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Preface

Crossing Disciplinary Boundaries: RWTH Aachen and Springer
Start a New Publishing Partnership

This first volume of the new Interdisciplinary Excellence Accelerator Series
(IDEAS) is the first major outcome of more than a year of joint work with its
inception in a 2-day publishing lab workshop with researchers from the Excellence
Cluster “Internet of Production” at RWTH Aachen (Germany) and editors from
Springer held in March 2021. The aim of the online event was to understand current
researcher needs and pain points, as well as exploring ideas for potential solutions.

The event was well prepared – including a survey which RWTH Aachen
addressed to students and researchers at their Cluster of Excellence – and eventually
centered around two main themes in research and publishing:

• How to accelerate the journey from research to publication and scholarly
knowledge transfer?

• How to facilitate truly interdisciplinary research and publishing?

In what follows, we put forward the three tenets which the participants of this
workshop have agreed upon as the way to encourage, enhance, and propagate
accelerated interdisciplinary work.

Tenet 1: Reduce the Time Between Research, Publication, and
Scholarly Knowledge Transfer

Scientific research has accelerated dramatically over the last decades. This is not
only a consequence of the rise of digital technologies and the Internet. Emergencies
such as the Covid pandemic and the climate crisis have also increased the political
and public demand for faster research outcomes. The development of effective
Covid-19 vaccines in less than one year after the pandemic hit can be considered
as an impact of such demand.

v



vi Preface

On the academic side, researchers with good reason would say: If you want us
to produce research results faster, then you have to provide us with the appropriate
tools, resources, and dissemination infrastructure.

Academic publishers have not always fully understood current researchers’ needs
in their actual lab and scholarly environments. Particularly, it takes too much time
for research results to become available in the scholarly knowledge transfer and
teaching. One can highlight this by pointing to textbooks which, in many cases, take
between 3 and 5 years from conception to their release. By that time, the presented
research results and data are often outdated already. This might have been fine in
former decades with a much slower pace of the research progress. In a time of
accelerated research, this is not fast enough anymore which is a severe problem.

At the publishing lab, we clearly addressed that research publishers need to find
solutions to bring current research outcomes into the scholarly knowledge transfer
and academic teaching with a much faster turnaround. And there are a number of
ways to do so:

• An “Online First” publication may be one part of the mix.
• Solutions to provide researchers, teachers, and students with the ability to

compile and recompile their material themselves according to current status and
requirements may be another part.

• Keeping content up to date in a more continuous way instead of publishing new
editions every 3 to 5 years is yet another component.

Many of such partial solutions already exist, yet the challenge is to combine them
in a smart and convenient way – also balancing the classical triangle of time, quality,
and value – so they have a positive impact on scholars.

Tenet 2: Make Interdisciplinary ReviewMandatory

The second major theme of the publishing lab was the interdisciplinary aspect
of research. It is a matter of fact that the global challenges of our days require
researchers to overcome the boundaries of the discipline silos. In consequence, the
Cluster of Excellence “Internet of Production” at RWTH Aachen puts a particular
focus on interdisciplinary research: “With the Internet of Production, our vision is to
enable a new level of cross-domain collaboration” (https://www.nature.com/articles/
d42473-019-00089-5).

Yet, the reality in research and publishing does not always fit with such demand
for interdisciplinary research as we discussed at the publishing lab:

• Although it is often quite clear which academic disciplines are required to
collaborate on a given field of problems, it is a common experience that putting
researchers from different disciplines at one table is not sufficient as they might
not understand each other due to the languages, jargons, and even the academic
approach specific to their disciplines.

https://www.nature.com/articles/d42473-019-00089-5
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Preface vii

• While interdisciplinary research is the order of the day, research communities
tend to prioritize and reward the outcomes and publications within their own
disciplines rather than interdisciplinary work.

• Research methods and data frequently stay within their discipline boundaries
instead of being mutually shared between the disciplines, where applicable.

• Existing publishing formats do not intrinsically encourage researchers to cross
the bridge to other disciplines.

The discipline silos also become apparent when it comes to peer-review. Peer-
reviewers, by the nature of their remit, may not bridge the gap between the
disciplines and at the same time, cross-discipline1 reviewer recommendation is not
a common feature in peer-reviewer finder tools either.

In the ideal world of the Excellence Cluster “Internet of Production,” the reality
would look as in this simplified example:

1. A researcher in Mechanical Engineering shares research data from the lab.
2. A Computer Scientist reviews the data and writes an analysis.
3. A Social Scientist reviews the analysis and writes a reflection.
4. Every single step is published and adds to researchers’ credits.
5. All three pieces together (points 1, 2, and 3) make up for the final research

publication.

We also thought about where exactly do people from different domain back-
grounds come together and actually talk to each other as well as jointly experiment
on their ideas. In the IT and tech domain, this is common practice and is termed
“hackathons.” So why not establish dedicated peer-review events that follow a cross-
domain approach such as hackathons do. Such events would also accelerate the
reviewing itself. And more than that, events like this might over time help cultivate
a language that different disciplines understand and which would also help building
interdisciplinary communities and allow cross-discipline application of methods
hitherto used in siloed disciplines only.

Tenet 3: Use books as calls to action and solution vehicles

This first book of the Interdisciplinary Excellence Accelerator Series (IDEAS) is
a starting point. It is composed of chapters each of which has been prepared by
an interdisciplinary research team. In the spirit of agile development, we want to
iterate over the course of the next 2 to 3 years in order to introduce a new way
of collaboration (including dedicated review events) together with a new research

1 In this introduction, the terms “cross-discipline” and “interdisciplinary” are being used inter-
changeably.
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publishing format which we call Crosstracts. It is this new concept of Crosstracts
which will allow researchers to:

• Find potential collaborators at an early research stage
• Publish research and research data early and faster
• Recognize the various stages of the knowledge and manuscript creation
• Make interdisciplinary review and feedback mandatory, collaborative, and trans-

parent in a novel and constructive manner
• Facilitate interdisciplinary research with a positive impact on global challenges

and societal recognition
• Boost the creation of cross-discipline communities with a language and knowl-

edge configuration that all participants understand
• Resulting in a cross-discipline book series that is engineered in such a way that

it crosses the boundaries of single disciplines with a much earlier re-usability in
the scholarly knowledge transfer (in German: “akademische Lehre”)

There is a reason why we decided to begin with a book series. First of all, books
are a great opportunity to experiment, iterate, and adjust on the way forward. But
there is more to it. Books have an impact both on the consumption side – i.e.,
for their readers – as well as on the side of their creators. The various existing
book categories – such as monographs, handbooks, textbooks, encyclopedias – all
require their authors to create them in a specific way. In consequence, books are not
only helping their readers to achieve certain goals, e.g., passing exams. Books are
increasingly also specific calls to action toward their authors themselves.

This is exactly what a Crosstracts book series wants to achieve: Make it
obligatory to interdisciplinary research teams to not only collaborate but also
mutually review each other’s research and hence truly understand and influence each
other, so the whole of their interdisciplinary research becomes greater than the sum
of their discipline-specific parts. In that very sense, books are not only representing
research outcomes to an audience. They are also an excellent solution vehicle for
research teams in general.

It is a beginning of the change which academia has always been seeking, and it
is an ongoing process. We call upon readers of this publication to come forward and
suggest further improvements, ideas, or initiatives to contribute to a new reality of
truly interdisciplinary, fast, and impactful scholarly knowledge transfer.

VP Content innovation. Springer Nature, Henning Schoenenberger
Tiergartenstr. 17, 69121 – Heidelberg, Germany.
henning.schoenenberger@springer.com
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Editorial

With the Cluster of Excellence Internet of Production (IoP), more than 200 scientists
from the fields of production engineering, computer science, materials engineering,
social science, and business administration are simultaneously facing up to the task,
but also the obligation, of addressing future challenges and goals for production
technologies with all their facets to generate innovative solutions and practical
concepts to shape the production of tomorrow.

The vision of the IoP is to identify relevant data from production, development
and use in real time, select, and reduce it in a form that it can be used adequately by
solving interdisciplinary tasks and thereby provide the decisive research impetus
for shaping the future of digitalization in production engineering. This involves
industrial artificial intelligence, advanced manufacturing and materials, intelligent
data infrastructures, and a holistic view of the future of work. This means the main
task is to derive and create real added value from the gigantic amounts of data
that already exist in all areas of production – for the entire production itself, the
individual machine, and all the people involved – described by transferring the IoT
to the world of production.

Interdisciplinary publishing presents us with major challenges. What is already
“state of the art” for some is applied in another discipline new research for others.
By linking topics that have already been researched in different disciplines, new
fields of research emerge as limitations are re-challenged. Each discipline has its
own language, styles, and requirements for scientific publishing. Whereas in one
discipline the description of applications and use cases is mandatory, in others
they are considered to be delicate or even frowned upon. And even the internal
review process, with different disciplines looking at each other, cannot always be
fully transferred to the topics. Often, no direct feedback on the work can be given,
but rather a new perspective can be shown, an outlook on upcoming topics can be
considered, and a dialog is created that requires and enables a view beyond one’s
own focus.

Fortunately, together with Springer, we were given a unique opportunity to
understand and approach publishing in a new way. We developed a new series called
Interdisciplinary Excellence Accelerator Series (IDEAS). The series enables a new
form of fast publication anchored in the spirit of interdisciplinary collaboration from
authorship to review to publication. The resulting high-quality books can be used

ix



x Editorial

both by academics and practitioners for different purposes ranging from teaching to
research and knowledge transfer. This book is the first of this series.

To provide a fast publication process and taking in account that most readers
only read certain chapters of their interest, the individual chapters of the book are
intended to stand on their own. The book is intended to provide an overview of the
challenges of tomorrow’s production technology and describe initial approaches to
solutions along the way.

This book presents and summarizes the interim results of the Cluster of Excel-
lence during the first half of the funding phase under the Excellence Strategy. For
more detailed results, reference is made to corresponding scientific publications. An
update with further research results will follow.

We would like to thank all scientists for their extraordinary commitment and
excellent results, as well as the German Research Foundation (DFG) for funding
the Cluster of Excellence “Internet of Production” in the funding period of the
Excellence Strategy.

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Inter-
net of Production – 390621612.

Aachen Prof. Christian Brecher
May 2023 Prof. Günther Schuh

Prof. Dr. Wil van der Aalst
Prof. Matthias Jarke
Prof. Frank T. Piller

Melanie Padberg
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Abstract

Changes in society require changes in our industrial production. In order to
remain competitive in the future, the masses of data available in production must
be used urgently. This is still a challenge because data are often not accessible or
understandable. Therefore, we developed the Internet of Production (IoP) con-
cept which aims to collect, unify, and exploit different data sources and improve
production. To this end, the various research domains of production technology,
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the need for a common infrastructure, and the concept of the Digital Shadow are
presented. The vision can only be achieved through interdisciplinary cooperation
between different disciplines. Therefore, the joint approach is explained and
common research topics are presented. Interdisciplinary cooperation is the key
for further steps to achieve the common vision.

1.1 Introduction

Production technology plays a central role in our economy. In order to avoid
overcapacities and overproduction, to keep production in high-wage countries
attractive, and to meet the needs of customers for more individuality of products
(mass customization), a stringent digitalization of all production assets connected
with production and the continuous involvement of the employee is necessary
(Brecher et al. 2017). Even though this development has been observed for a long
time under the term Industry 4.0, few digital solutions have been used in industry
so far, and, in particular, end-to-end networking from the shop floor to the office
and data exchange across company boundaries is still not feasible. Although large
amounts of data are available in production technology, they are often inaccessible,
uninterpretable, or incomplete. This can have technical and organizational causes,
as can be witnessed in many projects. Either technical hurdles, such as the selection
of suitable protocols and databases to provide data, or organizational hurdles, such
as ensuring the reusability of data, are addressed. However, the larger vision of
universally available data enabling new business models takes a back seat. A lack of
trained staff and dealing with new risks also pose major challenges for companies.

The internet and approaches such as the Internet of Things (IoT) have revo-
lutionized the availability of data and knowledge (Schuh et al. 2019). Therefore,
advances under the terms such as Industry 4.0, the Industrial Internet of Things
(IIoT), and Made in China 2025 have been made to combine technological advances
in Internet and Communication Technologies with the production technology
(Jeschke et al. 2017; Mueller and Voigt 2018). However, these concepts cannot
be transferred holistically to production technology. The number of parameters
in production plays a decisive role here. So for knowledge to be generated from
data in the production context, these data sources need to be extremely networked,
contextualized, aggregated, and processed. An Internet of Production is necessary.
The following vision was defined for this:

The vision of the Internet of Production (IoP) is to enable a new level of cross-domain
collaboration by providing semantically adequate and context-aware data from production,
development and usage in real-time, on an adequate level of granularity.

The IoP pursues the idea of laying the foundation for a World Wide Lab
in which production engineering models can be used across domains (Schuh
et al. 2019; Kappel et al. 2022). The research project therefore connects material
engineering with production technology and management on all life cycle phases
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through a digital infrastructure and business modeling. Each operation carried out
is a potential experiment. New insights can be gained from the data provided.
For this, an infrastructure must be created that connects data from different
production domains, makes the data usable through modeling and aggregation, and
provides algorithms for extracting knowledge. Therefore, we developed new data
science approaches and artificial intelligence techniques ranging from reinforcement
learning to process mining. At the center of the IoP is the human being who
orchestrates the production technology (Brauner et al. 2020). This requires a
new kind of collaboration between different disciplines: building on a strong link
between production technology, materials science, and information technology, the
production technology of tomorrow can be designed with the help of various sub-
disciplines of the social sciences and management.

The necessary interfaces between the different research domains, a detailed
presentation of the vision and the concepts (see Sects. 1.2 and 1.3), and the first
success reports of the interdisciplinary research (see Sect. 1.4) are presented in the
following sections.

1.2 Research Domains in Production

In order to take a holistic view of production technology, the three life cycle phases
of development, production, and use must be considered:

Development (Fig. 1.1): Product development is always at the beginning of
production. Increasingly, however, it is becoming more and more iterative, based on
findings from production and use. Agile product development is therefore strongly
intertwined with three processes and methods: market development, prototype
engineering, and production. The goal is to radically reduce lead time while at

Fig. 1.1 Dimensions of the development cycle
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Fig. 1.2 Dimensions of the production cycle

the same time exceeding customer expectations. To establish new processes and
methods, organizational structures must be investigated and data structures must be
developed to overcome semantic conflicts and performance latencies. In addition,
technologies for prototyping are needed, which in turn support the agile adaptation
of the product with the help of process data. A minimum viable product together
with relevant data provided by the IoP enables continuous stakeholder involvement
and cross-domain collaboration.

Production (Fig. 1.2): Within the production cycle, there are three essential sub-
areas that only lead to high-quality products in harmony with each other: the
consideration of materials, production technologies, and production management.
The goal is to create an environment in which the production system can act
adaptively despite uncertainties. For this purpose, data from all areas with their
metadata must be made available across domains. The selection and use of
materials forms the basis of the production process. Therefore, it is all the more
important to incorporate findings from the production process and use into the
selection of the material. For a longer service life, dynamic production scenarios
and condition monitoring of components can be included. Adaptive production
requires the reduction and composition of heterogeneous engineering models of
production technologies to be able to analyze data from production in real time.
This enables production management to make faster and better decisions to adapt
highly specialized processes at all other levels of the company.
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Fig. 1.3 Dimensions of the usage cycle

Usage (Fig. 1.3): The usage phase of the products and equipment should bring
new insights for the development and production of products. Networked data,
products, and equipment generate added value. This means that products and
equipment must also provide data during usage. Moreover, many manufacturers
engage crowdsourcing of critical feedback and innovative ideas from premium
user communities. Through holistic data management with the help of descriptive,
prescriptive, and predictive mass data, product update specifications can be created
and thus the product can be regularly renewed. In addition, human interaction with
the product, the equipment, and associated services can be improved. Interfaces
to the technical systems need to be developed that contribute to the development
of capabilities, the evolution of organizational structures, and the selection of an
appropriate governance mode. Production systems become more transparent to
people. This is achieved through an internal view, which deals with the cooperation
of the human with the technical system, and an external view, which deals with
possible platform and business models.

Following the discussion above, the IoP Cluster of Excellence has been organized
in five Cluster Research Domains (CRDs): one for the development perspective
(Fig. 1.1), one for usage (Fig. 1.3), and one for each of the three dimensions of the
production cycle (Fig. 1.2). Each of the CRDs is further subdivided in work streams
in which interdisciplinary teams address specific research challenges or use cases.

Moreover, all three domains have one thing in common: they need an open,
shared infrastructure to unfold their potential. Therefore, a conceptual, physical,
and functional infrastructure has to be developed that connects all major domains
of networks of companies within a World Wide Lab in the future. The World
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Wide Lab should enhance a cross-company and international division of labor and
cooperation for mutual learning from dependencies. Moreover, to ensure resilience,
we need to carefully manage dependencies and limit the outflow of knowledge. The
infrastructure must enable the execution of multi-agent models and data streams in
distributed communication networks within and between layers while guaranteeing
the required performance, reliability, security, and safety at all levels. In order to be
able to use the extremely heterogeneous production data in a cross-domain manner,
knowledge graphs (e.g., Noy et al. 2019) must be provided with data sources that
provide the user with access and the data structure, as well as the context. In order
to generate new, cross-domain knowledge from the data, reduced models must be
combined with data-based algorithms and thus enable context-adaptive actions. In
the future, it can be assumed that the domains will merge more and more. With
the existing data and new cooperation between companies, new business models
can be established that disruptively change production technology in its processes
and organization. Furthermore, in the context of the circular economy (Riesener
et al. 2019), the life cycle phases will no longer run sequentially with individual
information returns. Rather, the life cycle phases will close in a circular fashion.
Extensive knowledge about the history of individual components is therefore
required in order to be able to feed them into an R-cycle. The basis for this can
only be provided by the IoP, which includes all life cycle phases and provides an
open, common infrastructure.

1.3 Objectives of the Internet of Production

To make cross-domain data access and cross-domain models user-friendly for a
growing number of experiments throughout the World Wide Lab, we developed
the concept of the Digital Shadow. In the growing literature on Digital Twins
(Bauernhansl et al. 2018; Jones et al. 2020), Digital Shadows are often interpreted
as the data supply link from the physical systems to their Digital Twins. However,
this is only one of the aspects why Digital Shadows are important. As Fig. 1.4
illustrates, a World Wide Lab would host a huge variety of reusable Digital Shadows
as condensed knowledge integrating reduced mathematical models with captured
data from all phases and domain-specific perspectives, ranging from very small
(materials science) to very large (worldwide management). The network of Digital
Shadows thus constitutes the conceptual core of the IoP infrastructure.

Digital Shadows (Jarke et al. 2018) are based on recorded raw data streams –
for example, heterogeneous production, development, or usage data. These data are
transformed into knowledge with the help of production models. For this purpose,
the data must be semantically processed, and an application-specific aggregation
of the data of all domains relevant to the problem must be carried out in a task-
specific granularity. To this end, the domain-specific knowledge, which is provided
through mathematical or physical models or established standards, is extended
with data-driven models with the aim of formalizing knowledge and acquiring new
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Fig. 1.4 Digital Shadows in the Internet of Production (Jarke et al. 2018)

knowledge in order to provide recommendations in real time. The Digital Shadow
enables different views to be taken and is continuously being developed. In this
way, parallels between different use cases are to be found and knowledge transferred
between domains.

In order to be able to implement the concept of the Digital Shadow, the infrastruc-
ture (Schuh et al. 2017) in production technology must be understood and expanded.
The raw data in production engineering is heterogeneous, often unstructured, and
application-specific. They are created in highly specialized software, machines, or
sensors for which no uniform formats are defined. Therefore, an action layer is
needed to handle these heterogeneous, highly voluminous, distributed data streams
from production and to make them available in a seamlessly interoperable way.
Based on this, a layer is needed to process the data (Smart Data). The data
is described by means of comprehensive data models and processed and made
available in a real-time and context-sensitive manner. By combining abstract and
structured knowledge, the data is transformed into new insights using advanced
analysis methods (e.g., process mining and other machine learning techniques).
These new insights are made available to the experts as intuitive and interactive
decision support (Smart Expert). Therefore, advanced engineering tools have to be
developed in order to integrate new data-driven models.

It is not enough to describe the infrastructure theoretically: it must rather be
implemented in direct application in the research and industrial environment. The
Digital Shadow must not remain a concept. Hurdles must be jointly identified and
removed through interdisciplinary cooperation. As Fig. 1.5 shows, interdisciplinar-
ity is the key to the vision of the IoP.
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1.4 Fostering Interdisciplinary Research for the IoP

Interdisciplinary cooperation has grown over the years. Different scientists look at
particular challenges in their domains (e.g., Niemietz et al. 2021) and gradually
expand their solution space to other domains or disciplines (e.g., Kunze et al.
2021). It is a development from mutual empowerment, via linked research work,
to converging issues of different domains. Figure 1.6 illustrates how the Cluster of
Excellence IoP is organizing this challenging process in three major stages – across
over 30 research institutes together with many external partners. In addition to
getting external partners involved in specific use cases or by leveraging commercial
platforms, intense debates in a comprehensive Delphi study (Piller et al. 2022) have
instigated further research challenges and hypotheses to be further explored in the
time range up to 2030.

In relation to the production domains, this means in many cases that the scientist
identifies a problem and first collects data with the help of internal or external
sensors. This data is usually processed and stored. Afterward, various data-driven
algorithms (e.g., in combination with physical models, Brecher et al. 2022) are
used to gain new insights. On this path, a first interdisciplinary exchange is already
necessary, since the scientists have to think about the suitable infrastructure in
addition to the actual production-technical problem, which is not trivial for each
application (Pennekamp et al. 2019). The number of available technologies for
networking production plants and algorithms is unmanageable and is constantly
evolving, and the optimal use of suitable parameters poses a great challenge to
scientists (e.g., Rom et al. 2022).
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Fig. 1.6 Fostering interdisciplinary research: three stages of the Internet of Production

Technologies from the field of computer science are thus becoming enablers of
production technology research. Organizing World Wide Labs requires contribu-
tions from different disciplines (Brauner et al. 2022), such as the deep intertwining
of reduced physical models and their context adaptation by machine learning
from data streams in Digital Shadows (Liebenberg and Jarke 2020); ensuring data
quality and reusability of Digital Shadows by detailed provenance information
(Becker et al. 2021); developing policies for sovereign data exchange across
organizational boundaries (Jarke 2020), supported by industry-specific security and
privacy technologies (Pennekamp et al. 2021); and the networking of individual
Digital Shadows for the analysis of larger cooperation contexts, such as supply
chain analysis, transfer learning across use cases (Baier et al. 2022), and process
mining which provides techniques for process discovery, compliance checking, and
predictive process analytics (Abouridouane et al. 2022; van der Aalst et al. 2021).

With the help of mutual enabling, a mutual understanding of the domains under
consideration is created. The next step is to develop a common language (e.g.,
Mertens et al. 2022). With the help of this common language, common questions
can now be developed. This is a central step for the development of a World
Wide Lab. The concepts from computer science should not simply be applied to
the production technology infrastructure. Commonalities and mediating data layers
must be established that enable a real transfer between different domains.

To foster interdisciplinary research, the research program is extended with struc-
tural objectives. A Research School hosts different measures to give the researchers
orientation inside the Cluster of Excellence. Internal and external conferences
are organized to give the researchers the opportunities to have regular exchange
regarding their research ideas and outcomes. In Research Summits, researchers
take courses on interdisciplinary work and provide each other micro-trainings on
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enabling technologies. Leaders of the Cluster Research Domains and the work
streams get special training on leading an interdisciplinary group. But also the
promotion of young talents is important to sensitize students for the challenges
and chances of interdisciplinary research. Therefore, Research-Oriented Teaching
is performed by adding research topics into lectures, supervising interdisciplinary
theses, and integrating student assistants into cluster-related tasks.

1.5 Conclusion

Production technology is a key part of our economy and needs to adapt to changing
societal needs. Hence, more knowledge about processes and the interaction between
humans and the processes have to be gained with available, but unstructured, data.
Therefore, the vision of the Internet of Production was introduced, which demands
cross-domain collaboration for gaining problem-specific knowledge from adequate
and context-aware data. Concepts like the Digital Shadows and the World Wide
Lab were introduced, which are based on an overarching infrastructure and bring
together the main research domains in production: development, production, and
usage. A strong collaboration between researchers from production technology,
materials science, information technology, social sciences, and management is
mandatory. The domain-driven research challenges lead to new interdisciplinary
opportunities. First, success stories and the framework for working interdisciplinary
by enabling the researchers through special training are presented.

The Cluster of Excellence Internet of Production reached the middle of the
funding phase of 7 years. It can be seen that there is a good progress on
reaching domain-specific knowledge through the usage of data-driven methods in
the production environment. Although there are already a lot of collaborations
between the different disciplines, the different domains have to come closer together.
More transferable methods need to be found. With the great challenges ahead –
decarbonization of the industry, circular economy, shortage of skilled workers, and
aging society – important production and product knowledge must be enhanced and
preserved. Therefore, the vision of the Internet of Production must be carried into
industry.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production –
390621612.
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Abstract

Digitization in the field of production is fragmented in very different domains,
ranging from materials to production technology to process and business models.
Each domain comes with specialized knowledge, often incorporated into math-
ematical models. This heterogeneity makes it hard to naively exploit advances
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in data-driven machine learning that could facilitate situation adaptation and
experience transfer. Innovative combinations of model-driven and data-driven
solutions must be invented but also made comparable and interoperable to avoid
ending up in information silos. In future World Wide Labs (WWLs), experiences
can be shared, aggregated, and used for innovation. WWLs will be complex,
evolving socio-technical networks of interconnected devices, software, data
stores, and humans as users and contributors of expert knowledge and feedback.
Integrating a large number of research labs, engineering, and production sites
requires a capable cross-domain Internet of Production (IoP) infrastructure. The
IoP project claimsDigital Shadows (DSs) to offer a shared conceptual foundation
for infrastructuring the IoP. In engineering, DSs were introduced as the data
provision link to Digital Twins, whereas in computer science, DSs generalize
the well-established concept of database views. In this chapter, we elaborate
on the roles of DSs in infrastructuring the IoP from three perspectives: analytic
functionality, conceptual organization, and technical networking. As an example
where an integrative DS-like approach is already highly successful, we showcase
the approach and infrastructure of the process mining field.

Keywords

Digital twin · Digital shadow · Data integration · Industry 4.0 · Internet of
production · Manufacturing · Industrial infrastructure · Process mining

2.1 Introduction

Manufacturers need to handle vast volumes of heterogeneous, raw data with some
machines capable of generating more than 1,000 different sensor signals, partly
with enormously high sampling rates. Such amounts of data cannot be processed
together close to their sources anymore. In addition, production processes may
involve multiple machines, storage systems, transportation systems, and interactions
with suppliers and logistic partners. Along industrial process chains, this complexity
increases due to the different processes and, in some cases, within a single
production line for reasons of variant diversity and mass customization.

Today, data is often stored without conceptual descriptions, engineering models,
and their relationships, which prevents systematic reuse within and particularly
across domains such as materials engineering, production technology engineering,
operations, and management, as well as inter-organizational information exchange.
The Internet of Production (IoP) project at RWTH Aachen University aims to inves-
tigate, prototypically demonstrate, and evaluate worldwide networks of production
sites and research labs to cope with the challenges of industry like productivity,
product variety due to make-to-order manufacturing, and sustainability. In our
vision, a global interconnection of production sites and research labs forms the
World Wide Lab (WWL), offering a controlled exchange of Digital Shadows even
across organizational boundaries.

Compared to strategies like “Industry 4.0,” “Industrial Internet of Things,” and
“Made in China 2025,” the IoP aims to go deeper in its cross-domain focus. It
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requires novel domain-specific combinations of physical models and data-driven
machine learning algorithms but also a common abstraction that makes them
interoperable and exchangeable. The IoP project postulates the so-called Digital
Shadows to be suitable for this task. As a situated (often real-time) means of
reducing the statistical uncertainty of even the most advanced generic mathematical
engineering models, DSs require the continuous integration of underlying data
sources, which are heterogeneous in location, structure, and semantics, toward
purpose-driven, aggregated, multi-perspective, and persistent datasets (Becker et al.,
2021). The resulting datasets can feed and/or trace simulation models in Digital
Twins. Our core hypothesis is that a well-designed collection of DSs is suitable as
a cornerstone of infrastructures for designing, creating, and managing WWLs. This
requires not only the powerful functionalities enabled by the novel construction of
DS but also a suitable conceptual organization and physical infrastructure design.

According to theories of digital infrastructures (Pipek and Wulf, 2009), their
successful creation and evolution require an iterative process of top-down design
and bottom-up usage feedback, called infrastructuring. The IoP infrastructuring
process, therefore, drives the further DS formalization and tooling with a stepwise
buildup of more and more complex use cases, starting with local domain-specific
and first data exchange experiments and prototypes, followed by more and more
complex scenarios in WWLs among scientific and industrial partners.

This chapter is organized as follows. After reviewing recent related work in the
fields of Digital Twins, Digital Shadows, and sovereign cross-organizational data
sharing in Sect. 2.2, this chapter, therefore, discusses challenges for the functional
requirements, conceptual modeling, and technical infrastructure of a DS-based IoP
infrastructure in Sect. 2.3.

Complementing the already well-understood logic-based foundations and algo-
rithms for heterogeneous data integration and analytics around structural data
models (Jarke and Quix, 2017; Lenzerini, 2019), the DS-like formalisms of process
mining constitute a highly successful core middle-ground abstraction for dynamics
in the IoP, which we summarize in Sect. 2.4. Section 2.5 concludes the chapter.

2.2 RelatedWork on Digital Twins and Digital Shadows

Digital Twins have become a hot topic in the engineering literature in the last
years, and several surveys have appeared. The DT concept was initially proposed
by Grieves as a vision toward product life cycle management (Grieves, 2014). Their
fundamental structure consists of a physical system and a corresponding compu-
tational model serving as its DT, which are dynamically synchronized through a
mechanism known as twinning, cf. Fig. 2.1. The DT is generally regarded as a
structural, optimization, or simulation model that represents the physical system.
The twinning process involves two phases: the physical-to-virtual link, where
physical system measurements are analyzed and the DT is modified accordingly,
and the virtual-to-physical link, where the physical system is controlled using the
information obtained from the DT.
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Fig. 2.1 Digital Twinning concept iterating between physical and Digital Twins (© the authors)

One significant development that has been consistently pursued in the context of
the IoP is the recursive extension of the concept of a “physical system” to include
cyber-physical (production) systems (CP(P)S). This extension involves managing
federated networks of DT pairs within and across multiple interacting life cycles of
engineering, production, and product usage. Lim et al. (2020) identify eight different
perspectives and provide an in-depth analysis of engineering product life cycle
management and business innovation. Meanwhile, Zhang et al. (2019) and Melesse
et al. (2020) argue that research on DTs for product-service systems is becoming
increasingly important due to the significant value that services can provide.

Fuller et al. (2020) identify Digital Shadows with the physical-to-virtual link, as
shown in Fig. 2.1. However, the reality of this link is much more complex.

In their extensive review of the literature, Jones et al. (2020) divide the physical-
to-virtual link into two parts: a metrology component that involves specifying and
executing necessary measurements for real-time data analytics and a realization
component that determines the changes required in the DT. Consistent with our
findings in Pennekamp et al. (2019), they also highlight the IT requirements
for implementing the link. These include advanced network algorithms based on
Industrial IoT frameworks, such as those used for sensor and actuator management;
efficient and effective information logistics over these networks; and data manage-
ment, monitoring, and learning algorithms necessary for each step.

Bauernhansl et al. (2018) suggest a roadmap for examining the intricate infor-
mation logistics that are necessary for DSs to efficiently and effectively provide
information in today’s dynamic industrial environment. Although a few studies have
acknowledged the IoP’s emphasis on the extensive integration of rapid mathematical
engineering models and advanced data-to-knowledge pipelines using layers and
networks of DSs as reusable objects, we are not aware of any studies that have
investigated this topic in comparable depth and breadth.

Bazaz et al. (2020) highlight how the absence of clear data ownership can
exacerbate these challenges. Moreover, a significant concern, especially by highly
specialized production enterprises, is the loss of sovereignty over the use of their
confidential know-how in such information logistics settings by keystone-player-
driven data platforms or the violation of data privacy laws. To address these
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problems, the concepts of Industrial Data Spaces and alliance-driven platforms have
been derived in broad empirical studies (Otto and Jarke, 2019) and elaborated into
a comprehensive reference architecture (Otto et al., 2022) for alliance-driven data
exchange ecosystems. The IoP infrastructure adopts this basic sharing approach
but makes it more specific by choosing Digital Shadows as the unit of knowledge
sharing in inter-organizational data exchange. The arguments for this choice include,
from a business perspective, the added value created by advanced methods for
producing the Digital Shadow and the provenance documentation associated with
that. From a technical perspective, the relatively small size of DSs compared to
the vast amount of underlying data reduces network contention and enables the
distribution of computations over multiple levels of Digital Shadows.

2.3 Infrastructure Requirements and DS Perspectives

The IoP infrastructure for data processing, AI, networking, and smart human inter-
faces needs to integrate methodologies from different perspectives, as summarized
in Fig. 2.2. The requirements for the functional perspective include a range of
powerful techniques for a huge variety of short-, medium-, and long-term tasks but
also for task layers all the way from basic data integration up to model-integrated AI
shadows and suitable interactive visualizations. In designing all these, there should
be a balance between general and still directly applicable data science and ML
techniques, keeping the continued shortage of human specialists in mind.

For the conceptual foundation linking these many aspects of DS, data must have
semantics but at the same time be generic. Much of the existing modeling work
in this area is either too general that one cannot apply interesting data science/ML
techniques or it is very specific for a particular application.

Distributed execution and controlled sharing of data analysis functions with high
performance, reliability, and security is addressed from a physical perspective. This
perspective aims to provide an interconnected technical backbone of the Internet of
Production, as sketched in the lower layer of Fig. 2.2.

The following subsections elaborate on these challenges in some more detail.

2.3.1 Functional Perspective: Data-to-Knowledge Pipelines Using
Domain-Specific Digital Shadows

Digital Shadows provide domain-specific access to heterogeneous data from differ-
ent sources, structures, and semantics. They prepare the application of data-driven
machine learning methods, embedding engineering knowledge in the form of
physical, predictive, and simulation models to raise relevance, performance, and
explainability. For example, reduced mathematical models can be exploited as
evaluation functions in neural network-based learning; conversely, the statistical
uncertainty handling of generic mathematical models can be made significantly
simpler and more precise by continuous monitoring of actual situations. Generally
speaking, this requires deep and broad extensions to the emerging field called
informed machine learning, as surveyed by von Rueden et al. (2021).
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The data-to-knowledge pipelines (pathways from lower to higher levels in
Fig. 2.2) help to transform massive data into insights while providing meaningful
actionable knowledge to decision-makers.

Today, the transferability of learning outcomes between fields of application
has only been realized in a few particular contexts. Correspondingly, the network
of production-specific data-to-knowledge pipelines could enable the derivation
of similarities between pipelines across different production settings to enable
transfer learning within and across domain or organizational boundaries. As one
example, the IoP project developed a user-centered planning tool with an integrated
decision support system based on human-centered AI (Schemmer et al., 2020) that
demonstrates how to increase the efficiency and reproducibility of planning process
chains for fiber-reinforced plastics production.

Due to the massive sensor stream processing and real-time analytics in the IoP,
data cleaning and integration may only happen on demand. The current numerical
design of manufacturing processes based on Digital Twin simulations is unsuitable
to directly support real-time decision-making at the machine. The Digital Shadow
is based on a reduced simulation model, which focuses on only currently relevant
aspects. This data must therefore be adequately provided and composed.

Since this data-driven approach blurs the distinction between design time and
runtime of production systems, novel validation techniques need to be developed
to account for and monitor adaptations in functionality, contexts, and constraints.
Using AI methods allows distributed planning and scheduling as well as execution
of production processes at all levels. Novel visualization and interaction methods
need to be developed that minimize biased decision-making and support the
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understanding of complex data. Process mining can be used to diagnose and improve
quality and performance problems in complex systems with high concurrency.

2.3.2 Conceptual Perspective: Organizing DS Collections in aWWL

Although the infrastructure for the IoP should be generic, Digital Shadows need to
be contextualized using purpose-oriented metamodels and ontologies. Data-driven
approaches (e.g., machine learning, visual analytics, heterogeneous data integration,
or process mining) require data and models in particular formats. On the one
hand, aspects such as latency, scalability, connectivity, and security can be largely
addressed while abstracting from the semantics of data and models. On the other
hand, data can only be used in a meaningful way if there are suitable metamodels
and/or ontologies. Models also need a specific structure and semantics in order to
be used in an expressive manner.

For example, one can view both Petri nets and neural networks as graphs.
However, this is not very meaningful. Analysis techniques for both classes of models
are disjoint. Hence, data and models need to have structure and semantics to be
meaningful in the context of the IoP. However, one should also avoid building an
infrastructure and using data formats and models that are specific for a particular
application (e.g., data generated by a particular machine). Different applications
should use the same IoP infrastructure, and data formats and models should be
reusable. One does not want to create new storage formats or machine learning
techniques when a new machine is added. In other words, we need to find a trade-
off between keeping things as generic as possible and at the same time being
specific enough to create standardized storage formats and model types that enable
the creation of data-driven techniques that help in decision-making and process
improvement.

It is essential that the huge amount of data is organized and contextual-
ized according to metamodels. The metamodels must be integrated into a cross-
disciplinary life cycle with iterative data aggregation along sequential engineering
stages. This requires concepts on storing and linking data from distributed stores
within the Digital Shadow.

Specifically, partial metamodels are being investigated from the following
perspectives:

• The bottom-to-top pipeline in Fig. 2.2 derives a hierarchy of DSs using principles
of database view management in heterogeneous data integration and mining
(Liebenberg and Jarke, 2020).

• From a software engineering and research data management perspective, DSs are
software artifacts created by model-driven generation and documented according
to FAIR principles with full relevant provenance and context information (Becker
et al., 2021).

• From an analytics and specifically process mining perspective, data must be
interpreted and integrated under an event-centric metamodel, cf. Sect. 2.4.
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• From a cross-organizational sharing perspective, DSs are valuable and therefore
threatened exchange objects for which a metamodel must allow the represen-
tation and monitoring of suitable service-oriented policies and business models
(Jarke, 2020).

• A metamodel of the physical infrastructure underlies the secure and reconfig-
urable workflows of efficient, safe, and secure distributed computation, storage,
and transport in complex physical networks (cf. Sect. 2.3.3).

Following established practice in metamodeling for method engineer-
ing (Jeusfeld et al., 2010), each of these perspectives needs individual
“middle-ground” abstractions in the form of dedicated reference metamodels (see
example in Sect. 2.4) whose inter-relationships can be maintained by their linkage
to a generic meta-metamodel of DSs with shared domain terms. Such a well-
organized collection of interrelated metamodels is under iterative development in
the IoP cluster, reflecting ongoing experiences with many specific use cases within
and beyond the cluster.

2.3.3 Physical Perspective: Interconnected Technical Infrastructure

The envisioned Internet of Production infrastructure ranges from monitoring and
control information at the shop level to process development and analysis. Achiev-
ing this requires a combination of network infrastructure measures and scalable data
stream processing techniques, along with decentralized process control methods,
to enable high-performance, reliable, safe, and secure distributed communication
networks that support distributed multi-agent model executions and data flows. A
dynamically reconfigurable architecture for these production-specific data flows
then enables secure industrial cooperation, which in turn leads to a steep increase in
data produced and consumed.

The requirements of the technical infrastructure can be grouped according to
three core challenges: Seamless low latency enables adaptive control operations
within network infrastructures. High-performance adaptive stream processing com-
ponents provide scalability. Security is key in industrial cooperation scenarios
through data security, data sovereignty, and stakeholder confidentiality.

The specific trait of these challenges is a trade-off, depending on whether data
is in motion, in use, or at rest. For example, for scalable data processing, data are
moved across a network to a cloud environment, thereby improving performance
while increasing latency and possibly decreasing security. Data in use resides in
non-volatile media where it can be processed with low latency. Data at rest, stored
in data warehouses or data lakes, enables long-term observation and analysis.

Starting with near-to-machine edge processing, the technical infrastructure
continues with processing rules that can be efficiently implemented in hardware
in a WWL. For example, an early IoP demonstrator (Pennekamp et al., 2020)
demonstrates executing performance comparisons among companies in the injection
molding industry under encryption, i.e., without revealing companies’ sensitive
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data to anyone. The approach utilizes homomorphic encryption to protect sensitive
information when performing computations on joint data.

2.3.4 Toward an Empirically Grounded IoP Infrastructure

A core goal of the IoP project is to find an overall architectural approach that brings
these perspectives together. Toward this purpose, numerous individual use cases
and experiments are conducted concerning different domains and perspectives of
DS development and usage, as reported in the remaining chapters of this book.

A series of increasingly powerful partial operational infrastructures are needed
to do this. On the one hand, they must allow researchers to demonstrate and
evaluate the DS-based approach of the cluster from engineering, social, economic,
and IT perspectives. However, on the other hand, they must interoperate with
commercially used tools to enable cooperation with existing lab equipment and
industrial environments. AI-inspired multi-agent architectures have been studied
in Liebenberg (2021) as a promising approach to bring several of the mentioned
DS perspectives together. It partially automates the search for data, knowledge, and
Digital Shadows and demonstrates that a combination of social and technical agents
is feasible in a WWL yet requires semantic interoperability to achieve the needed
provenance and explainability.

The infrastructuring approach maps formal strategic dependency and goal mod-
els down to software agents executed in a Kubernetes infrastructure that is in turn
linking diverse professional data management systems (loosely integrated as a data
lake) and newly developed microservices. The technical IT infrastructure was built
on an open-source software stack ensuring interoperability to commercial tools such
as Azure and MindSphere. Technically, this lays the foundation for automated data
streaming of sensor data from machines to their analysis by dynamically providing
connectivity, storage, and computing resources. The embedded data lake permits the
handling of relational, graph-based, document-oriented, and time-series data.

To illustrate the combination of IoP-specific and existing commercial resp. open-
source technologies in this multi-agent architecture, we briefly sketch its application
in a quite demanding engineering use case.

The high-pressure die casting process is a highly automated production tech-
nology that generates large amounts of data. Yet, the extensive breadth (number
of values) and depth (frequency and precision) require domain knowledge of the
process to select required data to facilitate product quality and productivity improve-
ments. In an experimental setup, Rudack et al. (2022) and Chakrabarti et al. (2021)
accessed multiple data sources based on the Open Platform Communication Unified
Architecture (OPC-UA) and transmitted them to a streaming pipeline defined in the
low-code programming environment Node-RED and executed by Apache Kafka.
The data are subsequently stored in our data lake, utilizing a MinIO object store as
the underlying storage system. A systematic hierarchy of high-dimensional DSs for
data analytics is combined with an AI-based recommender system for interactive
visual analytics, e.g., in product quality assurance (Chakrabarti et al., 2021).
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Tests confirm decent analytics capabilities and interactive usability at the func-
tional level, which deeper semantic models of the process will further improve. They
also show an industrially relevant performance for the use case, which requires up
to a few hundred messages per second.

2.4 Example of a Successful DS-BasedMetamodel: Process
Mining

As stated before, for the most relevant perspectives on the IoP, we need to find
trade-offs between keeping things as generic as possible and being specific enough
to create standardized storage formats and model types that enable the creation of
data-driven techniques that help in decision-making and process improvement. In
this section, we use process mining as an example technology that illustrates such a
trade-off nicely. Process mining is generic and not tailored toward specific processes
but provides a range of supporting techniques and tools. Moreover, process mining
is well-suited to analyze and improve production processes. For example, most car
manufacturers (e.g., BMW, Volkswagen, Ford, Toyota, Skoda, Fiat, Porsche, and
Ferrari) already use process mining, e.g., to ensure the timely delivery of parts
from suppliers, to optimize painting and assembly processes, to distribute cars,
and to improve maintenance. In the context of IoP, we analyzed, for example, the
production of e.GO cars at the plant in Aachen.

The starting point for process mining is event data. An event refers to an
activity happening at a particular point in time. In a classical event log, each
event refers to precisely one case. An event may have many more attributes (e.g.,
cost, resource, location, and organizational unit). However, the attributes activity,
timestamp, and case are mandatory. Process mining aims to improve operational
processes by systematically using such event data (van der Aalst, 2016). Process
mining techniques utilize a combination of event data and process models to gain
insights, identify bottlenecks and deviations, anticipate and diagnose performance
and compliance issues, and facilitate the automation or elimination of repetitive
tasks (van der Aalst and Carmona, 2022). The process mining discipline focuses
on concrete tasks such as process discovery (turning event data into process
models (van der Aalst, 2016)) and conformance checking (diagnosing differences
between modeled and observed behavior (van der Aalst, 2016; Carmona et al.,
2018)).

There are several open-source process mining tools; the best-known are ProM,
PM4Py, RapidProM, and BupaR. There are also over 40 commercial process mining
tools (see processmining.org for an overview). It is estimated that already over half
of the Fortune 500 are applying process mining (Reinkemeyer, 2020). Examples
include Deutsche Bahn, Lufthansa, Airbus, ABB, Siemens, Bosch, AkzoNobel,
Bayer, Neste, Pfizer, AstraZeneca, MediaMarkt, Zalando, Uniper, Chevron, Shell,
BP, Dell, Nokia, and the car manufacturers mentioned before.

There is a growing consensus that the assumption that each event refers to
precisely one case is limiting. This is particularly relevant when analyzing pro-
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duction processes. One assembly step may involve different parts, a machine, and
an operator. This leads to the well-known convergence and divergence problems
(van der Aalst and Berti, 2020; van der Aalst, 2021a). The convergence problem
surfaces when a fine-grained case notion is used and the flattening of the event
data leads to the unintentional replication of events, e.g., an assembly step is
replicated for all the parts involved in it. The divergence problem appears when
a course-grained case notion is used and causal relations between events get lost.
Classical process mining forces the adoption of a single view of the processes under
consideration. Object-centric process mining (OCPM) addresses the limitation by
allowing for any number of objects per event (van der Aalst and Berti, 2020;
van der Aalst, 2021a). This extension is highly relevant for the IoP and its Digital
Shadows. Examples of objects are products, sub-assemblies, parts, robots, workers,
machines, conveyor belts, etc. Events correspond to transformation, transportation,
and assembly steps. In IoP, we analyzed assembly processes using real-world data
from Heidelberger Druckmaschinen AG, a global manufacturer of printing presses.
Heidelberger’s printing presses are composed of many different parts, making the
traditional case notion limiting. Therefore, we combined object-centric process
mining where objects are organized in bills-of-material (Brockhoff et al., 2022).

OCPM uses the metamodel shown in Fig. 2.3. The metamodel is generic but
specific enough to allow for analysis, discovery, conformance checking, decision-
making, and automated process improvements. As mentioned earlier, the IoP
strongly relies on data that have clear semantics and that allow for a range of
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Fig. 2.3 Process mining metamodel: events have a timestamp, an activity, and other event
attributes. An event may refer to any number of objects. Each object has a type and attributes
that may change over time
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techniques, without being application-specific. The two main ingredients of the
metamodel shown in Fig. 2.3 are events and objects. An event has one activity and
a timestamp. In addition, an event may have additional attributes such as costs,
energy, coordinates, etc., and an event may refer to any number of objects. Each
object has a type and may have any number of additional attributes. The values of
object attributes may change over time. Therefore, object attribute values may have
a timestamp. Object attribute values without timestamps can be seen as immutable.
Object attribute values with timestamps can be seen as updates ordered in time.
Objects may refer to other objects using a qualified relationship. For example, it
is possible to state that one object is part of another object. There is a many-to-
many relationship between events and objects. Also, this relationship is qualified.
One may say that an event uses a set of objects or creates a set of objects. Note that
when using traditional process mining, there is just one type of objects (called cases)
and each event refers to precisely one such object. As mentioned, in IoP, we would
like to consider many different types of objects concurrently, including machines,
workers, orders, end-products, parts, organizational units, locations, shipments,
suppliers, etc.

Figure 2.3 shows an example of a concrete metamodel giving meaning to
events, objects, relationships, and attributes. The object-centric event log (OCEL)
standard provides a storage and exchange format for such object-centric event data
(Ghahfarokhi et al., 2021). Note that OCEL makes a few simplifying assumptions,
e.g., attribute values cannot change and relationships are not qualified. However,
both OCEL and Fig. 2.3 agree on the core concepts. Using such object-centric event
data, it is possible to discover object-centric process models and check conformance
automatically (van der Aalst and Berti, 2020; van der Aalst, 2021a). For exam-
ple, van der Aalst and Berti (2020) shows that it is possible to automatically learn
object-centric Petri nets showing frequencies, delay distributions, and probabilities
in an integrated process model describing the interactions between any number
of object types. Next to process discovery and conformance checking, there exist
techniques to predict the behavior of object-centric processes, detect concept drift,
analyze performance, and recommend actions to reduce operational friction.

By selecting a set of object types and a set of activities, one can easily create
views on the whole. For example, one can focus on particular machines, products,
and phases of the production process. For each view, it is possible to automatically
create process models showing performance and compliance problems.

Such views are composed of object-centric event data projected onto selected
object types and activities and object-centric process models. These provide con-
crete Digital Shadows that can be used to manage and improve production pro-
cesses. The metamodel shown in Fig. 2.3 strikes a balance between generality and
specificity. Application- or domain-specific data need to be mapped onto generic
concepts such as events and objects, thus allowing for a range of techniques
implemented in existing process mining tools.

Figure 2.4 shows the process mining pipeline (van der Aalst, 2021a). The first
step is to extract object-centric event data from existing data sources (e.g., ERP and
CRM systems). Such data can be preprocessed, e.g., selecting activities and object
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Fig. 2.4 The process mining pipeline showing the different types of artifacts and data processing
steps starting from object-centric event data

types, or using automated clustering. For the resulting views, dedicated object-
centric process models can be derived, thus forming Digital Shadows. Object-centric
process discovery techniques can derive object-centric Petri nets, Business Process
Model and Notation (BPMN), and Directly-Follows Graph (DFG) models without
any modeling.

Given the object-centric event data and object-centric process models, one
can apply object-centric conformance checking to find and diagnose deviations.
Similarly, one can apply comparative and performance-oriented process mining
techniques to diagnose execution gaps, i.e., significant differences between best
practices and actual process executions (van der Aalst et al., 2021).

In IoP, we develop open-source software tools such as OCPM (www.ocpm.info)
and OCPI (www.ocpi.ai) to support object-centric process mining using OCEL
(Ghahfarokhi et al., 2021). However, our ideas have also been implemented in
commercial software systems. A notable example is ProcessSphere by Celonis. This
helps us to realize a World Wide Lab leveraging event data from different orga-
nizations. Process mining techniques can provide backward-looking or forward-
looking analysis. Backward-looking analysis involves identifying the root causes
of bottlenecks in production processes, while forward-looking analysis involves
predicting the remaining processing time of ongoing cases and recommending
actions to reduce failure rates. Both types of analysis can lead to actionable insights,
such as implementing countermeasures to address performance or compliance
issues (van der Aalst and Carmona, 2022). Figure 2.4 shows predictive process
mining as an example of a forward-looking form of process mining. This results
in predictions that can be used proactively. The final step in the pipeline depicted
in Fig. 2.4 is prescriptive process mining. In this step, event data, process models,
and objectives are combined to trigger actions addressing observed or predicted
performance and compliance problems.

One main challenge is to extract event data from the source systems. Event data
may exist at different levels of granularity, and often there are data quality problems.
Once the data is extracted, cleaned, and stored using the metamodel in Fig. 2.3, the
whole pipeline depicted in Fig. 2.4 can be applied.

www.ocpm.info
www.ocpm.info
www.ocpm.info
www.ocpi.ai
www.ocpi.ai
www.ocpi.ai
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Another major challenge is the collection of event data across organizational
boundaries. Sharing event data may not be possible for some organizations, and they
may use unique identifiers and logging practices (van der Aalst, 2021b). Federated
process mining aims to tackle these problems by creating cross-organizational event
data in such a way that confidentiality is ensured (van der Aalst, 2021b). Federated
event logs make it possible to compare processes in different organizations and to
analyze processes spanning multiple organizations.

Process mining techniques benefit directly from a technical infrastructure that is
scalable, reliable, and safe. Process mining provides a strong conceptual foundation
for realizing Digital Shadows and a World Wide Lab. The metamodel in Fig. 2.3
shows that it is possible to provide generic technologies close to production pro-
cesses. The wealth of process mining tools and techniques supports the functional
perspective of the IoP infrastructure.

Although the scope of process mining is broad and covers all optional processes,
it is just one building block of the bigger IoP infrastructure. For example, techniques
for process mining do not support continuous processes and unstructured data (e.g.,
computer vision and object recognition).

2.5 Conclusion

The infrastructure of the Internet of Production (IoP) research cluster aims, in the
long term, to significantly facilitate the design, operation, and usage of World Wide
Labs for more effective, scalable, safe, and secure data and knowledge sharing and
usage across boundaries of domain, organizations, and even cultures. To bridge
these boundaries, this chapter presented Digital Shadows as a core metaphor across
all perspectives of the IoP infrastructure.

We showed that DSs have many different facets and roles, each of them requiring
specific theoretical foundations, such as supporting (meta)models, algorithms,
and software tools. For some facets, such as process mining or heterogeneous
data integration, existing foundations just need to be adapted to some special
requirements of the production sector; for others, we still need to identify such
“middle-ground abstractions” that make overly abstract meta-metamodels more
usable while still providing practical improvements for individual use cases and
customer applications.

These theoretical developments are empirically confronted with a large number
of interdisciplinary IoP use cases across research labs and with practice partners.
To enable these use cases, a series of increasingly powerful experimental infrastruc-
tures, including linkage to widely used existing systems, are being developed.

While the present chapter reviewed the overall vision, challenges, and an
integrative DS example as an infrastructuring concept, the status achieved in the
first three project years is presented in the following three chapters of this book,
addressing technical details, initial research results, and use cases for the physical,
conceptual, and functional-algorithmic perspectives.
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Abstract

The Internet of Production (IoP) leverages concepts such as digital shad-
ows, data lakes, and a World Wide Lab (WWL) to advance today’s produc-
tion. Consequently, it requires a technical infrastructure that can support the
agile deployment of these concepts and corresponding high-level applications,
which, e.g., demand the processing of massive data in motion and at rest.
As such, key research aspects are the support for low-latency control loops,
concepts on scalable data stream processing, deployable information security,
and semantically rich and efficient long-term storage. In particular, such an
infrastructure cannot continue to be limited to machines and sensors, but
additionally needs to encompass networked environments: production cells, edge
computing, and location-independent cloud infrastructures. Finally, in light of
the envisioned WWL, i.e., the interconnection of production sites, the technical
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infrastructure must be advanced to support secure and privacy-preserving indus-
trial collaboration. To evolve today’s production sites and lay the infrastructural
foundation for the IoP, we identify five broad streams of research: (1) adapting
data and stream processing to heterogeneous data from distributed sources,
(2) ensuring data interoperability between systems and production sites, (3)
exchanging and sharing data with different stakeholders, (4) network security
approaches addressing the risks of increasing interconnectivity, and (5) security
architectures to enable secure and privacy-preserving industrial collaboration.
With our research, we evolve the underlying infrastructure from isolated, sparsely
networked production sites toward an architecture that supports high-level
applications and sophisticated digital shadows while facilitating the transition
toward a WWL.

3.1 Introduction

With the deep integration of distributed, heterogeneous data producers and the
incorporation of intelligent, reactive consumers that reliably exchange and evaluate
data and make decisions in real time, the Internet of Production (IoP) is changing
the requirements for the underlying physical information infrastructure. Concepts,
such as digital shadows, data lakes of production, and the World Wide Lab
(WWL) with its global knowledge exchange (Brauner et al. 2022), require a
foundation that enables the seamless execution and transfer of physical, simulated,
and data-driven production models and data streams with excessive peak loads
in real time (Pennekamp et al. 2019a). The weakened boundaries between data
processing and network communication and the gradual shift of computational tasks
closer to the machines form the basis for the integration of complex, high-quality
control with maximum flexibility into a decentralized infrastructure to enable the
offloading of data-intensive tasks (Chang et al. 2014). Dynamic reconfigurability
of the underlying architecture guarantees constant adaptation of the processes to
the needs of production technology. Since a significant part of the value creation
of the IoP is generated by the exchange of information between stakeholders
from different, possibly mutually distrusting cooperation partners, an infrastructure
must take confidentiality into account (Gelhaar et al. 2021). Despite extensive
digitization, networking, and autonomy of production sites, humans also remain
an important factor in the operation, maintenance, and optimization of plants,
systems, and processes, as well as in decisions derived from an exchange of
information (Neumann et al. 2021).

An underlying technical infrastructure that meets these requirements has to
include all components of production sites, ranging from sensors and actuators that
are integrated into production machines to distributed data centers in the cloud, as
shown in Fig. 3.1. Digital shadows are a core concept of the IoP (Brauner et al. 2022)
and correspond to representations of data that need to be handled within the infras-
tructure throughout all common states of data, i.e., at rest, in motion, and in use.
Addressing the needs of the proposed WWL, the infrastructure further needs to be
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Fig. 3.1 The digital industrial Infrastructure of Production is characterized by a nonlinear
topology, individual data and information flows for all nodes, and a scope increasingly reaching
from isolated production sites to remote services and beyond company borders to realize a World
Wide Lab

able to move data across stakeholders. In the underlying technical infrastructure, any
processed data (and information) is thus part of constantly evolving digital shadows
as the prevalent tasks of preprocessing, aggregation, filtering, data translation, and
data sharing all constitute task- and context-dependent, purpose-driven, aggregated,
and persistent representations and transformations of the originally sensed data.
Building upon digital shadows that are primarily concerned with data processing
and network communication within the technical infrastructure, we further require
an infrastructure that is capable of effectively utilizing the information contained in
digital shadows for decision-making. In light of this requirement, the infrastructure
also needs to evolve the formal modeling of information (cf. �Chap. 4, “A Digital
Shadow Reference Model for Worldwide Production Labs”), which subsequently
allows for novel, higher-level computational technologies to exploit the benefits
of processed and shared digital shadows (cf. �Chap. 5, “Actionable Artificial
Intelligence for the Future of Production”).

With a specific focus on the underlying, networked infrastructure, we identify
several research questions, especially when having real-world deployments in
mind:

• How can we design a reliable and scalable Infrastructure of Production, i.e., as
needed for the IoP with its unique processing and security requirements, that
is capable of handling enormous amounts of data (rates) while being able to
integrate heterogeneous, distributed models and data streams on time?

• How can we flexibly deploy workloads in such a decentralized network-enabled
environment to allow for adaptable and high-performant control decisions?

• Which approaches enable stakeholders to exchange massive and heterogeneous
datasets in such environments while considering their confidentiality needs?
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To answer these questions, we focus our efforts on five research areas that build the
core of an evolved industrial infrastructure. This way, we cover the broadest possible
spectrum of hierarchical levels of production (cf. Fig. 3.1), i.e., we contribute
comprehensively to addressing these pressing research questions for real-world use.

