in an elliptic or hyperbolic geometry with
a lowerdimensionality than the representations urge in Eudidean spaces. Indow (1974)
extended the multidimensional scaling technique to elliptic and hyperbolic metrics for
empirical analyses of visual perception data (lndow, 1982) and colour perception data
(lndow, 1993). Apart from these and few other exceptions (Ekman, 1965; Lindman and
Caelli, 1978; Drosler, 1979), non-Eudidean geometry seems not to be significant for
psychological research and theory. Even in the geometric approach to fundamental
measurement theory (Suppes et al. 1989, ch. 12 to 14), non-Eudidean geometry is
mainly discussed as relevant for relativistic physics and Luneburg's visual space theory
or only as a theoretical alternative for distance models. It contains an axiomatic
description of non-Euclidean and projective geometries for the representation of binary
relation data as distances in hyperbolic, or elliptic, or open geometries with a constant
or zero curvature, but no theoretical basis for rational distance metrics of non-Euclidean
or its projective, open geometries for analysis or measurement in psychology. Only
recently Finsler geometry has become relevant for psychology by the theory of
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Fechnerian distance metrics for multidimensional stimulus spaces, developed by
Dzhafarov and Calonius (1999, 2001), who define Fechnerian distances in Finsler
spaces. Fillsler geometries (Busemann, 1942, 1950b; Rund, 1959, Asanov, 1985;
Matsumoto, 1986) define spaces wherein differently curved, shortest line lengths
between points specify Finsler distance metrics that are direction- and location
dependent. Tensor algebra (Gerretsen, 1962; Sokolnikoff, 1964; Dubrovin et aI., 1992)
for co-ordinate transfonnations of space locations and covariant transfonnations of
local curvatures is the generalised matrix algebra for a Finsler geometry.

In Newtonian physics the stimulus space is Euclidean and in Einsteinian physics
non-Euclidean, where one might be inclined to assume that stimulus measurements for
human perception are well described by Newton's Euclidean space, but in the sequel
we don't exclude the possibility of hyperbolic or elliptic stimulus geometries as
consistent alternatives. In the sequel it is shown that non-Euclidean geometry is
relevant either for the geometry of sensation spaces that derive from a Euclidean
stimulus space or for the geometry of stimulus spaces that correspond to flat (Euclidean
or Minkowskian) sensation spaces. Without using differential geometry expressions it
is proved that if the stimulus space itself is Euclidean that then the sensation space is
hyperbolic or that if the sensation space is flat (Minkowskian or Euclidean) that then
the stimulus space is non-Euclidean (elliptic or hyperbolic). Due to the logarithmic
Fechner-Helson transformation of a stimulus space to a sensation space, weighted and
translated sensation spaces define by inverse (thus exponential) transformations power
raised stimulus fraction spaces. Although stimuli are specified by Euclidean, or
hyperbolic, or elliptic spaces, their respective, power-raised fraction spaces are Finsler
spaces of subjective stimulus magnitudes that correspond to the exponential
transformation of individually weighted and translated spaces of comparable
sensations. Ratio's of the dimensional values of binary space points in power-raised
stimulus fraction spaces correspond to dimensional distances in individual sensation
spaces, but distances of these binary space points may become location- and direction
dependent distances, in accordance with the Finsler distance metric in the Fechnerian
scaling theory of Dzhafarov and Colonius (1999, 2001). However, in the sequel we
demonstrate that the location and direction dependence of distances in power-raised
stimulus fraction spaces is much more restricted than in Fechnerian scaling theory.
Firstly, the power exponents are only direction-dependent, because determined by
rotational parameters. Secondly, the location dependence reduces to a space scaling that
is defined by the stimulus fraction space with the (psychophysical-common) adaptation
point as dimensional unit points. Since power-raised stimulus fraction spaces are
defined by the exponential transformation of translated and weighted Fechnersensation
spaces of individuals, their matched space configurations define a common Fechner
sensation space that corresponds to the stimulus space, where that matched Fechner
sensation space or its stimulus space is the common Euclidean object space.

As further shown in chapter 4, projective geometries (Busemann and Kelly,
1953) of open spaces with a Euclidean, or hyperbolic, or elliptic distance metric are
relevant for the analysis of dissimilarity representation by space distances, due to the
individual projection transformations of infinite and flat or hyperbolic sensation spaces
to open judgmental response spaces by the response function, either the hyperbolic
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tangent function, derived in section 2.2, or the arctangent function, derived as unique
alternative in the next chapter. As one may expect from the identity of response and
monotone valence functions, similar matters hold for analyses of preferences for
objects with monotone valences, where projectively weighted response functions
transform comparable sensation spaces to ideal axes in open response spaces, as
demonstrated in chapter 5. In that chapter we also show that the permissible geometries
of valence spaces for objects with single-peaked valences are either open Finsler
geometries (if the sensation space is flat) or open-hyperbolic geometries (if the
sensation space is hyperbolic). Fortunately, open Finsler geometries of single~peaked
valence spaces are specified by curvatures that are determined by metric functions of
individually weighted sensation space distances to the ideal point. Due to their distance
dependent curvature, these open Finsler geometries are projectively flat Finsler spaces
(Matsumoto, 1991), whereby the tensor-algebraic complexities of such single-peaked
valence spaces can be avoided. Based on individually different transformations of a
common object space to individual response or preference spaces, we will later
describe iterative solutions for the analyses of dissimilarities (chapters 4 and 7) and
preferences with monotone, or single-peaked, or mixed valences (chapters 5 and 7).
The solutions are based on inverse transformations of open response spaces or open
single-peaked valence spaces to a common Euclidean object space.

3.2. The relationship between sensation and stimulus geometries

Researchers in psychology generally assume that psychological spaces can be described
by Euclidean or Minkowskian geometry. However, one may question whether
psychological spaces, as individual response or preference spaces, are indeed Euclidean
or Minkowskian. In the next section we first investigate what Minkowskian sensation
spaces and their transformation by the inverse Fechner~Helsonpsychophysical function
imply for the geometry of the stimulus space. Secondly, assuming a EucIidean space
of stimuli that are transformed by the Fechner-Helson function, the geometry of
sensation spaces is determined. In the last section of this chapter, we discuss the
relationship between geometries of stimulus and sensation spaces in view of the
alternative psychophysical function of Stevens' power transformation of stimulus to
subjective stimulus magnitude dimensions.

3.2.1. Flat sensation and non~Euclideanstimulus spaces
A dimension of a flat sensation space becomes exponentially transformed by the
inverse Fechner-Helson psychophysical function to a constantly curved stimulus
fraction dimension. Since non-Euclidean spaces are constantly curved, we see that a
sensation space with a Minkowski r-metric corresponds to a non-Euclidean stimulus
geometry with a constant curvature. In the next mathematical section we prove that if:

a) Minkowskian geometry holds for sensation spaces;
b) sensations are defined by Fechner-Helson functions of stimuli;
c) independent sensation dimensions imply independent stimulus dimensions;

or replacing c) by the weaker alternative that
d) a stimulus space is rotation-invariant;
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then the geometry of the stimulus space (or objectively measured attribute space of
cognitive objects) is non-Euclidean (hyperbolic or elliptic). The r-metric for
independent sensation dimensions implies exponential tenns for the embedding
Euclidean co-ordinates of the corresponding non-Euclidean stimulus space, whereby
the Euclidean Pythagorean expression defines exponential tenns that are power-raised
by r as r-metric parameter of the corresponding sensation dimensions. Thereby,
parameter r/2 functions as weight of the stimulus values in the squared, exponential co
ordinate tenns. This weight is the scale factor or space curvature that equals the inverse
of the (pseudo-)radius of the non-Euclidean stimulus space. Thus, the curvature of the
non-Buclidean stimulus space equals half the r-metric of the sensation space, where
curvature 9 = -rl2, if the stimulus space is hyperbolic, or 9 = r/2, if elliptic. After
scaling to uhitcurvature the non-Buclidean stimulus space coh-esponds to aEuclidean
Fechner-sensation space, while individually oriented, weighted, and translated
dimensions of an intensity-comparable Minkowski sensation space correspond to
individually oriented, power-raised stimulus-fraction dimensions as subjective
stimulus-magnitude dimensions of a rotation- and translation-invariant, non-Euclidean
stimulus space with curvature 9 = ± r/2.

The reverse formulation 6f the result may be more relevant from a psychological
point of view: a non-Buclidean stimulus geometry and the Fechner-Helson
psychophysical function specify a Euclidean or Minkowskian geometry for sensation
spaces. The remarkable aspect is that the non-Euclidean stimulus space itself is
rotation-invariant, but corresponding individual sensation spaces with r-metrics other
than r = 2 are not invariant under rotation and describe different space distances for
individuals with differently oriented sensation dimensions of the same space
configuration. Two-dimensional stimuli at equal distances from individual stimulus
adaptation points define circles on their non-Buclidean stimulus surface, but on
corresponding sensation planes with a Minkowski r-metric the iso-distant contours of
sensations to the adaptation point are individually oriented, non-circular contours
(except for r = 2), as shown in figure 19. For example in a city-block geometry (r = I)
the iso-distant contours are squares that have differently located adaptation points as
centres and individually oriented corners, if indi viduals have different adaptation points
and different evaluation-relevant sensation dimensions. Similar things hold for
individual iso-distant contours with other r-metrics, but in the corresponding non
Euclidean stimulus fraction space all iso-distant contours are represented by circles. In
comparable sensation spaces the dimensions are individually weighted by weights that
equal twice the inverse of dimensional distances between the just noticeable and
adaptation levels. In comparable sensation spaces the individual iso-distant contours
are symmetric, but in a common Fechnerian sensation space their shapes are
asymmetric, where comparable sensation dimensions correspond to power-raised
stimulus fraction dimensions with their adaptation point as unit point and Fechner
sensation dimensions to stimulus dimensions with their stimulus threshold as unit point.

Referring to expressions (15a) to (lSf) for an individual sensation
dimension and (l2d) for a Fechnerian sensation dimension, we see that
individual sensation spaces are translated Fechnerian sensation spaces.
If Fechner spaces are Minkowskian, also individual sensation spaces are
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Euclidean or Minkowskian, because invariant under translations. For two
independent sensation dimensions 1 and k a sensation s, in a Minkowskian
(or Euclidean) sensation plane (l,k) with r as the r:':,metric writes as,

I'.,lr + IS'k lr = Is,l
r

, (35a), , ,
Now substituting in (35a) s.=ln(x./b), as the Fechner-Helson function
for x./b of (15a) , we look for- a tunction I {x.lb} in a stimulus space,
wher-efn an appropriate Pythagorean theorem holfu for its geometry. Since
we assume dimensional independence to be pr-eserved, we write this as

Iln(f{x, /b )}I r + Iln(f(x'k/bk)}lr = Iln(f(x,/b)}l r , (35b)
11 1 1 1

~d

where b and b ar-e the projections of stimulus adaptation point b
Providea I (xl ~ 1 we can drop the restriction to absolute terms, while
for 0 ,; I (x) s 1 where we have to take reciprocal function terms, and by
also taking exponents on both sides we obtain

(f{xil/bl)}r. (f(xi/bk)}r = {f(x/b)Jf I/(x) ~ 1

I
(36a)

(f{x, /b )rr. (f(x.k/bk)rr-= (f{x./b)lrr 0,; f(x) ,; 1
11 1 1 1

For r=l, the city block model of sensation distances, (36a) r-educes to

I (Xi/bll ·/{Xi/b
k

) = f(x/b) I/(x) :?: 1
Ir = 1 (36b)

[l/I(X
i
/b

l
)], [1// (Xik/b

k
)] = l/f(x/b) 10 s I(x) sI

Easily one sees that (36b) specifies a non-Euclidean stimulus geometry.
For any triangle ABC with a 90" angle at C opposite side c and legs a
and b in a non-Euclidean geometry with curvature C; (Busemann, 1950a),
the theorem of Pythagor-as is written for an elliptic geometry as

(38a)

(37a){elliptic geometry}

For a Minkowski sensation space of any r the possibility of a hyperbalic
stimulus geometry follows directly by taking function I in (35b) as
I(x} = exp[exp(xl] :?: 1, whereby In[/(x)] = exp(x) ~ 0 and (35b) rewrites

as r.x /b r·x /b r'x /b
eill+eikk=ei

cos(c;,a) ,cos(C;·b} = cos (C;·c) ,

or the hyperbolic theor-em of Pythagoras as

cosh (c;·a) ·cosh(C;·b} = cosh{C;'c}, {hyperbolic geometry) (37b)

Since (37a) or (37b) apply to all right-angled triangles in subspaces of
a non-Euclidean geometry of any dimensionality, we obtain for r=l that

I (36b) specifies the stimulus geometry to be either double-elliptic by
I l(x)=cos(C; ·xl or l{x)=cosh(C; ,x), wher-e c; is the curvature for r"'l, or
I if I(x)=co~{c;.x) then this fkction I(x} for stimulus values satisfies
I (36b) , since cosh[c;·xl ~ 1, where that hyperbolic stimulus geometry
I has a negative curvature C;, but also that cosh[-C;'x] = cosh[C;'x] for the
I unlimited values of stimuli x on hyper-bolic surfaces. Alternative (37a)
I asks that cosine functions satisfy 0 s I{x) s 1, which requires that
I stimulus values x in cos(C;'x) satisfy 0 ,; C;'x s ~, where elliptic
I curvatures c; are positive. The stimuli x then have the finite values
I on semi-definitely positive orthant of double-elliptic spaces.

I
I
I

I
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Taking the in (38a) as squared co-ordinates and introducing a factor of
a half for a reason that will become clear in the sequel, we define

as also

~ll

~k'
~hl

%.{In[f{Xi/b1l] }T

%.{lTI[!(xi/bkl] }T

X/{ln[!(x,/bl] I r,

%'exp (T.xn/b
l

)

~.exp{r,xi/bk)

= %·exp{-r·x.lbl.,

(Jabl)

(38b2)

(38b3)

After multiplication by 2 we obtain at once the Euclidean co-ordinate
expression for hyperbolic vectors i for (38al as

"/[x2 + x2 J = x = A~'expO~r'x !b)
il' ik' l' i

whereby
X'h' = /%-{In[f(x,/bl]/%r =/'ti·exp(-~·x,/b)" ,
xi,.xih ' = '12, (39a)

defines stimuli x./b to be located on rectangular hyperbola that jointly
constitute a hyp€rbolic surface for (k', l' ,h') with pseudo-radius p=l
for any r-metric, which has been the reason for the scaling by factor- 'ti.
The hyperbolic surface is thus described by Euclidean co-ordinates that
are asymptotic to its surface by

~k' + ~l' ~ xih' '" -1. Ir (39b)

Given that the surface of x,!b for any r is hyperl::olic we have /' (x./b)
as a projection function fof points (x,!b) on a Euclidean plane (k';l')
(bold indices denote Euclidean valuesf that corresponds to hyperbolic
dimensions k, 1, where a third Euclidean co-ordinate h' is needed in
order to represent the hyperbolic surface by Euclidean co-ordinates.
Planes that are orthogonal to (k', 1') intersect the hyperbolic surfaces
by rectangular hyperbola, but 45° rotated co-ordinates with respect to
h' have planes parallel to a 45" rotated plane {k,l} which intersect the
hyperbolic surface by circles. Projections of the points x.!b on the 45°
rotated dimension h, orthogonal to plane (k,l), as the pro1ections x ,
describe the centres of the intersection circles by the planes paralifu.
to (k,l). For dimensions x ,x and x the equation for a hyperbolic

f
' , ilik ih

sur ace wTltes agaln as

i' - 1X2 + x2 ) 1, 139c)
ih ik 11

where the positive solution for the expression is used to construct
the hyperbolic surface in a Euclidean space as one of the sheets of a
so-called two-sheeted revolution hyperboloid. In this presentation
the revolution of one dimension 1 (or k) around dimension h defines a
two-dimensional hyperbolic space and revolutions of 1 and k around h
define a three dimensional hyperbolic space that is represented by four
Euclidean co-ordinates and so on for more dimensional hyperbolic spaces.
Here, p",1 is a pseudo-radius of the hyperboloid. Euclidean co-ordinates
in (39) are related to the two hyperbolic curved dimensions of surface
(k,l) with a curvature parameter ~ that corrects its radius to Ipl"'l
for a corresponding sensation plan~ (k,l) with a r-metric of any r by
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(40a)9 ,,
sinh{<y'x Ib}

r i1 1

sinh(y'x Ib)
r ik k

COSh(Yr,xi/bl xih
Here the co-ordinate h is orthogonal to the hyperbolic surface and
the projection of hyperbolic vectors x./b on plane (k,l) with co
ordinates that correspond to hyperbolic -aimensions k and 1 is defined by

5iOO(<; ,x,/b) = x.. (4Gb), , ,
The stimulus origin becomes in any sensation space a unique infinity
direction, but on the hyperbolic stimulus surface it remains the point
x./b=O that is defined by x. ,,1 and x, ",x, =0. Notice that a hyperbolic
sbmulus space is no longe}ha positfffe d-fthant space if one translates
the hyperbolic stimulus space to the individual adaptation point x./b=O.
Hyperbolic spaces are rotation and translation invariant spaces~ The
rigidly rotated Euclidean co-ordinate system by -45 0 with respect to
dimension h of (40a) brings the co-ordinates to a position where the so
rotated co-ordinates h', k' and l' are orthogonal asymptotes of the
hyperbolic surface. The rigid rotation of co-ordinates k, 1 and h by
_45 0 with respect to h, then describe hyperbolic vectors x,/b in terms
of the already defined asymptotic co-ordinate system as rotation of
(40a) with its pseudo-radius scaled to p=l by ~r for any r by

Xih '
(x

ih • x.)//2
~d

,
XiI'

{x
ih xil} !v'2, (40c)

as also

xik ' {X
ih

X
ik

}//2,

or by terms of (40a,b) as ~ -x./b

x, ;: (cosh(~ -x,/bj + sinh(~ -x,/b) }//2 = /% e r 1
J.h' r 1 r 1

(40dl)

-c;: -x, /b
/%-e r lk k

where on co-ordinate h' the hyperbolic dimensions k and 1
a,

Xih'lk
-c;: ·x /b

x /%e rill,ih' 11 = .

are projected

(40d2)

(40dJ)

while vector Xi' on co-ordinate h' becomes

Xih ' [cosh{~ ·x./bj-sinh{~ ·x./b}]/V2
r 1 r 1

-c;: ·X, /b
v%e r 1 (40e1)

with projections of x., in plane
1

c;: -x.k/b
kx ;:/%e r 1

ik'

(k',I') on k' and l' as

(40e2)

(40e3)

We rotate these Euclidean co-ordinates backward by 45' in order to obtain
again
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(Xih'll xi1 ,l/V2 XiI sinh(Yr,xil/bl)

(x x l/.,;'2 x slnh("" ·X. Ib)
as well as lh'lk ik' ik '"r lk k

(x" + x. ,)/v'2 xi. cosh(o; -x.lb) ,
while also l J.h r J.

(xill + xihllll/h xihl1 COsh(Yr'xil/b1 )

(xikl + x
ih

'lk)!l2 = x
ih1k

cosh(yr·xi/b
k

)

By the hyperbolic cosine terms of (41a1) and (41a2) we obtain
the hyperbolic, Pythagorean expression of (37bl by

(41a1)

(41a2)

for any r

cosh[y 'X, /b) -cosh [0; 'X, /b 1 = cosh[y -x,/b]. (41b)
r lk k r 11 1 r 1

The equivalence of (3sb) and (40e) defines by cosh(±<; -x) = cosh(~·x)

the negative hyperbolic curvatures r

r:; = -;':r. (41e)
r

Thus, flat sensation spaces with any r-metric may derive from hyperbolic
stimulus spaces with pseudo-radius p = 1/<; = -2fr. Rotation invariance
of the stimulus space follows from l:he trlinsformations of Minkowskian
sensation spaces by the Fechner-Helson function to stimulus surfaces
with constant curvature. A constant curvature for the stimulus space
specifies its rotation invariance and its transformation to sensation
spaces yields a flat space with corresponding independent dimensions,
but no rotational invariance for any Minkowski r-metric, except for r=2.
Translating the hyperbolic stimulus space to the space adaptation point
x,/b = 1 that corresponds with origin In(x,/b) = 0 of the Fechner-Helson
s~nsation space, we obtain (41b) as 1

cosh[y (x, /b - 1)] 'cosh[y (x, /b - 1)] = cosh[y (x,/b - I)J. (42)
rlkk rll1 rl

This stimulus space with hyperbolic curvature y = -~r is an individually
weighted and translated space. Its stimulus oiLgin becomes the unique
point at the distance of unity from the origin in (41b) , where the space
origin corresponds to a negative infinity in a unique direction of the
Minkowskian sensation space.

So if a sensation space has a Minkowski r-metric then the geometry of a
corresponding stimulus space may be hyperbolic and has a unit pseudo
radius provided that we scale the stimulus space by curvature y = -~r.

Notice that we have in (42c) also the stimulus space translated to the
the space adaptation point that also is the Minkowskian space origin.
However, we have not excluded or disproved a possibility of an elliptic
stimulus geometry. If for (35b) we define f(x)= exp[exp(i'x)] <; 1 with
1=/(-1) the function satisfies the condition that its value range is
between zefO and unity. We then redefine (40d) and (40e) by defining
%.In{f(x)} = %·exp[r.i.x}] as tangential Euclidean co-ordinates x, ,
and x, " with x, ,= %.exp [-r. i .x}] as third Euclidean co-ordinateJ.~f
a sph€!ical stimn~us surface. After a rigid rotation of 45° to co
ordinates x ,x. , and x, and a translation by 1 - (x, )' we obtain
the usual c.Mrtraflco-ordifi~tesof that spherical stimul~J§ space, where
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(43b2)

(43bl)Xih ,

as well as

I its elliptic curvature is positive and defined by

Cr~~' (43a)

Co-ordinate system k', l' and h' in analcgy to (40d) and (40e) where the
stimulus terms x./b are replaced by i.x,jb are defined by tangential
Euclidean co-ord!nates of a sphere as 1

-i-9 -x./b
v~'e r 1

-1-<;: ·x Ib
x _ /~.e rill,

ih' 11 -
while vector x, is defined by,

(43b3)

(43cl)

X
ik

,

with projections on k' and I' as

i' y ·x Ib
/~'e r ik k (43c2)

(43c3)

From expressions (43b) to (43c) the usual Euclidean co-ordinates for a
sphere with unit radius follow by a rigid 45° rotation to k, 1 and h
with respect to h' and its translation to the sphere centre as

with x~ + x~ = x~ and x~ + x~ = 1, which describes by dimensions h, 1,
~k~IJ ~h~.

and k a sphere. 'l'nus these co-ord1nates are Euclidean co-ordinates for
rotation-invariant, elliptic stimuli.

(44a)

[x + x 12 l!J2 = sin(e ·x Ib) = x
i ih' r i ih

.x Ill;/2 cos (e -x, Ib) x~l'
ih ' r 11 1 ...

v'{ 1 -

I as well

I
I
I
I
I
I OOndition 0 ~ f{x) ~ 1 is satisfied, but its space uniqueness requires
I that ~r·x.lb is restricted to ~r·x./b 5 n for the positive orthant of the
I double-el1.iptic geometry of stim1.di ~ (x,/b) expressed in radian values.
I Its distances are defined by the ellIptIc Pythagorean expression as

cos[e; ·x. Ib ) ,cos[e; 'X, Ib 1 = cas[e; -x./b), (44b)
r 1k k r 11 1 r 1

or in decimal terms wi th adaptation space point x. Ib = 1 as space origin
with poir:ts x

ih
= ±1 and XiI = x

ik
= 0 as polar lpace points as

cos[~ (x'k/b - I)J ·cos[~ (x'l/b - 1)] = cos[e; (x./b - 1)) _ (44c)
r1k rll rl

A non-Euclidean geometry for stimuli may be seen as compatible with
physics, where space-time events are characterised by the field of real
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numbers and when measured relative to an inertial space-time frame are
described by hyperbolic geometry. In physics the optical object space
is elliptic and expanding with radius c.t' for t as time and c as
velocity of light. However, the (pseudo-lradius of the physical space
is so extremely large that stiITnllus intensities in the range of human
perception become to exhibit a Euclidean geometry, while they are also
not influenced by the space-time relativity of physics. If the stimulus
geometry is Euclidean then this is incompatible with a flat (Minkowskian
or EuclideanJ geometry of sensation spaces.

Above we proved that flat (Euclidean or Minkowskian) sensation spaces correspond
to a non-Euclidean (hyperbolic or double-elliptic) stimulus geometry and that the
absolute curvature 19 Iof the non-Eudidean stimulus geometry equals Vu as half the
r-metric of the flat seJsation space. A hyperbolic stimulus geometry is compatible with
the non-Euclidean geometry of modern physics, where the hyperbolic geometry
describes the measurement relativity of the four-dimensional space-time universe, while
the three-dimensional elliptic space applies to the optical subspace of the expanding
hyperbolic universe (Robb, 1921). A non-Euclidean stimulus fraction space with the
adaptation point as unit space point could have a unit curvature, if its fraction space
would reduce the extremely large radius of the non-Eudidean physical space to unity,
which seems unlikely, but would imply that the sensation space is Eudidean. On the
one hand the extremely large (pseudo-)radius of the physical space itself would imply
that the sensation space is Minkowskian with a r-metric that approaches r = 0, which
is not acceptable since it would imply that largest dimensional sensation dominates the
evaluation of stimuli. On the other hand a flat sensation space implies that the stimulus
space must be non-Euclidean with a finite curvature 1<: 1= lip = V2r < "", because if the
r-metric of the sensation space would approach infinit/then the stimulus space reduces
to a point by it~ radius p = 0, which is also not acceptable. Since the (pseudo-)radius
of the non-Euclidean physical space is extemely large, it seems questionable that the
sensation space is flat and the stimulus space non-Euclidean. But the non-Euclidean
space of physics defines by it's very large (pseudo-)radius that stimuli in the range of
human perception are well described by Newton's Euc1idean space and if stimuli are
Euc1idean then the sensation space must be hyperbolic, as shown next.

3.2.2. Euclidean stimulus and hyperbolic sensation spaces
Exponentially transfonned sensation dimensions define by the inverse Fechner-Helson
function Euclidean stimulus dimensions. Since exponential dimension tenns are
Euc1idean co-ordinates for the embedding of a hyperbolic space, the sensation space
must be hyperbolic, if the stimulus space is Euc1idean. A hyperbolic sensation geometry
derives mathematically from the following assumptions:

a) Euclidean geometry holds for the stimulus space~

b) Fechner-Helson transfonnation of stimuli define sensations;
c) independent stimuli dimensions imply independent sensation dimensions;

or again replacing c) by alternative,
d) rotational invariance holds for individual sensation spaces.
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For two stimulus dimensions with a Euclidean geometry we explore in a
reversed, but similar, way by the appropriate Pythagorean expression
the geometry of sensation spaces that follows from the Fedmer-Helson
transformation of a Euclidean stimulus space. In a Euclidean stimulus
geometry the Pythagorean expression, for stimulus x, in a plane with
dimensions k. and 1 and adaptation point b, reads as 1

(xn /b
l

l2 + (X
i
/b

k
)2 = (x/bl 2 . (45a)

Using the inverse Fechner-Helson psychophysical function we obtain

2(y, - a,l 2(Y"k- a
k

) 2(y.- a)
e 11 e 1 = e 1 (45b)

where a , a and a are the projections of the space adaptation point a'
as the Jikinf on the exponential curved vector y' through the adaptation
point with value y' .=a'. The exponential terms of real values directly
implies a hyperbolie sensation geometry, because the square root of the
terms in expression (45b) as v , v and v as well as v =l/v define
rectangular hyperbola for i, aisI sho~ for It-yperbolic stiMhus ~lanes.
Writing s, = y.-a, s, = y, -a and s, = y. -a we obtain by the terms
of (45b) ~ hyp~rboli\:;lsenslat.iJnspacJ-kWith\~egktiveunit curvature by

defining Euclidean co-ordinates vh' v
k

and VI

(46a2)

(46al)
-s

v = /l/.e i,i n

s. s'l S
v = ~'e 1 v = J~·e 1 v = J~.e lk,
ih ' ihll ' ihlk

where v~ + v. 2 "v?for curvature <;:=-1 equals after multiplication by
2 expre§hon bf (45'5). The usual Euclidean co-ordinate description of a
hyperbolic sensation surface is obtained by a rigid 45° rotation of
Euclidean co-ordinates v , v and v to co-ordinates s , s , and s of
the negative unit curvatfrre ~pace a~ h k 1

and

and

as well as

Since also

[V
ihll

v
il

JJ2 sinh (sn) sil

[v
ih1k

v
ik

JJ2 Sinh(Sik) sik

[v
ih

+ vil//2 = cosh{s,l Si.,
(46bl)

and
[V

ih1k
+ vikl!J2

[v I + v )!J2ih 1 11

COSh(Sn)

COSh(Sikl .

(46b2)

(46b3)

these cosine terms define the hyperbolic Pythagorean expression as

cosh[s. ) ·cosh[s, ] = cosh[s,). (47a)
11 1k 1

From the definition of a two-sheeted revolution hyperboloid with a
pseudo-radius of unity and Euclid.ean co-ordinates k, 1 and h we have

s2 _ (s2 + s2 ) = 1. (47b)
ih i1 ik

Notice that we applied no scale factors for sensations s and its
hyperbolic dimensions. For the hyperbolic sensation surf1ce with
unit curvature and dimensional weights for the sensation dimensions
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Sil = 2(Yi1-a )/a
1

, s, = 2 (Y'k-ak)/ak of comparable sensations
S, -Cl. = 2(y,-ar/a, thel~yperbo±lC Pythagorean expression is written as, ,

COSh[2(Yil/a1- 1)] . cosh [2 (yi/a
k

- 1)J = cosh [2 (y/a- 1)]. (47c)

The space origin for y, /a = 1 for all k is an individually to unity
weighted, dimensional l&p~tion point. Since curvature r:; = -1 of this
weighted hyperbolic sensation space it has a pseudo-radius of Wlity,
while the individual weights ll'ake weighted sensations s, = 2(y. /a -1)
individually comparable sensation differences from the acrli~tatiohkpofnt.
Sensations can't be elliptic, because if it would be then the terms
of (45b) ought to be expressed by terms ,;~{ exp [i· (y, -a) J }, which by the
inverse Fechner-Helson function x./b = exp[y, -a] w6uld imply t~t the
quadratic terms in (45a) have pow€r exponent§ i.2 for '>'l(X./bjl .. But
this incompatible with a Euclidean geometry of stimuli. rfence it is
proved that, if the Fechner-Helson function transforms Euclidean stinnlli
to sensations, the sensation space only can have the rotation-invariant,
hyperbolic geometry wherein orthogonal hyperbolic sensation dimensions
correspond with independent Euclidean stimulus dimensions.

In summary we conclude that the assumption of a Euclidean stimulus geometry implies
the sensation geometry to be hyperbolic. That Euclidean stimuli define the sensation
space to be hyperbolic follows from the inverse of the Fechner-Helson psychophysical
function that specifies a Eudidean stimulus space to be described by exponentially
transformed sensation dimensions, which exponential co-ordinate terms define a
hyperbolic sensation surface. Its space curvature is minus unity and, thus, needs no
scaling to a unit (pseudo-)radius for the application of the hyperbolically trigonometric
functions. Weights that scale sensation dimensions by twice the inverse of its
dimensional adaptation points a

k
= In(b

k
), define the space adaptation point as origin

for intensity-comparable sensatIon dimensions 2(y.r/.a
k

- I). The comparability is due
to individual weights that standardise the units for sensation differences from the
adaptation point as individually meaningful origin for the hyperbolic space of their
comparable sensations. It also will be noticed that the exponential transformation of the
hyperbolic space of comparable sensations specifies a power~raised Eudidean space
of subjective stimulus fractions (x·klbk)Tk =exp[2(Y.k/ak - I)J, where power exponents
Tk = 2/ak = 2Jln(b

k
) are rotational parameters as detelmined by dimensional projections

of the aoaptation point in the hyperbolic Fechner-sensation space.

3.2.3. Hyperbolic surfaces in terms ofEuclidean co-ordinates
For the understanding of the above results and several matters in next chapters by
readers with little knowledge ofnon-Eudidean geometry it might be helpful to discuss
the nature of the hyperbolic geometry. Similarly to a three-dimensional Eudidean
description of the two~dimensional surface of a sphere, we can describe a hyperbolic
surface by three Eudidean dimensions. Taking a hyperbolic sensation surface that
corresponds to a Euclidean stimulus plane, we notice that sensations of stimuli xlb and
b/x are reflected sensations with respect to x/b = I. Since In( I) = 0, it are oppositely
signed sensations on a curve through the zero origin on a hyperbolic sensation surface.
Revolutions of a hyperbolic sensation curve around its zero origin (here around the
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zero-valued adaptation point In(xIb)::: y - a::: 0 in the hyperbolic Fechner-Helson space
of sensations) define the surrace of one of the sheets from a so-called two-sheeted
hyperbo\oid of revolution. The two sheets are identical and each can be viewed as a
pseudo-hemisphere in the same way as two retlected hemispheres of a sphere. We
illustrate this by figure 20 below, where three Euclidean co-ordinates (X,Y,2) describe
the surfaces of two partial sheets of a hyperboloid of revolution.

Z

0----- •• ---- __ A'

!~~~~~~y_1'-~~~~~~-I

Figure 20. The partial sensation surface as sheets ofa two-sheered hyperboloid

Similar to the equation x2/a2 + y2Jbl + Z2/C2 :::: 1 for a sphere with unit radius, three
Euclidean co-ordinates X, Y, and Z describe by equation x2/a2 - y 21bL z21c2= I the two
hyperbolic surfaces with unit pseudo~radius that are defined by the positive and
negative solutions for values of x. The curved surfaces in figure 20 are fonned by
partial revolutions of two opposite, hyperbolic curves that are related to a rotated vector
in the positive orthant of the pictured YZ-plane. The YZ-plane can be viewed as a
positively valued stimulus plane, wherefrom the two equivalent hyperbolic surfaces are
derived. The two pictured hyperbolic surfaces are defined by the negative and positive
solution of the x values on the Euclidean co-ordinate X and the positive co-ordinates
Y and Z. The points A and A' in figure 20 represent the adaptation point on each of the
hyperbolic sensation surfaces and are also defined by the intersection of all asymptotes
to the opposite hyperbolic surfaces. Corresponding centre point 0 represents the
adaptation point in the stimulus space. The constant of unity in x 21a2 - y2/fil_ z 21cZ = I
is the pseudo-radius p = I of the hyperboloid, in analogy to the radius of spheres, and
derives from the nonnalised distance between OA and OA' by the dimensional weights
of values x, y, and z on dimensions X, Y and Z. Multiplying the dimensions by factor
a will change the pseudo-radius to p = a and scales the distances on the hyperbolic
surface by that factor a. By defining bla = r, and cia = q the equation becomes written
in its general fonn _x2+ y 2/fl + z 2/ q2 = _p2, where the negative square of the radius
detennines the peculiar nature of the hyperbolic geometry, that has troubled the
discovery ofnon-Euclidean geometry (Gray, 1979). The distance between origin 0 and
the intersections of the X-axis with the hyperbolic surfaces as points A and A' defines
the pseudo-radius';_p2 of hyperbolic surfaces. Since the pseudo-radius detennines the
scale of the surface, we may correct the scale by the curvature -r; = lip in order to
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restore the surface scale to surfaces with a pseudo-radius of 1. The equation for the
scaled smface then writes as l;2{x2 - y2/r2_z2/q2) = 1, where the positive and negative
solutions of its quadratic terms yield the two hyperbolic surfaces with unit curvature.
Distances between points on a hyperbolic surface with unit pseudo-radius are described
by the curved line length between two points on the surface. just as distances on a
sphere are described by the arc length between points on a sphere with unit radius. For
a hemisphere these distances are expressed by the cosines of the angles between the
lines from the sphere centre to two points on its hemisphere and for hyperbolic surfaces
as the hyperbolic cosine of the angles between the lines from centre 0 to two points on
the hyperbolic surface. The hyperbolic cosine corresponds to the distance between the
projection of the two surface points on axis X, provided that the surface scale is defined
by distance OA ::: OA'::: I. The origin is the midpoint of surface intersection points A
or A' with axis X, while the intersection point of all asymptotes to hyperbolic surfaces
defines A or A' on the opposite sUltace. The larger the pseudo-radius the smaller the
hyperbolic curvature of the surface is and if the pseudo-radius approaches infinity then
the surface approaches the flatness of a Eudidean plane with curvature ~ :=: _1/00 ::: O.

Each curved surface offigure 20 represents a hyperbolic sensation surface that,
as shown in section 3.2.2., is derived from a Euclidean stimulus plane by the Fechner
Helson psychophysical function. Here plane YZ is a stimulus plane that corresponds
to the hyperbolic surface as two-dimensional sensation space. The central X-axis is
only needed in order to describe a two-dimensional, hyperbolically curved surface by
three Euclidean co-ordinates. Origin 0 is the adaptation point on the YZ-plane of
stimuli. The intersection of the central X-axis and the hyperbolic surface represents the
adaptation point on the sensation surface. Since different individuals may have
differently located adaptation points, the hyperbolic sensation surfaces of different
individuals may represent different sensations, because if individuals have different
adaptation points then this is represented by individually different projections of
stimulus plane YZ from different projection perspective points 0 as different stimulus
adaptation points to different hyperbolic sensation surfaces with different adaptation
points A or A' Thus, if the stimulus space is Euclidean and Fechner-Helson
psychophysics apply then the assumption of the existence of a common Euclidean
sensation space is incorrect, because we have shown in section 3.2.2. that a Euclidean
stimulus plane corresponds to an individually translated hyperbolic sensation surface
with distance OA ::: Ipl :=: I or curvature ry ::: -I. One can't describe stimuli and
sensations by the same geometry and also apply Fechnerian psychophysics, while
applications of the Fechner-Helson function may define hyperbolic sensations for the
same stimuli to be different for different individuals, because individuals may have
different adaptation points. Different adaptation points also imply different
comparability weights for sensation dimensions, whereby hyperbolic sensation
distances are defined by products ofdimensional distance tenns cosh [2(y'k ~ y'k)/a.lk]'
Therefore, the dissimilarity between the same Euclidean stimuli may chrreJpona"to
individually different hyperbolic sensation distances.

Notice that figure 20 could also represent the reverse of a flat sensation plane
(with a Minkowski r-metric or, if r ::: 2, with a Euclidean metric) and a hyperbolic
stimulus surface. As shown in subsection 3.2.1., if the exponential transfonnation, as
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inverse function of the Fechner-Helson function, transfonns a flat (Euclidean or
Minkowskian) sensation space to a stimulus space then the stimulus space can be
hyperbolic. where then the curvature depends on the Minkowski r-metric of the
sensation space by 9 =: -rl2, while a hyperbolic space is rotation invariant and a
Minkowskian space n~t (except forr == 2). It also is demonstrated in section 3.2.1. that
an elliptic stimulus geometry can apply, if the sensation space is Minkowskian. Elliptic
geometry needs no further illustration, due to the familiarity of the spherical surface of
the globe as elliptic geometry. Some other aspects of non-Euclidean geometry may be
helpful for the understanding of matters discussed in the following chapters. The
triangular distance inequality (the sum of two sides is larger than the other side) also
holds for triangles on surfaces with an elliptic of hyperbolic geometry, whereby
transitive dissimilarity orders could also be represented by the transitive distances of
non-Euclidean spaces. The sum of the angles for elliptic triangles are larger and for
hyperbolic triangles smaller than 1800

, while in both geometries the lengths of the
curved triangle sides are determined by their opposite angles and the space curvature.
Other differences from Euclidean geometry are also relevant. The elliptic geometries
of spheres and hemispheres describe finite surfaces that have no parallels. In order to
distinguish the difference in finiteness between spheres and hemispheres, the geometry
of spheres is characterised by the so-called double-elliptic geometry (limited by the
opposite polar points) and the geometry of hemispheres by the so-called single-elliptic
geometry (limited by its equator). Hyperbolic geometry describes infinite surfaces and
has parallels that have only one asymptotically common infinity point Hyperbolic
parallels are thus 'diverging' from one infinity direction. A hyperbolic line orthogonal
to all diverging parallels from some infinity is a circle, while its circle radius is infinite
by the infinite origin of its orthogonal parallels. It is called a horocycle. because a circle
segment on a circle with an infinite radius becomes a straight line segment, but its
infinitely extended straight line segment still is a circle on the hyperbolic surface. The
revolution of a horocycle in a three-dimensional hyperbolic space is a two-dimensional
surface that has a common infinity for all parallels that are perpendicular to its surface
and similarly is called a horosphere. The noticeable aspect is that the hyperbolic
subspace of a horosphere exhibits the EucIidean geometry by the infinite radius of the
horosphere. Hyperbolic geometry is the most general geometry, because it contains
(hyper-)horospheres as subspaces with a Euclidean geometry, while a Euclidean space
contains a subspace with an elliptic geometry by revolutions of circles. Elliptic
geometry contains no hyperbolic or Euclidean subspace.

3.3. Stevens' psychophysics and Bower's stimulus coding theory

Up to now we discussed the geometries for stimulus and sensation spaces under the
assumption that the Fechner-Helson psychophysical function applies. It might be
questioned whether the power function of Stevens' psychophysics (1957, 1960, 1961,
1975) yield rotation and translation invariant geometries for the stimulus or sensation
space, if one space is flat. A transformation by Stevens' power functions of a Euclidean
or non-Eud idean stimulus space to a subjective stimulus magnitude space defines a so
called Finsler geometry with dimensionally varying space curvatures, where then here
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the dimensional space curvature would vary with the power exponent of the space
dimensions. However, without further restrictions such Finsler spaces are not rotation
and translation invariant spaces, in cootrast to non-Euclidean or Eudidean spaces. It
yields a strong theoretical argument for the earlier discussed conjecture (section 2.1)
that Stevens' power function derives from a stimulus-space representation of
comparable sensations as weighted sensations that equal cognitive magnitude
sensations both with respect to adaptation level, whereby a Finsler space of subjective
stimulus magnitudes is defined by the exponential transfonnation of the flat or
hyperbolic space of comparably weighted Fechner-Helson sensations. In the next
subsection we demonstrate this in more detail, where we also show that dimensional
power exponents 'k of Stevens' power-raised stimuli are required to be rotational
parameters. This requirement follows from the derived power exponent, =
2/In(bk/u

k
) in section 2.1.2., because b

k
are dimensional projection values ofthe

adaptafion space point in a Euclidean or non-Euclidean stimulus space with the
threshold stimulus as unit point. It yields a verifiable condition for the conjecture that
Stevens' power law derives from matching of weighted Fechner-Helson sensations with
cognitive magnitude sensations. These theoretical and verifiable grounds support the
earlier argument presented in section 2.1., where Stevens' power exponents are
described as the result from matching with cognitive magnitude sensations.

3.3.1. Stevens' psychophysics and Euclidean stimulus spaces
In the next mathematical part of this section we prove that if a) the stimulus space is
Euclidean, b) Stevens' power function transforms stimuli to subjective stimulus
magnitudes, and c) subjective stimulus magnitude spaces correspond to a rotation
invariant space, then the subjective stimulus magnitude space can only be an
exponential transformation of a weighted hyperbolic Fechner sensation space. It
requires that Stevens' power exponents equal the rotational weight parameters of the
hyperbolic space of comparable sensations, which is satisfied for weights as function
of projection values of a space point on rotated dimensions of the underlying Euclidean
stimulus. Nothing in Stevens' theory of unidimensional psychophysics tells us that this
rotational condition for power exponents must hold, while multidimensional
psychophysics that confirm or disprove this restriction seems to be absent. If it holds,
it asks for a theoretical explanation that is given by Stevens' power function as based
on matching of sensory and magnitude sensations, because then Stevens' power
function derives from Fechner-Helson psychophysics and the stimulus coding theory
of Bower (1971). Magnitude matching of sensations asks for a meaningful origin for
dimensional differences from that origin that are matched with cognitive magnitude
sensation differences by dimensional weights. As theorised by Bower that meaningful
origin is the individual space adaptation point and that comparability of sensations is
obtained by an equivalence weighing of dimensional sensation differences to that
origin. Stevens' method of stimulus magnitude estimation then can be seen as derived
from the underlying matching of weighted sensations for a modality with cognitive
magnitude sensations that derive from a learned generalisation of length and distance
sensations to magnitude sensations with a power exponent of unity for the associated
numerical magnitudes, where twice the inverse of the adaptation level specifies the
sensation weight for the magnitude matching and equals Steven' s power exponent, as
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argued in section 2.1.2. The power exponents that correspond to the weights of
Fechner-Helson sensations defme the rotation restriction for the power exponents to
be satisfied, because defined by projection values of a space point in a rotation
invariant space. The conjecture that magnitude scaling by Stevens's fractionation
procedure underlies a matching between sensations of stimulus modalities and
cognitive magnitude sensations only holds if the dimensional power exponents of
Stevens' subjective stimulus-magnitude space are rotational parameters. In accordance
with the stimulus-coding assumptions by Bower (1971) a magnitude-comparable
weighing of sensation dimensions is achieved by our weights that equal twice the
inverse value of the dimensional distance between the just noticeable and adaptation
points in the Fechner sensation space. The comparably weighted Fechner space has the
just noticeable sensation as origin, while the dimensional adaptation points are
individually scaled to dimensional values of 2. If we also translate the individually
weighted Fechner space to the individually defined adaptation space points, we obtain
a Bower space of intensity-comparable sensations that are invariant under linear
transformation of the underlying Fechner sensation scales.

We may specify four differently defined (hyperbolic or flat) sensation spaces.
Firstly, we already defined theFechner space as the logarithmically transformed space
of stimulus intensities. The Fechnerspace is aspace with dimensionally just-noticeable
sensations as space origin and undefined, non-comparable sensation scale units.
Secondly, here we define the comparably weighted Fechner space as a Stevens space
that corresponds to a logarithmic transformation of the power-raised stimulus space of
subjective stimulus magnitudes, whereby dimensional sensation weights equal the
dimensional power exponents as twice the inverse values of individual sensation
dimension distances between the just noticeable and adaptation points, due to an
underlying matching with magnitude sensations. Thus, the Stevens sensation space is
a space with the dimensionally just noticeable sensations as space origin and
individually comparable sensation scale units. Thirdly, we have the already defined
Fechner-Helson space as the logarithmically transformed stimulus fraction space to
a distinctly translated Fechner space with In(x'kfbk) ::: y. - a ::: 0 as meaningful
dimension origins at individual adaptation points1Y'k::: a

k
. fhe PJchner-Helson space

is a space with individually meaningful space orikms and arbitrary sensation scale
units. Lastly, the Bower space is defmed as an individually translated and weighted
Fechner space or an individually weighted Fechner-Helson space or an individually
translated Stevens space. Comparability of weighted sensation differences from the
adaptation level is originally hypothesised by Bower (1971) in his stimulus coding
theory and, therefore, their space is called here the Bower sensation space, The Bower
space is individually translated to the adaptation point in the Fechner sensation space,
while the Bower space also weighs the Fechner sensation dimensions by twice the
inverse values of the dimensional adaptation points in the Fechner space. The Bower
sensation space is a space with individually meaningful space origins and individually
comparable sensation scale units.

The Bower and Stevens sensation spaces have a weighing of sensation
dimensions with weights that equal twice the inverse values of the projected adaptation
points on its sensation dimensions. In the next mathematical section, we also prove that
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power e"ponents ofStevens must be rotational parameters, which is satisfied if defined
by projections of a space point on sensation dimensions of a rotation-invariant Stevens
sensation space of a Euclidean stimulus space. Since the only meaningful weights for
the comparability of sensation dimensions are given by their weighing to equal
dimensional distances betweenjust-noticeable and adaptation points, we argue the ratio
of Stevens' power exponents in cross-modality matching must become proportional to
the inverse ratios of the adaptation point values for the mooal ities in the Fechner space.
According to Bower's (1971) stimulus coding theory, matching of modalities imply an
individual weighing of sensations to equivalence of sensation differences from the
adaptation point Based on our further analysis of Teghtsoonian's analysis results
(discussed in subsection 2.1.2.) we described cross-modality matching of modalities k
and h by sensations sik =2(Y·k_ - ak)/ak and s·h =2(Y.h - ~)/\ that have equally
weighted sensation diflerencehrom therr dimJnsional1aaaptation levels a

k
and \.

Expressed in stimulus tenns exp(s.k) =(x.klb
k

)'k and exp(s.h) =(x.
h
Ib

h
)rh tJiat cross-

modality matching is specified byl 1 1 1

rklrh
xihlbh =(\klbk) with rlth =\/ak

Taking subjective magnitudes of stimulus modality k as based on the matching with
magnitude sensations as dimension h then sensation dimension h equals generalised
distance and length sensations with a power exponent T

h
=2/~ =I for their subjective

magnitudes, as derived from our further analysis of Tegntsoonian's results in
subsection 2.1.2. Thereby, the subjective stimulus magnitudes of modality k are defined
by power exponent t = 2/ak.of power-raised stimulus-fraction scales (x.klb

k
)T

k
, where

a
k

= In(bkluk) is the~imenslOnal adaptation point in the Fechner sensallOn space with
dlmensionarorigins In(u/I-\) = o. It is indeed hard to imagine how cross-modality
matching and subjective stimulus magnitudes can yield consistent results if it would not
be based on a cognitive process that enables a magnitude comparability of weighted
dimensional sensation differences from a common reference point.

Stevens' power exponents \ of subjective stimulus-magnitude dimensions are
only compatible with a Euclidean stimulus space, if dimensional power exponents
correspond to projection values of a space point in a hyperbolic sensation space. We
demonstrate this in more detail in the next mathematical section, where it is shown that
if the stimulus space is Euclidean then the exponential transfonnation of a hyperbolic
space of comparably weighted Fechner sensations defines a power-raised Euclidean
stimulus space. It defines a Finsler geometry for the space of Stevens' subjective
stimulus magnitudes with curvatures that depend on rotational parameters as
dimensional power exponents. Thereby, the Finsler space of subjective stimulus
magnitudes only has direction-dependent curvatures for rotated dimensions with respect
to the stimulus adaptation point as rotation centre and unit stimulus space point. Thus,
the controversy between Fechner's and Stevens' psychophysical laws (Stevens, 1961)
is resolved by taking comparable sensations as comparably weighted vectors in a
hyperbolic sensation space with the adaptation point as origin and by taking subjective
stimulus magnitudes as power-raised stimulus vectors ofEuclidean stimulus space (as
discussed in the next subsection the same holds reversely for flat sensation spaces and
non-Euclidean stimulus spaces). Thereby, Fechnerian and Stevens' psychophysics
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express the same in different geometries, because a hyperbolic Fechner sensation space
is defined by the logarithmic cransfonnation of a Euclidean stimulus space (and a flat
Fechner sensation space by the logarithmic transfonnation of a non-Eudidean stimulus
space), whereby also the weights of the comparably weighted sensation space define
the power exponents that equal twice the inverse of the adaptation point values in the
not-weighted Fechner space. For Stevens' fractionation method, applied to random
stimuli and constant reference stimuli, the assumption of individually identical power
exponents as common weights defined by identical adaptation points holds, due to
identical adaptation points from the exposure to the same set of stimuli with the same
target stimuli for the reference magnitudes. The adaptation to average of randomly
presented perceptual stimuli and a repeated stimulus or stimulus pair with assigned
metric magnitude as reference level(s) for the cognitive magnitude sensations will
induce the same adaptation point for all individuals. Hence, under these conditions
individually identical Stevens' power exponents arise from modality matching with
cognitive magnitude sensations in the magnitude scaling procedure of Stevens.
Generally Stevens used randomly selected stimuli from a fixed set with constant
reference stimuli of an assigned magnitude and also used the average of magnitude
judgments often persons for the scaling. Although rather constant power exponents are
then derived. it has been shown that selective stimulus presentations cause consistent
deviations from a constant Stevens' power exponent (Corso, 1971), while we earlier
discussed in section 2.1.2. the variability of intra-modal power exponents from varying
stimulus-intensity ranges.

If Stevens' power function s. = (x. /Jl)'- is the psychophysical function
for Euclidean stirrnli X./Jl, where Jl1is an arbitrary scale factor for the
ratio scale of stimulL1 then we look for a function! that satisfies

!(y, + g) = x./Jl, ,
!((y, + g)/cd = (x,/Il)', ,

where if such a function! exists, it may determine a rotation- and
translation geometry of y, if function! specifies a geometric mapping
onto a space with constanE curvature.

Function! = exp for exp[(y. + g)/o:l = (X/).1)1 is the only function that
fits (48b) , where ex = l!c, y~=1n(x,), and g = -In().1}. Jl.s shown in section
3.2.2., a Euclidean stirrnlu"-s spade is an exponential transformation of
a hyperbolic sensation space. Thereby, ! = exp only can transform a
hyperbolic sensation space to a Euclid.ean stirrnlus space, whereby the
Stevens' subjective stimulus magnitudes are defined by the exponential
transformation a weighted hyperbolic sensation space that indeed is
rotation- and translation-invariant. Function! as exponential function
is the inverse Fechner function for weighted sensations. Therefore, a
similar Euclidean co-ordinate system v , v and v as in (46a) applies
to weighted hyperbolic sensations t. y. hWit~ its h~rbolic sensation
dimensions 1 'y, and 1 ·Y. with as~totic Euclidean co-ordinates,
which by a r&atfon, as1deHned for (46b) , yields the hyperbolic
Pythagorean expression with 0:=1/" U

k
=l/1k and 0:

1
=1/1

1
' written as
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COSh[Yil"11]'CoSh[Yik"k1 = cosh[Yi'l) (49a)

This is the Pythagorean expression of weighted hyperbolic Fechner spaces
for a Euclidean stimulus space, where a hyperbolic space that derives
from a Euclidean space has a curvature of unity. If stimuli are Euclidean
and sensations hyperbolic, then the controversy between Fechner's and
Stevens' psychophysical function is resolved, provided that sensation
weights are individually identical. However, the validity of (49a) as a
rotationally invariant space requires a rather strong restriction on the
admissible power exponents T and '[ . It requires that the dimensional
power exponents are rotationll paralkters of some specific projected
space point (in the same way as a and a are dimensional projections
of the space adaptation point) that: for identical power exponents should
be the same point for all individuals. Nothing in Stevens 1 psychophysics
urges its power exponents to satisfy this rotation condition, while any
empirical evidence is lacking due to lack of relevant multidimensional
psychophysics. However, if Stevens' power function is not the psycho
physical function, but a Fechner-Helson-Bower based matching function
of perceptual sensations with cognitive sensations of magnitude then the
rotation condition is satisfied by ,=2/a, as derived in section 2.1.2.
If power exponents are projection parameters of a space point, then we
may translate vectors Toy. to point 1/,. We see that (49a) then yields
a hyperbolic Pythagorean dxpression that mathematically is identical to
to the weighted Fechner-Helson space of (47d2) , because for <; = 1 and
2/a = , it is also written as

cosh[y ., - 2] . cosh [y ., - 2J = cosh[y " - 2J (49b)
ill ikk i

But nothing in Stevens' psychophysics says that power expone.'lts should
satisfy the rotation condition as the dimensional parameters of a point.
However, if Stevens' power function derives from a Bower-based matching
function of perceptual sensations with cognitive sensations of magnitude
(as argued in chapter 2,1.2) then the rotation condition is satisfied by
the identity of (49b) and (47d2) as given by 1 = 2/a,

cross-modality matching of rrodalities k and I in the hyperbolic space of
intensity-comparable sensations yields equivalence

COSh[2(Yik/ak-I)) = cosh [2 (Yil/al-l) J (SOal)

and thus of Yi/ak = Yil/al or by the inverse of Fechner's function

(SOa3)

(SOa2)
or

2/a
(Xi/b

k
) k

a la
x/n=x kl
ik ... i1

A power exponent a la follows thus from cross-modality matching that is
based on Bower's ~ti~lus coding theory (Bower, 1971) and the Fechner
Helson psychophysical function.

According to Stevens' psychophysics in the direct or fractionation
scaling one relates a metric magnitude scale n

i
to stimuli x

ik
or XiI

by
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n., (SObl)

(SOcl)

This magnitude equivalence also yields a power function for cross
modality matching with the ratio l/'k as power exponent for

~ /1
(xi/f\.) '" (Xil!l.\) 1 k (50b2)

Stevens (1959, p. 207) verified matching power exponents to be the ratio
of separately detennined power exponents t and -: from independent
fractionation scaling of k and 1. 1 k

Let In(n,/b )= q,-a be a cognitive sensation of generalised magnitude
(as in s~ct~on 2:-L~. for metric scale n and its sensation scale as
cognitive magnitude q) for the matching of sensation mc:.>dality k with
cognitive magnitude sensation. Here b is the adaptation stimulus with
a =In(b ) as adaptation point for sen~ation modality k, while the
a~signeJ-, metric reference magnitude b defines a = lo(b ) as cognitive
reference magnitude. The matching of 8erceptual'iensatiBns y. with
sensations of cognitive magnitude q. with reference magnitu~ka means
by (SOa2) and (SOa3) that 1 q

a la
(x I") q k n.

ik "'k 1

and by (SObl)

(SOc2)

Since ~ usually is an arbitrary scale unit, we should actually express
(SOcl) ~d (SOc2) in terms of unit-invariant fraction scales with
respect to reference magnitude b and reference stimulus b as

n k

(SOc4)

(SOc3)

magnitudeand derive that
scaling depends

with T = a la
k q k

Provided that individuals have same adaptation points, power exponent
T of modality k is identical for each individual. Since adaptation to
p~rceptual stimuli occurs in relatively very short time the adaptation
points are likely not stable, but we define a = In (b lu ) for u IIJ. as
the just =ticeable level of perception. Howel.&er, a rri6rekor lessk

constant interval between b I~ and u IIJ. for each modality must hold,
where u I~ then depends on ~ IIJ. and &IIJ. equals not Fechner's absolute
just no€iceable level, becau~e magnit~de scaling yields a lOClre or less
constant power exponent, although the interval may be varying somewhat
for different individuals. It guarantees that adaptation points a are
identical for the average of individuals, provided that stimuli a~
randomly presented with permanent anchor stimuli of sets of stimuli with



In the Euclidean stimulus fraction plane of x,/b vectorial adaptation
points are located on the unit circle that cor}esponds the horocycle of
projected adaptation points on the parallel sensation vectors that share
the infinity of the stimulus origin in the hyperbolic sensation space.
In a stimulus fraction space with origin x./b = 0 the angle x between
some stimulus vector k and the quasi-stimdlus vector n for ~itive
magnitude, defined by n, /b = exp{q, - a ) for ccgnitive magnitude q. ,
equals angle x in the ltypJlrbolic Fe1chn£.- space of y, = In (x. ) and ~ ..

1 . 1= d· d be da J.k ,lk and'Ang e x lS rel'ated to lstance tween a ptatl0n polnts a a
of sens~l!ion parallels k and q on 19J.e horocycle of projected ada~tatiofI
points in the - to infinity In(x=O) - translated Fechner space. As is

In order to "W1derstand the nature of hyperbolic spaces we remark that
parallels in hyperbolic spaces only have one common infinity, in
contrast to Euclidean spaces with opposite infinities of parallels or
in contrast to elliptic spaces that have no parallels. Moreover,
hyperbolic triangles have sums of angles ~ 180 0 that determine also the
area of its triangles. Therefore, the curve of orthogonal projections
for the space adaptation point on two sensation parallels originating
from a cO!Tl'OOn infinity constitute a limiting triangle with 180 0 for the
sum of its angles and an infinite area, defined by its two 90° angles
between the projection horocyc!e and the sensation parallels that have
O"angles, but still are diverging from their conmon infinity onwards.

[20

similar or synmetrically varying intensity ranges. The relationship
between adaptation levels in (47d2) and power exponents in (49b) is
given by a 2 as, = 2/a , according to section 2.1.2

q k k

ok 2/a
k

, 'I = 2/a
l

, ,= 2/a (SacS)

The Bower space is a translated and weighted Fechner space, where the
Stevens space is only weighted by power parameters as proportional to
the inverse values of adaptation point parameters in the Fechner space.
The Stevens space is a weighted Fechner space and both have their origin
at the just noticeable point In (x/J-l) = 0 of an arbitrary ratio scale
value of stimulus intensity, while the sensation space representation of
the stimulus space origin is a negative infinity In (x=O) = -"". No other
infinity corresponds to the origin of the semi-positive stimulus space.
From that unique infinity all sensation vectors as logarithmic stimulus
vectors must originate (as if it concerns a hyperbolic sensation space
with a translated origin towards that infinity). Sensation vectors
originating from that corrmon negative infinity in a hyperbolic space are
hyperbolic parallels. As weighted sensation vectors they share that
infinity as circle centre of adaptation points that have equal values
of 2a /a = 2 on these weighted sensation parallels. Thus, it is a
so-cahe~ horocycle of equal-valued points with its centre at infinity,
whereby the sensation vectors become orthogonal to the horocycle of
adaptation points.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I illustrated in figure 21 below, the hyperbolic distance ~ is firstly
I defined by the so-called parallel angle (Bus~,1950a) fo~ hyperbolic
I parallels by tan (%Skn) = exp(-'\q)' Secondly the angle x

kq
is related to
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the parallel angle and thus to distance d by a prism that is formed by
three parallels (Gray, 1979, p.103-105) . \t%.e vectors a = OK and a = OQ

with origin 0 for In{x=l)= 0 become in the translate§: (towards §he
negative infinity of the stimulus space origin) and not-weighted Fechner
space the hyperbolic parallels k and q in figure 21, where parallel 0
contains the original Fechner space origin o.

k, q, and 0 hyperbolic parallels

Triangle KO'Q on horosphere

Triangle KOQ on hyperbolic Fechner plane

0, q, and Q, 0', and 0, and 8qfixed

k, K. a k' and dkq variable

K ..
'.

.. ,.'...'.. '.' .

Figure 21. Hyperbolic sensation parallels in the Fechner space

The pairs of parallels (q,o), (o,k) and (q,kj constitute the sides of
a prism and where the adaptation points K and Q on the parallels define
the horocycle segment KQ = d on the horosphere for the triangle KQO' .
The parallels q and k have ae&l5tation points Q and K on the horocycle and
point 0 on parallel 0 is the original origin In(n,=l) = 0 of the Fechner
sensation space. Hyperbolic triangle OQK has hypefbolic sides of lengths
OQ = a , OK = a and horocycle segment QK = d and angle OQK = x . For
fixed ~arallelt q and 0 and fixed point 0, l~Hgth OQ = a is corfs<f.ant
and an increased length OK = a , as the figure derronstra~es clearly,
corresponds with an enlargemenlt of length d of horocycle segment OK
and thus decreases the parallel angle g ~a: also increases angle x
between original hyperbolic vectors OQ Jilld OK in the Fechner space kq
with origin o. It follows by t = a la for modality k and cognitive
magnitude q that the power expl§nen~ t

k is the smaller the larger the
angle x between sensation vectors of magnitude and modality k is.

kg
We conclude that in the Stevens space different distances on sensation
vectors become canparable by standardised sensations scales that are
weighted by twice the inverse of the dimensional adaptation point
values in the Fechner space. The weighted Fechner-Helson space of (47d2)
and the translated Stevens space of (49b) , both with space adaptation
point as origin, then are identical spaces for comparable sensation
differences with respect to the adaptation point. In accordance with
Bower (1971), modality matching concerns the equivalence weighing to
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comparable sensation differences of nodalities with respect to their
adaptation points, as discussed in section 2.1. Therefore, the weighted
hyperbolic Fechner-Helson spaces, defined in (47d2) or in (49b) , are
hyperbolic Bower spaces of comparable sensations.

Stevens' power exponents must be regarded as matching parameters for matching of
perceptual sensations with cognitive magnitude sensations, due to following reasons:
1) The methodological reason

The power exponents of $teven" function are obtained by Stevens' fractionation
method, which asks for certain cognitive operations for the fraction comparisons.
It can be seen as a matching of sensations for a modality with cognitive magnitude
sensations as generalised sensations of lengths and distances. As already discussed
in section 2.1. and in the mathematical section here above, a power function of
stimuli for subjective stimulus magnitudes derives from the weighted Fechner
Helson psychophysical function, whereby dimensional sensations are matched with
cognitive magnitude sensations by weights that standardise distance a

k
= In(bkfu

k
)

between the dimensional adaptation and just noticeable level to distance
2.ln(b

k
fu

k
)/a

k
= 2 on magnitude-evaluated sensation dimensions and whereby the

dimensional sensation weight equals Stevens' power exponent T
k

= 2/a
k

.
2) The theoretical reasoll

If the stimulus and sensation spaces are rotation invariant spaces, then Stevens'
power exponents of the power-raised stimulus-fraction space for subjective stimulus
magnitudes must be rotational parameters as function of the projection values of the
space adaptation point on rotated Fechner space dimensions, as shown in the above
mathematical section. Stevens' psychophysics imply not that his power exponents
are rotational parameters of a meaningful space point, but Bower' (1971) stimulus
coding theory and the Fechner-Helson psychophysical function define that space
point as the adaptation point, wh ile Teghtsoonian' s relationship between range and
power exponent with the adaptation point as sensation range midpoint defines that
Stevens' power exponents equal twice the inverse of the value of dimensional
adaptation points. Constant power exponents for modalities can occur if adaptation
points are fixed, which is guaranteed by random presentation of stimuli from a fixed
stimulus set and a constant reference stimulus or stimulus pair with metric values
in Stevens' magnitude scaling. For fixed sets of stimuli that are randomly presented
the sensory adaptation level is measured by the distance between the just noticeable
sensation and the average sensation levels of the stimuli, which distance between
logarithmic stimulus values is independent of the scale unit of stimulus scale.

3) The empirical reasons.
If stimuli are not randomly presented in Stevens' method of magnitude scaling then
variations in power exponents are observed, where these variations are explained
by the dependence of power exponents on varying adaptation points (Corso, (971).
Moreover, if the power exponents of Stevens derive from the matching of
perceptual sensations with magnitude sensations then the power exponents are
defined by twice the inverse of the sensation distance between the adaptation and
just noticeable levels. Thereby, it follows that the power exponent must be the
larger the smaller the sensation distance between the adaptation and just noticeable
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levels for a modality is, while then also the sooner the sense organ for that modality
will become saturated by increased stimulus intensity and. thus, the stronger its
association with magnitude sensations will be. This prediction follows from the
analysis of weighted hyperbolic sensation spaces that represent a power-raised
Euclidean stimulus space, the hypothesised matching explanation of subjective
stimulus magnitude estimation, and the graphically shown analysis in the preceding
mathematical subsection. The values of Stevens' power exponents for different
modalities confinn these predictions. The hyperbolic sensation dimension of
modality k and the hyperbolic sensation dimension q for cognitive magnitude are
the more correlated the smaller the value of the adaptation level a

k
is on the Fechner

sensation dimension k. Since power exponent \ = 2/a , it is predicted that the
smaller the power parameter 'k is, the larger the angle be~ween stimulus vectors k
and quasi-stimulus vector for magnitude sensations q is. According to the overview
of the power exponent 'Lfor modalities from Stevens (1961), the value 'k varies
for modalities from 0.3""3 to 3.50. Binaural loudness of lOOO-cps tones and
brightness for dark-adapted eyes show the lowest power exponents of about 0.33.
For 60-cps electroshock intensities at wet finger tips the largest power exponent of
3.50 is reported. It says that the association between sensory sensations and
magnitude sensations should be the strongest for electroshock, while small
electroshock increases indeed are soon judged as too much. Loudness and
brightness would then be the least associated with magnitude sensation and they
indeed are only judged as too much at extremely high intensities. The power
exponent values thus fit the a priori expectations that are based on geometric
analysis and twice the inverse values of the adaptation levels as power exponents.
Additionally to the evidence from the analyses of Teghtsoonian, discussed in
section 2.1.2 .• it confirms that Stevens' power exponents are indeed matching
parameters of sensations with respect to sensations of cognitive magnitude.

All three arguments imply that Stevens' power function derives from Bower's
comparability weighing ofFechner-Helson sensation dimensions. Thus Stevens' claim
(Stevens, 1961) that Fechner's law has to be repealed is unjustified. The last reason
also indicates that the stimulus space is Euclidean and the sensation space hyperbolic,
because the geometrically predicted relationship between power exponents of
modalities and their association between magnitude sensations follows from the
diverging hyperbolic parallels that originate from the negative sensation infinity that
corresponds to zero stimulus intensities. This relationship follows not for flat sensation
spaces with corresponding non-Euclidean stimulus spaces, although the power-raised
spaces of the latter also correspond to weighted flat sensation spaces, as discussed in
the following subsection.

3.3.2. Stevens' psychophysics andflat sensation spaces
As alternative for the above subsection we investigate the nature of a rotation and
translation invariant geometry for a stimulus space derived from a sensation space with
a Minkowski r-metric, while the psychophysical power function of Stevens applies. It
is mathematically shown in the sequel of this section that if a) the sensation space is
Euclidean or Minkowskian, b) Stevens' power function transfonns stimulus intensities
10 subjective stimulus magnitudes, and c) rotation and translation invariance applies to
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the stimulus space, then the stimulus space can only be non-Euclidean (hyperbolic or
double-elliptic). The curvature of the non-Euclidean stimulus space can be positive,
specifying a double-elliptic stimulus space, or negative. specifying a hyperbolic
stimulus space, where the absolute curvature is again dependent on the r-metric for the
sensation space. Its curvature can't approach zero as approximately Euclidean space,
because the r-metric of the sensation space approaches not infinity (evaluations are not
detennined by the largest dimensional sensations). Stevens' power exponents are also
defined by the dimensional projection values of the space adaptation point, but
Minkowskian sensation spaces are not rotationally invariant. However, the adaptation
point is also a point in the rotation-invariant non-Euclidean stimulus space with the
threshold stimulus as unit point, wherein Stevens' power exponents are rotational
parameters that are defined by twice the inverse of the logarithmically transfonned
values of the dimensional adaptation points. Clearly the power-raised non~Euclidean

stimulus space of subjective stimulus magnitudes is not rotation-invariant, although
rotational power exponents transfonn a rotated, non~Euclidean stimulus space to its
subjective magnitude space.

Minkowskian (51a)
1
Iy.
1 '

f,) /a

£(x,) = y,, ,

Next we investigate the reversed problem: the nature of the geometry for
a stimulus space derived from Stevens' power function for a sensation
space with a Minkowski r-metric. Here we ask for sensations s, with a
Minkowski r-metric and s. = (y. + f,}/a as weighing and translktion of
y. in a Minkowskian spac~, tha~ a transformation function £ satisfies,

£ [(x, /).l)T J,

where, if possible, function £ (x./).l) should specify a rotation- and
translation-invariant stimulus g€ometry. A rotation invariant geometry
for x. requires that function £ maps a space with constant curvature on
a spa~e with zero curvature. Thus function £ corresponds to an inverse
function that transforms a Euclidean (or Minkowskian) sensation space to
a non-Euclidean stimulUS space. Non-Euclidean stimuli specify by the
Fechner-Helson function Minkowskian sensation spaces (section 3.2.1.).

. ,
Accordmgto (51a) £[(x,/f,l) 1 = (y, + IS) !a and £(x.) =y., whereby £ can
only be a logarithmic fanction witn IS= -In(f,l), ex =l1/T, ~ In(x,) = y,.
The logarithmic transformation of a non-Euclidean space define.§: a fl§t
space, as derived in section 3.2.1. We obtain for £ as logarithmic
funct:j,.on of non-Euclidean stimuli and Stevens' magnitude scaling that
In(x. -) '" T . y. = In(n.) = g, for metric measurements n .. It means the
matcBing of sen.§:ation y~ with ~ognitive magnitude sensatibn q, . But, due
to the arbitrary scale~actor of stimuli the equivalence deJ5ends on
arbitrary origins for y, and q. and thus constitutes no meaningful
matching equivalence, ultless w~ define Stevens' magnitude scaling for
stimulus fractions with respect to a distinctly defined unit point.

We define for the weighted Fechner-Helson function l ·In(x, /b) = T' (y, - a)
that is matched with cognitive magnitude sensations In (n, Jt, ) = (g. _la ).

l n l q



125

For a sensation space with a r-metric the matching yields equivalences
of weighted sensation distances that are corrparable to matching in the
hyperbolic sensation space. Although here the translated and weighted
space distances are defined by the r-metric of the sensation space,
the ratio of dimensional adaptation points a /a for the magnitude
matching with sensations remains the same. ~r~ssed in the terms of
non Euclidean stimulus fractions we write for the two dimensions of a
vector for power-raised stillTI.lli the corresp:mding sensations as

£[(X./b)TJ = T"ln(x,!b) (y,- a)/(a/a ) I
=d

, , , q
I,

£[(Xi/b
1

) 1] '1·ln{xil/b
1

) (Yn- all I (a/a
q

} I (SIb)

=d I
£ [(xi/b

k
) ok] 'k 10 (xi/b

k
) . (Y

ik
- ak)!(ak/a

q
} I

So we again have, for a = 2 as the reference sensation for magnitudes
n./b with b = exp(a ) =~(2), that c = 2/a ,: = 2/a and 1 = 2/a,
whereby the dimensi8nal power exponent~ bec~ defined b§- projections
of the adaptation point in the stimulus space as values 1 = 2/ln(b }.
Here, as in section 3.2.1., E(x)=ln(x) for stimuli with E6clidean of
Minkowskian sensations define stimulus spaces to be non-Euclidean.
Referring to terms that are defined by (42b) or (43b) and (43c) with
/. as double exponential function of non-Euclidean stimulus values, we
define the same asymptotic Euclidean co-ordinates for the space of not
power-raised stimuli, which space is then scaled by constant curvature
parameter 19 l=r/2 with r as the r-metric parameter of a Minkowskian
sensation splice. Again we define asymptotic Euclidean co-ordinates by
terms exp[±9 .x,/b] in case of a hyperbolic stimulus space or for an
elliptic stimulos space tangential Euclidean co-ordinates defined by
terms exp[±i.9 .x,], which after a 45° rotation (and a translation to
the centre in case of a sphere) define the usual co-ordinates that are
defined by hyperbolic cosine and sine terms or cosine and sine terms of
hyperbolic or elliptic spaces, as in (40a) or (44a) , for stimuli x, /~ or
stimulus fractions x,/b. l,
Power exponents are defined by rotational parameters, if power exponents
correspond to weighing parameters in the sensation space, which weights
are twice the inverse of the dimensional projection values of the
adaptation space point. It then also specifies a rotation-invariant,
non-Euclidean geometry for stimuli, while its rotational power exponent
parameters as projections of a corrmon space point are defined by (Slb2).
Since Minkowskian sensation spaces corresPJnd to n=~Euclideanstimulus
spaces, also weighted Minkowskian sensation spaces of (Slbl) corresPJnd
to non-Euclidean stimulus spaces, that become power-raised spaces with
power exponents as matching parameters. The spaces of power-raised
stimuli clearly are not rotation-invariant, because power exponents and
thus also its dimensional curvatures change under rotations. But the
underlying non-Euclidean stimulus space is rotationally invariant and
defines power exponents by projections of point lib = exp (-a) = exp (-2/T)
on the Euclidean co-ordinates of the non-Euclidean space of stimulus
fractions K, /b that is correspondingly rotated at the unit-valued
stimulus-ad3ptation point as translated rotation centre, whereby lib
is the dimensional stimulus threshold. It follows from the exponenti~l
co-ordinate terms of parameter l=ations on the asymptotic or tangential
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Euclidean co-ordinates k and 1 of the rotation~invariant, hyperbolic
surface with curvature ±Y = r/2, as defined by (38) or (43), that for
for h

k
and hI as dimensional rotation weights to dimension 9

h -exp[y{l/b -1)] + h1·exp[y(1/b1-lJ] = exp[r(2!T +1)/2] (Slcl)
or k k 9

h -ey;p[i·y(l!b -1)] + h -exp[i-y(l!b -1)] = exp[i-r(-2/1 -1)/2) (Slc2)
-k k 1 1 9

The power-raised stimulus terms must then be conceived as the result of
a cognitive operation in the sensation space, induced by the task of
magnitude scaling as matching with magnitude sensations, but power
raised. stimulus terms have no meaning for the objective stimulus space.

In conclusion Stevens' power function contradicts not Fechner's psychophysical
function, if the stimulus space is non-Euclidean (hyperbolic or double-elliptic) and the
sensation space flat (Minkowskian or Euclidean) or if the stimulus space Euclidean and
the sensation space hyperbolic. It specifies that Stevens' power exponents for stimulus
modalities are defined by rotational parameters of dimensional projection values of a
sensation space point. This condition is satisfied if Stevens' power exponents are
matching parameters for the matching of perceptual sensations with cognitive
sensations of magnitude, because then its power exponents equal twice the inverse
values of the dimensional projections of the space adaptation point in the sensation
space. The power exponents have no meaning for the stimulus orobjectively measured
object space. But, if the stimulus space is Euclidean then a rotation invariant sensation
space that represents the space of power-raised stimuli is a hyperbolic space with
dimensional weights that equal twice the inverse of dimensional adaptation point
values, while if that space of power-raised stimuli is represented by a weighted
Euclidean or Minkowskian sensation space then the rotation invariant stimulus space
must be non-Euclidean. Thus, Fechnerian psychophysics and implicit matching apply
and mean that subjective stimulus magnitudes are power-raised dimensions of
Euclidean or non-Euclidean stimulus spaces, but it only describes a stimulus space
representation ofcomparably weighted Fechner-Helson sensations, which follows from
the Fechnerian matching that underlies Stevens' power functions.

Since the space of subjective stimulus magnitudes is a dimensionally power
raised Euclidean or non-Euclidean stimulus fraction space, its space curvatures vary
with the dimensional directions. Thereby, its space points or distances become
direction-dependent values or distances in aFinsler space. Its Finsler geometry is much
more specified than in the Fechnerian scaling theory of Dzhafarov and Colonius (1999,
2001), who specified not the underlying geometry of the objective stimuli, nor
discussed the rotational requirement for the dimensional power exponents that define
the varying curvatures of subjective stimulus-magnitude space. However, in the
corresponding hyperbolic or Euclidean sensation spaces the corresponding vectorial
values are rotation-invariant and the corresponding distances rotation- and translation
invariant, whereby the analyses ofevaluated stimulus or object-attribute spaces become
much simpler by representations in correspondingly weighted sensation spaces.
Evaluated stimulus or object-attribute spaces yield multidimensional magnitude
judgments or dissimilarities as evaluative responses to compared sensations. Thus, the
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analyses of magnitude judgments or dissimilarities concern values or distances in
individual response spaces as metric transformations of flat (Euclidean or
Minkowskian) or hyperbolic Bower spaces of comparably weighted and translated
Fechner sensations. Metric response transformations of the hyperbolic or flat Bower
spaces determine correspondingly different geometries for response spaces. The
derived geometries for the response space then in turn determine geometrically
appropriate multidimensional analyses of individual dissimilarities or comparative
magnitude judgements. The analyses of comparative magnitude judgements as response
space differences with respect to the adaptation point as origin or the analysis of
(dis)similarities as response space distances in the derived geometries of individual
response spaces yield the representation of corresponding stimulus or object
configurations in a common Euclidean object space, either as stimulus or sensation
space by their inverse response transformation and also solves individual adaptation
points. It will be clear that a common Euclidean sensation space is a Fechner space that
becomes individually translated and weighted for its individual transformation to
response spaces, while the common Euclidean stimulus space corresponds to a common
hyperbolic Fechner space that in the same way is individually transformed to response
spaces. The topics of the next chapter concern the permissible alternatives for the
geometry of response spaces and geometrically appropriate dissimilarity analyses that
solve a common Euclidean object space and the individual transfonnation parameters
from the inverse transformations of solved, individual response spaces with one of the
permissible geometries.
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CHAPTER 4

THE GEOMETRIES AND ANALYSES OF RESPONSE SPACES

"<> so ging alien Naturforschern ein Licht auf. Sie
begriffen dass die Vernunft nUT dos einsieht, was sie
selbst /lach ihrem Entwiiifen hervorbn'ngt, doss sie mit
Prinzipien ihTer Urteile /Jach bestiindigen Gesetzen
vorangehen und die NatuT notigen miisse auf i!lre
Fragen zu antworten, nicht abeT sich van ihr allein
gleichsam am Leitbande giingeln lassen miisse; denn
sons! hiingen zujiillige, nach keinen vorher entworfenen
Plane gemachte Beobachtungen gar nicht in einem
/Jotwendigen Gesetze zusammen, welches dock die
Vemunft sucht und bedaif'.

Kant, l. (1787). Kritik deT reinen Vernunft. (Critique of
pure reason). The citation is from Kant's foreword in
his 2nd edition (copied from p. 26 of the annotated 10'"
Gennan reprint by Valentiner, Th. (1913). Verlag Felix
Meiner, Leipzig.)
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4.1. Geometric relationships between sensation and response spaces

It is generally assumed that ordered objects dissimilarities can be represented by rank
orders of object distances that are common to all individuals. Dissimilarity inequalities
are viewed as order evaluations of compared distances between pairs of objects in a
common Euclidean (or Minkowskian) object space. The usual analyses represent rank
ordered (dis)similarities as Euclidean distances between objects that satisfy in some
optimal way that rank order by multidimensional scaling (MDS) techniques originated
by Shepard (1962a,b) and for the first time solved by Kruskal (I 964a,b). In more
general models for (dis)similarity analyses, it is assumed that individuals evaluate that
common object space by individually weighted dimensions. If individuals weigh
dimensions of the common reference space of objects differently then the
{dis)similarities between objects become represented by individually weighted
dimensional distances between objects, which is analysed by the so-called mOSCAL
procedure (Carroll and Chang, 1972). The reader is referred to overviews by Shepard
et al. (1972), Roskam (1968), Krzanowski, (1988); Cox and Cox (1994), and Borg and
Groenen (1997), wherein also the mathematical properties of the different solution
procedures for these and related models and their psychological interpretations are
discussed. Modem probabilistic MDS (Ashby and Perrin, 1988; Ashby, 1992a) solves
similarities as overlap of differently located and shaped object distributions. However,
in all these analyses the object configuration (as deterministic points or as centres of
object distributions) is either identical for each individual or only modified by
individually different dimension weights. However, dissimilarities are to be represented
by distances in individually different response spaces. In the sequel we demonstrate
that individual response spaces are not infinite spaces and contain not identical nor only
individually weighted object configurations, but are open projection spaces from
individually different perspectivesof individually weighted sensation spaces, where the
distance metric of open response spaces is either Eudidean, or hyperbolic, or elliptic.

4.1.1. Dissimilarities as individual response space distances
In chapter 2 we identified judgmental responses as hyperbolic tangent transformations
of sensation differences to individual adaptation levels. In this chapter we also consider
the arctangent function as the unique alternative for the transformation of sensations
to responses, because the multidimensional generalisation of sensation space
transformations to individual response spaces shows that no other response function
than these two functions can specify a response space with transitivity of ordered space
distances. In chapter 3 it was shown that spaces of intensity-comparable sensations are
individually translated and weighted spaces. Therefore, dissimilarities of stimuli are
response distances in spaces that should be described by hyperbolic tangent or
arctangent transformations of the sensation space with individually different translation
and translation-dependent weight parameters. Any multidimensional analysis of
(dis)similarity data has to take this into account. Dissimilarities as distances between
responses to pairs of intensity-comparable sensations are then distances between
hyperbolic tangent or arctangent transformations of individually different-weighted,
hyperbolic or flat spaces of intensity-comparable sensations. Existing MDS-analyses
assume that transitive dissimilarities correspond to object distances in Euclidean or
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Minkowskian spaces and that individuals have an identical object configuration after
weighing (eventually after weighing by individual dimension weights). Our analysis of
dissimilarities as response space distances questions these assumptions,

Let d denote a distance function,£ a transformation function, and r
i

a
response to sensation s" then it is mostly assumed that,

d[r"r,] = £{d(s"s,)}. (52a)
1 J 1 J

function £ is some order preserving function for perceived to judged
dissimilarity, while d and £ are identical for individuals. In carroll
and Chaog (1970) the distance function is individualised by individual
weights for comnon object dimensions, whereby we have for individual J

d [r"r,] = f{dJ(S"s,)}. (52b)
J 1 ] 1 J

In the general recognition theory of (dis1similarity the sensation
distance can become also individualised if distributions of sensation
points are determined by individually different covariance matrices
(Ashby and Perrin, 1988), such that

d}ri,r
j

] = -In{PJ{si,Sj)}, (52c)

where P (s" s,) is the similarity probability of confusing i and j by
indivicJiklJJ due to distributions of stimuli j and i with carmon mean
location points and individual perception variances, It will be noted
for probabilistic sensations that confusion probability P, depends on
on other stimuli and that discrimination ooundaries becomJ dependent
on the selection of other stimuli than stimuli i and j, An increase of
the distance between centres of the distribution as well as a decrease
in their variances will decrease the confusion of stimuli, TIle general
recognition theory of (dis1 similarity, therefore, can explain some
individual and context dependencies as well as some violations of the
triangular inequality of response distances, but the centres of i and
j are not assumed to be individually different. Moreover, in all these
models no geometric distinction is made between individual sensation
or response spaces or the conmon stimulus space. Since in the existing
analysis models the reference space is assumed to be a Euclidean or
Minkowskian space with a comnon object configuration, this corrmon space
must be the Euclidean stimulus space or the flat sensation space.
But (dislsimilarities are response distances that are individually
different distances by their adaptation-point dependency of monotone
response functions of individually weighted sensations from a common
stimulus space. It can cause that response distances have not the same
rank order as individually weighted sensation distances. Individually
different sensation transformations of common stimuli x, and x, are
defined by sensation function f as individually weightJd sens~tion
distances J

d(s "sJ,l =d[f (x,l,! (x,)],
Jl] J1J]

Response function f is also individually different, due to different
projection perspective of the response function for the individual
projection transformation of sensations to responses, Dissimilarity are
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to be represented by distances between monotonic transfonned proj ections
of individually weighted sensations from individually different origins,
whereby same individual sensation distances can become individually
different response distances. So we have in contrast to existing models

(52d2)

(52dl)
where

d[rJi,rJj ] = d[fJ{sJi) '£J(sJj)]'

£ {d[(s "sJo)]} Fd[rJ"r
J

.],
J J1J 1)

For individual J the sensation function f defines differently located
adaptation points a in the Fechner sensa'tion space, while response
fWlction £ of sens'&tions depends on individual weights (2/a ) of
sensation ihmensions and on individual projection origins (aJ"f, The.
important difference with existing models is not that f andJf are
monotone transformations, but that the inequality of (5~d2) ma~ cause
that the rank order of pairs d (s ., s ,) and pairs d[r "r ,l become
different and that (52dl) also ~? s~~cify different ~inkJ6rders for
pairs of dlrJi,r

Jj
] and d[rIi,r

Ij
] for individuals J and I.

Response space distances are distances between points in projective transformed spaces
of individually weighted, intensity-comparable sensation spaces with individual
adaptation points as projection origin. The rank order of response space distances need
not to be the same for corresponding distances in individually weighted sensation
spaces, as discussed in section 2.1.3. for a single scale. Only response and weighted
sensation distances from the adaptation point are monotonically related for each
individual, but dissimilarities between objects are not represented by distances to an
adaptation point. It means that an analysis that represents transitive dissimilarity rank
orders as ordered distances in an individually weighted Eudidean space, as performed
by individual difference MDS-analysis (Carroll and Chang, 1970, 1972), may not
correctly recover the object configuration, even if the sensation space is Euclidean.
However, if all objects are in the proximity of individual adaptation points, then
response and individually weighted sensation space distances tend to approximate the
same rank order, whereby individual difference MDS-analysis of dissimilarities could
almost correctly recover the object configuration in a common Euclidean sensation
space, if the sensation space is not hyperbolic. It also means that analyses of aggregated
dissimilarities of individuals must run into inconsistencies, unless individuals have
identical adaptation points, but as shown in sections 4.2. and 4.3. then the solved
Euclidean space is a common, open-Euclidean response space.

4.1.2. Projective geometries ofindividual response spaces
In figure 22 below we represent the iso-distant response contours in an individually
scaled, Euclidean stimulus-fraction plane. In this plane of stimulus fractions the
dimensional adaptation points band b define the unit space point and the zero origin
of the individual sensation and [~esponJ~ spaces. The presented asymmetric contours
derive from concentric iso-distant circles with equal distances in the individual
response spaces. The asymmetry of iso-distant response contours in the Euclidean
stimulus plane are caused by the exponential transformation of the hyperbolic sensation
space. On hyperbolic surfaces of comparable sensations the equidistant iso-distant
response contours are also concentriccircles with individually located adaptation points
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as centre, but the sensation distances between its equidistant iso-distant response circles
are different and the larger the more eccentric they are.
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3 adaptation poin
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Figure 22. Iso-distant response contours in a stimulusfraction plane/or an individual.

In order to avoid the asymmetry of iso-distant response contours and their
representations on hyperbolic sensation surfaces. we show in figure 23 the iso-distant
response contours of two individuals in a Euclidean sensation plane.
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Figure 23. Two sets ofequidistant iso-distant response circles in a Fechner plane.
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Figure 23 only is an improper presentation if the sensation space is hyperbolic, because
then it is a somewhat distorted representation (in a similar way as the projection of half
a globe on a plane distorts the globe distances). The ellipses of the iso-distant response
contours become concentric circles with expanding distances between its circles in
individually weighted and translated Euclidean sensation spaces, where the individual
translations are to the adaptation points as centres of the individual, iso-distantresponse
contours that in their dimensionally weighted sensation spaces are circles. Without the
individual translations to the adaptation points and corresponding dimensional weights
these iso-distant response contours, as plotted in figure 23, are differently oriented
ellipses with differently located adaptation points as ellipse centres in a common
Euclidean object plane of Fechner sensations. Figure 23 illustrates how the distances
between the weighted iso-distant response circles for each individual become
increasingly larger the more remote the weighted circular contours are from the
individual adaptation points as centres in the Fechnerplane. Each individual differently
transfonns object distances in the sensation plane to response space distances, due to
their different adaptation point locations circles and different dimensional weights that
equal twice the inverse values of the dimensional adaptation points. The differences
between response distances to the adaptation point for two identical objects of
individual I and J are dependent on the locations of their adaptation points and their
inversely location-dependent dimension weights. If two relatively close objects are on
opposite locations of the individual adaptation point then such objects are experienced
as familiar and rather dissimilar by the individual. If for another individual the same
objects are both located far remote from the individual adaptation point in the same
direction then that other individual judges the objects as unfamiliar and rather similar.
For example, Europeans find it difficult to see differences between the outlook of
Asians in contrast to differences between Europeans, but the reverse holds for Asians
with regard to Europeans. By the individual weighing of the Euclidean sensation
dimension the iso-distant response contours become circles with respect to their
adaptation point as centre. However, since equal distances between iso-distant response
circles represent different sensation distances, also the MDS-analysis of
(dis)similarities by the so-called IDIOSCAL method (Carroll and Chang, 1972) that
individually weighs dimensions may yield no correct object configuration in the
corresponding common Euclidean reference space. The assumption of the IDIOSCAL
solution that the rank orders of response distances and weighted sensation distances are
equal is incorrect, as in figure 23 shown by the different distances between the ellipses
of the iso-distant response circles with equal circle distances in the response space.
Moreover, if (dis)similarity rank orders between objects for different individuals are
aggregated and analysed by multidimensional scaling methods the solutions must be
quite unsatisfactory, because existing MDS-analysis methods don't allow individuals
to have locally different transfonnations of the common object space.

The iso-distant response circles in the individually weighted sensation space of
figure 23 could be seen as similar to radial projections of latitudes on half a globe. The
half globe would then represent an individual response surface with the adaptation
points as polar centre for the projections on a Euclidean sensation plane. This analogy
for a Euclidean sensation plane as radial projection of a hemispherical response
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surface, is useful and not only because of the familiarity to us. It asks a response space
to be generated from a Euclidean or Minkowskian sensation space by the arctangent
(inverse tangent as inverse radial projection) function of its sensations in flat space,
which is investigated in the sequel. The projection of a straight line on a half circle by
the arctangent function is shown in figure 24

A p

tan (x )=tan rAP'] =AP

arclan[APj=AP'

Figure 24. Arctangent transjonnation Dj line points to points on a halfcircle.

By the arctangent transfonnation ofone sensation dimension to a response dimension,
the responses become points on a half circle (the intersections of the circle and the
radial projection lines). A revolution of this half circle and of the tangential sensation
dimension at the polar point then would define a hemisphere and a Euclidean plane
with a hemispherical pole as conunon point. What this analogy with a hemisphere
illustrates is the individual dependence of the response representations on the location
of adaptation point A in the Euclidean sensation plane. If we compare such
hemispheres for differently located adaptation points as different polar points then each
individual represents the same Euclidean sensation plane by a different response
hemisphere. Latitude circles on the respectively different response hemispheres are to
be seen as iso-distant response circles for each individual. The radial projection of the
latitude circles fortwo individual response hemispheres would correspond with the two
sets of iso-distant circles on the individually weighted sensation plane. However, notice
also that equal distances between these circles on the response hemispheres are not
equal distances between the iso-distant circles on the weighted sensation plane. Similar
to the hyperbolic tangent transfonnation of sensations, equal distances between
response space circles (as latitudes) become increasingly larger distances between
corresponding circles in the weighted sensation space the more eccentric the response
circles are. The personal response equator of an individual would represent the limiting
response space boundary for objects on infinite distances from the adaptation point in
the sensation plane. Circular response distances on that hemispherical response equator
represent the direction differences of infinities in the sensation plane. Relative large
sensation distances for object points far away from the centre as adaptation point, but
in the same direction, would become almost zero distances between corresponding
projection points close to a point on the equator of the response hemisphere. Finally,
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the analogy illustrates that the response space is a circular open space, where the open
hemispherical space describes a so-called, single-elliptic geometry. This analogy of the
radial projection of a hemisphere to a Euclidean plane would imply that the common
Euclidean object space is a Fechnerian sensation space. According to section 3.2.1, the
sensation space is flat (Euclidean or Minkowskian), if the stimulus space is non
Euclidean. If the arctangent function could serve as a transformation function of a flat
sensation space to a response space, then the response space could indeed be a single
elliptic space that would correspond to a spherical stimulus space that geometrically is
called a double-elliptic space. A conformal distance metric for responses and stimuli
seems a prerequisite, otherwise responses can hardly be rather adequate, behavioural
actions in the physical world.

The arctangent function differs from the originally derived hyperbolic tangent
function (section 2.2) for transformations of sensations to responses, but it is a similar
sigmoid transformation. The above analogy is also helpful for the understanding of how
a hyperbolic or a flat (Minkowskian or Euclidean) sensation space is transformed by
the hyperbolic tangent function to response spaces with a different geometry. It will not
be surprising that we have another geometric relationship between an open response
space and the infinite sensation space by the hyperbolic tangent transformation of
hyperbolic sensation spaces to open response spaces. This is easily understood by the
stereographic projection of a hyperbolic curve as the geometric equivalent of the
hyperbolic tangent function (Courant, 1960; Dubrovin eta!., 1992). How the hyperbolic
tangent of hyperbolic curve points does similar things as the arctangent of straight line
points is illustrated in figure 25.
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Figl~re 25. The h}perbolic tangent transformation ofa hyperbolic curve.

As discussed in the sequel, the hyperbolic tangent transformation of an infinite
sensation space is a so-caIled hyperbolic involution of the infinite Euclidean or
hyperbolic stimulus space to an open response space that has the same distance metric
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as the stimulus space. Thus, also here the open response geometry has a distance metric
that is confonnal to the distance metric of the corresponding stimulus space geometry,
where the hyperbolic tangent transfonnation of a hyperbolic or flat sensation space
yields indeed respectively an open-Euclidean or open-hyperbolic response space. Due
to the similarity between the arctangent and hyperbolic tangent functions there are close
similarities between response hemispheres and the other response spaces with distance
metrics that are conformal to their stimulus spaces. Comparison of figures 24 and 25
shows that what the arctangent function (inverse radial projection) does for points on
an infinite Euclidean space, is also done by the hyperbolic tangent function
(stereographic projection from the opposite located pole of the corresponding circle)
for points on an infinite hyperbolic surface. The hyperbolic tangent function transfonns
infinite hyperbolic curves (negative unit curvature described by vl - ul = -I for
Euclidean co-ordinates u and v) to a limited line segment by its stereographic projection
on its co-ordinate v at unit distance from the curve intersection point with the other
orthogonal co-ordinate u that intersects the hyperbolic curve at its origin. The origin of
the Euclidean co-ordinates u and v also is the origin the projected line segment within
the corresponding circle for vl + u2 = 1 with a radius of unity. The tangential
asymptotes for the hyperbolic curve infinities meet in the opposite pole of the unit
circle, which circle thus defines the limits of the projection line segment. How the
arctangent function defines a length of a hemispherical line segment was illustrated by
figure 24. That figure gives a finite representation on a half circle of an infinite line,
where figure 25 represents an infinite hyperbolic curve and the hyperbolic tangent
function of that infinite hyperbolic curve as a finite line segment (stereographic
projection). From the revolution (rotation around the centre) of the line segment and
corresponding revolution of the hyperbolic curve in figure 25, we obtain a circularly
open flat disc as two-dimensional response space for a two dimensional hyperbolic
sensation surface. This response space is flat and rotation- and translation-invariant
and, thus, has indeed a Euclidean distance metric, confonnal to the Euclidean stimulus
space that corresponds to a hyperbolic sensation space.

Its geometry is comparable to the alternative geometry of hemispherical
response spaces that derive from the arClangent transfonnation of a Euclidean or
Minkowskian sensation space. Each function -on the one hand the hyperbolic tangent
(stereographic projection of hyperbolic curves) and on the other hand the arctangent
(inverse radial projection of straight lines) transforms infinite spaces into circularopen
spaces. Both projections represent the finite response transfonnation of an infinite
sensation space. Both projections also have comparable properties such as that circles
on the curved surfaces with the surface origin as projection centre remain circles
respectively in theirradial or stereographic projections on a Euclidean plane, while also
only lines through the origin on the curved surfaces remain projection lines on a
Euclidean plane. The important difference between the response spaces from the
arctangent transformation of flat sensation spaces and from hyperbolic tangent
transfonnation of hyperbolic sensation spaces is that the open response space itself is
single-elliptic in the fonner case and open-Euclidean in the latter case. It also must be
noticed that the stereographic projection of the hyperbolic curve ul _ v2 = I in figure 25
is defined as curve projections from origin u = -I at opposite projection centre u = I on
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Axes k and I are asymptotic

to hyperbolic curve through sand 0

tanh (% x) = tanh [% ( 0 S)] = r 0'

tan (% x) = tan [Y:. ( 0 P )] = r 0'
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to dimension v within the open interval of v = 1 and v = -1. This differs from the
arctangem function as inverse radial projection of a straight line on half circles, where
it concerns a projection from the centre of circle v2+ u2= I. The corresponding angle
for a hyperbolic tangent in figure 25 is half the angle of the tangential projection of the
half circle in figure 24. If a circle would be stereographically projected from the
opposite polar centre u = - I then it would project the whole circle onto a Euclidean
dimension v through the circle centre. Thus a stereographic projection of points p on
the whole circle describes by tan(Y2p) an infinite dimension v, while the stereographic
projection of points p on the upper half circle describes by tan(Y2p) = v only a line
segment _I/m :;; v :;; Ym and on translated dimension v through the circle centre a line
segment -I :;; v :;; I, where its segment is limited by the unit circle. Thus the
stereographic projections of points p on a half circle by tan(I/2p) and point s on an
infinite hyperbolic curve by tanh(Y2s) concern both projections onto the same central
line segment -1 :;; v:;; I. This geometric identity is illustrated in figure 26.
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Figure 26. Identity ofstereographic projections ofa halfcircle and hyperbolic curve.

Here the projection of a half circle with unit radius is not radial (from the centre), but
stereographic (from the anti-polar point). It is the stereographic projection that would
extent the projection of a full circle to infmity on both sides of the projection line, as
described by the tangent of half the angles of points on a circle. In figure 26 the line
segment o'-r is a stereographic projection of hyperbolic distance (o-s) as well as of
circular (elliptic) distance (o-p). The half circle is projected on an open line segment
between plus and minus unity. The revolution of the half circle in figure 26 yields a
hemisphere and the corresponding rotation of the line segment yields an open circular
disc that is identical to the open-Euclidean disc from the rotated line segment of
stereographic projected hyperbolic curve in figure 25. This disc is both a stereographic



140

projection of a hemisphere and stereographic projection of a hyperbolic surface, where
the last altemative is the so-called Poincare-model for a hyperbolic surface. More
fonnally we denote: -1 .s: rlPoin::;; t
for open-Euclidean responses r = tanh(Y2S) for hyperbolic sensations s (figure 25) and

Ym s: 'r·rIHemi.s: Ynr
for hemispherical (single-elliptic) response dimension r with radius p=I/!y, where
tan(q·r) :;: s for sensation s in a Euclidean or Minkowskian space. We further define

",IHyp
for a sensation s in a hyperbolic space, where the constant curvature ~ is the scale factor
for correction to unit (pseudo)-radius, while for Euclidean sensations s we define

slEucl
Then, according the projection of figure 24, we have:

tan[~(rIHemi)J = slEucl (radial projection)
and according the projection of figure 26 also

tan[Y~(rIHemi)] = r!Poin (stereographic projection)
while according the projection of figure 25

tanh[ 1/~(sIHyp)] = rlPoin (stereographic projection)
It summarises the relationships between \>rIHemi, r[Poin, r;'s IHyp and s!Eud. Due to
the undetennined curvature or space scale parameter r;, the twO relations for rl Poin in
the last two expressions as well as the two tangent transfonnations of rl Hemi in the
first two expressions might give rise to confusion in analyses and interpretations.

In figure 26 the stereographic projection of the whole circle (from the polar
point onto the central line orthogonal to the polar axis) gives an infinite straight line as
the representation a circle and by its revolution an infinite flat plane that represents a
complete sphere. This stereographic projectionof a complete sphere that has a so-called
double-elliptic geometry (weighted spherical dimensions) defines an infinite plane,
while the radial projection of a hemisphere that has a so-called single"elliptic geometry
(weighted hemispherical dimensions) also defines an infinite plane. The arctangent
functions of half the vectors from that origin in the infinite plane define the
representation of that plane on complete spheres and tangent functions of these vectors
themselves define the representation of that same plane on a hemisphere. On the
hemisphere the infinite vector values become the limit circle of unit radius of the
hemisphere, while infinite vector values become a single point on the complete sphere
as the opposite pole of the pole that corresponds with the plane origin. Responses to
very intense sensations for different modalities are very different, which implies that
responses to almost infinite sensation intensities for different dimensions are not to be
represented by the same response point as opposite pole point of the polar adaptation
point in a response space with a double-elliptic geometry. Therefore, if the arctangent
function is a pennissible response function for Euclidean or Minkowskian sensations,
it can only define a single-elliptic response geometry with radius 21rfor ras Minkowski
r-metric of the sensation space. However, the tangent function of responses as inversely
radial projection of single-elliptic response spaces only applies to unit radius spaces,
which by curvature correction r;, = r/2 can only detennine by tan(r;,r.) = s. a Eudidean
sensation space, even if it the response space would be generated frok a Minkowskian
sensation space with r f::. 2. We remind that the circular projection disc is a
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representation of the opposite hemispheres as well as a representation of a hyperbolic
surface. The stereographic projection of a complete sphere represents one of its
hemispheres by the interior of a circular disc and the other hemisphere by a infinite
plane without that circular disc. Since the circular disc is also the stereographic
projection of a hyperbolic surface as the so-called Poiocare model for a hyperbolic
surface, while the plane without the circular disc is a polar projection of the mirror
hemisphere, the projection plane with an 'empty' circular disc can equivalently represent
a hyperbolic surface. The latter representation is the so-called Klein-model for
hyperbolic surfaces. but we only use Poincare's model for discussion in section 4.2.2.

4.2. The involution geometries of open response spaces

Whether a single-elliptic geometry for response spaces may be conceived, depends on
the assumption of the geometry for the sensation space and the arctangent function as
a valid alternative for the response function. If the arctangent function is a valid
alternative then it would be a consistent response function for a single-elliptic response
spac, provided that the sensation space is flat (Euc1idean or Minkowskian) and derived
by the Fechner-Helson function from a double-elliptic stimulus space. It yields a
conformal distance metric as elliptic distances in stimulus and response spaces. The
originally derived hyperbolic tangent function, as the response function for ahyperbolic
sensation space that is generated from a Euclidean stimulus space. may be seen as the
more valid combination. It not only yields a consistent response geometry with a
conformal Euc1idean distance metric for stimulus and response spaces, but the
hyperbolic tangent function also is based on the experimentally confirmed logistic
function for stimulus discrimination. If the arctangent function is a valid alternative
response function then we would in theory have four combinations from two possible
response functions (hyperbolic tangent or arctangent function) and two possible
geometries of sensation spaces (flat or hyperbolic). However, the possibility of the
arctangent as the response function for hyperbolic sensations specifies no consistent
distance metric for response and stimulus spaces. Therefore, this combination is not
further considered. but the possibility of the hyperbolic tangent as response function
for Euclidean or Minkowskian sensations will be considered further in section 4.2.2,
because it yields a consistent geometric projectivity of a hyperbolic stimulus space to
an open response space that also has a hyperbolic distance metric. Its two-dimensional
response geometry is described by the interior of a circularly open and hyperbolically
curved disc (instead of an open Poincare disc with a Euc1idean metric). We first
investigate whether the arctangent can be indeed a valid response function for
Euclidean or Minkowskian sensation spaces. The next section shows that the answer
to that question will be positive. Therefore, we have three permissible combinations for
two response functions and two sensation geometries that yield three alternative
geometries for response spaces with distance metrics that are confonnal to the distance
metric of the stimulus space with a Euclidean. or double-elliptic or hyperbolic
geometry. In the sequel we discuss these three response geometries and describe
techniques for appropriate multidimensional analysis of (dis)similarities as distances
in one of the three alternative response geometries.
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4.2.1. The possibility o/single-elliptic response spaces
In chapter 3 we proved that sensation space can be a flat space (Euclidean or
Minkowskian), if deriving from a non-Euclidean stimulus geometry by the Fechner
Helson psychophysical function, while a flat space of comparable sensations inversely
defines the power-raised, non-Euclidean stimulus fraction space for the subjective
stimulus magnitudes of Stevens' magnitude scaling. Only if the arctangent function is
a theoretically and empirically acceptable response function for Euclidean or
Minkowskian sensations, then a single-elliptic response geometry can be an alternative
for the hyperbolic tangent as response function. Referring to the next mathematical
section, the arctangent function is a linear transformation (multiplication by 1t and
subtraction of Ym) of the Cauchy probability function, similar to the linear relationship
between the hyperbolic tangent function and the logistic probability function
(multiplication by 2 and subtraction of 1, see subsection 2.2.1.). Therefore, if the
response probability function can be the Cauchy probability function then -analogously
to the logistic probability function for discrimination responses - it could justify the
arctangent function for the transformation of a flat sensation space to single-elliptic
response spaces (scaled to values between -Ym and Ym). So the question becomes the
justification of the cumulative Cauchy distribution as a response probability function.

In Thurstone's model for comparative judgement (Thurstone, 1959; reprints of
Thurstone, 1927a and 1927b) the discrimination probability function is the cumulative
normal probability function of the difference of two normal-distributed scale values of
objects. Thurstone took these scale values to be logarithmic stimulus values as
sensation scale values. Sincedifference distributions of two independent (or constantly
correlated) and normal-distributed variables (with equal variances in case V of
Thurstone's model) have a normal distribution, Thurstone arrived at the cumulative
normal distribution as the response probability function for the judgement of sensation
differences. In terms ofThurstone's model our response function would become based
on the cumulative normal distribution for the difference of the logarithmic transformed
stimulus and adaptation-level values, since in Thurstone's model it is supposed that the
stimulus values have log-normal distributions. In contrast to the difference, the ratio of
two independent variables with normal distributions N(O,I) defines a Cauchy
distribution (Kendall and Stuart, 1952). For logarithmic stimulus values the assumption
of N(O, I) distributions is reasonable, because random ratio-scale variables generally
show constant coefficients of variation that are stabilised to uniform variances by the
logarithmic transformation of the Fechnerian psychophysics. If we assume the same,
but in contrast to Thurstone's model, assume that the response probability function is
based on a ratio of logarithmic stimulus fractions (instead of the logarithm of the ratio
of stimuli as the sensation difference ofThurstone's model), then indeed we obtain the
cumulative Cauchy distribution as a possible response probability function, as shown
in the mathematical section below. Since the Cauchy probability function can be an
alternative for the response probability function, the arctangent function can be a
theoretically justified alternative for the bipolar response function.

In figure 27 below we plot the Cauchy probability function and the logistic
probability function (Luce's response probabilities from which the hyperbolic tangent
function is derived in section 2.2. L) as well as the normal probability function
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(Thurstone's response probabilities), As mentioned in chapter 2, due to the similarity
between the nonnal and logistic probabilities one could as well replace the normal by
the logistic probability function for discrimination response data (Luce and Galanter..
1963a, p. 221.). In the plot of these probability functions the common reference
sensation is at probability 0.50, while the sensations are scaled in such a way that their
probability functions have common anchor points at probabilities 0.20 and 0.80 (by
specifying the free variance parameter in the three symmetric probability functions).
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Figure 27. The Cauchy, normal, and logistic probability functions

Figure 27 demonstrates that the Cauchy probability function shows only marked
differences from the hardly differing, normal and logistic probability functions for high
or low probabilities. Apart from the fact that the error in experimental data of
discrimination probabilities is often larger than the differences between these
probability functions, extreme discrimination probabilities are seldom reported and
when reported they refer by definition to the rare occasions wherein rather different
stimuli are judged to be the same. Extreme discrimination probabilities are thus
unreliably determined, due to their relatively large error variance. Thus whether a
Cauchy probability function is a suitable alternative for the logistic or normal
probability function as response probability function is difficult to assess by
experimental tests. In the literature we only found one set of ten discrimination
probabilities between 0.975 and 0.025 that are reliably assessed, since based on 105
observations per scale interval (for loudness discrimination, Luce and Galanter. 1963a,
p. 196, fig. I). These data seem to fit the Cauchy probability function less well than the
normal or logistic probability function, but it concerns unpublished data that only are
graphically displayed, whereby we don't know whether its fit by the Cauchy probability
function is significantly worse.
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The Cauchy distribution function of random variable z is written as
(Wilks, 1962, p. 130 and pp. 255-256)

2
/(z) = l/{n[l + {(z - p)/g} J}. (53a)

Function !(x.) is a distribution function for discrimination responses
to stimuli x~ lu around adaptation level b/u as log-normal distributed
random variaIsle with mean b/u and u/]..l as perception threshold for a
stimulus dimension x, if z in (53a) becomes the ratio of equal normal
distributed variables (Kendall and Stuart, 1952; p. 268, 273). Hence we
take z = In (x.lul jln(b!u), while the variance stabilising effect of the
logarithm of 1:atio scales allows scaling to q = "'" and by definition
]..I = In(bjuljln(bju} = 1. The Cauchy distribution is then rewritten as

f{x,} = l/{rr[l + (21n{x,!u)!ln{b/u) - 2)2J}. (S3b), ,
Integration of f{x.} gives the arctangent (inverse tangent) function.
So instead of the chnparably transformed logistic probabilities this is
an alternative response function for corresponding deterministic values
of stirm.tli and individual adaptation levels, which by subtraction of
;':r: as constant of integration and rm.tltiplication by n, writes as

r. =arctan{2ln(x,/u)/ln(b/u) - 2}. (S3c), ,
By the Fechner-Helson function In(x,/b) y.- a, we obtain, ,

2ln(x,/u) 2In(x.lb)

-'-n~lb-/~~-)- - 2 = cl-n~lb~/~~-)- 2(y. - alia = s,, , (S3d)

(53e)
i. s l; I
i·s '

i J

arctan(s,) = (1/2) -In,r.,

with a = In(b/u). If u/J.l would be an arbitrary parameter then we would
have arbitrary parameter a, but for comparable sensations we define
a = In(b/u) for u/J.l = 1 as the just noticeable stimulus level and b/J.l
stimulus adaptation level. Here again %S. (y. alia y.la - 1. For
Euclidean sensations (53c) writes as 1 1 l

CI 1 "
, 1 -

where we see that (S3c) is the arctangent for individual sensations. It
yields by the inverse of (S3e)

-i '2r
1 e i

(53f)tan[r.J =, i-2r for -%IT '" r, '" %IT,
i(l + e i) 1

where we see that for r, 0 we have Si = 0, while unique values of Si
range from _00 to 00 for ~ '" r

i
'" %IT

If sensations are Euclid.ean or Minkowskian then (S3e) specifies single
elliptic response spaces_ With reference to (43) and (44) we define

i·c; ·r
/~ e ik (54a1)

i-C;'r
V~.e il

u = JI/
ihlk ,.,

-i -Cor
e ik(54a2)
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as Euclidean co-ordinates for a hemispherical response space and obtain
by rotation of 45° with respect to h and a translation to its hemisphere
the usual Euclidean co-ordinates of response r, with,

[(u
ih

+ U
i
)!J2j 2 - 1 = cos ~y.ri) - 1

and

/[co~ (~.ri) - 1] = ±siTI(y.r
i

) = rih'

[liik + UihlklN2 = cos(y-r
ik

) '" r
ik

, (54b)

[U
il

+ U
ihI1

]/J2 = cos(y-r
i1

) = r
i1

"

The elliptic Pythagorean expression with -%J;: s c; ·r, -" 'SI becomes
r ,

cos!c; or. j'cos[C; ·r. 1 = coslo:;: ·r.]. (54c)
rll rlk rl

For Euclidean or Minkowskian sensations we may have a double-elliptic
geometry for stimuli x./b with curvature c; =r/2, whereby stimuli then
satisfy in terms of radian values -n ,; [e; !-"x,/b - n] 5 TI. Since the
condition -'8I " c; ·r. " "'IT applies to sin~le~elliptic responses, we
see that the curva£ur~ of single-elliptic response space is also defined
by the r-metric of the sensation space as <; =r/2, where the relationship
between r, and x,/b is defined by r, ,

tan[(r/2) ·r.l = s, '" 2(y.- alia = In[(x.lbj2IaJ. (54dl
1 1 1 l

and si = 2(Y
i

- alia defines a Euclidean space of comparable sensations.

If the data would fit different response functions equally well then a choice for a
response function can only be based on the theoretical arguments. A linear
transformation of the integrated nonnal distribution yields no explicit function and also
defines no projective geometry with a constant curvature. Therefore, we are only left
with the logistic and Cauchy probability functions as unique alternatives for the
response probability function, because after their linear transfonnation to a bipolar
response function only these two probability functions define a geometric projection
function of infinite sensation scales to finite response lines or curves with a constant
curvature. The cumulative Cauchy distribution as an alternative response probability
function for discrimination responses defines by the linearly transformed Cauchy
probability function (multiplication by "It and subtraction by Vm) the arctangent
function, which function is the only geometrically consistent alternative for the
hyperbolic tangent as response function. The Cauchy probability function is defined by
a ratio of logarithmic stimuli for responses to double-elliptic stimuli with respect to the
adaptation-level stimulus. Thus also the arctangent function can apply to weighted
Fechner-Helson sensations with the adaptation level as a meaningful translation point
and twice the inverse of the adaptation-level value as dimensional sensation weight,
which again defines a flat Bower space of comparable sensations. So the arctangent
function for transfonnations of comparable sensations to responses describes a
deterministic transformation of a comparable Euclidean or Minkowskian sensation
space to a single-elliptic response space.
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In section 3.2.1. we proved that a flat sensation space is consistent with a
double-elliptic geometry for the stimulus space, where its elliptic curvature depends on
the r-metric of the flat sensation space, where its curvature is defined by ~ :;: r/2. If the
response probability function is the cumulative Cauchy probability funcfion then the
arctangent function transforms the same flat sensation space to a single-elliptic
response space, whereby it also defines a quasi-elliptic space involution of double
elliptic stimulus space to a single-elliptic response space. It means that also the
curvature of the single-elliptic response space is determined by curvature ~ :;: rl2 for
r as r-metric of the sensation space. As the projection analogy of latitudes rin half the
globe for figure 23 by the projection function of figure 24 indicates for flat sensation
planes, circular iso-distant response contours also are obtained by its tangent
transfonnation as the radial projection of a hemispherical response space onto a
Euclidean sensation plane, provided that the arctangent is the response function for a
flat sensation plane. If a sensation plane is Minkowskian then radius p of the
corresponding response hemisphere and, thus, its elliptic curvature If depends on the r
metric of the sensation space by If ::: 2/r, as shown in chapter 3 for their projective
relationship. However, the inverse transfonnation by the tangent function of single
elliptic response spaces only applies to curvature-corrected response spaces with a unit
radius, which then specifies a Euclidean sensation space also if the single-elliptic
response space would generate from a Minkowskian sensation space.

If the response space is a single-elliptic space then it also is an individual elliptic
projectivity of a double-elliptic stimulus surface onto itself. The elliptic projectivity
from stimuli to responses (as logarithmic transfonned, double-elliptic stimuli to a flat
sensation plane and from arctangent-transfonned sensations to single-elliptic responses)
is with respect the individual adaptation point as a polar reference point in the stimulus
and response spaces. The elliptic projectivity of points on circles of the double-elliptic
stimulus surface with respect to a polar unit point onto the half circles of its single
elliptic response surface can be regarded as a quasi-elliptic space involution (noelliptic
involution exists mathematically). That quasi-elliptic space involution is exactly what
is implied by the Fechner-Helson function for the transfonnation of double-elliptic
stimulus to flat sensation spaces and the arctangent transfonnation of these sensation
spaces to single-elliptic response spaces. The multidimensional dissimilarity analysis
by elliptic distances as dissimilarities, described for the first time by Van de Geer
(1970), could indeed be an appropriate analysis method of single-elliptic response
spaces. Although Van de Geer distinguished not between response and sensation
spaces, the solved elliptic space from dissimilarities as cosines of scaled distances
should be identified as an individual, single-elliptic response space. Generally
individual response spaces contain different object representations, because open
response spaces are individually different transfonnations of the common Euclidean
object space if their adaptation points are different. The common Euclidean object
space is to be derived from individually translated and weighted sensation spaces that
are obtained from inverse response transfonnations of solved individual response
spaces by an appropriate data analysis.
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4.2.2. Three permissible involution geome/ries of the response space
Besides the theoretical possibility of arctangent transformations offlatsensation spaces
to single-elliptic response spaces, we originally clerived the hyperbol ic tangent function
for the transformation of sensations to responses in section 2.2.1. With reference to
chapter 3 it may concern the hyperbolic tangenttransfonnation of a hyperbolic or a flat
(Euclidean or Minkowskian) sensation space. Firstly, we discuss the hyperbolic tangent
transformation of a hyperbolic sensation space that derives from a Euclidean stimulus
space (section 3.2.2). The revolution of hyperbolic curves in figure 25 or 26 constitutes
a hyperbolic surface that by the hyperbolic tangent transfonnation becomes
stereographically projected on a circularly limited flat disc. Since the rotation
invariance of the hyperbolic surface also holds for its projection, the interior of the
open projection disc has a Euclidean distance metric. The central axis of the Euclidean
co-ordinate system for the hyperbolic sensation surface is perpendicular to its open
projection disc and intersects the hyperbolic surface at its origin as adaptation point that
also corresponds to the origin of the circular-open response disc. It will be noticed that
the asymptotes of hyperbolic curves define the limit circle for the open projection disc.
That circle thus represents infinities of the hyperbolic sensation surface. The interior
of the circularly open-Euclidean disc describes the so-called Poincare model of the
hyperbolic surface, wherein points or distances in the response disc are projections of
points or curved line segments as hyperbolic distances on the hyperbolic sensation
surfaces. Infinite curvilineal lines on a hyperbolic surface are represented by straight
chords of the circle for the Poincare model, where the boundary circle corresponds to
infinities of the hyperbolic surface. In the Poincare model a distance between points on
a hyperbolic surface becomes a function of a line segment on the chord of projected
points within the disc. The Poincare model is illustrated in figure 28 by chord endpoints
P and Q on a circle for a chord trough some interior points A and B.

Q

A
p

hyperbolic lenght AB '" 'hln{(PA x QB)/{PB x QA)}

Figure 28. The Poincari model for the interior ofa circular response disc.
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The distance between A and B corresponds to a hyperbolic distance AB (that is the
length of the shortest curved line between corresponding points A and B on a
hyperbolic surface), which hyperbolic distance becomes a function of the length of the
four line segments PA. PB, QA, and QB on chord PQ. The distance AB on the
hyperbolic surface with unit curvature is given by hln! (PA·QB)/(PB·QA»). Ifwe take
points A and B on a chord through the centre of the circle with unit radius, then we
have for points A and B at equal distances r from the centre the distances PA:::: QB ::::
I - rand PB :::: QA :::: I + r. Half the length of AB as distance to the centre corresponds
to a hyperbolic distance from its origin, which hyperbolicdistallce is then expressed by

1/.110[(1 - rW(l + r)2] :::: Y2ln{(l - r)/(1 + r)}.

Equal distances of points from the centre in the disc of figure 28 are circles and so they
are correspondingly on the hyperbolic surface. The above expression defines the
negative value for inverse hyperbolic tangent function of r. Taking a hyperbolic length
Y1S from its origin, we have

-Yzs ::;: Ylln[( 1 + r)/(1 - r)J ::;: ar tanh(r)

This definition ofthe inverse hyperbolic tangent function as -Y1S::: ar tanh(r) shows that
hyperbolic projectivities are reflections. So the hyperbolic tangent function of distances
lfzs from the centre in the hyperbolic sensation space creates the Poincare model of the
response space and the inverse hyperbolic tangent function of Euclidean distances in
the Poincare response space specifies the hyperbolic geometry of the sensation space.
Moreover, if we take a sensation vector value -lfzs then by the Fechnerian
psychophysical function it represents half the logarithmic stimulus value I/x and by
substitution we obtain

and thus

0'

-Y1S ::: Ylln(l/x) ::: lfzln{ (I + r)/(1 - r)} ::: ar tanh(r)

x:::(l-r)/(1 +r) for-I <r< I

r:::(I-x)/(1 + x) for x'" o.
This is the involution expression of stimulus intensity x with respect to the stimulus
intensity ofunity for the judgmental response r.

This involution transfonnation from the Euclidean stimulus plane to the interior
of the circular response disc constitutes a geometric projectivity of the stimulus plane
onto itself with respect to the unit point in the Euclidean stimulus plane. Its finite
projection disc with a limiting boundary, here with Ir I< 1, is a so-called open geometry.
From the generalisation to more dimensions we see that open response spaces are
involutions of infmite stimulus spaces with respect to individual unit points as
projection centre. The inverse transfonnation x = (1 - r)l( I + r) for solved response
space values -I < r < 1 of individuals (from analyses of data representations in
individual response spaces). directly transfOlms the open response space into an
infinite. positive stimulus space. If the sensation space is hyperbolic and the stimulus
space Euclidean then the involution r::: (I - x)/( 1 + x) transfonns Euclidean stimulus
vectors with respect to a unit point to other points on these Euclidean stimulus vectors
themselves as its open response vectors (and vice versa for the inverse transfonnation).
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Mathematically it is a hyperbolic involution of a Euclidean space, but we will call this
transfonnation a Euclidean space involution. For stimulus fraction x./b with adaptation
point x./b ::: 1, instead of unit-dependent stimulus ratio scale x.lll, it1will be clear from
the EU~lidean space involution of stimulus fraction plane that1there correspond:

a zero response to the stimulus adaptation-level :cfb::: 1;
one response point r::: 1 to zero intensity of the st~mulus space origin;
an opposite half response circle with points r::: -1 to infinite stimulus intensities of
the positive stimulus plane.

So the Euclidean space involution, as hyperbolic transfonnation, defines a reflection.
In the multidimensional Euclidean stimulus fraction spaces we take the

adaptation space point as rotation and transfonnation centre for the stimulus
dimensions xoklb

k
that have unity-valued points as dimensional adaptation points that

define the cerin-al origin of open-Euciidean response spaces. It not only is the origin of
the individual response space and the individual reference point for the Euciidean
involution of the stimulus fraction space, but also corresponds to the adaptation point
as origin of its hyperbolic sensation space. If the sensation space is flat, instead of
hyperbolic, then the hyperbolic tangent transfonnation of sensation spaces implies the
hyperbolic involution of hyperbolic stimulus vectors to open-hyperbolic response
vectors with respect to a defined unit stimulus space point. It then constitutes an
involution of an infinite hyperbolic stimulus space onto itself as an open-hyperbolic
response space (instead of the open-Euciidean space as Poincare model for hyperbolic
sensations). We call this involution a hyperbolic space involution. For this hyperbolic
space involution also tanh(-Y2S.) = r. applies and, thus, also Y2S. = Y2In[(I - r.)/(I + r.)]
holds, but here s. are Euclidearl (or Minkowskian) sensations that are genefated frrim
a hyperbolic stirhulus space of stimuli x.lb, as discussed in section 3.2.1. Since the
Fechner-Helson function s. = In(x.lb) applies to, ,

s.lhyperbolic = In[xJbjEuclidean], ,
s. iEuclidean = In[x.lbl hyperbolic],, ,

the hyperbolic space involution r. = (I - x.Ib)/(1 + x.lb) for the last case must be a
mapping of open-hyperbolic res'ponse vJctors ontd hyperbolic stimulus vectors
themselves. Consequently the geometry of its response space must indeed be the open
hyperbolic geometry (instead of open-Euciidean, as it is for the fonner case). If we
want to represent the common object space of hyperbolic stimulus space as a Euciidean
space, then here we have to take it as a common Fechner sensation space, because
open-hyperbolic response spaces with negative unit curvature are hyperbolic tangent
transfonnations of comparable, Euclidean sensation spaces.

Combining the above two possibilities and the one of the preceding section,
there are three pennissible stimulus geometries (hyperbolic, double-elliptic, and
Euclidean) with three theoretically possible space involutions to response spaces with
corresponding, open geometries (open-hyperbolic, single-elliptic, and open-Euclidean):

I: we have a common Euclidean space of stimuli x.lfl with individually translated
and weighted, hyperbolic spaces of comparable sensdtions s.=2(yJa-1 )=2[ln(x.1b )]/a
and an individual space for responses r. as the respon~e spkce with an 'open
Euclidean geometry. Its Euclidean space ~nvolution is summarised by:
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x(Euclidean)
Irl <I
y(hyperbolic)

r.(open-Euclidean) = [l.(xJbf!a ]l[l+(x.fbf'~, "based on
s.::: 2(y.-a)/a, tanh[,VlS.J:::: r., and In(x./b)::: y.-a

I I I I I I

whereby ar tanh( ..r.) :::: Yzs. defines hyperbolic sensations for scaled responses of
an open-Euclidean }esponJe space with unit boundary
11: we have (referring to the mathematical section in the preceding section) a
theoretically possible double-elliptic space of finite stimulus values xJb with a
space of comparable sensations s.=2(y.-a)/a as an individually transhted and
weighted space of the common Euclid~an (or Minkowskian) object space of
Fechner sensations y. and an individual single-elliptic space of responses r.. This
transfonnation from double- to single-elliptic spaces is an elliptic projectivily of a
double-elliptic space onto its own single-elliptic part with respect to the common
pole as a quasi-elliptic space involution (no elliptic involution exists). This quasi
elliptic space involution is described by:

x(hyperbolic)
Irl < 1
y(Minkowskian)

x(double-elliptic)
]rl<%tr
y(Minkowskian)

r.(single-elliptic) = arctan [2In(xJb)/a)], ,
based on

s. = 2(y.~a)/a, arctan[s.] = r., and In(xJb) = y.~a
I I I I I I

where tan(r.) = s. for scaled responses with unit curvatures defines the metric of the
sensation space lo be Euclidean.
Ill: we have a hyperbolic space of stimuli x./b (hyperbolic) with again an individual
space of sensations 2(y.-a)/a as an individullly translated and weighted space of the
common Euclidean (o} Minkowskian) object space of Fechner sensations y. and
an individual response space of responses r. with an open-hyperbolic geometry~The
hyperbolic space involution is defined bl

. 21a 2/a
r.(open-hyperbohc) = [l-(xJb) ]/[l+(xJb) ], "based on
s. = 2(y.~a)/a, tanh[-l/:lS.] = r., and In(xJb) =y.-a

I I I I I I

where ar tanh(-·r.) = VIs. defines Euclidean sensations for scaled responses of an
open response sp~ce with negative unit curvature.

The three involution geometries of the open response spaces have distance metrics that
are conformal to the distance metric of their corresponding stimulus space. In the
common Fechner sensation plane of figure 23, the iso-distant response contours show
how these involutions describe an "egocentric" contraction of sensation vectors with
the individual adaptation point as contraction centre. Figure 22, wherein individual iso
distant response contours are represented in the Euclidean stimulus space, illustrates
how the concentric iso-distant response circles in the hyperbolic Bower space with the
adaptation point as origin become asymmetrically transformed in the Euclidean
stimulus plane. Stimulus intensities x./b ~ I are transformed to responses -I < r. s; 0 (in
open-hyperbolic or open-Euclidean lesponse spaces) or to responses 0 s; r. <IYz1[ (in
single-elliptic response spaces) and intensities 0 < x./b s; 1 to responses 0 ::;1 r. < I (in
open-hyperbolic or open-Euclidean response spaces) or to responses -Ym < r~ :s: 0 (in
single-elliptic response spaces). 1
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For an infinite Euclidean stimulus plane the individual response plane is not an
infinite Eudidean plane, but a circularly open projection disc by Euclidean space
involutions of that infinite Euclidean plane wim respect to the unity-valued adaptation
point. Similar matters hold for the space involutions of non-Euclidean stimulus
surfaces, where a circularly open-hyperbolic or single-elliptic surface represents the
response surface. The multidimensional generalisation to involution spaces defines
open response spaces that are limited to the interior of a (hyper)sphere as outer
boundary of the open response spaces with a Euclidean. or hyperbolic, or elliptic
distance metric for its interior. Although hard to imagine for more space dimensions,
this Euclidean or non-Euclidean interior can be of any dimensionality and has the same
dimensionality as the Euclidean, or hyperbolic, or double-elliptic stimulus space. All
possible responses are located inside the (hyper-)spherical boundaries of open response
spaces with a Euclidean or non-Euclidean distance metric. That boundary represents
the limiting points corresponding to infinite hyperbolic or flat sensations. Its centres
represent the zero response to individual adaptation points and its response interior the
responses to weighted sensations with dimensional weights as twice the inverse of the
dimensional distances of the projected adaptation point In(blu):::a to In(ulll)=O as just
noticeable sensation and origin in the Fechner sensation space. If the stimulus space is
non-Euclidean then the common Euclidean object space is a Fechner sensation space
that is transfonned by individually different translations and dimensional dilations to
individual spaces of intensity-comparable sensations, else the common Eucl idean object
space is the stimulus space that becomes individually transfonned to subjective
stimulus fraction spaces by dimensional power exponents as twice the inverse values
of the dimensional adaptation points in the hyperbolic Fechner sensation space.

For a common Euclidean stimulus plane with different individual adaptation
points the individual hyperbolic sensations are different, because defined by differences
from their adaptation points in the hyperbolic sensation space that is also dimensionally
weighted by twice the inverse of dimensional values of these adaptation points. The
stereographic projection of individual hyperbolic surfaces onto individual Poincare
response discs or interiors of open-Euclidean response spaces represents the distance
between the same objective stimuli as individually different distances between
responses in the interior of different open-Euclidean response spaces. These open
Euclidean response spaces are individually different involutions with respect to
differently located individual adaptation points in the common Euclidean stimulus
space. From the comparison of figures 23 and 22, it is seen that the iso-distant response
contours in the Euclidean stimulus space (or the objective attribute space for the
Euclidean representations of cognitive objects) are asymmetrical contours with respect
to the adaptation point, but in the corresponding hyperbolic space of comparable
sensations as well as in the open-Euclidean involution space of responses these iso
distant contours are circles. In stimulus fraction spaces with individual unit points the
iso-distant response space circles become asymmetrically reflected contours with
respect to the unit space point as adaptation point, where the asymmetry derives from
the exponential transfonnation of the iso-distant circles in the weighted hyperbolic
sensation space, while these circles are stereographic projected as iso-distant circles in
an open-Euclidean response space. Similar matters hold for the corresponding
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transformations of non-Euclidean stimulus surfaces with flat sensation spaces into
circular open response sUlfaces with an open-hyperbolic or single-elliptic geometry. In
these latter cases the derivable, common Euclidean object space is the Fechner
sensation space as matched space configurations of individually translated, weighted,
and rotated Euclidean spaces that derive from the inverse response transformation of
solved, individual response spaces that are scaled to unit curvature spaces. Each
individual response space is a different transformation of the same stimulus space,
because every individual transforms the objective stimulus space (Euclidean or 000

Euclidean) differently into circularly open, "ego-centred" response spaces with the
corresponding distance metric of its stimulus space.

The dimensionality of the stimulus space, the sensation space, and the involution
space of responses remains the same. Only a Euclidean co-ordinate embedding of non
Euclidean spaces asks for one additional dimension. Lines that don't contain the
adaptation point in non-Euclidean (lines on elliptic- of hyperbolic-curved surfaces) or
Euclidean stimulus spaces not only becomecurves on the respectively flat or hyperbolic
sensation surface, but also are curve segments on corresponding involution surfaces of
open response spaces. Only stimulus space lines through the adaptation point are
straight lines on the hyperbolic sensation surfaces or in flat sensation spaces andremain
straight line segments on the hyperbolic, or elliptic, or flat involution surfaces of the
open response space. Therefore, the line segments of non-dimensional response space
distances become represented in sensation and stimulus spaces by curve segments,
while the rank order of response space distances differs in a non-monotone way from
the rank order of corresponding distances in sensation and stimulus spaces.
Dissimilarity judgements should not be identified as distances in the sensation or
stimulus space, but as distances in open response spaces. Since observed dissimilarity
rank orders are represented by rank orders of distances in individually different open
involution spaces, we can't analyse these dissimilarities directly as sensation or
stimulus space distances. Distances in open-Euclidean, open-hyperbolic, or single
elliptic spaces satisfy the axiomatic conditions of non-negativity, symmetry and
triangular inequality (Busemann, 1950a) that are required for representations of
transitively ordered dissimilarities as space distances. In the sequel we derive from sets
of individual dissimilarities as distances in individually different response spaces with
a given involution geometry, the underlying common Euclidean object space with
location parameters of individual adaptation points that determine individual sensation
space origins and the dimensional weights of intensity-comparable sensation spaces.

4.3. Common object and individual response spaces

Although single-elliptic or open-hyperbolic response spaces with a curvature that is not
unity are generated from sensation spaces with a Minkowski r-metric of rUl, the
dissimilarity distances in these response spaces must always be scaled to distances in
open response spaces with unit curvature in order to transform them by their inverse
response function to comparable sensation spaces. Therefore, their response-derived,
comparable sensation spaces are always Euclidean. The inverse hyperbolic tangent
function (according to section 2.1.3.) of scaled responses transforms open-Euclidean
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aropen-hyperbolic response spaces to respectively hyperbolic spaces with a curvature
of minus unity or Euclidean spaces of comparable sensations, while the tangent
function (according to section 4.2.1) of scaled responses transfonns single-elliptic
response spaces to Euclidean spaces of comparable sensations. Thus the underlying
common Euclidean object space is a sensation reference space that derives from the 50

called Procrustes matching (Gower, 1975) of individual Bower spaces with Euclidean
tenns 1/2S]' :::::: y.k/a

J
- 1 by individual rotation, weighing, and translation of

dimensionJ~eJnderfying common EucIidean object space is the stimulus reference
space if the individual Bower sensation spaces are hyperbolic, where the exponential
transfonnation of a common hyperbolic Fechner sensation space (derived from
similarly matched, hyperbolic Bower spaces of individuals) defines the Euclidean
stimulus reference space. Each individual response configuration is an individually
different transfonnation of the object configuration in the common Euclidean object
space, due to individually different, adaptation-level-dependent, translation and weight
parameters in the transfonnation. These individual parameters derive from the space
matching of the intensity-comparable sensation spaces to a common Euclidean or
hyperbolic space of Fechner sensations. Crucial for the analysis is the geometry of the
open response space and the acknowledgement that dissimilarities are distances
between responses to comparable sensations in the Bower spaces of individually
weighted and translated Fechner sensation dimensions sJ'k = 2(y'k - aJk)/a

Jk
, assuming

here no individually shifting adaptation levels. The ge0metry lof tfie open response
defines how response distances must be analysed and what kind of transfonnation of
solved response spaces is needed in order to solve the individual parameters and the
common Euclidean object space as stimulus or Fechner sensation space,

The geometric correspondence between Euclideanrepresentations of elliptic and
hyperbolic spaces leads to an analysis of dissimilarities as scaled hyperbolic distances
in open-hyperbolic spaces that is similar to the analyses of dissimilarities as scaled
elliptic distances in single-elliptic response spaces. But their dissimilarities analyses
differ from existing Euclidean MDS-analyses, Only the object configuration in an
open-Euclidean response space of an individual may be correctly solved by an existing
Euclidean MDS-analysis of dissimilarities. The individually different response spaces
(either as quasi-elliptic or hyperbolic or Euclidean space involutions of respectively
different stimulus space geometries) are related by their corresponding inverse
involution transfonnations to a common Euclidean or non-Euclidean stimulus or object
space. We assume that such a common reference space for cognitive objects exists,
although this can be questioned for individuals from cultures with differently learned
connotations of cognitive objects. If different individual response spaces are related to
a common Euclidean object space then we can solve the individual parameters from the
Procrustes matching (Gower, 1975) of individually different, comparable sensation
spaces. In case of (quasi-)space involutions of double-elliptic or hyperbolic object
spaces to open response spaces, the common Euclidean object space is a Fechnerian
sensation space. If the stimulus space is Euclidean then its Euclidean space involution
defines that a Euclidean distance metric applies to their open response spaces, while
then also the common Euclidean object space is the stimulus reference space or the
attribute space of cognitive objects.
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4.3.1. The applicability ofexisting MDS-analyses
The existing non-metric analysis of (dis)similarity rank orders by multidimensional
scaling (MDS) techniques (see overview books: Shepard et al. 1972; Krzanowski,
1988, Cox and Cox, 1994; Borg and Groenen, 1997) or by modem stochastic MDS
versions (Ashby, 1992a), allow not that the transformations of object configurations in
stimulus or sensation spaces to response space configurations are individually different
projection transformations. These methods also generally assume Euclidean or
Minkowskian spaces of evaluated objects that have identical object configurations for
individuals. Only dissimilarity analyses by individual difference MDS (originally
developed as the IDIOSCAL method by Carroll and Chang, 1972) allow for object
distances in an individually weighted Euclidean spaces. Although individual dimension
weights then define individually different sensation spaces, it is not recognised that
individually different translations to their adaptation points define different projection
origins for their transformation to individually different, open response spaces.
Individual difference MDS-analyses correctly assume individually modified object
configurations by individually weighted sensation dimensions, but incorrectly assume
identical rank orders of response space distances and weighted sensation space
distances. However, relatively small response distances that are remote from the
response space origin correspond to relatively large distances in weighted sensation
spaces, while the rank order of response space distances in the proximity of the
response space becomes hardly changed for corresponding distances in weighted
sensation spaces. Thus, even if the sensation space is not hyperbolic then also
individual difference MDS-analyses may not recover the correct object configuration
in a common Euclidean sensation space.

The dissimilarity analyses as non-Euclidean space distances by Van de Geer
(1970), Lindman and Caelli, (1978), Dri:isler (1979), and Indow (1982), as well as the
spherical distance model for similarities as mutual Euclidean vector projections relative
to vector length (Ekman, 1965; Eisler and Roskam, 1977), are rare exceptions with
respect to the usual Euclidean or Minkowskian MDS-analyses. Besides their possibly
correct identification of an elliptic or hyperbolic distance metric for response space
distances as dissimilarity representations, also these methods assume that the object
configuration in the analysed, non-Euclidean space is common to all individuals.
However, dissimilarities as evaluations of comparable sensations of object pairs are
individually different response space distances that can have different rank orders than
the distances between corresponding points in their individually weighted sensation
spaces. If the individual adaptation points are different, then the corresponding
weighing and translations define indi vidually different response transformations of the
object configuration to individually different, open response spaces. Any open response
space (with an open-Euclidean, or open-hyperbolic, or a single-elliptic geometry)
represents an individually different transformation of the common Euclidean object
space as stimulus or as sensation space. The cOllUTIon object space can only be solved
by inverse transfonnations of the response spaces if we also solve the individually
dimensional rotations and weights (defining also their translations) for comparable
sensation spaces that are transformed to individual response spaces with different
object configurations. This should govern the construction of the proper MDS-analysis
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of individual (dis)similarities and its interpretation. Response spaces that are inversely
transformed to Euclidean or hyperbolic sensation spaces imply individual sensation
spaces with different dimension weights that equal twice the inverse of dimensional
adaptation point values in the common Euclidean or hyperbolic sensation space thatean
be solved from the matching of individual sensation spaces under rotations,
dimensional dilations, and translations to a conunon reference sensation space, where
the dimensional weights also define the translations to adaptation points.

IfEuclidean space involutions describe the individual response spaces then there
is nothing wrong with a Euclidean MDS-analysis of individual dissimilarities as
response distances with a Euclidean metric. What is wrong is the assumption of an
infinite Euclidean space for distances as dissimilarities. Without the inverse response
transformations of individual, open-Euclidean response spaces to a common Euclidean
object space (in this case the inverse involutions with respect to individual adaptation
points of open-Euclidean response spaces to the Euclidean stimulus space) wrong
inferences may be made, even for the data analysis of one individual. The analysis of
individual sets of (dis)similarities as elliptic or hyperbolic distances (Van de Geer,
1970; Lindman and Caelli, 1978; Dr6sler, 1979; Indow, 1982) of the appropriately
scaled proximity matrix (the cosine or hyperbolic cosine ofdistances that in rank order
terms optimally correspond to the set of (dis)similarity judgements) may also not avoid
such partially wrong interpretations, if the response space is single-elliptic or open
hyperbolic. If individuals have fixed. but different adaptation points then the
application of Euclidean or non-Euc1idean multidimensional scaling techniques to
aggregated (dis)similarities obtained from several individuals simultaneously always
is inappropriate for any response geometry. Analyses of aggregated dissimilarities
acknowledge not the locally different transformations of the common object distances
in each type of response space for different individuals. Each of the permissible
response geometries (either single-elliptic, or open-hyperbolic, or open-Euc1idean) is
an individually different projective transformation from individually different
projection origins of differently weighted sensation spaces. It generally causes the
dissimilarity rank order as ordered response space distances between objects to be
different for different individuals, unless individuals have the same space adaptation
point. Thus, if aggregated (dis)similarities from different individuals are analysed by
MDS-analysis techniques one may run into problems. The individual differences of
response distances between identical objects depend on the differences in location
parameters of the individual adaptation points, because comparable sensation
dimensions of the Bower space not only are weighted by twice the inverse of
dimensional adaptation point values of individuals, but also the projections of their
Bower spaces to the response spaces depend on the adaptation points as projection
origins. Although individually different space origins cancel out in the expressions of
weighted sensation distances, distances in weighted sensation spaces and corresponding
distances in response spaces have different rank orders, while differently weighted and
translated sensation spaces also yield different response spaces.

Optimal scaling (Gifi, 1990) of individually ordered dissimilarities is a
prerequisite for the analysis of individual dissimilarities. But such optimally scaled,
individual dissimilarities still represent response space distances as scaled distances in
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individually weighted sensation spaces, wherein the distance rank orders generally
differ from individual response space distances. Since response distances are distances
between individually different projection points of sensations that depend on individual
projection origins and corresponding weight parameters of the common space of
Fechner sensations, the optimal scaling must be based on predicted response distances
in individually different response spaces and not on distances in a common or
individually weighted sensation space. Problems may arise for any analysis of
aggregated data of several individuals. An analysis of aggregated dissimilarities from
several individuals must assume common distances in individual response spaces,
which is not the case unless individuals have common adaptation points. Only inverse
transformations of individually resolved different response spaces with unit radius to
a common Euclidean sensation or stimulus space, may yield a common object space
and the individual transformation parameters. For objects of a physical nature it will
be accepted that a common object space exists. For objects of a cognitive nature such
a common object space may not exist if the leaming process in different subcultures of
individuals leads to different concept fonnations. If so we may have serious solution
problems, because we can only solve individual parameters by inverse transfonnations
of response spaces to a common Euclidean object space.

4.3.2. Common object space from individual open response spaces
Appropriate analyses that solve the metric response co-ordinates for one of the
altemative geometries from a set of ordered (dis)similarities per individual, describe
individual response spaces. If for several individuals the (dis)similarities are
individually analysed and their response space configurations solved for one of the
three pennissible geometries. then these response space configurations must be related
to the common Euclidean object space in order to estimate the individual space
transfonnation parameters. An appropriate analysis of (dis)similarities solves a co
ordinate system for object~ in the response space for each individual. However, for
their inverse response transfonnations to the common Euclidean object space we need
the individual transformation parameters for the dimensional sensation weights and
translations that are both determined by the dimensional adaptation point parameters.
These adaptation point parameters can be iteratively solved from the initial solutions
of individual object configurations in (single-elliptic, or open-Euclidean, or open
hyperbolic) response spaces of several individuals by inverse transfonnations of each
individual response space to individually weighted and translated (hyperbolic or
Euclidean) sensation spaces. Since individual response spaces may be described by co
ordinates that correspond to differently rotated space dimensions, we also need to
detennine individual rotation parameters for the matching of irxiividual sensation
spaces to a reference co-ordinate system for the common sensation space. By each of
the proposed solution methods for either the single-elliptic geometry (mathematical
subsections of section 4.3.2.1.) or the open-Euclidean or open-hyperbolic geometry
(mathematical subsection of section 4.3.2.2.) of individual response spaces the common
object space and these individual parameters are resolved. For optimally scaled
dissimilarities the solution defines an appropriate MDS-analysis of the best fitting,
common object space for all individual response spaces with one geometry of the three
permissible response geometries. The proposed iteration procedure includes an
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alternation of solution and scaling procedures. The co-ordinates of individual response
spaces are solved from response distances that are initially approximated by scaled
square-root transformations of dissimilarity rank orders that satisfy the maximum
distance for the open geometry of the response space with unit radius. Secondly, the
dimensional weight and rotation parameters (specifying also dimensional translations)
of an individual are iteratively solved by matching of inversely transformed response
spaces to a co-ordinate system for the common Euclidean object space. Thirdly, the
initially scaled dissimilarity distances are optimally adjusted within the rank order
constraints of the dissimilarities in such a way that individually predicted response
space distances are minimally changed to distances that fit the rank order of individual
dissimilarities. The three solution phases are repeated until convergence is obtained.

4.3.2.1. Analysis ofsingle-elliptic response spaces
If a response space has a single-elliptic geometry, then consequently the analysis of
(dis)similarity responses has to be an analysis of distances on a single-elliptic surface.
Distances on elliptic sUlfaces are measured by their length of arcs on the
(hyper)spherical surface. Distances on spheres change proportional with their radius
and scaled distances by the curvature as reciprocal radius define distances on a sphere
with unit radius. The arc length between points on a hemisphere with unit radius as
cosine of scaled response distances allow the representation ofdissimilarities as elliptic
distances and their corresponding object points on hemispheres to be described by so
called homogeneous co-ordinate systems (Coxeter, 1957; Van de Geer, 1970) as the
Euclidean embedding of hemispheres with their centres as Euclidean co-ordinate
origins. This Euclidean embedding is (m+l)-dimensional, whereof m dimensions
correspond to sine transfonnation of m (hyper-)hemispherical dimensions. The extra
dimension is the cosine transfonnation of curved space vectors and has no other
function than to represent the curved surface of the hemisphere. The principal
component analysis of a matrix with cosines of response distances on a single-elliptic
surface as scaled dissimilarities solves such a homogeneous co-ordinate system forthat
single-elliptic surface (Van de Geer, 1970). For distances between n object points that
are exactly located on a m-dimensional single-elliptic surface the principal component
analysis yields m+1 positive and n-m+l zero eigenvalues (no negative eigenvalues).
The comparable Euclidean sensation space that corresponds to the single-elliptic
response space with unit radius is obtained by its radially projected response points to
the m-dimensional Euclidean space. We iteratively derive by dilations of Euclidean
vectors the dimensional weights for each individual from the analyses of several
individual response spaces. We also detennine their rotations to a common Euclidean
object space of Fechner sensations by the so-called Procrustes procedure (Gower,
1975) for matching of Eudidean spaces. In the next mathematical section it is shown
how that common Euclidean object space can iteratively be solved from optimally
scaled dissimilarities as single-elliptic response distances of several individuals.

Following Van de Geer (1970) and referring to the relationship between
a Euclidean sensation space and single-elliptic responses r, constraint
to -r:/2 < r. < rr/2, we notice that by definition 1,
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tan[r,J - tan[r.]

tan[(r i - rjll = 1 + t~[r,l.tan[r.] (55a), ]

We always may scale the dissimilarity distances in such a way that its
the response space differences satisfy -~n<[r,-r,J<~, while according
to (53f) tan [r, 1=5, =2 (y, -a) la for weighted sensJ:ti6n scales by 2/a where
individual actJp taf10n J:>ints are defined by y.=a. We can only use (55a)
if a curvature factor G=r/2 for r as Minkowski~r-metricof the sensation
space corrects the radius p=2/r the single-elliptic response space to a
unit radius. Therefore, a scaled, curvature-corrected response space
corresponds to a Euclidean sensation space, whereby

(55d)

(55c)

(55b)
s - s

i j

while for elliptic

tan (r i - r j ) = 1 + 5,'5,, ]

response distance 0 = Ir. - rJI we have
'J '

eas(o,.l = (1 + tan2{ [r, - r,J }l-1/2,
1J 1 J

where we obtain by substitution of (55b) in (55c)

1 + s, ·s,
cos(O,.)= 1J

1J {(l + s2) (l + s~)}7!i, ]

By generalising (55d) to distances from horrDgeneous co-ordinates 1 and
k for points i and j, while adding a dimension with unit values (55d)
is rewritten for initially scaled dissimilarity distances 6" '" IT in
terms of three Euclidean co-ordinates z = 1 and z and z 1J as co
ordinate projections of s. = 2 (y, -a) la oAhco-ordinat-k~ 1 anJ~ by, ,

Z ·z + Z ·z + Z Z
ih jh 11 Jl 1k Jk

(55e)cos (0 .. ) = 2 2 2 2 2 2 %
1J {(Zih+Zil+Zik) (Zjh+Zjl+Zjk)}

Let 6 .," IT be scaled distances that fit the dissimilarity rank orders
of incrNidual J in order to represent the single-elliptic distances ° "
on hemispherical spaces with unit radius. Since the chosen scale fac~6}
defines the radius to be unity, such response spaces always correspond
to Euclidean sensation spaces. Writing row vectors of co-ordinates point
i for individual J as z' .=(z.h" 'l'z , ) we obtain in vector notation

J1 1 J1 J1k

cos(e . ,l = (z'.z .)I''/{z'.z .) ·v'(z' ,z .). (55f1)
J1J J1 JJ Jl Jl JJ JJ

Let C be the symnetric n· n matrix of elements cos (e .,) then we obtain
by th~ m+l eigenvectors and eigenvalues of eigenvec!?Jt matrix F and
diagonal eigenvalue matrix 0 ~ of J

C = F 02
F' (55f2)

J J J J
the principal components F Q as the Euclidean co-ordinates of the
m-dimensional single-ellip'Lc! response space of individual J. By some
rotation matrix G of these principal components corresponds to

J

F Q G
J J J

w-lz
J J

(55E3)
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(55g1)
where

for matrix Z of rows :I: I and diagonal matrix w2 with elements z' z or
w , = \/' (l + ~> ,) = l/co~~r .) As initial estim§.te we assume G J=1f,i
Wt{@Teby the f~§-t principal JJomponent would contain (analogousty to 44a)
elements sin(r .l. Thereby, initial values w , = 1//(1 - sin' (r .J are
obtained. Let !Il be the nom matrix of m sensa;Jt\on dimensions z Jl(thus
without z of tXe additional dimension with elements z =1), uJlfhe n·n
matrix ofhunit elements and W the n-diagonal matrix wi~R the initially
estimated elements w then \l;.e rewrite C - w-'UW-1for initially given
W

J
as J1 J J J

W-1UW- 1 = w- 1 S S' w- 1 = K /',.2 X' + E E'
J J JJJJ JJJ JJ'

W2 I + diag(S S') (5592)
J J J

for K as eigenvector matrix with l\ 2 as diagonal matrix of eigenvalues.
The et1stinctively positive eigenvarues determine the dimensionality ffi.

The rotated matrix S = W R H of the m principal components R = K 11.

for iteratively to ir?;prov~ -adgonal dilation matrix W detenni'ftes b'Y J
solvable rotation matrix H an individually weighted,Jtranslated, and
rotated comnon Euclidean sdsation space Y. Thus, for diagonal matrix A
with elements ~ of dimensional adaptation points a and a n·m matri~
V with elements~k =2, we obtain sJik = 2 (yi/a

Jk
-if in matrix terms

Y A-I = W R H + V, (56al)
J J J J

where Y is the corrrnon m-dimensional Fechner sensation space for a set
of n objects and H an individual rotation matrix to a corrmon co-ordinate
system for that c'6rrm:.n Euclidean Fechner sensation space Y. By

while
diag{s S'}=W 2 _I,

J J J
(56a2)

s = Y A- l _ V, (56a3)
J J

we see that the matrices W and A determine each other when Y becomes
solved. We iteratively sol~e H aJd A , and, thus, also improve W by a
Procrustes matching of rotatedspacesJ" under dilation and translal!ion.
Taking the space of an arbitrary individual L as the reference space,
where we take H = I and A = I for a =2, it simplifies (56a1) for L to

L L Lk

Y"W R +Y
L L

Combining (56al) and (56b1) we have

(56bl)

(56b2)W R +Y=W R H A +YAJ>E
J

.
LL JJJJ

The iterative solution of matrices H ,A and W as H ,A ,and W
(for H

L
= I and A

L
= I) are obtaineJ"by 'tiefiniI1g J,x J,x J,x

Q =[R'R r1R'W-
l

[W R +Y(I -A )] =H A ,(56cl)
W,x J J J J,x L,x L J,x J,x+l J,x+l

and taking for x = ° also A = I, while W "W and W = W as
obtained for (55g1) and ini"h~llY from (53&)° fori = I,L'w~ haJe

J
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Q = [R' R r 1 R'W- 1 W R
W,O J J J J,O L,O L

whereby the eigenvector and eigenvalues of

HA +EJ,l'J,1 J,1
{56c2}

(56c3)o Q' = H A2 H' + E E' ,
-rJ,x W,x J,x+l J,x+l J,x+l J,x J,x

and A under minimised trace (E E').
J,x+l J,x J,x

next calculate

solve H
J,x+l

From (56b2) we

s = (w R + V(I - A ) }A- 1
where W,x L,x L J,x+l J,x+l

...,2 = diag{S 5' } + I.
J,x+l LJ,x LJ,x

By (56b2) we also obtain

S = W RH A + V(I + A )
where JL,x J,x+l J J J,x+l J,x+l

(56dl)

(56d2)

(56d3)

...,2 = diag{S S' } + I (56d4)
L,x+l JL,x JL,x

Repeating the iteration cycles of (56dl) to (56d4) until convergence of
w and W and thereafter also of (56cl) and (56c3) for x=x+l

J xII L x+luntl approxlffi:ite convergence of W , W and A we solve for each J the
the rotation matrix H for the matc'hingLto ind1vidual L under dependent
dimensional dilationsJand translations with N-1 estirrates of W . We take
the average of these W rratrices for each matching as W for sLubject L.
Since we have taken th€'sensation space of individual L ~s the reference
space with A = I, while each imperfectly rratched space of the other
individuals ~ are as relevant as reference space, we define after an
approximate converge of the rratched individual spaces the average of
the matched spaces as reference space. With respect to this reference
space Y defined for t=x by solved A ,W ,and H as

t J,t J,t J,t
,h"

Y = [[ {w R H + v} A J IN, (56e)
t ~l J,tJ J,t J,t

we restart the iteration by minimising trace{E E' ) also for J=L
with respect to Y in stead of Y in (56b1) for l!"t+1 Butil convergence,
where W and A a~e the average diagonal matrices of W and A .

t t J,t J,t

By the again solved matrices W we have first improved matrices W for
the solutions of (5591), where!5;r the whole sequence from (56a) to ~56e)
is again repeated and so on until convergence of W becomes achieved.
This solves the individual parameters that relate {ndividual response
spaces to the c01TllTKJn Euclidean sensation space, provided that we have
optimal scaled response distances as obsenred individual dissimilarities
with values 0 " in cos(o ,.l of (55f) for elements of C in (55g1).
Since observecH~issimilar~fiesof each individual J are o¥;ly detennined
up to their rank order, the scaling of 0 .. can be optimised within that
rank order constraint. This is achievedb} computing

and
s = Y A -1_ V,

J J
, 1 '

W- 1(S S' + U)W- = C ,
J J J J J

(56f1)

(56f2)
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,
where elements c of matrix C

J
define by

Jij

(57)

(58b)

(58a2)

(56f3 )

cosh (0 , .)
'J

If the sensation space is flat then we would correctly have for distances
0. , < 2 of an open-hyperbolic response space that by i· z, = tanh (r,) and
il;-!. = tanh(r,) for i = J-l defines 1 1

J J tanh(r,) _ tanh(r.) i·z. -i·z,

tanh(oij) = tanh[ri-rj )] = 1- tanh~r.} .tanh(rJ,) = 1 ~ z .. / (58al)
1 ) 1 )

By cosh (6, ,) = 1!J [1 - tanh' (6. ,) J, instead of (55c) , we obtain for the
hyperbolit:J response space disckces

1 + ZiZj
cosh (0, ,) '" -----c;-.L.L-c;--,;-

lJ {(l - z~) (1 - z~l)~, )
Expanding (58a2) as hyperbolic distances by its three-dimensional
Euclidean co-ordinates z ,z under addition of co-ordinate z = 1,
one obtains the same expl~ssi~~ as for (55e) with the only diffJPence
that we have negative squared values, except for elements z. =z. =1,
which is written as lh Jh

zih,Zjh + Zil,Zjl + Zik,Zjk

, ,
arc cos [cJ" . ] = 0J' .,

1J 1J

individual elliptic response distances that perfectly fit the estimated
COlllIlOTI Euclidean sensation space. We then obtain by minimal changes of
the estimated distances by (560) that fit the individual rank order of
observed dissimilarities an improved scaling of distances 0J"' in (55g1).

'J
Repeating again the analyses from (5591) to (560) until no improved fit
of response distances is obtained, determines the complete iteration
procedure for an optimal scaling of the non-metric dissimilarities as
distances in single-elliptic response spaces and individual iso-distant
response contours in the solved, comnon Euclidean sensation space Y. If
the stimulus values of independent object dimensions are known, then
their logarithmic transformed stimulus dimensions define the Fechner
space, which should be equal to the solved space Y after a translation,
and rotation, because we arbitrarily took matrix A

L
= I and Y

t
= Y.

However, there is an ambiguity in the above described analysis. On the
the one hand we have for single-elliptic responses with unit curvature

tan(~r.) - tan(~r.) :r;, -:r;
[ ( I)

1. J -'- j
tan ~ r i - r j = 1 + tan(~r,)·tan(:&".) 1 +:r;':r;

1 J i J

where :r;, equal responses of the open-Euclidean response space that would
be deri~e from a hyperbolic space of comparable sensations. But for

I a hyperbolic sensation space the proper response distances are given
I by ~, , = I:r;, - :r;, I, due to their open-Euclidean involution space. If ~, ,
I is t~ proter rJsponse space distance then it could easily be mistak€rt
I for single-elliptic distance O. " where cos (?0 .,) = ~ ,,' Eu t cos (5 .. )
I as improper elements of C irP(S5f2) can yie1TIJ for ~lWUW' of (i5i~)
I markedly negative eigenva'1ues. J J J

I
I

I
I
I
I
I
I
I
I
I

I
I
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I Replacing cos (isJ' .) by cosh (5 .,) as elements of CJ in (55f2) would solve
I a hyperbolic surfJce (Van de lIJ-Jr, 1970) . only one eigenvalue then ought

to be positive and all other eigenvalues negative or zero for proper
scaled hyperbolic response distances 0Jij < 2.

Thereby, the proper response geometries and distance scaling might be
obtained by the inspection of eigenvalues. If a scaling of 0J' .< r. in
cos (is .. ) - cos (r .) 'cos (r .) as elements of (55g1) only yields \iiJrkedly
POSit{~ and al~§t zero ~Igenvalues, while about half smaller scaling
yields significantly negative eigenvalues by (5591), then the former
may concern a scaling of single-elliptic response distances. If still
markedly negative eigenvalues follow from (5591) for relatively large
scale factors of 6 ., then the response space is likely open-Euclidean
or open-hyperbolic!\:t: some scaling to (, " < 2 in cosh (6 ,,) as elements
of C in (55f2) yields one positive and ~}kedlY negativg\lr almost zero
eig¥nvalues then the response space may be open-hyperbolic.

In the mathematical section above we have shown how an iterative principal component
analysis of matrices with elements cos(O]"") - cos(rr)cos(rj') for scaled elliptic
distances or < It as dissimilarity representauHns in indivIdual, slhgle-elliptic response
spaces wiili 'dnit curvature solves by matching of individually weighted and translated
spaces their common Euclidean sensation space from the dissimilarities of several
individuals. The single-elliptic response space curvature must always be scaled to unity
in order to enable the analysis, whereby only a Euclidean sensation space can be
solved, even if its response spaces would derive from a Minkowskian sensation space
with metric ri=2. The analysis with half the proper scale factor for scaled dissimilarity
distances mistakes the stereographic projection to the open-Euclidean space for its
single-elliptic response space, as illustrated by figure 26 and discussed at the end of
section 4.1. The question is firstly whether the geometry of the derivable sensation
space is Euclidean or hyperbolic and secondly, if Euclidean, what the correct scaling
to unit curvature of the open response spaces is. These questions might be answered by
the eigenvalue signs of the principal components in the proposed analyses of matrices
with elements cos(01") - cos(rr)cos(rr) for dissimilarity distances or < n with
different scaling factJ~s. If all el~envald!s are markedly positive or almd~t zero and
half that scaling to 0r < VlTC causes markedly negative eigenvalues then the response
space probably is sinl~le-elliptic. If markedly negative eigenvalues are obtained for
relatively large scaling factors then the response space likely is not single-elliptic, but
open-hyperbolic or open-Euclidean. It might explain why Van de Geer (1970), who
analysed dissimilarity distances in the positive orthant of an elliptic space by scaling
to oS .. < VlTC (instead to oS •. < n), found mixtures of negative and positive eigenvalues for
sev&al object sets. It rrily indicate the response space is not single-elliptic.

4.3.2.2. Analyses ofopen-Euclidean and open-hyperbolic response spaces
If the response space is open-Euclidean then the analysis solution starts with the metric
Euclidean MDS-analyses (Torgerson, 1958) of initially scaled dissimilarity distances
of individuals. By inverse response involutions the object locations in the common
Euclidean stimulus space and the individual parameters are derived iteratively from the
metric Euclidean MDS-analysis of several individual response spaces. If the response
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m dimensions by indices {l .. h,k,l, ..m}
N individuals by indices {l. .I,J, ..N}
n stimuli or objects by indices {l..i,j .. n}

Firstly, we consider the open-Euclidean space involution for responses,
where the dimensional response co-ordinates are hyperbolic tangent
transformations of the hyperbolic sensation dimensions in the Bower
space of intensity-comparable sensations, where dimensional responses

space is open-hyperbolic then the stimulus space is hyperbolic and we solve a common
Euclidean sensation space and individual parameters from open-hyperbolic response
spaces of several individuals by an iterative principal component solution that is similar
to the solution for single-elliptic response spaces, where then C05(01") is replaced by
cosh(d) .. ) for 0).. < 2 as open-hyperbolic response space distances. lJ

IJ 1J

I We again define:
I
I
I
I
I
I

since

r
Jik

= tanh(-~Jik) = tanh[- (Y
ik

- aJk}/aJk]

defines by the inverse involution function of r
2/a Jik

zJik= (Xi/b
Jk

) Jk= (l- rJik}/(l + r
Jik

) ,

r Jik = [1 - zJik]/[l + ZJik]'

(59al)

(59a2)

(59a3)

describes dimensional responses as involution of Euclidean stimulus
fraction dimensions xik/bJk with power exponents 2/a

Jk
.

Let distances 0 be some distances that fit the dissimilarity rank
orders of indiv'1~al J and satisfy 0 < 0 ,. < 2. then their metric
Euclidean MOS-analysis (Torgerson, 1958,JV 258) in open-Euclidean
response spaces derives from the principal component analysis of scalar
products of object vectors from the centroid of object points for
individual J, which product is written in Euclidean distance terms by

c = J.o>{ 52 + 5~i
_ 52 _ 02 }

for Jij J) J Jij ,

,2 ,~~ 2
(l/n)[o."

J) '·1 J1J
and

,2 (l/n)L" 6~ .. ,
Ji H 1J

(59bl)

(59b2)

(59b3)

where
02 = (l/n»! E~52,.

J ,~1 ,~l Jl]

Let syrnnetric matrix C contain the elements c then its
corrponents QJ = K

J
6

J
irom eigenvectors K

J
andJJfgenvalues

(591:>4)

principal
6

J
for

C
J

= K 6 2 K', (59c)
J J J

describe the response space by Q with a space centre at a location
that probably is not the origin <Sf the response space. The solution of
the actual co-ordinate values r depends on an unknown co-ordinate
values A for the translated o~t~in and on an unknown scale factor n
that gua~tees (q, + A ) In to be a Euclidean involution space. I't
defines Jlk Jk J
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(qJik + AJkl/fJJ = r Jik' (59d1)

We write for initial solved values q. from (59c) and the iteratively
to solve unknowns I' ,A. ,indexJJlfor iteration index x, the next
expressions that afexder'i%eti from estimated r

Jik
values by

qJik = r '[1 + i\ , (59d2)
aa Jlk,x J,x Jk,x

r . (qJik + "'Jk ) InJ ' (59d3)
Jlk,x ,x ,x

where by (59a5) also, [1 ~ r ] / [1 +
rJik,x

] (59d4)
Jik,x Jik,x

and by (59a4) ~ l~~

tJr'k,x z Jk,x = x jb = L: h 'x /b (59d5)
Jik,x ik,x Jk,x ,_I Jil,x i1,x Jl,x

for h as individual rotation parameters for stimulus dimensions 1.
AsoltltrC,£ is iteratively obtained by a multi-phased solution procedure.
The procedure starts with q 'k = r. from (59c) for x =0, whereby
Z, = [1 - q , 1/[1 + q ~lr. Thfl§~'~ , values are by (59d5) used
fgf~ffe computai!~n of theJtfrst estimal!Mhfutrix T =X H B- 1 for
an individual rotation matrix H , an individual dl1:l~,or?£lJl£tr'Ix'B
of elements b , and the corrmol1'fuclidean stimulus space matrix X .JIB
order to star~'rterationcycle x a second iteration cycle inde:xed~y
t solves H and B by taking for an arbitrarily individual L

b = e:xp'bi'''cSr %a J'~~nd H = I as initial reference space, as well
a~~ taking initiaIfY{%a =1, Lwhereby T = Z and T = Z . So
starting for t=O we have Jk: L,x L,x J,x,O J,x

X TB,
L,x L,x L,x

which should become equal to
X = T B H
J,x,t J,x,t J,x,t J,x,t

(60al)

(60a2)

We solve iteratively matrix B , first with respect to the initial
I reference of individual L andJ~8rSe simultaneously the rotation matrix
I H with respect to L from the expression that follows by combining
I (~O~lr and (60a2) in defining

Q = [T' T r1T' TB, (603a)
~,x,t J,x,t J,x,t J,x,t L L

we solve by the ID eigenvectors and eigenvalues of

Q Q' = H a2 H' ,
LJ,x,t L.J,x,t J,x,t+l J,x,t+l J,x,t+l

(60a4)

the matrices H and B . We continue the iteration by
J x t+l. . J x ti:1T of elemencs Wl th unp:tovea exponent %a =~ln (b ) as

J,x,t+l Jk,x,t+l Jk,x,t

""t , = z Jk,x, t+l (60a5)
Jlk,x,t+l Jik,x

and repeat for t=t+l {60a3} to (60a5) until convergence. This analysis
is performed for each individual except for reference individual L. Next
we compute the average matrix X as

x

X = [(l!Nlf {T H' B- I }, (60b)
x J~l J,x J,x J,x
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(60d)

as

whereby estirrated values of r . for x+l=l are obtained from
Jlk,x+l

" A 2/a A 2/a
r =[l-(x /b ) J,x]/[l+(x, /b ) J,x] (Goel
J1k,x+l 1k,x Jk,x lk,x Jk,x

With; , from (GCe) and q. in (59132) the values of n and
f... Jlhg+~olved by linear r~~ession and by using them i¥;:'15~d3) we
ogtatt1improved values r . that by (59d4) then yields z , .

, J~~l . Jlk~These lmproved values z. ' are used for the computatlon of a J:ortfier
improved rratrix X bliiBeX!terations from {60al} to (60b) , which then
gives again by (Gtitt and the here above described procedure improved
values z, for x=2. These sequences are repeated until convergence.

Jlk,x
We may improve the fit of the solution by maximising the ITDnotone
regression between initially observed and predicted distances, where
predicted distance are obtained from converged r Jik-values in (GOc) as

"2 k~m " " 2
6 =t:[r -r]
Jij <., Jik Jjk

After this adjustment and renewed computation of (59c) to (60d) defines
the last iteration cycle. Repeating the whole sequence of computations
until convergence completes the solution. This multi-phased iteration
procedure yields an optlrral scaling for the analysis of non-metric
dissimilarities as distances in individual response spaces with an open
Euclidean geometry, solves the comron Euclidean stimulus space with its
lnd1v1dual power and scale parameters glven by also solved values aJk

In case of open-hyperbolic response spaces from hyperbolic stimuli we
solve a common Euclidean sensation space with dimensional adaptation
points that specify individual translation and weight parameters for the
individually rotated dimensions. These individually translated, weighted
and oriented dimensions of a Euclidean sensation space then relate to
response distances in an open-hyperbolic involution space of individual
responses. The solution starts with hyperbolic response distances 6 .,
that are scaled to 6 .. < 2 as scaled dissimilarity rank orders for eia:!
individual J. The op{1J..hyperbolic response space of each individual J,
as discussed at the rratherratical subsection end of section 4.3.2 .1. ,
are solved by the principal components of matrices C

J
with elements

cosh(6 . ,) = l/dl - tanh'(6 ,.)] c .. , (6lal)
Jl] Jl] J1]

where
(6la2)

(61a3)FClG=T+E,
J J J J J

:i:~~~:St her~ ~o~~~~ti~nf:t:=i;~Jct ~~e:~t:+~ d:a:nSsl~~r TJ ~~:~ ~~~.
We start bq/bking inr~iallY G

J
= I and obtainJlor k 0> 1 J1k

ar sinh{t ) = In[t 'k + v{t
2

, + l}] = r 'k I
and Jik J1 J1k J1 (6Ibl)

2[ar tanh{r 'k)] = In[(l + r 'k)/l - r
J

·
k

) = 2s 'k
J1 J1 1 J1

as elements of matrices
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S H = YA- 1 - V
J J J

(61b2)

(61b4)

(6Ib3)

=8 A
J,x+l J,x+l

-1
Q = CS'S 1 5' {s + v[r - A J}
W,X J J J L J,x

whereby

where diagonal matrix A and matrix V have the same definitions as for
(56a) and where H is a r'btation matrix that corresponds to G . By taking
for an individuaJ"T L initially A

L
= I and H

L
= I we have J

S = Y - V
L

where for x = 0 we tak.e again A = I and solve by eigenvectors/values
of J,O

Q QI = H A2 H' + E E', (6Ibs)
LJ,x LJ,x J,x+l J,x+l J,x+l J,x J,x

H and A underminimisedtrace(E E' }. Repeating (61b4) and
(~lBST for x'hXf~ads to convergence of H Jarfd i'::':: Doing so for all other
individuals with respect to L and againJ averag'1ng Y = S + V and Y for
each other individual as Y = [S H + V]A to y , we repdat the also for
J = L the matching with Y , wherIe'by forJeach fndividual again matrices
B and A are obtained. t

J J -1
Next we obtain S = [Y A - vj H' and compute from tanh (~ , ) = r. the
values sinh(r J) = tt J'k } ahd obtain t = cosh(r 1¥br k ;lifby

Jik Ji +1 Jil J~

k~rn 2
t = /[1 + I t 1
Ji1 k~' Jik

(61cl)

and gathered as elements of matrix T we obtain the first improvement of
rotation matrix G

J
for (61a3) from ~J of (61a2) by the eigenvectors of

F' T T' F = G 02 G, (61c2)
JJJJ JJJ'

and redefine T by F 0 from (61a2) as
J J J

~~~=~. (6k3)

Repeating the process from (61bl) to (61c3) until convergence allows a
!!'Ore optimal dissimilarity scaling by minimal changes of the predicted
values that fit the dissimilarity rank: orders, where predicted values
are obtained for d

Jij
= 1 + ;t

Jil
- t

Jj1 1
as

6" = ar cosh(d2 .. )1 = In[d .. +v'{d ,. - 1}l (61d)
1J J1J J1J J~J

where after the whole process from (61a1) to (61d) is repeated until also
the opti>nal scaling converges.

The above described Euclidean analyses are based on dissimilarity representations as
individual response-space distances, either as cosh(r]" - r}"), if the response space is
open-hyperbolic, or as 1f]" - r]" I, if the response space Is op~n-Euclidean, for response
function tanh(Y2S}") = r}" bf c~mparable sensations s}" = 2(y./a -1). Configurations in
open-Euclidean rdspons~ spaces of each individual tan be'solved by metric MDS
analysis (Torgerson, 1958) of scaled dissimilarity distances 0 <Ir}" - r1"1 < 2, while
principal component analyses of matrices with elements I < COSh(r~i - ~j) < cosh(2)
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solve the open-hyperbolic response configurations of individuals. The iterative solution
procedures solve the relationships between open-Euclidean response configurations and
the common Euclidean stimulus space or between open-hyperbolic response
configurations and a common Euclidean sensation space of hyperbolic stimuli.

If dissimilarity responses would have been defined by tanh[Y21 sI' - sI' ~] or
arctan[ ISr - sJ.1 ] then response and sensation distances would be monotoAic rMated.
This monbton~ relationship holds not for individual response distances in open
response spaces that are defined by tanh(Y1S

J
,):::: rJ' or arctan(sr) ::::rr for comparable,

hyperbolic or Euclidean sensations sr' Operi-Eucndean responlse spJces might apply,
because the stimulus space for human1perception most likely is Euclidean, which also
could follow from the evidence of:
I) Euclidean MDS-analyses of dissimilarities that consistently show sub~additivityof

segmental distances, which has led to the so-called monotonic bounded response
(BMR) model (Schonemann, 1983; Borg and Groenen, 1997, pp. 295-296», while
monotonic bounded responses are inherent to open response space distances;

2) Minkowskian MDS-analysis of dissimilarities by Groenen, Mathar, and Heiser
(1995) who found better fits for r =: 1.33 and r =: 1.66 than for r =: 1 and r =: 2,
which is expected foropen-Euclidean response space distances, because relatively
larger the closer they are to the space origin, which is approximated by
Minkowskian distances with a r-metric 1 < r < 2 or as we expect to fit best with
geometric midpoint r =: J2 as optimal r-metric.

Moreover, Dzhafarov and Colonius (1999, 2001) proved that multidimensional
Fechnerian scaling in stimulus spaces requires a partial integration over a
discrimination probability function between the probabilities that corresponds to the
stimuli of each pair. They derived that Fechnerian distances are location- and direction
dependent distances in a Finsler space of power-raised stimuli. However, we
hypothesised that only the logistic or Cauchy discrimination probability function
applies, where partial integrations over these probability functions correspond to
response distances in open spaces with a constant or zero curvature, wherein distances
are not location- and direction-dependent. In contrast to Dzhafarov and Colonius, we
distinguish between dissimilarity representations in response, sensation, and stimulus
spaces, wherein corresponding distances differ, dependent on the remoteness of the
response distances from their space origin. Only in power-raised stimulus spaces the
Fechnerian distances become Finsler space distances. However, the power-raised
stimulus fraction spaces have curvatures that are only direction-dependent, due to the
rotational parameters of dimensional power exponents, as discussed in chapter 3.

For the here above described solutions with a particular dimensionality we need
the data of rank ordered (dis)similarities between the object pairs of several individuals.
The set of objects must contain the more objects the higher the dimensionality of the
solution is, but the higher the number of individuals is the smaller the required number
of objects can be for a detennined solution. For N individuals, n objects and m
dimensions it must at least satisfy:

Vm(n-I)N > m(m-I)(N-I) + m(N-I) + n'm
(dissimilarities) (rotation weight location parameters)

and, not disregarding the loss of at least n degrees of freedom for the optimal scaling
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of dissimilarities for each individual. it requires approximately.

Ym(n - 3)N > m2(N - 1) + nom,

n>2m+3 and N ~ I

is needed, but a sufficiently overdetennined solution of the common Eudidean object
space requires N > n.

We assumed complete sets of individual dissimilarities for all object pairs. In
incomplete sets missing values can initially be filled in with arbitrary distance values,
where the quasi-complete set is then analysed as distances in an open response
geometry with a Euclidean or hyperbolic or elliptic distance metric. Assigned values
to missing values are then iteratively improved by replacement of their predicted
distance values until convergence occurs for assigned and predicted values of the
missing values. However, it requires more objects and/or individuals than required
above. Even the most efficient triad method for (dis)similarity comparisons asks
already Ym(n-I )-(n-2) pair comparisons per individual, which stimulus sets larger than
7 are hardly feasible to obtain. Moreover, triads of pair comparisons may induce
adaptation level shifts, which violates the assumed constancy ofadaptation level in our
analyses. For relatively large stimulus or object numbers complete dissimilarities with
negligible adaptation level shifts might be obtained by dissimilarity ratings of all object
pairs from a known object set, where firstly the least and most dissimilar pair of objects
are to be selected by an individual and quantified as reference magnitudes of
dissimilarity, say as I and \00. Secondly, the dissimilarities for the V2I1"(n-l) - 2 object
pairs are then directly rated by the individual as numbers between I and 100. Scaling
of such rated dissimilarities (or preferably their logarithm or square root) to between
zero and the maximum-allowed response space distance then gives the initial response
distances for the above described dissimilarity analysis methods.

Alternative solution procedures could be derived by Newton-Raphson or
steepest descent algorithms (Everitt, 1987) for improvements of an initial, common
Euclidean object configuration that after convergence of its geometric response
transformations may optimally fit the dissimilarities as individually different response
space distances. Such solution procedures are used in individual difference MDS
analyses (Carroll and Chang, 1972) and also in most existing other MDS-programmes
(Cox and Cox, 1994) or they use a majorisation algorithm that is for the first time
applied in the so-called SMACOF-analyses by Heiser (1981) and later in several other
MDS-programmes (Groenen, \993; Heiser, 1995; Borg and Groenen, 1997). Apart
from inappropriate sensation space solutions, these analysis techniques can have the
problem of local minimum solutions. although unlikely if the tunnelling technique of
the majorisation algorithm is applied (Heiser, 1995; Borg and Groenen, 1997, ch. 13).
Local minimum solutions are avoided by our semi-metric solutions that use no initial
object configurations, but Procrustes matching of metrically transformed spaces from
metric space analyses of initially and in the end optimally scaled dissimilarities as
response space distances. However, our main concern is not the solution procedure, but
the differing geometries of stimulus, sensation, and response spaces in our
multidimensional psychophysical response theory as well as the demonstration that
solutions for individual parameters and the common Euclidean object space exist.



CHAPTERS

VALENCE SPACE GEOMETRIES AND PREFERENCE ANALYSES

"The objective of this approach <construction ofprior
theory for geometric representations by rational
distancefunctions> is to build theoryfor the underlying
process which will eventuate in necessary and sufficient
conditionsfor metric representations to exist in the first
place and then for particular distance functions. This
approach is in a somewhat different directionfrom that
which seeks a geometrical representation directly for
purposes ofdata reduction and appears very promising.
The power ofmathematical methods in psychology will
not be substantially utilized without their use in the
development of theory in just this manner. "

Clyde H. Coombs. (1966). Scaling and Data theory.

Remark: the citation is from the last page of a draft text
"Scaling and Data theory" by Clyde H. Coombs, distributed
at the Nuffic International Summer Courses in Science, The
Hague. 1966. Later it is published as chapter 3 in: Coombs,
CH., Dawes, R.M., and Tversky. A. (l970). Mathematical
Psychology. Premice-Hall, Englewood Cliffs. NJ. The draft
text is altered in the book, where sentences at the ends of
chapters 2 and 3 cover the main content of the citation.
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5.0. Introduction

Sections 5.1 to 5.3 of this chapter describe the open valence space geometries that
derive from individual transformations of sensation spaces by the respectively
discussed monotone, single-peaked, or mixed valence functions. In section 5.4 we
derive a common Euclidean object space as reference space for the metric analysis of
optimally scaled preference rank order data. In order to be able to analyse the
preference data as metric transformations with individual parameters of the common
Euclidean object space, the gathered preference data not only must yield individual
preference rank orders of objects, but also which objects are not appreciated. The rank
order numbers that are translated to negative values for disliked objects specify the
gathered bipolar preference data that under preservation of sign become optimally
scaled within the range of the negative and positive limits of the open valence
geometries. The individually scaled object valences of several individuals define by
their inverse valence transfonnation and individual parameters a derivable, common
Euclidean or hyperbolic sensation space. Even if valence spaces would be
transfonnations of Minkowskian or hyperbolic sensation spaces with other r-metrics
than r =2 or respectively other curvatures than If =-I, we can only apply inverse
valence transfonnations to scaled valences that correspond to Euclidean or hyperbolic
unit-curvature spaces of comparable sensations. Therefore, only Euclidean or
hyperbolic unit-curvature spaces of sensations are derivable from valence spaces. Since
sensations can't be observed, we take in the sequel flat sensation spaces as Euclidean
and hyperbolic sensation spaces as unit-curvature spaces, where the latter spaces
correspond to a common Euclidean stimulus space. Thus, the common Euclidean object
space is either the stimulus or a Fechnerian sensation space.

We primarily consider valence functions that are hyperbolic tangent functions
for sensations with monotone valences or are products of two hyperbolic tangent
functions for sensations with single-peaked valences, as derived in chapter 2. Since the
sensation space is either Euclidean or hyperbolic, these finite transfonnation functions
define four different, open valence space geometries - two for monotone and two for
single-peaked valences. Referring to the arctangent function for single-elliptic response
spaces, described in section 4.2.1, we also consider the theoretically consistent
alternatives of the arctangent function as monotone valence function or the product of
arctangent functions as single-peaked valence function. Due to the geometric
relationships between response and sensation spaces, the arctangent-based valence
functions can only apply to individual valence transfonnations ofEuclidean sensations
that then define additionally two other, open valence space geometries, - one for
monotone and one for single-peaked valences. The six different geometries of open
valence spaces detennine correspondingly different multid imensional analysis methods
for preference data. These preference analyses are described in section 5.4. after
questions on applicability of existing preference analysis methods are discussed. In the
next sections wediscuss and illustrate the general aspects of the different valence space
geometries. Although arctangent-based valence function may hold, we only present
illustrations obtained by hyperbolic tangent functions for monotone valences or by
products of hyperbolic tangent functions for single-peaked valences.
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5.1. Weighted involution geometries of monotone valence spaces

5.1.1. Monotone valence spaces as weighted response spaces
The response or monotone valence functions that transfonn sensations to responses or
valences are identical functions as shown in section 2.2. of chapter 2. A monotone
valence dimension is a weighted response space dimension that has the higher weight
or more preference relevance the smaller its angle is with the ideal response axis that
contains the ideal point as limiting response space point for the ideal sensation space
infinity. This preference relevance is expressed by weights as cosines of angles with
that ideal response axis, since cosines have the larger values for the smaller angles.
Monotone valence spaces, therefore, are defined by weighted response spaces, wherein
preferences for objects with monotone valences are represented by response vectors
that are weighted by the cosine of the angle between their response vectors and the
ideal response axis. It defines, thereby, the ideal valence axis in monotone valence
spaces to be identical to an ideal response axis in response spaces. The angles between
object vectors and the ideal axis in response and monotone valence spaces are identical
to the corresponding angles between object vectors and the ideal axis in the sensation
or stimulus space with the adaptation point as origin, due to their projective
relationships. Projections of response vectors on the ideal axis in the open response
spaces are equal to the object valences, because their projection cosines are the
vectorial weights for the preference relevance of response vectors.

Since monotone valence spaces equal weighted response spaces, a monotone
valence space is rotationally invariant and an open space with either a non-Euclidean
or Euc1idean distance metric, according to chapter 4. Thus, correspondingly weighted
open geometries apply to monotone valence spaces, where the limit boundaries are
defined by the weighted limit boundary of its corresponding response space. The
weights are positive or negative cosines of angles between the ideal axis and response
vectors, whereby the limited boundary is defined by positive and negative circular (or
hyper-spherical) subspace boundaries of two reflected circularly (or hyper-spherically)
open subspaces that only share the adaptation point and together constitute the
monotone valence space. Since circular valence vector projection on the ideal axis
define iso-valent contours (contours ofequally preferred objects, also called iso-crests),
these iso-valent contours are reflected parts ofcircles (or parts ofhyper-spheres) within
the circular (or hyper-spherical) subspaces that are defined by the weighted limit
boundary of the open response space. The corresponding iso-valent contours in the
response space are described by straight response projection lines perpendicUlar to the
ideal axis (in the open-Euclidean response space or on the non-Euc1idean response
surface within the circular limit boundary). However, iso-valent response contours as
open lines orthogonal to the ideal axis become curves in the common Euclidean object
spaces, except for the ideal and indifference axes, due to the projective relationship
between open response spaces and infinite Euclidean object spaces.

If monotone valences are defined by weighted hyperbolic tangent functions of
hyperbolic sensations, then the corresponding monotone valence space has a Euclidean
distance metric, because monotone valence spaces then are weighted response spaces
with Euclidean involution geomerries. Maximum and minimum valences correspond
to the positive and negative limit value of the ideal and anti-ideal points on the
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corresponding ideal axis and limit boundary of the response space. The cosines of the
vectorial angles with the ideal axis detennine weights for the circular boundary of an
open-Euclidean (Poincare) response disc and thus define the weighted limit boundary
of two-dimensional valence spaces for monotone valences with a Eudidean metric
(thus also for such two-dimensional subspaces). That limit boundary of the weighted
response disc becomes a so-called lemniscate (that looks like circular butterfly wings)
with the zero-valence adaptation point as origin (the connecting point for the positive
and negative valued wings of the valence lemniscate) in the two-dimensional monotone
valence space. The ideal axis contains the anti-ideal point (with valence -I), the ideal
point(with valence + I), the negative and positive subspace centre points (with valences
-Y2 and +Y2) as loci of the circular lemniscate wings, and the adaptation as the zero
valence space point. Any dimension orthogonal to the ideal axis corresponds to zero
valence sensations and is called an indifference axis. As figure 29 below shows, the
interior of the valence lemniscate with a Euclidean metric corresponds to a weighted
Euclidean involution disc for responses, wherein objects with equal valences are points
located on positive and negative parts of iso-valent circles within the circular wings of
the valence lemniscate. Its iso-valent contours in the corresponding open-Euclidean
response space are straight lines perpendicular to the ideal axis with indifference axes
as perpendicular lines of zero-valence responses through the adaptation point as origin.
In an open response or its corresponding valence space with a Euclidean metric the
object valences are thus equal to Euclidean projections of response vectors on the ideal
axis or respectively to circular projections of valence vectors on the ideal axis, as
illustrated below.

ideal axis

-'-r'-
1... •... •...·1" I ·T...·... ·'l'!o., positive valence

-" I I :-:1'.
.... I I I I ":1 '"

, I I I I :1 .

I I I ""_"-j"~I vi..,;.
I
I
I

negative valence
lemniscate
wing

iso-valent

Figure 29. Iso-valent contours as partial circles in the circular valence lemniscate and
as straight lines in the open-Euclidean response disc (Poincare disc)
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The negative and positive valued wings of the valence lenmiscate may not have a
Euclidean metric, since that only holds for weighted hyperbolic tangent transfonnations
of hyperbolic sensation surfaces. The monotone valence transfonnation by weighted
arctangent functions of Euclidean sensations yields a weighted single-elliptic response
space as monotone valence space. Here weights for the preference relevance are the
cosines of angles between elliptic vectors and the ideal axis with the adaptation point
as origin of its single-elliptic response space. Thus, its monotone valences define also
oppositely signed valence lemniscate wings that have an elliptic metric. Similar matters
hold for weighted open-hyperbolic response spaces with a hyperbolic metric for their
valence lemniscates of oppositely signed valence wings, where weighted hyperbolic
tangent functions are then the monotone valence functions for the transfonnation of a
Euclidean space ofcomparable sensations. Each of the three geometries for monotone
valence spaces has an open, rotation- and translation-invariant geometry, because each
corresponding, weighted response space has a rotation- and translation-invariant, open
Euclidean, open-hyperbolic, or single-elliptic geometry as involution space of the
(Euclidean or non-Euclidean) stimulus space. The object valences in all valence
geometries are equal to the orthogonal projections of the corresponding response
vectors of objects on the ideal axis in the response space. For each of the three open
involution geometries of the response space this holds, because a Euclidean, hyperbolic
or single-elliptic vector that is weighted by its cosine of the angle with a dimension is
equal to its orthogonal projection on that dimension. Since the ideal response axis
represents the object valences in monotone valence spaces, they are also expressed by
circular projections of the valence object vectors on the ideal valence axis, which
defines the iso-valent contours to be opposite parts of circles within the positive and
negative wings of open lemniscate subspaces for the monotone valence space. It is
demonstrated in the next mathematical section that individual preferences from the
rotationally invariant space of monotone valences are represented by the response
projections on the ideal response axis that by its inverse response transfonnation
corresponds to an individually oriented and located ideal axis in the corresponding
Euclidean or hyperbolic Bower spaces of comparably weighted sensations.

We define again: m dimensions by indices {l .. ,k,l, m}
N individuals by indices {l..,I,J, N}
n choice objects by indices {l .. ,i,j, n}

The dimensional valences of individual J for obj ect i on dimension k
are denoted by v . , defined. by (24) for monotone valence dimensions,
while the finiteJafmensional maximum valences and the maximum space
valence are denoted by respectively v and v . TIle object valences for
an individual are denoted by v and '!is dimehsional valences by v .

Ji Jik

On the one hand we may assume that v . can be defined by the monotone
valence function for the sensation v{~tor of object i which function
then is identical to its weighted response function. Its weights are
weights for the preference relevance of that vector direction as the
cosine of the projection angle of the object vector on the ideal axis
as the dimension that is directed to the ideal point. TIlis definition
implies that monotone valence spaces correspond to weighted response
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spaces, whereby these valence spaces have the same rotati= invariance
as its corresponding response geometry.

on the other hand one may assume that the object valences are described
by the sum of its comparable dimensional valences as some individually
oriented sensation dimensions that are transformed by their monotone
valence function. It is proved here below that the simple addition of
rotated dimensional object valences yields identical preference values,
provided that the monotone valence functions for the corresponding
dimensional sensations are dimensional response functions that are
weighted by the cosine of the projection angle with the ideal axis.

Let dimension v be the valences on ideal axis 1 and ~ the angle
of valence vectg~lv with the ideal axis for individualJ~; then for a
rotational invariantJtknotone valence space as a weighted response space
with response vectors r and cosines of angles \l with ideal axis as

, Ji Jil
welghts for the preference relevance of response vectors we have

COS(\lJil) -r
Ji

~ v
Jil

(62a)

Now let in a two-dimensional valence space the orthogonal dimensions k
and h have angles B and!S = 90 0

- B with the ideal axis, then the
composite object v:tence v~~ is additfJely defined by

because
(62bl)
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Jih
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Jih

cos (90
0

[!SkI + 1J.
Jil

) 0 r Ji
whereby

sin (B
kl

) oSin(B
kl

+ \lJil) -r
Ji

cos (B
kl

) or
Jik

v
Jik

'
whereby

cos (B
k1

) ocos(B + \l 0 ) -r 0 = v
kl J1I Jl Jlk

Substitution of (62b2) and (62b3) in (62hl) gives

[cos (!SkI) -cos (!SkI + \lJil) + sin(B
kl

) -sin(B
kl

+ \lJil) 1 'rJi =

whereby

(62b2)

(62b3)

v
Ji

' (62b4)

cos (!SkI - [!SkI + \lJilJ ) orJi = cos (\lJil) -rJi = vJil = vJi (62b5)

Moreover corrbining (62b2) and (62h3) as the =tation of dimensional
responses h and k to the ideal response axis, we have

and thus
(62c)v

Jih
+ v

Jik
= r

Jil
= v

Jil
= v

Ji

Since this holds for any two-dimensional subspace (62bs) and equali ties
(62a) and (62c) uniquely define the monotone valence space of any
dimensionality to be a weighted response space with weights as cosines
of vectorial or dimensional angles to the ideal axis and the adaptation
point as origin for dimensions and object vectors_ The preference for an
object is equivalently expressed by 1) the simple sum of its dimensional
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valences, 2) the weighted sum of its dimensional responses, 3) the
(possibly curved) vectorial object valence, and 4) the object value on
the ideal response or valence axis, because the weights for response
vectors or dimensions are rotation weights to the ideal axis.

Let the weighted sum of response dimensions define the object valence,
then the geometric appropriate valence distance of an object with its
valence v , to maximum space valence v in the monotone valence space
of an ind{9idual is written as functio~ of dimensional responses r

Jikby

d(v - v } = d{v - rh ·r }
J Ji J '~1 Jk Jik

The additive dimensional valences define in the appropriate rotational
invariant response spaces the weights h as the rotation cosines of
angles between dimensions k and the ideaJfaxis for individual J, where
the rotation angle values h are by definition normalised to unity.
If the stimulus space is Eu<?l\dean then its hyperbolic sensation space
is transformed to monotone valence spaces by weighted hyperoolic tangent
functions. Thus its valence geometry is the weighted geometry of an open
Euclidean response space. Since a Euclidean metric applies the required
rotational invariance is guaranteed, while maximum space valence vJ = 1.

For arctangent functions as monotone valence functions the dimensional
valences are weighted elliptic response dimensions from flat sensation
dimensions and thus has the rotational invariant, open geometry of a
single-elliptic space. Its rotational invariance allows rotation weights
to the ideal axis for the additive valence dimensions as weighted sums
of single-elliptic response dimensions with rotation weights h . Here
the llEXimum space valence v = n/2, while the normalised sum of~ity
for the dimensional rotatio~ weights to the ideal axis also define
the object valences by the sum of its dimensional valences.

For hyperbolic tangent functions as monotone valence functions of flat
sensations, the valences define an open geometry with a hyperbolic
curvature and distance metric. In the rotation invariant open-hyperbolic
response space the weights also are defined as the rotation cosines to
the ideal axis with rotation weights that are normalised to unity and
where again the llEXimum space valence vJ =1.

The monotone valence spaces for (63a) define weighted respor.se spaces
of v = h . r with rotation cosines h as weights for preference
rele~~ce o'fk-th~i~esponsedimension k for 'Thdividual J. Thus as (63a)
this is written respectively for the three rotational invariant cases
by rotation cosines h for response dimensions k to the individual
ideal axis of individ~l J with object preferences v

Ji
as

'~rn

V = \' h'r = r ,
Ji 2, Jk Jik Ji

which by the corresponding angles in a derivable Euclidean sensation
space from open-hyperbolic response spaces writes as

ar tanh(-v ,) = ~ ,= L h {y. - a l/a = y,/a - 1, (63b2)
Jl Jl ',,1 Jk lk Jk Jk 1 J
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and for a Euclidean stimulus space with open-Euclidean response spaces

(63b3)

, - v
Ji 2/a k."m 2/a7,-.-V-"" = (x ,/b) J = U: hJk Ix. k/bJkI] J
Ji J1J ,~. l

For the derivable Euclidean sensation space from single-elliptic esponse
spaces it writes as

tan (V
Ji

) = B
Ji

= k,h
Jk

"2(Y
ik

- aJkljaJk = 2 (y/a
J

- 1) (63b4)

We see directly that the object valences in (63b) give a rank order (from
low to high values) of v , = r . that is the reversed rank order (from
low to high values) of df§tanc~~ to maximum space valence or stronger
that these metric distances and their obj eet valences are reflected
translations of each other.

The limiting boundary of these open valence spaces is determined by the
weighted response vectors with weights w . =cos (].l ,) for angle ].l . as
the angle between the ideal axis and theJi-esponsE?\or valencel -8"Jctor
of the obj ects i, which weight represents the preference relevance of
the response vector. Thus object valences also are projections of
response space vectors r , on the ideal axis, which projections define
the signed preference wi'li'i negative values for disliked objects.

v . = r , = tanh(-~s ,l
Jl Jl Jl

In case of hyperbolic sensation spaces the object valences or distances
to the maximum valence point are directly expressed by the hyperbolic
tangent of sensation projections on the hwerbolic ideal sensation axis
aa IValences as ideal axis in

lopen-Euclidean response and (63cl)
Ihyperbolic sensation spaces

or by its Euclidean distance to maximum valence as I-V,. This also can
directly be expressed by the hyperbolic involution of tK.§ ideal stimulus
axis in the Euclidean stimulus space as

2/a 2/a
v
J1

= r
J1

[1 - {xJ/b} JJ/[l + {XJ/bJl J (63c2l

The geometry for any two-dimensional, IT\C)notone valence subspace of (63c)
is described by positive or negative partial iso-valent circles within
a lemniscate with polar co-ordinates (v .)' - ~ = ~os (2"'J.l ,) for -~ and
+~ as loci of centres on the ideal axisJfcourant, 1960; p~72), whereby
its lemniscate wings become circular. The adaptation point with zero
valence is the centre of the valence lemniscate that is located within
its Poincare response disc, where the circular projections on the ideal
response axis also represent the object valences.

As (63bl shows the object valences become in the Euclidean stimulus
space an individually weighted, power-raised, and oriented axis, that
corresponds to the inverse involution of the ideal response axis. The
individual preferences on individually located, rotated, and power
-raised ideal axis in the Euclidean stimulus space imply that contours
of equally preferred objects in the corrm.:m stimulus space are different
curved iso-valent curves that are orthogonal to individually different
located ideal stimulus space axes.
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The individual ideal axes in a single-elliptic response space define

Ivalences as ideal axis in
Isingle-elliptic response (63c3)
land flat sensation spaces

where distances to maximum valence are elliptic arc lengths (%11 - v .).
Here the valence weighing transforms a hemispherical response surf~be
with unit radius to an elliptic curved lemniscate ?:\-cos(2'~ ,) for the
angles].l . of elliptic object vector i with the ideal axis .:rh half a
circle <ilia a zero valence adaptation point as centre of the valence
lemniscate on the single-elliptic response sphere. The ideal axis in
that response space again represents the individual valences of obj eets.
In a flat sensation space the valences are thus represented by the
tangent transformation of that ideal valence axis as half a circle. It
corresponds to an individually rotated, located, and weighted axis in a
derived comoon Euclidean sensation space. Individually equal preferences
correspond in this Euclidean sensation space also to differently curved
iso-valent curves that are orthogonal and symmetric to the ideal axis.

Alternatively the individual ideal axes in open-hyperbolic response

spaces define IValences as ideal axis in
lopen-hyperbolic response (62c4)
land flat sensation spaces

where distances to maximum valence are hyperbolic arc lengths (l-v ,).
Here the valence weighing transforms the open-hyperbolic response sIMce
with a unit radius to a hyperbolic curved lemniscate surface.

In the above mathematical subsection it is shown that object preferences with monotone
valences can equivalently be expressed by valence distances of objects to the ideal
valence space point and by the object valences, which are reflected translations of each
other. Moreover, it is proved that the object valences as weighted responses are equal
to the sum of their dimensional valences. defined by rotationally weighted dimensional
responses, because the weights for the preference relevance of responses are their
rotation cosines to the ideal axis. It defines the object valences to be identical to the
object values on the ideal axis in the response space and iso-valent contours in a two
dimensional monotone valence space as parts of circles within the circular valence
lemniscate as limit boundary of its open, two-dimensional valence space. It also means
that the preferences of objects with monotone valences are equivalently evaluated by
their sum of the independent valence dimensions and by the circularly projected
valence vectors or orthogonal response vector projections on the ideal response axis.
The preference of objects then is a compensatory additive composite ofthed imensional
valences from independent monotone valence dimensions. Forexample, the preference
for jobs could be evaluated by the monotone valences for two independent sensation
dimensions as the monetary aspect of the job salary and the ethical aspect of the job
work, where each sensation dimension is assumed to have an infinity as ideal. The
monotone valence space then yields valence dimensions that are equal to its weighted
response dimensions that are weighted by their rotation weights to the ideal response
axis. The preference evaluation then becomes the sum of the weighted dimensional
response dimensions. Since the response dimensions are weighted by the cosine of their
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angle with the ideal axis, then preferences are equivalently defined by (I) the sum of
the weighted response dimensions, (2) the circular valence vector projections on the
ideal valence axis, and (3) the object values on the ideal response axis. Preferential
weights as cosines of angles to the ideal response axis can equivalently be seen as
preferential weights of objects in the comparable Bower space, because vector angles
in response and Bower spaces are equal and the ideal response axes are response
transfonned ideal sensation axes.

By weighted sums of the signed dimensional responses, the monotone valence
values of objects become compensatory additive values of individually oriented and
weighted dimensions of open-Euclidean, or open-hyperbol ic or single-elliptic response
spaces. Valence dimensions orthogonal to the ideal axis are indifference axes with zero
valence. Objects with zero valences need not to represent sensations with a
psychologically neutral valence, as holds for objects on the indifference axis with zero
preference-relevance, because valences may also derive from a balance of conflicting
positive and negative object valences. An internal conflict between balancing positive
and negative underlying dimensional valences becomes resolved in ambivalent
indifference. Since such individual cognitive conflicts are a psychological reality for
individuals in forced choice situations, the compensatory additive (of positive and
negative valued) valence dimensions describe the actual underlying cognitive process
of preference evaluation. The zero valence of ambivalent choice indifference derives
not from a preference irrelevance, but from a zero sum of positive and negative
dimensional valences of choice objects. Only objects with dimensional zero valences
are preferentially neutral objects, but these objects then coincide with the adaptation
point in the monotone valence space or are located in subspaces of indifference axes
in open response and infinite sensation spaces. In this chapter we only consider the zero
valences of valence-neutral indifference, while the zero valences of ambivalent
indifference from a conflicting balance between positive and negative valence
dimensions are further discussed in chapter 7

5.1.2. Iso--valent contours ofmonotone l'alences
We investigate the preference structure by iso-valent contours in the common Euc!idean
object plane that can be derived from two-dimensional monotone valence spaces of
several individuals. Since the ideal response axes of individuals must be scaled to axes
in response spaces with a radius of unity for their transformation by inverse hyperbolic
tangent or tangent functions to individually oriented ideal axes in individually weighted
and translated sensation spaces, the derived sensation space from open-hyperbolic or
single-elliptic ideal response axes of individuals is Euc!idean. This also holds if the
monotone valences of objects would be generated from Minkowskian sensation spaces
that correspond to response spaces with curvature Ic; I = r/2 as the relation between
r-metrics of flat spaces and curvatures of non-EuclideJ"n spaces (see: chapters 3 and 4).
If objects only have monotone valence attributes, such as monetary value and societal
esteem (positive ambience, no saturation level), or environmental pollution, pain, and
anxiety threat (negative ambience, no deprivation level), then monotone valence spaces
apply to the preference evaluation of its multidimensional objects. It is already shown
that individual preference evaluations of objects then reduce to individual valence
values of objects on the ideal axis in their response space, wherein iso-valent contours
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are defined by orthogonal projections on the ideal response axis. However, the circle
parts of the iso-valent contours in the monotone valence space (figure 29) become
oppositely symmetric-curved contours with respect to the indifference axis in the
Bower spaces of comparable sensations. Figure 30 illustrates the iso-valent contours
of an individual in a Eudidean Bower plane of comparably weighted and individually
translated Fechner sensations. This illustration derives from the inverse hyperbolic
tangent transfonnation of an open-hyperbolic response surface with straight iso-valent
lines on its surface to a Euclidean Bower plane of comparable sensations. The
orthogonal ideal and indifference axes in two-dimensional response spaces become
represented as individually oriented straight axes that remain orthogonal to each other
in the corresponding Euclidean Bower plane, However, the straight iso-valent lines on
the hyperbolic response surfaces become oppositely oriented curves in Euclidean
Bower planes, because the inverse response functions projectively transform open
response spaces with respect to the individual adaptation points as projection centre to
infinite Euclidean Bower planes.
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Figure 30. Iso-valent contours for monotone valences in a Euclidean Bower plane

This figure shows that iso-valent sensation curves are oppositely curved lines on the
positive and negative side of the indifference axis in the Bower plane of individually
weighted and translated Euclidean sensations, where the curvature of these iso-valent
curves increases with their distance to the indifference axis. If weighted hyperbolic
tangent functions are the monotone valence functions that transform a hyperbolic
Bower sutface of comparable sensations the representation of figure 30 is slightly
improper, but orthogonal ideal and indifference axes and oppositely symmetric iso
valent curves yield a similar representation on the corresponding hyperbolic Bower
sutface. The increasing curvature of iso-valent curves in the Euclidean plane or
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increasing distances between iso-valent curves on the hyperbolic Bower surface is the
result of the inverse stereographic projection of the straight iso-valent lines in the
respectively open-Eudidean or open-hyperbolic response space. Here the inverse
stereographic projection corresponds to the inverse hyperbolic tangent transfonnation
of the response vectors, whereby straight iso-valent lines in response spaces with unit
(pseudo-)radius become oppositely symmetric iso-valent curves in the Euclidean or
hyperbolic Bower plane of individually translated and weighted sensations. The
individual ideal and anti-ideal points in the Euclidean or hyperbolic sensation plane (an
anti-ideal point represents the sensation of the most repulsive imaginary object for an
individual) are infinitely far away on the extended positive and negative side of the
ideal sensation axes and are thus positive and negative infinities in opposite directions.
However, for both infinite sensations the valence is limited to the singular maximum
or minimum value of the response transformation of the ideal sensation axes. The
representation of the iso-valent curves in the conunon Euclidean object space of
Fechner sensations spoils the orthogonality of the ideal and indifference axes and the
opposite symmetry of iso-valent curves, because derived from Bower planes with
individually different dimension weights by their inverse weights as half the
dimensional value of individual adaptation points that also define different origin
locations for oblique ideal and indifference axes of individuals in the common
Euclidean object space of Fechner sensations.

If weighted arctangent functions are the monotone valence function then the
corresponding indifference and ideal axes in the single-elliptic response space become
elliptic axes, compamble to orthogonal meridians of a hemispherical globe with the
adaptation point as pole and the equator as limit boundary of the response space. The
iso-valent lines on a hemispherical response surface are orthogonal projection lines
onto the ideal axis as hemispherical globe latitudes parallel to the equator, which
analogy was also used for latitudes as iso-distant response circles in single-elliptic
response spaces. In the correspondingEuclidean Bowerplane these iso-valent response
projection lines become again oppositely curved lines with respect to the indifference
axis by their implied radial projection (with respect to the zero-valued adaptation points
as polar projection centre). Thereby, also the curvatures of the oppositely concave iso
valent curves increase with their distance to the indifference axis in the corresponding
Euclidean Bower sensation plane. Thus, similar to figure 30, the oppositely oriented,
convex iso-valent circle parts within the valence lenmiscate on a hemispherical
response space become also oppositely concave-curved lines with respect to the
indifference axis in the Bowerplane of individually weighted and translated sensations.

The orthogonal object projections on the ideal sensation axis in the Euclidean
Bower space of comparable sensations deviate with respect to the adaptation point by
symmetrically monotone transformations from the curvilineal object projections along
the iso-valent curves that correspond to straight projection lines on the ideal axis of
single-elliptic and open-hyperbolic response surfaces. Therefore, the individual
preference rank orders of objects with monotone valences are identically represented
by the orthogonal projections of the objects on the ideal axis in the Euclidean Bower
plane of individually translated and weighted Fechner sensations. However, different
individuals generally not only have differently located adaptation points and differently
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oriented ideal axes, but also differently located and oriented curvilineal iso-valent
projections of objects on their ideal axes. Thus the object valences are not presented
by the orthogonal object projections on ideal axes with individual orientations. but the
object configuration in the common Euclidean sensation space can be derived from the
equivalent rank order of preferences and Euclidean object projections on individually
rotated ideal axes in the Euclidean Bower space. Translations of individual ideal axes
to a common Euclidean space origin don't change its Euclidean object projections, but
they change by the individually different dimension weights in the transformation of
individual Bower sensation spaces to a common Euclidean sensation space. Thus, the
correct object configuration and the rank order of individual preferences can only be
derived by the Euclidean projection of objects on individually oriented ideal axes in a
common Euclidean object space, if its dimensions are individually weighted. Since the
individual weights for the comparable sensation dimensions with monotone valences
are defined by twice the inverse of their dimensional adaptation point values, these
weights also detennine the individual adaptation points. Thereby, also the individually
located and rotated ideal axes in the common Euclidean sensation space can be
detennined, but then only if the preference analysis takes individual dimension weights
into account. The individual preference rank orders in the preference analysis by the
so-called linear vector model without individual dimension weights (Tucker, 1960) are
defined by rank orders of orthogonal object projections on individually rotated
dimensions in a common Euclidean object space, which thus demonstrates that linear
vector model without individual dimension weights, may only correctly recover the
object locations in the common Euclidean sensation space, if the adaptation points of
individuals are identical. Identical adaptation points may hold for randomly presented
choice objects, but if the assumption of a common adaptation point is violated then the
linear vector model cannot resolve the actual object locations, nor the location and
rotation of individual indifference and ideal axes (unless individual dimension weights
are also taken into account and where then these weights equal twice the inverse of the
translation parameters to the adaptation point as individual space origin).

If the sensation space is not Euclidean then the senstation space is hyperbolic
and derives from a positive Euclidean stimulus space that is an exponential
transfonnation of the hyperbolic Fechner sensation space. However, their monotone
valence spaces derive from weighted hyperbolic tangent transfonnations of weighted
and translated, hyperbolic Fechner spaces as comparable sensation spaces, where the
dimensional sensation weights are different for individuals with correspondingly
different adaptation points that also detennine individual translations. Thus, the
corresponding stimulus space is a dimensionally power-raised Euclidean stimulus
fraction space with dimensional unit points for the adaptation point and with
dimensional power exponents that equal the individual sensation dimension weights,
whereby their power-raised Euclidean stimulus-fraction spaces generally will also be
individually different. Since individuals generally have different adaptation points for
cognitive object attributes with monotone valences, the straight iso-valent lines and
indifference axes in the open-Euclidean response spaces of individuals become
differently transfonned to asymmetric iso-valent curves with varying curvatures and
hyperbolic curved indifference axes in their differently power-raised and scaled
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Euclidean stimulus-fraction planes. due to the exponential transformation of the
correspondingly different hyperbolic spaces of their comparable sensations.
Nonetheless, the ideal stimulus axes of indviudals remain straight axes in individually
scaled stimulus-fraction spaces, due to inversely power-raised axes of the inverse
involutions of their ideal response axes with the same rotation cosines for their
orientation in response and stimulus-fraction spaces, provided that the adaptaion point
is the individual rotation centre. Therefore, also in the common Eudidean stimulus
space the ideal axes of indviduals remain indvidually orineted, straight lines that all
originate from the stimulus space origin if we assumethat the stimulus space origin is
the ideal or anti-ideal stimulus point for each invidual. An example of asymmmetric
curved iso-valent contours in the common Euclidean stimulus plane is shown in figure
31 below, where the representation derives from the inverse power and scale
transfonnations of the exponentially transfonned, hyperbolic space of comparable
sensations with oppositely symmetric iso-valent curves and dimensional weights that
also define the dimensional power exponents of stimulus-fraction spaces.

\ " ......-..-..
--------

Fig. 31. Iso-valent curves ofmOlwtone valences in a common Eudidean stimulus plane.

The inverse hyperbolic involutions of ideal response axes yield differently oriented
ideal axes in the individually scaled (by the inverse of the dimensional adaptation
points) and power-raised (by twice the inverse value of the logarithmic distance
between the dimensional adaptation and just noticeable points) Euclidean stimulus
space. Due to the involution transformation of the ideal axes the object rank order on
the ideal stimulus space axis is reversed with respect to the ideal response axis. In
individually weighted spaces of the common Euclidean stimulus space the Euclidean
object projections on individually oriented ideal axes are monotonic transfonned values
of their ideal response axes, because the response transfonnations of object projections
to ideal stimulus axes are monotone transfonnations. However, the rank order of object
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projections on ideal axes in the common Euclidean stimulus space may be different.
Thereby, Euclidean object projections on individually oriented ideal axes in the
common Euclidean stimulus spaces only yields a monotone transfonnation of its
monotone valence values if the common Euclidean stimulus space dimensions are
individually weighted. Thus, the preference analysis by the linear vector model without
individual dimension weights of the common Euclidean stimulus space represents not
the preference rank orders of individuals by the rank order of the orthogonal object
projections on individually oriented ideal axes, unless individuals would have identical
adaptation levels. If we assume identical adaptation points for all individuals and a
Eudidean stimulus space, then all individual response spaces are identical, whereby
their monotone valences could only differ by individually rotated ideal axes. The linear
vector mode! then could as well solve the open-Eudidean response space, because the
orthogonal object projections on the individually rotated ideal response axes define the
object valences in a then common assumed open response space with a Eudidean
distance metric. However, monotone valences for stimulus dimensions define that the
stimulus space origin must correspond to the ideal or anti-ideal point of all individuals,
because all stimulus dimensions originate from the stimulus space origin that becomes
a common and unique point on the limit boundary of the open response space. It would
then mean that the orientation of ideal axes in a common-assumed response space is
identical for all individuals, because the ideal response axes of individuals then not
only share the response space origin as common adaptation point, but also the unique
limit boundary point that represents the stimulus space origin. Thereby, also all ideal
axes would be identical if individuals have identical adaptation points.

If individuals have no common adaptation point then their ideal axes still share
the stimulus space origin, which implies that the ideal axes of individuals share a
unique negative sensation infinity in the common hyperbolic or Eudidean Fechner
sensation space. Thus, if the sensation space is the common Euclidean object space
then this would mean that ideal sensation axes of all individuals are parallel axes in the
common Euclidean sensation space. In hyperbolic spaces parallels diverge from some
common infinity. Thus, if the sensation space is hyperbolic then ideal axes of
individuals are diverging axes from a common infinity, whereby also individual ideal
axes in the common Euclidean stimulus space have different orientations. Since the
ideal axes of individuals are not restricted to parallels in the common Euclidean object
space, we seem to have another strong theoretical argument for the hyperbolic
geometry of sensation spaces and the Euclidean geometry of the stimulus space.
However, stimulus spaces that have a physically defined common origin generally have
no monotone valences, but single-peaked valences (e.g. intensities of temperature,
pressure, loudness and pitch of sound, brightness and hue of light, etc.), except bodily
pain that may be seen as a physical stimulus dimension with monotone valences. Other
object attributes with monotone valences, such as the valences of monetary value,
esteem, threats, social power, umeliability etc., seem all cognitive attributes. One may
question the validity of a common, stimulus-like space with a common origin for
objects with cognitive attributes. Firstly it is not well defined that such cognitive
attribute spaces of objects have a commonly defined origin in the stimulus-like attribute
space (although learning theory would imply a common stimulus-like space origin for
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the individually learned complexes of mediating response-sensations as cognitive
attribute sensations). Secondly, there is no guarantee that individual valence or
response spaces for cognitive objects derive from individual transfonnations of a
common object space (learning theory would suggest that this may only be the case if
the learning history ofcognitive meanings is shared by individuals). So it very well may
be that cognitive attributes with monotone valences don't share a common negative
sensation inflllity that would correspond to a common origin of the stimulus-like space
ofcognitive objects. The above mentioned strongargument for the hyperbolic sensation
and Euclidean stimulus spaces would then be misleading, because either the assumption
of the existence of an underlying common object space for objects with monotone
valences may be wrong or a common space origin might not exist for object attributes
with monotone valences. In the latter case individual ideal axes may still have different
orientations in a common response space, but if there is no underlying common object
space then the fit of the solutions by the linear vector model must be rather poor. It also
would mean that individual ideal axes need not to be parallel in the common Euclidean
sensation space, but then the fit of the linear vector model must still be rather poor if
adaptation points are different andlor no underlying common object space exists.

5.2. Open-hyperbolic or -Hnsler geometries of single-peaked valence spaces

Let a Euclidean sensation plane of objects with single-peaked valences be described by
two orthogonal sensation dimensions that are weighted for their valence comparability
to equal distances between the dimensional adaptation and ideal points and where the
ideal point is the origin. Then the adaptation and saturation points on each of the
dimensions correspond to four oppositely located sensation plane points (a

l
,a

2
),

(sl,s2)' (ai's?) and (a?,sl) that have zero valences with the ideal point as centre WIth
maxImum valence. Toe rotated dimension that contains the space adaptation point
(a

l
,a

2
) and an opposite saturation point (SI ,s2) as well as the ideal point as origin with

maximum valence is an ideal sensation axis WIth single-peaked valences. However, the
other orthogonal sensation dimension that originates from the maximum valence point
also contains two opposite located sensation space points (a l ,s2) and (a

2
,sl) with zero

dimensional valences. So here the sensation dimension orthogonal to the Ideal sensation
axis corresponds not to an indifference axis, but its weighted sensation dimension also
has a single-peaked valence function. In fact in comparably weighted sensation planes
with ideal points as rotation centres all rotated sensation dimensions have single peaked
valences and contain two points with zero valence at equal dimensional distances from
the ideal point with a maximal valence. As shown in the sequel equally preferred
objects are described by circular iso-valent contours with the ideal point as centre in
such weighted Euclidean sensation planes. Sensation spaces with dimensional weights
that equalise the dimensional distances between adaptation and ideal points make the
valences for the weighted sensation dimensions comparable, while their corresponding
valence dimensions have identical, symmetrically decreasing valences with respect to
the maximum valence of the ideal point. Such weighted sensation spaces that are also
translated to the ideal point are called valence-comparable Bower spaces in analogy to
the intensity-comparable Bower spaces in chapter 4. The reflected saturation level with
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respect to the adaptation point defines the deprivation level that generally coincides
with the just noticeable sensation. Thereby, the dimensional sensation distance between
the ideal and adaptation points generally equals half the dimensional distance of the
adaptation point to the just noticeable sensation point as origin of the Fechner space.
Thus, the weighing by weights 2/a

J
for intensity comparability generally equals the

weighing for valence comparability~y the inverse of dimensional distances between
the adaptation and ideal points as weights l/d

Jk
:::: 1/1 aJk-gJkl, where

dJk :::: IaJk - gJk I :::: V21 aJk - sJkl :::: Y2[aJk - uJkl = VlaJk
provided that the Fechner space origin defined by just noticeable sensations llJk:::: 0 is
also the deprivation space point defined by reflected saturation level Sjk wiili respect
to the adaptation point. Thus, for single-peaked valences with positive ambiances

Sjk::: 2ajk and gjk= Y2(a
Jk

+ sJk) ::: 3a
Jk

/2,

or for single-peaked valences with negative ambiances gJk::: Y2(a
Jk

+ u
Jk

)::: Y23
Jk

Therefore, valence-comparable and intensity-comparable sensation spaces are
differently translated and equally weighted Fechner spaces, if the dimensional
deprivation levels coincide with the just noticeable sensation point as Fechner space
origin. Clearly this may hold for Euclidean and hyperbolic sensation spaces.

5.2.1. Single-peaked valence spaces as transformed response spaces
In chapter 2 we defined single-peaked valences as the product of opposite response
functions for sensation differences from respectively the adaptation and the saturation
points or the adaptation and deprivation points. Thereby, single-peaked valence spaces
become conveniently described in terms of metrically transformed response spaces. In
the next mathematical subsection it is firstly shown that dimensional single-peaked
valences can also be expressed by transformations of sensation distances dr between
objects and the ideal point and distance d

J
between the adaptation and ide~l points,

which for hyperbolic tangent-based, single-peaked valences give

v
Ji

::: tanh[Y2(d
J

- d
ji

)Hanh[Y2(dj + d
ji

)]

vji = [tanh4Y:zdj ) - tanh2(Y2dji)]1 [I - tanh2(Y2CI/tanh2(Y2Clji)]·

Defining quasi-responses tr ::: tanh(Y2dr ) we see that hyperbolic tangent-based
valences are defined by hypArbolic differJnces between squared responses t/. with
respect to the maximum valence vj ::: tanh2(Y2d

J
) for dr ::: O. The space 0 ~uasi

responses tr itself is either open-hyBJ~olic(if the sensation ~pace is Euclidean and the
stimulus spa1ce hyperbolic) oropen-Euclidean (if the sensation space is hyperbolic and
the stimulus space Euclidean). The single-peaked valences ofEuclidean sensations can
also derive from arctangent-based single-peaked valence functions if the stimulus space
is double-elliptic, whereby their single-peaked valences are correspondingly written as

vji ::: arctan[dj - dJj)]·arctan[dj + dji)],

but this expression can't be rewritten in terms of elliptic difference of squared quasi
responses tji to a squared maximum quasi-response tj of a single-elliptic quasi
response space.
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Valence-comparable, Euclidean sensation spaces of hyperbolic stimuli define
the dimensional distances to ideal points by drk/d

Jk
, For m-dimensional Euclidean

spaces of valence-comparable sensations the slrtgle-peaked valences are defined by

vJi ::: tanh[V2{ 1 - .j~fdJik/dJk)11.tanh[Y2{ 1 + ;f:dJik/dJk?11

VJj = tanh[V2(l - dJ/dJ)Hanh[Y2(l + dj/d)]

v = tanh2(Yz) = 0.21355 and v =-1,
max mm

\Ji"VJi = qJi = tanh[-V2(l - dJ/d])]

~Ji = -l/taOO[1/2(1 + dJ/dJ)].

With reference to the theoretical possibility of single-elliptic response spaces from
arctangent transfonnation of Euclidean sensations spaces, there also may exist single
peaked valence functions as products of arctangent functions of unity minus and plus
the valence-comparable. Euclidean sensation distances with respect to individual ideal
points. For a valence-comparableEuclidean sensation space that derives from adouble
elliptic stimulus space we then analogously have

with

where

Vji :::: arctan[l - dJ/dlarctan[l + dJi/dJ]

v =:arctan2(l) =: (l/<Ilt)l =: 0.61685 and
m"

v . =: _v.11t2 =: -2.4674,
mm

'nd
orJ( vJi =: qjj:::: [arctan(l - dJ/dj )]/(V21[)

orJi :::: ljmlarctan[l + dJ/dj ].

Since quasi-response spaces qI' =: or]' ,vI' are open-hyperbolic or single-elliptic spaces,
single-peaked valence spaces ~I' f6r Jalence-comparable Eudidean sensations are
described by open spaces with Jariable curvatures or}" where its curvatures or . are
defined by the inverse values of other quasi-response sJaces. For the arctangent-lksed
valences the factor lj21[ is introduced in order to express the space curvatures in decimal
values instead of radians. The spaces of single-peaked valences with curvatures or1'
define an open Finsler geometry with varying curvatures that in absolute value decreasJ
with increasing distances to the ideal point. Equally preferred objects describe iso
valent circles or (hyper)spheres with the ideal point as centre in the open geometries of
single-peaked valences for valence-comparable Euclidean sensations of objects with
a non-Euclidean stimulus or attribute space. These circular iso-valent contours have
different, but constant curvatures, because dependent on their radii as distances to the
ideal point as circle centre. It defines the open Finsler geometry of single-peaked
valence spaces to be conditionally rotation-invariant for the ideal point as rotation
centre, since other rotation centres would change the point curvatures. Spaces with
varying curvatures define a so-called Finsler geometry (Busemann, 1950b, Rund, 1959;
Asanov, 1985; Matsumoto, 1986). The single-peaked valence spaces are described by
open Finsler geometries with absolute curvatures that decrease with their valence
distances to the ideal point (also with their valence-comparable, Euclidean sensation
distances to the ideal point), whereby these spaces are very specific Finsler spaces.
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In the next mathematical section we also show that hyperbolic-tangent-based
single-peaked valences for valence-comparable Euclidean and hyperbolic sensations
can also be written as

vJi :=: tanh[ -1/2In (cosh(dJ/dJ)!cosh( I)}].

Notice that here terms cosh(dJ.ld
J
) express proper hyperbolic distances to the ideal

point in hyperbolic spaces of vAlence-comparable sensations from Euclidean stimuli,
while tenns COSh(dr/d

J
)for Euclidean sensation spaces are transformed distance terms.

The inherently prop~r istance expression of valence-comparable hyperbolic sensation
spaces can be regarded as a strong theoretical argument for the hyperbolic nature of
sensation spaces and the Euclidean nature of the stimulus space. Independent
dimensional distances cosh(drk/d

Jk
) multiply to space distance cosh(dJ.ld

I
), whereby

open single-peaked valence s~aces of hyperbolic sensation spaces havk dimensional
valences that are hyperbolically additive, which for two-dimensional spaces writes as

vJi = (vJik + vJih)/ ( 1 + vJik·vJih)'

Single-peaked valence spaces for hyperbolic sensations also are projective
transformations of flat spaces of dr = In[cosh(dJ.ld

J
)] with r-metric r= I, due to the

city-block additivityofd
rk

thatcorr~spondsto the hyperbolic additivity of dimensional
valences v

JY
It defines kmgle-peaked valence spaces of hyperbolic sensations to be

open-hyper~olicspaces with a constant curvature c; = -V2, because! c; I = r/2 specifies
the relationship between curvatures of non-Euclidean spaces abd r-metrics of
corresponding flat spaces, as derived in section 3.1. The open-hyperbolic geometry of
single-peaked valences for hyperbolic sensations also follows from the equality

tanh2(Y2dJ/dJ) = (vmax - vJ/(l - vmax·vJi)·

because (v - vr)/(l - v ·v
r

) equals a hyperbolic valence difference from the
maximum ~ffencelpoint, ~h by tanh2(Vzd

J
.ld

Jk
) equals a parabolic distance as

squared distance of open-Euclidean quasi-res~onse spaces. The conformal distance
metric of hyperbolic sensation spaces and their open-hyperbolic single-peaked valence
spaces applies not for the flat sensation spaces with open Finsler geometries of their
single-peaked valences, which is another theoretical argument for the hyperbolic
geometry ofsensation spaces and the Euclidean geometry ofstimulus spaces.

In two-dimensional, single-peaked valence spaces and in corresponding
hyperbolic or Euclidean spaces of valence-comparable sensations the iso-valent
contours are circles, because single-peaked valences vrare monotonic transformations
of dr/d

r
Notice further that the inverse function trlnsformation of single-peaked

valentes v
r

= tanh[-V2In{cosh(dJ.ldJ)/cosh(l)}] with an open-hyperbolic or open
Finsler gedmetry defines an e{pficit transformation to dr/dr whereby the
corresponding common Euclidean stimulus or sensation space ~an be solved from
optimally scaled single-peaked valences of several individuals, as shown in section
5.4.3. A hyperbolic or elliptic additivity of dimensional valences holds not for open
Finsler spaces of single-peaked vaJences that derive from valence-comparable
Euclidean sensation spaces. However, its hyperbolic tangent-based valences define

V2d
J
Jd

J
=artanh[v{(v -vJ.)!(l-v .V

J
.)}]

1 max I maxI
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whereby it follows for m-dimensional, valence-comparable Euclidean sensation spaces
of hyperbolic stimuli that

(\i - v). )/(1- \i .v).)= tanh2( If'artanh2[ y' {(v - v)ik)/(l- v 'v)Ok)} J}.
max I max I .=1 max max 1

It is tempting to assume by analogy of the hyperbolic tangent function that also
arctanl(dJ.ld ) = (v - Ill' )/(1 - v -111') holds for arctangent-based single-peaked
valences dfFuclideWifsensltions, blrNor Jr = arctan[l - d

l
.Jd

J
].arctan[l + dJ.ldJl we

could not prove that this holds. We can\ewrite the la ler product of ardtangent
functions by differences between squared arctangent functions of functions for dJ.ldJ'
However, itdescribes these single-peaked valences as differences between the squ1red
values of two variable points in a single-elliptic space. Thereby, no direct solution of
dJ.ld

J
by an explicit inverse function of vI' seems possible for arctangent-based single

pekked valences. But, since dJ"/d
J

= I - dn(Vm'9 .·v .) with their variable curvatures
9J" = YmJarctan[l + dJ.ldJ)J wJ can iteratively sofJe J~.IdJ by initial and successively
irrtproved values of 9/ and optimally scaled bipolar prbferences as vr The observed
bipolar preferences (n~gative and positive rank order values for respebively disliked
liked objects or bipolar preference ratings) need to be scaled to values vJ' that allow the
application of their inverse transfonnation d.r/d.l or cosh(dJ.ld

J
). It me~ns that initial

and iteratively optimal scaling of observed DIpolar preferen~e data must be between
v =.2l355andv. =-lorv =.61685andv. =-2.4674 under preservation of
.,max. C mm I jl1ax... fl . mm I 0 E 10d ( 0melr sIgns. onsequent y a SOlveu at sensatIOn space a ways IS uc lean agam
sensation spaces are not observable, but are derived spaces from response or valence
spaces wherefrom Minkowskian sensation spaces can't be derived), while a solved
hyperbolic sensation space corresponds to a Euclidean object or stimulus space. In the
next mathematical section we derive the geometric aspects of the respectively different
open spaces of single-peaked valences, as summarised above, from the metric valence
transfonnations of a common Euclidean or hyperbolic sensation space.

We again define: In dimensions by indices {l .. ,k,l, m}
N individuals by indices {l..,I,J, N}
n choice objects by indices {l .. ,i,j, n}

In case of single-peaked valence functions the valences are defined by
(25a) as products of positively and negatively signed hyperbolic tangent
functions of unidimensional sensations y. with respect to individual
adaptation and saturation points a and g on a sensation dimension.
For individual ideal point g '" ~d + a '1, we obtain by (2Sa) single
peaked valences with a positive amb'1anceJ as product of the next two
hyperbolic tangent functions

tanh[~{Yi - aJ}J '" tanh[~{{gJ - a
J

) + (Y
i

- gJ)}]

tanhH~{y, - s }J '" tanh[~{ {g - a } - (y, - g )}J,
1 J J J 1 J

while for single-peaked valences with negative ambiances the sign of the
first functions only interchanges, where in both cases the single-peaked
valences v , are written by d '" la - g I and d , ='iy. - g i as

Jl JJJ JllJ
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(64a2)

V
Ji

= tanh[~(dJ - d
Ji

}] ·tanhl~(dJ + dJil]. (64a1)

Notice that (64a1) can be rewritten by the hyperbolic trigonometric
expressions tanh(a - b)=[tanh(a} - tanh(b)}/[l - tanh(a) ·tanh(b)] and
tanh(a + b)=[tanh(a) + tanh(b)]/[l + tanh(a) ·tanh(bl] as

taM' [%cl ) - tanh' [Wi 1
J Ji

We redefine valence-comparable Euclidean sensation distances that are
weighted by lid , where valence- and intensity-comparable sensations
are equal, if d J= ~ , which holds if the deprivation level equals the
the just noticiable ~ensation level. Rewriting (64a1) for dimensional
terms of valence-comparable Euclidean sensation distances, we have

v .k = tanh[~(l - d "k/dJkl) ·tanh[%(l + d "k/dJk)J. (64a3)
J1 J1 J1

whereby valence-comparable Euclidean distances in a m-dimensional space
define

.~~ 2 :<o~ 2
v ,=tanh[~{l-y'L(d. Id ) }l·tanh[~{l+J\'(d. Id ) }](64a4l
Jl<.l Jlk. Jk ',~ Jlk. Jk

0'

(64a7)

(64a5)

(64a8)

(64a6)

v, = tanh[~(l- d ./d }]·tanh[~{1 + d ,Id),
~ ~ J ~ J

whereby the maximum space valence for d
Ji

= 0 is defined as

v = tanh>(~) = tanh[~ln(cosh(lll.

Defining m
9 . = -l/tanh[~(l + d ./d l]
Jl Jl J

,., ·v = q = tanh[-'h(l - d Id)]
Y Ji Ji Ji Ji J

we specify varying curvatures 9 . of the single-peaked valence space
for valence-comparably weighted;lEuclidean sensations spaces. Its
quasi-response space q , is the curvature-corrected valence space with
a curvature of -1. Thu~~ we have a single-peaked valence space with
negative curvatures that in absolute value decrease with increasing
distances to the ideal point if the stimulus space is hyperbolic. The
single-peaked valences v ." 0 if d . < d . and else v . sO.
For valence spaces from ptbctucts of'ihve:riie tangent futrt::tions as single
peaked valence function for Euclidean sensations we define, by the
replacement of arctan(xl functions for tanh(-'-"'X) functions in (64a4) to
(64a7) in case of a double-elliptic stimulus geometry, analogously

whereby
v = arctan[l - d . Id 1 'arctan[l + d Id ], (64bl)
Jik Jlk Jk Jik Jk

k~m 2 :,~~ 2
v .= arctan[l- v'[(d 'k/dJkl j'arctan[l +v'L(d , Id ) J (64b2)
Jl <_1 Jl '~1 Jlk. Jk

Here

V
Ji

= arctan[l - dJi/dJl ·arctan[l + dJi/dJl .

whereby the maximum space valence for d. 0 is defined as
J,

v = arctan' (1) = (~), = 0.61685.
m

(64b3)

(64b4)

(64b5)
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with
<; • = ~/{arctan(l + d ./d l}.
J~ Jl J

(64b6)

Here the scaling by ;.s-: is introduced in order to express the curvature
parameter in decimal values instead of radians. From (64b6) we see that
this single-peaked valence space has varying elliptic curvatures, Since
the quasi-response space of q , is here an open single-elliptic space
with unit curvature, also itsJ§ingle-peaked valence space has an open
geometry with positive curvatures that decrease with the Euclidean
sensation distance to the ideal point.

single-peaked valence spaces of valence-comparably weighted Euclidean
sensation spaces are rotation-invariant, conditional to their ideal
points as rotation centres, which follows from (64a) and (64b). Without
the valence-comparable weighing of sensation dimensions, we would have
different curvatures for equal dimensional valence distances to ideal
points, which then would not define a conditional rotation invariance.
For hyperbolic tangent-based valences of valence-comparable Euclidean
sensations of hyperbolic stimuli it follows from (64a6) that the maximum
curvature is obtained at the ideal point, where d

Ji
~ 0, as

Y
m

~ -l/tanh(~) = 2.164 Id = °Ji
(64C1)

while the curvature at
(hyper) spheres becomes

the zero valences
defined by d

Ji

of the
d

J
as

indifference circle or

~d

9
0

-l/tanh(l) = 1.313 Id
Ji

= d
J

(64c2)

For comparable valence dimensions from the product of two arctangent
functions of weighted Euclidean sensation dimensions we similarly obtain
the curvatures at the ideal point and for zero valences from (64b5) by
respectively d

Ji
= 0 and d

Ji
= d

J
as

Cm %IT/ [arctan(l) 1 2 Id
Ji

0 (64dl)

e;o %IT/ [arctan(2) 1 1.419 Id
Ji

d
J

(64d2)

For valences as products of response functions always le; ,I '" c; !' where
if d , values approach infinity we see by (64a6) that tiJ-curv.Rture y .
appr'&ches -1 as the negative minimum curvature of valences for thl1

sensations that approach the negative or positive infinity. There also
its valences thus approach -1. Similarly (64d4) yields positive values
of curvatures that reach a maximum at the ideal point and decreases
to 1 for arctan[l + d ,/d} approaching its maximum of ~r:.

J, J

In case the stimulus space is Euc1idean and, thus, the sensation space
hyperbolic then the sensation distances are measured by the hyperbolic
cosine of hyperbolic distances. But hyperbolic sensation distances
derive directly from dimensional expressions of (64a1), because again by

2 'sinh (s) . sinh (t) cosh (s+t) -cosh (s-t)
tanh(s} .tanh(t}= 2·cosh(sJ ·cosh{t}= cosh(s+t}+cosh(s-t)

we obtain for s = (dJk - dJik}/dJk and t = (dJk + dJik)/dJk
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cosh(l) cosh(d. Id )
Jlk Jk

(65a1)

[cosh(d , IdJk)J. [cosh(d 'h/dJh)] = cosh(d ,Id l,
Jlk Jl Jl J

whereby it follows from (64e3) for a m-dimensional valence space that

v. = tanh{'f'ar tanh(v . J).
Jl to'! Jlk

It defines a relativistic additivity (Krantz, et al., 1971, pp.91-101)
that as hyperbolic additivity of two valence dimensions writes as

v = (v + v ) / (1 + v ·v ) . (65a2)
Ji Jik Jih Jik Jih

For a m-dimensional hyperbolic sensation spaces (65a1) is written as

(65a3)v , = tanh[f-~ln{cosh(d . Id l/cosh(l)}],
Jl iH Jlk Jk.

where the addition of logarithmic terms define dimensional products of
COSh{dJik/d

Jk
) that combine to COSh(dJ/dJl as

v , = tanh[-7ol1n{cosh(d ,Id Jjcosh(l)}]. (65a4)
Jl Jl J

Thereby also the rre.ximum space valence for d
Ji

= 0 is defined as

v = tanh'{~) = tanh[%lln{cosh(l)], (65a5)
m

while v
Ji

Defining

(65b2)

(65b1)

d = cosh(l) = 1.5431d In[cosh(d 'k/dJk)] and
J~k J~

where d are dimensional distances to the ideal point in a Minkowski
sensati~hkspacewith r = 1 of sensations from power-raised conjugate
stimulus fraction midpoints (csfm) with respect to the ideal stimulus
in a Euclidean stimulus space, defined by

p P
d
Jik

= 1n{ [(Xik/pJ!<:.) J!<:. + (PJ!<:./x
ik

) JkJ/2}

PJ!<:. = 1/dJ!<:. = l/i1n{bJk/pJ!<:.)!.

We rewrite (64e2) or (64e3) as

with

1 exp (d
Jik

d)

V
Jik

= 1 + exp(d
Jik

d) = tanh [-?!i (d
Jik

- d)J (65b3)
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whereby (65a3) and (64a3) are here rewritten as
,~rn

V , = tanh[-L~(d, - d)l = tanh[-7!i(d . - dl]
Jl ,d Jlk Jl

Thereby, we see that single-peaked valences for hyperoolic sensation
spaces are described by open-hyperoolic spaces as quasi-response spaces
to distance differences (d ,- d) in a flat csfm-sensation space with r
metric r = 1 for power-rais~:acsfm-stiITn.llus spaces. Thus, single-peake::i
valence spaces of hyperbolic sensations are not open Finsler space
geometries with variable, negative curvatures, but open-hyperbolic
geometries with a constant curvature ~ = -~, because :9 I ~ r/2 defines
the relationship between the curvatures of non-Euclide.fu space and the
r-metrics of corresponding flat spaces, as derived in section 3.1. The
open-hyperbolic geometry with curvature <:; = -':; also follows from (64a2l
with its arguments divided by d , whereby for v = tanh' ().:)) as maximum
valence (64a2) becomes rewritte6 as m

tanh2n~ ./d) = (v - v .l/{l - v·v ) (6SbS)
J1J m Jl mJi'

where tanh' (~ ,Id} specifies a squared, parabolic distance of an open
Euclidean quasl!~responsespace that equals a hyperlJolic valence distance
to the maxirtnlm valence space point.

Here the open valence space is an involution space of valence-comparably
weighted hyperbolic sensation distances with respect to the ideal point.
It is equivalently described by quasi-response spaces of responses to
differences between variable and a fixed distance to the ideal point in
a csfm-sensation space with Minkowski metric r=l, because the logarithm
of hyperbolic cosine for hyperbolic space distances transform these
distances to distances in a space with a city-block metric. The negative
hyperbolic tangent transformations of these city-block space distances
minus a fixed space distance define the valence spaces as open spaces
with a hyperbolically additive metric for independent valence dimensions
of the open single-peaked valence space, wherein iso-valent contours are
circles or (hyperlspheres with the ideal point as centre. In valence
comparably weighted hyperbolic sensation spaces the iso-valent contours
are also circles or (hyper) spheres, because values of v . are rnonotonic
transformations of cosh (d . Id l, while iso-valent circ'1~s correspond
to iso-distant squares inJfheJcity-block space of csfm-sensations for
Euclidean stirtnlli.

The single-peaked valences as product of hyperbolic tangent functions
of valence-comparable Euclidean sensation distances also define by

tanh(s) -tanh(t)
2.sinh(sJ .sinh{t}

2.cosh(s) .cosh(t)

cosh(s+t}-cosh(s-tl

=cosh(s+tJ+cosh(s t)

for d Id = 0 or s = t = ).:) the maximum valence as
Ji J

v = tanh[?0-n{cosh(l)}] = tanh' (~)
m

(66al)

while single-peaked valence dimensions of (64a3) are rewritten as

(66a2l
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where

or

bm 2 2
tanh[-~ln{cosh(~(d . Id l!cosh(ll}J.

<~l Jl.k Jk

tanh[-~ln{cosh(d ,Id 1/oosh(l)}).
J, J

(66a2)

(66a3)

Since here the sensation distances d ./d are Euclidean, cosh(d ./d )
defines no distances in weighted Euc'Ildeln sensation spaces. Hotl;~ve~,
(64a3) with its arguments divided by d

J
defines

v, = [v - tanh'(m ./d )]/[1- v -tanh>(l{d ./d)], (66a4)
J1 m JlJ m J1J

where v = tanh' (~) is a known constant, whereby we derive from v ,
m ~

d ,Id = 2·{ar tanh[J{{v - v ,1/(1 - v·v .l}l}.
J1J m J1 mJl

(66aS)

Thus, we could solve a comnon Euclidean sensation space by an individual
difference unfolding analysis, but in section 5.4.3 we present a more
robust solution method. Dimensional expressions of (66a5) also define

tanh ' PM'J<k/dJk) = t 2 "k = (v - v . ) / (1 - v -v ). (66a6)
.L Jl. m J1k mJik

Here (v - v ,)! (1 - v ·v .) is a squared hyperbolic distance from v ,
becausertt , rfe\"ines a lfype'tblic distance in an open space of the quasT
responselio valence-comparable Euclidean sensation distances from the
ideal point. Since t . is an open-hyperbolic space, the multiplication
dimensional terms co'§h(t 'k) defines cosh{t ,), whereby here

J~ J~

nCOSh[v'{(v -v. )!(l-v·v. )}J =cosh[v'{(v -v, )!(l-v·v ,)}l (66a7l
:i:~1 m Jlk m Jlk m Jlk m Jl

Moreover,
also have

since ar tanh(t 'k) is a distance on Euclidean dimension weJ,
bm

ar tanh' (t .) = [ar tanh' (t . )]
Jl <~l Jlk

whereby

(v -v .l!(l-v·v .l=tanh'{vf~rtanh2[v'{(V-v. )/(l-v·v. l}J}(66a8J
mJl mJl b mJlk mJ~k

For the arctangent-based va1ences of (64b) it is tempting to assume that
similar expressions hold by analogy for an elliptically transformed
difference between v and v . under replacement of tanh(-'hXJ by arctan{x)
or ar tanh (-'hXJ by t)fu (x) , 'bl<t we could not prove that the analogy holds
for single-peaked valences defined by (64bl .We nay rewrite (64b3l as a
difference of squared arctangent functions by the trigonometric equality
arctan (x) - arctan (z) = arctan [(x - z) I (1 + x' z), wherein the sum and
difference operations interchange, which defines

2
arctan(l-d ,Id) + arctan(l+d ./d ) = arctan[2/(d ,Id) J

and JlJ JlJ JlJ 2
arctan(l-d.ld) -arctan(l+d ./d )=arctan[(2d ,Id l/{2-(d ./d) }]

JlJ JlJ JlJ J~J

whereby the product of the sum and difference of both expressions yields
for (64b3) also

v, =xHartan2[2/(d Id )2] -arctan'[(2d ,Id l!{2-(d ./d )2}J] (66c1)
Jl JiJ J~J J~J
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However, it are two squared arctangent functions without a constant
argument for one of these functions, which is different fran (66a5).
Thus, here we have no explicit function transformation of v . to
d ,Id, which is in contrast to (66a4) or (66a6) and Wher~lthus no
ctl!fecl! solution is possible. Nonetheless (66cl) shows that arctangent
based valences are differences between squared values of points in a
single-elliptic space. However, it concerns two variable space points,
instead of a variable distance with respect to a fixed maximum space
point, which is why here we only can iteratively solve d ,Id from v .'
Using (64b4) and initial estimates ~ . that satisfy (6~a) ~e obtath1

from Jl

1 - tan(~rr'<; .·v .) '" d .Id (66c2)
Jl Jl Jl J

initial estimates of dJ/d
J

and, thereby, improved curvatures from

Y
Ji

= (~r:)/{arctan(l + dJ/d
J

)}, (66c3)

where further alternated improvements converge to the solution of J/d
J

.

Iso-valent contours are circles {or hyper-spheresl with the ideal point
as centre in single-peaked valence spaces and in valence-comparable
sensation spaces. For valence-comparable E'uclidean sensation spaces this
follows from the monotonic radius transformations of sensation space
circles with radius d ,Id to iso-valent circles with curvatures y ,
in their single-peakecrhl'btce spaces, as expressed by (64a) and (64,gl.

Summarising the mathematical section above it is demonstrated that the single-peaked
valence spaces of valence-comparable sensations are equivalently described:
a) by products oftwo response functions for valence-comparable sensation differences

with respect to the adaptation and saturation points (positive ambiance) or to the
deprivation and adaptation points (negative ambiance);

b) in case of Euclidean sensation spaces by products of hyperbolic tangent or
arctangent functions. one for the sum and the other for the difference of unity and
the valence-comparable distances dJ.ld

J
between objects and the ideal point. The

function for the mentioned sum definJs the open-hyperbolic or single-elliptic quasi
response space of curvatures for the open Finsler space of single-peaked valences.
while the function for the mentioned differences specify the corresponding quasi
response space of curvature-corrected single-peaked valences.

c) in case of hyperbolic tangent-based, single-peaked valences we can write them by
one hyperbolic tangent function of logarithmically transfonned. hyperbolic cosine
function of valence-comparable sensation distances to the ideal point. For
hyperbolic sensation spaces this valence expression concerns a hyperbolic
transfonnation of distances In[cosh(dr/d

I
)] in a city-block space. because the

multiplication of dimensional distancJs oefine space distance cosh(dJ.ld
J
) in

hyperbolic spaces. Thereby it defines an open-hyperbolic space of single~peaked
valences with curvature c; = -Yzand hyperbolic additivityof its valence dimensions.

A Fechner sensation space that is individually translated to ideal points and weighted
to equal dimensional distances between the adaptation and ideal points and is
individually translated to the ideal point is a valence-comparable Bower space. Its
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Y>dj.ldj=artanh(l[(v -vj,)J(l-v -vj .)]}.
I maxI maxI

Since v = tanh2(V2) is a known constant, Euclidean sensation distances dJ'/d
J

to
ideal p6iWfs with hyperbolic tangent-based valences can be solved from optlmally
scaled preference rank orders to values vr' Single-peaked valence spaces of hyperbolic
sensation spaces imply I

corresponding single-peaked valence spaces are rotation-invariant spaces conditional
to the ideal point as rotation centre, because their valences define iso-valent contours
that are space circles with the ideal point as centre and constant curvatures. The
curvature of single-peaked valence spaces is variable and positive, if the stimulus is
double-elliptic, or variable and negative if the stimulus space is hyperbolic, but its
curvature is constant -Y2, if the stimulus space is Euclidean. Hyperbolic tangent-based,
single-peaked valence spaces of valence-comparable Euclidean sensation spaces imply
that

cosh(dJ/d
J
) = coshC I} exp[2{ar tanhC-v

Ji
)]

whereby also the hyperbolic valence-comparable sensation distances coshCdr/d
J

) can
directly be solved from optimally scaled values of vr However, Euclidean sknsation
distances dJ.ld

J
can't directly be derived from arctangeht-based single-peaked valences,

but their ite/atlve solutions can be obtained. In the sequel we describe methods for the
analyses of preferences by their representation in a common Euclidean sensation or
stimulus space, but first we illustrate how single-peaked preferences become
represented by two-dimensional plots of iso-valent contours as contours of equally
preferred objects in flat spaces.

5.2.2. Iso~valent contours of single-peaked valences
Since the absolute space curvatures of single-peaked valences for valence-comparable
Euclidean sensations decrease with the valence distances to the ideal point, its iso
valent contours in a two-dimensional single-peaked valence space are circles with
different, but constant curvatures and the ideal point as centre. Iso-valent contours are
also circles on the hyperbolic surface with constant curvature -Vz for single-peaked
valences of hyperbolic sensations. Therefore, also in the quasi-response spaces that
correspond to curvature corrected single-peaked valence spaces the iso-valent contours
are circles with the ideal point as centre. One of the iso-valent circles is the indifference
circle, where iso-valent circles inside the indifference circle have positive valences and
outside negative valences. Since the valence curvatures and curvature-corrected
valences of single-peaked valence spaces are open-hyperbolic or single-elliptic quasi
response spaces with the ideal point as centre, their single-peaked valences also are
defined by products of projected Euclidean sensation spaces. while open-hyperbolic,
single-peaked valence spaces correspond to hyperbolic sensation spaces. A solved
common sensation space is always a hyperbolic or Euclidean sensation space, even if
in the fanner case the single-peaked valences would be generated from a Minkowskian
sensation space. Below in figure 32 illustrates the iso-valent circles in the open
Euclidean space of quasi-responses for single-peaked valences of hyperbolic
sensations.
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Figure 32. Iso-valent circles in an open-Euclidean quasi-response plane.

For objects from a non-Euclidean stimulus space the iso-valent contours are similar
circles on hyperbolically or elliptically curved open surfaces for the quasi-response
space of curvature-corrected, single-peaked valences. The derivable sensation spaces
from single-peaked valence spaces are individually translated to the ideal point and
weighted dimensionally by l/dJk for the valence-comparability of the dimensional
sensations, where d

Jk
is the distance between the dimensional adaptation and ideal

points of individuals. If we assume that the dimensional deprivation levels coincide
with their just noticeable level as Fechner space origin, then d

Jk
= YZU

Jk
= h(aJk.- u

Jk
)

for u
1k

;:;: 0 as just noticeable dimensional sensation. Such indivldilally weIght&!
EucJi(fean sensation spaces are valence-comparable and are also called Euclidean
Bower spaces in analogy to the intensity-comparable Euclidean Bower spaces that can
only differ from each other by translations to individual adaptation and ideal space
points, if d

Jk
= YzuJF Since hyperbolic space distances are measured by their

hyperbolic cosine, the·hyperbolic Bower space of valence-comparable sensations is
similarly defined by cosh(dr/d

J
).

In Euclidean or hypetbolic Bower spaces iso-valent contours are also circles,
but the sensation differences between these iso-valent circles represent not preference
differences, because their differences equal not the valence differences between the iso
valent circles in their open single-peaked spaces. However, if a hyperbolic Bower
surface is mistaken to be a Euclidean Bower plane then the iso-valent contours are no
longer circular in a Bower plane that is incorrectly assumed to be Euclidean. Mistaking
dJ.ld

J
forcosh(dr/d

J
), the iso-valent contours ofEuclidean Bower planes that actually

arJ hyperbolic su~aces become represented as Minkowskian iso-distant contours with
r-metrics that decrease with increases of their dimensional sensation distances to the
ideal point. Due to the relationship between curvatures and r-metrics the Minkowskian
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iso-distant contours with variable r-metrics,}" are defined for individually oriented
dimensions k and I by 1

'r TJ' l/rj'
{[dJik/dJk} 1 + [dJil/dJl] I} 1 = dj/cl] = constant,

where for object i and individual J the r-metric is defined by

'Jj = l/tanh[lj2(l + dJ/clJ)]

Figure 33 below shows such iso-valent contours in a Euclidean Bower plane, where
they actually are circles on a hyperbolic Bower surface.

2

f l = 1/Ianh['I2(d j /d + 1)]

d;=IYi -gl

d=la-gl

adaptation point

..
ideal point

contour centre

'" 1.1

r = 1.31

Figure 33. Iso-valent contours in a Euclidean Bowerplane that actually is hyperbolic

Here cl] are the incorrectly Euclidean distances between individual adaptation and ideal
points, while distances cl}" are the incorrectly Euclidean distances of sensation y. to the
individual ideal point gr ~n iso-valent sensation contour corresponds to the iso-distant
contour with r}" = I if tanh[Yz(d}"/d

J
+ I) = I, which then becomes the iso-distant

square for sens~tions at infinite ~istances from the ideal point in Euclidean Bower
planes that actually are hyperbolic Bower surfaces. The iso-valent, Minkowskian iso
distant contour for d}" = d

J
is the indifference contour with r = I/tanh( I) = 1.313,

while the maximum r_1metnc for dr = 0 as contour that reduc~s to the ideal point is
r = l/tanh(lf2) = 2.164. Only the rJo-valent circle in the single-peaked valence space
wn;j!fi such a distance d. in an incorrectly Euclidean Bower plane that yields a r-metric
of r. = 2 remains an iJo-valent circle, which is thus closely located around the ideal
poirit with r = 2.164. The ideal points are the individual centres of individually

m"
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oriented, iso-valent Minkowskian contours in incorrectly Euclidean-assumed Bower
planes. Thus, in a correspondingly mistaken Euclidean, common sensation plane the
individual iso-valent contours become differently located, oriented, and asymmetrically
skewed Minkowskian iso-distant contours, where their orientation and skewness
depend on the orientation and the weights of the relevant dimensions for the individual
preference evaluation. Single-peaked valence functions as products of aretangent
functions also defme iso-valent circles in a Euclidean Bowerplane, while no hyperbolic
Bower space applies for arctangent based-valences, whereby no similarly incorrect iso
valent contours of figure 33 exist in this case.

If a Bower plane is hyperbolic then the iso-valent circles of its open-hyperbolic
space of single-peaked valences are also circles on the hyperbolic Bower surface, but
also their sensation radius differs from their valence radius. The single-peaked valences
of hyperbolic sensations are mathematically expressed by inherently defined,
hyperbolic sensation distances, as shown in the last mathematical section. These
inherently defined, hyperbolic sensation distances and their confonnal distance metric
in hyperbolic sensation and open-hyperbolic valence spaces only hold for hyperbolic
sensation spaces, which are two related, theoretical arguments for the hyperbolic
geometry of sensations. On valence-comparable, hyperbolic sensation surfaces the iso
valent contours are circular, but they become asymmetrically transfonned on the
Euclidean stimulus plane, as shown in figure 34 below.
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Figure 34. Iso-valent contours ofsingle-peaked valences in a Euclidean stimulus space



200

5.3. Open Finsler geometries of mixed valence spaces

and

Valence spaces may arise from a mixture of monotone and single-peaked valence
functions forthe preference-relevant sensation dimensions ofobject attributes. Suppose
we have a two-dimensional Euclidean sensation space wherein ideal axes of individuals
have monotone valences and individual angles to a common sensation dimension with
only single-peaked valences. The individually comparable Euclidean sensation plane
with mixed valences is then defined by an ideal axis that is weighted by 2/3

J
and

translated to adaptation point 3
J

and the sensation dimension with single-p~aked
valences that is weighted by lId]ffi= 1(1 a -gJ I)=2Ia

j
and translated to dimensional

ideal point gJ 0 The mixed valenc&s vJ" o?JaleJce-com~arable object sensations sr for
individual J a~e then determined by I 1

1. w
I

= sin(aJ, )for angle a
l

between the ideal sensation axis of J and the
o ms" 'th rn, k d 1sensatIOn 1menSlOn WI smgle-pea e va ences;

2" sensations sJ"lm of the ideal axis with monotone valences v
r

Im;
3. sensation sJ.1

1
softhe sensation dimension with single-peaked Jalences vJ.l s"

This then specifies
1

1
a) angle a

r
between comparable sensation vector s1" and its dimensional

projectioW sl"ls is then defined by cos(alo ) = I<sl.ls)~slol, and
b) · ILrth 1· liS 11aXIs wfSJi m IS 0 ogona to aXIs sJi s,

whereby " I
'I' = sm(al , ),wI·'I" m + cos(CtI " )"SI·15

1 IS 1 IS I

'I" = sin(ulo ),wl·'lo1m + cos(lJ.l " )-vl"!s,
I IS 1 IS I

because angles in valence spaces equal corresponding angles in comparable sensation
spaces with the same origin. If the comparable sensations are Euclidean then we scale
the observed, bipolar, mixed preferences to c "between +Ym and -Ym for arctangent
based valences or between + and -I for hypeMolic tangent-based valences and have

['I" - sin(al , )owI·'I"lmj/cos(al " ) = vl"lso
1 IS 1 IS I

Residual vr ISand vr Im are differently scaled, because single-peaked and monotone
valences ha~e a diffe~ent maximum valence"

For a comparable, hyperbolic sensation surface similar matters holds, while for
hyperbolic sensation space vectors sr and hyperbolically additive valences v

rcorrespondingly holds that I I

'1,ls = [cl" - sin(ul " )-wI·'I"lm]/[1 -clo"sin(al · )owI·'I"lml/cos(l1l · ).
IllS IllS I IS

For a multidimensional mixed valence space there exists a common Euclidean object
space with a subspace of ill! dimensions with monotone valences that contains the ideal
sensation axes of the individuals and a complementary oblique subspace of m~

SI" = [sin(al , ).wI·'I"lm +cos(ar }sr1s1/[ I + sinea r )·wfSI"lm.cos(a
l
" )osl"lsJ,

and I IS I [SI IS 1 IS1

'I' = [sin(al " )"wl·vl"lm+cos(alo )"vl,]sJ/[1 +sin(al " ).wI·'I"lm"cos(l1l " )-vl"lsJ,1 IS I IS 1 IS I IS I

Here we replace vr by values cl' of observed, mixed preferences that are scaled
between -I and +I Jithout scale difference of monotone and single-peaked valences,
whereby
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dimensions with single-peaked valences for the individuals. The mixed valence space
ofan individual only has one dimension more than the single-peaked valence subspace.
The mz dimensions with single-peaked valences constitute an open valence space of
object valences vr Is with varying curvatures (or with constant curvature -V2, if the
sensation space is hyperbolic), while the oblique ideal axis of the monotone valences
~ilm is an open dimension with an absolute curvature of unity or with zero curvature.
l11us all (m2 +l)-dimensional, mixed valence spaces have an open Finsler geometry
with varying space curvatures. However, mixed object valences vr of individuals
remain defined by the simple or hyperbolic addition of the orthog6nallY projected
valences v .1 m of their ideal response axes and valences vr Is in the mz-dimensional
single-pea~~d valence space. Here w1= sin(u

J
) defines tliJ projections of individual

ideal response axes, which projeCtions cor&l~ond to a ml-dimensional sensation
subspace with monotone valences that is orthogonal to the m2-dimensional sensation
subspace with single-peaked valences. In section 5.4.4 a preference analysis method is
described for objects with mixtures of monotone and single-peaked valences. The
analysis method solves iteratively the individual projection weights WJ' the ml 

dimensional Euclidean sensation or stimulus subspace with monotone valences.
individual rotations to ideal axis, and the mz-dimensional Euclidean sensation or
stimulus subspace with single-peaked valences.

5.3.1. [so-valent contours o/mixed valences
In figure 35 we illustrate the iso-valent contours of mixed valences in a Euclidean
Bower plane. The vertical dimension corresponds to an open-hyperbolic ideal response
axis of monotone valences and the horizontal dimension to a single-peaked valence
dimension with varying curvatures, where these valence dimensions are derived by
hyperbolic tangent-based valence functions of orthogonal, comparable Euclidean
sensation dimensions.
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Figure 35. lso-valem comoursfora monotone (vertical) and a single-peaked valence
(horizontal) dimension in a Euclidean plane ofcomparable sensations
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In a comparable Euclidean Bower plane the iso-valent contours of hyperbolic tangent
based valences are similar to hyperbolic curves. The indifference contour is the curve
that contains of course the adaptation and saturation or deprivation points. In a common
two-dimensional Euclidean sensation space the iso-valent contours for mixed valences
of different individuals become asymmetric and differently oriented and located by
individually different distances between the differently located adaptation and
saturation points, because the Bower space dimensions are individually weighted and
individuals will have differently directed ideal axes. Rotated comparable sensation
dimensions with the adaptation point as origin have asymmetrically single-peaked
valence functions as some rotational combination of monotone and single-peaked
valence functions. The iso-valent contours are similar in a Euclidean Bower sensation
plane with arctangent-based valences. If the sensation space is hyperbolic then the iso
valent contours are also infinite, parallel and symmetric curves on a hyperbolical
sensation surface. In all cases iso-valent curves with equal valence differences have
different sensation distances with the smaller sensation distances the closer the curves
are to the indifference curve. In the common Euclidean stimulus space the iso-valent
contours for comparable hyperbolic sensations not only become individually oriented,
located and dimensionally weighted, but also exponentially transfonned with respect
to the zero sensation space point to asymmetric contours with respect to the unit
stimulus space point. If we represent the iso-valent contourS of curvature-corrected
mixed valences in their open-Euclidean response disc, as shown in figure 36, then the
iso-valent contours become circle parts, but on the mixed valence surface itself they are
parallel open curve parts with symmetrically varying curvatures on both sides of the
ideal axis. Clearly iso-valent contours on one side of the indifference contour have
positive valences and on the other side negative valences in all representing spaces and
their mixed valence spaces

ideal point

-------

,,,,,,,,
"---

,,,,,,,
J/

-'-------

Figure 36. Iso-valent contours in an open quasi-response disc for curvature-corrected.
mixed valences ofintensity- and valence-comparable sensations.
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5.4. Appropriate multidimensional analyses of preferences

5.4.1. Applicability ofexisting preference analysis methods
Existing methods of preference analysis specify not in which space (stimulus,
sensation, response, or valence space) the objects are represented. These methods
generally assume that individual preferences can be represented either as object
distances to an individual ideal object or as object projections on an individual
dimension in a common Euclidean object space. So this common Euclidean object
space must then be either the Euclidean sensation space (in which case arctangent
based or hyperbolic tangent-based valence functions apply) or the Euclidean stimulus
space (in which case hyperbolic tangent-based valence functions apply to hyperbolic
sensation spaces). Some existing preference analysis methods weigh individually the
common space dimensions and/or assume a common space with a constant Minkowski
metric. However, no existing method considers different geometries between common
object, individual sensation, response, or valence spaces, nor specifies the individual
transformation from acommon objectspace to individual preferenceevaluation spaces.
The existing preference analysis methods are generally based on individual preference
rank orders that describe either the rank. order of object projection on individually
oriented ideal axes or the rank order of object distances to the ideal points of
individuals, which so far is identical to our approach. Since valence spaces are not
common, the revealed spaces by the existing methods of preference analysis can never
be a valence space, which in principle invalidates the interpretations of the analysis
results of these methods. It must be recognised that preference evaluations are other
cognitive tasks than comparative magnitudejudgements or(dis)similarityresponses and
that each task transforms the respective common Euclidean object spaces in different
ways and differently for each individual, due to possibly different adaptation points and
in case of single-peaked valences also different ideal points. These different tasks with
individually different transformations of a common object space ask for different
analysis methods of data as distances or differences in different open geometries.

The so-called linear vector model (Tucker 1960; Roskam, 1968; Gifi, 1990) is
an existing analysis model of preferences, It describes individual preferences as
Euclidean projections of objects on individually oriented ideal axes in a common
Euclidean object space. The linear vector model assumes that the preference rank order
of individuals is equivalent to the rank order of the vectorial object projections on an
individually different rotated dimension in a common Euclidean object space, where
the dimension orientations depend on the direction of individual ideal space infinities.
As demonstrated for monotone valences, the object valences are indeed equivalent to
its corresponding response projections on the ideal response axis, but the rank order of
projected objects on the ideal axis in the common Euclidean object space is only equal
to the rank order of objects on the ideal response axis if individuals weigh the sensation
dimensions equally (have the same adaptation point). The linear vector model is often
accompanied by too strong other assumptions and interpretations. One generally
assumes orthogonal projections of objects on an individually rotated ideal dimension
with the same origin for individuals in a common Euclidean object space. But ideal
response axes are monotone transformations of differently located and oriented ideal
axes in the common Euclidean or hyperbolic Fechner sensation space. The individual
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translation and monotone valence transfonnation of the individually oriented ideal axes
change not the individual rank order of the objects on the ideal axes with respect to the
orthogonal object projections on the ideal axes in individually weighted sensation
spaces. Thus, a linear vector model that also weighs dimensions individually could
recover correctly the common Euclidean sensation space, if preferences are described
by monotone valences of Euclidean sensations. Due to the actual translation of
individual ideal sensation axes to individually located adaptation points and the
individual ideal axis direction to individual ideal infinities, the interpretation of ideal
directions from a common origin in the common Euclidean sensation space is incorrect.
Solved ideal axes by a linear vector model can be translated to any space point, but due
to the absence of individually weighted dimensions the linear vector model may not
recover the correct object configuration, even if the sensation space is Euclidean. Since
the locations of the ideal axes and the dimensional weights should be different, it likely
gives incorrect interpretations of the representations of the ideal space infinities.
Moreover, the assumption of orthogonal object projections on individually oriented
ideal axes in a common Euc\idean space is also incorrect, due to the individually
different, monotone valence transfonnations of ideal sensation axes in the individually
weighted, Euclidean sensation space. Interpretations of ideal axis values as preference
strengths and interpretations of the object configuration, therefore, are misleading. Any
interpretation must be misleading, if the linear vector model solutions don't weigh the
dimensions individually, because orthogonal object projections in weighted and not
weighted spaces generally have not the same rank order. If the common Euclidean
object space is the stimulus space, then the assumption of orthogonal Euclidean
projections on a straight ideal axis is also invalid, even for individually scaled stimulus
fraction spaces, because dimensional power transfonnations correspond to the weights
of hyperbolic sensation dimensions and transfonn the Euclidean stimulus space to
individual Finsler spaces, whereby ideal axes and object projections are no longer
straight, as shown by figure 31. The monotone valence functions of weighted Euclidean
ideal sensation axes and the corresponding involutions of power-raised Euclidean ideal
stimulus fraction axes don't change the rank order of the objects on the ideal axis, but
changes the object locations on the ideal axis in individually different ways. The
orthogonal iso-valent lines of objects with respect to the ideal axis in individual
response spaces (figure 29) become asymmetrically and oppositely curved projection
lines with respect to the straight, but also no longer orthogonal indifference axes in the
common sensation space. If the common Euclidean object space is the stimulus space
then corresponding opposite and asymmetric iso-valent projection lines can even be
non-monotonically curved, which also may hold for the no longer straight ideal axis.
However, the linear vector model specifies not whether the common Euclidean space
is the sensation or stimulus space.

Existing, methods for multidimensional unfolding analyses of single-peaked
preferences assume iso-valent circles with individually located ideal points as centre
in a common Euclidean object space. Alternatively it is assumed that iso-valent
contours are iso-distant Minkowskian contours and individual ideal points as centres,
where the individual orientations of these iso-valent contours depend on the relevant
co-ordinates of the otherwise common object configuration in the Minkowski space
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with a fixed r-metric for object distances to ideal points as representations of
preference strengths of iodivictuals. Theseexisting multidimensional unfolding methods
assume, thereby, also that the rank order of object preferences correspond to the rank
order of distances between common object point locations and individually located
ideal points (Coombs, [964; Shepard et al. 1972, Heiser, 1981, Heiser and De Leeuw,
1981, Cox and Cox, 1994, Borg and Groenen, 1997), where some versions also weigh
the underlying dimensional distance individually (Carroll and Chang, 1972, Carroll,
(972). Probabilistic unfolding methods describe and analyse preferences by overlap of
object distributions with ideal point distributions (PeITin, 1992) in a Eudidean object
space, wherein the distribution overlap depends on the distances between the central
locations of the objects and the ideal points as well as possibly on dimensionally
different dispersions (similar to differently weighted dimensions). In all existing
preference analysis methods the individual preference rank orders depend on the rank
order of (individually weighted) space distances or (individually shaped) distribution
overlaps between common object locations or common-located object distributions and
individually different ideal point locations or individually different-located ideal-point
distributions in a common flatspace. Since no distinction is made between preference,
sensation, or stimulus spaces, these methods assume that individuals share a flat
(Eudidean or Minkowskian) common object space for their preference evaluations,
besides individually different weights for dimensions and individually different
oriented reference co-ordinates. According to our derivations iso-valent contours not
only are circles in single-peaked valence spaces, but also in Euclidean or hyperbolic
Bower spaces. Bower spaces with a Minkowski r-metric are not derivable from our
semi-metric multidimensional analysis of preferences, because inverse valence
transfonnations of optimally scaled preference rank orders as single-peaked valences
transfonn the scaled valences of open Finsler spaces to valence-comparable Eudidean
sensations. Thus, our semi-metric Euclidean analyses of preference data define object
distances to ideal points in individually weighted and translated Euclidean sensation
spaces, even if valences generate from sensation spaces with a Minkowski r-metric.
However, if the sensation space is hyperbolic and is mistaken to be Euclidean then an
unfolding analysis would require a representation in an individually weighted flat space
with varying r-metrics that decrease with the distances to the individual ideal points, as
shown in figure 33. Ifexisting methods of non-metric unfolding analyses of preference
data would show consistently that representations in a flat space with a fixed r-metric
ofr< 2 fit better than in a Euclidean space then this could as well yield some empirical
evidence forthe hyperbolic nature of sensation spaces, because its incorrectly flat space
representation with an average r-metric r < 2 of the varying r-metrics would fit better
than the Euclidean metric. For example, if choice objects are located within the
indifference contours of individuals and the sensation space is hyperbolic then the r
metrics for the iso-valent contours in an incorrectly flat space vary from r :::: 1.313 to
r :::: 2.164 with geometric average r-metric r:::: 1.686. However, if th~ sensation
sWa't~ is hyperbolic then preferences concern individually weighted dimensions of a
common hyperbolic sensation space, wherein iso-valent contours are elliptically
shaped, while in its Euclidean stimulus space the iso-valent contours are no longer
elliptical, but asymmetrically closed contours, as shown in figure 34.
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Single-peaked valence functions with respect to individually different ideal and
adaptation points transfonn in individually different ways the common Euclidean object
space to individually different valence spaces with varying curvatures (if the sensation
space is not hyperbolic) or with curvature -Y2 (if the sensation space is hyperbolic).
Individual object preferences are monotone transfonnation functions with individually
different parameters of Euclidean or hyperbolic sensation distances between objects
and individual ideal points, whereby individual iso-valent contours are circles or
(hyper-)spheres in comparably weighted, hyperbolic or Euclidean Bower sensation
spaces. Thus, also our derivations detellnine iso-valent contours to be individually
located and oriented, concentric (hyper-)ellipses in a common sensation space. If the
sensation space is not hyperbolic then this is consistent with the individual difference
version of non-metric Euclidean unfolding methods of preference analyses. Such a
Euclidean unfolding analysis may correctly recover the object configuration and the
individual ideal point locations in an arbitrarily weighted and translated Euclidean
reference space of sensations. However, the differences between individually weighted
Euclidean sensation space distances to individual ideal points should not be interpreted
as preference-strength differences. This interpretation is incorrect, because preference
strengths are monotone transfonnations ofvalence-comparable Euclideanor hyperbol ic
sensation distances to ideal points, as defined for single-peaked valences by

vJi ::: tanh {-Y2In {cosh(dJ/dJ)/cosh( I)} 1

v
Ji

::: arctan(l - dJj/dJ).arctan(1 + dJ/d
J
).

Moreover, if the sensation space is hyperbolic then incorrectly flat sensation space
representations yield distance-dependent Minkowski r-metrics of iso-valent contours
in an individually weighted flat sensation space, while the correct Euclidean
representation in a stimulus space yields even more complex shapes of asymmetric of
iso-valent conto urs. Accord ing to our derivations a preferencedata anal ysis by existing
non-metric multidimensional Euclidean unfolding analysis is only justified if the
sensation space is indeed Euclidean and if a common sensation space exists and is
individually weighted, otherwise violations of individual preference rank orders are
inherent to these existing preference analysis methods. However, due to the absence of
a rational distance function for the multidimensional scaling of the object distances to
ideal points, the conditionally valid (under individual weights and the assumption that
the sensation space is not hyperbolic), existing Euclidean unfolding analysis of
preferences reveals not the actual preference strength of objects for an individual.

The applicability of existing analysis methods for preferences of objects with
a mixture of monotone and single-peaked valences is limited. Only one seemingly valid
analysis method for Eudidean object spaces with such a valence mixture exists. It is
the so-called PREFMAP-method for weighted Euclidean unfolding analysis (Carroll,
1972), wherein an individually weighted and oriented object dimension can have an
almost infinite dimensional ideal point, which holds for independent Euclidean
sensation subspaces with respectively monotone and single-peaked valences. However,
this method assumes open circular iso-valent contours in the individually weighted
Eudidean space, which is partially incorrect, even if the monotone valence subspace
and the single-peaked valence subspace are orthogonal subspaces, as shown by the
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non-circular, iso-valent curves in figure 35. Thus, Euclidean PREFMAP-analysis for
mixed valences is partially invalid and not only if the sensation space is hyperbolic,
while the method has the same interpretation problems with respect to individual
preference strengths. Clearly all existing non-metric, unfolding methods for preference
analysis of objects with single-peaked or mixed valences are invalid if the sensation
space is hyperbolic. However, mixed valence spaces probably apply to the actual
preference evaluations for most choice objects in real life, because generally also
characterised by monotone valence or disutility of monetary costs for the choice
realisation, while the sensation space may very well be not Euclidean, but hyperbolic.
In section 5.4.4. we describe semi-metric preference analysis methods for objects with
hyperbolic or Euclidean sensations and mixtures of monotone and single-peaked
valences. These methods detennine which individual mixtures of monotone and single
peaked valences specify individual object valences, whereby no a priori choice between
analysis methods for either monotone or single-peaked valences is needed. Our
analyses of mixed valence spaces assume no independence between the conunon
Euclidean object subspaces of monotone and single-peaked valence attributes. These
two subspaces are solved by our solution methods for Euclidean object spaces with
only monotone valences and for Euclidean object space with only single-peaked
valences, while the angles between ideal axes of individuals and their attribute
subspace with single-peaked valences are solved iteratively by canonical analysis of
their correlations and the correlations between co-ordinates of the common Euclidean
object subspace for the individual ideal axes and the common Euclidean object
subspace with single-peaked valences. Therefore, firstly we describe our semi-metric
preference analysis methods for objects with monotone valences in the next section
and secondly for objects with single-peaked valences in the following section. Each
section contains three different preference analysis methods, because the method differs
for each different geometry of the valence space:
• double-elliptic stimuli with arctangent-based valences of comparably weighted

Euclidean sensations, represented in the common Euclidean sensation space;
• Euclidean stimuli with hyperbolic tangent-based valences of comparably weighted

hyperbolic sensations. represented in the common Euclidean stimulus space;
• hyperbolic stimuli with hyperbolic tangent-based valences of comparably weighted

Euclidean sensations, represented in the common Euclidean sensation space.

5.4.2. Analysis methods for monotone valence spaces
The existing multid imensional scaling method for individual preference rank order dara
of objects with monotone valences is the linear vector model (Tucker 1960; Roskam.
1968), discussed above and earlier in section 5.1. The linear vector model for analyses
of individual preference rank orders of objects in object spaces with monotone valences
is efficiently solved by the so-called PRINCALS programme (Gifi, 1990). that also
optimally scales the preference data within the rank order constraints for the maximum
fit of the chosen solution dimensionality. It describes objects with monotone valences
as Euclidean projections on individually oriented ideal axes in a common Euclidean
space. The projections on the individually oriented ideal axes give the optimal metric
fit for the observed rank order of the individual preferences for the chosen
dimensionality of the solution. This indeed fits monotonic preference evaluations with
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respect to ideal points at infinity directions of the space, provided that the common
Euclidean sensation space dimensions are individually weighted, as argued in sections
5.1. and 5,4.1. and also is demonstrated in the next mathematical section.

In order to describe individually different preference strengths for objects with
monotone valences and the configuration of choice objects in a common Euclidean
object space we have to solve from different preference rank orders of individuals:
l. dimensional object parameters in the common Euclidean object space, either as

Euclidean stimulus co-ordinates xik or as Euclidean sensation co-ordinates y'k'
2. individual rotation parameters h

Jk
for the rotation of common Euclidean objec~ co

ordinates to individual ideal axes, and
3. individually different dimensional weights, either as dimensional stimulus weights

IIb
Jk

or as dimensional sensation weights 2/a
Jk

of individuals, which weights
determine their adaptation point locations b

Jk
or a

Jk
on the Euclidean co-ordinates

of respectively theEuclidean stimulus or sensation space, while individual rotation
cosine h

Jk
determine individual ideal axes that in the stimulus space have individual

power exponents 'J "" 2/a
J

== 2/ln[Lt'l'(h
Jk

·bJk)]·
For a well-determined solution we not only need tlie preference rank orders of several
individuals (where the needed number of individuals depends on the number ofobjects
and the object space dimensionality), but also whether the objects are liked ordisliked.
Without that information the actual adaptation point locations as origin of the ideal and
indifference axes may not be fully determined. Although the individual dimension
weights that also determine different translations to adaptation points could be solved
without that preference bipolarity information, it would yield a less determined
solution, because the solved individual dimension weights would be with respect to an
arbitrarily weighted and translated reference space if the weight parameters would not
be related to the individual sensation space translations. We need the ordering of
preferences with negative rankings of disliked objects and positive rankings for liked
objects with indifference as individual zero preference. We may obtain such preference
data by asking individuals to rank order their preferences for objects (possibly with
ties) that are simultaneously presented, while we also ask later which objects are
disliked or liked and whether there is preference indifference for some objects.
Negative rank order values are then assigned to disliked objects, the zero rank order to
the indifference objects (if present), and positive rank order values to liked objects
(with more than one object in the same rank order category if ties are present). These
bipolar rank values yield initially scaled valences after division by the square root of
their absolute values and scaling, either (1) as values between -0.9 and +0.9 that by
their inverse hyperbolic tangent transformations define initial ideal axes in weighted
Euclidean sensation spaces or by their inverse response involutions defme initial ideal
axes in weighted and power-raisedEuclidean stimulus spaces or (2) as values between
-0,45n and +0,45n that by their tangent transformation define initial ideal axes in
weighted Euclidean sensation spaces. Alternatively individuals may be asked to express
preferences on a rating scale with sufficient rank categories ranging from very disliked
to indifference, and from indifference to very liked. These rated, bipolar preferences
are then similarly scaled and inversely transformed to initial ideal axes. Gathered in the
conditional data matrix with objects as columns and individuals as rows, the initially
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scaled data matrix is then analysed as ideal axes in weighted and translated Euclidean
sensation spaces or power-raised Euclidean stimulus fraction spaces, where predicted
ideal axes are then subsequently used for a more optimal scaling of the preference data
and repeatedly analysed until convergence is obtained for the solutions, as described
in the next mathematical section.

As discussed in sections 5.1. and 5.4.1. the preferences of liked or disliked
choice objects of individuals as scaled, bipolar rank order data only correspond to the
sign and rank order of the Euclidean object projections on individually oriented ideal
axes, if the common Euclidean sensation space dimensions are individually weighted
and translated. We start the solution by a weighted linear vector model solution for the
above described, initial data matrix of scaled, bipolar preference rank orders that are
transfonned by the inverse monotone valence function (the tangent or inverse
hyperbolic tangent) to ideal Euclidean sensation axes or by the inverse response
involution to power-raised ideal Euclidean stimulus axes with initial power exponents
of unity. By a singular value decomposition of the initial data matrix we solve the
object configuration in a common Euclidean reference space and its individual
transfonnation parameters (individual rotation parameters and dimensional weights and
weight-dependent power exponents or weight-dependent translations of respectively
stimulus or sensation dimensions) for the configuration transfonnation to ideal axes.
Next we successively improve the scaling of the data by the minimally changed values
of the previously predicted ideal response axes to values with the same rank order and
sign as the observed preference data of individuals under preservation of the response
space limits. After inverse response transformation of each scaling to ideal axes of
weighted Euclidean sensation values or power-raised Euclidean stimulus values the
described analysis is repeated. By the converged solution we not only determine the
object configuration and the individual ideal axis locations and orientations in the
common Euclidean object space, but also the curvilineal iso-valent contours of
individuals in the common Euclidean object space, whereby we determine the
metrically different preference strengths of individuals for the objects in Euclidean
object space. Thus, our semi-metric multidimensional preference analysis methods
modify the linear vector model by individual dimensional weights and weight
dependent translations (if the sensation space is Euclidean) or by dimensional weights
and weight-dependent power exponents (if the stimulus space is Euclidean) and by a
response geometry-dependent, optimal scaling of observed preference data.

(67a2)

(67al)Q = H lI. F' + E,

and solved by the m principal components of

QQ'=HlI.2 H' +EE',

Let positive preference rank orders be denoted by the matrix Q with N
rows of individual preference data for n objects, while a n'm matrix Z

are the principal components of the object space. The so-called singular
value decorrposition of Q (Eckart and YOlU1g, 1936; Good, 1969) is written
a,

~d

Q'Q = F If F' + E'E.

Here lI. is the m x m diagonal eigenvalue matrix,
F the n x m eigenvector matrix with F F'= I,

(67a3)
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and H the N x m eigenvector matrix with H'H = I,
whereby trace{E'E} is minimised. In (63a) one initially takes

H = H as first approximation of ideal axis directions
1 in a Euclidean space of m dimensions,

F /I. = z as first approximation of the object
1 configuration in that Euclidean space,

and Q = H Z' as least squares approximation of Q as the
1 1 1 initial ideal axes in the Euclidean space.

This lir.ear vector model solution then is optimised for a scaling of Q

by replacing for Q the minimal changed rows in Q that fits the rank
order constraints as its maximised monotone regresihons with the rows in
Q and then the analysis of (66a) is repeated for the successively scaled
matrix Q until convergence of an optimally scaled matrix Q is obtained.

However, depending on whether the Euclidean space is the stimulus or
sensation space and whether in the latter case the monotone valence
function is the arctangent or the hyperbolic tangent function for
sensations, the actual scaling of the preferences on the ideal axes
and the analysis should be differently performed. Also individual
dimension weights and the weight-dependent translations for Euclidean
ideal axes are not taken into account by the vector model analysis of
matrix Q that derives from positively scaled preference rank orders.
The weighted sum of dimensional valences for obj ect i as ideal response
axis as preference v

Ji
of objects i for individual J is written as

:,~w. ',m

V "'Iv =Ih or =r
Ji k.' Jik ".1 Jk Jik Ji

(6'7bl)

(67cl)
or

where h are the rotation weights of individual J for rotation of the
respons~dimensionsk to the ideal response axis of the individual.
If the response space is defined by inverse tangent transformations of
a Euclidean Bower space from elliptic stiITnlli then (see: section 502.1.)
the transformation from sensation to response space axes writes as

v , = arctan[2 (y ,la - 1) 1, (67b2)
Jl Jl J

or replacing the expected vJo values by values c
J

' as observed bipolar
preference data that are scaled between -%n and +i!sl"J, we have inversely

q 0 = ~tan[-c .1 + 1 = Y .la . (67b3)
Jl Jl JlJ

In case of a Euclidean Bower space from hyperbolic stimuli from we have

v
Ji

tanh[-{YJ/aJ - l}],

qJi ar tanh[-cJll + 1 = yJ/a
J

, (67c2)

where the c , values are bipolar preference rank orders that are scaled
~:;= -1 ~d +1. Rotation cosines hJk define ideal sensation axes,

with

(67c3)

(67c4)
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In case hyperbolic tangent functions of hyperbolic sensations from the
Euclidean stimulus space we modify (67c2) for stimuli to

2/a
t ="'.....,..,{2·artanh[-c J}=(l-C )/(l+c ,)=(x Ib) J(67cD.)
Ji-"- Ji Ji J~ JiJ

where we obtain for rotation weights h the ideal axes in the Euclidean
stimulus fraction space with the trans&ed adaptation point to the space
origin as translated rotation centre by

qJ; = t~/2 = 'f h ·x Ib + e = x Ib + e " (67d2)
-'- Ji k_,JkikJ Ji JiJ J~

with

1, f h ·b - b
:,=1 Jk: Jk - J' and eJi as error term. (67d3)

We need for q . of (67d2) the still unknown values of %:l , which are
. . . 11 h ~. J
~n~t~a y ere set to Ulllty.

Writing (67c3) or (67d2) in matrix notation, where for elements q . we
define a N'o matrix Q, for elements h ,a Nm matrix H, for element'1~y,
or x, a om matrix Z, for elements l~ or lib a N'N diagonal matrix ~
we obtain for (67c3) and (67d2) an ide'htical ~trix expressions as

Q = WH Z' + E. (68a)
Comparing (68a) and (66a) we see that we can't solve from (66a) the
individual dimensional adaptation points, due to the absence of bipolar
translation and limit scaling of preference rank order data. But we can
solve from (68a) by the transfonnations of ideal response axes to ideal
axes in the Euclidean object space, where firstly we have to solve H, Z,
and W from Q as defined for (67c3) or for (67d2). For a given matrix Q we
solve matrices H, Wand Z via the eigenvector/value solutions of

Q'Q = G I? G' + E'E (6abl)

whereby trace{E'E} is minimised for m principal components

Z = G 11, (68b2)

while we obtain by E Z = 0 from (68a) and (68b2)

(68b4)

(68b3)
where

QZ (Z'Zj-l=QGlI.G'1I- 2 G =WH,

"W = dlag [W H H'W]

Multiplication of (68b3) by the invers of (68b4) solves matrix H, while

Q=WHZ'. (68b5)

However, here we need an iteration cycle if values q , are defined by
(67d2) , because initially we1took a =In(b) = 2, whe{~ now b = l/w as
solved by diagonal matrix W- . By u~ing InQl/w )/2 = a 12 in J (67d2)Jfor
improved elements of matrix Q and solving agai~ (68b) ~e can here solve
iterativelyW, H, and Z for z, = x. as Euclidean stimulus co-ordinates
by repeated solutions of (685)<- und.~ convergence of W.

TIle dimensional adaptation point b or a are obtained by projections
of space adaptation points b or aJkthat ~e located on the ideal axes
defined by the rotation weigKts h J=cos(J.! ). Since a projection angle
is 90 o -J.!Jk: for rotation angle J.!Jk:' JJie obtallfthe dimensional projections
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of qJi the

or

of b
J

or a
J

by weights defined as wJk '" sinlar cos{hJk)J, whereby

(68h6)b·w = b
J Jk Jk

We further derive from the solution of the expected values
expected ideal response axes values. In case of (67h2) by

(68cl)v '" arctan[2Q. 2],
J1 J1

or in case of (67c2) by

~ , = tanh[-(q . - Il], (68c2)
J1 J1A "" 2/a

and case of (67d2) we use t , = (x ,/b) J and derive
J1 J1 J

~,=(l-t.)/(l+f,) (Gae3)
J1 J1 J1

with power exponent 2/a = 2!ln(b ) from converged values b = Ijw .
Next we obtain an i~rov~d scaling~f the initial bipolar pre:te:rence'flata
C , by minill'ally changed expected v , values from (6ae) that fit the rank
ol1iier and sign of the bipolar prefelJnce data and satisfy also the limits
of their ideal response axes. The better scaled preference values are
used for improved q , values by (67b2), or 67c2) , or via (67dl) also by
(67d2) and then sol~M again by (68b) . Repeated solutions by (68b) for
further improved preference data scaling by (68c) and (67b2), or (67c2),
or (67d2) until convergence occurs, optimally scales the preference data
as observed ideal response axes and solves the rotation vectors in H, the
Euclidean object space co-ordinates in Z, and the dimensional weights by
solved adaptation points aJk. or bJk. under minimised trace {E'E}.

By also attaching per individual the expected valences v , of (68c) to
the objects in the Euclidean sensation or stimulus spaceJ~e can infer
the curved iso-valent contours in the ccmrnon Euclidean sensation or
stimulus space as individually oriented and located iso-valent contours
with individually oriented indifference sensation axes or indifference
stimulus curves and ideal sensation or stimulus axes that intersect at
their individual space adaptation points.

We have Non bipolar rank order values c . for n objects of N differing
individuals, while we lose at least 2N cfe§-rees of freedom by the optimal
scaling of c " These scaled values have to determine the N(m-1) rotation
cosines of ilthe n'm object locations on the Euclidean object space co
ordinates of X or Y, and N unknown adaptation points a or b . Therefore,
the equations can only be solved if J J

Nln 31 > N(m - I} + n'm + N N'm + n'm,
or

Nln m - 31 > nom,
whereby

~dn > m + 3 N > n'm,

(69d1)

(69d2)

(69d3)

must be simultaneously satisfied for N individuals with different bipolar
preference rank orders and m-dimensional solutions. For m = 2 it requires
that n ;: 6 and N > 12, for m = 3 one needs n ;: 7 and N > 21, while m = 4
requires that n ;: 8 and N > 32, but for well-detellTIined solutions number
N with different preferences must be much higher than its minimum n·m.
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Above we described an iterative, semi-metric solution procedure for the dimensional
object parameters and individual parameters on the one hand and the optimal scaling
of individual bipolar preference rank orders on the other hand. There exist other
solution techniques based on an initial object configuration that is iteratively improved
to fit optimally an iteratively scaled data matrix. However, in contrast to such
techniques the described analysis method exhibits not the danger of local minimum
solutions, because based on metric, singular value decompositions of iteratively scaled
data matrices without an initial object configuration. The solution for the common
Eudidean object space and the individual rotation and adaptation-level parameters can
only be detennined if the numbers of m dimensions and N individuals with different
bipolar preference rank orders for a set of n objects satisfy jointly:

n>m+3 and N>n·m.

The proposed solution method is an alternating iteration procedure that on the one hand
optimises the scaling of the preference data and on the hand solves metrically the least
squares fit for the common Euclidean object space co-ordinates, the individual
dimensional weight parameters that also determine the translations to individual
adaptation points (or for stimulus spaces their dimensional weight and power
parameters), and the direction angles for the individual ideal axes in common Euclidean
object space. It thus gives the parameters for the individual transformation of the
common Euclidean object space to individually different, open monotone valence space
geometries with either aEuclidean, or hyperbolic, orelliptic distance metric. The theory
of the presented analysis allows a richer interpretation than a weighted version of the
linear vector model analysis as such, because it defines that the dimensional weights
correspond to space adaptation points as individually different origins of the ideal axes
and, thereby, also specify correctly the ideal infinity directions. These interpretations
are based on our psychophysical response and valence theory that relates Euclidean
stimulus or sensation spaces to open spaces for judgmental evaluations and preferential
choice with different geometries. The relationships between stimuli, sensation,
judgmental and preferential evaluations are lost if no grounded theory of rational
distance metrics in these respective spaces, defined by their metric stimulus space
transformations, guides the preference analysis.

5.4.3. Analysis me/hods for single~peakedvalence spaces
Single-peaked valence spaces that generate from the product of arctangent or
hyperbolic tangent functions of comparable sensation distances to ideal points in
Euclidean (or Minkowskian) sensation spaces have varying curvatures. Only single
peaked valences that generate from the product of hyperbolic tangent functions of
hyperbolic sensation distances to ideal points have a constant curvature ~ = -V2. The
geometries for spaces with varying curvatures are so-called Finsler geometries (Rund,
1959; Asanov, 1985; Matsumoto, 1986). The general mathematical description of
Finsler spaces is rather complex and their analyses are enabled by tensor algebra
(Gerretsen, 1962; Sokolnikoff, 1967; Dubrovin et aI., 1992) for the covariant
transformations of co-ordinate values and space curvature parameters of these
geometries. Fortunately, no further explication is needed of that "impenetrable forest
",,,,hose entire vegetation consists of tensors", as Busemann (1950b) once called the
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Finsler geometries for surfaces with continuously varying curvatures, because the open
Finsler geometries for single-peaked valences ofEuclidean sensations have curvatures
and valences that both are detennined by the valence-comparable sensation distances
to ideal points, as demonstrated in the mathematical subsection of section 5.2.1.
Thereby, we can bypass the tensor-algebraic analysis complexity of single-peaked
valence spaces with varying curvatures. The open Finsler spaces of single-peaked
valences become mathematically tractable by theirfonnulation in tenns of individually
different, projective transfonnations of Euclidean sensation spaces, because open
single-peaked valence spaces with variable curvatures are so-called projectively flat
Finsler spaces (Matsumoto, 1991). The curvatures of the open Finsler spaces of single
peaked-valences have absolute curvatures that decrease with the weighted sensation
distances dJ.!d

J
to the ideal point, where d

J
is the distance between the ideal point as

sensation-sp1ace centre and the projected adaptation space pointon the sensation vector.
Thereby, their preference analyses can be simplified to the semi-metric analyses of
individually weighted Euclidean sensation distances dr/d

J
from individual ideal points,

if the stimulus space is hyperbolic, where then the Euclidean sensation distances dJ.!d
J

can iteratively be derived by the metric, inverse transfonnation of initially and in1the
end optimally scaled, single-peaked valences. If the sensation space is hyperbolic then
single-peaked valences are defined by

vJi :=: tanh[-V~ln{cosh(dJ/dJ)/cosh( I)}],

where cosh(dJ.Jd
J

):::: cosh[ln(x.lPJ )/ln(b!PJ] is a hyperbolic sensation space distance,
whereby its s~ngle-peaked va\ences are response to sensations of power-raised,
conjugate stimulus fraction midpoints (csfm's), defined by (x.!PJ + p!x.)12 with
respect to self-conjugate individual ideal points PJ in the EucliJean stimul~s space.
From scaled single-peaked valences we obtain

cosh( I )·exp{ 2[ar tanh(-vJi)]} ::. cosh[ln(x(PJ)/ln(b!PJ)] ,

whereby the stimulus or object configuration in the common Euclidean space with
differently located, individual ideal stimulus space points PJ and possibly different
individual stimulus adaptation points b

J
can iteratively be solved. Our multidimensional

analysis of preference rank orders as ordered distances to ideal points in Euclidean or
hyperbolic sensation spaces resembles the Coombs' (1964) unfolding analysis, but also
differs from Coombsian unfolding analysis due to our metric transfonnations of
optimally scaled, bipolar preference rank orders of individuals to Euclidean stimulus
or sensation space values. If the common Euclidean object space is the stimulus space
then the preference analysis for single-peaked valences concerns the inverse
transfonnation of single-peaked valences to individually power-raised, Euclidean
stimulus fractions with respect to individual ideal points as unit space points, whereby
the corrunon Euclidean stimulus space can iteratively be solved from individually
rotated, weighted, and power-raised dimensions. Ifthe common Euclidean object space
is the sensation space, then the preference analysis concerns the inverse transfonnation
of single-peaked valences to valence-comparably weighted Euclidean sensations with
respect to individual ideal points, whereby the common Euclidean sensation space can
iteratively be solved from individually rotated, translated, and weighted spaces.
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The solutions in the next mathematical section are based on successive
deflations of the dimensional valences for each iteratively solved Euclidean stimulus
or sensation dimension from valences that derive from the iteratively optimal-scaled
values of observed bipolar preference rank orders of individuals, as specified earlier
for monotone valences. The analysis of single-peaked valences for each solved
dimension. besides the deflation procedure. is similar to the solution for ideal response
axes in monotone valence spaces, described in section 5.4.2. However, the differences
between the solutions for single-peaked and monotone valence spaces are threefold:
I) we don't rotate common Euclidean object space to one ideal response axis for each

individual, but obtain its co-ordinates successively for maximal relevant, multiple
axes with single-peaked valences by successive deflations of solved dimensional
valences from space valences as optimally scaled, bipolar preference rank orders;

2) we don't weigh or power-raise rotated co-ordinates of the common Eudidean object
space by twice the inverse of the dimensional distance of the adaptation point to the
just noticeable point as Fechner space origin, as holds for monotone valences, but
weigh or power-raise Eudidean co-ordinates by the inverse of the distances
between their dimensional adaptation and ideal points in the Fechner-Helson space;

3) we don't translate the common Euclidean sensation space to individual adaptation
points or don't scale the common Euclidean stimulus space to stimulus fractions
with respect to stimulus adaptation levels, but translate individually the common
Euclidean sensation space to ideal points or scale the Euclidean stimulus space to
individual stimulus-fraction co-ordinates with respect to ideal stimulus points.

It also differs from existing methods of unfolding analysis in three ways:
a) the space reference point not only is the ideal point as individual centre point, but

also the adaptation point for hyperbolic or Euclidean sensation distance between the
ideal and the adaptation point, where the dimensional weighing of sensation
distances to the ideal point by the inverse of the distances between dimensional
adaptation and ideal points defines the valence-comparable sensation dimensions;

b) the preference analysis is based on metric deflations from space valences as initially
scaled, bipolar preference rank orders by dimensional valences of successively
solved sensation or stimulus space dimensions, while the bipolar preference data
become optimally scaled by alternating the m-dimensional solution and the scaling;

c) equal object preferences describe iso-valent circles in individually weighted and
translated Euclidean sensation spaces, but in the Euclidean stimulus space they
become exponentially transfonned circles with respect to individual ideal points as
unit point in the individually power-raised Euclidean stimulus fraction spaces.

In section 5.2.1. we have written the dimensional single-peaked valences
for a hyperbolic or Euclidean sensation dimension k as the product of two
hyperbolic tangent or arctangent functions of the variable and fixed
dimensional sensation distance, defined by

dJik ,= IYik - gJkI and dJk '= laJk - gJkI, (70a)

where 9 is dimensional ideal point and d the dimensional distance
betweenJfbe ideal and adaptation or satura~on points of individual J
J on sensatlon dlmenS10n k wlth sensatlons y

,k
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The single-peaked valences as products of hyperbolic tangent functions
for valence-comparable Euclidean sensation spaces of hyperbolic stimuli
are given by

v, -" tanhHfln(cosh{d . Id }/cosh(l)]. (7Gbl)
Jlk Jlk Jk

By the Euclidean nature of dimensional distances dJi/dJk we write

~ ,'" tanhHfln{cOSh[N{ (y, -g )/d }2J/cosh(ll}l. (70b2)
Jl '"fi lk Jk Jk

(70b3)

(70bS)

(70b4l
where

Expression (70bl) is a response transformation of the logarithm of the
hyperbolic cosines for weighted Euclidean sensation distances between
dimensional sensations and its ideal point with respect to u = cosh (1) ,
because cosh(y-g) = cosh (g-y) , whereby the inverse of (70bl) yields
fork=h=l, v=tanh'(1jl, andd, =I(y, -g lid i

m Jlh lh Jb Jb'

d +e =2artanh[J{{v -c l/(l-v,c }}
Jih Jih m Jih m Jih '

,,,~ 2 A

J[Ld 'k} .eJ , = dJ' • dJ'h'
k~,Jl 111

for

(70c2)

(70b6)

t;Ji by

(70c3)

with

d. =2artanh[/{(v - c ,)/{1-v'c ,}J
Jl mJl mJl

and where c = c for h = 1 are the preference rank order values
that are sclii~ be'l~een v = tanh' (?f) and -1 as first estimates of v

m ~

If the product of arctan9ent functions is the valence function for the
comparable Euclidean sensations of elliptic stimuli, we iteratively
obtain d from bipolar preference rank orders that are now scaled to
_~2 < c ~i~ (~)' as initial values v , and taking c, = c , for h = 1,

Since noJairect solution of d , is poihble for the '11:-tttan~,kt-based
valences, we use initial curv.\lture estimates that range between 2 and 1
by monotonic function of [{~}' - c

Ji
1 for their initial estimates as

t;, 2 er;' - 16·c ,]/3, (70cl)
Jl Jl

d 1 tan(W!'t;, ,c ,),
Jl Jl Jl

as first estimate of d
Ji

that is used to improve the estimate of

t;, ='8:/(arctan(l+d ,),
Jl Jl

where then (70c2) and (70c3) are applied repeatedly until convergence,
while (70bSl is then also used for the estimation of d

Jih
for h = 1.

Since each individual may have differently rotated dimensions, we have

<"W. k~m b •.

dJih =tfJkhIYik- gJkI/&lhJkh 'dJk = ~~Jkh!yi/dJb- 9Jb/dJbl (70dl)

3

By require signs of hJhk that satsify 9Jb > aJb we may initially take

gJh = aJb + dJh 3dJb

whereby initially

tJb = 9Jh/dJh
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whereby

if dimensional deprivation levels coincide with the Fechner space origin
of Y

i
. Since d

Jih
> 0 and Yih/dJh > 0 we define sign indicators

sih= 1 if d
Jih

- tJh> 0 and Sill -1 if d
Jih

- tJh<: 0 (7Od2)

(70dl) leads to
bm

qJih = sih{dJih- tJh) = q::,hJkh'Yik]/dJh + eJih (70dJ)

(71al)

(70d4)

Writing 0 as N'n matrix of initial values q , = s, (d , -3) for h = 1,,n. Jlh lh Jlh
matrlx ~ as N·m matrlx of elements h ,Z as 0111 matrlx of Y, values,
E,. as N·n matrix of error terms e ,~w as diagonal N·N ~trix of
of elements 1/dJh, then (70d2) il~itten i\\ matrix notation as

o = W B Z' + E .n h h h
The matrices W

h
, B

h
, and Z are solved from the m eigenvector/values of

O'Q 0 F .2F , ,E"
nn " h h'

(71a3)

(71a2)

(71a5)

(7la4)

Z '" F h,
~d

where
W

h
B

h
= ~Z (Z'Zj-l= ~ 11. F'F h- 2F',

W =diag{W H H'WI)~,
h h h h h

By multipl~ing (7la3) by the inverse W
b

also matrix ~ is solved, whereby

~ = W
h

B
h

Z',

and Z, Wh and ~ are solved under minimum traee[EhEhl for tJh=9Jh/dJh=3.

For solved values of ~ and the estimated d
Jih

values we also have by

(7lel)