In this work, we elaborate on (1) methods for the efficient processing of
production data in motion and at rest throughout the node topology illustrated
in Fig. 3.1. In the context of production, data is recorded by sensors, machines,
and devices. It is further forwarded via edge servers to the cloud and to any
collaborators within the WWL. At times, it is also processed directly while being
networked in the infrastructure. In line with Fig. 3.1, insights gained from the data
and decisions made are fed back to the shop floor and machines to decisively
influence production processes. Further areas investigate cross-sectional functions
required by all hierarchical levels, such as (2) the overarching interoperability of
systems, (3) the controlled exchange of data with various stakeholders, (4) the
current state of and future improvements for network security, and (5) the enabling
of privacy-preserving industrial collaboration. Furthermore, successfully addressing
the research questions, i.e., adapting the infrastructure according to the needs of
production technology and the IoP, especially with its novel confidentiality and
privacy requirements, can only succeed if different disciplines (domain experts)
collaborate (Brauner et al. 2022), in particular given the demand for concepts that
scale to industry needs. Otherwise, valuable knowledge will remain in stakeholder-
specific data silos where production experts cannot access and utilize it, i.e., valuable
potentials are lost. Thus, evolving today’s industrial landscape, its data processing,
and the foundation for collaborations into a digital industrial Infrastructure of
Production is of utmost importance.

3.2 State of the Art: Challenges for the Infrastructure

Before we describe how we aid the evolution of the infrastructure in Sect. 3.3, we
first provide an overview of and derive challenges for the current Infrastructure of
Production (Sect. 3.2.1). Afterward, we discuss the state of the research areas that
can, once being addressed, enable the Internet of Production (IoP) (Sect. 3.2.2).

3.2.1 An Overview of the Infrastructure of Production

Fueled by the IoP, the technical infrastructure underlying industrial production
is in a phase of drastic transformation. As shown in Fig. 3.1 (left), traditionally,
industrial devices such as machinery and sensors have only been networked within
one production site. Typically, a cell in a production site corresponds to one shop
floor (cf. �Chap. 11, “Model-Based Controlling Approaches for Manufacturing
Processes”) or modern production concepts, such as lineless mobile assembly
systems (cf. Chapter “Resilient Future Assembly Systems Operation in the Context
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of the Internet of Production”). Devices within one cell have been interconnected
within a dedicated process network with no or only severely limited interconnection
to other networks (within the same factory or company), let alone the Internet. With
the ongoing digitization, companies tend to move data storage and processing from
isolated cells to local nodes at the edge of production, potentially combining data
from multiple cells and even across different production sites, but still within and in
the control of the same company. Thus, industrial deployments typically still confine
knowledge in stakeholder-specific data silos due to omnipresent security and privacy
concerns. Consequently, any exchange of data and thus collaboration has not been
possible by traditional technical infrastructures underlying industrial systems.

Motivated by the manifold benefits promised by the IoP (Pennekamp et al.
2019a), technical infrastructures of production scenarios increasingly shift toward
remote services, including cloud computing services, as highlighted in Fig. 3.1
(right). This shift is mainly driven by the desire to realize digital shadows for
various processes and tasks in production (cf. �Chap. 4, “A Digital Shadow
Reference Model for Worldwide Production Labs”) as well as digital shadow-
integrated machine learning and artificial intelligence (cf. �Chap. 5, “Actionable
Artificial Intelligence for the Future of Production”), demanding access to various
kinds of data from multiple sources as well as requiring immense computational
and storage resources. To fulfill this demand, storage and processing of various
kinds of production data and corresponding digital shadows is increasingly moved
outside the sphere of individual production sites, ranging from edge computing
(still mostly in control of a single company), over remote nodes in the cloud, to
joint processing and storage at and with collaborators in a globally interconnected
World Wide Lab (WWL). Moreover, today’s deeply rooted confidentiality concerns
in industry still prevent the utilization of digital shadows, data lakes, and industrial
collaborations as companies and stakeholders understandably call for appropriately
secured approaches. Thus, other than previous paradigms without access to suffi-
cient domain expertise, interdisciplinary research on the IoP can directly account
for these additional challenges.

To provide a solid foundation on the technical level to realize these functionalities
and ultimately capitalize on the various benefits of the Infrastructure of Production
and the expected impact of digital shadows, different streams of research need
to be tackled. More concretely, providing a fundamental technical infrastructure
requires further research efforts on (1) adapting data and stream processing to
heterogeneous data from distributed sources, (2) ensuring data interoperability
between systems and production sites, (3) exchanging and sharing data with
different stakeholders, (4) network security approaches addressing the risks of
increasing interconnectivity, and (5) cybersecurity architectures to enable secure and
privacy-preserving industrial collaboration. Orthogonal to these technical aspects of
the infrastructure, human aspects w.r.t. to the people working on and interacting
with production processes (cf. �Chap. 22, “Human-Centered Work Design for
the Internet of Production”) as well as requirements resulting from new business
models and relationships in the WWL (cf. �Chap. 23, “Design Elements of a
Platform-Based Ecosystem and Industry Applications”) need to be considered.
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3.2.2 Research Areas for the Infrastructure of Production

Resulting from the identified key challenges for the Infrastructure of Production,
we now outline five research areas by discussing the corresponding state of the
art and associated research questions. Together, these areas make up the center
of our envisioned infrastructure. In particular, the processing of data and device
interoperability enable fundamental interactions between the different entities on a
device level. Data security and quality, as well as network security, provide concepts
for securing transmitted data and device interactions. Finally, an infrastructure for
industrial collaboration promises to enable secured interactions on a higher level of
abstraction, e.g., across company borders, to enable the exchange of knowledge.

3.2.2.1 Scalable Processing of Data in Motion and at Rest
Data is recorded, transmitted, stored, and processed throughout the whole topology,
as illustrated in Fig. 3.2. Conceptually, it is either in motion, in use, or at rest. Data
in motion refers to data that moves from a source to a destination within a private
or public network. Data in use is data that is currently being accessed, processed, or
updated. When data is persisted on nonvolatile storage, such as (edge) cloud storage
or (industrial) data lakes, it is called data at rest. In the following, we separately
discuss the subareas of data stream management and analysis and the processing of
the data at the network edge, in the cloud, and during transmission.

Data Stream Management and Analysis The huge number of devices and
sensors in modern industrial manufacturing sites leads to the production of massive
amounts of data in the form of continuous unbounded data streams with a high
frequency. Data Stream Processor (DSPs) are systems tailored to the management
and analysis of data streams and support the efficient querying and implementation
of near real-time applications, such as anomaly detection or alerting. However,
the data size emitted by sensors and machines is, in many cases, so huge that the
transfer to a central system for further processing and analysis would lead to a
network overload (Pennekamp et al. 2019a). Hence, for the data stream processing
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Fig. 3.2 Sensor data is transmitted and processed at various locations throughout the Infrastruc-
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to become horizontally scalable, the workload must be pushed further toward
distributed machines, i.e., to the fog and the edge of the network. This approach
promises efficient processing where needed while introducing new challenges
to DSPs (Zeuch et al. 2020). Here, as illustrated in Fig. 3.2, one fundamental
question is where to place the operators, such as filters (F), of the processing graphs
maintained by these DSPs.

Furthermore, such a processing infrastructure must also support highly het-
erogeneous data from various sources, such as sensors, machines, and cameras.
Also, when many components and sensors are involved, data quality can be highly
variable, as these components may fail or emit invalid data. Hence, data quality
needs to be assessed and considered in each step of the infrastructure. Produced
data further needs to be enriched with standardized domain-specific and processual
metadata, reflecting the context and provenance of the data stream elements. The
metadata increases its value for higher-level applications and makes it suitable for
data exchange in the IoP. Different levels of data richness hereby represent digital
shadows of different granularities, serving the needs of different applications.

Edge Computing An edge device is any type of computational resource that
resides between the original data source and cloud-based data centers. Such devices
range from very limited industrial components, often with interfaces to industrial
control systems, to powerful computing units with special hardware specifications,
e.g., additional graphics processing units (Qi and Tao 2019). The goal of edge
computing is to transform and reduce data locally by eliminating redundancies
as close to the data source as possible with limited resources to provide faster
feedback on events in the data or to reduce the data volume load on the network. The
IoP presents new challenges for edge computing, as data volume and velocity, the
feedback required for control mechanisms, and the complexity of models require
a fine-tuned computational hierarchy (Glebke et al. 2019). Data is only available
to a limited extent on a local level. Thus, calculations, models, and decisions
based on them can only include a slice of the globally available data. The key
challenge lies in the use of limited resources and data access to extract information,
reduce redundancy, and provide feedback latencies that fulfill use case-specific
requirements. For example, when considering the architecture of Fig. 3.2, an edge
cloud could perform computations close to the machine to save latency compared
to processing in a remote cloud that first mandates a time-consuming transmission
of relevant data.

Cloud Computing A big challenge in current manufacturing information systems
is the organization of data flows, data collections, and their analysis in a centralized
manner, allowing all participants to either ingest, modify, or extract information. To
this day, most manufacturing systems use sensor-actuator systems without giving
access to outside IT systems (i.e., Operation Technology (OT)-Internet Technology
(IT) separation (Garimella 2018)) to allow data analytics and condition monitoring.
The usage of manufacturing data across multiple production steps and distributed
production sites and along the whole lifecycle holds great potential for saving
costs, for a more efficient use of resources, and for an increase in product quality
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(Rath et al. 2021). However, a centralized cloud infrastructure that integrates all
relevant production data is a very complex system that is difficult to build, maintain,
and run, as today’s data processing systems are characterized by a fragmentation of
computing and storage resources. Reasons for this fragmentation are either missing
organizational infrastructures like user management across multiple systems or
vendor lock-ins which limit the accessibility of data by the use of proprietary
technology. Manufacturing sensors and actuators can produce data up to a few GHz,
which typically results in enormous amounts of data. As discussed before, the
amount of data produced by a manufacturing system puts large requirements on
the networking, processing, and storage infrastructure. These data streams only
produce data during their use, i.e., the stream of data is more inconsistent and
produces large bursts. Having a flexible and agile infrastructure that continuously
adapts to these bursts and also provides an automated way of scheduling and scaling
applications inside the data center is a large challenge (Brockmann and Kröger
2021). A central concept in the IoP is the data lake (cf. Fig. 3.2), which represents
a repository of all (historical) production data. It is implemented as a scalable
distributed system and storage while being controlled centrally through a dedicated
control plane.

(In-)Network Capabilities The communication network, over which data is trans-
mitted and streamed, is the central connector of all entities within the IoP as
it is used to communicate all nonlocal information. In a traditional sense, the
network is seen as a “dumb” connection provider that only delivers data. However,
research has already illustrated that data rates needed for industrial production
processes can become challenging for traditional network setups (Glebke et al.
2019). Additionally, physical signal propagation latencies can also become an
influencing factor as soon as computation and/or storage components move to
remote facilities, e.g., in the form of cloud providers or the envisioned centralized
data lake. Consequently, the existing network infrastructure represents a potential
bottleneck for the IoP.

Fueled by novel network programming concepts, such as SDN and P4, research
has once again turned its focus to finding ways to leverage previously unused com-
pute resources within the network. This trend is commonly known as In-Network
Computing (INC) (Sapio et al. 2017). While the exact scope of INC is not yet clearly
defined, especially regarding potential overlap with edge computing and whether
INC should only refer to computations directly on networking devices, there is
already significant work that studies which compute tasks can be best mapped to
networking devices and how (Ports and Nelson 2019). In our example in Fig. 3.2,
we could, e.g., place a simple processing function (P), such as aggregation, on a
switch to significantly reduce the amount of transmitted data. The main challenges
arise from the limited computational complexity supported by such devices as they
are designed for high-speed packet processing, but only simple calculations. In
addition to the challenge of which calculations should be performed using INC,
open questions remain as to how and where functionality should be placed within
the network and, more importantly, how the functionality should interact with the
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existing end-host-focused computation and communication schemes. As of today, a
generalized, scalable INC framework that solves all or even most of the mentioned
challenges is still missing.

3.2.2.2 Device Interoperability
To enable the automated collection of sensor and measurement data, measuring
systems (JCGM 2012) must be integrated into the Infrastructure of Production. Due
to the wide plethora of distributed and used systems, all having their individual
manufacturer- and device-dependent interface, this integration is a nontrivial task
and requires manual adaption and integration each time (Bodenbenner et al.
2020). The respective individuality and dependency are essentially expressed in
the following three aspects (Montavon et al. 2019): (i) manufacturers choose
their favored programming language for implementing the systems logic and the
API, (ii) the protocol and format for exchanging data differs from manufacturer
to manufacturer and often even from device to device, and (iii) the data and
system model, which forms the base of the interface of the system, is usually
developed from a physical point of view, instead of a functional one, resulting
in very low interoperability. Moreover, due to the trend of coupling the internal
sensor logic and the communication interface, highly complex cyber-physical
systems are formed, which increase implementation, integration, and maintenance
efforts (Thramboulidis and Christoulakis 2016).

To seamlessly integrate measuring systems into the overarching digital industrial
infrastructure, maximizing the interoperability of used cyber-physical measuring
systems is crucial. Concerning the digital infrastructure, this goal requires solving
the aspect of technical and syntactic interoperability (Bodenbenner et al. 2021).
Although several interoperable data formats and communication protocols are
already in use in industry, an approach is missing that decouples the development
of internal sensor logic from the communication interface, i.e., the incorporation of
interoperable data formats and communication protocols. Solving that would reduce
the effort of integration and maintenance of measuring systems in an industrial
infrastructure. The challenges and demands described here are of utmost relevance
in modern assembly paradigms, such as lineless mobile assembly (Hüttemann et al.
2019). Consequently, we investigate corresponding use cases in our research.

3.2.2.3 Data Security and Data Quality
Given the sensitive nature of (production) data, decisions and data management
plans of stakeholders are frequently driven by concerns about data security to secure
their competitive advantages, i.e., companies fear a loss of control or unintentional
data leaks (Brauner et al. 2022). As a result, in today’s environments, data is mostly
retained and encapsulated locally at a company (Gleim et al. 2020), potentially even
at a single production site or within a specific production cell. Thus, only a single
stakeholder can utilize such data silos, resulting in isolated data across the industry.
This situation severely hinders industry-wide process and product improvements.

As data is typically kept locally, companies frequently consider security mea-
sures unnecessary and neglect to implement data security and privacy solutions and
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policies in practice. As a result, companies also tend to favor on-premise computing
over cloud computing. However, the expected benefits of (i) increasingly automated
decision-making within industry (e.g., using machine learning) and (ii) initiatives
(including industrial dataspaces (Geisler et al. 2022)) call for revised data security
policies that enable companies to globally utilize all available information.

Especially the real-world impact on production lines mandates suitable
approaches that can address the security and safety needs of industry while handling
the vast amount of (production) data (Henze 2020). In this context, the development
of new concepts for data sovereignty, authenticity, verifiability, and accountability
has to be considered. So far, these aspects were mostly out of scope as (i) data
was rarely used to manipulate live processes and (ii) data was not shared between
stakeholders.

Moreover, when considering the trade-off between privacy and transparency, the
reliability of information becomes increasingly important. To allow for an ideal
utilization, data should be sensed accurately and in a trustworthy manner (Bader
et al. 2021), should be authentic and correct (Pennekamp et al. 2020a), and should
be semantically enriched (Gleim et al. 2020). Production data that is available within
a semantical framework increases the value of such data for downstream data users
by lowering the inefficiencies associated with the data exchange as the domain
knowledge among stakeholders generally varies, which results in inefficiencies for
both data users and data providers. Thus, through semantic enrichment, a frictionless
integration with downstream users is enabled. Consequently, semantically enriched
production data is far more valuable than raw data, since it is directly available for
efficiency gains (without the need for excessive preprocessing). On a similar note,
when proposing novel approaches, legal aspects (e.g., liability questions) must be
taken into account. In the past, suitable approaches from computer science were not
vetted because production environments were neither digitized nor interconnected.

3.2.2.4 Network Security
Sharing data between stakeholders requires significantly intensified communication
between all components and layers. Thus, formerly isolated production networks
need to be interconnected with other production networks as well as office networks
and the Internet. This development facilitates the risk of eavesdropping attacks on
sensitive business information or malicious takeover of production machines. Such
attacks can not only lead to monetary loss due to the disclosed business secrets but
may even cause production outages or create harm to humans (Brauner et al. 2022).
Hence, securing these networks is a key requirement.

Since traditional industrial communication protocols, e.g., Modbus, were
designed for communication in isolated environments, their design does not include
any security mechanisms (Dahlmanns et al. 2020). Furthermore, especially older
embedded industrial devices often lack the computational resources to perform
state-of-the-art cryptography operations, which becomes particularly problematic
in the face of the upcoming shift toward post-quantum cryptography (Henze 2020).
Nevertheless, even today, operators connect industrial devices to the Internet while
relying on these insecure traditional protocols (Mirian et al. 2016; Dahlmanns
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et al. 2022; Nawrocki et al. 2020). Consequently, attackers can access these
production devices without restrictions, alter messages, or eavesdrop on exchanged
information.

In recent years, traditional protocols were retrofitted with Transport Layer
Security (TLS), the state-of-the-art protocol for secure communication on the
Web. While these protocol versions provide confidentiality, integrity protection,
authentication, and access control, their security in practice depends on a regularly
updated configuration keeping up with changes in the security landscape, e.g., to
account for outdated ciphers or hash functions (Dahlmanns et al. 2022). Hence,
operators frequently need to assess and adapt their security configurations accord-
ingly. However, security analyses indicate that 42 % of all TLS-enabled industrial
protocol deployments on the Internet, i.e., deployments which are reachable in the
IPv4 address space, show security deficits (Dahlmanns et al. 2022). Additionally,
although OPC UA, the most promising modern industrial communication protocol,
was designed with security in mind, research shows that 92 % of the Internet-
reachable OPC UA deployments are configured with security deficits (Dahlmanns
et al. 2020).

Besides securing communication, exposing networks to the Internet also requires
mechanisms to reliably detect potentially remaining attacks (Henze 2020). However,
unique opportunities for detecting advanced attacks in cyber-physical systems such
as industrial control systems, e.g., by leveraging semantic or process knowledge,
remain typically unused today.

3.2.2.5 Infrastructure for Secure Industrial Collaboration
Primarily due to deeply rooted confidentiality concerns (cf. data security), extensive
data sharing between stakeholders has not yet been implemented in industrial
practice. Hence, corresponding (secure) information flows, while widely researched,
remain mostly untapped so far (Pennekamp et al. 2019b). As a consequence,
companies cannot fully benefit from the potential of industrial collaboration. Thus,
research has to demonstrate the benefits of industrial collaboration to ease its
deployment in production environments through a dedicated infrastructure.

The IoP and the proposed WWL further envision modern, dynamically evolving
business relationships to address tomorrow’s objectives (costs, quality, sustain-
ability, and others (Pennekamp et al. 2021c)) in production. These short-lived
relationships significantly challenge today’s established level of trust. Thus, to mit-
igate these concerns, stakeholders demand (proven) technical security guarantees,
which underline a strong protection of their sensitive information at all times.
Likewise, as automated adaptations based on external information are envisioned,
industrial collaborations can only succeed if they ensure a safe operation of all
processes (in terms of both human operators and the environment) (Pennekamp et al.
2019b; Henze 2020), while still yielding added value for participating companies.

When sharing data, companies further expect mechanisms to automatically
evaluate any allowed secondary use of their shared data, e.g., using data usage poli-
cies (Henze 2020; Henze et al. 2016). Otherwise, their concerns could effectively
prevent collaboration in industry. Importantly, these challenges do not only concern
stakeholders along supply chains but also across supply chains, e.g., if operators of
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similar machinery collaborate. Importantly, even direct market competitors could
collaborate if they are sufficiently supported through technical building blocks. Yet,
solutions are only slowly emerging from the domain of traditional cloud computing.

3.3 Evolving Today’s Infrastructure for Future Industry Use

Based on the challenges in Sect. 3.2.2, subsequently, we describe for each research
area which solutions we have proposed so far. Additionally, we point out further
directions that we will pursue to establish a capable Infrastructure of Production.

3.3.1 Scalable Processing of Data in Motion and at Rest

In the area of data processing, we separately elaborate on our contributions and
further research directions concerning the different building blocks of data stream
management and analysis as well as edge, cloud, and in-network computing.

Data Stream Management and Analysis Industrial environments and production
sites require data management infrastructures that can handle massive amounts of
data in a short time. To tackle the problem of network overload when sending all data
to a central data stream processor, we work toward a scalable infrastructure that can
distribute a continuous query over a multi-level topology of edge, fog, and cloud
computing nodes. An abstraction for a continuous query is a directed acyclic graph
of operators, which execute, e.g., filter or windowing operations on streams. The
distribution of operators over the graph of potentially changing network nodes is a
challenging optimization problem (Cardellini et al. 2016). Thus, various dimensions
need to be weighed, e.g., latency requirements or hardware capabilities.

We are working toward a dynamic, robust, secure, and smart infrastructure for
production that is able to include different kinds of dimensions, and we particularly
investigate dimensions that are relevant for these industrial settings, such as data
economy, privacy, and data quality. To address the issues of hardware heterogeneity,
we are developing a lightweight and system-agnostic operator library along well-
known stream semantics to also enable higher-level declarative and procedural
query languages. Furthermore, also new methods for multi-query optimization must
be investigated which fit the envisioned infrastructure, benefiting data economy.

Streaming data produced in manufacturing processes is not only valuable for
real-time applications but also needed for historical analyses spanning a longer time
period. Hence, the data needs to be persisted in long-term storage solutions, such
as data lakes. Additionally, a crucial aspect for the Internet of Production (IoP) is
the sharing of data with other stakeholders in the World Wide Lab (WWL) and
providing input to digital shadows (Brauner et al. 2022). For the scenarios above,
properly annotating the data is paramount to prepare it for sharing and reuse. To
that end, we develop a metadata model and management concept that (i) allows for
the general annotation of data streams along multiple categories and dimensions
of metadata and (ii) considers domain-specific semantics and vocabulary from
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manufacturing for the annotation. Depending on where the metadata emerges, the
corresponding functions also need to be deployed to the different levels of the
streaming infrastructure topology. In addition, based on previous work (Geisler et al.
2016), we strive to integrate intelligent data quality assessment and improvement to
detect data flaws early in the processing pipeline and also prevent swamping the
permanent storage into the infrastructure from the cloud to the edge nodes.

Edge Computing Edge devices provide only limited computing resources that
have to be leveraged to reduce the amount of data and condense the information
density. Raw digital representations of manufacturing processes are often based
on multivariate time series that contain a variety of overlapping physical effects
encoded in the signals. To realize the potential of this hidden data, domain experts
who understand the process and its effects must prepare the data appropriately and
make it available for further analysis. The incorporation of domain knowledge at the
edge is crucial, since the sooner the data is preprocessed and labeled in a domain-
specific way, the less redundant or irrelevant information needs to be passed on.
Note, however, that a purely human-based method of preprocessing for knowledge
may neglect important unknown effects (Liewald et al. 2022). Thus, edge-based
preprocessing pipelines need to incorporate domain knowledge-based approaches
into data-driven approaches to fully leverage the power of edge systems.

The processing of a specific manufacturing process in sheet metal forming
utilizing high-frequency sensor systems ranging from 10 kHz to 10 MHz reveals
the need for edge computing to reduce the data load (Glebke et al. 2019). In
this study, nine sets of time series data represent the collective data load during
the manufacturing process, which can be broken down into process phases. Each
process phase is characterized by specific physical effects, so that only a small part
of the time series is useful to include in the modeling. Leveraging this fact, the
amount of data relating to a forming operation can be reduced by up to 70 % if, e.g.,
only the wear or another specific characteristic is of interest (Niemietz et al. 2020).
Further studies show that information in raw sensor time series is often redundant,
yet classical feature engineering methods based on domain knowledge only partially
work (Niemietz et al. 2022). Similarly, features selected by experts are highly
redundant and unsuitable for further compression (Unterberg et al. 2021). However,
traditional dimension reduction methods can further considerably reduce the amount
of data (Bergs et al. 2020). A domain knowledge-based approach combined with
methods that independently learn features of time series data can already yield good
monitoring capabilities utilizing only computational edge feasible models (Niemietz
et al. 2021).

For sheet metal forming and fine-blanking in particular, the IoP enables dynamic
processing of all available information specifically tailored to use case needs.
Thus, data can be processed locally and only transmitted to the cloud if needed.
Otherwise, sensed data, and valuable information within, is lost as the amount of
data quickly surpasses the network capabilities or it violates latency requirements
in control and feedback loops. These approaches show that using only computa-
tionally feasible models for data reduction at the edge in combination with domain
knowledge considerably reduces the amount of data that needs to be transmitted to
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(cloud-based) data centers. However, a comprehensive framework for data reduction
and condensation of industrial processes considering the locality of data, models,
and knowledge is still missing, as well as methods for combining knowledge and
raw data at the edge.

Cloud Computing Cloud technologies, either provided by commercial cloud
providers or custom on-premise systems, offer the possibility of dynamically
adapting required resources according to demand. This scalability applies to all
areas of the data infrastructure: computing power, memory, networking bandwidth,
and storage. In addition, clouds are the ideal medium for creating systems that
have a uniform level of abstraction and thus appear as a single infrastructure that is
available to technical as well as human producers and consumers of data, regardless
of their physical location. In this sense, cloud technologies provide not only the
computing resources needed but also provide ways to control and manage these
systems through the so-called control plane (Casquero et al. 2019). Therefore,
cloud infrastructure reduces the complexity of running applications in a distributed
environment and abstracts away implementation details of components (Beyer et al.
2016).

Ideally, a cloud infrastructure also provides a set of additional services that
centralize functionalities shared by multiple components, such as user management,
condition monitoring, or network security. As part of our research, a prototypical
Kubernetes-based manufacturing data and control hub has been developed, which
greatly reduces the effort of scheduling and hosting support applications for
manufacturing. This computing cluster lays the foundation for automated data
streaming of machine sensor data and their analysis by providing computing,
storage, and connectivity resources on demand. The system was designed in a way
that the ingestion of data streams, the persistent storage of data in databases or
data lakes (Rudack et al. 2022), its automated analysis, firewall rules, user rights,
and analytics software are all managed by the Kubernetes operator pattern (Verma
et al. 2015), which greatly lowers the cognitive load caused by running and
maintaining such a system. Even software-controlled manufacturing machines
have been managed by this control plane which removes the barrier between
Operation Technology (OT) and Internet Technology (IT) completely, since the
manufacturing machine’s software is deployed, run, maintained, and monitored
in the same centralized manner as a cloud-based database or support application.
Therefore, the cluster acts as a centralized connector which enables the usage
of production data along the complete lifecycle of the production process. The
use of open-source software not only avoids vendor lock-ins but also guarantees
interoperability between systems. Through containerized software applications and
by following established cloud-native principles, our prototype is transferable to
any cloud provider. To assess the viability of our infrastructure in production, we
connected a 500 t horizontal high-pressure die casting machine and its auxiliary cell
systems to a prototypical data lake. This design allows us to experiment with a full-
scale physical machine on premises. In particular, we utilize a testbed that includes
complex production machinery with multiple PLCs, an edge server, and a dedicated
cloud infrastructure (data lake) (Rudack et al. 2022).
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(In-)Network Capabilities Today’s communication systems follow a strict inter-
pretation of the end-to-end principle (Saltzer et al. 1984), i.e., the network only
delivers packets without modifying them (Kunze et al. 2021c). Thus, In-Network
Computing (INC) is typically not supported out of the box. Aggravatingly, the exact
scope of INC remains undefined, and identifying which domains can benefit most is
still an ongoing process (Kunze et al. 2022). Research already investigates how INC
can be included in existing communication infrastructures (Kunze et al. 2021c) and
what kind of functionality can be provided by INC (Kunze et al. 2022).

The main envisioned benefits of INC for industrial processes are higher data
rates and lower latencies as networking devices can process packets at line rate and
are located close to the processes. The straightforward latency benefits have already
been studied and demonstrated by related work (Cesen et al. 2020), mainly focusing
on In-Network Control (cf. �Chaps. 11 “Model-Based Controlling Approaches for
Manufacturing Processes” and, “Resilient Future Assembly Systems Operation in
the Context of the Internet of Production”). In our work, we investigate which
functionality can be enabled by INC in spite of specific hardware constraints.

In modern industrial scenarios, all entities (robots, machinery, etc.) are tracked using
various metrology systems, such as iGPS or laser trackers (cf. Chap. “Resilient
Future Assembly Systems Operation in the Context of the Internet of Production”).
These systems use different formats to capture locations, e.g., using different
coordinate systems, and metrology information thus needs to be transformed
into a common scheme. In one of our works, we investigate how well the
required coordinate transformations can be deployed on programmable networking
hardware (Kunze et al. 2021a). While we find that there are indeed challenges
requiring heavy workarounds, we also see that INC can achieve low latencies and
high accuracy, as well as significantly higher packet processing rates than end-host-
based applications.

We further investigate data preprocessing using INC. More specifically, we
intend to deploy an INC platform to react to different process phases and
dynamically adapt how data is preprocessed and where it is forwarded (Kunze
et al. 2021b). In this approach, the INC platform summarizes sensor information in
well-defined intervals and uses a local clustering algorithm to distinguish process
phases. We offload heavier analysis functionality to a slower control plane which
can then define which actions are supposed to be taken depending on the currently
identified process phase.

Overall, these approaches showcase that INC can be sensibly used in industrial
contexts. However, there are still many remaining questions, e.g., regarding the
inclusion of such approaches into existing communication infrastructures (Kunze
et al. 2021c), that need to be solved before INC can be widely deployed.

3.3.2 Device Interoperability

To make measuring systems technically interoperable, we aim toward a shift in the
role of measuring systems. Instead of considering a measuring system as an integral
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component of a production process of industrial application, we interpret measuring
systems as independent micro-services that offer their services, i.e., the acquisition
and provision of measurement values, to different applications and stakeholders.
This idea results in the concept of Cyber-Physical Measuring System (CPMSs),
creating the basis of modern infrastructures in industry.

We call such a system a FAIR sensor service (Bodenbenner et al. 2021) which
is mainly defined by the following three attributes: (i) The CPMS must advertise its
offered service and ensure high quality of the provided measurement data, i.e., the
data (and the service itself) must conform to the FAIR principles (Wilkinson et al.
2016). (ii) The CPMS senses a change in a physical quantity, quantifies this change
as a relative or absolute measurement value of that quantity, and digitizes this value.
(iii) For the environment, an interoperable interface characterizes the sensor, which
mainly consists of a functional information model and a standardized, manufacturer-
independent, and device-agnostic data format and communication protocol.

With that, the interoperability of the measuring device is increased, and the
heterogeneity of communication interfaces and data formats is significantly reduced.
However, joining those three concerns into one CPMS also increases complexity
and requires expertise in three different domains: (i) implementation of the internal
sensor logic, (ii) defining a FAIR (meta)data model, and (iii) the development of
the communication interface. To decouple these three aspects, we propose a novel
three-layer architecture for FAIR sensor services (Bodenbenner et al. 2021) and
utilize model-based software development to leverage generalizable parts, as, e.g.,
the communication interface, by developing a domain-specific modeling language
called SensOr Interfacing Language (SOIL) (Bodenbenner et al. 2020). Based on a
simple meta-model, the data model of the interface of the FAIR sensor service can
be developed without any knowledge of communication protocols and data formats
by the developer of the measuring device. Based on the interface description written
in SOIL, a template for implementing the internal sensor logic is generated in a
general-purpose language (e.g., Python or C++), to which the non-generalizable
implementation of the internal sensor logic is injected manually. Furthermore, a
RESTful HTTP server and an MQTT publisher are generated, such that there is no
additional effort required regarding the connectivity of the measuring device.

To fully realize FAIR sensor services, we are currently researching the automatic
generation of metadata schemata from SOIL models, as well as the inclusion of
more target languages, communication interfaces, and data formats, which will
eventually result in fully, semantically interoperable interfaces as we illustrate in
Fig. 3.3.

3.3.3 Data Security and Data Quality

Enriching existing (industrial) infrastructures with appropriate data security requires
developments along multiple dimensions. As the most basic mechanism, data usage
policies (Henze et al. 2016), which efficiently formulate allowed utilization of
sensitive data, allow stakeholders to express their privacy and data sovereignty
needs. For example, companies can specify details about the suitability of using
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JSON, XML
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XML + RDF
Turtle

Model-Driven Software Development

Device

Technically interoperable

Semantically interoperable

FAIR Sensor Service

Fig. 3.3 Our proposed interoperability hierarchy of interfaces for Cyber-Physical Measuring
System (CPMSs). While manufacturer-specific interfaces are mostly non-interoperable, we
can achieve interoperability by providing context information through semantically annotated
(meta)data

specific cloud infrastructures (Henze et al. 2020). However, these policies require an
underlying physical infrastructure, e.g., a cloud storage system, that is also capable
of enforcing them (Henze et al. 2020). Moreover, recently proposed dataspaces still
need to work on providing corresponding technical guarantees (Lohmöller et al.
2022).

Thus, complementing the efforts of developing and enforcing data usage policies,
we also pursue the research direction to provide technical security guarantees
to companies. In particular, to evolve today’s infrastructures, we rely on well-
known secure building blocks (Pennekamp et al. 2019b) from the area of privacy-
preserving computing to implement data security. For example, we rely on attribute-
based encryption to realize reliable, yet dynamic access control within supply
chains (Pennekamp et al. 2020b; Bader et al. 2021). Similarly, companies can
utilize homomorphic encryption (which enables computations on encrypted data)
to protect their sensitive information when performing computations on joint data,
e.g., in the context of performance benchmarking, without significantly decreasing
utility in practice (Pennekamp et al. 2020d). Thus, the presented and related building
blocks are well-suited to implement secure offloading (e.g., to cloud environments)
in industry.

Moving toward the challenge of ensuring data quality, we propose different
mechanisms to improve the accountability of participating companies. First, we
employ blockchain technology to establish technical trust anchors (Pennekamp
et al. 2020b; Bader et al. 2021; Wagner et al. 2022b). These trust anchors
immutably persist data fingerprints to ensure that the covered information is long-
term verifiable. They further ensure that companies can be held accountable, e.g.,
if faults occur during usage of a manufactured product. We validated our approach
using supply chains of cars that involved fine-blanked components. Second, when
looking at the exchange of information, our novel digital transmission contracts
enable companies to prove that a data exchange took place (Mangel et al. 2021), i.e.,
companies cannot deny their participation at a later point in time. These mechanisms
will improve the reliability of shared information as companies must otherwise fear
being held accountable.
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Finally, when looking at deployed devices at the production site, we explore the
potential of utilizing trusted sensors (i.e., sensors equipped with trusted execution
environments) to secure the data collection (sensing) in industry (Pennekamp et al.
2020a). Here, the main advantage of our work is a significant improvement in the
correctness and authenticity of processed data, which allows companies to secure
the full data lifecycle of their products for the first time.

3.3.4 Network Security

To impede cyberattacks against production deployments and thus prevent produc-
tion outages and harm to humans, implementing strong network security measures
is essential. Here, the evolution needs to be threefold: (i) security must evolve with
industrial communication use cases, (ii) operators need support in configuring their
deployments securely, and (iii) remaining attacks must be detected.

The interconnection of production deployments leads to novel forms of com-
munication which need to be secured. For example, end-to-end secure com-
munication was rather challenging in the novel publish/subscribe paradigm for
industrial communication. With our approach ENTRUST, which transparently
enables end-to-end secure communication and integrates seamlessly into existing
infrastructures, we allow future publish/subscribe deployments to communicate
end-to-end secure (Dahlmanns et al. 2021). Likewise, the unique characteristics
of industrial settings and especially the resource constraints of industrial devices
require adapting traditional security paradigms, especially in wireless settings. Our
research work, e.g., allows us to efficiently realize message authentication for
short messages (Wagner et al. 2022a) or to speed up the computation of message
authentication tags in the latency-critical input-dependent part through bitwise pre-
computations (Wagner et al. 2022c).

From a different perspective, the increase in security mechanisms and pro-
tocols equally makes the security configuration of deployments more complex
and thus challenging. Hence, operators need support in regularly assessing their
current security configuration with regard to the current security landscape and
require assistance in configuring their industrial deployments securely. As most of
today’s assessment tools lack support for modern industrial protocols, e.g., OPC
UA, we designed and developed an open-source plugin for the state-of-the-art
pentesting software Metasploit that supports operators in analyzing the security
of their deployments (Roepert et al. 2020). To support operators in realizing
secure configurations, e.g., when a security assessment identifies deficits, up-to-
date configuration templates can assist operators by making best practices easily
and actionably accessible (Dahlmanns et al. 2022). However, our research shows
that such templates should never include any example credentials, since operators
often unknowingly do not exchange them and consequently severely weaken their
own security (Dahlmanns et al. 2022).

Besides all preventive security measures, intrusion detection and prevention
systems are needed to thwart any remaining, especially unknown, attack vectors.



54 J. Pennekamp et al.

While recent research provides sophisticated approaches leveraging semantic and
process knowledge, these approaches rarely find their way into practice, mainly due
to their tight coupling to distinct industrial communication protocols and individual
datasets. By leveraging commonalities found in industrial communication, our
research lays a common ground for realizing widely applicable industrial intrusion
detection systems (Wolsing et al. 2022). Furthermore, state-of-the-art industrial
intrusion detection systems typically rely on machine learning to detect anomalous
behavior. While these systems achieve, in theory, extremely high detection accuracy,
in practice, they often miss unknown attacks. To overcome this false sense of
security, our novel evaluation methodology assesses whether industrial intrusion
detection systems are indeed able to detect attacks they have not been trained on
and identifies significant room for improvement to realize efficient and effective
machine learning-based industrial intrusion detection systems in practice (Kus et al.
2022).

3.3.5 Infrastructure for Secure Industrial Collaboration

When evolving the production landscape from localized production sites to a
globally connected WWL that directly influences decision-making, significant
research efforts are needed to realize an infrastructure for industrial collaboration
in a secure and privacy-preserving manner. The underlying goal of industrial
collaboration is to unlock all available data sources from different stakeholders in
real time (Pennekamp et al. 2021b). To implement such a disruptive change within
the industrial infrastructure, we envision the gradual implementation of different
applications (with increasing levels of automation), as we illustrate in Fig. 3.4.

First developments will tackle use cases without automated process adaptation,
i.e., initially, the infrastructure must provide means to compare information between
stakeholders without directly interfering with running processes (Fig. 3.4, left).
Here, a goal can be to provide companies with insights into unrealized potentials
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Fig. 3.4 Industrial collaborations will be realized gradually. An increasing level of automation
requires new approaches and building blocks. Simultaneously, the evolution of the infrastructure
will increase the stakeholders’ concerns as the sourced technology is not yet proven and tested
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by comparing their business performance or process decisions. We exemplarily
realized such an architecture using homomorphic encryption (i.e., computations on
encrypted data) to preserve confidentiality while performing comparisons alongside
various key performance indicators (Pennekamp et al. 2020d). As another appli-
cation, we are currently pursuing a new secure and privacy-preserving concept
to support companies during the establishment and identification of new business
partners to account for the dynamic nature of the IoP and the increasing necessity
of quickly reacting to customer change requests (Pennekamp et al. 2021a).

Subsequently, moving toward an infrastructure that allows companies to directly
improve their local processes by incorporating external information, i.e., by effec-
tively tearing down today’s established data silos, requires significant changes
to the information flows in industry. To demonstrate the adequate and purpose-
driven matching of information, we designed a platform that provides companies
with an approach to exchange production process parameters while keeping their
sensitive information and queries private (Pennekamp et al. 2020c). Using secure
building blocks (oblivious transfers, private set intersection, and Bloom filters),
we can keep all information private until an explicit match has been made by a
querying company. In general, purpose-driven queries need to be matched with data
using semantic information to allow for meaningful process improvements (Fig. 3.4,
center).

Moving forward, the physical infrastructure underlying the IoP is envisioned to
evolve into a direction that allows companies to directly feed new insights from
external information into their processes (Fig. 3.4, right). In this context, (cloud-
based) federated yet privacy-preserving machine learning constitutes a key research
direction that promises direct implications on industrial control loops or adapted
production planning. Consequently, these novel information flows must be sup-
ported by the underlying physical infrastructure to enable these new collaborations.

3.4 Conclusion

The underlying infrastructure from the sensor to the cloud serves as the foundation
of and key enabler for the Internet of Production (IoP) and facilitates the use
of its internal multilayered components, such as digital shadows, data lakes, and
the World Wide Lab (WWL). The transition from sparsely connected production
machines, cells, and sites with mostly isolated and incompatible computing nodes
and data silos to an interconnected IoP requires a fundamental redesign and
evolution of the underlying infrastructure. We identified open challenges in five
research areas for the Infrastructure of Production that prevent the realization
of the IoP with its distinct requirements for the underlying infrastructure in
practice. These issues include limitations rooted in today’s security and network
architectures across production sites as well as challenges related to the involved
computing paradigms, such as edge computing, in-network computing, and the
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overarching cloud computing. Further research is needed on how to facilitate the
secure interaction of network devices, machines, and sensors to enable low-friction
collaborations between different stakeholders. All of these challenges must be
solved to finally establish the IoP since an adaptable, interoperable infrastructure
serves as the enabler for the construction of digital shadows, their exploitation
via downstream applications, and a thriving WWL. Related industrial paradigms
and research without a connection to the industrial domain, both largely being
without the required access to domain expertise, cannot make up for the outlined
shortcomings and research gaps.

In this work, we discussed our research agenda and goals on a more general level.
However, some key aspects of previous and ongoing research especially exemplify
our contribution to the evolution of the industrial landscape and, in particular, the
IoP with its unique processing and security requirements. Additionally, we can
source from a plethora of realistic real-world use cases, which allow us to approach
research challenges in a goal-oriented manner. Our work on coordinate transforma-
tions, e.g., demonstrates that novel networking paradigms can be effective solutions
for the specific challenges of metrology systems (Kunze et al. 2021a). Moreover, we
illustrated how to utilize generative software development to reduce the integration
effort of measuring systems by generating interoperable communication interfaces
based on a unified data model (Bodenbenner et al. 2020). To further address
data security requirements in situations with dynamic business relationships (as
envisioned in the WWL), we developed a design that enables companies to
share product and production information flexibly and securely (Pennekamp et al.
2020b). Our direct ties to industry even allowed us to evaluate this design using
a real-world use case covering an electric vehicle production (Bader et al. 2021).
Derived from requirements for secure communication inside envisioned future
production plants, we proposed ENTRUST, a novel solution to transparently end-to-
end secure publish/subscribe communication (Dahlmanns et al. 2021). Finally, our
interdisciplinary research environment allows us to pursue visionary and possibly
disruptive ideas. One prime example is our developed parameter exchange as it
securely realizes flows of information that currently do not exist in industry due
to confidentiality concerns. Such efforts underline the value of research into an
Infrastructure of Production.

Building on these first advances, we specifically regard our planned in-network
process phase detection with its subsequent adaptable data preprocessing (Kunze
et al. 2021b) as a promising next step. We intend to show how to directly transfer
the latest advances in networking to use in industry, despite the limitation that such
initial concepts do not yet exploit the IoP’s full potential. In the future, we strive to
continually evolve our outlined research areas to advance the general evolution of
industrial infrastructures to effectively transform them into a securely and globally
interconnected Infrastructure of Production with access to a prosperous WWL.
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Abstract

Due to their growing amount and heterogeneity, we need a precise and standard-
ized understanding about the foundation, structure, and forms of aggregation and
especially the use of data and models within the production domain. Our aim is
to investigate how to model data elements and static and dynamic relationships
as well as their physical resources in the IoP, in a cross-disciplinary life cycle
spanning cooperation as a basis for information management, meeting all techni-
cal, scientific-ethical, and legal framework conditions. The core solution for this
challenge is the use of an adequate set of modeling techniques, transformations,
and their integration with digital shadows. This chapter provides a deep insight
into relevant concepts that constitute a digital shadow, link it to their semantics
defined by appropriate metamodels, and discuss the data and models a digital
shadow consists of in four use cases. We show a method to derive digital shadows
and introduce their life cycle in relation to the product life cycle. These concepts
are the foundation for data and model sharing within digital shadows applicable
for worldwide production labs.
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4.1 Introduction

Motivation Handling the ever-growing amount of heterogeneous data and models
within the production domain (Brauner et al. 2022) requires a precise and standard-
ized understanding about their foundations, structure, and forms of aggregation and
especially their use. Managing quantities of data in structured form requires (1) pre-
aggregation and cleansing of data for analysis, (2) which can be used within and
across overall industrial ecosystems, (3) which are organized and contextualized
according to metamodels to become self-contained and explainable, (4) where
the metamodel is sufficiently precise and detailed, and thus finally (5) usable for
derivation of algorithms and other forms of code, e.g., through model-based code
generation. Our approach to handle these requirements is the concept of digital
shadows (DSs). In our understanding, “a digital shadow is a set of contextual data
traces and their aggregation and abstraction collected concerning a system for a
specific purpose with respect to the original system” (Becker et al. 2021). These
digital shadows can be used for sharing data or within software systems such
as digital twins (DTs). For us, a digital twin is “a set of models of the system,
a set of digital shadows and their aggregation and abstraction collected from a
system, and a set of services that allow using the data and models purposefully
with respect to the original system” (Dalibor et al. 2020). We create DTs as active
software systems for observable objects and systems in the physical world that can
be monitored, sensed, actuated, and controlled. However, due to the vast amounts
of data that a virtual representative of a product, machine, or production line would
require, a complete digital twin is not feasible (Brauner et al. 2022). Digital shadows
provide us the needed information about a system’s state and history for a specific
purpose which could be used within DTs. In contrast to DTs, however, they are a
passive set of data (Brauner et al. 2022) and do not directly influence the physical
system or objects (Kritzinger et al. 2018). To use digital shadows, we need a good
understanding of relevant concepts, the methods to use them, and how they can be
applied in different domains.

Current research lacks detailed descriptions about what constitutes a DS and how
to create and maintain them. Existing research covers only parts of the DS concepts,
e.g., metadata (Quix et al. 2016), data management and concepts from artificial
intelligence (AI) (Liebenberg and Jarke 2020), data and data analytics (Ladj et al.
2021), or production processes and resources (Schuh et al. 2019). To cope with that,
we suggested a first version of a conceptual model for digital shadows in Becker
et al. (2021), which has to be further evolved to meet different use cases.

Research question Within this chapter, we tackle the question of how to model
data elements and static and dynamic relationships as well as their physical
resources within the Cluster of Excellence “Internet of Production” (IoP) in a cross-
disciplinary life cycle-spanning cooperation as a basis for knowledge management
while meeting technical, scientific-ethical, and legal framework conditions.
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Contribution The core solution for this question is the use of an adequate set
of modeling techniques, transformations, and their integration with DSs. This
chapter provides insight into relevant concepts that constitute a DS and link it to
their semantics defined by appropriate metamodels. This includes related assets
and their properties described by engineering models, relevant data organized in
data traces, data points and metadata as a source for calculation, and simulation
for a specific purpose. We propose and discuss the digital shadow reference
model (DSRM) in its second version that is based on Becker et al. (2021) and
includes heterogeneous system configurations as well as engineering, calculation,
and simulation models. To support interoperability, we discuss digital shadows in
relation with base and domain ontologies. As the design of a digital shadow data
structure is challenging in practice, we propose a stepwise method to derive a digital
shadow from existing data. Moreover, we provide usage evidence in the form of
examples from (1) production planning in injection molding, (2) process control, (3)
laser-based manufacturing, and (4) automated factory planning discussing relevant
digital shadow data models and semantics. Moreover, we discuss data and model
life cycles in relationship to digital shadows and provide an outlook into open
challenges for digital shadows and their use, especially within digital twins of the
Cyber-Physical Production Systems (CPPS).

Structure This chapter is structured as follows: Sect. 4.2 discusses related work
for digital shadows. Section 4.3 presents the digital shadow reference model, and
Sect. 4.4 discusses the role of ontologies for DSs. We present in Sect. 4.5 four use
cases and their use of digital shadows and propose a method to derive a digital
shadow from the domain expert perspective in Sect. 4.6. Section 4.7 illustrates the
need for extended life cycle of production data and models. Section 4.8 gives an out-
look to the use of digital shadows in digital twins before the last section concludes.

4.2 State of the Art

Clearly, digital shadows are important concepts for data use and sharing in smart
manufacturing (Brauner et al. 2022). Thus, there exist several publications about
digital shadows, and some parts of their most relevant concepts are already defined
in other contexts.

Data and Metadata Management Quix et al. (2016) describe their conceptual view
on a metadata model that suits for the extraction of metadata and its management
in data lakes. In (2020), Liebenberg and Jarke make use of generalizations of
database view conceptualizations to model digital shadows regarding AI and data
management aspects in the IoP. In contrast, our DSRM uses additional information
and contextualizes data, for example, by specifying the source it originates from, or
the asset by connecting it to its engineering models.

Loucopoulos et al. (2019) presents a conceptual metamodel for cyber-physical
production systems, focusing in particular on aspects of information exchange and
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analysis at a wide level of requirements engineering. However, it does not address
the standardization and detail level presented in this chapter.

Modeling the Production Domain Bravo et al. (2008) present a metamodel that
allows describing business objects. For that they enriched the metamodel presented
in the PRDOML (www.prodml.org) Reference Architecture by the elements of
resource, execution, planning, product, and client. In comparison to this approach,
we look at the asset of the given physical system, its unique purpose, and the
enrichment with metadata.

Ladj et al. (2021) describe a self-learning, continuous improving, and
knowledge-based digital shadow incorporating a physical as well as a virtual
system. The digital shadow manages data and knowledge. For that, they present a
framework that applies data analytics to the database. The digital shadow uses the
generated knowledge base to support the decision process. Their approach defines
the purpose of the physical machine but is missing an extendable description of the
elements contained in a digital shadow.

Bauernhansl et al. (2018) propose a concept for DSs of production. The core
function of the DS is to provide the required information and is considered as a
macro-service consisting of different micro-services, which guarantee to provide the
right information at the right time and place. Necessary services are, e.g., control
of information flow, a record of user needs, and identification or compression of
information. The development of digital shadows is described by four complexity
levels: linkage of information, information flow control, information quality control,
and feedback and self-optimization of data and information basis. Bauernhansl et al.
(2018) describe core functions but no conceptual model for digital shadows is given.

Schuh et al. (2019) develop a data structure model for digital shadows in the
order fulfillment process from order acquisition to work preparation of single
and small batch productions. The digital shadow is prerequisite for managing the
organization’s knowledge that can be utilized to solve the use-case-specific tasks.
The proposed data structure model describes relationships between relevant objects
in the order fulfillment process, e.g., product specifications, manufacturing and
assembly processes, and production resources. The data structure model digitally
represents the real processes of single and small batch production, thus outlining the
role of digital shadows for the use of knowledge management systems. However, the
research is limited to the design of a concrete model for a specific use case, while
no conceptual model is given. In addition, concepts such as purpose or data sources
are not considered.

Parri et al. (2021) developed an architecture around digital twins using a
model-driven approach to derive structural configuration times from SysML Block
Definition Diagrams. A digital twin instance contains a concrete configuration
that contains macrosopic events such as a failure event. They, as well, modeled a
metamodel as a UML class diagram of the knowledge base concentrating on the
digital system of a company and do not model elements of the digital shadow such
as the contextualized data or models used.
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Modeling Further Domains Croatti et al. (2020) describe a metamodel for agent-
based DTs in healthcare. The main elements of the metamodel are the digital
twin and the physical asset connected by a cyber-physical connection. The model
describes the physical asset for the DT, which interacts directly with information
sources. Their metamodel is described at a high level and does not consider data
traces.

Mertens et al. (2021) discuss to extend the concept of digital shadows to humans.
This approach could be used for human-robot collaboration for manual work,
decision support, and work organization, as well as human resource management.
However, a concrete description of the relevant concepts is up to future work.

We took the insights gained from this related work and incorporated shortcom-
ings into our digital shadow reference model. One point that particularly sets our
approach apart is the consideration of connections to existing models, e.g., system,
simulation, or AI models. Furthermore, we provide an additional semantic layer
by pointing out the usage of ontologies along with DSs, give examples of digital
shadows utilized in industrial use cases, and provide a methodology on how to build
digital shadows from scratch.

4.3 The Digital Shadow ReferenceModel

In Becker et al. (2021), we suggested the first version of a conceptual model for
digital shadows. This model comprises the ideas in our understanding of a digital
shadow (see Sect. 4.1) for purposefully collecting, aggregating, and abstracting data
from production enriched with meta-information to enable fast decision-making.
As additional use cases employing DSs were realized for use in the IoP and further
exchanges regarding its modeling best practices continued among the researches,
the conceptual model for DSs was refined. The current version is defined in
the digital shadow reference model, which is shown in Fig. 4.1 as a UML class

Fig. 4.1 The refined digital shadow reference model
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diagram (Rumpe 2016). The DSRM is intentionally underspecified and only models
key elements. A digital shadow designer is free to extend the DSRM to achieve a
DS model tailored to their use case. The digital shadow collects aggregated and
reduced data from an original system with respect to a specific purpose. Therefore,
the digital shadow knows its referencing asset and the purpose it fulfills. It is
composed of data traces that contain single data points. Those data traces originate
from a source (e.g., the original asset) and are enriched with additional metadata.
The digital shadow uses models to describe the system, data calculations, or system
simulations.

Models play a key role in the reference model. According to Stachowiak (1973),
models (1) consist of a mapping to an original object that the model represents,
(2) are reduced to the relevant aspects and abstract from details of the original, and
(3) have a pragmatism that lets them replace the original in certain scenarios. They
add an abstract representation of knowledge of the underlying system and describe
calculations for, e.g., data aggregation or simulation, and help to evaluate the asset’s
data by providing more context. We initially distinguish between Engineering,
Data Calculation, and Simulation models. Engineering models arise during design
time of the physical asset to plan the system’s structure and behavior. Proper
modeling of the target system during design time allows for a consistent, quality
ensured development. In model-driven software engineering, models can also be
used to generate code from an abstracted view on domain knowledge. These models
then can be reused in the digital shadow to provide additional information to
manufacturing data and to outline the system. UML class diagrams to describe the
structural elements of an asset together with object diagrams to describe the asset’s
layout and the Object Constraint Language (OCL) to restrict possible values and
layouts are utilized to represent large parts of the asset. Ontologies and SysML
BDD (Weilkiens 2011) models have similar expressiveness regarding the asset’s
structure. Architecture modeling, such as MontiArc (Dalibor et al. 2020) or Focus,
targets the system’s components in the large as well as their interconnections and
communication. Behavior models, like state machines or MATLAB’s Simulink
(Mathworks: Simulation and Model-Based Design https://www.mathworks.com/
products/simulink.html), provide information about the asset’s expected behavior.
The digital shadow uses Data Calculation models to formulate data aggregation
and can have any form, from workflow models (Freund and Rücker 2012) over
programmed Excel tables to complex optimization models as Python script. Simu-
lation models serve in a similar function but with a strong focus on living aside with
the physical asset and predict behavioral aspects. In that sense, Data Calculation
models are meant to be executable by some engine, mainly a processing component,
to compute new data traces. Results of both Data Calculation and Simulation
models can be used by one another and finally provide an abstracted view on the
manufacturing data.

A digital shadow is designed for fulfilling exactly one specific Purpose. The
Purpose is the basis for data acquisition and information generation and varies from
a human-formulated text string or selected filter criteria to semantically defined
ontology terms. The detail level of the Purpose determines the range of the decision

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
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support, and subsequently the consideration of assets, models, and sources. Usually,
the more general a purpose is formulated, the more results a requester gets. For
example, finding an optimal shop floor configuration in general leads to multiple
results since different objectives are competitive, e.g., costs and adherence to the
jobs’ due date. Moreover, different models can fulfill the same purpose and hence
lead to different results for the same purpose. An example in the production domain
is finding the optimal lot size of a purchase order where different suitable models
like Andler, Groff, or Silver-Meal exist (Vahrenkamp 2008).

To fulfill its purpose, DSs gather data from a Source that supplies at least one
data point. Sources can be differentiated into Assets, manual inputs from Humans,
automatic Measurements from sensors, data Processing (i.e., cleaning, aggregation,
simulation, or calculation), and other digital shadows. Sources are further specified
by SystemProperties, which define attributes of a source at a given point in time.

An Asset “is an item, thing or entity that has potential or actual value to an
organization” (DIN ISO 55000:2017-05 2017). Thus, an asset can be either of
physical or virtual manner. Typical physical assets on the shop floor are machines,
equipment, material, or finished goods, while typical virtual assets comprise jobs,
routings, bill of materials, machine settings, or drawings. Assets can be described
by engineering models that provide their properties. The SystemProperties specify
the assets’ technical feasibilities and conditions at a point in time, like status
or performance. The composition of multiple assets can lead to a new asset,
e.g., the combination of a machine and a handling robot to a work center, and
subsequently to new properties, e.g., the overall equipment efficiency for this work
center. The prerequisite for an automatic decision support through DSs is a digital
representation of the assets’ properties in the digital world, e g., within a software
system like an enterprise resource planning, which comprises the assets’ master
data. Moreover, especially for transaction or process data (such as confirmation of
jobs and current temperature), Humans via plant and Measurements via machine
data acquisition realize the data flow. Because the gathered raw data for models
is often not suitable for direct processing, Processing as an essential source is
introduced for building and/or calculating the traces. Therefore, Processing can use
previously built data traces or processes gathered data from other sources, i.e., by
the filter, aggregation, simulation, or calculation. Thereby, digital shadows can also
act as a source.

The digital shadow captures data derived by Sources as DataPoints gathered in
contextualized DataTraces. Each DataTrace describes one procedure of this Source,
which it is connected to and is a subset of the available data. Single DataPoints
are used by the DS to provide information regarding the target purpose and are
either directly accessible or may contain a reference to the original data. MetaData
enrich DataTraces with additional information over its creation process, e.g., its
creation time, or further structural knowledge. Combined with the SystemProperty’s
validity in time, the DataTrace can be mapped to a specific system configuration
of the referenced Asset or other Sources. This way, much more context is given
to a DataTrace: its originating source can be the asset itself, processings on other
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data traces, or even other digital shadows; and MetaData together with the system
configuration provide a clear context of its creation.

4.4 Ontologies in the Internet of Production

One of the challenges of interdisciplinary collaboration is making knowledge
available and interpretable so that insights can be transferred and used in other
domains. The digital shadow reference model presented in Sect. 4.3 allows to
overcome these challenges by using a unified model to communicate different
data structures. However, it is not sufficient to ensure smooth communication
between different domains. Without the necessary semantics, these data often lack
interpretable context and tend to be rigid and without any possibility to adjust the
level of detail. Ontologies are a useful tool from the Semantic Web introduced
in Berners-Lee et al. (2001) to enable accurate modeling of real-world objects at
any granularity and to build explorable knowledge bases by semantically linking
data. At the same time, data is offered in machine-readable form and can be
interpreted and further processed with the help of the corresponding ontologies.
In addition, ontologies enable the creation of universally valid metamodels that
can be flexibly applied to different use cases, as presented in Sect. 4.3. Ontologies
and Semantic Web technologies have gained great importance in the IoP. Due to
their flexible application possibilities, ontologies are not only used as a modeling
tool, but find practical application in many different research areas. In the context
of the IoP, our previous work Lipp and Schilling (2020) identified and evaluated
the application domains depicted in Fig. 4.2. Applied methods include but are not
limited to ontologies for modeling, the SPARQL Protocol and RDF Query Lan-
guage (Prud’hommeaux and Seaborne 2013) for querying, the Shapes Constraint
Language (SHACL) (Knublauch and Kontokostas 2017) for validating, and tool
support for visualization and search. In the following, we present these five areas
with references to application examples. Please refer to Sect. 4.5 for a more detailed
presentation of selected use cases that build on ontologies and DSs.