~~~~:~ent values tJh that by renewed application of (70d) yield improved

qJih = sih' (dJih- tJhl, (7lc2)

This iteration cycle for a solution by (7la) for improved q, values and
subsequent improvements of d, for t by (7lcl) and fur{h~r improved
values qJih by (71c2) is repilot€ed unti'r convergence is achieved,

(71b2)

(7lbl)

. ..
arctan( I - d ) 'arctan(1 + d 1 -= v , '

Jih Jih Jlh

or

. .
Defining d = 5'q + tJh we also obtain

Jih ih Jih

tanh{-:4n[coSh(d 'h)/COsh(l)]} = ~ , ,
Jl Jlh

(7Th3)

D..te to corresponding orthogonality of sensation and valence dimensions
and writing d = d for h = 1, we next can define

Ji Ji(h-I)

q = s [(d - d ) - t 1
Ji (h+l) i (h+l) Ji (h-I) Jih J(h+1)
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and repeat for h = 2 to h = m the sequence of solutions from (71a3) to
to (71b3) for the solved matrix Z for h =1. However, we rather solve
successively for h = 1 to h = m matrices Z by (71al) and (71a2) and,
then successively derive one best fittinglfuatrix Z by the so-called
Procrustes method (Gower, 1975), where then conrnon matrix Z is used
for each ~ in (71a3) to (71b3). This completes the first phase for
the iteratlve solution of the Euclidean sensation space for hyperbolic
or double-elliptic stimuli.

By their previous solved Euclidean sensation dimensions we obtain

or
tanh[-~n{cosh{/fd2. )/cosh(l)]

>bi. Jlh

vJ; = arctan [1 - ,/f;2. 1 'arctan [1 + ,/fm.12 ,hJ
... hJlh bJl

(72a1)

(72a2)

~d

~d

where

and more optimally scale the observed preferences c , by replacing c ,
by minimally changed values of estimated v , in (72:iH- that satisfy tj{@
rank order and sign of observed bipolar pr¥ferences. Repeating the
calculations from (70b6) or (70c) to (72a) and improved scaling of c .,
under initial use of previous t values, yield after convergence: Jl

(1) the optimal scaling of the~referencedata,
(2) the cOITIllOn Euclidean Fechner sensation space Y of m dimensions,
(3) locations of individual ideal and adaptation points g = t ·d

and a = g _ d on individually rotated axes, wheJ!l? Jh Jh
(4) indiv3!8ual JPc}tati'6% matrices B given by the J'h rows of the m

matrices~, whereby Y = ZB clefines individually rotated axes.
Individual iso-valent contoJ"rs ar~ deduced from attaching the predicted
object valences v , for each individual to the object locations and their
reflected locatig6s with respect to the ideal point and from attaching
also the predicted dimensional valences to the dimensional obj ects and
their reflections with respect to the dimensional ideal points. The
solution depends on the type of single-peaked valence function as product
of hyperbolic or arctangent functions for the valence transformation of
the solved common Euclidean sensation space.

In case the comnon Euclidean object space is the stimulus space we have
hyperbolic sensation spaces, whereby

z. =cosh[d ./d] =cosh(1)'{l :;, )/(1+V
J
,), (73a)

Jl J1J Ji ...

z. = cosh[d 'h/dJh] = cosh(l)· (l - c 'h)/(1 + CJ'h) , (73b)
Jlh Jl Jl ...

In[cosh{z ) + sin(z 'h)] =d, /d (73c)
Jih Jl Jlh Jh

d
j
ih/dJh = Iln (Xih/PJh;/lln(bJh/PJh) I· (73dl)

We scale again the observed preference rank orders to values c between
tanh' (~) and -1 as initial estimates of v

Ji
' while for h = 1 'l~ agam

takec =c
Ji Jlh

By taking initially In(b /p ) 1= 1 the Slgn In(x1h/P
Jh

) can be solved
by also taking lnltlallY'W

Jh
Jhln(P

Jh
) = 3, because then we have

d
Jih

- gJh [Y
ih

- gh l - gh = ±Yih (73d2)
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whereby
exp(d

Jih
) = xih/PJh if d

Jih gJb Y
ih

> 0
=d (73d3)

exp(-d
Jih

) = Xih/P
Jh

if dJih gJb -Y
ih

< 0

because by definition y, ,,0. For h as dimensional rotation cosines
of the comron E'Uclidean1Rtimulus spa'M'for individual J to individually
most relevant first axes h = 1 we write

qJ·h = x'h/PJb = 'f hJkh.x·k/PJb' (73bl)
11 k~l 1

Defining 0... as matrix of q . , W as diagonal matrix of lip . and Z as
matrix of file elements x JMid;;f for error terms e ,we iPc?ive in the
same way as before from ik h Jih

~ ="h ~ Z' + Eh' (74al)

the matrices W , H..., and Z by (71a). Given the first solution for ~ for
h = 1 we find first1

iteratively improved values of dJh = !lTI{bJh/PJhI by

~[lln(qJih)i/ln{COSh(ZJih)+ Sinh(zJihl}l/n dJh

Given the improved estimate of dJh we obtain by
,

[In{coSh(ZJih) + Sinh{ZJih)1 odJh = dJih = Iln(x. Jp ; (74a3)
'h Jb

by

and the renewed application of (73d) new estimates of qJih " xih/PJh

By repeating solutions (?la) of ~ in (74a1) for also improved values d
until convergence of Q... is obtained, we have solved W , H"., Z, from tllli
converged q values for h,,1. Next solutions for h"2\o :tt"m are solved
by replacin~i8 . (h ) for c 'h in (73c3), where c '( is defined for

Jl +1 Jl Jl h+l)

c
Jih

tanhH,,{ln [cosh{ln (qJih) IdJhI Icosh(l) J}]

c " tanh[ar tanh(c )
~(~l) ~

(74a4)

(74a5)

where Z from the solution for h =1 may be taken as fixed, but we rather
successively match by the Procrustes procedure each solved Z for h = 1
to h = m and adjust computations (?la3) to (?la for matched rR"trix Z.

For a converged solution we have predicted preference values by

~ =tanh[\'-l'artanh(c )]
Ji id. Jik

Thereby, we can improve the scaling of observed bipolar preference
rank orders by using the minimally changed values of predicted values
v . that fit the sign and rank order of the observed bipolar preference
rfu order data. The scaled preferences are then again analysed by the
iterative procedure from (73d) to (74a4), under initial use of the
previously solved values for d . By repeating the improved scaling of
the observed preference data anJH their solution until convergence,
the optimally scaled preferences and their solutions in the common
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Euclidean object space are both solved_ Again the individual iso-valent
contours are deduced from the predicted obj ect valences and the predicted
dimensional valences v, of individually rotated dimensions. Here again
rows for individual fIn matrices :l1 for h=l to h=m define individual
rotations B

J
by X

J
= ZH

J
to individua stimulus space co-ordinates with

PJh=l/WJh and bJh= exp(dJh} -wJh (74a6)

as the dimensional ideal and adaptation points of the stimulus space.
We have N'n observed bipolar rank order values c for N individuals with
different bipolar rank orders, but also l=se i~ least 2N degrees of
freedom by the optimal scaling of c ,_ These scaled values have to
determine the N(m-1) rotation valuesJbf m matrices H , the nom object
co-ordinate values of Z as corrmon stimulus space X Br corrmon sensation
space Y, the m·N ideal points by m matrices W that also determine the
adaptation points together with the m·N value~ d of (74a2) or t of
(71c2). Thus a solution asks Jh Jh

or

It requires

N(n - 3) > m(m - l)N + nom + 2m·N,

N[n - m(m + 1) 3) > n·m.

n > m(m + 1) + 3 and N > n·m

(74b1)

(74b2)

where it concerns N individuals that have different bipolar preference
rank orders. For m = 1 it requires n " 6 and N > 6, for m = 2 we have
n " 10 and N > 20, for m = 3 we need n " 16 and N > 48, while for m = 4
we must have n " 24 and N > 96, but for well-determined solutions higher
than minimum numbers of N individuals are needed.

The mathematical section above describes iterative solution procedures for the analysis
of preference data for objects with single-peaked valences. It solves the dimensional
object parameters in the common Euclidean sensation or stimulus space, the individual
ideal and adaptation points, and the individual rotation parameters to the common co
ordinates of the Euclidean object space. A detennined solution for N individuals with
different preference rank orders and n objects in a m-dimensional Euclidean object
space requires that the following inequalities are both satisfied:

n>m(m+I)+3 and N>m·n,
but for well-detennined solutions higher than minimum numbers ofN individuals with
different preferences are needed.

5.4.4. Analysis methods for mixed valence spaces
Individual mixed valences are described by one ideal response axis and a single-peaked
valence subspace. The individual mixed valences generate from a m-dimensional
common Euclidean object space with a m)-dimensional subspace for the ideal axes of
individuals and a m2-dimensional subspace for the single peaked valences of
individuals. These common Euclidean objectsubspaces need not to be independent, but
assuming m l :;; m! may share partially a mJ-dimensional subspace. The partially shared
subspace can be solved by canonical correlation analyses of Euclidean co-ordinates for
the two subspaces with m l and m! dimensions (Van de Geer, 1971, pp 157-170). The
common Euclidean object space is here the Euclidean sensation space or the Euclidean
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stimulus space of the common hyperbolic sensation space Both common sensation
spaces have dimensionality m < rn l + m~, provided the canonical correlation analysis
of its subspaces yields fewer than mj non-zero eigenvalues (the squared correlations
between corresponding canonical co-ordinates of the two subspaces), else m:::: m l + m,.
If all canonical correlations are unity then m :::: m!. Its dimensionality is m:::: I + m!, if
mj :::: I (all individuals have the same ideal axis), where then the canonical analysis
solves the correlation between that axis and ml-dimensional subspace. Similarly
individual mixed preferences are determined by individual ideal axes. the m~

dimensional subspace with single-peaked valences, and the canonical correlations
between the ideal axes of individuals and that m,-dimensional subspace. The next
mathematical subsection describes an iterative analysis procedure for the solution of
the common Euclidean object space with its individual transformations to mixed
valences that fit best the optimally scaled, observed preference data specified in section
5.4.2. In the procedure the solutions for a mj-dimensional common Euclidean object
subspace with monotone valences are alternated with solutions for a m,-dimensional
common Euclidean object subspace with single-peaked valences, where we use
canonical analyses for the determinations of the dependencies between the two
subspaces as well as between individual ideal sensation axes and Bowersubspaces with
single-peaked valences. Predicted, mixed valences from previous solutions are used for
the improved scaling of the observed preferences, where repeated alternations of the
solution and improved scaling until convergence terminates the iterative solution for
object preferences with mixed valences, In contrast to the classical non-metric
preference analysis by the linear vector or unfolding model and in contrast to our semi
metric preference analyses by the method of section 5.4.2. or section 5.4.3., we need
not to determine in advance whether preferences are characterised by monotone or
single-peaked valences. The proposed solution for mixed valences determines itself by
which valence functions the preferences are characterised. A determined solution asks
for almost the same minimum of objects and individuals as needed for single-peaked
valences with dimensionality m :::: mj + m,.

We here consider individual bipolar preferences c . as initially scaled
rank orders to mixed valences as defined earlier :El} monotone or single
peaked valences. For sensations s , we assume rn -dimensional Euclidean
comparable sensation subspaces wi'tfi monotone valences and ideal axes
S .Irn. We also define w '" sin {a ) for angles 0: between the individual
i;1~al sensation axes an'd rn -dirne'lsional Euclide~ subspaces of valence
corrparable sensations s ,ps with single-peaked valences. We further
define t , '" I (s . Is) IsJ~ I as projection cosine of s ,I s on s " while
the proj~etion ce$§-ine ot~ ·s . Im on s . is given by t!l, '" .; [1 _J1t ,)'].
Thereby J Jl Jl Jl Jl

sJi '" UJi wJ 'sJi Irn + t Ji 'sJi Irn.

We denote the monotone valences of sJ.lm as v
J

. :rn, the single-peaked
valences of s .Is as v .Is. and obsect;ed, bipolar preferences as c "
where c

Ji
is ~ealed be~ibeen -1 and +1 for hyperbolic tangent-basedJ1

valences or between -'81 and +'81 for arctangent-based valences, whereby

[c - U ,'w.';; Irn] It '" ~ 's + e .
Ji Jl J Ji Ji Ji' Ji

(75al)
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or
[0 -

Ji
t ,'C .lsJ/(u .·w )
J1Jl J1J

= v "Im
Ji

(75a2)

because vector angles remain the same in valence spaces and corresponding
comparable sensation or stimulus-fraction spaces. Thus, also projected
ideal axis w ·v ,:m is orthogonal to the single-peaked valence subspace
of J, while 'theJr-esiduals in (75a1) or (75a2) describe the monotone or
single-peaked valences. For mixed valences of hyperbolic sensations and
observed, bipolar preferences c . that are scaled between -1 and +1, we
correspondingly have Jl

or
lIo

J
,- uJ,'w .~ ,Im)/(l- c ,'u .·w .; ,Im)l/t ,=; .Is + e .
.L ~ J Jl Jl Jl J Jl Jl Jl Jl

(75a3)

lIoJ,.-t ,~"S)/(l-c,·t.·;.ls)l/{u"w)=~.lm+e. (75a4)
Jl Jl Jl Jl Jl Jl J Jl Jl

For the analyses of the single-peaked valence parts of sensation s , we
must differently scale the residual valence part c "s + e to v ~§ as
valence values between the appropriate limits of t!ig respe'b~ive s'1bgle
peaked valence spaces, if the sensation space is Euclidean.

The iterative solution procedure starts by analysing c , as if it were
only monotone or only single-peaked valences. We solveJrnitially from
c . a m -dimensional common space Y or X with rotation vectors h to
H1a.iviJ-ual ideal axes and with dimeWsiona~ adaptation point parame'ters
aJk that specify the individual translations and the dimensional weight
parameters 2/a of Y or by exp(a ) = b the individual weight and
powers lib anJ§ 2/ln~ } of X , ~ desc'flf:bed in section 5.4.2.

Jk Jk m
Similarly we solve an initial m -dimensional conmon space Y or X from
c . as solely single-peaked val~nces obtained by the solutfon methods,
di?tcribed in section 5.4 . 3 ., where also ideal points g , distances d ,
and rotations B are solved. From initial matrices X Jkand X or Y allii
Y the joint co&non Euclidean stimulus space X or sefilsationIDspaceSy is
sfuved by the canonical analysis (Van de Geer, 1971, pp. 157-170) of
matrix R with correlations between the subspace co-ordinates, where R

for Euclidean sensation subspaces is defined by use of

By the

v = diag(y1 Y }
m m m

v = diag(y1 Y )
• • s

R = V"-' yl Y V~
m ID S S

eigenvector and value solutions of

RR=CltC

RR=DltD,

(75b1)

(75b2)

(75b3)

(75b4)

(75b5)

(75cl)

1 for k > min(m
1

,m2), we define if

where if m
2

'" m
1

we diagonally extended D to rn
1

as L '" ·lH~r if m
1

'" m
2

C to m
2

as K = ..'6) ~ and using diagonal matrix Wwith elements

w
k

/(1-)'t),

and extended to max (m , m ) with w
1 2 k
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Y LW = Y
m m

or if ffi
2

< ffi
l

redefine

Y L = Y and Y KW = Y •
m m B S

where the independent co-ordinates of the m-dimensional
are given as

(75c2)

(75C3)

sensation space

Y = [Y :Y ] (75c4)
m s

or similarly so the m-dimensional stimulus space X = [X :X ] if we
replace Y by X and Y by X in (75b) and (75c) . m B

m m s s

Next we solve initial angles of translated ideal axes in subspace Y

with subspace Y by canonical correlation analysis for correlation ~
between the id~l axis and subspace Y .From correlation row vector r J

of length m
2

that is defined for solv~d vectors h
J

and R in (75b3) b/

we derive

rl=hlR1R
J J '

by the eigenvector 9J of

r rl = 9 ",_q2 I
J J J uJ

(75dl)

(75d2)

(75d3)

that is orthogonal to

the projection value w
J

from correlation A
J

as

w
J

=/(1 - A~)

for the projected ideal response axis space Y .
s

From solved Y and H we derive initial estimates t . by individual
rotations of ~he ind'ividually translated and weight~:a comnon subspace.
For matrix V of unit elements, diagonal matrix D of m elements d ,
and diagonal matrix G of m elements g in casl the ~chner sensaJ{-lon
space is Euclidean weJobtai~ the valenc~col1llarableBower space of J by

and define
of

[Y - VG ]O-lK = S (75el)
B J J Js

diag{s Si ) = V of n-elements, whereby absolute elements
Js Js Js

T = s~ V (75e2)
J Js Js

solve the first estimates of t
Ji

I (sJi Is) /sJi I, whereby we also obtain

u = /(l - t 2 ). (75e3)
Ji Ji

For a hyperoolic sensation space we replace Y by X and obtain for P

as diagonal matrix of elements l/p = exp (-g ~ by.p = [X P - u] K i~
the same way initial values t . an'1fu , as cdfrespondrng ve'tt'6r angles
in Euclidean stimulus-fractio'N spacei~ith individually scaled unit
dimension points.

The initial solutions of Y and Y or X and X yields also the initial
estimates v .Im and v ,Is ~r c . Fs. whi~e thell§imple of addition

Jl Jl Jl

c = u 'w'v Im + t ·2 'sJl Ji J Ji' Ji Ji; ,

or the hyperoolic addition

(75fl)
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~ = lu ·w·;; Im + t .~ :s) 11 (l - u 'w';; ,'m· t '~s) I (75f2)
Ji Ji J Ji Ji Ji' Ji J Ji Ji Ji'

yields predicted mixed valences that are used for an improved scaling
of observed biPJlar preference data by miniTIB.l changes of predicted,
mixed valences that fit the sign and rank order of the observed data.
Improved c , values and last solved values of t " u , and w define
improved r~thduals v ,Im and c .15 as v ,Is plu~lerrg} term'ly (75a).

Jl Jl Jl
We repeat the solution and scaling procedure, which whole procedure is
repeated until convergence of solution and optimal scaling are obtained.
By performing the described analysis if m ,; m for m = 1, m = 2 etc.
and m = m, m = m +1, m = m +2 etc. or!f m 2 s m rkversel.[ so, we
TIB.y de='termi-ne the optimal 3imen~ionalityof sub~pace~, while the (almost)
zero elements w of (75cl) for (almost) unit canonical correlations
between pairs of canonical axes determine the dimensionality m of space
XorY, wheremax(m ,m) ,;m,; m +m.

1 2 1 2

In the mathematical subsection above the common Euclidean object space is solved as
well as its individual rotations to individual ideal axes in the m,-dimensional subspace
with monotone valences and to m:: dimensions of the common subspace with single
peaked valences, where individual ideal axes have oblique angles with the common m::
dimensional subspace with single-peaked valences. Dependent on (1) the rotational
weights. (2) the ideal axis angle with the subspace for single-peaked valences, (3) the
ambiences of the monotone valence function of the ideal axes, and (4) the distances
between ideal and adaptation points on dimensions with single-peaked valences, the
mixed valence function for a particulardimension can have many shapes. Combinations
of monotone and single-peaked valence functions with opposite ambiances describe
ambivalent valence functions that vary from asymmetrically monotonic to
asymmetrically single-peaked functions. Such asymmetric valence functions are
covered by our analysis of mixed valences and, therefore, it can describe kinds of
preference ambivalence that are not revealed by analyses for either monotone or single
peaked valences. We discuss this further in chapter 8, where we discuss also
ambivalence in choice conflicts that derive from dependent dimensions with oppositely
oriented, single-peaked valence functions.

Before closing this chapter, we remark that our semi-metric preference analysis for
objects with mixed valences uses no initial object configuration for the start of its
iterative solution, in contrast to existing (partially inappropriate) multidimensional
unfolding methods. Therefore, and due the scaling of bipolar preference data of
individuals with rather precisely located zero scale points, no degeneracy of solutions
(Busing, Groenen, and Heiser, 2005), nor local minimum solutions are expected in our
analysis method, except perhaps non-optimal solutions that are due to a converged,
non-optimal data scaling of the bipolar preference rank orders. The last possibility
seems unlikely, but is easily checked by starting the analysis again with some rather
different, initial scalingof the bipolar preference rank orders within appropriate valence
limits and under preservation of their sign.



CHAPTER 6

MEASUREMENT-THEORETICAL IMPLICATIONS

"Additional general theory ahout nonhomogeneous
outcomes, especially those that are homogeneous
between singular outcomes, is needed as input to these
more psychological applications."

R. D. Luce. (1992). A path taken: Aspects of modern
measurement theory. Chapter 3 (p .61) in: Healy, A.F.
et al. (Eds.). From learning theory to connectionisf
theory: Essays in honoy of William K. Estes. Lawrence
Erlbaum Ass" Hillsdale. N.J.

"One might further argue that the discovery of the
structural assumptions underlying the phenomena is the
basic goal ofscience and that measurement is 'only' a
consequence of these assumptions. In this sense
measurement is a by-product of theory. "

C. H. Coombs, et al. (1970). Mathematical Psychology,
(p. 50). Prentice-Hall, Englewood Cliffs, NJ.

"... there is measure in eve/}' thing and so dance our the
answer. "

Shakespeare. Much ado about nothing (Beatrice, Act 2,
scene I, lines 72-73). The Complete Works of William
Shakespeare. (1966). Cambridge Univ. Press, London.
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6.1. The significance of measurement theory

6.1.1. Introduction
Classical and modem measurement theories claim that only ratio scales, as mainly
specified by extensive measurement in physical sciences, allow meaningful
fonnulations of quantitative relationships between dimensional measurements.
However, in psychology we almost exclusively have ordinal or interval-scale
measurements. If ratio-scale measurement would be impossible in psychology, then it
would exclude the possibility of meaningfulness for quantitative theory in the
psychology. The three volumes of "Foundations v/Measurement" (Krantz, et aI., Vo],
I, 1971; Suppes, et aI., Vo!. n, 1989; Luce, et aI., Vo!. 3, 1990) and the books by
Pfanzagl (1968), Roberts (1979), Narens (1985, 2002), and Niederee (1992) are the
most important references to books on the axiomatic foundation of measurement.
Suppes (2002) contains an easier readable overview with a wider scope on
meaningfulness of quantitative theory in physical and nonphysical sciences. A
diverging view on measurement, grounded on empirical validity, is given by Michell
(1990). It is outside the scope of this monograph to discuss the roots of different
streams for measurement representations by abstract set theory (since von Helmholtz),
by philosophical logic (since Plato), and by geometric-substantive theory (since
Pythagoras and Archimedes). Modem axiomatic approaches within the first two
streams are similar and only seem to differ with respect to the nature of numerals, either
as isomorphic-representational (Luce, Narens) or as intrinsic-constructive (Niederee)
elements of scientific structures. Due to the highly set-theoretical basis of modem
analytic geometry, the geometric-substantive measurement stream seems almost dried
up after the so-called 'Erlanger program' (Klein, 1872), had paved the way for
measurement in relativistic physics. The geometric-substantive approach not only has
been essential for measurement in relativistic physics, but a geometric foundation of
measurement is also indispensable for conjoint component and distance-based
measurements in the psychology of judgment and preference, as demonstrated in the
sequel. Only references to original authors of measurement-theoretical contributions
are given and otherwise we reference chapters in the volumes of "Foundations of
Measurement" by shortened notations, such as FoM (ch. 3). Chapters 1 to 10 in the first
volume describe the axiomatic theory up to 1970. The second volume with chapters 11
to 17, published in 1989, contains a geometric approach and measurement
representations of threshold and choice probability structures. The third volume with
chapters 18 to 22 is published in 1990 and mainly updates volume L

Narens (2002) distinguishes between I) representational meaningfulness, 2)
intrinsic lawfulness, 3) qualitative meaningfulness, and 4) empirical validity of
measurements. Although one may distinguish these aspects, the empirically valid
description in quantitative tenns of qualitatively observed order and equivalence
structures is the purpose of measurement in science. Therefore. meaningfulness of
measurements not only concerns abstract definitions, but requires also that
measurement assumptions are verifiable and that measurements are verified by order
and equivalence structures of qualitative observations. The verifiability requirement for
meaningfulness implies that measurements must not depend on arbitrary parameters,
which requires that also units of ratio scales become distinctly defined. The verification
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requirement for meaningfulness means that measurements must empirically represent
the observed order (and/or equivalence) structure. Notice that meaningfulness is not
guaranteed by quantified observations of measurement instruments, because
instrument-based measurements only are meaningful if their measurements invariantly
represent the observed order (and/or equivalence) structure for the attribute that the
instrument is supposed to measure. Only ifmeasurements invariantly represent the rank
order and equivalence structures of qualitative observations then quantitative
relationships can be meaningful, while their verifications or refutations contribute to
progress in scientific theory. Measurement theory shows that ratio-scale measurement
in psychology is troublesome, which would imply that the meaningfulness of
quantitative theory in psychology is questionable. However, the meaningfulness of
ratio-scale measurements of item difficulty and individual capacity by so-called Rasch
models for analysis of intelligence sub-tests (Rasch, 1960, 1966a, Stene, 1968) are
regrettably ignored in the above referenced books, although Rasch (1961, 1966b) gives
a (non-axiomatic) measurement foundation. The recent books of Narens (2002) and
Suppes (2002) contain also not the unprecedented axiomatisation result of Luce (1995)
on a kind of extensive utility measurement. Luce's utility measurement derives from
separately verifiable axioms for equivalence structures of jointly evaluated pairs of
valued goods, while nowadays the axioms are to a large extent verified (Luce, 2000).
Since its utility measurement only depends on one arbitrary parameter, while the
associativity rule for combinations of pair elements is inferred from mainly verified
axioms without an associativity axiom, we call it an inferred-extensive measurement.
As further discussed in the sequel, inferred-extensive measurement differs from
derived-extensive measurement in physics, whereby a ratio-scale measurement for
conjoint component outcomes is derived from physical components that already are
measured by ratio scales. Ratio-scales are obtained by measurement axioms, whereof
the associativity axiom defines an addition of numerical units and is ostensively
verified by observable concatenations of physical units. Therefore, such ratio scales are
here called ostensive-extensive measurements, which is the classical type of physical
measurement that is axiomatised for the first time by von Helmholtz (1887). Luce
(2002.2004) modifies his axiom system of utility equivalences for an application to
subjective stimulus-fraction equivalences in an attempt to obtain inferred-extensive
measurement for psychophysics. Also Narens (1996, 2002) axiomatised an extensive
measurement of subjective stimulus magnitudes, but Narens' axiomatisation
presupposes an associativity axiom that can't be separately verified, whereby the
axiomatisation might be questionable, as further shown in the sequel. We mainly
discuss the significanceof measurement theory for the meaningfulness ofjudgmentand
preference measurements and describe the measurement-theoretical implications of the
psychophysical response and valence theory and compare our geometric-substantive
theory of transformed-extensive measurement with Luce's axiomatic measurement
theory of inferred-extensive utility and psychophysical measurements.

Transformations of scales under invariance of scale type describe the classical
taxonomy of nominal, ordinal. interval, and ratio scale types (Stevens, 1946, 1951,
1959). These scale types plus the absolute and log-interval scale are regarded as
exhaustive in FoM (ch. 20), but Roberts and Rosenbaum (1986) give a more detailed
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taxonomy. The nominal type as categorisation can hardly be regarded as measurement,
while addition of the hyper-ordinal scale type (Suppes, 2002, p.118), as defined by fank
order of distances or first-order differences. seems accepted. In chapter 4 we discussed
spatial representation of ordered dissimilarities by distances, but the dense hyper-order
of dimensional distances (n objects and N individuals have Ym(n-1)N distance
inequalities) describes dimensions that are indistinguishable from interval scales with
negligible measurement errors. We describe scale types by uniqueness properties in a
notation that differs in fann and meaning from the notation for measurement
uniqueness in FoM (ch. 20). Therefore, we specify:

Notation ofscale uniqueness
A scale is (n,m,p )-unique if its measurement depends on n arbitrary parameters and
m+p distinct parameters with m dimensional and p dimensionless values.

The n arbitrary parameters can have any value (e.g. n '" 2 for linear transfonnations of
interval scales), while the m parameters have distinctly solvable or prior-defined,
dimensional values and the p parameters are prior-defined or singular and
dimensionless. A prior-defined dimensional parameter applies to a physical ratio scale,
if its arbitrary scale unit becomes replaced by a conventionally agreed measurement
standard (e.g. the metre for the unit of length), whereby its measurement becomes a
fraction scale with a distinct unit point (e.g.: length as fractions of the metre). Distinctly
solvable, dimensional parameters apply to the comparable sensation scales in our
psychophysical response and valence theory (e.g.: the related and distinctly solvable
weight and translation parameters). We define a scale as a dimension in an infinite or
open geometry. There are no dimensionless parameters (p '" 0) if the scale concerns
unidimensional measurements in an infinite, Euclidean or hyperbolic measurement
space. If a scale concerns values defined by a product (and/or ratio) of such infinite
measurement dimensions then p "" I, where the dimensionless parameter is a power
exponent that is defined by the number (and/or number ratio) of involved dimensions
(e.g.: integer 3 as power exponent for volume as cubic length measurements), whereby
its value is an integer (or a ratio of integers). If the scale is defined by unidimensional
measurements in open spaces then also p:::: I, as singular value of the space limit, (e.g.
value ±I as limit of the hyperbolic tangent projection of an infinite hyperbolic space).
Also p "" 2 is possible, if scales are defined by (ratios and/or) products of dimensions
of open measurement spaces. In the sequel we encounter such scales for single-peaked
valence measurements (but p :::: 2 may also apply to scales in relativistic physics, if
defined by the parameters for the constant of light velocity and a power exponent for
the product and/or ratio of involved dimensions). We use Roman letters for scales and
Roman or Greek letters for parameters, while cursive letters f, £. U, etc. are used for
functions. We again use indices for scale values, where capital indices I and J concern
individuals and indices f, g, i, and j scale values, while subsequent indices g, k. or h
refer to space dimensions. We again use x'

k
for dimensional stimuli, y'k for their

Fechner sensations with srk as comparable1sensations of individual J, r/
k

for their
response values, and v

rk
for their valences. In functional equations weluse letters

without indices for datalelements that are represented by scale values.
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A ratio scale x. Ill
k

of a dimension k in an infinite stimulus space has one
arbitrary parameter forl~s scale unit Ilk and, thus, is defined as a (1 ,O,O)-unique scale.
The logarithmic transformation of tlie ratio scales of stimulus dimensions define
Fechnerian sensation dimensions (Y'k - Pk)/ukof interval scales Yik :::: [n(x.k) with
arbitrary parameters u

k
for their sdre units and P

k
= In(J.l

k
) for tfJ.eir tranhations.

Unless their dimensional units and translations are distinctly solvable parameters, they
are (2,O,O)-unique interval scales of Euclidean or hyperbolic sensation space
dimensions, due to the geometric relationship with respectively non-Euclidean or
Euclidean stimulus spaces, described in chapter 3. Measurement theory defines
physical log-interval scales that can differ from the (2,0,0)-unique scale type if it is
specified by the logarithmic transfonnation of a power-raised ratio scale (x.k/ll

k
)t k with

dimension less power exponent \ (as a-priori defined, distinct intege} or ratio of
integers, which holds for scales such as area that has t = 2 for its product of length
measurements). Its log-interval scale tk[ln(x ik) - a In(llk~l has one arbitrary translation
parameter In(ll

k
) and one distinctly oefinea: dimenslonless parameter t that then

determines its scale unit, whereby this type of log-interval scale is (l,O~)-unique.
Probabilities of events are defined by absolute measurements between zero and unity,
where the universal event defines maximum probability p = 1 and the null event the
absolute probability p =0. However, the maximum probability is no absolute value, but
a limit parameter that conveniently is set to unity (Luce and Narens, 1978, p. 232-233)
in the same way as the radius of a circle is scaled to unity before trigonometric
functions are applied. Therefore, event probability measurement is (0,0, I)-unique by
its singular maximum of unity for the limit boundary of the open probability space. In
our notation random variable probabilities are (O,m,I)-unique, due to the singular
maximum of unity and m dimensional parameters that characterise the probability
distribution of a random variable. Symmetric probability distributions depend on
distinct mean and dispersion parameters and in our notation then define (O,2,1)-unique
probability measurements. Asymmetric probability distributions may have m = I for
one-parameter distribution, as for the Poisson distribution, but m = 3 for asymmetric
distributions with mean, dispersion, and skewness parameters. The axiomatisation of
(ostensive-)extensive (FoM: ch. 3) or derived-extensive (FoM, ch. 10) measurement
and measurements from difference or distance structures (FoM: ch, 4 and 9) as well as
from additive or polynomial additive conjoint structures (FoM: ch. 6 and 7) describe
fundamental measurement types. Ostensive- and derived-extensive measurements
define the (I,O,O)-unique ratio scales ofphysical sciences, while the other measurement
types yield (2,O,0)-unique interval scales that mainly apply to nonphysical sciences.
Modem measurement theory generalises associative or additive measurement to non
associative or generalised-additive measurement ofcomponents with so-called positive
concatenation structures (FoM: ch. 19), which enriched the theoretical uniqueness types
of measurements (FoM: ch. 20). Thedefinitions of measurement-theoretical uniqueness
and our scale uniqueness differ, but these uniqueness types are related and both define
whether meaningfulness of quantitative relationships holds (FoM: ch. 10 and 22).
Meaningfulness of quantitative relationships holds for extensive measurements,
provided that their scale units are specified, which in physics is done by conventional
agreement on measurement unit standards (such as a length unit based on the
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calibration standard for the metre kept at constant temperature in Paris).
Meaningfulness holds not for interval scales that have unspecified scale units and
origins, while these parameters for psychological interval scales can't be defined by
agreements on observable standards. In the sequel we discuss attempts to obtain
extensive measurementforpsychophysics(Narens, 1996,2002; Luce, 2002, 2004) and
the inferred-extensive measurement for utility by Luce (1995, 2000) and investigate
their validity and whether their uniqueness is suffIcient for meaningful relationships.

We define (0, 1,O)-unique fraction scales x'k/x k for physical ratio scales x'k!).\
with a distinct, dimensional value x'k/x '" 1, sU~li afror length with x k/llk:=: I 1s the
metre, A (O,I,O)-unique fraction sbleohas no arbitrary parameter. £ power-raised,
physical fraction scale (x.k/x k)'k also has no arbitrary parameter, if defined by a
dimensionless power expbnegr (e.g. 'k :=: 3 for volume) and a distinctly defined,
dimensional unit point ".k/x :=: 1 for Its conventionally agreed measurement unit.
Thereby, such power-raisleo, g~ysical fraction scales are (0, I, I)-unique scales. Its log
transfonned scale \,In(x'k/x k) also has no arbitrary dimensional parameters, but the
dimensionless parameter\s hgre the scale unit l/r

k
and the dimensional parameter the

origin In(x t/Il ):=: 0. Thus, it also defines a (0,1 ,1)-unique scale that is essentially
different fr~m (2,O,O)-unique interval scales and from the (1,0, I )-unique log-interval
scales 'k,ln(x.k/ll

k
) as log-transfonned, physical ratio-scale (x.k/ll )'k with

dimensionless power exponent 'k and an arbitrary scale unit Ilk' A scalJ 'k·fn(x. Ib
k
)

may also have two distinct, dimensional values, if bk/llk and 'k are distinctly dJ~neo
and/or solvable scale values and not arbitrary parameters, Notice that we derived such
distinct values for 'k as Steven's power exponents of subjective stimulus magnitudes
in chapters 2 and 3. where 'k :=: 2/1n(b lu

k
) is defined by the sensation distance between

adaptation levelln(bk/llk) and just notceable levelln(uk/llk). Half this distance defines
the scale unit of comparable sensation dimensions as

2·In(xikIbb)/ln(b t/u k) :=: 2[ln( xit/Ilk) -I n(bt/Ilk) ]/[1 n(b t/,.\) -In(ut/Il k)]·

Comparable sensation scales differ from interval scales, due to their invariance under
linear transfonnations of their underlying Fechnerian interval scales In(x.k/llk)/~\..
Their exponentially transformed scales (x.klbk)'k are power-raised stimulu1s fraction
scales that have distinct, dimensional pararrleters for distinctly solved scale units bk/llk,
defined by adaptation level x·klb

k
:=: I, and distinctly solved power exponents 'k :=:

2/In(bJ!u
k

), defined by the ~onstant sensation distances In(bklu
k

) > °between
dimensIOnal adaptation and just noticeable levels for a stimulus range with bk/u

k
as

geometric midpoint. Measurement theory defines no (0,2,0)-unique scales, but power
raised stimulus fraction scales with distinctly solvable power exponents and unit points
and their logarithmic scales of comparable sensations defme both (0,2,O)-unique scales.
Moreover, as shown in chapter 3, these power exponents are rotational parameters,
whereby a kind of dimensional invariance (FoM, ch. 10 and 20) also applies to
multidimensional psychophysics. In the sequel we extensively discuss the importance
of this dimensional invariance for the meaningfulness of our psychophysical response
and valence theory.
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6.1.2. Lack ofmeaningfulness for quantitative choice theory
The 11 arbitrary parameters of (n,m,p)-unique scales determine the permissible
transformations by value changes of their arbitrary parameters. For (2.0,0)-unique
interval scales the permissible transformation is a linear transformation and for (1.0,0)
unique ratio scales a proportional transformation, while (O,m,p)-unique scales have no
permissible transformation. Meaningfulness of quantitative propositions requires at
least that they are invariant under the permissible transformations of the concerned
measurements. This meaningfulness concept is introduced by Stevens (1946) for
meaningfulness of unidimensional statistic propositions. We firstly define

Definition I: measurement invariance
Measurement invariance of a quantitative proposition is satisfied if the proposition
is invariant under permissible transformations of its measurements.

For example, z-scores of an interval scale with a normal distribution are measurement
invariant under linear transformations of the interval scale. However, propositions on
z-core relationships are only meaningful if they represent qualitative relationships
between observations and if the assumption of their normal distributions holds. These
two conditions are specific examples of reference and structure invariance, which are
general invariance concepts in fundamental measurement theory (FoM: section 22.2.)
that also concem meaningfulness of quantitative propositions. Reference and structure
invariance are rather complex concepts, but we restrict and simplify these concepts by
redefining in geometric terms reference invariance as

Definition 2: reference invariance
Reference invariance is satisfied if an observed (weak) rank order and/or qualitative
equivalences of evaluated objects x or object pairs (x,y) are represented by an
identical (weak) rank order andlor equivalents of measurements as space point
values f(x) or binary space point values £l(x) (1) fey)], where f is a strictly
monotone (parameter-dependent) function for the evaluation of x and £ a function
that together with f and associative or nonassociative operation ® represent the
evaluation of pair (x,y) for x and y as binary space points in a given geometry with
ratio-scale dimensions.

Strictly monotone function f means that if x > y then f(x) <: fey) and also if x = y then
f(x) = fey). Here below and in the sequel we shorten by "space a = f(x)" or "space x"
the expression for space points with vectorial values a :::: f(x) or respectively with
vectorial values x in a defined geometry. If an infinite and continuous geometry for
space x is given then the strictly monotone function f also defines a continuous
geometry for space f(x), while if f(x) is bounded then the space f(x) has an open
geometry. Due to the strict monotonicity and continuity of f(x):::: a, its inverse function
f -lea) :::: X exists, but if f(x):::: fey) represents qualitative equivalence a '" b then it is
only implied for f -I(a) = x and f -I(b) :::: y that Ix - yl < 15 as threshold, while x = y
applies not. Operation $ can be associative (as difference, sum, or ratio, or product),
or non-associative (such as averaging or hyperbolic additive operations), depending on
the geometry of space f(x) and the geometry-dependent function £ for the evaluation.
For example, if a reference invariance concerns dissimilarities as function of binary
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points in a hyperbolic spacef(x) then £If(x) ill fey)] == coshlf(x) - fey)] is a hyperbolic
distance that represents a dissimilarity or. as another example. if the reference
invariance concerns a subjective midpoint evaluation of stimuli x and y and the space
f(x) is Eudidean then f- I {If(x) + f(y)JI2} represents the subjective stimulus midpoint
in the stimulus geometry and If(x) + f(y)]12 in the Euclidean space f(x). In chapter 4
we defined open response spaces by f(x)==tanh[-VlT·ln(xIb)] orf(x) =:arctan[,·ln(xlb)]
as space involutions of power-raised stimulus fractions with respect to xIb ::; 1 as
individual adaptation points and with power exponents, == 2/In(b/u) > O. whereby f(x)
depends on two individually distinct parameters uJll and bill> uJll with Il as arbitrary,
but function-independent scale unit. For dissimilarities it implies that the reference
invariance is only represented by distances in response spaces. If an observed rank
order is conditional with respect to a distinct (imaginary) point y then it is represented
by a conditional rank order of binary point values £[(x) 8> f(y)J with respect to space
pointf(y). We then say that reference invariance of binary space points is conditional,
as it is for preference rank orders that are represented by ordered distances to an
imaginary ideal point with maximum preference in the geometry of space f(x). In
chapter 5 we defined preferences of objects with single-peaked valence attributes by
products of two stimulus space involutions respectively with respect to individual unit
points xIb == I (adaptation level) and xJz =: I (saturation of deprivation level). which
define single-peaked transformations of power-raised stimulus fraction spaces (xJp)er
with ideal poims p == J(b'z) and power exponents er == I/lln(b/p)!. Thereby, we restrict
f(x) to the functions of our psychophysical response and valence theory as:

Definition 3: judgment~ and preference-relevant functions f(x)
Function f(x) for subjective stimulus magnitudes or comparable sensations is
restricted to asynunetric - with respect to xJb :::: I - and strictly monotone functions

f(x):::: (xIb)' and f(x) :=:,,In(xJb) I,:::: 2/ln(b/u) > 0,

or function f(x) for judgmental responses or monotone valences is restricted to
bipolar, symmetric - with respect to In(xlb):::: 0 -. strictly monotone, and bounded

function f(x):::: tanh[Yzr·ln(x/b)]:::: -[I _(xlb)']I[] + (x/b)']
or alternatively

f(x) == arctan[,·ln(x!b)],

or function productf(x}f(x') for single-peaked valences is restricted to a symmetric
- with respect to In[xJJ(b·z)] :=: In(xlp) - product of bipolar, oppositely signed.
strictly monotone, symmetric, and bounded functions f(x) and f(x').

f(x}f(x') :::: tanh[Yzcr·ln(x!b)]-tanh[-V2(J·ln(xlz)J
rewritten as

f(x}f(x'):::: tanh[-V21n{cosh[cr,ln(x/p )]/cosh( I)}] cr :::: 1/IIn(b/p)1
or alternatively

f(x)-f(x') =: arctan[cr·ln(x!b)J ·arctan[-cr·ln(xlz)],

Here we define f(x) as a parameter-dependent strictly monotone function of stimulus
measurements xlll as ratio-scale values. The parameters uJll (just-noticeable level), bill
(adaptation level). and z/Il (saturation or deprivation level) are distinct points in a ratio
scale space of vectors x/ll with arbitrary measurement unit Il- (where (J :::: , if the
deprivalion level coincides with the just noticeable level). Here f(x) transforms x!b to
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negative values if xlb < 1, except for !(x) = (xlb)!, while function product j(x)J(x')
transfonns xi/(b·z) = xlp to negative values if x/p > zip> b/p or x/p < b/p < zip and if
x/p <zJp< b/p or x/p > b/p > zip. Similarly we restrict and redefine structure invariance
in geometric terms:

Definition 4: structure invariance
structure invariance is satisfied if the geometry of the measurement representation
of evaluated object pairs specify the reference invariance £[a $ b] for binary point
values a = f(x) and b = fey) defined by function f as parameter-dependent, strictly
monotone, metric function of ratio-scale values x and y.

If a rotation- and translation-invariant space a = f(x) is dimensionally transformed to
a space 8(a) = ala + pthen space g(a) is an automorphism of the space a = f(x), where
then ~k define dimensional translations and 1Ink dimensional rotation weights.
Automorphic spaces express the same structure invanance for distances. If f(x) defines
a strictly monotone, metric transformation of space x then the space f(x) is an
isomorphism of space x. All isomorphic spaces of space x express the same reference
invariance for space point values. It defines that structure invariance for space point
values is by definition satisfied in any space that is isomorphic to space a = f(x) and,
thus, also in the ratio-scale space x, because space isomorphism implies, if x ?: y then
f(x) ?: fey). If reference invariance for binary point values is conditional to a distinct
space point then the structure invariance for binary point values is also conditional.
Conditionally structure-invariant distances with respect to b = fey) concern rank orders
d(a,b) ?: d(c,b) for all points a and c with respect to fixed point b, whereby other
conditionally isomorphic spaces [*(a) may also yield d[j*(a), f*(b)] ?: d[f*(c), f*(b )J.
For example if b = f*(b) = 0 holds and function [* satisfies symmetry f*(-a) = -f*(a)
and strict monotonicity, then d(a,O)?: d(c,O) implies lal > Icland I[*(a) I > If*(c)1,
whereby d[f*(a),O] ?: d[f*(c),O] also holds. However, if structure invariance
unconditionally holds for distances £[a ffi b] =d(a,b) in space a =f(x) then that
invariance needs not to hold for distances in isomorphic space f -I(a) or f*(a), since
d(a,b) ?: d(c,d) implies not d[f*(a),f*(b)] ?: d[f*(c),f*(d)] for all point pairs (a,b) and
(c,d). This conjecture is easily proved by the contra example of f* = f _I = exp for
distances between positive points a,b and negative points c,d, where d(a,b) < d(c,d) in
space a =In(x) can correspond in space x =exp(a) to

d{x =f-I(a) > I; y =f-l(b) > I} > dIu = f-I(c) < 1; v =f-I(d) < I j.

Only one of the isomorphic spaces can be structure-invariant for unconditional
distances as binary point values, but all isomorphic spaces express by definition the
reference invariance for space point values. Thus, if structure invariance for conditional
distances holds in a space then it may hold in conditionally isomorphic spaces, while
only one isomorphic (not-automorphic) space can be structure-invariant for
unconditional distances. For example, a hemispherical earth and its arctangent
projected map express the same rank order of conditional distances between locations
and its projection centre, but the rank order of unconditional distances on the
hemispherical globe and its flat projection map can be different.
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Distances as binary space point values in some geometry are our main concern,
because relevant for dissimilarity and preference representations. It is well known that
geometries with a zero or constant curvature are the only spaces that unconditionally
exhibit the required property of triangular distance inequalities (Busemann, 1950a,
1955), whereby their distance rank orders can represent transitive rank orders of
dissimilarity or preference observations (but for zero curvature spaces with a
Minkowski r-metric only if r ;d). In conditionally structure-invariant spaces the
distance inequalities concern transitively ordered distances to a distinct space point,
which transitivity not only is satisfied in spaces with a zero or constant curvature, but
also and only also in spaces with absolute space curvatures that decrease with
increasing distances to that distinct space point. as shown in subsection 6.1.6.. Its
geometry is then a continuously connected, relative order topology (Kelly, 1955) as a
geometry with absolute curvatures that increase not with the relative distance. In
chapter 5 of this monograph it is shown that open Finsler geometries with absolute
curvatures that decrease with increased distances to an ideal space point apply for
preferences of objects with single-peaked valences, if the sensation space is flat
(Euclidean or Minkowskian with r-metrics r "- I). Thereby, the conditional structure
invariance holds for distances to ideal points in open Finsler spaces of single-peaked
valences and in their Euclidean spaces of valence-comparable sensations. The corollary
below summarises the pennissible geometries that can exhibit structure invariance for
distances as representations of the structure invariance for evaluated dissimilarities or
for conditional distances as representations of the conditional structure invariance for
ordered object preferences. while the implications of the corollary for psychological
measurement are further discussed in subsections 6.1.6 and 6.2.1.:

Corollary 1. permissible structure-invariant distance geometries
If a structure invariance concerns unconditional distances then the pennissible
distance geometries have a zero or constant curvature, but if a structure invariance
concerns conditional distances to a distinct point then the pennissible geometries
can also have absolute curvatures that decrease with the conditional distances.

Space distances are invariant under central space dilations, space translations, and
rotations if the measurement space has a zero or constant curvature, but for rotations
only if a zero curvature space is not Minkowskian, thus Euclidean. Therefore, if
structure invariance is satisfied for distances in space x then all automorphic spaces of
space x are structure-invariant for distances. Structure invariance for conditional
distances may hold in isomorphic spaces if the space transfonnation has a common
distance point as transfonnation centre and the isomorphic spaces have constant
curvatures or absolute curvatures that decrease with the increased distances to that
space centre. The latter curvatures define the only Finsler spaces that can satisfy
structure invariance for conditional distances.

If a quantitative relationship concerns dimensional interval-scale measurements,
then its pennissible measurement transfonnations not only allow central dilations and
translations. but also dimensional dilations, because interval scales have arbitrary
measurement units. It means that all quantitative relationship between dimensional
values of interval-scale spaces are not meaningful, because the pennissible
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transformation by arbitrary weighing and translations of its dimensions change the
outcome of the quantitative relationship andlor the predicted rank order of their binary
space point values, Even reference invariance for space points is not satisfied under
dimensional dilations, whereby interval-scale geometries violate reference and
measurement invariance. Notice that if a quantitative relationship concerns ratio scale
measurements then also their arbitrary dimensional dilations are not permissible for
meaningfulness of quantitative relationships (Suppes, 2002, p. 120-123), because then
not measurement-invariant. Dimensional dilations in physics are allowed, but only as
distinctly defined changes in measurement units of their ratio scales, whereby also a
corresponding measurement standard change of the ratio scale for the relationship
outcome is defined. This is why the measurement units for physical law outcomes are
implicitly or explicitly specified by conventionally agreed measurement units.

Definition 5: meaningfulness of quantitative relationships
Quantitative relationships between dimensional measurements are only meaningful
if the measurement space is measurement- and reference-invariant.

Reference- and measurement-invariant relationships are both needed for meaning
fulness of quantitative relationships between dimensional values, because a meaningful
relationship must be measurement-invariant under its permissible transformations and
the permissible transformations of the measurement space must satisfy reference
invariance, otherwise quantitative relationship outcomes and the reference invariance
of the qualitatively observed outcomes may not describe the same rank order (andlor
same equivalences), The requirements of reference and measurement invariance for
quantitative relationships between dimensional measurements exclude meaningfulness
of relationships between ordinal scales and between interval scales. Also
meaningfulness of relationships between dimensional measurements of ratio-scale
spaces with an absolute zero origin require the specification of their dimensional
measurement units, because otherwise their quantitative relationships become
arbitrarily changed by permissible measurement unit changes and then also can violate
the needed reference invariance for space point values. However, if the quantitative
relationships concern relationships between dimensional ratios of variable differences
a distinct distance to a distinct point in interval-scale spaces, as holds for comparable
sensations, then the relationship is dimensionally invariant under linear transformations
of the underlying interval-scale dimensions, whereby it concerns (0,2,0)-unique scales
that guarantee meaningfulness of such quantitative relationships. If reference invariance
holds and no measurement transformation is permissible (no arbitrary scale parameters)
then meaningfulness of quantitative relationship always holds evidently.

Only automorphic space transformations (central dilations and translations as
well as rotations in rotation-invariant spaces) are reference-invariant for single and
binary space point values. Isomorphic space transformations are only reference
invariant for single space point values and for conditional binary space point values if
the common space point is the transformation centre. Some isomorphic space
transformations transform an infinite space with zero or constant curvature to an open
space with the same or mutually reversed curvatures (zero=constantor constant"""zero)
and are by definition space transformation with a corresponding reference invariance
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for space point values. Only one isomorphic space can be the structure-invariant space
for unconditional distances. For example, if tanh(a) and tanh(b) transform Euclidean
space points then Euclidean distances la - bl correspond to open-hyperbolic space
distances cosh[tanh(a) - tanh(b)]. But if the open-hyperbolic space is the geometry for
the structure-invariant distances cosh[tanh(a) - tanh(b)] then rank orders of Euclidean
distances la - bl express not the reference invariance for binary space points (a,b),
although rank orders of Euclidean distances are transitive. However, if a space for
conditionally structure-invariant distances - thus a space with a zero or constant
curvature or with absolute curvatures that reduce with distance to the distinct point 
is isomorphic transfonned with respect to the distinct point to a constant or zero
curvature space then it also is a space with conditionally structure-invariant distances.
In chapter 5 this is demonstrated for open single-peaked valence spaces and their
isomorphic, Euclidean or hyperbolic spaces of comparable sensations, where the rank
order of distances to the ideal point in single-peaked valence spaces and in their
comparable sensation spaces expresses the same preference rank order by their
monotonic differing distances to the ideal point.

Quantitative relationships between dimensionally invariant measurements are
meaningful, which is proven to be satisfied (FoM: ch. 10) for ratio-scales with
specified scale units and dimensionless power exponents (FoM: ch. 20). The
requirements for dimensional invariance and meaningfulness of quantitative
relationships are the same. Thus, we also define

Definition 6: dimensional invariance
dimensional invariance is satisfied if the measurement space is reference- and
measurement-invariant.

We remark that outcomes of dimensionally invariant, quantitative relationships in
physics are relationships between (dimensionless power-raised) fraction-scale
measurements with respect to dimensional unit points that are defined by
conventionally agreed measurement standards. As shown in the sequel a similar
dimensional invariance also holds for fraction scales with scale units and rotational
power exponents of dimensions, where both are defined by distinct space points in
rotation-invariant stimulus spaces. A dimensionally invariant measurement space
satisfies reference invariance for space point values, but its dimensional invariance may
not uniquely specify the space geometry, in contrast to dimensionally invariant
measurement spaces that satisfy unconditional structure invariance for binary space
point values. The algebraic fonnulation of a relationship between dimensional point
values might be different for each pennissible, dimensionally invariant geometry, but
different, dimensionally invariant geometries may also have an algebraically identical
fonnulation for a quantitative relationship between dimensional point values. In chapter
4 we discussed dimensional responses r. = tanh[ln(x./b)/ln(b/u)] as hyperbolic tangent
functions ofcomparable sensation dimeAsions in Euc~idean or hyperbolic spaces, while
the corresponding response spaces are respectively open-hyperbo Iic or open-Euclidean.
Thus, if a quantitative response relationship is verified for dimensional point values,
then the geometry of the space points needs not to be uniquely specified. Only if an
algebraic fonnulation of a dimensionally invariant relationship is different for each
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reference~invariant geometry we can by empirical evidence for one formulation (thus
under faJ sification of a[ [other formulations for pennissible other geometries) determine
uniquely the actual geometry. Therefore, we define as properties of dimensionally
invariant spaces:

Definition 7: metric invariance or uniqueness
metric invariance of a dimensionally invariant, quantitative relationship is satisfied
if its algebraic formulation is identical for different, pennissible geometries and if
its algebraic formulation is different for each permissible geometry then metric
uniqueness holds.

Definition 8: geometric uniqueness
geometric uniqueness is satisfied if a dimensionally invariant, quantitative
relationship is metrically unique and empirically verified, while all other algebraic
fonnulations for other pennissible geometries are falsified by empirical evidence.

It is conceivable that the same reference invariance holds for different algebraic
fonnulations of a quantitative relationship between dimensional values, but it then can
only mean that different geometries apply to the dimensional space points in each
fonnulation. In chapter 2 we argued that Stevens' and Fechner's psychophysics
describe the same reference invariance for dimensional points respectively by power~

raised stimulus fraction scales as subjective stimulus magnitudes and by weighted,
logarithmic stimulus fractions as intensity-comparable sensation scales. In chapter 3 we
further proved that if Stevens' subjective stimulus magnitudes are power-raised scales
of Euclidean stimuli then intensity-comparable sensations are hyperbolic, while if
intensity-comparable sensations are Euclidean then Stevens' subjective stimulus
magnitudes are power-raised scales of non-Euclidean stimuli. Thus, here we have
isomorphic spaces and metric uniqueness, but no geometric uniqueness. It clarifies why
Fechnerian and Steven' s psychophysics are not contradictorily, but represent the same
by different metric expressions of scale values in different. isomorphic geometries.

Geometric uniqueness is a property that may seem to be proven in physics,
where multiplicative laws are shown to be metrically unique and where the unique
assumed geometry is shown to be the hyperbolic space~time geometry with the optical
space as an expanding, three-dimensional, elliptic subspace. The metric uniqueness in
physics is obtained by defining conventionally agreed standards for the units of their
ratio scales, whereby physical dimensions become fraction scales, while their power
exponents are dimensionless integers, as for area or volume scales, or ratios of integers,
as for density expressed by mass/volume. The empirical validity for multiplicativity of
dimensionally invariant equations in physics and the exchange property of mass (m)
and energy (E) by the constant velocity of light (c) in E = m·c2 seems to uniquely
detennine the hyperbolic space-time geometry of relativistic physics. Its optical
subspace is an elliptic space with a very large (expanding) radius, whereby Euclidean
geometry of Newtonian physics still holds for directly visible phenomena on earth and
classical mechanics. However, the geometryofphysics is only unique for multiplicative
law equations. Logarithmic-transformed laws for logarithmic-transfonned
measurements in physics would equivalently express the physical laws by additive log
interval equations (FoM, ch to, sub. 10.12). Such log-interval laws of physics would
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even simplify their multiplicative law outcomes by the cancellations of the translations
that correspond to their dimensional ratio-scale units. For example, in the law ofkinetic
energy K = hm·v2 we must take care of dimensional units and is then explicitly written
as Klf-lk = 1/2(m/f-ImHv/IlY where Jlk = f-Im"{f-IY must be specified, but transformed to
loCK) - In(flk) = -10(2) + In(m) - In(Jlm) + 21n(v) - 2In(fl,) it follows from equality
relation In(llk) = In(flm) + 2In()J) that lo(K) = In(m) + 2In(v) - 10(2) depends not on
dimensional scale units and similarly so for other multiplicative laws. Their log-interval
scales have a common infinity that corresponds to the zero origin of the original ratio
scales, while their zero points on the log-interval scales correspond to one unit of their
ratio scales. Due to the Euclidean geometry of Newtonian physics, it has historically
been convenient to express physical laws by multiplicative equations, but physical laws
as additive equations of log-interval measurements would more conveniently specify
a Euclidean space-time geometry for relativistic physics, while its Euclidean log
interval scales for stimulus modalities would resemble Fechnerian psychophysics.

Measurement-theoretical results are of importance, but have not provided
dimensionally invariant measurement in nonphysical sciences, such as psychology.
Therefore, meaningfulness of quantitative relationships in the nonphysical sciences
remained a troublesome matter, also in psychology. Up today fundamental
measurement theory has mainly shown that interval-scale measurements can be
obtained from additive and generalised-associative conjoint component, or difference,
or distance structures. Conjoint component structures of components that are already
quantified by extensive measurement (FoM: ch. 3; ch. 10; ch. 22) may yield a (power
raised) ratio scale for the conjoint component outcomes and then may yield a so-called
derived-extensive measurement for outcomes that are not directly measurable by the
classical type of extensive measurement. The classical type of extensive measurement
asks that unifonn concatenations of observable (thus physical) units are validly
represented by addition of numerical scale units, which representation defines a ratio
scale for their measurements. Its axiomatisation requires the axioms of: associativity
(x $ y) $ Z = X @(Y<$z),Archimedeannessn·x=(n-l)x $ x. positiveness x <$ y <?; x, and
solvability as ifn·y s: (n+l)x and n·x s: (n+l)y then x = y (FoM, sections 3.2. to 3.4.).
This classical measurement type in physics has observable unit concatenations that
con'espond to numerical unit additions of the numerical scale and, therefore, is here
earlier defined as ostensive-extensive measurement. Il yields dimensional ratio scales,
since the unifonn units are represented by an arbitrary numerical unit value. Many laws
in physics concern outcomes that can't be ostensively concatenated, but fit the rank
order structure of conjoint outcomes by multiplication of (power-raised) ratio-scales
for its law components, which yields a derived-extensive measurementof their physical
outcomes. Derived-extensive measurement for conjoint outcomes of ostensive
extensive component measurements yields a positive ratio scale that may have a
dimensionless power exponent in the physical laws of dimensional-invariant equations
of relationships between physical components (FoM: ch. 10). Notice that ostensive
extensive measurements imply reference invariance for scale-point values, while
reference invariance for derived-extensive measurement concerns binary space-point
values in some geometry.
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qnm = ljI(q nm)' qn = W(q n)' qm = W(q m)' and qb = ljI(q b)'

Narens axiom for multiplicative scales (Narens, 2002, axiom 5.8.9) implies invariance

q =n·m!z, q = n/z, q =m!z, and q b =blz
nm n m

For corresponding subjective stimulus fractions by psychophysical function ljI(q) = q

we define

6.1.3. Attempts to obtain meaningful psychological measurements
In psychology we have no observable units that can be ostensively concatenated,
whereby ostensive-extensive measurement is not possible in psychology. Thereby, also
derived-extensive measurement from conjoint, difference, or distance structures is
impossible in psychology, where we have a reference invariance for binary space point
values as evaluated object pairs, such as dissimilarity rank orders that are represented
by ordered space distances. However, in psychology the conjoint and difference or
distance structures only yield interval-scale measurements for the components of
conjoint structures or for the dimensions of multidimensional space representations of
differences or distances (FoM, ch. 4, ch. 6, ch. 14 section 14.4, and ch. 20). Attempts
to obtain ratio-scale measurements for psychological attributes are under taken by a
kind of derived-extensive measurements from empirically sustained axioms that relate
psychological outcomes ofconjoint structures to objective ratio scales of the underlying
components. The study of Pollatsek and Tversky (1970) is one early example of trying
to measure perceived gamble risk in a derived-extensive way by specifying a non
additive associativity axiom for risk outcomes as function of gamble probabilities and
monetary values. However, as Roskam (1989) pointed out, the preference rank order
of perceived gamble risks in their measurement model turns out to be dependent on the
currency unit of the monetary values, which defines their perceived risk measurement
to be not reference-invariant and thus also not meaningful. Narens (1966, 2002)
axiomatised Stevens' subjective stimulus magnitudes by a variant of axioms for
ostensive-extensive measurement, where he replaced the additivity axiom (in
Newtonian physics corresponding to observable concatenation of multiple units) by
multiplicative associativity f(a 0 b) = f(a)-f(b) of subjective stimulus magnitudes.
What seems questionable is the validity of the multiplicative associativity axiom. For
a concatenation unit u and integers n, m, b, and z we have for extensive stimulus
measurements the values (n·m)·u, n·u, m'/I, and b·(/ as four stimulus intensities that
expressed as fractions of a reference stimulus Z'/I define four objective stimulus
fractions as

i In(qllmlqb)l~ = Iln(\lqb)l~ + Iln(qm1qb)IY

seem to fit for subjective loudness fractions (Luce, 2002, p. 528). Ourevidence (section

q Iqb = (q IqbHq Iqb)·nm n m
Although Narens suggests that Stevens assumes multiplicative invariance, wecould not
f!Dd such an explicit statement in Stevens' publications. Stevens' power law ljI(q) = q't

shows that multiplicativity conditionally holds for qb =1 only, because we obtain,
't 't 't 't

qnm1qb=[(n·m!z)/(blz)] =[(n1z)/(blz)J .[(m!z)/(b/z)] ·(b/z) =(qn1qbHqrr!qb}qb'

Multiplicative invariance is empirically falsified by Ellenneier and Faulhammer (2000),
where
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2.1.2 and ch. 3) on Steven's power law as matching of cognitive magnitude sensations
with comparable sensations of a modality implies for power exponent t and adaptation
level q b = blz on the objective fraction scale.

,·In(q Iqb)+t.ln(q Iqb)=t-1n(q Iqb)-t.ln(qb)
o m om

Thus,ifqb>lthenq =(q Iq )t<q.q =(q Iq {(q Iq )t and ifqb< I then
, d' "'"d c"md'.h b'" m f ", b md b', , f 'q > q.q IS pre ICte, to HOII for su Jectlve ractlons q an objective ractlons q.

dh'ry ifTfuemstimulus adaptation level b·u of a modality coincides with the reference
stimulus z'u then q = I, whereby then q = q.q holds. Although Narens (2002,
p. 265) proofs that \he multiplicative scafe"for b~h.reioural fraction judgements only
represents the cognitive magnitude scale if there is a unique unit element on scale q
(Theorem 5.8.3), his axiomatisation of subjective stimulus magnitudes seems at least
incomplete by not specifying an additional axiom for qb = 1as stimulus reference level
for the fraction evaluation. Such a cognitive evaluatIOn axiom is sustained by the
evidence from our further analysis (section 2.1.2) ofTeghtsoonian's meta-analysis of
many studies by Stevens and others. However, power-raised stimulus fraction scales
only may approximately represent fraction judgements, because fraction judgements
are numerical fraction responses to comparable sensations and, therefore, differ from
power-raised stimulus fractions. The logarithmic values of power-raised stimulus
fractions only approximate response values within a limited, but rather wide midrange
of stimulus intensities, as demonstrated in subsection 6.2.3. Thereby, an axiomatisation
of subjective stimulus magnitudes with a multiplicative associativity axiom for power
raised stimulus fractions can also be invalidated for extreme stimuli. Also utility is
often axiomatised by variants of extensive measurement and even as unbounded and
continuous ratio scales by Candeal et al. (l996) based on Holder's (1901) axioms for
measurement in physics. Such attempts on axiomatisation of extensive measurement
for psychological scales lack an empirically sustained reference invariance for their
associativity axiom. Moreover, if reference invariance for scale point values would be
satisfied then strictly monotone functions of the measurement scale satisfy also that
reference invariance, but not the same associativity axiom. Any extensive measurement
that is derived by an axiom system for psychological structures without reference
invariance for its associativity axiom remains a mathematical exercise that may lack
validity as well as metric and geometric uniqueness.

There exists one measurement-theoretical attempt to derive psychological
measurement that comes close to a valid kind of extensive measurement. It concerns
the axiomatisation by Luce (1995) of utility measurement for the cumulative prospect
theory (Tversky and Kahneman, 1992) as the further developed model of rank- and
sign-dependent linear utility (Luce, 1991; Luce and Fishbum, 1991). Its axiomatisation
concerns the measurement representation ofcertaintyequivalents betweenjoint recdpts
of valued goods by Luce (1995), where a negative exponential function of the ratio
scale for the values of valued goods fits the measurement representation of utility gains
or losses. This sign- and rank-dependent utility describes utility of valued goods as
relative to a status quo (denoted bye) with utility U(e) = 0, while celtainty equivalents
(x,y) - (u,v) between valued good pairs (x,y) and (u,v) are split up with respect to joint
receipt pairs for positive utility gains or negative utility losses. A segregation between
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gains and losses is assumed to be needed, because utility losses U(x) < 0 are
empirically shown to be larger than utility gains Vex) > 0 for objectively identical loss
or gain values, while both are also shown to decrease or respectively to increase in a
diminishing way with respect to equally increased, objective loss or gain values, which
are two empirical aspects that are modelled by the cumulative prospect theory.
Measurement equalities for certainty equivalences (x,y) - (u,v) allow a more unique
measurement than order structures (x,y) > (u,v), due to the utility equivalences that are
represented by metric equalities with respect to the zero utility for status quo. Its
axiomatisation by Luce (1995, 2000) yields an inferred-extensive measurement,
because most underlying axioms are separately verified, where the axiomatisation
contains no associativity axiom, but implies a generalised additivity for a bounded
utility measurement (either status~quo axiom e (!) x = x or a generalised associativity
axiom is needed, but the weaker status-quo axiom is verified by V(e (!) x) = Vex). For
utility gains with respect to V(e) = 0 as status-quo it yields the functional equation

V(x (!) y) "" Vex) + V(y) - V(x)·V(y)/c > 0,

1- V(x ® y)/c = [I - V(x)/cH I - V(y)/c] > 0,

V(x):=c[l-exp(- V/x)] >0 for c>O,
where Vg(x) "" -In[l-V(x)/c] > 0 are values of goods that are assumed to satisfy

V/x + y) = Vg(x) + V/y).

For utility losses V(x) < 0 Luce derives similarly

Vex) = k[-I + exp(V/x)] < 0 for k > c

Using pie diagrams parts for the representation of x and y as objective values of valued
goods, such as used in lottery experiments by Cho and Luce (1995) with certainty
equivalents of joint lottery receipts for the verification of measurement axioms, Luce
(1996,2000) takes for gains V/x) = x/Il g > 0 and for losses V/x) := X/Ill < 0, whereby

l
c[l-exP(-x/llg)] x 2 o for gains

Vex) :=
k(-I + exp(x/Ill)] x < 0 for losses

Here V(x) defines separate measurements for utility gains and losses that are bounded
respectively to maximum c and minimum -k < -c. We remark that Vex) depends on
scale units ug for positive x-values of gains and u, for negative x-values of losses. But
if x/Il x and -x/1l1 are taken as a differently scaled, hyperbolic dimension with different
pseudo-radii c and k then the utility gain and loss parts of Vex) are parts of open
rectangular co-ordinates, whereby it follows that IJ.~ = c/IJ and III = kill. Scaling the
utility gains and losses to U(x)lc > 0 and V(x)/k < 0 we obtain I - U(x)/c:= exp(-I x/IJ I)
and -I - U(x)lk:= -exp(-I x/Ill) as rectangular Euclidean co-ordinates ±exp(-I x/Ill) of
an open-hyperbolic curve. If we take dimension (x - b)/Il as hyperbolic values x/Il of
valued goods that are translated to b/Il as status-quo value, whereby V/x) = (x - b)/Il
for x > band V,(x) = (x - b)/Il for x < b equivalently defines for k > c

{

U(X)/c > 0 x> b for gains
±[I-exp(-I(x-b)lIlI)J= 0 x=b for status quo

V(x)lk < 0 x < b for losses



tanh[V(x <$ y)] = tanh[V(x)] + tanh[V(y)]- tanh[V(x)J·tanh[V(y)]fc

tanh(x + y)::: [tanh(x) + tanh(y)]/[l - tanh(x)·tanh(y)/q2],
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If we assume hyperbolic gain or [ass values that projectively combine independent
values V(x) and V(y) to sub-additive good values Vex $ y) < Vex) +V(y), then Luce's
functional equation also derives from the hyperbolic Pythagorean expression

cosh[V(x (£) y)]:;: cosh[V(x)]·cosh[V«y)]

where cosh2(z) =1 1/[1 - tanh2(z)] defines

tanh2[V(x @y»)=tanh1[V{x)] + tanh2[V(y)]- tanh2[V(x)]·tanh2[V(y)]

By taking Vex (1) y) =tanh[V(x $ y)J/q and Vex) = tanh[V(x)]/q for q> 1 Luce's
functional equations follow from signed solutions of (7) for q:;: c > 1 and q = k <-I

"'
for gains x > 0, y > 0 and for losses x < 0, Y< 0 as

tanh[V(x (fl y)] = tanh[V(x)] + tanh[V(y)]- tanh[V(x)J·tanh[V(y)]1k

However, if we assume V(x @y):::tanh(x + y)/q, V(x)::: tanh(x)/q, and additive good
values, as Luce specified by Vex + y)::: Vex) + V(y)::: xlll + ylll for Euclidean values,
thon

where
U(x. y) = [U(x) + U(y)]/[1 - U(x)-U(y)/q']

describes a hyperbolic additivity for utility that also holds for relativistic velocity, as
a comparable example of non-additive measurement mentioned by Luce (1996, p.300).
Thus, if V(x)::: tanh(x)/q then Luce's functional equation may hold for hyperbolic
values of valued goods and the last functional equation for Euclidean values of valued
goods. It illustrates that axiomatic measurement always implies a geometric assumption,
as will be discussed further in the sequeL Since axioms for measurement
representations of qualitative equivalences (x,y) - (u,v) are rather well verified (Luce,
2000), reference invariance seems as well satisfied for Vex) defined by Luce as for
Vex) redefined above. However, if x ;:>. y ;:>. z then weak order V(x Gl z) ;:>. V(y '"" z) is
sometimes violated (Bimbaum, 1992), while intransitive preference rank orders are
sometimes consistently observed (Tversky, 1969). As discussed by Bimbaum (1992)
and also is shown in chapter 7, this violation of monotonicity may be caused by the
contextual effects of stimulus presentation in experimental studies, where stimulus
dependent shifts of adaptation level change subjective preference values. Such
contextual effects with violations of monotonicity might be the reason why utility
models have not revealed earlier a more clear utility measurement structure.

Only if a distinct representation for ratio-scale xlll of valued goods is used, such
as representations by parts of a pie with a constant radius, then scale unit Il is distinctly
defined, whereby then scale I > U(x)/c > 0 for gains and scale -I < V(x)/k < 0 for
losses would separately satisfy measurement invariance. However, utility measurement
should not depend on the display of the value representation for valued goods, whether
as pie parts or as rectangular parts of squares, but the ratio scale xlll differs for pie parts
and rectangular parts of squares, whereby U(x)/c or V(x)/k is not measurement
invariant. Also if xlll is the monetary value itself then V(x)1c or V(x)/k is not
measurement-invariant, because the metric utility then depends on the currency unit.
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For example, if xlll is expressed in units of 100 US$ and V(x)!c ranges from 0.1 to 0.9
then for xiii expressed in units of US$ all values V(x)!c will be close to unity. Although
the order of V(x)!c values is preserved for any unit 11 of x/ll. measurement invariance
is not satisfied for such utility measurements. Thus, quantitative relationships between
Luce's utility measurements only are meaningful for gains or losses. if the values of
goods could be represented by magnitudes that are independent of scale unit 11.
Moreover, the constant-assumed status-quo level can be individually different, whereby
the meaningfulness of such quantitative relationships then would only hold for
individual utility measurements and not for utility relationships between individuals,
unless ratios clk of individual limit values and values e of individual status-quo levels
can be identified as distinctly solvable parameters. Due to the unidentified ratio clk also
no inferred-extensive measurement solution is yet developed for joint receipts of gain
and loss mixtures. Therefore, Luce's inferred-extensive measurement for utility remains
troublesome. Its utility scale is (I, I,I)-unique, because we have one arbitrary unit Il of
values xJll, while the individual status quo level bIll ::: e is a dimensional parameter and
limit cor -k for the utility measurement is a dimensionless parameter. Moreover, due
to unidentified ratio klc < I there is no intra-individual utility measurementformixtures
of loss and gain values and no inter-individual comparability of utility.

Notice thatLuce's expression parts for utility gains and losses are similar to our
expressions (l7a) and (17b) in section 2.1.3. Our response expressions describe
expected reward strength (pictured in figure 12) and expected aversion strength
(pictured in figure 13) as functions of weighted and translated Fechner sensations,
where they are specified by

vik:::l-exp[-(Yik-Yk)/wkl (figure 12: expected reward for Yik > Yk)

vik",-I +exp[(Yik- Yk)/wk1 (figure 13: expected aversion forYik< Y!J.

We identified Y
k

:::akas the adaptation level in Helson's (1964) adaptation-level theory
and weight w

k
::: Yw

k
::: Ihk for 'k as Steven's power exponent. Equality l::: 21ak is

derived by our furmer analysis of results from Teghtsoonian's (1971, 1974) mela
analysis of many studies on subjective magnitudes of different stimulus modalities.
Adaptation level ak. '" InCb/u

k
) is defined by uk/ll as threshold that depends on

stimulus-adaptatiorilevel bill as midpoint of the slimulus range on dimension k. For
subjective value magnitudes of valued goods we assume w

k
::: Ih

k
::: I. As discussed

earlier (section 2.1.2), power exponent 'k ::: I holds for cogmtive magnitudes that were
shown to be equal to averaged length ano distance sensations with an average power
of unity (p. 55 in here). For perceived pie parts as Luce's representations of valued
goods it may be that 'k ::: 1/2 as approximately holds for subjective magnitudes of frontal
area, but if evaluated by circle-length parts of pies with a constant radius then likely 'k
::: I. Anyhow taking cognitive magnitudes as value sensations with 'k ::: I we woula

obtain (llb/ bl·
v. :::{I-eXP[-Yik-ak)::: - k\k \k> k ,orgams

lk -I +exp[Yik-ak1:::-1+\klbk \k<bktorlosses

In section 2.2.1. we assumed some generalisation of gain and loss expectancy
respectively below and above adaptation level, whereby both equation parts combine
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to monotone valence expression Vo
k

:::: tanh[y2(Y'
k

- a
k

)] as ideal response axis k with
!k =: I. Our monotone valences v.~ as utility mdasurements are not based on verified
axioms, but derive from an integrabon of substantive theories: 1) Shepard 's exponential
decay function for generalisation, 2) Helson's adaptation level theory, 3) Fechnerian
psychophysics, 4) Bower's stimulus coding theory for comparability of sensations, 5)
Stevens' psychophysics as matching with cognitive magnitude sensations, and lastly
6) learning theory for generalised association positive and negative expectancy
responses to perceptual sensations above and below adaptation level. In our leaming
based, bipolar, monotone valences we have no different limits c and k, because
punishments and rewards below and above adaptation level evoke expected reward and
punishment with symmetrically reflected effects from positive and negative
reinforcements with respect to adaptation leveL Therefore, without loss of generality
we may setc:=: k:=: I, while identical absolute differences of values x.klb

k
from status

quo level xik/bk == I define larger utility losses than gains by Fechner'k asymmetric log
function or-stimulus fractions as sensations In(xik/bk) =y'k - a

k
. Since perceived

magnitudes of objective gains or losses are cognitive magnilude sensations, we have
not Vix) = x/f.!g > 0, nor Vlx) = x/j.! < 0, but should take the perceived good values as
comparable value sensations Vg(x) = 1:·ln(x./b) > 0 and Vlx) = t·ln(x./b) < 0 with x.lf.!
as objective values of goods and x./b:=: I a~ status quo with In(x./b) 1:: 0 as adaptation, ,
level, where for 1: =1

V/x) = V/ex) = V(x.1 b):=: In(x./b) with V(x./b:=: I) :=: 0,, , ,
depends not on scale unit Jl of values xlJl. Notice that absolute values of perceived
gains x. > band y. > b or losses x. < band y. < b not only are already larger for losses
than eqhal gains, But also are subj~ctively adaitive and with respect to objective values
sub-additive, since

!V(,. y)1 = Iln[(,. + y.)Ib] 1< Iln(,.Ib) + In(y.lb)1 = !V(,) + V(y)l,
I I I I

Substituting these terms in Luce's equation parts and combining them to monotone
valences as utility with respect to status quo x./b:=: e :=: 1, utility for losses and gains is
written without loss of generality for c :=: k:=: \ by one simple function as

U(x):=: -(1 - x./b)/(I + x.Ib):=: tanhWzln(x./b)]
" ,

which also holds for monotone valences and subjective stimulus magnitudes as
responses to stimuli with a Stevens' power exponent 1: :=: I. Utility is then defined by
hyperbolic involution of Euclidean dimension values x./b with respect to x./b:=: e:=: I
that is assumed to be a different constant in the utility ekpression for each ihdividuaL
Utilities become also individually comparable by solving [I + U(x)]/[1 - U(x)] :=: x./b
for different individuals as fraction values of common ratio-scale x.ll1. Notice thal if
x./b is Euclidean then Vex) :=: tanh[!lzln(x./b)] is an open-Euclideah. dimension and
d~fines not two open-hyperbolic scales with different curvatures for -k < V(x) < 0 and
c> Vex) ;;, 0 with ratio clk < I, as holds for Luce's utility functions and also for our
exponential functions ofEuclidean values (x. - b)If.!. However, if x./b is hyperbolic then
U(x):=: tanhWzln(x./b)] is an open-hyperbolic dimension with a tiyperbolic additivity
of utility for gains,llosses, and mixtures of losses and gains with k = c == I, in contrast
to an open-Euclidean utility dimension for hyperbolic sensations of Euclidean good
values. It illustrates that a geometric measurement foundation is indispensable. Due to
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the rank-order correspondence between the independently derived expressions by Luce
and in here (draft chapters 1 to 5 were written before 1996), the evidence for most
axioms ofLuce's inferred-extensive utility and the evidence for the substantive theories
that underlie our monotone valences with 1" = 1 for utility measurements may both be
seen as evidence for the validity of our transformed-extensive utility measurement.
Notice that our utility scale is (0, I ,I)-unique by the singular limit of the hyperbolic
tangent and the solvable, dimensional parameter of the adaptation level (provided that
magnitude sensations equal value sensations of valued goods, whereby 1" = 1).

Luce (2000, 2002) applied similar measurement axioms for perceptual certainty
equivalents of stimulus pairs in an attempt to obtain inferred-extensive, psychophysical
measurement, where Luce (2004) recently adjusted the axioms for loudness
equivalences by relating the bivariate loudness function for the left and right ear to the
unidimensionalloudness function of each ear. Based on Stevens' fraction estimation
for subjective stimulus magnitudes, Luce axiomatised proportional equivalence
structures for subjectively equal stimulus pairs with one common reference stimulus
and replaced the status quo by the zero (or just noticeable) stimulus level. Luce's
axioms differ from Narens' (1966,2002) axioms for Stevens' subjective stimulus
magnitudes, because a (generalised) associativity derives from Luce's axioms and need
not to be a presupposed axiom (either the segregation axiom or a generalised additivity
axiom is needed, see Luce, 2002, p. 524). Luce' s axioms without an associativity axiom
are in principle verifiable axioms, while research for their verification is still in
progress. We don't repeat the axiom details, nor discuss the axiom verifications for
equivalence structures of loudness stimuli, where loudness of tones at the left and right
ears may show a left-right bias. Luce's (2004) axioms for joint presentations of
loudness stimuli of conditional pairs (x,o) at the left ear and (0,v) at the right ear leads
in simplified function notations for ip(x) =ip(x,o) and lfI*(V) =IfI(O,V) to

ip(x 1) v) =ip(x) + lfI*(v) + i)·IfI(X)·IfI*(v)

Luces's (2004) derivation for measurement-invariant representations of the expression
implies that 05 = 0 for a symmetrical representation lfICx) = 1fI*(x) of the equivalences
(x,o) - (o,x) and if asymmetrically represented by biassed expression lfICx) =Y'IfI*(X)
then 05 > O. By assuming common zero scale origins for objective and evaluated
stimulus magnitudes and by requiring a measurement-invariant representation of IfI(X)
for 05 = 0 and 05 > 0, Luce and Steingrimsson (see: Luce 2004. p. 449) derived

lfICx ill v) = (X/Il)~ + (v/Ill,

where ,,(x) = (x/Ill and lfI*(v) = (V/Ill with ~ =~' in the unbiassed case. The last
additive expression is not uniformly verified, where Luce (2004, p. 449) refers to
contradicting results by Falmagne (1976) and Gigerenzer and Strube (1983) as well as
confirmative findings by Levelt et al. (1971) and Falmagne et al. (1979). In section
6.2.3. it will be shown that according to our derivations it holds approximately only for
stimuli within a restricted midrange around the adaptation level. Luce's inferred
extensive measurement specifies not the power exponent p, but Stevens's subjective
stimulus magnitudes are power-raised stimulus ratio scales with measurable power
exponents that are constant for varying stimuli within a rather wide midrange of
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stimulus intensities for each modality. Since Steveo's power exponent T is constant for
a wide midrange of stimulus intensities, we notice that x' as some just~noticeably

increased stimulus x also specifies for subjective stimulus magnitudes
t t

ip(x')=(x'hl) =(1 +K) ·11'{X)

for K as the Weber fraction of that modality. Asymmetry If(x) = 'Y'!JI*(x) as different
loudness at the left and right ear for the same loudness stimulus x could then be caused
by different Weber fractions for left and right ear loudness. More important is that
power exponent j3 then becomes specified by j3 = t = O.296/1n( 1 + K), according to our
results (section 2. 1.2) from Teghtsoonian's meta-analysis on the relationship between
Weber's fractions K and Stevens' power exponents T for different modalities, but this
relationship is not discussed by Luce. Luce's functional equations for utility of gains
and for subjective stimulus fractions differ by replacing factor· llc < 0 in functional
equation U(x I1J y):::: Vex) + U(y) - U{x)-U(y)/c by factor 0'" 0 as well as replacing
functions Vex) by Ij/(x) and V(y) by tp*(y). Thereby, Luce's psychophysical
measurement is an unbounded modification of his utility measurement for gains, where
the replacement of the status quo by the zero or just unnoticeable level for positive
fraction scale values requires 0 '" O. Luce (2000) proved that 0 < 0 defines a bounded
measurement for tp(x) and 0 ::: 0 an unbounded one, but also remarked (Luce, 2004,
p.449) with respect to the unbounded measurement by restriction 0 '" 0 that

"it would be desirable to overcome this restriction because a bounded
psychophysical junction has considerable intuitive appear'

Luce's restriction 0'" 0 is required for subjective stimulus magnitudes that have the
zero or just noticeable stimulus intensity as reference level. However, the
overwhelming experimental evidence for Helson's (1964) adaptation-level theory,
discussed in section 1.4., says that magnitudes of stimulus intensities are not evaluated
with respect to a zero or just noticeable level, but with respect to adaptation level as
geometric midpoint of the stimulus range, as also is demonstrated in section 2.1.2. by
the re-analysis of Guilford's scaling of subjective numerOusness of spots in spot
patterns. If Luce had taken the adaptation level, instead of the zero or just noticeable
stimulus level, as reference level in his axiomatisation of the psychophysical function
tp(x), then the same axiomatisation as for utility would apply and would also have yield
differently bounded positive or negative magnitude response scales as separated,
subjective stimulus magnitude scales above and below adaptation level. Based on our
further analysis of the mentioned meta-analysis by Teghtsoonian's (1971, 1974), we
concluded that Stevens' power exponent not only is proportional to the inverse of the
modified Weber fraction In( I + K

k
), but also to the inverse of the logarithmic stimulus

range In(xk,rna:!xk.min), whereby we demonstrated (section 2.1.2.) that Steven's
psychophysics is compatible with the Fechnerian psychophysics of sensation matching
with cognitive magnitude sensations. This compatibility not only derives because the
modified Weber fraction InO + K

k
) and the logarithmic stimulus range In(xk.rna:!xk.min)

follow both from Fechner's law (section 2.1.1.), but mainly because we also
demonstrated (chapter 3) that the exponential transfonnation ofa comparable sensation
space defines a power-raised stimulus fraction space with the projected adaptation
space point as dimensional unit points of the dimensional fraction scales \k/b

k
and as
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rotational parameter for dimensional power exponents 'k:::: 2/1n(b
k
/u

k
) with x,k/u

k
as

re-scaled unit point of the dimensional fraction scales. THereby, Steven's powe}-fUised
ratio scales for subjective stimulus magnitudes are dimensional stimulus representations
of comparable sensation scales 2(Y'k - ak)Jak =: Tk']n(x'klbk)' where 'k :::: 2/ak ::::
2/1n(b

k
/u

k
) is defined by two distinct'unit points x.lu

k
=: I' as Just noticeable stimulus

level and'x.klb
k

:::: I as adaptation level. Taking' perceived stimulus magnitudes as
comparable1sensations, we apply the same reformulation as for Vex) and then obtain, ,

\£I(x) =: -[I - (xlb) JI[l + (xlb) J:::: tanh[Yrr·ln(x/b)].

OUf utility scale -1 < Vex) < 1 is a subjective magnitude-response scale for value
sensations of valued goods with values that are assumed to have subjective value
magnitudes with a power exponent t = 1. Our bounded scale Vex) is not essentially
different from a magnitude response -I < r = If/(X) < I that may have different power
exponents 1" for each modality. If x is Euclidean then our If/(x) is open-Euclidean and
if x is hyperbolic then our If/(x) is open-hyperbolic as shown for response spaces in
chapter 4, where we also derived that if x is double-elliptic then

If/(x) = arctan('t'1n(xIb)]

is the psychophysical response function for subjective stimulus magnitudes, where the
response space is single-elliptic. Our three alternative stimulus geometries (Euclidean,
or hyperbolic, or double-elliptic) have a distance metric that is confonnal to the
distance metric of their corresponding, open response spaces. We regard confonnai
distance metrics of the common stimulus space and individual response spaces as a
prerequisite, because otherwise individual behaviour can hardly be adequate in the
physical reality. Confonnal distance metrics holds not for objective value and Luce's
utility measurements. Moreover, as further discussed in the next following sections, our
psychophysical response measurement is reference- and measurement-invariant and for
dissimilarity responses also structure-invariant, whereby meaningfulness of quantitative
relationships between dimensional measurements is in principle satisfied, also for inter
individual relationships if individually different adaptation levels are taken into
account. We finally remark that it would be much easier to verify psychophysical
measurement axioms for qualitative equivalences (x.y) - (u,v) of unconditional visual
stimulus pairs, instead for loudness stimulus pairs (x,D) at the left ear and (O,v) at the
right ear, because not influenced by perceptual sensitivity differences between left and
right ears and not restricted to conditional stimulus pairs (x,D) and (0,v) that complicate
the empirical evidence. For example, binocularly evaluated black-area equivalences in
jointly presented pairs of markedly different (no just noticeable differences) black pie
parts of circular discs and rectangular black parts of squares (or black pie parts of discs
with different diameters and different black rectangle parts of varying rectangle sizes).
We conjecture that one ofour response measurements (likely the open-Euclidean one)
will then be verified with parameter b as average black area parts of circular discs or
squares (also of circular discs with varying diameters and rectangles with varying
sizes). Stimulus-adaptation level b likely is a common parameter for individuals if the
stimulus combinations of a known stimulus set are randomly presented. If pies of
different circle diameters and parts of varying rectangle sizes are used then we further
predict that the fitted power exponent likely approaches"t = Yz.
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Besides the unprecedented result of inferred-extensive utility measurement by
Luce (2000) and our transfonned-extensive response and valence measurements, only
interval scales have been derived from rank order structures of conjoint component
outcomes or from existing multidimensional scaling or unfolding analysis methods of
ordered dissimilarity or preference structures. It would qualify quantitative theories in
today's psychology of judgment and preference as meaningless. In the sequel of this
chapter we argue that the questionable measurement status in the psychology of
judgment and preference is caused by not specifying:
1. individually meaningful and distinct translations and weights for the comparability

of sensation dimensions that specify by their exponential transformation distinctly
power-raised stimulus fraction dimensions,

2. the permissible (conditionally) structure-invariant geometry that can represent
dissimilarity or preference rank orders by (conditional) distances in spaces that are
strictly isomorphic to stimulus spaces with a physically acceptable geometry.

It seems as if researchers in psychology have expected that their conjoint structure
scaling or their analyses of rank-order data by multidimensional scaling methods will
reveal the appropriate geometries for the relevant psychological domains, in the same
way as physical data analyses showed after some centuries of physical research that the
appropriate physical geometry is notEuclidean, but the hyperbolic space-time geometry
for dimensionally invariant equations of physical laws with dimensionless power
exponents. However, this hope must be vain if psychological data analysis is not used
for the confinnative testing of theoretically permissible geometries for psychological
data. Moreover, the dimensional invariance of the multiplicative equations for physical
variables (FoM: ch. 10, ch. 22) and precision of measurements in crucial experiments
has led to the relativity theory that determines the hyperbolic space-time geometry of
modern physics, but (some kind of) dimensional invariance of psychological
measurements has not been achieved (except maybe for measurement~ of item
difficulty and individual capacity by Rasch (1960. 1966a) model analyses of
intelligence sub-tests). Measurement by scaling of conjoint ordinal structures or by
multidimensional scaling of ordinal data in psychology only yields interval scales that
are not dimensionally invariant and can hardly reveal the appropriate distance metric
and open nature of the geometry for the respective psychological domains. Interval
scale measurements in the nonphysical sciences detennine the impossibility of
meaningful quantitative relationships between their dimensional measurements, which
makes empirical verifications of their quantitative relationships in principle impossible.
In FoM (ch. 10, section 10.12) alternative suggestions are discussed. We quote from
(FoM, ch. 10, p. 518):

"What, then is the significance ofall thisfor the nonphysicaL sciences? It suggests
that they must either I) discover their own ratio scales and append them to the
existing structure of physical quantities, 2) introduce inTO that structure new
nonbasic quanTities that are relevant to the nonphysicaL sciences, or 3) arrive at
lawfulformulations having a characterdifferenrfrom the dimensionaLLy invariant
equations ofphysics. "

Each alternative path is further commented. For suggested path I) it is commented that
one could take differences between elements of interval scales as arguments of a ratio
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for its scales, but this is rejected by the apparent non-uniqueness of such differences.
However, it will be clear that we followed this path for the (O,2,O)-unique scale of
comparable sensations, where we solved the non-uniqueness problem by defining
comparable sensation scales as the ratio of a difference between a variable and a fixed
scale point and a constant distance to that fixed scale point on the interval scales for
each individual, where the fixed point and the distance define solvable parameters.
Thereby, comparable sensation dimensions exhibit a kind of dimensional invariance,
because invariant under linear transfonnations of its underlying Fechnerian interval
scale dimension. However, it introduces a dependence on individually defined space
translation and dimensional weight parameters that specify their dimensional
invariance. A comment on suggested path 2) states

"the whole ofpsychophysical scaling can be looked upon as a major attempt to add
lwnbasic psychological variables to the existing structure ofphysical quantities. "

It is further suggested that one could derive relations between power-raised ratio scales
from the matching of subjective intensities for interval-scale measures of sensations
and, if we were empirically able to determine these dimensional power exponents, that
we then could determine their dependence on various physical quantities, but that "this
has yet to be done" (FoM, ch. 10, p. 520). In the derivations for our psychophysical
theory we also followed this path, where we analytically derived distinctly power-raised
stimulus fraction scales from comparable sensations. In section 3.3 we identified
Stevens' power exponents 'k of subjective stimulus magnitudes as twice the inverse of
adaptation-level parameters by '\ :=: 2/'\ ::::: 2/In(b

k
/u

k
). A constant Stevens' power

exponent then implies a constan"f distance a
k

:=: In(b Ill
k

) - In(uiJlk) between the
adaptation and just noticeable level on a Fechner sensahon dimensIOn with an interval
scale measurement. Varying Fechner interval-scale differences y'k - a

k
and fixed scale

distance YUl
k

define by their ratios the (O,2,O)-unique scales of cdmparable sensations.
Thereby, we also implicitly followed the suggested path 3), because comparable
sensations are invariant under linear transformations ofthe underlying interval scale for
Fechner sensations. This measurement invariance allows a formulation of meaningful,
quantitative relationships between dimensional response or valence measurements that
derive from metric transformations of comparable sensations.

The psychophysical response and valence theory, described in chapters 2 to 5
of this monograph, thus, integrates the three suggested paths in a consistent way. The
"own ratio scales" of psychology mentioned for suggested path I) are derived orrather
are replaced by metric transformations of comparable sensation scales to open
measurement dimensions of responses or valences, whereby the underlying comparable
sensation scales are indeed "appended to" or rather specify physical quantities as
distinctly power-raised stimulus fraction scales. The "new nonbasic quantities" for
suggested path 2) are the open response or valence measurement scales that derive from
metric response or valence transformations of distinctly power-raised fraction scales
of stimuli with a ratio scale. Moreover, as described in chapter 3 to 5 in here, metric
transformations ofEuclidean or non-Euclidean stimulus spaces to spaces of comparable
sensations, or responses or valences define their respectively permissible geometries
by the permissible Euclidean or non-Euclidean stimulus geometries. Our metric
transformations of dimensionally invariant, comparable sensations specify also the
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dimensional invariance of response and monotone or single-peaked valence
measurements, which enables the fonnulation of meaningful relationships between
dimensional measurements in the psychology of judgment and preference. In order to
explain further the measurement-theoretical implications of our theory, we firstly
discuss what fundamental measurement theory has and has not achieved in more detail.

6.1.4. Meaningfulness and axiomatic measurement theory
Physics is based on extensive measurements wherein additive scale units correspond
to the concatenation of observable units, such as equal units of length or mass. Its
axiomatisation yields extensive (primary or direct) measurement of ratio scales, where
we denoted it as ostensive-extensive measurement. Empirical relationships in physics
are primarily described by multiplicative laws of ratio scales, where the product and/or
ratio of scale units of multiplied and/or divided dimensions define the scale unit of the
ratio scale for their law outcomes. Several scales in physics have no directly observable
concatenation of physical units that correspond to the additivity of scale units, as for
example holds for temperature (temperatures don't add, but average). Their ratio scales
are derived from empirical relationship outcomes that are defined by products or ratios
of ostensive-extensive measurement scales as holds for binary laws in physics. For
example, the Boyle/Gay-Lussac or Charles law T = p.y forT as temperature and V as
volume of an ideal gas with pressure P, where the temperature reduction of a volume
at O°C decreases P by 1/273 by each degree at constant V or decreases V by 1/273 by
each degree at constant P, which defines _273°C as the zero of Kelvin's ratio scale of
temperature. Derived-extensive temperature measurement becomes then possible by
conjoint results T = p·v for pairs of ostensive-extensive measurements with absolute
origins for series of closed volumes V and their changed pressures P, where the scale
unit of outcomes T is defined by the constant amount of work for a dimensionless
change of 11273 in pressureP for each constant volume V. However, derived-extensive
measurement is not possible in nonphysical sciences, because we have no ostensive
extensive measurement for any nonphysical component. Only observable order(and/or
equivalence) evaluations for stimuli as combinations of varying components or for
objects with varying attributes can be the basis for their fundamental measurement.
Conjoint component, or difference, or distance measurement structures for transitively
ordered binary point evaluations can only yield interval-scale dimensions, if no distinct
and sol vable, dimensional parameters for their origin and scale unit can be specified.
The additive structures in conjoint measurement (Luce and Tukey, 1964) and the
closely related measurement models of difference structures (Suppes and Winet, 1955)
as well as the distance structures of MDS-models for transitively ordered evaluations
of stimulus pairs, have led all to interval-scale measurements of psychological
observations. Interval scale measurement is as fundamental as extensive measurement
types that define ratio scales. Interval-scales are usually obtained for components in
conjunctive structures from suitably rich ordinal data that satisfy weak monotonicity
and an axiom system that contains an associative conjunction axiom, where an
associative operation GJ on elements x, y, z of an underlying component means that

x GJ (y 81 z)= (x $Y) $Z.
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An associative conjoint structure yields either interval scales x and y with a common
scale unit or power-raised ratio scales with a common power exponent, provided that
some rather technical axioms are satisfied (FoM: ch. 6).

(76a)

I We define elements u. ,U, of component X and elements v ,v of component
I Z with ordered data Q, ~ v ~ u. (1) v that satisfy mongto~icity for its
I conjoint outcome struct.uret-withlassJl:iative operation ill. It defines that
I interval scales x = a·x' + 6 for X and z = a·z' + 6 for Z can be
I solved such that h i x k k z

l
(x+Z)~(x+Z)

u $V ~u IJJV then i k j h
i k j h (x' + z' ) ~ (x' + z' 1

i k j h
where a change in scale unit 0: must be identical for both components.
The possible numerical representations of an additive conjoint structure
is not limited to interval scales for x and z. There exist strictly
monotone functions I, 1 , I and h , h such that u, <1) v ~ U, IJJ V is
satisfied for x y x Y 1 k J h

u, IflU =1- 1 [/ (x'.) +1 (z')] =h (x.l.h (z) (7Gb)
lk Xl zk xlzk

(76c)a a
u, Ifl v = exp[cl1n(x',) +:IS + o:ln(z' ) + 6 ] = c.x, ·z,
lk lX kz ...

c = exp (6 + 6 ) and u as arbitrary parameters
x "

whereby

An alternative representation defines combination rule $ to correspond
with a multiplicative scale combination by the exponent of logarithmic
transformed interval scales x' and z' with common scale unit parameter
b i k

Y ,
1=1 =1 =ln andh =h =h=r =exp

x z x z

with

This type of measurement from order relations in additive (FoM: ch. 6) and polynomial
additive (FoM: ch. 7) conjoint structures, where operation $ is an associative operation
(addition, subtraction, multiplication or division) of metric scale values for the
components of the combination, has enriched the classical measurement theory of
physics. Before the sixties of the last century fundamental measurement was restricted
to the ostensive-extensive or derived-extensive measurement of physics that specifies
multiplicative dimensional relationships (although equivalently expressed by
logarithmic transfonnations to log-interval scales with log-additive relationships). More
general representations of intensive measurement are obtained (FoM: ch. 19, ch. 20)
by generalising the associativity for the operation $ in the measurement axioms (Narens
and Luce, 1976). It defines measurement scales x. and Yk for generalised conjoint
structures u. @ v

k
that satisfy monotonicity by a fuhction g that requires that g(x.) is

monotonic ihcreasing and g(x.)lx. monotonic decreasing. Thereby, ratio scales x.
l
", 0

and zk "" 0 for components X hnd Z are derivable from I

~,
u. 8 V

k
= h (x.) 0 h (Zk) = f [f (x.) 0 f (zk)J = zk'g(x./z

k
)

I x I Z X I Z I

u,::£) vk=f (x.) of (zk) =f[h (x.) 0 h (Zk)J =f[zk'g(x'/zkl]
I x I Z X I Z I
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Here GJ is a generalised conjunction rule that can correspond to associative or
nonassociative operations 0 or°between transformed ratio scales x and z by monotone
functions f and f or hand h . The requirements for function g are implied by the
(weak) mo~otonicily ax10m th~t is assumed to hold for the data of the conjoint
structures. Conjunction rule @ is a generalised one that needs not, but may be
associative (addition or subtraction and multiplication or division) and can as well
correspond to different non-associative operations (2) and 0, such as numerical
averaging of f (x.) and f (Zk) and geometric averaging of h (x.) and h (zk). It can
yield also nond'ssdciative 5perations for ratio scales x and Z cFoM: ch.19 and ch.20,
especially theorems 3 and 10), provided the above-mentioned requirements for function
g, some technical axioms, and the axiom of positive concatenation sequences are
satisfied. Generalised conjoint structures that empirically satisfy monotonicity and are
characterised by non-associative operations specify by positive concatenations and the
mentioned function g that the resulting scales x and Zare ratio scales or power-raised
ratio scales. Notice also that if g is a power function then it must have a positive power
exponent smaller than unity in order to satisfy that g(xJz)/(xJz) for any constant z is
decreasing for x/z > 1 (if X/Z < 1 then x and z are reversed, which introduces a distinct
unit point) and then hand h also are functions with common power exponents and
multiplicative operath~n o. InZthat case the inverse function f can be the exponential
function and f and f identically weighted, logarithmic functions. Only for physical
log-interval sciles suc'h weights are dimensionless integers or ratios of integers.

For monotonically increasing functions' and h of scales x and y that
quantify the corrponents U and V as h (x.) " U, and h (z ) = v and

generalised conjunction rule $ that ~orfesponas to a§so~iativ~ or
non-associative numerical operations 0 and 0 in generalised conjoint
structures, satisfying some technical axioms and the axioms of
monotonicity and positive concatenation structures, it holds that

-,
u, $ v

k
"O! [f (x,) o! (z )J = h (x ) 0 h (Z ) (77a)

and ~ x ~ Z k x i z k
u

i
$ v

k
= zk·g(x/z

k
) (77b)

provided that function g(x/z) is monotonic increasing and g(x/z)/(x/z)
monotonic decreasing. This requirement for function 9 implies that the
operation 0 is rnonotonic in the usual sense that

if f (x, ) > f (x,) then f (x,) o 'z(Zk) > f (x.) o f le )
and x , x ] x , x ] , k

if f Z(Zk) > f z (Zh) th~ f (x,) o f I' ) > f (X,) o f Z(Zh)x , , k x ,
Combining (77a) =d (77b) we have

f (x, ) o f z (Zk) = ![zk·g(x/zk)J (77c)
x ,

If operation 0 satisfies associativity then and only then equations
(76) also apply. For (77a) and (77b) associativity of operation:) or 0

is nonessential. By (77a) we also have

, (x,) 0 f (z ) = f[h (x,) 0 h (z )J (77d)
x~ zk X~ zk

which in (77a) or (77d) or (77a) just defines an alternative scaling of
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the conjunction by the two different monotone functions f and h as

U. (flV =/ (x,) of (z) =f[h (X,) 0h {z)J =f[z ·g(x./z l] (77e)
1 k Xl zk Xl zk k lk

Fromh (X,) '" h (z )] = z -g(x /z }
Xl zk k ik

invariance under a corrmon ratio scale unit change of x and z follows by
(a-z )·g[(a·x,l/(a·z l] = a[h (x,) 0 h (z l]

k 1 k x 1 Z k

a[h (X,) 0 h (z 1] = [a-h (x,)] ;) [a·h (z l]
x 1 Z k x 1 Z k

If conj~~ction rule $ is the bisection for psychophysical scaling of
elements of x. and x, of the same component, then it applies to u. (J) U.

and f = f with metrlc operation 0 as the average of f (x,) and f(x,) ~
In order fa guarantee that the bisection method for f (x, )1 0 f (x.) with
non-associative average operation 0 yields an interval §cale fo} f (xl,
it has to satisfy, besides the monotonicity and some technical axioms,
the so-called bisymmetry axiom:

[{(Xi) 0 {(xjl] 0 [{{~l 0 {{Xl)) '" [({Xi) 0 {(~l) 0 [{(X
j

) 0 {~)J

If { '" In for sensations of a stimulus modality X and operation 0 is
the average for the bisection operation $ for sensations {(x), then
this satisfies the bisymmetry axiom and by (77c) and (77d) we obtain

{(x.) 0 {{x,) '" ~ln(x.) + )<;In(x.l =' In[x.-g{x.lx,l)
or 1 J 1 J J 1J

v'x .. v/x , '" X, ·g(x,!x.) or g(x,!x,) '" J(x,!x.)
and lJJ1J 1J 1J

h(x,l e h(x.) '" x.·g(x,!x,l '" x,·J(x,!x.) -= Jx,'VX
1 JJ1JJ1J lj

where we see that h as square root and operation 0 as multiplication
of square root stimulus values, define the bisection operation as the
geometric mean for stimulus values_ Here 9 also is the square root
function that satisfies for x > 1 the requirement of increasing g(xl
and decreasing g(x)!x = INx. If x < 1 then for increasing g(l!x) the
expression g(l!xl!(l!x) = Jx is decreasing, with distinct point x '" 1
as demarcation. It defines by { '" In sensations In(x)= y that then have
positive concatenations for negative units if y <: 0 and for positive
units if Y > 0 with distinct sensation point y '" 0 as demarcation.

Positive concatenation structures for generalised conjoint measurement that satisfies
monotonicity have solvable scales x and z such that the corresponding conjoint
elements in the generalised combination rule (!) are quantified by z'g(xlz), provided that
function g is increasing for g(x) and decreasing for g(x)/x. If operations 0 and 0 are
associative then addition or subtraction of interval scales x and z or respectively
multiplication or division ofexponentially transformed scales x and z can only quantify
the conjoint elements, where these associative conjoint structures are historically called
additive. But associativity of 0 and 0 is nonessential for the general application of
conjoint measurement, because for scales x and z their equivalence with z'g(x/z) also
holds for nonadditive structures, where conjunction operations are not associative. The
scaling by non-associative operations may require the specification of a distinct scale
point, where below and above the infinite, positive scale unit concatenation is
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separately specified. If g(x/z) = /(x/z) then function g(xJz) is increasing, but
g(x/z)/(x/z) = !I/(x/z) is only decreasing for x/z > I. We may define z = b as a constant
value of scale x. with x./b = t as distinct unit point where above infinite
concatenations of positive (ihfinitely small) scale units exist. However, defining z = lib
and a reciprocal scale !Ix. we have infinite positive concatenations for values b/x. > I.
Thereby, it defines a so-blled homogeneous measurement scale for x.1b fromlO to
infmity with differently defmed positive infinite concatenations on each side of the
distinct unit point as connection point. For a scaled conjunction structure with g =.j we
have -I

[ [I(x) 0 [(b)] = b·g(x/b) = b·/(xlb) = /x./b

It defines [ as logarithmic function and operation 0 as the bisection or average
operation, because only exp[ {In(x) + In(b) }/2] = Jx·/b. Here averaging operation 0 is
a non-associative operation, which thus very well can represent conjoint structures that
satisfy the monotonicity requirement and the requirement of infinite concatenations
with a positive scale unit, although the latter here with respect to a distinct unit point.
A relevant example is the bisection method in psychophysical scaling (Cross, 1965),
where subjects judge the sensation of an adjusted stimulus intensity to be halfway the
sensations of two presented stimuli, which implies the average for the operation 0 in
[(x.) 0 [(x.). The axiomatic derivation of bisection measurement is originally
forrl,ulated Hy Pfanzagl (1968). For sensations as a logarithmic scale of a stimulus
modality it yields the geometric mean of the two presented stimuli as stimulus intensity
for the bisection of sensations as exp[Yiln(x.) + 1/2In(x.)] = Jx.·vx .. Another example
of bisection is conjunctive temperature mJasuremenl by COrljurrhion of two equal
(almost closed) volumes of the same liquid that are heated in identical ways for
different periods, because temperature of the added volumes equals the temperature of
a volume that is heated for the average period of the periods for the two added volumes.

The concatenation under non-associative operations is said to be idempotentand
bisymmetric ifu. ffi u. equals the midpoint of j(x.) and[(x.) with;El as averaging, where

I J I J
u. ffi U. = [f(x.) + f(x.)]I2.

1 J I J
Concatenations are defined as positively asymmetric if

U.;El u. > [f(x.) + j(x.)]I2;
I J 1 J

for example, if ® is the geometric averages of 0 < f(x.) < I and 0 < [(x.) < I.
Negatively asymmetric concatenations apply if I J

u. ® U. < [f{x.) + f(x.)JI2;
I J I J

for example, if (1) specifies the geometric averages of [ex.) > I and j(x.) > 1. A
conjunction rule 8 that corresponds to non-associative operAtions, such as geometric
averaging, can thus yield asymmetric concatenations with respect to the unit point
where below concatenations are positively asymmetric and above negatively
asymmetric. The requirements of function g and infinite positive concatenations for
some scaling are only satisfied if we take for values below unity the reciprocal scale
values. For the logarithmic transformation of ratio scales the original geometric average
operation becomes the averaging operation of logarithmically transformed ratio scales,
which then corresponds to means of interval-scale values. Then we have a distinct zero
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point as demarcation point for the positive concatenations of log-scale values, because
infinite positive concatenations for negative log-scale values are only defined for the
corresponding logarithm of the reciprocal for its original scale terms, It demonstrates
that the axiom of positive infinite concatenation structures can require the specification
of a distinct scale point with different positive concatenations on each side of that
distinct scale point in order to define scales over the whole range of scale values that
are hypothesised to apply. The non-associative bisection operation is idempotent for
sensations, because u. \£' U. = (y. + y.)/2. but is asymmetric for stimulus scales, because
u. (El u. = h.-x .. Anolhertxamble ~ the result for generalised conjoint measurement
at sub:lectivJ e*pected utility by the so-called dual bilinear utility model (FoM: ch. 20,
sectionA.6)for gambles with uncertain outcomes. It assumes a dimensional utility point
with idempotent concatenations above and below that dimensional point for weighted
interval scales with positive weights < I.

if x <: Z

if x > Z

if x = z

for 1 > C > 0

for 1 > d > 0

If the operation in generalised conjoins structures is idempotent then
two ~tions are obtained, one for h (x) > 1 with 0 < c < 1 and one for
h(x) < 1 with 0 <: d <: 1, while /(1) = 1. Two equations for power-raised
ratio scales x and z are then derived as

I
c l-cx .,

_Ix
Ixd.z1 - d

or taking u = In(x) and v = In(z) for interval scales u and v, as

Ic·u + (l-c)v
u (/) v = lu

Id·u + (l-d)v

if u > v

if u = v
if u <: V

which are called dual-bilinear equations. For c and d as subjective
outcome probabilities that need not to satisfy c + (I-d) = 1 and some
technical as well as two non-axiomatised requirements, a dual bilinear
utility model is derived as generalised, subjective expected utility
model, where u and v become interval scales for utility of component U
and of component v. The two non-axiomatised requirements are that a
corrmon utility function u exists and exp(c·u)= xC is homogeneous {not
restricted to a maxitmlffi, continuous and uniquely determined up to the
scale unit of x and the parameter c} .

The classical theory of additive conjoint measurement yields extensive measurements
as ratio scales with no essential distinct points or maxima (FoM: ch. 6, P 258). The
classical theory of additive conjoint structures developed in the late sixties and
seventies of the 20'h century has subsequently been generalised considerably, using the
mentioned assumptions for function g and positive concatenations, where the
generalised conjunction operations are also non-associative (FoM: ch. 19 and 20).
These generalisations also can lead to constructions of infinite or open scales for
distance structures that satisfy (weak) monotonicity and are characterised by (eventually
non-idempotent) concatenations with respect to a distinct point or, if open then between
the limits of a positive maximum and negative minimum as additional distinct or
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singular scale points. The axiomatisation of probability measurement (FoM: ch. 5)
defines a singular maximum as the unit point that corresponds to the universal event,
whereby event probabilities of finite event sets are (O,D,l)-unique fraction
measurements of the total event set Also an axiomatisation of a generalised conjoint
structure for length and finite velocity of light in relativistic physics (FoM: ch.3, section
3.7) requires non-associative structures with an essential maximum point for positive
measurement scales of relativistic measurements by the constant velocity of light. but
such an axiomatisation is not given. Besides the discussed (subsection 6.1.3.) inferred
extensive measurement of utility by Luce (2000), axiomatic measurement results for
psychological measurements with a distinct zero point, a singular or distinct, positive
maximum, and a singular or distinct, negative minimum are not published to our
knowledge, but are implied by the response and preference measurements in our
psychophysical response and valence theory, as discussed in the sequel.

Generalised conjoint measurement structures with non-associative operations
have helped the understanding of which scales allow meaningful propositions between
measurements of components from conjoint structures that satisfy monotonicity. It is
proved (FoM: ch.20)that generalised conjoint structures u ® v with associative or noo
associative operation 8l for outcome structures that satisfy monotonicity can always be
scaled by positive scales of reals x and z for its components u and v and identical power
exponents t > °(FoM: ch. 20, theorem 11), where x and z satisfy measurement
homogeneity (infinitely unifonn concatenations) and

t t .. t
fix ] = [I(xl] and hi' ]= [he'll

This result is important, because their admissible transfonnations define which scale
types satisfy meaningfulness of quantitative relationships between variables x and z.
If f(x) = xlll and h(z) = z/Il' then the expressions clearly hold, whereby they hold for
(I ,O,O)-unique ratio scales and for distinctly power-raised, (I, I,a)-unique ratio scales,
provided that their scale units are taken into account (FoM: ch. 19 and ch. 20). The
above expressions hold not for x andlor z as bipolar or negative ratio scales, or interval
scales, but apply to positive (0, I,a)-unique stimulus fraction scales with a dimensional
unit point and to positive (0,2,0)-unique, distinctly power-raised stimulus fraction
scales with distinctly defined unit points and dimensional power exponents.

It could also apply to the dual-bilinear utility measurements that are described
in the last mathematical section, but only if their power exponents and demarcation
levels for their dual scale representation would be distinctly defined by solvable
dimensional parameters. Without such distinctly defined, dimensional parameters its
power-raised scales are not (1,2,0)- unique, but (2, 1,a)-unique utility scales, since their
logarithmic scales are interval scales with a distinct demarcation point. As also
discussed in the previous section, the axioms for dual-bilinear utility measurement have
recently been modified and generalised by Luce's (2000) rank- and sign-dependent
utility without some associativity axiom and thus also without using the function g that
is increasing for g(x) and decreasing for g(x)/x. Luce's utility axioms apply to
equivalence structures for joint receipts of valued good pairs, where a generalised
additivity is not presupposed, but derived. It specifies an inferred-extensive utility
measurement for subjectively evaluated losses or gains with respect to a distinct point
as individual status quo with zero utility, but with an unspecified unit Il of value scale
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x/!1 and unspecified ratio elk for dimensionless limits c of gains and -k of losses.
Thereby, Luce derived (I, I, I)-unique utility measurement of losses or gains separately,
but it can't be applied to loss and gain mixtures and due to unspecified utility limits
also not for a meaningful comparison between utilities of individuals.

We noticed earlier that positive ratio scales x.lll with respect to a fixed ratio
scale value x./b = I become fraction scales xJb that ha~e distinctly defined scale units.
Due to their ldimensional unit points x./b =\, such fraction scales of ratio scales are
(O,I,O)-unique scales. Semi-positive dtio scales have a zero origin and no distinct
point, but are dependent on an arbitrary scale unit Il and thus (l,O,O)-unique. Clearly
semi-positive fraction scales are allowed to be some scale x in the above expression
f[x T] = [f(X)]T. For T> 0 andf(x) = xlll the expression describes a power-raised ratio
scale (xlll) and its logarithmic transfonnation defines a weighted interval scale
T·ln(xlll). These scale types are (2,0,0)-unique, if there are no distinct parameters for
these scales: one for the scale unit 1.1 of the underlying ratio scale and one forthe power
exponent T that for its interval scale become respectively a dimensional translation
parameter In(ll) and a dimensional unit parameter Iir. Only in physics the power
exponent T is a dimensionless parameter, whereby its scale and its log-scale are both
(1,0, I)-unique. In physics the measurement unit is conventionally agreed, while its
power-raised fraction scates have dimensionless power exponents that are detennined
by the dimensional invariance for physical scales (FoM: ch. 10), whereby power
exponents Tare integers or ratio of integers, such as the power-raised scale for volume
that has T= 3 by its cubic length measures. But there is a conventional aspect hidden,
because if volume would be chosen as the basic, not power-raised scale then length
would have a power-raised scale with T =1/3. If physical scales are not specified by
fractions of their conventionally agreed standards for their scale units then the power
raised scales and their log-interval scales are (I,O,i)-unique, because the power
exponents that are detennined by integers or by ratios of integers as specific
dimensionless parameters that depend on the (ratio of) of the space dimensionality of
the (ratio of) the measurement. The conventionally agreed standards for the units of
physical ratio scales, such as the length of one metre or a minute for time, define
physical fraction scales with dimensional unit points that correspond to the standard
measurement unit of physical ratio scales. Thus, power-raised ratio scales, when
expressed by fractions of their conventional units in physiCS, become power-raised
fraction scales and then are dimensionally invariant, (O,i,l)-unique scales in our
definition of scale uniqueness. Without such specified measurement standards also
power-raised physical ratio scales only are (1,0, I)-unique and define no dimensionally
invariant relationships between physical dimensions. But, as shown in the next section,
the absence of arbitrary parameters for (0, 1,1 )-unique, power-raised fraction scales in
physics similarly apply also to distinctly solvable, (0,2,0)-unique, power-raised stimulus
fraction scales as subjective stimulus magnitudes that derive from the exponential
transfonnation of comparable sensation scales. The physical stimulus space exhibits a
rotation-invariant geometry, while the dimensional power exponents for the power
raised stimulus space of subjective stimulus magnitudes are rotational parameters, as
shown in chapter 3, which for subjective stimulus magnitudes defines a dimensional
invariance that is comparable to the dimensional invariance of physical measurements.
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6.1.5. Meaningfulness by dimensional invariance
The exponential transformation of intensity-comparable sensations defines power
raised fraction scales of stimuli with a power exponent that equals twice the inverse of
the logarithm of the ratio of the individual adaptation level b /ilk and the just
noticeable stimulus level ukh\ on the stimulus ratio scale k, wltle the fraction is
defined by the individual adaptation point as unit scale point x.kfbk-=1. The power
raised stimulus scales from Stevens' subjective magnitude' scaling are to be
characterised as (1,1 ,O)-unique, because they have arbitrary scale units and distinctly
solvable, dimensional power exponents. Its power exponents T

k
=21ln(b lu )=2Ja

k
are

distinctly defined, but are not dimensionless, as holds for power-raisetra~oscales in
physics. These power-raised stimulus fraction scales (X'klbk)'tk are defined by
exponentially transformed, comparable sensations si]( = 2(Y.~ - ak)/ak that depend on
two distinct unit points on fraction scales of stimulus Iratio scales x.k/f.!' One
dimensional unit point is the adaptation point x'klb = I and the other one l.k/Uk = I
corresponds to the just noticeable sensation intJnsi{y In(x'k/uk) = 0 as Fechrier space
origin. Thus, here there are two dimensional points thatdetJrmine the fraction scale and
its power exponent, while the stimulus fraction scale x.klb k and the power exponent
2/In(b

k
/u

k
) = 't

k
are independent of the arbitrary scale

l
unit j_\of the corresponding

stimulus ratio scale, It determines this distinctly solvable, power-raised fraction scale
of stimuli to be (0,2,0) unique, because defined by two dimensional values. The
logarithm of a distinctly power-raised stimulus-fraction scale k defines the intensity
comparable sensation scale

2/'\
f[(xa!"*V",Uk/")] =In[(xiklbk) ] =2In[(xa!")/(bJ!")]Iln[(bk/")/(uk/")]

which is equivalently written by \ '= 2/a
k

= 2/In(b
k
/u

k
) and the cancelling of In(/1) as

2[ln(x
ik

) -In(bk)]I[ln(b
k
) - In(u

k
)] ='tk·ln(\klbk)

~nd b~ taking the just noticeable Fechner sensation In(uk) = 0 as zero sensation
mtenslty

2[ln(xik/)/ln(bk) -I] = 2( Yik/ak - I) = \k

Here Y'
k

= In(x'kl/1k) becomes a Fechneriansensation scale by scaling x. IU
k

=1 as unit
stimultis scale point. since Fechner took In(x'k/uk) = 0 as origin of posWive sensation
scale origin foru

k
l/1k as stimulus threshold, However. Fechner's sensation scales have

no constant origm and are not comparably weighted and, thereby, can't be used for
their measurement relationships, Since 'k = 2I1n(b

k
/uk) '= 2/[ln(b

k
l/1) - In(uI!/1)] is

shown by Stevens' power exponent to be almost constant for eacli sensory stimulus
modality xj/f.! (except at extremely low or high stimulus intensities), we see that uk/f.!
and bk/f.! determine a virtually constant sensation distance on the logarithmicillly
transformed ratio scale for stimuli x,k/f.lk' Thus, intensity-comparable sensations and
their exponential transformation to1power-raised fraction stimulus scales are both
meaningful (O,2,O)-unique scales as transformed-extensive measurements.

Notice that intensity-comparable sensation scales are also written as a ratio of
a variable difference and a constant distance on the interval scales of logarithmic
stimulus ratio scales, expressing:
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£[(x,,!"JlcbJ!",pJ!"l] = Iln[(\k/")I(pk/"l]l/lln[(bJ!"l/(pk/"l]I '

which is equivalently written by ()k= I1I [In(b
k

) - In(Pk)]I and the cancelling ofln(l-l) as

I[In(x;kl ' In(pklJl!I [In(bk), In(PkJ]I = Ok' Iln(\k/pkl I,

Taking dk = ;[In(b
k

) - In(Pk)]I = Ia
k

- gk I as scale unit with gk = In(Pk) as ideal point

]) dependence on two distinct unit points: one on stimulus-fraction scale x'klbk = 1
that corresponds to the origin of Fechner-Helson sensation scale and ~me on a
redefined stimulus-fraction scale x./u

k
= 1 that corresponds to the Fechner scale

origin, whereby \ = 2/ak = 2/In{b~"{uk) becomes a dimensional parameter that as
Stevens' power exponenfls empiricalfy shown to be (almost) constant;

2) invariance under linear transfonnations of its logarithmic stimulus ratio scales,
whereby independence of stimulus-scale units is established, while unit and origin
of intensity-comparable sensation scales are detennined by distance In(bklu

k
).

Remembering the earlier quoted third alternative for dimensionally mvariant
measurements in the nonphysical sciences, where it is stated that these sciences without
ratio scales must

"arrive at lawful formulations having a character different from the
dimensionally invariant equations in physics",

we cite further more from comments on that alternative (FoM: ch. 10, p. 520):
"In addition to considering the possibility ofusing laws that violate dimensional
invariance, which is not vel}' appealing, we can also entertain laws ofa rather
different sort. One example is laws that establish relationships at two different
times. lfu{a,t) is an interval scale measure ofsome attribute ofentity a at time t,
the quantity [u(a,t) - u(b,t)]/[u(a,n - u(b,n]
is invariant under affine transformations and asserting so that is a constant is a
lawlike statement tlu1t is dimensionally invariant. Just what all the possibilities
are in this direction has never been worked out."

Comparing the expression for intensity-comparable sensations with the expression in
this citation, we replace tenn u(a,t) by In(x'l!I-l) as interval scale value of Fechner
sensations, tenns u(b,t) and u(a,t') both by lhlbil-l), and tenn u(b,t') by In(ukll-l) as
distinct points on that Fechner sensation scale, whereby also intensity-comparable
sensation scales are invariant under linear transfonnations of their underlying Fechner
sensation scales with interval-scale measurement. Thus, we implicitly worked out one
relevant direction by transfonning Fechner sensations to intensity-comparable
sensations that are dimensionally invariant by the invariance under linear
transformations of their underlying Fechner sensations. Notice also that this
dimensional invariance of comparable sensations is stronger than the measurement
invariance for z-scores of interval-scale variables with nonnal distributions, because
the z-scores depend on the validity of the nonnal distribution assumption and for
different samples on the assumption of random selections from one population.

Similar matters holds for valence-comparable sensations, where adaptation level
bk/l-l and ideal point Pk/l-l define two distinct points on each stimulus dimension k for
preference evaluations of individuals. Here we write the valence-comparable
sensations, as logarithm of the underlying stimulus scale k with an arbitral)' scale unit,
by
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of the valence- comparable sensation scale we have

Iln(';kJ -In(PkJlldk = I Y;k - gk Ildk-

Distances iY'k - gkl and d
k

are respectively variable and fixed distances to the ideal
point on logarithmic stimulus ratio scales as Fechnerian interval scales, where
adaptation level b

k
/J1 together with ideal point Pklll define two distinct unit points: one

on stimulus-fraction scale x.klb
k

and the other on stimulus-fraction scale x'k/Pk" Thus,
also valence-comparable sehsatiOn scales are (O,2,O)-unique and invariant ~nder linear
transfonnations of their underlying Fechner scales Y

ik
= In(xikh1), due to their ratio of

variable distances and a constant distance on logaritIimic ratiO scales Y'
k

= In(x./J1).
This invariance of comparable sensation scales is comparable to th~ dimenJlOnal
invariance for power-raised fraction scales of ratio scales in physics, although the
power exponents 'k and (Jk are here dimensional values (no dimensionless power
exponents, as in pliysics). Notice that by definition Iln(b

k
) - In(Pk)I =:: Y2iln(b )

In(fk) i for fk/lJ as deprivation point, where if f~/1J coincides with ilie just noticeilile
Fecliner sensation Uk/l-' then Iln(b

k
) - In(Pk)! = Y2[ln(b

k
) - In(u

k
)], whereby (Jk =:: r

k
.

In fact this type of dimensIOnal invariance already is aXiomatically implied In

FoM (section 4.3.), where it is stated that if the order relations between interval-scale
differences y. - y. can be represented by ratios of ratio-scale values g(y .)lg(y.) =:: x./x.
with the sam~ odier then it requires for strictly increasing functions find g fuat I J,

fI(y. - y.)la] = [g(y_)lg(y.)] •
and IJ IJ,

fI(y. + B)lal ="[g(y.)] ,, ,
but then 13, r, a, ~, and I-' must "be uniquely determined by such a requirement if.
indeed, the requirement can be satisfied at all". (FoM, ch. 4, p.153). Although this
requirement seems doubted by .. if. indeed, the requirement can be satisfied at all", it
exactly is this requirement that is satisfied by f =:: g =:: exp of comparable sensations
scales with a = lIr = Y:za, I-' =:: b-l

, and -~ =:: a =:: In(b) as adaption level and range
midpoint of intensity-comparable sensations or with u =:: 1/0 =:: cl =:: la - gi and -~ =:: g as
individual ideal point of valence-comparable sensations. Moreover, if the deprivation
and just noticeable levels coincide then d =:: Y:za and, thus, 0 = T, whereby intensity- and
valence-comparable sensation scales are identical. It is further commented (FoM, ch
4, p.154) that the two expressions above are implied by Torgerson' s (1961) suggestion
that estimated differences and ratios are related by fey. - y.) =:: exp[y. - y.). Torgerson
suggests that the instruction of difference evaluations lndrlces anoth~r irttensity scale
than instructions for ratio evaluations. A Fechner sensation difference y. - y. as
category m on an ordered difference rating scale C satisfies I j

c 1<{(y·-y·)+BJ/u<C I'
m- 1 J m+

which equivalently is described by rating scale N = [13 +C lu) bym m
N I=::B+C I/u«y.-y.)<B+C ,/a=::N I-

m- m- I J m+ m+
while then a corresponding ratio evaluation by rating category n on rating scale R
becomes
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q./b = Rand [In(q.) - a] = C ,
1 n I m

but this is not what was hypothesised by Torgerson (1961). However, intensity
comparable sensations require not the ad hoc hypothesis of Torgerson, because
differences between intensity-comparable sensations and their ratios as

for f :=: exp and 11 = exp(p/a). For rating scale M :::: aln[R Illl this implies
n n

M ,=aln[R ,/IlJ«y.-y.)<aln[R ,/1l]=M ,.
n- D- IJ n+ n+

It then follows that N = M ,whereby
m m

C = a(N - B) and R = ll.exp(N la).
m m n m

Thus, rating scale C acts as interval scale and rating scale R as power-raised ratio scale.
But, as commented (FoM, ch. 4, bottom line p.l54),

"then the subjects really do act as though they are judging numerical differences
and ratios of sensations, when requested to judge differences and ratios ",

In the comment this is doubted, because subjects may generate different order
relationships for ratio and difference judgements that both satisfy transitivity and if so
then each can be scaled in many ways. In our tenns this comment states that difference
and ratio judgments may exhibit the property of reference invariance, but that structure
invariance for ratios and differences may be expressed by different structure-invariant
geometries. We have shown that something similar to Torgerson's ad hoc hypothesis
may apply to Stevens' fractionation method. where we conjectured that fraction
judgement is a matching with cognitive magnitude dimension [In(q.) - a] as logarithmic
transfonnation of an objective ratio scale for magnitude q./b. This bay be comparable,
to

(y. - y.)/a = In(x./x.)/In(b/u)
and IJ lJ

y.la - I _'n~('-,.Ibc'-)/l_n~(b_lu~)'-'---- ,
y./a - I = In(x./b)l1n(b/u)
J J

are both invariant under linear transfonnation of Fechner sensation scale y, whereon
sensations y. = In(x.lIJ), y. = In(x./IJ), adaptation levelln(b/Il), and just noticeable level
In(u/IJ) are Ibcated 1nd ~ereonJdistanceIn(b/u) is almost constant, because Stevens'
power exponent or = 2/ln(b/u) is almost constant.

In summary: the exponential transfonnations of comparable sensation
dimensions define distinctly power-raised stimulus-fraction dimensions as subjective
stimulus magnitude scales. Power-raised fraction scales in physics and power-raised
stimulus fraction scales in psychophysics and their logarithmic scales are both
respectively (0,1,1)- and (0,2,0)-unique scales. The only differences are (I)
dimensionless versus dimensional power exponents and (2) collectively agreed versus
individually solvable unit points for the respective fraction scales in physics and
psychophysics. The power-raised fraction scales of subjective stimulus magnitudes
have a similar dimensional invariance as measurements in physics, because Stevens'
power exponents are rotational parameters that equal the distinct weights ofdimensions
in rotation-invariant, comparable sensation spaces. Therefore, we explicitly fonnulate:
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Corollary 2: Meaningfulness by (O,2,O)-unique scales of comparable sensations
Intensity- or valence-comparable sensation dimensions are weighted, dimensional
Fechnersensation differences to respectively dimensional adaptation or ideal points
with weights defined respectively by twice the inverse of a dimensional distance
between the dimensional adaptation and just noticeable points or by the inverse of
the distance between the dimensional adaptation and ideal points in a rotation
invariant Fechner space, whereby comparable sensations are invariant under linear
transformations of their underlying Fechnerian dimensions. Due to this invariance
and the dependence on tWO dimensional points, comparable sensation scales are
dimensionally invariant, (0,2,0)-unique scales in a rotation-invariant space, whereby
meaningfulness of their measurements holds.

Due to the dimensional invariance of comparable sensations also their metric
transfonnations to responses and monotone or single-peaked valences are
dimensionally invariant, which enables the fonnulation of meaningful, quantitative
relationships in the psychology of judgment and preference. If we have algebraic
different, quantitative relationships for each response or valence geometry and by
empirical evidence only one relationship kind is confinned, then we also have metric
uniqueness of quantitative relationships for a theory of individual judgment and
preference. Also meaningful quantitative relationships between responses or valences
of different individuals are possible, provided that the individual translation and weight
parameters of the underlying comparable sensations are distinctly solved. Since this
holds for the analyses in chapters 4 and 5 of this monograph, we can meaningfully
describe relationships between response or valence measurements of individuals.

6.1.6. Permissible geometries for similarity and preference measurements
Although modem measurement theory contributes much to the understanding of the
pennissible types of measurement from conjoint outcome structures, it has not specified
psychological measurement scales by ratios of a variable difference or distance and a
fixed distance ofan interval scale. But, such scales are dimensionally invariant, because
invariant under linear transfonnations of the underlying interval scale. Modern
measurement theory also lacks a geometric foundation and clarifies not which
geometries are pennissible for the multidimensional analysis of observed ordinal data
in psychology. These facts have been the main obstacles for progress in psychological
theory, because they prohibit dimensional invariance of measurements and meaning
fulness of quantitative relationships between dimensional measurements. Analyses of
conjoint component outcomes and ordinal distances structures are represented by
spaces with metric, continuous dimensions, but their dimensional scales generally are
interval scales of dimensions in infinite spaces. The object representations on these
infinite dimensional scales may not completely be detennined and then the dimensional
scale type becomes a so-called semi-metric ordered or hyper-ordinal scale. It fonnally
falls between the interval and ordinal scale type, although only very small changes in
multidimensional scale positions are generally allowed, because otherwise the observed
rank order infonnation becomes violated massively. Therefore, if the information on
the ordinal dissimilarity relations between pairs of objects is sufficiently rich, then the
semi-metric ordered dimensional scales by MDS or unfolding analyses define
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dimensional measurement representations that virtually are (l,O,D)-unique. This holds
for the existing MDS-analyses of similarity responses or multidimensional unfolding
analyses of preferences. If the numbers of objects and individuals are large enough and
order relations between object pairs (ordered dissimilarities) or order relations of
objects with respect to an imaginary ideal object (ordered preferences) are satisfactory
represented by metric space distances, then the dimensional measurement
representations become (2,O,O)-unique interval scales with a restricted measurement
variability that hardly differs from the usual measurement error of scales in physics.
Measurements derived from space representations of distance inequalities by MDS
methods then define interval scale measurements. However, it is not sufficient to have
suitably rich ordinal infonnation of individual dissimilarities for MDS-analyses,
because one additionally needs a distance metric of a pennissible geometry for
multidimensional representation of transitively ordered dissimilarities. As discussed in
preceding sections and also is apparent from the geometric representations of distance
measurements (FoM: ch. 14), axiomatic measurement theory not only contributed little
to dimensionally invariant measurements in nonphysical sciences, but also little to the
geometric foundation of multidimensional measurement representations of observed
data in nonphysical domains. Measurement axiomatisation remains incomplete without
geometric axioms, while also in psychology any attention is hardly given to
theoretically pennissible geometries for multidimensional representations, although the
requirement of transitive distance representations specifies which geometries are
pennissible, as further demonstrated next.

Transitively ordered dissimilarities as unidimensional distances between points
of two point sets (a,b,c) and (x,y,z) have to satisfy the weak monotonicity axiom

if d(a,b);". d(x,y) and d(b,c);", d(y,z) then d(a,c) ;". d(x,z)

for any scale that represents individual dissimilarity rank orders as transitive distance
rank orders (intransitivity of dissimilarities can consistently occur and appropriately
analysed, which is further discussed in chapter 7). The weak monotonicity axiom
requires that the metric dimension has a zero or constant curvature. This is proved for
the lengths of intervals ab, bc, ac, xy, yz and xz that satisfy d(a,b);". d(x,y) and d(b,c)
;". d(y,z) on a straight line or circle or hyperbola, while on curves with varying
curvatures d(a,c) ;". d(x,z) can easily be falsified. Multidimensional measurement spaces
that represent transitive dissimilarities as space distances require a space with a zero or
constant curvature, because dimensions that satisfy the weak monotonicity axiom
specify that the triangular distance inequality holds, which only is satisfied for spaces
with a zero or constant curvature (Busemann, 1955). Thereby, the quadrangular
monotonicity axiom, expressed in corollary 3 below, derives.

Corollary 3: quadrangular monotonicity axiom
Ordered space distances as representations of individually rank-ordered
dissimilarities require that a weak order of quadrangle sides specifies a weak order
of quadrangle diagonals (z,x) and (w,y) that satisfy

if d(w,z) ;". d(x,y) and d(y,z);", d(w,x) then d(z,x));", d(w.y),

which only is true for distances in spaces with a zero or constant curvature.



265

The proof of this axiom is derived by sequences of triangular distance inequalities of
triangles with a common quadrangle side, where the triangular distance inequalities
only holds in spaces with a zero or constant curvatures. Thus, distances in spaces with
a zero or constant curvature can represent the unconditional reference invariance for
observed rank order relations of individual dissimilarities. Corollary 3 implicitly
specifies the permissible transformations of dimensional measurements, because
distance rank orders in zero and constant curvature spaces are invariant under
translation, rotation (except in Minkowski spaces), and central dilation. Distance rank
orders not only can change under dimensional dilations, but also under isomorphic
space transformations. For example, if f ::: tanh and d(w,z) > d(x,y) holds then
d[f(w),f(z)] > d[f(x),f(y)] may not hold, depending on the difference in proximity to
the space origin for (w,z) and (x,y). Suppose d(w,z) > d(x,y) holds in the weighted
Euclidean sensation spaces of two individuals with different adaptation points, while
distances d[f(w),f(z)] and d[f(x),f(y)] in their open-hyperbolic response spaces
represent their observed dissimilarities, then d[f(w),f(z)] > d[f(x),f(y)] may hold for
one individual and d[f(w),f(z)] < d[f(x),f(y)] for the other. Therefore, individual
difference MDS-analyses of dissimilarities can be invalid, because dissimilarities must
be analysed as distances in individually different, open response spaces.

Multidimensional scaling methods yield measurements that depend on the
chosen geometry for the common object space, which generally is a tlat (Euclidean or
Minkowskian) geometry. However, other permissible, structure-invariant distance
geometries may better fit the unconditional rank orders of individual dissimilarities by
its distances, as the here relevant structure invariance for binary space points. If
dissimilarities are represented by distances in individually different spaces then
generally the multidimensional scaling analysis is only modified by individual dilations
(weights) for the space dimensions. These individual weights then define individually
different space distances, but individual translation parameters are arbitrary, because
distances are invariant under translations. Even if it is assumed that the geometry for
such individual measurement representation is valid for dissimilarity responses as space
distances, it still means that the individual translation parameters for the dimensional
scales are unknown, unless dimensional weights and translations are theoretically
related parameters. In our psychophysical response theory they are related individual
parameters for comparable sensation spaces, but dissimilarities in our theory are
represented by distances in individually different response spaces that have no arbitrary
measurement parameters. Since in individual difference MDS-analyses define space
with arbitrary translations, quantitative relationships between its dimensional
measurements can't be meaningful, because not dimensionally invariant. Therefore,
without a valid theory that determines by dissimilarity analysis a measurement space
without arbitrary parameters (besides central dilations), quantitative relationships
between dimensions can't be dimensionally invariant. Thus, quantitative theories that
are based on measurements from any existing MDS-analysis of dissimilarities must in
principle be not meaningful. Moreover, without the valid uniqueness of the geometry
the formulation of quantitative relationships can be different for permissible
geometries. It is often argued that the geometry can be specified by choosing the
geometry with the most parsimonious representation (the geometry with the minimum
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number of dimensions that fits best the dissimilarity inequalities). However, the most
parsimonious geometry provides no valid knowledge on the actual geometry, because
it falsifies not other permissible geometries. Only dissimilarity analyses that uniquely
determine dimensional translation and scale-unit parameters can yield dimensionally
invariant measurements and meaningful quantitative relationships for each permissible
geometry, which by empirical evidence for a uniquely valid metric formulation of
dimensional relationships then would uniquely define the valid geometry. According
to our psychophysical response theory, individual rank. orders ofdissimilarity responses
are to be represented by the rank order of distances in open response spaces with a zero
or constant curvature. Inverse response transformations of individually solved open
response spaces define individually weighted and translated sensation spaces and the
transformations of the latter spaces to a common Euclidean object space uniquely solve
the individual translation and scale-unit parameters that determine dimensionally
invariant measurements for meaningful quantitative theory in psychology.

In case of unidimensional, single-peaked preferences the weak monotonicity
axiom conditionally applies to ordered distances of points a, b, x, and y with respect to
ideal point p on a straight or curved dimension as unidimensional representation of
ordered preferences, where the conditional quaternary distance inequalities require that
midpoints m(a,x) and m(b,y) satisfy

if d(p,x),;; d(p,a),;; d(p,b),:; d(p,y) then m(b,y),;; m(a,x) and d(a,b) s; d(x,y).

If the preference order of an individual with ideal point p is unidimensional then the
scale with ordered points p,x,a,b,y is called a folded, ordinal scale with p as folding
point of the unfolded scale with ordered points b,a,p,x,y. The gained information
concerns the implication that if order x < a < b < Yholds then ideal point p satisfies
m{b,y) < p < m(a,x) and thus d(a,b) < d(x,y) and if order a > x > y > b holds then
m(b,y) > p > m(a,x) and thus d(a,b) > d(x,y). Thereby, we obtain some metric
information by the implied ordering of scale midpoints from the preference order. If the
rank orders of many subsets ot' four points fit the conditional quaternary distance
inequalities with respect to different located ideal points of several individuals, then it
defines a semi-metric ordered scale of the Coombsian unfolding analysis in one
dimension, which dimension generally is assumed to be straight (zero curvature).
However, a dimension with zero or even a constant curvature is not necessary. The
conditional quaternal)' distance inequalities only requires that the absolute curvature
of the scaled dimension increases not with the order of the curved distances. This is
easily proved for ordered points b,a,p,x,yon a straight line, on a circle, on a hyperbola,
and on a curve with an absolute curvature that decreases with the curved distances to
~int p (a smaller average curvature of distances means a larger average radius and,
thus, enlarged curve distances to p), since distance rank order d(p,x) < d(p,a) < d(p,b)
< d(p,x) implies the midpoint orderm(b,y) < m(a,x), which can easily become falsified
by m(b,y) > m(a,x) on other curves. If more than four points and individual ideal points
are located on a curve with a curvature that individually decreases with the curved
distance to differently located ideal points, then the conditionally weak quaternary
monotonicity still individually holds for all multiples of four objects. For
multidimensional preferences we formulate correspondingly:
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Corollary 4: conditional quaternary monotonicity axiom
Conditionally ordered space distances as representations of individual preference
rank orders require that weakly ordered distances of space points (a, b, x, y) to an
ideal point p also specify a weak rank order of distances dCa, b) and d(x, y) by

if d(p,x) i d(p,a) '" d(p,b) s; d(p,y) then dCa,b) s; d(x,y),

which only is true for spaces with a zero or constant curvature or with absolute
curvatures that decrease with increased distances to space point p.

Its unidimensional and multidimensional axioms are identical, because the circular
projections of space points (a,b,x,y) with respect to projection centre p on dimension
Cp,x) preserve their distance order to point p, if the projection circles have the same
(zero or constant) curvature or absolute circle curvatures that decrease with increased
distances to point p. Thus, if the space curvatures vary then corollary 4 only holds for
absolute space curvatures with the reversed rank order of their curved distances to point
p. This is proved by realising that curvature-corrected space distances divided by their
curvatures define curved space distances. Only if the space curvatures vary irregularly
or have the same order as their distances to ideal point p then curvature ab. of distance
d(a,b):= la - bl/~ba can be smaller than curvature lYxy of distance d(x,y):= Ix - yl/~xy,

whereby the weak distance rank order d(p,x) :s: d(p,a) :s: d(p,b) :s: d(p,y) can lead to
d(a,b) := Ia - b II~ba > d(x,y) := Ix - YI/o:;xy' but then it requires that the conditional space
distances are defined by non-monotone or different monotone functions of their
corresponding distances to ideal point p in the curvature-corrected space. Therefore,
the conditional quaternary monotonicity axiom only holds for distances in spaces with
a zero or constant curvature or with absolute curvatures that decrease with increases of
their conditional distances to ideal space point p. It implies that all curvature-corrected
distances to ideal space point pare monotonic transfonned by the same function,
whereby curved and curvature-corrected distances to point p have the same rank order.

Corollaries 3 and 4 only restrict, but don't uniquely specify the geometry
curvature and both also don't specify whether their distance metrics apply to infinite or
open spaces or whether the spaces describe individually different or identical object
configurations. The next two corollaries state this more explicitly.

Corollary 5: permissible geometries for dissimilarity representations as distances
Spaces that represent transitively ordered dissimilarities by unconditionally ordered
distances are spaces that can only have an infinite or open geometry with a zero or
constant curvature and may contain individually different object configurations.

Corollary 5 implies that a MDS-analysis can't represent transitive dissimilarities by
distances in a power-raised stimulus space, because power-raised stimuli have local
curvatures that rotationally change with their dimensional directions from the space
adaptation point as rotational centre, as shown in chapter 3. The Fechnerian scaling
theory of Dzhafarov and Colonius (1999,200 I), who represent dissimilarity responses
by location- and direction-dependent distances in the Finsler space of power-raised
stimuli, could be applied, but the analysis would then reduce to only direction
dependent, binary point representations of dissimilarities in a power-raised stimulus
fraction space with respect to dimensional adaptation points as unit reference points.
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However, if their Fechnerian scaling would not represent dissimilarity responses in a
power-raised stimulus space, but in an open involution space of the power-raised
stimulus fraction space with the adaptation point as unit point, then the open scaling
space would have a zero or constant curvature. The Fechnerian scaling would then
reduce to a MDS-analysis of individual dissimilarities as locatioo- and direction
independent distances in a single-elliptic, or open-Eudidean or hyperbolic response
space with the adaptation point as origin. Notice that identical and constant adaptation
points may only hold in case of dissimilarity evaluation tasks for randomly selected,
perceptual stimulus pairs from a prior known stimulus set, otherwise adaptation points
may shift by task- and stimulus-dependent dissimilarity evaluations, which is further
discussed in next chapter 7. If adaptation points are individually constant and different,
which generally holds for dissimilarity evaluations between cognitive objects from a
known object set, then a Eudidean MDS-analyses of individual dissimilarities may be
appropriate, if the response space is open-Eudidean. However, also MDS-analyses of
individual dissimilarities can hardly resolve whether the actual response geometry is
flat (Eudidean or Minkowskian), or hyperbolic, or single- or double-elliptic and, if flat
or hyperbolic, whether the geometry is open or infinite, due to the ordinal measurement
level of the observed data and the absence of a valid theory that restricts the permissible
response geometries. Existing MDS-analyses only allow individual dimension weights,
rotations (if the distance metric is not Minkowskian), and translations of a common flat
space. Our psychophysical response theory implies that individual response spaces have
either an open-hyperbolic, or open-Eudidean, or single-elliptic geometry as
perspective-depedent projections of infinite, Eudidean or hyperbolic spaces of
comparable sensations. Thus, if adaptation points are constant then corollary 5 requires
that we analyse individual dissimilarities as distances in their open response geometries
and that the individually solved, open response spaces must be transformed to a
common Eudidean object space in order to see whether object configurations of
individuals are indeed identical. Therefore, we firstly have to transform by inverse
projections the individually solved response spaces to individual Euclidean or
hyperbolic spaces of comparable sensations and secondly have to match (by
translations, rotations, and inverse weighing of dimensions,) these comparable
sensation spaces to a common sensation space, which are topics described in chapter
4. If sensations are hyperbolic then the common Euclidean object space is the stimulus
or cognitive-attribute space, else it is the common sensation space.

Corollary 6: pennissible geometries for preference representations by distances
Spaces that represent transitively ordered preferences by conditionally ordered
distances to individual ideal points are spaces that only can have an infinite or open
geometry with a zero or constam curvatureor with absolute curvatures thatdecrease
with the distance to individual ideal points and may contain individually different
object configurations.

Corollaries 4 and 6 imply no severe geometry problem for unfolding analyses of rank
ordered, single-peaked preferences, due to the conditional order of preference data that
have circular iso-valent contours to ideal points in individual valence and sensation
spaces. An unfolding analysis of conditionally ordered preference data only can analyse
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preference representations in a common space. If the sensation space is Euclidean and
the unfolding analysis represents preferences by individual iso-valent circles in
individually weighted Euclidean sensation spaces then, according to our theory, it may
correctly solve the object configuration. But, it does not reveal the appropriate metric
forthepreference strengths of individuals, nor whether their preference spaces are open
or infinite. Only analyses of individually ordered data of preference dissimilarities
between all object pairs could describe an individual preference space, but generally
such preference data are not available. Thus, generally we can't determine individual
space solutions, but only common space solutions, whereby we only can infer from
individually different dimension weights and the differently spaced and oriented iso
valent contours of individuals whether individual preferential object contigurations are
markedly different or not. Both last corollaries also imply that the object configuration
not only can be different by individually weighted spaces, but also by individual
projection transfonnations of an infinite object space to open, individual spaces with
a constant negative curvature or with absolute curvatures that decrease with the
increased distance to ideal points. Thereby, existing analysis methods of single-peaked
preferences may yield partially invalid solutions. Moreover, quantitative relationships
between dimensional measurements from existing MDS-analyses of dissimilarities or
unfolding analyses of preferences can't be meaningful.

In view of the psychophysical response and valence theory the assumed infinite
geometries with a zero curvature (thus Euclidean or Minkowskian) for the usual MDS
or unfolding analyses are questionable, as shown in chapters 4 and 5. In chapter 4 we
identified individual response spaces as individually different spaces with an open
Eud idean or, open-hyperbol ic, or single-elliptic geometry that satisfy the unconditional
quadrangular monotonicity axiom. In chapter 5 preferences for objects with monotone
valences are represented by individually oriented ideal axes in their response spaces
and preferences for objects with single-peaked valences by valence measurements in
individually different, open Finsler or open-hyperbolic geometries that satisfy the
conditional quaternary monotonicity axiom with respect to the ideal point, because its
absolute curvatures either decrease with the increased distance to the individual ideal
point or are constant. Individual response or valence spaces are symmetrically
isomorphic proj ection transfonnations of infinite, hyperbol ic or Eudidean, comparable
sensation spaces (with respect to the adaptation or ideal space points of individuals),
while comparable sensation spaces are asymmetrically isomorphic (exponentially)
transfonned to dimensionally invariant, power-raised, Eudidean or non-Eudidean
spaces of subjective stimulus-fraction magnitudes. The common Euclidean objectspace
and the individual parameters are sol ved from inverse transfonnations of individual
response or valence spaces, wherein ordered distance inequalities represent their
dissimilarity or preference rank orders. It then also allows the formulation of
meaningful quantitative relationships between comparable sensation dimensions, due
to their dimensional invariance, although only in an induced way because not sensation,
but response and valence space distances represent observed rank orders of
dissimilarities or preferences. Due to their metrically isomorphic transfonnations of
comparable sensation spaces toresponse or single-peaked valence spaces, response and
single-peaked valence measurements also are dimensionally invariant.
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The measurement spaces in our psychophysical response and valence theory still
lack the property of geometric uniqueness, due to the alternatives of the permitted
hyperbolic, elliptic, or zero curvatures for the open geometry of the response spaces,
while valence spaces also have three alternatives for their permitted, open geometries
either with a constant hyperbolic curvature or with absolute curvatures that decrease
with increasing distances to the ideal point. Nonetheless, the formulation ofquantitative
relationship between binary point values of responses or single-peaked valences is
different for each permissible geometry. Therefore, it is in principle possible that
empirical evidence verifies only one of the differently formulated, quantitative
relationships, which in turn would define the unique geometry for the stimulus,
sensation, response, and valence paces. Since hyperbolic tangent functions of
comparable sensations define responses in open-Euclidean or open-hyperbolic spaces,
geometric uniqueness of quantitative relationships between point values of response
spaces may not hold, but metric and geometric uniqueness can in principle be satisfied
for relationships between binary response space points. Notice also that the
unidimensional scaling of data with a conditional reference invariance for binary scale
points with respect to a target scale point, such as in Stevens' psychophysics,
determines not the scale curvature, which has obscured the geometric consistency
between Fechner's and Stevens' alternatives of the psychophysical function, as
discussed earlier. The dimensional invariance and uniqueness properties of response
and valence measurements are further discussed below and in section 6.2. The
uniqueness properties of measurements in modern measurement theory determine,
despite it~ lack of a geometric foundation, whether dimensional invariance holds for
measurement representations, which theory must be discussed further before we can
fully characterise the uniqueness properties ofour response and valence measurements.

6.1,7. Dimensionally invariant response and valence measurements
Some aspects of modem measurement theory are related to the measurements that
derive from the analyses of open response and valence spaces with their permissible
distance metrics, presented in chapters 4 and S of this monograph. Modem
measurement theory mainly assumes infiniteness and homogeneity of measurement
scales (FoM: ch. 20). Axiomatic probability measurement (FoM: ch.S) is one classical
exception and another is the extensive measurement with essential maxima (FoM: ch.3,
sections 3.7 to 3.9) in the nonadditive (generalised-associative) measurement
representations in relativistic physics. A third novel third exception is the earlier
discussed theory of Luce (2000) for inferred-extensive utility measurement of gains or
losses, where utility of gains has a lower measurement limit then the absolute value of
the negative limit for utility of losses. The measurement-theoretical concept of
homogeneity means that functions of a set of arbitrarily dense data points transform
data points x one to one to metric scale points a that specify measurement values by
f(x) = a with the same (weak) order as the qualitative data points x (Narens, 1981).
Homogeneous measurement also implies the concatenation of uniform and infinitely
small positive units to continuous and infinite scales (Narens and Luce, 1976).
Although it seems assumed that uniform concatenations define flat measurement
dimensions, we remark that concatenations of uniform, infinitely small units may also
define scales of dimensions in a differentially Euclidean geometry and, thereby, also
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can define scales with a constant curvature, because infinitely small distances in non
Euclidean spaces are locally Euclidean. There also exist involution transformations that
transform homogeneous measurement dimensions of flat or hyperbolic, or double
elliptic spaces to open spaces with homogeneous measurements between singular points
and a corresponding curvature. Therefore, we define:

Definition 9: homogeneous measurement spaces
Concatenations of uniform, infinitely small units define homogeneous measurement
scales as continuous dimensions in spaces that only can be: I) open or infinite, flat
(Euclidean or Minkowskian) spaces, or 2) open or infinite, hyperbolic spaces, or 3)
single ordouble-elliptic spaces, wherein dimensional unit concatenations are limited
to open intervals, except for infinite, flat or hyperbolic spaces.

Semi-positive ratio scales define (l.O,O)-unique, homogeneous measurement spaces
with a zero origin, but their (I,O,I)-unique, power-raised ratio-scale spaces with
dimensionless power exponents are nonhomogeneous measurement spaces, because
their curvatures directionally vary with rotation of their space dimensions, as shown in
chapter 3. Their corresponding (I,O,1)-unique log-interval scales have negative and
positive values and if their log-interval dimensions are infinite and homogeneous then
they include by definition f(x) =In(x) =a also f(1) =In(l) =O. Thus, a homogeneous
measurement space can contain distinct zero or unit space points. One such distinct
space point is the unit point of homogeneous fraction dimensions of a semi-positive
ratio-scale space, which then defines fraction dimensions by a dimensional weighing
that defines the dimensional unit point on the ratio-scale space co-ordinates. The
measurement conventions in physics define fraction measurement spaces, where
dimensional unit points are specified by conventionally agreed standards for
dimensional measurement units. Their dimensionless power exponents define (0, I, 1)
unique, power-raised, physical fraction spaces that are dimensionally invariant, but no
longer homogeneous. Nontheless, homogeneous measurement and dimensional
invariance also apply to their (0,1, I )-unique, log-transformed spaces, due to their zero
or constant space curvature, their dimensional zero points and disticnt scale units as
respectively defined by dimensional unit points and power-exponent values of their
power-raised fraction dimensions. Invariance of comparable sensations under linear
transformations of the underlying Fechner sensations defines comparable sensation
spaces to be dimensionally invariant. Since their measurements are (O,2,0)-unique and
infinitely homogeneous, Bower spaces only can be flat or hyperbolic by definition 9.
Exponentially transformed Bower spaces define (0,2,0)-unique, power-raised stimulus
fraction spaces that only differ from power-raised, physical fraction spaces by
individually distinct, instead of conventionally agreed, dimensional units and by
dimensional, instead of dimensionless, power exponents.

Narens and Luce (Narens, 1981, 1985; Narens and Luce, 1986; Luce, 1992,
2000) consider homogeneous and nonhomogeneous measurement representations. By
the contrary of definition 9, nonhomogeneous, continuous measurement scales are
dimensions in open or infinite Finsler geometries that have variable curvatures. Infinite
measurement spaces that represent a structure invariance for unconditional distances
not only are homogeneous and continuous measurement geometries, but also have a
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zero or constant hyperbolic curvature, as implied by corollary 3 and definition 9, and
are thus flat (Euclidean or Minkowskian) or hyperbolic spaces. However, also open
Euclidean, open-hyperbolic, and single- or double-elliptic geometries have
homogeneous measurements between singular space points, because their curvatures
are zero or constant and allow uniform unit coocatenations between their limits. Open
hyperbolic measurement spaces and double- or single-elliptic measurement spaces can
thus also represent homogeneous measurements between limit points in the
measurement-theoretical meaning of homogeneity, although the curved space co
ordinates are nonhomogeneous in the geometric meaning of that concept. Geometric
transformations of an extensive measurement space to open spaces with a zero or
constant curvature specify a measurement space that has singular limits and a zero
space origin or has a space centre with a distinct maximum, zero dimension points. and
a singular negative space limit. They define homogeneous measurements between
singular or distinct points, such as
a) between a singular maximum and a zero for Luce's (2000) utility of gains

!(x) =c[1 - exp(-x.lfJ)] for x. '" b,, ,
b) between positive and negative, singular limits with a distinct zero point as for one

of our response functions f(x) = tanh[ln(x./b)/a] that simplifies to involution,, ,
!(x)=-[l-(x./b) ]/[1 + (x./b) ] with .=2/a=2/In(b/u);, ,

c) between a distinct maximum and singular negative limit with distinct zero points for
our open-hyperbolic, single-peaked valences. where the product of hyperbolic
tangent functions tanh[Y2In(x./b)/In(b/p)J ·tanh[-V2In(x.lz)/ln(b/p)] simplifies for
ideal point In(p) = V2In(b/z) by1hyperbolic distances co~h[ln(x.lp)/ln(b/p)] to,

!(x) "" tanh[-V21n{cosh[ln(x.lp)/In(b/p)]/cosh( I)}],
If an infinite and continuous space of (0,2,0)-unique, homogeneous, and bipolar
measurements with zero or hyperbolic curvature are transformed by a finite projection
with respect to a distinct projection origin to an open continuous space, then its open
space not only has singular limits, but also a distinct zero space point that demarcates
the change from positive to negative, finite concatenations. Their dimensional
measurements are homogeneous between singular points if its projected homogeneous
measurements define open spaces with a zero or constant curvature. Notice that the
type of (generalised) associativity for the measurement representation of observations
in such open measurement spaces depends on the curvature of their geometry, while
their geometry and the type of evaluation also define the function of binary space points
(as conditional distance representations of preferences or subjective stimulus fractions,
or as unconditional representations of dissimilarities. or as the equalities between pairs
of two point values as equivalences between jointly presented object pairs).

Perceptual stimulus spaces are physical spaces, whereby also stimulus spaces
either have a zero curvature (if Newton's Euclidean space applies to stimuli) or have
a constant curvature (if the double-ell iptic geometry of the optical space or the
hyperbolic space-time geometry in modem physics applies to stimuli). Response spaces
are space involutions of distinctly power-raised stimulus-fraction spaces (also for the
quasi-involutions of a double-elliptic stimulus space as ellitpic space projectivities to
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single-elliptic response spaces). The corresponding stimulus and response spaces have
the same curvature, where the transformed-extensive response measurements define
open-Euc!idean, or open-hyperbolic, or single-elliptic response spaces. Since power
raised stimulus fraction dimensions are (O,2,D)-unique, the open response space
dimensions define (O,2,1)-unique scales due to the additional singular value of the
response space limit. Open response spaces of individuals can fit transitively ordered
dissimilarities by distances, because their geometries satisfy the quadrangular
monotonicity axiom (corollary 3). These structure-invariant response geometries for
distances are solved from individual dissimilarities by the methods described in chapter
4 and by their transformations to a common Euclidean object space define also the
individual parameters for their transformed-extensive response measurements.

Open Finsler or open-hyperbolic geometries for single-peaked valence spaces
represent preference measurements that by corollary 4 satisfy the conditional ordering
of the quaternary distance inequalities with respect to the ideal space point, because its
open spaces have either a constant negative curvature or absolute curvatures that
decrease with increased distances to that distinct maximum space point. The single
peaked valence spaces are conditional!y stnlcture-invariant, because preferences are
represented by conditional distances with respect to ideal points. However,
conditionally structure-invariant, open Finsler geometries of single-peaked valences
from flat sensation spaces have open nonhomogeneous measurement representations,
because varying curvatures imply non-uniform concatenation stuctures. Nonetheless,
their valence measurements are defined by dimensional products of open, homogeneous
measurement spaces of covariant valence curvatures and curvature-corrected valences
with a single-elliptic or an open-hyperbolic geometry, as demonstrated in chapter 5.
Therefore, these products define dual-homogeneous measurements of single-peaked
valences that have zero dimensional points somewhere between a dimensionless
positive maximum point and a singular negative minimum. However, the open
hyperbolic spaces of single-peaked valences from hyperbolic sensation spaces directly
specify homogeneous valence measurements between a singular minimum and a
dimensionless maximum, because defined by open single-peaked valence spaces with
curvature ~ = -Y2 and ideal space points with a dimensionless maximum valence. The
three types of open geometries for single-peaked valences define dimensional
concatenation structures for single-peaked valences to be homogeneous (if open
hyperbolic) or dual-homogeneous (if open Finslerian) between a dimensionless
maximum and a singular minimum, where dual-homogeneous refers to the dimensional
products of their covariant valence-curvature and curvature-corrected valence spaces
with homogeneous measurements between singular limits. The dimensionless valence
maximum differs from the absolute value of the singular valence minimum, whereby
homogeneous or dual-homogeneous valence measurements are (0,2,2)-unique. Thus,
our psychophysical response and valence theory implies (0,2, I )-unique, homogeneous
response measurements and (0,2,2)-unique, homogeneous or dual-homogeneous
valence measurements.

For several other examples of measurement with singular or distinct points we
cite again from Luce (1992):
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"* Relativistic velocity, for which both a maximum (the velocity of light) and a
minimum (which is also a zero, namely no relative motion) exist.
* Prospect theory (Kalmeman & Tversky, /979; Tversky & Kahnenum, /990

<actually published in 1992», which is a generalisation ofexpected utility theory
in which there is a distinctive zero, the status quo, that divides consequences into
gains and losses.
* Continuous probability, which both a maximum (the universal event) and

minimum (the null event), fails to be Jwmogeneolls between them."
Citing Luce (1992) fmther:

"the physically important principle ofdimensional invariance, which underlies
the method ofdimensional analysis that is used in physics, engineering, and to a
lesserdegree in biology, is merely a special case ojdemanding that physical laws
be invariant under the symmetries ojthe structure ojphysical quantities".

What here is meant by symmetries is the language of mathematical physics and
measurement theory, where symmetry refers to homomorphism (automorphism and
isomorphism) of the point-ta-point mapping of metric space representation of data
points, which in physics is a mapping by proportional and power-exponent functions
of physical dimensions with an absolute zero origin and a zero or constant curvature.
Physical measurement structures imply positive measurements and their dimensional
invariance (FoM: ch. IQ and ch.22) determines the dimensionless power exponents in
physical laws of multiplicative dimensions. Logarithmic transformations of positive
stimulus fraction dimensions with multiplicative relationships between power-raised
stimulus fraction dimensions define additive relations between its weighted sensation
space dimensions that then have a zero origin that corresponds to the unit space point
of the relative stimulus fraction space. Arbitrary stimulus scale units for dimensions of
the physical stimulus space prohibit meaningfulness of relationships between the
dimensions of its logarithmic transformed space as the Fechner sensation space,
because each sensation dimension then contains an arbitrary translation parameter and
if also the psychophysical power exponents of stimulus dimensions would not be
distinctly specified then also its dimensional sensation scale units would be
undetennined. Fonnulations of quantitative relationships in psychology only can yield
meaningful quantitative propositions if the relationships are invariant under linear
transformations of its underlying Fechner space dimensions. As shown, this holds for
Bower space of comparable sensations that then correspond to a logarithmic
transfOlmed, power-raised stimul us fraction space. Additive measurement relationships
between Bower space dimensions then correspond to multiplicative measurement
relationships between stimulus fraction dimensions with dimensional power exponents,
which resembles multiplicative physical laws with dimensionless power exponents.
Formulations of multiplicative relationships between power-raised ratio-scale
dimensions are meaningful propositions in physics by their dimensionless power
exponents and their conventionally agreed measurement standards of physical scale
units, which standards then define fraction scales for physical dimensions. In our
psychophysical response and valence theory the stimulus fraction dimensions are
defined by fractions of distinct points (the dimensional adaptation or ideal points) on
their stimulus ratio scale dimensions as scale unit standards for their fraction
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measurements. The power exponents of stimulus fraction dimensions derive from
exponential transformations of comparably weighted sensation dimensions and, thus,
equal the distinctly defined sensation-weight parameters. Power-raised stimulus
fraction dimensions and their logarithmically transformed measurements as comparable
sensation dimensions define both (O,2,D)-unique and dimensionally invariant
measurements. The symmetric projection transformations of comparable sensations to
responses or single-peaked valences define measurements without nrbi trary parameters,
whereby the (D,2,I)-unique and (O,2,2)-unique scales of respectively responses and
single-peaked va[ences also imply a dimensional invariance of their measurements.
Therefore, replacing the word 'physical' by 'psychological' in the last citation from
Luce (1992), it could be said that

"the 'psychologically' important principle of dimensional invariance <> is
merely a special case ofdemanding that 'psychological' laws be invariant under
the symmetries of the structure of 'psychological' quantities".

Although comparable sensations are dimensionally invariant, we don't have observed
order relations between comparable sensations, but between observable responses or
preferences. Thus, we don't have any directly observable reference invariance for
sensations, whereby we have also no directly verifiable sensation measurements.
Nonetheless, we can derive infinite, homogeneous, and dimensionally invariant
measurement spaces of comparable sensations from the inverse response or valence
transfonnations of (conditionally) structure-invariant, open measurement spaces that
represent the observed rank order of (dissimilarity) responses or the observed,
conditional rank order of preferences. Infinite and homogeneous measurement spaces
of comparable sensations then specify a theoretically induced measurement space with
a derived reference invariance that uniquely corresponds to the observable reference
invariance of the (conditional) structure invariance of open response or valence
measurement spaces.

6.2. Measurement by isomorphic stimulus space transfonnations

6.2.1. Isomorphic spaces and their measurement properties
We defined reference invariance of space points in subsection 6.1.1., where the
invariance requires that observations and space point values have the same rank order.
If a transfonnation of a metric space satisfies the same reference invariance for its
space points then it specifies an isomorphic space transfonnation, whereby we
generalise the concept of order isomorphism for unidimensional scales (FoM: ch. 19,
p.50, theorem 7) to order isomorphism for metric spaces. If a transfonned space
exhibits the structure invariance for distances of the original space then the
transformation is automorphic, which holds for translations, central dilations, and
rotations (if rotation-invariant) of spaces with a zero or constant curvature. Isomorphic
transfonnations of a space with structure-invariant distances define spaces wherein
distance automorphism is not satisfied, although a corresponding reference invariance
of the structure invariance is preserved by some function of transfonned space point
values of the structure-invariant distances. We explicitly fonnulate:
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Definition 10: automorphic spaces
Transfonnations of a space with structure invariance for distances to spaces,
wherein that structure invariance also holds, define automorphic spaces

Definition 11: symmetrically isomorphic spaces
Transfonnations of a space with (un)conditional structure invariance for distances
to spaces, wherein that structure invariance is preserved, define symmetrically
isomorphic spaces with respect to its transformation centre.

Definition 12: asymmetrically isomorphic spaces
Transformations of a space with structure invariance for distances to spaces,
wherein that structure invariance is not preserved, but wherein the order of
corresponding dimensional points remains the same, define asymmetrically
isomorphic spaces.

If a reference invariance of binary space points concerns unconditional distances then
its structure-invariant distance geometry only can have a zero or constant curvature,
which holds for open response and monotone valence spaces. These spaces are
asymmetrically isomorphic transfonnations of power-raised stimulus fraction spaces
and symmetrically isomorphic transfonnations of comparable sensation spaces. Thus,
the structure invariance for response space distances needs not to hold for distances
between corresponding points in individually isomorphic stimulus and sensation
spaces. The structure invariance for single-peaked valence spaces concerns conditional
distances to the ideal point in open geometries with constant curvature ~ :::: -V2 or with
absolute curvatures that decrease with the increased distance to the ideal point. Since
single-peaked valences spaces are symmetrically isomorphic transfonnations of
comparable sensation distances to ideal points, the conditional structure invariance for
distances to ideal points also holds in comparable sensation spaces. Transfonnations
of comparable sensation spaces to power-raised stimulus fraction spaces (or vice versa)
are asymmetrically isomorphic transfonnations, whereby conditional and unconditional
structure invariance holds not in the power-raised stimulus fraction spaces.
Transformations of response or single-peaked valence spaces to comparable sensation
spaces (or vice versa) are transfonnations with respect to a distinct transfonnation
centre. For response spaces the transfonnation centre is the individual adaptation point
and for single-peaked valence spaces it is the individual ideal space point.

Asymmetrically isomorphic space transfonnations of response and single
peaked valence spaces to stimulus spaces preserve not the conditional valence or
unconditional response distance inequalities, although the quadrangular monotonicity
axiom holds in stimulus spaces due to their zero orconstant curvature. Transfonnations
of response or single-peaked valence spaces to comparable sensation spaces only
preserve conditional and not unconditional rank orders ofdistances, although again the
quadrangular monotonicity axiom holds in comparable sensation spaces, due to their
zero or hyperbolic space curvature. Nonetheless, some corresponding reference
invariance for binary points holds in asymmetrically isomorphic stimulus and
symmetrically isomorphic sensation spaces. If an open-Eudidean response space with
distances d(a',b') is symmetrically transformed by f(a') :::: 2[ar tanh(a')] :::: a to the
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hyperbolic space of comparable sensations a then

d(a',b'):=: la' - b'l :=: Itanh(yla)-tanh(y2b)l:=: £(a,b),

where the rank order of binary point values £(a,b) and hyperbolic distances cosh(a - b)
differ. Also if open-Euclidean response spaces become asymmetrically transfonned by
f(a'):=: (I + a')/(l - a'):=: a as inverse involutions of its response space points then the
stimulus space is Euclidean, whereby

d(a',b'l= la' - b'l = 1(1 - a)/(l + a) - (1 - b)/(I + bll =£(a,b),

which differs in a non-monotone way from la - bl as Euclidean stimulus distance. For
an open-hyperbolic response space comparable sensation space is Euclidean, whereby

d(a',b'):=: cosh[tanh(Vla) - tanh(V2b)] :=: £(a,b),

which differs again in a non-monotone way from la - bl as Euclidean sensation
distance, while its inverse involution to a hyperbolic stimulus space detennines

d(a',b'):=: cosh[(l - a)/(l + a) - (I - b)/(1 + b)]:=: £(a,b),

which also differs in a non-monotonic way from cosh(a - b) as hyperbolic stimulus
distance. Therefore, we fonnulate:

Corollary 7: corresponding reference invariance of binary point values in
isomorphic spaces of a structure-invariant distance space

If a space, wherein quadrangular diagonals (a',c') and (d',b') satisfy

if d(d',c') > d(a',b') and d(a',d') > d(b',c') then d(d',b') > d(a',c'),

is symmetrically or asymmetrically isomorphic-transfonned by f(a'):=: a to a space
wherein the quadrangular monotonicity axiom holds then it needs not to hold for
distances between corresponding points (a,b,c,d) that

d(d,c) > d(a,b), d(a,d) > d(b,c), and d(d,b) > d(a,c),

but a corresponding reference invariance for some binary point function £ satisfies

£(d,c) > £(a,b), £(a,d) > £(b,c). and £(d,b) > £(a,c).

A space that satisfies the conditional distance inequalities may have a zero or constant
curvature or absolute curvatures that decrease with the distances to the common point,
but its symmetrically isomorphic transfonnation with respect to the common point as
transfonnation centre defines a space that satisfies the same conditional distance
inequalities of corresponding space poims. Therefore, we fonnulate:

Corollary 8: conditional structure invariance in symmetrically isomorphic spaces
If a space with a distinct point p' and quadrangle corner points (a',x',b',y') that satisfy
for diagonals (x',y') and (a',b')

if d(p' ,x') > d(p',a') > d(p',b') > d(p',y') then d(x',y') > d(a',b')

is transfonned with respect to point p' to a symmetrically isomorphic space wherein
the conditional quaternary monotonicity axiom holds then the corresponding
quadrangle corner points (a, x, b, y) also satisfy for p as corresponding point of p'

d(p,x) > d(p,a) > d(p,b) > d(p,y) and d(x,y) > dCa,b).
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By replacing conditional distances in corollary 7 it follows thatthe conditional structure
invariance holds not for asynunetrically isomorphic space transformations, but that
some corresponding reference invariance for the conditionally binary space points is
satisfied. The observed rank order for the conditional structure invariance of corollary
8 applies by corollaries 4 and 6 to preferences as single-peaked valence space distances
to ideal points. The transformation of single-peaked valence spaces to comparable
sensation spaces is symmetrically isomorphic, but their transformation to power-raised
stimulus-fraction spaces is asymmetrically isomorphic by the exponential
transformation of their comparable sensations. Although in symmetrically isomorphic
sensation spaces the conditional structure invariance also holds, the distances to the
ideal point in comparable sensation spaces differ in a monotone way from their
corresponding distances in single peaked valence spaces. Except foropen-hyperbolic,
single-peaked valence spaces of hyperbolic sensation spaces, also the distance function
in single-peaked valence spaces differs from the distance function in their comparable
sensation spaces, because single-peaked valence spaces of flat sensation spaces are
open Finsler spaces with variable curvatures. Since power-raised stimulus-fraction
spaces are asymmetrically isomorphic spaces, the conditional reference invariance for
distances to the ideal point as transformation centre holds no longer, according to
definition 12. But a corresponding reference invariance for another function of
conditionally binary space points may hold. For example, if d(g,a) > d(g,b) holds for
distances to ideal point g then the preference a > b implies exp(a/g) > exp(b/g) as well
as exp(-a/g).> exp(-b/g). Therefore, if d(g,a) > d(g,b) holds then also a corresponding
reference invariance sinh(a/g)> sinh(b/g) holds for Euciidean and hyperbolic stimulus
spaces, while correspondingly sin(a/g) > sin(b/g) holds for double-elliptic stimulus
spaces, but sinh(a/g) and sin(a/g) are again no distance function for (a,g) and (b,g).

Since corollary 8 applies to preference rank orders that are represented by rank
orders of distances to ideal points in single-peaked valence spaces, their conditional
distance rank orders equivalently hold in their symmetrically isomorphic, Euciidean or
hyperbolic spaces of comparable sensations. Thus, provided that the sensation space
is not hyperbolic, individually weighted multidimensional unfolding solutions of
preference data may correctly solve the Euclidean object configuration and the ideal
point locations of individuals. In this way solved Euclidean spaces are not preference
strength spaces, but a common Euciidean sensation space with individual dimension
weight and translation parameters that are determined by their ideal points. Otherwise
the solved Euclidean sensation spaces are interval-scale spaces. According to the
psychophysical valence theory the actual single-peaked preference geometry that
corresponds to a Euclidean sensation space is an open Finsler geometry with absolute
curvatures that reduce with increased distances to the ideal point, while also
individually weighted, common object configurations are not identical to the object
configurations in individual preference spaces. Thus, individually weighted sensation
distances to ideal points represent not the individual preference strenghts, which
invalidates the usual interpretation of non-metric unfolding analyses.

Isomorphic transformations of zero or constant curvature spaces to respectively
other constant or zero curvature spaces restrict the transformation functions, as
formulated in the next corollary.
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Corollary 9: permissible functions for isomorphic transformations of zero or
constant curvature spaces to constant or zero curvature spaces

Isomorphic transfonnations of zero or constant curvature spaces to respectively
constant or zero curvature spaces restrict the pennissible functions for the space
transfonnations to the logarithmic, arctangent, and hyperbolic tangent functions and
their inverse functions as well as their geometrically compatible combinations.

Such geometrically compatible function combinations are restricted to either I) the
hyperbolic tangent or arctangent of logarithmic functions and their inverses
(dimensional involutions and inverse involutions) or 2) products of reflected,
hyperbolic tangent functions of translated, hyperbolic spaces, because other function
combinations are mathematically incompatible or yield spaces with varying curvatures.
Thus, corollary 9 implies definition 3 of our judgement- and preference-relevant
functions of stimulus spaces (section 6.1.1.). In definition 3 we also considered
dimensional products of reflected, hyperbolic or inverse tangent functions of distinctly
weighted and translated, Euclidean sensation dimensions, where these dimensional
products define open Finsler geometries for single~peaked valence spaces with absolute
curvatures that decrease with increased distances to the ideal point.

In chapters one of this monograph, the symmetric, bipolar, and ogival function
properties are derived as necessary prope11ies of the response function. For the
transfonnation of Euclidean or hyperbolic spaces of intensity-comparable sensations
to open response spaces with a zero or constant curvature there exist indeed no other
symmetric, bipolar and ogival response functions than the hyperbolic tangent and
arctangem, because a zero or constant curvature is needed for the unconditional
distance representation of transitively ordered dissimilarities. These response functions
are defined by distinctly linear transfonnations of the logistic and Cauchy probability
functions. This also implies that the logistic and Cauchy probability functions are the
only probability functions of sensations that apply to discrimination probabilities. They
also are the only probability functions that yield homogeneous probability
measurements between unity and zero, because their probability spaces are linear
transformations of open response spaces that have homogeneous dimension
measurements between singular points. Thus, the earlier given citation from Luce
(1992), wherein it is said that continuous probability fails to be homogeneous between
the unit and zero probability, is not correct for the Cauchy and logistic probability
functions. The logistic and Cauchy probability functions are the only probability
functions that transfonn infinite spaces with a zero or constant curvature to open
probability spaces with a constant or zero curvature. All other probability functions of
infinite spaces define open probability spaces that have no constant curvature and,
thereby, indeed fail to define homogeneous probabilities.

Distances as representation of transitive dissimilarity rank orders require spaces
that satisfy the unconditional quadrangular monotonicity axiom, which implies that the
geometry ofdissimilarity response spaces must have a zero orconstant curvature, while
the arctangent and the hyperbolic tangent transfonn infinite sensation spaces to open
response spaces with a distance metric that is confonnal to the stimulus space. Given
that the stimulus space has a zero or constant curvature, its space involution defines the
response space geometry as an open space with a constant or zero curvature, while
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transformations of response spaces to comparable sensation spaces define that the
sensation geometries are infinite Euclidean or hyperbolic geometries. The stimulus
space involutions to open response spaces also imply that both spaces have the same
curvature and thus have confonnal distance metrics. This not only is the mathematical
result of chapters 3 and 4, but is also a psychological necessity, because isomorphism
and confonnal distance metrics of response and stimulus spaces have to be satisfied,
otherwise behaviour hardly can be consistent with physical reality. We only need to
specify the curvature of the stimulus geometry in order to have a determined curvature
for the geometries for the infinite spaces of sensations and the open spaces of
responses. The physical space is semi-definitely positive and in Newtonian physics its
geometry is Euclidean, while relativistic physics implies a hyperbolic space-time
geometry that contains adouble-elliptic space for its optical subspace with an extremely
large and expanding radius. We left it open whether the stimulus geometry is
Euclidean, or double-elliptic, or hyperbolic. but the physical space of stimuli for human
perception seems well described by Euclidean geometry. Therefore, we favour
Euclidean stimulus geometry and thus also hyperbolic sensation and open-Euclidean
response geometries. Moreover, this also yields a confonnal distance metric for
hyperbolic sensation and open-hyperbolic, single-peaked valence spaces, which
confonnal distance metric holds not for single-peaked valences with open Finsler
geometries, while it seems required by consistency between cognition and preference.

Power-raised fraction scales in physics havedimensionless power exponents and
dimensional unit points for their conventionally agreed measurement units become
(0,1, I )-unique scales that are dimensionally invariant, as also are (1,0, I)-unique power
raised ratio scales in physics. Bower spaces ofcomparable sensations have individually
solvable (instead of conventionally agreed) dimensional units and origins for its
dimensions, where its dimensional translations and scale units are measurement
parameters that are solved from relationships between a common sensation space and
response or valence spaces of different individuals, as shown in chapters 4 and 5.
Thereby, Bower space dimensions define also (0,2,0)-unique measurement spaces that
are dimensionally invariant, as also follows from their invariance under linear
transfonnation of the underlying, (2,0,0)-unique Fechner space dimensions.
Exponential transformations ofcomparable sensations define then also «0,2,O)-unique,
dimensional-invariant, power-raised stimulus fraction measurements, which explains
why cross-modality matching defines a power-exponent relationship between stimulus
modalities. In Luce and Galanter (1963b), Luce (1992), and FoM (ch. 6 and 10) it is
discussed that matching of stimulus modalities requires a representation by power
functions of ratio scales. Luce (1992, p.55) remarks that a power function of ratio
scales for matched stimulus modalities is already postulated by himself in 1959 (Luce,
1959a) based on the "principle o/theory construction akin to dimensional invariance ".
Luce (1992) also refers to the Krantz-Shepard relation theory of cross-modality
matching (Krantz, 1972; Shepard, 1978, 1981), wherein matching is defined as a ratio
judgement of power functions for the matched stimulus intensities. Luce (1992)
remarks that the Krantz-Shepard relation theory is obscured by the intervening role of
"an undetermined monoronic transformation" in the matching of stimulus modalities
and that it seems "too strong in its supposition that there are implicit standards".
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Nonetheless, we detennined that monotanic transfonnation by an equality
weighing of logarithmic stimulus fractions as weighted sensation differences from
adaptation level, where the weights and translations define implicit standards of
individuals. On several places we have shown that Stevens' power exponents derive
from the exponential transfonnation of comparably weighted sensation space
dimensions with the adaptation level as common origin. In chapter 2 we derived that
Stevens' power exponents are dimensional sensation weights defmed by twice the
inverse of the dimensional distance between the adaptation and just-noticeable level in
the logarithmically transfonned stimulus space, while the dimensional adaptation-level
parameters also detennine the translations of sensation dimensions. In chapter 3 we
showed that the seemingly inconsistent psychophysics of Fechner and Stevens are
consistent representation of the same in different geometries, where if Stevens'
subjective stimulus magnitudes are represented by a power-raised Euclidean stimulus
space then their corresponding sensation space is hyperbolic and if represented by a
power-raised non-Euclidean space then the corresponding sensation space is flat. The
correspondence between power-raised stimulus fraction and intensity~comparable

sensation dimensions imply indeed "that there are implicit standards" for the power
raised stimulus fraction and comparable sensation dimensions, as defined by
• standards for fraction scales with stimulus adaptation points as unit points;
• Standards for power exponents as weights of intensity-comparable sensations

defined by twice the inverse of the adaptation levels on Fechner sensation scales.
In chapters 2 and 3 we identified power exponents as t = 2Ja = 2J[ln(b/u), where
adaptation level a = In(b/d) - In(u/Jl) >°is defined by the constant distance between the
just noticeable sensation levelln(u/Jl) = °as origin of a Fechnerian space dimension
and the adaptation levelln( b/Jl) = a as sensation midpoint of the employed stimulus
range. Since power exponent t of a modality is constant for a wide midrange of its
stimuli, while Helson's adaptation levelln(b/Jl) may vary, we define In(u/)l) =°not as
Fechner's absolute level of the just noticeable sensation, but define In(u/Jl) as a just
noticeable sensation level that depends on the adaptation levelln(b/Il) as midpoint of
the sensation range ofemployed stimuli. Whether this dependence indeed always yields
a constant sensation distance a = In(b/u) is further discussed in section 6.3.1. In
chapters I and 2 we discussed differences between individual adaptation levels for
cognitive stimuli and its stimulus-dependent variability for selectively presented stimuli
to an individual, while in chapter 7 we explicitly discuss the consequences of stimulus
dependent variability of adaptation levels for multidimensional space analyses. But
here, as in chapters 3 to 5, we assume a random stimulus exposure within a constant
context that defines the adaptation point to be a constant sensation distance a = In(b/u)
between the adaptation point and the just noticeable sensation.

Open response space dimensions

rik =tanh[Yn.ln(xiklbk)] =tanh(Yik/ak - I)

rik =arctan[t·ln(\klbk)J =arctan[2(yik/ak -1)1

for stimulus dimension x.
k

with Fechner sensations Y.k define homogeneous response
measurements between slngular points. The homogeAeous measurements of response
spaces are (0,2, I)-unique, because not only symmetrically isomorphic to the (0,2,0)-
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unique Bower space, but also limited by oppositely signed singular points of an equal
absolute value for their maximum of I or l/m and minimum of -I or -Vm that
correspond respectively to infinitely positive and negative sensations. It defines a
measurement-theoretically new scale type, because defined by (0,2,1)-unique and
homogeneous measurements between singular positive and negative points with equal
absolute value of the open response spaces with a zero curvature (if open-Euclidean)
or with unit curvature (if single-elliptic) or with a curvature of minus unity (if open
hyperbolic). The three permissible response geometries derive from the three
alternatives for the stimulus geometries (Euclidean, double-elliptic or hyperbolic) and
their two unique alternatives for the metric response functions (the hyperbolic or
inverse tangent) that define isomorphic transformations of stimulus spaces to open
response spaces with conformal distance metrics. All these results correspondingly hold
also for ideal response space axes that define (0,2,1 )-unique scales for monotone
valences. We define explicitly:

Corollary 10: (O,2,1)-uniqueness of response and monotone valence measurements
Open-Eud idean, or open-hyperbol ic, or single-ell iptic geometries are the only three
permissible geometries for(0,2, 1)-unique measurement dimensions of responses or
monotone valences, where the dimensional parameters are defined by individually
distinct adaptation and just noticeable sensation space points and the dimensionless
parameter of the singular value for the response space boundary.

The analyses of individual response space distances as representations ofdissimilarities
or the analyses of individual ideal response axes as representations of preferences with
monotone valences, described respectively in chapter 4 and 5, determine individually
(O,2,l)-unique measurement spaces, the dimensional measurement parameters of
individuals, and the underlying object configuration in a common Eudidean stimulus
or sensation space. For comparison of our response and monotone valence
measurements with axiomatic measurement theory, we again cite Luce (1992) where
he closes his discussion on psychological measurement by writing:

"I consider the work done to date to be just a beginning ofresearch on ratio scale
theories ofutility. We have explored only those ratio theories that involve a heavy
dose of averaging, but <> a large family of nonadditive, nonaveraging
possibilities exists. Little is known about axiomatizing specific members of that
family, but the need to restrict possibilities certainly invites the formulation of
new behavioral axioms. Additional general theory about nonhomogeneous
outcomes, especially those that are homogeneOl~s bernleen singular outcomes, is
needed as input to these more psychological applications. "

What Luce here describes as" ratio scale theories ofutility" are ratio-scale theories for
monotone valences. In section 6.1.3. we discussed the more recent specification of
Luce's axiomatic measurement for novel equivalence structures between pairs of
valued goods, whereby Luce (2000) obtained an inferred-extensive utility measurement
for gains and losses separately. We compared Luce's inferred-extensive utility
measurement with the measurement-theoretical implication of our response dimensions
with identical implications for monotone valences as utility measurements, because
described by ideal response space axis (sections 5.2 and 5.5.2.). Our psychophysical
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response theory incorporates all what is needed for a (0,2,1 )-unique, transformed
extensive preference measurement of object dimensions with monotone valence
functions. Thus, ideal response axes that correspond to power-raised stimulus-fraction
dimensions define our "ratio scale theories a/utility", but these ideal response space
axes are measurement representations of utility in open-hyperbolic, or open-Euclidean,
or single-elliptic response spaces. Thereby, our theory provides the required

"additional general theory about nonhomogeneous outcomes <> that are
homogeneous benveen singular outcomes"

for utility measurement. Our utility is measured by the ideal response axis with a
distinct zero utility for the status quo as adaptation point and homogeneous
measurements between its singular maximum and minimum. Luce's (1995, 2(00)
axiomatisation of rank- and sign-dependent utility yields an inferred-extensive
measurement for the prospect theory (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1986, 1992). Rank- and sign-dependent utility modifies the earlier
discussed dual-bilinear utility model that also yields lager utility losses than gains for
objectively equal losses and gains with respect to a distinct zero utility as the status
quo. But the dual-bilinear or the rank- and sign-dependent measurement models define
utility still by at least one arbitrary parameter and a distinct point or also a distinct limit
value. These utility measurements are either (2,1,0)-unique (two arbitrary parameters
and a distinct demarcation point in the dual-bilinear model) or (l,I,l)-unique (one
arbitrary unit parameter for the ratio-scale values of valued goods, one dimensional
parameter for the status-quo level, and one dimensionless parameter for utility loss or
gain limits in the rank- and sign-dependent model). Thus, their measurement levels are
weaker than our (0,2, I)-unique scale for monotone valences as ideal response space
axis or our (O,I,I)-unique scale for utility of valued goods (where t = I applies by the
equalityof cognitive magnitude sensations and value sensations ofvalued goods). What
our monotone valence theory further implies forsubjective expected gamble utility will
be discussed in section 7.3.

As described in sections 5.2. and 5.4.3 single-peaked valences are defined by
open-hyperbolic spaces with curvature -Y2 or open Finsler spaces with absolute
curvatures that decrease with the distance to the ideal point. The dimensionless valence
maximum of the ideal point and the singular minimum of the boundary for the single
peaked valence space determine, - together with the (O,2,0)-unique scales of their
underlying valence-comparable sensations - the (0,2,2)-uniqueness of single-peaked
valence scales. Their four non-arbitrary measurement parameters are the two distinctly
solvable dimensional values for the adaptation and ideal sensation levels in the
specification of valence-comparable sensations that by their transformation to a single
peaked valence space additionally define a dimensionless maximum space valence and
a singular minimum valence for its space boundary as the two, a priori specified, other
dimensionless parameters for single-peaked valence measurements. Notice that open
Finsler geometries of single-peaked valence spaces are defined by products of
homogeneous measurement spaces of covariant valence curvatures and curvature
corrected valences as quasi-response spaces of reflected and distinctly translated Bower
sensation spaces, whereby their single-peaked valence measurements are dual
homogeneous between a dimensionless maximum and a singular minimum. The
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indifference circles in single-peaked valence spaces define reflected zero points on
dual-homogeneous or homogeneous valence dimensions with respect to the ideal point
with a maximum valence that differs from the reflected minimum limit for the single
peaked valence space. Therefore, single-peaked valences define new scale types of
homogeneous (if open-hyperbolic) or dual-homogeneous (if open Finslerian) and
{O,2.2)-unique measurements between a negative minimum and positive maximum.
Single-peaked valence spaces are symmetrically isomorphic transformations of
dimensionally invariant, valence-comparable sensation spaces, whereby also single~

peaked valences define dimensionally invariant measurements. As described in sections
5.2 and 5.4.3. the absolute curvatures of open Finsler geometries for single-peaked
valences of Euclidean comparable sensation spaces decrease with the distances to the
ideal point, which curvatures are either negative (for hyperbolic tangent-based
valences) or positive (for arctangent-based valences), while single-peaked valence
transformations ofcomparable, hyperbolic sensation spaces specify an open-hyperbolic
geometry of single-peaked valences. We summarise these aspects by

Corollary 11: (O,2J.)-uniqueness of single-peaked valence measurements
The geometry of the single-peaked valence space is either an open-hyperbolic
geometry with curvature -V2 or an open Finsler geometry with absolute curvatures
that decrease with the distance to the ideal point. Due to the dimensionless valence
maximum that differs from the absolute value of their negative space limit, single
peaked valences depend on one dimensionless parameter more than response
measurements, whereby their single-peaked valences define (0,2,2)-unique scales.

Since open single-peaked valence spaces are metrically isomorphic to dimensionally
invariant Bower spaces, also single-peaked valence measurements are dimensionally
invariant. Thus, subjective stimulus magnitudes as power-raised stimulus fractions,
comparable sensations, responses, monotone valences, and lastly single-peaked
valences all allow meaningful quantitative relationships, but their respectively (0,2,0)-,
(0,2, I)-, and (0,2,2)-unique scales individually depend on two dimensional parameters
and collectively depend respectively on zero, one or two dimensionless space
parameters. Only if the individual measurement parameters are distinctly solved and
taken into account then also meaningful relationships between dimensional
measurements of different individuals are possible. Apart from this parametric
measurement condition, the main problem is the absence of geometric uniqueness.
Nonetheless, for each of the permissible geometries for responses or single-peaked
valences one may in principle formulate metrically unique relationships between binary
point values, which could determine by empirical evidence for only one formulation the
unique geometry. This might be possible if individual data on sufficiently precise
similarity (categorisation, confusion) or preference probabilities are gathered and
appropriately analysed as function of metric response or valence spaces, which is
further discussed in chapter 7. However, for appropriate analysis results from ordered
dissimilarity or preference observations. such decisive evidence might hardly be
obtainable, due to the ordinal level of the fitted data
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6.2.2. Measurement as by-product of substantive theory
As cited earlier from Luce (1992) "restrictions on the many possibilities ofnonadditive
structures for measurement in the behavioural sciences must be jonnulated". Such
restrictions are obtained from the permissible alternatives for isomorphic space
transformations of stimulus spaces to response or valence spaces. In order to obtain
meaningful measurements from isomorphic space transformations one firstly has to
define some permissible geometry of the stimulus space and secondly one has to define
restrictions that are imposed on the possible space transformation from stimulus spaces
to sensation space and from sensation spaces to response and monotone preference
spaces or to single-peaked valence spaces. The restrictions need to be guided by
empirically validated research and theories onjudgementand preference and then may
lead to permissible geometries for measurement representations of responses and
preferences by the derived, isomorphic transformations of stimulus spaces. We have
derived the necessary and sufficient restrictions for the isomorphic space
transformations of ratio-scale stimulus spaces with the physically permissible,
Euclidean or hyperbolic, or double-elliptic geometries from a consistent integration of
substantive theories that are to a considerable extent validated by research. The
empirical research and substantive theories for the unidimensional restrictions of the
isomorphic transformation functions are discussed in chapters I and 2. In chapter 2 the
transformation of stimuli to sensations is shown to be Fechnerian, where based on
function properties from chapter I and mathematical response theory we derived the
hyperbolic tangent function and in section 4.2. also the arctangent function for
multidimensional transformations of dimensionally comparable sensation spaces to
open response spaces. In chapter 3 we showed that logarithmic transformations of
Euclidean or non-Euclidean stimulus spaces yield respectively hyperbolic or flat,
comparable sensation spaces and in chapter 4 that the isomorphic transformations of
these infinite sensation spaces yield open individual response spaces with a Euclidean,
elliptic or hyperbolic metric. Since individually transitive rank orders of dissimilarities
are represented by unconditional distance orderings, the isomorphic transformations of
sensation to response spaces must be transformations to the constant or zero curvature
spaces of responses that satisfy the quadrangular monotonicity axiom. Thereby,
transfonnations of sensation spaces indeed only can be hyperbolic or inverse tangent
transfonnations to open-Euclidean, or open-hyperbolic, or single-elliptic response
spaces. In chapter 5, based on chapters 2 and 3 and section 4.2, the psychophysical
valence theory and analysis methods of preferences for multidimensional objects are
described, where object spaces with monotone valence attributes define preferences to
be measured by unidimensional ideal axes in individual response spaces (section 5.1).
Preference measurements ofobjects with single-peaked valence attributes are defined
by open, individual valence spaces with a maximum valence point and a constant
curvature lY = -Yz or absolute curvatures that decrease with the distance to the ideal
point, which spaces are symmetrically isomorphic transfonnations of valence
comparable sensation spaces with individual ideal points as origins and transfonnation
centres (section 5.2.).

An axiomatisation of response and valence measurements becomes a mathematical
exercise based on what chapters 2 to 5 yield as by-products:
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- (O,2,O)-unique and homogeneous measurements of Bower spaces for comparable
sensations that are dimensionally invariant by invariance under linear
transfonnations of underlying logarithmic dimensions of Euclidean or noo
Euclidean stimulus spaces with ratio-scale measurements;
(O,l,O)-unique and nonhomogeneolls measurements of power-raised stimulus
fraction spaces for subjective stimulus magnitudes, defined by the asymmetrically
isomorphic, exponential transfonnation of Bower space dimensions;
(O,2,1)-unique and homogeneous measurements between singular, positive and
negative, absolute-equal points of individual response spaces or monotone valence
axes, defined by symmetrically isomorphic projections of Bower spacedimensions;

- (O,2,2)-unique and homogeneous or dual-homogeneous measurement spaces of
individual, single-peaked valences between a singular minimum and a
dimensionless maximum, defined by symmetrically isomorphic distance
transformations with respect to the ideal point (as multiplied quasi-responses of
translated and reflected Bower space dimensions).

Since Bower space dimensions define dimensionally invariant sensation measurements,
their metrically isomorphic transfonnations define also dimensionally invariant
measurement spaces of subjective stimulus magnitudes, responses, and monotone or
single-peaked valences. It yields the sufficient and necessary conditions that guarantee
the meaningfulness of quantitative relationships in psychological theory.

An axiomatic account of response measurements might be guided by the
psychophysical response theory, but need not to be based on knowledge of our theory.
It also may be derived from a generalisation of Luce's (2000) inferred-extensive
measurements of utility, where the required generalisation is indicated in section 6.1.3.
However, one hardly could formulate measurement axioms for single-peaked valences
without the guidance of the psychophysical valence theory. For an axiomatisation of
responses to multidimensional stimuli we have to take responses as functions of
intensity-comparable sensation dimensions, because the weighted Fechner-Helson
dimensions with respect to individual adaptation points are the sensory representations
of dimensionally comparable stimulus magnitudes. A Fechnerian sensation space can
have a central dilation factor l; (if flat) or a negative curvature -l; (if hyperbolic), but the
isomorphic transformation of flat, comparable sensations spaces to single-elliptic
response spaces by the inverse tangent function defines

arctan {2l;·ln(x.1b )/[l;·ln(b/u)]} :=: arctan{2In(x./b)/ln(b/u)},, ,
which is independent of scale factor l;. Independence of central dilation factor or
hyperbolic curvature also holds for the isomorphic transfonnation of intensity
comparable, flat or hyperbolic sensation spaces to open-hyperbolic or respectively
open-Euclidean response space by the hyperbolic tangent function, as defined by

tanh {[l;·ln(x.1b)]I[l;·ln(b/u)]} :=: tanh (In(x./b )/ln(b/u)}., ,
The three non-axiomatised geometric assumptions for the multidimensional
measurement representations of (dis)similarity rank orders are:
I. transitive dissimilarity orders are represented by distances in open response spaces;
2. the stimulus space geometry is Euclidean, or hyperbolic, or double-elliptic;
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Ir. er. I =cos(r. - r.) =cos{arctan[T·ln(x./b)]- arctan[r·ln(x./b)]}.
1 J I J 1 1
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3. the function that transforms a common stimulus space to individual response spaces
is a symmetric. bipolar, S-shaped function of logarithmic stimulus spaces that are
dimensionally weighted and translated for their sensation comparability.

These non-axiomatised assumptions define by assumption 1 that individual response
spaces are spaces with a zero or constant curvature, because otherwise response spaces
can't satisfy the quadrangular distance axiom as required by distance representations
of transitively ordered dissimilarities. From assumptions 2 and 3 it follows that no other
symmetric, bipolar, S-shaped function than the hyperbolic tangent or arctangent
function can transfonncomparable sensation spaces with a zero or hyperbolic curvature
(as follows from the logarithmic transformation ofEuclidean ornon-Eudidean stimulus
spaces, see chapter 3) to open response spaces with a constant or zero curvature. By
assumptions 1,2, and 3 it also follows that (quasi-)involutions transform power-raised
stimulus fraction spaces to open, individual response spaces with the same distance
metric as their (not power-raised) stimulus fraction spaces with a zero or constant
curvature. Thereby, the individual response spaces are either open-Eudidean, or open
hyperbolic, or single-elliptic spaces that define (0,2, I)-unique, homogeneous response
measurements between singular points. Up to now these response measurements are not
axiomatised, but axioms for a response-distance structure of dissimilarities

Ir. er.j > 1\8rll
must satisfy 1 J

le. 8 e. I=h(e. - L) =h[£{f[(x./b)' lJ - £(f[(x./b)' lJI.
1 J I J I J

where in open-Euclidean spaces her) = Irl and in open-hyperbolic spaces her) =cosh(r)
both with res) = tanh(Yls), while in single-elliptic spaces her) = cos(r) with the function
res) = arctan(s), and where in all cases f(x) = r·ln(x!b) with r = 2/a = 2/In(b/u) for
distinct sensation distance In(blu) between stimulus adaptation level bIll and just
noticeable stimulus level ulf1. For open-Euclidean response space of hyperbolic
sensation spaces it defines

Ir. El r. i = Ir. - r.1 = Itanh(y.la - I) - tanh(y.la - I) I,
I J I J I J

and in involution terms of a corresponding Euclidean stimulus space
! ! r rle. 8 e.1 = le. - e.1 = 1[1 - (x./b) ]1[1 + (x./b) J - [I - (x./b) 1/[1 + (x./b) 11.