(A) Data/service catalog is a widely used application and an excellent way to
structure any given data source such as dataset, services, participants, or projects.
They help users to keep track of a large number of different sources and enable
them to find information based on different search terms. Open data portals for
Germany (Geschäfts- und Koordinierungsstelle GovData: https://govdata.de) or
Europe (Publications Office of the European Union: https://data.europa.eu) are a
prominent examples of how data catalogs are used. A catalog usually is independent
of the data itself and is applicable to any data management system. In the context
of the Internet of Production, data catalogs can be used to make data available
between domains. Catalog ontologies such as Data Catalog Vocabulary (Albertoni
et al. 2019) are used as a basis for uniform communication and thus to improve
interoperability. In addition, unique and persistent identifiers simplify automatic
processing of sources.

https://govdata.de
https://govdata.de
https://govdata.de
https://data.europa.eu
https://data.europa.eu
https://data.europa.eu
https://data.europa.eu
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Fig. 4.2 Main application areas of the Semantic Web in the IoP (Lipp and Schilling 2020)

(B) Integrating domains enables human understanding data and enhances inter-
operability on machine level. It is common practice to reuse existing ontologies to
create a shared knowledge among different domains. However, it might still be nec-
essary to extend ontologies or create new ones to optimally serve respective use case.
Suggested tools include the widespread fully fledged ontology editor Protégé (Noy
et al. 2001) or our quick prototyping tool Neologism (Lipp et al. 2021), which also
allow combining multiple ontologies. One can, for instance, align concepts within
one or multiple ontologies using constructs like sameAs/broader/narrower or
apply more semantically sophisticated methods (Lipp et al. 2020a).

Ontology-Based Data Access (OBDA) enables (C) Database Access by using
semantic tools. By mapping concepts of ontologies to terminologies and relations
of data base schemas, domain experts are enabled to access data relatively easy and
without further database knowledge.
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(D) While Reasoning infers new knowledge from existing information, Consis-
tency checks and validation in general enable safe system interfaces and predictable
data processing. Lightweight Semantic Web Services for Units (LISSU) (Lipp et al.
2021), for instance, used in Sect. 4.5.3 provides validation for service-oriented
architectures and Theissen-Lipp et al. (2022) extends this approach to an integrated
SHACL-based solution.

(E) Data aggregation combines arbitrary, heterogeneous environments into
a joined source of information and enables advanced semantic analysis based on
views using different abstraction, focus, or interpretation. This approach is similar to
the concept of DSs and was applied in Lipp. et al. (2020) to optimize data collection
from manufacturing systems, in Lipp et al. (2020b) to even aggregate collected
data and metadata into a data lake, and in Sect. 4.5.1 to support decision-making
processes.

The abovementioned technologies maximize their benefits through close com-
munication between all relevant stakeholders, which fosters common understanding
and interoperability. The IoP, for example, maintains an Ontology Expert Group,
where experts from different domains and use cases collaborate on ontologies,
tooling, and best practices. This completes the layers of ontologies’ benefits from
high-level conceptual human understanding to deep technical integration of low-
level machine interfaces. The advantages include global unique identifiers, improve
(re)use and maintainability of both information and domain knowledge, and finally
dramatically improve analysis results through semantic integration of cross-domain
solutions.

In summary, ontologies have a wide range of applications. The different main
application areas provide new approaches to overcome existing problems in the
industry. By using semantic interpretable models like the digital shadow from
Sect. 4.3, not only can cross-domain communication be improved, but also a
common knowledge base can be created by integrating different domains and thus
supporting decision processes across domain boundaries. In the following section,
we will show how ontologies and semantic tools can help to overcome existing
problems in different use cases.

4.5 Data, Models, and Semantics in Selected Use Cases

To test the applicability of the DSRM, we analyzed data, model, and semantics
of four use cases on different levels of details, namely, production planning,
and process control in injection molding, adaptable laser-based manufacturing,
and automated factory planning. We present relevant concepts, show how digital
shadows can be used, and discuss its potentials and challenges.

4.5.1 Production Planning in InjectionMolding

Digital shadows are able to support decisions-makers within production planning
and control (PPC) in their daily business. We demonstrate different challenges
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within the domain of PPC in injection molding and how semantics can face those
challenges.

PPC facilitates all organizational steps for manufacturing a product, starting
from procuring raw materials and ending with the shipment of the finished goods
to the customer. Production planning tasks comprise a long-term horizon, i.e.,
weeks until months. A typical task within production planning is the scheduling
of the manufacturers’ resources under consideration of due dates, costs, energy
consumption, and much more. In contrast, production control tasks are in a short-
term manner. Thus, the regarded time horizon comprises seconds until days. One
core task in production control is the reaction to disruptions or changes within the
production (DIN EN 62264-1:2014-07 2014; Jacobs et al. 2018).

Injection molding is a widely used primary shaping production process with a
large variety of possible finished parts to be manufactured. First, the raw plastics
granulate is plasticized. Then, the injection molding machine injects the required
melt into a mold that comprises at least one or more cavities representing the
negatives of the manufactured part. After its solidification, the machine ejects the
part, which is then, in most cases, ready for post-processing or dispatching (Rosato
et al. 2000).

Figure 4.3 schematically illustrates the elements and their connection that
construct a PPC decision support in the injection molding domain.

An operator needs a decision for a complex planning or controlling task that
is compliant with a specific purpose. In the first step, the operator selects, for
example, the scope (e.g., the machines, time horizons, articles) and the optimization
criteria. Based on these criteria, the digital shadow selects different but suitable
models. The prerequisite for this consideration is a classification of the models,
i.e., based on optimization objective (e.g., minimization of tardy jobs), in the form
of a model catalog. Furthermore, the model catalog specifies the required raw

Fig. 4.3 The digital shadow provides decision support for production planning and control
purposes in the injection molding domain under consideration of semantics
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data for each model, e.g., the jobs’ planned start date or quantity. Enabling the
transformation from information to data and vice versa under consideration of the
right models is coupled to diverse challenges. On the one hand, digital shadows
must know which models fit for fulfilling the given purpose and the source of the
required data. On the other hand, PPC tasks are often complex as multiple assets,
objectives, and constraints interact in a way that optimization of one objective
often causes a trade-off to another objective. A prominent example is the “dilemma
of production control,” where increasing the (machine) utilization leads to higher
work-in-progress inventory (Wiendahl and v Wedemeyer 1993). Hence, PPC is
often subject to multiple concurrent objectives leading to a set of optimal solutions,
known as Pareto front, instead of one optimal solution. In addition, finding an
optimal solution in a short time for a given objective might not be possible due
to the vast amount of permutations, e.g., for building a schedule. In this case, the
operator desires the providence of a suitable solution (Hopp and Spearman 2008).

Realizing autonomous processing of models requires a digital data represen-
tation. This digital representation is enabled through Asset Administration Shells
(AASs), as they comprise all relevant properties for integration of assets into the
virtual world. The AAS can either store the data directly or provide the endpoint for
properties located in external databases, e.g., enterprise or shop floor management
systems (ERP and MES), manually in excel sheets, or other specialized systems,
e.g., warehouse management. Thus, the AAS acts as a single source of truth.
Consequently, the operator relies on tools that provide data-based decisions in an
adequate time from different data sources.

An ontology establishes the relation between the single AASs. Ontologies and
AASs encourage a semantic enlargement for properties with meta-information, e.g.,
by adding the unit, synonyms, or the description of the properties’ meaning, corre-
sponding to IEC 61360. Besides, introducing internationalized resource identifiers
(IRI) for each property ensures a unique identification. If all elements (databases,
AASs, ontologies, DSs) use IRIs, a modular composition of digital shadows can be
realized since the IRIs connect the required data from the model catalog with the
AASs and the corresponding databases.

In summary, digital shadows, in combination with semantic tools like AASs and
ontologies, are helpful to master the high complexity of PPC and provide data-based
decision support to operators. Perspectively, identifying the data and models via IRIs
enables a modular integration of DSs that are independent of underlying databases
or software systems.

4.5.2 Process Control in InjectionMolding

Besides digital shadows for PPC at shop floor level, DSs also offer additional
value at control level for many applications in production. In a plastics processing
company, digital shadows can be used for monitoring and control of injection
molding machines.
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Disturbing influences, such as fluctuations in environmental temperature and
humidity or changes of material batch composition, influence the injection molding
process, which leads to cyclically and long-term variations of part quality (Kazmer
and Westerdale 2009). Therefore, it is necessary to continuously adjust the machine
settings in order to ensure high reproducibility and avoid rejects.

Process data from the cavity, as location of molded part creation, has a high
correlation to part quality. The cavity pressure is referred as the fingerprint of the
injection molding cycle and has a great potential for high process stability as control
variable (Yang et al. 2016). For instance, a digital shadow, based on model-based
predictive cavity pressure control, can be used to compensate process disturbances.
A predefined cavity pressure reference is realized by adjusting the screw velocity,
whereas the reference is adapted when process disturbances are detected (Stemmler
et al. 2019; Hornberg et al. 2021; Vukovic et al. 2022). The main DS concepts and
relations of this process control method are shown in Fig. 4.4.

As purpose, the digital shadow should realize the given cavity pressure curve
with high control accuracy. Needed data originated from the main asset, injection
molding process, which is divided in the sub-assets mold, machine, material, and
human. All process data needed for this DS purpose is collected in the process data
trace and divided in process data points and metadata. The process data points
are updated for each control timestamp in real time and provide actual process

Fig. 4.4 Model of a digital shadow for process control in injection molding
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data. Metadata, which contains information about mold, material, and machine
settings, consists of constant values, which describe the injection molding process
and are needed to fulfill the purpose. The whole data trace is used for process
adaption calculation. Cooling calculation and flow calculation are performed until
the injection process ends. A digital twin operates as an external machine control
and directly adapts the screw velocity to realize the DS’s purpose.

The implementation as digital shadow has several advantages for further usage
of the DS in other processes. All data needed for the digital shadow is described in
the sub-assets, so the requirements for execution of the DS are given. It follows that
the digital shadow can be reused for other processes, if all input data is given. The
reusability includes changes of cavity pressure reference curve, machine, material,
and mold (produced part). Additionally, changes in the control algorithm can easily
be implemented by changing the used model.

The data structure of the assets can be reused as well. Further process information
can be added to the assets to increase the usability for a wide range of use cases, such
as quality prediction based on actual process data. The data traces of each digital
shadow only consist of data, which is needed for DS’s purpose. For implementation,
a classifier can be used, which contains whether the data has to be considered for
the DS data trace as process data point or metadata. Otherwise, data will be saved
as system properties. This leads to an increased usability as the operator only has
to provide data needed. Besides that, it is possible to trace which data and models
were used to derive DS’s purpose, thus ensuring traceability.

In summary, the application of digital shadows at control level was illustrated
by the example of the process control of an injection molding machine. The main
advantages of digital shadows are (re)usability and traceability, as data structures
and models can be applied to other use cases with reduced amount of effort and
high transparency.

4.5.3 Adaptable Layerwise Laser-BasedManufacturing

One of the largest advantages of laser processes is that laser light is weightless and
contact-free. These properties make laser light extremely attractive for production
systems since these systems are typically not bound to any wear, can deposit the
exact amount of energy needed at a precise time and place, and can be repro-
grammed for new purposes on demand, making it a perfect digital process (Poprawe
et al. 2018). This combination of properties renders laser-based manufacturing
systems like Ultra Short Pulse (USP) ablation or Laser Powder Bed Fusion (LPBF),
which is a very versatile and flexible manufacturing technology which allows the
reconfiguration of production on demand.

These manufacturing technologies typically work in layers. In LPBF 3D printing,
e.g., a 3D object is formed by selectively melting one layer of powder on top of
another layer. This production process is in concept very similar to USP where
the material is removed instead of added forming a 3D negative, e.g., for surface
finishing. This layerwise production benefits tremendously from the introduction of
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DSs since these discontinuous processes have the inherent feature of having to stop
in between layers. In LPBF, e.g., this stop is needed to apply new powder. During
this time, a digital shadow can be used that, for example, evaluates the used process
parameters during runtime by analyzing the produced surface roughness through
camera pictures (Knaak et al. 2021). We can therefore build a digital shadow of a
3D printed product by creating a manufacturing cycle consisting of the following
repeating steps:

• Melt powder to produce layer and collect in process DataPoints like thermal
emission

• Take picture of produced layer forming another DataPoint
• Analyze acquired DataPoint by the use of a model to generate new production

parameters
• Save DataPoints to existing DataTrace of the product
• Apply new powder

Reiterating through this process will form a digital 3D representation of a 3D printed
product forming the basis of a DigitalShadow. Similar sensor and data acquisition
concepts which allow the evaluation of the process quality during USP ablation
has been developed by Zuric et al. and allow for a similar production cycle during
USP (Zuric et al. 2019). Figure 4.5 shows an example process for USP ablation.
The plasma that is ignited during the process and is shown on the picture can be
monitored spatially resolved in order to estimate the product quality. These digital
shadows for process quality are typically designed for one specific manufacturing
system from one individual vendor.

Especially in laser processing, these digital shadows could greatly benefit from
a domain-wide usage not only limited in a vendor-specific ecosystem. However,
in order to move one digital shadow from one machine to another one, it is vital to
validate the data these DSs receive. We designed a microservice USP manufacturing
system that allows the plug and play movement of DSs. In this system, every sensor
and actor as well as analysis algorithm can be changed during execution and on
demand, making it possible to reorder DSs running on the manufacturing system.

Fig. 4.5 Process emission in
USP ablation can be
monitored in order to form a
3D digital shadow of the
produced product
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However, changing from one vendor-specific sensor to another can have large
influences on a digital shadow that analyzes this specific data trace. A single
changed temperature sensor that sends temperature as integer values but now reads
Fahrenheit instead of Celsius could lead to manufacturing errors or damages on
the machine depending on the usage of the DS outcome. In order to minimize this
effect of changed hardware setup, we proposed LISSU (Lipp et al. 2021), which
allows the description of sensor produced data in order to validate digital shadows
consuming these data streams. This bottom-up approach validates communication
between two parties, e.g., a digital shadow and a actuator, before a communication
takes place and verifies if both parties interpret the incoming value as Celsius. In
case of a mismatch, either it converts the data or it disables the communication. By
not only checking for syntactical correctness but also semantic correctness by the
use of high-level semantic, configuration file errors can be reduced.

4.5.4 Automated Factory Planning

The task of factory planning is to design production systems that utilize their
technological and organizational capabilities to process goods to deliver products
to the customer. In today’s dynamic market environment, changing requirements
demand even for adaptable factories an increasing frequency of re-planning. In
addition to reduced planning times, further cost pressure in the markets leads also to
more complex and iterative planning tasks. To meet these challenges, the application
of digital factory methods supports the planning process with design and simulation
tools. However, heterogeneous sources of factory and planning information hinder
a digital interconnectivity necessary to leverage the advantages of data-based and
automated approaches (Schuh et al. 2011; Burggräf et al. 2021b).

To achieve interoperability of these data sources, future factory planning needs
semantic information modeling as a foundation (Kádár et al. 2013; Büscher et al.
2016). An integrative information system forms the digital representation of the
factory by combination of different factory asset data in its knowledge base, as
shown in Fig. 4.6. The knowledge base contains general factory information in
an engineering model, e.g., production quantities and machine dimensions, and
metadata such as alternative configurations in planning scenarios. The semantic
structure of this knowledge is set by a factory planning ontology as a conceptual
model.

While the factory information system constitutes the basis for a digital factory
twin, DSs offer an interface for machine-interpretable data exchange. For updated
information, for example, by manual planning efforts, real-time updates from
production feedback systems, or newly available asset data, a digital shadow
imports the relevant Updadata as data traces into the information system. The
semantically correct data integration is supported, because the DSs use the factory
planning ontology as their Model. In another use case, implicit planning data is
automatically checked with validation rules (Burggräf et al. 2021a) defined in the
specific DS’ DataCalculation model. The relevant factory information is queried
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Fig. 4.6 DSs in factory planning allow for semantic information processing by linking to the
ontology-based factory information system

from the information system. The third use case describes a planning agent that
enables automated factory planning in specific planning tasks as its Purpose. An
example is the calculation of machine utilization based on production quantities and
resource capacities in the dimensioning of a production system. Here, the newly
reasoned information, i.e., the machine utilization, is imported from its Processing
Source to the knowledge base (Schäfer 2022). Conclusively, DSs in factory planning
contain information that is specifically selected for use-case-specific context and
requirements.

These use case examples demonstrate how digital shadows are essential to
connect data sources for automated factory planning. Augmented by complementing
the DSs with calculation models, semantic information modeling of relevant factory
information offers digital decision support to planning experts. The presented
concept of the factory information system will be extended to further use cases in
the future.

4.6 AMethod to Design Digital Shadows

A digital shadow aims to support the user in a decision-making process; thus, it
needs to provide all relevant information to support informed decisions. Up to now,
research lacks a method how to realize digital shadows with real data in practice.
Based on our experiences from the four use cases in Sect. 4.5, we have developed
a method that enables domain experts to describe digital shadows to the extent that
software engineers or domain experts can realize them in software systems. The
result of this requirements engineering process for a digital shadow is descriptions
from the domain expert perspective, which are yet independent from the actual
implementation.

To make an informed decision, we can use digital shadows. Such a decision is
related to a problem, which has to be solved, data related to this problem and its
relationships in engineering models, one or more solutions with data calculation
and/or simulation models leading to them, and the goal and purpose of the solutions.
These parts constitute a digital shadow (see Sect. 4.3).
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Fig. 4.7 The method to design digital shadows as domain expert

The following method can be applied by domain experts, e.g., product designers,
factory planners, or production planners and controllers. Our method (see Fig. 4.7)
includes the following steps: (1) Describe the problem, (2) analyze the assets and its
models (3) use or build data calculation and simulation models, (4) identify needed
data traces, data points, and meta-data. There are two ways to follow this method:
from a domain expert and asset-centric perspective with steps 1–4 or in a data-driven
way with step 4 before 2 and 3.

(1) Describe the problem In a first step, we identify a decision problem of the
domain under consideration. The problem is described by the scope of consider-
ation, the possible solution scope, as well as the goal of the decision, which is
reflected in the purpose of the digital shadow.

The purpose specifies the goal of the digital shadow, and there exist different
types of purposes, e.g., an improvement or optimization of objectives, or informa-
tion about critical failures. The identified purpose serves as a basis for deriving
the necessary information requirements. If the purpose is optimization of a specific
process step, the user needs information about the objectives to be achieved and the
necessary parameter adjustments. When it comes to identifying critical failures, the
user needs information about the failures and its effects to prevent future failure
occurrences. The user needs to define relevant assessment dimensions used to
evaluate the solutions offered, e.g., logistical target values and costs.

(2) Analyze the asset and its models Each decision is related to one or more assets
and the models and data available about them. As this data might be distributed
among different systems and databases, models provide domain experts an abstract
view on this data and allow them an easy selection of relevant aspects of the
asset. By selecting relevant aspects from assets within existing models, the latter
realization in software provides already a connection between the information
requirements for a decision and the data sources.
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(3) Use or creation of data calculation and simulation models To characterize
a data calculation or simulation model, the domain expert must describe needed
input data, the calculation or simulation specification, the output data, as well
as further properties. The model’s input data is described by the required data
sets (attributes), data structure, and data quality. The calculation or simulation
specification describes how the data should be aggregated, in which formulas
should be taken for computation, or how the simulation steps should look like.
How much can be specified here depends on the domain expert knowledge. The
information output is characterized and described in terms of accuracy. The domain
expert can provide additional properties as meta-information about the calculation
or simulation specification, e.g., if the calculation should work online or offline, how
accurate and precise the results need to be, and the requirements on interpretability
and explainability, e.g., of machine learning models, as well as adaptability and
robustness needs from the domain expert perspective.

(4) Identify needed data traces, data points, and meta-data In a next step, the
domain users identify relevant data traces of the system including its data points
and metadata by providing some examples. These examples can be used by domain
experts to validate the input needed for data calculations and simulations. Specific
data points at different aggregation levels might be required for each decision. Their
aggregation has to be defined as data calculation in step (3).

When we apply this method to a specific use case, the result is a collection of
requirements for the creation of the digital shadow. In the next step, we have to move
from the requirements specification in the problem space to the solution space and
the realization in a software system. Within that step, preparation might be needed,
e.g., if data points were specified that do not exist in databases yet. Based on these
specifications, e.g., the best fitting model can be selected, or a new model has to be
created in cooperation with the domain expert. Implementation details have to be
specified, e.g., the concrete locations of data, or if data type conversions are needed.

4.7 Data andModel Life Cycles in the IoP

Knowing better how to design digital shadows, the next step is to consider the impact
of DS on the product life cycle. The data and models forming a digital shadow,
e.g., from Sect. 4.5, can be used throughout the life cycle of a product, namely,
Development, Production, and Usage.

Up to now, data and models tend to stay within these phases (see Fig. 4.8, left)
and are often not even interconnected within each phase. Data is stored in data
silos and not shared over the lifetime of a product (Brauner et al. 2022). To enable
worldwide production labs, we have to extend the life cycle of data and model in
various dimensions (see Fig. 4.8, right):
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Fig. 4.8 Data and models within the product life cycle

1. Sharing of data can be realized by using digital shadows, which encapsulate
relevant data parts, link them to models, and give the stakeholders full control
over their sharing when realizing privacy-ensuring mechanisms.

2. Models and data need to be connected for more powerful analyses and real-time
monitoring of processes. This can be realized in own models or ontologies or
incorporated within a digital shadow.

3. Models should be reusable within the same phase, e.g., a simulation model for
a product can be reused for similar products with specific parameters, or within
the whole life cycle, e.g., the simulation model of one machine can be used in
development and in the production environment to check the parameters to be.

4. Models should be evolvable over time such as the assets they represent, e.g., allow
for additions or changes.

However, the creation of DSs within software systems utilizing models and
data does have a life cycle as well: data acquisition, data calculation or simulation
model formulation, integration, and adaptation. All of these phases place different
requirements on the underlying infrastructure, which needs to be able to fulfill all
these requirements in order to allow a hassle-free adaption of digital shadows.

During the Data Acquisition phase, the initial data trace is aggregated in order
to build the foundation for a data calculation or simulation model. Depending on
the purpose of the DS, the frequency of this aggregation can vary from a few data
points per hour up to multiple GHz. Also the amount of used data traces varies. In
a manufacturing planning scenario, it would make more sense to use multiple data
traces with a relatively low data rate, while a production digital shadow, which could
be used in laser processing or injection molding, typically requires less sensors
but at higher data rates. Handling the sheer amount of data can be a challenge
in itself and put high stress on the underlying infrastructure especially regarding
persistent storage and bandwidth (Thombansen et al. 2021). The required skills in
this phase typically involve domain-specific knowledge of the use case, knowledge
of networking, and domain-specific APIs as well.
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Afterward, during data calculation or simulation formulation, the acquired
data is analyzed and used in order to produce a working DS. Some models like
simulations and machine learning algorithms require large amounts of processing
power in order to fulfill this step. Also the iterative design of such models can
require large amounts of domain-specific knowledge as well as software engineering
knowledge.

Integrating a digital shadow in running operations can become one of the largest
challenges. They not only need access to the – sometimes live – data trace(s) in an
efficient manner but also need the processing resources in order to fulfill its task.
Depending on the workload the digital shadow meets, it might make sense to scale
the DS up and down in order to adapt to incoming request changes. That is why we
propose to run digital shadows that need this kind of scalability in a cloud data center
or an on-prem edge data center. Another requirement comes from the vast amount
of different digital shadows in a cooperation environment. Having an underlying
organization and orchestration infrastructure that allows not only the scaling but
also the discovery of deployed DSs is vital.

Production requirements change over time. Product portfolios are updated or
discarded entirely, which leads to the last phase: Adaptation. Here, the digital
shadow is modified if a change in the purpose of the DS is detected. This can
lead to the deletion of data traces in order to save cost, updating models or scaling
computing resources up and down depending on the need of the DS. Version control
becomes a vital part of this scenario not only of the deployed models but of the
whole digital shadow that needs to track all elements of the reference model.

These technical and domain requirements and the connections over different
product life cycle phases show that a multidisciplinary approach is necessary to
create worldwide production labs.

4.8 Outlook: Using Digital Shadows in Digital Twins

Digital shadows need software systems to manage them (Brecher et al. 2021); their
initial setup, population with data, and deletion; and their evolvement, versioning,
and sharing. Such functionalities can be integrated into one system or distributed
among different services. One solution that could integrate these functionalities are
digital twins (Kritzinger et al. 2018; Bibow et al. 2020). However, digital shadows
can also exist without surrounding systems, if considered from the data sharing
perspective and reduced purely to the aggregated data, metadata, and connected
models. The original systems in the context of the IoP are CPPS or their subsys-
tems (Feichtinger et al. 2022); however, further approaches discuss digital twins
of organizations or humans. We distinguish three types of digital twins, whereby a
DT can evolve across these three types: (1) “as-designed” digital twins exist during
design (including technical design and simulation), (2) “as-manufactured” digital
twins exist during construction, and (3) “as-operated” digital twins during runtime
of a CPPS. In contrast to a digital shadow, the digital twin is able to influence the



4 A Digital Shadow Reference Model for Worldwide Production Labs 83

CPPS (van der Aalst 2021), e.g., via self-adaptive functionalities (Bolender et al.
2021; Dalibor et al. 2020).

Digital twins can include different services using DSs, e.g., cockpits for visual-
ization (Dalibor et al. 2020; Michael et al. 2022), process mining methods such
as process discovery and prediction (Brockhoff et al. 2021; Bano et al. 2022),
machine learning and AI methods (Liebenberg and Jarke 2020; Dröder et al. 2018),
assistive services for human support (Michael 2022), supporting the assessment of
sustainability targets (Fur et al. 2022), or services to compare DSs and their meta-
information. Such services are implemented by oneself or integrated from a service
catalog (see Sect. 4.4). We can support the setup of digital shadows within low-code
platforms (Dalibor et al. 2022), and the digital twin could provide functionalities for
versioning and evolution of digital shadows (see Sect. 4.7). Most of these concepts
are not yet widely used in the industry, but our research within the IoP is trying to
pave the way.

Moreover, we have identified a set of open challenges within two areas, which
should be considered in the future: aspects to be realized for the applicability in
worldwide production labs and challenges for improving the user experience when
using and creating digital shadows and digital twins.

Challenges for the applicability in worldwide production labs These aspects need
to be taken into account to ensure the usability of DSs within worldwide production
labs for which different companies with multiple factories exchange data based on
defined conditions.

• Privacy concerns of data: When handing over data, even it is only a restricted
amount of it, the data provider wants to ensure that, e.g., the data is not used
in another purpose than specified, stored longer than agreed on, or shared with
third parties. Privacy policies allow data owners to control their privacy concerns
and to monitor the compliance in supporting software systems. Thus, we have to
incorporate relevant privacy concepts (Michael et al. 2019b) within the DSRM
and define what components software systems such as the digital twin need to
handle such digital shadow requests and related decisions (Michael et al. 2019a)
while considering important privacy design patterns (Hoepman 2014) and the
research of the International Data Spaces Initiative (Jarke 2020).

• Selling digital shadows: Given the shadow’s purpose and the specification of
the asset it works on, the digital shadow provides an interface for reusability.
A DS, once designed and implemented, is itself a valuable property. It gathers
new information in a smart and fast manner to fulfill its purpose. A company
specialized in the remanufacturing and sale of this trade good could make
use of this property. What then remains to be done is to precisely adapt the
digital shadow to a new application. After a customer provided their asset
specification, the communication interface needs to be implemented and models
can be adapted to fulfill a slightly modified purpose. If the asset specification and
purpose were enriched with semantic terms (see Sect. 4.4), this process could
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even be automated using previous implementations. However, further research
on business models and software services supporting the adaption is needed.

Challenges to be met for a user-friendly handling of digital shadows Designing
DSs is a complex task and often requires close collaboration between domain
experts and software engineers. We need to tackle these additional challenges to
make digital shadow engineering as applicable as possible.

• Reusable model repositories: One of the key elements of our digital shadow is
the usage of models to describe the asset’s structure and behavior or to specify
how the DS itself acts. Once specified, models describe a specific part of the
DS and can be reused in other digital shadow designs as well. Having digital
models in private or public repositories (see selling digital shadows) allows for
an easy selection and creation of new composite models. To make this possible,
all models need a semantic description of what it is supposed to stand for. In case
of models meant for execution, such as calculation specifications or simulations,
interfaces for input and output must be provided. These repositories of reusable
models contribute to a user-friendly and domain expert understandable digital
shadow engineering.

• Automatic derivation of DSs from engineering models: During design time,
the system’s structure and behavior are specified in engineering models. They
describe in detail how the system is supposed to act and which parts of the
system are of interest. We could use those engineering models to automatically
generate digital shadows, e.g., we could generate the extraction of information
of important system components from structure models or generate views on
them (Gerasimov et al. 2021). When given 3D models, automatic behavior
simulation could be possible. Nonetheless, all engineering models have to be
set in context to the actual system and need to be enriched with their purpose
information.

4.9 Conclusion

Within this chapter, we have presented the foundations of digital shadows: what
concepts constitute them, their relations to ontologies, how to guide their creation
from the domain-specific user perspective, and and how digital shadows can be
integrated over different environments considering the product life cycle. We have
further investigated four use cases and presented how digital shadows can support
the challenges in these domains. Moreover, we give an outlook into what aspects
have to be realized in software systems to create and manage digital shadows.

We envision worldwide production labs that foster cross-domain collaboration
and are enhanced by sharing digital shadows that support decision-making, and we
encourage DS reuse in other production scenarios. This requires for the different
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stakeholders to be able and willing to share data and models, and it requires from
research to provide the needed concepts and technologies such as digital shadows
and digital twins.
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Abstract

The Internet of Production (IoP) promises to be the answer to major challenges
facing the Industrial Internet of Things (IIoT) and Industry 4.0. The lack of
inter-company communication channels and standards, the need for heightened
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safety in Human Robot Collaboration (HRC) scenarios, and the opacity of
data-driven decision support systems are only a few of the challenges we
tackle in this chapter. We outline the communication and data exchange within
the World Wide Lab (WWL) and autonomous agents that query the WWL
which is built on the Digital Shadows (DS). We categorize our approaches into
machine level, process level, and overarching principles. This chapter surveys
the interdisciplinary work done in each category, presents different applications
of the different approaches, and offers actionable items and guidelines for future
work.The machine level handles the robots and machines used for production and
their interactions with the human workers. It covers low-level robot control and
optimization through gray-box models, task-specific motion planning, and opti-
mization through reinforcement learning. In this level, we also examine quality
assurance through nonintrusive real-time quality monitoring, defect recognition,
and quality prediction. Work on this level also handles confidence, verification,
and validation of re-configurable processes and reactive, modular, transparent
process models. The process level handles the product life cycle, interoperability,

E. Iacomini · M. Herty
Institute of Geometry and Applied Mathematics (IGPM), RWTH Aachen University, Aachen,
Germany
e-mail: iacomini@igpm.rwth-aachen.de; herty@igpm.rwth-aachen.de

M. Trinh · C. Brecher
Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University,
Aachen, Germany
e-mail: m.trinh@wzl.rwth-aachen.de; c.brecher@wzl.rwth-aachen.de

A. F. Posada-Moreno · S. Trimpe
Institute for Data Science in Mechanical Engineering (DSME), RWTH Aachen University,
Aachen, Germany
e-mail: andres.posada@dsme.rwth-aachen.de; trimpe@dsme.rwth-aachen.de

S. Zhang · J. H. Schleifenbaum
Institute for Digital Additive Production (DAP), RWTH Aachen University, Aachen, Germany
e-mail: song.zhang@dap.rwth-aachen.de; johannes.henrich.schleifenbaum@dap.rwth-aachen.de

R. H. Schmitt
Information Management in Mechanical Engineering (WZL-MQ/IMA), RWTH Aachen
University, Aachen, Germany

Production Metrology and Quality Management, Laboratory for Machine Tools and Production
Engineering (WZL), RWTH Aachen University, Aachen, Germany

Fraunhofer IPT, Aachen, Germany
e-mail: r.schmitt@wzl.rwth-aachen.de

S. Decker · M. Jarke
Information Systems and Databases (DBIS), RWTH Aachen University, Aachen, Germany

Fraunhofer Institute for Applied Information Technology (FIT), St. Augustin, Germany
e-mail: decker@informatik.rwth-aachen.de; jarke@informatik.rwth-aachen.de


 885
26984 a 885 26984 a
 
mailto:iacomini@igpm.rwth-aachen.de
mailto:iacomini@igpm.rwth-aachen.de
mailto:iacomini@igpm.rwth-aachen.de
mailto:iacomini@igpm.rwth-aachen.de

 13540 26984 a 13540 26984 a
 
mailto:herty@igpm.rwth-aachen.de
mailto:herty@igpm.rwth-aachen.de
mailto:herty@igpm.rwth-aachen.de
mailto:herty@igpm.rwth-aachen.de

 885 31965 a 885 31965 a
 
mailto:m.trinh@wzl.rwth-aachen.de
mailto:m.trinh@wzl.rwth-aachen.de
mailto:m.trinh@wzl.rwth-aachen.de
mailto:m.trinh@wzl.rwth-aachen.de
mailto:m.trinh@wzl.rwth-aachen.de

 12416
31965 a 12416 31965 a
 
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de

 885
36946 a 885 36946 a
 
mailto:andres.posada@dsme.rwth-aachen.de
mailto:andres.posada@dsme.rwth-aachen.de
mailto:andres.posada@dsme.rwth-aachen.de
mailto:andres.posada@dsme.rwth-aachen.de
mailto:andres.posada@dsme.rwth-aachen.de

 15603
36946 a 15603 36946 a
 
mailto:trimpe@dsme.rwth-aachen.de
mailto:trimpe@dsme.rwth-aachen.de
mailto:trimpe@dsme.rwth-aachen.de
mailto:trimpe@dsme.rwth-aachen.de

 885 40821 a 885 40821 a
 
mailto:song.zhang@dap.rwth-aachen.de
mailto:song.zhang@dap.rwth-aachen.de
mailto:song.zhang@dap.rwth-aachen.de
mailto:song.zhang@dap.rwth-aachen.de
mailto:song.zhang@dap.rwth-aachen.de

 13931 40821 a 13931 40821 a
 
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de
mailto:johannes.henrich.schleifenbaum@dap.rwth-aachen.de

 885 50230 a 885 50230 a
 
mailto:r.schmitt@wzl.rwth-aachen.de
mailto:r.schmitt@wzl.rwth-aachen.de
mailto:r.schmitt@wzl.rwth-aachen.de
mailto:r.schmitt@wzl.rwth-aachen.de
mailto:r.schmitt@wzl.rwth-aachen.de

 885 55765 a 885 55765 a
 
mailto:decker@informatik.rwth-aachen.de
mailto:decker@informatik.rwth-aachen.de
mailto:decker@informatik.rwth-aachen.de
mailto:decker@informatik.rwth-aachen.de

 14783 55765 a 14783
55765 a
 
mailto:jarke@informatik.rwth-aachen.de
mailto:jarke@informatik.rwth-aachen.de
mailto:jarke@informatik.rwth-aachen.de
mailto:jarke@informatik.rwth-aachen.de


94 M. Behery et al.

and analysis and optimization of production processes, which is overall attained
by analyzing process data and event logs to detect and eliminate bottlenecks
and learn new process models. Moreover, this level presents a communication
channel between human workers and processes by extracting and formalizing
human knowledge into ontology and providing a decision support by reasoning
over this information. Overarching principles present a toolbox of omnipresent
approaches for data collection, analysis, augmentation, and management, as well
as the visualization and explanation of black-box models.

5.1 Introduction

The digital transformation of production fundamentally reshapes the production
landscape. The continuous and real-time exchange of data and information across
all levels of the production process connects organizations within and across
companies. Through this full integration of data across the whole life cycle of
design, manufacturing, and use of products and across the whole value chains,
production becomes more effective, efficient, and dynamic (Kagermann 2015; Liao
et al. 2017; Brauner et al. 2022). Also, the diligent and efficient use of data opens
up new business models and workplace opportunities for future generations (Becker
et al. 2021b).

The Internet of Production (IoP) transfers the idea of the Internet of Things (IoT)
to production and strives for the horizontal and vertical integration of production
technology. It is thus related to similar concepts, such as Industry 4.0, the Industrial
Internet (Bruner 2013), and the Industrial Internet of Things (IIoT) (Boyes et al.
2018). Yet, many approaches in this direction usually focus on one aspect at a
time. They either focus on one layer of industrial environments, tackle challenges
of a specific domain, or handle one perspective of the human stakeholders. In
contrast, the IoP is a holistic approach to digital production and aims at achieving
many of the visions of Industry 4.0 (Brauner et al. 2022; Pennekamp et al.
2019). It thus shares goals with several initiatives around the globe such as
the industrial value chain initiative (https://iv-i.org/, last accessed: 2022-08-02),
made in China 2025 (http://english.www.gov.cn/2016special/madeinchina2025/,
last accessed: 2022-08-02), US advanced manufacturing initiative (https://www.nist.
gov/document/molnar091211pdf, last accessed: 2022-08-02), and the high value
manufacturing catapult (https://hvm.catapult.org.uk/, last accessed: 2022-08-02).
But beyond that, the IoP builds on Digital Shadows (DS) and facilitates the idea
of a World Wide Lab (WWL) (Brauner et al. 2022). DSs refer to fast, secure,
task- and context-specific, purpose-driven, aggregated, multi-perspective, persistent,
and multimodal views on data for production engineering applications (Liebenberg
and Jarke 2020). The WWL enables the integration of data from experiments,
manufacturing, and usage across lab, company, and country boundaries to generate
insights.
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The previous (�Chaps. 3, “A Digital Shadow Reference Model for Worldwide
Production Labs” and � 2, “Evolving the Digital Industrial Infrastructure for
Production: Steps Taken and the Road Ahead”) have laid the foundations for a
secure, reliable, and trusted physical infrastructure of an IoP and motivated and
defined the conceptual foundations of DS as the crucial nexus between the entities of
the IoP. This chapter presents the functional perspective of the IoP and demonstrates
how to make production data actionable, by linking mathematical models, Artificial
Intelligence (AI), and Machine Learning (ML) with model-based analysis and
control to provide actionable knowledge to either machines or decision-makers
through trusted and bias-free humane interfaces (Calero Valdez et al. 2015; Pause
et al. 2019).

The vision is the application of model-integrated AI which combines mathe-
matical models, simulations, and data from different sources to create “data-to-
knowledge pipelines.” These pipelines transform massive data into insights and
provide actionable knowledge to decision-makers. To this end, we define the
following objectives:

1. Develop a systematic approach toward the combination of ML and model-based
AI methods in context-adaptive production settings.

2. Develop visualizations, decision support systems, and human-centered interfaces
that enable intuitive, adaptive, comprehensible, replicable, interactive assess-
ments of model, simulation, and smart data at different scales and abstraction
levels for reporting, diagnosis, prediction, and decision.

3. Definition of a systemic overview on data-to-knowledge pipelines in production
and derivation of similarities between pipelines to enable the transfer and cross-
learning between different pipelines.

A core idea is creating data-to-knowledge pipelines that transform raw machine
data to actionable knowledge usable by either humans or machines. Actions can be
taken by shop floor workers, supervisors, or managers. This knowledge can also
be integrated into autonomous closed-loop control of the machine as well as other
machines on the shop floor or production planning systems to realize self-adaptive
production systems (Pause et al. 2019). These data-to-knowledge pipelines are the
foundation of human-centered Decision Support Systems (DSSs) providing insights
and enabling the human-in-the-loop to make informed, bias-free decisions (Brauner
and Ziefle 2019).

Key drivers for the digital transformation in production are the need for process
understanding and optimization, management decision support systems, workplace
improvement through better ergonomics and safety, cost reduction through defect
detection and time reduction, improved horizontal and vertical data integration, and
better adoption to customer demands (Liere-Netheler et al. 2018).

Fisher et al. (2018) allow sharing and managing manufacturing capabilities in a
micro-service architecture with a focus on inter-company integration (Siderska and
Jadaan 2018). Our approach builds on the concepts of the World Wide Web and the
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IoT to act as the IIoT. The IIoT promises many improvements in various industries
through data exchange and integration, as well as the introduction of digital twins
(Pennekamp et al. 2019). According to Xu et al. (2014), the IIoT aims to improve
production processes by reducing energy consumption, increasing throughput, as
well as safety and security, among other factors.

With the new wave of digitization of production and the increased use of sensors
as well as retrofitting old machinery to fit the digitization initiative, Big Data
(Manyika et al. 2011) is now omnipresent in production. To support collection,
storage, and management of the vast amounts of data collected, the IoP introduced
FactStack to manage the full data life cycle while maintaining the FAIR principles:
that the data has to be findable, accessible, interoperable, and reusable (Wilkinson
et al. 2016; Gleim et al. 2021a). We focus on both inter- and intra-company
communication, as well as analysis and optimization of production processes on
all levels of production. Our vision is to create, share, and use DSs in different
industrial domains in a WWL.

This chapter serves as a toolbox that shows how to apply the concepts and
methods of the IoP in different production domains and illustrate their added value.
We survey our efforts to achieve the above objectives and demonstrate (1) the
application of the concept of DSs in production systems, the creation of data-
to-knowledge pipelines, and the realization of validated self-adaptive production
systems. (2) Further we shed light on the realization of smart DSSs for human-in-
the-loop and shorter, efficient, and agile innovation cycles that build on integrative
and interdisciplinary methods. (3) Finally, we show methods for data-driven insights
in production processes and back-coupling methods to transform these insights to
actions.

This chapter covers the different layers in industrial environments (Fig. 5.1
illustrates its structure). First, we provide an introduction to the WWL and how
autonomous agents can make use of DSs and date-to-knowledge pipelines in
production (Sect. 5.2). Next, we address the creation and use of DSs at the machine
level, where we address the work of individual machines (Sect. 5.3). Then, we
address the process level that considers the relation between different production
machines on a shop floor (Sect. 5.4). Additionally, we present overarching principles
that provide support to the different AI methods as well as aggregate the different
aspects toward the vision of the WWL (Sect. 5.5). The chapter concludes with a
summary and brief outlook on the future of AI in production (Sect. 5.6).

5.2 Autonomous Agents Beyond Company Boundaries

To make the most out of AI applications in the IoP, particularly with the widespread
use of Deep Learning (DL) techniques, we use DSs as an abstract digital repre-
sentation of the different industrial processes. The digital shadows, inspired from
database views (Liebenberg and Jarke 2020; Becker et al. 2021a; Brauner et al.
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Section 5: Overarching principles
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Fig. 5.1 Illustration of this chapter’s structure and its individual approaches and contributions

2022), are used as an efficient alternative to digital twins (see previous �Chaps. 3,
“A Digital Shadow Reference Model for Worldwide Production Labs” and � 2,
“Evolving the Digital Industrial Infrastructure for Production: Steps Taken and
the Road Ahead”). Mathematical models can be simplified or can be combined
with measurement data or the knowledge created using the data-to-knowledge
pipelines. One of the core ideas in the IoP is to share these digital shadows to
support production processes with autonomous software agents we call WWL
Agents.

The idea of the WWL Agents was introduced in Liebenberg (2021). These
autonomous search agents push the boundaries of the IoP beyond control and
optimization of production processes within a single company and allow sharing
digital shadows across different companies enabling cross-domain data exchange.
Additionally, a prototypical implementation of an infrastructure enabling this
collaboration as well as two use cases from the IoP where WWL Agents are used
to plan the processes of hot rolling and Fiber Reinforced Plastics (FRP) production
was presented in Liebenberg (2021). The WWL Agents are able to generate and
repair hot rolling schedules using a digital shadow of the process containing data
and the fast mathematical models presented in Seuren et al. (2012). They are also
able to use traditional planners such as the Temporal Fast Downward (TFD) planner
(Eyerich et al. 2009) for the FRP use case.

Figure 5.2 shows the interaction between a production process which can share
its digital shadow comprising of data and simplified mathematical models in the
WWL. The digital shadow can then be used for automatic control and in DSSs.
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Fig. 5.2 A node in the WWL represents a production process whose models and/or data are
continuously shared as a digital shadow in the WWL. These digital shadows are later used as
a decision support system causing a feedback loop between the digital shadows and the process
itself. (Image adapted from Liebenberg 2021)

Fig. 5.3 An overview of the framework proposed in Liebenberg (2021) to support the WWL
Agents in using the digital shadows provided by different nodes in the WWL. (©Image adapted
from Liebenberg 2021)

Figure 5.3 shows an overview of the proposed architecture of the WWL. Users of
different roles who provide different use cases have an interface that allows them
not only to view process information such as quality prediction but also to upload
digital shadows in the form of models and data. The interface acts as an entry point
to the WWL as well as a decision support system that can provide insights to the
human operators.

In the case of hot rolling, these insights can be in the form of a new rolling
schedule or a corrected one in case the quality assessment model predicts an issue
with the current one. The underlying models are DL models capable of making
different predictions regarding the quality of the product fast enough to allow the
operator to get the quality prediction and the suggested corrected schedule and then
decide whether to apply the suggested changes in a matter of seconds.

In the case of the FRP manufacturing use case, the insights can be the actions
to execute as well as resources and technologies to use in the different steps
of the production scenarios. Since the digital shadow for this process contains
a classical planner, the process expert would often need to share the problem
description, including what resources and tools are available as well as the different
steps to be executed for this product. This information is represented using the
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Planning Domain Definition Language (PDDL), which is a widely used language
for describing planning domains and problems (McDermott et al. 1998).

More use cases still need to be integrated into the framework presented in
Liebenberg (2021) to have a truly global interface to the WWL which acts as a
search engine with decision support powered by WWL Agents fulfilling the vision
of Liebenberg and Jarke (2020). This would showcase the ability of these agents
to act as a general cross-domain decision support system for use case experts and
machine operators.

To this end, the following sections showcase the creation and usage of DSs for
several use cases in the IoP: first for the machine level in Sect. 5.3 and then for
the process level in Sect. 5.4. These DSs are extracted from different processes as
analytical, DL, or generative models and can be shared across the WWL and later
used by the autonomous agents of the WWL for process planning and plan repair,
online and offline quality prediction, as well as decision support.

5.3 Machine Level

The aim of modern production is to increase its flexibility to satisfy quickly
changing market needs and succeed at the fierce global competition. Therefore,
it is crucial to create control systems for machines capable of quickly adapting
to new tasks without much engineering effort. This section shows how novel
control structures ranging from data-driven, over hybrid, to classical solutions,
and their validation methods, can help boost the reconfigurability and flexibility
of manufacturing systems on the example of four practical use cases. In the first
use case, a monitoring system that enables data-driven control is presented for
Laser Powder Bed Fusion (LPBF) machines. The second use case demonstrates
the use of data-driven control systems for Laser Material Processing (LMP). The
third and fourth use cases present the capabilities of hybrid control systems and
hierarchical structures. They combine advantages of classical control methods
with data-driven solutions. Finally, we discuss how the safety and robustness
of complex control systems can be ensured via a new-generation monitoring
architecture.

5.3.1 Data-Driven Quality Assurance and Process Control of Laser
Powder Bed Fusion

Additive Manufacturing (AM) offers exciting new opportunities for manufacturing
parts with complex geometries or small lot sizes. LPBF is a promising process for
metallic components (Spierings et al. 2016). Using AM technique, high flexibility
can be achieved when multiple parts with different geometries and sizes can be
produced simultaneously. These lead to high freedom with low cost compared to
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conventional manufacturing. Due to the stochasticity of the manufacturing process,
the LPBF process and its production quality are influenced by diverse factors such
as laser parameters (Spears and Gold 2016), powder recoating system (Neef et al.
2014), particle gas emissions (Mohr 2019), or powder bed compaction (Ali et al.
2018). Unlike conventional manufacturing processes, the layer-wise production
characteristics of LPBF offer the possibility of in situ monitoring and process
control layer-wise, which provide insights during the manufacturing process by the
monitoring data and adapt the laser scanning strategy for subsequent layers. Thus,
it provides the possibility to investigate the correlation between in situ monitoring
data and part quality of LPBF process. Based on this, a data-driven method can
be used to characterize process performance. Detecting defects needs to be done as
early as possible so that a control strategy can prevent the occurrence of the detected
defect during the LPBF process. This way we can achieve “first-time-right” and high
stability of product quality.

To reach this goal, a closed-loop control strategy to adapt the LPBF process
to avoid and compensate defects on the printing parts is required. The whole
strategy contains in situ monitoring data acquisition, product quality prediction,
and closed-loop control development. The information provided by the in situ
monitoring system is an insight into the LPBF process and the basis for a data-
driven approach to process control. Existing monitoring systems can be categorized
into on-axis and off-axis approaches (Imani et al. 2018). These systems give direct
indications if something differs from a predefined “normal” processing condition,
which potentially results in material discontinuity. But these anomalies cannot
be classified or linked to precise defects yet. In practice, these anomalies are
currently detected manually by process knowledge or by simple threshold methods
based on monitoring images. According to study of Spears and Gold (2016), the
generated amount of data for in-process monitoring or further data processing is a
challenge that needs to be handled via careful data preparation. Furthermore, the
data analysis approaches are applied for quality assurance. Existing applications
are focusing on defect prediction within the product (Imani et al. 2018). These
have shown the benefit of machine learning (ML) in a supervised manner. In
practice, however, labeling monitoring data needs expensive measurement tools,
e.g., computed tomography (CT), which is not applicable for all monitoring data.
Thus, a semi-supervised or unsupervised method is required.

The overall approach of data-driven quality assurance can be divided into four
steps as follows:

1. Monitoring system that captures layer-wise powder bed and radiation intensity
images for LPBF to get insights into the process

2. Algorithms and expert know-how to detect and label anomalies on monitoring
data

3. AI-based algorithms to recognize and classify defects
4. Closed-loop control strategy to avoid and compensate defects during manufac-

turing
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In the first step, optical tomography and high-resolution powder bed camera systems
are integrated into an EOS M290 LPBF machine. These will capture layer-wise
radiation intensity during the manufacturing and layer-wise optical information
before and after powder coating. Apart from that, these captured raw data require
pre-processing steps such as calibration, noise reduction, and data alignment, to
increase the quality for the further usage. Afterward, since these monitoring data
cannot be labeled entirely using measurement tools, the labeling step is considered
to be done in an unsupervised manner. The dimension of the acquired monitoring
data is reduced by a pre-trained Auto Encoder (AE) and clustered by unsupervised
learning methods according to the data point distribution. The clustered monitoring
data is then evaluated by the process expert to reach the optimized label iteratively.
The labeled data is used for process modeling in the third step to recognize and
predict potential defects during the process. Finally, the novel control methods are
developed and applied to optimize the product quality via parameter adaption during
the process or via design optimization before manufacture.

We have integrated an Optical Tomography (OT) camera and a high-resolution
powder bed camera on the LPBF machine EOS M290 as in situ monitoring systems
for data generation. The monitoring data pipeline, which includes data acquisition,
pre-processing (see Fig. 5.4), integration, and transfer, is implemented to generate
data automatically during each print job. Based on the monitoring data of the OT
and powder bed camera, the images are influenced highly by the environment,
such as flare during the laser melting process and the illumination system inside
the process chamber. With the original illumination system using LED strips on
top, the powder bed image varied significantly depending on the location of the
part due to light reflection on the exposed surface. This leads to a complicated
situation in determining the typical profile of qualified printed parts. To reduce

Fig. 5.4 Pre-processing of monitoring data from OT and optical camera for data processing
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the environmental factors, an illumination system for powder bed camera using
polarized light sources is designed and integrated into the LPBF machine. This
shows the improvement of optical monitoring data by avoiding the reflection of
ambient light. The printed areas in the optical monitoring images have high contrast
to the powder areas, which reserve the morphology on the part surface. Furthermore,
a DL-based network is designed to enhance the detailed features on the exposed
surface of printed parts on the optical monitoring data (Zhang et al. 2022), which
has shown the benefit to provide more information to data labeling.

In the next steps, high-quality monitoring data is required to remove irrelevant
features and environmental noise to achieve highly robust data labeling. Data-driven
algorithms and expert knowledge should be used to detect anomalies in the LPBF
process and classify them as defects. In addition, knowledge of these defects must
be discussed individually to determine if it is possible to prevent or to compensate
them. At the end, these will represent a control strategy to maintain a high-quality
product. This strategy will be integrated into the LPBF machine to evaluate and
demonstrate the gains in actual performance. This will enable the use of “data-to-
knowledge pipelines” in AM to increase the product quality by extracting process
knowledge out of monitoring data to control the manufacturing process.

5.3.2 Data-Driven Robot Laser Material Processing

LMP is characterized by process variety, high accuracy, and geometric flexibility
(Helmut Huegel 2009, p. 6). Furthermore, LMP is contact-free which means that
no restoring forces act on the kinematic structure of the robot (Helmut Huegel
2009, p. 174). This, in comparison to conventional processes like milling (Cen et al.
2016; Wang et al. 2009), makes it possible to use an Industrial Robot (IR) for LMP.
Compared to commonly used machine tools, IRs offer higher geometric flexibility
and a bigger workspace at lower costs and hence emphasize LMP’s advantages.
Nevertheless, low stiffness of the serial kinematic configuration still causes position
inaccuracies of the Tool Center Point (TCP) during motion along a given tool path.
This leads to lower overall process quality in laser processes, e.g., laser material
deposition (Bremer et al. 2021).

Minimization of attained tool path deviations for a steadier motion through laser-
specific and model-based trajectory planning can be a promising approach to enable
low payload IR for more precise motion and hence higher-quality LMP. Thus,
model-based trajectory planning and optimization of motion are investigated using
a task-specific digital shadow.

In this context, different optimization criteria such as jerk minimization can be
used to generate more suitable robot trajectories and increase trajectory accuracy
(Dai et al. 2020). Furthermore, dynamic models of robots are enhanced with
measurement data of the robot state to enable better trajectory planning and control
and thus enhancing the digital shadow the models are based on. This holds the
possibility for further customization and trajectory optimization with a scope of,
e.g., minimal energy consumption (Boscariol et al. 2020).
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From robotized LMP processes, specimen, process, and robot data can be
gathered. The goal is to use specific data from robot and process states to build
models of the robotic system and the process induced kinematic degrees of freedom.
Based on this data-driven optimization algorithms such as Reinforcement Learning
(RL) or graph-based optimization are employed to generate motion trajectories.
Afterward, in situ measurements of the robot state during the process are fed back
into the models created as described above to further optimize trajectories.

Our approach to LMP-specific trajectory planning is split into two steps. The
first step requires an accurate model of robot dynamics. To model the process
degrees of freedom, conventional approaches (Sicilliano et al. 2010, p. 247f) are
extended with LMP-specific virtual joints – which requires large amounts of expert
knowledge. Additionally, Recurrent Neural Network (RNN)-based models making
use of data-to-knowledge approaches are evaluated in comparison (Ogunmolu et al.
2016). Novel TCP position estimation concepts are tested regarding their ability
to generate a tool for data gathering and dynamic model validation. Model-based
inverse kinematics under LMP-specific restrictions are computed for trajectory
planning, thereby generating one initial solution of the inverse kinematics problem.
The second step makes use of the initial inverse kinematics solution to further
minimize trajectory deviation.

Conventional – e.g., graph-based – trajectory optimization approaches are
compared to RL-based trajectory optimization approaches. RL-based trajectory
optimization approaches are trained both in silico – in a simulation – and in situ, on
the real, physical robot. Loss functions of both optimization approaches focus on,
e.g., jerk minimization to force smooth trajectories or on end-to-end attained tool
path deviation minimization. All approaches make use of LMP-specific restrictions
and redundancies, such as required constant TCP velocity and redundancy due to,
e.g., a rotational symmetric tool: the laser beam.

Using the described tools, different low payload IRs can be enabled for LMP in
production environments with lot size one and highly individualized products by
lowering hurdles for task-specific implementations. In combination with suitable
sensor concepts for state estimation, IR state data for our approaches is dynamically
captured. Based on previous work, the influence of further optimization parameters
such as jerk minimization or minimal overall energy consumption of robot motion
must be investigated to determine suitable optimization strategies. More research
must be conducted on how these principles can be employed for RL-based trajectory
planning to assess the overall capabilities.

5.3.3 Structured Learning for Robot Control

Machining of medium- and large-size components (e.g., for the aviation industry) is
almost exclusively conducted on machine tools. These machines possess a smaller
workspace than their installation space and are more expensive than conventional
IR, for instance. IR are less rigid, which negatively impacts the workpiece quality.
A model-based feedforward control can compensate the low rigidity of the robot.
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For this purpose, an analytical or data-driven model of the robot dynamics is used
to calculate a compensation torque from given variables of the robot joints. Ana-
lytical dynamics models are based on physics equations such as the Newton-Euler
equations, used to describe rigid-body dynamics. These equations depend on inertial
parameters, which must be elaborately identified for each robot type. Furthermore,
analytical models are error-prone, since it is difficult to embed complex nonlinear
effects such as friction. Data-driven models, such as neural networks, on the other
hand, try to find relationships between the input and output data of a specific system.
They are able to model complex nonlinearities (given sufficient data), but without
explicit knowledge about the physical behavior of the system.

Structured learning aims to combine the advantages of these approaches by
incorporating available structural knowledge (e.g., in the form of physics priors) into
data-driven models (Geist and Trimpe 2020). The resulting model predictions are
supposed to comply with critical system constraints under improved generalization
(capability to adapt to new, unseen data) and data efficiency. Current approaches of
structured models for learning dynamical systems are, for example, deep Lagrangian
networks (Lutter et al. 2019) and Lagrangian neural networks (Cranmer et al. 2020).
Nevertheless, these models neglect friction effects and show deficits regarding
prediction performance and generalizability.

The objective of our work is to extend the Newton-Euler equations with neural
networks, therefore creating a structured neural network, to accurately model the
dynamics of an industrial robot. Assuming that the major prediction errors of the
Newton-Euler equations result from friction and elasticities of the robot joints, it
is reasonable to model these specific effects with neural networks (see Fig. 5.5).
To avoid overfitting and increase generalization, it is suggested to simultaneously
train the inertial and network parameters of the analytical model and the neural
network. The training process is accelerated by eventually reaching a local optimum.
Therefore, an exact estimation of either set of parameters is averted, which leads to
a better prediction for data points outside the training realm.

Fig. 5.5 Concept of a structured neural network for dynamics modeling of a robot with two
degrees of freedom using the Newton-Euler equations and neural networks
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The first findings show an increased interpretability of the structured neural
network due to the integrated Newton-Euler equations. Furthermore, the neural
network is able to model the characteristic friction behavior during transitioning
between negative and positive velocities. Nevertheless, simultaneous training of the
inertia and the network parameters is complex without setting individual learning
rates and the model accuracy needs to be optimized as well.

Using this new type of structured neural network for model-based feedforward
control can prepare industrial robots for highly dynamic processes, like machining.
By increasing the interpretability of the network, it may be more suitable for use in
a production environment compared to a black-box network because of improved
worker acceptance and trust. Further research must be conducted regarding pre-
diction performance and generalizability as well as field studies on real robot
applications.