I J 1 J I I J J
For open-hyperbolic response spaces with Euclidean sensation and hyperbolic stimulus
spaces we correspondingly define

Ir. e r.1 = cosh(r. - r.) = cosh[tanh(y.la - I) - tanh(y.la - 1)],
I J I J 1 J

r :r r !
Ir. e r.1 = cosh{ [1 - (x./bj J/[I + (x.!bj ]- [I - (x./b) J/[1 + (x./bj ll,

1 J I 1 J J
while for single-elliptic response space with Euclidean sensation and double-elliptic
stimulus spaces we correspondingly represent dissimilarities by

Ir. er. I = cos(r. - r.) = cos{arctan[2(y.la - I)] - arctan[2(y.la - I)]},
I J 1 J 1 J

which in quasi-involution terms for a double-elliptic stimulus space remains to be
written by
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For hyperbolic spaces of comparable sensations that correspond to open-Euclidean
response spaces a sensation sf as hyperbolic addition of sensations s. and s. is defined
b ' J

Y 'r:::: (s. + s.)I{l + (s.·s.)}
1 J I J

where l;:::: -I is the curvature of the comparable sensation space. because curvature
dependent Fechner-Helson sensations l;(Y. - a) are weighted by twice the inverse of
curvature-dependent sensation distance 2/tl;'a) to curvature-independent comparable
sensations s.:::: 2l;(Y. - a)/(~·a) =2(y. - a)/a. Thereby, response rf'::: taOO(Y2s

f
) represents

a response th a joint presentation of stimuli i and j in one integrated stimulus display,
such as black and white pie parts of one circular disc, where

'r:::: r. $ r. ::: taOO[ (artanh(r.) + artanh(r.)}/ ( I + ar taOO(r.)·ar tanh(r.)}]
I J I J 1 J

For Euclidean spaces of comparable sensations s :::: s. + s., whereby the hyperbolic
tangent function as response function defines open-~ypefuoIit response dimensions and

'r:::: tanh[Y2(s. + s.)] :::: tanh[ar tanh(r.) + ar tanh(r.) :::: (r. + r.)/(1 + r..r.),
I J 1 J I J I J

while response function rf:::: arctan(s f) defines single-elliptic response dimensions and

'r:::: r. '$ r. :::: arctan[s. + s.] :::: arctan[(tan(r.) + tan(r.)].
1 J I J I J

Axioms for qualitative magnitude equivalences (x.,x.) '" (x ,x
h

) for jointly presented,
unidimensional stimulus pairs then have to descritle rt,etric Equality r. '$ r. ::: r '$ rh by
r. '$ r. as defined by one of the above expressions. which for alternativeJ g
, J

r. '$ r.:::: tanh[ar tanh(r.) + ar tanh(r.):::: (r. + r.)/(1 + r.·r.)
1 J 1 J I J I J

might be based on a generalisation ofLuce 's axioms forequivalence structures for joint
receipts of valued goods, as indicated in section 6.1.3. Notice also that the measurement
of relativistic velocity with c as velocity of light is defined for £(z):::: tanh(z) by

x. (±) X. :::: £[£ .l(x.) + £ -I (x.)] :::: (x. + x.)I(l + x..x.lc2),
I J I J 1 J I J

since artanh(x.):::: z. defines tanh[z. + z.] :::: [taOO(z.) + tanh(z.)]/[ 1 + taOO(z.}taOO(z.)].
This is the exalnple1ofnon-associalivettructures for extensrl.e measuremdnts wimlan
essential maximum in FoM (ch. 3, sections 3.7. and 3.9), where in section 3.7 (p. 95)
it is remarked that function £-1 in x. El) X. :::: £[r1(x.) + £-l(x.)] need not to be the
inverse hyperbolic tangent function And tAat it is unknown "Jrbw to axiomatize that
specific result in any natural way using the present primitives". Without assuming a
geometry of the measurement space the expression indeed defines no unique function
L because other strictly monotone functions may not define

x. '$ X. :::: (x. + x.)I(l + x..x.lc2).
I J 1 J I J

However, the geometry of relativistic velocity is given by its hyperbolic time-space
geometry with constancy Elm :::: c2for squared velocity of light. The difference with
open-hyperbolic response spaces is that physical observations for relativistic velocity
directly relate to extensive Newtonian measurements of length and time measurements
by their Lorentz transformations, where the transformation of hyperbolic stimuli to
open-hyperbolic responses is mediated by flat comparable sensation spaces that
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correspond to distinctly power-raised stimulus fraction spaces. The hyperbolic space
time geometry of relativistic physics is empirically verified by Lorenz transfonnations
of the eXlensive measurements of Newton's Euclidean space, but the geometry of
response spaces is not uniquely detennined, although restricted to open spaces with a
zero or constant curvature by the property requirements for the response function and
the structure-invariant geometry that can represent transitively ordered dissimilarities.

Empirical evidence for one of the geometry-dependent alternatives for the
relationship between responses and extensive stimulus measurements may specify "the
new behavioural axiom" that Luce (1992), as cited in earlier, was searching for his
"homogeneous measurement between singular points". We quote from FoM (ch. 3, p.
102), where with respect to additive and nonadditive structures for extensive
measurement representations it is remarked that:

"the additive representation is just one of the infinitely many, equally adequate
representations that are generated by fhefamily ofstrictly monotonic increasing
functions from the reals to the positive reals. The essential fact about the
uniqueness ofa representation is not the group ofadmissible transfonnations, bllt
that all groups are isomorphic and, in the case ofextensive measurement, are all
one-parameter groups; that is there is exactly one degree offreedom in any
particular representation."

It will be clear that extensive fraction measurement in physics uses that one degree of
freedom for the conventionally agreed measurement unit, while multiplicative
relationships between their dimensionally invariant measurements define physical
measurements with dimensionless power exponents. The inverse space involutions of
response to power-raised stimulus-fraction spaces distinctly define dimensional
adaptation points x.klb

k
'" I and just noticeable points x.k/u

k
'" I that also detennine

the dimensional poh,er exponents by 'k '" 2Jln(b
k
/u

k
). Ah aXlOmatisation of response

measurements may require non-associative operators as well as symmetric, but finite
concatenations for negatively and positively signed responses with respect to the zero
response point of adaptation level. Such an axiomatic result should then define our
isomorphic space transfonnations of power-raised stimulus-fraction spaces that
correspond to the Bower spaces of intensity-comparable sensations. The dimensional
invariance property of Bower spaces with dimensionally distinct parameters defines by
their isomorphic space transfonnations to response spaces that individual response
measurements not only are homogeneous between singular points, but also have the
property of dimensional invariance. A measurement axiomatisation for open response
spaces may also be derivable by functional equation methods similar to the axiomatic
measurement derivations for probability spaces (FoM: ch.5) and then for probability
spaces that satisfy the triangular distance inequalities for response probability spaces,
which only is satisfied for the logistic and Cauchy probability spaces. The linear
transfonnations of these probability spaces to open response spaces by 2.p. - 1 '" r. for
the logistic probability function or alternatively by It.p. - l/m = r. for the CaJchy
probability function then yield the three alternatives for op~n respons~ spaces that have
a the same distances metric as their corresponding Euclidean or non-Euc1idean stimulus
spaces. The axiomatisation of monotone preferences would follow from axioms similar
to axioms for response measurements, because defined by ideal response axes.
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Since single-peaked valence spaces are defined by corresponding products of
quasi-response transfonnations of translated and reflected Bower spaces of valence
comparable sensations, also the three geometries of single-peaked valences are defined
by the three open response geometries. An axiomatisation of single-peaked preference
measurements likely is most simply based on the above indicated axiomatisation of
response measurements and an axiom that guarantees single-peaked valences to be
equal to the product of corresponding values in the two quasi-response spaces. Such
axioms are to be deduced from the psychophysical valence theory, because hardly
derivable otherwise. By cl::::: iIn(blp) I as sensation distance between the adaptation and
ideal points and d. a = !In(x.lp)1 as distance between the sensation for object i and
individual ideal points p. \he transformation functions of valence-comparable
sensations to single-peaked preferences are defined in three alternative ways:
I. either for single-peaked valences of hyperbolic or Euclidean stimulus spaces by

v. = tanh[V2(l - d.ld)J ·tanh[V2(l + d.ld)] = tanh[-V2·ln{cosh(d.ld)Jcosh(l)}],
1 I 1 I

2. or for single-peaked valences of double-elliptic stimulus spaces by

v. = arctan(1 - d.ld)·arctan(l + d.ld),, , ,
where d.ld are distances to the ideal point in valence-comparable, Euclidean
sensatiori spaces that correspond to non-Euclidean stimulus spaces, whilecosh(d.ld)
inherently are hyperbolic distances to the ideal point in valence-comparable,
hyperbolic sensation spaces that correspond to Euclidean stimulus spaces.

The individual dimensional or space-dependent, dimensionless maximum valence V"'OX'

defined by v. for d. = O. differs in absolute value from singular minimum v"'in' defined
by v. for infinite kensation distance d., whereby single-peaked valence scales are
(O,2,2)-unique. The two non-axiomatisea assumptions for the measurement of single
peaked preferences, additional to the non-axiomatised assumptions for responses, are
- conditional preference orders of objects are represented by distances to ideal points

in single-peaked valences spaces;
- individual, single-peaked valence spaces are defined by multiplication of

correspondingly rotated quasi-response dimensions for valence-curvatures and
curvature-corrected valences as dimensional projections of reflected and distinctly
translated Bower sensation spaces.

The properties of multiplicativity, reflection, and origin distance for two symmetric,
bipolar. ogival functions of sensations that define the single-peaked valence function
are derived from learning, motivation. and neurophysiological research in chapter 1,
where the bipolar, ogival function equals the response function. Due to the conditional
distance representation of preferences for objects with single peaked valences, the
geometry for conditional distance representations requires that the conditionally
quaternary distance axiom is satisfied. Single-peaked valence spaces indeed satisfy this
axiom, either by their open finsler spaces with absolute curvatures that decrease with
increasing distances from the ideal point, if the sensation space is flat, or by their open
hyperbolic spaces, if the sensation space is hyperbolic. However, as discussed in
chapter 5, also representations in individually weighted spaces of the common
EucJidean or hyperbolic sensations space satisfies this axiom. but object distances to
ideal points in individually weighted sensation spaces reflect not the actual preference
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strengths of individuals for the correctly solved object configuration in the common
sensation space. The response and single-peaked valence measurement spaces and the
individual measurement parameters are solved by the methods described in chapters 4
and 5, Thereby, a measurement axiomatisation of responses or single-peaked valences
is not needed, because response or sing[e~peakedvalence spaces define transfonned
extensive measurements by their isomorphic transfonned stimulus measurements.

6.2.3. Measurement aspects ofthe psychophysical response function
Since sensations are not observable aspects of behaviour, we can't specify
measurement structures with an observable rank order of conjoint sensation component
outcomes, but only measurement structures for an observable rank order of
psychophysical responses. Therefore, one could even omit the concept of covert
sensations as something that can't be measured in any reference-invariant way.
However, the logarithmic transformation of stimulus intensities follows also from the
so-called wave theory (Link, 1992a,b) for the peripheral excitation and further
transmission of nerve cell potentials, which by the modern electro-neurophysiological
techniques of nerve potential measurements are nowadays observable processes.
Sensation differences from the adaptation level can then be regarded as the result of the
observable, neurophysiological signal transmission from externally excited receptors
to peripheral nerve-cell potentials with adapted excitation levels with their subsequent
signal-transmission frequency via nerve fibres to the brain. Comparably weighted
sensations then might represent the neurophysiological input and transmission
processes of the modality-specific sense organs to their brain centres. Their association
with mediating, cognitive or affective response sensations then would relate to the
signal throughput in the brain wherein the signal processing becomes facilitated or
inhibited by reinforcement-based learning of reward or aversion expectancies of
anticipatory response sensations. The signal-output trajectories from the central brain
to peripheral nerve cell potentials of the motoric effector responses then would relate
to the co-ordinated muscular actions of cognitive responses and affective preferences,
such as spoken or written words for judgmental responses and preferential choice
realisations. The whole signal-transmission process from stimuli to judgmental or
preferential responses could then on a macroscopic level be described by the
multidimensional transformations of stimulus to response or valence spaces. These
space transformations would then correspond to adaptively modified signal throughput
processes that determine the judgmental and preferential responses that are also
recurrently influenced by congenital and learning-based, affective facilitation or
inhibition of the signal throughput in the central brain. Nonetheless, sensations are still
notobservable. Our extensive-transformed measurement structures can only be verified
by analyses of rank orders of observed responses to stimuli or stimulus pairs or by
analyses of observed preference rank orders for objects.

We called IfI{x./b):=: 2[ln(x./b)/a] with a = In(b/u) the psychophysical function,
but the observable fJnction is a psychometric response function that describes the
transformation of stimuli to magnitude responses and not the transformation of stimuli
to sensations or subjective stimulus magnitudes. If we omit for simplicity of
descriptions the arctangent as response function then the ps~chometric function is the
hyperbolic involution of power-raised fraction stimuli (x./b)21a with respect to stimulus

I
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x./b =1, whereby the psychometric response function f(x./b):::: r. writes as, , ,
2/a 2/a

fexJb)=r.::::tanh(ln(x./b)/a]= [(x./b) -l]/[(x./b) +1]
I I I 1 I

It differs from the psychophysical function, but the values of r. and In(x./b)/a are almost
identical for wide ranges of xJb around x./b = I, as figure 37 shows. 1, ,
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Figure 37. Relationships between responses and comparable sensations (jor a:::: 2 and
a:::: 4) with their ratios for fraction scale exp[-l] < x.fb < exp[l],

In the figure above we plotted intensity-comparable sensations 2In(x./b)/a, their
responses r., and ratios z. = r./[ln(x.Ib)/a] for adaptation level values a = ~ and a = 4
within rangle exp(-I) < x.llb <Iexp(l), where ratio z. = a·r./ln(x.lb) almost equal unity
for that range of x.1b arou1nd adapted level x.1b = I. the rahos i equal unity the better
the smaller powef exponent "t = 2/a is, whereby r. = In(x.bl!a almost holds. Just
noticeable increases by Weber's (1834) fraction Kof~daptedlstimuli x.1b = I concern
not subjective magnitude estimations and, thus, have no sensation wei~hts, whereby

r.1(x.Ib=I; K) = tanh[ln(l + K») =z·ln(l + K)., ,
All Weber fractions satisfy K < 0.2 (Laming, 1986), while Weber fractions are just
noticeable increases from adapted stimulus levels x.1b = I. For Weber fractions K <0.2
the ratio I

I > tanh[ln(l + K)]/ln(l + K) = Z > 0.997

Thus, a scaling by just noticeable stimulus increases cannot only yield the
psychophysical function as logarithmic function of stimulus values, but almostequally
well also the psychometric response function as hyperbolic tangent function of
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logarithmic stimulus values. Other methods of psychophysical scaling, such as the
method of equal appearing intervals or Stevens' fractionation method are not based on
just noticeable stimulus differences. However, the ordered category scaling with equal
appearing intervals has shown median category values that are log-linear functions of
stimulus intensities (despite the theoretically questionable method), but with large
individual variances. Stevens' fractionation method yields also large individual
deviations (even up to 40%) from median subjective stimulus magnitudes and, thus,
their logarithmic scales too. In view of the variability in the individual data and the
limited stimulus intensity ranges of human perception, psychophysical scaling methods
hardly can discriminate between psychophysical function as weighted logarithmic
function of stimulus values and the psychometric response function as hyperbolic
tangent function of logarithmic stimulus values. This is why in chapters 2 and 3 we also
could treat the logarithmic transformation of Stevens' power-raised stimulus fraction
scales as intensity-comparable sensation dimensions. However, Stevens' power-raised
stimulus fraction scales actually are magnitude-matching responses to comparably
weighted sensations, because only responses and not sensations are observable. Only
due to hardly distinguishable differences between responses and comparably weighted,
logarithmic stimulus fractions, we could help weighted Fechnerian sensation scales out
of the morass like the' baron of Munchausen'. Nonetheless, the intermediate concept
of covert Fechnerian sensations in the transformation of stimuli to responses is
necessary for the mathematical description of I) slower adaptation to low than high
stimulus intensities, 2) slower saturation to more of appreciated matters than aversion
to equally more of depreciated matters, and 3) higher utility losses than gains for
objectively equal loss and gain values, as experimentally verified phenomena that
derive from lager, logarithmic stimulus differences on low than high intensity levels for
identical stimulus differences. Since many modalities have power exponents larger than
unity, these phenomena can't be explained by Stevens' power function of stimuli.

Psychophysical observations are responses, whereby a psychometric response
function as transformation of stimuli to responses and not of stimuli to sensations is
implied. Therefore the actual function in psychophysics is a psychometric response
function, under exclusion of the arctangem-based function, is defined by

(xJb)2Ia _ I
psychometric function f(x.lb) = tanh[ln(xJb)/a] = I 21

I I (x.lb) a+ l
I

Notice that !(x.lb)= tanh[ln(x./b)/a] for a wide sensation range is similar to, ,
f(x.1 b) = r. = arctan[2'ln(xJb)/a]/(Vm:),

I I ,

as shown in section 4.2.1. This implies that the psychometric response function could
also be expressed by f(x.lb) = arctan[2·ln(x./b)/a]/(Ym) and, according to our
derivations, should be expre~sed in that way ifthe1stimulus geometry is double-elliptic.
Notice that Stevens' power-raised stimulus fraction scales of subjective stimulus
magnitudes are responses to weighted sensations ,·In(x.lb) that match with cognitive
magnitude sensations In(f.Ib') of objective fraction quanlities f.1b', become in response
terms for the hyperbolic tkngent-based function expressed by1z. '" I and 2/a =, as,
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[

(xJb)T. 1]
• I Z"T:TStevens fractIOn: f.th ::: exp 2 :::: (x.lb) I '" (x./b)

I (x./b)T+ 1 I I
•

where a :::: In(blu) is the adaptation level as measured by sensation interval In(bl¥)
In(ullJ) for a modality. Notice also that exp(-2) < f.1b' < exp(2), where f.Ib' '" (x.lb) is
no exact equality with differences that become thelarger the higher the ~alues of t and
the wider or the more extremely located (low or high) the employed stimulus ranges
are. Notice further that the value t is quite well estimated for a midrange of stimulus
intensities fairly above the absolute just noticeable level and fairly below the sense
damaging intensity level by

t '" 2 't" (tanh[ln(x.lb)/a]/ln(x.lb) }/n :=: 2·::)a :::: 2·zlln(b/u),
,. I 1 I

for n uneven and equal spaced values In(x.lb) around In(x./b):::: 0 as midpoint of their
sensation intensity ranges. Here the valu~ of z as average z. is almost unity for a
logarithmic stimulus fractions between -2/a < In(x./b) < 2/d or between stimulus
fractions J(u/b) < X./b < J(b/u), because within that rknge 2/a - t < 0.03. It means that
a range from exp(-I}T) to exp( lIt) is the range where Stevens' fractionation method for
subjective stimulus magnitudes detennines a power exponent Tthat deviates no more
than 3% from the value of 2/a. Stevens generally fitted his power exponent of
subjective stimulus magnitudes for stimulus ranges well above the just noticeable level,
which yields the more accurate estimates of t the smaller the midrange and the higher
the adaptation level of the modality are. The highest and lowest averages of power
exponents for modalities are T :::: 2.5 for electric shock and t ::: 0.33 for brightness
(Laming 1986). Thus, Stevens' fractionation method for subjective brightness
magnitudes allow a large stimulus range for its power exponent estimation. A
brightness stimulus range with geometric average 800 lux as adaptation level almost
exactly fits t:::: 1/3 for a brightness range between exp(3):::: 20:=: 16,000/800 for 16,000
lux as upper bound and exp(-3):::: 0.05:::: 40/800 for 40 lux as lower bound. Since
power exponent T:::: 2/ln(b/u), we have u:::: b/exp(2/t). For brightness with T:::: 1/3 and
b:::: 800 lux it yields u::: 800/exp(6):::: 2 lux as just noticeable brightness. An accurate
estimation of the power exponent for electric shocks on the skin requires in contrast to
brightness a relatively small stimulus range. For a shock range with stimulus-adaptation
level b :::: 1.2 ma and t:::: 2.5 it allows a range between exp( 112.5) :::: 1.5 :::: 1.8/1.2 for
upper bound 1.8 ma and exp(-112.5):::: 0.67 :::: 0.8/1.2 for lower bound 0.8 ma, while
the electric shock threshold would become u:::: b/exp(2/t):::: 1.2/exp(2/2.5) '" 0.5 ma.

Power exponents in fraction magnitude estimations vary between individuals
and their median power exponents also intra-modally (Teghtsoonian, 1973), where the
median power exponent increases with range decreases of the employed stimulus
values. For relatively large to small loudness ranges the median power exponents
increase from 0.40 (with individual values varying from 0.32 to 0.60) to 0.62
(individual values vary from 0.46 to 1.08), or for relatively large distances to small
lengths the estimated median power exponents are varying from 0.88 to 1.12
(individual values varying from 0.74 to 0.98 for large distances and from 1.03 to 1.28
for small lengths), or for relatively large to small electric shock ranges the estimated
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power exponents vary from 1.5 to 3.5 (Teghtsoonian, 1971). This is explained by
noticing that the estimation actually yields T:::: 2·z!a instead of t:::: 2/a, where stimulus
ranges between exp(±2/t), thus between u/b and bIn, yield average z :::: 0.67 and
stimulus ranges between exp(±llt), thus between J(uIb) and I(b/u), yield average ratio
z =0.97. This explains why Stevens et al. (1958) found a power exponent T:::: 3.5 for
electric shock by employing a rather small and low-located intensity range of electric
shocks on a finger tip from the almost absolute Just-noticeable level u/)..l ::: 0.38 ma to
only 1.15 ma with geometric average hi)..! = 0.67 ma, which yields r:::: 2/ln(b/u):::: 3.53,
instead T::: 2.5 for b/lJ:::: 1.2 ma and uJll =0.5 ma, as illustrated earlier. It illustrates that
intra-modal changes of power exponents are explained by taking magnitude responses
as subjective stimulus magnitudes. Firstly, the value, = 2·z/a defines that power
exponent, becomes the smaIler the larger the range of stimuli, due to the lower values
of zfor the larger ranges, which explains why the power exponent within each modality
reduces with increased levels of the stimulus value range. Secondly, power exponent
,becomes the larger the lower the value of adaptation level a = In(blu) is, which not
only explains the power-exponent differences between modalities, but also why power
exponents within modalities are the higher the closer the adaptation level approaches
the absolute just-noticeable level (thus the narrower and lower the stimulus range is).

The observed individual power-exponent deviations probably are caused by I)
individual differences in sense-organ sensitivity, where a relatively lower sensitivity
with a relatively higher, absolute just-noticeable level implies a relatively higher power
exponent and 2) adaptation-level shifts to sequentially presented stimuli, where the
shifted adaptation levels also can cause intra-individual variations of the power
exponent. Nonetheless, estimates of,::: 2/In(b/u) are well specified by the average of
individual sensation distances between adaptation levelln(b/l-l) and just noticeable level
In(uJl-l) of employed stimulus modality ranges. A rather constant power exponent ,for
a modality and variable adaptation level as geometric midpoints of employed different
stimulus ranges imply a dependence of the just noticeable level on the adaptation level.
Since the just noticeable stimulus level uJll seems indeed to vary with the geometric
midpoint of the employed stimulus range, distance In(blu) will be rather constant for
shifted stimulus ranges well above the absolute threshold. The variance of, :=2/In(b/u)
between modalities is much larger than within each modality, as implied by the
different and almost constant distance In(b/u) for each modality. The adaptation level
a = In(blu) is defined by ull-l as scale unit for b/u, which seems akin to Fechner's
assumption. However, for a wide stimulus midrange well above the absolute threshold
we have by rather constant power exponents 'k := 2Jln(b

k
/u

k
) also rather constant units

of intensity-comparable sensations. Thus, for bk/ll as stimulus-adaptation level and
uk/ll as just noticeable stimulus level well above the absolute threshold we conclude
tliat stimulus intensities within range exp[±2/In(b

k
/u

k
)] yield negligible differences

between intensity-comparable sensation and response measurements and, thus, stable
power exponent estimates of subjective stimulus magnitudes. Nonetheless, estimates
of intra-modal power exponents decrease with increased range width of employed
stimuli and the more if the lower range bound approaches the absolute threshold, due
to then marked differences between responses and intensity-comparable sensations.
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Since intensity-comparable sensations are matched with cognitive magnitudes
that equal length sensations (the psychophysical power exponent of length is unity), it
is tempting to conjecture that appropriate power exponents for stimulus modalities
should equal the inverse value of physical power exponents for so far as their physical
perception dimensions can be expressed by (a product and/or ratio of) length or length
equivalent measurements (including frequency, length of time and lengths of wave
amplitude and period). This conjecture holds for subjective magnitudes of area as
squared length (power exponent 2 physically and 1/2 psychophysically) and volume as
cubic length (power exponent 3 physical and 1/3 psychophysical), It might also hold
for loudness (if related to area by eardrum diameter times vibration amplitude 
psychophysical power exponent l/2) and for brightness (if related to volume by
excitation frequency times excited retina area - psychophysical power exponent 1/3).
For lifted weights the power exponent is 312, but we don't know how lifted weight or
other modalities could be related to (inverse ratios of) length or length-equivalent
measurements. Since for other modalities this also may apply, reciprocal values of
physical and psychophysical power exponents likely hold not in general.

6.2.4. Summary oftransformed-extensive measurements
To summarise the measurement types as by-products of our theory, we have:
1) (02,O)-unique scales (x.klb k)'Jk for subjective stimulus magnitudes with

adaptation points bJk/u ~ anJ power exponents 'Jk := 2/1n(b
J

IUJ ). defined by

distinct values on stimufus ratio scales \1/'\ for bJk/llk as in~vi~al adaptation

point and uJk/llk as just noticeable level with Jk/llk> uJk/llk > uJk/llk for uJk/llk
as absolute, Just noticeable stimulus threshold, whereby we obtain:

• independence of scale unit 11 of power-raised fraction scale (x
ik

Ib
J

)'Jk with

distinct unit points x.klb
1k

::: I and distinct power-exponents 'Jk ::: ~/ln(bJk/uJk).
'Jk I

• values (xikIb
Jk

) are nonhomogeneous measurements.
Its geometry IS either a power-raised, Euclidean or hyperbolic or double-elliptic,
positive orthant space of (O,2,O)-unique, power-raised stimulus fraction scales with

zero origin and a distinct individual unit space point (but power-raised, double
elliptic fraction spaces actually define (O,2,l)-unique scales, due to the polar
maximum of double-elliptic spaces).

2) bipolar (O,2,O)-unique scales of comparable sensations that are defined by:

2a) intensity-comparable, hyperbolic or flat sensations

2(~'k/aJk - I) '" 2[~n(xik) - In(bJk»)/[ln(bJk) - In(uJk)) :::2In(\kIbJk)/ln(bJk/uJk)
wlt~ scale properties:

• 2(YilaJk - I),:=2In(\kIbJk)/ln(bJk/uJk) is invariant under lineartransformations of

Yik ~ In(xi~)'
Y·k - a

Jk
'" n(x'k/uJk) - In(bJk/u

Jk
) "" In(x·kIb

Jk
) is a dimensional Fechner-Helson

sinsatlon diffe~ence with respect to the di'mensiOnal adaptation level;

• 2(Yik/aJk- I) is an intensity-comparable sensation dimension, where unit stimulus
fraction scale points xiklb

Jk
"" I and \k/uJk "" I define infinite, (O,2,O)-unique, and
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homogeneous measurements for intensity-comparable sensation dimensions that
relate to power-raised stimulus-fraction dimensions by ,

exp[2(Yik/uJk - 1)] ::: exp[(2Yik - aJk)/aJkJ '" (\kIbJk) Jk
with t

Jk
= 2/u

Jk
::: 2Jln(b

Jk
/u

Jk
)

2b)valence-comparable, flat sensation distances

I(Yik- gn2lldlk = I In(xik) - In(PlkJlilln(blk) - In(pnJl = Iln(x(ilplk)~11 In(blilpnJ I
with similar scale properties. because:

• (yik- gJk)Jd
Jk

is invariant under linear transfonnations of Y
ik

= In(x
ik

);
• Yik- gJk::: Ill(\k/P/k) is the dimensional sens~tion difference from the ideal point;

(Yik- gJk)/dJk ::: n(xik/pJk)/lln(bJk/plk)1 IS a valence-comparable sensation
dimensIOn, where distinct unit stimulus fraction point xik/P

Jk
::: 1 and \klb/k::: 1

defines infinite, (O,2,D)-unique, and homogeneous measurements for va ence
comparable sensation dimensions that relate to power-raised stimulus-fraction
dimensions by

o
exp[(Yik - gJk)/dJk]:=: (xik/PJk) Jk with (lJk:=: I/dJk :=: 1/IIn(bJk/pJk)l.

2c)valence-comparable, hyperbolic sensation distances

cosh[(Y'k - gJk)/dJk ]:=: cosh[ln(x·k/pJk)/ln(bJk/pJk)]
with siril1lar scale properties, bec1use:

• cosh[(y'k -gJk)/(aJk - gJk)] is invariant under linear transfonnation of Y'
k

:=: In(x'k);

• COSh[ln(xik/PJk)/ln(PJkfbJk)] is a valence-comparable dimensional sensation
distance, where distinct umt stimulus fraction points xiklb

Jk
:::: I and x.k/PJk == I

define infinite, (0,2,0)-unique, homogeneous measurements of valence-cbmparable
sensation dimensions that relate to power-raised, conjugate stimulus-fraction
dimensions by

. _ lIdJk I/dJkcosh[Yik - gJk)/dJk]- [(xik/PJk) + (PJk/\k) ]/2.

• The geometries of comparable sensations are infinite and flat (Euclidean or
Minkowskian), if the stimulus space is non-Euclidean, or infinite and hyperbolic,
if the stimulus space is Euclidean.

3) bipolar (0,2, I)-unique scales ofjudgmental responses within an open interval with
absolute equal, singular maximum and minimum values, defined by one of the two
pennissible response-space transfonnations of two pennissible geometries for

intensity-comparable sensation spaces, which yield individual response space as
(quasi-)involution spaces of the power-raised stimulus space with respect to the
individual unit adaptation point. The alternative response spaces are defined by:

3a)r
Jik

:=: arctan[2(y
i
/a

Jk
- I)] as single-elliptic response space dimension with:

• r
Jik

as response dimension for flat intensity-comparable sensations 2(y'k/aJk - I);
• eXPl2(y

ik
/a

lk
- I)J :::: (xikJb

Jk
)'tJk as power-raised, double-elliptic stimulus dfmenSlOn k;

• r
lik

:::: 0 corresponds to sensation yik/a
Jk

:::: I and is the origin of the bipolar
homogeneous response scale between singular maximum Ym and minimum -Ym.
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Its geometry is a single-elliptic space with adaptation point rIik ::: 0 as origin and
centre of a circular limit boundary at elliptic distance Vm from r

Iik
= 0,

3b)rJik = tanh[y'k/aJk - I] as open-Euclidean response space dimension with:
• r

Jik
as respon~e dlmensio? for hyperbolic, intensity-comparable sensation 2(yik/aJk-i);

• exp[2(y'k/aJk-1)1 = (x'k!bIk)!Jk as power-raised, Euclidean stimulus dimensions k;
• r

Jik
= cl corresponds\o sensation yik/a

Jk
= I and is the origin for the bipolar,

homogeneous response scale between singular maximum + I and minimum -I,
• Its geometry is an open-Euclidean space with rI'k = 0, as origin and centre of

circular limit boundary at unit distance from r
Jik

"; 0,

3c)rJik = tanh[Yik/aJk - l] as open-hyperbolic response dimension with
• rJikas response dimension for flat intensity-comparable sensations 2(yik/aJk - 1);
• eXPl2(Yik/aJk- I)] = (Xik!bJk)'t]k as power-raised, hyperbolic stimulus dimensions k;
• r

Jik
= 0 corresponds to sensation yik/a

Jk
= I and is the origin for the bipolar,

homogeneous response scale between singular maximum +1 and minimum-I.
• Its geometry is an open-hyperbolic space with rI'k = 0 as origin and centre of

circular limit boundary at unit distance from r
Jik

=10,

Dissimilarities rank orders are represented by response space distances rank orders that
for weighted, comparable sensation pairs (i,j) and (i' ,j') are defined either for distances

in open-Euclidean response spaces by
Ik= 2 l<~m 2Vtl [tanh(Yik/aJk-1) - tanh(Yjk/aJk- t)l > Jtl [tanh(yi'k/aJk-l) - tanh(Yj'k/aJk-I) 1

or for distances in open-hyperbolic response spaces by
k= k~m

gcosh{tanh[Yik/aJk-11- tanh[Yjk/aIk-ll} >gcoSh{tanh[Yi'k/aIk-ll- tanh[Yj'k/aJk-I]}

or for distances in single-elliptic response spaces by
hm k~m

11<'"{=tan[2(Yik/aJk- 1)]-=tan[2(y_k/aJk-l )] J>II={=tan[2(Y_'/'Jk-1)]-=tan[2(y_,I'Jk-1)]J
k~1 J k~1 1"- J"-

4) bipolar (0,2,l)-unique scales of monotone valences that are measured by ideal
response space axis as an individually rotated response dimension in one of the

three alternative response spaces, where for all three possibilities the preference of
J for object i is measured for h

Jk
as rotation coefficients by

k~m k=

vJ ' = L vJ-k = ) hJk-'J-k with scale properties:
I hi I ,';1 I

•
•

VIi is the ideal axis determined by rotation cosines h k in a response space;
v
Ji

is a bipolar, homogeneous scale with vI'={) as alstinct zero centre of values
between singular maximum l/m or I and minirrium -Vm or -I, where the scale equals
an open-Euclidean, or single-elliptic, or open-hyperbolic response dimension,
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5) bipolar (O,2,2)-unique scales for single-peaked valences, defined by one of the two
theoretically compatible, symmetrically isomorphic space transfonnations with

respect to ideal points of the two pennissible geometries for valence-comparable
sensation spaces, where single-peaked valences are described

5a)for double-elliptic stimulus space dimensions by

vIik = arctan[1 - drk/dJkl·arctan[1 + dJik/dJk] with scale properties:
• vIik is a single-pea~ed valence dimenSIon for flat valence-comparable sensations

from elliptic stimulus dimensions k with d
Jik

= Iln(x"k/pJk)l, d
Jk

= Iln(bJk/p
Jk

) I,
and space distances dJi = Iln(x/PI )I and cl] = Iln(~/PJ)I, where PJk/f.\ is the
individual ideal point and bJkJll

k
the individual adaptation point on a stimulus

dimension k;

• v
Jik

= 0 for dJ"k/dJk = I defines individual zero valence points for dimensional
adaptation and ~aturationor deprivation points with maximum valence as midpoint:

• individual (0,2,2)-unique, dual-homogeneous valence scales with maximum valence
v = arctanZ(l) = 11;2/\6 for d). =0 and minimum valence -11:214.
max I

• Its geometry defines an open Finsler space with ~Ji = 1/:mIarctan[ I + dJ/d
J
] as

curvatures that reduce with increased sensation distances dJ/d
J
;

a conditional rotation invariance for the ideal point as rotation centre.

5b)or for Eudidean stimulus spaces by

vJik = tanh[Y2( I-d
Ji

/dJk)].tanh[Y2( I+dJik/dJk)] = tanh[-Y:zln{cosh(dJi/dJk)/cosh( I)}]
with scale properties:

vJ"k as single-peaked valence dimension of valence-comparable, hyperbolic

seAsa~ion and Euciidean stimulus dimension k with distances.d
Jik

.= Iln(~'k/pJk)l,
dJk - Iln(bJk/pJk)l, where PJk/~\ and bJk/flk are the mdlVldual Ideal and
adaptation pomts on stimulus dimension k;

• v
Jik

= 0 for dJi/d
Jk

= l defines individual zero valence points for dimensional
adaptation and saturation or deprivation points with maximum valence as midpoint:

• individual (0,2,2)-unique, homogeneous valence scales between maximum valence
v = tanh2(Y2) for d).= 0 and minimum valence -I for infinite sensations.

max I
Its geometry defines an open-hyperbolic space with constant curvature ~ = -Y2;

5c)or for hyperbolic stimulus spaces by

vJjk=tanh[Y2( l-dJi\/dnd]·tanh[Y2( I+dJik/dJk]} =tanh[-Y2In{ cosh(dJik/dJk)/cosh( I)}]
with scale properties:

• vJ"k as single-peaked valence dimension of valence-comparable, Eudidean

seAsation and hyperbolic stimulus dime~sions.k ~i~ dist.ances d
Jik

= Iln(xik/pJk)1
and d)k = Iln(PJkIbJk) I, where PJk/~\ IS the mdlvldualldeal pomt and bJk/l-'k the
indiVidual adaptation point on stImulus dimension k;

• v
Jik

= 0 for d ik = dJ.k defines individual zero valences for distinct dimensional
adaptation anJsaturation or deprivation points with maximum valence as midpoint:
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• individual (O,2,2)-unique, dual-homogeneous valence scales between maximum
valence v = tanh2(Yz) for d

J
. =0 and minimum valence -I for infinite sensations.

max I
• Its geometry defines an open Finsler space with ~r = -l/tanh[Y2(l+d

J
.ld

J
)] as

curvatures, where I~Ji I reduces with increased sensat~on distance dJ/d]; I

• a conditional rotation invariance with the ideal point as rotation centre;
The single-peaked preferences of an individual J for objects i are measured on a bipolar
open scale that for Euclidean stimulus spaces is defined by

k~m

vJ' = tanh[ L ar tanh(v
J
·
k
)],

1 k~1 1

and for valences vJ' of hyperbolic stimulus spaces by
1 k-m

(v -v
J
.)/(l-V .y

J
.)=tanh2[[artanh2[v{(v - vJ·k)J(I-v 'Y

J
.
k

)}]],
max 1 max 1 ~=I max I max 1

while for valences of double-elliptic stimulus space no similar sum expression of
dimensional valences could be derived or may not exist. Observed preferences are
represented by conditional distance rank orders, but solved valence-comparable
sensation spaces define metric preference differences between objects for individuals,
where vr - vr is determined by d

J
., dj"' and d]' while also metric differences v

J
' - vJ.

between !he t*eference strength o~ dif~erent individuals are determined by dr ahd ;
for individual J and by dr and d! for individual I. 1

Referring to the earlief given citation from FoM (ch. I0, p. 518), we have introduced
"new nonbasic quantities that are relevant to the IlOnphysical sciences", which non
basic quantities here apply to the psychology of judgement and preference. Since all
above-defined measurements have distinctly solvable dimensional parameters and no
arbitrary parameters, they allow meaningful, quantitative relationships between
measurements for the psychological theory of judgment and preference. The
isomorphic transformations of power-raised stimulus fraction spaces to response or
valence spaces define transformed-extensive response or valence measurements, where
we "append them to the existing structure ofphysical quantities" by the inverse of their
respective stimulus space transformations to common stimulus spaces. Response and
valence spaces are isomorphic projection transformations of (0,2,0)-unique
measurement spaces of comparable sensations with respect to the adaptation or ideal
point as projection centre, However, individual adaptation and ideal space points may
shift if exposure to stimuli and/or reinforcements are changing. Therefore,
psychological measurements are always individual and relative measurements that
individually or collectively may change by the sequential exposure to stimuli and/or
reinforcements, which relativity dynamics are discussed in the next chapters.



CHAPTER 7

PSYCHOLOGICAL RELATIVITY AND CHOICE DYNAMICS

"Adaptation leveL as a weighted mean immediately
implies that every stimulus displaces level more or less
in its own direction <>. Ifa stimulus is above level, the
level is displaced upward, ifbelow Level downward, and
if it coincides, it does not change Level. <> especially
repeated stimulation, negates itself to some degree by
reducing its distance from level. "

Helson (1964). Adaptation-level theory, (p. 61). Harper
& Row, New York

"It may be useful to distinguish between Mo fonns of
stimulus bias, a set-independent bias and a set-dependent
bias. <> An example ofa set-independent bias would be
the strength with which an item is stored in the memory due
to its frequency of presentQtion. <> By contrast, biases
resulting from differential densities are set dependent."

Nosofsky( 1991). Stimulus bias, asymmetric similarity, and
classification, (p. 134). Cognitive Psychology, 23: 94 -140.
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7.1. Dynamic relativity in perception, cognition, and preference

In chapters 4 and 5 individual transformations of sensation spaces are defined with
respect to an individually fixed adaptation or ideal points and with dimensional
sensation weights that depend on the dimensional parameters for individually fixed
distances between the just noticeable and adaptation points or between the adaptation
and ideal points, where these dimensional weights enable intensity- or valence
comparability of sensation dimensions. In chapter 3 we demonstrated that power
exponents of stimulus dimensions correspond to the dimensional weights in the Bower
space of intensity-comparable sensations, where the dimensional stimulus power
exponents are Stevens powerexponents defined by twice the inverse of the dimensional
distance between the adaptation and just noticeable points in the (not weighted)
Fechner sensation space of logarithmically transformed stimuli. The adaptation level
is defined by the average sensation intensity of the stimuli that are randomly presented
to the individual. No special attention was given to adaptation points of stimulus
dimensions that are not characterised by energetic intensity. Non-energetic stimulus
dimensions are not characterised by intensity dimensions, but by the extensiveness
dimensions of the spatial distribution pattern of energetic stimuli. For example,
spatially different visual stimuli that are equal in brightness are perceived by pattern
relations between retina signals at different retina locations that correspond to the
spatial stimulus pattern. Similar things hold for colours or tones that only differ in
wavelengths (same energetic intensity: equal colour luminosity or equal decibels of
tones). The spatial distribution of (positively or negatively) evoked rods and cones in
the retina determine the colour perception, as illustrated by the correspondence between
the colour circle from the similarity analysis of colours and the opposite excitation
pattern of cones for red-green and of rods for blue-yellow. Also the spatial patterns of
evoked ganglions in the spiral cochlea of the inner ear determine the tone level
perception, where the MDS analysis of similarities between tones of equal loudness
(Levelt, et al. 1966; Van de Geer, 1970) nicely illustrates the spatial perception
structure of tones by the closer spiral distances between identical octave tones in
successive octave spirals than between remote tones within the same octave. The
adaptation point for such non-energetic qualities of stimulus modalities equals the
spatial centroid of these quality sensations for randomly presented stimuli of a
homogeneous stimulus set. The adaptation level of perceptual stimuli with energetic
intensities and non-energetic extensities generally will be identical for different
individuals in common stimulus situations (except for individuals with perception
abnormalities, such as colour blindness). Extensiveness sensations for non-energetic
stimulus dimensions (length, height, and depth as well as spatially coded stimulus
dimensions ofduration length for time and wavelength for colours and tones) need also
to be made comparable with respect to each other and with respect to sensations of
energetic stimulus dimensions in order to enable similarity evaluations. In chapter 2 we
further analysed the relationship between stimulus range and Stevens' power exponent
in Teghtsoonian's (1971, 1973, 1974) meta-analysis of many studies. Thereby, we
derived that generalised length sensations serve as cognitive magnitude sensations for
the matching of dimensional sensation differences from adaptation level. Matching
weights \ = 2/a

k
= 2/In(b

k
/u

k
) of sensation differences In(y iklbk)' where In(bk/u

k
)
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is the almost constant sensation distance between the dimensional adaptation and just
noticeable levels, define intensity-comparable sensation dimensions of stimuli. In
chapters 3 to 6 we assumed individually constant adaptation levels that indeed may be
identical for randomly selected stimuli from a prior known set of perceptual stimuli.

Nonetheless, evaluation studies may sequentially present stimuli or pairs of
stimuli and also not randomly from a previously unknown stimulus set and/or the
evaluation tasks may require comparisons with repeatedly presented or memorised
target stimuli. As discussed in chapter 1, Helson's (1964) adaptation-level theory
specifies that individual adaptation levels are determined by some averaging process,
either of recent sensations during the sequential exposure of stimuli in perceptual
evaluation tasks, or of memorised sensations from similar object contexts in more
cognitive evaluation tasks, or some mixture of both. We have also argued that the time
frame for the sequential averaging process for the adaptation level can be different for
perceptual and cognitive or affective domains. In chapter I we referred to Broadbent's
processes of'filtering', 'pigeon holing' and 'categorisation' (Broadbent, 1971) as relevant
for the time frames of adaptation. There, we suggested that 'filtering' coincides with
immediate adaptation to the ongoing stimulation from sequentially presented, focal
stimuli and/or contingently given, physical reinforcements, where the momentary time
sequence defines the time frame of adaptation to perceptual stimuli and/or contingent
affective reinforcements. The adaptation level derives then from some averaging
process of perceptual and affective sensations over the time intervals for the presented
stimuli. The 'pigeon holing' process is assumed to establish the temporary stable
adaptation or reference levels for the response sensations that are related to the
evaluation task for the particular stimulus set and as such are dependent on the memory
for similar response tasks and stimulus sets. Its reference levels become updated by an
averaging process over the actual task for the stimulus set and preceding similar tasks
for similar stimulus sets, where the time frame for the averaging is defined by the
periods of the present and past task experiences for the memory-based selection of
similartasks and stimuli. It dominantly defines temporary stable adaptation or reference
levels for evaluation responses to presented stimuli or to objects that imply a cognitive
and/or preferential selection from a known set of memorised stimuli or objects. The
long-term time frames for developmental changes in adaptation or reference levels for
cognitive judgements and preferences are characterised by the 'categorisation' process
that determines the more or less lasting traits of the adult personality.

Brightness adaptation shows that the adaptation level can very quickly shift with
the ongoing focal stimulation. This also holds for other perceptual modalities, which
then may change the adaptation level for judgmental perception responses and then also
its distance to the ideal level for preferences of perceptual stimuli. For evaluation tasks
of cognitive objects the reference levels will be determined by stored or inferred levels
from previous similar contexts of cognitive objects, such as the just noticeable
sensation level, or object- and/or task-dependent reference- or target-sensation levels
and/or ideal sensation levels. These memorised reference levels are assumed to be
temporarily stable, but different for different tasks and object sets and for the ideal
levels also different for different individuals. However, if tasks or reinforcement
conditions change, these other reference levels also can change suddenly, due to the
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reference to other stored levels that are associated with these different tasks or changed
conditions. Many evaluation tasks concern not the primary perceptual stimuli, but the
cognitive objects that are represented by learned connotations and affections of primary
perceptual stimuli, such as the stimuli of written or spoken words. The sensory
adaptation processes are then of secondary importance, because the cognitive objects
primarily refer to memory-based sensations for object sets that have their own stored
connotative andloraffective adaptation and/or ideal levels. Nonetheless, also sequential
presentations of cognitive objects that refer to physical objects may by adaptation to the
internally generated object sensations influence the adaptation level in a way that to
some extent is similar to the presentation of the physical objects themselves, especially
if responses to the cognitive objects with corresponding physical objects are
contingently reinforced. The sequential presentation of objects from a cognitive object
set that refers not to physical objects (for example words for political parties or
religions) will hardly influence the adaptation level for the cognitive object set that then
detennines by its presentation and task condition some slightly updated average of the
stored cognitive or affective reference levels from previous presentations of similar
cognitive object sets in similar task conditions. For purely cognitive objects the
adaptation and ideal point thus relate to stored levels for the set ofobjects that only may
gradually change by newly reinforced experiences of the presenred object set and task.
or may hardly change, because cognitively and/or affectively dissonant infonnation
tends be ignored (Festinger, 1957, Wicklund and Brehm, 1976. McGuirie, 1985).
However, the reference frame can suddenly change by changed sub-tasks for responses
to cognitive objects or by changed reinforcement conditions for preferential responses
(Kendler and Kendler, 1962), because then the 'pigeon holing process' refers to other
selections of stored levels than the reference level for the total object set and overall
task condition. The characterisation of a stimulus or object with respect to the stimulus
or object set and surrounding field usually is defined as the stimulus or object context,
while we define the type of task environment and/or reinforcement conditions as task
conditions. Sensory stimuli thus relate to quick sensory adaptation processes that may
detennine momentary shifts of the existing adaptation level by a presented stimulus or
stimulus subset, while the stimulus or object context defines the average adaptation
level. But cognitive object contexts and their task conditions primarily relate to the
selection of stored reference levels, detennining the more or less static adaptation level
and ideal level for a particular context and condition, where the adaptation level only
may secondarily change to some extent by the adaptation to the cognitively presented
objects if the cognitive objects refer to physical objects. Otherwise its reference levels
only may suddenly change, if task conditions are changed and/or contexts of subsets
of stimuli or objects refer to differently selected reference levels.

7.1.1. Adaptation-level relotivity and dynamics
The averaging process for the momentary adaptation level in the presentation sequence
of focal stimuli from a particular stimulus context (detennining the average adaptation
level) in particular conditions (detennining the temporary or lasting reference levels)
is fonnally described on the basis of HeIson's (1964) adaptation-level theory in the next
mathematical subsection.
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For the averaging process in Helson's (1964) adaptation-level theory
we define a time-dependent sequential averaging process of the scale
dependent. momentary adaptation level by

In(b Ill) = (1-w) -In{b Ill) + w-ln{x. Ill),
t t-1 ~,t

where 1) the adaptation level In(b Ill) for t = 0 derives from some
stored level of precedingOsimilar stimulation for m:x1.ality x
or In (b Ill) = In (u 11J.) = 0 where u III is the threshold
of justOnoticeableOstimuli; 0

2) time intervals (0,1, ... t-l,t) are successive time intervals
of discretely presented stimuli that represent the actually
continuous perception process in real life;

3) w <: 1 a proportional weight that depends on the length of the
time interval for the exposure to stimulus i.

For focal stimulus x. 1\.1 the Markov sequence of n sequentially random
stimuli in equal exp6sSre intervals t the updated adaptation level
becomes defined by a constant w, where for i=l at t=1, i=2 at t=2 and so
on to i=n at t=n for sequential presentations of n different stimuli, we
obtain the sequence

+ (l-w) 'w'ln(x 1\.1)+ w-ln(x 1\.1},
1 2

", 3-i
+ L(l-w) ·w-ln(x.l\.1}.

,~, l

+ w-ln(x/1J.),

+ w·ln(x/1J.),

+ w·ln(x/1J.)

t(1-w) -In(b Ij.l.)
o

3(l-w) 'In(b 1\.1)
o

(l-w) -In(b Ij.l.)
o

(l-w) -In(b/\.I)

(l-w) -In(b Ij.l.)
2

Md

For any t

In(b 11J.)
1

In(b/ll)

In (b/j.l.)

and by substitution

In(b/ll)

It defines a sequential !'E.rkov averaging process that, by (l-w) <: 1 and
large enough values of t. reduces to

i,t t-i
In(b Ill) =.~ (l-w) -w-ln(x,/j.l.).

t .'. 1

For randomly selected stimuli from a set of relatively similar stimuli
In(X,/~) = In(b Ij.l. ) + In(x, Ib ), where the dimensional sensations
In (Xl Ib ) randomfy ~eviates b~ r~lativelY small amounts from zero, it
willl~OO~ show a rather static adaptation level In (b/u) , because then

'"' t-i
In(b 11J.) = L (1-w) -w-[ln(b Ill) + In(x. Ib )]

tk ,_, k lk k

t large enough,

c_t t-i
I (l-w) ·w =

and randomly deviating small terms In(Xi/b
k

)

"t t-i
1 and L (l-w) ·w-ln(x. Ib )] = C.

'~l lk k

reduces by replacing just noticeable level u for arbitrary scale factor
j.l. for In(b/u) = a with just noticeable sensation level In(u/\.l) = ° to

by W <: 1,
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However, for not similar and randomly selected stimuli we obtain for
t-l and large enough t by w < 1 still approximately

whereby

or

or

i=t_1 t-l-i
'I n-w) ·w-ln(x. /b l] = e '" 0,
f:'t lk k t-l

In (bt/u) = In(b/u) + w'ln(xik/bk),

In (bt/u) = (l-w) -In(b/ul + w'ln(xi/ul,

or

a = (l-w) -a + w'y .
tk k i

Similarly it holds for sequences of presented pairs of stimuli, where
stimuli (i,j) are randomly chosen from a fixed set with an average
sensation In (b/u) , that

iJ~t t-i
In(b /u) = I; (l-w) "WO [In (b/ul + %{In(x.lbl + In (x./b) }l,

t ').1 1 J

can be rewritten for {i,jJ = (1,2, .. ,t-l,t) by

i;~t_' t-l-i
e =I. (l-w) 'w'~{ln{x,/b) + In(x,/bl},
t-l 'J~' 1 J

where for values of w smaller than unity the sum tenn of e still soon
approaches zero for enough presented random stimulus pair~-S:,j and thus

In(b/ul = (l-w) 'In(b/u) + %w{ln(x/ul + In (x/u) }

a k" (l-wl·a + ?!iw[y, + Y.l.
t , ]

Here the shift of the adaptation level towards the midpoint sensation
for y, and y, will be the larger the longer the exposure interval or
the eraser ,;Jto unity is and the larger the difference between the
average sensation a and sensation midpoint ~(y. + y,)is., ]

In the mathematical section above we derived for stimulus intensities x./u. where u as
just noticeable level replaces an arbitrary unit of their ratio-scale tennd, a Markovian
averaging process of sensations from presented stimuli that defines the momentary
adaptation level a = In(b lu) by

t t

a = (I-w)·a + w·y.
t t

for sensory stimulus i that is presented in time interval t and where weight w depends
on the length of the time interval for the exposure to stimulus i. For randomly selected
and in equal time intervals, sequentially presented stimuli from a fixed set of stimuli,
it is shown that the value of the momentary adaptation level soon approximates average
adaptation level a = In(blu) for the whole stimulus set. Partial adaptation to a sensory
stimulus pair causes a shift of the adaptation level towards the location of the average
sensation [y. + y.]12 of the presented stimuli (i,j), which is expressed by

t J
a = (l-w)·a + Y2W·(Y. + y.).

t t J
These shifts are the larger the longer the stimulus exposure is, which is expressed by
increases of weight w satisfying 0 < w s: I and also the more the average sensation of
the focal stimuli deviates from the average adaptation level for the whole set of stimuli.



308

!fthe intensities of the stimuli in the set vary in a relatively small range and the stimuli
are randomly presented, then the adaptation level is almost static and equals a:=: In(blu),
especially if similar stimuli are faintly presented in relatively short time intervals. These
conditions may apply to stimulus-confusion studies, wherein only short exposures of
faintly presented and/or rather similar stimuli will create non-zero confusion
probabilities. Stimulus confusions require thatlln(x./b) - In(x./b)I < lo(l + 6K)1 for
Weber fractions K and a relatively short stimulus exbosure timbs, otherwise non-zero
confusion probabilities are hard to obtain. For w < 0.125 and K < 0.06 the resulting
deviations from a constant level a::::: In(b/u) are then only ranging between 4% above
and below the constant level. However, the presented stimuli generally differ more than
six Weber fractions from the average stimulus and then may cause marked shifts of the
adaptation leveL It can produce asymmetry of confusion probabilities P·I; and P.li as
well as intransitivity of rank orders for confusion probabilities of stlfuuli ,,;Ath a
repeated target stimulus j or i. lntransitivity can be more often expected the longer the
stimulus-exposure interval is and the more the stimuli deviate from the average
stimulus. Generally dissimilarity evaluations concern clearly presented stimulus pairs
in sufficiently long exposure intervals, where weight w can approach unity. If w = I
then it defines that the momentary adaptation level is completely shifted to the midpoint
sensation of the presented stimulus pair, whereby such stimulus-dependent adaptation
level shifts can cause inttansitivity of symmetric similarities.

Reference levels can also depend on the memory of individuals, such as their
ideal sensation level g = In(plb) and their memorised adaptation level for evaluations
of cognitive objects, where a memory-selected adaptation levelln(b lu ) also must be
distinguished from the adaptation levelln(b/u) for sensory stimuli. t1Jmory-selected
reference levels are relevant for responses to cognitive object presentations and are
dependent on the object context and task condition of the response task for newly
presented objects, but the new presentation of the object set may also cause an update
of the stored level from previous stimulation of similar objects in similar task
conditions. Here the update becomes the Markovian average of the relevant, stored
reference level, which may also apply to set-induced levels of respectively the just
noticeable level and the ideal level for the presented stimulus or cognitive object set.
Thus, in principle they are assumed to be influenced by a similar Markovian averaging
process, where the updates of the stored reference levels from (t-I) are averaged with
the corresponding reference levels of the present exposure to the object set. The
reference levels at t-I refer to their selections from the memory for similar context
and/or task conditions as for the present object set, but due to the similarity selection
from the memory of an individual the differences between [In(u Ill) - In(u lu)],I 1-/[In(p Ib ) - In(p Itlb I)], and [In(b lu ) - In(b 1/u 1)] are relatively small or a most

Lt 1- 1- f I /- 1-zero. Therefore, I Yle ds temporari y static re erence levels for:
1) In(u/ll) as context-dependent just noticeable sensation level,
2) In(plll) as context- and task-dependent ideal sensation level,
3) In(blll) as memorised adaptation level in evaluation tasks for newly presented

cognitive objects that are similar to cognitive object sets in previous tasks
as context- andlor task-dependent selections of memorised reference levels.
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In successive comparison tasks for perceptual objects with respect to
successively different targets, the reference level can suddenly shift towards different
levels of memorised target sensations. In cognitive evaluation tasks without target
objects the adaptation level may hardly shift, but in other tasks the momentary
adaptation levelln(b/u)

at::: In(b/fl) - In(uJfl)::: In(b/u)

may shift to sequential object presentation, whereby also the ideal point

gt::: In(plll) - In(b/fl)]::: In(plb
t
)

may shift, since only [n(u/)..I) and lo(p/Ill are assumed to be temporarily static levels for
each stimulus set and task condition. Thereby also the corresponding Stevens' power
exponents 1: :=: 2/a ::: 2/1n(b lu) may become dynamic stimulus-dependent power
exponents or stimufus intensifies by shifts of In(b Ill), which may explain why large
variances of Stevens' power exponents T are found. It also must be remarked that the
adaptation level only can be shifted within limits, because it can't shift beyond the
absolute just-noticeable or absolute saturation level. Adaptation to intensities close to
threshold In(u1Il) = 0 will shift the adaptation level towards the threshold, whereby
distance In(b Ill) - In(u1Il) = In(b lu) > 0 becomes smaller, which predicts Stevens
power expon~ntT = 2/1n(b lu) to fncrease, as is known to occur since long (Luce and
Galanter. 1963b, bp. 276 arid 281) for stimulus ranges close to the absolute threshold.
It also implies that the Weber fraction K for K close to the perception threshold is no
longer constant and must systematically beco~e larger the closer the stimuli are to the
perception threshold of a modality, as a reduced discrimination sensitivity between
stimuli in that range. The constancy of fraction K also can't hold for stimulus ranges
close to saturating intensity, since adaptation letel b lu can't exceed the saturation
level. It also implies that the discrimination sensitiv1ty will decrease for stimulus
intensity levels close to the saturation level of a modality (for example: brightness
differences at glare level). Both phenomena are indeed observed for several Weber
fractions near absolute thresholds and near saturation levels (Luce and Galanter,
1963a, p. 204, fig 6), However, most studies concern stimuli that range from fairly
above the absolute just noticeable level to fairly below the absolute saturation level.

7.1.2. Target.stimulus dependence ofadaptation-level shifts
Adaptation level a = In(b lu) can be almost static for short presentations of stimuli that
are randomly varyfng in atmidrange ofdimensional sensation intensities, which will be
called a homogeneous stimulus set or homogeneous context of presented stimuli
(adjective 'homogeneous' refers here not to its measurement-theoretic meaning). The
average sensation for a stimulus set defines the average adaptation level a = In(blu) for
the average observer of all stimuli in the set, while we define momentary shifted
adaptation level a with shift (a - a) at time t with respect to the average adaptation
level. Presented st~muli from no~homogeneouscontexts shift more or less the existing
adaptation level to levels a = In(b lu) and the ideal levels g = In(plb ) in a stimulus
dependent way, the latter d~e to stifuulus-dependent shifts ofln(b lu) ahd respectively,
almost static reference levels In(u11l) and In(plll). Shifl~of adaptatlon level can become
systematic in studies that selectively present nonhomogeneous stimuli and are
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cumulative if stimuli are presented in the order of their intensities. The design of the
stimulus presentations in studies on judgmental and preferential evaluations of stimuli
is thus crucial for shift effects of the adaptation and ideal levels.

Randomly selected and sequentially presented stimuli from a nonhomogeneolls
set cause shifts of the average adaptation level towards the sensation of the presented
stimulus, where the shift depends of the extremeness and exposure time of the stimulus.
This also holds for homogeneous stimuli when the time interval of the stimulus
exposure is relatively long or when presented in short time intervals and compared to
a repeatedly and simultaneously presented target stimulus, where in the last case the
adaptation level will dominantly shift towards the sensation of the target stimulus. It
then concerns a study design with n sequences of stimulus pairs (i~). wherein shortly
exposed random stimuli i are compared with a repeatedly presented fixed stimulus j
within each sequence of a subsequently other target stimulus j. If we have study designs
wherein a randomly selected stimulus i is evaluated for its similarity (or is confused)
with a cognitive stimulusj (or is categorised as belonging to stimulus category j) from
a memorised similar stimulus set S then sensations of stimuli i are compared with the
respective sensations of memoris~d stimuli j. Thereby, the adaptation level shifts
towards the internally repeated sensation of target stimulus j and subsequently shifts
towards the respective sensation levels for subsequently other target stimuli. These
shifts are the more complete the longer the allowed response time and the shorter the
stimulus exposure are.

The adaptation level for stifffi.lli i Ij at sequential time interval t=i
for a unidimensional stifffi.lli i and a fixed, target stifffi.llus j becomes
updated rrore by the sensations for the repeated target stimulus j than
by the different sensations of randomly selected stimuli i, where

i~o t-i
In(b /ulj) = L (l-w) ·w· [In(b/u) + ~{ln(x.lb) + In{x.lb)}l

t ,~1 ~ J

with ull-I. as the just unnoticeable level for the set of stimuli. It is
rewritten by a = In(b/u} as

"" t-i
a Ij = L (l-wl 'W' [a + ~{ln(x,/b) + In(x.lbl}J.

t '~l ~ J

For a sequence of different stimuli i around x,/b = 1 with respect to
repeated sensations for target stimulus j, it }ewrites by

i~c t-i
L (l-w) 'w' [a + ~{ln(x,/b)l "a + ~ln(x.lbl
,~1 J J

'~t t-i
a Ij = a + ~ln(x,/b) + L (l-w) ·w·70-n(x,/bl].

t J l"l ~

After enough presentations of randomly selected stimuli i with positive
and negative sensations its sum term for t-i-l approximates

whereby

or
a Ij "a + Yl[ln(x.lu)

t )

at1j = Yl[ (l-w) 'a + Yj

- 1n(b/u)] + YlW' [In(x,/u) -In(b/ul]
r

+ w'y,]
r
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However, stimulus confusions iij concern short presentations of faint
stimuli i, where for non-zero confusion probabilities w must be very
small and iln(x,/b) - In(x,bll < 6d/b for djb = K as Weber fraction. By
w approaching z~ro we see that a

t
lj hardly differs from

a Ij = ~[a + y,J
t ]

For unidimensional random stimuli that are compared to a target stimulus
j from a memorised similar set S the reference level for the comparison
is the memorised sensation In(x.ju) of the target stimulus and writes as

)

a Ij,8 = f (l-w}t-j·W"~[ln{x./u) + In(x./uJ].
t )~1 J 1

For enough repetitions of target j it simplifies by approximations of
j~, t'
L (l-w) -J·w"lh[ln(x./ul] '';{In(x./u)
,~' J J

and for In(x.ful = In(b./ul + In(x./b.l and t-l presentations of the
different stImuli i of ] 1 ]

the tenns for the

Ht'L (l-w) -J,w·,Hln(x./ul + In(x, !x. 1J = ~n(x.!u) + ~'ln(x, !x,)
:~, J l J J l J

a Ij,S = In(x.!u) + %w-ln(x,!x.)
t J l J

alj·s = (l-%w)·y.+%w·y,.
t J'

For long time intervals of comparisons ilj
factor w nay approach unity, where then

to

or

a ,Ij,s=%[y. +y.J
t,l J l

IW=l

In the mathematical sections above it is shown that a shift from the average adaptation
level to the momentary adaptation level a depends on the design of the stimulus
presentations and the evaluation task. In ddsigns, wherein stimuli i are compared in
successive sequences with respect to a repeatedly shown target stimulus j, the shifts are
stimulus-dependent shifts toward the target-stimulus sensation for each comparison
sequence. The momentary dimensional adaptation level is expressed by

aitkU:::: V2[(l-w}ak + Yjk + w·yik]·

for Y
ik

:::: In(x.k!u
k
) > 0 as dimensional target sensation in stimulus confusion designs.

Weignt w reduces to almost zero, if shortly presented, faint stimuli i :::: I to i :::: n are
compared with a repeatedly presented target stimulus in successive sequences for
similar targets j :::: I to j =: n. It simplifies the expression for the momentary adaptation
level a k per comparison sequence, due to the dominating influence of repeated

. It.stlmu us J, to I; _ l/~{ )
atku - l~\ak + Yjk .

We see that the momentary adaptation level for a comparison sequence can be an
enlarged or a reduced adaptation level compared to the average adaptation level a

k
,

depending on whether y. > a
k

or Y'
k

< a
k

. However, for stimuli i in pairs (iU) from
non-homogeneous sets Jfstimuli th!t are exposed long enough to detect differences
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between i and fixed stimulusj we have, by the repeated sensation of stimulus j and the
non-negligible influence of the momentary sensation of stimulus i, a shift that remains
defined by a'

k
~ = V2[(l-w)·ak + y'k + w,y'kJ, where 0 < w < I is dependent on the

length oftimb ,iitervals forexposurdof stimu\us pair (iU) and where w approaches unity
the more the longer that exposure time is,

For evaluation tasks where randomly presented stimuli i are compared with
respect to successive reference targel~ j from a memorised similar stimulus set S ,the
adaptation-level shift for comparisons of different sensations i with the inteWlally
repeated sensation for the selected reference target j is written by

'·k 1(j,S ) = et -V2w)y'k + V2w,y·k·
I ,t m J ,

Compared to the expression for single-stimulus-dependent shifts of presented target
stimulus shows by the difference in factor wand V2W that the shifts are smaller for
memorised reference targets than for presented targets. lfthe response comparison time
is long enough, however, then the influence of stimulus i increases and for long
comparison times w=- I, whereby then

'·k ICw=l,j,S ) =- lI2(y'k + Y·k)·, ,t m J I

In the study designs for clearly presented stimuli i with respect some targetj and shifted
dimensional adaptation level ark for individual J we write the intensity-comparable
sensation dimension k as J

sJik ~ = 2{ Yik/aJjk - 1} = 2{(y ik/aJk)/[( I-wJ) + wfYjk/aJk] - I}

where a
J

is the average adaptation level and where factor 0 < w
J

< 1 depends on the
individua~ and the exposure time of randomly presented stimuli i that are evaluated with
respect to a presented or memorised target stimulus j. Here 2[y'k/a 'k - I J is the
redefined dimensional sensation in the individual Bower space of inJ:nsrtY-comparable
sensations, but due to the dynamics of adaptation towards experienced sensations it
becomes smaller, if target y'k> a

Jk
, and larger, ify. < aJk" Notice also that for sensory

stimulus sets, instead of c~nitiveobjects, the shJts generally are with respect to the
common average adaptation level for the stimulus set, which then defines for w

J
= w

sikU = 2{Yik/ajk- I J = 2{(Yik/ak)/[(l - w) + w'Yjk/ak1- I} laJk = ak,

Thus the dimensional sensations in the Bower space become adaptively changed by the
shifts of the average adaptation level towards the sensation for the stimulus j in each
sequence of pairs Cilj) with randomly chosen stimuli i. Intensity-comparable sensation
dimensions can also be written as

SJik~ = Yik''IJk'AJjk - 2,

'IJk = 2/aJk and AJjk "" 1/[(I-wJ) + W{Yjk/aJk].

Thus, here these adaptation-level shifts can also be expressed by multiplicative teJlT1S
of power exponents and their proportional deviation from the shift that depends on the
target stimulus, the exposure time, and eventually the individual. However, if it
concerns nonhomogeneous stimuli iU or relatively long exposures of homogeneous
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random stimuli iUthen the influence of stimulus i can't be neglected and then

sJikU =2{Yik/[V2{(l-wJ).aJk + Yjk + W{Yikl- I}

orifa
Jk

=a
k

and w
J

:::: W

sikU:::: 2{y
ik

/[Y2{(1-w).ak + Y
jk

+ w'Y
ik

]- I},

where the adaptation-level shifts can't be rewritten by multiplicative tenns ..
Although similarity responses concem response space distances that for the

same stimuli have different response space configurations for different stimulus
dependent shifts of adaptation levels, it is instructive to consider also the influence of
shifted adaptation levels on sensation distances in the intensity-comparable sensation
space. The sensation distances between i andj in the Fechner-Helson space are not
influenced by shifts of adaptation level, but their distances in the intensity-comparable
sensation space change due to the weighing by twice the inverse value of the shifted
adaptation levels, where a shifted dimensional adaptation level for Y'

k
< a

k
relatively

increases the dimensional distance d..Jak and for Y' k > a
k

its disdnce is relatively
reduced. The corresponding responsJh:Iistimces thusJchange also, but even response
distances for equal intensity-comparable sensation distances become changed, because
the projective transformations of intensity-comparable sensation spaces to open
response spaces depend on its shifted adaptation level as projection origin. The next
table shows for selected sensation y. from 1 to 9 and y.= 4 and y.= 5 their weighted
unidimensional distances d..la, their distances d..la. = Iy.l - Y.V[Y2tl .l. 112Y.] for W=V2 and
an original adaptation levM a=3, and their dislfuJces I}, Jr.1 on an JPen-Euclidean
response dimension that corresponds to a hyperboliJ se!sation dimension with
responses r. = tanh {-(y .I[Y2tl + V2Y.] - I)} and r. = tanh{-(y .I[Y2tl + Y2Y.] - l)}

I I J J J J

col. A B e 0
y.=4 y.=5 y, =4 y.=S y, =4 y,=s y,=4 y.=5 column ratio, , , , , , , ,

Y
j

d .. d .. d, .la d, ,la a. d, ,la. d . .la, Ir. -r.1 Ir. -r, I Ale BID
'J 'J 'J 'J ] 'J ] 'J ] ' ] , ]

1 3 4 1. 00 1.33 2.0 1. 50 2.00 1.22 1.37 1. 22 1. 02
2 2 3 0.67 1. 00 2.5 0.80 1. 20 0.73 0.96 1.10 0.96
3 1 2 0.33 0.67 3.0 0.33 0.67 0.32 0.58 0.97 0.81
4 0 1 0.00 0.33 3.5 0.00 0.29 0.00 0.26 0.79
5 1 0 0.33 0.00 4.0 0.25 0.00 0.25 0.00 0.73
6 2 1 0.67 0.33 4.5 0.44 0.22 0.43 0.21 0.65 0.63
7 3 2 1. 00 0.67 5.0 0.60 0.40 0.57 0.38 0.58 0.57
8 4 3 1. 33 1. 00 5.5 0.73 0.55 0.69 0.52 0.52 0.51
9 5 4 1. 67 1. 33 6.0 0.83 0.67 0.78 0.63 0.47 0.47

Table: Influences on intensity-comparable sensation and response distances by shifts
ofadaptation level for w = \/2, a = 3, y. :=: 4 or y. = 5 and varying values ofy_

" )

The table clearly shows the effect of the shifted adaptation level on the intensity
comparable sensation distances. Moreover, intensity-comparable sensation distances
with midpoints in the proximity of the shifted adaptation point are relatively less
reduced to response distances than the intensity-comparable sensation distances with
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midpoints that are remotely located from the shifted adaptation level. For example,
pairs {iU)::::: {412, 513, 416, and 5171 have same Fechner distance Iy. - Y.I ::::: 2 and
respectively shifted adaptation levels 2.5, 3.0, 4.5, and 5.0, whereby' the~ response
distances become respectively 0.73, 0.58, 0.43, and 0.38, while pairs (i ID::::: {511, 418,
and 519} have Fechner distance Iy. -Y.I ::::: 4 and respectively shifted adaptation levels
2.0,5.5, and 6.0, whereby theirresjx,;J,e distances become respectively 1.37, 0.69 and
0,63. It also causes asymmetry ofiotensity-comparable and response distances, as pairs
(514) and (415) show. Effects from shifted adaptation levels for intensity-comparable
sensations combined with effects from their transfonnation to responses cause that
a) dissimilarity responses ILl; I become relatively the larger I) the more remote the

Fechner sensations i are t61fJ. target sensationj, 2) the smaller the shifted adaptation
point is, while the dissimilarity response becomes relatively the less reduced the
closer their sensation midpoint is from the shifted adaptation level;

b) dissimilarity responses Irili I become relatively the smaller I) the closer the Fechner
sensations i are to a target'sensation j, 2) the larger the shifted adaptation point is,
while the dissimilarity becomes relatively the more reduced the more remote their
sensation midpoint is from the shifted adaptation level;

c) dissimilarity responses Ir;li! become I) increased for already similar Fechner
sensations i and target j Jtith a relatively small shifted adaptation level and 2)
reduced for already dissimilar Fechner sensations i and target j with a relatively
large shifted adaptation level, both with respect to their intensity-comparable
sensation distance that for the fonner is relatively enlarged and for the latter
relatively reduced with respect to their Fechner sensation distance. Thereby the
latter dissimilarity response becomes a twofold reduced Fechner sensation distance,
while in the fonner case the relative enlargement of the intensity-comparable
sensation distance generally dominates over its reduction to response distance.

Single stimulus-dependent shifts of adaptation level cause that dissimilarity response
Iril;: becomes different from dissimilarity response Ir; I; I. This asymmetry is caused by
tht'usually so-called response bias that actually is be'tfer characterised as a stimulus
dependent bias. This is further discussed in the sequel and section 7.2.

7.1.3. Stimulus~pair dependence ofadaptation-level shifts
In case sensory stimuli i and j from a nonhomogeneous context are presented in random
combinations (i,j) then the dimensional shift of the adaptation level becomes a shift
towards the average dimensional sensation of focal stimuli i and j, which implies that
the origin for the sensation space is shifted towards the space midpoint of i and j.
Intensity-comparable sensation dimensions then are defined by

sJik!ij:=: 2{Yik/[(l-wJ}aJk + Y2W{(Yik + Yjk)]- I},

where for shifted adaptation level

aJk Iij :=: (I-wJ)-aJk + Y2W{(Yik + Yjk)'

we have similarly to earlier expressions
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sik1ij =2{Yik/[V2(Yik +Yjk)] - I} jwJ = I

For a
Jk

= a
k

and w
J

:::: W, as may again be assumed forthe average adaptation level of
a set of ranaomly presented, sensory stimulus pairs for each individual, we have

\k1ij = 2{Yik/ [(l-w}ak + Y2w(Yik + Yjk)] - I }. IaJk = ak; wJ = w

What has been said for adaptation level shifts towards the sensation of memorised
target stimulus j or a repeatedly presented stimulus j here mainly applies also to
adaptation level shifts towards the space-midpoint of i and j in the Bower space. Its
effects on response space distances similarly are that
a) dissimilarity responses Ir.. 1ij I become relatively the larger I) the larger the Fechner

sensation distances betw~n i and j are, 2) the smaller their shifted adaptation level
is, and 3) the closer shifted adaptation level are to the Fechner midpoint sensation;

b) dissimilarity responses Ir.. lijl become relatively the smaller 1) the closer the
Fechner sensations i andj lke, 2) the larger their shifted adaptation level is, and 3)
the more remote shifted adaptation levels are from the Fechner midpoint sensation;

c) dissimilarity responses Ir..1 ij Igenerally become increased with respect to their
response distance Ir .. 1 witiYan unchanged adaptation level, but can become reduced
for dissimilar Fech&r sensations i and j with a relatively high Fechner midpoint
sensation, because the relative change of the intensity-comparable sensation
distance generally dominates over its reduction to response distance.

This is illustrated in the next table for unidimensional sensation pairs (y.,y.) with
Fechner distances of 1, 2, 4, and 6 for w:::: 0.8 and a = 4. The Fechner and lntknsity
comparable sensation distances for constant and shifted adaptation levels are shown as
well as their open-Euclidean response distances Ir.. 1= Ir. - r.1 for constant adaptation
level a =4 in responses r. = tanh[-(y.la - 1)] and r.1t;,tanhl-(Y.la - I)] and respectively
Ir.. lijI = IL - LI for shiftJd adaptatio1n levels a.. d(l-w).a + ~w.(y. + y.) in responses
r. 11 tanh[-(Y.lL -1») and r. =tanh [-(y.la.. - 1»):-The table below sh6ws the dominating
effect of ad~pl1tion-leveIJshiftsto ;rlidYoint sensations on the intensity-comparable
sensation and response distances, as illustrated by the markedly different rank orders
of response distances ILl with respect to the similar rank orders of intensity
comparable sensation distYnces y.-y.l/a.. and response distances IL.Iij I.

1 J IJ lJ

i,j ~Y_i-_\I IY,-Y,l/a a, , IYi-Yj I/aij
ronk

I_r~j ~ ronk I r, , Iij I ronk
- -

_l_d __ rJ - - -
rJ

- -
0,1 1.0 0.25 1.2 0.833 7 0.126 1 0.762 7
2,3 1.0 0.25 2.8 0.357 3,4 0.217 3 0.379 4
4,5 1.0 0.25 4.4 0.227 2 0.245 4 0.236 2
6,7 1.0 0.25 6.0 0.167 1 0.173 2 0.170 1
0,2 2.0 0.50 1.6 1.250 8,9 0.299 5 1.166 9
2,4 2.0 0.50 3.2 0.625 5 0.462 7 0.643 5
5,7 2.0 0.50 5.6 0.357 3,4 0.390 6 0.362 3
0,4 4.° 1. 00 2.4 1.667 10 0.762 8,9 1.436 la
4,8 4.0 1. 00 5.8 0.714 6 0.762 8,9 0.701 6
0,6 6.0 1. 50 3.2 1.875 11 1.224 10,11 1.523 11
2,8 6.0 1. 50 4.8 1.250 8,9 1.224 10,11 1.140 8

Table: Effects ofadaptation-level shifts (a = 4; w= O.8)onsensationand respoflSe distances
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The adaptation-level shifts towards that midpoint cause that response distances become
the more enlarged the more the adaptation level shifts downward {pairs (0,1), (0,2),
(0,4), (2,3), (2,4) and (0,6)} and the more reduced the more the adaptation level shifts
upward {pairs (6,7), (4,8), (5,7), (2,8), and(4,5)}. However, for pairs with low Fechner
midpoints the changes are larger than for pairs with high Fechner sensation midpoints,
which is nicely illustrated by the pairs (0,4) and (4,8). The table also illustrates that
response distances for relatively small Fechner sensation distances can become larger
than for relatively large Fechner sensation distances. All dissimilarity responses for
stimulus pairs with equal Fechner sensation distances show that the Fechner distances
for pairs (O,j) become the largest response distance within their group ofequal Fechner
sensation distances, due to their lower sensation midpoint and, thus, smaller value of
shifted adaptation level that by twice its inverse value as weight define relatively larger
intensity-comparable sensation and response distances.

The fact that adaptation-level shifts in studies on identification of stimuli or on
similarity evaluation of stimuli can systematically influence the evaluation, has already
been shown by Capehart et at. (1969) in several experiments more than 35 years ago.
In support for their stimulus equivalence theory Capehart and co-researchers even have
demonstrated that experimentally induced systematic shifts of adaptation levels can
induce a stimulus to appear more similar to another stimulus than to a copy of the
stimulus itself. Such stimulus identifications are here on the one hand described by the
influence of single stimulus-dependent shifts of the adaptation level on response
distances, as dependent on their Fechner sensation distance and on the eccentricity and
sign of the Fechner-Helson sensation of a target stimulus j. On the other hand such
similarity evaluations are here described by the influence of adaptation-level shifts
towards the sensation midpoint of presented stimuli i and j, where the changes of the
response distances depend on their Fechner sensation distance and on the eccentricity
and sign of their Fechner-Helson midpoint of pairs (i,j). Eccentric target stimuli and
eccentric stimulus pairs clearly have larger stimulus-dependent shifts than target stimuli
or stimulus pairs in the proximity of the geometric centroid of all stimuli. Since the
average adaptation level is defined by the geometric centroid of all stimuli, central
sensation pairs with small shifts hardly influence their response distances, while
eccentric sensation pairs with large upward shifts reduce the response distances or with
large downward shifts markedly increase the response distances.

Since familiar stimuli are stimuli with low or average stimulus intensities,
unfamiliar stimuli are by definition eccentric stimuli that generally have relatively high
stimulus intensities. Therefore, unfamiliar sensations cause relatively large upward
shifts of the average adaptation level and thus also markedly reduced response
distances with respect to their Fechner or Fechner-Helson sensation distances and to
their response distances without adaptation level shifts. Unfamiliar stimuli with same
Fechner sensation distances as familiar stimuli show by their upward shifted adaptation
levels not only reduced intensity-comparable sensation distances, but also more reduced
response distances. This follows from the projective transformation of the intensity
comparable sensation distances to distances in the response spaces, which distance
transformation not only depends on the distance between the intensity-comparable
sensations, but also on the distance of their midpoint to the shifted adaptation point as
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projection origin. The upward adaptation-level shift for unfamiliar stimuli generally
approaches not their sensation midpoint, because adaptation to unfamiliar stimuli would
make them familiar. The reduction of response space distances for unfamiliar stimuli
are thus in two ways dependent on stimulus-dependent shifts of the adaptation point.
Single stimulus-dependent shifts of adaptation level for familiar stimulus i and
unfamiliar stimulus j cause asymmetry of distances (ili) and (ili). Single and pair-wise
stimulus-dependent shifts cause also intransitivity of dissimilarities for familiar as well
as unfamiliar stimuli. Their dissimilarities are no longer transitive (not satisfying the
quadrangular distance inequalities, as specified by corollary 3 in section 6.1.6), because
the adaptation level shifts towards the target stimuli in pairs of respectively (~i), (iU)
and (f[j) or towards the midpoints of respectively (f,i), (i,j) and (fj) may increase the
dissimilarity distance for familiar stimuli, while they decrease for unfamiliar stimuli,
both with respect to their transitive dissimilarities with a constant adaptation level. If
eccentric stimuli are added (Q or deleted from the set then the average adaptation point
may shift markedly, which then may cause also markedly changed dissimilarity
response distances.

7.1.4. Stimulus- and task-dependent attention dynamics
Weight wj approaches the more the value of unity the longer the exposure time is,
whereby the adaptation level a

Jk
shifts to V2(yik+Yjk) ::: a

ijk
and for wJ :::1

dijk/[(l-wJ).aJk + V2Wt(Yik + Yjk)] ::: dijk/aijk IV2(Yik+Yjk)::: aijk,

while if wj < I depends on the time of exposure to stimuli i,j then either

dijk/[(i-wj).aJk +V2Wt(Yik +Yjk)]>dijk/ajk if Y.!(Yik+Yjk)< ajk,

dijk/[(l-wJ).aJk +V2Wt(Yik + Yjk)] <dijk/aJk if V2(Yik+Yjk) > aJk,

where the last distances inequalities decrease the more to equality the closer wJ is to
unity or the longer the exposure to stimuli (i,j) is. It expresses an exposure-time and
stimulus-dependent weighing of intensity-comparable sensations for individual
similarity evaluations of stimuli. The last two expressions mean that a dynamic increase
of dimensional sensation distances occurs the more the smaller the difference between
the midpoint sensation and the sensation threshold is, because intensity-comparable
sensations with shifted adaptation levels towards sensation midpoints have dimensional
weights that are the larger the more the dimensional midpoint sensation approaches the
zero value of the dimensional sensation threshold.

On the one hand the stimulus- and exposure-dependent shifts of the dimensional
adaptation levels define what in cognitive psychology is described as gradually more
attention to initially less-noticeable object attributes of the dissimilarity the longer the
exposure to objects is. On the other hand the dimensional sensation attributes that are
unnoticeable for both stimuli clearly are irrelevant for dissimilarity eval uations, because
if Y. k ::: Y

ilL
::: 0 then also d

J
..

k
::: 0, which also holds for weB-noticeable stimuli with

unn51icea'ole sensation distaHces, independently of the stimulus exposure time. But, if
the dissimilarity of a pair (ij) is compared to the dissimilarity of pair (g,h) that have
well-noticeable sensation distances for dimensions whereon pair (i,j) has ulllloticeable
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sensations then again these dimensions will get again relatively higher weights or
relatively more attention than when pair (i,j) also has well-noticeable sensation
distances on these dimensions. For similarity evaluations between i and j that have
unnoticeable sensations for stimulus j or Y

jk
'" 0, it follows from

dJijklij ::: dijk/[( I~wJ)-aJk + \12W{(Yik + Yjk)],

byyjk=Oand wJ = 1 that

dJijklij ::: dijkl(wJ::: I'Yjk =: 0):::: 2Yik/(V1Yik) ::: 4.

Thus if either stimulus j or i is unnoticeable then the corresponding dimensional
sensation distance between i and j under full adaptation becomes constant,
independently of the intensity of the other stimulus. Under full adaptation as w

J
= 1,

we further notice that well noticeable stimuli Y
ik

> 0 and Y
jk

> 0 we have

djijklij = dijkl(Wj=l) = 2!Yik - YjkIJ[Y2(Yik + Yjk) < 4.

A Euclidean Bower distance d.. kl(wJ=I) for dissimilarity evaluations between i and j
becomes by full adaptation to n\\opomt (i, j) written for m. dimensions with Y'k = 0 and
Y·

k
> 0 and for m. dimensions with Y'

k
=0 and Y'

k
> 0, while other m dimen~ons have

I I I J
Y·

k
> 0 and Y'

k
> 0, by

J I k=m 2
d.. I(wJ"I) " 1[4(m. + m.) + l:, 12d ·· k

/(Y·k + Y·k)) ]
IJ I J IJ I J

Similar things hold for hyperbolic Bower spaces, where cosh(d.. ) becomes written by
products of hyperbolic cosines for dimensional sensation distarltes. The dissimilarity
responses for intensity-comparable sensation distances of pairs (i,j) with w.l = I depend
on the respective dimensional adaptation level shifts to V2(Y.k.+y. ) as the i:Iimensional
sensation midpoints ofthe presented stimuli. It represents a shm~s-dependentchange
of attention to dimensional attributes, where the order of distances d.. I(wj =: I) and
d

f
I(wJ =: I) depends not on the number of dimensions with unnoticeablPsensations for

i llf j and for g, if that number is equal for all compared pairs (i,j) and (f,g), since then

/[4(m. +m.)] =:/[4(mr+m )].
, J g

However, if (m.+ m.) and (m/+m ) are different then the order of d.. and d
f

will tend
to be the same 1s th! order 0 (m~+ m.) and (fi

f
+ fi ) and equals /bat orcrJi. if ill (the

number of common dimensions {"ith ~ell-noticeabl€. different sensations) is smaller
than the minimum of (m. + m.) and (mr + m ), because

'J g

dijkl(wJ=I; Yik > 0; Yjk > 0) < 4.

This type of attention is induced by the presented focal stimuli and, therefore, its
attention has a psychophysical and not a cognitive origin.

Some types of attention may be regarded as mainly task-dependent and memory
based. For example, in the evaluation tasks for dissimilarities of stimulus i to j, where
stimuli i are presented and compared to a memorised target stimulus j, the dimensional
attention differs from the discussed dimensional attention in (dis)similarity evaluations
between stimulus i and j that are both presented. For this (i-to-j)-similarity the
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asymmetric similarity can be explained by task-dependent. cognitive shifts of the
adaptation level towards the reference sensation of j as response distance Ir.1 to r. = o.
For example, if the dissimilarity evaluation of North Korea is expressed by simi~arity
ratings on the rating scale for similarity to China then the shift is towards the reference
sensation of China and reverse in the dissimilarity evaluation of China on the rating
scale for similarity to North-Korea. where the shift is towards the reference sensation
of North-Korea. It yields dissimilarity evaluations of asymmetric distances dj1j of
stimuli i with respect to target stimulus j or of d'r with respect to target i, becausl¥for
w

J
= I in a (i-to-j)-similarity we obtain J 1

diUk/[(l-wJ).aJk + W{Yjk)] =21Yik - Yjkl/Yjk =21 yikl Yjk - I1

and (j-to-i)-similarity

djlik/[(l-w).aJk + w·Yik)] =21Yik - Yjkl/Yik =21Yj/ Yik - I i.
We assume this to hold for (i-to-j)- and (j-to-i)-similarities, instead of similarities
between i andj. It not only applies to similarity evaluations of cognitive objects with
respect to a particularcognitive target, but also to stimulus confusions orcategorisation
or recognition tasks wherein faintly and/or shortly presented stimuli i have to be
identified or categorised as a stimulus or category j that is not presented, but
memorised. For example, in a task where a shortly presented colour i (e.g. pink) has to
be identified as belonging to one colour category (e.g purple, red, pink or orange) from
a list of colour category names. This matter is further discussed in section 7.2.

Notice also that intensity-comparablesensations close to the just noticeable level
are never located very eccentrically, because its weighted dimensional difference from
adaptation level 2(y.

k
- aJk)/a

Jk
= 2Yik/aJk - 2 approaches minus two for Y.k

approaching zero. ThJrefore, stimulus pam ofsimple stimuli (ij), which by definitidn
have several dimension intensities below their perception thresholds, have adaptation
level shifts towards eccentrically low sensations for i, or j, or i and j. Thereby, the
intensity-comparable sensation distance between simple stimuli (ij) always reduces
relatively less than the intensity-comparable distances for unfamiliar complex stimuli
(f,g). This follows by definition, because on almost all dimensions unfamiliar complex
stimuli (f,g) will have relatively high values Yfk/aJk +ygk/aJk > 2, whereby wJ < I for

(dfiaJ)/[( l-wJ) + Y2W{(Yf + Yg)/aJ1 < df/ar
For simple stimuli (i,j) with several unnoticeable sensation dimensions we have

(di/aJ)/[(l-wJ) + 1/2w{(Yi + ylaJ] > di/aJ'

because pairs of simple stimuli with Y.
k

= 0 and/or Y.k = 0 on several dimensions the
dimensional midpoints are either zero lor satisfy (y.kfY

Jk
+ y.k/a

Jk
) < 2, whereby each

of the non-zero dimensional distances satisfy 1 J

(dijk/aJk)/[(l-WJ) + Y2w{(Yik + Yjk)/aJkl > dij/aJk·

Thus, the intensity-comparable sensation distances increase for simple stimuli (i,j) with
few moderate and several zero intensities Y

ik
and Y

jk
and they reduce for unfamiliar
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complex stimuli (f,g) with relatively high intensities y and y on almost all
dimensions. This difference between stimulus-dependeJf adap&~on-level shifts
towards moderately low midpoint values forsimple stimuli and towards relatively high
midpoint values for unfamiliar complex stimuli can be seen as a stimulus-induced
attention difference, where attention is high for simple stimuli and low for unfamiliar
complex stimuli. Moreover. although all intensity-comparable sensation distances
become reduced to response distances, the response distances for simple stimulus pairs
are much less reduced than for unfamiliar complex stimuli, because the latter distances
are more eccentric located. In cognitive psychology terms it means that an individual
pays more attention to simple stimuli than to unfamiliar complex stimuli, but this
cognitive phenomenon actually is caused by differences in stimulus-dependent
adaptation level shifts. Notice that also a complexity-induced, internal repetition of
complex sensations (and their mediating response sensations) may occur, which may
extend over the time interval of their presentation. It then may cause a further shift of
the adaptation level towards these cognitively complex stimuli or objects, comparable
to longer of more often presented stimuli, whereby w = 1is approached. However, the
stimulus-dependent, relatively low attention to unfamiliar, physical objects is not
counteracted by a complexity-induced repetition, because the given inequalities for
unfamiliar stimuli are increased if values w

J
increase to w

J
=1. This also holds for

sensory stimuli, where a quick sensory adaptation generally will cause that a
Jk

= a
k

as
identical, dimensional average and adaptation level of the stimulus set" for all
individuals. Cognitive psychologists generally argue that complexity and unfamiliarity
attention not only depend on sensation intensities, but also on memory and knowledge
of individuals, because the presented set may be complex and/or rather unfamiliar for
one individual, but simple and/or rather familiar for another, dependent on their past
experience with similar object sets. It implies that differences in individually stored
adaptation levels a

Jk
then individually dominate over common sensory adaptation to

the average sensatIOn, which indeed would cause individually different, intensity
comparable sensation distances. We follow that cognitive psychology terminology,
since it differentiates between common stimulus- and task-dependent effects and
individual memory-dependent effects of cognitive unfamiliarity and complexity.

7.1.5. Dual stimulus-pair dependence ofadaptation-level shifts
Dissimilarity rank order evaluations between simultaneously observed pairs of stimuli
or physical objects for random pairs (i,j) and (f,g) may be relatively less influenced by
adaptation-level shifts, because the average adaptation level of the fixed set of stimuli
then may dimensionally shift to the dimensional sensation centroids of four random
stimuli of two presented stimulus pairs. It would define a double stimulus pair
dependent weight for the intensity-comparable sensation distance. The reciprocal
weight then contains four sensation terms for the stimulus-dependent shifts of the
individual adaptation level and for dimension k is written by

sJiklijfg = 2{Yik/aJijfgk - I}

ajijfgk = (l-wj}ajk + IAw{(Yik + Yjk + Yfk + ygk)

If the adaptation point shifts towards the sensation space centroid of (i,j ,f,g) then shifts
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for randomly chosen pairs of stimulus pairs will often be minor, even for w
J

= J, due
to the often rather small deviations of centroids of four random space points from the
centroid of all space points. Nonetheless, also sensation centroids of four stimuli can
deviate from the overall sensation centroid for all stimuli, where the adaptation level
shifts are the larger the more eccentric the sensation centroid and the longer the
exposure time is for the four stimuli or objects in the pair-pair dissimilarity comparison
of sequentially presented pairs of stimulus or object pairs. Here the effects on response
distance comparisons are thus dependent on (I) the exposure time, (2) the eccentricity
of their sensation subset centroid (3) the unfamiliarity and complexity of the stimuli
(where the shift is upward for unfamiliar, complex stimuli and small or downward for
respectively familiar or eccentric, intensity-low stimuli), and obviously also (4) the
distance differences between the pairs in the Fechner sensation space.

The overall sensation centroid for sensory stimuli or physical objects may
determine individually identical, dimensional adaptation levels a

Jk
= a

k
, but adaptation

level shifts are rather quick and almost complete (w
J

= I) for fong enough observed
pairs of sensory stimuli or physical object pairs and, thus, may also cause that
symmetric dissimilarities become intransitive. If the average adaptation levels are
different for different individuals, as one generally may assume to hold for cognitively
presented object pairs, then possible shifts of adaptation levels become no longer
expressed by the same dimensional shift factors for all individuals, but by dimensional
shift factors that are dependent on the object pairs and the individual. This implies once
more that one must separately analyse for each individual the dissimilarity responses
for cognitive object pairs and here also under individually different correction factors
for the compared object pairs, because the individually identical terms that describe the
object-dependent part of the adaptation-level shifts are also shifts with respect to
individually different average adaptation levels. A similarity evaluation for pair (i,j) as
more dissimilar than pair (f,g) for stimulus or cognitive object pairs that are
simultaneously presented, implies a response distance comparison d(r.,r.) >d(rfr ) that
is based on responses to intensity-comparable sensations with weikhh of tWiEe the
inverse value of the shifted adaptation level towards the sensation centroid of stimulus
subset (ijJ,g), which centroid also is the changing projection origin of the projective
transformation from intensity-comparable sensation to response locations of stimuli i,
j, f, and g. These dissimilarity evaluations d(rrrr) = rJ"' requires a comparison of
distances between responses 1 J IJ

'1.1 i,j,f,g = tanh(y.Ja
1

--
f

. 1)
and 1 llJg

'J.1 i,j,f,g = tanh(y.Ja1-- f - I),
J J lJ g

where open-hyperbolic response space distances from flat sensation spaces specify

'1.. 1 i,j,f,g = cosh(r
1

_. 'J-)-
IJ I J

and for open-Euclidean response space distances from hyperbolic sensation spaces

rJijl i,j,f,g = IrJi -rJjl.

which equal not tanh[ Iy. - y.l/a
1

_-
f

1 unless either y. or y. coincides with a
J

__
f

' where
lJIJg Jl lJg



and

322

then either fJ.1 i,j,f,g::: 0 or f
Jj

'! i,j,f,g::: O. For a single-elliptic response space we have
responses J ..

'J.1t,J,f,g= arctan[2{yJa
J

··
f
, -11)

1 I IJ g

'J"' i,j,f,g::: arctan[2{y.la
J

··
f

- I}1
J' J IJ g

with single-elliptic repsonse distance

rJij Ii,j,f,g::: cos(rJi - rJ/
Here all these response space distances then satisfy symmetry

'J,.I i,j,f,g::: r
J

.. !i,j,f,g,
lJ JI

because pairs (i,j) and (j,i) have the same shifted adaptation level within simultaneously
presented subsets of stimuli i,j,f,g and thus will show transitive and symmetric
dissimilarities forthe pairs from subset (i,j,f,g). However, pairs from subset (i,j,f,g) and
pairs from subset (i,j,f' ,g') will have differently shifted adaptation levels, whereby pair
(i,j) in the dissimilarity orders of (i,j) and (f,g) and of (ij) and (f' ,g') can refer to a
different response space distance (i,j) and then can cause intransitivity of symmetric
dissimilarity rank orders. Adaptation is complete for w

J
= 1 and then a

rf
= a"

f
'

because the term (I-w
J

).a
J

vanishes, and defines I) g I) g

'J··f =lA(y'k + Y· k + Y.,. + ygk) =a" f .
IJ g I J Ill. IJ g

For several subsets of four objects with a different dimensionality it can mean that the
same pair (ij) in the subspace for (ij,f,g) and the subspace for (i,j,f' ,g') are evaluated
with respect to different attributes that characterises each subspace of four objects. This
not only is predicted to occur for sensory stimuli, but also for cognitive objects from
nonhomogeneous sets of cognitive objects. where dimensionally different subsets can
cause suddenly shifted adaptation levels for cognitive object subsets. In sequentially
presented pairs (i,j) and (f,g) it may be that the adaptation level firstly shifts to the
sensation midpoint of (i,j) and then secondly to the sensation midpoint of(f,g), whereby
we also have symmetric similarities that may become intransitive. Dissimilarity
evaluations generally are evaluations between stimulus or object pairs with stimulus
or subset-dependent response distances that may yield intransitive rank orders of
symmetric dissimilarities.

7.1.6. Dynamic cognition and preference rehItivity
The average adaptation levels of individuals can be more or less identical for fixed sets
of sensol)' stimuli or physical objects, but in studies where cognitive objects are
presented by words this may not hold if the educational and cultural background of
individuals are different. The adaptation and the ideal levels for a set of cognitive
objects are not primarily based on the momentary set of presented cognitive objects, but
mainly on the memory-stored, temporarily static levels for similar previous sets of
cognitive objects that are associated to the presented set of cognitive objects. The
memorised adaptation levels may very well be different for individuals, due to
differences in cognitive learning history and affective development. Individual ideal
levels certainly are different, because every individual has a different history of
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affective reinforcements for the same objects. Although cognitive adaptation levels are
based on individual memories of adaptation levels for cognitive object sets that are
similar to the presented cognitive object sets, also the presented cognitive objects
within the set may cause some momentary shifts of the adaptation level towards the
presented cognitive objects, especially if the association with the physical objects is
reinforced. Such shifts for cognitive objects generally are absent or minor, because
based on memorised reference levels from similar object contexts in the past.
Nonetheless, also presented cognitive objects that refer to physical objects or stimuli
from a nonhomogeneous set of cognitive objects may partially shift the average
adaptation level for the set in similar ways as for sensory stimuli. Moreover, as
discussed before, subsets of cognitive objects with a different dimensionality as well
as similarities of cognitive object i with respect to target objects j «or object pair ij
with respect to target object pairs f,g) may relate to individually other stored reference
levels for the respective target objects or subsets, because the memorised sensation
contexts for such memorised target or subset sensations can be individually different.
Thus, the momentary adaptation or reference or ideal level for cognitive objects can
partially shift in a gradual way, if there exist associations with corresponding physical
objects. Nonetheless. suddenly shifted adaptation orreference levels likely can be more
often expected, if subsets of cognitive objects are characterised by different attribute
subspaces or i likely more often f the evaluation task requires the selection of different
reference levels. In subsection 7.4.2. we extensively discuss intransitivity of utility- and
risk-dependent preferences that are shown to be caused by adaptation-level shifts orby
a different attribute dimensionality of gamble subsets.

Only for individuals with a common educational and cultural background the
stored adaptation levels for cognitive object sets and subsets will be similar and
otherwise most likely different. Moreover, different repetitions of presented cognitive
objects and a temporary deletion of objects, as well as a temporary addition of objects,
also for objects that are characterised by same dimensional attributes, will also cause
a shift of the adaptation level with respect to the adaptation level for a fixed set of
cognitive objects that are equally frequent presented. The shift of the adaptation level
is then towards the most frequently presented or added objects and away from the
deleted objects. Such shifts are mathematically comparable to adaptation-level shifts
fornonhomogeneous sensory stimuli, but actually are often sudden discontinuous shifts
that are caused by selection of other static levels in memorised attribute subspaces for
different (sub)sets of cognitive objects. Moreover, cognitive objects need not to be
characterised by common dimensional attributes. but may have individually different
dimension atu'ibutes, such as the individually different unfamiliarity, novelty,
complexity and/or ambiguity of cognitive objects. due to different past experiences of
individuals with the same cognitive objects. Cognitive object sets or subsets then can
individually differ in complexity, unfamiliarity, novelty, and/or ambiguity and then not
only may refer to other stored contexts and conditions for subsets with individually
different, stored reference levels, but also may induce, thereby, differences in cognitive
attention to attribute dimensions Inter- and intra-individual differences in cognitive
attributes for cognitive objects can again cause differences in intensity-comparable
sensations and especially for individually eccentric object pairs, where complexity
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attention also can produce internal repetition of the sensations and mediating response
sensations that are associated with the cognitive objects. Similar to prolonged
presentations ofphysical objects it then may cause also complete adaptation-level shifts
to cognitive objects, while cognitive objects from nonhomogeneolls sets also may have
dimensionally different object subsets. Thus, mainly nonhomogeneolls contexts of
cognitive objects will cause that the reference levels differ and/or shift intra
individually, because such sets of cognitive objects contain subsets that are
characterised by different dimensions for each subset. The type of similarityevaluation
is important, as it is for similarity evaluations of objects (i,j) with respect to target pair
(f,g) and adaptation-level shifts to the sensation midpoint of (f,g).

The ideal level gJ = In(p/b ) =V2In(zJfb ) is defined by a fixed stored saturation
level sJ =In(z/u ) and the possib1y shifting adaptation level a

J
=In(b/u

J
), whereby

also the ideal leve1 shifts if the adaptation level shifts. Due to the fact that sJ is constant
and gl = Y2(SJ - a

J
), the ideal level shifts by half the shift of the adaptation level. For

intenslty~comparableand valence-comparable sensation dimens ions these dimensional
adaptation and ideal levels detennine by 21a and 111 gJI dimensional sensation weights
that are equal if the deprivation level equals {hejust noticeable level. These weights not
only are individually different, but also differ intra-individually for so far as the
adaptation level shifts to presented cognitive objects or shifts suddenly to individually
different stored levels for object subsets that have different dimensional attributes.
Valence-comparable sensations are weighted sensation differences with respect to the
ideal level and, thus, also depend on idea! level shifts from adaptation level shifts. The
dependence of the ideal level on the adaptation level also tells that ideal level shifts for
valence-comparable sensations are half as large as the adaptation-level shifts. Since
valences are defined by multiplicative response functions of weighted sensation
distances to the ideal points (weighted by the inverse distance between the ideal and
adaptation points), shifted adaptation levels characterise also valence space changes.

In summary: comparable sensations are weighted sensation differences with
respect to the adaptation or ideal level, which are weighted by twice the inverse value
of the distance between the adaptation and just noticeable levels or by the inverse value
of the distance between the ideal and adaptation levels, where the shift of the adaptation
level can be task-dependent and different for different individuals and are different
within an individual if (I) momentary adaptation-level shifts to stimuli or objects are
present and/or (2) if presented stimuli or object pairs or subsets have a reduced
dimensionality or (3) if task-dependent selections of reference levels for target stimuli
or objects are induced. The changes of stimulus or object subset dimensionality and/or
dimensional weights influence the values and distances of comparable sensations and,
therefore, influence response differences and distances and single-peaked valence
values. Individual, memory-dependent and/or object-dependent shifts in adaptation
levels and/or dimensionality reductions cause the response-space distances to be
different, due to the projective response transfonnation of the intensity-comparable
sensation space with respect to the individually shifted adaptation or ideal levels as
projection origin. Shifts of the adaptation level a

J
= In(b/u) influences the ideal point

gJ::: In(p fb
J
), while single-peaked valences depend on tne distance between the ideal

and adap{atlon levels, also single-peaked valences depend in similar ways on object-



325

dependent adaptation-level shifts. The dimensionality of presented object or stimulus
subsets and individual adaptation-level shifts are dynamically dependent on momentary
perception of sensory stimuli and are conditionally dependent on temporary selections
of different, static reference levels for the context and task of the evaluation of sensory
stimuli. For cognitive objects these temporary static levels can be different for
individuals, but may also vary within individuals by object-dependent shifts of the
adaptation level and dimensionality differences and/or by task-dependent selections of
other temporary static, cognitive reference levels for object subsets or target objects.

Therefore, all judgment and preference measurements are dynamically relative
measurements with respect to individual reference levels, that may quickly shift in a
stimulus-dependent way by sensory adaptJ.tion or can slowly shift by adaptation to
cognitive objects that refer to physical objects, as well as can suddenly shift to selected,
temporarily static reference levels for subsets of cognitive objects with a possibly
different dimensionality or to task-dependent cognitive target objects. These
dynamically relative judgment or preference measurements concern measurements in
intra-individually different response or valence spaces that are defined by the respective
isomorphic space transfonnations of the intensity- or valence-comparable sensation
spaces that depend on the dynamically changing adaptation and/or individual ideal
levels and/or depend on dynamically changing subspace dimensionality. One has to
recognise that the manner and order of stimulus or object presentation and the type of
evaluation task are crucial determinants for shifts of adaptation level and/or changing
reference level for selected subspaces with their dynamic effects on individual
responses or valences.

7.2. Perception research and dynamic similarity relativity

Individuals are characterised by different adaptation levels, because their histories of
location in space and time have provided different stimuli in different contexts. Over
the course of time this also causes shifting adaptation levels within individuals.
Nonetheless, the average intensity levels of sensory stimuli can often become their
common adaptation level. For example, in daylight we all perceive the same mixture
of colours, whereby we all are adapted to white and the same level of brightness for the
daylight context. Only in the exceptional cases of coloured light circumstances one
adapts to the different colour and brightness of the exceptional illumination context. In
a dark-red context a bright-red stimulus may induce a colour conversion, as illustrated
by Helson's (1964) experience that the top of his burning cigarette appears as green in
his scarcely red-illuminated dark room. Since sensory adaptation is quick and
individual memories of perceptual objects generally are almost identical, the adaptation
points of individuals that are exposed to same perceptual stimuli from a homogeneous
context in psychological experiments, will be almost identical for all individuals that
have no abnonnal perception capacities. Consequently the individual response
distances fordissimilarity evaluations of randomly selected stimulus pairs from a prior
known, homogeneous setof sensory stimuli will be (almost) identical, because referring
to identical average and hardly shifted adaptation levels, where set homogeneity refers
to normal-distributed stimuli within restricted stimulus-intensity ranges. Euclidean
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MDS-analyses of aggregated individual dissimilarities may then yield stimulus
configurations that fit the dissimilarity rank orders. This holds despite the fact that the
response space is not Euclidean, but open-Euclidean, single-elliptic, or open
hyperbolic, because the Euclidean space representations are then common to all
individuals. It then is not recognised that the configuration is contained in an open
response space, but several spatial configurations with a common adaptation point as
centre in a m-dimensional response space are as well represented in a m-dimensional
Euclidean space, even if the response space is open-hyperbolic or single-elliptic. For
example, the colour circle in any open response space (single-elliptic, open-hyperbolic
or open-Euclidean) with the adaptation point for white as centre remains a circle in a
Euclidean space. A stimulus context of simultaneously presented stimuli may yield a
common response space for all observers, but the response space differs from the
stimulus space. For example, observers of the open field have identical adaptation
levels for their visual space, but the open response geometry of the visual space differs
from the open field geometry, as fUlther discussed in the next section.

7.2.1. The visual space as open-Euclidean response space
The nature of the geometry for the visual space (VS) of the three-dimensional,
objective space has been extensively researched. We can't give detailed references to
the relevant experimental studies in the rich literature on the nature of the VS, but refer
to Suppes (2002, sections 6.4 to 6.8) and to Luce et al. (1995) for VS-research
overviews and references, while Indow (1997) and Helier (1997, 1998) contain
discussions on the apparently non-Euclidean phenomena of the VS. If it is taken for
granted that visual stimulus space is a three dimensional Euclidean space (ES) then our
psychophysical response theory specifies the VS to be an open-Euclidean, three
dimensional response space that derives from the hyperbolic tangent transfonnation of
the hyperbolic space of comparable sensations of the ES. Thus, the VS is specified by
the involution of a dimensionally power-raised ES with respect to dimensionally
different unit points oithe observer. It is important to recognise that the dimensional
unit points are adaptation points that not only are defined by the dimensional range
midpoints of visual stimuli, but also by the observer's position with respect to the
stimulus configuration in theES. Thereby, dimensional adaptation levels and, thus, also
the dimensional power exponents of their subjective stimulus magnitudes, may differ
for equal length, height, and depth stimuli. For centrally perceived stimuli at eye level
the dimensional adaptation level of horizontal lengths at any distance from the observer
is the length-range midpoint itself, but for central heights it is the geometric average of
the height stimuli and their altitudes with respect to the (perspective-projected) eye
level, while for central depths it becomes the geometric average of the depth stimuli and
the distance between the depth stimuli and the observer. Therefore, the open-Euclidean
geometry of the VS is not defined by involutions of rotated ES dimensions, but the VS
generally is an involution of differently power-raised ES dimensions with respect to
dimensionally different unit pints, due to differences between dimensional adaptation
levels that define different weights for comparable length, height, and depth dimensions
of the visual sensation space. It would deserve a more elaborate treatment, but based
on the arguments given below we conjecture that an adequate description of the VS is
given by the open-Euclidean response geometry of the VS as context-dependent
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involution of differently power-raised ES dimensions, where the context-dependence
of the dimensional power exponents is specified by the dimensional stimulus ranges
and the location of the observer with respect to the stimulus configuration in the ES.
The arguments are briefly desribed by:
I) The so-called parallel alley in the VS (series of light stimuli that are subjectively

placed on straight parallel lines symmetrically to the left and right of the observer
in a dark room) corresponds to diverging lines in the ES. Since parallels diverge in
the hyperbolic space, it has been the basis for Luneburg's (1947) theory of a
hyperbolic geometry for the VS of binocular vision. However, the open-Euclidean
VS as visual response space also says that horizontal lines of equal length in the ES
are subjectively the larger the closer they are displayed to the observer, because then
also defining response space distances that are larger the closer they are to the
adaptation point as response space centre of the observer, which explains why the
equidistant parallel alley in the VS corresponds to diverging lines in the ES. As
discussed in section 6.2.3. the power exponents of short and close, horizontal line
lengths are higher (up to 1.12) than for large and remote, horizontal distances
(decreasing to 0.88). The estimation of power exponent c:::: 2·zJa not only depends
on adaptation point a:::: In(b/u), but is also on a factor zas average of z.:::: 2·r./s. for
length responses r. to length sensations s.. Since averaged sensations 6f length1and
distance stimuli e~ual cognitive magnit~de sensations, the estimation difference
between power exponents for close and remote lines represent the response length
difference between close and remote lines of equal length. Therefore, the
equidistant parallel alley in the open-Euclidean VS is represented in the ES by
diverging lines that become again parallels after the horizontal distances between
its diverging lines are transfonned by inverse power exponents of 1/1.12 for close
to 1/0.88 for remote line distances. Similar matters could also hold for open
hyperbolic response spaces as VS, but this would imply that the objective vision
space is hyperbolic and not Euclidean as assumed for the ES. Similar matters hold
not for the VS as single-elliptic response space, because its parallel alleys
correspond in the double-elliptic stimulus space to lines that first would diverge and
farther away converge, which might invalidate the arctangent function as response
function and the double-elliptic geometry for the visual stimulus space.

2) The VS as involution space of the ES preserves the angles between vectors from the
space adaptation point in the ES, but its length/depth ratio invariance is violated by
their larger perceiVed than objective ratios, which phenomena are observed in
experiments by Foley (1966, 1972) and Wagner (1985). This phenomenon
invalidates the hyperbolic VS assumed in Luneburg's theory. However, the
phenomenon of larger perceived length than depth of equal objective magnitude is
inherent to the open-Euclidean VS as involution of power-raised ES dimensions if
the power exponent for length is higher than for depth. For perspective depth
perception the situation is different from horizontal length perception, because the
distance between the observer and the display ofevaluated depth stimuli influences
the adaptation level for depth and the more the remote the depth stimuli are. In the
horizontal plane at eye level the respective adaptation levels at and an.of length and
depth stimuli define power exponents Cl :::: 2/a

l
and Cd = 2/a

d
" lbe horizontal



328

diagonal (C,B) with length x in square (O,C,A,B), where point°is directed toward
the observer in the horizontal plane, becomes represented by the response distance
r
l

= 2·tanh[!Ar\{ln(x) - a/}] in the VS, because its adaptation point is the length
midpoint. Depfu diagona (O,A) ofequal length x becomes represented by response
distance r

d
:::: tanh[ylTd{ln(x) - ad}] in the VS, provided that the depth-diagonal

length x fias point ° as adaptatIOn point, which holds if x equals the distance
between point °and the observer. If a

l
= ad and, thus, if power exponents '[ = t d

then rcl < rl' whereby r
1
1rd > I. For example, If q = Yn{ In(x) - a} :::: {lA, Y2, 1, T} ana

" = r then we obtam rl/r
d

= 2·tanh[Y2q]/tanh[q] = {1.015, 1.06, 1.21, 1.60).
However, in experimental studies a

l
< ad' because the distances between the

observer and point°generally are larger tlian depth stimuli with basis°in indoor
experiments, while average "I :::: 2/a

l
= I holds for horizontal lengths, whereby then

also I :::: t[ > r cl for indoor experiments. Thus, in experiments the ratio r{rd for
length ana depth of equal objective magnitude generally becomes more increased
than in the hypothetical example of equal adaptation levels a

l
= ad' This also

explains why the horizon is perceived as straight, although it is a circular curve part.
3) The open-Euclidean VS for the outdoor field of the ES explains why the moon is

perceived larger at horizon level than in the sky. Size perception of constant sizes
varies with the angle of regard and the spatial direction of the size stimuli (Van de
Geer and Zwaan, 1964), which causes the moon illusion (Van de Geer and Zwaan,
1966). Perceived magnitudes of vertical length behave as subjective magnitudes of
horizontal lengths, ifheight stimuli are relatively close to the observer and centrally
displayed with midpoints on eye leveL This is why the average power exponent of
frontal area on indoor displays is about a half, where t = 0.5 :::: 2/(a

l
+ ah) with

adaptation levels a
l

and ~ for respectively horizontal fength and verticarheight
imply by "I = 2/a

l
:::: 1 that tndeed a

l
= a

h
= 2 and "I =: 2/~ = 1. Indoor experiments

indicate that the average power exponent of vertical lengths with their midpoint at
eye level is indeed about unity, but for vertical lengths with their base above eye
level the power exponent reduces to far below unity. The lower range bound of the
power exponents for outdoor heights with high altitude basis becomes rh '" 0.46
(Baird and Wagner, 1982), which is a much lower range bound than for horizontal
outdoor distances with "I eo 0.88 (Teghtsoonian, 1973). Subjective magnitudes of
frontal area in the outdoor field depend on the altitude of their length and height.
Horizontal lengths at relatively high altitudes generally are lengths at larger
distances from the observer than horizontal lengths at eye level, whereby their
subjective magnitudes are smaller than same lengths that are close to the observer
at eye level, as explained in the first argument above. The adaptation level of
heights at some altitude is increased by the influence of the base level altitude,
which is similar to depth adaptation levels that are increased by the influence of the
distance between the base level of presented depth stimuli and the observer.
Thereby, also heights at altitudes have a larger adaptation level than at eye level and
thus a smaller power exponent for their subjective magnitudes than heights at eye
level. Therefore, areas at eye level are judged larger than at higher altitudes, which
explains why the moon is perceived larger at horizon level than in the sky.
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4) The open-Euclidean VS derives from the hyperbolic tangent projection of the
hyperbolic space for comparably weighted and translated sensations of the ES,
where the comparable sensation space is invariant under linear transfonnations of
the logarithmically transfonned ES. Thus, the involution of the (power-raised) ES
to the open-Euclidean VS solves Suppes' (2002) finite and quantifier-independent
VS and HelIer's (1997, 1998, 2001) search for a VS that is specified by a
dimensionally invariant measurement transfOlwation of the ES.

5) The apparent context dependence of the VS, discussed by Suppes (2002), is implied
by the open-Euclidean geometry for the VS, because the involution of the power
raised ES to the VS is with respect to the space adaptation point, where the
dimensional adaptation levels and, thus, their corresponding power exponents also,
not only are different, but also may vary depending on the stimulus configuration
in the ES and on its distance and altitude with respect to the observer.

6) The observer location and the stimulus configuration in the ES detennine the
dimensional adaptation points for the space perception. However, the open
Euclidean VS in the proximity of the adaptation space point is almost equal to the
ES in the proximity of the observer, which explains why motoric behaviour that is
based on the VS as open response space still copes very well with ES.

7.2.2. The choice axiom, similarity probability and MDS
Individual adaptation levels may be different and then individual response spaces are
different. However, task- and/or stimulus-dependent shifts of adaptation levels may
occur and then yield also intra-individually different response spaces as task- and/or
stimulus-dependent involutions of the stimulus space. In the sequel we discuss how
probabilities for I) confusing stimulus i with stimulus j or choosing stimulus i as
belonging to stimulus category j and 2) choosing stimulus i andj as more similar than
g and j can be consistently analysed by distance transfonnations of so-called biassed
choice probabilities, if task- and/or stimulus-dependent shifts of adaptation levels are
present. In the next sections it is shown that other than existing biassed choice
probability models may apply, if stimulus-dependentadaptation-level shifts are present.
In chapter 4 we described response space analyses that are based on the psychophysical
response theory and constant individual adaptation levels, where these analyses then
also need to be modified if stimulus-dependent adaptation-level shifts are present.

The choice probability that stimulus i is intenser than stimulus j or is more
preferred than stimulus j from a set of stimuli with monotone valences is derived by
Luce (1959b) fonn his choice axiom. The axiom implies that the choice probability for
stimulus i from a set of n stimuli with magnitude scale v is detennined by

p. = v.lll: v],
I I pi g

whereby also p./p. :=: v./v.. For n=2 we have the choice probability for i from pair (i,j)
as I J I J

p.1 (i,j) = v./(v. + v.) = 1/[1 + v./v.].
, I I J J I

Thus the choice probability p.I(iJ) and ratio p./p. for i and j from a set of n stimuli is
assumed to be independent 'from other stimhll This is the so-called property of
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irrelevance of other choice alternatives in the choice set, which irrelevance propertl is
implied by the choice axiom. Defining v. = exp(s.) = exp[2(y.Ja -I)J '" (x./b) as
subjective stimulus magnitude with powJr exponJnt 1" = 2/a t.re can rewr~te this
expression by the logistic discrimination probability function for stimuli i to be intenser
than stimulus j as function of intensity-comparable sensation differences s. with respect

to fixed Sj p..u= II[ I + v.Jv.] :::: 1/{l + exp[-(s. _ s.)]} = II{ I + (x.~x.)1").
I>J JI IJ JI

Several probability functions of a random variable define difference probability
functions for choice-discrimination probabilities between alternatives, but Yellot
(1977) proved that the double exponential probability function is the only probability
function that satisfies the choice axiom for its difference probability function ofchoices
between alternatives. A flat (Euclidean or Minkowskian) sensation dimension s.
corresponds to a hyperbolic stimulus dimension exp(-s.) that has double-exponential
tenus exp[-exp(-s.») forone of its two rectangular EucliJean co-ordinates, as discussed
in section 3.2.1. ~f co-ordinate exp[-exp(-s.») functions as random variable with a
double exponential probability function then1the probability difference s. = 2(y. - a)/a
from s. = 0 is defined by the logistic probability function that corresponds1to res~onses
r. witlh = 0, as defined by
, J ,

p.. = 11[1 + exp(-s.)] = 1/[1 + (b/x.) ] =[1 + tanhWlS.)]/2 =(1 + r.)I2.
I>J=a I l I I

However, if it is written as

p.. = II[ 1+ exp[-(s. - s.)J} = [I + tanhjYz(s. - s.)}]/2 = (l + r.. )/2,
I>J I J 1 J IJ

where -I .<> tanh{yZ(s. - s.)} =r.. = (r. - r.)/[1 - r.'r.) .<> 1, then r.. is a hyperbolic
difference, if sensatioh differencbls. - S.I is Euclideah ~or MinkowskHtn). However, as
discussed in chapter 4, responses to Ifla~sensation differences s. - s. are not defined by
tanh{Y2(S. - s.)}, but defined by open-hyperbolic resporise Jspace differences
±cosh[tarihW2S~) - tanh(YlS.)] = ±cosh(r. -r.). Thus, only if r. = 0 the last expression for
p.. holds, whJreby its prdbability condidonally applies tJ y. - a = 0 or x./b = 1. This
at~J follows from the fact that the hyperbolic tangent projdction of a ffat sensation
space to an open-hyperbolic response space depends on the projection origin. Only if
y. = a then r.. = r., whereby p.. is the conditional discrimination probability of s. with
rJspect s. =lb. Thereby, also1ille logistic probability function only holds for y. ~ a at
p. '" IJJ. Therefore, the choice axiom conditionally holds and defines a conditional
itt:'e'evance of other alternatives, because choice probability p.. is conditional to
reference stimulus j at p. = 1J2, as also follows from the logisticlp}obability function
for differences s. - s. w~~espect to zero difference with p.. = 1J2.

Also onli fo~r. = 0 the hyperbolic distances r.. = I(r!:'-\-.) iI( I - r..r.) reduces to
r., whereby 1r.

1

. 1= tahh[ Iy. - y.l/y.] with a = y. alsJldefinb cdnditionJI dissimilarity
Jrobabilities 1J 1 J J J

PiU= iriUI =tanh(lsiUI)=.<> I

for any s. with respect to s. = O. We obtain by the probability complement of hyperbolic
dissimillrity responses f6r intensity-comparable sensation distances to y. = a the
confusion probabilities p.1j = I - p. U that stimulus i is confused with sti~lus j (or
identified as stimulus j, d categoris~d as belonging to category j) as defined by
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p, U= I - IL I = I -lanhilY, - y,l/y,) = 2J[l .,xp(-2IY, - y,l/y,), IY, = a
I 1 IJJ IJJ J

Thus, conditional confusion probabilities equal twice the symmetrically 'folded'
discrimination probabilities for s. :?; s. = 0, where it applies to the similarity of any
stimulus i with respect to stimuluJ adaptation point j as response space distance to its
space origin r. = O. Also only if adaptation level shifts to a = y. we can write similarity
probability p}.I·j by the conditional choice axiom as J

'J g.n

p"l,j ="I.I[L' I']' I'J",j' = I
lJ I J g=l g J

whereby the probability that stimulus i is more similar to stimulus j than stimulus g
becomes by d.

l
"= 2Iy.- Y.I ]/y. written as logistic probability function

I J 1 J J
p"lgj=11(1 +v IJv'I,)=lI[l+exp(d'I,-d ,,)],

IJ gJ IJ lJ giJ

2p.. lgj -I =c..lgj =lanhW>(d 1,-d'I')] =(1, 1,1-1'"IYil -" 1,1'1"1 I)
I) IJ gJ IJ "gJ llJ 'gj lJ

is the response space difference between dissimilarity responses Ir 1.1 and IrT I with
L ::: 0 as common origin and where dissimilarity response Ir.

l
. ~ ~ defme~ -by the

i-hvolution of dissimilarity measure Ilv'l' "" exp(d.
I
.) as foUowJ ~om

I J I J
1"1,1 = "nh( IY, - y,l/y,) = tnnh[-V,ln(v" ,)] = [l - v'I,]/[ I + v'I']'

IJ IJJ IjJ IJ IJ

Here v.U= exp(-d
l

)and veri i = exp(-d li) are conditional similarity magnitudes of
stimul/ ith respec1t {o stimJ.C1'US j in a hy~ bolic stimulus space with v '1' = 1 as unit
point. For T. = 2/y. we have J J

J J ±r.

v'l' = exp(-2[y. - y·l/y.) "" exp{ -T.·lln(x./x.) IJ} = (x./b) J < 1 Ix. "" b
lJ I J J J I J I J

as power-raised stimulus fraction x.lb. if x.1b < 1, or b/x., if x./b <: 1, with x./b = 1 as
, Id" I I I I Jstlmu us a aptatlOn pomt.