5.3.4 Reactive Modular Task-Level Control for Industrial Robotics

Use cases of robotics go beyond the full automation seen in machining, additive
manufacturing, and multi-robot assembly, to Human Robot Interaction (HRI) tasks,
which include human-robot teams in collaborative assembly and robot teleoperation
in metal forming (Baier et al. 2022). In such tasks, it is important to decrease the
reliance on DL for robot control and turn to a new paradigm of robot programming.

To handle the different requirements and cover all use cases in the IoP, we
propose extending Behavior Trees (BTs) for the task-level control of these robots.
BTs offer a modular alternative to traditional task-level control methods such as
Hirarichal Task Networks (HTNs) or Finite State Machines (FSMs) (Colledanchise
and Ögren 2018; Iovino et al. 2020).

A Behavior Tree (BT) is a model that represents a robot’s behavior in a tree
structure. The tree is started by ticking the root node. Each tick is a signal that
starts at the root to begin the tree execution and then is propagated to the children
till it reaches the leaves. When a node is ticked, it returns a status .S ∈ {S,R,F}
representing Success, Running, or Failure, respectively, to its parent indicating its
current state. As defined in Colledanchise and Ögren (2018), each node has one
of two types: execution and control flow. Execution nodes are leaf nodes and are
responsible for direct interaction with the world. They are either condition nodes,
which check certain conditions, or action nodes, which execute actions. Control
flow nodes make decisions regarding the propagation of the ticks to their children
(Colledanchise and Ögren 2018) as follows:

• Sequence nodes: tick their children in order. Whenever a child fails, they return
.F , .S if all children succeed, or .R otherwise.

• Selector nodes: tick their children in order whenever a child returns .R or .S they
return the same!. If a child returns .F , they tick the next. If all of them fail, the
selector node returns .F .
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• Parallel nodes: tick the children in parallel. They return .S if at least m children
return .S , .F if .N − m + 1 children fail, and .R otherwise, where m is a parameter
of the node and N is the number of children.

• Decorator nodes: have only one child and can be used to implement custom
policies modifying the returned status of the child.

The tree structure, combined with the returned status, increases the modularity
of BTs compared to other robot programming approaches. Additionally, the ticking
mechanism increases the reactivity. For example, in the assembly task seen in
Fig. 5.6, a safety branch can be added to a tree without modifying the core task.
Moreover, if we need to execute the task using a different robot, we only need to
reprogram the leaf nodes. We are also able to examine the state of the robot at
runtime and find if any problems were faced. This aids in online decision-making to
avoid product defects or quality issues. Additionally, some approaches are able to
further exploit the reactivity and modularity of the tree by evolving it during runtime
to overcome any unforeseen problems (Colledanchise et al. 2019).

We extend the set of BT node classes with new node types that aid in the HRI
tasks. We propose .H-nodes allowing the robot and human teammates to hand over
workpieces seamlessly while minimizing the idle time that may arise when the robot
is waiting for the human to finish a sub-task (Behery et al. 2021). This is done by
enhancing BTs with an expert system (e.g., CLIPS (Wygant 1989)) that allows the

add-screws faff sten-screws deliver

(a) The main tree for a part of a desk lamp assembly task. This includes adding
the screws then fastening them, and finally deliver the lamp.

?

sensors-down? human-nearby?

add-screws faff sten-screws deliver

(b) The tree for assembling a desk lamp after adding sensor and human proximity
checks.

→

→

Fig. 5.6 An example of a BT used to assemble a desk lamp. (a) shows the core of the assembly
task, while (b) shows the assembly task as the child of a Selector node (root). This tree only
executes the assembly if the sensors of the robot are up (first branch fails) and that there is no
humans nearby (second branch fails). (a) The main tree for a part of a desk lamp assembly task.
This includes adding the screws, then fastening them, and finally delivering the lamp. (b) The tree
for assembling a desk lamp after adding sensor and human proximity checks
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robot to reason about the human’s sub-task and make decisions on when to pause
or resume execution of the tree based on the outcome. This extension allows us to
form tasks that treat the robot and human teammates as two agents with different
capabilities. This way, we can exploit a robot’s precision and repeatability while
making use of human dexterity and flexibility for handling deformable objects (e.g.,
cables, cloths, . . . ).

To handle teleoperation tasks, Behery et al. (2020) present a method to discretize
a robot operator’s commands to adapt them for discrete control systems like a BT.
This is achieved by applying hysteresis thresholding used in the Canny edge detector
(Canny 1986) on the input signals to detect shifts in the operator’s commands
indicating a change of action. This approach allows us to switch from continuous
user input to discrete actions, such that we can learn and encode patterns of operator
behavior. These results are a step toward extracting insight from the operator input
data. They allow us to use BTs as a representation of the operator patterns despite
the traditional use of BTs for discrete behavior modeling.

The future work planned in the IoP regarding task-level action execution
and monitoring is to further augment BTs with new node classes that increase
their reactivity and guarantee an optimal execution while maintaining modularity,
readability, and ease of development.

5.3.5 Increasing Confidence in the Correctness of Reconfigurable
Control Software

The IoP severely disrupts the Cyber-Physical Production System (CPPS) life cycles
and value chains (Jeschke et al. 2017; Pennekamp et al. 2019). The data-driven
approach and the increased reconfigurability and flexibility of the CPPS blur
the distinction between development and operational phases along the life cycle,
resulting in shorter and more frequent production cycles.

The heterogeneity increases through service-oriented architectures, leading to
emergent behavior often unforeseeable during the development phase. Therefore,
the verification and testing of logic control software have to go beyond traditional
validation of predefined properties to meet intrinsically and extrinsically changing
requirements (Grochowski et al. 2019a).

As safety and robustness are vital properties of CPPS, many approaches emerged
tackling the diverse and complex field of verification and testing on different
levels (Grochowski et al. 2020). Given the intractability of exhaustively verifying
distributed, ad hoc CPPSs, configurable runtime monitoring and passive testing
are a compromise between feasibility and expressiveness. Runtime monitoring
is a lightweight technique that bridges the gap between testing and verification
and helps increasing the confidence in the correctness of the digitally networked
factory (Grochowski et al. 2019a). Paired with passive testing, a specification-
based black-box technique, software quality assurance can be performed during
the operational phase of the CPPS to a certain degree (Grochowski et al. 2019b).
As reconfigurability and ad hoc networking lead to emergent behavior, passive
testing and runtime monitoring are used to safeguard the functionality of the CPPS
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during the operational phase. Typically, the constraints imposed by safety-critical
components in a CPPS contradict the characteristics of most runtime monitoring
techniques, which rely on additional source code annotation or instrumentation
found in the literature (Cassar et al. 2017). External runtime monitoring is a nonin-
trusive technique easily embeddable into a system of communicating components.
It connects via the underlying machine-to-machine communication protocol of
the service-oriented architecture as an additional service, can run on existing or
additional hardware, and is scalable. A benefit of the physical separation of the
runtime monitor and the monitored component is the guarantee of no delays or
restrictions due to the monitoring functionality. Figure 5.7 depicts a high-level
overview of an exemplary architecture embedding the monitoring services using
an adapter. Because the runtime monitor and passive testing rely on meaningful
information exchanged between the services to claim the properties of interest about
their internal behavior, the adapter serves as a semiformal interface between the
services of the CPPS and the monitoring services. The adapter is responsible for
transforming the messages passed between the services into a suitable representation
for analysis. The runtime monitor checks the transformed execution trace against a
set of formalized requirements and communicates the results back to the adapter,
further distributing the results to a database or human experts. Whereas the
runtime monitor guarantees that the requirements are not violated, the passive tester
monitors the conformance between the implementation and the specification during
execution. Due to task-specific digital shadows consisting of temporal data traces or
their aggregation and abstraction, it is possible to monitor and test properties beyond
the observable behavior, hence partially alleviating the drawback of not annotating
or instrumenting the components (Bibow et al. 2020; Jarke et al. 2018).

We implemented a nonintrusive runtime monitoring algorithm as a rudimentary
fail-safe. This forces the CPPS to halt in case of a violation of a monitored require-
ment (Grochowski et al. 2019a). Additional requirements that should be monitored
due to intrinsic or extrinsic changes can be added on the fly during the operational
phase. The runtime monitor is connected via a semiformal interface to the MQTT’s
message broker and subscribed to all required topics for the verification task. The
runtime monitoring algorithm expects requirements to be expressed formally, e.g.,
in Metric Temporal Logic (MTL) (Thati and Roşu 2005). A set of requirements
templates has been derived from the formal requirements to lower the complexity
inherent in generating runtime monitoring objects. Even though the runtime monitor
is capable of reasoning about the future time fragment of MTL, we limit ourselves to
the past fragment due to inaccuracies caused by asynchronous communication. For

CPPSSpecification Requirements

AdapterPassive
Tester

Runtime
Monitor

with?

complies satisfies?

Fig. 5.7 High-level overview of the monitoring architecture



5 Actionable Artificial Intelligence for the Future of Production 109

each formalized requirement in MTL, the runtime monitor creates and maintains
a monitoring object. Once an observation arrives at the adapter, it notifies each
monitoring object subscribed to this particular observation, updating its respective
internal state. If enough observations have been considered or a time-bound has
expired, the formalized requirement can be evaluated conclusively, and the moni-
toring object can obtain a verdict. Aside from notifying the runtime monitor, the
adapter also notifies the passive tester once a new observation arrives (Grochowski
et al. 2019b). As the specification of the CPPS is modeled as a program graph,
the passive tester receives either an input action with parameters or an output
action with the corresponding digital shadow from the adapter. The simulation starts
from the initial state in the transition system described by the program graph of
the specification and mimics the observed behavior until an artificial sink state is
reached, which indicates deviating behavior. In that case, the passive tester stops
and saves the deviating execution fragment for further analysis. It then tries to
backtrack to the last location in the graph where the specification and the CPPS were
conforming. From that point on, arbitrary behavior is logged until the initial location
is reached again. This is justified by the fact that in case a severe violation occurs, it
is detected by the accompanying runtime monitor, which would put the CPPS into a
safe state or halt. Since the execution of a CPPS usually exhibits cyclical behavior,
the passive tester and the CPPS are resynchronized in their initial locations, and
the simulation can start over. The prior saved deviating execution fragments can be,
on the one hand, used to investigate whether the underlying program graph of the
passive tester was underspecified and, on the other hand, aid and guide the developer
during the testing and debugging process after reconfiguring the CPPS.

To evaluate the proposed architecture in an industrial setting, the techniques were
integrated into an industrial-like use case. We used a service-oriented architecture
employing the concepts of digital shadows, edge computing, and their intercon-
nection to realize a completion task of a windshield manufacturer (Brecher et al.
2018, 2019). Here, we were able to monitor the predefined properties during the
operational phase, and the passive tester detected deviations from the behavior of
the CPPS at runtime. The deviations are limited to implementation inaccuracies with
regard to the specification and hence do not reflect any severe errors; the CPPS still
produced a feasible outcome, i.e., a completed windshield, but it did not adhere to
the expected behavior. While runtime monitoring is a possible solution to monitor
requirements in distributed and ad hoc production networks as above, it does not
comply with industrial standard communication cycles down to a few milliseconds.
Therefore, it is suboptimal for checking requirements regarding the process control,
but it can provide insights into the observations in retrospect.

In conclusion, runtime monitoring aids in claiming non-real-time critical propo-
sitions over the observable behavior of the CPPS (Grochowski et al. 2019a).
Furthermore, it was shown that a specification-based, passive, black-box testing
approach paired with runtime monitoring is a suitable technique for increasing the
confidence in the correctness of the CPPS during the operational phase. Neverthe-
less, the application of both approaches is severely limited in the expressiveness
with regard to parallelism, asynchronous behavior, and underspecification of the
CPPS. Moreover, the derivation of a passive tester from the specification modeled
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in SysML (Systems Modeling Language) is currently a manual, tedious, and
error-prone task that has to be repeated with every change in the component’s
software. In conclusion, this renders the passive tester far from being a push-button
technique (Grochowski et al. 2019b).

We presented a non-collaborative production task in which increasing the
confidence in the correctness of the manufacturing process results in limiting the
damage or harm being done to the production plant or the manufactured product.
Other promising use cases are collaborative production tasks. Here, behavior trees
can model human-robot collaboration, because they are suitable for describing and
visualizing the potentially complex behavior of autonomous agents (Colledanchise
and Ögren 2018). Current approaches for verifying such behavior trees are semi-
automatic and require low-level details about the behavior of actions. Therefore,
future work should investigate safeguarding for production tasks involving human-
robot collaboration by modular verification of reconfigurable behavior trees.

While this chapter focuses on techniques for problem-solving at the machine
level, adequate methods for solving emerging problems in a digitally networked
factory require contemplation across all levels. The next chapter focuses on issues
and insights into potential solutions regarding the process level’s perspective.

5.4 Process Level

Implementing data-to-knowledge pipelines that generate insights into entire pro-
cesses requires expanding the scope from the machine to the shop floor and,
eventually, the company level (e.g., including supply chains and multiple fac-
tories (Pause et al. 2019)). This, however, raises new challenges regarding data
provenance, production planning, or the creation of holistic integrated views on
the process. These challenges are further amplified by a constantly increasing
complexity of assembly processes. For example, while traditionally special pur-
pose machine manufacturing is characterized by complex and versatile assembly
processes, increasing product complexities and customization demands lead to
generally more versatile assembly processes. At the same time, companies collect
increasing amounts of data on their processes. On the shop floor level, such data
are often in the form of discrete event data. Events are, for example, recorded
when an assembly step is completed and can contain additional information such
as the important machine parameters. Each event is endowed with a timestamp and
multiple events are related to (at least) one case (e.g., a product/material id).

Within the IoP, we are following two main tracks to generate insights and
improve shop floor-level processes. On the one hand, we apply and conduct research
on process mining techniques that leverage the discrete event data. Process mining
is a new field of data science that investigates the behavior of processes based on
discrete event data (van der Aalst 2016). We investigate how data-driven approaches
can be complemented by additional manufacturing-specific structural information
to generate comprehensive views onto shop floor processes. Moreover, we develop
methods that reveal problems in manufacturing processes (e.g., by monitoring
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changes). On the other hand, we examine how expert knowledge can be extracted,
documented, and exploited in traditional craftsmanship like the textile industry by
employing the concepts of the IoP (e.g., AI, ontologies).

5.4.1 Mining Shop Floor-Level Processes

A major challenge when analyzing shop floor-level processes is to create a holistic
view on the process. Even though process mining is concerned with the analysis
of end-to-end processes, existing techniques are often insufficient to tame the
complexity of manufacturing processes. In particular, automatic process model
discovery usually fails to return understandable and meaningful results if we have
many concurrent processes. However, in contrast to other business processes, addi-
tional and reliable structural information is frequently available for manufacturing
processes. In this regard, we particularly distinguish between structural information
on the shop floor (i.e., how machines or assembly steps are connected) and
information on the material composition (e.g., bill of materials).

Assembly Model Information A common approach to organize the shopfloor is to
structure the individual assembly activities into assembly lines. This – machine- or
assembly activity-centric – production organization can often be directly translated
into process models. In particular, for structured but semiautomated production
processes for which human resources serve as an essential part of the production
processes, process mining can point out the challenges in terms of discovering
performance and compliance problems. In such processes, friction may particularly
occur at the intersections of different subprocesses (e.g., the assembly cannot
proceed due to missing subparts). Therefore, a holistic overview over the production
is important to identify problems and eventually improve the process. In the use case
of e.GO Mobile AG (Uysal et al. 2020), a young manufacturer of cost-effective
and customer-oriented electric vehicles, we modeled the manufacturing process,
comprising a general assembly line and several associated subassembly lines, by
means of a process model. For the analysis, we applied the .PM2 process mining
project methodology (van Eck et al. 2015) and analyzed the process execution in
the production line. An interesting finding is presented in Fig. 5.8 which visualizes
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Fig. 5.8 Visualization of service time (red color scale) on the general assembly line and
subassembly stations. The major bottleneck in the process is formed by the general assembly
station GA16
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the service times of the stations which are colored in a gray-orange-red color
scale. Here, we can easily observe that certain stations expose a bottleneck, such
as station GA 16, which are associated with sublines, causing some delays in the
manufacturing process.

Material Composition Models A different approach to model the production
follows a material-centric view by means of material composition models, which
describe how different materials (e.g., subparts of a product) are related to
each other. For example, the assembly is structured by means of Multi-level
Manufacturing Bills of Materials (M2BOM). The provided information on the
subcomponent composition allows to draw conclusions on the assembly order that
are usually reliable due to physical constraints (e.g., supercomponents cannot be
finalized without the corresponding subcomponents). Therefore, this information
can be exploited to discover well-fitting comprehensive assembly process models.

Within the IoP, we proposed an analysis framework that incorporates additional
structural information – particularly M2BOMs – to analyze manufacturing pro-
cesses presented in a use case study of Heidelberger Druckmaschinen AG (Brock-
hoff et al. 2021). In this framework, we discover an M2BOM-based performance-
aware assembly model that, in the first step, is used to discover potential bottlenecks.
By incorporating additional manufacturing-specific information, we tame some of
the complexity of assembly processes and visualize them beyond small excerpts.
In the second step, we apply performance-oriented process mining techniques to
further analyze bottleneck candidates to identify root causes.

5.4.2 Challenges in the Textile Industry

In Germany, the textile industry is predominantly formed by Small and Medium
sized Enterprises (SME) and is one of the sectors in which large parts of the work
steps are still manual (Brillowski et al. 2021b). This includes not only physical work
steps but also the planning, design, and layout of processes.

Especially in the field of FRP, the planning of the manufacturing processes
is challenging. FRP consist of a limp textile and a liquid plastic matrix. During
the multistep process, a highly rigid, solid lightweight composite is created with
the help of various technologies (Soutis 2005). Due to the different, changing
aggregate states of the material, existing planning and decision support systems
cannot be transferred without time-consuming adaptation. In addition, the planning
for each novel component must be started anew due to geometric complexity, fiber
orientations, and application requirements.

In the course of planning, various decisions have to be made regarding the
material (e.g., glass or carbon? .200 g/m2 or .450 g/m2 grammage?), the technologies
(e.g., CNC cutter or ultrasonic knife for cutting textiles), and the sequence of
the process steps (e.g., A before B or A, B, C in parallel). In this context, a
labor-intensive and intuitive trial and error procedure based on experience has
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become established in industry, resulting in promising technology alternatives being
overlooked (Brillowski et al. 2020, 2021b).

In this regard, AI approaches promise automated and objective support in
decision-making. However, the acceptance and use of these approaches within the
textile industry are low, partly because the textile industry is more conservative
due to inaccuracies in prediction and fear of substitution (Jacovi et al. 2021). To
increase the efficiency and reproducibility of planning FRP process chains, we
developed a user-centered planning tool with an integrated decision support system
based on human-centered AI (Schemmer et al. 2020). In the form of a wizard,
process planners can sequentially define the various steps of a process chain in FRP
manufacturing by selecting the required activities (e.g., cutting, fixating, etc.).

When the sequence is finalized, a recommendation system presents suitable
technology and parameter suggestions for each process step. The suggestions are
based on historical data and provide global and local feedback on the process chain.
The decision-making authority remains with the worker and they decide whether
to accept or reject suggestions. As global feedback on the recommendation, the
estimated costs, quality, and production time for products made in this process
chain is presented (see left side of Fig. 5.9). Further, the planning tool displays local
feedback by indicating possible complications at individual process steps, which
can be fixed by choosing a different activity if necessary (see right side of Fig. 5.9).

In a study, users articulated both advantages and disadvantages of the planning
tool: Apart from the criticism of fixed parameters, the application was particularly
convincing due to the large number of different and transparent suggestions that a
decision-maker can reject or accept (Brillowski et al. 2022a). In a further evaluation
with domain experts, we benchmarked the user-centered tool against other tools in
terms of planning effectiveness and efficiency, but also subjective measures such as
trust, usability, and experience of autonomy. The tool was attested a high usability
(91.8 System Usability Scale (SUS) score) and user acceptance (Brillowski et al.
2022a). However, the study also revealed that the comprehensibility of proposed
alternatives is one of the critical aspects that significantly influence the subsequent
user acceptance. In this context, the research field of eXplainable Artificial Intelli-

Fig. 5.9 Illustration of a recommended process configuration from the FRP process chain
planning tool with a global evaluation of the whole chain on the left and local information on
possible problems on the right
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gence (XAI) offers a variety of possibilities to understand algorithmic decisions and,
for example, to obtain reasoning for the exclusion of alternatives (Brillowski et al.
2021a). Besides the need for improved transparency, AI-based decision support
systems require large amount of data to make meaningful suggestions. Yet, within
and beyond the textile industry data is often only insufficiently or not at all available
(Brillowski et al. 2021c). We explore different approaches to address the data
scarcity dilemma.

First, the available data sets can be used more efficiently through augmentation
or different learning approaches. We are already using Generative Adversarial
Networks (GANs) to generate artificial data that cannot be distinguished from
real data by experts (Schaaf et al. 2022), which is elaborated in further detail in
Sect. 5.5.1. Furthermore, we apply Transfer and Curriculum Learning approaches
to achieve better training results of Artificial Neural Networks (ANNs) (Brillowski
et al. 2022b).

Second, we collect additional data. Due to the textile industry’s long-lasting
history and family businesses, machine parks have emerged over time with heteroge-
neous and often non-networked machines that cannot contribute to the IoP (Jaspert
et al. 2021). Therefore, we are researching retrofitting options to enable companies
with older machinery to access the advantages of the IoP (Nakakaze et al. 2022).

Third, the data used to generate the planning tools’ recommendations can
be captured by monitoring planning processes of experienced process planners
(knowledge capturing). One challenge is that planning FRP processes in industry
was and still is rather intuitive and based on experience and rarely supported by
digital tools (Brillowski et al. 2021b). Thus, neither digital models of previous
planning processes nor assessments of possible alternative plans are available that
can be used as a data source for the recommendation system (cf. data scarcity
dilemma). Therefore, one of our goals was to develop a method to systematically
capture implicit process knowledge from domain experts and make that available
for later integration as a data source for decision support systems.

A typical approach for this is crowdsourcing (Estellés-Arolas and de Gue-
vara 2012), where micro-tasks (such as image classification for text recognition,
autonomous driving, etc.) are distributed to many potential contributors. In this
case, data generation through crowdsourcing faces two difficulties: First, there are
only a small number of domain experts (Hoffmann 1987), and second, instead of
independent micro-tasks, we need to capture sequences of related steps that then
represent a process chain in FRP manufacturing (e.g., the use of a tool in process
step N depends on the previous step .N − 1).

To compensate for the small number of domain experts, we cannot extract only
a few units of knowledge from many, but a few must share their knowledge for
longer. We thus developed a serious game-based approach for extracting process
knowledge. Serious games harness the motivational potential of games to increase
the depth and duration of learning (Breuer and Bente 2010; Brauner and Ziefle
2022). Besides that, the approach can also be mirrored to capture expert knowledge
by analyzing the interactions in a game environment. Yet, serious games for
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Fig. 5.10 A game-based approach to extract process knowledge from domain experts exemplified
through a cooking game. (Images courtesy of the authors from Schemmer et al. 2022). (a)
Screenshot of the game for extracting process knowledge. (b) Extracted process model of a recipe
from a user study

capturing process knowledge have not been developed so far. Thus, we developed
a proof of concept and investigated whether process knowledge can be captured
through this approach, what the quality of the captured data is, and if individual
differences influence the quality of the process knowledge extracted through the
game-based approach. For the first evaluation, we selected food preparation as
a more accessible and familiar scenario. Though it is structurally similar to
FRP planning, it does not require the specific domain knowledge and access to
participants is easier. Therefore, we developed a web-based serious game recreating
a kitchen environment (Fig. 5.10 left), where different ingredients can be processed
with different tools and combined to create a dish. All interactions are logged and
can be analyzed with process mining tools and metrics.

In an experiment with 60 participants, we could identify process models
(Fig. 5.10 right) for all five of the recipes we asked the participants to cook. In
this respect, process knowledge could be extracted. However, a drawback was
the high variance in the data collected, yielding only satisfactory fitness of the
model. Also, our rather laborious approach had little quantifiable advantage over a
control condition that queried recipes via an non-gamified drag and drop interface.
Yet, clearer task descriptions and less open interactions might yield better results
(Schemmer et al. 2022).

In summary, we demonstrated that process knowledge can be extracted with
game-based methods, but future work needs to transfer this concept to different and
more specific domains and evaluate its applicability. Especially if many different
designs for FRP process chains can be captured and then integrated as data sources
for providing smarter decision support for FRP process planners.

Other sectors in the textile industry are facing challenges in adopting digital
solutions as well. Textile process steps in the Beginning of Life (BOL) and the full
Product Life Cycle (PLC) commonly are distributed over poorly orchestrated SMEs
with little interoperable data. However, innovation and design in the textile product
development require planning and a systems engineering perspective on the process
level (Reinsch et al. 2022).
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The Digital Capability Center (DCC) is a digital learning factory and acts as
a practical demonstrator for digital solutions along the value chain. As a model
factory, in the DCC, the reality of textile manufacturing unavoidably is idealized
to some degree. Therefore, the data-to-knowledge pipeline in real world requires a
powerful component for knowledge acquisition. In the industry, the heterogeneity
of process conditions and product variants grow exponentially, digital solutions are
hardly standardized, and digital systems often need to be customized for individual
use cases (Fromhold-Eisebith et al. 2021). Consequently, the current state of data
and model availability in textile production shows open challenges in the IoP. Rele-
vant data and tacit knowledge from interdisciplinary and cross-divisional innovation
processes are lacking in order to support model-based and data-driven product
development. We investigate the product development of knitted products that
require domain knowledge about relations between physical properties, customer
requirements, and manufacturing technologies (Beer et al. 2016). In an industrial
setting, the development and production of weft and warp knitted fabrics consist of
a series of process steps from fiber to end product that includes warping, knitting,
and dying. Possible process layouts are diverse and determined by experience-based
decisions. Thus, the formalization of domain knowledge and a support system for
the full PLC is being envisioned and aimed at Brillowski et al. (2021b).

Semantic web technologies and AI offer potentials for the formalization and
the usage of knowledge and data from manufacturing environments. Especially
the tasks involved in process analysis as well as data and knowledge acquisi-
tion are necessary prerequisites to integrate progress in AI and data science.
Therefore, we investigated the current usage of semantic web technologies and
especially ontology. We found that many potential application areas of ontology-
based solutions remain largely unused in the textile industry. Solutions that allow
for integration of interdisciplinary backgrounds, reasoning, and intuitive data access
in large and heterogeneous sources of information are rare in the context of textile
manufacturing. Most research contributions are directed toward data and service
catalogs and the description of textile products either in the design or in the utility
phase of the PLC (Reinsch et al. 2022).

We conclude that we need to develop solutions to integrate unused fields of
applications of semantic web technologies in the textile manufacturing process.
Overcoming this gap and enhancing the accessibility of background information
from production is vital for the systematic product development. This applies
equally to the integration of AI built on top of tacit domain knowledge and available
data from the manufacturing process. However, the textile industry is not only
conservative, but also challenges are mentioned repeatedly in the context of textiles
and semantics. Unlike established data models and file formats, textile data is barely
standardized. Additionally, concepts and entities are very diverse and are regularly
only known in the textile domain. Within this diverse field and today’s need for
interdisciplinary cooperation, information overload is a major problem (Reinsch
et al. 2022). We continue our research regarding the development of semantically
enriched data models for textile manufacturing and the product development process
throughout the PLC.
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5.4.3 Analyzing Process Dynamics

Processes in a complex manufacturing environment are rarely in a stable state;
instead, they are constantly changing and adapting to new circumstances. Therefore,
event data from the same manufacturing line, extracted at two different points in
time, can be considered as data from two versions of a process. Process comparison
is concerned with the analysis of differences between such process instances. The
gained insights can reveal improvement potentials. For example, one subprocess
performs better in one process instance than in the other.

Recent approaches in process mining focus on the control-flow perspective (Bolt
et al. 2016; Taymouri et al. 2020). However, in manufacturing, the important Key
Performance Indicators (KPIs) are time-dependent such as service times. Therefore,
comparison approaches that focus on performance are needed. As a first step,
based on recent advances in stochastic process mining (Leemans et al. 2021), we
developed an approach that detects changes in a process while considering control
flow and time simultaneously (Brockhoff et al. 2020). The results can then be used
as an entry point for a detailed comparison analysis. One shortcoming of current
approach is that it is limited to individual production lines. However, an object-
centric view on the production comprehensively considers products, raw materials,
orders, etc.

In object-centric view of the process, it is possible to extend the process com-
parison analysis using an enriched digital shadow of the processes. For example, in
described case studies, we have analyzed the process from the car or the printer per-
spective, although it is possible to analyze the process from other perspectives, e.g.,
order, customer, etc. Analyzing the process from multiple perspectives is discussed
in a branch of process mining called object-centric process mining (van der Aalst
2019). In Farhang et al. (2021b), we have proposed a standard for Object-Centric
Event Logs (OCELs), and several process mining techniques have been developed
on top of OCELs (Berti et al. 2022; Cohn and Hull 2009; Fahland et al. 2011).
In Farhang et al. (2021a), we proposed a technique to compare the object-centric
processes with each other developed a tool on top of that (Farhang and van der
Aalst 2022). Using our tool, we have analyzed Heidelberger Druckmaschinen AG
data and found the cause of performance problems.

After providing insights and use case studies in process mining and textile indus-
try, we will present the overarching principles serving as a toolbox of omnipresent
approaches for data collection and management in the upcoming subsection.

5.5 Overarching Principles

Modern manufacturing and production uses data as a basic resource for improve-
ment. Recent advances have integrated sensor technology, telecommunications, and
data-based models to better understand and optimize processes (Brauner et al.
2022; Kagermann 2015). Thus, the concept of data-to-knowledge pipelines has
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arisen, where data and empirical models serve as a processing engine for generating
actionable insights in manufacturing. The IoP tackles challenges emerging from this
mix, such as identifying model parameters in complex scenarios, leveraging data-
driven models for the generation of insights, or enabling the interoperability of data
and ontology. This section first shows techniques for coping with the complexity of
industrial data and problems. More specifically, we introduce the usage of generative
models to synthesize data leveraging human labels, as well as optimization frame-
works for parameter identification. Second, we discuss techniques for understanding
of data-driven models, such as concept-based explanations and 3D visualization
frameworks. Finally, we detail techniques for increasing the interoperability of data
and agents in the industry of the future.

5.5.1 Generative Models for Production

To this day, it is still common to perform quality inspection of manufacturing parts
manually through visual inspection. This quality assurance task becomes tedious
for the human worker, which results in high error rates and dissatisfaction. Deep
learning-based systems that are trained on image data have been increasingly used
to automate visual inspection processes, resulting in higher productivity and reduced
error rates (Yang et al. 2020).

Using deep learning models for quality control is a popular application of
machine learning. Nevertheless, the performance of these models is heavily depen-
dent on the availability of labeled training data. Especially in industrial applications,
labeled training data is either associated with high cost or impossible to obtain
because of the uncertainty of process measurements. Thus, machine learning
methods applicable to data-scarce environments are of interest.

One approach that enables the applicability of deep learning methods is data
augmentation. Most commonly, geometric transformations like cropping, flipping,
or rotation are applied to artificially increase the amount of training data. In our
work, we investigated how well GANs perform as a data augmentation method for
synthesizing labeled training data. GANs learn the underlying distribution of the
available data and thus are able to generate realistic images from noise. We tested
this approach for images of FRP captured during quality control (Schaaf et al. 2022).
Our tested generator models were able to synthesize realistic images displayed in
Fig. 5.11 and also improve error classification accuracy.

To generate realistic data instances demonstrates that generative models can
learn relevant features (i.e., folds and gaps) from data of industrial domains.
Although these models do not describe causal relationships, they fit perfectly into
the concept of digital shadows. By learning the underlying data distribution from
past observations, these models describe a significant aspect of the manufacturing
process.

In future work, we investigate the possibility of image synthesis without seg-
mentation maps. Here, we want to train generators of GANs so that the learned
features are disentangled from each other. This allows the generation of images
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Fig. 5.11 We compared two generator architectures to synthesize realistic images of FRP. Both
generators: Extended U-Net (Ronneberger et al. 2015) and the generator from StarGANv2 (Choi
et al. 2020) are able to translate the segmentation map to realistic images of fiber-reinforced plastics
that preserve material geometry. (Images courtesy of the Institute for Textile Engineering (ITA))

without prior labeling effort. Furthermore, we want to investigate self-supervised
learning methods that use training frameworks of GANs for pre-training. The idea
is to learn meaningful features unsupervised and fine-tune the model with limited
labeled training data afterward. The question of defining and identifying human-
understandable features will be presented in the following subsection.

5.5.2 Concept Extraction for Industrial Classification

To apply AI models in critical industrial applications, these must be stable, robust,
and trustworthy. However, computer vision-based tasks (e.g., quality control) rely
on high-dimensional data and are usually underspecified. This combination makes
the used models susceptible to spurious patterns, causing them to be fragile and
generating undesired behaviors. In general, this raises the question: Does the AI
model do what we want it to do? We tackle this question through the extraction
of knowledge from data (or rather from a model trained on these data), and
the presentation of this knowledge to a decision-maker. We enable this data-to-
knowledge pipeline through the extraction and visualization of abstract patterns
(concepts), highlighting them on the input data (here: images) of a model.

As an example, let us consider the quality control of a metal casting process.
We can use visual inspection to classify parts into faulty (Fig. 5.13a) or good
(Fig. 5.13b), depending on the presence of pinholes or shrinkage defects (Dabhi
2020). This task can be solved using Convolutional Neural Networks (CNNs), but
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the variety of defects makes a granular (pixel-wise) labeling impractical; thus, it
is defined as a classification task between two sets of images. The images contain
not only the defects but also other variable factors (e.g., the position of the piece,
illumination, or shades in the background), which may pass unnoticed. Ideally, a
CNN should distinguish good and bad images, and XAI tells the user how it does it.
The XAI should tell the user: I decide good/bad based on the holes. I did not make
the decision based on the background.

To extract the knowledge learned by the model, it can be analyzed with global
explainability techniques to find which patterns it uses during the prediction process.
Then, an expert can validate each pattern (e.g., detection of darker backgrounds, or
pinholes) ensuring that they are aligned with the underlying task. For example, users
could discard an AI model that makes its predictions based on different background,
while they could confirm a model that actually pays attention to the pinholes.

Nonetheless, current explainability methods either are not suited for industrial
data or do not reconcile global model explanations with single outcome explana-
tions. On the one hand, feature attribution methods (e.g., Grad-CAM (Selvaraju
et al. 2020), IntegratedGradients (Qi et al. 2020)) provide an explanation of which
features/pixels are important for a single prediction, but cannot point to which
patterns are recurrent, or how one prediction is different from another. On the other
hand, global explanation methods, such as concept extraction (e.g., ACE (Ghorbani
et al. 2019), VRX (Ge et al. 2021)), perform poorly in industrial use cases. The poor
performance is the result of having less data, with less variation, which translates
into more rigid and brittle models. Thus, there is a need for global explanation
methods which can analyze deep learning models in an industrial context.

By studying state-of-the-art XAI methods for industrial use cases in the IoP, we
realized the shortcomings of these methods (scale invariance, lack of traceability,
noisy). This motivated the development of a novel concept-based method (Posada-
Moreno et al. 2022), which we will present next. Not only is this method able to
address the shortcomings of the industrial use case (as we show herein), but it also
represents a more general method.

In a general sense, we study the latent spaces of neural networks, finding patterns,
and measuring their influence on the model’s predictions. The main idea behind our
approach is that the structure of the latent space of CNNs reflects what they learn
during training. Our approach can be described in four steps, as shown in Fig. 5.12.

Fig. 5.12 Concept extraction method for CNNs. This method provides a pipeline to extract
knowledge from a model, in the form of concepts influencing its prediction process
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First, we encode the data set through a representation of the latent space of the
CNN. We take the inputs of the model (e.g., images), and encode them in a space,
which makes sense in terms of the CNN (activation maps). Second, we cluster the
resulting encoded data to mine for patterns. These patterns reflect what has been
learned by the network, showing how the CNNs separate the data internally. We call
these patterns concepts. Third, we extract sets of examples for each concept in the
input space of the model. This means we take each mined pattern and find input
images which reflect it. These sets of examples provide experts with the means to
understand what the pattern is. Fourth, we evaluate the relative importance of each
concept based on the sensitivity of the prediction with respect to the pattern.

The core finding of our research is that patterns in the latent space of models are
a viable proxy for explaining their global behaviors. Our method outperform state-
of-the-art global explainability methods in controlled scenarios and industrial use
cases, providing explanations of how a model work, and which types of patterns it
has learned to detect (Posada-Moreno et al. 2022). Concept extraction methods can
be used to detect undesirable biases learned by a model, explain what features are
being detected, and how complete or aligned the prediction process of a model is.

As an example, we present the case mentioned above, where a CNN is trained
to perform the quality control of casting pieces. After training a CNN to classify
upcoming images as defective or ok, the latent space of the model was analyzed,
applying our concept extraction method (Posada-Moreno et al. 2022). The main
extracted concepts are shown in Fig. 5.13c, d, or e. The first concept corresponds
to pinholes, which is the most important cue for the prediction of defective parts.
The second concept corresponds to malformed edges of the part. This concept

(a) Defective class. (b) Ok class.

(c) concept 1, RI=1.0. (d) concept 2, RI=0.2.

(a) Defectiff ve class. (b) Ok class.

(e) concept 3, RI=0.04.

Fig. 5.13 Data set of casting parts, where the task is to classify defective (a) and ok parts (b).
After training a DenseNet-121 to perform the said task, our method can analyze what was learned
by the model. Figures (c), (d), and (e) show the main extracted concepts, which can be used by
experts to ensure compliance with their prior knowledge. The most important concept used by the
model are pinholes (c) (with relative importance of 1.0), followed by malformed edges (d) (RI of
0.2), which the model learned to detect. Concept 3 shows a bias in the background (RI of 0.04),
which was detected after a first stage of training, and allowed experts to realize and mitigate this
phenomenon by acquiring new sample data
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also contributes positively to the prediction of defective classes. Similarly, the third
concept shows background, with an importance close to zero. These concepts were
learned by the model without being explicitly annotated and can be used by experts
to ensure that the model decision-making process is aligned with their understanding
of the problem.

Our concept extraction method (Posada-Moreno et al. 2022) has been proven as
an effective tool for analyzing CNNs, allowing the validation of expert knowledge
and the identification of spurious patterns (undesired behaviors). This success has
opened several relevant questions for future research. First, we will investigate
the application of concept extraction to other use cases in the IoP. Second, we
will explore the transferability of our method to other data modalities, such as
time series. Finally, the question of how to measure the correctness of a concept
extraction method remains.

5.5.3 Inverse Problems via FilteringMethods

Many modern AI methods, such as training of neural networks or clustering,
are mathematically high-dimensional and may lead to nonlinear optimization and
parameter identification problems, which might be ill posed (Engl et al. 1996).
Therefore, in-depth understanding of the underlying methods is relevant to judge the
quality and the results of modern AI techniques. Further, many black-box methods
may fail at standard tasks, and a deeper understanding of the properties is required
to provide suitable solutions and alternatives. Finally, many actual problems, like
multi-objective tasks, cannot yet be treated with current AI techniques due to their
limited scope. Moreover, most industrial problems are subject to uncertainty, since
data and measurements may be affected by noise, the physics of processes could be
not completely known, and/or small variations in the production process may occur.
This has so far not been treated in classical AI algorithms.

The state-of-the-art methods are not suitable for current applications due to,
for example, a lack of possibility to include multi-objective optimization, the
requirements of analytical gradients of models that are usually expensive or not
available (e.g., in case of models described by neural networks), and the missing
knowledge on how to update algorithmic parameters (e.g., hyperparameters for
neural networks or weights for multi-objective procedures). Moreover, there is
a lack of methodologies to include and quantify the uncertainty existing in the
processes.

Our contribution on the IoP vision focuses on the development and the analysis of
numerical methods for complex optimization and parameter identification tasks. In
this framework, we focus on a numerical method for solving nonlinear optimization
and parameter identification problems, namely, the ensemble Kalman filter (EnKF).
Furthermore, we provide an efficient numerical method to analyze the propagation
of the uncertainty. The EnKF is an iterative filtering method designed for gradient-
free optimization, hyperparameter search, and multi-objective optimization (Herty
et al. 2021; Yegenoglu et al. 2020). It is a general algorithm with convergence
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guarantees and stabilization properties which have been proven in Herty and
Visconti (2019, 2020). Besides the natural idea of implementing directly the iterative
particles scheme, we developed an abstract algorithm with parameter adaptation
exploiting the mathematical properties and insights of the EnKF procedure. Both
the approaches have been implemented and tested (Herty and Iacomini 2022a). Our
algorithm has been applied in the field of automatic control (Schwenzer et al. 2020).
Other applications in laser technology and plastic processing are being explored.

Moreover, we investigated the propagation of input uncertainty through a
process, e.g., how the uncertainty in the initial data propagates through a model.
We provide a method for the expansion of noise in a series. Then, we analyze
the equations for the coefficients of the series and develop an efficient numerical
treatment of those (Gerster et al. 2021). This allows us to perform a risk estimation,
e.g., to detect high probability areas of instabilities, failures, and rare events (Herty
and Iacomini 2022b). Although the algorithm and the theoretical framework have to
be adapted to the specific process, the methodology is already available, analyzed,
and implemented.

Here we provide an example of a developed method for parameter identification.
The problem of finding the unknown parameters u in a non-differentiable model .G
and given data y is formulated mathematically as:

u∗ = argminu∈X�(u, y), �(u, y) = 1

2
‖y − G(u)‖2 (5.1)

For the design of an efficient method, we move to an equivalent description on a
mesoscopic level by means of partial differential equation (PDE), which allows us to
describe the evolution of the probability distribution of the parameters .f = f (u, t),
at iteration .t. The equation reads as follows:

∂tf (u, t) − ∇u · (C(f )∇u�(u, y)f (u, t)) = 0, f (u, 0) = f0(u) (5.2)

for some nonlocal operator .C(f ), see Herty and Visconti (2019).
Equation (5.2) can be efficiently discretized by a particles method with .j =

1, . . . , J particles sampled from the initial distribution .f0. This leads to an iterative
scheme for candidates such that .

1
J

∑J
j=1 uj (t) ≈ u∗. The full procedure consists of

the following update for .un
j = uj (t

n):

un+1
j = un

j + C(un)GT Γ −1
[
yj − G(un

j )
]

C(un) = 1

J

J∑

j=1

(un
j − un) ⊗ (G(un

j ) − G)

un = 1

J

J∑

j=1

un
j G = 1

J

J∑

j=1

G(un
j )
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and the solution .u∗ is given by the mean of the particles at the end of the evolution
at .n = ∞. This method has been extended in the IoP to a stabilized version,
(Armbruster et al. 2022) and a multi-objective framework (Herty and Iacomini
2022a).

We have extended classical AI methods by adaptive algorithms taking into
account the particularities of the engineering applications, like nondifferential
models (Herty et al. 2022), multi-objective tasks (Herty and Iacomini 2022a), and
unknown hyperparameters. Novel methods have been developed and numerically
analyzed. Furthermore, they have been implemented and tested. The templates for
algorithms have been designed and are available. Those can now be implemented
and adapted to the specific programming environment and computer architecture.

We have tested and validated sample problems from different domains and
disciplines, e.g., Schwenzer et al. (2020).

Moreover, a methodology for investigating the propagation of uncertainty and
performing a risk estimation has been proposed and efficiently implemented.

Future work will focus on developing prototypes of algorithms which might
need improvements in computational efficiency, also for dealing with very high-
dimensional parameter space, which is still challenging. Moreover, we plan to blend
the new methods with existing AI methods to provide a larger toolbox to analyze
and solve issues coming from engineering applications.

5.5.4 Immersive Visualization of Artificial Neural Networks

ANNs are the most popular class of machine learning models to date due to
their superior performance compared to previous approaches. In many cases, their
superiority can be attributed to their complexity, as ANNs can have millions-billions
of parameters. While this allows the model to encode a lot of information about the
given problem, such as the digital shadow of a production process, this encoding
remains opaque to the user. It is currently not possible to fully understand the
reasons for the decisions made by ANN, nor is it possible to extract knowledge about
higher concepts they might have learned. Nevertheless, without this ability, there is
a trust gap between humans and ANN that limits their usefulness in production
systems. This is commonly referred to as the black-box problem (Castelvecchi
2016).

To combat this problem, the field of XAI has recently gained traction. It describes
a collection of tools that enhance our understanding of AI techniques by means of
explanations. One way of generating explanations is through visualizations. When
showing abstract data in a visual manner, users can use their own intuition and
ability to recognize patterns to gain intuition or find hypotheses. This facilitates an
exploratory process that can be further enhanced by interactivity to quickly explore
the space of visualization parameters. We want to apply this concept to the entire
ANNs.

While visualizations like TensorBoard (the built-in visualization of TensorFlow
(Abadi et al. 2016)) exist, which give an overview of the structure of ANN, they
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do not visualize the learned parameters. Yet, they make use of node-link diagrams,
which is a common concept when visualizing ANNs. Likewise, node-link diagrams
are often used to explain the basics of ANNs. They show how individual neurons are
connected and highlight their similarity to biological neural networks. This brings
up the question if this concept can be extended to visualize full-scale ANNs to give
insights into their inner working.

The main challenge with this idea is the large size of parameters that would need
to be visualized for even relatively small ANNs. Showing them in a 2D visualization
becomes infeasible. For this reason, 3D visualization of ANNs has become an active
area of research. As an example, Harley (2015) shows a working ANN as a 3D node-
link diagram. They show individual values computed by the ANN as boxes and the
network’s weights as edges between them. For convolutional units, the boxes are
arranged in a grid, so that they resemble the filtered image. To avoid clutter, they
only show edges that connect to one node, which is selected by the user.

Following this trend, we applied a 3D node-link visualization, similar to Harley
(2015), to a real use case in the area of production research (Bellgardt et al. 2020).
We visualized a neural network controlling a robotic arm, showing the activation
values live during operation. Our expert review revealed that the visualization is
useful to understand the scale of the network and find potential problems, such as
an incorrect implementation of filter kernels. Nevertheless, the experts commonly
requested to see more of the edges at the same time. The visualization of fully
connected units, which were simply arranged in a line, was not perceived to be
helpful.

From the positive results of the prototypical implementation described above, we
conclude that the area of 3D node-link visualization of ANN should be investigated
further. It is of particular interest whether different layouts of nodes in the fully
connected layers can make them more useful and how the visualization of edges can
be improved. Additionally, we conceive further research questions, such as whether
visualizing other aspects of the network, than just activation values and weights,
is feasible. Unfortunately, pursuing these questions based on our initial prototype
would have been difficult, since it was constructed rigidly for its specific use case.

Instead of developing another specialized application from scratch, there seems
to be a need for a universal framework that allows rapid prototyping of 3D node-link
visualizations for ANN. Such a general framework would need to be integrated into
the tools that experts working on ANN are using and allows designing visualizations
in a high-level programming language. Since most ANNs are developed using
Python frameworks, it is a reasonable choice for the visualization framework to be
available as a Python framework as well. This way, the ANN experts could prototype
their own visualizations, ideally without the need to be familiar with programming
in 3D environments and computer graphics.

Developing the whole framework in Python would not be feasible, as the
intense performance requirements of 3D rendering are not met by a high-level
language like Python. Hence, the rendering part of the application should be split
off and handled by a more optimized rendering engine. This makes it tempting to
integrate the Python environment within the engine, since modern game engines
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Fig. 5.14 The ANNtoNIA framework enables rapid prototyping of immersive visualization for
ANN to facilitate visualization research and improve explainability

often have Python support. This is the solution that was chosen in Aamir et al.
(2022). Nevertheless, we argue against this method, since integrating the ANN
code this way will still require knowledge of the game engine. Additionally, this
would limit the ANN and the visualization to run on the same machine. Since both
training/inferring ANN and 3D rendering are performance-intensive tasks, it might
be desirable to split them to different machines. For this reason, we argue that it is
best to couple the Python part and the rendering part using a network interface.

We develop this visualization framework under the name ANN to Node-link
Immersive Analytics (ANNtoNIA) (Fig. 5.14 shows a screenshot) and plan its
release under an open-source license.

5.5.5 IoP-Wide Process Data Capture andManagement

In agile manufacturing, the seamless integration of processes, data, and information
systems throughout the supply chain, even across organizational boundaries, is
crucial. Today, data is frequently locked in local data silos and insufficiently linked
to products, manufacturing processes, and its own lineage. The lack of standardized
and interoperable data management solutions hinders the exchange of data across
the IoP, and therefore, meaningful, industrial collaboration.

The FactDAG interoperability model (Gleim et al. 2020a) addresses this issue,
by adapting and extending the FAIR data principles (Wilkinson et al. 2016) for
industrial data, ensuring data to be findable, accessible, interoperable, and reusable.
From a technical perspective, FAIRness requires persistent identification of data,
open-access protocols, and rich metadata. The FactDAG itself integrates these three
aspects in a directed, acyclic graph (DAG), consisting of immutable data elements
called Facts which are linked using standardized provenance relations (Gleim et al.
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2020b) based on information from the creating processes, involved systems, and
responsible agents. Each Fact has a globally unique, persistent identifier, called
FactID. The FactID identifies the responsible authority (e.g., the company owning
the data), a data resource, and a specific revision of that resource and allows data to
be immutably referenced across the Web (Gleim and Decker 2020). The combined
provenance metadata is crucial for the reusability of data and needs to be reliably
captured, ideally supported by automated software components.

With the FactStack (Gleim et al. 2021a), an open-source implementation of the
FactDAG model, we support an end-to-end data management process based on
established open technologies, Web standards, and linked data principles (Bizer
et al. 2009). FactStack supports the data management life cycle, ranging from data
capture over data preservation to data sharing and finally data reuse. Each data
resource is automatically versioned and the persistent identification of data elements
enables reliable references to specific revisions of data elements, even across system
and organizational boundaries. As such, data and processes can be linked with
process provenance throughout the global supply chain in a simple and efficient
manner. The automatic collection of provenance and metadata supports data
quality and enables interorganizational interoperability and data reuse. Utilizing the
FactStack and its underlying linked data principles and technologies, data can be
discovered and accessed through the Internet across organizational boundaries using
standardized access protocols, such as HTTP and compatible extensions (Gleim
et al. 2021b). Nevertheless, data and metadata may still be managed using end-
user-friendly graphical user interfaces, e.g., directly in the traditional computer file
system (Müller and Gleim 2021).

Capturing and managing process data across agile supply chain enables data- and
AI-driven process optimization, e.g., the generation of process models and planning
of industrial processes across organizational boundaries by autonomous agents.

5.6 Conclusion

The digital transformation of production enables faster, smarter, and more efficient
production and improves value creation (Bruner 2013; Boyes et al. 2018; Brauner
et al. 2022). In this chapter, we illustrated how to realize the IoP’s vision of
integrating data from human experts, machines, and processes across the design,
manufacturing, and use cycle to transform data into actionable insights. We intro-
duce the idea of autonomous agents that can query the DSs provided by different
users, across different processes, and beyond company and country borders. The
applicability of this approach was demonstrated in the two examples of generating
pass schedules in hot rolling and injection molding. We surveyed some of the
challenges facing the digital transformation on the different abstraction layers of an
industrial environment. A central element is bridging the gap between people and
machines on the one hand and algorithms and data on the other hand. We introduced
“data-to-knowledge pipelines” as a core concept and illustrated the realization of
validated self-adaptive production systems.
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The work for realizing these pipelines covered various directions. First, we
showed that ontology in textile engineering can capture expert knowledge and that
it can be integrated in the data lake and the WWL. We further addressed the point of
data scarcity in production where data collection can be expensive, time-consuming,
and error-prone. This is done by employing GANs to synthesize realistic additional
training data for ML applications. By augmenting the training data set with the
generated images, the accuracy of a defect classifier for FRP improved significantly.

The industrial usage of ML and especially ANN increases significantly. Never-
theless, the prevalent black-box models are often insufficiently trusted. Hence, we
introduced approaches to increase the explainability of the resulting ML models
(XAI). On the one hand, by proposing methods to identify high-level explanations
(concepts) learned by ANNs and by creating a framework for immersive visual-
izations that disclose an ANN’s structure and functionality. On the other hand,
we improved methods for complex optimization and parameter identification to
improve the quality of production data. These methods facilitate the validation
of models, ensuring that expert knowledge is aligned with their decision-making
process.

Further, to improve the explainability, we used gray-box models for robot control
and demonstrated this in machining. We proposed a structured neural network for
learning the dynamics of an industrial robot. It integrates forces that are difficult to
model, such as friction, as ANN and incorporate these into physical models. This
combines the advantages of both analytical and data-driven modeling.

For improving robot movement in laser manufacturing, we use RL to generate
laser-specific policies for steadier robot trajectories. To realize self-adaptive sys-
tems, we further improve these policies by feeding back in situ measurements.

We provided examples of data-to-knowledge pipelines that improve the perfor-
mance of LPBF-based additive manufacturing processes by detecting defects and
adapting the process.

Our data-to-knowledge pipelines have interfaces in the form of smart DSSs that
assist operators and managers in making informed production decisions. We inte-
grated AI in DSSs in textile engineering and investigated design requirements for
ensuring usability, trust, and acceptance. To demonstrate this, we realized a process
planning assistant that builds on historical planning data and experts’ knowledge to
provide sound and complete process plans based on given optimization criteria.

For enabling safe HRI on the shop floor, we employed BT because they offer
higher reactivity, flexibility, and modularity compared to other robot programming
approaches. We extended the node types with human-action nodes that allow the
robot to anticipate and react to human tasks. To further increase the safety of and
confidence in reconfigurable CPPSs, we introduced runtime monitoring to bridge
the gap between testing and formal verification.

We model production processes to facilitate process identification, analysis,
optimization, comparison, prediction, and conformity checking. In addition, we
introduced the OCELs standard and used it for approaches of process visualization
and data analysis through object-centric process cubes.
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Although the work presented here shows promising steps toward the digital trans-
formation of production, many further milestones need to be passed to achieve the
vision of the IoP. First and foremost, the holistic integration of the currently often
unconnected applications demonstrated here must be further advanced. Further,
the methods and concepts developed must be transferred to the multilayered and
very different applications in production, and their suitability must be then verified
across the various production domains. Second, the existing methods must be further
refined and improved, for example, by using the human digital shadow (Mertens
et al. 2021) to provide individually tailored support systems that are context-, task-,
and – above all - human-aware. Finally, the data must be integrated into a global
WWL that will interconnect research labs and production sites across company and
national boundaries (Brauner et al. 2022; Gleim et al. 2020a).
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Abstract

Materials serve as the foundation of the technical framework on which modern
society relies every day. Generations have developed new materials, tried to
understand the origins of their properties, and found ways to predict them.
Modern computational tools have vastly expanded our capabilities to make
predictions, not only of material properties but also of component properties
and of the component health status over its life cycle. Integrated Computational
Materials Engineering (ICME) aims at simulating the material and component
properties along the complete process chain and across the length scales from
microstructure to component scale. In this way a digital twin of the material
or component can be generated, which can be leveraged to facilitate gains in
productivity and service life of technical systems. By reducing the complexity of
models for the digital twin where necessary, combining them with in-process
data using innovative sensor technology and suitable mathematically driven
approximation procedures such as machine learning, it is possible to conceive
a digital material shadow that resolves elements of the dilemma between data
granularity, data volume, and processing speed to enable process monitoring
and control for materials processing. To enable communication between humans
and machines it is necessary to create a strictly defined language in the form of
ontologies. Ontologies are typically domain-specific, but care must be taken to
make them consistent across domains. Integrated Structural Health Engineering
(ISHE) aims at predicting and monitoring the health state of components over
their entire life cycle, enabling timely replacement of components and avoiding
costly and possibly life-threatening failures. In particular when components are
subjected to cyclic loading, their structural health does not primarily depend on
the average material properties, but on the presence of more or less statistically
distributed defects. These defects are intrinsic to materials processing, cannot be
completely avoided, and evolve during various stages of the production process.
The objective of ISHE is to predict their formation and evolution during the
production process and their impact on the component structural health during
its life cycle. It is clear that the material and component properties are strongly
dependent on the process by which they are produced. Therefore, many of the
topics discussed in this part have relational counterparts in Part IV, “Production”.

6.1 Introduction

The development of computer power and simulation methods has led to enormous
advances in the last few decades. Simulation models are increasingly used for
material and process development and a large number of simulation tools are now
available. Today, they describe phenomena on all time and length scales relevant to
materials and can often be run on a standard laptop, even for complex simulations.
Currently, these software solutions have reached a level in their respective fields
that allows valuable contributions to modern design tasks in knowledge-based
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production models. The aim is to provide digital material and component models
(digital twins and digital shadows) that can be used in the wider context of
the Internet of Production. Three Workstreams have been defined to highlight
various aspects of the ICME and ISHE methods and show how digital twins and
digital shadows can be derived and leveraged to enable a targeted response to the
individual defect density. The Workstreams to be described in the three following
�Chaps. 7, “Material Solutions to Increase the Information Density in Mold-Based
Production Systems”, � 8, “Toward Holistic Digital Material Description During
Press-Hardening,” and � 9, “Materials in the Drive Chain – Modeling Materials for
the Internet of Production.”

6.2 ICME in a Production Environment

Overall, the complex interaction of atomistic processes, thermodynamics, process
conditions, microstructure development, material, and component properties can
only be described by combining different simulation and machine learning (ML)
tools within the framework of an “Integrated Computational Materials Engineer-
ing” (ICME) approach.

The history of ICME actually began with the first use of computers in materials
science at all and has led via “Computational Thermodynamics” to the CALPHAD
methodology (Lukas et al. 2007; Saunders and Miodownik 1998) and further
to spatially resolved simulations of microstructure formation using the multi-
phase field methodology, to crystal plasticity models and many more. Currently,
a heterogeneous variety of hundreds of software tools related to ICME is available
(Schmitz and Prahl 2016).

The basic idea of ICME is to simulate the material and the component through
the complete process chain, from raw materials to finished component, and across
the length scales, from atomic scale to component scale. The simulation results from
one step in the process chain then form the input for the next step. In this way digital
material/component twins and shadows can be constructed. The fast digital shadows
with specifically reduced information content can be augmented by in-process data
and can, thus, be used to control the process to achieve the final desired component
properties. The properties of materials are largely determined by the microstructure,
i.e., the distribution of phases, grain size (crystallite size), amount and distribution
of dislocations, etc. The formation of the microstructure is ultimately determined by
processes on the atomic scale. To reach component scale properties it is therefore
necessary to use model-reduction and scale bridging to sufficiently coarse-grain the
models to make them usable at the component scale without sacrificing the physics
inherent in the lower scale models (Heo et al. 2021).

ICME in contemporary material concepts aims at improved properties by
adapting and tailoring the microstructure. Several trends are of interest here: the
quantitative evaluation of very small microstructure components on the nm scale, the
description of very inhomogeneous microstructures, a higher level of alloying and
the interaction of different alloying elements associated with it, the incorporation of
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metastable phases, and eventually the determination of effective material properties
by means of mathematical homogenization and virtual tests The use of ICME
methods leads to an understanding of the underlying physical phenomena, enables
faster material and process development, and increases process reliability and
robustness.

Applying ICME for new material classes and new production methods allows
efficiently rethinking design approaches and entire components. An example is
performance-oriented material development under the aspects of strain hardening
engineering (SHE) using the possibilities resulting from the use of additive manu-
facturing processes (AM).

6.3 Integrated Structural Health Engineering

The fatigue strength of a component is often determined by defects. These defects
can either be surface defects created during the production or usage as a result of,
e.g., wear or corrosion, or they can be internal defects, typically created at the
very beginning of the process chain and modified throughout the process chain.
Critical internal defects may be relatively rare, but even if only one component in
one thousand has a critical internal defect, which actually reduces the component
lifetime, the failure of this component must be prevented by timely repair or
replacement. Traditionally, this is achieved by regular maintenance intervals where
components are inspected for damage. Within Structural Health Monitoring (SHM)
(Farrar et al. 2001; Strantza et al. 2015) this can be augmented by using sensors to
capture damage in situ using, e.g., changes in acoustic, vibrational, or compliance
properties. This is particularly important when the component is not easily available
for inspection. Integrated Structural Health Engineering (ISHE) offers a more
holistic approach by including also the production process chain and extend the
ICME generated Digital Material Shadow to a Digital Component Shadow, which
includes the components health status with a prediction of its residual lifetime.
Defects can be assumed to be distributed statistically within the material, but only
the tail-end of the distribution is of particular interest here. By the combination
of sensors and machine learning methods, process conditions that can result in
defect formation can be identified. The evolution of the defects can be predicted
and influenced with the help of the ICME tools used to produce the Digital Material
Shadow. Statistical methods combined with ML methods are then used to predict
their location within components and the resulting impact on the component’s
predicted fatigue life.

6.4 Machine Learning

Machine learning methods can complement or replace simulation models if suffi-
cient data are available. Due to the black-box behavior of most of these methods,
increasing the understanding of their outcome is of great importance to improve
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their prediction quality. For this purpose, mathematical tools can be applied. To give
an example, a special type of residual neural networks (ResNets) has an underlying
structure which allows for analyzing at least simple ResNets using mathematical
techniques from kinetic gas dynamics (Herty et al. 2022). Furthermore, classical
or deep neural networks can be linked to physics by incorporating the governing
equations of the problem at hand. The resulting physics-informed neural networks
(PINNs) compute the residuals of the underlying partial differential equations
applying automatic differentiation of the neural network outputs to optimize the
training of the network (Raissi et al. 2019). If the governing equations are only partly
known, PINNs even allow for the data-driven discovery of underlying physics, e.g.,
by determining unknown parameters.

A common problem of an already trained machine learning method is its limited
reusability. A neural network may have to be retrained if, e.g., a material component
in a production process is modified. Efficient transfer learning algorithms such as
ensemble Kalman filtering (Kovachki and Stuart 2019) allow for a fast retraining in
settings where only few external conditions change (Herty et al. 2021).

6.5 Ontologies for ICME

Future ICME will be based on interoperability. The interaction – i.e., “interop-
erability” – between different simulation tools, between experiment and simula-
tion, between product and manufacturing process, between human and computer,
between models and data, and between different knowledge and experience domains
requires a “common language” which is understood by both machines and humans.
Especially enhanced interoperability between data and models will lead to new
models being based on production data or on experimental data (AI) and especially
to model- (or physics-) informed neural networks, e.g., Torabi Rad et al. (2020).

Current trends in ICME thus are based on the development, the use, and the
modular configuration of ontologies. Ontologies are at the top of the semantic spec-
trum stretching from symbol, via keyword, thesaurus, syntax, semantics, taxonomy,
ontology eventually up to epistemology (Obrst 2010). In addition to the hierarchical
“isA” relation” used in taxonomy, ontologies provide further relations between
different classes of things. These additional relations may be arbitrarily selected
(“lightweight ontologies”) or are based on fundamental concepts of analytical
philosophy like mereology (Casati and Varzi 1999; Schmitz 2020), mereotopology
(Schmitz 2022), causality (Ghedini et al. 2022), and semiosis (Atkin 2010) being
formulated in first-order logics (“heavyweight ontologies”).

Application of ontologies in industrial settings requires the fundamental philo-
sophical concepts to be exposed to harsh environments of industrial produc-
tion. Such applications in fact can be attained when harnessing a foundational
core ontology by suitable domain ontologies. The Elementary Multiperspective
Material Ontology EMMO (EMMO 2022) is a foundational ontology providing
the framework for standardized integration and a modular, re-useable configura-
tion of a variety of domain ontologies. EMMO in this context is not the only
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foundational ontology. Other foundational ontologies are BFO (Arp et al. 2015),
BORO method (BORO 2021), Dublin Core (2022), GFO (Herre et al. 2007),
Cyc/OpenCyc/ResearchCyc (Cyc 2022), SUMO (2021), UMBEL (2021), UFO
(Nardi et al. 2013), DOLCE (Borgo and Masolo 2010; Gangemi et al. 2002),
WordNet (2022), and OMT/OPM (Dori 2002; OPM 2022). Their harmonization
toward a unifying Top Reference Ontology (TRO) is an on-going effort of a
European research project (OntoCommons 2022).

6.5.1 Ontologies in Materials

The 118 chemical elements in the periodic table being relevant in everyday life
are a result of combinations of only a subset of the elementary particles. The
standard reference covering chemical elements is the IUPAC Gold Book (Gold
2019). Combinations of different chemical elements lead to an exploding variety of
possible substances and arrangements like molecules, crystals, nanoparticles, and
eventually all bulk materials constituting the macroscopic production world. For
almost each of these classes there exist some individual taxonomies or ontologies
like the CheBi (“Chemical Substances of Biological interest” (ChEBI 2018)),
the Nanoparticle Ontology (NPO (Thomas et al. 2011)), Environmental Material
Ontology (ENVO (Buttigieg et al. 2016)), or the Crystallographic Information
File (CIF (Brown and McMahon 2002)). Further classification of materials often
proceeds by chemical composition. Ceramics in general are distinguished into
oxides, carbides, nitrides, silicides to name a few. Metals and alloys are first
classified by the major chemical element like Al-alloys, Fe–alloys/steels, Ni-alloys,
Cu-alloys. Taxonomies of technical materials are widely used in characterization
and reliability fields of materials engineering to distinguish various industrially
used alloys, metals, and ceramics. The International Alloy Designation System,
for example, is the most widely accepted classification and naming scheme for
aluminum-based alloys enabling automated and human interpretation of the type
of materials by a digit-based encoding system, e.g., “Al 6061” (Aluminium Alloy
2022). Even for the same overall chemical composition, however, the properties
of the resulting material still depend on the way it was further processed, e.g., in
tempering processes. The respective temper designation thus follows the digit-based
designation number with a dash, e.g., 6061-T6. The definitions for the tempers
are, e.g., (for a full list see (Aluminium Alloy 2022)): -F (as fabricated), -H, and
-T. Current Material Databases (e.g. (Ansys Granta 2022)) provide compilations
of processing and property data for a huge variety of alloys, compounds, and
substances.

From the end user perspective, the ultimate functionality of the material is
the major topic of interest. These end users are not at all interested in any
detail of the material like its microstructure or its composition. These users are
interested in knowing the effective properties of the volume filled by the material.
Current trends of materials taxonomy and more specifically ontology developments
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thus direct toward a sub-domain and/or particular application specific focus, e.g.,
Ceramics (van der Vet et al. 1994), Structural Materials (Ashino 2010), Composites
(Premkumar et al. 2014), Alloys (Zhang et al. 2016), Catalysts (Takahashi et al.
2018), or Functionally Graded Materials (Furini et al. 2016). In many cases
nowadays the microstructure of a material is considered as the state variable defining
the materials properties. Semantic microstructure descriptions thus increasingly
become subject of ontology development using a standardized nomenclature (CWA
17284 2018), suitable metadata descriptions (Schmitz et al. 2016), and eventually a
foundational ontology framework like EMMO. EMMO compliant domain material
ontologies have already been developed for characterization (Morgado et al. 2020)
and crystallography (CIF ontology 2022), and currently are under development for
microstructure and thermodynamics within task groups of the European Materials
Modelling Council (EMMC ASBL (EMMC 2022; EMMC Task Group 2022)).

6.5.2 Ontologies in Production

Quite a number of ontologies related to different aspects of production have emerged
over the years, Fig. 6.1.

They are not harmonized neither in terms of their underlying foundational
ontology nor in the general use ontological relations being somehow arbitrary and
not being based on first-order logic concepts. Accordingly, most of them have to be
considered as “lightweight” ontologies. The diversity of the underlying foundational
ontologies and the heterogeneity of the ontological relations being used make this
variety of ontologies hardly be configurable and mutually interoperable. An example
is the ADACOR ontology (Borgo and Leitão 2007) being based on the DOLCE
(Borgo and Masolo 2010; Gangemi et al. 2002) foundational ontology.

Ontology name Scope Typical Application

PRONTO
ONTO-PDM

PSL
MSDL

MASON

MSE

MRO

ADACOR

MCCO

Product, Process,

Product, Process,
Resources

Product, Process,
Resources

Product, Process,
Resources

Product, Process,
Resources

Product

Resources
Process, Resources
Process, Resources

Product, Process,
Resources

Material requirements planning
Simulation  of  distributed activies for
manufacturing simple product prototypes
Discrete-event simulation
Automation of various tasks throughout
virtual enterprise life cycle
Multi-agent systems for manufacturing

Resource e-planning

Development of application-specific
ontologies
Development of manufacturing control
applications
Explore  interoperability  across product
lifecycle domains

Fig. 6.1 Table of some contemporary ontologies in the area of production. (Reproduced from
(Borgo and Leitão 2007))
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Fig. 6.2 Sensor DataStreams and ActuatorDataStreams are the only interfaces providing knowl-
edge of the production system or allowing to influence its behavior. Solely based on these data, a
neural network could be trained or other models be informed. No notion about the actual production
machinery would be necessary

Scope of all types of production ontologies is to make production – and also
all product – data FAIR meaning Findable, Accessible, Interoperable, and Re-
usable. Production data as well as in-service life product data can be classified
into dynamic DataStreams and static DataTraces. DataStreams can further be sub-
classified into SensorDataStreams and ActuatorDataStreams. SensorDataStreams
provide all information about the actual state of the production system. Their
recording into static DataTraces allows tracing the history of the entire production
system. DataTraces, i.e., stored information, also comprise all static information
about the production system like information on machinery, their arrangement in the
production system, geometries of product components, etc. The SensorDataStream
along with the available DataTraces comprehensively describes the actual status of
the production system including short-term evolution trends and thus the “data of
today.” The ActuatorDataStream, in contrast, comprises all types of data allowing
to intentionally and actively “change” the state of the production system, e.g., by
changing controller settings or simply stopping a machine. The ActuatorDataStream
thus provides the data for an intended behavior of the production system “tomor-
row,” Fig. 6.2.

6.5.3 Modular Configurable and Re-Usable Ontologies

Contemporary ontologies in many cases have been developed independently and
aiming at adequately covering the knowledge of the respective domain. In many
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Fig. 6.3 ManufacturingProcess ontology based on DIN 8580 and its integration into the EMMO
framework. Not all subclasses of all manufacturing processes are shown

cases the full specification of notions also being important for other domains
was necessary. Examples for ontologies of common interest and likely to be
used in many domain ontologies are, e.g., ontologies for SI-units, for basic
mathematical operations and expression, for basic chemistry, thermodynamics, and
crystallography to name a few. A modular configurable set of mid-level ontologies
bridging between the foundational ontology and the application-oriented domain
ontologies thus is highly desirable. The Elementary Multiperspective Material
Ontology EMMO supports such a strategy and quite a number of mid-level and
domain ontologies are already publicly available (EMMO Middle 2021).

One of the scopes of IOP work was to structure the domain of “Industry 4.0” and
to identify the required domain ontologies, which have to match the language of
industrial production. In detail EMMO compliant domain ontologies/taxonomies for
ManufacturingProcesses, for ProductionSystems, for ContinuumMaterials, and for
ModellingSoftwarewere developed. TheManufacturingProcess taxonomy, Fig. 6.3,
has been defined based on established standards (DIN8580) and realized in English
language using a standardized translation.

The ManufacturingProcess ontology is one of the building blocks of an overarch-
ing, modular ontological framework. The vision of such a future modular framework
of an industrial setting and its actual status is outlined in Fig. 6.4.

Emerging domain ontologies for SensorSystems, ActuatorSystems, DataStreams
and DigitalShadows as currently developed in the CoE (Becker et al. 2021) will
be integrated soon and complement the overall ontological framework. Especially
the MaterialOntology will be further connected to the numerous relevant domain
ontologies like a MicrostructureOntology, a CrystallographicOntology, and many
others already introduced in the section on material ontologies. Eventually this
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Fig. 6.4 Modular configurable system of domain ontologies for an industrial setting. Squares
denote the ontological description of a state, while ellipsoidals represent ontological descriptions
of processes. The arrows indicate ontological relations based on mereology and mereotopology
(Casati and Varzi 1999; Schmitz 2020, 2022). Processes havePart other processes (e.g., Sensor-
Process hasPart SensorDataStream) and have participants, which are states (e.g., SensorProcess
hasParticipant SensorSystem). The cream-colored ontology screenshots indicate the currently
available taxonomies/ontologies

will allow to link production process data to material property data and vice versa.
The modular ontological framework then will allow to also include further domain
ontologies like production planning, logistics, business, and finance and many more.

6.6 Simulation Platforms

Once interoperability between a variety of models and data is obtained there is
a chance for the realization of integrating workflows allowing the description of
materials and components along their entire production and service life-cycle.
The major requirements for a “simulation platform” are: (i) suitable and available
hardware (e.g., cloud, grid, HPC), (ii) a comprehensive set of relevant and modular
configurable software, (iii) a workload manager, and (iv) a workflow orchestrator. In
case commercial codes or proprietary data are involved there is a further need for (v)
a user and access rights management and eventually for (vi) back office solutions,
e.g., for accounting purposes.

Quite a number of simulation platforms are nowadays available, Fig. 6.5, with
a number of them being harmonized and integrated into a metaplatform being
currently under development in the MarketPlace project (MarketPlace 2022).

Work within the Cluster of Excellence in this area has been focused on
AixViPMaP, which is based on a first concept for an ICME simulation platform
addressing process chains being proposed about a decade ago (Schmitz and Prahl
2012). The AixViPMaP platform since then has significantly matured and now is
operational for microstructure simulation workflows adaptable to different metallic
systems and process conditions (Koschmieder et al. 2019).
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Fig. 6.5 Currently known open simulation platforms (DGM 2022). Open in this context means
the backbone of the platform to be opensource resp. open access and contrasts to commercial
platforms like 3D experience or Ansys workbench

Workflows on AixViPMaP (and also on many other platforms) are orchestrated
by Jupyter notebooks invoking software modules of different classes: “Creators”
serve to generate an initial virtual material state and may also comprise experimental
data. “Evolvers” advance this state according to process conditions. “Extractors”
eventually calculate properties from a state, while not altering it. The material
state data is stored in a HDF5 file being consecutively updated with new data
throughout the workflow eventually leading to a full description of a microstructure
at given conditions. AixViPMaP (www.aixvipmap.de) can be run either in the cloud
or on a grid with the workload distribution being controlled by a HT Condor
middleware. Essentially the AixViPMaP is software agnostic and thus basically
all types of software can be run, with the minimum requirement being a batch
execution capability. Integrated Computational Materials Engineering (ICME) is
characterized by application and combination of multiple simulation software tools
and a variety of data. A respective cloud-based infrastructure comprising dedicated
commercial and open access simulation tools has successfully been used not only for
first research projects but also already during an interactive online training/education
event (Koschmieder et al. 2021).

6.7 Conclusion

By the use of Integrated Computational Materials Engineering (ICME) a digital
twin of the material or component can be derived. By combining the digital twin
with in process data and machine learning it is possible to conceive a digital
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materials shadow. By the use Integrated Structural Health Engineering (ISHE) the
health state of components can be monitored during their entire life cycle to avoid
failures and enable timely replacement. To enable communication between humans
and machines, it is necessary to create a strictly defined language in the form of
ontologies.

Acknowledgment Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production –
390621612.
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Abstract

Production processes for the manufacturing of technical components are enabled
by the availability and use of adequate engineering materials. Within the Internet
of Production this work stream is dedicated to developing material and process-
based solutions to increase the data availability during the manufacturing and
operation of discontinuous mold-based production systems such as high-pressure
die casting (HPDC) and injection molding (IM). This includes the development
of data-driven alloy design strategies for additively manufactured mold compo-
nents using tool steels as an initial use case as well as new surface-based smart
sensor and actuator solutions. Material data and properties are tracked from the
steel powder production via gas atomization until the final use in a mold to
produce castings. Intermediate steps include the 3D printing of mold components
via laser powder bed fusion and subsequent application of physical vapor
deposition and thermal spraying-based smart multilayer coatings with sensor and
actuator capabilities. The coating system is refined by selective laser patterning to
facilitate the integration onto complex shape molding tool surfaces. Furthermore,
molecular dynamics simulation-based methods are developed to derive material
properties required for the modeling of polymer-based materials. By using
this integrated methodology with the application of integrated computational
materials engineering (ICME) methods from the metal powder for the mold
printing up until the casting or molding process, the foundation for a holistic
life cycle assessment within the integrated structural health engineering (ISHE)
framework is laid for the produced tooling systems as well as the molded
parts.

7.1 Introduction

Mold-based production systems are of high prevalence in the manufacturing
industry due to their ability to facilitate the high-volume production of technical
components from material classes such as non-ferrous alloys and polymers. High-
pressure die casting as well as injection molding machines are highly automated
production systems that can provide a wide range of data via their sensors and
control systems, especially if the process data is available via state-of-the-art
interfaces such as OPC UA. Most of the direct physical interaction however
happens between the mold and the process material. Consequently, the mold and
its manufacturing process must become a part of the data stream within the IoP
by using adequate materials and material models during mold manufacturing and
the mold usage cycle. Most hot work tool steel alloy compositions that are in
use for permanent molds in these processes have been optimized for the classical
production route via forging, milling, and consecutive heat treatment. With the
increasing adaption of 3D metal printing and its specific thermal regime rapid
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development of optimized or new alloys via ICME methodologies is required to
realize cost and performance goals. By capturing and storing the process data during
metal powder atomization as well as the printing process the knowledge of local
microstructural defects that negatively impact the properties of the mold component
can be leveraged to drive ISHE-based methods to better assess the state of the mold
during the usage cycle where thermal and tribo-chemical wear can occur. A key
requirement to apply ICME calculations to predict the microstructural features of
a cast alloy is the availability of precise information about the conditions at the
mold interface to assign adequate boundary conditions for the simulation. In order
to provide the required boundary conditions thin multilayer coating-based smart
sensors and actuators produced by means of physical vapor deposition and thermal
spraying are under development to increase the availability of data and to control the
process temperature at the interface between the melt and the mold. The multilayer
sensor coating system is structured by selective localized laser ablation of specific
layers to enable localized functionality on AM manufactured and conventionally
manufactured molds. Process data is collected for the coating as well as the laser
ablation procedure to improve the sensor manufacturing process and to provide the
data basis to facilitate ISHE assessments during the usage cycle of the mold. By
addressing the key challenges of new material solutions for the tooling itself as
well as increasing the availability of data from the mold-melt interface two crucial
steps toward enabling ISHE and ICME for the mold-based production route are
taken. Consequently, the digital description of the molding material itself is the
remaining challenge to be overcome to facilitate ISHE and ICME from the tool
steel powder until the final product from the materials engineering perspective.
Molecular dynamics simulations are integrated into the IoP framework to increase
the availability of material data for improved ISHE assessments of the molded
part.

7.2 Powder and Alloy Development for Additive
Manufacturing

Material properties of technical components must be tailored to suit specific appli-
cation requirements. In conventional processing, materials are typically made to
undergo multi-stage heat treatments resulting in customized microstructures. Such
processes are characterized by the presence of multi-phases and their associated
formation temperatures. However, a similar approach is not easily transferable to
the domain of additive manufacturing (AM) due to the manifestation of metastable
conditions resulting from different temperature profiles and often leading to poor
component properties through defects. Therefore, a new approach to AM process-
based solutions is crucial in designing materials with tailored microstructures and
predictable properties that fit specific application requirements. The approach must
be data-centric, where data from both the material design process and online
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sensor-based measurement systems can be effectively extracted and transformed
into structured and semi-structured databases with advanced querying capabilities.
Subsequently, such databases can be combined with data science and AI-based
approaches to analyze and exploit the optimization potentials of AM processes.
Such analyses can be used to draw process-specific correlations, track material
information over time, integrate predictive capabilities into the AM process chain to
draw conclusions about the material microstructure and predict failures (the ISHE
concept) during the product life cycle, and the computational development of alloys
(the ICME concept).

Laser powder bed fusion (LPBF) is an additive manufacturing process based on
the layer-wise production in a powder bed and the selective melting of the powder
by means of a laser beam. Cooling rates in LPBF typically lie between 106 and
107 K/s. Investigations of LPBF manufacturability of hot work tool steels (HWTS)
are limited so far, in some cases with contradictory results in microstructure-
property correlations (Casati et al. 2018; Huber et al. 2019). In this work, a
holistic methodology for modifying HWTS for increased LPBF-manufacturability
is demonstrated with a standard 1.2343 HWTS for a mold based high-pressure die
casting (HPDC) production system. First, LPBF process parameters are developed
for the standard 1.2343 alloy. In the second step, the alloy composition is adapted
based on the experimental results of step one to increase manufacturability. Alloy
development via research scale powder atomization and blending enables the rapid
production of new alloys for AM in research quantities. Alloy development has
traditionally been an iterative, time- and resource-consuming process due to the
constant need for remelting, casting, and testing new alloy compositions (Koss et al.
2021). Since in most LPBF processes, pre-alloyed powders are applied, another
time- and energy-consuming step of atomizing metal powders follows (Ewald et al.
2019). Our team of researchers has therefore investigated the use and proven the
feasibility of powder blends (mixtures of pre-alloyed and/or elemental powders) in
the context of rapid alloy development for high manganese steels (Ewald et al. 2021)
and high entropy alloys (Ewald et al. 2019; Kies et al. 2020).

The amount of metal powder needed can further be reduced by switching to
manufacturing processes with local powder supply: in situ mixing of powders allows
rapid changes between alloy compositions and the fabrication of graded samples
(Koss et al. 2021). One of these processes is extreme high-speed laser material
deposition (EHLA), a technology originally developed for coating applications
which has evolved to a 3D printing technology (Schaible et al. 2021). Using
EHLA, more than 300 different alloy compositions can be manufactured easily
within one workday. EHLA process parameters can be controlled in such a way
that the dendrite arm spacing is comparable to LPBF manufactured components
(Koss et al. 2021). This is an important feature in the context of alloy development
for LPBF, since mechanical properties are foremost influenced by microstructure
which in turn depends on the chemical composition and solidification conditions
such as cooling rates (Koss et al. 2021). First unpublished investigations on 1.2343
and a modification of 1.2343 show comparable DAS values in LPBF and EHLA
samples. Throughout the alloy development process (Fig. 7.1), data is collected
in all steps, starting with powder atomization, including powder characterization,
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Fig. 7.1 Holistic material development cycle

continuing with LPBF/EHLA manufacturing, and concluding with the investigation
of microstructure and properties of the final component. The data is basis for
the analysis of process-material correlations to allow process optimization and
predictive microstructure and property modeling. All raw data is gathered in a data
lake which acts as a central hub. The effective assimilation and restructuring of
this raw data enable the development of material databases, cross-platform inter-
faces, and inter-workstream operability. These form the basis of ICME and ISHE
(integrated structural health engineering) property prediction, the improvement of
material design, and the creation of digital shadows.

Cycle 1 – Standard composition: 1–6 → 10

1–3: The HWTS 1.2343 was chosen for the application and required properties, TC
phase simulation was done, the powder produced, and all data stored.

4: The atomized powder was qualified for further usage in the process chain:
chemical composition, shape, and particle size distribution (PSD). The powder
microstructural phases were determined and quantified: martensite, 5% retained
austenite (Fig. 7.2a).

5 and 6: The alloy was LPBF-printed with different print parameters. The different
microstructures and properties were investigated. For the standard steel 1.2343,
a heating plate (T = 500 ◦C) was necessary to reduce the amount of retained
austenite (RA) in the martensitic matrix from 18% to max. 1,1% (Fig. 7.2b, c).
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Fig. 7.2 EBSD-images of 1.2343 Standard (a) powder particle with ca. 5% RA (red), (b) as built
without preheating with ca. 18% RA (yellow), (c) with preheating at 500 ◦C

Cycle 2 –Modified composition: 7, 2–6 → 10

7, 2–6: Based on findings and data gathered from 1 to 6, alloy modification was
necessary with the goal to create a steel with less RA through a combination
of carbon and strong carbide formers as well as solid solution strengthening
alloying elements. To facilitate alloy modification and new compositional design,
Calculation of phase diagrams (CALPHAD) based simulations were helpful in
microstructure phases prediction (2). Based on the new modification, the alloy
can either be produced via atomization or blending (3) and characterized (4). In
the modification, the standard composition was adapted to the process (5). The
microstructure was evaluated (grain size, cell sizes, shapes, cell boundary struc-
tures, carbides, segregations, martensitic, austenitic phases) and the mechanical
properties of the printed parts with and without heat treatment were tested (6). In
this modified as-built condition, no RA was found.
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Correlations and property simulations: 10 → 8, 9 → 10

8: Comparison and correlations of both the steels, in terms of microstructure and
mechanical properties were performed.

9: Subsequent steps would involve the simulation of material properties, the ISHE
usage, and the determination of correlations among process variables.

The concept of alloy development via AM powder route supports the increased
adoption of 3D printing of mold components for HPDC or IM. The main results
showed that the preheated standard steel achieved the maximum strength without
a second annealing treatment and that the modified steel reached its maximum
strength results without a preheat treatment, both industrial benefits (Raffeis et al.
2022). Data gathered during the process chain were vital in controlling and
customizing microstructures for the required property applications. The material
and process data gathered along the process chain form a solid basis which shows
a clear pathway for further computational alloy development leading to an alloy
composition validated for manufacturing a mold for HPDC and successive smart
multilayer coatings application onto the mold surface.

7.3 Smart Coatings

The temperature is an important parameter in manufacturing technology to influence
tool performance and lifetime, properties of the workpiece, and energy consumption
for manufacturing. For monitoring and controlling the process temperature, the
data from the direct interface between mold and workpiece or mold and melt is
necessary. For this purpose, a smart multilayer sensor-actor-coating-system was
developed. This temperature sensor coating was deposited by means of physical
vapor deposition (PVD) and combined with an actor heater coating deposited by
means of thermal spraying (TS). PVD is a vacuum process. A solid target material
can be transferred into gas phase by sputtering with inert gas ions, such as argon or
krypton. The particles in the gas phase accelerate to the substrate, such as tools for
aluminum die casting, on which the coating growth takes place. By utilization of
reactive gases, such as oxygen or nitrogen, hard coatings can be deposited (Bobzin
2013). The basic principle of thermal spraying is that a feedstock material is melted
with the aid of a thermal energy source (Lugscheider and Bach 2002). Subsequently,
this is accelerated onto the substrate surface via an atomizing gas in the form of
spray particles. On impact with the surface, which has previously been prepared
and activated by blasting, the particles are flattened and solidified immediately. A
coating is formed due to the overlapping of particles.

The two coating processes PVD and TS enable the deposition of coatings for
the interface between mold and alumium melt. Furthermore, the deposition of the



160 M. Rudack et al.

Fig. 7.3 Schematic structure of a temperature control circuit consisting of PVD temperature
sensor coating and TS heater coating

required functional coatings is implemented. The schematic structure of a coating
for temperature control is shown in Fig. 7.3. It composes of insulation as well as
functional coatings. The electrical insulation coatings serve an electrical shielding
of the functional coatings from other metallic, electrically conductive components,
such as the steel tool or the molten aluminum. A further insulation coating is
applied between the functional coatings to prevent electrical interference between
the different principles for the sensor and actor function. The insulation top coating
is in direct contact with the environment and has a protective function against
wear and other stresses. The functional coatings are divided into a measuring
PVD sensor and a heating TS actor coating. The measuring function, based on the
operating principle of the thermoelectric effect, requires a material combination that
exhibits characteristic potential differences at different temperatures (Körtvélyessy
1998). The material combination is implemented by deposition of two coatings,
overlapping at the measurement position and separated at the contact positions,
for measuring the differences in potential. The actuator function is based on the
generation of heat on the principle of Joule heating. The metallic TS heater coating
acts as a resistance heater and converts supplied electrical energy into thermal
energy due to the specific electrical resistance.

The PVD sensor coating combines the function of temperature measurement with
wear resistance. Metallic and nitride sensor coating variants were developed for this
purpose. The nitride (Cr,Al)N + (Ti,Al)N sensor coating integrates the temperature
sensing property into this protective function (Bobzin et al. 2021a). The metallic
Ni + NiCr sensor coating generates a resolved potential difference, which is also
used in calibrated type K thermocouples for precise temperature measurement. In
combination with an aluminum oxide top insulation coating, a suitable resistance
in tribological contact was provided, protecting the underlying sensor functionality
(Bobzin et al. 2021b). The combination of metallic and ceramic coatings leads to the
risk of an eggshell effect. Due to the reduced mechanical resistance of the metallic
coatings, cracking or delamination of the insulation coating can result and affect the
function of the sensor coating. The metallic sensor coatings should be applied thin
to increase the ratio of wear-resistant insulation coatings to metallic coatings and
to enable temperature measurement at the direct interface. Therefore, the influence
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of the coating thickness on the temperature measurement by means of the metallic
PVD sensor coating was considered. The parameters for deposition of the PVD
sensor coatings are shown in Bobzin et al. (2021b). The coating thickness was
adjusted by varying the coating time, while the other parameters were not changed.
For the Ni and NiCr coatings, the deposition times tA = 23.75 min for coating
A, tB = 47.50 min for coating B, and tC = 95.00 min for coating C were varied
to consider the sensor function depending on the coating thickness. The sensor
function was checked by temperature measurement during the heating process in
comparison to reference measurements of a calibrated type K thermocouple. The
results are shown in Fig. 7.4. The calibrated thermocouple, blue, and the PVD sensor
coatings A, B, and C showed an approximately constant increase in temperature up
to t = 200 s. At t > 200 s the temperature control of the heating element started. The
measured temperature of the calibrated thermocouple initially decreased because
of convective heat transfer and readjusts with the regulation. The measured tem-
peratures of the PVD sensor coatings were higher than the temperatures measured
with the calibrated thermocouple. The temperature measurements of the PVD sensor
coatings A, B, and C showed negligible differences compared to each other. The
standard deviation of the individual measurements was smaller for the PVD sensor
coatings compared to the calibrated thermocouple. There was good reproducibility
of the measurement results regardless of the coating thickness. Accordingly, these
thin PVD sensor coatings can be used in technical processes independently of the
coating thickness.

Premature solidification and cold shuts of the aluminum alloy due to long flow
paths in narrow sections can be prevented by an increase in the surface temperature.
The TS actor coating can be used for variothermal temperature control of the cavity
in die casting. In this way, the heat exchange at the interface between mold and
melt can be directly influenced. The TS actor coating developed consists of several
layers. A bond coating was applied to the mold, which ensures that the subsequent

Fig. 7.4 Temperature measurement by PVD sensor coatings A, B, and C
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layers adhere. For electrical insulation, the NiCr20 heater coating was surrounded
by two ceramic Al2O3 coatings (Bobzin et al. 2021c). The applied heater coating
enabled the component surface to be heated to several 100 ◦C. Due to the low
electrical resistivity of NiCr20, the heater coating was applied in a meandering path
and with a low coating thickness in order to achieve a higher electrical resistance
and thus a sufficient heating power. Figure 7.5 shows a thermographic image of the
heated actor coating. Up to now, heating rates of up to 10 K/s were achieved and
temperatures of T = 350 ◦C were reached.

Both, the PVD temperature sensor coating and the TS actor coating, are
functional and suitable for use in technical applications. The combination of the
two coatings is the next step. Figure 7.6 shows a cross-fracture image of the
combination of the metallic Ni + NiCr coatings on a TS insulation coating by
scanning electron microscopy (SEM). The metallic coatings showed a columnar
structure. The transition between the measuring metallic coatings was hardly visible
and a suitable electrical contact for the formation of the thermoelectric effect

Fig. 7.5 Thermographic image of active TS actor coating

Fig. 7.6 PVD Ni + NiCr sensor on TS insulation coating in SEM cross-fraction



7 Material Solutions to Increase the Information Density in Mold-Based. . . 163

was assumed. No discernible gap formation between the metallic coatings and the
TS insulating coating was visible. This suggests a suitable adhesion within the
temperature control system. By means of the two surface technology processes,
temperature monitoring and control can be implemented directly at the interface
between mold and melt or between mold and workpiece. This allows an increased
reliability of the mold as well as an increased component quality to be achieved.

The existing PVD sensor coating should be extended for spatially resolved
measurements and the application on complex geometries. On complex geometries,
masking is challenging for shaping of the contacting and measuring points. The
structuring of the multilayer coating system requires a selective ablation of individ-
ual coatings without affecting the coatings underneath. In particular, the ablation
of similar coatings such as the measuring sensor coatings Ni and NiCr has to be
controlled and monitored precisely in the nanometer range. In this context, the
extension of laser ablation offers a promising possibility, which needs to be further
researched. The TS heater coating should be further improved and the heating rate
increased. This can be accomplished by using a stronger power supply or increasing
the electrical resistance of the heater coating through a finer meander structure. For
this purpose, laser structuring can be a possibility to enable precise structuring of
the heater coating.

7.4 Laser Ablation

Laser ablation is a versatile tool for thin film patterning, especially on freeform sur-
faces as in the present case for smart heater and sensor coatings (Fig. 7.7). Laser thin
film patterning is used for different materials: transparent or opaque – dielectrics,
polymers, or metals; a vast range of film and substrate material combinations is
possible. The selective ablation is achieved by one of these methods: Either the
processed layer is more susceptible to laser irradiation than the layer or substrate
below or the laser process parameters are tuned in a trial and error method with
intermediate ex-situ determination of the ablation depth and atomic composition in
the ablation area. In the present case, the first method is not applicable because the
threshold fluences of Ni- and NiCr-layers are identical (0.11 J/cm2). The second
method is tedious and relies on the constancy of the layer thickness. However, this
assumption may fail for three-dimensional surfaces where the film deposition rate
depends on local geometry features (Fig. 7.7).

Thus, we aim to measure locally and in-situ the atomic composition, identifying
the currently ablated layer. Areas which have not reached the target layer are
further processed. Ergo, a closed-loop control system is formed. Moreover, the
gained process data is further enriched with subsequent ex-situ measurements,
geometry information and data from previous process steps as depicted in Fig. 7.8.
The ultimate goal is the training of an artificial intelligence (AI) with the former
data. The AI is trained to optimize the laser process parameters a-priori. Laser-
induced breakdown spectroscopy (LIBS) is utilized for in-situ material detection.
Optical breakdown (i.e., ablation) and subsequent plasma formation of the material
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Fig. 7.7 The interplay between laser ablation and PVD coating. (a) The steel substrate is PVD
coated with an interlay, Al2O3, and Ni. (b) Selective laser ablation of Ni to form an isolated path.
(c) Resulting ablation pattern. (d) PVD coating with NiCr. (e) Laser ablation of NiCr. (f) The
finished thin film sensor with a Ni and a NiCr conductor, which meet at one point to form a sensor

Fig. 7.8 The distributed laser process, consisting of a classical laser process, which forms a closed
loop control in conjunction with an in-situ analysis. An artificial intelligence (AI), which a-priori
plans the process, is constantly trained by new available data. The data is enriched by ex-situ
measurements and data from the workpiece itself, such as the surface profile or the film deposition
parameters. The backbone of the distributed process is a NoSQL database
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are achieved by laser irradiation. The excited atoms and ions in the plasma emit
characteristic line radiation (Noll 2012). LIBS has been used successfully for thin
film characterization as well as depth sensing for multi-layer systems, even for sub-
micrometer layer thicknesses (Nagy et al. 2017; Cabalín et al. 2011; Owens 2011).

In this work, the depth sensing capabilities of LIBS for the present film system,
the two-dimensional resolution of the LIBS spectra as well as the selectivity of
the ablation have been characterized. The ablation thresholds of all materials have
been determined by Liu’s method (1982). The film system is already described
in Sect. 7.3. The depth of the ablated areas was measured with a laser scanning
microscope (VK9700, Keyence) and the element ratios were determined by electron
dispersive X-ray spectroscopy (EDX, Oxford Xray Detector System).

A clean ablation without damage of the isolation layer Al2O3 could be achieved.
Even though well below the ablation threshold of Al2O3, the isolation layer
was damaged for a fluence of 0.6 J/cm2. The damage is attributed to spallation,
induced by excessive heating of the underlying, highly absorptive TiAlN interlayer.
This finding further confirms that a spatially resolved detection of the material
composition is crucial for an efficient, selective process. Even a small deviation
in the film thickness of Ni or NiCr could result in a damage of the isolation layer.

The depth sensing capabilities of LIBS were explored with three different
methods. First, a spectrometer (HR2000+, OceanOptics) as a sensing device (He
et al. 2020). The drawback of the spectrometer is its slow acquisition time of 1 ms as
compared to usual laser pulse-to-pulse differences of ca. 1–10 μs. Second, a single
fast photodiode was utilized. The transition from Ni to Al2O3 and then to steel
could be determined by both methods after two and three passes. EDX was used to
determine if the respective layer was completely removed. Both previous methods
lack the ability to assign a signal to its spatial origin. The third method aims to
overcome these drawbacks. The photodiode signal and the laser scanner (intelliScan
14 de, ScanLab) were acquired simultaneously by a custom field programmable
gate array. The layer transition could be determined by all methods. However, the
element composition could not be spatially resolved for the third method. Only an
average difference was detected.

In conclusion, the possibility of an in-situ layer detection was shown. However,
the signal needs to be spatially resolved. For that purpose, two more photodiodes
will be implemented. All photodiodes will be equipped with different gauss filters,
detecting single, strong emission lines of Ni, Al, and Cr. Moreover, a NoSQL
database was set up and all laser parameters, ex-situ measurements, such as EDX
and depth analyses, as well as the in-situ results are automatically uploaded and
linked to each other. In that way all data will be at the disposal for training a deep
neural network AI.
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7.5 Molecular Dynamics for Digital Representation of
Polymers

Plastics as polymer materials have a very wide range of properties, which can
vary greatly depending on the type of polymer used. This very broad spectrum
of properties leads to a high degree of complexity regarding processing and usage
(Dahlmann et al. 2022). To counteract this complexity and to represent the plastic
in the sense of ICME and ISHE in the cluster of excellence, the goal is to represent
the polymer as a digital material and investigate in it virtually.

As Fig. 7.9 shows, the goal is to represent the plastic as a digital material, starting
from its synthesis, through processing, its use in the life cycle, and the end of its
lifetime by means of simulations on various scales.

In all the above stages, the complex properties of the plastic are partly or
entirely determined by its molecular structure (Dahlmann et al. 2022). A simulative
description of the material at the atomic level helps to represent the polymer’s
respectively the plastic’s properties as a digital material. One important method for
atomistic simulation is molecular dynamics (MD) simulation. This method relies
on distributing a certain number of particles in a usually cube-shaped box. The
interactions between the particles are usually described by pair potentials and their
summation (Haberlandt et al. 2012).

In polyamides, the thermal properties are influenced by the corresponding water
content (Batzer and Kreibich 1981). These influences can be described by MD

Fig. 7.9 Illustration of the plastic material throughout its complete lifecycle
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Fig. 7.10 Plotting the specific volume against temperature to investigate thermal properties of
PA6 with different amounts of water uptake

simulations and thus allow their prediction. For this purpose, calculations were
carried out on a dry PA6 and a PA6 saturated with 10% by weight.

As Fig. 7.10 shows, the changes in thermal behavior due to water uptake
can be described, at least qualitatively, by the MD simulations. Further MD
simulations were used to investigate the plastic processing, especially the process
of foaming. For the modeling of the foaming process diffusion coefficients are
needed which were determined by MD simulations (Melzer et al. 2022). Thus, the
digital representation of the plastic material helps reduce experimental effort and
reduces the needed resources. On this way plastic processing can be optimized, and
sustainability is increased.
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Abstract

Press hardening of manganese-boron steels is one of the most widely used
production processes for high-strength automotive components. The low residual
formability of these parts is a decisive disadvantage. The low formability
originates from a strong, but brittle martensitic microstructure transformed
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during quenching in the press-hardening tool. In contrast, medium manganese
steels (MMnS) contain high fractions of ductile retained austenite improving
press-hardened parts toward promising candidates for crash-relevant car body
components. Disadvantages include a more complex alloy design, a highly
sensitive production process, and more demanding requirements on the tool due
to higher strength during press-hardening.

A detailed description of the entire production process along the process chain
including the material and the press-hardening tool is important for tailoring the
properties. Combined information is required to enable a precise control of the
production process and its influences on the final properties of the part. Maximum
economic use of the material is achieved by digitally describing MMnS as well as
the tool along the entire process chain (casting, forging, hot rolling, cold rolling,
galvanizing and press hardening including Q&P). To link the process steps and to
describe the changes of the material, a new material database structure (idCarl)
was developed. All production parameters are recorded and processed as a digital
material twin. Ultimately, deviations occurring during production process can
be deduced from in-line data analysis and counteracted. These can then be
counteracted by adapted process control and the product can be brought back into
the required parameter field of properties. Clear identification of the component
and the used material allows conclusions about steps responsible for errors in the
production process that become apparent during use.

8.1 Introduction

Producing high-strength press-hardened components is complex, imposing high
demands on the material but equally on the press-hardening tools. Interconnected
production processes for press-hardening influence each other and provide a
complex interplay between material and production tools. Capturing microstructural
parameters can be understood as key to understand this complex interplay. In
the context of Internet of Production (IoP) the material description constitutes a
bridging between the various production technologies.

In contrast to conventional alloy concepts for press hardening parts, Medium-
Manganese-Steels (MMnS), a relatively new steel grade, offer promising improve-
ments of the final properties of components produced. In order to ensure that these
beneficial properties can be transferred to relevant industrial use cases such as
b-pillar production, the material must be able to tolerate the necessary forming
operation without material failure during manufacturing. Consequently, the material
undergoes a number of treatment steps before press-hardening (casting, forging,
hot- and cold-rolling, and galvanizing) that affect the microstructure. During press-
hardening a precisely controlled interplay of the microstructure and the process
parameters is of highest importance to achieve consistent and high-quality output.
To achieve these goals, a cross-process chain description of materials was developed
that captures and links all materials encountered in the process. In order to describe
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the process chain, it is necessary to analyze the individual process steps, to transfer
the relevant parameters into a data-based form and to link them with each other.
In the following, individual steps of the process chain have been highlighted. The
individual chapters deal with:

• Digital description of the material for press-hardening and the database structures
set up for this purpose

• The digitalization of the material behavior during deformation and improvements
to achieve optimal properties

• Digitalized press-hardening tools and their additive manufacturing
• Data-driven material description of press-hardening tools in the form of repre-

sentative volume elements

8.2 Digital Description of Material for Press-Hardening

Since its introduction, Digital Twin has drawn the attention of both industry and
scientific field and has been researched and applied in numerous fields (Qi and
Tao 2018; Fuller et al. 2020; Liu et al. 2019; Boschert and Rosen 2016; He et al.
2019). The digital twin was defined as a digital representation of its physical
counterpart (Grieves 2015), which can be physical object, system, or process.
However, implementation of the Digital Twin in practice is barely feasible due to its
requirement of massive amount of data and complexity of description models, which
is also impossible to deploy for monitoring and prediction purpose for production
in real time. Therefore, in IOP, the Digital Shadow is proposed as a light version
of the Digital Twin, meaning that it is “a set of contextual datatraces and their
aggregation and abstraction collected concerning a system for a specific purpose
with respect to the original system” (Becker et al. 2021) and represents only a
particular aspect of the real object (Brauner et al. 2022). Thus, digital shadows
provide a reduced amount of data sets as compared to digital twins, but capable
of describing a system’s state and history for a certain purpose and, therefore, make
the deployment of the Digital Shadow in real production feasible.

However, materials are so far barely mentioned during the digitalization of
production processes. Therefore, two new concepts for material digital description,
Digital Material Twin for material state description and Digital Material Shadow for
material processing, are proposed. In the present investigation, the focus is set on
the digital description of material current state solution (Digital Material Shadow)
with examples and a concept is proposed on the Digital Material Shadow for Press-
Hardening.

Firstly, one workpiece is described as a collection of intrinsic and extrinsic
properties. An extrinsic property can be a shape, roughness, or stiffness of a
workpiece, which is the reflection of the material property, but not material property
itself. With intrinsic or material-inherent properties (e.g., chemical composition,
yield strength), however, the material characteristic can be completely presented.
Thus, intrinsic properties of materials are defined as components for the Digital
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Fig. 8.1 Three-layer description of the Digital Material Twin

Material Twin. Here, we divide intrinsic properties into three layers: nanoscopic
(layer 1), microscopic (layer 2), and macroscopic (layer 3). Layer 1 describes the
material from atomic point of view, in which the crystal structure and the crystal
defects, distribution, and diffusion of foreign atoms are described, whereas layer 2
describes phase and microstructural characteristics of material, e.g., phase fraction.
In layer 3, the statistical summary (e.g., UTS, yield strength) of all the units of
layer 2 will be presented. With the intrinsic properties and 3-layer description, a
comprehensive Digital Material Twin can be deployed (Fig. 8.1).

Moreover, the Digital Material Twin description is extended by its correlated
process step since the material state change along the process chain. With extended
Digital Material Twin, each material state description can be connected and
presented as a digital processing chain for one material.

Furthermore, for IoP, four components are of interest for implementing the
approach into the IoP infrastructure: Smart Human Interfaces, Model-Integrated
AI, Data Modelling, and interconnected Infrastructure (Brauner et al. 2022). Thus,
with the concept of Digital Material Twin, a containerized Web Application with
the name intelligent digital Computational advanced research laboratory (idCarl)
is developed and deployed within the IoP. The structure of idCarl is presented in
Fig. 8.2. In this approach, researchers have the possibility to create a Digital Material
Twin with its chemical composition, and the extension of the Digital Material Twin
(process step with core parameters). The information of the Digital Material Twin is
stored in each material card, along with predefined, user-depended, unique Material
ID. The information of the Digital Material Twin extension will then be stored in a
treatment card with its Treatment ID. For the subsequent material card, the Material
ID of its previous material state will also be stored, so that the material state can be
described in chain. With the defined Material ID, users can also append subsequent
or previous processes for expansion of the processing chain. Moreover, within the
idCarl structure, a material card is considered as a node for testing data input and
realize the interconnected infrastructure (Brauner et al. 2022). The user can initially
test the material state with the testing machine, and the key value will then be
retrieved with the designed app from the raw data output file from the machine
and stored into designated material card. Currently, the key value of material state,
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Fig. 8.2 Schematic representation of the organizational structure of idCarl and its essential
components

e.g., chemical composition (with optical emission spectrometer, OES), ultimate
tensile strength, yield strength and Young’s modulus (with tensile machine), and
martensitic start and finish transformation temperatures (with dilatometer), which
represent the third layer in Digital Material Twin structure (Fig. 8.1), can be stored
in a database with the developed tool box.

Since the deployment of idCarl and its core database – MongoDB is based on the
concept containerization, the decentralized web application idCarl can be deployed
on various platforms or operation systems which support Docker, with configuration
to designated NoSQL Database Container. Moreover, with the containerization
solution, further data analyzing models, data processing models, or physical models
can then be appended to the idCarl structure, which also expands the functionality
of idCarl and provides a comprehensive three-layer Digital Material Twin.

Moreover, the core concept of IoP is based on the Digital Shadow, which is
defined as a reduced model/model collection for processing from a specific aspect
in real-time.

One example of applying idCarl in the IoP is the press-hardening process. For
press-hardening as use case, the development of mechanical properties, e.g., yield
strength, ultimate tensile strength, and phase transformation temperatures along
the process chain, from casted material to press-hardened component, are of great
interest to identify necessary (real time) adjustments of subsequent process steps.
Therefore, the structured datasets within idCarl, models for description of target
intrinsic property and parameters correlation (see Fig. 8.3), and data collected from
sensors will be applied for the Digital Material Shadow development. The Digital
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Fig. 8.3 Schematic illustration of the Digital Material Shadow of press hardening: target property
monitoring through reduced extended Digital Material Twin and dataflow collected by sensors

Material Shadow can then be applied for target property monitoring and prediction
along with the press-hardening process. With containerized approaches of Digital
Material Shadow of MMnS for press-hardening, a worker pod or even worker
node which contains relevant containers can be established with selected Container
Orchestration tools (e.g., Kubernetes) into the IoP framework.

The description and monitoring of the built-up process chain of press-hardening
of MMnS in the IOP begins with sheet material production including melting of the
material, hot rolling, soft annealing, and cold rolling. After melting, the chemical
composition of every ingot is analyzed by OES and stored into its Material Card.
Additionally, for every above-mentioned process step a subsequent Material ID and
related unique Treatment ID with most important treatment parameter, like type
of treatment (e.g., hot rolling, cold rolling, heat treatment), deformation grade,
deformation rate as well as temperature and time, is generated. Following each
process step, the material is tested by tensile testing and investigated by dilatometry.
The resulting third layer intrinsic properties are stored into the corresponding
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Material Card using associated apps. The development of the characteristic values
along the process chain can be displayed by a tree view in idCarl whereby necessary
process adjustments of the subsequent process steps can be easily identified. For
example, from the detected brittleness of a specific hot-rolled material, idCarl
may recommend the need for soft annealing before cold rolling. A suitable
annealing temperature could be defined on the basis of the in idCarl stored phase
transformation temperatures from dilatometer experiments.

To improve mechanical property combinations of high strength and high residual
forming capacity of press-hardened MMnS components, the performed press-
hardening process was extended by an integration of quenching and partitioning
(Q&P) treatment. Instead of quenching to room temperature after pressing, the
material is quenched to a temperature between martensite start and martensite
finish temperature, provided by idCarl. Given that martensitic transformation is not
completed, retained austenite can be stabilized by subsequent partitioning. Hence,
this heat treatment leads to a combination of soft (austenitic) and hard (martensitic)
microstructural components to be set sensitively by Q&P parameters, especially
quenching temperature, partitioning temperature, and partitioning time (Blankart
et al. 2021; Edmonds et al. 2006).

As the phase fractions strongly influence the mechanical properties, accurate
temperature control and monitoring during press-hardening and Q&P process
is essential (Yang and Bhadeshia 2009; Clément et al. 2015). Since cooling is
performed in the closed tempered press hardening tool, various thermocouples
were integrated onto the tool and work piece to monitor the current component’s
temperature in real time. Time for opening the tool and transferring the work piece to
the partitioning furnace is always tracked. In case of handling problems the desired
properties can still be achieved within certain limits by extending the scheduled
partitioning time (Clément et al. 2015; Blankart et al. 2021). For these real-time
process adjustments, a fast estimation of the resulting second layer properties
depending on the Q&P parameters is required. Based on dilatometric data of cold
rolled material, an empirical approach in accordance with Koistinen-Marburger
equation was developed for the here investigated Fe-0.3%C-5%Mn-1.5%Si MMnS
and can be used to estimate rapidly the austenite fraction and hence martensite phase
fractions (Blankart et al. 2021). Additional apps to store surface pressure force and
pressing time into idCarl is going to be developed shortly as well as an app for
saving Q&P parameter out of measured time-temperature raw data.

8.3 Digitalization of Material Behavior During Deformation

During press hardening, sheet metal forming operations, such as deep drawing or
stretch forming, formability of the material plays a major role when assessing the
suitability for its use in this forming process. The materials formability characterizes
its ability to tolerate plastic deformation without the creation of defects like fractures
or excessive thinning. A Forming Limit Curve diagram (FLC), schematically shown
in Fig. 8.4, is often used to assess a materials formability. The FLC displays the



178 S. Wesselmecking et al.

Fig. 8.4 Schematic example of a forming limit curve

point of material failure for different ratios of major and minor strains. A material’s
formability is therefore higher when greater strains can be tolerated before failure.
As the forming during press hardening takes place at elevated temperatures, the
formability is also affected by processing temperature and strain rate (Karbasian
and Tekkaya 2010).

While testing methods for FLC determination are well established for cold
forming conditions, for example, Nakajima testing, methods usable for hot stamping
conditions are currently only investigated (Mori et al. 2017).

As can be seen from the FLC, a press hardening process can only be assumed
to be robust in term of formability if the strains occurring in the formed component
sufficiently lower than the strains leading to failure according the FLC. The design
of the pressing tool and therefore the magnitude of strains and ratio of major and
minor strains are mostly predetermined by the desired geometry of the finished
product. As the geometry of press hardened components, for example in the
automotive application, is strongly dependent on the overall chassis design, there is
little possibility to adapt the process to compensate for an insufficient formability of
the processed material. The choice of a suitable initial sheet geometry can optimize
the material flow during forming and reduce the risk of material failure.

To assess the formability of the material designed in the use case a press harden-
ing tool for manufacturing a miniaturized b-pillar is used. Figure 8.2 shows the influ-
ence of the initial sheet geometry on the manufacturability of a simplified b-pillar
part. Figure 8.5 (a) shows an overlay of the two different sheet geometries along
the symmetry axis of the sheet. Figure 8.5 (b) shows the result of a finite element
analysis using the software AutoForm. Again, the results of the two sheet geometries
are overlaid along the symmetry axis. The geometry presented on the left side results
in material flow during forming that causes excessive thinning in the top and bottom
part of the b-pillar walls. The calculated thinning exceeds values of −0.25, therefore
the occurrence of cracks during press hardening is very likely. In comparison the
geometry presented on the right shows a more complex sheet geometry design
that results in optimized material flow and no cracks are expected according to the
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Fig. 8.5 Influence of initial sheet geometry on material failure during forming

simulation result. Figure 8.5 (c) and (d) shows the produced b-pillars for both sheet
geometries. In the experiment the material displays the expected behavior and cracks
occur for the simple sheet geometry on the left side. The complex sheet geometry
results in a defect free part. Using an optimized sheet geometry, the influence of
a suboptimal sheet geometry on the occurring forming limits of the process can
be reduced. Therefore, the influence of material inherent formability is easier to
investigate when conducting experiments using the b-pillar tool.

As mentioned, the determination of an FLC for the press hardening process is
currently not standardized. As a first method of assessing the material formability
hot tensile tests are performed. The resulting values for uniform elongation and
maximum elongation are used to approximate the formability of different material
batches that pass the process chain.

To correlate the results of the formability assessment to the chemical composition
and parameters of previous processing steps along the process chain presented in the
use case press hardening data received from FEA (predicted maximum thinning,
strain distribution at points of maximum thinning), hot tensile tests (uniform
elongation, maximum elongation) and experimental b-pillar production (machine
force/displacement, measurement of sheet thickness after forming) are aggregated
in json format and stored in a document-oriented database (Fig. 8.6). This data can
then be integrated into the idCarl environment.

8.4 Digitalized Press-Hardening Tool

To form the sheets during press hardening new tools need to be developed to meet
the increasing demands for individualized cooling channels and complex geometries
that can be achieved by additive manufacturing. Additive manufacturing of metals
is a production technology that involves manufacturing tools to form metallic
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Fig. 8.6 Data transfer of formability experiments, simulation, and b-pillar production to the idCarl
environment

materials layer-by-layer. The Laser Powder Bed Fusion (LPBF) process is one of the
most industrially relevant additive manufacturing processes, where the component
is built up with thin layers of powder by a laser. The LPBF process combines digital
design and high freedom of manufacturing, which opens the possibility for new
product-functionality and reduces the process chain for development. The main
current applications of this technology involve medicine (Javaid and Haleem 2018),
aviation and aerospace (Gisario et al. 2019), and automotive (Chantzis et al. 2020).

In industry, creating tooling requires fast product development, low cost, and
high efficiency. To meet these challenges and requirements, additive manufacturing
as rather novel technology has been applied and developed, which provides the
potential to revolutionize completely the process of manufacturing (Rosochowski
and Matuszak 2000). Opposed to conventional subtractive manufacturing, additive
manufacturing possesses advantages, e.g., production of complex geometries, low
material waste, flexible design, and low tooling costs.

We proposed an integrated digital process chain for the process optimization of
the tools with the help of the material database idCarl, as illustrated in Fig. 8.7. The
data infrastructure is organized: the data from each step in the manufacturing line
are collected. The data collection procedure can be performed either manually using
human-machine interface or automatically by different sensors. With these sensors,
it is possible to monitor the process in real-time. The abundant data realize a detailed
process description. After the data acquisition, the data will be processed firstly by
idCarl database. Then the data will be analyzed and implemented to simulation for
the process optimization.

The production and application of the Press Hardening (PH) tool is an excellent
good example of the above process chain. Press tools and molds are commonly
designed with internal cooling channels. Conventional manufacturing methods, such
as drilling or casting, have the challenge that the cooling channels cannot follow the
best designed geometry, which is normally in complex shape (Chantzis et al. 2020).
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Fig. 8.7 Data infrastructure for the integrated digital process chain of a powder metallurgy (PM)
tool production

Fig. 8.8 The comparison of
temperature distribution of
tools produced by
conventional manufacturing
and additive manufacturing.
The conformal cooling
channels realized by additive
manufacturing decreases the
thermal gradient and leads to
a better temperature
distribution on the tool
surface. (Adapted from
https://www.plasticstoday.
com/injection-molding/
milacrons-dme-partners-
linear-ams-develop-3d-
printed-conformal-cooling-
technology)

LPBF provides flexibility for designers that is unachievable under conventional
manufacturing methods, especially for the tools that will not be massively produced.

The production of press hardening tools by LPBF exemplifies one implemen-
tation of AM for tooling production. The press hardening integrates the forming
and quenching into one step for producing high-strength automobile body panels
(Neugebauer et al. 2012). AM enables the new design of conformal cooling channels
of the PH tools, which cannot be manufactured by conventional methods. These
conformal cooling channels improve the cooling efficiency, and as a result, the
manufacturing cycle time of PH process is reduced and the quality of products
is enhanced (Hoffmann et al. 2007). Figure 8.8 illustrates how conformal cooling
channels produced by AM can optimize the temperature distribution.
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Overall, the manufacturing of tools by AM is one of the incorporating elements
of Industry 4.0 and Internet of Production (IoP). AM contributes to the smart
factories through customization and topology optimization, which are limited by
conventional manufacturing systems (Dilberoglu et al. 2017). On the other hand,
AM shortens the optimization and development procedure. In the process chain,
every step can be monitored for data collection in order to achieve instant feedback,
continuous optimization, and traceability of the whole life cycle (Moshiri et al.
2020).

8.5 Data-DrivenMaterial Description of Press-Hardening
Tools

For the accompaniment of the process chain through means of digital shad-
ows/twins, several parameters must be analyzed and characterized. Our goal is
to digitally replicate the microstructure of the final press hardening tool to allow
such characterization. This is done via so-called statistically representative volume
elements (sRVE). With the help of these sRVE the influence of different microstruc-
tures, and thus different manufacturing parameters can be examined. Specifically,
the influence of voids or inclusions can be examined by the application of the sRVE.
Firstly, it is mandatory to achieve an extremely close statistical representation of the
material in question and the microstructure that is aimed at. This step is particularly
important, as later steps aim at estimating a realistic microstructure representation
using only process parameters as input. Thus, the statistical description of the
parameters needed to characterize the microstructure, such as grain size or grain
elongation need to be done with attention to detail.