A flat sensation distance Iy. - Y.I can also derive from a double-elliptic stimulus
space with exp[-l·exp(-s.)J as temls f6r one of its rectangular Euclidean co-ordinates
(see section 3.2.1.), but~. = l·exp(s.) yields by 1/[1 + v./v.] = I/{ 1 - exp[-(s.- s.)]} > I
no probability function ahd thus vi61ates the condition!1 6hoice axiom alsolfo} s. = O.
However, we see that In(~v./v.) relates to the Cauchy distribution function J

J ' , 2
p, . "" I/{n[1 + {In(-v./v.)r]}= l/{n[1 + {2(y. - y.)/a} ]}

l>J J I I J
By v. = "j·exp(s.) and v. "" "i·exp(s.) = 1 = v-I for s. = 0 we have v.. "" -l/v. "" exp(-s.. )
that Jatisfies th~condifJonal irreltvance of other clltematives, beclJ-bse diflerences o¥l.
to s. = 0 in a flat sensation space depend not on other space points. while 1

J
tan(L

I
.) = tan[arctan{2(y, - y. )/y.}] :::: 2(y. - y. )/y.,

lJ IJJ IJJ

p, ,= I/{rr[1 + (In(-V,,))2]] = I/{rr[l + lan~L I')]] I, = y,
I>J I I J J

Here the Cauchy distribution function for differences from y. = a as median centre of
its symmetric distribution has the cumulative probabilities J. .= lA and p.. = % at
levels y. = ±Ym, because its mean and standard deviation exisf~ot (all moml~r1ts of its,



332

distribution are zero, see Wilks, 1962, p. 256). Its integration (Courant, 1960, p. 150)
yields LI/tr. :=: arctan(s'I.)/x, whereby LI.ln :=: 2p, . - I defines the Cauchy
discrimihiltion prohabilif:, function I J I>J

p.. :=: [I + arctan (s'I.)ln]J2:=: [I + L
I
·ht}/2 IY.:=: a

I>J lJ IJ J

for single-elliptic response spaces with unit radius (see section 4.2.1.) and L :=: 0 as
origin. The Cauchy distribution function p . . for sensation differences to y} has its
maximum probability IIn aty. as median. T~~~eby, the symmetrically 'folded,JCauchy
distribution function for flat Jensation space distances d.

l
. :=: 21 y. - y.l/y. defines after

multiplication by tr. the confusion probability I J I J J

p. U:=: 1/[1 + I/v.
I
·] :=: 1/[1 + d~I'] ::: 11[1 + tan2(L

I
.)] ::: COS2(L

I
.)

I I J I J I J I J

for similarity magnitude v' li ::: l/d·
I
" where d~ i :=: 0 yields self-similarity probability

P'I i ::: I. By its squared c6Slne trahJformatiorl \::If single-elliptic response distances it
illtectly relates to the complement of twice the symmetrically 'folded' Cauchy
probability function for discrimination of sensation differences, because the actually
observable confusion probability is defined by

p. U::: I - ILI·I/(V:zn:)::: I - arctan Is'I,I/(V:zn:)
I I J I J

If the adaptation level shifts to y. for sensation distances d. l . :=: 21 y. - y.l/y. then we
also define by analogy to r.. 1gj '" dnh[-V2(d·

I
, -d I.)J the arcu\Hgent-bAsedldis~imilarity

response lJ I J g J

r..lgj:=:arctan(d·I,-d 1·):=:arctan[ly·-y·I-ly -y·I]·
lJ IJ gJ I J g J

The dissimilarity response r..1 gj defines the conditional similarity probability that
stimulus i is more similar to Jlimulus j than stimulus g by

p··lgj ::: [I + r..1 gj/(V:zn:)]J2:=: [I + arctan(d· I,-d 1.)/(V21f.)]I2.
lJ lJ lJgJ

Its differentiation and scaling yields

p"lgj",o;'(I-p"lgj)"lI[l+(d'I,-d I h
lJ· IJ lJ gJ

but defines no proper expression for probability that stimulus i is more similar to
stimulus j than stimulus g, because p .. 1gj :=: I for d·

l
·:=: d Ii and p··lgj :=: 0 for d.l.i ::: 0

and d .:=: 00 or ford .. :::00 and d . Jb is a probabl fty fuBt'tion fo~theequalityb'fd ..
and d

g II~. If v' li ::: I/;H~ i would dJfj~e a similarity magnitude and the conditional choiUJ
axiorfi 'Would itpply th~n it would define

P'j Igj " 1/[1 + (d'l/dgl ],
but this expression derives not from differentiation of p.. 1gj. Since the Cauchy
probability function satisfies the conditional irrelevance of Jlher alternatives, we see
that the conditional choice axiom implies the conditional irrelevance of other
alternatives, but the property of conditional irrelevance of other choice alternatives not
the conditional choice axiom. The property of conditional irrelevance of other
alternatives for choice probabilities should also be evident from the result that the
stimulus, sensation and response spaces are perspective-dependent projection
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transfonnations of each other space with a zero or constant curvature. Choice
probability functions for pair comparison choices not only can be the logistic and
Cauchy probability functions, but also the Gaussian probability function ofThurstone' s
(1927a) theory of comparativejudgment(with identical nonnal distributions for s. and
s. as case V) or several other probability distribution functions of differences lwith
rr\ean or median s. - s.:=: 0 (Yellot, 1977). However, only the logistic and Cauchy
probability functiohs trAnsfonn dimensional differences or distances in a zero curvature
space to probability spaces with a constant space curvature (hyperbolic for the logistic
function and elliptic for the Cauchy function), whereby only the logistic and Cauchy
probability functions satisfy the property of irrelevance of other alternatives. For
conditional distances in single-elliptic response spaces the 'scaled' and 'folded' Cauchy
probability function at p = 1/2 defines the observed confusion or similarity probability
of double-elliptic stimuli, but the 'scaled' and 'folded' Cauchy distribution function at
p = lite defines derived confusion probabilities that conveniently relate to conditional
Euclidean sensation distance by

d.,. =/[(1 ~P'I,)lP'I'],
while IIJ IJ IJ

d'I,~d 1,="n[(2,p"lg,~IHV"')]
IJgJ IJJ

derives from the conditional similarity probability.
Response transfonnations ofcomparable, hyperbolic sensations s. :=: 2(y.Ja - I)

concern a transfonnation of weighted and translated, hyperbolic sensadon spices to
open-Euclidean response spaces by tanh(ljzs.) = r., whereby it holds that, ,

(I + r.)/2 :=: [1 + tanh(Y1S.) )/2 = 11{1 + exp[-2(y.Ja -I)]}., , ,
The open-Euclidean response space defines response distances r.1.to r. = 0, whereby
confusion probabilities of s. with s. = 0 for y. = a are also exprels!d by

, J J

P'I' = I ~ 1<.. ,I = I ~ "oh(IY· ~ y,lly.) = 2/[1 + exp(~2Iy, ~ alia)] IY, = a
1 J IIJ 1 J J 1 J

where exp(-2Iy. - alIa) = exp(-ls.1) is a Euclidean co-ordinate of the hyperbolic
sensation space 'aistance of s. to S. ~ O. Since co-ordinate exp(-s.) specifies no double
exponential function for s., i~ satfufies not the conditional choic~ axiom. But random
differences s. to S. = 0 still1have a logistic probability function, because s.J(s. + s.) has
for s. =0 by definltion a unifonndistribution, whereby the logistic probab!lit9 furlction
ford\fferences s. - s. holds (Laha, 1964), although the random variable s. is not double
exponential. Sinte the logistic probability applies also 1

p.. lgj =1/[1 + «p( ~2(ly ~ y,l ~ Iy·~ Y·llly.)]] =1/[1 + eXp(d'I' ~ d I.)],
IJ g J 1 J J I,) g J

may apply as conditional similarity probability thatEuclidean stimulus i is more similar
to Euclidean stimulus j than Euclidean stimulus g. By its conditional probability with
respect to y. as common reference point, it only requires the irrelevance of a second
alternative dnd not the irrelevance for a third one, which is the condition for its validity
(Yellot. 1977), if the choice axiom fails to apply. Nonetheless, their hyperbolic
sensation distances of s. to s. =0 are not expressed by Is.. 1=21 y. - y.l/y., but by
COSh(s'I')' If we rotate cb-oreHnates exp[2(y. - a)/a) and ex~IJi(y. - a)fa) d' h1perbolic

1 J I I
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'[ = 2/a = 2/(ln(b/u)
whereby

sensations by 45 0 and multiply the rotated co-ordinates by 1/,,12 (see section 3.2.2.) then
we obtain the central Euclidean co-ordinate of that hyperbolic dimension as, ,

cosh[2(y. - a)/a]) '" [(x./b) + (b/x.) ]/2, , ,

0'

1'.1,1 = taoh[Y2In( cosh[2(y. - y.)ly.]}] y. = a
1 J 1 J J J

It defines an alternative dissimilarity response ILj'1 for comparable, hyperbolic
sensation distance cash[(y. - y.)/y.J for shifted adapllion level a = y.. Thereby,

I J J J
P·I" = 1 - Ir'l,l = 2/[1 + cosh{2(y. - y.)/y.}] y. = a

IJ 1]' lJJ J

P'I" =2/[1 + IIv,!,J v.;. = \leash(s'I·)
lo] lJ liJ IJ

define confusion probabilities that satisfy the conditional choice axiom, because exp(
l/v'l j) = exp[-(cosh {2(y. - y.)/y.] is a double-exponential probability function that is
truAt'ated at its inflexion Ipoi6t e!p(-I) :::: exp {-cosh(O)} :::: exp(-I/v. .). Notice that the
truncation point of the double exponential function corresponds tdldtlexion point p::::
\12 of the logistic probability function for corresponding differences of distances
cosh[2(y. - y.)/y.J. which by its folding atp. :::: J/2 defines the factor 2 in the logistic
confusioh prt>b;J;ility function of s. with s, J,,::::a as P'I i :::: 2/(1 + I/v. J') where similarity
magnitude vii':=: I/cosh[2(y. - y.)ly~] and )'1' :::: 1. Thtis for hyperbdr~c sensation spaces
we have cosli{2(y. - y.)ly.] ~s to;JparablJ Jensation distances to y, :::: a as reference
sensation level, BJt I/J. I.i 4,; cosh[2(y. - y. )/y.] is a stimulus-like dissirftilarity magnitude
of Euclidean stimuli J>'ith v'

l
i :::: 1,1 b~caJse for y. :::: a, thus for x,:::: b and power

exponent t. ::::2/In(x./u) we sJe'that s }.,. J
J J •.•.

lIv'I' :::: cosh{2(y. - y.)ly.} :::: [(x./x.) J + (x./x,) J J/2 Ix,lb:::: I
IJ I J J I J J 1 J

corresponds to a power-raised conjugate stimulus fraction midpoint of Euclidean
stimuli x. with respect to x,. Thus, dissimilarity response distance IT'

I
i I is also defined

by the in~olutionof simildrity magnitude v.
I
' :::: Ilcosh[2(y. _y.)ly.J1iE follows from

1 J 1 J J
1'.1. 1:::: tanh[-1/2In(v.

I
.)] :::: [1 - v·I·]/[1 + v·

I
·]

1 J' I J I J 1 J

This dissimilarity defines confusion probability p·
l
· :=: I - IT·I·I :::: 2/( I + I/v i I.i) to

satisfy the conditional choice axiom for lIv.. ~ tosh[2(y.l) y.)/y.] as wei~ted,
hyperbolic distances betweeny. and y. ::::a, becaUJeexP(-l/v'

l
i~ is a-tloJble exponential

probability function of dimens\on y}a - 1 with y. :=: a. Nofit'e also that the response
Ir' li I :::: tanh[\lzln{cosh[2(y, - y.)ly.]\] is open-h)rberbolic and differs from the open
EJtlidean response that is

l
sp~cifl.ed by Ir. ,I :=: tanh[ly. - y.I/Y.J for hyperbolic

sensation distance between y. and y. :::: a. HoJ,~er. forhypelbolit se6sation spaces the
similarity probability p.,. s~tisfieJ the conditional choice axiom if the similarity
magnitudes are defined fJYv'I' :=: I/cosh(d.

I
.) for d.

l
. :::: 21 y. - Y.l/y., Thereby, we also

obtain IJ IJ IJ I J J

and also

I'·I,::::llcosh{2(y, - y.)/y,]
1 J 1 J J

p··lgj::::I/[I+v l.lv·l·j::::l/[l+cosh(d'I,)/cosh(d 1.)1
1J gJIJ IJ gJ
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as alternative for the conditional similarity probability that stimulus i more similar to
stimulus j than stimulus g for hyperbolic sensation spaces. Notice that the
corresponding response expression

r··1 gj ::: moo{-V21n[cosh(d'l')leash(d I')]}'
IJ I J g J

not only resembles the single-peaked valence expression

vJi = tanh[-V21n{cosh(dJi)Jcosh(dJ)} 1

for weighted hyperbolic sensations distances cl}" = Iy. - gJI and cl] = Ia
J

- gJI to ideal
point g , but since the dimensional tenns COSh(~'k 'k~ for hyperbolic spaces multiply
to COShld'j')' it also specifies an open-hyperbolic ~pUceof dissimilarity responses r .. 1gj
with curJ lure r; = -Vz for sensation space distances S.. = In{cosh[2(y. - y. )/y.]} u"ith
a city-block metric of additive dimensional distances sl~ 'k :::: In{COSh[2ty.J y.ty/y'k]}
to its zero space origin for y.- a.= O. This means thdtJfhe distance me\nc -Hr o~en
hyperbolic (dis)similarity response spaces is conformal with the distance metric of
hyperbolic sensation spaces, which might theoretically be required by psychological
consistency between similarity res panses and cognitive sensations, while psycholo gical
consistency between magnitude response and stimulus spaces requires a conformal
distance between open-Euclidean response spaces and Euclidean stimulus spaces with
hyperbolic sensation spaces" It may imply that our analysis method of dissimilarities
between Euclidean stimuli, described in chapter 4, has to be modified by replacing
open-Euclidean response distances 1 r1" - r1" 1 :::: 1tanh(y .Ia

T
- I) - tanh(y.la

J
-I 1 by open

hyperbolicresponsedistanceSCOSh[rJ'~~r~ for r1' ::::±t~nJi(lhln{coshdy. a
J

- 2)}]. The
Euclidean co-ordinates of open-hyperboJit respoJse spaces would then ~ecome solved
by principal component analyses of individual matrices with elements cosh[r

J
. - r1'] as

initially scaled values of individual dissimilarity rank orders, The Eucll~eanJco
ordinates of the common hyperbolic sensation space would then iteratively be solved
by Procrustes matching under rotations, weighing and weight-dependent translations
of comparable sensation dimensions of individually solved, hyperbolic sensation spaces
that derive by elements cosh[2(y, - a.1)/a

J
] :::: exp{ 2[ar tanh 1r1" I]} for optimally scaled

values of r1' from the solved, op~n-fiyperbolic response spac~s,
Con~itionalconfusion or similarity probabilities yield metric information, where

rank orders of similarity responses only yield ordinal information. Therefore,
multidimensional analyses of conditional similarity probabilities could provide more
decisive evidence for the actual geometry of the response space (and thus also of the
sensation and stimulus spaces) than our semi-metric multidimensional analyses of
dissimilarity rank orders, Confusion probabilities are obtained in research on confusion,
identification, or categorisation of stimuli with respect to target stimuli or categories.
If the choice axiom applies to v.

l
. conditional to v'I' :::: I then confusion probability

I J J J

P.I. =2v·
I
.I(V·

I
· +v· I·)=2/(1 + 1/v·

I
·)

iJ iJ JJ IJ iJ

with self-similarity probability p.\"_. :::: 2v' l /Cv.!. + Vi I'):::: I holds, where conditional
sensation distance d.. :::: (2 iy, - / +y:) to y.l!:!: a tf ~ stirhJlus-like value v.. .:::: exp(-d.,.)
as similarity magnitJYe and 11v'l~ = Jxp(d!1 j) as stimulus-like dissimilaii~magnitua~.
However, the conditional nutu~(!of the c/iI:Jice axiom with respect to v. = I or v.

l
. =1

J J J
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for y. = a generally is not acknowledged, whereby it would follow from v.. =exp(-d.. )
for flat, unconditional sensations space distances d.. that IJ I)

'J
d.. =2 1 y. - y.l/a =-In(v.. ) = Iln(v./v.)1 = Iln(v./v.)1 =rlln(x./x.)1 ::::rlln(x.Jx.)I.

I) I) IJ I) JI I) JI

Choice-theoretical similarity probability p.. :::: 2v../(v.. + v.. ) only can be consistent
with our psychophysical response theory i¥ the d~sirililariij response function is the
hyperbolic tangent function of the intensity-comparable, Euclidean sensationdistances
d.. = 21y. - Y.l/a with respect to adaptation level a = y. or a = y. as origin of the
cNmparable sJnsation space. However, writing p.. I(Y,~) or p.. 1ty.=a) as p.. and
inappropriately unconditional similarity probabilit~.J.,;"e-have IJ I I)

p" :::: I - tanh(V2d.. ) = [ - [1 - exp(-d.. )J/[ 1 + exp(-d .. »),
I) I) I) IJ

p.. = 2exp(-d .. )/[1 + exp(-d.. )] = 2/[ I + exp(d.. )J,
IJ IJ I) IJ

p.. = 2/(1 + \Iv.. ) = 2/[1 +.exp{ Iln(v./v.)1 }]
IJ I) J 1

Due to the folding of differences In(v.Jv.) to distances d.. :::: Iln(v./v.)1 :::: -In(v.. ) ~ 0,
the confusion probability function p.. -6q&als twice the sylrbmetridll~ 'folded' I~gistic
discrimination probability function B, .for 2(y./a -1) < = 0 that is folded at p = \12 for
y. = a. By the correspondence betwfeh logistic probability and hyperbolic tangent
fdnctions the above derived similarity probability function may hold for Euclidean and
hyperbolic sensation spaces with y. = a or y. = a as origin. Alternatively we would also
have p.. = 2/[1 + cosh(d ..)] for hyperbolic densation distances d.. to y. :::: aorta y. = a,
while tl the Cauchy pro~ability function applies we would ha-N: p ..~ 1/[ I + d.~ for
Euclidean sensation spaces. However, if the conditional nature witH respect to la = y.
or a = y. is not acknowledged then it seemingly yields symmetric confusion and
similarit~ probabilities that for hyperbolic tangent-based responses would write as

p.. = 2/(1 + \Iv.. ) =2/[1 + exp(d.. )] =2/[1 + exp(2IY. - y.l/a)] =p.. ,
I) I) IJ 1))1

where actually for a = y. we have confusion probabilities
J

P'I' = 2/[ I + exp(2I y.!y, -11 I]
andifa=y. IJ I J

, p'I,='/[1 +exp(2Iy.!y,-III]
J 1 J I

where P'I' "'P'I" For similarity probabilities the choice axiom also conditionally holds
I ) ) 1

as ~~n

p··I·j =v·I,/[L v I,J IV'I·=exp(-2Iy./y. -Ij)fory. =a
I) I) FI g) I J 1 ) )

which defines for similarity magnitude v.
l
.with a = y. conditional similarity probability

, J J
p.. lgj = 11[1 +exp(2[ IY.!Y, -11 - Iy Iy, -11)]

andifa=y, I) I ) g J
, p.. lgi = 1/[1 + exp('( Iy.!y, -11 - Iy Iy, -I ill

JI Jig I

where also p.. 1gj ~p .. 1gi.
IJ JI
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Luce (1961) has also derived by his choice-theoretical analysis of similarities
-In(v..) ::::d.. ,but for Fechnerian sensation distanced.. :::: Iy. - y.1 with an undetermined
scalel-Lnit. ~uce distinguishes not between confusioN and ki~larity probabilities and
writes both expressions, rewritten in our notation by v.. for Luce's v(a,b), as

'J
p.. :::: v..df v .] and p.. :::: 11(1 + IIv.. )

IJ 11 g~1 ill 11 IJ

farp .. as "symmetrically truncated ogive with horizontal tails". Luce remarks that the
scalel~.. in the similarity probability function also depends upon j and on the truncation
of the f6gistic probability function. That this dependence implies a symmetric folding
of the logistic probability function is also implicitly mentioned by Luce (1961, p.159),
where he defined for indices a :::: i and b:::: j:

v(a,b):::: v(a)/v(b) if v(a) s v(b) or v(a,b):::: v(b)/v(a) if v(a) 2 v(b),
as above implied by our definition d.. :::: -In{v.. ) :::: IIn(v./v.) I and formulated that this

"establishes a basic connection beM.·een theWiscrimindtidh and similarity data, if the
present theory is con-ect. I!Uieed, similarity distance, -log v(a,b), is simply the absolute
value ofthe difference ofthe logarithms ofthe discriminative scale values - wJuu have
been called Fechner scale values. Thus, the model is substOJJtially like Coombs'
tmfolding teclmique, where ~log v(a,b) is thefolded scale ami log v(a) the unfolded one."

However, Luce concluded not that stimulus b:::: j determines the folding point, nor that
the confusion probability for sensation distances should be twice the symmetrically
folded, logistic probability function for its sensation differences, instead of two
symmetrically truncated ones -one for v. < v. and one for v. > v.. If folded at symmetry
point p._. :::: V2 then it is half the logistic

l
probability functi6n (ke: figure 10 in section

2.1.3.),Ii-hereby multiplication by 2 is needed in order to become a confusion
probability function with a self-similarity probability of unity. However, the confusion
probability is then also conditional to v.. :::: 1 with self-similarity probability p.. :::: 1.
Writing probabilities P'I' :::: 2/[1 + exp(J~1 i)] with P'I i :::: 1 and p.:. :::: 2/[1 + exPfu· I ·)]
with P'I' :::: I, we have ~Jymmetric confQS'ion probdlJllities fro;.rl ~hfferently wei~t~d
distan~ek

d_
l
_=10[(2 - P_I.)/p_l_ j =21y_ - y_l/y_ ,0 Iy- =,

and IJ Il 1 1 1 1J 1

d_
l
_=10[(2 - P_I_)/p_l_ j =21y_ - y_l/y_ ,0 Iy- =,

1 I J I J I I 1 I I

while Luce's expression p..= 11[1 + exp(d.. )J ,;; p.. = V2 and p.. :::: p../p.. ,;; 1 assumes
symmetric distances d .. = I~. -Y.I with an IbndeteHnined scaldJfactJl. aMd

IJ I 1

d.. :::: In[(l - p.. )/p.. ] = y. - y. ?: 0 if v. ,;; V.
IJ I11JJI IJ

d .. ::::In[p ../(l-p.. ] ::::y. -y.?: 0 if v.?: v..
IJ IJ I11J IJ

For symmetric distances d .. we would have V2p.. :::: 11[1 + exp(d.. )J, whereby Luce's
truncated choice probabilitl!s define twice the syMmetrically folde~ logistic probability
function as the confusion probability function for a Euclidean sensation distance. It
would incorrectly yield symmetric confusion and similarity probabilities p.. :::: p.. , due
to the not-recognised condition for the adaptation level as reference sen~atioJI with
probability p.. = Y2 that specifies either a = y. or a :::: y..

1=1 1 I
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In the sequel we compare our psychophysical response theory for
(dis)similarities with results from multidimensional analyses of stimulus confusion,
identification, or categorisation and similarity data in perception and cognition research
and the related models for asymmetric similarity. We reference overview studies of
authors that have analysed many data sets of confusion, identification or categorisation
probabilities by MDS- or stochastic MDS-analyses of distances that are derived from
similarity probability models. Relevant studies of other authors are not referenced
unless they contributed to new insights. Studies on confusion, or identification, or
categorisation of stimuli generally concern similarity probability expressions p.. = n../n
for n.. as the frequency of confusing stimuli i withj or categorising i as beloNgin~to
categ

l
6ry j and n as the frequency of presenting stimulus i from the stimulus set, while

in connectionistic learning theory n.. is the frequency of generated output j to input i
in n learning runs for input i. Some ~tudies assume symmetric similarity probabilities
p.. = p.. and self-similarity probability p.. = I, where p.. = (n../n .. + n../n.. )/2 < 1 is
ulkd aJ1error-adjustments for symmetric -t'imilarity prob1JbiJitiJ.!,. ~lso J~.l~ function
of d.. is often more flexible defined in MDS-based similarity models bY relating the
similhrity magnitude scale v.. in a monotonic way to distances d ... Ashby (1992a) and
Nosofsky (1992b) takes IJ lJ

C k=m r clr
v.. =exp(-d.. ) =exp[-{"} wklY-k - y-kl} ].

lJ IJ ~I 1 J

It implies a flat space for distance d.. and for c = lone also assumes the so-called
exponential decay function for similar~or generalisation (Shepard, 1957, 1958, 1987;
Nosofsky, 1986, 1992b; Ashby, I992b). If c = r = 2 then d~.is a squared Euclidean
sensation distance and implies a so-called Gaussian decaj! function for similarity
generalisation (Nosofsky, 1986, 1992b; Shepard, 1987; Eonis. 1988; Ashby, I992b).
Some studies take similarity scale v.. as

'J
v .. = Jld.~.

IJ IJ
The first alternative rewrites by dimensional term v"

k
= exp(-d~k ) for any positive

. lJ lJ
value of c as k=m /r c r c

v.. = mv..
k

] = exp(-d.. ),
IJ k=1 IJ lJ

whereby the confusion probability would become written as

p.. =2/[1 + I/v.. ] =2/[1 +exp(d~ )],
IJ IJ IJ

k=m r fir k_m r clr
p__ =21[1 + l/v __ 1=21[1 + me>p(d_-

k
) 1=21[1 +e,p\l;d_-kJ ]_

IJ IJ k~1 IJ k=1 lJ

In this expression for symmetric similarity magnitude v.. we have multiplicativity of
dimensional tenns v' y Therefore. Nosofsky (l992afJcalled it the multiplicative
similarity model. SiNce the multiplication of v.. concerns the multiplication of
exponential terms of (power-raised) dimensional dMfances d"

k
in flat sensation spaces,

we rather call it the exponentiafly multiplicative similarit/Model. The exponentially
multiplicative similarity model is originally proposed by Medin and Schaffer (1978) for
connectionistic learning and is empirically tested by Gluck and Bower (1988) in
categorisation learning. The model is also implicitly used in several connectionist
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learning models (Estes et aI., 1989) and explicitly in the so-called general context
model of Nosofsky (I 992a). MDS-based analyses of exponentially multiplicative
similarity models are then based on metric MDS analyses of individual distances

lie k~", r Ilr
cl .. " {In[(2 - p.. )lp .. ]} "1J;IY'k - Y.kl) ,

I) IJ I) 1 J
where similarities are symmetric and transitive. However, as discussed above, a
confusion or similarity probability model only may hold if individual adaptation levels
are shifted to y., where tanh(V2d..) = tanh(ly. - y.l/y.) = 1r.,.1 and r.. = 0, or are
shifted to Y" wh1ere tanh(l/ul

j
I') =li6h« Iy. - y.11y.) bIr~1i I andl/

iJ
i = 0. ¥hereby, their

confusion ~robabilities are a~ymmetric and in&an!itive,lbltt if shifted to a.. = (y.+ y. )/2
then s. = -so and tanh(l/m.. 1a.. ) = tanh(ly. - Y.l/a.. ) = 21 r.1 = 21r.! = Ir.~~ for k. ~ as
resporlse space distance ~et\Leen r. andl r., )wh~reby tHeir confusionlJor similkity
probabilities are symmetric. but may be inb-ansitive. For open-hyperbolic response
spaces the exponentially multiplicative similarity model would imply that sensation
distances d.. = In[(2 - p.. )/p .. ] = Iy. - Y.l/a define distances in a common Euclidean
sensation sPltce. If symlhetr~c similaritY probabilities p.. = I - 1/2!r..1 for ir..1 as
response distances would define Euclidean distances d.. Jlin[(2 - p.. )j~~.l = Iy: _1~.l/a
then the MDS-analyses would be the metric Euclide1h MDS-an.Mysi~ of di~taJces
(Torgerson. 1958). However. symmetric distances d.. = In[(2 - p.. )/p.. ] only hold for
confusion probabilities with shifted adaptation levetJ to sensatiolJ mllipoints a... For
conditional similarities wecan'tderive similarity probabilities for symmetric disJ}nces,
because if adaptation levels are shifted to sensation midpoints then distances have no
common adaptation level. Therefore, a metric Euclidean MDS-representation of
transfonned confusion (or identification, or categorisation) and similarity probabilities
as distances in a common Euclidean sensation space only may approximately hold if
the response space is open-hyperbolic and the response distances are not remotely
located from their space origin, because then differences between response distances
in response spaces with shifted and not-shifted adaptation levels are relatively small.

For hyperbolic sensation spaces we also could apply v.. =exp(-d.. ), if exp(-d .. )
would represent a Euclidean co-ordinate distance of a hy~rbolic selJsation spaHe
distance d.. that correspond to an open-Euclidean response space distance. which only
holds agaiH if either y., or y., or (y. + y.)/2 equals the adaptation level, because then the
symmetrically folded10gist~c func\io;fmay apply to confusion probabilities for subsets
of n = 2. However, we have to realise that v"

k
= exp(-d ..

k
) are Euclidean co-ordinate

tenns of hyperbolic sensation-space distanc~s. wherebyl~lmilarity magnitudes
k~", k=m 2

v.. =exp(-d..) =J I exp(-2d ..
k

) =v'Iv"
kI) I) k~1 I) bl I)

define conditional to a =y., or a =y., or a =(y.+ y.)/2 a valid confusion probability
) 1 I)

model by bm

p.. = 2/[ I + l/v .. ] = 2/[1 + exp(d.. )] = 2/[1 + JIexp(2d ..
k
)].

I) IJ I) k=1 IJ

This new similarity model is defined by addition. instead of multiplication. of
exponential co-ordinates tenns for dimensional distances in hyperbolic sensation spaces
and, therefore. we call it an exponentiaUy additive similarity model If the sensation
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space is hyperbolic then only similarity magnitudes v.. :::: l/cosh(d..) could also satisfy
the choice axiom, where then independent hyperbolill:hmension distances combine to
hyperbolic space distances by

k~m

cosh(d.. ):::: IT cosh(d·'k)·
IJ k.1 lJ

Again only if a:::: y., or a:::: y., or a =(y. + y.)/2 we have a valid confusion probability
model J 1 1 J k=m

p.. =21[1 + IIv.. ] =2/[1 +cosh(d.. )=2/[1 + ncosh(d..
k

)],
IJ 1J lJ t.'! 1J

but, as discussed earlier, it then only holds for p.. :::: P'I i or p.. :::: p.,. by satisfying the
conditional choice axiom. We call this new similM-ity ~tObabi'J\ly;JM:lel for hyperbolic
sensation spaces a hyperbolically multiplicative similarity model. Since in the
hyperbolically multiplicative model the distances are defined by cosh(d .. ) =: (2 - p.. )/p..
or in the exponentially additive model by cosh(d.. ) =: cosh[ln{(2 !Jp.. )/p.. lv' th~
principal component analyses of matrices with elem~ts cosh(d .. ) as defiNed ibr each
model then could solve the (m+ I) Eudidean co-ordinates of thJ.11yperbolic sensation
space for both models.

The last, earlier mentioned alternative for
c cv.. =: lId.. and p.. =: 1/[1 + d.. ]

IJ IJ IJ IJ
with d .. as distance in a flat sensation space specifies that

'J
~~m r clr c

1IL = IL d··
k

] = d..
IJ k~l IJ lJ

and c k~m r clr
p.. = 1/11+d.. ]=1I11+ILd··

k
] I,

11 IJ k~j IJ

with self-similarity probability p.. =: 1 for d~ =: O. However, the similarity magnitude
v.. =: lid.. with v.. =: 1/0 =: c.).Violates ilib choice axiom, because the similarity
pJ.bbabilit~ would-.\l,e p.. =: 11[1 + v../v.. ]=: 1I(l + "'Id .. ) =: 0 independently of the
similarity between i and~, as also Coothb~suggestedto LUce (1961, p.155) as prooffor
incompatibility of v.. =: lId .. with the choice axiom. However, if d.. is a distance in a
flat sensation space t\\.at codJsponds to a double-elliptic stimulus spAte, then the choice
axiom applies not to the imaginary values v.. =: l·exp(-d .. ) as similarity magnitude for
distance d .. , as discussed earlier. The resporiJe space is tHen single-elliptic and derives
from the duchy probability function for flat sensation differences with respect to the
adaptation point (see section 4.2.1.). For c =: 2 and a =: y., a =: y., or a =: (y. + y.)12 the
single-elliptic response space distances are only then dclined bYarctan(d.

I
.) =:J1r..1 as

distances to their space origin or as distances with their space origin as MidpoiNt, as
discussed earlier, whereby

2 k~m 2
p .. =cos2(r..) =: 1/[l + tan2(r.. )] =: 11[1 + d.. ] =: 1/[1 + [d] .. k]

IJ lJ IJ IJ k~l IJ

defines a seemingly legitimate similaritj probability function for lIv.. =: d .. =: tan2(r.. ).
Due to the Euclidean addition of the squared dimensional sensationlJdistl~cesdiik1lo
squared sensation space distance d .. , this model is an additive similarity modcl-for

'J
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confusion, identification, or categorisation probabilities p .. , as it also is called by
Nosofsky (l992a). According to our psychophysical respllnse theory, the additive
similarity model implies individually different, single-elliptic similarity response space
distances tan(rr) = 5

J
"and the sensation space as common Euclidean object space. We

discussed earhJr the'Cauchy distribution function p.. = 1/{n:[1 + (5. - s.)lll for
sensation differences to s. that has its maximum prJ5>~ability lht at s~ as ~edian,
whereby the by 11: multiplied and symmetrically folded Cauchy distributiorl function for
flat sensation distances defines here confusion probabilities p.. = 1/( [1 + d1.] that for
d.. = 0 yields self-similarity probability p .. ::: 1. We also showJd earlier thalhdirectly
rMates to twice the symmetrically folded d!uchy probability function for discrimination
of sensation differences, because observed similarity probabilities for Euclidean
distances d.. to y. ::: a, or to y. ::: a, or to (y. + y.)/l ::: a.. correspond to single-elliptic
distances Ir1}.1 ::: Jrc tan(d .. ) :J Ym with resJect 16 r. ::: Oltr r. ::: 0 and to distances Ir..1
::: larc tan(Vttl .. ) < 11: with (P. + r.)/2 ::: 0 as midpoint,.lwhere thk corresponding similari~y
probabilities 1te defined b~ 1

p.. ::: l-Ir.·I/(lfm):;: I-arctan(d.. )/(lfm). Id..:;:d.
l
. :;:d.

l
. :;:Ya!..

11 11 11 I111Jlll

Its differentiation yields twice the Cauchy distribution function l/{ n[ I + i.]}:;: lp. .
for s. smaller than s. and multiplied by Ym for its symmetric folding andlJscalingltd
lp..1,;; I it defines tIle derived similarity probability for sensation distances of elliptic

.1>1
1
.

stlmn 1
p.. = 1/[1 + ,l.I.

11 11

Both similarity probability functions satisfy not the conditional choice axiom, but they
satisfy the property of conditional irrelevance for other alternatives under the condition
that the adaptation level shifts to a:;: y. or a::: y. and for confusion probabilities also to
a:;: (y. + y.)/2. If it would uncondition!Uy applJ then the common Euclidean sensation
spaceIwodld be solved by the individual difference version of metric MDS-analyses of
intensity-comparable distances dJ"" ::: [1 - cosl(1 - Pr)]/cosl(1 - Pr)' It requires a
proper transfonnation ofobserved Mmilarity probabilifi~s by cosl( I - p;l.. ) =Pr" where
Pr is the actually observed similarity probability. IJ IJ

11 The single-elliptic response distances r../(lfm) to origin r. :;: 0 equal dissimilarity
probabilities I-p.. that satisfy cosl( I-p .. ) + sin#z( I-p.. ) = l. It aUbws the transfonnation
of these elliptic ~issimilarity probabilllies I - p.. toIEuclidean similarity probabilities

'J
cosl(1 - p.. ) =cos2[r../(lfm)] =p ..

11 IJ 11
or to Euclidean dissimilarity probabilities

1- cosl(1 - p.. ) = sin2[r../(lfm)] = 1 - p..
11 11 IJ

The Euclidean co-ordinate representation of the single-elliptic probability space of the
observed similarity response probabilities enables comparisons with other, much older
scaling analysis methods. On the one hand cos(l - p.. ) relates to principal component
analysis of cosine-transfonned dissimilarity problbilities as projection length of
Euclidean space vector i on vector j (or j on i) by Ekman (1965), whereby then not the
sensation space, but a cosine-projected, single-elliptic response space is solved. On the
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IJ lJIJ 1J IJ1J 1J

cosh(d).. ) = (2 - p).. }/p) __
lJ lJ IJ
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other hand I - p .. = sin2[r..!(lIZlt)] relates by arcsin[f( I - p .. )] = r../(Ym) to the angular
function 2 {arcsi~[-f( 1-p. ~~l} -Vm forthe transformation of1discrirHination probabilities
to scale differences (Boclf and lones, 1968. p. 72). It then not only is assumed that the
transformation by 2{arcsin[f(l- p.. )]} - I/m yields sensation scale differences s. - 5.,
but also that probabilities 1- p .. dfe observed discrimination probabilities. BJt thb
observed dissimilarity probabifJty is 1- p.. and not 1- p .. , while the transformed
probability values 2 (arcsin[f(l- p .. )]} _1/~ 2r.. - lfm are lHIearly transformed values
of single-elliptic response differerites and not tH! sensation scale differences that are
supposed to be scaled by the angular response probability function.

Multidimensional analyses of existing similarity models for confusion or
identification. or categorisation probabilities generally are obtained by Euclidean or
city-block MDS-analyses of metric distances that derive from the transfonnation of the
observed similarity probabilities. In view of the psychophysical response theory the
metric MDS-analyses of these similarity models are inappropriate. but can
approximately be valid if response distances in the response space with the centroid as
origin are almost equal to response distances in response spaces with shifted adaptation
levels as origin. This condition approximately holds for response distances in the
subspace of responses [rl < 1/2 (or Irl < v.11t if single-elliptic), due to almost linear part
of logistic or Cauchy probability functions between p > 0.25 and p < 0.75. The
similarity models can then also be approximately fitted by metric MDS-analyses of
dissimilarity distances in a common Euclidean or hyperbolic sensation space, if the
response space distances are located within that subspace of the response space with
the centroid as origin. Euclidean MDS-analyses for the additive similarity model
requires that one transfonns observed similarity probabilities p.. to cos2{1 - p.. ) = p.. ,
whereby for c = 2 the Euclidean sensation space distances of iNdividuals arelHerivJb
from

whereby individually weighted and translated, Eudidean sensation spaces are
approximately solved. Their Procrustes matching under translations and dimensional
dilations then solves the common Euclidean sensation space. The exponentially
additive and multiplicative similarity models define the individually intensity
comparable sensation distances d) .. =21y. - y.l/a) for c =1 by

IJ I J

d) .. = In[(2 - p),,)!p).. l Ip).. = 1 - tanh(Y2d).. )]
IJ IJ IJ IJ IJ

where the metric Euclidean MDS-analyses for the exponentially multiplicative model
also approximately solves the individually weighted Euclidean sensation spaces and by
the same Procrustes matching the common Euclidean sensation space. The
exponentially additive model for hyperbolic sensation spaces requires principal
component analyses of matrices of elements cosh(dr ) = cosh{1n[(2 - Pr)!Pr ll ,
whereby the (m +\) Euclidean co-ordinates of indiViduallY weighted. fI~perbl6lic
sensation spaces of dimensionality m are solved. For the hyperbolically multiplicative
similarity model and c = I the principal component analyses concern matrices of
elements
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d'I' =d,./a, =211Y, - y,l/al/a,
IJ IJ J 1 J Jor

and also solves the (m + I)-dimensional Euclidean co-ordinates of individually
weighted, hyperbolic sensation spaces. In both last cases we obtain from theProcrustes
matching of the individual spaces under translations and dimensional dilations the (m
+ I)-dimensional Euclidean co-ordinates of a common, m-dimensional, hyperbolic
sensation space that after its proper translation should correspond to a logarithmic
transformed, Euclidean stimulus space. For known Euclidean stimulus spaces we then
could verify whether the exponentially additive or hyperbolically multiplicative
similarity model holds, where only the exponentially additive model corresponds to
open-Euclidean response spaces. Since the hyperbolic multiplicative model for
Euclidean stimuli corresponds to an open-hyperbolic response space, our analysis
method of open-hyperbolic response spaces, as described in chapter 4 for hyperbolic
stimuli, needs to be modified, if the hyperbolic multiplicative similarity model turns out
to be the valid model for a Euclidean stimulus space.

The MDS-based similarity model analyses, summarised here above, however,
assume that individual response space distances are equal to response distances to their
space origin, which is incorrect, but may approximately hold for response distances of
comparable sensations in the proximity to the adaptation pointof individuals. However,
in view of dynamic adaptation processes in perception, described in section 7.1,
shifting adaptation levels may be present in studies on confusion, or identification, or
categorisation probabilities of stimuli with respect to target stimuli, whereby response
distances are distances to the response for the target stimulus as origin. The probability
derived sensation space distances for the discussed similarity models may then be valid,
but then their multidimensional analyses methods need to be moditled, due to stimulus
dependent sensation weights for shifted adaptation levels. In the next sections we
restrict ourselves to complete adaptation-level shifts to the sensation of target stimulus
j or to midpoint sensation of stimuli i and j. For explicitness of shifted adaptation-level
types we define comparable sensation distances under shifted adaptation levels by

fora.=y.la and d.. =2Iy.-y.i/a
J J IJ I J'

d.. ;! ij == d..Ia.. == 2[[ y. - y.l/a]/a.. for a..== Vz(y.+ y.)/a and d..== 21 y.-y.l/a.
I) lJIJ IJ IJ IJ IJ IJ IJ

In the first case the similarity probability models apply to analyses of weighted
sensation distances with weights that depend on the target stimuli, whereby similarity
probabilities become asymmetric and intransitive. The second case concerns analyses
of weighted sensation distances with weights that depend on stimulus pair midpoints,
whereby similarity probabilities are symmetric, but can be intransitive. So-called
biassed choice probability models also describe asymmetric and intransitivesimilarities,
which models are discussed in the next and following sections.

7.2.3. Multiplicative bias in choice and similarity probability
Some MDS-based similarity models imply symmetry of similarity probability p.. == p.. ,
where the choice axiom for v.. '" exp(-d .. ) as similarity magnitude is assumed. s-herlh
studies show support for symMetry of siriJilarity by observed confusion probability data
(Atkinson, Bower, and Crothers, 1965, Wagenaar. 1968), but many other studies don't
support similarity symmetry. Empirical violations of the choice axiom are fully
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acknowledged by Luce (1977) in his review on the evidence for his choice axiom from
the 20 years of relevant research after its original formulation, while Luce (1959b, p.
133) already wrote

"possibly we can find Axiom I <Luce' s original choice axiom> directly confirmed
for elementary choices. but probably not for more complex ones".

It is especially not confirmed in studies on discrimination or similarity probabilities of
stimuli that exhibit relatively large intensity differences and/or different amounts of
practice for stimuli in stimulus combinations iUor j Ii (Hodge and Pollack, 1962). Such
conditions may clearly cause shifts of the adaptation levels and thus indeed might yield
similarity response probabilities that are not symmetric. The data then generally fit the
so-called biassed choice model much better. Luce and Galanter (1963a. p. 227) derived
a biassed choice model by plausible assumptions that introduces a so-called response
bias for choice probabilities, -"which can differfrom one experimental run to an other"
(Luce, 1977). The biassed choice model for asymmetric response probabilities (Luce
and Galanter, 1963a, sec. 4.2.) writes the discrimination probability for stimulus i as
more intensive than stimulus j for some intensity scale v by

J~"

p. = B.. ,I[); B.. '.]
I 1 1 H J J

and thus for stimulus i with respect to target stimulus j by

g~"

p.,; = ~.·,.I[); P ., .].
III 1 IJ ~=I g ID

If Pili expresses our implicit condition a. = y. then for pair (i.j) and v.. :::: I it would
writ~ as J J JJ

P'I: = p.·v../[p.·v.. + G.·v.. ] = 1/[1 + B./(B.·v .. )].
lullJllJJJJ JllJ

It would yield self-similarity probability p.. = 0.5 by i=j and v.. = exp(O) = 1 and.
therefore, again in consistency with v.. :::: Aip(-d .. ) for sensatiorJJdistances d .. in the
expression of the folded logistic proba~ility func&m for similarity we actuallyshould

write I
P'I: = 2/[1 + B./(B.·v.. )] :::: 2/[ I + (B.If3.)·exp(d .. )]' v.. = exp(-d .. )

III JIIJ JIIJ IJ IJ

For similarity scale v.. = I/d~. it is written as
IJ IJ

2p.,; =1/[1 + BI(6.·'-.)] =1111 + (BI6.)·d.. ],
III J 1 IJ J 1 lJ

Again generally v.. :::: exp(-d~ ) orv.. = l/d.~ with r:::: 1 or r = 2 for sensation distance
d .. in respectivel/b city-blo& or Eu

1
tlidean

1
\ensation space and with c:::: 1 or c =2 for

r~pectively exponential of Gaussian decay of similarity generalisation, while the 13
terms represent the so-called response bias. If squared distances d .. in v..= exp[-d~.] or

IJ lJ IJ

p.:::: B.. v./[G.. v. + B.. v.] = 1/[1 + (B ..v.)/(B ..v.)]
I 1 1 J J 1 1 J J 1 1

The biassed similarity probability that a presented stimulus i is confused with a target
stimulus j or categorised as belonging to stimulus category j is written by Nosofsky
(1991) for biassed similarity scale values p.·p.·v.. of pairs (i.j) with v.. = exp(-d.. ),

. 1 J IJ IJ IJwhere p. cancels out In
J
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Y .•= I/d~. are assumed to equal the sum of squared dimensional distances in Euclidean
sMtsatio~ spaces then we could call the similarity model for B.I(8.·y.. ) = (B.lJ3.)exp(-d,.)
an exponentially multiplicative similarity model with mrlltiflidfltive bia~ and tdr
(B.I(B.·y.. ) = (B.lB.W. an additive similarity model with multiplicative bias. For a
h~erboNc sensAti6n ~ace the hyperbolic cosines of dimensional distances combine
by multiplication to the hyperbolic cosine of the space distance, whereby probability
p.. =. 2/[1 + B.I(B,·v.. )] for v.. = l/cosh(d.. ) would become a hyperboljcally
niDltiplicative si,hila~irY model w»h multiplicatlte bias. For v.. defined by the square
root of the sum of squared Euclidean co-ordinates v"

k
= eXP(~d"k) of the hyperbolic

sensation space it would become an exponentiallj) additive s}Ji;ilarity model with
multiplicative bias, The two biassed choice probability models for flat sensation spaces
are called biassed MDS-choice models, because distances that are derived from biassed
choice probabilities and are fitted by metric Euclidean or city-block MDS-analysis
(unnecessarily assuming c = r) to a m-dimensional sensation space, Initially solved
space distances and observed probabilities are used for an adjusted estimation of bias
parameters that in tum define modified distances for observed probabilities, where
modified distances are used for renewed MDS-analyses and so on until convergence.

A MDS-analysis for the model with nnlltiplicative bias would be solved
for similarity magnitudes

v .. = exp[_d.c.J
1J 1J

cPI' = 2/[1 + {js./fS.).exp(d~J')].
1 J ) 1 .L

One derives from this expression
cIn[(2 - p.l.l/p'l,l =d.. + In(g,J -In(g,)

1 J 1) 1J J 1

where a linear regression with dwrmy variables solves distances d,c and
bias parameters g. from observed values of P'] " 1J

J 1 J 2
Similarly for an additive model with multiplicative bias and v .. = lld, ,
_~ 1J 1J

In[ (I-P '
1

,) IP'I.J = In[ (&.JfS, )d,2,J = 2ln(d, ,) +In(JS,) -In(&. J
1 J 1 J J 1 1J 1) J 1

whereby also from observed values p,] , the distance and bias parameters
are solved by linear regression with tIunmy variables, For c=2 or c=l
derived distances can be fitted by metric MDS-analysis and for the solved
space distances the bias parameters can be readjusted. Alternating the
weighted regression and MDS solutions that both minimise the Chi-square
of predicted choice frequencies then converge to m-dimensional space
distances from m'n object and n-1 bias parameters.

Confusion or categorisation studies show overwhelming evidence for asymmetric
similarities with respect to target stimuli or object categories. Nosofsky (1991) shows
that biassed similarity models can be fonnulated by metric versions of Holman's (1979)
model for asymmetric proximity. Holman's model defines proximity P(iJ) of stimuli i
andj as
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where s, c' and c are set-theoretic functions of the stimuli. Nosofsky refonnulated it
metrically for similarities V(i,j) of objects with continuous attributes as

V(ij) = FI,(i,j) + f(i) + fu)]

for Fas a monotone function, s(i,j) as symmetric (dis)similarity function that is related
to a space distance between i and j, and for f(i) and fO) as bias functions for objects
i andj. Nosofsky generally takes F(z) = exp(z) and $(iJ) = -d.. , where d .. is taken as a
flat sensation-space distance between i andj, while for f(i} = IHcB.) and 16) = 10(8.) we

, J
see that F[s(iJ) + f(i} + fUll = exp(-d .. ).B .. B. = B...lLv...

IJ 1 J I J IJ

Itdefines Nosofsky' s multipl icative orour exponentially multiplicative similarity model
I'iith multiplicative bias if the sensation space is flat, because then it implies that the
multiplication of dimensional tenus v"

k
= exp(-d\) equals v.. = exp(-d.). However,

if s(i,j) = -2d.. and the sensation Wace is hyperbolic thJh it would define an
exponentially al)[ditive similarity model with multiplicative bias, because then similarity
magnitudes v"

k
= exp(-2d..IJ are squared Euclidean co-ordinate tenus of hyperbolic

sensation distYnces d ... If S~l,J) = -2.ln(d.. ) then it defines an additive similarity model
with multiplicative bl!s, because then wit obtain

F[s(iJ) + f(i) + IG)] = Bj,l\ldn = BrBrvij.'

where similarity magnitude v.. = IW. is defined by the Euclidean additivity of squared
dimensional distances d~'k' tthis adtlitive and the exponentially additive similarity
models with multiplicatIVe bias imply both the biassed similarity model of Luce,
because the bias tenu B. cancels out in the biassed choice probability model,

g~" ~=n

p.. =B..B.. v,.! L 13 .. 13 .v. =B..v..! L 13 .v. ,
IJ I J IJ ~.I 1 g Ig J IJ g.l g 19

whereby
p.. =.B..v ..! (.lLv.. + fLv .. ) =11[1 + B.!(B .v.. ).

IJ JIJ JIJ 111 1 glJ

But, as discussed earlier, for v.. = l/d2•• and v.. = exp(-2d .. ) it does not satisfy the
choice axiom, although the pro~erty ofl~rrelev16ceof otheflaltematives is satisfied,
because Euclidean or hyperbolic distances depend not on other distances. Notice that
for hyperbolic distance d.. also Holman's model with definition s(i,j) = -In[cosh(d.. )]
yields IJ IJ

F[s(i,j) + I(i) + fG)] = Brlycosh(d
ij

) = BrBrvij"

whereby for similarity magnitude v.. = l/cosh(d.. ) it would define a h}perbolic
multiplicative similarity model with IfnultiplicativJl bias. These hyperbolically and
exponentially multiplicative similarity models with multiplicative bias might satisfy the
biassed choice axiom, but whether multiplicative bias holds for these models is
discussed in the next section.

Nosofsky (1991) shows that the distance- and density-dependent model of
Krumhansl (1978), Tversky's (1977) feature-contrast model, Carrol's (1976) hybrid
spatial and hierarchical model, and Nosofsky's (1991, I992a,b) general context model
are special cases of Nosofsky's specification of Holman's model. Nosofsky (1991, p.
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134) concludes from many sets of analysed data that the bias actually is not response
dependent, but that responses can be influenced by a stimulus set-independent bias
and/or a stimulus-dependent bias. The stimulus set-independent bias represents the
association strength of a memorised sensation with a perceived stimulus, while
stimulus-dependent biases are due to locally different densities of presented stimuli in
the space. Referring to sections 7.1.3 and 7.1.4, stimulus-dependent biases may
correspond to momentary shifting adaptation levels from a nonhomogeneous stimulus
set or to relatively long exposures of stimuli from a homogeneous stimulus set.
Stimulus set-independent bias derives from task-dependent selection ofreference levels
for targets from memories of individuals. Thus, biases are stimulus-dependent and/or
task-dependent, instead of response-induced, although they are called response-bias
models for choice probabilities. Nosofsky's overview convincingly shows that most
confusion probability data in tasks that imply (i-to-j)-similarity, instead of between i
and j, fit the MDS-based choice model with multiplicative bias better than without bias.

y.la = a.,
J J

whereby

and

7.2.4. MuLtiplicative or powerwraised, stimuLus-dependent similarity bias
In chapter 4 we defined intensity-comparable sensation spaces with constant adaptation
levels and thus constant dimensional weights. However, based on the dynamic
adaptation processes and adaptation level selections in (i-to-j)-similarity tasks, we must
also define stimulus-dependent dimension weights as twice the inverse values of their
shifted or selected dimensional adaptation levels. In stimulus confusion experiments
of a presented stimulus i that is evaluated for its (i-to-j)-similarity with respect to
respectively memorised stimuli or stimulus categories j for a fixed set of presented
stimuli, the dimensional adaptation levels may cognitively shifttowards the respectively
memorised sensations y., as hypothesised in subsection 7.1.4. The sensation distance
of a presented stimulus ~to a memorised or repeatedly presented target stimulusj in an
intensity-comparable Euclidean sensation space then is defined for adaptation-level
shift to target j by

d.h. =Jf [(2IY·k· Y·kl/akl/(Y·k/'k)]]2 =Jf(dk/a·ki'
IJJ k=1 I J J k~IIJ J

for d.. =: 21 y. - y. !/a with a. = y.la for the shift of the adaptation level in the Euclidean
FechHer spa~e. Since the rJsportse distance of i to j withj as reference level is identical
to the absolute value of the response to sensation of i, the logistic similarity probability
for similarity magnitude v.. =: exp(-d.. ), d .. =2Iy. - Y.l/a, y.la = a., and power exponent
1". = lIa. =: aly. = In(b/u)/lM:x.lu) witH stiMulus alda!J'tatiodlevel-b11l and threshold uJll
1. 1 J J

wntes [is g~" ~"

p.. 1j = exp{ -d ..Ia. }/[[ exp[-d .la.)] = v~:i I[L v] ], T. = aly.
lJ IJ J g-l g] J IJ g~l KI J J

L

p··lgj=II([+"p{(d.. -d .)/a·)11=1/[[+(, h .. fl
lJ IJgjJ gjlJ

L

p.Ij=2/(1+exp(d ..Ia.)]=2/[1+(1/v.. ) ]J v..=exp(-d..)
I IJJ lJ IJ IJ

define by conditional similarity probability p .. 1gj the probability that (i,j) is more
similar than (g,j) and by confusion probabilitlp. Uthe probability that stimulus (i) is
recognised as stimulus U). This follows from p.. 1gj =(I + f.. igj)/2 for similarity

IJ IJ
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response r..1 gi :::: tanh[V2(d .. - cl .)/a.] with r. :::: 0 , whereby
IJ [Jgj) J

p··lgj:::: {I + tanh[V2(d .. - cl .)/a.)}I2:::: 1/[1 + exp{(d.. - cl .)/a.}J.
IJ IJgjJ IJg]J

p. U:::: 1- If'l" i :::: 1 - tanh(Vzd..Ia.) ::: 2/[ I + exp(d ..Ia.)
I lJ IJJ IJJ

It follows fOrT :::: 2/a. T. :::: \ la. :::: aly., and 11. :::: T. /r:::: 2/y. that
J J J JJ J

(d..-d .)la.:::: In[(l-p.. lgj)/p.. lgj] :::: -T.·ln(v../v .):::: -Tj.I In(x./x.)lln(x Ix.);
IJg)J IJ IJ J IJg) J IJ gJ'

di/aj :=: 10[(2 - Pi Ij)/Pi Ul :::: -yln(vij ) :::: -'lj iIO(x/xj)l,

define by their respective transformations of observed conditional similarity or
confusion probabilities the conditionally weighted Euclidean distances that can be
solved by an iterative metric, Euclidean MDS-analysis, as shown in the mathematical
section below. Notice that the expressions define an asymmetric similarity or confusion
probability due to the power-raised bias T. for p.. lgj or p.~. Since these probabilities
correspond to open-hyperbolic response s\Jaces u.:ith unit pseudo-radius, the derived
sensation distances are Euclidean and not Minkowskian. Thus, the psychophysical
response theory defines a new biassed choice model for (i-to-j)-similarity as an
exponentially multiplicative similarity model with power-raised bias, because for
Euclidean sensation spaces the multiplication of exponential terms for squared
dimensional distances defines the exponent for their squared space distance. Models
with c = 2 would yield

In[(l - p.. lgj)/p.. lgj] = (d ..!a}. (d .!a},
lJ IJ IJJ gjJ

2
In[(2 - p.,)lp.,,] = (d..!a.) ,

IU IU IJ J

where v.. =exp[-d~.] with T. =a~ would define a biassed similarity with a so-called
GaussiaN decay furl-ltion fo~simiiarity generalisation, but our derivations define c = I
and then similarity magnitude v.. = exp(-d.. ) implies the exponential decay function.

Referring to the arctanlgent-basedJ response transformations of Euclidean
sensations, we may also have single-elliptic response spaces. Observed confusion
probabilities of stimuli i with respect to a target stimulus j are then defined by

p.1j =I - Ir. 1/(V2lT) I=I - arctan(d ..Ia.)/(Vm)
1 IU IJ J

tan[Vm·(1- p.lj)] =:d ..la.
I' IJ J

while its differentiation and proper scaling yields

p.~ =: II[ I+ tan2{f.1/(Vm)}] =: cos2[r.I/(Vm)] = cosl( l-p.lj) :::: I/[ I+ (d ..la}]
I lU lU I IJ J

as the derived confusion probability that directly can be transformed to Euclidean space
distances. Since the tangent of single-elliptic response distances with respect to f. :::: 0
specify Euclidean sensation distances, we obtain by J
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0'

whereby
p··1 gj = [1 - r..1 gj/(Vm)J/2 = {I - arctan(d .. - cl .)la. ]/(Ym) IJ2,

IJ IJ IJgJJ

tan[y21[·(1-2p··IGJ)] = Id .. -d .l/a.
IJ IJgjJ

defines the conditionally weighted absolute distance differences in Euclidean sensation
spaces. For actually observed confusion and conditional similarity probabilities of
double-elliptic stimulus pairs under adaptation-level shifts to target sensations it defines
an arctangent-based similarity models with multiplicative bias. However, its
differentiation and scaling to

p .. lgj = 1/[1 + {(d.. -d .)la.12 ]
IJ IJgjJ

yields no proper probability expression. while also the conditional choice axiom holds
not for similarity magnitude v.. = I/d~.. Therefore, also probability expression

IJ IJ

p.. lgj= 11[1 +v .Iv.. ]=l[I+(d..Id .)2]
IJ gj IJ IJ gJ

holds not for conditional similarity probabilities from single-elliptic response spaces.
Thus, only for derived confusion probabilities an additive model with multiplicative
bias and power exponentc = 2 holds, according to our psychophysical response theory.
Notice that the additive similarity model with multiplicative bias for the derived
confusion probabilities requires that observed confusion probabilities p. Ij are
transformed to p.1j =cosl( I - p. Ij) before we can use distances d ..Ia. =.[[(1 - P,UYP.~]
in a MDS-basedlsimilarity probability model. IJ J I I

For hyperbolic sensation spaces v.. = exp(-d.. ) may also apply and if a. = y.la
then for power exponent T. = l/a. it follow~ that the fMded logistic probability fdnctrbn
specifies by J J T.

p.lj = 2/[ I + exp(d..la.)] = 2/[ 1 + (l/v .. ) ] J Id..= 21 Y'-Y.l/a, a.= y.la
I IJJ IJ IJIJJJ

the confusion probability that stimuli i are recognised as stimulus j. Although the
choice axiom applies here not (see p. 304), the conditional similarity probability

,.
p.. lgj=lI{l+exp[(d ..-d .)/a.]}=I/[I+(v .Iv.. )J] Id.. =2Iy.-y.l/a,a.=y.la

IJ IJgjJ gjlJ IJ IJ JJ
holds for this logistic probability of distance difference (d.. -d .)/a. by the restriction
to n=2 with respect to fixed target stimulus j. Thereby, ':1lsJ\velghted, hyperbolic
sensation distances are then validly defined by terms t. = aly. and T1. = 2/In(x.lu) by

J J J J
d..la. = In[(2 - P'I' )IP'I'] = -T. ·In(v.. ) = -Tt. i In(x.lx.)!

IJ J IJ IJ J IJ J I J'

(d .. - d .)/a.= In[(l-p.. lgj)/p.. 1gj] =vln(v .Iv.. ) = -Tt.·ln[(x.lx )] = T.·ln(v. ).
IJgjJ IJ IJ J gjlJ Jig J Ig

Since here

. 2 ~ 2p·U = 11[1 +(d../a.) ] = III 1 + 1I(~.·qJ = 1/[1 + L (d··klo· k) I]
I IJJ JIJ hll]]

for v.. ::: lId~ ::: (2ly. - Y.l/ar and ~. = (l/a}= (aJy}an additive similarity model
with lkultipdtative bias for derivedJconfudon probJbilities. The transformation of
arctangent-based similarity response to observable, conditional similarity probability
yields
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~=!tl 't.

exp(-d ..Ia.):::: ,,!I:exp(-2d ..
k
/a.

k
):::: v.~,

IJ J k~l IJ J IJ

applies to Euclidean stimulus dimensions with respect to x.klb
k

:::: I, we have by the
additive combination of dimensional tenus eXP(-2d"k/a'k)~nexponentially additive
similarity model with power-raised bias, which Veqdlres a representation in the
Euclidean stimulus or hyperbolic Fechner sensation space The choice axiom, however,
conditionally applies for similarity magnitudes that derive from the redefined, open
hyperbolic confusion or similarity responses as responses r. Li or r .. igj with respect to
r. :::: 0 that are specified for weighted hyperbolic sensation drstanc~s cosh(d..Ia.) as
J IJ J

r. 1; :::: tanh[lf2ln {cosh(d ..Ia.)}]
IU IJ J

r..1 gj :::: tanh[-hln{cosh(d..Ia.)/cosh(d .la.)}].
IJ IJJ gjJ

For similarity magnitudes

v.. :::: l/cosh(d.. ):::: IJcosh[2(y. - y.)/a]
IJ IJ 1 J

and compound bias ~ .. that depends on hyperbolic distance d.. and weight a.
IJ IJ J

~ .. :::: cosh(d .. )/cosh(d ..Ia.)
IJ IJ IJ J

the confusion probability is defined by

whereby a. :::: y.la
J J

while

P'l;:::: t - r· I;:::: 2/[1 + cosh(d ..Ia.)]:::: 2/[1 + l/(~ .. ·v .. )],
lU lU lJ J IJ IJ

[2 - h ]/p." = co,h(d.h.),
IU lU IJ J

p.. 1gj :::: (I +r.. tgj)/2 :::: t/[ I + cosh(d../a.)/cosh(d .la.)]:::: 1[1 + (~ .I~ ..)-(v .Iv..)]
IJ IJ' lJ J gj J gj IJ g) IJ

Since here,

defines the conditional similarity probabilities, whereby

[I - p.. 1gj]/p··1 gj :::: cosh(d..la. )/cosh(d .la.).
lJ lJ IJJ gjJ

~gj'vgj cosh(di/aj ) bm ~gjk' vgjk k=m cosh(dijk/ajk)

~ij,vij :::: cosh(di/aj) ::::DPijk'\jk :::: IT cosh(dgjk/ajk)

the similarity model becomes a hyperbolically multiplicative similarity model with
multiplicative compound bias. It defines a new similarity model with multiplicative,
distance- and stimulus-dependent bias, where we can solve by a principal component
analysis of cosh(d .. ) with iteratively improved estimates of a. values the hyperbolic
sensation space frolk observed confusion or conditional similarIty probabilities, as also
shown in the mathematical section below.

The observed p, /. or p .. igj values yield n(n-1) or:60 (n-1)' equations
for :6O(n-1) dig kces a~ ,= d,. and n values a.

1J J1 J

In{ln[(2 - p.lj)/p, Ij)} = In(d. ,l In(a,)
or 1 1 1J J
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a.{ln[(l - p .. lgj)!p"lgjJ} = d .. - d,
J 1) 1) 1) gJ

in the exponentially additive or multiplicative m:xlels, while in the
the arctangent-based confusion or conditional similarity probabilities

irrproved values of a, , where after the regression solution for the second
equation is solved Jith these estimates of a. and by repeated solutions
until convergence we obtain the a, and d .. v1lues.

) ')
For the hyperbolically multiplicative model we obtain the equations

d ,)/In([(1
g)

d )/tan[~'(l- 2p .. lgj)1}j{~(n-l)(n-2)}
gJ 1)

or
In[tan(;';r:}·(l p.ljll} = In(d .. l -In(a.l

1 1) J
a ·[tan{~rr (1 2p,.igj)}] =d., -d "

J 1J 1) ill
the first of the two expressions are solved by linear regressions with
dunmy variables for the estimates of In{d .. l and In(a,) under scaling
of average a. to 2, because otherwise d, ,~1IY. - y, lalor y./a = a,
are undetermined. For the second equatibh we 1Jtare the sol~tion wlth

I a. = 2 and for solved values of d., d. with average d .. set to
I elp (1) we obtain by 1) gJ 1J

I
I
I or

I
I
I
I
I

In{ar cosh[(2 - p, ij)/p.lj]} = In(d .. l - In(a.l
or l l lJ J

In[(1 - p. ,Igjl/p. ,jgj] = In {cosh {d . .la.) - In(cosh{d .la,)
lJ lJ lJ J gJ J

where the first equation is solved as described above, while the second
I equation becomes iteratively solved for d,. and a. by initially taking
I a. = 2. The initially solved values of cos1i(d,.) ~re then used in

I
) ')

ar COSh(~ij}/arcosh[(l Pij!gj)/Pijlgj] = a j

I and ar COSh(~gJ}/arcosh[(l Pij!gj)/Pijgj] = a
JI where first solved values a, are used for their improved solutions by

i and In[arcosh{[{l PijI9j~/Pijlgj]/COSh(di/aj)}l= In(d
gj

) -In(aj )

1

1

In[ar cosh{ [(l Pijlgj}/PijlgjJ/cosh(dg/aj}}l lnld
ij

) In(a
j }

where repeated solutions after convergence solves d and a, .

I Next a metric MDS-analysis of solved d. , values solvei the m-~hmenslonal
I Euclidean sensation space with estimatJd distances d .. after the solved
I space is translated and centrally dilated in such a w.§:1 that dimensional
I values satisfy y, ,,0, while the configuration centroid becomes located
I at distance 2 fr~ the translated origin. Altenlatively the principal
I component analysis of the matrix with cosh(d, ,) elements solves the
I Euclidean (m+l) -co-ordinates of the m-dimensr6nal hyperbolic sensation
I space. Rotation of these co-ordinates to zero projections of centroid
I point a, except for one dimension k with Yjk " 1 and a central dilation



V(i,j) = FI,(i,j) 0 [fO) • tU)} I

352

that scales average Y'k to a
k

= 2, yields hyperbolic distances d., by
ar COSh[Y

ik
- Yjkl. ) 1)

For solved space values a. should equal ;.w. for a =2, provided the space
is correctly translated atId centrally dilort.ed. Dilating and translating
the solved space in such a way that the differences between a, and W.
are minimised, we may take a, = ;.w. as fixed values and can sOlve frorJ
the above equations best fitting, ttew estimates of d, , that are again
used for the space solutions, which is repeated untiIJconvergence.

Confusion probability models with power-raised bias derive from a Holman-Nosofsky
model

by defining operators 0 as division and ® as addition, function F(z) = exp(-z), value
sO,j) = d.. = 21 y. - y.l/a with f(i) = 0 and tU) = a . = y.la. We then obtain similarity
magnitud! v.. = ~xp~-d .. ) and 't. = l/a. ))

IJ IJ)) ,.
F[s(i,j) 0 {j{i) (f) fij)} 1=exp[-d ..la. ] =v.J

I) J I)

for d.. as distance in a hyperbolic or EucIidean sensation space. Also the additive
similMity model with multiplicative bias derives from this general model by F(z) = I/z2
and the same tenns s(i,j), fn), and fO). It yields for v.. =1/(d..F and "i~. =a. =y.la

I) I) )JJ

F[s(i,j) 0 (fti) $fij)}] = lI(d..Ia.)2= ~.·v ..
lJ J J IJ

Its multiplicative bias is evident from the product of B. and V .• , while squared sensation
distance d.. defines the additivity of the similarity Jrlodel BY its Euclidean sensation
distances. lt3ut the arctangem-based and hyperbolically multiplicative models with
multiplicative biases derive not from a generalised Holman-Nosofsky model.

Ifadaptation levels in (i to j)-dissimilarity evaluations are not fully shifted to the
sensation of the target stimulus or category, thus for 0 < w < I, we then have

S'I; = y.l[(l-w)a + w·y.] - I = yJa. - I I
and IU I J I ) a. = (l-w)a + w.y.

S'I; = y.l[(l-w)a + w·y.] - I = y.la. - I i: 0.) J
Ju J J J J

For 0 < w < 1 we have a. i:y., whereby r.. becomes no longer the shifted response
space origin and, thereforl:, wd then have Jreduction of dissimilarity responses IL

1
I

as response space distances of response L to L = O. Thus, for hyperbolic tangent~ 6r
arctangent-based dissimilarity response vJe carh define the confusion probability by
response complement, nor the conditional similarity probability by linear transfonned
dissimilarity responses. Thereby, no probability model can bederived for confusion and
similarity probabilities if the adaptation-level shift is not complete (thus, if w i: I).

Summaris ing: by the psychophysical response theory under complete adaptation
level shifts to the reference stimulus j we derive for (i-to-j)-similarity responses either:
I. for single-elliptic response spaces an additive model with multiplicative bias for

transfonned confusion probabilities with lI(d ..)2 as similarity magnitudes of
Euclidean sensation spaces (no additive model itr conditional similarities) or an
arctangent-based similarity model with multiplicative bias for confusion and
conditional similarity probabilities;
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2. for open-Euclideanresponse spaces an exponentially additive similarity model with
power-raised bias for confusion and conditional sirnilarityprobabilities with values
exp(-d .. ) as similarity magnitudes for hyperbolic sensation spaces;

3. for opJh-hyperbolic response spaces
a) an exponentially multiplicative similarity model with power-raised bias for

confusion and conditional similarity probabilities with values exp(-d.. ) as
similarity magnitudes for Euclidean sensation spaces, or IJ

b) a hyperbolically multiplicative similarity model with-multiplicative compound
bias for confusion and conditional similarity probabilities with values
l/cosh(d .. ) as similarity magnitude of a Minkowskian space for logarithmic
transforrNed, hyperbolic sensation distances In(cosh(d.. ) with r-metric r = I.

Only these biassed, MDS-based similarity models ardJ consistent with the
psychophysical response theory under complete adaptation level shifts to target
stimulus sensations. It would theoretically exclude the validity of Nosofsky's
exponentially multiplicative similarity model with multiplicative bias. Nosofsky
(1992a) shows overwhelming empirical evidence for the exponentially multiplicative
model with multiplicative bias over the additive similarity model with multiplicative
bias from MDS-analyses of data in many studies on categorisation probabilities of
stimuli with respect to memorised or learned categories. Thus. on the one hand the
additive similarity model with multiplicative bias is invalidated by the empirical
evidence, which would also invalidate the arctangent function as response function as
well as the single-elliptic geometry for response spaces and the double-elliptic
geometry for stimulus spaces. On the other hand the exponentially multiplicative
similarity model with multiplicative bias is inconsistent with our psychophysical
response theory, but is sustained by empirical evidence. Nonetheless, if power-raised
bias parameters are approximated by multiplicative bias parameters. then Nosofsky's
results may sustain the hyperbolic tangent as response function for Euclidean sensation
spaces in our psychophysical response theory. However, Nosofsky'sevidence may not
invalidate the arctangent as response function and the single-elliptic geometry of the
response space, because the analyses concern observed probabilities p. Uthat are not
prior transformed to probabilities by cos2{l - p.~) = p. U, as required f6r the additive
similarity model with multiplicative bias. Thee1ponenlially additive similarity models
with power-raised bias, the hyperbolically multiplicative similarity model with
multiplicative compound bias, and the arctangent-based similarity model with
multiplicative bias are not considered by Nosofsky. Therefore, Nosofsky's (l992a)
results are inconclusive for an empirically sustained choice for one of the alternative
similarity models.

The evidence of Ashby and Perrin (1988, p. 145) from probabilistic MDS
analyses that equally well fit for exponential decay with c = r = I and for Gaussian
decay with c = r = 2. where c applies to similarity magnitude v.. = exp[-(d~)l and r to
the underlying Minkowski metric of d.. , and similarly so for M~S-choice drbdels with
multiplicative bias as well as for prob<lbilistic Euclidean MDS-analysis with c = I and
r = 2, could indicate that the sensation space is flat and that the decay function depends
not on the geometry of the flat sensation space. Other results of Nosofsky (l992a,
p.161-163; 1992b, p. 373, 391) from MDS-choice models with multiplicative bias for
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categorisation or confusion probabilities show that the exponential decay function for
distances with (c::: r::: 1), (c::: 1, r::: 2), (c:::: 2, r::: I) or Cc:::: r::: 2) generally fit
categorisation and confusion probabilities quite well for c:::: 1 in flat sensation spaces
with r:=: 1or r::: 2, while confusion probabilities of highly confounded stimuli fit better
analyses with c ::: r :::: 2. It indicates that the Gaussian decay function may apply to
confounded or fuzzy stimuli with Euclidean sensation distances. Open-hyperbolic or
single-elliptic response spaces must be scaled to a (pseudo) radius of unity before
response space distances define respectively the similarity probabilities Pi Ii ::: i-I rot i:
or p.. IJ::: 1 - Ir. .1/(Ym), whereby the derivable flat sensation space ~n onlyltle
EUcl~dean.Thus, IrHe theoretically appropriate values are c =I and r =2, but in line with
Shepard (1988) and Nosofsky (1992b) we conjecture that c = 2 may apply if stimulus
recognition is masked by physical noise, which conjecture is sustained by two kinds of
theoretical research.

Firstly, Ennis (1988, 1992) generated data by an exponential decay function for
Euclidean distances (c = I and r = 2) between sensations of artificial stimuli with so
called momentary fluctuations from a normal distribution for their dimensional
sensations (logarithmically transfonned stimulus dimensions). These artificial data fit
the Gaussian decay function with c =2 better than for exponential decay c = 1,
although generated by c = I and sensation distributions as noise around the central
Euclidean loci of the sensations. Notice that the momentary tluctuations are here
simulations of physical noise that cause stochastically fluctuating sensation distances,
which differs from our detenninistic distance fluctuations by stimulus-dependent shifts
of adaptation level. Secondly, Staddon and Ried (1990) show that the recurrent
diffusion-process time for errorless input signals in neural networks detennines the
shape of the decay function. The shape of the decay function changes with the
diffusion-process time from an exponential to a Gaussian decay function, while for
almost infinitely prolonged diffusion the decay function becomes almost linear.
Moderately long recurrent diffusion process time for input signals in neural networks
may simulate the cognitive recognition effort of internally repeated sensations of faint
or fuzzy stimuli. Taking these theoretical studies and the evidence for c =2 in empirical
studies on confusion of fuzzy stimuli, it may be that generalisation as function of
sensation distances is intrinsically detennined by the exponential decay function, thus
for c = 1 as it theoretically should be, while perceptual noise or fuzzy stimuli can
induce Gaussian-like decay functions. Therefore, the analysis of similarities between
clearly distinguishable stimuli or well-known cognitive objects generally will be
characterised by an exponential decay function.

Clearly (i-to-j)- and (j-to-i)-similarities are asymmetric in all our biassed choice
models. while triple similarity comparisons also can easily become intransitive, unless
triple similarities with the same reference stimulus are compared. It predicts the same
asymmetry and intransitivity as predicted by Tversky's (1977) feature-contrast model,
but here asymmetric similarities for (i U) and (j 1i) are induced by the stimulus- and task
dependent evaluation. Suppose (i-to-j)-similarity induces a complete shift of the
adaptation level towards the reference sensation of j, while y'k IY'k= I for m-I
dimensions and y. Iy. =1/2 for one dimension, then distances d.

I
/= 21Y. Iy. - I1 =1

and d.
l
. = 21 y. IY~)1I = 2, where i is more similar to j than j tt:S i. Ap~lf}ilNfsuch to

J I Jm Im
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North Korea and China by assuming that North Korea and China are identical in all
attributes except one, whereon North Korea has a higher attribute value than China,
then also the complete shift of the adaptation level implies a lower similarity of North
Korea to China than of China to Korea. We prefer this more general explanation of
asymmetric similarity from adaptation-level shifts above the explanation by the feature
contrast model of Tversky (1977).

Evaluations of presented stimulus or object pairs (i,j) for being similar or
belonging to same category may be influenced by individual adaptation-level shifts
towards the midpoint of sensations for i and j, while the individual average adaptation
points will be equal to the average sensation for sensory stimuli or objects. The
expression for intensity-comparable sensations i and j under shifting individual
adaptation levels toward midpoint sensations are defined by

s·IJij = 2{y./[(1 - wJ)a
J

+ V2W
J

(Y. + y.)] - I}
and I I I J

s·IJij = 2{y./[(l - wJ)a
J

+ V2W
J

(Y· + y.)]- I},
whereby J J I J

d../a
J
,,= [2ly· - y·l/a]/a

J
.. with a

J
..= aJ[(l - w

J
) + V2W

J
(Y. + y.)/aJ1

IJIJ IJ IJ IJ IJ
For w

J
= 1 we may simplify by a

J
= a and a.. = Y2(Y. + y.)la the expressions to

IJ I J
s.lij = 2[y. - V2(y.+y.)]/[Y2(y.+y.)] =: fey. - y.)/a]/a ..•

and I I LJ 1J IJ 1J
s.lij = 2[y. - lh(y.+y.)]/[Y2(y.+y.)] = (y. - y.]/a]/a .. ,

whereby J J I J I J J I IJ a..=V;(y.+y.Ya
s.lij = _s.lij IJ I J

and I J
d../a.. =1'·Iij - '·Iij I=[21 y. - y·l/aJ/'-..
IJIJIJ IJIJ

For open-hyperbolic response space distance we then obtain

r.1 ij = -r.1 ij == tanh(V2s.1 ij) == tanh[Y2(y. - y. )/a }/a.. ],
I J I I J IJ

where response distances for Euclidean sensation distances d.. == 21 y. - y.l/a are written
as IJ I J

Ir··1 ij I = 12 r. [ij 1=:2 tanh[V2{ Iy. - y.l/a}/a..] == 2tanh(JAd..Ia.. ) :0: 2
IJ I IJ IJ IJIJ

and the confusion probability as

p.. I(ij,w== 1) == [2 - 21 r.lij 1]12 = 2/( 1+ exp(V2d ..Ia.. »), !a..==V:l(y.+y.Ya
IJ I IJ IJ lJ I J

which for exp(V:zd../a.. ) as a Euclidean co-ordinate of hyperbolic sensation distances
also holds for opeH-E6c1idean response distances

Ir.·1 ij I== Ir. [ij - r·1 ij I =: Itanh(-Y2s.lij) - tanh(-V2S. [ij) I =: 2tanh(I/4d../a.. ).
IJ I J I J IJIJ

d.. =: 21 y. - Y.l/a, v.. =: exp(-d.. ), a .. = V2(y.+ y.)/a
IJ IJ lJ IJIJ IJ

T.. = V2Ia.. = a/(y.+ y.),
IJ IJ I J

L

v.. IJ =:exp[-lhd..Ia.. ]
IJ IJ IJ
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a biassed confusion probability for Euclidean or hyperbolic sensation spaces as
t ..

p.. lij::: 2/[ 1+ exp{V2d ..Ia.. }] ::: 2/[1+ (Itv.. ) IJ]. Iv..=exp(-cl ..),•..=a/(y.+y.)
IJ IJlJ IJ IJ 1JlJ lJ

Similarly we have cl ij :;;: -LI ij ::: arctan[ {(y. - y.)/a}/a.. ] for single-elliptic response
spaces with responsb distantes 1r..1 ij I ::: 2·r.'1 ij, J..here~Y

'J ,

p··1 ij ::: [2 - 2·r.1 ijl(V2n:)]/2::: 1 - arctan(Vu! ../a.. )/(l/m),
IJ 1 IJ IJ

d ../a.. ::: 2·tan[Ym(l - p .. 1 ij)]
1J 1J 1J

p··1 ij = cos2{1 - p.. lij) ::: l/[l + (Yw ..Ia.} ]
1J IJ IJ 1J

p .. jij::: 1/[1 + l/(p.. ·v .. )J. 2 Iv.. = lid .., Jp .. = a/(y. + y.)
IJ 11 IJ 1J 1J!J I J

Its confusion probabilities are symmetric, but evidently can be intransitive and define
a new type of biassed confusion or categorisation probability. A conditional similarity
probability p .. lgj under shifts to midpoint sensations can't be formulated, since
response spa& distances r.. and r . have no same space origin as midpoint.

Euclidean sensatioN spac&! and similarity magnitude v.. ::: exp(-d.. ) under
adaptation-level shifts to midpoint sensations define again for coNfusion pro#abilities
an exponentially multiplicative model that by it~ power-raised dual bias "t •. ::: a/(y.+y.)
for v.. , will be called the exponentirllly multiplicative similority model1Jvith po~e}.
raise~ dual-bias. It predicts stimulus-dependent intransitivity, but no asymmetry of
(dis)similarities. For hyperbolic sensation space with its addition of squared Euclidean
co-ordinate terms exp(d.. k/a..

k
) to squared term exp(d..Ia.. ) of hyperbolic distance

Yul ..Ia.. it becomes anex~one~rUlllyadditive similarity ,JhJJI with power-raiseddual
birl~. Fbr Euclidean sensations of single-elliptic response space we have an additive
similority model with multiplicative dual-hirls for derived confusion probabilities by
its addition of squared, dimensional distances to Euclidean sensation space distances
d .. and for the actually observable confusion probabilities an arctangent-based
slJnilarity model with multiplicative dual-hirls. For the alternatively defined, open
hyperbolic response space with ILl::: 2tanh[Yzln{coshWm..Ia.. )} 1 :0; 2 and confusion
probabilityp··1 ij ::: [2 -,r.. i]J2::: 2/t~ + l/(~ .. ·v.. )] for v.. ::: l}bo!;hWm.. ) with dual-bias
~ .. ::: cosh(VxP.. )icoshWJI..la.. )we have aga1b d1yperhJbcally multipntative similarity
~del with mW:ltiplicativ~ cJJnpound dual·birls, where the dual bias here depends on
the sensation distance and its midpoint The solutions for these models may be
iteratively obtained from repeated solutions of a metric MDS-analysis of Euclidean
distances d .. or a principal component analysis of hyperbolic distances cosh(d .. ) as
defined b)l the respective transformations of observed, symmetric conf£ion
probabilities under initial values a .. ::: 2. Iteratively improved values a .. ::: Yz(y. + y.)/a
for the successively solved space vlalues of y. and y. under similar centMl dilatibns and
translations of the solved sensation space, las de~cribed earlier in the mathematical
section above for adaptation-level shifts to target sensations. Thereby, improved space
solutions are obtained from improved estimates of space distances d.. orcosh(Yzd..) for
improved values a .. and the transformed similarity probabilities, tthich by rep~ated
improvements giv.M convergence of estimated a .. values and the common sensation

'J
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space solution. We conjecture that the appropriatelytransfonned similarity probabilities
to weighted sensation space distances for the respective similarity models with
multiplicative or power-raised (dual-)bias will fit better than existing MDS-based
similarity probability models and obviously also better than the methods described in
chapter 4, where we assumed no stimulus-dependent adaptation-level shifts.

The conditions for the validity of the analyses of individual (dis )similarity order
data by the methods of chapter4 in this monograph are:
- a homogeneous and known set of perceptual stimuli or cognitive objects,
- randomly selected and simultaneously presented stimulus or object pairs,
- limited, equal exposure time of stimulus or object pairs.
Under these conditions adaptation levels hardly shift and likely are individually
identical for perceptual stimulus sets, while for cognitive objects they likely are
different and stable. These conditions exclude similarity evaluations of well
discriminated stimuli from nonhomogeneous stimulus or object sets and similarity
evaluations of presented stimuli or objects with respect to memorised or repeatedly
presented target stimuli or objects, as used in many dissimilarity studies. Stimulus
dependent shifts of dimensional adaptation levels are most generally defined by

aJijk = [(l-wJ)aJk+ P,wj"Yjk+ (I-P)wj"Yik1/aJk" 10 s; wJ s; 1 and 0" p:s: 1

It not only describes a task-induced, partial stimulus dependence for asymmetry of the
(i to j)- or (j to i)-similarities by shift factor 0 :s: WJ s; I, but describes by 0 ::; ps;I also
the effects of shifts that are caused by different frequency proportions or different
durations of stimulus presentations for i and j, where p expresses the proportional
presentation unbalance. For p < V2 the shift is relatively more towards i thanj and for
p > V2 relatively more to j than i, where presentation unbalance causes similarity
asymmetry and intransitivity. However, no theoretically valid similarity probability
model is derived from our response theory, if wJ = I and p = 1 or p = 0 or p = V2 is not
satisfied. Only for p = I or P = 0 and w

J
= I it reduces to the described similarity

models with stimulus-dependent bias that causes asymmetric and intransitive
similarities. For values p = lfi and w

J
= I it describes shifts to midpoints of i andj and

then reduces to the described similarity probability models with dual stimulus
dependent bias that may cause symmetric similarities to be intransitively ordered.

7.2.5. Deterministically relative versus stochastic dissimilarity analyses
Our psychophysical response theory assumes a common object space with detenninistic
object locations and predicts that similarities can become asymmetric andlor intransitive
by detenninistic, task- and stimulus-dependent shifts of adaptation levels. Asymmetry
and intransitivity apply to (i-to-j)-similarities that are evaluated with respect to
repeatedly presented target stimuli or objects or with respect to memorised stimulus or
object categories, while similarityevaluations between stimuli or objects only can show
a possible intransitivity of symmetric similarities. If such shifts of adaptation levels are
present then the dissimilarity analysis methods in chapter 4 are inappropriate. Above
we proposed iterative solution procedure for the analysis of intransitive similarity
probabilities from shifts of adaptation levels to sensation midpoints or target sensations
of stimulus pairs, but a similar analysis method may be used for the analysis of partially
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intransitive dissimilarity rank orders that are influenced by similar adaptation-level
shifts. Using that solution procedure for ordered dissimilarity values that are scaled to
initial probability values betweenjustabove zero and just below unity for respectively
the largest and smallest dissimilarity, we can iteratively solve the sensation space from
such initially scaled similarities as probabilities and then obtain predicted similarity
probabilities as function of solved, weighted sensation space distances. Better scaled
similarity probabilities are obtained by minimally changed values of predicted
probabilities that fit the partially intransitive order of observed dissimilarities. By
repeated solutions for more optimally scaled similarity probabilities the solution
converges to an optimal probability scalingand common sensation space representation
that also determines the stimulus-dependent weights of sensations, whereby intransitive
dissimilarities are analysed. If adaptation-level shifts to stimulus subsets are partial
(thus, also dependent on individual adaptation levels) then a theoretically valid
similarity probability model can also not be derived from our psychophysical response
theory. Nonetheless, it might be possible to find solutions from rank orders of
dissimilarities between simultaneously presented object pairs (ij) and (f,g) with partial
adaptation-level shifts towards the sensation centroids of objet subsets (ij J ,g), where
their dimensional sensations are defined (subsection 7.1.5.) by

sJiklijfg=2{Yik/[(l-wJ}aJk + IAwf(Yik+yjk+Yfk+Ygk)] - I}.

Solutions forthe analysis of intransitive dissimilarities with such adaptation level shifts
might be obtained from by starting with the solution procedure of chapter 4 that solves
the dimensional a

Jk
and Yile- values for w

J
= 0, as initial solution and subsequently by

using the iterative scaling olintransitive similarity rank orders to simi larity probabilities
and their repeated solution by the above described procedure, but then for individual
weights 1 < w

J
<°that also have to be solved iteratively. Whether such an iterative

procedure or another programming method can efficiently achieve solutions has to be
researched, but would exceed our theory-oriented scope.

In our psychophys ical response theory intransitive (dis)similarities are predicted
by adaptation-level shifts and analysed by transformations of response distances that
become intransitive by deterministicatly changing response spaces. Many data
inconsistencies are not due to stochastic behaviour, but caused by insufficiencies of
analysis methods that do not take into account:
a) stimulus-dependent or task-induced adaptation-level shifts to between presented

object pairs and the configuration centroid or task-dependent reference levels;
b) the difference between the geometry of open individual response spaces and the

common sensation or stimulus space.
These model insufficiencies lead to inconsistent data if the model is taken as more real
than the data and then are often seen as stochastic phenomena. But insufficiencies of
a model can't be cured by stochastic versions. Stochastic models are not always
inappropriate, but deterministic models are more useful for theory development.

Firstly, stochastic models can be appropriate for similarity evaluations of noisy
stimulus presentations or faintly presented objects, as indicated by the discussed
simulation studies that showed Gaussian decay for noisy stimuli, but are doubtful for
similarity evaluations of clearly perceivable stimuli or well-known objects.
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Secondly, probabilistic scanning samples of sensory objects and probabilistic
micro-processes of brain signals need not to determine stochastic responses, because
responses are integrated outputs of multiple signal micro-processes, which generally
yield almost deterministic output results in the same way as stochastic Brownian
collisions of gas molecules against volume walls yield deterministic pressures.

Thirdly, probabilistic or rather stochastic MDS-analyses of similarity data
(Ashby, 1992) define similarity by a multidimensional distribution overlap of sensation
or stimulus pairs. However, this similarity definition is questionable for similarities
between well-perceived stimuli and certainly is a strange definition for similarity
evaluations that exhibit no uncertainty for individuals. Probabilistic MDS-analyses of
similarities derive from the generalised recognition theory (Ashby and Perrin, 1988)
that is based on a generalisation of signal detection theory (Tanner and Swets, 1954,
Swets, 1961). Already in 1960 it is stated that signal detection theory is not a
psychological theory, because it would require ideal human observers that don't exist
as Tanner himself (Tanner et aU 960, pp. 19-20) remarked:

'Thus ifthe hwnan observer were to performasan ideal observerthefollowing would
be necessary: 1) he would have no source ofinternal noise. That is, the input signal
would have to be transjOmJed to a different type of energy by the end organ and
transmitted by the nervous system, all with perfectfidelity. 2) He would have perfect
memoryfor the signal parameters and the noise parameters. 3) He would be capable
of calculating the likelihood ratio or some monotonic transfonnarion of likelihood
rario.....Clearly, the hwrum observer does not meet these specifications".

Therefore, distribution overlap implies likewise a questionable similarity definition.
Models for dissimilarities as deterministic space distances, however, need to specify
the response geometry and have to take into account the dynamic relativity of
comparable sensations in order to describe what otherwise would be stochastic noise.

7,3. Cognition research and dynamic similarity relativity

7.3.1. Individual similarity relativity and cognitive simirority analysis
Individually different and stable adaptation points determine individually different and
static response space configurations of the same stimuli. Stable individually adaptation
levels and thus static individually different response spaces may exist in studies on
evaluations between cognitive objects, provided that the cognitive objects are randomly
selected from a fixed homogeneous set of cognitive objects and are not associated with
the physical objects, which may hold for neutrally presented words of pure cognitive
entities. Under these conditions the adaptation levels generally are stable, but
individually different, because selected from their memories for similarobjectcontexts.
The probabilistic Eudidean MDS-analysis (Zinnes and MacKay, 1992) may seem an
acceptable method for the analysis of aggregated dissimilarities from an object space
with fixed object locations and a multidimensional, normal distribution of individually
differing, stable adaptation poims, because distributions of object vectors from a
common origin then derive from the distribution of individual origins. However,
according to our theory the solved Euclidean space then only can be the average of the
open-Euclidean response spaces of individuals. The individual different response
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spaces cause a distribution of objects in an averaged response space, wherein object
vectors then differently vary in direction and length, dependent on their fixed object
distance to individual adaptation points in the sensation space. Suppose wehavea two
dimensional (hyperbolic) sensation space with fixed object sensation points and a
bivariate nonnal distribution (circular by equal dimensional variances) of individual
adaptation points. If the average adaptation point is taken as the fixed common space
origin of the object vectors in that sensation space then we have identical circular
nonnal distributions of the object locations, because the object distributions of the
actually fixed object locations are equal to the distribution of the individual adaptation
points. The objects close to the average adaptation point remain to show such almost
circular distributions in the open-Euclidean response space that is assumed to be
common to the individuals, because the vector lengths of objects that are located
closely to the individual adaptation points are hardly changed by the transfonnation
from sensation to response spaces, while all object vector directions remain unchanged
by that transfonnation. However, due to the transfonnation from infinite sensations to
finite responses, the distribution of the response vector lengths will be the more
narrowed the more remote the central object location is from the origin, while the
distribution on the perpendicular axis is hardly narrowed. because distributed as the
adaptation points. Thus, remote objects will show almost elliptic distributions with a
smaller variance for their central vector length axis than for their perpendicular axis.
Figure 38a below shows a simulated example of such differently shaped object
distributions from an improper probabilistic MDS-analysis of aggregated individual
dissimilarities in an open-Euclidean response space for detenninistically located objects
and a nonnal bivariate distribution of individual adaptation points.

•

limit boundary

~
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I
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location average
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Figure 38a. Expected object distributions from a stochastic MDS-anal.vsis
for fixed objects and nonnal distributed adaptation points
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Next figure 38b is a copy of an empirical example that shows such circular and elliptic
object distributions from a probabilistic Euclidean MDS-analysis of aggregated
individual dissimilarities of 52 students for eight toothpaste brands (MacKay and
Droge, 1990). The authors interpret the dimensions of figure 38b as breath-freshening
and decay-prevention dimensions of toothpaste brands. Their explanation for the
differently shaped object distributions is that well-known toothpaste brands will have
elliptic distributions with the smaller variance for their characterising dimension and
circular distributions for unknown brands.

H G

c
E

B

Figure 38b. Varying object distributions from a stochastic Euclidean MDS-analysis
ofdissimilarities between toothpaste brands

The characterising dimensions for the axes of the elliptic distributions with the smaller
variance are the breath-freshening dimension for brands E:::: Aim and C :=:Aqua-fresh
and the decay-prevention dimension for brands A :::: Crest and B :::: Colgate as well as
for also clamour-appealing brands F :::: Ultrabrite and D :::: Close-Up, while smoker
toothpastes G::: Pepsodent and H::: Pearl drops are unknown to students and, therefore,
will have large circular and centrally located distributions. This explanation by the
authors seems unwarranted, because why are all well-known brands not characterised
by distributions with small variances on both dimensions? Our explanation is that such
results are be expected from an analysis of dissimilarities by a probabilistic MDS
analysis in a common Euclidean space, if the object configuration is deterministic and
individuals have a multivariate normal distribution of adaptation points. If individuals
have such a distribution of fixed adaptation points then they transform a detenninistic
object configuration in a hyperbolic sensation space to individually different object
configurations in their open-Eucl idean response spaces. These different configurations
become then represented by object disrributions in a common Euclidean space, while
the object distributions are the more elliptic the more extreme their central object
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locations are, due to the open-Euclidean response spaces. Since memories of neutral
tasting toothpastes define the individually different adaptation points, the neutral
tasting smoker's toothpastes (G = Pepsodent and H = Pearl drops) will be located close
to the average adaptation point and also must be circularly distributed in the
probabilistic MDS-analysis, while not neutral-tasting brands (decay-prevention brands
A =Crest and B = Colgate and breath-freshening brands E = Aim and C = Aqua-fresh)
must have elliptic distributions with the smaller variance on their characterising axis.
The confirmation of these predictions for six out of eight toothpastes can be seen as
evidence for our psychophysical response theol)'. The other brands (F = Ultrabrite and
D = Close-Up) with more centrally located, elliptic distributions probably have
eccentric locations on an unrevealed clamour-appeal dimension.

7.3.2. Methodological artifacts in cognitive similarity research
The presented example illustrates some ofthe methodological aspects and interpretation
artifacts ofMDS-analyses that analyse open individual response spaces as a flat infinite
sensation space. Here we further discuss these methodological issues.

Firstly, MDS-analysis of aggregated, individual (dis)similarities for cognitive
objects generally solve distorted distances between objects in the MDS-space, which
will be caused by actually different responses spaces for a common configuration of
fixed objects in the sensation space with individually different adaptation points. As
discussed in chapter 4. we have to analyse individual dissimilarity data for cognitive
objects and not the aggregated dissimilarity data of individuals in order to avoid
artifacts and misinterpretations. This is again illustrated by the following simple, but
realistic example. Suppose that we have dissimilarity data on political parties of
individuals that generally have stable adaptation points coinciding with the respective
location of their own political party, because their adaptation levels will shift to the
location to their own party by the dominating high exposure frequency to their own
party. Suppose further that we have 7 parties that are equally spaced on a single left
right sensation dimension that is flat or hyperbolic curved and that the more extreme
right and left parties are the smaller parties. We picture this by a straight line for
equally spaced party points A to G with symmetrically deceasing numbers of individual
adaptation points on these locations, as shown here below.

A BeD E F G---- ---- --- - -- --- --- -----
1 3 6 10 6 3 1

The response transfonnation of individuals with adaptation point A defines A-B as the
largest (non-Euclidean or Euclidean) response distance between adjacent parties with
successively smaller response distances for B-C to F-G, while the reverse holds for
individuals with adaptation point G. For individuals with adaptation points at B the
response distances for adjacent parties are equal and largest for A-B and B-C and
successively smaller for C-D to F-G, while by its reverse the response distance F-G and
E-F are the largest and equal for individuals at F that have decreasingly smaller
response distances for D-E to A-B. For individuals at C response distances between
adjacent parties are equal and largest for CoD and B-C, since their response distances
A-B and E-F are smaller and equal, while response distance F-G is their smallest
response distance. The corresponding reverse holds for individuals at E. For the
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individuals at D the response distances for adjacent parties are the largest and equal for
D-E and C-D, since their response distances B-C and E-F are smaller and equal, while
distance A-B and F-G are their smallest and equal distances. More individual
adaptation points are located at D than on C or E and more at C or E than at B or F,
while the least numberof individual adaptation points are located at A or G. Therefore,
the average response distances of the individuals for adjacent parties show the largest
response distances C-D and D-E, smaller response distances B-C and E-F, and the
smallest response distances A-B and F-G. Moreover, taking also the individual
response distances between other pairs into account, we also see that average response
distances between adjacent parties pairs are relatively less reduced than the average
response distances between non-adjacent party pairs. Therefore, the usual Euclidean
MDS-analysis of their aggregated dissimilarity data yields a two-dimensional solution
with a horseshoe configuration of the party locations. while the actual individual
response spaces are differently spaced unidimensional configurations with the same
left-right rank order as on the sensation dimension. Such horseshoe configurations of
political parties are empirically found by a Euclidean MDS-analysis of aggregated
dissimilarity data for Dutch political parties in the late sixties of the 20'h century
(Daalder and Rusk, 1972.). The interpretation of Daalder and Rusk is a left-right
dimension and a constructive versus nonconstructive party dimension, where the latter
dimension describes the dimensional contrast between the major, mid horseshoe parties
that participated in the Dutch coalition governments after World War 11, while the
minor parties at both extremes of the horseshoe configuration were opposition parties.
An alternative elliptic MDS-analysis of these data by Van de Geer and de Man (1974)
shows that this interpretation may be an artifact of the Euclidean MDS-solution,
because they represent the horseshoe configuration by one well-fitting, elliptic space
dimension. However, also the latter analysis is problematic. Firstly, because according
to our psychophysical response theory there exists no common response or sensation
space that is elliptic. Secondly, because the aggregation of individual dissimilarity data
can be the cause for the artifact of the horseshoe configuration. No analysis of
aggregated dissimilarities of individuals with different adaptation levels can
satisfactorily fit a Euclidean of non-Euclidean space representation, due to the fact that
averages of hyperbolic or arctangent transfonnations of individual sensations with
different origins yield no response distances with a zero or constant curvature.
Nonetheless, the unidimensional interpretation probably is still correct, because
analysis of individual dissimilarities for Dutch political parties by the analyses for open
response spaces that are described in chapter 4, probably would reveal only one left
right dimension, as it would for the constructed example. Hereby, we again demonstrate
that individual dissimilarities must be analysed and not their aggregated dissimilarities.

Secondly, probabilistic MDS-analysis of similarities between cognitive objects
can't cure the wrong assumption of a common response space and even may lead to
interpretations of resulting distributions that are methodological artifacts of the
distribution of individual adaptation points. Probabilistic MDS-analyses can show
object distribution for objects that actually are not distributed, but have fixed common
object locations that are differently evaluated by individuals with different adaptation
points. The geometrically appropriate analysis of individual response spaces (described
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in chapter 4 and modified for shifting adaptation levels in section 7.2) may reveal that
these response spaces are individually deterministic transformations of an almost
perfect fitting common space of fixed object positions and individual adaptation points
with different locations. Referring to paragraph 7.2, asymmetric and intransitive oranly
intransitive dissimilarity evaluations of an individual can derive from deterministically
stimulus-dependent modifications of weighted distances between the intensity
comparable sensations of presented stimuli or physical objects. This also can partially
apply to cognitive objects, whereby also fluctuations of distances can be explained
without assuming object distributions for cognitive objects, although ambiguity of
cognitive objects may exist. Ambiguity of cognitive objects could be modelled by
stochastic MDS-analysis for (dis)similarity of cognitive objects with distributions and
one also could take into account a possible distribution of a wandering individual
adaptation point, comparable to stochastic models for preference analysis with
wandering ideal points (De Soete, CarroIl and DeSarbo, 1986, 1989). We only have
developed detenninistic analysis methods for common Euclidean sensation or stimulus
spaces from individual response spaces (chapter 4) or similarity probabilities (section
7.2) and from individual preference spaces (chapter 5), but their stochastic versions
could be developed. We then also have to define the geometry of the space wherein the
cognitive objects would have multidimensional, nonnal or other infinite distributions.
This space can't be the open response space, because infinite distributions require an
infinite space. Italso will generally not be the stimulus space, because cognitive objects
are not physical entities and if there are corresponding objects in the physical space
then they generally are well detennined. It may be the sensation space, wherein fuzzy
cognitive objects could have an uncertain location that may be characterised by
multivariate nonnal distribution of its location sensations. Signal process theories
(Link, I992a; Marley, 1992) lead to multidimensional Poisson or exponential
distributions, instead of multidimensional nonnal distributions. These signal process
theories then imply some log-linear analysis model for sensation space distributions,
which is compatible with (revised) biassed choice models (Marley, 1992). Although
such appropriate models for a stochastic multidimensional analysis of open response
spaces for individual (dis)similarities of imperfectly known cognitive objects could be
developed, we earlier fonnulated our doubts on the psychological validity of the
similarity concept that measures similarity by multidimensional overlap of stimulus
distributions. These doubts hold as much for stimuli as for cognitive objects, because
the general recognition and similarity theory (Ashby and Perrin, 1988) requires that
individuals are evaluating similarities by overlapping multivariate distributions of the
evaluated objects, where the multidimensional distribution parameters of cognitive
objects must be cognitively processed for an accurate estimation of the distribution
overlap by the individual. However, as discussed in section 7.2.5. with respect to signal
detection theory and similarity evaluations, individuals have nO accurate knowledge of
cognitive object distributions. Nonetheless, it could be assumed that overlap of signal
distributions in brain processes generate such similarity measures without any
conscious knowledge of distribution parameters, but if so then it would likely specify
common and not locally different distributions, whereby then also no asymmetry andlor
intransitivity of similarities could be explained.
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We rather are inclined to model differences between imperfectly known and
well-known cognitive objects by a dimension for ambiguity differences between
objects. Such an ambiguity dimension is used in the ambiguity and uncertainty theory
of probabilistic inferences (Einhom and Hogarth, t985). Uncertainty is an attribute that
corresponds to probability aspects of evaluated entities, such as gamble outcomes,
while ambiguity is an attribute that corresponds to imperfect perception or knowledge
of entities. For example, the colour mixture ofdraws from an urn with unknown shares
afred and white balls has maximal ambiguity and maximal uncertainty. Its uncertainty
is the same as for draws from an urn with known shares of 50% red and 50% white
balls, but the colour mixture of such draws has no ambiguity. In our detenninistic
dissimilarity analysis an object pair with some ambiguity difference is judged more
dissimilar than an object pair with same object differences on all dimensions, except
on the ambiguity dimension. Asymmetry of similarity for pairs of cognitive objects may
occur, if the similarity task requires to a similarity evaluation of object i to object j,
because the asymmetry of the task instruction induces shifts of adaptation levels
towards object j in (i-to-j)-similarity evaluation, as described before in our model for
task-induced, stimulus-dependent asymmetry of similarities (instead of selective
attention to attributes, as described before in our metric refonnulation of Tversky's
feature-contrast model). The earlier mentioned asymmetric similarity that North Korea
is more similar to China than China to North Korea for most American subjects
(Tversky and Gati, 1978), becomes explained by the 'onto' -similarity judgment and the
plausibility that most Americans know more about China than North-Korea, whereby
they may judge the ambiguity for China lower than for North Korea (dimensional
Fechner sensation yck< y~) and their other country attributes as rather similar. If so
then it implies that China s similarity to North-Korea yields a lower similarity than
North-Korea's similarity to China, because a shift of adaptation level to North Korea
in the similarity of China to North-Korea specifies comparable ambiguity sensation
distance 2: y&,/y k-II and an adaptation-level shift to China in the similarity of North
Korea to Clima ~ comparable ambiguity sensation distance 21y /y -11. A lower
ambiguity of China than North Korea causes a larger dissimilaritg of ~orth Korea to
China than of China to North Korea, since if 0 < y k< Y then y k/y > y k/yok.
Once more this illustrates our unifying refonnulatfon ofltverskynS fe~fure-tontrast
model, as earlier discussed in section 7.1.4. Therefore, it may be unnecessary and likely
is unjustified to represent asymmetric andlor intransitive similarities by the Tversky' s
feature-contrast model or by differing overlap proportions of differently shaped
distributions of objects in a common object space. Nonetheless, many researchers (see
Ashby, 1992a) use probabilistic MDS-analysis to describe asymmetric andlor
intransitive dissimilarities and, thus, adhere to the general recognition theory of
similarity judgment (Ashby and Perrin 1988).

Thirdly, dimensional adaptation levels for a set of cognitive objects primarily
are individually selected reference levels from the memory of previous object sets with
similar cognitive attributes, where the memorised dimensional adaptation levels become
slightly or hardly updated during the completion of the similarity evaluation task of the
newly presented objects. Therefore, the dimensional adaptation levels are hardly shifted
during the similarity evaluation of randomly presented object pairs from a
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homogeneous set of cognitive objects, provided that the individual is informed about
the full object set. Nonhomogeneous sets of cognitive objects can be characterized by
subsets of objects with dimensionally different subspaces and then the adaptation level
can suddenly shift to different memorised adaptation levels for each object subset.
However, the adaptation levels for a cognitive object set or for dimensionally different
subsets of cognitive objects are memorised reference levels that can be individually
different. Consequently, the individual weights for intensity-comparable sensation
dimensions can be inter-individually and intra-individually different for object
selections from a nonhomogeneous set of cognitive object~. As discussed in section
7,1.4 for nonhomogeneous object sets, the relevance of dimensions for similarity
evaluation of object pairs, and especially for similarity evaluations of objects pairs in
subspaces with another dimensionality than the total set of cognitive objects, can
become different for each object pair either by object-dependent shifts of the individual
adaptation levels or by sudden selections of other stored adaptation levels for similar
subsets in the memory of individuals. 'Between' -similarity evaluations for cognitive
object pairs from a set or subsets of cognitive objects give symmetric similarities,
because its adaptation levels a

Jk
are memorised levels or selectively shift toward

subset-relevant levels aJkl [(i c Sh)' UcS,)] = 1/2[aJkiSb + a1k.IS 1for object subsets
Sand S . If the dimensionality Sh use is different for cfiffer~t cognitive object
sRbsets, eft if either aJk ISh = 0 or a

Jk
IS~ 0 as unnoticeable dimensional sensation

levels, then the 'between' -similarity remafus symmetric, but for objects from different
subsets the similarities can become intransitive by their selectively shifted adaptation
levels. If symmetry is satisfied and intransitivity is consistently present then one has to
analyse distances in the common object space under corrections for biases that depend
on the object pairs and eventually the individual.

Ifcognitive objects are evaluated fortheir(i-to-j)-similarity with respect to other
cognitive objects or categories also asymmetric and intransitive similarities can
consistently exist. In that design of (i-to-j)-similarity evaluations the analysis must use
corrections for biases that depend on the cognitive reference object Asymmetry of
cognitive object similarity is a task-dependent asymmetry from similarity evaluations
of objects i to target objectj, as repeatedly discussed for the asymmetry of the higher
dissimilarity for North Korea to China than for China to North Korea. Sucha similarity
asymmetry is also implied in categorisation tasks, where categorisation of objects or
stimuli i as belonging to category j is modelled by a similarity measure between object
or stimulus i and respective categories j (Nosofsky, 1992b). Similarity asymmetry as
represented by differently weighted sensation distances between objects and categories
is caused by momentary adaptation-level shifts, because the intensity-comparable
sensation distance of objects i to target category j becomes weighted by twice the
inverse value of the adaptation level that is shifting towards the centroid sensation of
the presented objects that belong to the respective categories (for prototype-based
categorisation model) or to the exemplar sensation of the respectively memorised
categories (for exemplar-based categorisation model). It then defines by our
psychophysical theory a category-dependent bias, either as power exponent or as
multiplicative factor, dependent on the open response geometry. In the general context
model for categorisation probabilities of Nosofsky (1992b) only the nature of the
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category representation differs between exemplar- and prototype-based categorisation.
Since Nosofsky's multiplicative similarity model is an exponentially multiplicative
similarity model, we have to replace the multiplicative bias by a power-raised bias for
a shift towards the sensations for the respective category representations and have to
assume that the sensation space is Euclidean in order to be consistent with the
psychophysical response theory. A prototype-based category is a-priori defined by the
centroid sensation c. of the Fechner sensations of the subset of objects that belong to
category j, while !n exemplar-based category is conceived as an individually
memorised category sensation er as the centroid sensation of the Fechner sensations
of individually memorised exemp\ars of category j. We assume that the categorisation
tasks induce shifts of the dimensional adaptation level towards the respective categories
j, whereby categorisation probability becomes defined by the weighted sensation
distance between y. and c. (prototype model) or cl' (exemplar model).

For m-dimeJsionarEuclidean sensation spat-ts and the prototype model we have

v) = exp[-2Iy· - c.l/c.] = exp[- Yf{2(y'k- C"k)/C·kr I
lJ lJJ 1<~jIJJ

k~m 2
'to =2/c. =IN Ec·k"
J J k~1 J

while for the exemplar model we must write

'1' 1<= 2
'J..J = exp[-21 y. - cJ.IIeJ .) = exp[- -.lE{2(y'k- 'J"k)/'J"k} I

IJ I J J bl I J J
k~m 2

'J. = 2/cJ. = IN L cJ"k"
J J k~1 J

The probability that object i categorised as belonging to category j is then for the
prototype model written by ,"

p.. =2/[1 + lid 1=2/[1 + exp{2IY. - c.IIe.I.
IJ IJ I J J

and for the exemplar model by

'r
PJ.. =2/[1 + I/vJ'~ 1=2/[1 + exp{21 y. - cJ.l/cJ "I-

IJ lJ I J J

because for Euclidean sensations spaces Nosofsky's categorisation model should be an
exponentially multiplicative similarity model with power-raised, instead of
multiplicative bias. Since individuals have cognitive category representations that need
not to coincide with the centroids of sensations for presented objects that belong to
each category, the actual space distances to category j are given by the exemplar-based
model distances 21y. - cJ.l/c

J
.. Thus, our psychophysical response theory predicts that

the exemplar-bas~ dJego~isation model will fit the observed categorisation
probabilities better than the prototype-based categorisation model that assumes
common-weighted sensation distances to each category sensation. Notice that the Chi
square significance for n objects. qcategories (q 0;; n), III dimensions. and Nindividuals
is detennined by lower degrees of freedom with an a-priori lower Chi-square of the
exemplar-based model with qN parameters more than the prototype-based model with
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only m(n-I) parameters for the prediction of categorisation probabilities that are
identical for individuals in the prototype model and can be different in the exemplar
model. Since individuals may have significantly different, observed categorisation
probabilities, it is no surprise that Nosofsky (l992b) found in his re-analyses of 19
studies an overwhelming evidence in favour of the exemplar-based model, despite the
improperly multiplicative bias in Nosofsky's model. Anyhow, MDS-based choice
probability analyses transform choice probabilities to conditional sensation distances
and, thereby, at least acknowledge the difference between response and sensation
spaces, but also assume a flat (Euclidean or Minkowskian) sensation space. However,
according to our psychophysical response theory, exponentially additive models with
power-raised bias or hyperbolically multiplicative models with compound bias may
hold and then imply that the sensation space is hyperbolic. If the response space is
open-hyperbolic and the sensation space Euclidean then we conjecture that Nosofsky' s
general context model with power-raised bias would have fitted better than with
multiplicative bias. Moreover, according to our psychophysical response theory it
hardly is a matter of empirical research that not the prototype-, but exemplar-based
model applies to categorisation probabilities, because categorisation is a cognitive task.
Thereby, categorisation probabilities depend on successive reference-level shifts to
individually memorised category sensations, where the memorised category sensations
may only become updated by the average sensation of categorised objects that
otherwise would solely define the reference levels for prototype-based categorisation.

Lastly, the validity of several other cognitive models and parts of cognition
theories becomes questionable by their MDS-representation of dissimilarities as object
distances in an infinite, flat (Minkowskian or Euclidean) space. Dissimilarity
representations in sensation spaces that are not derived from dissimilarity responses as
distances in open individual response spaces are liable to misinterpretations. Euclidean
or Minkowskian MDS-analysis of dissimilarities directly represents dissimilarities as
distances in flat infinite sensation spaces. Thereby, also theoretical inferences on:
I. perceptual and decisional separability versus integrality (Gamer, 1974, Maddox, 1992),
2. dimensional perception independence versus dependence (Kadlec and Townsend, 1992),
3. distance and density dependence of dissimilarity evaluations (Krumhansl, 1978),
4. space distance versus hierarchical feature-contrast (Tversky, 1977) as dissimilarity,
5. hybrid spatial and hierarchical dissimilarity evaluations (Carroll 1976),
become all questionable and likely invalid, because blurred by artifacts from MDS
analyses that don't transform the individually different object configurations of open
response spaces to an individually weighted object configuration in an infinite
sensation space. The main reason for these questionable and likely invalid inferences
is the implicit, but wrong assumption that the object representation in an infinite flat
object space defines properties that also hold for the response spaces of individuals. We
firstly discuss this for inferences on 1) and 2), secondly for inferences on 3), and lastly
to some extent also for inferences on 4) and 5).

In the MDS-analyses of dissimilarities it is not recognised that dissimilarity
evaluations are represented by distances in individually different object configurations
of open response spaces. Open non-EucIidean response spaces with an absolute
curvature of unity only can be transformed to a common Euclidean sensation space,
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while open-Euclidean response spaces only can be transformed to a common
hyperbolic sensation space or to a common Euclidean stimulus space. Moreover, if
individual dissimilarities are analysed as flat space distances and the response space is
an open-Euclidean space then the distance metric for a MDS-analysis of individual
dissimilarities is Euclidean. Alternatively, if the response space is open-hyperbolic or
single-elliptic then individual dissimilarities should not be fitted by any MDS-analysis
with a Minkowskian r-metric, while their Euclidean MDS-analysis analyses of open,
m-dimensional, non-Euclidean response space distances then would describe the
(m+l)-dimensional, Euclidean co-ordinate embedding of such open, m-dimensional
response spaces. It follows that inferences from differences in the fit ofMDS-analyses
of individual dissimilarities as distances in flat spaces with different r-metrics (mainly
city-block versus Euclidean metrics) must be invalid. Therefore:
a) tests of Gaussian versus exponential decay by difference of fit between city-block

and Euclidean space analyses of dissimilarities are questionable and likely invalid,
b) inferences on perceptual or decisional separability versus integrality and on

dimensional perception independence versus dependence that are based on the fit
of dissimilarity analyses as distances in spaces with different Minkowski r-metrics
also are likely invalid.

Other artifacts and misinterpretations also follow from mistaking open individual
response spaces as (individually weighted) common flat sensation space. For the
hyperbolic tangent function we can write

tanh Is. - s·1 =: tanh(V2d..) =: 1tanh(Y2s.) - tanh(V2S.) 1/[1 - tanh(V2S.).tanh(V2S.)].
I J IJ I J I J

Omitting for simplicity of expressions individual indices we write by r. =: tanh(-Y2s.)
and r. =: tanh(-Y2s.) the dissimilarity responses in open-Euclidean respo'nse spaces 1s
funcdon of sensahon distance d.. and sensations s. and s. in a hyperbolic space of
intensity-comparable sensations lJs I J

Ir. - r.; =: tanh(Yw. .. )· [1 - tanh(Y2S.}tanh(Y2S.)],
I J' IJ I J

or as distances in open-hyperbolic response spaces of flat sensation spaces as

cosh[r. - r.] =: cosh{tanh(Y2d.. )· [l - tanh(Y2S.)·tanh(Y2s.)]},
I J IJ I J

while distances in single-elliptic response spaces of flat sensation spaces become as
function of sensation distance d.. and sensation vectors s. and s. written by

U I J
cos[r. - r.] =: cos[arctan(s.) - arctan(s.)] =: cos{arctan[d ..J(l + s.·s.)]}.

I J I J IJ 1 J
Open-Euclidean response spaces distance Ir. - r.1, or open-hyperbolic response spaces
distance cosh(r. - r.), or single-elliptic respon!.e spaces distance cos(r. - r.) are the
proper dissimilhrit~ representation. However, in MDS-analyses of dissrlnilarities
single-elliptic response distance cos(r. - r.) < 1, or open-hyperbolic response distance
cosh(r. - r.) <cosh(2) or open-Euclidehn ~esponsedistance Ir. - r.1 < 2 are taken as flat
sensadonJspace distances d ... The above expressions show1thdt the dissimilarity as
distance between r. and r. dJPends on the sensation distance d.. and on the lengths of
the sensations ve(tors J. and s. with the (eventually shifteH) adaptation level as
sensation space origin. I J
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This dependence can be seen as an explanation of why a distance- and density
dependent model (Krumhansl, 1978) is needed for MD$-based dissimilarity analysis,
if the sensation space is mistaken for the response space. The sensation distances are
then the more shortened the larger the lengths of the sensation vectors are. The mistake
of representing the dissimilarities as flat sensation space distances instead of a response
space distances explains why the similarity between stimulus i and j becomes
dependent on their spatial sensation density and the extremity of their sensation
locations. because sensation pairs close to the sensation centroid of the stimuli are
central sensation distances that deviate slightly from theirresponse space distances and
also in case of complete adaptation-level shifts (the shifted adaptation point as distance
midpoint then equals the response space origin), whereby in both cases the response
distances are almost equal to their intensity-comparable sensation distances. Remote
sensation pairs from the sensation centroid have relatively large sensation vector
lengths, whereby their response distance becomes the more reduced the larger the
sensation vector lengths are, and/or in case of adaptation level shifts towards vector
endpoints or midpoints have relatively large, shifted adaptation-level values. Thereby,
their intensity-comparable sensation distances become the more reduced the larger the
shifted adaptation levels are (with respect to no adaptation level shifts), which thus
reduces also the response distances the more these sensation distances become reduced.
Therefore, on the one hand the higher the density around sensations i and j is the less
distorted their mistaken response distance as sensation distance for the dissimilarity will
be, whereby also intransitive dissimilarities will seldom occur. On the other hand
distances in a non-dense sensation space region remote from the configuration centroid
become the most reduced to response distances and mistaken as sensation distances
may then cause intransitive dissimilarities. It shows that distance- and density
dependence of Krumhansl' s (1978) model might derive from artifacts of mistaking
open response spaces for an infinite sensation space.

Dissimilarities as response space distances of rather eccentric sensations are
more dependent on differences in vectorial directions (equal in sensation and response
spaces) than on differences in response vector lengths, because response vector lengths
of eccentric sensations are by definition similar, due to their limitation by the open
boundary of the response space. Taken this together with the effects of adaptation level
shifts in dissimilarity evaluations of objects in subspaces with a different
dimensionality, as discussed in subsection 7.1.4, it might follow that mistaking the flat
sensation space for the response space and ignoring adaptation level shifts might also
explain why Tversky (1977) had to fonnulate his feature-contrast theory of
dissimilarity. Phenomena that are described byTversky's feature-contrast dissimilarity
model can also be predicted. On the one hand by adaptation-level shifts for objects in
subspaces with a different dimensionality (see subsection 7.IA.). On the other hand by
the transfonnation of sensation spaces to response spaces, whereby dissimilarities as
response distances are the more detennined by their feature contrast the more eccentric
the response distance is, because then the more detennined by the vectorial angle
between their responses (or sensations) and the less by the length differences of their
(then rather long) sensation vectors. Therefore, also the feature-contrast model could
generate from methodological artifacts by mistaking the open response space as infinite
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sensation space and by ignoring changes in weights of intensity-comparable sensations
as function of adaptation level shifts for object subsets in different subspaces. The same
may evidently apply to Carrol's (1976) hybrid spatial and hierarchical dissimilarity
model as mixture of distance-based and feature-contrast models.

After the analyses of individual dissimilarity data that fit individual response
spaces with a specified, open geometry and their transformations to a common
Euclidean object space, the differences between object configurations in individual
response spaces and the common Euclidean object space can be determined. Also only
then we may draw inferences on cognitive processes that underlie individual
evaluations. We conjecture that the main aspects of cognitive judgment processes are
already implied by psychophysical response theory and its adaptation level dynamics.
It remains to be seen whether individual similarity data are fitted better by appropriate
transfonnations of open-Eudidean, or open-hyperbolic, or single-elliptic, individual
response spaces to a common Euclidean object space. Especially the appropriate
analyses of our biassed similarity probability models could yield evidence on whether
the response space geometry is open-hyperbolic, open-Eud idean, or single-elliptic and,
thus, also whether the common Eudidean object space is the sensation space or the
stimulus space (or stimulus-like attribute space for cognitive objects).

7.4. Preference research and dynamic preference relativity

7.4.1. Preferential choice dynamics
In section 5.2 and subsection 5.6.1 we demonstrated that preferences of objects with
monotone valences are detennined by individually oriented ideal axis in individual
response spaces. Thus, if preferences are based on monotone valences then all what has
been discussed for the dynamic relativity of responses also applies to the ideal axes of
preferential responses and their representations in a common Euclidean sensation or
stimulus space. Also successive presentations of stimuli or objects that are ranked for
their preference may cause momentary shifts of the adaptation level towards the
presented stimuli or objects. Since it here concerns dimensional valence values with
respect to the dimensional adaptation level on individually different ideal axes, the
effects are dependent on the dimensional adaptation-level shift on the ideal axis of a
particular individual. For individual different ideal axes same shifts towards the
presented stimuli or objects have different effects, because generally the orientations
of the ideal axes are different for individuals. Similar to intransitivity of responses
complete or partial shifts can also cause intransitive preferences, because the origin of
the ideal axis changes with the shift of the adaptation level, whereby not only the origin
location of ideal axis changes, but also somewhat its orientation to the ideal infinity
direction for each individual in the common Eudidean object space. If an object set is
characterised by single-peaked valence dimensions, then a shifted adaptation level will
enlarge or shorten the distance between the adaptation and ideal points of an individual.
Since valence-comparable sensation dimensions are inversely weighted by distances
between their dimensional adaptation and ideal points. momentary adaptation-level
shifts also influence single-peaked valence spaces of individuals. which can also cause
intransitivity of preferences for objects with single~peaked valences.
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Regarding preferential responses as dependent on hedonic sensations (see:
sections 1.5. and 1.6.) that are more or less strongly associated with physical choice
outcomes, as expected appreciation or aversion sensations of outcomes from matters
that might be obtained by the choice, we may assume that preferential choices between
objects will partially or completely shift the individual adaptation level towards the
sensation midpoint of (iJ), especially if the preferential choice between objects i or j
concerns sequentially presented and non-randomly selected pairs (i,j) from an object
set. However, also here the shift may be towards objectj, if a preference task requires
that objects iare evaluated with respect to the preference for a target objectj. Both shift
types also may apply to cognitive objects, but especially choices of cognitive objects
i over j may produce effects that are similar to effects of adaptation-level shifts on
preferential responses to physical stimuli. The relative object frequency and the
presentation order of object pairs in (i-or-j)- or (i-over-j)-preference tasks, determine
the direction of the adaptation-level shifts in similar ways as discussed for judgmental
responses. Since momentary shifts of adaptation level changes the origin and also
somewhat the orientation of the individual ideal axis in monotone valence spaces
and/or the valence difference between objects in single-peaked valence spaces, it
follows that momentarily shifted adaptation levels influence the relative preferences for
objects with monotone, or single-peaked, or mixed valences. Therefore, also
preferences become dynamically changing by the intra-individual dependence on
shifted adaptation levels for the ideal axis and/or for their distances to the ideal point.

7.4.2. Dynamic relativity ofutility- and risk·dependent preferences
In the sequel we discuss the existing models for choices with uncertain outcomes (see
historical overviews: Vlek and Wagenaar, 1979; Hogarth, 1987) that mainly are
investigated for gamble alternatives with monetary values and numerically given or
graphically indicated outcome probabilities. We discuss the psychological relevance-of
the existing models, compare them with model formulations that derive by our
psychophysical valence theory, and re-analyse by our models the preference probability
data from a study by Tversky (1969).