Commonly, statistical procedures to describe a materials’ microstructural param-
eters employ simple histograms, to which distribution functions are fitted (Fig. 8.9).
There are, however, two key issues with this practice: For histograms, the continuous
parameters are put into buckets which can be shifted in size, which in turn
significantly alters the resulting distribution function. It is therefore a lot more
accurate to apply Kernel Density Estimations (KDE) to these statistical descriptions.

The second key problem is that the histograms and distribution functions
are created separately from all other parameters. Thus, these parameters are not
interconnected. However, the parameters of the microstructure are commonly
interdependent as was shown in a study (Pütz et al. 2020). In the same study the
fitting solution to this issue was presented with the application of a deep learning
method. For this method input data was collected from multiple microstructure
analyses in the form of data sheets where the grain sizes, the grain shapes, and
the grain orientations in relation to the rolling direction were collected. This set
of data was subsequently applied as the input data of a deep learning approach,
called Wasserstein generative adversarial network. This approach pits two networks
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Fig. 8.9 Comparison of microstructure features (left) and inclusion features (right). (From:
Fehlemann et al. 2021).

against each other, where one generates data that resembles the input data as closely
as possible, while the other learns to distinguish real data from generated. Via the
competition of these networks, the generator network improves significantly and is
able to reproduce not only the statistical distributions of singular microstructural
features, such as grain size, but also the present interdependencies.

Further extensions made to this deep learning approach changed the loss function
to include a gradient penalty. Additionally, a conditional part was added to train
multiple features with the same network (N. Fehlemann et al.). This is especially
important for the implementation of inclusions to the network. Inclusions are a
predefined breaking point, especially during cyclic loading which is present for
the press hardening tool. Thus, the characterization of the inclusions is equally
important to maintain the representativeness of the overall virtual microstructure.
In Fig. 8.1 a trained deep learning so-called CWGAN-GP (Conditional Wasserstein
generative adversarial network with gradient penalty) network can be seen. In this
network, the relevant parameters of both the steel phase and the inclusions were
trained within the same architecture.

The trained network then returns a virtual unlimited amount of unique input data
that could all be present in the real microstructure. With the help of these extremely
close statistical representations and a novel sRVE generator that utilizes discrete
generation and grain growth (Henrich et al. 2020), very realistic microstructure
representations can be created (Fig. 8.10). When load paths from real applications
are applied to these virtual microstructures, the effect of the microstructure on the
material properties can be closely examined. This leads to a quantitative estimation
of the influence of individual features on the properties of the whole material and
can in turn be used to make sure the produced part’s quality lies within the required
performance range.
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Fig. 8.10 Generated sRVE that show different microstructure features and complexities

8.6 Conclusions

Within this chapter we further developed the previously introduced concepts of
digital twin and digital shadow toward Digital Material Twin for material state
description and Digital Material Shadow for material processing. These were
applied to the press-hardening process of steel, where we identified medium
manganese steels (MMnS) as a promising candidate to surpass the mechanical
properties of conventionally used manganese-boron steels. We introduced idCarl,
a web application for describing material changes on different length-scales along
the process chain. Only with tracking these changes in dependence of process-
ing parameters, e.g., on the microstructural level, the full potential of relatively
unexploited alloys as MMnS for press-hardening can be reached. We provide an
underlying database structure for the digital description and process behavior of
(i) materials during press-hardening and (ii) materials for additively manufactured
press-hardening tools. For the latter, a data-driven 3D microstructure generator was
described providing realistic representative volume elements. Information extracted
from introduced digital material shadows enables the identification of in-line
production errors and thus allows direct measures of (real time) process adjustment
during press-hardening.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production –
390621612.



8 Toward Holistic Digital Material Description During Press-Hardening 185

References

Blankart C, Wesselmecking S, Krupp U (2021) Influence of quenching and partitioning parameters
on phase transformations and mechanical properties of medium manganese steel for press-
hardening application. Metals 11(11):1879. https://doi.org/10.3390/met11111879

Boschert, Stefan; Rosen, Roland (2016): Digital twin—the simulation aspect. In: Peter Hehen-
berger and David Bradley (Hg.): Mechatronic futures. Cham: Springer International Publishing,
S. 59–74

Brauner P, Dalibor M, Jarke M, Kunze I, Koren I, Lakemeyer G et al (2022) A computer science
perspective on digital transformation in production. ACM Trans Internet Things 3(2):1–32.
https://doi.org/10.1145/3502265

Chantzis D, Liu X, Politis DJ, El Fakir O, Chua TY, Shi Z, Wang L (2020) Review on additive
manufacturing of tooling for hot stamping. Int J Adv Manuf Technol 109(1–2):87–107. https://
doi.org/10.1007/s00170-020-05622-1

Clément, G.; Cédric, B.; Alexia, R.; François, M.; Krzysztof, W.; Jacques, S. (2015):
Effect of first tempering temperature on the amount of reversed and retained austenite in
Virgo™38, a 16Cr-4Ni low-carbon super-martensitic stainless steel. In European Corrosion
Congress, EUROCORR 2015: Austrian Society for Metallurgy and Materials (ASMET) 2,
pp 1056–1065. Online verfügbar unter https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85025708760&partnerID=40&md5=4b0541f01a05032e24f06e3c907c13c4, zuletzt geprüft am
06.09.2015 through 10.09.2015

Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing
in the era of industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.
07.148

Edmonds DV, He K, Rizzo FC, de Cooman BC, Matlock DK, Speer JG (2006) Quenching and
partitioning martensite—a novel steel heat treatment. Mater Sci Eng A 438–440:25–34. https://
doi.org/10.1016/j.msea.2006.02.133

Fehlemann N, Sparrer Y, Pütz F, Münstermann S (2021) Influence of synthetically generated
inclusions on the stress accumulation and concentration in X65 pipeline steel

Fuller A, Fan Z, Day C, Barlow C (2020) Digital twin: enabling technologies, challenges and open
research. IEEE Access 8:108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358

Gisario A, Kazarian M, Martina F, Mehrpouya M (2019) Metal additive manufacturing in the
commercial aviation industry: a review. J Manuf Syst 53:124–149. https://doi.org/10.1016/j.
jmsy.2019.08.005

Grieves, Michael (2015): Digital twin: manufacturing excellence through virtual factory replica-
tion, S. 1–7

He R, Chen G, Dong C, Sun S, Shen X (2019) Data-driven digital twin technology for optimized
control in process systems. ISA Trans 95:221–234. https://doi.org/10.1016/j.isatra.2019.05.011

Henrich M, Pütz F, Münstermann S (2020) A novel approach to discrete representative vol-
ume element automation and generation-DRAGen. Materials 13(8). https://doi.org/10.3390/
ma13081887

Hoffmann H, So H, Steinbeiss H (2007) Design of hot Stamping Tools with cooling system. CIRP
Ann 56(1):269–272. https://doi.org/10.1016/j.cirp.2007.05.062

Javaid M, Haleem A (2018) Additive manufacturing applications in medical cases: a literature
based review. Alexandria J Med 54(4):411–422. https://doi.org/10.1016/j.ajme.2017.09.003

Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol
210(15):2103–2118. https://doi.org/10.1016/j.jmatprotec.2010.07.019

Liu Y, Zhang L, Yang Y, Zhou L, Ren L, Wang F et al (2019) A novel cloud-based framework for
the elderly healthcare services using digital twin. IEEE Access 7:49088–49101. https://doi.org/
10.1109/ACCESS.2019.2909828


 15660 4508 a 15660
4508 a
 
https://doi.org/10.3390/met11111879

 -909 11149 a -909 11149 a
 
https://doi.org/10.1145/3502265

 32220 13363 a 32220
13363 a
 
https://doi.org/10.1007/s00170-020-05622-1

 14043 20005 a 14043 20005
a
 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025708760&partnerID=40&md5=4b0541f01a05032e24f06e3c907c13c4

 20345 24433 a 20345 24433 a
 
https://doi.org/10.1016/j.promfg.2017.07.148

 32220 27754 a 32220 27754
a
 
https://doi.org/10.1016/j.msea.2006.02.133

 15187 33288 a 15187 33288 a
 
https://doi.org/10.1109/ACCESS.2020.2998358

 25467 35502 a 25467
35502 a
 
https://doi.org/10.1016/j.jmsy.2019.08.005

 18489 41037 a 18489 41037 a
 
https://doi.org/10.1016/j.isatra.2019.05.011

 25964 43251 a 25964 43251 a
 
https://doi.org/10.3390/ma13081887

 7010 46572 a 7010 46572
a
 
https://doi.org/10.1016/j.cirp.2007.05.062

 17417 48786 a 17417
48786 a
 
https://doi.org/10.1016/j.ajme.2017.09.003

 7036 51000 a 7036 51000 a
 
https://doi.org/10.1016/j.jmatprotec.2010.07.019

 29283 53214 a 29283
53214 a
 
https://doi.org/10.1109/ACCESS.2019.2909828


186 S. Wesselmecking et al.

Mori K, Bariani PF, Behrens B-A, Brosius A, Bruschi S, Maeno T et al (2017) Hot stamping of
ultra-high strength steel parts. CIRP Ann 66(2):755–777. https://doi.org/10.1016/j.cirp.2017.05.
007

Moshiri M, Charles A, Elkaseer A, Scholz S, Mohanty S, Tosello G (2020) An industry 4.0
framework for tooling production using metal additive manufacturing-based first-time-right
smart manufacturing system. Procedia CIRP 93:32–37. https://doi.org/10.1016/j.procir.2020.
04.151

Neugebauer R, Schieck F, Polster S, Mosel A, Rautenstrauch A, Schönherr J, Pierschel N (2012)
Press hardening — an innovative and challenging technology. Arch Civil Mech Eng 12(2):113–
118. https://doi.org/10.1016/j.acme.2012.04.013

Pütz F, Henrich M, Fehlemann N, Roth A, Münstermann S (2020) Generating input data for
microstructure modelling: a deep learning approach using generative adversarial networks.
Materials 13(19). https://doi.org/10.3390/ma13194236

Qi Q, Tao F (2018) Digital twin and big data towards smart manufacturing and industry 4.0:
360 degree comparison. IEEE Access 6:3585–3593. https://doi.org/10.1109/ACCESS.2018.
2793265

Rosochowski A, Matuszak A (2000) Rapid tooling: the state of the art. J Mater Process Technol
106:191–198

Yang HS, Bhadeshia HKDH (2009) Austenite grain size and the martensite–start temperature. Scr
Mater 2009(60):493–495

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 20475 800 a 20475 800 a
 
https://doi.org/10.1016/j.cirp.2017.05.007


20919 5228 a 20919 5228 a
 
https://doi.org/10.1016/j.procir.2020.04.151

 973 9656 a 973 9656 a
 
https://doi.org/10.1016/j.acme.2012.04.013

 5859
12977 a 5859 12977 a
 
https://doi.org/10.3390/ma13194236

 20093 15191 a 20093 15191 a
 
https://doi.org/10.1109/ACCESS.2018.2793265
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


9Materials in the Drive Chain – Modeling
Materials for the Internet of Production

Ali Rajaei, Marco Becker, Yuanbin Deng, Oliver Schenk,
Soheil Rooein, Patricia de Oliveira Löhrer, Niklas Reinisch,
Tarik Viehmann, Mustapha Abouridouane, Mauricio Fernández,
Christoph Broeckmann, Thomas Bergs, Gerhard Hirt,
Gerhard Lakemeyer, and Georg J. Schmitz

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.1.1 Fine Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1.2 High-Strength Sintered Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1.3 Drive Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.2 Fine Blanking – Artificial Intelligence (AI) for Sheet Metal Hardness Classification . . . . 191
9.3 Sintered Gear – Simulation of Sintering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.4 Sintered Gear – Surface Hardening and Load-Bearing Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Sintered Gear – Grinding and Surface Integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.6 Drive Shaft – Open-Die Forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.7 Drive Shaft – Machinability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A. Rajaei (�) · Y. Deng · O. Schenk · S. Rooein · C. Broeckmann
Institute for Materials Applications in Mechanical Engineering (IWM), RWTH Aachen
University, Aachen, Germany
e-mail: a.rajaei@iwm.rwth-aachen.de; y.deng@iwm.rwth-aachen.de;
o.schenk@iwm.rwth-aachen.de; s.rooein@iwm.rwth-aachen.de;
c.broeckmann@iwm.rwth-aachen.de

M. Becker · P. de Oliveira Löhrer · M. Abouridouane
Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University,
Aachen, Germany
e-mail: m.becker@wzl.rwth-aachen.de; P.oliveira_loehrer@wzl.rwth-aachen.de;
M.Abouridouane@wzl.rwth-aachen.de

N. Reinisch · G. Hirt
Institute of Metal Forming (IBF), RWTH Aachen University, Aachen, Germany
e-mail: niklas.reinisch@ibf.rwth-aachen.de; gerhard.hirt@ibf.rwth-aachen.de

T. Viehmann · G. Lakemeyer
Knowledge-Based Systems Group (KBSG), RWTH Aachen University, Aachen, Germany
e-mail: viehmann@kbsg.rwth-aachen.de; gerhard@informatik.rwth-aachen.de;
gerhard@kbsg.rwth-aachen.de

© The Author(s) 2024
C. Brecher et al. (eds.), Internet of Production, Interdisciplinary Excellence
Accelerator Series, https://doi.org/10.1007/978-3-031-44497-5_23

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44497-5protect T1	extunderscore 23&domain=pdf

 885 39620 a 885 39620
a
 
mailto:a.rajaei@iwm.rwth-aachen.de
mailto:a.rajaei@iwm.rwth-aachen.de
mailto:a.rajaei@iwm.rwth-aachen.de
mailto:a.rajaei@iwm.rwth-aachen.de
mailto:a.rajaei@iwm.rwth-aachen.de

 12728 39620 a 12728 39620 a
 
mailto:y.deng@iwm.rwth-aachen.de
mailto:y.deng@iwm.rwth-aachen.de
mailto:y.deng@iwm.rwth-aachen.de
mailto:y.deng@iwm.rwth-aachen.de
mailto:y.deng@iwm.rwth-aachen.de

 -2016 40727 a -2016
40727 a
 
mailto:o.schenk@iwm.rwth-aachen.de
mailto:o.schenk@iwm.rwth-aachen.de
mailto:o.schenk@iwm.rwth-aachen.de
mailto:o.schenk@iwm.rwth-aachen.de
mailto:o.schenk@iwm.rwth-aachen.de

 10403 40727 a 10403
40727 a
 
mailto:s.rooein@iwm.rwth-aachen.de
mailto:s.rooein@iwm.rwth-aachen.de
mailto:s.rooein@iwm.rwth-aachen.de
mailto:s.rooein@iwm.rwth-aachen.de
mailto:s.rooein@iwm.rwth-aachen.de

 -2016 41834 a -2016 41834 a
 
mailto:c.broeckmann@iwm.rwth-aachen.de
mailto:c.broeckmann@iwm.rwth-aachen.de
mailto:c.broeckmann@iwm.rwth-aachen.de
mailto:c.broeckmann@iwm.rwth-aachen.de
mailto:c.broeckmann@iwm.rwth-aachen.de

 885 46815 a 885 46815
a
 
mailto:m.becker@wzl.rwth-aachen.de
mailto:m.becker@wzl.rwth-aachen.de
mailto:m.becker@wzl.rwth-aachen.de
mailto:m.becker@wzl.rwth-aachen.de
mailto:m.becker@wzl.rwth-aachen.de

 13137 46815 a 13137
46815 a
 
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de
mailto:P.oliveira{_}loehrer@wzl.rwth-aachen.de

 -2016 47922 a -2016 47922 a
 
mailto:M.Abouridouane@wzl.rwth-aachen.de
mailto:M.Abouridouane@wzl.rwth-aachen.de
mailto:M.Abouridouane@wzl.rwth-aachen.de
mailto:M.Abouridouane@wzl.rwth-aachen.de
mailto:M.Abouridouane@wzl.rwth-aachen.de

 885 51797
a 885 51797 a
 
mailto:niklas.reinisch@ibf.rwth-aachen.de
mailto:niklas.reinisch@ibf.rwth-aachen.de
mailto:niklas.reinisch@ibf.rwth-aachen.de
mailto:niklas.reinisch@ibf.rwth-aachen.de
mailto:niklas.reinisch@ibf.rwth-aachen.de

 14820
51797 a 14820 51797 a
 
mailto:gerhard.hirt@ibf.rwth-aachen.de
mailto:gerhard.hirt@ibf.rwth-aachen.de
mailto:gerhard.hirt@ibf.rwth-aachen.de
mailto:gerhard.hirt@ibf.rwth-aachen.de
mailto:gerhard.hirt@ibf.rwth-aachen.de

 885 55671 a 885 55671
a
 
mailto:viehmann@kbsg.rwth-aachen.de
mailto:viehmann@kbsg.rwth-aachen.de
mailto:viehmann@kbsg.rwth-aachen.de
mailto:viehmann@kbsg.rwth-aachen.de

 13801
55671 a 13801 55671 a
 
mailto:gerhard@informatik.rwth-aachen.de
mailto:gerhard@informatik.rwth-aachen.de
mailto:gerhard@informatik.rwth-aachen.de
mailto:gerhard@informatik.rwth-aachen.de

 -2016 56778 a -2016 56778 a
 
mailto:gerhard@kbsg.rwth-aachen.de
mailto:gerhard@kbsg.rwth-aachen.de
mailto:gerhard@kbsg.rwth-aachen.de
mailto:gerhard@kbsg.rwth-aachen.de


188 A. Rajaei et al.

Abstract

In this chapter, the focus lies on a predictive description of the material response
to the thermomechanical loads within different process steps by means of
physical and data-driven models. The modeling approaches are demonstrated in
examples of innovative production technologies for components of a drive chain:
Fine blanking of parts; powder metallurgical (PM) production of gears; open-die
forging and machining of drive shafts. In fine blanking, material, process, and
quality data are acquired to model interactions between process and material
with data-driven methods. Interpretable machine learning is utilized to non-
destructively characterize the initial material state, enabling an optimization
of process parameters for a given material state in the long-term. The PM
process chain of the gear includes sintering, pressing, surface densification, case
hardening, and finishing by grinding. Several modeling and characterization
approaches are applied to quantitatively describe the microstructure evolutions in
terms of porosity during sintering, density profile after cold rolling, hardness and
residual stresses after heat treating and grinding and the tooth root load bearing
capacity. In the example of the open-die forging, a knowledge-based approach
is developed to support the decision-making process regarding the choice of the
proper material and optimized pass schedules. Considering the microstructure of
the forged shaft, the elastoplastic material behavior is described by a dislocation-
based, multiscale modeling approach. On this basis, process simulations could
be carried out to predict the process forces, chip form, residual stresses, and the
tool life among other output data.

9.1 Introduction

In the Cluster of Excellence “Internet of Production” at the RWTH Aachen
University, a research domain is dedicated to materials. The main objective of
this research domain is to provide digital tools to design dynamic production
scenarios and condition-based monitoring of components, based on the knowledge
about the material and components’ properties. To this end, data are integrated
from production and usage into physical and data-driven material models and
digital material shadows are generated. This chapter contains three different process
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Sheet metal insertion BlankingClamping
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Sheet metal

Press plate with v-ring
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V-ring and press 
plate force Punch force

Fig. 9.1 Process steps in fine blanking

chains, chosen to demonstrate different approaches for modeling the materials
in manufacturing processes within the context of the integrated computational
materials engineering (ICME) and integrated structural health engineering (ISHE).

9.1.1 Fine Blanking

Fine blanking is a sheet metal shearing process. Compared to conventional blanking,
fine blanking is characterized by a high geometric accuracy and a smooth shearing
surface with only small tear-off (Aravind et al. 2021; Bergs et al. 2020). Fine
blanking is used in mass productions of parts, e.g., for the automotive or aerospace
industry (Pennekamp et al. 2019). Figure 9.1 depicts steps of the fine blanking
process. First, the sheet metal is inserted into the tool. Next, the sheet metal is
clamped between a press plate with a v-ring and a cutting die. Finally, the blanking
takes place, before the blanked workpiece is ejected.

Despite the high precision of fine blanking, practitioners observe fluctuations in
workpiece quality for fixed process parameters. These variations occur on batch
level, but also along single sheet metal coils. For other sheet-metal processing
manufacturing processes, research has already shown that deviations in product
quality occur due to variations in material properties (Unterberg et al. 2021). A fine
blanking line was equipped with sensors to capture material, process, and quality
data to allow for a data-driven modeling of dependencies between material state,
process state, and the resulting product quality in the long term (Niemietz et al.
2020).

9.1.2 High-Strength Sintered Gear

The powder metallurgical (PM) manufacturing of typical sintered gears usually
includes powder preparation, e.g., by mixing a metal powder, pressing, and sintering



190 A. Rajaei et al.

Pressing
Cold Rolling

Sintering Heat Treatment

Grinding

Fig. 9.2 Schematic representation of the PM process chain of high strength sintered gears

(Fig. 9.2). Some advantages of the PM route are the reduction of the material use
and energy consumption in the production chain, flexibility in shape optimization,
and better noise-vibration-harshness behavior of the gear (Kruzhanov and Arnhold
2012; Leupold et al. 2017). However, the strength of sintered gear is significantly
lower than conventional gears, due to the remaining porosity after sintering. Further
mechanical and thermal post-treatments are required, if highly loaded applications
are considered for the sintered gear. Studies have shown that surface-densified and
case-hardened sintered gears can achieve comparable levels of the load-bearing
capacity of conventional gears (Gräser et al. 2014; Kotthoff 2003). Different
modeling and simulation methods are carried out to study the process-material
relation, aiming at an optimized process design for improved performance. The
processes of sintering, case hardening, and grinding are highlighted in the following
sections.

9.1.3 Drive Shaft

A drive shaft is a highly stressed component that is used in drive chains of various
machines to transmit power and mechanical loads. In order to withstand the high,
cyclical loads during their service life, the components must have excellent material
properties. To this end, drive shafts, e.g., in vehicles, are often manufactured using
a multi-stage production chain comprising hot forging, heat treatment, and (finish)
machining (Zhao et al. 2019) (Fig. 9.3).

Despite the high level of standardization in modern manufacturing processes,
hardly explainable fatigue events happen during the service life of highly
loaded parts like axles or drive shafts in different machines like vehicles
(Barbosa et al. 2011) or (bucket wheel) excavators (Savković et al. 2012). The
reasons for these catastrophic failures, besides geometrical features, include defects
regarding the local material properties like grain sizes and the surface integrity
resulting from the individual manufacturing process chain (Zhao et al. 2019). To
enable the tracking of the production process of individual components, a digital
model of the production chain is created. Different methods including ICME-based
material and process simulation approaches and knowledge-based systems are used
to build a basis for developing a digital shadow that enables component-related
assessments, e.g., on the unique service life (ISHE) in the long run.
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Open-Die Forging Heat Treatment Machining Service Life

Fig. 9.3 Schematic representation of the process chain of a drive shaft

9.2 Fine Blanking – Artificial Intelligence (AI) for Sheet Metal
Hardness Classification

As stated earlier, the quality of fine blanked parts varies, even without changing the
process settings. Moreover, research has already shown that fluctuations in material
properties lead to quality deviations in other sheet-metal processing manufacturing
processes. If a digital shadow representing the actual properties of the material
was available, it would provide a basis to develop an integrated model connecting
material properties, process parameters, and quality parameters with the aim to
adaptively control the fine blanking process based on a given material state.

One potential approach contributing to a digital material shadow is the so-
called magnetic Barkhausen effect. Inside ferromagnetic materials are magnetic
domains. These domains, which are separated by so-called domain walls, are
regions in which the magnetic moments are aligned in one direction. When a
time-dependent external magnetic field is applied to a ferromagnetic material, the
domain walls move. However, the domain wall movement is hindered for example
by dislocations, voids, or second-phase particles. Once the external magnetic field
exceeds the restraining force of these obstacles, the domain walls break free
causing jumps in the rate of magnetization of the ferromagnetic material (Jiles
2000). These Barkhausen jumps are measurable, e.g., with an inductive sensor. The
resulting time series signal is called magnetic Barkhausen Noise (MBN). Due to
its dependency on microstructural properties, the MBN is used for non-destructive
material classification. The measurement of MBN is even fast enough to be applied
in production lines (Franco et al. 2013).

Unterberg et al. (2021) conducted experiments on deep learning to classify the
hardness of specimen from a 16MnCr5 (AISI: 5115) sheet-metal coil used for fine
blanking based on MBN signals. They demonstrate that deep learning models,
more precisely InceptionTime (Ismail Fawaz et al. 2020), allow to distinguish
different classes of hardness. While deep learning is capable of learning complex
relationships from raw data without manual feature engineering (Goodfellow
et al. 2016), the inner complexity of artificial neural networks also renders their
decision logic opaque to humans (Došilović et al. 2018). If models are only
evaluated based on their prediction accuracy, it is unclear whether a model learned
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plausible relationships or just exploits misleading spurious correlations (Chattopad-
hyay et al. 2019). Moreover, potentially unknown (and correct) relationships learned
by a model remain hidden from humans, preventing humans to learn from AI. Con-
sequently, methods to interpret or explain machine-learning models (explainable AI)
are required. Establishing explainable AI in manufacturing contributes to the vision
of an Internet of Production, where every production step is seen as a potentially
valuable experiment from which knowledge is gained.

Several explainable AI approaches, such as Grad-CAM (Selvaraju et al. 2020),
explain model predictions by highlighting parts of the input data, which are
most relevant to the prediction. However, such explanations leave much room for
interpretation. For instance, if a region in an MBN signal is highlighted as being
important, it is still ambiguous what properties (e.g., amplitudes, frequencies, peak
values, peak positions, etc.) of that region are decisive for the model prediction.
Li et al. (2018) propose an alternative approach. They present a neural network
architecture and an objective function enabling to learn representative examples of
the classes that are to be predicted by the model. The model derives its predictions
based on similarity to these representative prototypes.

Experiments with an adapted version of Li et al.’s model architecture were
conducted with the aim to classify the hardness of specimen from a 16MnCr15 fine
blanking steel based on MBN measurements. Figure 9.4 depicts boxplots visualizing
the hardness values of the used specimen, the final accuracies of the model for
training data and validation data as well as learned prototypes. The hardness and
the MBN were measured at eight different spots for each specimen. MBN signals
were measured over a duration of 1 s at each spot, which were divided into sub-
signals with a length of approx. 3.3 ms as input for the neural network. For detailed
information on the data acquisition refer to Unterberg et al. (2021).

Specimen 5.1 and 6.1 are 
used for validation, the rest is

used to train the model.

Class 1

Class 0

Specimen

]
W

B
H[

ssendr a
H

120.0
122.5
125.0
127.5
130.0
132.5
135.0
137.5

Prototype 1 (Class 0)

0.5 1.0 1.5 2.0 2.5 3.00.0

0.5 1.0 1.5 2.0 2.5 3.0

M
B

N
[a

.u
.]

-10000

-5000

0

5000

10000

M
B

N
[a

.u
.]

-10000
-5000

0
5000

10000
15000

Dataset

Validation

57% 43%

43% 57%

0 1
Predicted Labels

Tr
ue

La
be

ls

0

1

Train

100%

0%

0%

100%

0 1Tr
ue

La
be

ls

0

1

Predicted Labels

Accuracy Prototypes
Boxplot

Prototype 2 (Class 1)
t [ms]

t [ms]

0.0

Fig. 9.4 Summary of experiments on interpretable hardness classification with deep learning



9 Materials in the Drive Chain – Modeling Materials for the Internet of Production 193

The reached validation accuracies are considerably lower than those of Unterberg
et al. (2021). However, it becomes possible to compare the neural network’s
decision logic to existing domain knowledge, by checking whether the prototypes
are consistent with findings reported in the literature on MBN. The learned
prototypes appear to contradict relationships found in the literature. For instance,
Franco et al. (2013) report that the peak height of the MBN decreases with
increasing hardness. The prototypes suggest the opposite. Considered together with
the validation accuracy, this indicates that the neural network probably did not learn
the underlying relationships correctly in this case.

Balancing the optimization of the prediction accuracies and the representative-
ness of the learned prototypes turned out to be challenging for the given application
of hardness prediction. For the approach to become valuable in practice, future
work must enable higher prediction accuracies (on validation data), e.g., through
an optimized architecture .

9.3 Sintered Gear – Simulation of Sintering

The compaction of water-atomized powder and its subsequent consolidation during
the sintering process are decisive for the mechanical properties of a PM component.
This is due to the fact that these processes can largely determine the porosity and
the shape of the pores. The pore fraction and morphology have a decisive impact
on the materials’ fatigue strength as well as the surface densification, hardenability,
grindability, and performance of the gear. Hence, a multiscale modeling approach
is developed to predict the porosity and pore morphology, representing a digital
material shadow in the powder compaction and sintering.

The filling of a die with Astaloy 85Mo (FE + 0.85% Mo + C) powder and
its compaction can be described by a discrete element approach that aims for the
modeling of the interaction between powder particles based on Newton’s laws of
motion. The particles are defined as agglomerates of spheres that can only undergo
elastic deformation. The motion and deformation of each sphere are related to the
sum of the forces F sum

ij that act between two elements i and j:

F sum
ij = FCon

ij + FCoh
ij + FGrav

i (9.1)

The contact force FCon
ij is calculated by the Hertz-Mindlin model, while the

cohesive force FCoh
ij represents an additional normal force based on the simplified

model of Johnson-Kendall-Roberts. FGrav
i includes gravitational forces as well as

the contribution of the applied pressure during compaction. Using this approach, the
density distribution that is attributed to the friction between the powder and the die
as well as between adjacent powder particles can be assessed (Luding 2008).
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Static properties, such as the tensile strength, are mainly related to the density
distribution, whereas the estimation of the fatigue behavior requires a more detailed
assessment of the microstructure. This can be achieved by the application of
machine learning. In the field of image generation, generative adversarial networks
(GAN) have been applied to a vast variety of problems. A GAN consists of
two neural networks, which are referred to as Generator and Discriminator. The
former converts an input vector of random values into an image, while the latter
is trained to distinguish between generated images and the training dataset. The
response of the Discriminator is used to optimize both neural networks. If the
training process is evenly balanced, the Generator is empowered to create images
that are sufficiently accurate. To account for the influence of relevant variables
such as process parameters, an underlying taxonomy is required. Numerical labels
are assigned to the images that translate the related process or data conditions,
including information such as powder particle size and the magnification of the
used microscope. These labels are then embedded in the training process. Linear
interpolation techniques, applied to a trained model, enable the prediction of images
for new process conditions (Azuri and Weinshall 2020; Goodfellow et al. 2016).

The sintering process is driven by the local gradient of the chemical potential that
is directly related to the local curvature. Depending on the temperature, different
diffusion mechanisms contribute to the formation of sintering necks and the
rounding of pores. Higher sintering temperatures induce a significant contribution
of grain boundary and volume diffusion, provoking commonly undesired shrinkage
(German 1996). Hence, sintering of conventional PM steel is normally carried out at
1120 ◦C to mainly activate surface diffusivity, which ensures dimensional stability.
Therefore, a mesoscale model primarily requires a physical description of surface
diffusion only. The local velocity of the surface of a pore can be described by the
surface mobility M and the divergence of the local curvature κ:

v = M·�Sκ (9.2)

The mobility includes the contributions of the surface diffusion coefficient DS,
the surface layer thickness δ, the atomic volume Ω , and the surface energy γ :

M = DSδγ�

kT
(9.3)

with T as the temperature and k as the Boltzmann constant.
Instead of modeling the geometry of the powder particles, a level-set-function

φ is used to continuously describe the interface of the powder and the pore as a
signed distance function. The divergence of this function provides the curvature at
the surface of the particles. The evolution of the curvature as a function of the time t
can be simulated by explicitly solving the advection equation (Bruchon et al. 2012):

∂φ

∂t
+ v∇φ = 0 (9.4)
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Fig. 9.5 Simulation result of powder die compaction (a), predicted microstructure after com-
paction (b), simulated evolution of the microstructure during sintering (c), and the corresponding
microstructure observed in experiments (d)

The methods were merged to predict the microstructure after sintering based
on process parameters of compaction and sintering. The GAN was trained for 500
epochs with binary images taken from green samples with variable particle sizes,
which were included as image labels. For image recording in the scanning electron
microscope, the samples were first embedded and infiltrated with cold resin, then
ground and polished following the standard metallographic procedure. After the
training, spherical linear interpolation was applied to generate images for a particle
size range between 32 and 128 μm.

The feasibility of the proposed method is demonstrated by comparing the
results of the model with microstructural images from experiments. Figure 9.5a
depicts the simulation results of the compaction process on the macroscale, while
Fig. 9.5b shows an image with a size of 100 × 100 μm2 that represents the
predicted microstructure with a mean particle size of 83 μm. The subsequent
sintering process was assumed to be isothermal at a temperature of 1120 ◦C with
a holding time of 48 min. The simulation result is presented in Fig. 9.5c. The
corresponding experimental result, conducted in a quenching dilatometer under
vacuum, is displayed in Fig. 9.5d. The predicted pore morphology conveys a good
agreement with the experiment.

9.4 Sintered Gear – Surface Hardening and Load-Bearing
Capacity

The local surface densification of sintered gears is a promising technique to increase
the load bearing capacity drastically. Common methods to densify the functional
surfaces of sintered gears are shot peening and cold rolling (Frech et al. 2017).
To further increase the material’s strength and thus the load-bearing capacity of
the gear, a case hardening treatment is conducted after the surface densification.
Basically, same processes can be applied to heat-treat sintered parts as in the case
of wrought steel parts. However, the effect of the porosity on the material response
and the final result of the heat treatment should be considered to choose the optimal
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treatment strategy and process parameters (Danninger and Dlapka 2018). To study
the potential in optimizing the bearing capacity by surface densification and case
hardening, an ICME approach is developed, which links simulation blocks that
consecutively represent the process steps of carburizing, quenching, tempering and
loading of the gear.

Prior to the actual modeling, the density profile in the cross section of the
tooth is determined by image analysis of the microstructure and then mapped
to the model geometry. The micrographs are transformed into binary images, in
which material is represented by white and pores by black pixels. The density of
a given area is obtained from the ratio of black and white pixels (Fig. 9.6a). The
macro-scale heat treatment model applied in the present work is a finite element
modeling approach that comprises the calculation of diffusion, heat transfer, phase
transformations, transformation strains, and the elastoplastic material response.
Carbon diffusion during carburizing is calculated by the Fick’s laws, enabled by
defining the temperature-dependent diffusion coefficient and setting corresponding
boundary conditions. To model the quenching and tempering stages, a coupled ther-
momechanical analysis is carried out. The main constitutive law in the mechanical
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Fig. 9.6 Graphical overview of the modeling approach to predict the load-bearing capacity of a
surface-hardened sintered gear, with a module of 3.175 mm and a case hardening depth of 0.3 mm.
(a) Determination of the density profile, (b) simulation of the case hardening, (c) simulation of the
tooth root bending, and (d) calculated load bearing capacity of the tooth root
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analysis describes the evolution of the strain tensor and assumes that the total strain
rate equals the sum of independent elastic, plastic, thermal, and transformation
induced strain rates. The microstructure is described as a continuum, containing cal-
culated volume fractions of different microstructural phases. To describe the overall
kinetics of the phase transformations, modified formulations and extensions of
the Koistinen-Marburger equation (Koistinen 1959) and the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) equation (Avrami 1941) are applied for the martensitic and
the diffusion-controlled transformations, respectively. Thermophysical properties of
the material are defined depending on the temperature, density, phase fractions, and
carbon content. The simulated residual stress state is transferred as the initial stress
tensor to the simulation of the loading. Hence, the residual stress is automatically
superimposed to the stress tensor resulting from the external loading. More details
about the modeling approach are found in Rajaei et al. (2021). Figure 9.6b, c show
the simulated hardness and residual stress profiles after case hardening as well as
the stress state under loading with a F = 5.25 kN force.

The calculation of the load-bearing capacity is carried out in a post-processing
analysis. For each integration point of the FE-model, the local stress and strength
values are compared in terms of the local degree of utilization A(x, y, z), i.e., the
ratio of the applied equivalent stress amplitude to the fatigue strength under uniaxial
loading. The equivalent stress amplitude is determined for a given time-dependent
stress tensor according to a proper fatigue criterion, which considers the mean stress
effect and multiaxiality. For the example of the tooth root bending, the simple
normal stress criterion is still valid, due to the nearly proportional loading case,
i.e., constant principal stress directions (Brömsen 2005). The local fatigue strength
is calculated for the sintered steel Astaloy Mo85 according to the model suggested
in Hajeck et al. (2018), which is developed based on bending fatigue experiments on
laboratory samples. The model defines the fatigue strength depending on the density,
highly loaded volume, and carbon content, which can be reformulated in terms of
hardness. Having the local degree of the utilization, the probability of survival Ps
can be obtained as follows:

Ps = 2
− 1

V0

∫
A(x,y,z)k(x,y,z)dV = 2

− 1
V0

∑(
Ai

ki
)·Vi (9.5)

where V0 is a reference volume equal to 1 mm3, ki is the Weibull module of
the integration point i in the FE-model, which accounts for the statistical size
effect, and Vi is the volume of the integration point i. The load-bearing capacity
is the external force for a survival probability of 50%. Figure 9.6d summarizes the
calculation of the tooth root load-bearing capacity. The predicted residual stress and
hardness profiles agree very well with experimental results from Scholzen et al.
(2022). In Fig. 9.6d the expected bearing capacity of the gear without porosity is
given, 6.93 kN. According to the simulation, porosity reduces the bearing tooth root
capacity by approximately 25%, compared to a gear with full density.

The prediction of the tooth flank bearing capacity requires a more sophisticated
fatigue criterion that is valid for a non-proportional loading and is an ongoing work.
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9.5 Sintered Gear – Grinding and Surface Integrity

Grinding is a widely used hard finishing process in gear manufacturing due to
high dimension accuracy and improvement of the surface integrity. Currently, the
definition of suitable process parameters is performed by elaborate trials or based on
the operator’s experience. Alternatively, several models for description of grinding
loads have been developed for the process of gear grinding in order to regulate the
process and to define suitable parameters. However, these models are in general time
consuming, which limits their application in production line. In addition, process
monitoring for the regulation of the process can also be a challenging task in gear
grinding processes due to complex process characteristics. The main objective of
this project section is the optimization of the procedure for generating gear grinding
with a focus on surface integrity by means of a networked adaptive production
concept. In order to achieve this objective, the project is divided into different
steps. In the first step, a new process modeling based on the digital twin concept
will predict the energy generation according to the material removal rate, given
by process parameters and kinematics. In the second step, solutions for real-time
measurement methods will be investigated, as well as a connection between real-
time measurements and the energy model outputs. Finally, in order to support a
wider application of the optimized grinding procedure, a data lake will be built to
store relevant data regarding the process under different conditions.

In the following, an explanation of the current status of the first step of the
project, regarding the new process modeling is explained. During grinding, a major
percentage of the generated energy is converted into heat. Most fraction of this heat
is transferred into the gear, and may cause thermal damages. In order to better
understand and control the part of the generated heat that flows into the gear, it
is first necessary to specify the according energy partition. In the work of Hahn
(1966), it was established that the material is removed by each grain of the grinding
tool along three different mechanisms: friction, plowing, and shearing. Each of
these mechanisms contributes in a singular way to the partition of energy that
goes into the gear (Linke et al. 2017). The energy generated in each of the three
mechanisms depends on grain-gear micro-interaction characteristics (Malkin and
Guo 2007). These micro-interaction characteristics are influenced by the grinding
tool topography. The interaction between the grains and the gear is characterized
based on both process kinematics and parameters. In order to develop a suitable
grinding energy calculation for the generating gear grinding, it is necessary to
first consider the single-grain interaction in the contact zone, based on the process
parameters.

For the process model developed in this project section, an existing simulation
model of the generating gear grinding process based on penetration calculation
approach is used. An extension of this simulation model considering a realistic
modeling of the topography and the rotational movement of the grinding worm
during the process is performed. As a result of the simulation, micro-interaction
characteristics for each of the engaging grains are obtained and used for the
calculation of the energy in generating gear grinding.
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Analysis of process energy EwExample 
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Fig. 9.7 Analysis of the energy calculation for generating gear grinding process

The results of the process energy Ew calculated with the extended simulation
model are shown in the upper right of Fig. 9.7. The gear, grinding worm, and process
parameters used for the calculation are shown in the left side of Fig. 9.7. For better
visualization, the calculated process energy Ew was plotted onto the flank of the
gear. In the visualization, the process energy Ew corresponds to the energy generated
by grinding in one specific axial position. Therefore, only one area of the gear flank
was ground in the simulation, and not the entire flank.

In the four points highlighted in Fig. 9.7, a further analysis of the energy was
performed, which is shown in the diagram in the lower right side of Fig. 9.7. For
the points one and two, similar process energies and contributions are obtained. In
the points three and four, the process energies Ew are also similar to each other, but
the contributions of each individual energy of each chip formation mechanism are
different. The importance of an analysis of the process energy Ew considering the
chip formation mechanisms is due to the fact that each of these mechanisms has a
different partition of energy that goes into the gear. According to Malkin (Linke et al.
2017), almost all the friction energy Efr is conducted as heat to the gear, while for
plowing Epl and shearing Esh energies, this fraction is smaller. The fraction of energy
conducted as heat to the gear for the shearing mechanism is the lowest of the three
mechanisms (Linke et al. 2017). Therefore, if a significant part of the process energy
Ew corresponds to shearing energy Esh, most of this energy is used for chip removal
and not to heat to the gear. If most of the process energy is not converted to heat, the
possibility of grinding burn during the process decreases. Due to this, even though
the points three and four presented similar process energies Ew, the contribution of
each individual energy of each chip formation mechanism is different for each of
these points, leading to different amounts of heat transferred into the gear. Based on
these results, the method for the calculation of the process energy Ew for generating
gear grinding was able to show sensible outcome. Ultimately, this method can
be used in the future for the prediction of grinding burn for the generating gear
grinding. For this, the critical values of the individual energy of each chip formation
mechanism and their influence on the grinding burn presence need to be defined.
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9.6 Drive Shaft – Open-Die Forging

Open-die forging is a bulk metal forming process that can be used to produce mostly
longitudinally oriented components such as drive shafts or axles with excellent
material properties. In open-die forging, the ingot is incrementally formed into
the desired shape using two simple dies that perform so-called strokes. Forging
processes are summarized in pass schedules that contain the important process
parameters like height reductions or press velocities for each individual pass. A
forging pass consists of a discrete number of consecutive strokes that are oriented
in the same ingot direction and hence, deform a defined region of the ingot.

Since commonly hundreds of individual strokes can be involved in an open-
die forging process, there are a large number of process routes that lead to
the same final geometry. However, these different processes are not equivalent
from a production point of view, as they have different process times, energy
consumption and, most importantly, can produce different material properties in the
final part. Therefore, both the targeted process design and the detailed monitoring
and tracking (digital shadow) of individual open-die forging processes as well as
their corresponding down- and upstream processes are very useful for the reliable
and efficient production of forgings with excellent material properties.

Since important material and workpiece properties often cannot be measured
directly during the open-die forging process, an assistance system for open-die
forging was developed that is able to monitor the current state of the forging
ingot live, throughout the process (Rudolph et al. 2021). Besides information on
temperature and geometry, the equivalent strain introduced along the core fiber is
determined using a fast calculation model. Afterward, the combined time-dependent
information on temperature and equivalent strain enables the calculation of the
grain size present insight of the ingot during and after forging, using a fast
material model based on JMAK-equations (Karhausen and Kopp 1992) (ICME)
and hence, laying the foundation for a digital shadow of the forged component.
The process data insight of the digital shadow can be used to subsequently set up
an FE-model and hence, to enrich, e.g., locally restricted information from the fast
process models. Here, for example, three-dimensionally resolved temperature and
equivalent strain trajectories can be generated and incorporated back into the fast
microstructure model to calculate a three-dimensional distribution of the grain size
in the component over the course of the forging.

Although the process route has a decisive influence on the component quality,
the process design in open-die forging is still often based on experience or simple
models, resulting in a need for new approaches on the targeted process design.
Since compared to, e.g., die casting, which is used for producing high-volume
batches, the batch sizes in open-die forging are rather small. Hence, data from
real forgings is not widely available, limiting the usability of modern data-driven
algorithms that require large amounts of data for their application. Therefore, a case-
based reasoning (CBR) (Richter and Weber 2016) agent for the targeted design of
pass schedules for the open-die forging process is developed. Similar to the human
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experience-based behavior, CBR is a methodology to learn based on experience by
remembering past problems (cases) and the way they were solved (solutions). By
recording data of past forging processes (digital shadows) and complementing those
with data of simulations and fast process models, the CBR-agent shall make suitable
recommendations for a new case that requires a pass schedule. However, it is not
sufficient to consider individual steps in a production chain of products. Decisions
to be made range from the material selection, heat treatment specifications, press
and tool allocation, and pass schedule layout to the final machining steps. Typically,
the required knowledge to make informed decisions is spread across different
stakeholders (cf. Fig. 9.8). For example, the material choice for a drive shaft,
considering a set of requirements, may depend not only on the prices and availability
of the different steel alloys at the retailer (“steel retailer”), but also on the available
material characteristics required to simulate and design the forging process (“IBF-
agent”) as well as the heat treatment strategy (“IWM-agent”) or the machining
process (“WZL-agent”).

While the internet is heavily used in the everyday lives to accumulate informa-
tion, there is typically no unified network between different industrial stakeholder,
which could be used for planning complex manufacturing processes. A decen-
tralized World-Wide-Lab (WWL) infrastructure, where companies and research
labs can offer their services, is required in order to solve such complex tasks
efficiently, supported by autonomous agents. A service agent may range from
simple data vendors, e.g., a retailer (cf. Fig. 9.8, “steel retailer”) informing about
prices and availability, to complex process control nodes that automatically interact
with other’s agents in the WWL, in order to accumulate data to plan out the
manufacturing process for a whole product. The WWL ensures semantic inter-
operability between the different agents through the use of ontologies. Interfaces
are specified using the Thing Description ontology (Kaebisch et al. 2020) and
agents need to agree on a core ontology that structures the information about
production processes. Individual agents may extend this core ontology, if needed.

User Interface:
Question: Which material is best suited for my drive shaft?
Requirements: Load profile, operating temperature, …

Forming-Agent

• Flow curves
• Forming limits
• … 

Heat Treatment-
Agent
• Heat treatable?
• Ac1/Ac3 
• … 

Machining-
Agent
• Machinable?
• Hardness
• … 

„Steel-Retailer“

• Composition
• Price / kg
• … 

…

Communication

Fig. 9.8 Schematic representation of communicating WWL-agents of different process steps for
solving an exemplary production-related problem
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Data provenance information plays an integral role in the vison of a WWL, hence
several requirements specified in the FactDAG model (Gleim et al. 2020) for data
provenance information are covered by WWL agents. Agents need to be able to find
other participants of the WWL, so that they are aware of possible collaboration
opportunities. To keep the structure decentralized, each agent maintains a local
service cache that can be expanded by scanning the network via User Datagram
Protocol (UDP) multicasts.

Combining the digital shadow, e.g., of each forged drive shaft with the new
possibilities of the WWL it shall be possible to adapt subsequent manufacturing
steps such as heat treatment or mechanical processing based on the previous
individual manufacturing process. Moreover, assumed the digital shadow of a forged
drive shaft is complemented by component-specific information on the downstream
production processes, an individual long-term estimate of, e.g., the service life of
the component (ISHE) might be possible in the long run.

9.7 Drive Shaft – Machinability

The machinability of a material is one of the most important input parameters for an
optimized process design. It determines, apart from the tool wear and the achievable
chip removal rates, the surface integrity as well as the functionality of the finished
component. The machinability of a material is dependent on the microstructure,
controlled by the chemical composition and the heat treatment state, and thus
offers a very wide field in the area of basic research and industrial application
(Abouridouane et al. 2019).

In order to determine the influence of the microstructure on the machinability of
drive shaft, a new experimental setup with automatic multi-sensor data acquisition
has been developed for in-process measurement of thermo-mechanical load and tool
wear during turning operations (see Fig. 9.9). In order to check the performance of
the proposed experimental setup and to derive correlations between the operating
thermo-mechanical load and the machined surface characteristics, longitudinal
finish turning tests on drive shafts made of steel 42CrMo4 with two different
microstructures are carried out using carbide indexable inserts.

A summary of the main results obtained in the present research work can be
given as follows:

• The proposed experimental setup is suitable for in-process measurement and
analysis of the thermo-mechanical load and tool wear by turning operations.

• The thermo-mechanical load, which depends to a large extent on the hardness of
work material, controls the tool wear and the resulting surface finish as well as
the induced residual stresses.

• The measured roughness Rz shows obviously the bad influence of the tool wear
on the achieved surface quality when finish turning drive shaft.

• The achieved surface integrity results can be incorporated in digital twins for
process monitoring to optimize cutting process performance.
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Target quantity (mean values) Shaft 1 Shaft 2

Hardness / HRC 26 24.8

Cutting force / N 120 110

Surface temperature / °C 85 70

Tool flank wear VB / μm 115 98

Surface roughness Rz / μm 6.6 4.6

Residual stress / MPa 390 210

Workmaterial: 42CrMo4 Cutting speed: 150  m/min
Tool: CNMG 120408-PM 4315 Feed: 0.15 mm
Cooling: Dry cut Depth of cut: 0.5   mm

Residual 
stress

Surface 
roughness

Tool wear, 
tool life
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structure

Machina-
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Workpiece

Acceleration
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Fig. 9.9 Multi-sensor experimental setup for machinability characterization

A multiscale approach was developed to predict the mechanical yielding behav-
ior of the work material and thus its machinability. The modeling of the constitutive
behavior of the considered materials poses several challenges at different levels.
All following assumptions and models follow closely the choices of Laschet et al.
(2022).

First, the elastic and plastic behavior of pearlite and ferrite must be modeled.
For ferrite, a cubic elastic behavior is considered and its plastic behavior is
assumed to be governed by a dislocation-based approach, which then determines
the corresponding yield stress. Here, the dislocation density ρ is assumed to be
governed in terms of the plastic strain εp by the following approach (modified
Kocks-Mecking-Estring model) (see Laschet et al. 2022 for details).

dρ

dεp

= M

(
k1

b

(
1 − exp

(−ψ
√

ρ
)) − k2ρ + k3

b D
exp

(

−Mλ∗

b
εp

))

(9.6)
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The evolution of the dislocation density of ferrite is influenced by the parameters
pF = (ψ , k1, k2), while all other quantities are kept constant. For cementite, its
elastic behavior is assumed as orthotropic. The evolution of the dislocation density
of cementite is assumed to be governed by the following approach (hardening law
of Gutierrez-Altuna type):

ρ = 1 − exp
(−k2Mεp

)

bk2L
+ ρ0 exp

(−k2Mεp

)
(9.7)

The dislocation density of cementite and its corresponding yield behavior are
assumed constant (see Laschet et al. 2022 for details).

Then, a representative volume element (RVE) is generated at the “nano” and
“micro” levels. At the nano level, a bilamellar RVE representing the ferrite-
cementite-structure of pearlite is generated with ABAQUS. The nano RVE considers
the statistics measured in experiments, i.e., the volume fractions of ferrite and
cementite and the lamellar lengths. At the micro level, a polycrystalline RVE is
generated with DREAM3D, considering the microstructure statistics, e.g., average
grain size, volume fractions of ferrite and pearlite.

The final yield stress curve (computed then with the nano/micro RVEs and the
software HOMAT) depends then on the specific choice of the parameters for ferrite.
It is further assumed that the plastic behavior of ferrite in pearlite at the nano
level and in the polycrystalline arrangement at the micro level differ, such that
corresponding parameters pF,nano and pF,micro (in total six parameters) are optimized
separately. An optimization loop is setup in Python with the LIPO package for
derivate and parameter-free global optimization built upon the C++ dlib package.
In this loop, for every new set of values for the optimization variables pF,nano and
pF,micro, the effective elastoplastic behavior of the nano RVE is computed and passed
on as the pearlite phase to the micro RVE. Then, the effective plastic behavior
of the micro RVE is computed and the resulting yield behavior is compared to
experimental data. The loop continues improving the parameters until a maximum
number of iterations is reached. The final optimized yielding behavior at the micro
level can then be passed on for macroscopic simulations.

9.8 Summary

This chapter illustrated several approaches to model materials’ response along
a wide range of manufacturing processes. In general, the common objective is
a predictive and quantitative description of the process-microstructure-property
interactions on different time and length scales. However, the concrete questions,
target values, boundary conditions, and approaches must be defined specifically
for the considered application. The presented ICME-approaches provide valuable
predictions of the microstructure and accordingly the component properties by
means of sophisticated physical and empirical models, i.e., digital twins, as in
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the simulations of the sintering, heat treatment, and grinding. Data-driven and
fast approaches, i.e., digital shadows, as in fine blanking, open-die forging and
machining can be integrated into the process control and act as in-situ digital
sensors that provide essential information about hard to acquire parameters. Finally,
knowledge-based approaches, e.g., case-based reasoning, can link different sectors
of expertise together and provide the infrastructure to integrate the material-experts’
knowledge along the entire development, production, and operation cycles.

The vision of the future work is to provide robust digital tool boxes to be
integrated already in the early phases of the planning and designing toward an
agile product development and production. To facilitate the use of the future tool
box, standard data formats should be defined for all input and output data of
the models. Furthermore, codes and models should be parametrized and proper
simulation platforms, e.g., AixVipMap, should be adopted to automatically run
multi-step simulations and produce large data. With the help of capable database
and ontology solutions, the simulation data and the knowledge gained would be
collected to form a data lake. On this basis, AI methods become applicable to deepen
the understanding of complex physical interactions between process, material, and
components performance and give suggestions for holistic optimization of the
production.
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Abstract

In industrial production, customers’ requirements are rising regarding various
aspects. Products have to be produced more economical, more flexible, faster, and
with much higher quality requirements. Furthermore, especially for traditional
mass production processes, shorter product cycles increase the demand in
rapid production and process development. The inherent increased product and
production complexity raises additional challenges not only in development
but also in setup and operation. Lastly, upcoming requirements for sustainable
production have to be incorporated. These conflicting aspects lead to increasing
complexity for production development as well as production setup at each
individual production step as well as along the complete value chain. To master
these challenges, digitalization and data-driven models are fundamental tools,
since these allow for the automation of many basic tasks as well as processing
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of large data sets to achieve process understanding and derive appropriate
measures. This chapter illustrates requirements for digital systems to be created
and benefits derived by different novel systems. Furthermore, because modern
systems have to incorporate not only single processes but complex process
chains, various production processes and assembly processes are taken into
account. In the following chaps. 13, “Decision Support for the Optimization
of Continuous Processes Using Digital Shadows,” 14, “Modular Control and
Services to Operate Lineless Mobile Assembly Systems,” 12, “Improving Man-
ufacturing Efficiency for Discontinuous Processes by Methodological Cross-
Domain Knowledge Transfer,” and 11, “Model-Based Controlling Approaches
for Manufacturing Processes,” digitalization and Industry 4.0 approaches are
presented, which incorporate data-driven models for a wide variety of production
processes and for different time scales. Many techniques are illustrated to
generate benefits on various levels due to the use of data-driven, model-based
systems, which are incorporated into a digital infrastructure.

Keywords

Digital shadows · Digitalization · Smart manufacturing · Complex value
chain · Automated production

10.1 Introduction

Production technology has come a long way since the early beginning of industrial
manufacturing. Starting with the First Industrial Revolution, which incorporated
machine based production using steam-powered or water-powered machines, indus-
trial manufacturing has steadily improved regarding efficiency and speed. In the
Second Industrial Revolution, logistic infrastructures and electricity like railroad
tracks and assembly belt production lines have boosted industrial production and
extended it toward a broader field of view. The Third Industrial Revolution,
introducing electronic systems, microcontroller, and embedded systems, further
increased the efficiency and set the foundation for the Fourth Industrial Revolution,
which is still ongoing as about 64% of the companies are still at the beginning of the
digital transformation (Xu et al. 2018; PwC 2022). This Fourth Industrial Revolution
aims at establishing a flexible production, which is capable of adapting production
toward changing requirements regarding product complexity, quality, and speed
while increasing customer satisfaction via production on demand or individualized
products. Furthermore, it aims for optimized processing regarding quality and costs
as well as sustainability (Ghobakhloo 2020). To achieve this, the use of data along
the value chain is the main enabler (PwC 2022).

In general, this development is driven by certain factors like increasing complex-
ity (information intensity), increasing demand for customizability and functionality,
flexibility, efficiency benefits through standardization and the substitution of com-
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petencies, resilience, as well as the improved information exchange with partners
and customers. This is underlined by more than 1 Bio. AC investments into digital
manufacturing sites yearly, which makes an annual investment of 1.8% of the net
revenue (Andal-Ancion et al. 2003; Christensen 2016; PwC 2022).

In the following, we discuss which challenges arise for production technology
due to consumer and customer requirements and which challenges have to be met
to achieve a production according to Industry 4.0. Furthermore, we discuss, how
these can be overcome by novel approaches in the field of production processes and
assembly processes, leading to actual benefit for production.

10.2 Challenges for Industrial Manufacturing

In industrial production, customers’ requirements are rising regarding various
aspects. Products have to be produced more economical, more flexible, with more
variants, faster, and with much higher-quality requirements. Furthermore, especially
for traditional mass production processes, shorter product cycles increase the
demand in rapid production and process development as well as faster product
changes in production.

These diverse requirements result in higher complexity regarding all areas of
production including product design, process development and planning, as well
as mastering the production processes itself. Furthermore, each area including
all needed assets has to be coordinated and fine-tuned to the current change
requirements. To be able to achieve this, the right data at the right point in the
process chain has to be acquired in the first place. Due to the complexity involved in
production, this can be an extensive task, since, many domains are included in these
processes ranging from sales and order management, process development, process
planning to manufacturing. Additionally, each domain involves a large variety
of interfaces, protocols, and formats as well as different semantic information
(Fig. 10.1).

Especially on the production shop floor, data interfaces of machinery vary
depending on the individual configuration and the age of production machines.
Therefore, connectivity ranges from no usable data interface to file-based storage
or export to locally accessible interfaces like RS232/485 or bus-driven systems to
modern Ethernet-based interfaces like OPCUA. Additionally, data introduced by
the human via human-machine interfaces (HMI) has to be considered. Depending
on the task, for which the data is intended to be used, requirements are created
regarding acquisition speed as well. For real-time applications, for example, not
all data acquisition methods are capable of providing data at the necessary sampling
rates. If a direct feedback has to be given to achieve a defined task, the used interface
has to be capable of accepting input data and perform actions accordingly, which is
again not provided by any interface (Rostan 2014; Hopmann and Schmitz 2021;
Cañas et al. 2021; OPC Foundation 2022).

Lastly, interfaces also do not specify the semantic information, which is provided,
such that domain knowledge and experience is necessary to define which informa-
tion has to be used and how it will be used. This leads to lots of manual overhead



214 C. Hopmann et al.

Fig. 10.1 Schematic flow of data for a digital shadow of a single production process

by individual configuration and establishment of data pipelines, which makes data
engineering a non-negligible expense. Additionally, interdisciplinary skillsets are
necessary to be able to perform these integration tasks.