Expected value model
In the expected value model gambles or risky investments are evaluated by the product
of money value and objective probability of their outcomes. It is the rationally
normative preference model for choices between alternatives with known probabilities
and monetary values. However, apart from any hypothesis on whether humans act
rationally or not, choice outcome probabilities and values are often imperfectly known,
while the expected value model also assumes unlimited resources for gamble inputs or
investments, which obviously is not the case in the real world. Moreover, if resources
are almost unlimited and many small investments in a huge diversity of alternatives
have a higher expected value than a few large investments in a small number of
alternatives then the personal labour of the former may outweigh the difference in
expected values. The expected value model can accommodate this by the
multidimensional incoIlloration of labour costs that are different for different
individuals, while also the affordable limits of individual resources can become
prohibitive for the acceptance of small chances on big losses. Although a choice for the
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alternative with maximum expected value is economically rational, according to our
psychophysical valence theory for monotone valences the expected value model is not
a model that describes human choice behaviour, because the product of value x. and
probability p. would correspond to the sumofFechner sensations In(x.) and In(p.j that
are not comphrable, while the arbitrary scale nuitof at least x. also implies an arb1trary
scale origin for lo(p.-x.). Any preference model that implies lincomparable sensations
andlor dependence 6f Jcale units, such as the currency of monetary values, must be an
invalid model for the description or prediction of preference behaviour.

Subjective expected value mndel
A subjective expected value model evaluates choices by the product of the objective
values and subjective probabilities of the alternatives. Subjective probabilities are
individual evaluations of comparable (un)certainty sensations of (un)certainty stimulus
magnitudes that are defined by objective probabilities. Our psychophysical response
theory unique[y specifies the parameter-dependent (un)certainty sensations. If certainty
stimuli are expressed by j(Pt> thenf( I-p.):::: l/j(p.) are uncertainty stimuli, which only
holds for f(p.):::: [p./(l~p.)] . Thus. proBability p~ defines z· = [p./(l-p.)] as certainty
stimulus with subj~ctivJ certainty magnitude ~z./z /. ahd cobtpar1ble sensation
r [In(z.)lln(z )- IJ. where power exponent r = 2/Id(z~ with certainty adaptation level
h~(z ) ~ iIn[t (l-p ) - In[p l(l-p )]1 for th~eshold pa and midrange point p for the
rang~of presetted trobabilaies p.~Ifp :::: .50 then In[8 (l-p )] =°and z = (l~p )/p ,
but other adaptation levels may abp[y fa sets of altern~tivesathaton average areOmo?e
or less probable than p = .50, although then also generally threshold p decreases in
such a way that power exponent! is almost constant. Thereby. also tRe adaptation
level value In(z ) = Iln[p I{l-p )]z_ [n[p I(l-p )]1 concerns a rather stable distance,
unless adaptatio'h level shifts to ~xtreme 01 targe~ed certainty sensations of alternatives
are present. Certainty response cJ' for outcome probability p. with individual
adaptation-level probability PJ an I threshold probability p is Idescribed by the
psychophysical response and monotone valence theory by 0

'Ii " tanh[ (In[p;!(1-Pi)] - In[p!(1-PI)]}/lin[p!(1-PI )] - Inlpo/( I-pn)] I]

'Ii "a,ctan[2 (In[p;!( I-Pi)] -In[p!(I-PI )]}llln[(p!(1-PI )] -In[(po/( I-po)]'],

provided that the choice presentation or task doesn't shift the adaptation level to
certainty sensation In(z1)= I[n[pl(I-PJ)]1 oftargetprobabilitYPJ=p .For the moment
we will take PJ =p =.50 for objective probabilities that range arounJp::: .50, whereby
In[p l(l-p )] = Oaand a = [n[(I-p )/p 1, which simplifies comparable certainty
sens'},tionsato 2In[p.(l-p.)V[n[(I-p fp ]?Certainty responses cr' in the hyperbolic

I I . 0 0 /tangent-based response expressIon for PJ = P = Y2 and p = l/ +exp(2)] = 0.1192
defines a = In[p I( I-p ) = 2, whereby power exponent i' = 2Ja = 1 would specify
In[p./(I-p.)J as c3mpara~le certainty sensations that would equal cognitive magnitude
senshtionJ as averaged length and distance sensations (see: p. 55 in here) and would
yield for hyperbolic tangent-based certainty responses Cl' = c., ,

c. =tanh{Y2In[p./(1 ~p.)]} Ip :::: .1192; p =.50
I I loa
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By the relation between responses and logistic probability c. = 2p. - 1 we obtain
subjective probabilities p. = (c. + 1)12 = 1/[l + (l-p.)/p.] that salisfy i = p., provided
that p = l/[l+exp(a)] =d.1192 and p =0.50. Howhe}, if just noticeJble probability
p < 0?I 192, which likely holds, then s3"bjective probability p. over- and underestimates
p?the more p. differs from p = .50. For example. if p = .68 and p = .50 we obtainby I a 0 a

p. =[1 + tanh{ln[pJ(l-p.)]lln(.92J.oS)}J/2 Ip = .08; p =.50
I I loa

the following subjective probabilities for objective probabilities:

Objective p, .10 .20 .30 .40 .50 .60 .70 .80 .90

"Subjective p, .142 .243 .329 .415 .50 .585 .673 .761 .859
------------~-------------------------------------------------------

The generally found over- and underestimation of respectively low and high
probabilities are predicted by our psychophysical response theory, if just noticeable
probability p < II[ I + exp(2)] and p = 0.50. This implies that subjective certainty
magnitudes [8.1(l-p.)]' have Stevens' ~owerexponent, = 2/ln[(l-p )/p )] < 1, where
t' '" 0.82, if pI = .ds. However, certainty response con1:ern magnit~de ~esponses for
p?obabilities, gut probabilities in utility- and risk-dependent preference models are
cognitively evaluated certainty preferences that may have individually different,
cognitive reference levels PJ :;f,p andlor PJ :;f,p . Thus, our psychophysical response
and monotone valence theo~ define monotbne 2ertainty valences of gambles by

cJi = "nh[{In[p/( l-p,)]/[p)/( I-PJa)] j/lln[p)!( l-p)a)]/[p)1I l-p)~J I]

c). = ,«"n[2{ln[p.l( I_p. )]/[p) l(l-p) )] ]/lln[(p) I( I-p) )]/[(p) l(l-p) )] I],
I Itaa aarr

But subjective expected values (x.lIl}P. = exp[ln(x.lll) + In(p.)] for values x.lll and
subjective prooabilities p. can't define

t
preferenceJ for aiterAatives with uricertain

outcomes, because sensat\ons In(x.lll) define no comparable value sensations and
depend on the value-measurement uhit 11 or currency of monetary values, while In(p.)
also is no comparable certainty sensation, because its Fechnerian uncertainty sensatioris
-In( I - p.) equal not the Fechnerian certainty sensations In(p.)., ,
Expected utility model
An expected utility model defines that choice alternatives are evaluated by the product
ofobjective probability and subjective value (utility) ofobjective monetary value of the
alternatives. The relationship between utility and monetary values is differently shaped
for different individuals, which has already been shown in the classical study of
Mosteller and Nogee (1951). That study showed that the utility scale in the range of
five to six US$ cents was concave (negatively accelerated) for Harvard students
(generally from relatively rich families) and convex (positively accelerated) for
guardsmen (relatively poor in the fifties of the 20th century). This is consistent with our
theory, wherein the hyperbolic tangent or arctangent transfOlms the logarithmic value
of money with respect to the different adaptation levels of affordable expenses for these
two types of subjects, which would yield two different utility scales for monetary
gamble values in the study of Mosteller and Nogee. Their study concerns an expected
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utility model, wherein utilities are multiplied by objective probabilities, however the
validity of using objective probabilities must be doubted. This objection has been
accommodated in an experimental study by Davidson, Suppes and Siege! (1957) that
was based on an approximating utility transfonnation of monetary values for
alternatives with an ascertained equivalenceof subjective and objective probability. But
even if subjective and objective probabilities are approximately equal, it has been
shown that subjects actually don't use the product of objective probabilities and util ities
for their preferential responses (Coombs et aI., 1970). Moreover, only interval-scale
measurement is obtained for individual utility u

l'
which yields no meaningful

measurement of expected utility, neither for u
J

. as'subjective value magnitude in
product p. ,u

T
., nor for some combination ofindiv,~ualutility sensations and probability

sensationk, Dbcause dependent on arbitrary utility parameters.
The measurement axiomatisation of utility for gains or losses as proportional to

a negative exponential function of objective values with respect to neutral level by Luce
(2000) is discussed in subsection 6.1.3., where we compared Luce's inferred-extensive
utility measurement with our hyperbolic tangent transfonnation of comparable value
sensations to utility responses. According to our psychophysical response and
monotone valence theory subjective values are transfonned-extensive utility responses
uJ" to comparable sensations of objective values x. with respect to the adaptation level
b/= x

Ja
of subject J. Utility response uji is wriuJn as

"J'= tanh[{ln(x.)-ln(x
J

)}/lln(x
J

)-In(x
J

)11
, I a a 0

"J. = arc tan[2{ln(x.) - In(x
J

) j/lln(x
J

) - In(x
J

)1],
, I a a 0

provided that individual adaptation levelln(xj ) is not shifted by presented altematives
with respect to In(x

J
) as Fechnerian just notceable sensation for values. The ratio

. 0
expressIOn

'J' = 2{ln(x.) - In(x
J

)}/lln(x
J

) - In(x
J

)1
lX 1 a a 0

defines comparable value sensations that are invariant under linear transfonnations of
In(x.lll)· For monetary values we may assume that In(x

J
IX

j
) = 2, because their

sens~tions likely equal cognitive magnitude sensations, whe~byWowerexponent r =1.
For monetary values no just noticeable sensation level In(x

j
Ill) may exist: but

individuals may take some reference levels x
J

as relevant for tlie~r utility evaluations
of monetary values. such as the minimum of the monetary values for a presented
gamble set, wherebyr =2/1In(xj IX

J
)1 = I needs not to hold. It implies that we define

comparable value sen~ations of rJonJary values by

'J. =2.ln(x.lx
J

)/lln(x
J

IxJ)1
IX I a a r

and utility responses by

"J' =tanh[ln(x.lx
J

)/lln(x
J

h
J

)1],
I I a a r

"J' =arctan[2·ln(x.lx
J

)/lln(x
J

IX
J

)11., ,a a r
Notice that VJ' = exp(u .) equals within a wide midrange the subjective value
magnitudes (xYxr) ", as s~own in subsection 6.3.2 for subjective stimulus magnitudes
and responsel. HOwever, an expected utility model that is defined by product of
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objective probability p. and subjective value magnitudes vr as utility for monetary
values defines no valid preference model for choices with uncJrtain outcomes, because
vr "p. = exp[uj' + [n(p.)] defines for In(p.) no comparable certainty sensations.
N6netheless, sinte subjettive probabilities m~y not deviate too much from objective
probabilities within a wide probability midrange, the order of the products of objective
probabilities and power-raised values as utilities might approximately define the
preference order for gambles within a restricted range of values and probabilities.

Subjective expected Iltility models
In subjective expected utility models the product of subjective values and subjective
probabilities detennine the preferences. Tversky (1967) designed a study for the
simultaneous measurement of subjective values and subjective probabilities by an
additive conjoint measurement analysis (see subsection 6.1.4.) of preference order data
for gamble pairs with independently varying probabilities and values. Tversky's
additive conjoint model presupposes independence of subjective probabilities and
subjective values by the log-additivity of subjective probability and utility. Tversky
fitted utility by the logarithm of power-raised, objective values, whereby the
logarithmic values of subjective probabilities are determined by interval scale values.
This log-additive model corresponds to additivity of independent certainty and
subjective value sensations and to multiplicativity of subjective value and probability
magnitudes. The relationship between objective and subjective probabilities was almost
linear, but with over- and underestimations of respectively low and high, objective
probabilities for most subjects. However, Tversky's findings of over- and
underestimated probabilities can be due to the assumed power function of objective
values as utility. Over- and underestimations of respectively low and high probabilities
are found in most gamble preference studies, but not universally, which might be due
to presence of single-peaked risk preferences. For ideal risk levels around p = .50 this
could be described by a preference dependence on probability variances of gambles,
which dependence seems present for some subjects (Edwards, 1954; Coombs and
Pruitt, 1960). If subjective expected utility evaluation is assumed to be a stochastic
process with distributions of subjectively evaluated probabilities and values then we
have a random (probabilistic) modelfor subjective expected utility (Luce and Suppes,
1965), otherwise it is a constant (deterministic) model. Tversky's (1967) additive
preference model is a constant modelfor subjective expected utility, where Tversky's
analysis confirmed the independence of subjective probabilities and utilities in his
study for gamble pairs with independently varying values and objective probabilities.

Prospect theory ofsubjective expected utility
Modem measurement theory of subjective expected utility defines distinct anchor
points for the evaluation of utility and certainty, where these anchor points play an
important role in the prospect theory (Kahneman and Tversky, 1979, Tversky and
Kahneman, 1992). The prospect theory is a relative model ofsubjective expected utility
in the sense that some subjectively determined, neutral expected utility is introduced,
where above or below expected utilities are appreciated or respectively disliked. As
discussed in section 1.2., utility as dependent on an individual anchor value is originally
introduced by Seigel (1957) and formalised by Kapteyn (1977) who defined the present
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income-spending level on commodities for an individual as anchor point for utility
evaluations of valued goods in his econometric theory of preference fonnation. As
described in section 6.1.3, the recent axiomatisation of utility measurement for the
prospect theory by Luce (2000) defines utility of losses or gains with respect to a status
quo with zero utility, while Luce specified the utility of losses or gains by a metric,
negative exponential function of the objective loss or gain values. In the prospect
theory the anchor point can also be an expected reference level for affordable
expenditures in the future, which then is comparable to a cognitively shifted adaptation
level for the evaluation of gains or losses in the future. If we regard the dynamic
anchoring adjustments as shifting adaptation levels, which also imply shifting weights
for comparable certainty and value sensations, then we may metricise the prospect
theory by the relativity dynamics of our psychophysical response and valence theory
for probabilities and values with monotone valences.

Psychophysical response theory ofsubjective expected utility
If certainty of gamble outcome probabilities define certainty sensations with monotone
valences (no single-peaked risk preference for ideal risks level 0 < Pj < I), while
utilities of monetary values likely are monotone valences. then a aeterministic
(constant) model of subjective expected utility for gamble preference responses can be
in accordance with our psychophysical valence theory. if utility response u

r
are

defined by I
uj ' = tanh(Yzsj' ) = tanh[ln(x.lxj )/lln(xj IX

j
)I]

I IX I a a r
uj ' = arctan(sj' ) =arctan[2,ln(x.lx j )/lln(x

j
IX

j
)1],

I IX I r a r
and subjective probability responses to certainty stimuli z. = p.l(I-p,) with certainty-

• • •reference levels, zJa = PJi( I-PJa) and zIr = PJ/< l-PJ~ by

Cj , = tanh(Y2sj , ) = tanh{ln(z.lzj )/lln(Zj IZ
j

)1)
I IC I a a r

Cj' = arctan(sj' ) = arctan{2.ln(z.lzj )/l!n(zj Izj )I}
I IC I a a r

provided that individual adaptation levels x.TiIl and zJ = PJ 1(I-PIa) are not shifted
with respect to reference levels x

J
III and zJ = PJ ~1-PJ3 by presented gamble

alternatives that are compared to reference gafnble / A subjective expected utility
model in our theory defines preferential responses by the ideal axis in the two
dimensional response space of certainty responses c

r
and utility responses u

l"
If

subjective probability and utility are independent and rio single-peaked risk valerlces
are present, then individual rotation angles u

J
and (90°- u

J
) of certainty and utility

response dimensions detennine the individual ideal response axis rr with monotone
preference values in our psychophysical response and valence theor~ (see subsection
5.2.1,) Since corresponding dimensions in response and comparable sensation spaces
have identical angles to the ideal axes of individuals in both spaces, the rotation
parameters h

Jc
= cos(u

J
) and hJx = cos(90° - cr

J
) also define the ideal sensation axes

Sj' = hj .'j. + hj .'j.
I C IC X IX

whereby the ideal response axes of monotone gamble valences are defined by

rji = tanh(Y2sji) = tanh[hJcY2sJic + hJxY2sJixl
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0'
'J' = arctan(sl') = arctan[hl ·'1· + hI ·'1" )].
lie le x IX

Thus
if Tlj - TJj > 0 then $Ji - sJj = h1c(sJic - sJjc) + hJx(sJix - sJjx) > 0

although rr - rr of. tanh[Yz(sr - sI'] or TT' - rr 1= arctan[$r - Sr], unless either $1' = 0
or Sjj = O. ~ssUlbng that we ftave-hyperb1olic kngent-basdd reJponse transfonnat\ons
of ideal sensation axes to open ideal response axes, then it holds that

if sJC SJj> 0 then rle rIt tanh[Y2(sJ( sJj )].[ I - tanh(l/2s
Ji

)·tanh(lfzsJj ) > O.

It defines, apart from the metric response transfonnation, a model for preference rank
orders that due to linear difference function is an additive model that only can handle
transitive preference rank orders, because here

implies

k=m k~m

ifrJlfJiandrJi>fJj then ~~Jk(SJgk-SJik»O and &,hJk(SJik-SJjk)>0

k=m

~PJk(sJgk- sJjk) > 0

Only if the difference function is nonlinear then we obtain an additive difference model
(Tversky. 1969; Falmagne, 1985, Suppes, et al. 1989. pp. 393-400) that reduces not to
the additive model for preferences with utility and certainty components. This non
linearity condition for the additive difference model is proved for multidimensional
objects with monotone preference functions by Tversky (1969) and for discrimination
probability models by Falmagne (1985). If srk - srk > 0 and srh - srh < 0 define
respectively regarded and ignored preference hspecrt! for alternatives i 1n successive
evaluations of choice aspects then the additive difference model for preferences
reduces to Luce's (1956) lexicographic semi-order model, which model also applies to
the elimination by aspect (EBA) model of Tversky (1972). Since the EBA-model only
dichotomises the additive difference model, it also can predict intransitive preference
rank orders. However. we define gamble preferences by the ideal axis sensations that
depend on rotational weights h

J
;" 0 and h

J
;" 0 for appreciated certainty and value

sensations of gambles, whereby1>ur model b~comes an additive model.
We assumed independence between comparable certainty and value sensation

dimensions with individually different ideal infinities, whereby individuals may
differently rotate their comparable certainty and value sensation dimensions to
individual ideal response axes. However, choices between uncertain outcomes
generally concernaltematives with objective probabilities that are the lower the higher
their values are, which applies to lotteries and usually also to studies on gamble
preferences. Thus, certainty and utility dimensions generally are negatively correlated,
whereby Ill] + hZ= 1+ pZ for correlation -p . IfP =-I then h

J
+ h = 2, because

certainty an~ va~Q.e sensi60ns of gambles anfSoth tfi€ more appreclateJ&e higher they
are. Also, the ideal preference axis for gambles with completely reverse-dependent
probabilities and values reduces forh

J
( + h

J
= 2 to a metric additive model. It predicts

only transitive gamble preferences, b1It if ~ubsets of gamble pairs are perceived as
differently unidimensional and/or if shifts of adaptation levels are present, then the
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difference model is no longer linear. Thus, under subset-dependent dimensionality
reductions andlor adaptation-level shifts our model becomes a nonlinear, additive
difference model that can predict intransitive gamble preferences. If it asked which
gamble of a presented gamble pair is preferred then it may be that the respective
adaptation levels for values x. and certainties z. == p.l( I-p.) of probabilities p. shift to

1 I 1 I I

In(x.. ) == \l2In(x.·x.)
IJ I J

In(z.. ) == 1/2In(z. ·z.) == \l21n {[p.l( I-po )]. [p.l( I-p.)]}
IJ I J 1 1 J J

Under complete adaptation to midpoint sensations ofcompared gamble alternatives the
weights T1" == 2Jlln[x ..Ix

J
JI and Tj"' == 2/1In[z ..lzJ JI define comparable certainty

sensations ~,x.. ·In(z.lz.~1and compara~fe value sen~atH:fns T,,, ·In(x.lx.. )]. Thereby, we
. (" 11Z ... 1 11 f b·· d .\. llX J IJrewnte I-or-J)-prelerertces or su JectlVe expecte utI ltyaS

',.Iij == tanh[Y2{ h, .',.. ·In(z.lz,,) + h, .',.. ·In(x.lx.. )}]
I c IJZ 1 lJ X IJX I I)

rJilij == arctan[hJc'rJijz·ln(z/zij) + hJx'TJijx.In(x/\j)]

If rJilij - r
Jj lij > 0 then gamble alternative i is preferred over alternative j and also

h, .',,, ·[1n(z.) -In(z.)] + h, .',.. ·[In(x.) -In(x.)] > 0,
c IJZ I J x IJX 1 J

but due to the weight tenns Tr and Tr the difference function is no longer linear,
which then defines an additivJJdifferen&Xmodel that can yield intransitive preference
rank orders. Since the equalities In(x.lx .. ) = \l2In(x.lx.) and In(z.lz.") == V2In(z.lz.) define
rj"lij == -rj" jij, whereby rrlij - rj"lij == 2r?lij, we ca~ Jrite the h9pMbolic tan~ebt-based
prkferenc! probability th~t i is preferred over j in (i-or-j)-preference tasks by

p,. Iij = (I + r,.1 ij)J2" ,
If the preference task for gambles is described by questions on whether gamble i is
preferred over gamble j or not, instead of questions on which gamble out of pair (i,j)
is preferred, we could assume that the adaptation level will shift to gamble j and not to
their midpoint. Thus for TJ . == 2/11n[x.lxj]1 and Tj" == 2/1In[z.lzJ]1 in (i-over-j)
preference responses we oo&n J r JZ J r

',.ti = tanh(ll2{h, .',. ·In(z.lz.) + h, .',. ·In(x.lx.)}]
1 c JZ I J x JX 1 J

',.ti ==arctan[h, .',..In(z.lz.)+h, .',. ·In(x.lx.)}],
I c JZ I J x JX I J

where i is preferred over j if r .U> 0 defines again an additive difference model.
Preferences with shifts to gambfJ j in (i-over-j)-preference tasks not only can become
intransitive, but also asymmetric in the sense that gamble i can be preferred in the (i
over-j) preference task and gamble j in the (j-over-i) preference task for the same
gamble pair(i,j). Notice that also here Pr U= [I + rI.lj]1 2 define the probability that
alternative i is preferred over alternative ];n (i-over-JJ-preference tasks.

Adaptation-level shifts to target gambles or to their pair midpoints in our model
can predict transitivity violations in observed preferences or preference probabilities,
because our psychophysical response theory then defines a metrically nonlinear,
additive difference model for preferences. Tversky (1969) found intransitivity of
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preference probabilities in a study, wherein the following five gambles are employed.

Gamble
Probability Payoff Expected
of winning in US$ value

a - - -7r24- - - - 5-. 00 -
1~46

b 8/24 4.75 1. 58
c 9/24 4.50 1. 69
d 10/24 4.25 1. 77
e 11/24 4.00 1. 83

Table: Gambles in Tversky's study of intransitive choice probabilities

The ten pairs of these specific constructed gambles and ten other pairs of five gambles
with different probabilities and payoffs are repeatedly presented in twenty sessions,
wherein randomly selected gamble pairs are shown by graphical displays (also
raodornised in left-right location of gambles). The displays show complementary black
and white sections ofcircular pies for respectively winning and losing probabilities and
printed $ numbers for payoff above the black pie section for the winning probability
and zero's below the white pie section of the losing probability without any loss. The
eight subjects in Tversky's study are the selected subjects that showed intransitive
choice rank orders in a preliminary study with eighteen individuals and wherein also
the presented gambles with intransitive choice results for eight out of eighteen subjects
are selected. Although the majority of subjects actually show transitive choice patterns,
again six out of the eight selected subjects showed significantly intransitive preference
probabilities in the actual study of 20 times repeated sessions for gamble preferences
between 10 pairs of the five selected gambles and 10 pairs of the five irrelevant other
gambles. Tversky' s selected gambles have probability difference 1/24 = 0.042 between
adjacent gambles, where the probability difference has to be visually inferred from a
correspondingly small pie-section difference that may be below the perception
threshold. Differences in printed dollar values have no perception threshold, while the
visually inferred probability difference 4/24 = 0.167 between the most remote gambles
will be perceived. The gamble pairs with unperceivable probability differences can only
be evaluated by their values, whereby adjacent gamble pairs (a,b), (b,c), (c,d), and (d,e)
have preference order a > b > c > d > e, while the most remote gambles (a,e) can have
intransitive preference order e > a if its perceivable probability difference 0.167 is
judged more important than its value difference of one $. In this way designed gambles
are supposed to lead to intransitive preference probabilities in additive difference model
of preference (Suppes et al., 1989, ch.17, p. 396-400). In the next table we copy the
observed probabilities of one individual (subject I in Tversky, 1969, p. 35)for
preferences of row gamble i over column gamble j from the five selected gambles,
where bold figures indicate the intransitive probabilities.

~~~!-":~~ ~ ~ 5 ~ ~ _
a .75 .70 .45 .15
b .85 .65 .40
c .80 .60
d .85

Observed, intransitive probabilities: subject 1
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The gamble pairs are randomly presented in orderand left-rightdisplay positions, while
the gambles have completelydependent values and probabilities that satisfy for positive
appreciation weights h

J
+ h

J
= 2. Thereby, a constraint model for preference

probabilities with adapt~tion-fevel shifts to gamble midpoint sensations can be
fonnulated as

PJ' lij = {I +tanh[hJ -'J" ·In(z.lz.. ) +(2 - h
J

)-'J" ·In(x.lx .. )] }/2.
Ir c IJZ I IJ C IJX I IJ

PI' lij = {I+arctan[2·hJ -'J" ·In(z.lz..)+2-(2 -h
J

)-'J" ·In(x.lx .. )]/(Y:m:) }/2.
Ir c IJZ I IJ C IJX I IJ

This additive difference model reduces not the additive model with transitive
preference probabilities, due to the comparability weights 'r = 2/11n(z..lzJ)[ and
'1" :::: 2/1In(x ..lxJ )1 by adaptation-level shifts to sensation m"fpoints z.. l-hd £.. with
z/J; PJ 1(l_p;J) a~d XI as individual reference levels for the evaluatio\\ of ceHainty
ana varJe sens~tions 0 rgambles in the above gamble set. Parameters h , PJ and x

Jcan be estimated for a prediction of observed preference probab1litlls undef
minimisation of Chi-square

xj = 20'[(PJij - PJir 1ij)2 j/IPJir 1ij( I - PJir 1ij)],

where each observed probability Pr concerns 20 preferences for twenty times
presented gamble pairs (iJ). Per in~~vidual we have ten independent preference
probabilities PJ'" whereby the degrees of freedom for the Chi-square is df =7 for three
estimated parameters.

However, the individuals may not always perceive the gamble-probability
differences, because represented by pie-area differences that for adjacent gambles are
hardly perceivable. For probabilities as pie-area proportions we expect. '" 0.75,
because for subjective magnitudes of circle-part lengths T1 :::: I and for sbbjective
magnitudesofpiearea. =0.5.IfpJ=0.5and. ::::(T+T )/2::::2Iln[(l-p )/p J=0.75
then p :::: 0.075 is theajust noticeable probability. 'Thl mean gambleopro9;ability,
howevgr, is 9/24 = .375 < p :::: 0.50, whereby p will be somewhat smaller, but it then
still may be expected that alleast the probabilitY differences 1/24 = .042 for adjacent
gambles are hardly discriminated. For preference evaluations of gamble pairs with
hardly perceivable probability differences we have to introduce a discrimination
probabil ity of gamble probabilities as complement ofthe confusion probability, defined
in subsection 7.2.4, If we here replace distance \/2d .. by V21In(z.lz.) 1= ,In(z.lz.. )1and
the weight 2/a.. by 2I:ln(z.·z.) - In(z )1 = 2IlfA(z.,/zJ 1 the1 for hypArtiblic or
Euclidean sensYtions under hdlptationJgvel shifts tolImeS- midpoint sensations the
discrimination probability of gamble probabilities is defined by

PJ' IU=tanh[lln(z.lz.. )/ln(z.,/zJ )1],
IC J IJ IJ 0

or alternatively for hyperbolic sensations by

P
J
· 1ij = tanh[V21n{cosh[2·ln(z./z.. )/lo(z..lz

J
)]} l,

IC I IJ IJ 0

or alternatively for Euclidean sensations by

P
J
· Iij :::: arctan[2·1 In(z./z .. )/ln(z ..Iz

J
)1 J/(Yzn:),

IC I IJ IJ 0
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where Pr iij is the probability that certainty sensations are used in the preference
evaluatiohcs. Thereby, and defining w)" = h) .p)" I ij, we obtain for the gambles in

. K C K
Tversky s( 1969) study by

PI' lij = [ 1+ tanh[w)..')" ·Io(z./z..) + (2 - w). )-r).. ·!n(x.lx .. )]}12
If le IJZ 1 1J le IJX I lJ

PJir1ij = {I +arctan[2·wlie" Jijz·ln(zjlzij) +2·(2 - Wlie}TJijz·ln(x/x ij )]/(Y21t)}12

the probability that gamble i is preferred over gamble j. In this preference probability
expression with comparability weights T1"' = 2J Iln(z../z ) I and T.. = 2/ i In(x ../xJ ) I
and in the expression for discrimination p~6babilitypj. r6 of gam~W:probabilit\'es,&e
assumed different reference levels zJ = P

J
IO-PJ'S and zJ = PJ l(l-P

J
) for

discrimination of probabilities. However. it seefus reas~nable to ~ssume 'that p 0= PJ
for certainty inferences from displayed pie-area proportions as gamble proba~flities?

We fitted the arctangent-based and hyperbolic tangent-based models with their
different expressions for Pr ,I ij, but only the hyperbolic tangent-based model with the
hyperbolic cosine-based exb~ession for Pr Iij yields significantly higher Chi-squares.
This implies not a Euclidean sensation spad~, since Pr Iij = tanh[ Iln(z./z.. )/ln(z ..Iz

J
)I

not only may concern Euclidean distance d . lij ='5.lin(Z.lz.. )/ln(z~.I~ )1, ~~t a?so
Euclidean co-ordinate exp(-d]' 1ij) of hyper6b1ic distance d/ 1ij. TRbs, gur analyses
of the preference probabilities'gf gambles with relatively smJn value and probability
differences in the Tversky's study reveal no decisive evidence for whether the geometry
of the stimulus space is elliptic, or hyperbolic, or Euclidean. In the sequel we only give
detailed analysis results for hyperbolic tangent-based preference models with Pr 1 ij
= tanh[ Iln(z.Jz.. )lln(z..JzJ )1]. In the next two tables we give the predicted preferJ5ce
probabilitiel bY the m'6dePwith P

J
= P and the underlying probability-dissimilarity

probabilities PI' 1ij for subject I Jith J,.~ above shown observed choice probabilities,
where here bo ~Cfigures indicate intransitive predictions.

~-~~~~~--~------_?_-----_:_-------~-------~- ~~~-~!~--~--------~-------_:_------_?._------~--, .61 .65 .55 .22 a .15 .33 .55 .74
b .66 .67 .30 b .20 .46 .74, .77 .67 c .31 .73
d .83 d .69

Predicted choice probabilities: subj. 1 DiscriminQtionprob. ofprob.: subj. 1

The model with estimated parameters h
J

= 2.0, p = P
J

= .462. and x ::: 4.16 yields
the minimised Chi2 = 7.75 and, thus, fits r"ather wen~ bed)use for df = 7 db independent
observations minus 3 parameters) its significance level is about p ;0 .35, where df = 7
has the expected Chi2 :=: 6.35 at p = .50. However. since h.k: ::: 2 is maximal, we also
may take h

J
::: 2 as prior model-type specification, while Chi2 ::: 7.75 for df ::: 8 has

significance1evel p '" 0.45. We also fitted the model with different parameters PI and
PJ •but for subject I the optimal parameter x

J
remains identical, while PJ ::: .469 and

p/ ::: .460 hardly differ. Notice that levell
J

::: 4.16 almost equals tfi.~ geometric
mtdpoint of 4.0$ and 4.25$ for the values of gambles (e) and (d), while PJ ::: .462
almost equals p :::: 11/24::: .458 for gamble (e). Since h

J
::: 2. this subject feems to

evaluate the gaJible preferences by preferential probabiht~ responses with respect to
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the upper probability range bound, if probability differences are discriminated and else
by preferential value responses with respect to the lower value range bound this subject
discriminates the probability differences with respect to gamble (e) better than other
probability differences. The discrimination probability pattern of gamble probabilities
for this subject with adaptation-level shifts to midpoint sensations may be surprising,
because one could expect that discrimination probabilities monotonically increase with
the difference between gamble probabilities. This indeed may occur if no adaptation
level shifts are present. We can't derive a determined preference probability model
without stimulus-dependent adaptation-level shifts and, thereby can't test the model
without such shifts. However, the preference-probability patterns of two other
individuals with oppositely ordered preference probabilities for adjacent gamble pairs
and intransitive preference probabilities for remote ones, as shown below for subjects
3 and 6 (Tversky, 1969, p. 35), can't be explained without adaptation-level shifts to
reversed range bounds as reference levels for their value and probability evaluations.

~~~!:~:_--~-----_?_-------~--------~-------~- ~~~-~~~---~-------~-------_:_-------~--------~--, .75 .70 .60 .25 , 1.00 .90 .65 .20
b .80 .65 .40 b .80 .75 .55, .95 .80 , .90 .65
d 1.00 d .75

Observed choice probabilities: sub}. 3 Observed choice probabilities: sub). 6

~~~!:~:_-~-----_?_-------~--------~-------~-
a .61 .66 .58 .29
b .66 .69 .41
c .77 .79
d 1.00

Predicted choice probabilities: sub}. 3
hle= 2.0, pjr= pjo= .468, andxjr= 4.15

ChiZ = 7.49withdf= 7yieldsp "'0.30

~~~!:~:_--~-----_?_-------~--------~-------~-
a .15 .34 .54 .75
b .20 .46 .75
c .32 .75
d .73

Discriminationprob. ofprob.: sub}. 3

~~~-~!:_--~-------~--------~--------~-------_:_-
a 1.00 .89 .52 .37
b .82 .77 .70
c .70 .63
d65

Predicted choice probabilities: sub}. 6

hJc= 2.0, Pjr= Pjo= .278, andxjr= 4.84

ChiZ = 11.39 with df = 7 yields p '" 0.15

~~~-~!:_--~-------~--------~--------~-------_:_-
a .53 .63 .67 .69
b .25 .38 .46
c .16 .27
d .12

Discriminationprob. ofprob.: sub). 6

Subjects 3 and 6 have also both maximum weight h
J

= 2, whereby the actual
significance of their Chi-squares for the model with h

J
::b as a priori value become

for subject 3 p '" .50 and for subject 6 p '" .20 by df = 8~which means this model also
fits rather well for these two individuals. The interesting difference between subjects
3 and 6 is that their reference levels P

Jr
and x

Jr
approach opposite range bounds of
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respectively probabilities and values. Reference level P

J
:::: .278 of subject 6 is just

below the lower range bound 7/24 = 0.292 for gamble (a fofthe gamble probabilities,
while subject 3 has reference level P

J
= .468 that just exceeds the upper probability

range bound 11/24 = 0.458 for gamble (e), similarly to subject I with P
J

= 462.
Thereby, subject 6 discriminates the gamble-probability differences with resp~ct to the
probability of gamble (a) better than the other gamble probability differences, while
subject 3 discriminates gamble probabilities in almost the same way as subject 1 with
respect to gamble (e). Also the reference level x

J
=4.84 for gamble values of subject

6 almost equals the geometric midpoint for tli£ upper values 4.75 $ and 5.0 $ of
gambles (a) and (b), instead of the lower values 4.0 $ and 4.25 $ of gambles (d) and (e)
for subject 3 with x = 4.15 or subject I with x

J
= 4.16. It not only explains why the

preference probabidfy order of adjacent gamblelfor subject 6 is the reversed order of
subjects 3 and I, but also explains why p b = 1.00 and pd = .65 for subject 6 and
P b= .61 and pd =1.OOfor subject 3. rl?erefore, adaptatH?n~level shifts to sensation
mtfpoints and sete~ted range bounds as reference levels for probability and value
evaluations are present. The next table lists for the eight selected subjects in Tversky' s
(1969) study the parameters and the significance levels of the minimised Chi-squares
from the fitted models with PJr = PJo and with different estimates of PJr and PJo'

subj. model with PJr= PJo df::::: 7 model with PJr i=. PJo df =:: 6
- - - - -JiJ~- -P~;9J~~-xir---Chii - - p----h;c- - - -P~; --pio- --xir--Ch-if - -p-
-- _------------------------_.- ~.-----------------------------------------------

I 2.00 .462 4.16 7.75 .35 2.00 .467 .460 4.16 7.66 .28
2 2.00 .477 4.00 8.93 .25 1.90 .228 .421 4.19 7.31 .30
3 2.00 .468 4.15 7.49 .30 1.99 .446 .482 4.15 7.19 .34
4 2.00 .461 4.09 19.58 <.01 1.93 .279 .419 4.18 3.28 .80
5 1.80 .485 3.92 16.45 <.025 1.99 .118 .380 4.48 2.11 .91
6 2.00 .278 4.84 11.39 .15 2.00 .481 .286 4.84 7.90 .24
7 0.10 .382 3.53 2.67 .91 0.10 .382 .385 3.52 2.66 .85
8 0.05 .439 3.61 0.70 >.995 0.21 .440 .403 3.80 0.60 >.99

Results of3- and 4-parameter models with discrimination prob. ofprobabilities

The significantly too low Chi-square of subject 8 for the model with PI =:: PJ implies
that even the three-parameter model has too may parameters for this suoJ~ct, w?tich also
may apply to subject 7. Since their weights h are dose to zero, we fitted the model
for evaluated value sensations only under shiffsCto value midpoint sensations. The Chi
squares of subject 8 and 7 are respectively ChF = 7.94 and Chi2 = 8.01 with x =:: 5.23
and x

J
= 3.27 as respectively reversed reference levels for their utility eval&ations.

Subjects 7 and 8 are two individuals with transitive preference probabilities and
lexicographic semi-order violations, but their different preference probabilities are well
predicted solely by utility evaluations with only one estimated parameter, because their
Chi-square significance levels are just above P =: .50 for df = 9. The Chi-squares of
subjects 1, 2, 3, and 6 for the model with different values PJ and PJ are not
significantly lower than for the more parsimonious model with P

J
r=:: P

J
anS wherein

these four subjects have all maximum weight h = 2. Thereby, thh evSuate gamble
preferences only by gamble probabilities i(Cgamble-probability differences are
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discriminated and else only by gamble values. Thus, for these four subjects the model
actually is a two~parameter model with df == 8, whereby the Chi-square significance of
the model with P

J
== P

J
ranges around p ::: .45 for subjects 1, 2 and 3, while for

subject 6 the Chi-s~uare i?ignificance becomes p '" .20. For subjects 4 and 5 the model
with different values Ph and Pill fits significantly better than with PJr = PI( , but their
weights h

J
= 1.93 aOdi] = 1."YY differ not significantly from h

J
= T, as sh~wn in the

next tables~y their pre<h2ted preference probabilities with h
J

=C2, where we present
their observed and predicted preference probabilities and la~ly their discrimination
probabilities of gamble probability differences.

~~~~~~---~-----_?_------_:_-------~-------~---
a .50 .45 .20 .05
b .65 .35 .10
c .70 .40
d .85

Observed choicee probabilities: sub). 4

~~~~~~--~------~------_:_-------~-------~--~
a .53.42 .21 .07
b .60 .43 .15
c .58 .26
d .83

Predicted chocie probabilities: sub). 4
plr= .275, Plo:;;: .121, and xlr= 4.16

Chiz =4.85 with df =7 yields p z O. 70

~~~~~~---~------~------_:_-------~-------~---, .20 .46 .73 .94
b .31 .72 .98
c .68 1.00
d .85

Discrimination prob. ofprob.: subj 4

~~~E!~__~ ~ : ~ ~__
a .75 .65 .35 .60
b .80 .55 .30
c .65 .65
d .70

Observed choice probabilities: sub). 5

~~~-~!~---~-------~-------_:_------_?._------~-
a .72.72.47 .42
b .78 .46 .45
c .68 .68
d .70

Predicted choice probabilities: sub). 5

plr= .008, Plo= .373, and xlr= 4.55
ChF =7.24 with df =7 yields p z 0.10

~~~-~!~---~-------~-------~:_------_?._------~--
a .34 .78 .99 1.00
b .80 1.00 .99
c .72 .74
d .31

Discriminationprob. ofprob.: sub). 5

The Chi-squares of subjects 4 and 5 have acceptable significance levels for df = 7 of
this three-parameter model. Subject 5 seems to evaluate the gambles in a psycho
physical way, because reference level PJ = .373 for probability discrimination virtually
equals midpoint 9124 = .375 of the proojiliility range and reference level x =4.55 for
values also equals almost midpoint 4.5 $ of the value range, where the rerJ"rence level
PJ :;;: .008 will be the absolute threshold for probability perception. The preference and
prbbability-difference evaluations of the subjects 1,2,3, and 6 are more cognitive,
because their reference levels relate to the upper or lower range bounds of probabilities
and values. Also the levels PJ = .275 and x =4.16 of subject 4 are close to the lower
range bounds of probabilitie[ and values, b~t the reference level PJ :;;: .421 has no
special cognitive or psychophysical meaning. 0
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In the preliminary exploration forTversky's (1969) study only eight subjects out
of eighteen showed intransitive preference rank orders and only subjects 1 to 6 out of
the eight selected subjects for the actual study showed intransitive preference
probabilities, while subjects 2, 5, 7, and 8 also show some violations of the
lexicographic semi-order rule that only for subject 8 were significant. If also the
probabilities had been given as numerical values then no discrimination probability of
probability differences applies, but if stimulus-dependent shifts of adaptation level are
present then still some intransitivity of preference probabilities can occur. As discussed
above, our psychophysical response theory for monotone valences predicts no
intransitive preference orders, due to the additive model for ideal axis sensations of
preferential responses. Only adaptation level shifts and/or discrimination probabilities
of hardly perceivable probability differences define an additive difference model for
ideal axis sensations and then not only can predict intransitive preference orders. but
also violations of the lexicographic semi-order for Tversky's (1972) elimination-by
aspects theory. We have assumed that subjects have no single-peaked valences for risk
appreciation with respect to an ideal risk level qJ' but preference evaluations on the
basis of monotone valences for gamble values and single-peaked risk valences for
gamble probabilities with ideal risk level qJ and PJ = qJ for discrimination probability
of gamble probabilities constitute an alternative, pa<}simonious model that fits better for
some subjects, as shown in the sequel.

Portfolio theory ofsubjective expected utility and risk
The portfolio theory ofCoombs (1967, 1972, Coombs and Huang, 1970) assumes that
choices with uncertain outcomes are described by the subjectively expected values and
a single-peaked valence function for risks that depend on the subjective distance
between the objective probability and an ideal probability. Several studies show
evidence for the existence of an ideal risk level. In the study of personality traits
individual ideal risk levels has been characterised by a 'sensation seeking' trait with
bio-social detenninants (Zuckennan, 1994). Coombs and Pruitt (1960) originally
modelled this single-peaked risk as monotone function of variances p.( I-p.) for gamble
pairs (i,j) with p. = I-p. and zero expected values p"x.+ (I-p.)x. = O. Th~ analysis of
preference data 6f 99 uhdergraduates in the study 6f Coomb~ ahd Pruitt showed that
a large minority of students also may show appreciation for higher gamble probability
variances p.(l-p.). Also Tversky (1967, p.199) concluded from several studies that

"althoukh u}Wties and subjective probabilities were additive and subjective
probabilities were commodity-invariant, utilities were not risk-invariant",

We may fonnulate Coombs' portfolio theory by our psychophysical response and
valence theory as preferences for uncertain choice alternatives that are defined by a
mixed valence space of two dimensions: one for the monotone valences for expected
values of gamble alternatives and one for the single-peaked risk valences for their
probabilities. However, we rather liberalise that fonnulation to a three-component
model for a two-dimensional mixed valence space: one ideal preference response axis
rj" as rotational combination of the two. monotone valence dimensions - one for
c6mparable certainty sensations sJ' and one for comparable value sensations sJ' - and
a single-peaked risk valencedimen\fion v

J
. for valence-comparable certainty serlgation

distances to an individual, ideal risk proba5ility, We conjecture that the portfolio model
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under the reformulation by this three-component model for a two-dimensional. mixed
valence space will empirically hold. Our three-component portfolio model is a mixed
valence model (see sections 5.3.1. and 5.4.4.) that is defined by the earlier specified
monotone valences rl' as ideal response axis and by single~peaked vaJences vr for
valence-comparable tertainty sensation distances to ideal risk level qJ \.vith
comparability weights l: defined by r =: 1I11n(zJ h

J
)! :=: lid] as the reciprocal

sensation distance betw~n ideal certaihty stimulu~ zJq :=: q/(l-qJ) and certainty
adaptation level stimulus zT :=: P

J
I(l-P

J
). The hyper~olic tangent-based, single

peaked valences are defined tor co~para15~ weighted distance

by
dj/dj " Iln ([p/(l - Pi)]/[q!(l - qj)J) Vlln{[pjj(l - Pjal]/[(q!(l - qjlll

vJi := tanh[-V21n {cosh(dJ/dJ)/cosh( I)}1

0'

and

where

for hyperbolic and Euclidean valence-comparable certainty sensation distances from
the ideal risk sensation level, while for arctangent-based valences and Euclidean,
valence-comparable certainty sensation distances we have.

vJi = arctan(l - dJ/dJ)-arctan(l + dJ/d]).

Combining single-peaked certainty evaluations with the monotone valences of ideal
response axis f r for dependent dimensions of comparable certainty and value
sensations. we ha~e a three-component portfolio model for gamble valences in a two
dimensional mixed valence space (see: subsections 5.3 and 5.4.4.), as obtained by
1. individual ideal axes with rotation parameters h

Ju
and hJx

'j" = tanh[hj Y2Sj . + hj .y"j. ]
I C ~ U IX

rji = arctan[hJc·sJic + hJx.sJix1

'lie" '·In I[p/(l-Pi)]I[p/(l-pj )] )/10 I[p!( I-Pj)]/[Pjo/(l-Pjolll

'j' = 2·ln(x.lxj )/In(xj Ix j ).
IX I a a r

where h
J

~ 0 and h
J

~ 0, while hl
Tr

+ hj = 1 for independent probabilities and
values an~ if complefely dependent1fien hj

X + hj = 2, else 1 < lij + h'j < 2.. c X c x
2. and smgle- peaked valences

vJi = tanh[-hln{cosh(dJ/dJ}/cosh( I}} 1

for hyperbolic or Euclidean valence-comparable certainty sensation distances or

v
Ji

= arctan(dJ/dj -1 }arctan(dj/dj + I)

for Euclidean, valence-comparable certainty sensation distances.
Dimensions rI' and vI' define a mixed valence space, wherein the vectorial valences
are detenninetfby thel~ additively combined valence dimensions. If r

J
. and v . are not

fully dependent then the mixed valence space is a two-dimensional, opJn FinsrJr space,
because if ideal response axis rI' is open-Euclidean then single-peaked valence
dimension vI' is open-hyperbolic w\th curvature ~ = -Y2 and if the ideal response axis
r . is open rion-Euclidean then the single-peaked valence vI' is an open Finsler
~lnensionwith absolute curvatures that decrease with increasin~ distances dJ/d]' as
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shown in chapter 5. Since the monotone and single peaked valences for certainty
sensations depend on the same gamble probabilities, we also can combine by individual
weights the monotone and single-peaked valence functions to one asymmetrically
single-peaked function of certainty sensations. Thus, due to the two-dimensional
valence space the three-component portfolio model is equivalently described by
monotone utility for value sensations and an asymmetrically single-peaked risk valence
for certainty sensations. For hyperbolic tangent-based valences we can defme the
weighted combinations of monotone and single-peaked certainty valences by the
preferential response to the correspondingly weighted combination of the signed
certainty sensations sJ" and the term In[cosh(l)lcosh(dJ.Jd

J
)] for hyperbolic or

Euciidean certainty-sen~ation distances dJ"/d
J

to the ideaf ~omt with d/d
J

== I as
normalised distance between the adaptalion and ideal points, which weighted
combination is defined for weight I ;:; wJ ;:; 0 by

sJiv:::: (I - wJ}sJic+ w{ln[cosh(l )/coshCdJ/dJ)],

'J. :::: tanh[h
J

.~J. + h
J

.1/2S
J
. )]

I V IV X IX

define the mixed valences t
Ti

by possibly oblique rotation weights or even completely
dependent weights h

J
andll

J
. If we assume that subjects have individual adaptation

levels xJ and PJ as ~elJ as lfidividual reference levels x
J

and PJ for the monotone
valence ~ompon~nts of value and certainty sensations fuen we

r
have to estimate

maximally eight parameters per individual, because we also have two possibly oblique,
positive rotation parameters h

J
and hI as well as weight parameter w

J
and ideal

probability qJ for the single-p~aked n~ component. Assuming positive rotation
parameters for appreciated risk and value sensations, then the possibly negative
correlation P

J
between sensations sJ" and s]" determines hJ = ';[1 + PJ-hJ.J. If

correlation P
J

:::: -I for fully dependentVprobaDllfties and values then h
J

+ Il
J

= t and
if also x

J
:::: X and PJ :::: P then also p :::: p and x

J
:::: X will be cre~ende'hton the

a a a a ..1<",gamble set ana thus conunon. However, lrwe assume not mat T :::: I and also not that
T is known then the model requires the estimation of 3N +x 4 parameters for N
i«dividuals. It reduces to a model with 2N parameters less if no single-peaked risk
valences exist or if monotone certainty valences are ignored, while if only single
peaked valences determine the preferences then the solution only requires N parameters
for the individual ideal risk levels qJ" For N individuals and n gamble alternatives in
a study on the preference order between all alternative pairs we have Y2n(n-I)N
preference inequalities, whereby the parameters of the mixed valences are solvable,
provided that 1/20(0_ I)N > 8N + 2, which is satisfied for n ;:;5.

Preference probabilities for gamble alternatives with probabilities p. and values
x. and stimulus-dependent adaptation-level shifts to sensations of target gakble j in (i
o~er-j)-preferences or to the midpoint sensations of gambles i and j in (i-or-j)
preferences may allow an analysis of preference probabilities by our three-component
portfolio model, provided that we can also validly define preference probabilities for
pairs of objects with single-peaked valences. As shown in the next subsection,
preference probabilities p . [j or PJ" I ij for objects with single-peaked valences are
defined by conditional simn~rity probabilities with respect to the ideal risk point under
stimulus-dependent adaptation-level shifts. Thereby, we can specify a preference
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probability expression for the three-component portfolio model by the probability
transfonnation of the preferential response to a weighted combination of signed value
and certainty sensations for the monotone value and certainty valences and a distance
difference term of sensation distances to the ideal point for the single-peaked risk
vulences. That distance-difference term depends on the sensation geometry and the
response function and concerns distances to ideal risk z = ql( l-qJ) for ideal
probability qr Under adaptation-level shifts to certainty mkHbint lo(z .. ) = 1/210(z.-2.)
we have IJ 1 J

dJ Iij =Iln(LlzJ )1 =1I1n(z.lzJ ) I + Iln(z,/zJ ) 11/2 =(dJ. + dJ.)/2
lJq Iq Jq IJ

as distance between the shifted adaptation level and the ideal risk level, while distances
d/. = IJn(z,/zJ )1 and d

r
:= Iln(z,/zJ )1 are the distances between the certainty sensations

o laltemafive~with prbbabilityp. ffud p. to the ideal risk level qr As shown in the next
subsection, the conditional simifarity-~robability expression for valence-comparable
sensation distances to ideal risk levelln(~) under adaptation-level shifts to midpoint
sensations In(z.. ) defines the risk sensatIon for hyperbolic tangent- and arctangent
based valences~y Euclidean sensation-distance difference

qJij:= I - dJ/dJI ij,

and for hyperbolic tangent-based valences of hyperbolic sensation spaces by

qJij := In[cosh( I )/(cosh(dJ/dJ 1 ij)J.

We can add the monotone certainty and single-peaked risk sensation components by
weight (l-wJ) for certainty sensations and weight wJ for risk sensations qJij' whereby

'J' 1ij = (l - wJ).2.ln(z./z.. )llln(z.,/zJ )1 + wJ·qJ...
IV IIJ IJr IJ

Notice that if d
r

< d
J

!; ij then gamble probability p. is closer to ideal risk level qJ than
gamble probability p., whereby then SJ' increaJes and else sr decreases oy the
additional term qJ" f6r the sensation corhponent of single-peakeH~iskvalences.

The three-J6mponent model for the analysis of the preference probabilities in
Tversky's (1969) study becomes then written by

P
J
· lij = { i + tanh[w

J
. -V1$

J
. 1ij + (2 - w

J
. ).In(x./x .. )llln(x.,/x

J
) 1]}12

Ir IC IV IC I IJ IJ r

for hyperbolic tangent-based valences of Euclideanor hyperbolic sensation spaces with
respectively qJ" = 1 - dJ.ld

J
1 ij or qJ" := In[cosh(l )/(cosh(dJ.ldJi ij), whileIJ I IJ I '

P
J

· lij = {I +arctan[w
J
.. 'J' lij +(2 - w

J
. }2.ln(x./x.. )/lln(x.,/x

J
)11/(Vm)}/2

Ir ICIV IC I1J IJr

defines the preference probability for arctangent-based valences ofEuclidean sensation
spaces with q .. = dJI ij/dJ" Here again weights w

r
' = h

J
: Pr 1 ij and (2 - wJ' ) are

defined by fudy dependenhertainty and value weiglrts hJcc+ li;~ = 2 and respeJUvely

P
J
· 1ij = tanhllln(z./z.. )lln(z.,/zJ )11
IC 1 IJ IJ 0

P
J
· 1ij = arctan[2·lln(z./z.. )/ln(z.,/zJ ) 11/(Vm)
IC I IJ IJ 0

as the two earl ier empirical Iy sustained expressions of the three pennissible expressions
for the discrimination probabilities of certainty sensation differences, where they here
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define the probabilities that certaintyand risk sensations are used. The three-component
portfolio model requires that we estimate the six parameters of reference probabilities
~Jr and Plo' ideal risk qI' refere.nce level "Jr' and component weights h/;c and wJ"
However, we may assume that eIther PT = qJ or P

J
= P

J
holds, where y we then

have a five-parameter model, but if ars~ w
J

= 1 of W
1

go then we have a two
component model for monotone value and single-peaked fisk valences or for monotone
value and certainty valences with three parameters qJ = P

J
' xJ and hJ or PJ = PJ •

x
J

,and h
J

,while we have one parameter fewer if weignfh
J

'is set tolt
J

=2. 0

r We ~nitially fitted the three-component model witliesix paramefers by the
arctangent-based model (Euclidean sensation spaces) and by the two hyperbolic
tangent-based models (either Euclidean or hyperbolic sensation spaces) for subjects I
to 6 in Tversky's (1969) study, because subjects 7 and 8 use the one-component model
for utility only, as shown earlier The arctangent-based model and the hyperbolic
tangent-based model both with Euclidean risk term qr :=: 1 - d

1
JdJ Iij must be rejected

(p < .005 with df :=: 24 for totals of individual Clillsquares)l. Only the hyperbolic
tangent-based model with risk term qr :=: In[cosh(1)/(cosh(d.lJdj Iij)] for hyperbolic
sensation spaces yields an acceptable k\gnificance level p :=: .-1

1
5 with df :=: 24 for the

total ChF:=: 31.05 of individual Chi-squares. All individual Chi-squares of the latter
model are closer to the expected Chi-square at p :=: .50 and for subject 4 significantly
closer than for the two other three-component models. Moreover, the estimated
parameter h

J
equals or closely approaches maximum h

J
:=: 2 for the certainty

component aIfd the weight w/, equals or closely approaches efther minimum wJ :=: 0 or
maximum wJ:=:1 for each su ject. Byh

J
:=:2 and w

J
:=: I or wJ:=:O as a prion model

parameters tJie degrees of freedom of the tbtal Chi-square increases to df:=: 36, whereby
its significance level would be close to p:=: .50, if the constraint models hardly increases
the Chi-square totaL Therefore, we again fitted the model by setting a priori model
parameter w

J
to w

1
= I or w

J
= 0 and model parameter h

J
to maximum hi = 2, while

also versions for either Pj = p (ifw
J

=0) orqJ =Pj c(ifW
J

= 1) are fned. In the
table below we give the res~lts oWhe estimated parameter~under adaptation-level shifts
to midpoint sensations and minimisation of the Chi-square for the six subjects. Cursive
figures specify the a-priori model parameters, whereby the three-component model
reduces to a two-component model that equals by wJ= 0 and hj = 2 the model for
monotone value and certainty valences without or with constraint P~ :=: PJ or specifies
by wJ= 1 and h