If the capability of data acquisition is established, the data has to be processed,
stored, and/or provided to other systems. Data processing itself can be performed
in many different ways using varying hardware and software. The appropriate
technology again has to be chosen based on the requirements of the task, which
has to be performed. Rapid development in Internet of Things (IoT) technologies on
the one hand provide a variety of tools; on the other hand, the landscape of tools and
technologies for data integration and digitalization got complex and diverse (Cañas
et al. 2021).

For real-time applications, for example, data has often processed in close
proximity to the process, since the latency introduced by the network due to protocol
overhead or wire length cannot be accepted. For such applications, edge devices are
used, which reduce latency and locate the processing power close to the data source.
For other applications like inline optimizations, higher latencies are acceptable, and
processing can therefore be performed on a more economical server infrastructure
(Pennekamp et al. 2019; Cao et al. 2020; Hopmann and Schmitz 2021; N.N. 2022).
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Processing also relies on algorithms and models analyzing the data and deriving
appropriate outcomes. Depending on the complexity and computational effort, the
software and hardware have to be chosen to meet these requirements regarding
execution times.

Finally, the data has to be stored and/or provided to other systems. Therefore, the
right concepts for databases, data warehouses, or data lakes have to be considered,
which fulfill requirements regarding storage capacity and database interaction speed
(Nambiar and Mundra 2022).

To actually generate benefits for production, the data has to be appropriately
processed. This includes an aggregation of all necessary data, which itself often
relies on specific domain knowledge to establish an acquisition of the right data
sources and process-specific settings or parameters. These sources can be machine
interfaces, sensors, human-machine interfaces, dedicated databases, or further
sources. The data has also to be aggregated and interpreted to be used as digital
representation (digital shadow) of a specific use case. Furthermore, task-specific
models have to be created based on this data to represent the targeted use case
and identify appropriate measures. In process technology, the range of modeling
techniques is huge, ranging from physical motivated models to data-driven models,
and the most suitable one has to be identified to achieve the highest benefit (Cañas
et al. 2021).

Another requirement is an increasingly flexible production, which is capable of
changing manufactured products more rapidly while reducing overhead for each
product change. This can on the one hand be achieved due to data availability
and suitable models to optimize the available machinery. On the other hand,
the processes and machines have to be developed toward these requirements to
overcome the limitations of the physical capabilities. Therefore, improvement of
the production processes or novel manufacturing approaches have to be developed.

10.3 Potential and Benefits

Production processes get increasingly difficult to handle and operate at the optimal
processing conditions due to the complexity in process control and machine
operation as well as influencing factors like varying material properties and ambient
condition. Furthermore, for overall process efficiency, not only a single process
has to be observed but also previous and following processing steps. In addition
to the complexity of the individual process itself, demanding a high skillset to be
developed and operated, the processes interact with other such processes as well as
with the processed material and the environmental conditions.

One important potential of digitalization for production is to achieve an improved
transparency of production processes, enabling various benefits on the management
and operation level. From the management point of view, transparency assists
the operators to supervise more production processes simultaneously and be able
to rapidly react to changing states like drifts in process quality or unforeseen
production changes. This can be achieved with a wide variety of techniques,
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starting with raw data illustration, extended by computation of KPIs to increase
information density to complex techniques like soft sensors, incorporation of
simulation data, or improved quality measurements. In the following chapters, use
cases for these methods are illustrated at the processes of milling, extrusion, and
condition monitoring of ball screws.

The gained transparency also enables operators to get a more sophisticated
insight into the process itself, and these are assisted to understand the behavior of
a process more deeply. Therefore, the operator is able to set up and operate the
process more efficiently and generate improved manufacturing speed or product
quality. Data about the state and condition of the process has to be processed and
made available to the operator in a condensed and understandable manner.

If this potential is reached, further methods for automatic decision development
can provide the operator with guidance in the form of an assistance system. In this
case, the operator does not necessarily have to understand the process in detail,
but is guided by a model-driven system. A model-driven system analyzes the
process and develops a suitable measure. To be able to do so, novel systems are
developed based on physical and data-driven models in combination with machine
learning approaches, which are capable of modeling complex production processes
and lead to higher process efficiency or higher quality. In the following chapters,
such methods are illustrated for the use cases of welding, laser drilling and cutting,
injection molding, fine blanking, or coating.

Furthermore, systems are developed, which automatically plan or interact with
the process to achieve the highest efficiency or speed. The use case of assembly
illustrates how a combination of novel information infrastructure coupled with stan-
dardized formats and model-driven decision-making systems enables an efficient,
fast, and flexible assembly process while incorporating various boundary conditions.

The overall benefits can be stated as follows:

• Higher transparency in production
• Increased information availability
• Improved process understanding
• Higher process efficiency
• Higher process and product quality
• Increased flexibility
• More resilient processes

10.4 The Approach of the “Internet of Production”

As illustrated in Fig. 10.2, within the “Internet of Production,” a holistic approach
is pursued to enable production technologies for upcoming requirements.

At the process level, many different process technologies are investigated to
be able to address different process requirements and applications. These can
be structured in applications requiring real-time or fast data acquisition and
processing in combination with reduced models to achieve real-time computation,
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Fig. 10.2 Holistic approach for production technology

discontinuous and continuous processes to cover the development for online and
inline digitalization methods, as well as ontologies and semantics for both types
of processes and assembly processes, which inherit a close connection to prior
processing step and introduce many boundary conditions and a great variety of
submodels to be accessed.

For each process technology, data acquisition is performed with industry domain-
specific interfaces and formats as well as additional sensors. For this area of
data engineering, knowledge with respect to industrial data interfaces as well as
intense domain knowledge about the process and the necessary data sources is
required. To efficiently master data engineering and data processing, an extremely
interdisciplinary and wide skillset is necessary (Pinzone et al. 2017). Some domains,
which are considered in the following chapters, are milling, rolling, extrusion,
injection molding, high-pressure die casting, open die forging, fine blanking,
welding, coating, laser cutting, and industrial assembly using various approaches.

Furthermore, different information infrastructure concepts are used. For time-
critical processing, edge computing is used to enable fast signal processing for
closed-loop milling control to achieve higher process and part quality (Schwenzer
2022). For complex tasks with many data sources, sub pub infrastructures are used
to organize information, make information available, and provide it to a cloud-based
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modular infrastructure (Buckhorst et al. 2021). Furthermore, database-oriented
approaches are investigated like continuous data storage for continuous processes
like rolling or extrusion.

As stated earlier, data processing is performed according to the specific task and
specific domain using suitable models. For production technology, one important
branch of models is created using analytical approaches like physically motivated
models or models based on finite element simulations (Hopmann et al. 2019).

To bridge the gap between individual and domain-specific knowledge, a common
definition of semantic dependencies is developed based on the Web Ontology
Language OWL. Ontologies were developed for a standardized and formalized
description of knowledge and can therefore be used to formalize knowledge and
especially relationships between all occurring assets in production, may it be the
used material, the manufacturing process, the order along the value chain, or the
actual product. OWL therefore uses standardized formats in XML, RDF, or RDF-S
format (World Wide Web Consortium (W3C) 2003). Using a standardized syntax
and a standardized definition allows applications to electronically interpret the
information and automate currently manually performed tasks like data aggregation
or data interpretation. Furthermore, a common standard for data interchange in
terms of formats for data exchange is developed. Along with the research in the
field of “Infrastructure” of the “IoP,” which focuses on Asset Administration Shells
(ASS), a methodology to automatically connect data sources using a given ontology
and available ASS is developed. Asset Administration Shells define a standardized
way for defining and also establishing connectivity to an Industry 4.0 asset. It can
be used either as a passive ASS, providing necessary information for an asset, or
actively as a standardized communication interface with the interface (Tantik and
Anderl 2017; Sapel et al. 2022).

Furthermore, data exchange has also to be shared outside of trusted boundaries
like the shop floor or company boundaries. Therefore, suitable data exchange
interfaces have to be used in combination with suitable security measures, to provide
information only to authorized systems in a necessary granularity. Additionally,
approaches have to be developed, which preserve the intellectual property of the
instance providing data. This can, for example, be achieved using anonymization
techniques or dedicated systems, which process the given information and only
provide the results or calculated measures (Pennekamp et al. 2019, 2020).

By this global connectivity, benefits can be derived throughout whole value
chains, and the increasingly valuable good data can be most efficiently used, creating
a World Wide Lab.

10.5 Conclusion

The increasing requirements on production processes, resulting from increasing
demands of customers and consumers, result in the need of increasingly complex
processes and the need for using the maximum potential of each processing process.
Both aspects result in the need of handling rapidly changing, multidimensional,
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and complex problems. To master these problems, adaptive smart systems are
necessary, which process all given information and derive optimized measures.
Especially data-driven and model-based systems are capable of achieving this,
especially in the field of processing technology, since these are capable of working
on small sample sizes. Furthermore, such smart systems have to be deployed in
an economic manner to avoid cost overhead when introducing new products or
changing production. Modern information technology along with standardization
has the potential for automating and fastening digitalization of existing and new
production assets. Domain knowledge along with data-driven modeling furthermore
enables the creation of digital representations of the processes (digital shadows)
to evaluate and optimize those. Nevertheless, one of the greatest challenges is to
master the high degree of interdisciplinarity necessary and bring together all needed
skillsets for a successful implementation.
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Abstract

The main objectives in production technology are quality assurance, cost reduc-
tion, and guaranteed process safety and stability. Digital shadows enable a
more comprehensive understanding and monitoring of processes on shop floor
level. Thus, process information becomes available between decision levels, and
the aforementioned criteria regarding quality, cost, or safety can be included
in control decisions for production processes. The contextual data for digital
shadows typically arises from heterogeneous sources. At shop floor level, the
proximity to the process requires usage of available data as well as domain
knowledge. Data sources need to be selected, synchronized, and processed.
Especially high-frequency data requires algorithms for intelligent distribution
and efficient filtering of the main information using real-time devices and
in-network computing. Real-time data is enriched by simulations, metadata
from product planning, and information across the whole process chain. Well-
established analytical and empirical models serve as the base for new hybrid,
gray box approaches. These models are then applied to optimize production
process control by maximizing the productivity under given quality and safety
constraints. To store and reuse the developed models, ontologies are developed
and a data lake infrastructure is utilized and constantly enlarged laying the basis
for a World Wide Lab (WWL). Finally, closing the control loop requires efficient
quality assessment, immediately after the process and directly on the machine.
This chapter addresses works in a connected job shop to acquire data, identify
and optimize models, and automate systems and their deployment in the Internet
of Production (IoP).
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11.1 Introduction

This chapter focuses on low-level machine and sensor data from manufacturing
processes. Data within the Internet of Production (IoP) can be sourced at different
layers, ranging from a single sensor over a production cell to the shop floor and,
finally, to the World Wide Lab (WWL) where information is exchanged globally
across company borders (Pennekamp et al., 2019).

Figure 11.1 visualizes the different process layers of production technology
according to three process durations (left), which range from milliseconds to days.
The involved parties (exemplary) and their influence (right hand side) further differ
with each process layer.

The workpiece as the core layer is influenced by events occurring within
milliseconds, while the assembly is handled in the context of further production
steps and ranges in minutes. The final product may ultimately involve the supply
chain, which may range over days. Therefore, each process layer requires specific
methods of data acquisition and processing to be able to control their specific quality
requirements. The connection of the different layers is a major challenge within
the IoP.

In this chapter, we initially focus on low-level data sources on the shop floor.
Here, raw data from production processes is recorded by sensors directly at the
production devices. Thus, any resulting manipulations can have an immediate
impact on the process. More specifically, the proximity to the production processes
requires a tight connection of data-driven methods and expert knowledge of the
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Fig. 11.1 The process layers of production technology involve different time scales, ranging
from close control loops to information flows during usage, and various parties (black: subject
of this chapter, gray: upcoming research) (Mann et al., 2020). (With kind permission of Springer
Singapore)
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production technologies to advance the state of production. By using combinations
of technological information and data-driven methods in so-called gray box models,
it is possible to utilize raw data to control the processes directly and provide
useful information for high-level domains, such as process planning (cf. [Resilient
Future Assembly Systems Operation in the Context of the Internet of Production]),
production management (cf. Part V, “Production Management”), or production
development (cf. Part VI, “Agile Development”). A digital shadow (Brauner et al.,
2022) holds the resulting information and models and is the foundation for different
approaches, thus enabling a better understanding of processes on shop floor level
(cf. Jarke et al. 2018). In line with the vision of the IoP with its WWL, models are
expected to be transferable to and (re)usable by other stakeholders and production
sites with their own machines, shop floors, and domain experts. Thus, the continual
and iterative exchange of process information allows for even more advances. We
summarize this vision and our methodological approach in Fig. 11.2 following an
abstract closed-loop control scheme.

The system that is to be controlled is represented by the machine and the process
on the shop floor (upper right, green area). Information is gathered by different
sources, combined via sensor fusion, and pre-processed before it is contextualized
using expert knowledge (lower center-right, blue area). The enriched data is used
to identify, build, and optimize gray box models (center, yellow area), which
themselves are used for decision support and autonomous control systems of
the machine and processes (upper center, red area). Models and data are shared
within the IoP to connect different shop floors (left, gray area). To enable this
complex exchange of information, common ontologies across company and even
technological borders are necessary and need to be established. Existing ontologies
(e.g., process specification language (PSL) (Grüninger, 2004)) do not suffice the
necessary requirements in terms of cooperation within the IOP. This especially holds
for low-level models and data, which have strong adaption to specific manufacturing
technologies.
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Shop FloorAutonomous Systems & 
Decision Support

Model Identification &
Optimization Data Aggregation & Sensors
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Fig. 11.2 Abstract scheme of a model-based control system for manufacturing processes
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This chapter addresses different aspects within the scope of connected and
controlled processes following the structure in Fig. 11.2 and is organized as follows:
First, Sect. 11.2 provides a general state of the art covering methodical fundamen-
tals. Subsequently, Sect. 11.3 covers approaches and methods in the subsystems’
data aggregation and sensors (Sect. 11.3.1), model identification and optimization
(Sect. 11.3.2), autonomous systems and decision support (Sect. 11.3.3), and the
model usage in connected job shops (Sect. 11.3.4). As technological aspects remain
essential, the developed methods are demonstrated on several domain-specific use
cases in the manufacturing fields of milling and welding. A conclusion of the chapter
and discussion of future challenges is in Sect. 11.4.

11.2 State of the Art

The overarching scheme (cf. Fig. 11.2) of the applied approaches spans a wide field
of disciplines. Applying the idea of the IoP on these disciplines requires specific
fundamentals, which can roughly be grouped into three topics: data acquisition
and semantics, model optimization, and model-based control and decision. Data
acquisition and data semantics or ontologies both concern the flow of data from
its source to the model identification and optimization at the center of Fig. 11.2.
While the former describes dependencies and provides transferable knowledge from
previous processes within the WWL, the latter helps optimizing and tailoring to
the specific processes by contextualizing this transferable knowledge, e.g., using
existing domain knowledge or hybrid, gray box modeling approaches. Finally,
the optimized models are utilized in advanced control approaches to maximize
the productivity while accounting for constraints regarding quality and safety.
Eventually, the tailored models are fed back into the collective database. In the
following, a brief overview of the fundamentals regarding these topics is given to
enable further understanding of the applied approaches and their interconnection.

Data acquisition in connected job shops Acquisition of data across the shop floor
remains an obstacle along industrial production systems. The high costs of sensors,
acquisition systems, and infrastructure as well as the costs for connection and
configuration of multiple assets discourage investments. The machines themselves,
however, come with a significant amount of data sources. Such data was initially
only used for control purposes, e.g., positioning the machine axes as precisely and
as fast as possible. However, to monitor the machine tool, or even establish a digital
shadow of the manufacturing process, it is essential to systematically collect and
store said data (Siemens, 2022).

Internal machine data as well as further data from external sources can be
combined in a digital shadow of the process using data fusion techniques. Data
fusion is the combination of different sensors to a single information, enhancing
signal quality and reducing uncertainty. According to Hall and Llinas (1997),
data fusion can be done on three different levels: (i) raw data level, (ii) feature
or state vector level, and (iii) decision level. The main challenge when fusing
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these different signals is maintaining the high-quality information within the signal
without deteriorating the information by overly relying on poor signals (Hall and
Llinas, 1997).

Model-based controllers Model Predictive Control (MPC) is an intuitive control
algorithm which explicitly considers process knowledge (by an according model)
to optimize the future behavior of the controlled system under given objectives
and constraints (cf. Richalet 1993). Further compared to simple control methods,
such as PI controllers, MPC has the ability to anticipate future changes in the
reference trajectory and handle large time delays and high-order dynamics. While
most real processes are not linear, they can often be approximated by linear models
over a small operating range. Linear MPC approaches are used in the majority
of applications. When linear models are not sufficiently accurate to represent the
real process nonlinearities, several approaches can be used, such as linearization
techniques (cf. Rawlings 2000). Due to its algorithmic complexity and demand of
process knowledge, MPC is still not state of the art for the control of production
processes. However, if process knowledge is available, research results show
the effectiveness of MPC for quality- and safety-oriented control of production
processes (cf. Stemmler et al. 2019; Wu et al. 2019).

Data-driven modeling approaches Existing MPC approaches typically require
the availability of a sufficiently accurate model to achieve desired closed-loop
stability and performance guarantees. As there are often only uncertain system
models available, MPC approaches allowing for an online adaptation or learning of
the underlying model are of crucial importance. Fueled by the widespread success of
machine learning, the question of how to beneficially employ learning techniques in
the context of control has received an increasing amount of attention in recent years.
Gaussian processes have been used to define and adapt online a continuous stirred-
tank reactor model for MPC by Maiworm et al. (2021) and for autonomous racing
by Kabzan et al. (2019). Similarly, neural networks are used to learn models for
MPC in numerous applications, such as distillation columns (Vaupel et al., 2019) or
laser beam welding (Bollig et al., 2003). Finally, Support Vector Machines (SVM)
have, e.g., been used for predictive path tracking of autonomous vessels (Liu et al.,
2021) and the control of a neutralization reactor in chemical plants (Lawrynczuk,
2016).

The maximum possible control performance of MPC is limited by the accuracy
of the underlying process models. Identifying these models, especially for highly
nonlinear systems, is a time-consuming and complex endeavor as most real systems
are too complex to be fully described by physical models (Schoukens and Ljung,
2019). However, it is possible to derive an approximate system model by first-order
principles with sufficient accuracy. Such models are known as white-box models.

Since most industrial processes are closely monitored, measurement data
describing the processes is often available. This data can be exploited to create
data-driven input/output models, so-called black-box models. While they have
the potential of being universal function approximators, they often lack physical
interpretability as they only map relations between system inputs and outputs.
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Gray box models intend to combine the advantages of both models: data-driven
methods estimate/predict parameters or system dynamics and, thus, augment white-
box models based on process knowledge.

The aforementioned SVM represent a modeling technique with gray box ability.
They come with great theoretical guarantees, such as globally optimal models
without the risk of sub-optimal learning and favorable computational complexity
for large feature spaces. The latter is often required for complex physical systems
with multifaceted dependencies. SVM further map the given features into a larger
dimensional space to fully explore the complex dependencies between the features.
Thus, SVM are proficient at discovering unknown dependencies for dynamic
modeling (Suykens, 2009).

At the same time, an additional computational expense for the larger dimensional
space can be avoided by so-called kernel functions. Kernel functions preclude an
explicit mapping of the features and instead operate directly on the target space
(henceforth referred to as kernel space). Furthermore, specifications for the kernel
function and kernel space allow for gray box modeling by pairing SVM with exist-
ing domain knowledge (Ay et al., 2019b). Hammerstein and Wiener’s approaches
further allow embedding of existing knowledge (Falck et al., 2009). Hence, in com-
bination with fast solution methods (e.g., sequential minimal optimization (Ay et al.,
2021) or least-squaresSVM (Liu et al., 2021)), SVM are highly suitable for online
identification and MPC of systems with fast changing dynamic behavior.

Integrated, data-driven quality control Quality can be described in terms of
workpiece quality (nonvolatile workpiece properties, e.g., workpiece surface quality
or weld seam geometry) and process quality (volatile process properties, e.g., sus-
tainability and economic efficiency) under appropriate process boundary conditions
(e.g., materials and auxiliaries). Due to their physical mechanisms and interdepen-
dencies, production processes cannot be adjusted arbitrarily without violating basic
process and machine limits such as stability boundaries. The moderation of the
application requirements with the available process space thus describes the core
challenge of process and workpiece quality. Model-based quality control approaches
must therefore not only represent quality on the basis of available sensor data
and digital shadows but also offer a control strategy that takes into account basic
stability criteria. The first key component is the digital shadow for describing the
workpiece and process quality on the basis of sensor data. Primary sensor data is
characterized by high availability and is directly available at the production system.
Secondary process data requires dedicated sensors, but directly describes the quality
characteristics. The modeling effort of the digital shadow is, therefore, inversely
proportional depending on the significance of the data available, e.g., the availability
of sensor data instead of process data. The control strategy ultimately contains the
methodical competence to control the process according to corresponding target
conflicts on the basis of decisive and transient features. The production system
finally receives the ability not only to control quality but also to provide usable
quality data for the production network (Reisgen et al., 2019, 2020c).



228 A. K. Rüppel et al.

Semantic Web and ontologies The challenge of creating machine-understandable
data is addressed by techniques of the Semantic Web (Barbau et al., 2012). In
essence, it enables the design of universally valid ontologies, a formal description
how annotation data is structured, as well as an automatic annotation of data. While
these technologies have long been a subject of research, there is still an ongoing
discussion on their usability and appropriate use cases (Hogan, 2020). The common
opinion is that these technologies have a huge potential, especially in domains like
the IoT (ISO/IEC, 2018) or the IoP.

In the Semantic Web, formal ontology description and data storage is based on
the Resource Description Framework (RDF), a data model standard developed by
the World Wide Web Consortium (W3C) (Cyganiak et al., 2014). The RDF data
model is represented as a directed graph, where each relation is a triple consisting
of two nodes (subject, object) and an edge (predicate) linking them together. Every
resource (subject, predicate, object) in RDF is formed analogously to the convention
of URLs to ensure a worldwide unique identifier. The Ontology Web Language
(OWL) (McGuinness and Van Harmelen, 2004) was developed on the basis of RDF
and is used in the Semantic Web to describe ontologies.

The aforementioned fundamentals lay a methodological base for the further
described approaches. The further described applications rely on these methods,
though providing domain-specific solutions within different fields in production
technology.

11.3 Domain Application

This section covers the three main subsystems of the control (cf. Fig. 11.2): data
aggregation and sensors, model identification and optimization, and autonomous
systems and decision support. The shop floor, consisting of machines and processes,
marks the system to be controlled and is thus not covered in a single subsection. The
covered approaches are domain specific and aim at explaining different solutions
following the common idea of the IoP. These approaches mostly cover specific
technological solutions at shop floor level (Sect. 11.3.4), but explicitly target model
and data usage across shop floors and the IoP.

11.3.1 Data Aggregation and Sensors

While installation of new sensor systems is expensive, the machine tool itself has
already a big variety of sensors integrated which can be sampled. Furthermore,
connecting and utilizing multiple data sources arise different new challenges,
namely, handling of redundant data or data with different frequencies. Another
project targets the quality control after the manufacturing process, aiming for quality
measurement of the workpiece directly on the machine.
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Data acquisition and signal fusion When aggregating data from the shop floor,
different sources are used to sample data from machines and processes. While
machine tools have integrated sensors that can be used as data sources, commercial
CNC controls have a large variety of interfaces, making it difficult to acquire data
from different machines.

For the continuous acquisition of high-frequency data from machine tools, a
middleware for commercial CNC controls was developed (Brecher et al., 2018),
e.g., Sinumerik 840D sl and Mitsubishi M700/800. Machine internal data, including
drive data, such as motor current, actual position, and spindle speed, as well
as process- and control-related information, i.e., the actual tool number, the line
number of the NC program, zero point offset, etc., is continuously captured in
position control cycle (500–1000Hz). Furthermore, the trace software is extendable
to synchronously sample signals from external sensors, for example, thermistors
and piezoelectric sensors. For lower-frequency dimensional data, data acquisition
using standardized Open Platform Communications Unified Architecture (OPCUA)
interfaces to machine data can be sufficient. OPC UA interfaces exist for a multitude
of machine controllers. Machine data are read from the machine control system
which is realized here by using an edge computer (Brecher et al., 2018) which
transfers the information into a downstream data infrastructure consisting of the
publisher/subscriber protocol Message Queuing Telemetry Transport (MQTT) as
illustrated by Sanders et al. (2021). Sustainable data collection and storage are
essential for future reuse and analyses (Bodenbenner et al., 2021a). Hence, machine
information is annotated with metadata using a defined data syntax that can be
automatically structured and stored in a database (Bodenbenner et al., 2021b), laying
the groundwork for sustainable data storage according to FAIR data principles
(cf. Sect. 11.3.4). Sample rates of machine internal data are usually limited to the
abovementioned 1000Hz.

However, some applications require data with higher sampling rates. During
rough machining in milling, e.g., the process forces determine productivity and
product quality (Liang et al., 2004). Typical approaches for monitoring process
forces still mostly rely on piezoelectric dynamometers. These are costly and reduce
the stiffness of the tool-machine system, making them nonoptimal candidates for
usage in industrial environments. As an alternative, motor current of the machine
tool’s feed drives can be used as a soft sensor for indirect force measurements as
it is directly proportional to the motor torque (Miura and Bergs, 2019). However,
current signals of feed drives can have low sample rates, be noisy, and be of varying
quality and, thus, require sensor fusion of different signal sources to obtain a more
stable signal. At the core of the sensor fusion, the spindle provides a high-quality
signal as it has a constantly high speed. External sensors with sample rates of 50 kHz
are integrated in the motor power circuit and sampled on different real-time devices
to include high process dynamics.

In practice, the fusion can be realized using a Kalman filter which implements
a system model and continuously corrects this model based on signal quality,
while it is itself optimized through experiments (Schwenzer, 2022). Following the
differentiation of signal fusion according to Hall and Llinas (1997), this can be
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considered on the second level, as the information needs to be transformed to a
common coordinate system as well as put into relation using force models. The
resulting high-quality signal is then used to identify models of the process at run-
time. To use this in closed-loop systems (cf. Sect. 11.3.3), one main challenge is that
the sensor data needs to be provided with low latencies to allow for fast responses.
Process-near sensor processing is best suited for this purpose and, additionally,
Time-Sensitive Networking (TSN) can help to ensure the low latencies. However,
additional challenges arise as soon as the process control is moved to remote
locations. Here, novel in-network computing approaches might provide a suitable
middle ground as reasonably expressive computations (Kunze et al., 2021) as well as
simple control functionality (Rüth et al., 2018) are possible on networking devices.

On-machine measurements Common quality management measures for inspect-
ing specification and tolerance compliance often involve transporting workpieces
into climate-controlled measurement rooms, acclimatization periods, and dimen-
sional measurements on Coordinate Measuring Machines (CMMs). A number of
standards exist to enable traceable measurements that are, e.g., required for safety-
critical applications and part certification. ISO standards 10360 and 15530 define
ways to analyze the measurement uncertainty of CMM measurements accounting
for a multitude of influences.

With on-machine measurements, the workpiece’s geometry is measured with
the machine tool’s probing system itself after material removal and in the original
clamping situation. Advantages are immediate feedback on dimensional accuracy
allowing for direct rework while significantly reducing the number of necessary
production steps compared to CMMmeasurements in a measurement room (Sanders
et al., 2021). To create reliable workpiece measurements on the same machine, the
workpiece was machined on geometric and thermoelastic machine and workpiece
errors need to be accounted for. Thus, aforementioned uncertainty analyses and
corresponding modeling approaches for error compensation of machine (Dahlem
et al., 2020) and workpiece deformation are required. Current work within ISO/TC
39/SC 2 aims at translating CMM-specific measurement definitions for machine
tools into an additional technical report part 13 for ISO 230.

To illustrate the relevance of the said topic, Emonts et al. (2022) performed an
experimental analysis of thermoelastic deformation of an example turbine housing.
They simulated machining heat influx by attaching heat pads to the workpiece,
increasing local workpiece temperature by 30K and average temperature by 15K.
Results showed a part diameter increase of approx. 500 .μm (nominal approx.
1400mm), e.g., twice the expected diameter change, assuming homogeneous tem-
perature distribution and linear thermal expansion with average part temperature.

11.3.2 Data-BasedModel Identification and Optimization

For controlling of production processes, the usage of different data sources alone
is not sufficient. Sensors are noisy and systems may change quickly. Online model
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identification and model optimization enable consideration of system changes and
extend the range of the validity of models. This subsection covers research in online
force model identification in milling as well as model optimization in the condition
monitoring of ball screw drives.

Online model identification Model-based control systems require online identi-
fication to account for changes within the systems, which can occur in both, the
machine and the process. Models need to be as simple as possible while remaining
as precise as necessary to suffice the usage within control systems. Milling is a
highly flexible process resulting in constantly changing engagement between tool
and workpiece and, as a result, nonlinearly changing process forces. The relation
between geometrical engagement of tool and workpiece and process forces is
modeled using the force model according to Kienzle (1952). The coefficients of
the Kienzle model are identified using engagement simulation data from the process
planning phase and the fused force signals from the motor currents (cf. Sect. 11.3.1).
As the Kienzle model is nonlinear and nonobservable, an ensemble Kalman filter is
used as a nonlinear observer to enable an instantaneous model identification in one
step (Schwenzer et al., 2020). This approach allows usage of a simple force model to
account for changes in the manufacturing process, instead of trying to apply a very
specific model for each process beforehand. The identified models can be shared in
the IoP and reused as a starting point for future identifications.

Regarding the machine tool, SVM are utilized to identify the unknown behavior
of the drives and enable model-based controllers like MPC to accurately forecast the
future engagement of the tool while maximizing its velocity (Ay et al., 2019a). The
data lake can thereby be deployed for an initial identification as it can be searched
for already existent data from a comparable process. Thus, no additional resources
(time and personnel) have to be expended for model identification experiments.
The data lake models are then tailored to the present process online by SVM and
sensor-acquired data, with aforementioned methodologies for gray box modeling
and efficient online identification (Ay et al., 2021).

The implicit data selection of SVM also has positive implications for data
processing and memory efficiency. SVM assess the importance of every data sample
for the resulting model to the extent that irrelevant data samples are excluded.
Therefore, the limited memory during the process can be utilized more efficiently
only for the relevant subset of data. Furthermore, when new sensor-acquired data
emerges and the memory runs at limit, SVM offer two measures to reach a decision
about which data to exclude from memory in favor of new data: (i) the model
weights of SVM for the aforementioned assessment of data relevance and (ii) the
evaluated kernel function of SVM. The latter determines the similarity between
data samples for correlation-based kernel functions. Thus, the most expendable data
samples can be determined as those with low relevance for the resulting model and
high similarity to already existing data samples.

However, the utilization of the initial models from of the data lake is not
sufficient in an application for forecasting within MPC. Heuristic methods are
thereby combined with robust optimization to automatically tune the controller and
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its soft sensors. Thus, no additional configuration of the controller is needed at shop
floor level. A suitable method for this purpose is Bayesian optimization as it can
consider model uncertainties due to later model adaptation/optimization (Stenger
et al., 2020).

Overall, the presented technologies enable a closed data cycle: Information from
the data lake can be used for the initial deployment of the model-based quality
control of the process. Subsequently, sensor-acquired data helps the model-based
control framework to self-optimize during the process. Finally, the newly optimized
models are fed back to the data lake, including relevant data and production context.

Model optimization for condition monitoring of ball screw drives The avail-
ability of production facilities and equipment plays a decisive role in the compet-
itiveness of manufacturing companies under the increasing pressure of globalized
markets, with a particular focus on reducing downtimes due to unplanned main-
tenance activities to ensure sustained high productivity (Bullinger et al., 2008;
Schapp, 2009). The inclusion of empirical knowledge regarding the service life
of machine components and tools cannot generally be included in maintenance
planning, as there is usually a large variance in the components to be manufactured.
The resulting conflict of goals between the reduction of non-value-creating activities
(through reactive maintenance) and the avoidance of unplanned downtimes (through
preventive maintenance) represents a major challenge (Wloka and Wildemann,
2013). The component load is directly linked to the feed axis forces of a machine
tool, which for their part correlate with the manufacturing productivity. The poor
accessibility of components within the machines leads to comparatively high costs
and long downtimes for maintenance work (Brecher et al., 2008). The analytical
prediction of the service life of ball screws is based on calculations according to
the standards (DIN/ISO, 2011), which are based on findings by Weibull as well
as Lundberg and Palmgren. The service life .L10 (number of revolutions) with an
occurrence probability of 90% is calculated on the basis of empirically determined
equations (Lundberg and Palmgren, 1949; Weibull, 1949):

L10 =
(

Cdyn

Fm

)3

· 106, (11.1)

where .Cdyn is the dynamic load rating and .Fm is the equivalent axial load.
Due to the non-consideration of decisive influencing factors, such as the stroke

length, manufacturing deviations of components, additional loads due to assembly
errors, and the unknown loads occurring during operation, the calculated and the
actual service life match only in 20% of the cases. Denkena attributes this, among
other reasons, to the fact that the service life calculations do not offer the possibility
of taking into account the usage history of a system (Denkena et al., 2009). This
highlights the need to develop new concepts for forecasting component failures.

Machine data of real processes, which are continuously available within the
framework of the IoP, contain the potential to increase the availability of plants
and to ideally plan necessary maintenance work by using the knowledge implicitly
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included in the data. The procedure for achieving this goal is divided into two
parts: (i) Determination of the current machine condition on the basis of historical
operating data, which can be extended with condition indicators obtained from
reference runs. (ii) Prediction of the usage-dependent development of the machine
condition based on the current condition and the assumption of a future usage
profile. Since in the literature the feed axes of machine tools, and, in particular,
the linear guides and ball screws, are identified as the cause of machine downtimes,
the IoP will pay particular attention to these components. From the recorded data of
the motor current, the effective feed force can be calculated in a first approximation
for a horizontally installed feed axis with a ball screw (Brecher et al., 2020):

I · kT ≈ TF,input side + 1

i
(TF,output side + h

2π
(FP + FF ))

+2πṅ · (JM + JG,input side + 1

i2
(JG,output side + JSp + JT )),

(11.2)

where .FP /.FF denotes the process/friction force, h the spindle pitch, n the motor
speed, i the gear ratio, I the (torque-forming) motor current, .JG the gearbox inertia
(input side, output side), .JSP ball screw inertia, .JM /.JT the motor/table inertias, .kT

the torque constant, and .TF the frictional torque (input side, output side).
The necessary compensation of inertial and frictional forces requires different

model depths depending on the design of the feed axis. These depend on the
different designs of gearboxes, linear guides, and other machine components or
disturbing influences (Brecher et al., 2020). In a first step, this procedure enables
service life calculation and prognosis on the basis of historical load data and service
life models according to the state of the art (Munzinger and Schopp, 2009; Huf,
2012).

Since known models are simplified in their complexity by assumptions made and
thus reduced in their prognosis quality, several model extensions were developed.
This allows load distributions within machine components to be calculated in a
process-parallel manner as a function of geometry, material, and load parameters,
so that a discrete-position service life calculation can be carried out. The model
extensions described by Brecher and Biernat allow the consideration of load
data determined in parallel with the process as well as further meta-information,
including spindle pitch errors and the tolerance class of machine components.

The influence of the tolerance class and the stroke length on the service life
can be specified as up to 30%. Relevant models are presented in detail in Brecher
et al. (2020, 2021a,b,c), among others. Figure 11.3 shows the example transfer of
traced data into a position- and force-resolved representation of fatigue-relevant
load cycles. The availability of data from production and test benches, which are
obtained in the context of the IoP, enables a cross-domain validation as well as
further development of the reduced models according to requirements under real
operating conditions. Finally, these models will be used to implement a prognostic
maintenance planning with significantly improved quality.
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Fig. 11.3 Transfer of a time series into matrix notation (Brecher et al., 2021b). (With kind
permission of wt Werkstatttechnik online)

11.3.3 Autonomous Systems and Decision Support

The main objectives to enhance production processes are improving productivity
and reducing tool wear while maintaining part quality and process safety. Data
acquisition and model identification are necessary steps to apply autonomous
systems in production processes. However, to close the control loop, data and
models also need to be utilized in autonomous systems or for humans as decision
support. The IoP delivers an infrastructure for sharing models and data, but the
application remains at shop floor level. This section addresses autonomous systems
and methods for decision support, using previously acquired data (cf. Sect. 11.3.1)
as well as identified and optimized modeling techniques (cf. Fig. 11.3.2). The foci,
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however, target objectives at manufacturing level, including workpiece quality, tool
wear, process safety, and improvement of productivity.

Workpiece quality monitor The workpiece quality is one of the most relevant
indicators for machining production in milling. Errors in machining processes can
be traced back to one of the following root causes: static, transient, and dynamic
geometric errors as well as tool errors (see Fig. 11.4): (i) Static geometric errors are
inherent to all mechanical platforms and are caused by imperfections in mechanical
structures, guide systems, encoder systems, and numerical uncertainties. After
calibration, modern machine tools allow for control-based compensation which
significantly reduces said errors. (ii) Tool errors are caused by tool manufacturing
imperfections and tool wear over time. While initial tool dimension errors can be
measured and compensated for, tool wear over time must be predicted based on
models and data. (iii) Transient thermal errors are caused by (inhomogeneous)
thermal states in machine tool and workpiece and their respective thermoelastic
deformation. While assumed homogeneous, linear thermal expansion can be com-
pensated for, complex thermal deformation prediction in real time is an area of active
research. Relevance of thermal errors increases with the ratio between required
tolerances and part dimension. Thus, their importance increases for precision
manufacturing and large workpieces. (iv) Dynamic errors in machine tool and
workpiece are caused by acceleration, forces, and control system inaccuracies
resulting from the machining process itself.

To analyze the workpiece dimensional accuracy, the machine’s internal probing
system is used to probe the workpiece (cf. Sect. 11.3.1). In order to estimate the
workpiece surface quality, such as straightness or flatness, high-frequent process
data and machine dynamic models are mandatory (Königs and Brecher, 2018).
In the so-called process-parallel material removal simulation, the relative position
between the workpiece and cutting tool is calculated from the encoder signal,
which is continuously sampled by a middleware described in Sect. 11.3.1. When the
tool intersects the workpiece, the corresponding volume will be removed. Random
errors caused by component wear, controller deviation, or material inhomogeneity
are already contained in the encoder data. To determine the actual position of
the tool center point, systematic errors, such as geometric-kinematic accuracy and
force-induced tool deformation, still need to be accounted for. While the former
can be compensated for by means of volumetric compensation based on machine
calibration data, the latter requires knowledge of axis and tool stiffness, and cutting
force. For this purpose, a real-time-enabled force model is developed by Fey et al.
(2018), which is driven by process-parallel trace data. Machine and workpiece
stiffness are either identified experimentally or simulated by finite element analysis.
Thus, the real cutter engagement location is determined.

After the manufacturing process, a virtual measurement is performed based on
the resulting virtual workpiece. Straightness, roundness, or surface flatness are
evaluated by extracting the points on the measurement path from the point cloud.
Negative trends regarding quality tolerances can thereby be detected immediately
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after the manufacturing process, which enables a quick and reliable quality feedback
loop.

Tool life monitor The prediction of the optimal timing for tool change is essential
for automated mass production, as this is directly associated with the machine-idle
time and workpiece quality. Without further monitoring sensors or signals, a very
conservative tool changing timing has to be selected due to the complexity of the
machining process and numerous random influences in manufacturing. Thus, the
main challenge of tool monitoring is providing a practical and reliable solution at
shop floor level.

Our proposed tool monitor approach only bases on internal machine data,
i.e., no additional sensors such as Charge-Coupled Device (CCD) cameras or
dynamometers are required (Xi et al., 2021). To achieve a robust estimation of
the tool condition, we adopt multiple built-in sensors and signals, creating a
multi-domain evaluation. More specifically, the estimated cutting force, the spindle
current, and the spindle speed are fused together to create a wear indicator. Using



11 Model-Based Controlling Approaches for Manufacturing Processes 237

the aforementioned trace solution in Sect. 11.3.1, it is possible to automatically
recognize which cutting tool is used and when it is used, identified by tool and NC
line numbers. Followed by a wear model, which outputs a wear indicator for each
cutting task, a tool wear progress chart can be generated. For roughing processes,
as long as the indicator does not exceed the threshold, the roughing tool is assumed
to be sufficient. However, for fine finishing processes, even medium tool wear could
already affect the final surface quality. Thus, a comprehensive consideration of the
wear indicator combined with the quality indicator is necessary. By utilizing the
virtual quality inspection introduced above, the maximum lifetime of the cutting
tools can be safely approached by means of a statistically controlled process.

Force control in milling The high flexibility of the milling process results in con-
stantly and abruptly changing engagement conditions between tool and workpiece.
By using mechanical force models, such as the Kienzle model, the relation between
tool-workpiece engagement and process force is modeled. Model parameterization
is usually based on literature values, which have been identified once for specific
combinations of tool and workpiece materials assuming constant tool conditions
and homogeneous material. Using online model identification approaches (cf.
Sect. 11.3.2) and a material removal simulation, changes in the system due to
tool wear or material inhomogeneity can be accounted for. However, the changing
engagement results in a highly dynamic and nonlinear behavior of the process forces
which is difficult to grasp for conventional fixed-law controllers. As a consequence,
these controllers typically fail at providing a stable force control. In contrast, more
sophisticated control approaches can adapt models at run-time and account for the
inherent nonlinear behavior of milling. To account for the changing process models
in milling, an MPC is used to control the process force as it can predict the short-
termed future and, therefore, account for abrupt system changes before they actually
occur (Schwenzer, 2022). At the same time, MPC is able to respect safety critical
constraints of the process while maximizing productivity.

Fume emission rate control Gas Metal Arc Welding (GMAW) is one of the most
frequently used industrial welding processes as it has broad applicability with a
wide variety of joining partners, high scalability, as well as low process and system
costs. Nevertheless, arc-welding processes involve considerable physiological risks.
In addition to process-related noise and strong IR and UV emissions, welding
fume emissions have currently come increasingly to the fore. In 2018, the United
Nations International Agency for Research on Cancer categorized welding fumes
as carcinogenic. Consequently, minimization of Fume Emission Rates (FER) as a
crucial physiological and sustainable process quality is a central task of modern
GMAW development.

In experimental investigations, it has been observed that a characteristic curve of
the welding fume emission is formed via the welding voltage (Quimby and Ulrich,
1999; Pires et al., 2010). In particular, correlations to the FER could be identified
in process features of electrical and optical time series by Reisgen et al. (2020a,b).
To generate a digital shadow of the FER, a dataset consisting of 273 welded process
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parameters with high-resolution time records (200 kHz) from welding voltage and
welding current was recorded. To label the time series with an according quality
feature, the FER was simultaneously measured according to DIN EN ISO 15011-1.
The process variables welding current and welding voltage can be recorded directly
at the process and are thus characterized by high availability, which, however,
also requires a high degree of interpretation and modeling with regard to the
FER. For this purpose, time series can first be converted into feature vectors. The
GMAW process is often characterized by a stochastic but also periodic material
transition (e.g., short circuiting transfer in Fig. 11.5). This periodicity can be used
to derive significant features over each process period. With each additional feature
vector and the associated period duration, a feature vector series is created. The
result is a feature vector time series with equidistant feature vectors for constant
period durations or an irregular sequence if the period durations are based on
stochastic process events, e.g., for short circuiting transfer in Fig. 11.5. On the
basis of these vector series, statistical features such as mean values or standard
deviations can be formed, which can make a reliable statement about the process
characteristics.

This significant feature vector was thus linked to each FER label and used
for supervised learning. The model generation process, in addition to achieving a
sufficiently accurate model, was also aiming to reveal correlations for the consec-
utive control strategy. The concept of data-driven quality control for welding will
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Fig. 11.6 FER minimization potential with data-based quality control at different process work-
ing points (A, B, and C)

contribute to the comprehensive acquisition of connected quality data. Nevertheless,
the quality model or digital shadowmust first rely on conventional process data often
collected in the laboratory. However, typical laboratory tests only allow for a limited
scope of experiments, which contrasts with the required datasets for deep learning.
Nevertheless, with the manageable dataset used here and the feature engineering
described, it was possible to show that high model accuracies are possible (Reisgen
et al., 2020a). In particular, the XGBoost algorithm (Chen and Guestrin, 2016) was
able to achieve high results with an .R2 = 0.89 on the test dataset. In contrast,
conventional statistical modeling via multiple linear regression resulted in poorer
model quality (.R2 = 0.80), but led to the necessary system transparency on which
the control strategy could be built.

By investigating correlations, using multiple linear regression models, two FER
minima were found in the data. After comparison with the basic process stability,
a control system was implemented, which adapts the current process working
point to the next FER minimum within 1 s. The control loop was therefore closed,
using distinct time series features and welding voltage correction parameters on the
welding power source.

Figure 11.6 clearly shows that the welding fume emission as a decisive process
quality can be reduced by an average between 12 and 45 percent, starting from
three operating points. The optimization was carried out via the voltage correction,
which, however, also influences the weld geometry. The resulting trade-off between
different quality features must be considered here depending on the application.
Finally, and in addition to this control application, the FER can be extracted directly
on the welding system and without costly FER measurements in accordance with
DIN EN ISO 15011-1, thus accessing an essential sustainable process characteristic.

With this approach, data-driven models in the sense of the digital shadow are
applied on the one hand to solve domain-specific challenges. On the other hand, the
welding system is empowered as a source of aggregated data and thus provides a
valuable contribution to the data lake and cross-domain applications.
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11.3.4 Model and Data Integration in Connected Job Shops

Distribution of models over different machines and even different job shops
within the IoP requires common semantics. Heterogeneous data are combined
using ontologies, including information from other domains, like process planning
(cf. [Resilient Future Assembly Systems Operation in the Context of the Internet of
Production]) or quality assurance. This section describes an approach to ontologies
using Blade-Integrated Disk (BLISK) manufacturing as an example.

A BLISK is an integral rotor component, which combines disk and blades
within a single component. It is used in the compressor of modern turbo engines.
The manufacturing of such components represents one of the most challenging
tasks in turbomachinery manufacturing (Ganser et al., 2022). The extremely tight
tolerances put highest demands on product and process design. To efficiently
achieve the required tolerances, the topics of model and data integration in BLISK
manufacturing are of high importance.

Model integration refers to the integration of process models into a Computer-
Aided Manufacturing (CAM) system to extend the digital shadow of a BLISK.
Models include, e.g., a macroscopic engagement simulation based on a multi-
dexel model (Minoufekr, 2015), an analytical model to calculate the microscopic
engagement data (uncut chip geometry) (Cabral, 2015), a dual-mechanistic cutting
force model (Altintas, 2012), and a model to predict tool and workpiece deflections.
This information is stored in the digital shadow and used to optimize the process
design (Fig. 11.7).

Data integration aims to develop possibilities for systematic and efficient storage
of simulation, process, and product data along the product and process development
chain. It also aims to connect data stored in different systems and annotate it
with meta information by developing an ontology to describe the meaning of the
metadata.

Data generated during product and process development steps is stored in various
data formats, e.g., in .stp, .igs, or .stl files for the design step (CAD), odb or .csv files
for the process design (CAE), and .nc or .mpf files for CAM. However, the semantic
meaning of the data is only understandable by experienced or trained employees and

Fig. 11.7 A picture of a BLISK and its digital shadow
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just in some cases understandable by machines. In general, data integration can be
divided into three parts (Schiller et al., 2022): (i) The definition of an ontology that
describes the relations and semantic meaning of the data. (ii) Adapting existing data
into appropriate structures following the ontology, or adding additional metadata to
the existing data so that it can be linked using the ontology. (iii) The formal storage
of the data, e.g., using an information management system that centrally manages
the data and can check the correct semantic description of new data. While the
last two steps are strongly influenced by a technical implementation, the creation
of an ontology requires a deep domain knowledge and a clear formal definition.
For BLISK manufacturing, an ontology was defined using OWL (McGuinness and
Van Harmelen, 2004), describing the core relations between the generated datasets
in the individual steps of the product and process development chain. Figure 11.8
shows the structure and main core classes and properties for each of the four steps
(CAD, CAM, CAE, CNC).

To structure the ontology, it is divided into four parts. For each featured process
chain step, we define a single ontology namespace: The BLISK schema, the CAM
schema, the milling simulation schema, and the manufacturing schema. For each
schema, a core class was defined. Additional properties enabled to link the classes
and create a knowledge graph connecting all four steps. The BLISK schema is
related to the product design step. The core class is the BLISK, which is a subclass
of a geometry model, from the CAM schema. The core class of the CAM schema
is the milling operation class. The milling operation rules a milling process. The
milling process class enables the connections between the CAM, CAE, and CNC
step. The milling process which is described by this CAM operation can be a
simulated milling process, defined in the simulation schema or a real milling process
running on a machine, defined in the manufacturing schema. A graph like this can
be extended with additional classes and relations. This makes it possible to append
all the data that is generated in the steps of the product and process development
chain to an entire knowledge graph, thus enabling complete data integration. This
methodology, exemplary shown for BLISK manufacturing, can be used for sharing
data and models across job shops and the whole IoP.

11.4 Conclusion and Outlook

This chapter gave an overview over the current research in model-based controlling
approaches for production processes in the IoP. The chapter has been following the
different subsystems necessary to control machine tools and production processes:
data aggregation, model identification and optimization, and autonomous systems
and decision control. A common usage of data and models connects machines,
job shops, and the WWL. The individuality of different manufacturing processes
results in domain-specific problems and, therefore, particular approaches in the
different fields. However, a common ground lies in the methodical approaches,
utilizing data as well as expert knowledge. Potentials for future research lie, e.g.,
in automated data selection from the data lake based on ontologies, such that the
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processes can go online within the WWL. Furthermore, a greater formalization of
the domain knowledge has the potential to further generalize the application of
the presented methodology and thus allow symbioses between different domains.
More methodically: New data-driven modeling approaches have to be considered
due to their different strengths, like long short-term memory (Long Short Term
Mmemorys (LSTMs)) networks. LSTMs are recurrent networks and well suited
for mapping time-varying dynamics, especially. Following additional modeling
approaches and the aforementioned abstracted domain knowledge, the applicability
of the control approaches should be improved for more generic models. In addition,
the setup of the controllers should be further automated to at some point reaching
a near plug-and-play capability. The main challenge regarding the connection of
job shops in the future is the connection of different manufacturing technologies as
they usually appear consecutively during the production of components. Especially
domain knowledge, which remains essential to automate systems, is highly focusing
on single manufacturing processes and does not include interconnections between
them. Digital shadows need to able to apply technology-specific data and models
in a way that other domain experts and even users of produced components are
able to utilize them. The IoP has the potential to achieve these connections, but
remains rather visionary yet. The current works aim at closing the gaps between the
technologies and will further continue in doing so.
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Abstract

Discontinuous processes face common tasks when implementing modeling and
optimization techniques for process optimization. While domain data may be
unequal, knowledge about approaches for each step toward the solution, e.g.,
data gathering, model reduction, and model optimization, may be useful across
different processes. A joint development of methodologies for machine learning
methods, among other things, ultimately supports fast advances in cross-domain
production technologies. In this work, an overview of common maturation stages
of data-intensive modeling approaches for production efficiency enhancement is
given. The stages are analyzed and communal challenges are elaborated. The
used approaches include both physically motivated surrogate modeling as well
as the advanced use of machine learning technologies. Apt research is depicted
for each stage based on demonstrator work for diverse production technologies,
among them high-pressure die casting, surface engineering, plastics injection
molding, open-die forging, and automated tape placement. Finally, a holistic
and general framework is illustrated covering the main concepts regarding the
transfer of mature models into production environments on the example of laser
technologies.

Increasing customer requirements regarding process stability, transparency
and product quality as well as desired high production efficiency in diverse
manufacturing processes pose high demands on production technologies. The
further development of digital support systems for manufacturing technologies
can contribute to meet these demands in various production settings. Especially
for discontinuous production, such as injection molding and laser cutting, the
joint research for different technologies helps to identify common challenges,
ranging from problem identification to knowledge perpetuation after successfully
installing digital tools. Workstream CRD-B2.II “Discontinuous Production”
confronts this research task by use case-based joint development of transferable
methods. Based on the joint definition of a standard pipeline to solve problems
with digital support, various stages of this pipeline, such as data generation and
collection, model training, optimization, and the development and deployment
of assistance systems are actively being researched. Regarding data generation,
e.g., for the high-pressure die-casting process, data acquisition and extraction
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approaches for machines and production lines using OPC UA are investigated
to get detailed process insights. For diverse discontinuous processes and use
cases, relevant production data is not directly available in sufficient quality
and needs to be preprocessed. For vision systems, ptychographic methods may
improve recorded data by enhancing the picture sharpness to enable the usage
of inline or low-cost equipment to detect small defects. Further down the
pipeline, several research activities concern the domain-specific model training
and optimization tasks. Within the realm of surface technologies, machine
learning is applied to predict process behavior, e.g., by predicting the particle
properties in plasma spraying process or plasma intensities in the physical
vapor deposition process. The injection molding process can also be modeled
by data-based approaches. The modeling efficiency based on the used amount
of data can furthermore be effectively reduced by using transfer learning to
transfer knowledge stored in artificial neural networks from one process to the
next. Successful modeling approaches can then be transferred prototypically into
production. On the examples of vision-based defect classification in the tape-
laying process and a process optimization assistance system in open-die forging,
the realization of prototypical support systems is demonstrated. Once mature,
research results and consequent digital services must be made available for
integrated usage in specific production settings using relevant architecture. By the
example of a microservice-based infrastructure for laser technology, a suitable
and flexible implementation of a service framework is realized. The connectivity
to production assets is guaranteed by state-of-the-art communication protocols.
This chapter illustrates the state of research for use-case-driven development of
joint approaches.

12.1 Introduction

Increasingly higher customer demands and smaller failure tolerances on produced
parts challenge manufacturers in high-wage countries and call for innovations to
remain competitive on international markets (Brecher et al. 2011). In recent years,
digitization and digitalization in various manufacturing domains are being explored
as very promising to raise overall production efficiency, may it be due to further
automation or deeper understanding of the process. Especially, vast amounts of
recorded data may offer great potential for elaborated analysis and improvement.
However, in most cases, these data are scattered, often not even within the same
databases, or not as numerous as needed for detailed data-based analyses (Schuh
et al. 2019). In a so-called “Internet of Production,” these issues shall be resolved
by a new approach: Data, models, and methods, even from different domains, are
made available by executing a developed ontology to connect these different aspects
of knowledge. A new level of cross-domain knowledge exchange and possible
collaboration will then be possible.
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Discontinuous production processes may benefit from these developments.
Discontinuity is on the one hand related to the state of operation: The herein
considered processes in accordance with DIN 8580 produce product in batches with
planned iterations of process steps, which is the definition of batch production. On
the other hand, variables of state involved in the discontinuous process show a time-
dependent variation of their values, depending on the state of the production, e.g.,
cavity pressure curve in injection molding. On the contrary, for thermodynamically
continuous processes the variables of state should be kept constant at all times, e.g.,
extrusion.

A recurring challenge for discontinuous processes is the minimization of non-
value-adding activities, e.g., when setting up the process, and the complexity to
repeatedly find a balanced process under new circumstances and new production
asset configurations. As these minimization tasks can be found similarly in all dis-
continuous productions, sharing of knowledge between domains may significantly
raise the process efficiency and productivity.

In the following, challenges and potentials from the current state of the art
for representative discontinuous processes are presented based upon a common
procedure when modeling discontinuous processes. Detailed explanations regarding
the use-case-driven development are given in subsequent subchapters dealing
with the demonstrator processes. Various steps in this procedure are described
in detail, and current research toward knowledge sharing is presented to give an
understanding about possible method-based cross-domain collaborations.

12.2 Common Challenges in Modeling and Optimization
of Discontinuous Processes

A process may be defined as the entirety of actions in a system that influence
each other and which transport, convert, or store information, energy, or matter
(N.N. 2013). In the cluster of excellence “Internet of Production,” a variety
of discontinuous processes regarding different production technologies are being
researched

• High-pressure die casting
• Automated tape placement
• Thermal spraying
• Physical vapor deposition
• Injection molding
• Open-die forging
• Laser ablation, drilling, and cutting

An intermediate objective for every single process is the support of recurring
production tasks, e.g., by assistance systems. Some process technologies such
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as injection molding qualify for an assistance system development due to their
high grade of automation and advanced controllability regarding process stability.
Less digitally progressed, less widespread, or highly specialized technology facing
challenges regarding process understanding and controllability can benefit from
methodological exchange for asset connectivity, correlation identification, sensor
development, and other support processes on the road to sophisticated assistance
systems. However, all processes may benefit from a general approach for digital and
data-based methods in terms of Industry 4.0 to improve the processes efficiently
as advocated by the “Internet of Production” (Schuh et al. 2019). Successfully
probed methods in a specific domain for common tasks such as process setup,
quality supervision, or continuous optimization should be considered candidates
for a cross-domain knowledge sharing to pool competency and drive intelligent
processes. An abstracted and common sequence of tasks for data-based, digital
development of discontinuous processes, directly connected to the maturation of
assistance system development in respective process technologies, supports the
methodological collaboration. This approach is illustrated in Fig. 12.1.

Each approach for a digital and data-based problem resolution (see Fig. 12.1)
starts with a sharp problem identification and the definition of concerning informa-
tion. In the best case, quantifiable parameters containing this information are already
known, measurable, and available. Modern production systems are characterized
by their reliance on a multitude of sensors and programmable logic controls.
Measurement and input values are processed by the control system and the physical
entities of the machinery are actuated accordingly. Technically there is no shortage
of process data. However, due to the diversity of discontinuous production processes
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in different industries with different requirements, full raw process data is often
discarded, retained for limited time, reduced to mean values, or isolated in globally
inaccessible storage systems with limited capacity. The Internet of Production can
only be realized if process data is globally available with sufficient but adequate
granularity. A major challenge lies in striking a balance between the required storage
for data from one discontinuous production cycle and the ability to retain these cycle
data sets over months and years for retrospective analysis. The major challenge is
that inquiries about the process may arise much later in time and the scope only
becomes clear long after the production process has concluded. Consequently, the
granularity of the process data stored cannot be defined beforehand as the objective
of later analyses can hardly be predicted. Therefore, initial full retention and global
availability of the process data needs to be facilitated to enable in-situ detection of
second- and third-order interdependence between sensor and actuator measurements
to effectively antedate the retrospectively arising questions relating to the process.
By employing such a strategy, the process data can be refined for longer term storage
with a reduced overall storage requirement based on the detected correlations and
data processing that can be employed right after the sensor values were captured.
This strategy relies on three cornerstones: Raw data transfer from the machine to
the cloud, data refinement by connecting the full data set of the process including
machine and product in an adequate format, and lastly automated analysis of this
high granularity data set to detect process interdependencies to facilitate subsequent
data reduction where applicable.