J
= 2 another two-component model for monotonlvalu~ and single

peaked risk vale~ces with additional constraint qJ:=: PJo·

~~~!~ ~_~~__~J ~I~ ~!!~_~9 ~!S~ ~C~!2 ~!! ~~_~ ~_~ ~ _
1 2 0 .462 4.16 7.75 8 .46
2 2 I .501 3.97 7.92 8 .44
3 2 0 .468 4.15 7.49 8 .48
4 2 J .474 4.06 7.28 8 .51
5 2 0 .008 .373 4.55 7.24 7 040
6 2 0 .481 .286 4.84 7.90 7 .35

Results of two-component models with adaptation-level shifts, discrimination
probability ofgamble probabilities, two a-priori and some constraint parameters.
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Subjects I, 3, 5 and 6 have w{: 0 and h
J

::: 2, whereby their three-component model
reduces to the earlier fitted two-compone8t for monotone value and certainty valences
(no significant contribution of the risk component). Thus, these four subjects most
likely use the two-component model for monotone value and certainty valences, where
by h

1
::: 2 only the value component is used in case the gamble probabilities are not

discrSninated and else only the certainty component. The model fit with PJ ::: p for
subjects I and 3 only yields slightly higher Chi-squares than the earlier fitt.J?wo
component model for monotone utility and certainty valences with different parameters
PJ and PJ ,whereby they have only two estimated (similar) parameters with a cognitive
mJaning ~xJ ::: 4.16 or 4.15 and PI ::: P ::: .462 or .468 approaches respectively the
lower and Jpper range bounds or varh~ midpoints and probabilities). The three
component model for subjects 5 and 6 reduce to a two-component model for monotone
value and certainty valences with three estimated parameters, where the parameters
have a psychophysical meaning for subject 5 (since PI ::: .373 and x

J
::: 4.55 are

probability and value range midpoints and PJ ::: .008 like?y is the absolut~perception
threshold for probability) and a cognitive me~ning for subject 6 (since PT ::: .281 and
pJ ::: .481 respectively approach the lower and upper bounds of the proflliliility range
ana x

J
::: 4.84 approaches the upper range bound for value midpoints). The three

compohent model of subjects 2 and 4 reduces to the two-component model for
monotone value and single-peaked risk valences with qJ ::: p (no significant
contribution of the certainty component and no significant contril~tion of different
parameters), while one intuitively would also expect that ideal risk level q also
detennines the reference level PI for the discrimination of gamble probabilities. ~elow
we give their predicted preferen2e probabilities by that two-component model.

~~?!~~:__~ ?. 5: ~ ~_

a .54 .50 .34 .11
b .56 .47 .15
c .69 .29
d .84

Predicted choice probabilities: sub). 4
(hJc::: 2, w

J
::: l)qf PJo::: .474, x

Jr
::: 4.06

ChP::: 7.28 with df::: 8 yields p z 0.51

&~~-~!~---~-------~--------~--------~-------~--
a .54.53.44.25
b .56 .54 .36
c .60 .54
d .77

Predicted choice probabilities: subj. 2
(hJc::: 2, w

J
::: 1) qf pJo::: .501, x

Jr
::: 3.97

Chiz ::: 7. 92 with df::: 8 yields p "" 0.44

Their earlier fitted two-component model for monotone value and certainty valences
fits also rather well (for subject 2 the respective significance levels are p ".35 for the
model with df ::: 8 and p '" .30 for the model with df ::: 6, while for subject 4 the
significance levels are p ".70 for the model with df::: 7 and p " .80 for the model with
df :::6). Nonetheless, the two-component model for monotone value and single-peaked
risk valences for subjects 2 and 4 with qJ ::: PT is more or equal parsimonious (df::: 8)
and their Chi-squares with p " .44 or p " sfmore closely approaches the expected
Chi-square at p ::: .50 than the two-component model for monotone value and certainty
valences. Therefore, subjects 2 and 4 most likely use the two-component model for
monotone value and single-peaked risk valences, where only the value component only
is used if the gamble probabilities are not discriminated and else only the risk



392

component. Moreover, the hyperbolic tangent-based two-component model for
monotone value and single-peaked risk valences with the risk-evaluation component
qr ::: In[cosh( 1)1 cosh(dJ"/d

J
Iij)] for hyperbolic sensations fits significantly better than

tliJlhyperbolic tangent- 01 arctangent-based model with the risk-evaluation component
qr::: I - dJ.ldJlij for Euclidean sensations of these two subjects with estimated
pa~meters q;::: PJ and x

J
. For subject 4 the observed preference probabilities are

presented earlier, Rut not for subject 2. Below we give the observed preference
probabilities of subject 2. where cursive figures concern lexicographic semi-order
violations and bold figures again intransitive probabilities.

~t~?!~~:__~ ~ 5: ? ~_

a .40 .65 .50 .25
b .70 .40 .35
c .75 .55
d .75

Observed choice probabilities: sub). 2

In surrunary: we derive from our psychophysical response and valence theory a metric
three-component model for the prediction of gamble preference probabilities and
dissimilarity probabilities for the discrimination of hardly perceivable gamble
probability differences. For six individuals outofthe eight subjects in Tversky's (1969)
study the model reduces to a well-fitting two-component model, while the model
reduces for two subjects 7 and 8 to a well-fitting one-component model for monotone
value valences with onlyone estimated parameter. Forfour subjects the two-component
model concerns the model monotone utility and certainty valences with either two
estimated parameters (subjects I and 3) or three estimated parameters (subjects 5 and
6) and for two subjects the two-component model concerns the model for monotone
value and single-peaked risk valences with two estimated parameters (subjects 2 and
4). The ideal risk level is by definition a cognitive reference parameter and the
estimated parameters for value and certainty evaluations are also cognitively selected
reference levels that relate to upper or lower range bounds of gamble values and
probabilities, except for subject 5, while subjects 8 and 7 select for their only value
dependent preferences cognitive reference levels that are respectively located above the
upper and below the lower bound of the value range. Only subject 5 seems to use
psychophysical parameters as value and probability range midpoints and an absolute
just noticeable probability level. More important than these revealed differences
between individuals may be that the arctangent- and hyperbolic tangent-based two
component models for monotone value and single-peaked risk valences with Euclidean
risk-sensation component qr ::< 1-dJ"/d

J
Iij yield significantly higher Chi-square totals

than that hyperbolic tangenllbased rrlodel with hyperbolic risk-sensation component
qJ" ::: In[cosh( I)/cosh(dJ.ld

J
Iij)] for the two individuals that use the single-peaked risk

colhponent. It might giv~ some empirical evidence for the hyperbolic geometry of
sensation spaces and the Euclidean geometry of the stimulus space, while these
geometries might theoretically be assumed to hold for the restricted stimulus-intensity
range of human perception. The predicted preference probabilities fit quite well the
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observed preference probabilities for gambles with hardly perceivable probability
differences and completely negative-dependent values and probabilities, where the
observed preference probabilities are transitive or intransitive and/or violate the
lexicographic semi-order rule. Therefore, our three-component portfolio model of
gamble preference probabilities under stimulus-dependent adaptation-level shifts (and
discrimination probabilities if gambles have hardly perceivable probability differences)
seems more valid than
• any expected utility model,

any existing subjective expected utility model,
• Coombs' portfolio model, and
• Tversky's additive difference model or elimination-by-aspect model.

7.4.3. Dynamic relativity ofpreferences with single-peaked valences
Referring to sections 5.2.1. and 5.4.3., the single-peaked valences under adaptation
level shifts towards dimensional midpoints of objects i and j in (i-or-j) preference tasks
become redefined by sensation space adaptation point of individuals that are shifted to
a.. = (y. + y.)/2 as midpoint sensation for simultaneously presented choice objects i and
j,IJwhil~ g) remains the fixed ideal sensation space point if no reinforcements are
obtained from choices, and then are defined for

by
dJIU = iaij - gJI and dJj = I Yi - gJI

vJi1ij = tanh[-1/2In{cosh(dJ/d
J

Iij)lcosh( 1) lJ

for valence-comparable, hyperbolic or Eudidean sensations of respectively Euclidean
or hyperbolic stimuli and for valence-comparable Euclidean sensations of elliptic
stimuli by

vJilij =arctan[l - dJ/dJlijJ-arctan[ 1 +dJ/dJlijJ.

In (i-over-j) preference tasks the adaptation level may shift to the sensation of object
j, whereby by a. = y., while gJ remains the static ideal sensation space point if no
reinforcements rtre o~tained from choices. For complete adaptation to objectj, thus for
shifts of a

J
to a. = y., the hyperbolic tangent-based, single-peaked valences for

unidimensional hypertrblic or Euclidean sensation scales is written by

becomes

which for
vJi~ = tanh[-Y21n{cosh(Yi - gJ)lcosh(a

j
- gJ) JJ,

zJi~ = cosh(a
j

- gJ)/cosh(Yj - gJ)

vJiU = IZJi~ - 1}IlzJi~ - 1).

We remark that lIzj"~ relates to the hyperbolic cosine model for the unfolding of
polytomous response~ for object i on rating scales (Andrich, 1996) or for the unfolding
of dichotomous responses (Andrich and Luo, 1993). In the hyperbolic cosine model the
argument la. - gJI concerns rating category boundary distances a. to gJ as folding point
of the rati~ scale for individual J, while the argument Iy. - g{1 concems the folded
rating category position of object i by individual J. Th1e difference between the
hyperbolic cosine model and our single-peaked valences not only is a matter of
parameter intelpretation, but also that we measure vj"~ as valences on an open
hyperbolic or Finsler dimension with a. as shifting locat~ons for zero valence, where

J
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PJi = 11[1 + exp(Yi - aJ)]

is interpreted as the probability that individual J with capacity a
l

gives the correct
answer to item i with item difficulty y .. It equals the logistic discrimmation probability
for Fechner-Helson sensations if y.' is a Fechner sensation and a

J
the individual

adaptation level. In order to show the relationship with single-peaked valences, we
replace y. by distances ly. - g I = d . and a

J
by distance d j = Ia - g I and weigh for

compara5ility of sensatiorl disfunce l~ IIdr where term exp(dr/J
J

- 11 concerns either
exponents for weighted Euclidean distances dj.ld

J
or Euclideah co-ordinate values of,

weighted hyperbolic distances dJ.ldJ' but for hJerbolic distances we directly write this
as cosh(dr/d )/cosh( I). In both ~ases the redefined Rash model probabilities become
similarity ~rotabi1ities as logistic function of weighted distances dj.ld

J
with respect to

ideal points gJ at normalised distance from the adaptation point aJ' Js discussed earlier
in subsections 7.2.2. and 7.2.4., where the hyperbolic tangent-based, conditional
similarity probabilities concern here conditionally comparable sensation distances
between y. and ideal pointg . Forobjects with hyperbolic tangent-based, single-peaked
valences this indicates that fueir preference probabilities are derivable from conditional
similarity probabilities Pr for weighted distance dJ.ld j with respect to distance d/d

T= I. In subsection 7.2.4. 'we defined for hyperbofib sensation distances the biassed
similarity magnitude p.. ·v.. =I/cosh(d..Ia.) with similarity magnitude v.. =I/cosh(2Iy.
- y.l/a) = IIcosh(d .. )arltl ti1as p.. = cos~d.. )/cosh(d ..Ia.), where conditll:mal similarit9
pr6bability p.. 1 gj iY defined by1tesponse P..I gj coneHti6nal
to~=Ou U U

J p .. 1 gj = (1 + ~.I gj)J2 =I/[ I/[ I +cosh(d ..la. )/cosh(d .la.)].
IJ lJ lJJ gjJ

In the same way we define similarity magnitudes for hyperbolic sensation distances

zJ = IIcosh(dldj ) = I/cosh(1) and Zji = IIcosh(dJ/d
J
),

where dr is the distance between sensations y. and ideal point gj and d
J

the distance
between ladaptation level a

J
and ideal poinl gr Since zr and Zj are similarity

magnitudes that satisfy the conditional choice axiom for dnilarities of hyperbolic
sensation distances to the ideal point, we also may define conditional choice
probabilities Pji for zJi with respect to Zj as

Pji = zJ/[Zji + Zj] = 1/(1 + zlzJil = 1/[1 + cosh(dj/dJ)/cosh(I)].

It defines quasi-responses

r
Ji

=2pji - I =[I - cosh(dJ/dj)lcosh( I )]/[ I + cosh(dj/dj)lcosh(l)],

the hyperholiccosine model measures zr~ as ratings for hyperbolic cosine-transfonned
distances to gJ on a rating scale with c1tegory boundaries a.. Only for open Finsler
valence dimensions the hyperbolic cosine-transformed disdmces specify Eudidean
rating scales. Since an open-hyperbolic valence dimension corresponds to a hyperbolic
sensation dimension, the hyperbolic cosine model for the unfolding ofrating scales may
imply that rating scales are hyperbolic, which seems not recognised by Andrich and co
feachers. The hyperbolic cosine model is derived (Andrich, 1982; Wrightand Masters,
1982) from the probabilistic Rasch model (Rasch, 1960, 1966a; Stene, 1968 ) for
dichotomous (or po]ytomous) responses. In the dichotomous Rasch model the
probability
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where. qua~i-response 'Jj equals the single-peaked valence for valence-comparable
sensatIOns 1

vJi =: tanh[-V21n {cosh(dj/clJ)!cosh( I)}].

PJi "" (1 + vJi)/2 :::: II[ 1 + cosh(dJ/dJ)/cosh( 1)1

defines by conditional probability Pr whether sensation y. is more or less similar to
ideal point gJ than adaptation point a_~ and, thereby, the pr~abiljty whether object i is
preferred over the neutral object tnat coincides with the adaptation point. Since
multiplication of dimensional distance terms cosh(dJik/dJk) define space distance
cosh(dJJd

J
), we here have by

I k=m

PJi :::: II[ I + {DcoSh(dJik/dJk ) }/cosh(l)] :::: II[ I + cosh(dJ/dJ)/cosh(l»),

a hyperbolically multiplicative preference probability model for the preference
probability that objects with Euclidean stimulus attributes and hyperbolic sensations are
preferred above the status quo as adaptation level. However, if the adaptation point is
shifted to sensation point j then

vji U= tanh[N2In{cosh(dj/djUYcosh(l)}],

where dJ!j = dr =Iy. - gJ I and d
J

. =Iy. - gJ I as conditional distances to centre point
gJ define by t1i~ conditional probahilitY~JiU

PJi U =1I[ I + cosh(dJ/dJj)Jcosh(1)],

PJiU =(1 +vJiU)/2.

Thus, here the probability that y. is more similar to gJ than y. as shifted adaptation level
also defines the preference prbbability that i is preferrJd over j in an (i-over-j)
preference task with stimulus-dependent adaptation-level shifts to sensation y.. Thus,
the here derived (i-over-j)-preference probability holds for single-peaked vale'nces of
valence-comparable, hyperbolic sensation distances cosh(dJ.ldr ) to ideal points with
shifted adaptation points to sensations of target stimu\usJ or object j. Since
multiplication ofdi.mensional tenns cosh(dJik/dJk) define space distance cosh(dJ/d

J
),

we here have for bias term

PJi U= cosh(dJ/djj)Jcosh(dJ/dJ)

by similarity magnitudes Zji and zJ with respect to the ideal point

PJiU = 1[1 + PJiIHz/zJi)] = 11[1 +cosh(dJ/djj)/cosh(l)]

k~",

PJi~ = lIt 1+ PJi U·\gcoSh(dJik/dJk) }/cosh(1)]::: 1I[l +cosh(dJ/dJlcosh(l)],

a hyperbolically multiplicative (i-over-j)-preference probability model with
multiplicative compound bias for preference evaluations of objects with Euclidean
stimulus-like attributes. In case of(i-or-j)-preference comparisons with adaptation level
shifts to midpoints a.. ::: Y2(y.+ y.) we have by

IJ I J

dJ Iij = Iaij - gJ I ::: 1/21 yi - gJ I + hi Yj - gj I = Y2[ djj + dJj ]
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that y. is more similar to gJ than y. if distance clj" < h[dJ' + clr ]. Thus, in (i-or-j)
prefer~nces with adaptation-level s~ifts to midpoint sensatl6ns did probability that i is
preferred over j becomes for similarity magnitude z = l/cosh(d

J
I ij/d

j
Iij) = l/cosh( 1)

also expressed by the conditional similarity probabnity with respect to the ideal point

Pji Iij = ZJ/(IJi + zJ) = 1/[1 + coshCdJ/dJI ij)/cosh(l)],
where also

PJi Iij = (l + rJi Iij)12 = [1 + tanh(-1/210 {cosh(dj/cl] I ij)/cosh(1)} ]/2.

PJi i ij = coshCdJ/dJI ij)/coshCdJ/dJ)

and dimensional similarity magnitudes lJik = l/coshCdJik/dJk) define by

k=m

Pji Iij = 1/[1 + Pji Iij·gcz/zJik) = 1/[1 + coshCdJ/dJI ij)/cosh( 0]

a hyperbolically multiplicative (i-or-j)-preference probability model with
multiplicative compound dual bias.

Our psychophysicaL valence theory (see: chapter 5) defines the single-peaked
valences ofobjects with non-Euclidean attribute spaces and Euclidean sensation spaces
by

0'
v
Ji

:::: arctan(l - dj/dJ).arctan(1 +dj/d j ).

Since these single-peaked valence spaces are open Finsler spaces, their valences can't
be transformed to preference probabilities. However, if (i-over-j) preference
probabilities are defined by the probability that distanced]":=: jy.- gJI is smaller than
distance d .:::: Iy.- g I under adaptation-level shifts to the s~nsadonof target objectj,
whereby ~U :=: d

Ji
, {hen the conditional similarity probability would define (i-over-j)

preference probability by

Pji U:::: {I + tanh[-Y2(dji - dj/dJUl)/2:::: 11[1 + exp(dJ/d
Jj

-I)]

Pji j :::: {I + arctan(dj/d
Jj

- I )/(lItn) 1/2

where the transformation of the last probability after differentiation and scaling (see
subsection 7.2.4.) defines no model for a derived probability. Under adaptation-level
shifts to midpoint sensations (i,j), wherebyd11 ij:::: 1Y2(y. + y.) - gjl :=: Y2{dr + d]"), we
would have for conditional similarity probaollity I J I J

Pji ! ij :::: {I + tanh[-Y2(d
Ji

- dJj)/dj lij] 1/2:::: 11[1 + exp{ (dji - djj)/dJI ij}]

Pji i ij :::: [I + arctan {(d
Ji

- dJj)/dJ Iij )1(Ym)]/2,

that Pj.1 ij is smaller than P]" Iij, where differentiation and scaling of the last expression
yields hgain no additive m~del.

These conditional similarity probabilities may respectively define the (i-over-j)
and (i-or-j)-preference probabilities of hyperbolic tangent- or arctangent-based valences
under stimulus-dependent adaptation level shifts. Although not derived from the
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respective values of their above defined, single-peaked valences, the expressions for
the probability that cl

r
is smaller than clr may define the probability that alternative i

is preferred over alterrlative j for (i-over-1)-preferences with adaptation-level shifts to
the sensation of larget alternative j or respectively for (i-or-j)-preferences with
adaptation-level shifts to the midpoint sensation of alternatives i and j. If this holds then
we have for distances to ideal points by the earlier derived, conditional similarity
probability models also an exponentiolly multiplicativepreference probability model
with power-raised single or dual bias for hyperbolic tangent-based, single-peaked
valences of Euclidean sensation spaces. For arctangent-based, single-peaked valences
of Euclidean sensation spaces we have an arctangent-based preference probability
model with single or dual bias, but no additive preference probability model with
multiplicative single- or dual-bias.

Preference analyses by existing unfolding analysis methods don't account for
changing weights of distances to the ideal point by shifted adaptation levels, nor are
preference probabilities ever fitted by a metric unfolding model. Therefore, we can't
compare existing preference analyses with appropriate analyses of preference
probabilities under shifts of adaptation levels. Notice that intransitive preference rank
orders or probabilities are sometimes consistently observed and can be predicted by our
psychophysical valence theory for objects with single-peaked valences and stimulus
dependent adaptation-level shifts. Such adaptation-level shifts don't influence the
preference order for so-called unilateral objects with respect to the ideal point, while
such shifts can influence the preference order for bilateral objects and for bilateral
adjacent objects more often than for bilateral-remote objects. It may explain why
Coombs (1964) reported significant transitivity violations for bilateral-adjacent choice
triples (in his unfolding analysis of individual comparisons of varying grays on the
black-white dimension with respect to individually different, but variable-assumed ideal
gray levels), while transitivity violations for bilateral-remote choice triples were
insignificant and for unilateral choice triples absent. Probabilistic unfolding analyses
with wandering ideal points (De Soete, Carrol and DeSarbo, 1986, 1989) and object
distributions (Mullen and Ennis, 1991; De Soete and Carroll, 1992) are used for the
analysis of preference rank orders and can describe stochastic preference intransitivity.
However, we conjecture that intransitive preference rank orders are better analysed by
the earlier described (see chapter 5), deterministic analysis methods for hyperbolic
tangent-based, single-peaked valences under iterative adjustments of these analysis
methods for stimulus-dependent adaptation-level shifts.
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CHAPTERS

CHOICE CONFLICTS AND DYNAMICS

"differenrfonns a/conflict are inherent in choice, where by
conflict is meant incompatibility, i.e. something CaJlfWt be
obtained withoutgiving up (orexpending) something else. "

Hogarth. R. M. (1987). Judgement and Choice. (2"0 ed.
p. 66). John Wiley & Sons, New York.

"Remarquons cependant que, dans les cas de tres grands
ensembles (refs que celui, justement, presenti par la
masse humaine) le processus lenda "s'infaillibiliser", les
chances de croissant du core hasard. et les chances de
refus ou d'erreur diminuant du core libertes, avec la
multiplication des elements engages."

Teilhard de Chardin, P. (1955). Le phenomene humain.
Editions du Seuil, Paris.

"The human phenomenon" is written by paleontologist and
philosopher Teilhard de Chardin between 1938- [940 in
Peking and published posthumously, but the citation is from
p. 342-343 of a postscript that is added in 1948.
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8.1 Personal ambivalence and choice conflict dynamics

8.1.1. Introduction
In this chapter we discuss individual and collective aspects of choice that are not
explicitly covered in preceding chapters. Nearly all choice realisations require that a
preferred object is obtained at the cost of something else, whereby most preferential
choices in reality are of a personally conflicting nature. In subsection 8.1 .2. we discuss
phenomenally different types of choice conflicts that all derive from the combination
of forward single-peaked and backward monotone valence functions (see chapter 2.
where figures of backward and forward valence functions are shown). Firstly, we argue
that this personal conflict occurs often for the behavioural choices in real life, where
cognitive preferences from forward single-peaked valence dimensions are counteracted
by a backward monotone valence dimension for behavioural realisation difficulty of the
cognitive preferences. Secondly, we place behavioural choices in a time perspective,
where the personal conflicts between choice realisations now or later are discussed in
the context of the adaptation to progressively changing realisation abilities in the course
of one's life. Thirdly, the choice conflict may also arise when one's own choice from
a single-peaked valence dimension is expected to be depreciated by other relevant
persons, where that expected depreciation is represented by an oppositely oriented,
monotone valence function. We don't discuss the type of choice conflict that may arise
from choices made in social interaction, such as group decisions, because it would
require a rather complex refonnulation of the interpersonal choice theory of Coombs
and Avrunin (1988) in tenns of our psychophysical valence theory, which is out of
scope for this monograph. The intra-personal conflict from an expected depreciation
of one's own choices by other individuals can be based on misunderstanding, because
the object space for an individual may not be shared by other individuals when it
concerns choices from a cognitive object set. If the objectively measured, cognitive
object space is different for individuals then there will inevitably be misunderstanding
and incorrect expectations of depreciation or appreciation, The possibility of differing
object spaces for cognitive concepts is briefly discussed at the end of subsection 8.1.2.,
where differences between cognitive object spaces of groups are described as
objectively measurable culture differences between groups.

In subsection 8.1.3. we further discuss the combinations of monotone and
single-peaked valence functions that depending on their addition weights and equal or
opposite orientations describe many fonns of manifest, asymmetric mixed valence
functions. The combination of backward monotone and forward single-peaked valence
functions that are equally weighted even describes a manifest valence function with an
indifference for sensations below a point just above the adaptation level and negative
valences above that point. If a two-dimensional sensation space has two oppositely
oriented, single-peaked valence functions for its dimensions that simultaneously apply
to objects or events with completely correlated dimensional sensations then it also
defines a manifest, mixed valence function with an ambivalent indifference for a mid
range of sensations with zero valences and negative valences for sensations outside that
indifference range. This type of choice conflict is illustrated by a few examples and the
example of individual risk in road traffic. The latter example is extensively discussed
and mathematically described in subsection 8.1.4 as the risk-adaptation theory that is
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characterised by a backward single-peaked valence function for sensations of accident
fear and a forward single-peaked valence function for arousal sensations of driving,
where arousal and fear sensation dimensions generally become completely correlated
sensation dimensions in road traffic.

Some collective aspects of choice are discussed in section 8.2., but the
discussion only concerns choices and choice conflicts that are detennined by the sum
of individual choices, again excluding a dependence on social interaction. An
extensively discussed exampleof such collective choice coof! iet behaviour is collective
risk of road users, where the collective risk development over time depends on the
cumulative road safety improvements that are inherently connected with traffic growth.
In subsection 8.2.1. we discuss modeis for the S-shaped traffic growth as function of
time, while in subsection 8.2.2. it is shown that the macroscopic development of
collective traffic risk is described by exponential risk decay as function of time. In
subsection 8.2.3. it is demonstrated that the slope of the exponential decay of road user
risks and traffic emission rates are mathematically dependent on the slope of the S
shaped traffic growth, which is explained by our risk-adaptation theory. As
consequence of the S-shaped growth of road traffic and exponential decay of risk and
emission rates in road transport, the macroscopic long tenn development of self
destructive road transport outcomes (fatalities and polluting emissions) is single
peaked. Road transport growth and its exponential risk decay constitute a specific
example of the adaptative evolution of self-organising, technological systems.
Therefore, in section 8.3. we generalise the mathematical relationship between traffic
growth and risks to a general theory of evolution and adaptation for all kinds of self
organising, technological systems. This general theory contradicts the nowadays still
popular and politically influential, but more than 35 years old 'models ofdoom' (so
called by Cole, 1973) for environmental world developments ofglobal industry growth.
The 'doom theory' is initiated by the so-called Club of Rome in the early seventies of
the 20'h century with the publication of 'The Limits o/Growth' (Meadows, 1972),
further specified by Meadows (1974), and affinnatively reconsidered in 'Beyond the
Limits, Confronting Global Collapse' (Meadows et al. 1991). Evidence from long tenn
time-series analyses that can discriminate between our general theory and such world
'doom' models is either absent or when present seems often more in favour of our
general theory. Therefore, we conjecture that these 'doom' predictions are based on
unjustified extrapolations of initially exponential growth of industrial production and
environmental pollution. Such initially almost exponential growth is also a basic aspect
in our general theory of technological system evolution and adaptation, but our general
theory predicts a quite different future of gradually saturating growth and single-peaked
developments of life-threatening events.

8.1.2. Behavioural, developmental, and cultural aspects ofchoice conflicts
Psychological preference studies generally concern the analyses of individual
preference rank orders of cognitively presented objects, where individual preference
rank orders are represented by the rank order of object distances to imaginary ideal
objects of individuals in acommon Euclidean space. However, actual choice behaviour
also depends on one's ability to realise the cognitively preferred choices. Since the
adaptation point represents the centroid of the actual stimuli of an individual, it also
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represents what an individual has been able to obtain, while the ideal point of an
individual represents what is most highly preferred, but also what has not yet been able
to obtain, The differences between behavioural choice realisations and cognitively
optimal choices seem hardly researched. but we conjecture that behavioural choices
in reality not only depend on object distances to the ideal point, but also on the object
differences from the adaptation point. More precisely formulated, actual preferences
are conjectured to depend simultaneously on a backward oriented, monotone valence
function forthe object differences from the adaptation point, reflecting the behavioural
choice realisation difficulty, and on a forward single-peaked valence function for the
object distances to the ideal point, reflecting the cognitive preference. Consequently,
the valence function of the object sensation dimension for actual choice behaviour in
reality is specified by a combination of oppositely oriented, monotone and single
peaked valences. This defines behavioural choices in reality to fit our preference
analyses in a mixed valence space, described in section 5.4.4. of this monograph.
Without loss of generality we may simplify such behavioural preferences to a weighted
additive combination of a backward monotone valence function for choice-realisation
difficulty and a forward single-peaked valence function for cognitive preference of
choice objects. The result generally is a mixed, asymmetric valence function of the
manifest valences for the sensation dimensions of behavioural choice objects. Figure
39a displays a sensation dimension with mixed valences. whereof the rotation weight
for underlying forward single-peaked valences of cognitive preference is higher than
for underlying monotone valences of choice-realisation difficulty.

valence
1 /'

Figure 39a. Asymmetric single-peaked mixed valencesjrom underlying, oppositely
oriented, monotone and single-peaked valence junctions.
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As figure 39a shows, the sensation location of the manifest maximum valence for
realisable choice coincides not with the ideal point for the underlying single-peaked
function, but is located between the adaptation and underlying ideal points. Depending
on the projection weights for the underlying monotone and single-peaked valences the
level and location of the maximum manifest valence vary both. It may be that this is a
theoretically and empirically correct model for behavioural choice in reality. It can be
regarded as a mathematically specified model for what Simon (1957) might have meant
by his 'satisfycing principle' of behavioural choices, where individuals actually prefer
alternatives that for the time being are satisfactory enough to be realised, without trying
to obtain the cognitively ideal choice. The capability of spending money for the
realisation of choices may be the main detenninant of the monotone valences for
behavioural realisation difficulty. A monotone valence function for choice realisation
costs (thus backward oriented) could by instruction also be cognitively taken into
account in the study of preferences. However, the monotone valence function for the
disutility of spending one's money and other realisation difficulties of cogoitively
preferred choices may still differ from a cognitively evaluated, monotone valence
function. Apart from typical examples, no research of systematically gathered data on
differences between behavioural choices and cognitivelyexpressed preferences seems
to exist, but for progress in behavioural choice theory such research is needed.

In the course of life one realises choices and, thereby, a developmentally
detennined change of adaptation level will intluence the object preferences, although
the object attributes remain the same. If that change is progressive in one direction over
time, as for example will be the case when one's income increases over time, one also
learns to place preferential choices in a time perspective. This can be represented by
additional prospect sensation dimensions that changes the adaptation point location on
the dimensions of the above described two-dimensional sensation subspace with mixed
valences. The backward monotone valence function for realisation difficulty of choices
may then get a prospectively lower weight and another prospective adaptation point,
whereby the maximal valence point for the two-dimensional prospective sensation
subspace then may move towards the cognitive ideal point of the underlying single
peaked valence function. It may contribute to the expectation of gradual future
realisation of choices that are oat fully realisable now. This may be an appropriate
modelling of the often observed, progressively changing choices, where we cognitively
postpone optimal choices and satisfy ourselves with realisable, momentary sub-optimal
choice objects that also contribute to a future acquirement of more optimal choice
objects. Examples are the subsequent choices of initially modest and less expensive
choices and later more luxury and expensive choices, such as choices for houses that
one may acquire in the course of time when the growth of one's income makes such
progressively changing choices realisable. Expectations of negative consequences in
the long tenn of choices that can easily be realised in the short run can also be modelled
by prospective backward monotone valence functions for such choice consequences.
Such prospectively negative choice consequences then may cause that the negative
valeoces of the backward monotone valences progressively dominate over the positive
choice valences of an underlying forward single-peaked valence dimension. Rational
choice behaviour would imply that choices with momentary positive maximum valence
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and dominating-negativeconsequences in the future should not be realised, but persons
that give low weights to prospective dimensions may still realise such choices. This
might be an appropriate modelling of neurotic choice behaviour, but the theory
extension to abnonnal behaviour exceeds the scope of this monograph.

The underlying, backward oriented. monotone valence function of a sensation
dimension with mixed valences may also represent one's expected depreciation by
others for one's cognitively preferred ideal choice. It then becomes a fully cognitive
preference situation with an internalised social component. Whether this cognitively
expected depreciation of others is correct or based on misunderstanding, then depends
on whether the individual and the other persons share the space of cognitive objects in
the relevant domain. We may assume that physical stimulus spaces are shared by
individuals, if no perception deficiencies (for example colour blindness) are present.
However, spaces of cognitive objects (the quasi-stimulus space representations of
cognitive object attributes) may be different for different individuals, especially when
their cognitive learning history is different. Since object spaces can be derived from
individual response spaces, as described in chapter 4 and section 7.2 (or from valence
spaces of homogeneous subgroups with sufficient number of individuals, as described
in chapter 5 and section 7.4), we can assess differences between the cognitive object
spaces of individuals or subgroups. If cognitive object spaces differ between subgroups
of individuals, while well-fitting common object spaces are obtained for individuals
within each subgroup, then this may be caused by cultural differences between
subgroups. For example, when groups of Muslims, Hindus, Christians, and Humanists
evaluate dissimilarities between cognitive objects, such as between pairs of the
concepts Catholicism, Protestantism, Confucianism, Hinduism, Islamism, Humanism,
etc., it very well may be that each group has a well-fitting object space, but that there
also are marked differences between the object spaces of each group. Such cultural
group differences can be measured by the Mahalanobis D2 (Mahalanobis, 1936;
Krzanowski, 1988) between the Euclidean object spaces of groups and their optimally
matched object space (Gower, 1975). Since Euclidean object spaces of groups are
solved spaces of object-attribute fractions or comparable sensations with dimensional
invariant measurements, their Mahalanobis D! becomes an objective measure of
cultural group differences. If these cultural differences are significant then individuals
of the different groups may mean different things by the same concept words. As a
consequence misunderstanding will then be inevitable and expected depreciation or
appreciation of one's own cognitive choices by other persons from another cultural
background can be misconceived, which may lead to social conflicts. Therefore, an
extension of the psychophysical response and valence theory may also contribute to the
study of cultural differences and social conflicts.

8,1.3. Ambivalence and partirll indifference
In section 7.4.2. we already discussed mixed valence functions for value- and risk
dependent preferences for gambles. There we discussed the preference effects of
monotone valence function of utility for the payoff values of gambles and the
simultaneous effects of monotone and/or single-peaked valence functions for celtainty
sensations of gamble outcome probability. All valence functions of rotated dimensions
in a two-dimensional sensation subspace with a single-peaked valence dimension and
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an ideal axis with monotone valences are asymmetric valence functions. Their
asymmetry can take many forms, depending on the respective rotational weights for the
dimensions with underlying monotone and single-peaked valence functions and on
whether these underlying valence functions are identically or oppositely oriented,
where their combination becomes either:
1. an asymmetrically increased, single-peaked function, if identically oriented,
2. an asymmetrically reduced, single-peaked function, if oppositely oriented and

combined by higher weighted single-peaked than monotone valences,
3. an asymmetrically monotone-decreasing function, if oppositely oriented and

combined by higher weighted monotone than single-peaked valences,
4. a function with an ambivalent indifference below or above the adaptation point and

increasingly negative valences on the other side, if oppositely oriented and
combined by equally weighted monotone and single-peaked valences.

In figure 39b below we show the underlying and manifest valence functions for
certainty sensations of an individual with equal weights for forward-oriented, monotone
and single-peaked valence functions of outcome probability with its adaptation point
at p:::: .50 and an underlying ideal point for the single-peaked function at p == .80.
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Figure 39b. Asymmetric single-peaked, mixed valencesfromforward oriented,
monotone and single-peaked valences ofcertainty sensations.

Here the mixed and monotone valences are almost equal below adaptation level, but
there above the mixed valences initially increase to a maximum at p == .87, while the
underlying ideal point is located at p == .80, and then further slowly reduce to the zero
valence of infinite certainty sensations for p == I. Figure 39c shows another mixed
valence function from backward monotone valences that additively combine with
equally weighted, forward single-peaked valences.
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Figure 39c. Manifest mixed valences with partial indifferencefrom oppositely oriented
equally weighted, monotone and single-peaked valences ofrisk sensations.

In figure 39c we took again certainty sensations with underlying ideal point p =.80 and
adaptation point p ::: .50, where the backward monotone and forward single-peaked
valences of certainty sensations may represent the monotone valences of accident
probability and the single-peaked valences of arousal from risky driving that is
positively correlated with accident risk. If completely correlated then their addition by
equal weights yields a partial risk indifference as zero mixed valences below a point
just above adaptation level and increasingly negative risk valences above that point, as
illustrated by figure 39c. As discussed in section 7.1. the adaptation level will shift with
presented stimuli and, thus, also with stimuli from the realised choices. One may
cognitively weigh the underlying monotone valences of accident risk relatively lower,
similar to cognitive weights discussed for the manifest valence in figure 39a. It may
change the mixed valence function in figure 39c into a similar function as for the
manifest, mixed valences in figure 39a. However, by riskier driving drivers are always
able to generate the risk stimuli with a maximal mixed valence, whereby also their
adaptation levels will shift towards the average sensation of their newly self-obtained,
higher risk stimuli. If the adaptation level moves upward in figure 39a then the distance
between the adaptation level and the underlying ideal level will decrease, whereby the
underlying maximum valence of the ideal point becomes lower. This in turn counteracts
the lower weight for the underlying monotone valence function of accident risk. In such
dynamic cases the process of the upward moving adaptation level can only progress up
to the point where the relatively lower weight for the monotone valences and the
increasingly lower single-peaked valences become balanced and restore a manifest,
partial valence indifference. The end result is again the manifest valence curve of figure
39c, where then only the indifferenceendpoint is moved upward. Notice that relatively
higher weighted, monotone valences can have the same result with a lowered
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indifference endpoint, if realised lower traffic risks move the adaptation point away
from the underlying ideal point, because it would increase the maximum single-peaked
valence, which counteracts the higher weight for the monotone valences of accident
risk, until the partial indifference is restored. A dynamically self-controlled obtainment
of stimuli clearly is not always possible for all kind of choices. For example, not for
risky choices that are presented in a psychological experiment, but it often also applies
in real life situations. Therefore, indifference below a certain adaptation level with
negative valences elsewhere may apply to self-controlled choice situations that are
characterised by underlying dimensions with backward monotone valences and forward
single-peaked valences. If this would apply for traffic risks then the valence function
of traffic risk would adaptively become the manifest valence function of figure 39c. It
would mean that individuals are adaptively indifferent to risk in traffic up to a certain
risk level, where above the risk evaluation becomes increasingly negative. Referring to
the shifting adaptation level and adaptively balanced weights for underlying valence
functions, the above hypothesised model resembles the so-called zero-risk theory for
traffic risks of NiiiWinen and Summala (1976; Summala, 1988). The zero-risk theory
states that risks below an adaptively changing perception threshold are perceived as
zero risk, while risks above that dynamic threshold are the more avoided the higher they
are. The perceptual explanation of zero risks below an adaptive threshold differs from
our valence indifference for perceivable risks below a changing adaptation level, but
both models predict the same dynamic risk behaviour in traffic. We further discuss this
and other traffic risk models in the next subsection 8.1.3.

Returning to choice realisation difficulty as a backward monotone valence
function that combines with forward single-peaked valences for cognitive preference.
we notice that realisation difficulty of choices in real life often mainly depends on the
limited expenditures from one's income. If that income has not increased for a long
period then realised choices in the past may also establish a life situation with manifest
valences that are only zero or negative. Here the dynamics of figure 39c may apply if
cognitively preferred, but unrealisable choices cause a cognitively lower weight for the
underlying forward single-peaked valences of cognitive preference. If one's income is
also not expected to increase in the future then, in view of the discussed time
perspective, also no future improvement of one's realisable choices is expected. Such
pennanent zero or negative valences only can yield feelings of indifference and
unhappiness, because no satisfaction from any choice is then obtainable. However, if
someone is extremely rich then expenditures are no problem, whereby no backward
monotone valence for difficulty of choice realisations may exist and all ideal choices
will be realisable. As a consequence of the exposure to realised choices the dimensional
adaptation points move to the dimensional ideal points that also in the end will coincide
with the dimensional saturation points, as illustrated by figure 18 and discussed in
subsection 2.4.2. Thereby, the single-peaked valence space has a maximum of zero
valence and negative valences elsewhere, which characterises only feelings of
unhappiness. Therefore, it might be conjectured that happiness of people in our
capitalistic society depends hardly on the absolute income level, but mainly on regularly
obtained income increases and on increased opportunities for limited realisations of
cognitive preferences.
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Similar preference cooniets are not present in a two-dimensional sensation
subspace that is characterised by independent dimensions with oppositely oriented,
single-peaked valence function, because the single-peaked valence space is the same
for a sensation subspace with identically oriented, single-peaked valence functions. The
only difference is that one sensation dimension in the fanner subspace is reflected in
the latter subspace. However, preference evaluations in real life may concern an object
dimension in subspaces of dependent dimensions with oppositely oriented single
peaked valence functions. The object dimension is then located in a subspace that has
either 1) positively correlated dimensions with oppositely oriented, single-peaked
valence functions or 2) negatively correlated dimensions with identically oriented,
single-peaked-valence functions. The latter case equals the former after reflecting one
dimension in the latter subspace. If an object dimension is defined by the positively
correlated dimensions with opposite valences then the valences of the object dimension
are characterised by underlying, oppositely oriented, single-peaked functions.
Oppositely oriented, single-peaked valence functions generally concern independent
sensation dimensions, but in specific situations choices may be restricted to an object
dimension that is perfectly correlated with such dimensions and then that choice
dimension simultaneously exhibits these conflicting single-peaked valence functions.
In real life actual choices often imply that one obtains something by giving up
something else, where each "something" may also be a cognitively preferred attribute
value dose to the dimensional ideal point of conflicting, single-peaked valence
functions. We consider such choice situations as choices between unidimensional
objects with forward and backward single-peaked for subject 4 valence functions that
have the adaptation point as common zero valence point. If the distances between the
adaptation point and the underlying ideal points would not be equal then one of its
single-peaked valence functions would have a higher maximum, whereby also the
manifest valence function would have some much lower, but positive maximum
somewhere between the adaptation point and the underlying, most remotely located,
ideal point. The optimal choices are then closely located to the adaptation point, which
choices generally are realisable. The stimuli from realised choices would shift the
adaptation point towards the underlying ideal point with the higher maximum valence,
which reduces the initially higher maximum and increases the initially lower maximum
of the other underlying, oppositely oriented, single-peaked valence function. This
adaptively shifting adaptation point changes further in that direction until the distances
between each underlying ideal point and the adaptation point become equal, which
establishes equal shapes of the underlying, single-peaked, valence functions as
reflections of each other. If the equal distance between the adaptation point and the
underlying, opposite ideal points is relatively large then the valences of the object
sensation dimension show a range of zero valences around the adaptation point and
outside that indifference range the valences are increasingly negative. This is shown in
figure 40 by the manifest valence curve of equally weighted, underlying, reflected
single-peaked valence functions. In this figure the underlying, single-peaked valence
functions are generated by ±vr = tanh[-Y2In/cosh(dJ.ldJ)/COSh(l)}] for dr as object
distance to its underlying ideJI point and d

J
as Istance between the \deal and

adaptation points, but where the valence curves are re-scaled to d
J
=Yl(a

J
- u) =3 for
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3
J

= 6 and u = 0 as just noticeable level that coincides with the deprivation point of the
underlying, backward oriented, single-peaked valence function. This single-peaked
valence expression holds for hyperbolic and Euclidean sensations, where figure 40
present its valences as function of a Euclidean sensation dimension.
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Figure 40. Underlying, oppositely oriented, single-peaked valences and the manifest
valence function.

The manifest valence function is the average of the underlying single peaked valence
functions, due to by definition equal valence weights for valence functions of
comparably weighted, dependent sensation dimensions. Thereby, it shows an
indifference range of almost or exactly zero valences, where the adaptation point is the
midpoint of the indifference range that becomes the larger the larger the distance
between the adaptation and ideal points is. If the indifference range reduces to its
midpoint then its valence curve becomes the controlled valence curve of figure 18 in
subsection 2.4.2. The indifference range in figure 40 is the intra-personal solution of
the valence conflict that is inherent to choices wherein an approach towards the ideal
point on one side implies a dilation from the ideal point on the other side. If the
opposite valence functions derive from not perfectly correlated sensation dimensions
then the angles of the object sensation dimension with the oblique subspace dimensions
detennine unequal weights for the combination of the opposite, underlying valences to
the manifest valence function. Then there is no indifference range, but a manifest,
asymmetrically single-peaked valence curve with a positive maximum valence at one
side of the adaptation point. However, in that case the sensations of realised choices
close to the maximum valence point also decrease the distance between the ideal and
adaptation points on the dominantly weighted, oblique subspace dimension and
increases that distance on the other dimension, until the projected distances of both
dimensional ideal points to the adaptation point on the object dimension become again
equal. Therefore, if dependent dimensions with opposite single-peaked valence
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functions characterise the choice dimension then self-produced stimulus changes from
actual choice behaviour yield choice dynamics that always will establish an indifference
range, as pictured in figure 40. Stimuli with valences in the indifference range indicate
that no choice or action can provide satisfaction, while stimuli with valences outside
the indifference range are to be avoided by actions, since outside the indifference range
all valences are negative. An example with such an indifference range is departure time
for home-ta-work trips during rush hours with congestion (Mahmassani et al. 1986).
The indifference range for departure time was observed around congestion peak time,
which can be explained by a single-peaked valence function with ideal departure time
at the mid point of the rush hours and a conflicting single-peaked valence function with
an ideal departure time after or before the rush hours for avoidance of expected traffic
congestion. Another example is individual road-risk behaviour, discussed next.

8.1,3. Risk-adaptation theory
In the 'reference-frame theory of traffic risk' (Koomstra, 1990) it is assumed that the
above presented, conflicting single-peaked valence dimensions with a large distance
between ideal and adaptation points apply to individual risk behaviour in traffic. Here
the underlying, single-peaked valence function with an ideal point far below adaptation
level concerns the accident fear dimension in driving. It is comparable to the threat
avoidance dimension in Fuller's threat-avoidance theory (Fuller, 1984; 1988) of traffic
risk behaviour. The other underlying, single-peaked valence function with an ideal
point above adaptation level mainly concerns the arousal dimension of driving risks.
An individually fixed ideal level of risk is assumed by Wilde (I 982a, 1982b) in his
'risk-homeostasis theory' of single-peaked traffic risk. This positive ambiance
dimension for driving also can have a mixed valence function as a combination of
forward single-peaked valences for arousal, sensation seeking, and fun of driving and
forward monotone valences of travel utility and time saving from higher driving speed.
It then would represent an asymmetric forward single-peaked valence dimension that
combined with single-peaked valences ofthe highly correlated accident fear dimension
also yields by the described choice dynamics a risk indifference range, provided that
the distance between adaptation and ideal points remains relatively large. The only
difference with respect to the manifest valence curve of figure 40 is that the
indifference range is slightly enlarged upwards by the mixed valence of the latter
dimension, while the negative risk valences on both sides of the indifference range
become asymmetric. This is easily understood by realising that the forward monotone
and single-peaked valence curves are almost identical up to a point somewhere above
the adaptation and below the upper ideal point, while above the upper ideal point the
combination of the positive, mixed valences with the negative valences for accident
fear yields manifest valences that become less negatively valued.

The assumption of conflicting valences from backward single-peaked valences
for accident fear and forward single-peaked valences for driving arousal is the basis of
the 'reference-frame theory of traffic risk' that now is called the risk-adaptation theory.
It originally was derived from an integration of the three existing traffic risk theories:
• the zero-risk theory of Naatanen and Summala (1976; Summala, 1988), wherein it

is assumed that traffic risks are below the perception threshold, unless previous
traffic risks have dynamically reduced that threshold below present traffic risks;
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• the risk-homeostasis theory of Wilde (I 982a, 1982b), wherein it is hypothesised
that one has a fixed ideal risk level, whereby safer or less safe situations than the
ideal level are compensated respectively by more or less risky driving;

• the threat-avoidance theory of Fuller (1984), wherein it is assumed that driving
risks are judged to be acceptable as long as the positive valences of driving
outweigh the negative valences of accident fear and that threat avoidance only
guides traffic risk behaviour if accident fear dominates over driving utility.

Each of these theories can be derived from our risk-adaptation theory by setting one of
its parameters to zero or to infinity. Although road user actions are assumed to be
determined by the manifest valences of the risk dimension with oppositely oriented,
single-peaked valence functions, we may combine each single peaked valence function
with a respectively oriented monotone valence function, which then only enlarges the
indifference range and also may yield an asynunetry of the negative valences on each
side of that indifference range.

The zero-risk theory of Naarnnen and Summala (1976) can be refonnulated as
deriving from a combination of a backward monotone valence function for fear and a
forward single-peaked valence function for arousal in driving. It yields an indifference
of zero manifest valences from the negative infinity of the risk sensations onward up
to just above the adaptation point on the risk sensation dimension, as shown in figure
39c. The difference with the original fonnulation only becomes a matter of
interpretation. In the zero-risk theory the risks below an adaptive threshold are
perceived as zero, while in our refonnulation low risks would only have zero valence,
but still are accumulatively perceivable. In the risk-adaptation theory the adaptation
level shifts to the experienced risk sensations, which then causes a shifting indifference
range, similar to the shifting risk perception threshold in the zero risk model. Thus, by
assuming the ideal point for accident fear sensations to be infinitely negative it
specifies a special case of our risk-adaptation theory. However, in our risk theory we
hypothesise that accident fear is a conditioned (by learning) attribute of driving with
a finite deprivation point that coincides with the just noticeable risk level. If so then its
backward ideal point is also finite, whereby the fear dimension is characterised by
single-peaked valences. Nonetheless, if the ideal point for fear is infinitely negative,
then the risk-adaptation theory and the zero-risk theory predict similar risk behaviour.
In the zero-risk theory low risks can't be compensated by more risk, but in our risk
adaptation theory this adverse compensation can occur for risks below the indifference
range. Since adverse risk compensation is sometimes observed (Evans, 1985), the risk
adaptation theory is to be preferred above the zero-risk theory.

Risk compensation is the kernel of the risk-homeostasis theory ofWilde (1982a,
1982b). The risk-homeostasis theory also can be derived from the risk-adaptation
theory by assuming a zero weight for the fear dimension. It then yields one single
peaked risk-valence function or, if monotone valences of driving utility combine with
single-peaked valences of driving arousal, one mixed, asymmetric single-peaked
valence function of risk. Since more risk can always be generated by one's own traffic
behaviour, the dynamics of adaptation to the self-generated risks stimuli guarantee that
the adaptation point will in the end coincide with the shifted ideal risk point towards
the saturation level of arousal. Thereby, the single-peaked valence curve for risk
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becomes zero at the coinciding ideal, adaptation and saturation point with negative
valences elsewhere, as already shown by figure 18 in subsection 2.4.2. Since that
coinciding ideal and saturation point can be a fixed, psychophysical saturation point,
lower or higher risks will indeed be respectively compensated by more or less risky
behaviour. For example, if a reconstructed road is made safer than before then the risk
homeostasis theory predicts that the safety on that road will not increase, because
compensated by more risky behaviour. Due to actually observed risk compensation and
the simplicity of the theory, the risk-homeostasis theory has become very popular.
However, in motorised countries the fatality risk tends to reduce more or less
exponentially over the years, also if expressed as fatalities per time of traffic
participation. This fact and the research evidence that road safety measures often
effectively reduce road traffic risks (Evans, 1985, 1986; OEeD, 1990) invalidate the
risk-homeostasis theory. Risk compensation, however, is sometimes observed, which
also is in accordance with our risk-adaptation theory wherein risks above the
indifference range are compensated by safer behaviour and risks below that range by
less safe behaviour. Our risk-adaptation theory is also in accordance with monotone
risk decay, because safety improvements cumulatively shift the adaptation level
downward, which also shifts the indifference range to lower levels of risk. Bower
(1990) has fonnulated a traffic risk model that is based on a single-peaked function for
risk, but with an ideal level that can be dependent on the level of traffic enforcement.
However, Bower's single-peaked function of traffic risk is based on Coombs'
assumption of saturating utility (good things satiate) of driving and non-saturating
disutility (bad things aggravate) of accident and fine probabilities, which is
incompatible with our derivations of single-peaked valence functions, as discussed in
chapters 1 (especially subsection 1.3.2.) and 2 of this monograph.

The threat-avoidance theory of Fuller (1984, 1986) can be reformulated a
combination of a backward single-peaked valence function for accident fear and a
variably lower or higher weighted, forward monotone valence function for driving
utility. If driving utility is lower weighted than accident fear then its manifest valence
function becomes the reflected curve of figure 39a. If the underlying deprivation level
for accident fear is assumed to coincide with the absolute threshold of fear perception
then its asymmetrically single-peaked, manifest valence function for risk has an ideal
risk sensation at the midpoint of the adaptation level and the absolute just noticeable
risk sensation. Risk reduction by one's own traffic behaviour only can be obtained to
a limited level, because one's risks are also determined by other drivers. Therefore, in
contrast to our interpretation of the risk-homeostasis theory wherein risk adaptation
leads in the Ion run to coinciding saturation and ideal risk levels, adaptation to the
experienced risks will never show coincidingdeprivation and ideal levels of risk. Thus,
in our reformulation of the threat-avoidance theory, there always will be a latent and
sometimes manifest tendency to risk avoidance behaviour. Our risk-adaptation theory
under the assumption an infinite upper ideal point and variably lower or higher
correlation of risk sensations with fear sensations than with utility sensations becomes
a reformulation of Fuller's threat-avoidance theory, as another special case of our
theory. Each of the three mentioned risk theories derives from our risk-adaptation
theory as special cases, by either setting one function weight to zero (risk-homeosrasis
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theory) or setting one function weight variably lower than the other (threat-avoidance
theory) and/or setting one of the underlying two ideal points to infinity (the lower one
in zero-risk theory and the upper one in threat-avoidance theory).

Risk-adaptation and risk-homeostasis theories predict both risk compensations.
However, the risk-adaptation theory only predicts that risks are partially compensated,
because only up to the lower or upper bound of the indifference range, where the risk
homeostasis theory assumes a fixed ideal risk level and full compensation to that fixed
ideal risk level. The risk-adaptation theory has changing risk consequences that differ
from the risk-homeostasis theory, due to possible shifts of the adaptation level within
the existing indifference range, whereby also that indifference range itself will shift. If
road infrastructure improvements provide risks below adaptation level then aversive
risk compensation only occurs up to the lower bound of the indifference range, which
shifts the adaptation level and the indifference range downward, as illustrated by
comparison of figures 4la and 4lb below.

valence

Figure 41a. Provided low risk sensations and their partial compensation.

The next figure illustrates how the downward shift of adaptation level by not
compensated, new lower risk stimuli (in figure 41a between Fechnerian risk sensation
levels 4 and 6) influences the indifference range in a dynamic way by shortening and
lowering that range simultaneously. Firstly, the provided lower risks move the
adaptation point downwards (here from a

1
= 6, to a.T = 5). Secondly, the risk-sensation

distance between the new adaptation leve and the rower ideal point is reduced, due to
the fixed risk deprivation level that coincides with the just noticeable risk level (here
from 1- = 3 to 1- = V2a

J
= 2,5), which implies a downward shift of the lower ideal point

by half the shift of the adaptation point. Thirdly the upper ideal point is shifted
downwards by IVl times the adaptation level shift (here from 1+ = 9 to 1+ = 7.5).
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Figure 41b. Shift of indifference range from partial compensation of low risks.

valence
1

Reduced distances between ideal and adaptation points also reduce the underlying
maximum valence level and, thereby, shorten the shifted indifference range, while the
shifted adaptation point remains the midpoint of that range. The end effect is that the
upper ideal point and the upper indifference range bound are decreased by one and a
half of the adaptation level shift and the lower ideal point and the lower indifference
bound both by half the adaptation level shift. Thereby, the indifference range not only
is shortened, but also shifted downward with respect to the original indifference range.
The relatively high risks between the new upper ideal and the old adaptation points are
now no longer experienced as indifferent, but become negatively evaluated and, thus,
positively influenced by safer behaviour. Also relatively low risks in a short interval
just below the old indifference range are now experienced as indifferent and, thus, no
longer negatively compensated by riskier behaviour.

Individuals will have different underlying ideal points, whereby all individuals
also will show differently located and shifting indifference ranges in the same way as
illustrated in figure 41b. Thereby, also the upper limit of the collective indifference
range shifts downward by one and a half the average adaptation-level shift and its lower
limit by a half of the average adaptation-level shift. It means that the collective accident
risk reduces by the risk reduction of the shifted average adaptation level. However, high
accident-risk sensations are associated with fatality outcomes, whereby the fatality-risk
sensations will be reduced by a one and half times the shifted average adaptation level.
If average adaptation level of accident-risk sensations is shifted downwards by a < 0
then the objectively measured fatality risk is reduced by a factor exp( 1.5·a), because
risk sensations are logarithmic values of the objective risk values. Since road safety
measures are more or less regularly taken over time, while measures with large risk
reductions are partially and only initially compensated by riskier behaviour, the annual
reduction of the objective accident risk as exponent of the negative shift of the average
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adaptation level of accident-risk exposure will be more or less constant over the years.
Therefore, risk-adaptation theory predicts that the fatality risk R approximately reduces
b t
Y R

t
"'exp(lSa·t+ b) la<O,b>O

for a as average adaptation-level shift for exposure to accident risk per unit of time
scale t with b as a constant that derives from the arbitrarily defined zero timescale point.

Although risk stimuli in traffic are low, their faint sensations are not
unperceivable, as illustrated by ones feelings of danger in some traffic situations.
However, due to the generally faint risk sensations, adaptation to lower risks slowly
occurs by accumulation of faintly perceived, low risk experience over time. Thus
firstly, the risk-adaptation theory predicts that some traffic measure with a large
accident risk reduction on a type of the national roads will reduce the actual risk on that
road type only to the lower bound of the average risk-indifference range of all road
users, because risk reductions below that limit are behaviourally compensated by riskier
behaviour. Secondly, it also predicts that the decreased average risk on that road type
will more or less stabilise on that level up to the time where the delayed adaptation to
reduced risks shifts the indifference range further downwards. Both predictions are
verified by the sudden interruption of the regular fatality rate decay on the USA
freeways from 1966 to 1986, as shown in figure 42.
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Figure 42. Fatality-rate reduction on the USA interstate systemfrom 1966 to 1986.

Due to the sudden lowering of the speed limit from 70 to 55 mph on the interstate
system in the USA after the oil crisis of 1973, the regularly decreasing fatality risks are
additionally reduced to an almost stable lower level for about four to five years, but
after 1978 they again regularly reduce in the same way as before 1974. As hypothesised
from the risk-adaptation theory (and will empirically be shown to hold in section
8.2.2.), long tenn time-series of annual fatality rates per motor vehicle kilometres tend
to decay as exponential function of time, although periodical deviations may also be
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also present. Therefore, the fatality rates for the USA interstates in 1966 to 1973 and
1978 to 1986 are fitted by an exponential decay function in figure 42 (under
minimisation of the Chi-square of predicted fatalities as product of predicted rates and
observed motor vehicle kilometres). Apart from the risks between 1973 and 1978, we
indeed see that the risks on the interstate system in the USA tend to reduce in an
exponential way (linear risk decay fits almost significantly worse). According our risk
adaptation theory the exponential risk decay is caused by the downwardly shifting
indifference range of the average driver on the US roads, while the lowered speed limit
and the following period of partial risk compensation cause a risk stabilisation on a
lower level in 1974 to 19771'78 on the US interstate system. The further decay of risks
along the predicted curve after 1978 is then caused by the delayed adaptation to the
markedly reduced risk on the interstate system and the usual risk reductions on other
road types. None of the discussed other three risk theories can fairly well predict this
actual risk development on the USA interstate system.

As discussed by Koornstra (1990), a similar downward shift forthe indifference
range as shown in figure 41b can be caused by a cognitively induced, relatively higher
weight for fear than arousal valences. This is consistent with observed safety effects
from combinations of slightly increased police enforcement and safety campaigns and
the usually zero effect of slightly increased police enforcement alone (Koornstra and
Christensen, 1990). Conversely, a higher weight for risk arousal than fear valences
would shift the indifference range upward. This again is consistent with the higher
observed traffic risks for male youngsters than for adults and female youngsters, since
male youngsters have higher arousal needs than adults and female youngsters
(Zuckennan, 1994). Moreover, the risk-adaptation theory also enables the prediction
of the direction and order of magnitude of risk compensation for traffic measures. On
the one hand it predicts a negative safety effect for measures that lower the level of
arousal and/or threat or potential danger perception, because behaviourally
compensated by more risk. On the other hand it also predicts a positive safety effect for
measures with more arousal satisfaction and/or with more potential danger stimuli,
because inversely compensated by safer behaviour. For 22 road safety measures or
changed road circumstances Koomstra (1990) shows a very high rank correlation
between the assessed safety effects and independent ratings of positive, neutral or
negative effects of changed levels of arousal and danger perception from these road
safety measures or altered road circumstances. For example, daytime running lights are
judged to provide relatively more arousal satisfaction (by the light stimuli) and to
increase sensations of potential dangers (by the lights of other cars), while a pavement
by porous drain asphalt is judged to increase the arousal need by the lower intensity of
sound stimuli (more tyre sound adsorption by the road) and to reduce the sensation
intensity of potential danger (fewer splash and spray on wet roads). Therefore, porous
drain asphalt will induce relatively riskier behaviour that produces the stimuli for the
needed levels of arousal satisfaction and danger perception, while day time running
lights will induce lower risks due to its inherent contribution to arousal satisfaction and
potential danger sensations. This is in accordance with observed risk compensations,
because daytime running lights have marked safety effecl~ (Elvik, 1996; Koornstra, et
al. 1997) and newly paved roads with drain asphalt are shown to be not safer than
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before (Tramp, 1994) by increased speeds on dry and wet roads after a pavement by
drain asphalt compensate that braking on wet roads is improved by porous asphalt
Thus, it might be concluded that the risk-adaptation theory:

contains three main traffic-risk theories as special cases,
explains some fatality risk changes that can't be explained by other risk theories,
predicts from perceptual aspects of safety measures the direction and order of
magnitude of risk compensation,
predicts exponential risk decay over time from cumulative safety measure effects.

The comparable validity of the qualitative version of the risk-adaptation theory, as the
'reference-frame theory' of traffic risk (Koomstra, 1990), has triggered the search for
a metric fonnulation of the psychophysical response and valence theory of chapters 1
to 5 in this monograph and the risk-adaptation theory in this chapter.

Traffic growth means more new and rehabilitated roads, more new cars and
replacements of old cars by recently build cars, whereby generally also the safety of
roads and cars becomes enhanced. It also means more road users with more years of
traffic experience and accumulative adjustments of traffic laws and road safety
regulations, while some safety measures with relatively large risk reductions are
predicted to be partially compensated up to the lower indifference limits of individual
risk. Therefore, the actual traffic risks generally are reducing gradually over time,
where the risk decay is caused by the gradual increase of the cumulatively provided
road safety that inherently accompanies the growth of road traffic. This assertion
implies an adaptive traffic growth with an inherent dependence of risk decay on traffic
growth. Our risk-adaptation theory predicts that slope parameter of the fatality risk
decay is a factor IY2 times larger than the slope parameter for the growth of traffic.
These assumptions are further investigated and empirically confinned by the analyses
of time-dependent models for traffic growth and risk development in the next section.

8.2. Time-dependent developments and collective adaptation

The multidimensional stimulus environment is pennanently changing over time, also
due to the collective effects of human behaviour. Many changes are cyclically,
especially when caused by circumstances that result from seasonal or day-night
changes, such as fixed daily work or school hours, social events in evenings, leisure
weekends, and holiday periods. Sequentially averaged stimulus patterns can also
monotonically change in a time-dependent way, either due to common developments
of aging, or due to dominating, socio-economic and technological developments that
progressively change stimulus exposure with time. An example is the monotone
stimulus-exposure change that results from the transport growth and increasing
transport speed that have been brought about by the mechanisation of travel and labour.
A more recent example is the monotone stimulus change from the increasing speed of
infonnation transfer and gathering by digitalisation and communication technology.
Time-dependent models for such monotone developments are presented and further
discussed for the modelling of the ever increasing volumes of motorised road transport
in the next subsection 8.2.1, while its adaptation effects on traffic risk are discussed and
modelled in the following subsections. The decay of traffic risks over time is shown to



419

be an adaptation effect of the past traffic growth by the quantitative relationship
between these two developments, which is theoretically derived from our risk
adaptation theory and empirically studied in subsection 8.2.2. In subsection 8.2.3. we
derive from the two related time-dependent models for traffic growth and risk decay an
expression that describes the annual traffic fatality risks as function of the delayed
annual motor vehicle kilometres. Ityields significantly better predictions ofannual road
fatalities than the pnxluct of the time-dependent models for traffIC growth and fatality
risk decay. In section 8.3. the model relationship between traffic growth and risk decay
is generalised to an adaptive evolution theory for the growth and risks of technological
systems. This section on the relationship between traffic growth and risk decay and our
generalised theory of technological system growth and risk adaptation in the next
section summarises what has already been published in research reports, scientific
journals, and proceedings (Koornstra, 1987, 1988; Oppe and Koornstra, 1990; Oppe,
199Ia,b; Koornstra 1992, 1993, 1995, 1997a,b). Only some illustrated results are
updated, while the relationship between traffic growth and risk decay is reconsidered
on the basis of the now mathematically fonnulated risk-adaptation theory and the now
verified Gompertz (instead of logistic) function for the S-shaped traffic growth.

8.2.1. Time~dependent growth models
In this subsection several time-dependent models for system growth are described and
specifically discussed for the example of motor-vehicle kilometre growth, while traffic
growth and monotone decay of traffic risk are inherently related, as shown in next
subsections, but what is discussed for the growth of the traffic volume and traffic risk
decay generally may hold for all kinds of self-organising systems that grow
monotonically with time. Growth is often modelled by an exponentially increasing
function of time, as usually for long tenn macro- economic growth. Exponential growth
approximately holds in the long run for the capital value of a growing national
economy, but probably not for inflation-corrected growth of economic subsystems for
particular products with a saturating market. Anyhow, long term growth of all physical
product systems must level off, because they dissipate energy and are limited by their
embedding system. Thereby, any system growth must reduce by to the finitely available
energy, area, and other resources on earth. Therefore, long term growm must be
modelled as a growth mat will level off or will decline in the end if replaced by a more
efficient production system. Growth of motorised traffic has been modelled in many
ways. Often the models for the prediction of annual motor vehicle kilometres of a
country are based on structural regression models with economic variables. However,
the long term development of economic variables itself is hardly predictable, whereby
the prognostic value of these models is limited. Moreover, if the car ownership and the
driven motor vehicle kilometres in the past year are added as time-lag variables in these
structural regression models, then the weights for these time-lag variables become
dominant, while weights for economic variables decrease to almost zero (Golob and
Van Wissen, 1989). It means that growth of motorised traffic can be modelled as a
time-dependent process. Since the beginning growth of motor vehicle kilometres seems
to be more or less exponential, while exponential growth can't go on forever (driving
time and speed as well as inhabitants are limited, as in principle also are the energy
supply and road capacity), a S-shaped growth function oftime is hypothesised to fit the
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macroscopic development of the motor vehicle kilometres. Oppe (1989; 1991 a,b)
applied the symmetrically S-shaped, logistic function of time, while Koornstra (1988;
Oppe and Koornstra, 1990) used a family ofasymmetrically S-shaped functions of time
for the growth of traffic volumes. The most general S-shaped function of time is the
generalised reciprocal function (Oppe and Koomstra, ]990) that simplifies to

V = V [1 + (a.t + b)-lIurl/c
t max

for volume V as five parameter function of time t, where parameter V is the
saturation levJI of growth, parameters u and c are reciprocal power expo'Rtfits, and
parameters a and b define the linear transfonnation for the interval scale of time. From
the generalised reciprocal function derive four simpler S-shaped functions. If both
power exponents are set to unity then that function is reduced to what we called the
double-reciprocal linear function (Oppe and Koomstra, 1990), while if one is set to
unity and the other to zero or if both approach zero then three other well-known
functions are derived. One is the so-called log-reciprocal function, used in economy
(Prais and Houthakker, 1955, Johnston, 1963), and the other two are the logistic
function (Day, 1966, Maynard Smith, 1968), for the first time derived by Verhulst
(1844), and the so-called Gompertz function (Gompertz, 1825), both used in biology
and demography.lf one power exponent is set to zero and the other not to unity or zero
then the asymmetric logistic function (Nelder, 1961) or the generalised log-reciprocal
function (Oppe and Koomstra, 1990) is derived from the generalised reciprocal
function. All these functions are S-shaped functions that as functions of time are
described in the next mathematical section.

The generalised reciprocal function for the S-shaped growth of system
volume V at time t is defined in Oppe and Koornstra (1990)as

V = V . [1 + C{l + u(x·t + y) r I / u l- l / C ,t _

where c, u, x and y and V are parameters and t is time with V as
maximum growth level for ~pproaching infinity. It is simplifi~y

-u
b = C - (u-y + 1)

-l/u -l/c
+ b) j

~d
-u

a = c 'u.x
to

V = V [1 + (a·tt _

By the limit definition of the exponent, where n--->O lim (l+n om}l/n = <?,
we obtain from the above expression by u--->O and c > 0 the so-called
~tric logistic function

V =V _[l+ea-t+bj-l/ct _

where a = x < 0 and b = y + In(c) > 0 and if c=l then it is the syrrrnetric
logistic function. Of special interest is an asyrrmetric logistic function
with c = ~ that derives from the assumption that the momentary maximum
of existing system capacity V becomes proportionally time-dependent
increased by the same underly~syrrrnetric logistic function for growth
within the system of a momentary maximum capacity V . Thus for_,t
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it describes the double logistic function for system growth by

V V • [1 + e a"t + b]-2t _

where lie = 2. This double logistic model is due to Bonus (1968), who
successfully tested the model for growth of annual television sales.

If c and u both approach zero, thus for lie approaching infinity in the
asymmetric logistic function, then we obtain the Gompert~ function for
system growth that is written as

a"t + b
V

t
= vmax"e-e

For c--+O and u > 0 the generalised reciprocal function becomes the
generalised log~reciprocal function that is defined by

-k
= V _e-(a-t + b)-where a=u'x, b=u'y+l andk=l/u, while in the log-reciprocal fwlction

also u = 1, whereby k = 1, a = x and b = y +1.

The inflexion point for the generalised reciprocal can be anywhere, but
for the asyrrrnetric logistic growth the inflexion occurs at the time where
t = [b - In(c)]/(-a), thus where

V = (l+cl-l/c ·V (asyrrrnetrically logistic)t _

~d

Thus, for c = 1 at t = -b/a and for c

V = O.S·Vt _

% at t = [-b + In(c)]/a, whereby

(logistic)

{double logisticl .

(Gompertz)

V = 0.4444·Vt _

For the Gompertz function with C-40 it is reached at t = -b/a, whereby

v = exp(-l}'V = O.3679·Vt _ _

For the generalised log-reciprocal function the inflexion occurs at time

l/k
t = [-b + {k/(k+ll} l/a

whereby

v = e - (k+l) /k 'V (generalised log-reciprocal)t _

and thus for k = 1 at t = (b - %)/(-a} where

V = O.1353·V (log-reciprocallt _

while for k approaching infinity it equals the ~rtz function.

For the generalised reciprocal function an inflexion point exists, while
its location depends on the values of u and c. Since its inflexion point
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can be anywhere, it is the most general S-shaped function. But it has
five parameters, where the symmetric logistic, the Goopertz and the 109
reciprocal function only have three parameters. It will be noticed that
the Gompertz function becomes the lower limit function of the asyometric
logistic function as well as the upper limit function of the generalised
log-reciprocal function, where the latter two have four parameters.

Except for the logistic function, all S-shaped growth functions are asymmetric. The
simplest S-shaped growth functions have three parameters: two for the transfonnation
of time and one for the maximum growth level. They are the symmetric logistic
function with its inflexion point at the time where 50% of the maximum level is
reached. the Gompertz function with its inflexion point at the time where the growth
level is 36.79% of the maximum level,and the log~reciprocal function with its inflexion
point at 13.53% of the maximum level. Given some time-series of annual growth data
that passed the inflexion point of the underlying growth function without approaching
the maximum level, the fit of the growth data by the log-reciprocal function, therefore,
predicts the highest maximum growth level and the fit by the symmetric logistic
function the lowest. Because of parsimoniousness these three functions are mainly used
for the fit and prognosis of market growth for industrial products (Mertens, 1973), but
it is often observed that the symmetric logistic function underestimates the maximum
level of saturated market growth (Lewandowski, 1970). As will be shown below, this
on the one hand also holds for the fit of annual data of national motor vehicle
kilometres, while on the other hand the log-reciprocal function overestimates the
maximum level of motor vehicle kilometres.

An overestimation of maximum level may also hold for the Gompertz function,
but its fit to time-series of motor vehicle kilometres of nations only yields
insignificantly larger error variances and maximum level parameters than the
asymmetric logistic model with an additional asymmetry parameter. The asymmetric
logistic function with the inflexion point below 50% of the maximum level has a finite
asymmetry parameter lie> 1.0. It estimates the maximum level lower than the
Gompertz growth function and higher than the symmetric logistic function. If one
assumes a logistic function for traffic growth with a momentary existing maximum
capacity and an identical logistic function for the proportional growth of that
momentary maximum capacity, then the double logistic function with asymmetry
parameter lie::: 2 follows, which thus is an asymmetric logistic function with a prior,
theoretically determined asymmetry parameter. It seems quite reasonable that the
momentary maximum capacity of the traffic system is proportionally increased during
the motorisation growth by the same proportional function as for the growth of motor
vehicle kilometres within the traffic system with a momentary maximum capacity. This
would lead to the double logistic function for the growth of motor vehicle kilometres,
if traffic growth within a fixed road capacity is a symmetric logistic function. However,
the volume of motor vehicle kilometres not only increases with the growth of the
national fleet and the road network length, but also with the improved flow efficiency
of the road infrastructure and with the average increase of traffic speed that is enabled
by improving technologies for motor vehicles, traffic management, and road
infrastructure. This leads to an even more asymmetric logistic growth of motor vehicle
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kilometres and if also othertraffic efficiency measures cumulatively increase the motor
vehicle kilometres then Gompertz growth results from the multiplication of logistic
functions for each underlying growth-contribution subsystem improvement. Since the
asymmetric logistic function has an additional parameter for its asymmetry, it is a less
parsimonious function with four parameters, but the double logistic function has a prior
determined asymmetry parameter and, thus, is determined by three parameters, as also
are the Gompertz and symmetric logistic functions.

Figure 43 pictures the fits of the exponential, the Gompertz, the double logistic
and the symmetric logistic functions for the time series of the annual motor vehicle
kilometres in the USA from 1923 to 1999. This time series of 76 years is the longest
series of annual motor vehicle kilometres for a country available in 200 I.
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Figure 43. Fit of the exponential and S-shaped models/or traffic growth in the USA.

Figure 43 shows an almost always increasing traffic growth, but with the exceptions
of some growth stagnating in the periods of the first and second oil crises of 19731'74
and 19781'79 as well as a marked decrease of motor vehicle kilometres after 1941 and
a recovering growth at the end of World War n. Therefore, the data from 1942 to 1946
included are omitted from the fit of the growth functions. The fitting procedure that is
based on iteratively weighted, alternating linear regressions (Wold, 1966) minimises
the sum ofsquares of the logarithmic deviations for each of the growth models, because
it is assumed that traffic-volume data have a constant coefficient of variation, whereby
then the logarithm of the data stabilises the variance of the data values. As figure 43
shows, traffic growth definitely is not exponential. The error variance for exponential
growth (ss = 0.751, df = 70) is significantly larger (F > 3.45, P < .001) than for
Gompertz growth (ss =0.224, df =69) or double logistic growth (ss =0.220, df =69),
while the latter two clearly are not significantly different. A hardly smaller sum of
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squares for the logarithmic deviations is obtained for asymmetric logistic growth
(optimally estimated asymmetry parameter c:::: 0.4679), but due to the one additional
parameter its standard deviation of error is even larger than for double logistic growth.
The symmetric logistic growth also is not significantly worse (ss:=: 0.2251, df:::: 69).
Although the Gompertz model fits the observed traffic growth data rather well, it
predicts a very high saturating growth level of more than t8 times higher than the
traffic volume in 1999. In view of the already high motorisation level in the USA, such
a high maximum level of saturating traffic growth in the future is not realistic, although
further growth will occur due to the ongoing immigration and population growth and
the still somewhat further increasing motorisation in the USA. The double logistic
model may seem more realistic, because predicting the maximum level to be almost
three times higher than the traffic volume in 1999. The also insignificantly different
symmetric logistic growth model yields a maximum growth level that is only 66%
higher than the traffic volume in 1999. The insignificant differences between different
S-shaped models show that the maximum traffic volume in the USA is not yet well
detennined, despite the significantly non-exponential nature of the traffic growth.

8.2.2. Risk adaptation as time-dependent collective learning
The volume of a self-organising system grows as long as there is an inherent utility for
further growth, whether it is an evolutionary biological system with population growth
that is driven by the selective reproduction from the survival of the fittest or a socio
economic, industrial and/or technological system with growth of products and/or
services that is driven by the utility of the products or services for the consumer or user.
Any growth also has adverse side effects, whether it is the diminishing population of
other species by the biological evolution of the dominating species that share food
resources or the ecologically adverse effects from industrial growth. For the growing
system of motorised road transport the adverse side effects are the road accidents with
fatalities and serious injuries as well as the polluting emissions from fossil energy use
of motorised transport. In a comparable way to adaptation by selective survival and
reproduction effects of random mutations that inherently accompanies the growth of
biological evolutions, the adaptation from the replacing of subsystems by improved
subsystems with fewer adverse side effects accompanies inherently the growthofsocio
economic, industrial and/or technological systems. In road transport the growth is
inherently adaptive by: I) replacing more new for old cars, where new cars are safer
and less polluting than the previous cars, 2) road rehabilitations and enlargements,
where reconstructed and new roads are safer than previous roads, 3) more efficient
traffic management and rules that also increase the safety of the road traffic system, and
lastly 4) more drivers that are increasingly controlled by more effective enforcement
on dangerous driving aspects and have in average more years of driving experience
than in preceding phases of traffic growth.

All these aspects characterise an evolutionary growth of self-organising
systems, wherein subsystems are replaced by more and better adapted subsystems
(Fisher and Pry, 1971; Eigen and Schuster, 1979; Montroll, 1978; Jantsch I980b). For
the road traffic system and other self-organising systems the subsystem replacements
cumulatively contribute to improved safety during the growth of the system. Since
these safety improvements take time and are growth-dependent, we hypothesise that
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risk decay of destructive subsystem failures is a function of delayed system growth.
The cumulative effects of subsystem improvements during the system growth cause a
regular decay of the system risk, defined as the number of self-destructive events with
respect to the volume of the system. In the next mathematical section it is shown for
each of the discussed S-shaped growth functions that their function differentials (ratios
of derivative and level) are monotone decay functions of time. Remarkable is the fact
that each of these derived monotone decay functions equals one of the mathematical
learning models for probability of failures, developed in psychology (Sternberg, 1967),
if the number of learning trials in these models is replaced by time. So assuming that
system improvements per past period cumulatively define a time-dependent decrease
of failure probability, it follows that the adaptation effects of system improvements can
be conceived as a collective time-dependent learning process. Thereby, also the road
fatality rate should relate to the ratio of the derivative and level of delayed growth of
the traffic volume. This relationship has been derived and specified earlier(Koomstra,
1988; Oppe and Koomstra, I990} by a proportional power function. Hence the rate R
of fatal outcomes F with respect to the system volume V is hypothesised to be 1
proportional power function of the delayed growth rate wiili- timelag T, as written by

R =w{"IV IN }q
t t-T t-T

This hypothesis was originally not based on the now metrically fonnulated risk
adaptation theory, but on the relationships between mathematical learning models and
risk models. However, if one assumes that objective risk of fatal outcomes from
subsystem failures in the growing system is counteracted by improved subsystem
replacements as some function of the experienced growth rate in the past, then the risk
decay must be related to the differential of the delayed system growth or the derivative
of the logarithm of its delayed growth, because one experiences the growth increase as
the increase of the logarithm of the system growth. The risk-adaptation theory defines
that the downward shifts of sensory risk-adaptation level causes the decay of the
objective risk, while the risk-adaptation level is the logarithm of the average risk leveL
Consistent with the psychophysics of cross-modality matching, a logarithmic stimulus
scale relates to another logarithmic stimulus scale by a linear function, which here
applies to the logarithm of the risk level and the logarithm of the growth rate. Thus, in
accordance with the psychophysics of the risk-adaptation theory, the logarithm of the
risk level linearly relates to the logarithm of the delayed growth rate. In the next
mathematical section it is shown for the discussed S-shaped growth functions that the
differential of the growth function, defined by the ratio of the derivative and level of
the growth function for the growing system, equals the derivative its logarithmic
growth, which writes as

"IV IN = "[{n(V )Jt-T t-T t-T
The hypothesis of a linear relationship between the logarithm of the risk level and the
logarithm of the growth rate also implies that the risk equals a proportional power
function of the derivative of the delayed logarithmic growth. Thus, secondly we obtain
a specification of the relationship between traffic risks and delayed traffic-growth
increases, which relationship should theoretically be fannulated in the first place as
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R =w(L:.[ln(V )]}q
t toT

The empirical question concerns which compatible function types of S-shaped growth
and risk decay simultaneously fit the long time series of national data.

since the logarithm of asyaJ:I\Elt:r:ic logistic growth is written by

a·t+b-a·l
In(V ) = In(V } - (l/e) ·In(1 + e ),

t-r max

we obtain for its derivative

- (a·t + b - a', -1
6ln(V l/Ot=(-a/c)'[l+e l.t-,

The derivative of asymnetric logistic growth itself is written by

a·t + b -lie -(a t + b) ]-1,
cV jot = (-a/c).V '[1 + e J -[1 + e

t max

-(a·t + b) -1
[6V

t
/otJ/V

t
= (-a/c)· [1 + e l .

-(a·t + b - a-c) -1
[OV /6tJ/V = 61n{V 1/6t= (-a/c)· [I + e 1 .

t-l t-l t-l

For the Ga:Jlpertz growth its delayed logarithmic function becomes

a·t+b-a·1
In{V ) = In(V ) - e

t-'[ max

and then we have for its derivative

a·t+b-a·l
61n(V l/ct = -a.e

t-,

while the derivative of the Gompertz growth itself is written by

a·t + b
-e a·t+b a·t+b

cV /6t = -a.V·e 'e = -a.V ·e
t max t

Thus, here the same equivalence is obtained as

a·t+b-a·c
[6V /ct]/V = Oln(V )/6t = -a.e

t-1 t-1 t-1

For the generalised log-reciprocal growth one obtains the logarithm as

In{V ) = In{V )
t-1 nax

and its derivative as

-k
(a·t+b-a·,j,

while

or

, - (k+I)
6ln{V )/6t = a·k· (a·t + b - a', ,t-,

_(a_t+b)-k (kl)
6V /6t = a·k·V .e -(a·t + bl- + ,

t max

- (k+l)
[cV /6t]/V '" a·k· (a·t + b) .

t t

Thus, the same equivalence holds and writes here as

[6V )/6t]/V = 61n(V l/6t = a-k- (a·t + b _ a_1)-{k+l)
t-~ t-~ t-,
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Notice that these three functions are monotone decay functions of time,
which resemble the three functions from wathematical learning theories
(Sternberg, 1967) in psychology, if n as number of learning trials is

replaced by t as time. These well-known classical learning rrodels are the
beta-model (Luce, 1959b), the linear operator model (Bush and Mosteller,
1955) and the urn model (Audley and Jonckheere, 1956), where failure
probability is defined as function of the number n of learning trials
with a fixed reinforcement schedule by

0'

p
n

-(X'n + y) 1-1
= [1 + e (beta-model) ,

or
P=e X' n + y

n

-,
p '" (x·o + y)
n

(linear operator model) ,

(generalised urn model) .

Substituting t" n, a = K, b - a'~ = y, we see for each of the derived
functions that we can write for a differently defined constant r

[cV!6tl/V =oln(V )/6t=r·P.
t-, t-l t~T t

Growth of a system is defined as the replacement of subsystems by more
and improved subsystems. Therefore, the first hypothesis could be that
the adaptation process from the improved subsystems defines a collective

I learning process where the rate R as rate of self-destructive outcomes
I F with respect to the system vol~me V is a function / of the increase

of the growth sensation in the past, wEich is expressed by

R = F /v = ![iSln(V 1/6tl = /[P ].
t t t t-, t

The additional hypothesis is that the risk of fatal side effects of the
growth, such as the fatality risk from motorised traffic growth, are
collectively counteracted by subsystem improvements in a way that average
average Fechner risk sensation of fatal side effects with respect to the
growth level, written as In[R ] = In[F /V J, is a linear function of the
Fechner sensation of the delcfyed growth fate, written by means of its
derivative definition as ln[ (iSV /iSt) /v 1. Thus

t-, t-;:

In(F /v 1 = y + q-ln[(iSV /otl/V J.
t t t-, t-'[

Taking exponents it follows that the rate R
t

=

R =F/V =w-[(isV /6t)/V jq,
t t t t-, t-,

F IV is given by
t t

For the

(~tric logistic decay)R . [1
~

or

where, is the time delay with respect to time t and w = exp (y) .
asyrrrnetrically logistic growth function it becomes written as

-(a-t +b - a- 1) -q
R • [1 + e ]
~

It can be rewritten aswhich for q = 1 equals the beta model.

R .(V IV )c- q _ea-t + r'>
max t-'[ max

o-t + Y
V .e

t--:
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where « = q.a, ~

y = :I + InER ]
~

q·(b-a.~),

s·ln(V ) .
~

R
~

w' (-a!cl
q

, s C'q , as well as

For Gompertz growth, consistent with s 0 by c = 0, we obtain

R = e a·t + 13 (exponential. decay)
t

where Cl = q-a and 13 = q' (b - a.c) + q-ln(-a) + In(w). It equals the
linear operator model.

For the generalised log-recipr=al growth function we obtain

-,
R = (o:-t + 13) (gen. lino reciprocal decay)

t
q -l/z

where z = W (k+l) , 0: = Y'a and 13 = y' (b - a'c) for y = [w- (a.k)] .
It equals the urn rrodel Notice that the latter two functions are both
monotonic decreasing without an inflexion, while the other function is
an asymmetric reverse, S-shaped function.

For asymmetric logistic and Gampertz growth it defines the slope of the
risk function to depend on the slope for the growth function and for the
exponential risk decay also on power exponent q, where the parameter
j3 in R becomes an arbitrary parameter by the ratio-scale factor for V .
These ~re the two alternatives that fit long term time-series for thJ
growth of annual motor vehicle kilometres of all countries that have been
researched better than the log-reciprocal growth function. Also the long
time-series of annual fatality rates with respect to the motor vehicle
kilometres of countries macroscopically fit the exponential function
rather well (Broughton, 1988; Oppe and Koornstra, 1990; Oppe, 1991a,b;
Koornstra, 1992, 1993, 1995, 1997a, b).

In the mathematical section above it is shown that the decay of the fatality rates, as ratio
of fatalities and the volume of the growing system, can be described on the basis of our
hypothesis by a proportional power function of the delayed growth rate for the
previously discussed S-shaped growth functions. These decay functions are either
reversed, S-shaped functions or decay functions without an inflexion point. If the
growth function is the Gompertz function then the correspondingly derived risk decay
function is an exponential function. Since road fatality rates of many countries are well
described by an exponential decay function, it would imply that their traffic growth
should fit the Gompertz function. Based on the risk-adaptation theory and the basic
assumption that the cumulative effects of traffic-system improvements make risks
proportional to a power function of delayed growth rates, it theoretically follows that
the slope of risk decay depends on the slope of the growth function.

Formany countries it is shown that traffic growth is indeed rather well described
by the Gompertz growth function of time (Oppe and Koomstra, 1990; Koomstra, 1992,
1993, 1995, 1997a,b) and that the national developments of road fatality rates
macroscopically are also well described by an exponential decay function (Chatfield,
1987; Broughton, 1988; Koomstra, 1987, 1988,; Oppe and Koomstra, 1990; Oppe,
1991a,b; Koomstra, 1992, 1993, 1995, !997a,b, ETSC, 1999,2003). Forthe firsttime
Oppe (1991 a,b) empirically found that the slope parameter for exponential decay of the



429

Observations

2........ , Double logistic.... , ~

Rr :::: 1606[1 + exp{O.0193.T - 36.0411)]

30

10

20

50

70

90

80

40

80

100

fatality rate (ratio of fatalities and motor vehicle kilometres) equals half the slope
parameter of the symmetric logistic function for motorised traffic growth. The
symmetric logistic function for growth of annual motor vehicle kilometres, however,
is now known to underestimate the maximum level of traffic growth, while exponential
risk decay generally differs insignificantly from other risk decay functions (such as
reversed, asymmetric logistic functions with its inflexion point long before the first year
of the annual risk data). Below figure 44 shows the fit of two time-dependent risk decay
models for fatality rates in the USA, wherein again Word War 1I data are omitted.
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Figure 44. Fit ofthe exponential and double logisticfatality rate decay in the USA

The risk decay models are fitted without constraints in order to check whether the slope
parameter for the risk function is related to the slope parameter for the fitted growth
functions, as hypothesised by our derivations for particular combinations of traffic
growth and risk decay functions. The fitting of the risk decay function minimises the
Chi-square for deviations of predicted fatalities obtained from the product of estimated
fatality rates and observed motor vehicle kilometres. Omitting the years 1942- '45, the
fit of the exponential risk decay yields a Chi-square of 23678 (df = 70), while the
double-logistic risk decay shows a somewhat smaller Chi-square of 22590 (df = 69).
These Chi-squares are very large, due to periodical, marked deviations from the fitted
risk trend that are multiplied by billions of kilometres for the estimation of fatalities.
In Koomstra (1992, 1997a,b) it is shown that harmonic cosine cycles for deviations
around the exponential trend reduce the Chi-square significantly, but here we
concentrate on the macro-development trend. The fitted asymmetric logistic decay
reduces by its zero approaching asymmetry parameter to a reversed Gompertz decay
function with Chi-square of 22359 (df = 69), while the fit of the symmetric logistic
decay function yields Chi-square of 22776 (df = 69). The exponential decay function
of risks is to be preferred, since it has only two parameters and is insignificantly
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different from the somewhat better fitting asymmetric S-shaped functions with more
parameters. As shown in the last mathematical section the risk decay function is a
proportional power function of the growth rate, whereby Gompertz growth corresponds
to exponential risk decay, where their slope parameters are theoretically related by a
proportional factor q. On the basis ofour risk-adaptation theory that proportional factor
should be q :=: 1.5 for a :=: q.Q where a is the slope parameter for the Gompertz growth
of traffic exposure and a the slope parameter for the exponential fatality fisk decay. In
figure 45 we picture the relationship between slope parameters ofGompertz growth and
exponential risk functions that are fitted to seven countries whereof time-series of
consistently defined data are available for more than 45 postwar years.
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Figure 45. Slope parameters ofGompertz growth and exponential risk decay.

Comparing the slope parameters for risk decay and traffic growth of several countries,
it turns out that the slope parameter for the exponential decay of the fatality rate is
indeed rather well determined by about IV2 times the slope parameter of the Gompertz
function for traffic growth. However, the slope parameter for Gompertz growth
depends on the parameter for the maximum level of growth that is not always well
determined. Except for the USA all countries in figure 45 have growth curves with
rather clearly visible inflexion points before 1983, whereby for the other six countries
the fitted Gompertz growth functions have estimated maximum levels that are well
determined between 54% (Italy) to 74% (Great Britain) higher than their volumes in
1999. Since we have no clear inflexion point for the traffic growth in the USA, a
maximum level for its traffic growth is hard to determine in a valid way. For data from
1947 to 1999 of the USA the optimally fitted Gompertz curve estimates an
unrealistically high maximum of 19010 billion km.• which is more than 4 times higher
than the traffic volume in 1999. Therefore, we constrained the estimation of the
Gompertz function by a maximum level that locates the inflexion point of the Gompertz
function just before 2000. It yields a maximum level of 10900 billion kilometres and
slope parameter a:=: -0.0203, instead of a:=: -0.0160 for the optimal Gompertz function
with its unrealistically high maximum level, but the optimal function (sum of squares
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for logarithmic deviations: ss :::: 0.3669, df :::: 50) only shows a just insignificantly
smaller error variance (F:::: 1.52 with p:::: .08) than the constraint function (ss:::: 0.5564,
df:::: 49). A proportional relationship between the slope parameters of the risk decay
and the traffic growth function has already been verified for six countries by Oppe
(199] a), but Oppe fitted traffic growth by symmetric-logistic functions and fatality
rates by exponential decay functions. The estimated maximum levels have been
underestimated by the fit of the symmetric-logistic growth functions of Oppe, because
nowadays five out of six countries (the exception is the USA) have higher traffic
volumes than the estimated maximum levels by Oppe and still have markedly growing
traffic volumes. Therefore, the Gompertz function likely is the valid growth function
with an equal number of parameters. Moreover, our assumption of a proportional power
relationship between the fatality and growth rates holds for the Gompertz function and
exponential risk decay, while our risk-adaptation theory defines the relationship
between their slope parameters to be proportional by factor q :=: IY2. Figure 45 indeed
reveals awell fitting proportionality factor of IY2, which contributes to evidence for our
risk-adaptation theory. Taking this proportional relationship as given, the fitted slope
parameters of the fatality rate also determine the growth slope parameters, whereby also
its maximum levels of Gompertz growth become determined on levels that fit not
significantly worse compared to its unconstraint function fits. Therefore, it is concluded
that the fatality rate reduction is an exponential decay function and that growth of
motor vehicle kilometres is well described by the Gompertz function with 2/3 smaller
slope parameter than for the exponential risk decay. As discussed next. it not only
yields well-fitting maximum growth levels, but also proves that the traffic risk decay
depends on traffic growth.

1'<0, a·t + b
6.[ln(V )]:=: [DV lot]N :=: -a-In(V IV) :=: e ,

t-r tor toT max t-T
where a is the negatively signed slope parameter of growth, the derived expression for
fatality rates as constraint function of delayed motor vehicle kilometres is written by

8.2.3. Fatnliiy rate as function ofdelayed traffic growth
The next mathematical section describes time-series of annual fatalities as function of
delayed traffic growth data, based on the proportionality between the slope parameters
for the Gompertz growth and exponential risk decay functions. Since Gompertz growth
implies that

q n-t+P IR :=:w'{ln[V N]}:=:e et::::q·a<O,q::::1.5
t max toT

If we fit the fatality rate time-series as function of delayed traffic volumes and as
exponential function of time then all parameters of the Gompertz function for traffic
growth are determined (a:::: a/q, b:=: Piq - In(w) + a'T - In(-a), and V } without
actually fitting the data time-series for the growth of motor vehicle kil8M€b-es. Since
the parameters for both fatality rate functions are weB-determined, also the parameters
of the Gompertz function become determined, even if traffic growth has not passed its
intlexion point. We used an iteratively weighted least squares regression method
(Wold, 1966) for both fatality rate functions that minimises the Chi-square for the
fatalities as product of predicted fatality rates and observed motor vehicle kilometres,
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because a Poisson distribution is assumed for fatalities. The exponential risk decay has
two estimated parameters and the risk decay as function of delayed traffic growth that
contains also a time-lag parameter has three estimated parameters. If q = 1.5 then the
Gompem growth function is determined by these estimated parameters without fitting
the traffic growth data. The unconstraint fit of Gompertz growth has by definition a
smaller error variance than the Gompertz growth with a-priori parameters, but if the
theory holds then their error variances are only insignificantly different.

Based on the assumption that the fatality rate is a proportional power
function of the delayed growth rate we obtain for the Gompertz growth
and exponential risk functions that

-a-In(V /V } = [OV lot]/V = _a_ea - (t-l) + b
max t-l t-l t-,

~ = ~ Iv = r-{ln[V /v J}q
t t t max t-l

where r = w. (-a}q. For the given value of q = 1.5 we can write the
following weighted regression equation for to solve parameters y and x

w _R1/q=w {y - x.-ln(V }} + E
t,k t t,k k k t-"'[ t,k

~/q = r k or r~ = ~

y = x -In (V ) or V = exp (y Ix )
k k max,k max,k k k

which is iteratively solved for V and r by w '" 1 and for k > 1 by
w defined as ITBX k t,l
t,k

where
w
t,k

F I/JF ]/[~l/q
t k-1 t k-l t k-l, , ,

with w
t,l

where

E Iw = (F - F ) /v'F ,
t,k t,k t t,k-l t,k-l

then minimises the Chi-square for deviations from F by the converging
weights w = w " w and solves the improved klue of V and r,
while optfmal fa~: ~cGmJs determined by successive values ;:~, .. ,m
for the solutions with minimised Chi-squares of F . Next we iteratively
solve the following weighted regression equation t

w -In[R 1 = w [o:-t + 0J + E
t,k t t,k t,k

1 for k =1 and for k ;:> 1 with

. . .
w = [(F - F }jVF J/{ln[R ] - In [R

t
] },

t,k t t,k-1 t,k-l t,k-1

E Iw = (F - F ) /v'F ,
t,k t,k t t,k-l t,k-l

which again minimises the Chi-square for deviations from F by converging
weight w = w " w and solves the values of 0: and 13_

t t,k t,k-1
From the solution of 0: and B and the solved values of the r parameter
and time lag T we also solve the Gompertz growth function, where
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a = o!q and b = j3!q - In(r) + a', - In(-a).

Thereby, we solved all parameters for the Gompertz growth function

a·t + b
V = V 'e-e + E

t ~ t

without fitting V . whereby the risk decay function satisfies
t

F IV = w. [i5/iSt(V l/V jq.
t t t-l t-l

The derived traffic growth functions, based on proportionality q = 1.5 between the
slope parameters of Gompertz growth and exponential risk decay, are illustrated in the
next figures for the development of road fatalities in the USA and The Netherlands,
where the annual data from 1946 to 1999 for the USA and from 1947 to 1999 for The
Netherlands are used in order to avoid a possible disturbance by the reduced traffic
volumes during World War 11. In figures 46 for the USA and 47 for The Netherlands
we show three curves of differently predicted fatalities and the observed fatalities.
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Figure 46. Predictions and observations of road fatalities in the USA.

R
t

:=: FtN t :=: exp(-O.0323.t + 66.8623).

Multiplied by the observed traffic volumes it gives the estimated fatalities of the
segmented line in figure 46 and shows a minimised, but very large Chi-square:=: 18153
with df:=: 52. The predicted fatality rate is alternatively obtained from the described
function of delayed traffic volumes as

The exponential equation of predicted fatality rates in the USA for the data from 1946
to 1999 is
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R
t
= FtN t = 9.603[ln(10388N

t
_
4

)] 1.5,

where V = 10388 billion km. and the optimal time lag four years (five years fits
almost aIJla~ell). Its multiplication by the observed traffic volumes presents the
estimated fatalities of the solid line in figure 46 and yields a minimised, smaller Chi
square of 12249 with only 48 degrees of freedom. because by the time lag we have lost
four observation years. The latter fits better, as shown in figure 46, but not significantly
better (F= 1.37: p = .15). Combining these equations we obtain the Gompertz function
for traffic growth without fitting any parameter as

Vt = 10388.exp[-exp(-O.0214.t + 44.640)].

It yields a sum of squares for logarithmic deviations of ss = 0.062 with df = 54 (no
fitted parameter). Compared with the unconstraint fittings in the previous subsection
this is relatively good fit, despite the much lower maximum level (although still about
twice the volume of 1999). The product of the first and last prediction equations gives
the macroscopic fatality development as the dotted line of figure 46.

For The Netherlands we obtained by the described function of delayed traffic
volumes a prediction of fatalities (Chi-square = 255 with df = 43 due to time delay of
10 years) that is significantly better than the prediction from the product of observed
motor vehicle kilometres and the fitted exponential decay for the fatality rate (Chi
square = L534, df = 51), as can clearly be seen from the better fit of the solid than
segmented lines in figure 47 (F = 5.4S; p < 0.001).
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Figure 47. Predictions and observations ofthe roadfatalities in The Netherlands

The exponential equation for the predicted fatality rate in The Netherlands for the data
from t=1947 to t=1999 is estimated as

R
t

= FtN
t

= exp(-0.0657.t + 133.528).
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Multiplication with the observed traffic volumes gives the estimated fatalities of the
segmented line in figure 47 (Chi-square = 1534, df = 51). The Dutch fatality rate
obtained from the described function of delayed traffic volumes is described by

Rt = FtNt =18.288[ln(169Nt-IO)] 1.5,

where the optimal time lag is 10 years and the estimated maximum level V = 169
billion km. Here the multiplication with the observed traffic volumes ~rJes the
estimated fatalities of the solid line in figure 47 (Chi-square = 255 with df = 43, due to
the time lag of 10 years). Again combining these equations we derive the underlying
Gompertz function for the traffic growth in The Netherlands without fitting that
function to the data. It writes as

V
t

= 169·ex:p[-exp(-0.0438.t + 85.546)]

and yields a sum of squares for logarithmic deviations of ss = 0.499 with df = 53,
because again the theoretically derived expression gives no loss of degrees of freedom.
Compared with the sum ofsquares of0.361 for the unconstraint fitting of the Gompertz
function of time the difference is insignificant (F = 1.36, p = 0.15), but the maximum
level for the unconstraint fit is 15% higher. The product of the first and last prediction
equations gives the macroscopic fatality development of the dotted line of figure 47.

The differences between the dotted and segmented lines in figures 46 and 47 are
due to alternating periods of positive and negative difference between observed and
derived vehicle kilometres (not estimated by fitting the Gompertz function, but
theoretically derived). The periods of negative and positive deviations of the observed
fatalities from the segmented lines are due to the deviations of the observed fatality
rates from the estimated fatality rates by the exponential risk decay function. Close
inspection reveals that periods of higher observed volumes than estimated are followed
after a number of years by periods of lower observed fatality rates than estimated and
that the same holds for succeeding periods with lower observed volumes and higher
observed fatality rates than estimated. The time lag between these periods of
underestimated and overestimated volumes and respectively overestimated and
underestimated fatality rates, however, means also that periods of reduced volume
growth and accelerated risk decay overlap during shorter periods and vice versa also,
which causes the relatively larger over- and underestimations of the fatalities of the
dotted lines in figures 46 and 47. One underestimation period of the fatality rate is
clearly visible for the segmented line in the period between 1964 and 1974 in figures
46 and 47. The better fit of the solid line predictions, especially for The Netherlands,
proves that the deviations of predicted traffic volumes and fatality rates are negatively
delayed-correlated, because their underlying fatality rates are estimated by a linear
function of the logarithm of delayed traffic volumes. For the USA that time-lag is four
to five years for the fatality predictions that are represented by the solid line in figure
46, but in contrast to the Netherlands this prediction for the USA is not significantly
better than the fatality prediction from the exponential fatality rate, represented by the
segmented line in figure 46. What we have not used here, due to many more lost years
for the prediction, is an also present time-lag of 21 to 22 years that by a weighted
combination with the 4 to 5 years time-lag yields a significantly better prediction of the
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fatalities for the remaining last 33 years in the USA. The gap between the time-lags of
4 to 5 and 21 to 22 years suggests cyclic deviations with periods of 171/2 and/or 35 years
for the Gompertz traffic growth and for the exponential decay of fatality rates in the
USA. In Koomstra (1992, 1997a, b) it is shown that the deviations from the
exponential fatality rate for the USA can be described by three harmonic cosine cycles
with periods of 35, 17.5 and 8.75 years, while the deviations around the logarithm of
Gompertz growth for the USA show a similar pattern of shifted cycles with smaller
amplitudes. Since we showed that the fatality rate is proportional to a power function
of the ratio ofderivative and level of the delayed Gompertz growth, while the derivative
of cosine cycles are sine cycles that are identically shaped and shifted forward by a
quarter of their periods, we regard the fitted prediction time lag of 4 to 5 years to be due
to the derivate of the dominating growth deviation cycle of l7Yz years. If this is true
then the prediction time lag of 10 years for The Netherlands would mean that there is
a dominating deviation cycle of 40 years for Gompertz growth in The Netherlands.
Inspection indeed clearly reveals cyclic deviations from Gompertz growth with a 40
year period, which is also visible from the dotted line for predicted fatalities in figure
47 where a 20-yearperiod ofoverestimation from 1945 to 1965 is followed by20 years
of underestimation from 1965 to 1985, while again overestimation thereafter is present.
Time-dependent cosine cycles for the simultaneous fit of periodical deviations around
Gompertz growth and exponential risk decay have been used by Koornstra (1992, 1993,
1995, I997a,b) for description of periodical deviations around the main trends and for
short term prognoses of traffic growth and risk in many highly motorised or motorising
countries. Although such additional deviation cycles may be useful for the description
and short term extrapolation of periodically correlated deviations from the original
growth and risk functions, the validity of long their term extrapolations can be doubted.

Nonetheless, not only the exponential decay function follows from the deri vative
of the Gompertz function, but also the derivatives of deviations cycles around
Gompertz growth define cyclic deviations around the exponential fatality, where the
amplitudes of the risk-deviation cycles should then be enlarged by q = 1.5 and shifted
by a quarter of the cycle periods with respect the deviation cycles for growth. These
actually observed cycle shifts and enlarged cycle amplitudes are to be regarded as
further evidence for the hypothesis that fatality rates are proportional to a power
function of the growth rate of traffic volumes. The shifts and enlarged amplitudes of
risk deviation cycles with respect to cyclic traffic growth deviations cause an overlap
of averaged quart-cycle periods with stagnated risk decay and enhanced traffic growth
and the reverse overlap for an averaged half-cycle period earlier and later. Thereby, we
predict marked fatality deviations around the main single-peaked trend of fatalities as
predicted by the product of the fitted Gompertz function for traffic growth and fltted
exponential decay function for fatality rates, which is verified by the fit of predicted
fatalities as product of the fitted fatality rate and traffic growth functions with deviation
cycles (Koomstra, 1992, 1993, 1995, I997a,b). The relationship between of cyclic
deviations from their main trend function trends of traffic risk and growth and the fact
that the power exponent of the growth rate for the prediction of the fatality rate defines
a constant factor (q :;: 1.5) for the slope-parameter ratio of their main trend functions
can both be seen as evidence for the assumption that the risk development depends on
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the traffic growth and as evidence for our risk-adaptation theory. Notice that the
dependence of traffic risk decay on traffic growth implies not that the development of
traffic risk is an autonomous process, but that cumulative safety improvements are
inherent to traffic growth in democratic nations (notice that dictatorial states hardly
show any motorisation growth). In democratic countries the national, regional, and
local authorities will take actions for further traffic safety and other traffic
improvements (reduction of polluting emissions, ete), if the growing economy provides
the resources and motorised transport kills and pollutes, because such actions will
contribute to the welfare of the inhabitants and to the popularity and reelections of the
authorities, which is just one example of the many feedback loops in the socio
economic, technological systems of democratic societies (Laszlo, et al., 1974).

8.3. General theory of technological evolution and adaptation

The models for fatality rate and traffic growth are also applied to other adverse
outcomes of road traffic, such as injuries (Koornstra, 1988; Oppe and Koomstra, 1990;
Commandeur and Koornstra, 200 I) and poll uting traffic emissions (Koomstra,
I997a,b). We have shown that the rate of slight injuries per volume of traffic may not
reduce to zero for time approaching infinity in contrast to fatality rates and rates of
serious injuries. while the exponential decay functions of injury and several traffic
emission rates (except the carbon dioxide rate that shows no decay) have smaller slope
parameters than the fatality rate. The fatality rates per amount of passenger kilometres
also decay exponentially for rail and air transport (ETSC, 1999). We have not analysed
other data than for transportation systems, but in developed countries also the industrial
fatalities markedly reduced from about a hundred and sixty per million inhabitants
annually at the end of the 19th century to about five per million inhabitants annually
nowadays, while their industrial production multiplied many times. Similarly air quality
in the Rotterdam region worsened up to mid seventies of the 20th century, due the
regionally increasing petrochemical industry, but improved thereafter. Nowadays the
air quality in that region is better than in the fifties of the 20th century, despite further
growth ofpetrochemical industry. Similar facts hold for air pollution in the Ruhrregion
of Germany and in the regions of Paris and London. Therefore, we have assumed that
adaptive decay of adverse outcome rates characterise all evolutionary growth of socio
economic, technological systems (Koomstra, 1992). In the same way as for biological
system evolutions an adaptative reduction of adverse outcomes is inherent to evolutions
of socio-economic, technological systems, whether it is a transport, an industrial, or
another technological system, because as for biological systems (Eigen and Schuster.
1979; Jantsch, 1980b) and physical self-organising systems (Nicolis and Prigogine,
1977, Jantsch, 1980a; Prigogine and Stengers, 1984) also socio-economic,
technological systems are characterised by self-organising system growth that is based
on the replacement ofhyper-cyclically interacting subsystems by multiples of identical
and/or adapted subsystems. The difference with biological systems only is that their
growth and adaptation are driven by survivability-improving selections of random
mutations and guided bylaws of nature (Eigenand Winkler, 1975), whiletechnological
growth and adaptation are driven by the socio-economic utility of purposefully selected,
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technological innovations and guided by the control of political authorities in
democratic societies. Notice that an adaptive growth of technological systems usually
is absent in non-democratic countries, especially for systems of consumer products.

Our constraint model for growth and adaptation in road traffic and research
results of similar growth models for other technological systems by other researchers
(Fisher and Pry, 1971; Hennan and Montroll, 1972; Montroll, 1978) ask for the
formulation of a more general theory. We have fonnulated a generalisation of our
theory for the adaptive transport evolution to a theory for evolution and adaptation of
socio-economically self-organising, technological systems, (Oppe and Koomstra, 1990;
Koomstra, 1992). Here we reformulate that general theory for the adaptive evolution
of technological systems in terms of first principles and restrict the theory formulation
on the basis of related Gompertz growth and exponential risk decay, due to now
gathered empirical evidence for these related functions. Firstly we define what we mean
by adaptive evolution of self-organising systems and then fonnulate postulates and
principles for their system growth and adaptation.

Definition of adaptive evolution of self-organising systems
Evolution of a system is the result of self-organised replacements of (hypercylic)
interacting subsystems by multiples of identical and/or further adapted subsystems.

Postulate 1 of adaptive evolution
In absenceofgrowth-inhibiting and temporarily and/or randomly growth-accelerating
or growth-deterring factors, the time-dependent volume growth of an evolutionary
system (or growth of total system thrOl~ghput or output) - caused by self-organised,
multiple replacements of its subsystems - is defined for time t by

M =ea.t + b I Ob 0t a> ; < .

This clearly is Malthus' law of exponential growth, but we rather characterise it in the
spirit ofMontroll's Newtonian analysis of social system dynamics (Montroll, 1978) by
a constant growth force as defined by the differential of the growth a := [oM /otjlM .
An uninhibited growth is postulated to occur in absence ofany disutility for grJwth ana
in absence of temporary and/or randomly growth-disturbing factors, in the same way
as Newton's principles of motion postulate a constant acceleration of falling objects in
absence of any resistance. Thus, we equivalently fonnulate:

Principle I of adaptive evolution
/n absence ofgrowth-inhibiting and temporarily and/or randomly growth-accelerating
or -deterringforces the growth force ofan evolutionary system, defined by differential
of the time-dependent growthfunction (its derivative divided by its level), is constant.

Hereby, time-dependent system growth in absence of growth inhibiting and disturbing
forces is an exponential function of time. However, an initially almost exponential
growth must be followed by diminishing volume increases, because any physical
growth asks for more dissipation of energy for the production of more subsystems.
while any growing system is embedded in a limited macro-system and also has side
effects that reduce the constant force of its underlying uninhibited growth. Energy is
not unlimited and system growth asks for space that also is not unlimited, while growth
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of a system often has also negative side effects on the growth of its own system, such
as self-destlUctive outcomes by randomly occurring failures in the interactive
functioning of its adaptively improved subsystems. Therefore, any system growth is
also simultaneously influenced by a growth reducing function that operates on the
underlying exponential growth. This has been shown to be the case for the growth of
the road transport system, also for the USA where the traffic growth seems not to have
passed its inflexion point, but definitely is also lower than exponential growth.

Saturating growth to a stable maximum occurs if the covert exponential growth
is reciprocally inhibited by a linear function of that covert exponential growth itself,
because then we obtain a symmetric logistic function for V as volume of the growing

. b tsystem at hme t y

V
t

= Ml[x + y.MtJ = Mllx.[l + z·M
t
] I = z.Ml{y·[1 + z·Mt]}·

a·t+b-l -I
Q

t
= a·[l + e 1 = a·[1 + Mtl = a·D

f
where Q defines the resulting growth force and D = [1 + M f I the growth resistence
force thit inhibits the underlying Malthusian gro.i.th force k in the same way as the
resistance force of a medium inhibits the constant acceleration of a falling object in a
vacuum. It allows the symmetric logistic function to be written as

Since function M = exp(a·t + b) contains an undefined constant b, we redefine b by
adding In(z) and define Ily = Y , whereby we obtain the usual symmetric logistic
function by substitution of M

t
ar

ax

V =eH+b.y I[l+e'l·t+b]=y [1+e(a.t+b)rl!a>O,b<O.
t max max

The differential of this function as function derivative divided by the function itself is
written as

V =M·Y ·D =M·U
t tmaxt It

where U = Y ·D is the intrinsic inhibition function of the underlying exponential
growth abd wWlr1 fJr t approaching infinity V = V and Q = 0.

Symmetric logistic growth may appl~-if a ID.~'biJisingt~sYstem growth is
determined by only one type of subsystems with one growth resistance force for its
subsystems. However, there generally are many different, interacting micro-subsystems
in an evolutionary self-organising system, where growth of each type of micro
subsystems can have a different growth resistence force. Since the product of n
randomly different forces can be written by n times the average force, we obtain the
differential of the growth function for c = l/n and D as growth resistence force of the
average subsystem of many randomly different subJystems as

-1 a·t+b-l
Q

1
",.[n.O]"a.O

I
"la/c)[I+M] "(a/c)[l+e I

tc t tc t
where the growth resistance force of the lotal system is defined by

al+b-l
01=nD=(lIc)[I+e 1

t c t

We defined the resulting growth force as the derivative of the growth function divided
by itself, whereby it follows that the stabilising growth function itself must be
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v =v ·[l+e-(a.t+b)r 1Ic , la<O,b>O,c=lIn<ltic max
This is the asymmetric logistic growth function with its inflexion point below 50% of
the maximum level if 0 < c < 1. For very many different micro-subsystems c :::. 110
approaches its zero limit, whereby the stabilising growth expression simplifies to the
Gompertz function

-(a·t+b)
V =Y ·e-e

tlO max

with the function differential as resulting growth force

-(a·t + b)
QtlO = a·e = alMt

and where thus the growth resistence force becomes D
tlO

= M
t
-
1

for limit c = lIn - O.

Since evolutionary self-organising growth is characterised by the multiple replacements
of many kinds of hyper-cyclically interacting micro-subsystems we define:

Postulate 2 of adaptive evolution
In absence v/temporarily and/or randomly growth-accelerating or growth-deterring
factors, the volume growth V (or growth of total system throughpl~t or output) ofan
evolutionary system with stAbilising growth - caused by self-organised, multiple
replacements ofvery many different micro-subsystems - is defined at time t by

-(a·t +b)
V =V .e-e

t max

We equivalently formulate by the definition of growth force as differential of the
growth function (derivative divided by growth level):

Principle 2 of adaptive evolution
In absence oftemporarily and/or randomly growth-accelerating or growth-deterring
factors, the constant growth force a of underlying Malthusian growth of any
evolutionary self-organising system with stabilising growth is reciprocally inhibited
by the underlying Malthusian growth itself, whereby the resulting evolutionary growth
force becomes alMr
We could generalise the growth resistance force to a more flexible function of M

t
by

D
1

d=(l/c)-[1 +Mdr
l

tc, t

whereby the inhibition function of the underlying exponential growth would become

U =V [I + ed.(a.t + b)r IJc.
tlc,d max

V =M.U =e(a·t+b)Jc. V [l+ed-(a.t+b)fl/c,
tlc,d tic tlc,d max

and defining x = (l-d)·atc, Y= (l-d}b/c and z = d·a as well as s = d·b we obtain

Y x.t+yy [I -(z.t+s)j-lIc=e . +e
tlc,d max'
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For cl > 1 we have x < 0, whereby an initially growing system diminishes in the end to
a zero volume. For a non-declining system growth we must define cl::: 1 or cl < 1. But
for cl < 1 we have x > O. which means an ever increasing growth. Since this would
violate the law of energy conservation, due to the needed, infinite energy supply for the
ever increasing production of multiples of identical of adaptively modified subsystems
that replace the existing subsystems (Jantsch, 1980b), we see that cl < 1 cannot hold.
For cl :=: 1 we have x ::: 0 and, thus, a stabilising system growth, while for systems with
a very large number of different micro-subsystems c approaches zero. Thus, cl < 1 is
impossible and cl > I defines a declining system, whereby cl ::: land c approaching to
zero uniquely leads to our postulate 2 and principle 2 of adaptive evolution.

There may exist temporary growth-accelerating or growth-deterring factors for
socio-economic, technological systems, such as economic upsurges or depressions. If
these accelerating and deterring factors are cyclically operating then we may write the
cyclic growth deviations, similar to cyclic processes in time series analyses (Anderson,
1971), by

E = exp{I, [h..cos{g.(t - 't.)}]}.
t i=1 I I I

For cyclic or other time-dependent disturbance functions E = exp[f(t)] that are
multiplicative with respect to the logarithm of Gompertz growlh, we formulate

Corollary A of adaptive evolution
In absence of randomly growth-disturbing factors, the volume growth (or growth of
total throughput or output) ofan evolutionary system with stabilising growth - caused
by self-organised, multiple replacements of very many micro-subsystems - is defined
at time t by

·(a·' + b) + f(t).,
V =V ·etIe max

where f(t) represents independently operating, temporary growth-accelerating and
growth-deterring factors.

The analysis of growth data asks great care in the simultaneous estimation of
parameters V , a and b on the one hand and the function f(t) on the other hand in
order to entaWlfe the influence of other independently operating factors that can
temporarily deter and accelerate the Gompertz growth of the system. As shown by the
fit of Gompertz growth with time-dependent deviations in the analyses of the
developments of national traffic volumes (Koomstra, 1993, 1995, 1997a), this can be
dimcult for time series of growth data that have not passed a visible inflexion point or
are not much longer than the longest deviation period around the Gompertz growth.

The evidence on fatality rates and polluting emissions rates of transport systems,
shows that the rate of self-destructive outcomes is proportional to a power function of
the delayed growth force (the derivative of the delayed growth function divided by its
delayed growth level), where the power exponent is larger than unity. Based on this
evidence and the plausible conjecture that this holds for self-destructive outcomes in
any self-organising evolution system, we formulate:
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Postulate 3 of adaptive evolution
Jn absence ofrandomLy operatingfactors the development ofself-destructive subsystem
outcome rates within any evolutionary self-organising system is proponional to an
increasing power function of its delayed, resulting growth force

RI =w.[{oV, I lOON, I Iq,-Te -Te

which in absence oftemporary and randomly disturbing factors reduces to

R =w-[aIM lq:::e
u

.
t + p

Iq>l;o.=-q·a<O;p>O.
t toT

We equivalently fonnulate by the definition of forces as ratio of derivative and level:

Principle 3 of adaptive evolution
For any evolutionary self-organising system, in absence oftemporary and/or randomly
disturbingforces, the adaptationforcefor the decay rate ofself-destructive subsystem
outcomes is constant and proportionally larger thon the constant growth force for the
underlying Malthusian growth of the evolutionary system.

Postulate 3 is explicitly fonnulated for the first time by Teilhard de Chardin (1955, p.
342-343, religious philosopher, palaeontologist, and discoverer of Homo Pekinensis)
in 1948, as cited on the front page of this chapter. The citation says in our translation:

"However, we remark that in case ofvery large aggregations (such asformed by
the mass ofmen) the process teruls towards "infallibility", where on the one hand
the random chances of success increase arul on the other hand the chances of
refusal or failure at liberty diminish with the increase of the elements involved"

Notice that Teilhard de Chardin not only refers to biological evolution, since the
wording 'the chances ofrefusal orfailure at liberty' also refers to man-made evolution
processes, such as socio-economic or social and cultural evolutions.

For not self-destructive, adverse outcomes, the power exponent of the growth
differential that detennines the slope of the decay for these adverse outcome rates will
be lower than for the rate of self-destructive outcomes, but still larger than unity. The
rate of these adverse outcomes may also not reduce towards zero in the infinity of time.
This has been shown to be the case for the analysis of the risk developments of serious
and slight road injuries (Koomstra, 1988; Commandeur and Koomstra, 2001) and
possibly for the rate of several polluting traffic emissions (for example for NO ,but
not for carbon dioxide CO

2
and hydrocarbons C H from road traffic, see: Koo?nstra

1997a,b). Therefore, we fonnulate: x y

Corollary B of adaptive evolution
The development of the rate ofadverse, but not self-destructive subsystem outcomes
within any evolutionary self-organising system, in absence of temporary and/or
randomly operating factors, is a linear transformed, powerfunction ofits exponential
decayfunctionfor the rate oftheir self-destructive subsystem outcomes, described by

s s·(a·t + ll) IGt=z-[(l-p)·R
t

+p]=z·[(l·p}e +p] a<O; l/q00; s<I; 1 :::p~O,

where z > 1 defines a higher rate G ofnot self-destructive outcomes than rate R of
self-destructive outcomes, while rad Gt for t approaching infinity reduce to zop .j. o.
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Denoting the number of not self-destructing, adverse outcomes, such as road injuries
or polluting emissions, by I and self-destructive outcomes, such as road fatalities, by
Ft we have defined t

Rt=FtNtand Gt=ltNt,

I :=: y.pS.y(l - s) + x.y
t t t t

where y :=: z·(1-p) > 0, X :=: z·p > 0, and Ilq .; s < I, which for t approaching infinity
means that F :=: 0, but for x > °and t approaching infinity we see that I :=:

boo t-oo
x·y > 0. Thereby, we also have defined in absence of any disturbing factors the

max' d1 fmacroscopic eve opment 0

~(a·t+b)

F ==R.y :=:eCH+P.y ·e-e
t t t max

-(a·t+ b)
I =G y :=:z·[O_p)es(nt+p)+pj.y ·e-e

t max

where both are single-peaked functions, because°> et:=: -q·a > s·n == -s·q·a for a > 0,
q > I and IIq .; s < I. Therefore, we fonnulate as last corollary:

Corollary C of adaptive evolution
In absence of temporary and/or randomly growth-accelerating or growth-deterring
factors the development of self-destructive and of not self-destructive, adverse
outcomes of subsystems within any evolutionary self-organising system is single
peaked, where in the very long run the numberofself-destructive subsystem outcomes
approaches the zero level and the number of not self-destructive, adverse subsystem
outcomes to a constant level that is the lower the more damaging the adverse
subsystem outcomes are for the interaetivefunctioning ofthe subsystem.

8.3.1. Scenario predictions a/world developments
Our mathematical theory of technological system evolution and adaptation predicts
world developments that differ from the mathematical world models that are used in the
politically influential publication of the so-called Club of Rome: "The Limits to

Growth" (Meadows, 1972), based on the model specifications in "The dynamics of
growth in afinite world" (Meadows, 1974), and more recently still reaffirmed in:
"Beyond the limits. Confronting Global Collapse, Envisioning a Sustainable Future"
(Meadows et al., 1991). In these and related, politically influential publications, such
as the Brundtland report: "Our Common Future" (WCED, 1987), polluting emissions
of industrial production are modelled as a lagged proportional function of exponential
production growth without adaptation effects. The exponential growth of industrial
production and polluting emissions in these models of world developments assumes no
growth saturation, while also no decay of polluting emission rates is present in these
models. This not only contradicts the inevitably increasing scarcity and price of fossil
energy, but also the increasing efficiency of energy use and the emerging replacements
of fossil energy sources by other kinds of energy with less or no polluting emissions or
by bio-energies that absorb such emissions. As shown in figure 48 below for one
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typical scenario of these world developments, such world developments have to
collapse by the self-destructive disasters from pollution levels that exceed the carrying
capacity of the environment.
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Figure 48. Progrwsric scenario for world developments (adapted Meadows et al., 1991).

Nonetheless, according to our theory of adaptive evolutions of soieo-economic,
technological systems such doom scenarios will never take place. As the analyses of
traffic data show these models for world developments, actually called 'Models of
Doom' by Cole (1973), likely are incorrect, because these models don't take into
account the effects of saturating growth and the adaptive decay of self-destructive and
adverse outcome rates, which are both inherent to the growth of all self-organising
systems. Firstly, long before the system can collapse, the emerging scarcity of energy
resources increases the energy prices, which economically reduce the utility of further
system growth that dissipates these resources. Secondly, technological innovations for
more efficient production of alternative energies already are, and will further be,
applied (WBCSD, 2004). These alternative energies must and will replace the use of
the increasingly expensive fossil energy by the use of new cleaner and, after some point
in time, relatively cheaper, other energy resources, due to the increasing scarcity of the
exhausting, fossil energy. Thirdly, already from the time of the early system
development onward, thus very long before the time that the system could collapse by
environmental disasters, ongoing inventive subsystem adaptations have and also will
further improve the operations in the growing system by multiple substitutions of safer,
more effective, and less polluting subsystem elements. Such adaptations are generated
by their socio-economic utility and are also triggered by societal and normative rules
that become enforced by economic penalties, if violated, or rewarded by larger market
shares and profits, if applied. It prevents a self-destructive development of self
organising, industrial and technological systems in democratic societies.
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In our partially validated theory of adaptive evolution the first evolution phase
is characterised by annual growth percentages that are larger than the annual reduction
percentages of self-destructive outcome rates per amount of production. This first
evolution phase shows an almost exponential growth (comparable to relatively low, but
fast-increasing level of motor vehicle kilometres in the early motorisation phase of
motorising countries) and, due to the almost absent and lagged adaptation effects for
a reduction of self-destructive and adverse outcomes that emerge from side effects of
system growth, also a nearly exponential increase of adverse olltcomes is observed
(comparable to initially low, but increasing levels of road fatalities and polluting
emissions of motorised transport). These seemingly exponential developments of
growth and self-destructive or adverse outcomes of the first growth phase (comparable
to traffic growth and fatality or injUly developments in developed countries before the
seventies of the 20th century) are extrapolated in the environmental doom models. But
the assumption of exponential growth without adaptation is not empirically, nor
theoretically justified. Our analyses show that the seemingly exponential growth
becomes reduced in the mid growth phase to an almost linear growth (comparable to
the nearly linear increase of annual motor vehicle kilometres in motorised countries
during the last quarter of the 20th century). The annual growth percentages initially
exceed the annual reduction percentages of the self-destructive or adverse outcomes,
but will decrease to a level that first approaches, then matches, and later underscores
the annual reduction percentages of the self-destructive or adverse outcomes (as
empirically demonstrated for fatality, injury, and emission rates of road traffic). The
latter phenomena express the observable adaptation effects during the mid-period of the
system evolution with a nearly linear growth. In the first half of the mid-period
diminishing increases of self-destructive and of adverse outcomes are observed, while
in the second half of the mid-period decreases of the self-destructive outcomes and
somewhat later also of adverse outcomes will take place (as demonstrated for road
fatalities and injuries and for road transport emissions). After the mid-period of the
system evolution our theory predicts that growth will level off further and in the end
towards an almost zero annual growth of the stabilising (or oscillating) system volume.
Non-exponential, saturating growth is recently confirmed also for the world population
and applied for population prognoses by the United Nations (UN, 2003) and the World
Bank (WB. 2003). Our theory also predicts that self-destructive outcomes per system
volume decrease in an exponential way to an almost zero level, while the not self
destructive outcomes will reduce to an almost stabilised, low level during the last phase
of diminishing system growth towards its almost stable maximum level.

Sustained by the validated modelling of motorised transport growth and the
adaptation by fatality and injury risk decay and decay of polluting emission rates in
road transport, the theory of adapti ve evolution for socio-economic, technological, self
organising systems conjectures that the speed of subsystem replacements by multiple
and better adapted subsystems not only determines the system growth, but also the
speed of the adaptative risk decay of self-destructive and adverse subsystem outcomes.
Without growth there is no further adaptation and without adaptation no further growth,
because without subsystem substitutions by more and better adapted subsystems further
growth can't exist, nor further adaptation. It also follows from our theory that at some
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point in time the smoothed, annual percentages of volume growth will become lower
than the smoothed, constant reduction percentages of the annual self-destructive or
adverse outcomes, whereby a sustainable system growth will be achieved. Just before
and after the mid seventies of the 20'h century traffic growth percentages in all highly
motorised countries have declined to a level below the reduction percentages of their
fatality rates, while since the mid eighties of the 20th century the already existing,
almost constant reduction percentages of several polluting emission rates also have
become higher than the diminishing traffic growth percentages in highly motorised
countries. It demonstrates that a sustainable growth of road traffic can be achieved and,
besides emission of carbon dioxide, seems already established in highly motorised
countries. Although worldwide this is not the case, due to the recent motorisation in
developing countries, it is expected that the same road transport development as in
developed countries will evolve delayed in developing countries (WBCSD, 2004).

Similar developments and identical adaptive evolution principles apply to
industrial production systems, because the energy efficiency in industry has increased
and both the industrial fatality rates and the industrial emission rates are reducing in
developed countries, where also the polluting emissions markedly decreased over the
last decades, except again for carbon dioxide. However, it must be realised that the
carbon dioxide level in the lower atmosphere slowly increased and also periodically
decreased and increased in a delayed way with the temperature changes between the
nine ice-time periods every 80 to 100 thousand years during the past 950 thousand
years. The recent global wanning is mainly measured on the earth surface of the
northern hemisphere, while only a minor atmosphere wanning is observable by satellite
measurements. The recent global wanning seems to be caused by joint effects of l) an
unusually long period of strongly intensified sun outbursts since 1940 (see: relevant
papers in Physical Review Letters, 2003 November and Journal of Geophysical
Research, 2003 May) and 2) a sharply increasing level of carbon dioxide from the
additional emissions of the growing use of fossil energy by industry, motorised
transport, and households in the course of the last two centuries, but both phenomena
likely will not last. Intensification of sun outbursts has always been a temporary
phenomenon and most likely will also this time ends before the mid 21'( century (see:
Nature, 2004 end October), while all prognoses predict that exploitable fossil energy
resources will become almost exhausted before or shortly after the mid of the 21 'I

century. Therefore, global wanning likely will be a temporary phenomenon. Moreover,
the cyclic ice-time periods, caused by cyclic deviations of the earth rotation distance to
the sun, and the very slow, but in the long run inevitable overall cooling of the earth,
caused by the slow burnout of the inner earth (and in the end also of the sun), predict
that a periodic and an overall cooling of the earth climate will occur in the far future.
A global cooling will take place at the beginning of the next ice-time period, while
human actions can likely never generate the energy and/or greenhouse circumstances
that are needed for a lasting compensatory wanning of the cooling earth climate.

The adaptive evolution principles mean that growth of technological systems
becomes sustainable after the growth increase has become proportionally smaller than
the proportionally constant decrease of self-destructive subsystem outcomes that
accompanies any growth. One has to be aware that any system growth will always be
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a proportionally diminishing growth, due to the inherently diminishing growth rate of
any growing system. This even holds for just less than exponential growth to linear
growth, because also characterised by reducing growth percentages. However, such
non-saturating system growth can't exist forever, due to the energy that needs to be
dissipated by the growth of any system (Jantsch, 1980b) and the limit of available
energy. Our third principle of adaptive evolution implies a proportionally constant
reduction of the rate of self-destructive outcomes, whereby a sustainable growth will
be established after some point in time, because the annual products of its constantly
reducing rates and diminishingly growing system volumes describe a single-peaked
development of self-destructive and adverse outcomes, as earlier illustrated for road
fatalities. If the environmental doom models (Meadows, 1974; Meadows te aI., 1991)
are modified by functions of our adaptive system evolution then
• exponential growth of industrial production is replaced by Gompertz growth,
• delayed, exponentially increasing pollution is replaced by an exponential decay rate

of polluting emissions per amount of industrial production,
• the function of fossil energy use becomes modified by a logistic function for an

increased efficiency of fossil energy use,
• a Gompertz growth of clean alternative energies that gradually replace the

exhausting fossil energy is added.
Such a modified world model predicts no collapse of the living world for the present
and coming centuries. Figure 49 below shows a typical scenario that is predicted by
such a modified modelling that is based on the described, adaptive evolution principles .

.....
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1900 2000

.. .
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Figure 49. A world development scenario based on evolutionary growth and adaptation.

The predicted development of environmental pollution becomes single-peaked, due to
the exponential decay of its rate per unit of production-system growth. In view of the
recent evidence for saturating growth of the world population, the absence of
convincing evidence from analyses of sufficiently long other time-series of observed
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world data for a collapsing world development (apart from local disasters), and the
partial evidence from rather long term transport developments (up to 80 years) for our
adaptive evolution model, it must be conjectured that real world developments will be
more similar to the scenario of figure 49 than to the doom scenario of figure 48. A
sustainable growth is yet not observed in developing countries, where safe production
and transport infrastructures and enforced environment and safety policies still have to
emerge, despite the emerging globalisation of telecommunication, technology,
industrial production, and economic policies. The predicted world developments
displayed in figure 49, therefore, may need some caution. However, evolutions of self
organising systems, such as the socio-economically driven growth of technological
systems, are inherentiycharacterised by adaptively sustainable developments. The call
for the implementation of structural changes in the economically driven growth of
industrial and technological production systems (Meadows et aI., 1991, ch. 7) by
adaptive feedback loops overlooks that every self-organising system growth inherently
contains already such adaptive feedback loops from the start of its evolution onwards.
Adaptive evolution not only holds for biological system growth, but also for industrial
and technological production systems in democratic societies. Theenvironmental doom
scenarios, based on exponential growth of world population and industrial production
with delayed-exponential developments of life-endangering outcomes, don't recognise
the evolutionary principles of saturating growth and adaptation. These principles at
least apply to developments of the world population and transport systems, since
validated by long term time series, and likely also hold for the adaptive growth of
industrial and technological systems in developed countries. Therefore, we conclude
that one ought to have serious doubts on the validity of the environmental doom models
for world developments.
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RETROSPECTIVE SUMMARY

"f shall consider human actions and appetites just as if
it were a question of lines, planes, and bodies."

Spinoza. Short Treatise. This essay is written between
1670-"72, but for the first time published in 1855. The
citation is taken from the translation in: E. Curley, (Ed.),
(1985), The Collected Works of Spinoza. Princeton
Unlv. Press, Princeton, NJ.

"What is sometimes required is not more data or more
refined data, but a different conception althe probLem."

Shepard, R.N. (1987). Toward a universal law of
generalization for psychological science. Science, 23:
p. 1318.

A multidimensional analysis of psychological data requires that the geometry of the
relevant psychological space is known. Multidimensional analyses of psychological
data generally use Minkowskian or Euclidean geometry, but nothing guarantees that
psychological spaces are flat and infinite. Mathematical behaviour theory and
experimental psychology tried to specify and verify the distance metric of psychological
spaces, but their geometrical nature remained unresolved, while also measurement
theory has not solved the geometry problem in psychology. In order to tackle the
problem of the geometrical nature of psychological spaces, we have taken a route
different from hoping that the problem would be solved by doing more experiments,
gathering more crucial psychological data, refining analysis models, and representing
analysis results in some, not necessarily flat and infinite, geometry that yields the
lowest dimensionality or the most parsimonious data representation.

Firstly, we examined the existing theoretical notions and mathematical models
from a century of the choice-relevant, experimental and theoretical research in
psychology in order to derive basic properties of metric functions that transform
stimulus to sensation spaces and sensation spaces to judgmental or preferential
response spaces. Secondly, on the basis of such properties, we uniquely specified the
permissible function alternatives for metric space transformations that satisfy
transitivity of (conditional) distance rank orders. Thirdly, assuming either Euclidean or
non-Euclidean stimulus geometry, the respectively specified functions for the metric
stimulus space transformations detennine the corresponding alternative geometries of
sensation, response and valence spaces.

The universal properties of psychological scales are a zero reference point and
bipolarity. The zero reference points are the individual adaptation points that define the
individual origins of psychological spaces and the basic transfonnation function of
stimulus to sensation dimensions is Fechner's logarithmic function. Weighted sensation
differences from adaptation level define intensity-comparable sensation spaces of
perceptual sensations that are matched with cognitive magnitude sensations (chapters



450

1 to 3) and correspond to subjective stimulus magnitude spaces with power-raised
dimensions as defined by Stevens' alternative power function. Given that the geometry
of the stimulus space is Euclidean or non-Euclidean, the logarithmic stimulus space
transformation defines the geometry of the sensation space to be either hyperbolic and
infinite (for Euclidean stimulus spaces) or flat and infinite (for non-Euclidean stimulus
spaces), where the curvature of a non-Euclidean stimulus space determines the
Minkowski r-metric of the corresponding flat sensation geometry. Thereby, it also
follows that intensity-comparable sensation spaces ofFechner-Helson psychophysics
and dimensionally power-raised stimulus spaces of Stevens' psychophysics are
different geometric representations of the same (section 3.3). On the basis of the basic
properties for judgmental responses or monotone preferences (magnitude and similarity
responses or utility and other monotone valences), derived from the existing
psychological and econometric research, it is concluded that the transformation
function of sensation dimensions to response or monotone valence dimensions must be
some symmetric, bipolar, ogival function with the adaptation pointas function midpoint
and origin (chapter I and sections 2.1 and 2.2). From the basic properties for single
peaked preferences, derived from the existing learning and preferential choice research,
it is also concluded that the transfonnation of sensation dimensions to single-peaked
valence dimensions must be based on the intra-dimensional multiplicativity of two
oppositely oriented, monotone valence functions with a distance between their
respective function origins that are the preferentially neutral adaptation and saturation
or deprivation levels of the sensation dimensions (chapter I and section 2.3).

From the further requirement that the response space must be rotation-invariant
it followed that the response function has to transform flat or hyperbolic and infinite
sensation spaces to open (finite) response spaces with the same distance metric as the
stimulus space (how otherwise could humans cope with reality). Thereby, the
alternatives for the metric specification for the required symmetric, bipolar, ogival
transformation functions of sensations to judgmental or preferential responses are
uniquely determined to be either the hyperbolic tangent or the arctangent function
(chapter 2 and section 4.2). The alternatives for the metric specification of the
transformation function of sensations to single-peaked valences are also detelmined by
the intra-dimensional product of either two hyperbolic tangent or two arctangent
functions of sensation dimensions with a distance between their respective function
origins (sections 2.3, 2.4, and 5.3). Given the infinite flat or hyperbolic geometry of the
sensation space these metric transformation functions define different open projective
geometries for judgmental response, monotone valence, and single-peaked valence
spaces. Itdetermines the open response and monotone valence spaces as stimulus space
involutions that have either a zero or a constant (negative or positive) curvature, while
single-peaked valence spaces have either an open-hyperbolic geometry with curvature
-Y2 or an open Finsler geometry with varying, negative or positive curvatures that
depend on the sensation or valence distance to the ideal sensation or maximum valence
space point. These specific open Finsler geometries turned out to be conditionally
rotation-invariant with respect to the ideal point as rotation centre. The next overview
summarises the theoretically permissible transformations to geometries of
psychological spaces for given alternative geometries of the stimulus space.
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Theoretically permissible transformations to geometries ofpsychological spaces

For each of the theoretically permissible alternatives of response and valence space
geometries we developed semi-metric methods for the multidimensional analyses of
respectively dissimilarity and preference rank order data (chapters 4 and 5). Existing
MDS-analyses are partially or fully inappropriate, because the projective response or
valence transfonnations of individually translated and weighted sensation spaces yield
individually different object configurations in open response or valence spaces.
Appropriate analyses of rank order data with some error might never reveal what the
correct geometries of the relevant psychological spaces are, but the pennissible
response and valence space geometries define also differentMDS-based choice models
with bias for confusion or categorisation probabilities (section 7.2) and preference
probabilities (section 7.4), where in contrast to rank order data the analyses of
probability data may more likely determine the correct geometry of the response or
valence space. We did not conclude which of the permissible geometries is the valid
response or valence geometry. However, one plausible argument -not relativistic, bur
Newtonian physics applies to the stimuli ofhunuln perception- some theoretical results
-1) ideal axes only diverge in hyperbolic sensation spaces, 2) only single-peaked
valences ofh}perbolic sensations inherently define comparable sensations distances
that have a conformal distance metric in their open-hyperbolic spaces ofsingle-peaked
valences - and some empirical evidence -our analysis of intransitive preference
probabilities in Tversky's (1969) study- indicate that the stimulus space is Euclidean
and the sensation space hyperbolic, whereby we might assume the response space likely
is open-Euclidean and the single-peaked valence space open-hyperbolic.

Sensation spaces with dimensions that are individually translated to their
adaptation points and weighted by twice the inverse of their dimensional adaptation
levels enables an intensity comparison of multidimensional sensations (chapter 3). It
is called the intensity-comparable Bower sensation space, because it was Gordon
Bower (1971) who for the first time conjectured that sensation comparisons require a
weighing of sensation differences from the adaptation point. The intensity-comparable
sensation dimensions in Bower spaces become defined by the ratios of dimensional
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sensation differences to its adaptation point and half the dimensional distance between
its adaptation and just noticeable points and valence-comparable sensation dimensions
by the ratios of dimensional sensation distances to the ideal point and their dimensional
distance between the dimensional ideal and adaptation points. These ratios are invariant
under linear transfonnations of their underlying Fechnerian sensation scales and,
thereby, define dimensional-invariant measurements of individual sensations.
Consequently, its isomorphic space transformations to judgmental or preferential
response or single-peaked valence spaces define dimensional-invariant measurements
of individual responses or valences (chapter 6). Thus, as by-product of the
psychophysical response and valence theory, we solved the measurement problem in
the psychology of judgment and preference, whereby quantitative judgment and
preference theory can be meaningful.

As a result of the psychophysical response theory we further showed that the
relativity dynamics from adaptation to presented or memorised target stimuli or to
presented pairs or subsets of stimuli (section 7.1.) can lead to asymmetric and/or
intransitive similarities and to biassed choice models with a power-raised or
multiplicative, stimulus-dependent bias, instead of the usually multiplicative, response~
dependent bias. We derived new alternative MDS-based choice models with bias for
the analysis of confusion or categorisation probabilities in perception and cognition
research (section 7.2). We also showed that the relativity dynamics from adaptation to
presented stimuli in the psychophysical response theory predicts distance~ and context
dependence, asymmetry, and/or intransitivity of similarities, which phenomena have
been explained by different models, such as the distance- and density-dependent :MDS
model, the feature-contrast model, the general context model, and the hybrid MDS
model, as well as the general recognition theory wherein object distribution overlap
defines the similarity measure for a stochastic MDS-analysis model. Moreover, also
intransitivity of preference rank orders is predicted by the relativity dynamics in our
psychophysical valence theory (section 7.4), while new biassed preference probability
models are derived for single-peaked valences (subsection 7.4.3.). Observed
intransitivity of gamble preference probabilities is well predicted by a metric re-analysis
that is based on our three-component portfolio theory for gamble preferences with
relativity dynamics of adaptation-level shifts to midpoint sensations of gamble pairs,
where our model is shown to fit better than any existing model (subsection 7.4.2).

Lastly, we discussed the personally conflicting nature of preferential choices in
reality and their individual and collective choice dynamics (chapter 8). We argued that
behavioural preferences are based on conflicting valences that are cognitively
detennined by single-peaked valencesofchoice objects and behaviourally by monotone
valences for choice realisation difficulties. Thereby, behavioural choices not only
depend on the sensation distance between object and ideal points - representing by its
smallest distance which object is cognitively most preferred -, but also on the sensation
difference between the object and adaptation point - representing by the smallest
positive difference which preferred object is behaviourally most easily obtained.
Preferential choices in reality then become preferences for objects located between the
ideal and adaptation points (subsection 8.1.2.). Behavioural preferences in reality may
differ from cognitively assessed preferences in experimental studies. In the mixed
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valence spaces of behavioural choice objects the dimensional manifest valence
functions become asymmetric, while conflicting valences will lead to a partial
preference indifference for choice objects below (or above) a certain dynamic sensation
level and to increasingly negative object valences above (or respectively below) that
level. We also demonstrated that a similar, dynamically shifting preference indifference
range may exist for a dimension in a sensation subspace that is characterised by highly
correlated dimensions with oppositely oriented, single-peaked valence functions, where
then the dimensional valences outside the indifference range are increasingly negative
on both sides of that indifference range (subsection 8.1.3.). We argued that this holds
for dynamically changing, individual risk behaviour in road traffic, which is fonnulated
by our risk-adaptation theory (subsection 8.1.3.) that contains three major theories of
traffic risk as special cases. Moreover, it is predicted by the risk-adaptation theory that
collective road risks will exponentially decay over time with a IYz times larger slope
parameter than for the traffic growth function. This is empirically shown to hold by the
fit of corresponding models for Gompertz traffic growth and exponential risk decay
(section 8.2). The inherently related models of traffic growth and risk decay are
generalised to a mathematical theory of adaptive evolution for socio-economic,
technological systems, because similar matters generally hold for growth of socio
economically driven, technological systems with other kinds of life-endangering side
effects that cause similarly conflicting, single-peaked valences for their system risks.
This general theory of adaptive system evolution (section 8.3) predicts world
developments that markedly differ from the nowadays popular and politically
influential 'doom models' of global industrial growth and environmental world
developments. In these doom models the growth of technological production systems
and the developments of their life-threatening side effects are both mainly modelled by
exponentially increasing functions, as if no growth saturation and no adaptative risk
reduction are present. Given the partial evidence from long tenn traffic developments
for our theory and the questionable evidence from data analyses of not-long-enough
time series for the doom models, we conjecture that the politically influential
predictions of disastrous world developments from these doom models are unjustified.
We concluded that foremost these doom models must be modified, instead of the
criticised technological system growth.

In retrospect overlooking the results of our psychological relativity theory, we
could conclude that we might have:
• integrated Stevens' and Fechnerian psychophysics (different geometric

presentations of the same) and Helson's adaptation-level theol}' by our
multidimensional theol}' of psychophysics;

• integrated Luce' s response and choice theories, Kapteyn' s econometric preference
fonnation theol}', subjective expected utility models - including Luce's rank- and
sign-dependent utility theory and the prospect theory of Kahneman and Tversky-,
Tversky's elimination-by-aspect or additive difference model, and Tucker's vector
model for preference analysis by our psychophysical response theol}';
integrated the LewinlFestinger theol}' of aspiration level, Berlyne's reward and
aversion systems theol}', Gray's two-process learning theory, Coombs' unfolding
analysis by our multidimensional, psychophysical valence theory;
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• integrated or replaced by the psychophysical response theory, Krumhansl's density
and distance-dependent similarity model, Nosofsky's general context model,
Tversky's feature-contrast theory of similarity, and several partial theories on the
visual space perception, while our psychological valence theory of objects with
single-peaked valences metricises and modifies Coombs' unfolding analysis;

• determined the pennissible geometries of psychological spaces for sensations,
judgmental or preferential responses, and preferences with single-peaked valences
as well as developed semi-metric, multidimensional methods for dissimilarity and
preference data analyses in each of the pennissible geometries;

• bridged several gaps between psychophysics, mathematical behaviour theory, and
cognitive psychology;
solved, as by-product of substantive theory, the measurement problem in the
psychology of judgment and preference, whereby meaningfulness of quantitative
theory in the psychology of judgment and preference becomes possible;
developed, as an outcome of the relativity dynamics in our psychophysical response
theory, several new MDS-based choice models with bias for geometrically
appropriate multidimensional analyses of similarity probabilities in perception and
cognition as well as derived from our psychophysical valence theory new biassed
models for preference probabilities of objects with single-peaked valences;

• developed, as an application of dynamics in our psychophysical valence theory of
choice conflicts, the risk-adaptation theory for individual traffic risk behaviour;

• generalised a verified model for inherently related, long tenn developments of road
transport growth and collective traffic risk decay to a general theory of adaptive
evolution for the growth and risk decay of socio-economic, technological systems.

The partial evidence, discussed in chapters 7 and 8, and the integrative consistency with
existing partial theories, summarised above, may contribute to the validity of the
psychophysical response and valence theory. Nonetheless. its mathematical fonnulation
and the analysis methods of dissimilarity or preference rank order data and choice
probability data:
a) might be improved, where possible flaws hopefully are of minor importance,
b) contain still aspects that need additional research (on conditions that guarantee

relative constancy of the distance between adaptation andjust noticeable levels, the
respectively valid geometries of open response and valence spaces, appropriate
MDS and unfolding analyses under adaptation-level shifts, etc.).

c) needs to be validated and related or extended to other domains than judgmental and
preferential choice in order to be a contribution to a unifying theory of psychology.

The psychophysical response and valence theory could have been developed about 30
years ago, since all what is needed for its fonnulation has been published before the
mid seventies of the 20th century. Developments in psychology thereafter, however,
show that the overwhelming evidence of Helson's adaptation-level theory is almost
ignored, while after the early seventies of the 20th century also substantive progress
almost stagnated in mathematical behaviour theory, which caused diverging cognitive
approaches in psychology. Learning theory became reduced to connectionistic theory
with computational reinforcements in layered quasi-neural networks that may describe
cognitive learning, but not motivation-based learning by drive satisfaction or satisfying
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rewards and dissatisfying punishments. Connectionistic theory, computerised
multidimensional analysis models, and cybernetic models borrowed from infonnation
science, flavoured a development of cognitive psychology that largely ignored the
results of psychophysics, adaptation-level theory, mathematical response and learning
theories, and (neo-)behaviouristic theory. Nonetheless, our application of the
psychophysical response theory to results from more recent cognition research, shows
that psychophysics, adaptation-level theory, mathematical response and learning
theories, and behaviouristic theory are indispensable for cognition theory. It is our
opinion that psychophysics can't do without cognition theory (Stevens' psychophysics
rely on matching of perceptual sensations with cognitive magnitudes) and cognition and
preference theories not without psychophysics and adaptation-level theory (distance
and context dependence as well as asymmetry and/or intransitivity of similarities and
gamble preferences are caused by Helson's psychophysical adaptation to presented
stimuli or objects). Without efforts to integrate and unify partial theories in psychology
and without analysis methods that follow from appropriate geometries of relevant
psychological spaces, psychology hardly can achieve substantive progress and likely
remains a bundle of hardly related or conflicting, alternative models for partial domains
in psychology. If the psychophysical response and valence theory becomes validated
then it might be a potentially unifying theory of psychology if related or extended to
other domains than judgment and preference. The relevance of the theory for
motivation and achievement theory is implicit, while its affective aspects are relevant
for emotion theory. With regard to time perspectives and valence conflicts of
preference realisations the theory seems also relevant for consumer and investor
behaviour, while an extension to neurotic choice behaviour is indicated.

On a philosophical level our theory can be regarded as a mathematically
fonnulated kind of phenomenology. Although this statement may seem far fetched or
even contradictory, phenomenology and our theory describe both the differently
experienced worlds of individuals as psychological realities that differ from physical
reality. For example, much of the existential phenomenology of Merlau-Ponty (1945,
1953) is quite well in line with the psychophysical response and valence theory. The
way psychological phenomena are described by Merlau-Ponty and our theory is
completely different (elegant French versus dull mathematics), but similar
individualised processes of perception and evaluation are described and similar
explanations are given by the bodily basis of personal reality experience. Similar
matters may even apply to parts of Husserl' s idealistic phenomenology (Husserl, 1958,
1964), although this assertion would make Husserl turn in his grave. Nonetheless, the
common object space as objective reality, - in our theory to be reconstructed by
mathematical analysis from the psychological spaces of individuals -, and Husserl's
idealistic concept of an objective world, - according to Husserl to be reconstructed by
systematic abstraction from personal experiences -, have much in common.
Descriptions of personal realities in phenomenology and our mathematical theory might
be comparable, butonly meaningful quantitative propositions from mathematical theory
can be affinned or falsified by research.
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SUBJECT INDEX

""",,"00
evolutionary, see: evolution
psychophysical, [7-18,24-25. 38, 88-80

Adaptation level (adaptation point)
shifts, see: dynamic relativity
individually different 13 [-135, [83-184,208
relationship with Srevens' power exponent,

see: pOlver exponent - dimensional
theory. 2D-lS, 63-67, S0-81, 86-88, 245, 247

Ambivalence, see: conflict
Angular transformation of probability, 342
Anxiety, 40, 43-45, 179
A<ctMgm,

product as single-~ed valence function, 178,
186-187, 189-[91, 194-196,206-207,216
2[8,387,389,393,396

res(XJnse (ideal axis) function, 136, 138, 141
147,171. 174, 181,210,212,234-35,279,
281,287-88,293,331-332,341-341,348
349,351-352,356,377,379,381

Arousal, [4-15,36,40-41 402.407,411-412,417
Aspiration level. 6--12. 28, 85

see also: ideal point
Automorphism, 234, 235-236, 275
Aversion, 36-40

expectancy, 26, 70, 79, 244
dominance, 17-[8,33,79
system, 14-16,29,79-81

Behavioural preference control, 89-91
Bipolarity, see: hedonic scale properties
Bower sensations, see: sensatWns - comparable

space, 115-116. [20, 122, 127, 131. 145, 150
[55, [79-182, 185-186, 196-[97, 199,202,
205-2()). 2[0, 223. 271. 274, 280, 282, 284,
286. 289-290. 303. 3 [2, 315, 317-318

Canonical analysis, 2rJ7, 220-224
CalegorisaJ:ion, see: similariTy -~11lmerricsimilarity
Choice

axiom, 68, 329-330, 340-341
conditional, 330-336. 340, 349-350, 394

irrelevanceotheraltematives. 330-333.34[,346
conflict, see: confliCT
dynamics. see: dynamic relativity
judgmental, see: response
preferential, see: mlence.
probability,

similarity, see: similariTy - probability
preference, see: preference - probability
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Cognitive (cognition)
comroon object space

see: common objecT space
complexity, 320-321, 323-324
familiarity (unfamiliarity), 320-321, 323
magnitude sensation, 53-56, 58, 60, 63, 85,

[14-[[7,119, 122-123, [25-126,240,
245-247,283,293,303,327,373,375

reference [evel, 19, 23-24, 26, 35-36, 40, 67-ffl
70,74-79,81. 90, ]17,241,247.304-305.
300-300, 347, 365-368, 377, 382, 388, 392

theory, 3. 22, 25, 85, 320, 362-371
Comroon Euclidean object space,ICD-I01. 127,

13\, 137, 146.152-157, [64, 168, 171-172,
182, 184, 200. 203-204. 2CJ7-2oo. 2[3-215,
220-224,266-269,273.361. 371
cultural dependence. 404-405
sensation, 96. 1(X)..101, 112, 133, 137, [SO,

154-165, 167, 17[, 178, 18t-L82, 188-189,
194. 196, 2(X)..204, 2rJ7, 200, 212, 214
2[5,218,220-222,268.282" 290, 293,
341-342,360,371

stimulus.96, I(X)..IOI, 149, 151-155, [62, [64
165,167, [71 [83-184,188.196,202-204,
2rJ7, 214-215, 218-224, 268, 282, 364,
368.371

Conflict (ambivalence, dilemma), 18.43,45, 78,
86, 179,399.401~11
cognitive vs realisable preferences. 405-409
mixed valences, 404-409

partial indifference, 406-408
single-peaked valences, 401, 409~1O

see: rotJd rrajJic - risk - adaptation theory
indifference range, 179, 409~IO

Confusion probability, see: similarity - probability
Cosine transfonnarion of probability, 341
Cross-lTIlX!aIity matching, see: matching
Cumulative probability function

Cauchy, 50, 77, 80. 142-146,276.289.332,
333.336,340,342
folded and scaled, 332-333, 341
integrulion of distribution, 332

dOllble-exponential, 330, 334
log-nonnal. 7, 77
logistic, 16.50. 66-68, 70-71, 77. 79-80, 142

143. 145. 167,279.289.330-331. 333, 337
folded and scaled, 33&-337. 342, 344. 349

aonnal (Gaussian). 7, 16. 66-67, 77, 79-80.
142-143.333



490

c"',,_
constant, n 80. 99.106,108,117,124-125,

140, 145. 167, 187, 196. 235-237, 264
272,274-279,285,287,289,333,363
elliptic, 102-103, 107, 124, 146,282
hyperbolic, 102-103, 106, 112, 124, 176,

245,270-273,276,282,286-287
minusahalf. 188, 193. 195-1%,201,206,

213,273,276,283-285,299,335,387
iso-valent contour. 180-181, 185, 195-1%
unit (+1. -1),102,108-110.112 lIS, 138,

148-150,152,158, 161-162, m, 201
r-metric relaIioll~ip,

see: Minkowskifan) geometry· r-metric
variable. 93,105,185.189,244

distance-dependent, 93, m-I72, 174-175,
180-183.196,215-216.245.248,265

zero. 77, 80. 99,124, 167, 201,235-237,264,
272, 274-279, 282, 285, 287, 289. 333, 363

Deprivation (senssory). 15, 19,24,37-38, 41-42
level (lXlint), 27, 35-42, 45, 49, 74-81, 83, 91,

186, 190, 195, 197,202,217.238,261.
299,327,400,412-414
coinciding, see: just noticenble - sensation

reflected sannar:ion level, 41-42, 185-186
Dilemma, see: col/flict
Discrimination probability, 50. 66-68, 71, 77, 142

145,167,279.330-332,336-337,34L
see: response - probabilityfimcrwn

Dissimilarity, see: similan'ty
Distance

axioms.
triangularinequality, 98-99. 113, 152,235,

264-265
quadnmgular monotonicity, 264-265, 276

277, 279, 285, 287, 289
conditional quaremary monotonicity, 266

267,273,277,290
conformal metric

stimulus and response spaces, 137-138,
141, 150,248,279-280,335

hyperbolic sensation and single-peaked
valence spaces, 190, 199, 280

elliptic. 99-100, 107, 131. 136, 138-141, 146.
151-158, 161-162.168. 178,213,287,298,
322,332,340-341,348,356,369

EucJidean. 100, 131. 138, 141, 147-148, 151
153. 163, 167-!68, 172, 177, 184, 187,
190-L94, 1%, 206, 213-215, 287, 290,
298,313-318, 335-339, 341-342, 345-346,
348-349, 355-356, 369,382, 387,394-395

FlIlSler. 99-100, 167, 187.267
hyperbolic, 99-100, 113, 121, 131, 138-141.

147-148, 151-155, 161-165, 168, 178, 188,
191-197,206,213-217. 2B7. 290, 297-298,
321, 330, 333-336, 339-340, 345-346.
349-350, 355-356, 369, 382, 387, 394-395

invariance (rotation and translation), 98-99,
melric, 95-%
Minkowski. see: Minkowskigeomrtry -r-metric
permissible geometties, 236-237,263-270.277
raDonal.99.169,206,213

Dynamic relativity
adaptation-level shift. 21-26. 36,49, 66. 76, 86

91,301. 329. 379-384, 388-397, 415-416
to target stimulus, 308-316, 335, 348-353,

355,357,366-367,372, 395-396
to stimulus-pair midpoint, 314-320, 322,

324, 339--343, 355-357.370-372, 379,
381·385,388,3%

to stimulus-subset centroid, 320-325, 358,
366, 370, 378

to subspace (lower dimensionality), 318,
324-325,366.370.378

cognitive reference-leveL 23, 40, 76. 320, 322
325.359.361-368,374,377. 392
memory dependence, 304-305, 308, 320,

323-324,357-558
stimulus and ta'lk dependence. 308, 311,

322,325,366-367
conflict, 408-400
(dis)similarity (categorisation. coofusion), 325,

344-353.355-357.359.366-367
see also: similarity - probability - model

ideal point (distance to adaptation point), 81
85,324-325,371. 392-393,411-415

preference (valence). 324-325
IJX)notone valence, 76-n 372-379
single-peaked valence, 81-85, 374, 390-392

risk, see: risk behaviour - dynamics

Eigenvalues and vectorS see: principal components
Elliptic,

distance, see: diStance
geometry, see: geometry
projectivity. 71. 146, 150

see also: involution - space· quasi-elliptic
Environmental development,

global wanning. 446-447
pollution, 179.402,437.443-444,447

industrial emissions, 402, 444, 446-447
roa:l traffic emission. 437, 442. 445-446

world (doom) model, 402, 443-448



Euclidean
co-ordina1e embedding of

hyperbolic spaces, 56, [02, 104-105, [08
112, 118, [25-[26,138, [47, 152,
161. 330, 333-335, 340, 342-343, 369

single-elliptic space, [02, 106-[07, 125,
138, 145, 152, 157-[58, 341, 369

distance, see: distance
geomeny, see: common object space

sensation, spocegeometry -flat
stimulus - spoce geometry

open, see: response - space geometry
involution ' space

Evo[ution
adaptive self-organising system, 402, 424, 437,

445-446,448
growth, 438441, 444,448
self-destructive outcome rate, 402, 416,

442-444,446
biological systems, 424, 437. 442
general theory of technological systems, 402,

419,437,443
sustainable world developments, 446-448

rransrxm system, see: road traffic - growth
Exchange value, 3, 6, 44

Fai[ure probability, 8-10, 435-427, 442
Fechner (Fedmer's. Fa:hnerian)

law (fum;tion), 21-22, 49-58, 75,76, 117, 123
scaling, 100, 127, 167,267
space (plane), 102, 114-122-124, 127, 186,

197,215,263,271,280,347,350
psychophysics, see: psycfuJphysics

Fechner-Helson
function, 57-58, 64-65, 101-103, 106, 108-110,

112-114,122,124,126, [42-144, 146,149
inverse function, 101, 113
sensations, 56-58, 61-63, 288, 2%, 313. 316
space, 106.108, Ill, 115, 118, 122

Generalisation
ex(X)nential, 68-69, 245, 338, 354, 369
GaussiaIl 338, 345, 348, 354, 369

Coo""""curvature, see: cwvature
differential. see: geometry - flOIl-Euclidean
elliptic, 99-100,106-108,113,137,140-141,

[45, [49-[50, [5(1,238,248,266,272,
280, 282, 285-286, 293, 2%, 299, 327,
336, 348, 353, 363, 382
see: stimulus - space geometry

Euclidean. see: Eue/idean
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Finsler, 51, 99-[00.114,116-117,126,167,
187,213" 235, 267, 271
projectively flat, 10[, 214

flat. see: Euclidean
Minlwwski geometry

hyperbolic, 92-93, 102,104,247
see: sensation - space geometry

stimulus - space geometry
involution, see: involution - space
non-Eudidean, 93, %, 98-103, 108, 113, 152,

154-155,270
see: stimulus - space geometry

Minkowskian, see: Minlwwsld geometry
open, 96, 99, 138, 148,232,267-268,371

Finsler, see: single-peaked valellCe
mixed valeru:e

hyperbolic, see: response - spa«
single,peaked valence

Eudidean, see: response - space
single-e[liptic, see: response - space

permissible distance,
see: distance - pennissible geometries

projective, 71, 98-100
see: projection - spoce transfOrmation

involution, space

Hedonic function properties (of sensation scales),
asymptotic level, 15, 19
bi\Xllarity, [I, 14.26,34-36,44,49,56,70,78
congenital, 36-39, 79, 81, 86
cognitive, 4144, 86
distance (between function origins), 6, 14, 17-

[9,35,36,44-45,49,78-82, 85
dominance, 33- 35, 79,
ttUJltiplicativity, 14,35-36,44-45,49,78,81,290
ogivai (S-shaped), 8-9, 14-[6. 18,31,35-36,

40,44-45,49,70,81. 279, 25(1
0p\Xlsite orientation (relection, anti-symmelIy),

9,14,19,32, 35, 49, 77-80, 290
reference levels, 26, 35-36,40, 49, 67-68, 70,

74-79,81
relativity, see: relativity - psychological
single,peakedness, see: single'peakedness
slope equality vs difference, 16, 18-19,36, 74
sYJl1IlX1lY, 19,32,35.40,44-45,49.70,77,79,

279,290
Hedonic sensation, 27, 34-45,49. 69, 76, 371

value(tone).4. 14-15.19,26-27,30,49.69,72.
74-75

scale lyJXJlogy, 40
Hedonism, 3-4
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Hyperrolic
aiditivity, 188, [92-[93, 195,200,243,245,289
cosine model, 393-394
distance. see: distance
geometry, see: geometry
horocyde (horosphere), [13. 120-121
involution, see: involution - spaa'
parullels (diverging), 113, [20-123, 184, 327
tangent

pnxiuct as single-peaked valence function,
8().!Q 186-196,213-219,272.284-286,
299-300,387-388,292,397

response(ideal axis)function 70-72, 74-77,
80, 13\, 137-139, 141, L47-149, 163,
[74-176, 179- 182, llD-211, 245-246,
248, 272, 279, 286-288. 292-294, 298,
330,336,369,373,377-379

Ideal axis, see: monotone valence
mixed valence

Ideal point. 12-13,27-28,37-40,78-79,8 [-85, 185
198. 204-206, 214-220. 233, 237, 260-261,
263-264, 266, 268-269, 276-279, 283-285,
290-291,297-300, 3m-305J71, 386-391,415
dynamics. see: dyrulmic relativity

Indifference
axis, see: InDnotone valence
contDur, see: mixed valence

single-peaked valence
range, see: conflict- single-peaked valences

Inlransitivity, see: similan'ty - asymmetric
similarity - symmetric
preferern:e

Invariance
dimensional, see: InellSllremenl - invariance

distance. see: disram::e
geomtric, 238
measurement, see: measurement
metric, 238
reference, 232-241, 262, 265, 270, 275-278
structure. 234-235, 275-276
space (scale) transfonnation

dilation (cenlrnl), 235-236, 265, 275
linear, 51, 61, 65, 115,231-232,250,260

263.271,274,280,286,296-297.329
translatioll, 98-99. 235-236, 265, 275
rotation. see: rotation invalUlJICe

Inverse tr.msfonnation
response, 72, IO!. 127. 144, 146, 148. 152.

155-157,162-163.174.180,266
ideal res()JllSe axis, 177. 179. 183,205-200
single-peaked valence, 101. 188-189.214-220

Involution space (geometry). 137. 148, 15L-152.
174,233.272,279,287.289.297
Euclidean, 149-153.155 163, 174
hyperbolic, 71. 76,137, 149-151. 153, 165.

172.174.177.181192.291
quasi-elliptic. 146. ISO. 152-151 174

lso-distant contour.
jso-wlent,198-199.204,206
response. 133-136. 146. 150-151, 161.181
r-metric,97-98, 102, 193, 197-199.205

lsoroorphism (isoroorphic spaces), 234-238, 265,
275-280,289.291. 299-300, 325
asymmetric. 269, 276-278, 282, 284-286, 299
symmetric 269, 276-278, 286

Iso-valent contour
mixed valence space

representation in:
Eudidean Bowers~ 201
hyperbolic Bower space. 202
quasi-res(Xlnse space, 202
Euclidean stimulus space, 202. 212.

roonOlone valence space. 172-174, 177-178.
18D-181
representation in:

Euclidean Bower space, 180-181
Euclidean stimulus s~ L72. 178

177.181-183.204
hyperbolic Bower space, L8D-181.183
open response space. 172-173, In,

180-182. 204
single-peaked valence space, 187-188, 193,

195-196,199,205,268
representation in:

Euclidean Bower space, 185, 195,
197-199.205-206.215,268

Euclidean stimulus space, 199.205
206,215

hyperbolic Bower space, (93. 195,
197-199,205-206,215,268

open quasi-response space, 196-L97

Just noticeable
sensation

absolute level, 41-42, 5D-52, 61, 120.294
differences (jod), 5CJ.-52, 55-56, 62-63. 99
increments, 5CJ.-5L 292
level (point), 37. 41-43, SO, 56, 61. 64-66.

85,102,115-116,120,122-123,144.
151. 183, 186.215,231. 233, 250.
259. 261, 263, 276, 281-282, 287.
295. 303-304. 306, 308. 310, 319.
324.366,373,375,381. 392, 412-414



adaptation-level dependence, 4142, 50,
56. 6\, 65, 250" 281, 295, 300

coincidingdeprivation-level, 37,66, 83-86,
190. 197.237.261, 303.324.371,4D9

space origin, liS, 151, 186, 197. 215, 259
stimulus

threshold, 50, 56, 59, 61, 64, 66, 83. 246
248,289. 294-2%. 306-307
absolute. 50, 59, 61. 295-296

Learning,
association, 4, 28-29. 4\, 72, 245
categorisation. 338
collective, 424-425,427
conditioning, 28, 412
discimination, 28-29, 67
generalisation, 42, 67-68. 284
mathematical models, 425, 427
reinfurcelmlt. 28-29, 291
theol)'. [8,28-35.66,80,85, 184-185,283,

338,427
hedonic properties, 28-35, 72, 78-81, 245

I...emniscate,
see', monotone valence - space geometry

I...ewin's field theory, 49, 91
Umitedlunlimited desire, 34, 6. 45, 89
Linear vector mode[, 167-169, 187-188, 19!
Logistic probability function

see: cumulative probabilityjimction
response· probabilityfimction

discrimination. 65-68, 142, [67,330,336-337,

Matching,
cross-nxxlality, 22, 53, 55, 65-66,115-116,

118-119,280,425
magnitude sensation, 53-56, 58. ffi.62, 66,

[14-117, 119, 122, [25-126,240,245,
247.250,262,293,296,303

space configuration, lOO, 152-153, 155-156,
l(il 166, 405
Procrustes procedure, [53, 157, 159-160,

[66.168,2[9,325,342-343
I\1DS (l11llti-dimensional scaling, non-metric), 14,

73,95-96. 13\, 135, 153-156, 167-168,263
265,267-269.303,338-339

applicability, 154-156,263-269,326,343
artifacts. 362-370

choice mxlels. see: similarity -probabilitymodel
individual difference, [31, 133, 154,168,265.

341
metric(Euclidean), 162-163, 166.339.341-342.

345,348,351.353.356

49]

probabilistic (stoehastic), 96. 131, 338, 353.
359-365

semi-metric,
see: response - Im/tridimensional analysis

Meaningfu[ness,
see: measurement - invariance - dimen~iorw.t
quantitative relationships, 227-228, 230-232.

235-237.257,259,285-286
impossibility in psychology, 227-228, 23 [,

239-240,244.249.263-265,269,274
]Xlssibility in psychology, 228. 231, 248,

250-251, 259, 263, 266, 269, 274,
284,300

rotation- and translation-invariance, 92
rv1easurement (fundamental theory),

bisection. 254-256.
by-product of theory, 285-290, 296
classical scale types

absolute. 228. 230
interval, 13, SI, 54, 229--232. 235, 249

250,252,254,256
log-interval, 228, 230-23 I, 239, 252-253,

258,271
nominal, 228-229
ordered-metric (hyper-orrlina1), 13,229, 263
ordinaL 227-228. 236. 266. 268
000, 52-53, 57, 65, 149, 227-232, 236,

239,251-258,271,282-283
conjoint comp:ment structures (ordered)

associative, (additive, multiplicative) 231
232,245-246.251-254,256-258,259,
272,274
]Xl[ynomial additive. 230. 252

non-associative (non-additive, generalised
associative). 232. 239-240, 243, 253
257,259,270,285,288-289
h~lic additive. 232 243, 245, 288

equivalence soucture, 227-228, 232, 242-243,
246,248,257,288

extensive, 227-228, 230-23\, 239-241, 251,
256,270,288-289
derived, 228, 230-231, 239-240. 251-252
inferred, 228, 242, 244, 246. 249, 257,

282-283,286,375
ostensive, 228, 239-240, 251-252
trnnsforrned, 228. 246, 249, 256. 270, 272

273.283,284,291,2%-301. 375
difference or distance structure, 230, 239-240,

251-252
dual-homogeneoUS, 27128 I-284, 286, 299-300
geometric foundation, 98, 227, 245, 264-270



494

homogeneous,
between singular maximum and minimum

271-273,279,282-283,286-289,298
between zero and unit points, 274, 279

between singular minimum and distinct
lillXim.un, 270. 273, 283-284, 298, 299

infinite, 255-256. 270-273, 295-297
invariance, 232, 236. 243-244, 246, 248, 250

dimensional, 231, 236-239, 249, 258. 260
261,263-266,270,280
oomparuble sensaJ:ions., 250, Z{{)"261,

263. 269, 271, 275, 280, 284,
286,289

monotone valences, 251. 263, 286
power-raised fmct:ion scale,

physical, 238-239, 249, 258-259,
261-262, 27L 274, 280, 289

psychophysical, 262, 269, 275, 280,
286

responses.. 251, 263, If!), 275, 286, 289
single-peaked valences, 251,263,269,

275,284.286
non-hOloogeneous, 271, 273, 286, 296
scale uniqueness (definition), 229

(0.0,1 h absolute probability, 230
(0, [,Oh fraction scale, 231. 251-252
(0, I,i)-, dimension1ess power-raised

fraction scale, 231, 258. 263, 271,
280

(0,1,\)-, random Poisson variable, 230
(0. [,1 l-, utility (monotone valence t == I),

246,283
(0.2,0)-, distinctly (Xlwer-mised stimulus

ti:action scale, 23 [, 257-259, 272.
280,286,2%

(0,2,0)-. comparable sensation scale. 231,
236,250,259,261-263,271-272.
275, 28Q..281, 283-284, 286, 297
2'f7, 300

(0,2, 1)-, monotone valence scale, 281-283,
289,298

(0,2,1)-, random variable probability, 230
(0,2,1)-, res(X>nse scale, 273, 275, 281-282

284,286-287,296
(0.2.2)-, single-peaked valence scale, 273,

275,283-284,286,290,299-300
(0,3,1)-, random variable probability, 230
([,0,0)-. ratio scale, 230, 232, 257-258, 271
([,0,1)-, dimensionless, (Xlwer-mised ratio

scale. 231, 258, 27[, 280
(1,0,1)-, log-interval scaJe,230-231,258, 27[

(I, I,O)-, distinctly (X>wer-raised ratio scale,
257,259

(l, I, 1)-, inferred-extensive utility, 244, 258,
283

(2,0,0)-, interval scale, 23Q..232, 258, 264,
280

(2,1,0)-, dual-bilinear utility, 257, 283
Minkowski geomelry

r-metric, 96-98,102-103,124-126,136-138,
167, 192-193,235,353
related to cllIVa1ure of non-Eudidean

represen1llOOns, 103- HXi. Irn, 113, 125,
140,145-146, 158,179,213

variable (distance-dependent), 197-[98,206
sensation space, see: sensation - space -flat

Mixed valence
additive (rotation-dependent weights), 44, 200,

387-388,401, 403, 4O'i-407
function (asymmetric), 202, 226, 401-407,

arctangent-based, 2(JJ, 387
hyperbolic tangent-based. 2fJ7, 387

hyperOOlicaily additive, 200, 224
ideal axis, 201-202
indifference, 202, 401, 407
iso-valent contour, see: iso-valent contour
multidimensional analysis,

non-metric,2fJ7
semi-metric, 200-201, 2fJ7, 22Q..224

open Finsler geometIy, related to
sensation space,

Euclidean. 200-202, 2fJ7, 221
hyperOOlic, 200, 202, 207, 222

theory, 200-203, 2(JJ, 22Q..221, 387-386, 405
407,411

Monotone valence
additive, 175-179,210,298,374-375,377,387
function derivation, 7Q..76

arctangent. 174, 176, 184,210,212,233,
374-375.377,378

hyperbolic tangent, 71, 75,172-174,176
[77,180.210-212,233,245,374-375,
377, 387

ideal axis
response space. 172-179, 181, 183-185,

201.203,200-212, 245, 282-283,377,
387

sensation space, 172, 174, 176-177, 180
[82,201. 208-210

stimulussp-a::e, 177, 182-[84, 201-,2og..200,
211

indifference axis, 173, 179-183, 204, 208



iso-valent conlOur, see: iso-.~ienr contour
measurement. see: measuremel11

- by-proJuct ojtlwory
- scale uniqueness - (0,2,1)

multidimensional analysis,
non-metric, see: linear vector model
semi-metric, 207-213

space geometry, 101.172-178,213
lemniscate, 173-174, 177-178

theory, 7-10,45, 70-76, WI,I72-179,184-185,
207-200,387-388
see also: utiltiy - axiomatic rlwory

Network (adaptive learning, neurnl), 30-32, 35, 354

0ptima1 scaling, see: scaling
Oversaturation,7, 15-16, 19,26,36-37,77

Pain. 3-5, 19, 36-37, 39-40, 43, 45, 86, L79, 184
Perceptual decision

independence vs dependence, 368-369
separability vs integrality, 363-369

Pleasanlness I unpleasantness, 3-7, 11, 15, 17, 27,
32,34,37-44,49,74-75,84-86,90

Portfolio theory, 386
three-cornponent model, 386-392

Power exponent
bias (choice probability models,)

see: similarity - probability model
preference· probability model

conjoint measurementparameter, 239, 254-257
dimensionless (physical), 230-23L 237, 239,

249,258,262,271,274,284-285,296
dimensional (psychophysical), 52-55, 57, 65,

71-72,77,100,102, lW, 116, 151, 163,
167,208-209,214-215,231-232,238., 241,
247,249-250,252,261-262,267,271_278,
280-281,286,289,291-297,300, 330

conS!aJlcy,66, L17, 122, 246-247, 250, 259
260,262,281. 294-295, 303
estimation, 294-296
maoching, 53-55, 114-117, !l9-123, 126
rotational, lOO, lW, 114-116, 118, 122,

124-127,167,231,238,258,262
relationship

adaptation level, 56-61, 63-66, 115,
120-126,154,233,241,250,259,
281,290-296,303,300,312

range, 59-61, 122,244.294-295
Weber fraction, 62-63, 247, 292

ideal stimulus space axes, 184, 208
growth function relation with risk decay, 420,

428,436,442
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ratio scale (space), 52, 62,126,230,246,250,
253, 258-259, 262, 270, 274, 280
see: measurement· scale uniqlleness -(1,0, J,)

lneasurement -srnle lIf/i'll/mess - ( J, 1,0,)
stimulus-fraction scale (space),

see: measuretrent- smlewriql~ - (0,2,0)
Power law, see: power exponel11- dimensional
Preference,

asymmetric (i-over-j), 372, 379, 388, 393-396
asymmetric function, see: mixed valence
conflict (dilemma), see: conflict
data (bipolar rank order), 171, 189, 200, 208,

211, 216, 218, 221, 224
d}'llamics, see: dynamk: relativitv
function, see: monotone vale~ -fimction

single-peaked valence -junction
formation theory, 7, 12,76-77,376
intransitivity, 243, 371, 378, 386, 392, 397
probability model (with bias), 395-397
symmetric (i--or-j), 379, 388, 395-396

Principal components (eigen-vectors-valuesj
cosines ofdistances, 157-159, 162-163
hyper1xllic cosines of distances, 163, 165-166,

335,340,342-343,350,396
vector cross-product matrix, 160, 163-164,

166,209-21 \, 217, 222-223
Probability

function. see: amwlative probabilityjunction
subjective, 6, 9, 373-3n

Procrustes, see: matching - space configumtion
Projection

circular, 172-174, In-178,267
inverse radial, 80. 131, 138-139
inverse stereographic. 181
orthogonal,173-174, 178.180-182.184,201,

203-204
nrlial, 135-140, 146, 157, 181
spacerransfurmation. 77, 98,100.102, 131-133,

138. 140, 146. ISO, 154-155, 172, 188,
196,214,268-269,272, 275. 300, 313,
316,321,324,329,333
see also: geometry - projecrin:

involution space
stereographic, 137-141. 147, 162

see also: hJperbolic tangent
Prospecttheory, 11-12, 241-142, 274, 283. 376-377
Psychometric response function. 292-293
Psychophysical function,

see: psychophysics - IInidimensional
power~nt - dimensional
Feclmer -law
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controversy I consistency ofalternatives, 52-55,
85,117-118,126,238,247,281

measurerrx:nt, 240, 246-248, 292-293
scaling, see: scaling - WlidimensionaI

Psychophysics,
unidimensional, 49-66, 291-2%
multidimensionaL [01-110, 114-127, 231, 238

Punislunent [8-19,29-34
expected. 69-72. 78, 86,245
aversion (process) system 14-16, 19,32-34

Pythagorean expression.
Euclidean,97, 102, lOO
Minkowskian. 97, 103
hyperbolic. 103, 106, lOO-I la, 118, 243
elliptic, 103, 107, 145

Quantity (subjective volume/area magnitude), 60

Ratio scale.
see: Jrl£asuremenl - extensive

- classical scale types
- scale unupleness -(1,0,0),

R"'""re
invariance, see: invaritmce
leveIs.. see: }/Cdonic properties

Relativity
dynamics. see: dynnmic - relativity
psychological, 12,20..23,26-27.35,49,56-57,

67-70,72,74, 135,234,300,303-393
physical 96, 99, 108,227,229,238-239,243,

249,257, 270, 274, 280. 288-289
Response

anticipatory, 29-30, 32, 49, 69, 79
dissimilarity,see: similarity
function, 67-76, 80, 140-145,288, 342

see also: arctangent
hyperbolic tangent

uniqJer=;.IOl, 131, 142, 145,279.282
iso-distant contour:

see: iro-distam· response contour
measurement,

see: IfIe(ISUrement - .wleUTlUJlIOleSS 10.2,1)
multidimensional analysis

data specification, 167-168
non-metric, see: MDS
semi-metric (of response spaces)

o(X'll-Euclidean. <> oomm:m Euclidean
stimulus space, 156. 162-165

open-hyperbolic<>comm:m Euclidean
sensarion~.161.163, 165-166

single-elliptic <> oonunon Euclidean
sensation space, 156-162

probability function, 61-u2, 74, 131-134.279
see: cumulative probabilityfimction

- Cal/chy
- logistic

preferential, see : monotone valence
thoo<y

multidimensional, 131-152, 267, 281-282,
286-288

unidimensional, 66-73. 136-139
similarity, see: similan'ty
space geometry (open alternatives), 95, 140,

154-156, 174, 179,267-270,272.282-283.
285,287,298,326,371
open-Euclidean, related to:

rmnotone valence space. 172-173,
176-178, 181, 298

hyperbolic sensation space, 140, 149
150. 276" 280, 286, 288, 298,
313,321,333,339.361,368

Euclidean stimulus space, 133-134,
149-151,155,167,277.280,298.
343,368

open-hyperbolic, related to:
m:motone valence space. 174, 176,

178-18l, 245, 298
Euclidean sensaJ:ion space, 134, 149

150,152,161-162,166-167,179
181, 265. 277, 287. 298. 321,
339.348.355,368-369

hyperoolic stimulus space, 149-152,
287.298

single-elliptic, related to:
monotone valence space, 171, 174

178.181,282-283,298
Euclidean sensation space, 137-138,

140.142,144-147, ISO, 152-153,
158-162,268.272,286-287,297,
322,340-341,348,356,369

double-elliptic stimulus space, 137,
146, 150-152,287,297,353

Reward, 28-29,
expectancy, 32, 34, 49,67-70,72,81,244-245
processtsystem. 14-16, 32-34, 78-79

Risk-adaptation themy.
see: road traffic· risk - adaptation theory

Risk-homeostasis \hevl)',
see: road traffU:· n'sk. -llOtneOstasis theory

Risk preference
gamble risk (single-peaked), 371, 386-392
road traffic risk (single-~ or mixed), 407

408,411-414



Road traffic,
growlh.

adaptive evolution aspects, 418, 424
limired (non-exlXlnential), 419420, 423
S-shaped function of titre, 419424,

Gompertz, 421422, 428
USA, 423-424, 433-434
The Netherlands. 434435

risk (indiviudal), 407-408, 411-415
adaptation theory, 411415
compensation, 412414, 417418
indifference-range shifts. 414-415
hotreOstasis theory, 412-413
tineal-avoidance theory, 413414
zero-risk theory, 408, 412

risk (colle:d:ive)
titre-dependent decay, 427428, 436437

exponential decay, 415416
faIality risk, 39J, 395-3%

relationships with
mathematical leaming models, 425,

427428
risk-adaptation theory, 415416, 418

419.43Q-43],437
traffic gm\Vth, 416, 425-428

Rotation invariance, 98, 101-102, 1lli-107, 110,
114-116, ll8, 124-127, 172, 175,234,236
237,258,262-263,275
conditional,98, 187, 191, I%, 299-300

Satiation, 6-7, 16-18, 51, 77-78, 413
Saturation level, 26-28, 32, 3545, 49, 74-9[, 179,

185-186, 189, 195,202,215,233,293,299,
300,324,4[2413
reflected deprivation level, see: deprivation

Scaling
multidimensional see: MDS

lIJJjofding
optimal (alternated data scaling and analysis),

155-156, 160-161, 165-166, 168, 171,
188-189, 1%,205,207, 2(})-21O,212-215,
218-221,224,335,358

Wlidimensional magnimdes
direct or fractionation, 53-55, 60-62, 65

66,115,117,119,122,262
mean category, 52-55, 57-58, 292-293
response, 292-295

Sensation.
comparable

intensity, 58-66, 81, 102,263,291-293,
296-298,312-321, 323-325, 33D-331,
355,366, 370

497

valence, 8i, 185,200,215-220,235,260
263,,283, 29J, 297,299-300, 324-325,
371,386-387,393-3%
equivalence with intnsity-comparable,

81, 186, 19J, 197,261
measurement, see: measurement - xale

lIJJiqueness - (0,2,0;
just noticeable, see: just noticeable
relativity, see: relativity - psychological
scale invariance, 61, 64-65. 115.321,236,250,

260,263.271,274,280,284.
see: invariance - transjomuuion -linEar

measurement - invariance
space geometry

flat (EuclideanlMinkowskian),related to:
monotone valence space, 174, 176

182, 184.245-246
resp.Jnse space, 138, 140-146, 148

15D-153. 157-162, 165-166, 181,
265,277,287,297-298,321,330,
347-349,351-353.355-356, 369

single-peaked valence space, 187-188,
190-191,195-1%,199,201,216
218,284,299.273,393,396-397

stimuluss~,%, 100-108, 113, 149
15], 165. 1%. 277, 287, 2W,
297-299,3~331,343,393

hyperbolic, related to:
monotone valence s~, 174, 177,

18D-181, 245-246
resp::ttSespace.138, 140, 149-150, 152,

155,161, 163-165, 181, 245, 276
277, 280. 282. 286-288, 279-298,
333-335. 343. 349-35 [, 353, 356,
368-369

single-peaked valence space, 186,
188,188,191-193.195-1%.198
199,218-220,284,287.393,395

stimulus space, 108-110, 112, 114,
116-122, 147, 149-152, 155.163
165,1%,199,218-220,223,239,
276-277,280.282, 290,297, 299.
313,321,326-329,333-335.339,
343,353,355.361. 368

Signal (neural)
fucilitationlinhibition,24-25, 29-32 291
trnnsduction (transmission), 25, 29-34, 81, 291

Similarity (dissimilarity, confusion)
asynunetric and intransitive [(i-to-j), target

biassed1308, 314, 319, 337-339, 343-355,
357-358.365-367
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dynamics, see: dvnamk relativity -(dislsimiltJrity
magnirude, 332. 334-336, 338-340, 344-350,

352-353,356,394
multidimensional analysis

see:MDS
response , multidimensional (IJlJ]/yses
similnrity - probability nux/el

model.
deterministic vs stochastic. 357-359
distance- and density-derendent. 347,

368-370
feature..o:mtrast, 347,354-355,365. 368,

370
general context" 339, 347. 366, 368
general recognition, 132.364-365

see also: MDS - probabilisric
hybrid spatial and hieran:hicaL 347,

368,370
probability rncx:Iel (biassed, MDS-based)

additive, 341-342
multiplicativebias. 345-346,349, 352

353
multiplicative dual bias, 356

arctangent-based, 332, 351-352
multiplical:ive bias, 349, 352-353
multiplicative dual bias, 356

exponentially additive, 339-340, 342-343
multiplicative bias, 345-346
(Xlwer-raised bias, 350, 353, 368
po'.'ler-raised dual bias., 356

eXJXlnetltially multiplicative. 300
multiplicative bias, 314-315. 321
po\Ver-raised bias, 317, 320-322
power-raised dual bias., 324

hyperbolicaJly multiplicative, 340.343
multiplicative bias, 345-346, 352
trultiplicative compound bias, 350. 353,

368
nrultiplicativecompounddual-bias.356

symmetric (between i and j),
transitive distance representation, 74, %,

98,113,131-133,135,152, [54-[68,
235,251,264,267, 273, 279, 285-287,
317,332,338,389

intransitive, 267, 308, 317, 321-322, 339,
343,356-358,364-366,370

relativity, see: Ifynamic relativity-(dis)similarity
Sing[e-peakedness,

foundation propet1ies
adaptation-level theory, 20-28
aspir:JJ:ion theory. 7-11

arousal potential theory, 14- [6
unfolding theory. 16-19
[earning theory, 28-35

integrated foundation, 28, 35-36, 38 -45, 70-85
Single-peaked valence

dynamics. see: Ifynamic relativity - prejerenr:e
function.

asynnnetric. see: mixed valella
arctangent-based, [86-186, 189-[91, 194

195.290
hyperbolic tangent-based78-85, 186- [%,

272.290
indifference contour, 191, 196. 198,205, 284
iso-valentcontour. see: iso-valent contour
measurement.,

see: rrliX/.W.remenl -scale uniqueness -(0.2,2)
multidirrensional analysis,

non-metric, see: unfolding
semi-metric,

open Fins[er spaces - common
Euclidean sens<rionspace, 213-2 [8

open-hyperbolic spaces - common
Euclidean stimulus space, 214,
218-220

product ofquasi-resIX»JSe spaces, 186-187, \90,
195-197,273,283,290

space geometry,
open-hyperbolic. re[ated to:

sensation space, 10 I, 186, 188. [91
193, 195-[%, [99, 214, 240.
278,284,290,299

stimulus space, 199, 214, 218-220.
290,299

open FlJlS[er, related to:
sensaOOnSJ.R'e, 101, 186-189, lo:xJ-l97,

205,214-218, 284. m, 299-3OJ
stimulus space. I%. 290. 299-300

th""Y
unidirrDnsional see: single-peakedness
multidimensional, 185-199

Singular value decomposition. 209, 213
SteVens(')

magniD.ide scaling:
see: scaling - unidimensiol1aj magnitudes

- direct orjracti(HIati(HI
subjective - stimulus mo.gnitudes

power function,
see: fXTlWr exponem - dimensiono.l

psychophysics - ul1idimenskmo.l
space, 115, 120, [22

see also: psychophysics -multidimensional



Stimulus
furtion scale,

, see: measurement-scaleuniqueness -{OJ,G)
rauo-scaIe, see: ratio scale
subjective IUlgIlillide, see: subjective
space geomeny

doub[e-elliptic, related to:
resp:mse space, 137, 146, 150-152,

248,272, 287, 297, 299, 353
sensation space, 103, [08, 124-126,

137,14[,145-146, ISO, 153, [87,
190,33 I. 333, 340, 393

single-peaked valence space, [87, 190,
1%, 2m, 290, 299, 393

Euclidean, related to:
monotone valence space, 17&177,

182-184,204,208-212.
response space, [33, 138, 148-151,

153155, [62-167, 176,245,248,
272,277,280,287,298.32&329,
334-335343,349-350,364

sensation space, [08-[20, 127, 133,
137,141,147, [49-153, 19J.203
2Cfl, 211. 214, 238. 245, 268.
280-287,290,297-299,343.349
350,369,392-393,395

single-peaked valence space, 188- [89,
192-[93,1%,I99,205,2Cfl.2!4
215,218-219,290,299-300.393,
395

h~rbo]jc, related to:
responsespace, 138, 149-150, 163, [65

167, 277, 287-288. 298, 330-331
sensation space, 102-105, 112, 124

125.138,149-150,2[4,277,287
288,298,330-331,393

single-peaked valence space, [86-187,
189-[91.1%,2Cfl,21O.214,21&
218,298,300,393

non-Euclidean, 96, HX>-I03, 108, [[&117,
124-126, 137, [42, 151-152, [87, [97,
230,238,281,290,297,3%

Subjective
ex~ utility, see: utility -subjective expected
probablhty, see: probability
stimulus magnitude. 52-63, 72, lOO, I [3-117,

122-126,233,238,24-241,24&248,250,
258,262,284,286,291. 293-296, 330

499

Threat avoidance theory, see: road traffic - risk
Traffic growth, see: road traffic - gro~1h
Transitivity violations

see: similan'ty - arYllunem'c -intransitive
similarity - symmetTlc - intransitive
preference - intramitive

Underdeprivation, 27, 3&37, 77, 83, 85
Unfolding analysis.

unidimensional, 12-13.266.397
multidimensional

non-metric, ,13-14. 74, 95, 204-2Cfl, 214
215,221,224,249,264.266,268-269,
397
individualdifference, 194,205-205,278

probabilistic (stochastic), 205, 397
semi-metric, see: single-peaked valence

multidimensional analysis
Uniqueness

metric I geometric, 238, 263, 269-270, 284
response function alternatives. 279
scale, see: measurement - scale uniqueness

Utility,
asymmetry of losses and gains, 12, 70, 241,

245,283,293
axiomatic theory, 228, 241, 256-257, 283

rank- and sign-dependent, 70, 241-244,
257-258.283

expected, &1 I. 23, 372-374
dynamics, 7-9, 11, 76,371-379.381-389
nXJtlOtone function, &7, 67. 69, 72, 77. 243-244
multi-attribute theory, 12, 14,82
subjective expected 6. 9-11. 376

additive (conjoint measurement), 376
additive difference model, 378-379
psychophysical response theory, 244-246,

248,377-381. 387-388

Valence. see: mixed valence
monotone valence
single-peaked valence

Visual vs oIXic-Euclidean space, 32&329

Weber('s)
fraction (modified), 50-51. 55, 62-63, 247,

292. 308-300, 311
law. SO

Zero-risk theory, see: road trq[fic - n'sk





Matthijs J. Koomstra (1941) graduated in psychology at Leiden University, where
he worked from 1961 to 1986. The first five years as research-assistant and the
next five years as researcher at the Computer Centre and the Psychological
Institute, subsequently from 1971 to 1978 as senior researcher at the Department
of Data Theory in the Faculty of Social and Behavioural Sciences, and from 1978
to 1986 as (crown-appointed) vice-president ofLeiden University. In 1986 he was
appointed as director of SWOV (Research Institute for Road Safety, The
Netherlands) and after 1999 as director of SARA (National Centre for Advanced
Supercomputing and Networking, Amsterdam). Meanwhile he lectured road safety
for 10 years at Delft University of Technology and was or is president or member
of governing boards for scientific foundations, academic visiting committees, and
(inter)national scientific councils. Since 2002 he works as independent research
advisor for international organisations (ED, ETSC, OEeD, ECMT, WB, WHO,
and WBCSD). He obtained his PhD at Leiden University and is co-author or
co-editor of several books or congress proceedings on road safety as well as
author or co-author of more than 120 scientific articles or reports on data analysis
methods, road safety, and diverse domains in applied and theoretical psychology.

e-mail: matthijs.koomstra@insightconsult.n1




	Contents
	Preface
	Ch. 1: The Foundation of Choice Theory 
	Ch. 2: Psychophysical Response and Valence Theory
	Ch. 3: The Geometries of Stimulus and Sensation Spaces
	Ch. 4: The Geometries and Analyses of Response Spaces
	Ch. 5: Valence Space Geometries and Preference Analyses
	Ch. 6: Measurement-Theoretical Implications
	Ch. 7: Psychological Relaticity and Choice Dynamics
	Ch. 8: Choice Conflicts and Dynamic
	References
	Author Index
	Subject Index