When data is defined and readily recorded, the necessary information might need
to be extracted for the following model building. Arguably the most important
type of data to be considered for data (pre)processing in industrial applications is
visual data. In many discontinuous production processes, quality analysis is at least
partly done through optical methods (Garcia et al. 2001; Du et al. 2005; Abiodun
et al. 2018). Traditionally, this is either realized by simply installing a camera to
receive quick information or by measuring the results through more time-consuming
methods like microscopy. Both ways have advantages and disadvantages: The
information provided by a camera can be obtained easily but is subsequently less
detailed than that from microscopes which could lead to missing crucial information
in the surface structure. A microscope provides much more detailed information,
but it can usually not be used to scan all output products due to the required
time or cost. With computational methods, this issue can be addressed to find a
compromise between camera and microscope. When the image data is used in
quality analysis/prediction, conventionally, various machine learning models are
employed for image processing like feature detection (Sankhye and Hu 2020).
This can be done with raw image data, but it has been demonstrated that for
example in image classification preprocessing of the images leads to far more
accurate results (Pal and Sudeep 2016). Similarly, it can be expected that in quality
prediction, preprocessing like transforming the images to greyscale, flattening, or
using an early edge detection method may improve the accuracy of the models.
Both using computational methods for finding the boundary between camera and
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microscope and using image preprocessing are ways to enhance or enable data used
in quality prediction. This can have a bigger impact on machine learning results than
modifications of the model itself.

Furthermore, a model should be able to handle a large number of parameters.
A great amount of parameters or equations to describe the process, e.g., reduce
the computation velocity. This might be harmful considering the subsequent
implementation in a control system that aims to be real-time ready. On the other
hand, as many input information as possible should be kept for the model design
if these effectively contribute to improve the prediction results. In the end, “the
reduced order model must characterize the physical system with sufficient fidelity
such that performance objectives [ . . . ] for the controlled physical system can be met
by designing control laws with the reduced order model” (Enns 1984). Therefore,
especially for the usage of highly dynamic systems such as laser applications,
model order reduction is a many times researched field of interest to improve model
quality. Laser manufacturing processes are controlled by multi-dimensional process
parameters. To model this process numerically, several multi-physics dynamic
equations should be solved. However, the high-order parameter dimension and
process complexity make it difficult to conduct a solution and establish a data-driven
process design. Model reduction is a way to drive a model focusing on specific
quality criteria by neglecting unnecessary complexities. These reductions are based
on dimensional and scale analysis, empirical model, or numerical model reduction
(e.g., Proper Orthogonal Decomposition method (Li et al. 2011)). The model
reduction procedure employs a top-to-down approach that begins with complex
multi-physic governing equations, and ends to the approximated ordinary differ-
ential equations. The main task of model reduction methods is to omit unnecessary
complexity and to reduce the computation time of large-scale dynamical systems
in a way that the simplified model generates nearly the same input-output response
characteristics. They are capable of generating accurate and dense dataset in an
acceptable time. These datasets can be used to enrich the sparse experimental data
and also, by employing machine learning models, establish data-driven and meta-
models.

Besides physical models, data-based models have been gaining a lot of interest
in the past years. This may be due to the facilitated development of sensors,
data acquisition methods, less costly data storage options, and generally higher
availability of highly educated personnel in the domain of data science. The usage
of machine learning may be beneficial for the representation of processes whose
behavior contains a significant part of hardly explainable or quantifiable phenomena.
Examples of discontinuous processes are physical vapor deposition, thermal spray-
ing, or the thermoplastics injection molding process. An efficient model selection,
e.g., by hyper-parameter optimization, model training, and strategies regarding how
to use the resulting models are unifying steps in the improvement process across
different domains and between different discontinuous processes. One common
challenge is that, e.g., especially advanced models such as artificial neural networks
require a significant amount of training data to prevent underfitting a modeling task.
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The generation of manufacturing data of discontinuous processes, however, can be
time-consuming and expensive and therefore limited. Lowering this barrier would
foster the applicability of machine learning in the manufacturing field in general.
To achieve this goal, transfer learning is used as one possible method to demonstrate
the potential to reduce the problem of limited training data. In the context of machine
learning, “transfer learning“refers to the transfer of knowledge learned from a
source domain DS and a source task TS to a new task TT (Weiss et al. 2016). A
structured transfer of knowledge is realized through the close relationship of the
tasks or domains to each other. The most intuitive approach to transfer learning is
induced transfer learning (Woodworth and Thorndike 1901; Pan and Yang 2010;
Zhao et al. 2014): Given a source domain DS and a source task TS, the inductive
transfer learning attempts to improve the learning of the contexts in the target
domain DT with the target task TT. Here, the source and target tasks differ from
each other. The approach assumes that a limited amount of labeled data from DT is
available. This is usually the case for different processes, e.g., when a new process
setting is probed. Therefore, transfer learning is one method for data-based process
modeling that should be researched further and individually per process while
sharing knowledge about approaches and caveats between the settings, especially
between different discontinuous processes.

Once all technical challenges are solved, developed models need to be trans-
ferred into production as their ultimate legitimation is the support of respective
manufacturing processes. All previously considered challenges to easily implement
improvements to the process such as significant parameters with necessary infor-
mation, small models for fast computation, small datasets for advanced data-based
models, and more culminate at this stage. During the deployment stage, it is decided
if the model or maybe even resulting assistance system is applicable for the users.
Concrete difficulties that may arise at this stage for all discontinuous processes
might be of three categories: (1) Social: Users and workers might not approve of
the resulting measures for the derived model-based improvements. (2) Technical:
Sometimes it may be difficult to conclusively prove a value of the derived measures
for the company. E.g., a deeper understanding for the workers of the discontinuous
process by displaying aggregated information about the process’ state might not
be directly quantifiable but furthers the workers’ domain-specific problem-solving
skills. (3) Architectural: Talking about industry 4.0, the resulting improvement
involves digital methods significantly. However, companies already use software
and usually resent a great variety of different programs and platforms. It is therefore
crucial to supply developed models and assistance systems in accordance with the
common software integrations in companies to guarantee ergonomic use.

In conclusion, discontinuous processes analogously show similar stages for
modeling and when trying to improve process efficiency in its variety of definitions.
In particular, problem and data definition, data gathering, data (pre)processing,
model order reduction, model design, training and usage, model or assistance
system deployment as well as knowledge perpetuation in a final stage which is
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not extensively considered here are to be named. The following subchapters will
give an overview of the stages of research for a variety of discontinuous processes.
Significant challenges and possible solutions that may be transferable between
processes are highlighted to make the reader acknowledge the previously defined
analogies.

12.3 High Granularity Process Data Collection and Assessments
to Recognize Second- and Third-Order Process
Interdependencies in a HPDC Process

The high-pressure die casting (HPDC) process is a highly automated discontinuous
permanent mold-based production technology to fabricate non-ferrous metal cast-
ings from aluminum or magnesium base alloys. Typically, a HPDC cell consists
of multiple subsystems that are operated by separate PLCs in order to replicate
every production cycle as closely as possible. Current generation data acquisition
systems are usually limited to only extract averages or scalars from the process at
one point in time of the cycle rather than continuously providing data such as die or
coolant temperatures to facilitate in cycle assessments. By reducing the amount of
acquisitioned measurement data points information about the process is irreversibly
lost which prohibits analysis of high-granularity data in retrospect if needed. While
some external measurement systems can measure and store this data, typically
via SQL databases, currently there is a lack of cloud infrastructure-compatible
data pipelines and storage blueprints to facilitate the transfer and retention of
high granularity data available via service-oriented architectures such as OPC UA
(Mahnke et al. 2009) for downstream analysis. In order to retain the ability to assess
the raw and undiluted data a state-of-the-art architecture based on a data lake derived
from the Internet of Production infrastructure research activities was deployed
to store the process data and enable its assessment (Rudack et al. 2022). In the
following an example of the acquisitioned process data extracted from the data lake
are presented to illustrate potential use cases and benefits of granular acquisition and
long-term data storage. The presented issue to the plunger cooling flow rate. In the
HPDC process, the plunger is usually made from a Copper alloy and has to be water-
cooled since it is in direct contact with molten Aluminum. A suitable equilibrium
temperature range needs to be maintained in order for the plunger to maintain a
suitable gap width between itself and the surrounding tool steel, otherwise excessive
wear can occur due to metal penetration in the gap or excessive friction at the
interface. Effectively, the water coolant supply is the proxy parameter that governs
the plunger operating temperature. The top half of Fig. 12.2 shows that during 1 h of
HPDC production the flow rate exhibits 6 drops of the flow rate from about 16 l/min
to 12 l/min, each lasting around 3 min which corresponds to around 4 production
cycles. This puts the plunger-chamber system in a different operating condition. The
reason for this phenomenon can be determined with high certainty when a visual
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Fig. 12.2 Behavior of the coolant system during 1 h of HPDC operation

synchronization with the water temperature at the heat exchanger of the hydraulics
system is made. It is visible that the reduction in plunger coolant flow occurs when
the heat exchanger of the hydraulics system is active. The initial temperature peak
indicates that the hot water that was static in the heat exchanger is being pushed out
by colder water which consequently lowers the temperature until the heat exchanger
flow is switched off again by the control system. The plunger temperature and the
hydraulics system do not seem like directly interdependent entities from a classical
engineering point of view. However, as these measurements show they are indirectly
linked via the coolant network of the machine.

These two sensor values serve as an example for a correlation derived from
data from the data lake and investigated by a manual data assessment by the
domain expert. The next research steps will aim to enable continuous automated
assessments for over 300 separate sensor values that are stored in the data lake
during HPDC operation as semantically integrated sensor data. We will assess how
to derive machine and die-specific process signatures that enable the derivation of
the processes’ specific digital shadow. By deployment of adequate mathematical
methods on the data available through the cloud-native architecture we aim to
better understand the second- and third-order consequences of fluctuations in sensor
values.

Retention of a full set of process can be beneficial if correlations are initially
entirely unknown as outlined above. Generally, vector and scalar data from flow
or temperature sensors are not as problematic retain from a storage standpoint
as visual data. Surface defects of the casting and die are one defect class where
visual data enable an in situ process feedback loop. High-resolution visual data is
needed to drive defect detection on both elements: The casting and the die. Imaging
systems usually have to find a compromise between slow, high-resolution processes
that provide possibly too detailed data for practical usage and fast, low-resolution
imaging systems that fail to capture all required details. This can be addressed with
computational methods as described in the following.
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12.4 Fourier Ptychography-Based Imaging System for Far-Field
Microscope

Fourier ptychography (Zheng et al. 2013) is a method based on wave optics to
extract the complex electromagnetic field and thus reconstruct images with higher
resolution. It is mainly used in microscopy but it can also be applied in systems
with higher working distances (Dong et al. 2014). It requires only a simple camera
that can be integrated in many processes and employing computational methods to
extract more detailed information than what is conventionally achievable.

TOS designed a macroscopic Fourier Ptychography imaging system which is
used to take multiple unique images of a distant target object and iteratively
reconstruct the original complex electromagnetic field at a much higher resolu-
tion, comparable to that of light microscopes. The imaging system is depicted
in Fig. 12.3. A Helium-Neon laser is used to create the coherent radiation for
illuminating a target. The beam of the laser is expanded with a telescope to emulate
a plane wave illumination. It is split into two beams with a beam splitter cube
to illuminate the target perpendicularly. The reflected beam then incidents on a
conventional camera that can be moved with two linear stages for creating the
unique images. The recorded images are saved together with the process parameters
and can be used for the reconstruction process at any time.

The acquired images are fed into a data lake. With iterative optimization based
on Wirtinger Flow (Chen et al. 2019) this large sum of images is reduced to a high-
resolution image that combines all the light field information from each separate
image while requiring less memory. No information is lost during the process. This
is especially advantageous in processes where a camera cannot be placed in the short
distance required by microscopes. In this situation, the reconstruction process acts
as a digital twin to the measurement by emulating the experiment in a simulative
propagation. An initial guess for the complex field is estimated and the propagation
and thus resolution reduction through the optical system is simulated. The goal of
the optimization is to minimize the difference between the experimental images and
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the subsequent low-resolution simulated images which can only be accomplished
by finding the underlying high-resolution field.

Example reconstructions of a USAF resolution target and an ivy leaf are
depicted in Fig. 12.4. For the resolution target, the achieved resolution with regard
to the smallest resolvable structure is increased by roughly 25% but more is
expected in future modifications of the setup. Using the reconstructed images for
quality prediction based on artificial neural networks was tested in a toy model
for high-pressure die casting in a collaboration with Foundry Institute (GI) and
the chair of Computer Science 5, RWTH Aachen University (Chakrabarti et al.
2021). This setup may be introduced for all discontinuous processes that need
high image resolution without using microscopes. The next research steps are the
implementation of a new camera and modifications of the recovery algorithm for
faster and more accurate results.

Still, due to high-dimensional and complex physical phenomena, not every
process can be fully controlled or optimized experimentally. Also, it is often
not possible to do full numerical simulations. A combination of simulations and
experiments might be a remedy to this dilemma. One can decrease mathematical
complexities by means of model reduction methods, provide solvable equations, and
calibrate them by experimental data. Reduced models can simulate the processes in
wider ranges of parameters and enrich sparse experimental data. By this potential
feature space, more effective feature learning and also feature selection can be
established. In addition, by combining the reduced and data-driven models, the
applicable boundaries of utilization of reduced models can be specified that can
robust the modeling, simultaneously.

12.5 Integrating ReducedModels andML toMeta-Modeling
Laser Manufacturing Processes

Rising capabilities of production procedures require simultaneous improvement
of manufacturing planning steps since processes become more complex. One
can reach an optimized production plan through process parameter identification,
knowledge extraction, and digitization. Experimental studies are limited to sparse
data to investigate and control these complex processes. Full numerical simulations
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are also computationally costly due to the multidimensional complexity of the
governing eqs. A practical solution is to enrich experimental data with reduced
model simulations called data-driven models. Model reduction techniques which
are based on analytic-algebraic, numerical, or empirical reduction approaches are
used to decrease the complexities of the governing equations.

Extended work has been done on the subject of laser drilling (Schulz et al. 2013).
A reduced model has been proposed (Wang 2021) to simulate the laser drilling
process in the melt expulsion regime and consequently to construct a digital shadow
of the process. Through the reduced equations, the laser drilling process at the base
of the borehole, the melt flow at the hole wall, and finally, the melt exit at the hole
entrance are simulated. A sparse experimental dataset is used to validate the reduced
model before generating data to enrich the dataset, as depicted in Fig. 12.5 (Wang
et al. 2017).

The generated dense data is interpolated to form a meta-model and is a valuable
tool in quality prediction, process design, and optimization. In Fig. 12.6, the
applicable region of laser drilling is shown, which is estimated based on the
maximum height of melt flow in the hole. To this goal, a Support Vector Machine
(SVM) classifier is used in meta-modeling, and the applicable beam radii under
specific radiation intensity are estimated.

The reduced equations of mass and energy conservation are solved in solid,
liquid, and gaseous phases in the melt expulsion regime to analyze the laser drilling
process (Wang 2021). This reduced model is established by scaling the equations,
applying phenomenological facts, and integral method. However, estimating the
shape of the drill hole is still computationally costly requiring a higher level
of reduction for the model. Through an empirical model reduction, an intensity-
threshold model is developed that estimated the borehole shape asymptotically in
the long-pulse laser drilling regime (Hermanns 2018). The approximation of the
hole’s shape relies on the fact that the material absorbs a specific power intensity
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after a certain number of pulses and is removed as the absorbed intensity reaches
the critical value, named the ablation threshold. Since this asymptotic model is fast
and accurate within its applicable region, it could also be used to enrich required
data for meta-modeling.

Another application of combining reduced models and ML techniques is inverse
solution-finding. This approach was applied to solve a simple trebuchet system
through training a deep neural network; it used the Algorithmic Differentiation
(AD) technique to embed the trebuchet ODE model in the loss function (Rackauckas
et al. 2020). The ANN learns to approximate the inverse solution for a specific hole
geometry during training by reproducing the required parameters of the reduced
model. The reduced laser drilling model is part of the loss function.

In case the combination of reduced models and sparse or expensive data prove
useful for an application, their validity, especially for data-based models, needs to
be always critically questioned. Changes in material, machine, surrounding, and
many other influencing factors might let the resulting modeling quality to erode.
However, working models are the foundation to an automated process optimization,
independent of the quality parameters which are chosen to be optimized. Further-
more, complexity of models might not only be measured by the number of input
parameters but also the number of connected process steps. A lot of data is, e.g.,
generated in an Automated Tape Placement (ATP) process including vision-based
defect analysis and OPC UA connection to the machine for high granular data. This
poses a viable example for the combination of data gathering and enabling steps
toward an extensive model for process optimization.
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12.6 Vision-Based Error Detection in Automated Tape
Placement for Model-Based Process Optimization

As in many highly integrated discontinuous processes, part defects during man-
ufacturing in ATP processes can have a substantial influence on the resulting
mechanical or geometrical part properties and are very costly when discovered
at a late process stage (Li et al. 2015). Therefore, multiple defect detection
systems are being investigated in industry and research (Brasington et al. 2021).
Especially economically competitive sensors such as industrial cameras have shown
to be feasible (Atkinson et al. 2021) with certain challenges such as low-contrast
environments. Automated defect detection with the possibility to adjust the process
settings to reduce part defects is therefore the goal of this research.

Multiple defects can occur during AFP, the most common being gaps, overlaps
and positional errors, or other processing defects. Firstly, determining tape geometry
and defects for one tape are investigated by an in-situ (integrated into production
line) inspection of the parts which permits high productivity and throughput. The
observed defects include tape length, width, and the cutting edge angle. To detect
and quantify these defects, methods of classical image processing are employed.
Acquiring process and machine data based on a process model is necessary to feed
back process influences onto the laminate quality and finally enable online quality
improvements. However, no generic machine component and parameter models
currently exist for ATP machines, especially for the integration of quality data. Such
a model is required to enable generic correlation of quality data with parameters.
Therefore, a machine model on the basis of OPC UA is developed.

The quality inspection system to gather reliable quality data of single tapes
consists of a monochrome industrial camera DMK 33GP2000e mounted behind the
tape placement head and a manually controllable RGB lighting system mounted
inside the machine housing (see Fig. 12.7). The camera is further equipped
with a polarization filter mounted to the lens to reduce reflections and increase
tape detectability due to the carbon fibers polarizing incoming light during the
reflection.
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2. LED light source

3. Laser source

4. Incoming tape

5. Carrier

6. Substrate

7. Compaction roller
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Fig. 12.7 Measurement setup
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Different algorithms, namely the Sobel, Prewitt, and Canny operators, are used to
detect tape edges, with the Canny Edge Detector outperforming Sobel and Prewitt,
since it is able to filter out noise induced by, e.g., the tooling background. However,
the detected edges from the Canny edge detection are still quite irregular and not
necessarily complete. Therefore, a hough line transform is applied on these edges,
creating straight lines in accordance with the tape’s geometry.

Figure 12.8 shows the whole analysis process. Using the created tape contour, the
tape’s geometrical features as well as the cutting angle can be accurately extracted
from the images with knowledge about the pixel/mm factor and the intersection
between the vertical and horizontal hough lines. The latter can give an indication
about cutting unit and knife wear, i.e., increasing cutting angle points to dull blades
and therefore indicates upcoming maintenance.

Subsequently, a model using OPC UA to describe the tape placement system
by combining machine settings, process, and quality parameters is developed.
The model is semantically categorized into different functional groups. One group
represents conveying the tooling through the machine. The next group is responsible
for orienting the fiber angle. The last group aggregates the functionality to place
the tapes, including the required motion for unrolling the tape from the spool,
as well as the tape placement head components. The tape placement head is
again encapsulating multiple functional components, e.g., cutting unit, feeding unit,
heating unit, and pressure application unit.

This model-based approach gives a clear overview of the process parameters,
decoupled from the individual machine components. Next, context-aware analysis
of process parameters and their interdependencies can be realized, revealing
influences of the process as well as the machine system on laminate variations and
defects. These interdependencies then can be used to optimize part quality prior to
manufacturing as well as online from part to part. The modeling for the ATP process
displays the challenges for integrated discontinuous processes and may later be
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taken as a blueprint for other processes for the combination of process information.
Further example for the design and training of data-driven models can be found
in the area of surface engineering, e.g., for physical vapor deposition (PVD) and
thermal spraying (TS) processes.

12.7 Understanding Coating Processes Based onML-Models

Surface engineering enables the separated optimization of the volume and surface
properties of materials. In manufacturing technology, this is crucial for increasing
performance or lifetime. The main motivation for employing coating technologies
such as PVD and TS are resource savings, environmental protection, and increasing
demands on safety and efficiency attributes. PVD and TS are associated with
numerous process parameters and represent two important discontinuous coating
technologies.

TS is a versatile coating technology regarding the wide variety of feedstock
materials, which can be introduced into the high-temperature free jet to deposit
a coating. The resultant molten or semi-molten particles are accelerated toward
a prepared substrate and build a coating by successive impingement. TS offers a
wide range of functional features including wear, oxidation and corrosion resistance
as well as thermal insulation. Therefore, many industrial sectors benefit from the
special characteristics of this coating technology. In the PVD process, a solid target
material is transferred into the gaseous phase in a vacuum chamber. Within the gas or
plasma phase, interactions take place between the ionized and excited species. Inert
gases, such as argon or krypton, are used as process gases or reactive gases, such as
nitrogen and oxygen, are added to the gas phase for active participation within the
coating formation. The species in the plasma are transported toward the substrate
at which the coating grows. Knowledge of particle properties in the TS process or
the plasma in the PVD process is necessary for adequate coating development. The
understanding of the coating processes and the influence and selection of process
parameters can be supported by Machine Learning (ML).

The numerous parameters and their nonlinear interactions influencing TS can
lead to a time-consuming and costly endeavor to control and optimize the processes.
Simulation and modeling methodologies such as Computational Fluid Dynamics
(CFD) are frequently used to represent the associated complicated physical pro-
cesses. Although CFD has a strong potential for understanding the sub-processes of
TS, the balance between model accuracy and computational cost has always been
a concern. The modeling of the particle free-jet in a multi-arc plasma spraying
process, which is the subject of this work, necessitates a high computing cost
without losing model accuracy. The use of ML methods to construct a Digital
Shadow is a promising solution for replacing computationally intensive CFD
simulations.

Therefore, a Digital Shadow for the plasma spraying process was developed that
can predict the average particle properties depending on different sets of process
parameters using CFD simulations and Support Vector Machine (SVM) models.
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The simulation data sets were obtained in form of a 45-sample Latin Hypercube
Sampling (LHS) test plan from a former numerical model for the plasma spraying
process of a three-cathode plasma generator (Bobzin and Öte 2016). The simulations
were also validated experimentally by in-flight particle diagnostic measurements
(Bobzin et al. 2016). The feedstock material for the simulations was alumina. The
parameters for the LHS, respectively, the inputs of the ML-models are given in
Table 12.1.

Two single-output SVM models for the in-flight particle temperatures Tp [K] and
velocities vp [m/s] were developed. Gaussian kernels with different kernel scales
were probed as SVM-hyperparameters for the best prediction accuracy. From each
of the 45 simulations, 75% of the data were used as training data and the remaining
25% as test data. Figure 12.9 shows exemplarily the results of the mean particle
velocities at the spray distance of y = 100 mm for particle diagnostic experiments,
simulations and SVM-models for different sets of process parameters. Although the
prediction accuracy is slightly lower for some unconventional process parameters
outside the training data range, the developed metamodels have high accuracy in
predicting particle properties with average R2 ≈ 0.92 for vp and Tp. Figure 12.9
shows also good agreement of the experimental measurements with the analytical
models.

Table 12.1 Parameter setup
for the LHS method

Parameter [unit] Interval

Primary gas flow [SLPM] 40–60
Electric current [A] 400–540
Carrier gas flow [SLPM] 3.5–7.0
Powder feed rate [g/min] 10–30
Particle size distribution [μm] −35 + 15;

−55 + 35;
−75 + 55

Stand-off distance [mm] 100–180
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Fig. 12.9 Exemplary results of mean particle velocities for experiment, simulation, and SVM for
different sets of process parameters
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The average computational time of one plasma jet simulation in combination
of the corresponding plasma generator simulation is about 3 h, in comparison
to roughly 4 s prediction time of the metamodels. The developed ML-models
drastically reduce the computational cost while preserving high prediction accuracy.
The conducted work serves as basis for the creation of the complementary concept
of Digital Twin for plasma spraying.

In PVD, the process parameters are usually selected by the operator based
on experience and analysis results. Nonlinear interactions and influences between
individual process parameters are difficult to determine by algebraic methods and
require improvement of the process monitoring to reduce the time of coating
development. During the coating process, different interactions of gas and metal
species take place in the gas and plasma phase. Among other things, the ionized
and excited state and the energies of the species are decisive for the resulting
formation and the properties of the coatings. Knowledge of these processes is
important for the understanding of the PVD coating process and the selection of
process parameters during coating development. Methods of plasma diagnostics
offer various possibilities for the investigation of the plasma processes. However, the
installation of special diagnostics is necessary, time-consuming, and cost-intensive.
Machine learning methods can be used to support coating development. They can
be applied to predict and identify high ionization and excitation states and to assist
the operator in time and cost-effective selection of process parameters.

To achieve high prediction accuracies, a large database is required for modeling
and training of machine learning models, such as artificial neural networks. In this
study, measured process and plasma data were used to develop a neural network
to support the understanding of the phenomena in the PVD process. For dynamic
time-dependent prediction, a recurrent neural network (RNN) is suitable (Abiodun
et al. 2018). The model was trained with the process and plasma data of 41 data sets
for the deposition of CrAlON coatings using the Levenberg-Marquardt algorithm.
70% of the dataset served for training, 15% for validation, and 15% for testing.
All coating processes were performed by hybrid direct current magnetron sputter-
ing/high power pulsed magnetron sputtering (dcMS/HPPMS) using an industrial
coating unit CC800/9 HPPMS, CemeCon AG, Würselen, Germany. Within the
processes, the cathode powers PdcMS and PHPPMS and gas flows j(N2) and j(O2)
were varied over the deposition time. Substrate bias voltage UB and argon gas flow
j(Ar) were kept constant. Resolved over the deposition time, the intensities of the
excited “I” and singly ionized “II” species in the plasma were recorded by optical
emission spectroscopy. The intensities were measured at six positions distributed in
the chamber, each at the substrate position opposite of a cathode. The II/I ratios were
calculated for the species in the plasma. For each ratio of the species in the plasma,
the optimized number of hidden layers for the model was determined. As result,
a range between five and 20 hidden layers indicated that separate models should
be trained for the different species to achieve the highest possible accuracy. As an
example, for Al II/Al I an amount of 20 hidden layers was identified as suitable, for
N II/N I ten hidden layers were chosen. The RNNs were trained and used to predict
the ion intensities at different timestamps of a new data set in which the oxygen gas
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flow was varied. After the prediction the same process was performed and measured.
Figure 12.10 shows the predicted and subsequently measured intensity ratios N II/N
I (red) and Al II/Al I (blue) at different timestamps of the exemplary process. At
the timestamps t = 50 s, t = 250 s and t = 850 s different gas flows were present.
The predicted results showed an equal range of values, equal tendencies, and a good
agreement with the measured values over the process time within the data set. With
increasing oxygen gas flow and process time, the normalized intensity ratio N II/N I
decreased. A decrease of the normalized intensity ratio Al II/Al I was also seen
from t = 250 s with j(O2) = 15 sccm to t = 850 s with j(O2) = 30 sccm. This
indicates an increasing poisoning state of the target used. To evaluate the prediction
accuracy, the Mean Square Error MSE was calculated, which is close to zero at a
high accuracy. The prediction showed for Al II/Al I a MSE = 0.361 and for N II/N I
a MSE = 0.031. The RNN provides insight into the behavior of the species in the
plasma and supports the operator during parameter selection.

The diverse data sets of coating technologies offer great potential to gain new
insights into these complicated processes and to develop and improve the processes
in a fast manner. ML methods may help to obtain the added value of this data. The
developed models for TS and PVD can be used to advance Industry 4.0 in the field of
surface technology and beyond in general for discontinuous processes. Furthermore,
industrial transfer learning can be implemented to use the collected data source
in this study for other process variants or different production domains. As a
result, new accurate and data-efficient models can be created or the generalization
capability of the used models can be improved. A currently active research for the
transfer of knowledge between machine learning models describing discontinuous
processes can be seen for injection molding.
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12.8 Transfer Learning in InjectionMolding for Process Model
Training

In injection molding, one of the most complex tasks for shop floor personnel is
the definition of suitable machine parameters for an unknown process. Machine
learning models have proven to be applicable to be used as surrogate model for
the real process to perform process optimization. A main disadvantage is the
requirement of extensive process data for model training. Transfer learning (TL)
is used together with simulation data here to investigate if the necessary data for
the model training can be reduced to ultimately find suitable setting parameters.
Based on different simulation datasets with varying materials and geometries, TL
experiments have been conducted (Lockner and Hopmann 2021; Lockner et al.
2022). In both works, induced TL (Pan and Yang 2010) by parameter-based
transfer was implemented: Artificial neural networks (ANN) have been pretrained
with datasets of injection molding processes, each sampled in a 77-point central
composite design of experiments (DoE), and then retrained with limited data from
a target process (one-one-transfer, OOT). The values of the independent variables
injection volume flow, cooling time, packing pressure, packing pressure time, melt,
and mold temperature have been varied, and the resulting part weight was observed
as a quality parameter.

TL can significantly improve the generalization capability of an ANN if only
a few process samples of the target process are available for training (comp.
Figure 12.11). On average, this lowers the necessary experimental data amount to
find suitable machine parameter settings for an unknown process. Consequently, this
accelerates the setup process for manufacturing companies. However, depending
on the transferred parameters, the model’s generalization capability may vary
significantly which may impair the prediction accuracy. The geometry of the
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produced part and its belonging process model can have a significant impact: For the
depicted results, 60 different geometries for toy brick were sampled, e.g., “4 × 2”
for 2 rows of 4 studs and “Doubled” for doubled shoulder height of the toy brick
relatively to the “Original” geometry, which was used as target domain. For source
datasets “4 × 2 Doubled” and “4 × 2 Halved” the ANN achieve the best result
for the data availability between 4 and 12 target process samples. However, the
source domain “4 × 2 x3” should not be used: The inferior TL results may stem
from the geometrical dissimilarities between “4 × 2 x3” and “4 × 2 Original”: All
dimensions, including the wall thickness, are tripled for “4 × 2 x3” in comparison
to “4 × 2 Original” which strongly influences the filling, packing, and cooling phase
of the process (Johannaber and Michaeli 2004). Therefore, it is necessary to identify
a priori which source model is most suitable to be used as a parameter base for the
target process in a transfer learning approach.

For that, a high-level modeling approach has been designed, using the transfer
learning results for 12 target process samples (compare Fig. 12.11) of the bespoken
experiments in (Lockner and Hopmann 2021) as training data. The transfer learning
success measured by R2 served as a quality parameter. Twenty-five geometrical
parameters describing the parts of the injection molding processes and whose values
are known before production have been identified. Among them are, e.g., the part
length, width and height, maximal wall thickness, flow path length, volume, and
surface of the part. Each of the 60 parts has been valued by these parameters. As the
training data stems from the OOT transfer learning results, the absolute differences
in each geometrical dimension were calculated and served as input data for the
modeling.

Different model strategies were evaluated in a nested six-fold hyperparameter
optimization: Lasso Regression, Random Forest Regression, Polynomial
Regression, Support Vector Regression, AdaBoost, and GradientBoost (Freund
and Schapire 1997; Breiman 2001; Hastie et al. 2008; Pardoe and Stone 2010).
AdaBoost with Support Vector Regression as base model achieved the lowest mean
squared error with 0.0032 and a standard deviation of 0.0055 and was therefore
chosen as modeling strategy for the given task. To determine the generalization
capability on unseen data, a leave-one-out cross-validation (LOOCV) has been
performed with the AdaBoost algorithm, using Support Vector Regression as base
model. AdaBoost yielded an average model quality of 0.805 for R2. The predictions
and true values are depicted in Fig. 12.12. One anomaly in the training dataset
resulted in a great error, compared to the rest of the predictions. In total, suitable
OOT source processes for transfer learning could be predicted by the presented
approach. Being able to determine good source models for induced transfer learning
may effectively contribute to the reuse of collected manufacturing process data
within the Internet of Production and beyond to reduce the costs for generating
training data.

Optimized models can then, e.g., be used together with evolutionary algorithms
to determine suitable machine setting parameters (Tsai and Luo 2014; Sedighi et al.
2017; Cao et al. 2020). Further validation needs to be done with experimental
datasets. Once validated, models need to be transferred into industrial use for a
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Fig. 12.12 LOOCV results for 59 OOT transfer learning results and AdaBoost modeling

competitive advantage for applying companies. Apt examples are, e.g., assistance
systems or modules for simulation software that extend state-of-the-art commer-
cially available software either by raising accuracy or unlocking different fields of
applications. Other examples are actively being developed for the open-die forging
and laser cutting process.

12.9 Assistance System for Open-Die Forging Using Fast
Models

For the specific adjustment of material properties, during forging a certain tem-
perature window must be maintained and a sufficiently large deformation must be
uniformly introduced into the entire workpiece. Therefore, an assistance system
was developed at the IBF, which measures the workpiece’s geometry, calculates the
component properties, and adjusts the pass-schedule based on these calculations.

Over the last decades, several approaches for assistance systems for open-die
forging have been developed. Grisse (Grisse et al. 1997) and Heischeid (Heischeid
et al. 2000) presented the software “Forge to Limit,” which can be used to design
a process time-optimized pass-schedule. The online capability was demonstrated
via the integration of this pass-schedule calculation with a manipulator control. The
commercially available system “LaCam” (Kirchhoff et al. 2003; Kirchhoff 2007)
from “Minteq Ferrotron Division” measures the current geometry with several lasers
and calculates the core consolidation for each stroke. The press operator is given
the position of the next stroke with the aim of achieving a homogeneous core
consolidation.

In the system shown in Fig. 12.13, the current geometry is determined with the
aid of the current position of the manipulator gripper and cameras, then transferred
to a program for calculating the workpiece properties. After comparing actual
and target geometry, the program calculates a new pass-schedule, so that process
deviations can be corrected continuing the process. The new pass-schedule is
transferred to an SQL database developed by “GLAMA Maschinenbau GmbH”
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on the manipulator’s control computer, which contains the manipulator positions
for each stroke of the remaining forging and passes this information to the press
operator via a GUI. Therefore, this system architecture thus enables automatic
adjustment of the pass-schedule during forging.

The basis of the assistance system is the knowledge of the current geometry and
the current position of the part relative to the open-die forging press. The position
of the gripped end of the workpiece corresponds to the position of the manipulator
gripper. This is calculated using the inverse kinematics from the measured angles
of rotation and cylinder strokes of the 6 axes of the manipulator. However, the
position of the free end of the workpiece cannot be obtained from machine data.
For this purpose, two HD thermographic cameras by “InfraTec” were positioned
laterally and frontally to the forging dies. Edge detection can be used to determine
the position of the free end of the part, which, together with the position of the
gripped end, provides a very accurate estimate of the touchdown point of the press
relative to the forged part. In addition to the workpiece’s position in space, its current
geometry is also determined from the camera data. Following the calculation, the
detected geometry is drawn in green dashed in the live image, so that the quality of
the geometry detection can be checked at any time in the process. Despite the large
amount of computation required for the live display, a calculation run in MATLAB
takes only 50 ms, so that the measurement frequency is 20 Hz.

The geometry data is passed to models for temperature (Rosenstock et al. 2014),
deformation (Recker et al. 2011), and grain size (Karhausen and Kopp 1992) with
short calculation times, so that these properties can be calculated and displayed live
during the process (Rosenstock et al. 2013). The process can now be optimized
on the basis of these results, in this case, using the MATLAB-based algorithm
“pattern search.” Figure 12.14, left, shows the equivalent strain distribution after
optimization by the stroke wizard and for a comparative process with bite ratio
0.5 and 50% bite shift after every second pass. The optimization adjusts the bite
ratio between 0.45 and 0.55 for each stroke to enable a homogeneous distribution
of the equivalent strain without pronounced minima and without fundamentally
changing the process parameters. Overall, the minimum equivalent strain can thus
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Fig. 12.14 Equivalent strain distribution for a normal process and with punch assistant (left) and
GUI (right)

be increased from 0.95 to 1.27 while maintaining the same process time. This
optimized process planning is transferred to the press operator via a GUI, see
Fig. 12.14, right. There, the current position of the workpiece relative to the dies
and the distance to the position of the next stroke are displayed to the press operator
to evaluate the program’s suggestion and, if judged necessary, implement it.

12.10 Development of a Predictive Model for the Burr Formation
During Laser Fusion Cutting of Metals

Most laser-based manufacturing processes are characterized by a significant number
of processing parameters that directly or indirectly influence the quality of the
final product. To help better understand physical sub-processes, optimize pro-
cess parameters for a specific task or correctly predict product quality, process
simulations often must include phase changes, multi-physical interactions as well
as largely varying space and time magnitudes (Niessen 2006). Here we present the
development of a numerical model for laser cutting, specifically for predicting the
formation of burr, a major quality issue for the process. The approach builds on
existing software to construct a useful digital model, that can be integrated in meta-
modeling methods and used to derive and validate digital shadows of the process.

Laser cutting utilizes multi-kilowatt high-brilliance lasers to cut sheet metal
ranging in thickness from 50 μm to over 100 mm. In the interaction zone between
laser and metal, a continuous melt flow is produced, driven by a high-pressure co-
axial gas jet (e.g., N2). A cut kerf is formed when the laser beam and the gas jet are
moved relative to the work piece (see Fig. 12.15). The melt flows along the cutting
front and the cut flanks toward the bottom of the sheet where it is expelled. On the
bottom edge of the cut flanks, adhesive capillary forces act against the separation of
the melt and can lead to a melt attachment and recrystallization. A residue-free cut
is produced when the kinetic energy of the melt flow is sufficiently greater than the
adhesion energy on the bottom of the flank. Otherwise, even the adhesion of a small
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portion of the melt can act as a seed for the formation of long burrs (Stoyanov et al.
2020). Thus, the relation of kinetic and adhesion energies along the separation line,
expressed by the Weber number of the flow, can be used to describe the tendency of
the process to produce a burr (Schulz et al. 1998).

Apart from the material parameters, the Weber number depends on only two
process variables: velocity and depth of the melt flow. To determine their values, a
three-step approach proved to be efficient. In the first step, CALCut is used, a laser
cutting simulation and process optimization software (Petring 1995). The software
is based on a 3D steady-state model of the process. In a self-contained formulation,
the model links the sub-processes of laser beam absorption, heat conduction, phase
transformations as well as momentum transfer from the gas jet. However, the spatial
domain of CALCut includes only the semi-cylindrical cutting front and does not
consider melt flow along the cut flank or burr formation. Here, it is used to mainly
calculate the geometry of the cutting front and the melt surface temperature as
a function of the processing parameters. In the second step, a numerical model
is created in the Ansys Fluent simulation environment to extend the numerical
domain to include the cut flank and the gas nozzle geometry. We use a two-
phase volume-of-fluid model in a pseudo-transient time formulation to simulate
the distribution of the supersonic compressible gas flow and its interaction with
the melt in the kerf. The melt flows into the simulation domain through an inlet
with the shape and temperature as calculated in CALCut. In the third step, the
numerical model was experimentally calibrated. The pressure gradients of the gas
jet were visualized using a schlieren optical system. This allowed, for instance, a
more accurate adjustment of the turbulence and viscosity sub-models as well as
the near-wall treatment. The distribution and velocity of the simulated melt flow
were experimentally tested using an in-situ high-speed videography. As shown in
Fig. 12.16, the simulation results already show good agreement with experimental
investigations.

The presented workflow of gathering simulative and experimental data is cur-
rently used to produce a multidimensional meta-model of the flow regime depen-
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Fig. 12.16 Simulated (left) and experimentally acquired (right) distribution of the melt outflow

dence to the process parameter. The collected data set will be utilized to create
a data-driven reduced model and subsequently a digital shadow of the process,
according to the model described in Sect. 12.5.

Even though assistance systems might be ready to use, the manyfold of solutions
from single silos will add up complexity that could confuse the end-users. Thus,
a variety of different systems and models may ultimately be agglomerated into a
central register or platform. The digital shadow for the previously described service
is intended to be designed in such a way that it can be easily integrated into an
IOP microservice software infrastructure. On the example of manufacturing process
implementing laser technology and based on some previously described research,
such a microservice infrastructure is described in the following subchapter.

12.11 Individualized Production by the Use of Microservices:
A Holistic Approach

Many digital shadows for discontinuous processes ranging from simulation over
machine learning models as well as data-driven methods were introduced. From
a software engineering perspective, these digital shadows can be seen as services
or microservices in a discontinuous production process which can be consumed
on demand in order to fulfill specific tasks. To this date, the lack of integration
of these services has been holding back the possible agility of discontinuous
production processes. We propose a holistic approach which exemplarily shows the
opportunities of centralized services for laser technology by a software architecture
design which allows the quick integration and monitoring of these services.
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A main advantage of laser-based manufacturing is that light can be influenced
directly and very precisely. In the case of scanner-based manufacturing systems like
Ultra Short Pulse Ablation, Laser Powder Bed Fusion, or Laser Battery Welding
this advantage becomes apparent since a rise in geometry complexity does not
necessarily yield a rise in production costs (Merkt et al. 2012). This “complexity
for free” effect could be enhanced further by the integration of pre-validation,
simulation, and quality assurance algorithms. The described methods in Sects.
12.4, 12.5 and 12.10 are respective examples for these types of algorithms which
could potentially be integrated as support services into a laser production process.
Transferred to an exemplary digital laser-based manufacturing system, the process
would consist of the following steps.

Before running a production process, the usage of one or multiple services
which queries previously attained experiments done with specialized monitoring
equipment and sensors can be used to define a possible process parameter window
for the production setting. The window greatly reduces the possible number of
process parameters combination for a defined quality. A typical example for such a
service is explained in �Chap. 10, “Internet of Production: Challenges, Potentials,
and Benefits for Production Processes due to Novel Methods in Digitalization”
where schlieren pictures could be used and pre-analyzed to define a burst rate for
USP Lasers or a gas pressure for laser cutting. Afterward, this process window
can be reduced to a single parameter set for the manufacturing machine by using
simulation services. Here, the process-specific moving path of the laser would be
considered as well, leading to more accurate process parameters. Again �Chap. 5,
“Actionable Artificial Intelligence for the Future of Production” contains a detailed
description of such a service. The generated process parameters are sent to the
machine which is implemented as microservice reachable inside a manufacturing
network and the production of the part starts. After the process, an image for quality
assurance is generated by calling the quality evaluation service, which connects
again to the actuators and sensors of the machine and evaluates and saves the image
for further inspection. One of the inspection systems that may be used is described in
�Chap. 4, “A Digital Shadow Reference Model for~Worldwide Production Labs”.

To combine the single services to a joint manufacturing system, a logical job
controller has to be introduced which holds the logic of the manufacturing process
and organizes data flow. This chapter holds an example architectural overview of
such an approach (Fig. 12.17). The job controller gathers and adapts information
delivered by support services (simulation, path generation, process parameter
generator) and sends them to the sensor actuator system.

Service-oriented architectures and microservices have been a vital and successful
architecture pattern in recent years which allowed large web corporations like
Netflix or Google to build and especially run scalable and flexible software systems
(Dragoni et al. 2017). This style of architecture is used by industry standards like
OPC UA which provide the underlying standardized interfaces for communication,
like request/reply communication, service discovery, and some communication
security (Jammes et al. 2014). However, these standards do not provide proficient
Know-How on the whole service life cycle like deployment, scheduling, updating,
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access management, etc., which needs to be solved to build a truly adaptable
manufacturing machine.

In the Internet of Production, the microservice architecture, dominated by the
web industry standards Kubernetes and Docker (Carter et al. 2019) has been
evaluated in order to schedule, deploy, update, and monitor manufacturing services.
In this architecture, the actual process logic is shifted inside a jobcontroller
remotely controlling machines from a data center. In case of resource shortage, new
machining edge nodes are added flexibly to the system. One of the main aims of this
lab setup is to evaluate the use of Kubernetes and other open source technologies
for the use as a shop floor management system. In this scenario, multiple USP
Machining Edge Nodes have been connected to a datacenter.

The usage of Kubernetes as a control plane for the USP Machining Edge
Nodes and Datacenter Nodes allowed a transparent scheduling and supervision of
hardware and support service with the same underlying infrastructure reducing the
cognitive load when working with these systems in parallel. However, introducing
these architectural patterns through an orchestration system made the system more
complex but reduced the effort of adding additional components to the system. Due
to the scalability effects, a manufacturing cluster like this could easily be deployed
in a manufacturing plant. It poses a suitable foundation for a manufacturing control
plane for multiple hundreds of single manufacturing system services. While the
initial cost of the infrastructure set up and operation is raised through the use of
microservices, the monetary gains from the centralized control plane when building
larger system compensate these initial costs (Esposito et al. 2016).

12.12 Conclusion

Efficiency and productivity increase is most relevant in many manufacturing envi-
ronments. Changing customer demands and tendencies toward smaller tolerances
and higher process transparency force companies to adapt their own production.
A deeper understanding of the specific processes and therefore the possibility to
succeed in a continuous improvement process may be significantly influenced by
the change introduced by Industry 4.0: Increased data availability due to new
sensors, efficient data transfer protocols or easy cloud-based data storage guides
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much research interest toward the integration and pairing of digital methods with
traditional manufacturing processes to achieve the mentioned objectives.

For a variety of discontinuous processes, a common procedure toward achieving
higher production efficiency and productivity has been described. Shared challenges
in the stages like problem definition, parameter and data definition and gathering,
model design and order reduction, model training and usage as well as deployment
of mature assistance systems were identified. Based on different manufacturing
technologies, possible solutions and their general applicability for similar process
technologies are shown. Especially the application of machine learning methods
for an accurate representation of complex manufacturing processes across different
domains appears to be a promising approach toward productivity increase. Once
mature, bespoken models and approaches need to be transferred into production.

While successful use cases and process-specific solutions, e.g., for data acqui-
sition and processing or model order reduction, for process modeling can be
found across manufacturing technologies, an abstract, holistic procedure for process
optimization for discontinuous processes as well as a common data structure has not
yet been described. Future research in the Internet of Production will focus on the
transferability of the previously described solutions for easy integrability in other
discontinuous process technology and therefore increase future innovation potential.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
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Abstract

Decision support systems can provide real-time process information and correla-
tions, which in turn assists process experts in making decisions and thus further
increase productivity. This also applies to well-established and already highly
automated processes in continuous production employed in various industrial
sectors. Continuous production refers to processes in which the produced
material, either fluid or solid form, is continuously in motion and processed. As
a result, the process can usually not be stopped. It is only possible to influence
the running process. However, the highly nonlinear interactions between process
parameters and product quality are not always known in their entirety which led
to inferior product quality in terms of mechanical properties and surface quality.
This requires accurate representations of the processes and the products in real-
time, so-called digital shadows.

Therefore, this contribution shows the necessary steps to provide a digital
shadow based on numerical, physical models and process data and to couple
the digital shadow with data analysis and machine learning to enable automatic
decision support. This is exemplified at various stages throughout two different
process chains with continuous processes: first, by using a thermoplastic pro-
duction process called profile extrusion, and second, on the example of a metal
processing process chain, from which three processes are described in more
detail, namely, hot rolling, tempering, and fine blanking. Finally, the presented
approaches and results are summarized.

Keywords

Decision support · Process optimization · Digital shadow

13.1 Introduction

This contribution describes the prerequisites for the development of decision support
in real time for further process optimization of continuous processes . In continuous
processes, the material, either fluid or solid form, is continuously in motion and
processed. This production type has been applied for nearly a century in almost
all industrial sectors of production, for example, in the plastic or metal processing
industry. This long history has led to well-established and often highly automated
processes.

However, the physical interactions between process parameters and material
behavior that determine product quality are still not well understood or even
unknown in detail, especially in complex manufacturing contexts, as the interactions
are highly nonlinear. For instance, the start-up and shutdown phase of processes or
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material property fluctuations can still lead to inferior product quality in terms of
mechanical properties and surface quality. Therefore, the challenge is to predict
and control final product quality within each production step and along process
chains. Current approaches are based on heuristics, expert knowledge, or long trials
which are usually time-consuming and costly and often do not lead to generalizable
insights.

Therefore, concepts and methods presented in the context of the Internet of
Production (IoP) (Pennekamp et al. 2019) such as digital shadows are combined
with different algorithms to enable decision support systems to increase the
productivity. Digital shadows are situation-specific real-time representations of the
material behavior and the process. These digital shadows consist of simulation
results from (reduced) numerical and physical models as well as of aggregated data
and process knowledge. Combined with algorithms for data processing and analysis,
such digital shadows can provide automatically analyzed correlations between
process parameters, material behavior, and final product quality. These correlations,
together with the numerical and physical models, can then be used to provide real-
time suggestions for optimizing processes or adapting it if deviations occur and
thus enable decision support. To demonstrate that this approach is suitable for a
wide range of different continuous processes, the digital shadows and algorithms
for optimization are exemplified at various stages throughout two different process
chains.

The first process chain consists of only one process, namely, the extrusion of
plastic profiles. In profile extrusion, raw thermoplastics are melted and homogenized
using a rotating screw and formed into a continuous profile using an extrusion die.

The second process chain describes typical metal processing from which three
processes are selected as examples: hot rolling, tempering, and fine blanking. In hot
rolling, the material is heated up and then the thickness of metal sheets or coils is
reduced by passing through one or more pairs of rolls. After rolling, the material is
heated up to a defined temperature for a certain period. This heat treatment process,
called tempering, aims to reduce the hardness of the material. Depending on the
final product, a wide variety of sheet metal working processes such as fine blanking
can be applied. In fine blanking, the material, either sheet or coil, is punched
using a punch and counterpunch to produce components with high sheared surface
quality.

Figure 13.1 shows the two process chains and the general structure of the decision
support systems. The two process chains are each described separately. After a
brief introduction to each process respectively process chain, the prerequisites for
digital shadows are presented including numerical and physical models and data
acquisition. Finally, concrete examples show the potential of Machine Learning
(ML), more precise Reinforcement Learning (RL), in the development of decision
support systems.

Finally, the most pertinent results of the different applications are summarized
and a brief outlook on the next steps is given.
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Fig. 13.1 Overview of the
continuous processes (top)
and the proposed structure of
the decision support system
(bottom)

13.2 Single Process for Plastics: Profile Extrusion

In the plastic profile extrusion chain, plastic pellets are continuously processed to
plastic profiles of fixed cross-sectional shape, (see Fig. 13.2). In a first step, the
plastic pellets are melted and homogenized inside the single-screw extruder. The
melt is then shaped into the specified profile geometry within the so-called extrusion
die. Subsequent to the extrusion die, the so-called extrudate exits the die, where it
is still too hot to hold its shape by itself. Thus, the profile is cooled down so that
the material solidifies and is fixed in shape. This process step is referred to as the
calibration and cooling stage.

Extruded profiles need to show minimal warpage and predictable shrinking
behavior to meet market requirements with regard to geometrical, mechanical,
and optical properties. The materials typically modeled in profile extrusion are
thermoplastic melts. Due to their complex molecular structure, these melts are
sensitive to temperatures and shear rates, but often depend additionally on past
deformations. This makes it not only difficult to design and set up the process but
also challenging to numerically model these materials. The die design, for example,
is still largely empirical and based on experience and manual labor.

In the context of this contribution, the die design and the calibration unit will
be discussed in more detail. In the design process of extrusion dies, the complex
boundary conditions and material parameters should already be taken into account
in the numerical design, so that, for example, by providing a mostly uniform melt
distribution, the deviation between the target and extruded geometry is minimized.
In case of the calibration unit, many material, process, and environment factors
influence the cooling of the material and thus can lead to undesired shrinkage and
deformation. When it comes to avoiding these undesired behaviors, decision support
systems are of great value to adapt the process at process time. Decision support
systems require a digital interface between the profile extrusion line, servers, and
databases, which many legacy machines are still lacking. Therefore, a modular,
portable, and affordable measurement system is presented in the next section, before
a numerical simulation model for plastic melts is introduced as a second means of
gaining insights into the process.
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Fig. 13.2 Process sections in a classic extrusion process (Hilger and Hosters 2022)

13.2.1 Prerequisites for Digital Shadows

Besides classical process modeling, data acquisition is one of the key ingredients
for the creation of digital shadows. On the one hand, the collected data can be used
to monitor and analyze the process during operation, while on the other hand, it
can be used to create data-driven models, e.g., as decision support systems. Usually,
sensors are used to represent the reality in terms of specific physical values. One
challenge is to select suitable data to enhance the digital shadow. Another challenge
is the analysis of the measured data to gain more knowledge for further process
optimization. In the following, data acquisition will be explained on the basis of
profile extrusion.

New extrusion lines are already equipped with the hardware and software
requirements for Industry 4.0 applications. However, due to their modular and robust
structure, extrusion lines have a long life expectancy, as single parts can easily be
repaired or replaced. This results in a large amount of legacy machines in production
(+20 years old (Urbanek and Saal 2011)), in particular in small- and medium-sized
companies, which are not equipped for data-driven problem analysis and control.
Even the most basic vital signs of the extrusion process, the melt temperature,
pressure, and motor load (Pilar Noriega and Rauwendaal 2019) are not routinely
stored for longer-term analysis. Therefore, retrofit solutions in the form of modular
measurement systems connected to a database present themselves as a convenient
way to enable data collection in existing extrusion lines.

The first step was the development of such a modular, portable, and affordable
measurement system, enabling the retrofit of existing analog extrusion lines,
managing the general quality of the manufactured plastic parts, and collecting data
for the construction of Reduced Order Models (ROMs) (Sasse and Hopmann 2021).
The measurement system as shown in Fig. 13.3 is based on a mini computer and
is capable of processing both analog and digital online and off-line data, such as
the temperature (e.g., of barrel, melt, die, or extrudate), pressure (e.g., of gear
pump or melt filter), rotational speed (e.g., of screw, melt pump, or haul-off), the
thickness of the extrudate (by tactile, capacitive, radiometric, or optic methods),
power (of cooling setup or motors of extruder or gear pump), piezoelectric sensors
(for acceleration, forces, and dynamic cavity pressure), throughput (melt output or
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Fig. 13.3 Structure of the modular, portable, and affordable measurement system

raw material input at feed hopper), or camera data. All data is processed by an Open
Platform Communications (OPC) Unified Architecture (UA) client, where they are
written into a common SQL-based database. Options for real-time visualization,
for example, via the open-source software Grafana, are also available. Analysis of
the process data is important to determine the influence of variations of process
parameters and material properties (Pilar Noriega and Rauwendaal 2019), but a
full problem analysis of the extrusion process is only possible with data from
all timescales (milliseconds to hours/days). Saving the process data to a common
database also has the side effect of added traceability of products for quality control
purposes. Based on this working technical infrastructure, the measurements can be
aggregated and analyzed and thus used to improve the process. In addition, the
OPC UA client provides an interface for operations on external devices, such as
computing clusters. This decentralized approach is a suitable method to deploy the
decision support system for profile extrusion lines. Within the presented setup, a
decision support system cannot only utilize archived process data from the common
database but also live process data via the OPC UA client for best results.

While the aforementioned strategy allows insights into the process during
operation, some data cannot be acquired by measurements. This may, e.g., be
the case if certain parts of the machine are not accessible for the measurement
devices, or if the measurement device would influence the process operation, e.g.,
inserting a temperature sensor into a very small extrusion die flow channel. In these
cases, numerical simulations can be used to gain additional information about the
quantities of interests in the processes. The availability of stable numerical solution
strategies for analyzing the physical models is thus also crucial for the creation
of decision support systems. The computed numerical results can serve as high-
fidelity data for training or validating the reduced models that form the core of
the digital shadow of the production process. Moreover, they enable to tackle more
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complex tasks like optimization of machine components that cannot be solved by
only considering measurement data.

One example, where the ability to accurately model the flow inside profile
extruders is important, is the design of new die geometries. As the melt’s complex
behavior quickly exceeds an engineer’s design intuition, the design of such dies
can be accelerated by numerical optimization. The main quantity of interest here is
the spatially varying velocity field, but also the pressure field and other secondary
quantities like shear stresses at the walls can serve as optimization objectives
(Hopmann and Michaeli 2016). Consequently, the precise numerical prediction of
these quantities inside the flow channel is of great interest. To describe the viscous
flow of plastic melts, the corresponding physical Partial Differential Equation (PDE)
model is given by the stationary Stokes equations (conservation of momentum) and
the stationary continuity equation (conservation of mass):

−∇ · σ = 0 and ∇ · v = 0, (13.1)

where .v denotes the unknown velocity and .σ the Cauchy stress tensor. This stress-
based formulation originates from continuum mechanical considerations and is
often written in terms of the unknown quantities, namely, velocity .v and pressure p:

σ = −pI + 2ηε, with ε = 1

2
(∇v + ∇vT ). (13.2)

Here, .η is the dynamic viscosity and .ε denotes the rate-of-strain tensor. While
many Computational Fluid Dynamics (CFD) applications assume a Newtonian
fluid, where the viscosity is a constant material property, in our application, we need
to account for the shear-thinning characteristics of molten plastic, i.e., the viscosity
decreases with increasing shear rate. In order to model this behavior, there exists
a variety of constitutive equations in the literature. For our application, we have
chosen the Carreau-Yasuda model as it proves to be in good agreement with
measurements for a wide range of shear rates (Hopmann and Michaeli 2016).

Together with the closure equations Eq. (13.2) and this material law, Eq. (13.1)
forms a nonlinear PDE system, for which no closed-form analytical solution can be
found. Thus, we employ the Finite Element Method (FEM) to compute a solution
numerically (Tezduyar et al. 1992). Figure 13.4 exemplary shows the solution of
a heat conduction equation computed inside an extrusion die’s flow channel on
the left-hand side as well as the computational mesh, used for computing the
temperature distribution on the right-hand side.

Applying FEM to Eq. (13.1) provides high-fidelity solutions for the unknown
velocity and pressure fields, which can then, e.g., be used to evaluate an objective
function describing the desired target properties or constraints that have been posed
on the design process. More precisely, for the design of flow channels in extrusion
dies, one primary design constraint can be the homogeneity of the flow velocity at
the die exit. Here, different objective functions have been proposed in the literature
(Elgeti 2011; Rajkumar 2017). All of them have in common that they divide the



288 C. Idzik et al.

Fig. 13.4 Exemplary computational mesh and corresponding FEM solution of the temperature
distribution in an extruded profile

outflow of the extrusion die into multiple patches over which an average velocity
is computed. This is afterward compared to the average velocity over the whole
outflow boundary. In order to compute these averages, a knowledge of the spatially
varying velocity field is required, which proves the importance of proper numerical
modeling for the context of shape and design optimization.

In the following section, we will present a first proof of concept, how a
two-dimensional extrusion die geometry can be optimized using Reinforcement
Learning.

13.2.2 Shape Optimization with Reinforcement Learning

Decision support systems should suggest one or multiple possible solutions to a
problem. This oftentimes requires solving optimization tasks. In practical applica-
tions in real-world use cases, it is often more interesting to find reasonably good
solutions in a short time than to search for the optimal solution for a long time.
To accommodate this, many different approaches have been developed. Among
these, RL is emerging as an additional method, whose feasibility is currently
being investigated for a variety of optimization tasks (Samsonov et al. 2020, 2021;
Kemmerling et al. 2020). When confronted with a set of problems which exhibit
similarities, but are not identical, classical optimization approaches typically solve
each problem individually, without taking advantage of the shared structure between
the problems. In an RL approach, however, this shared structure can be exploited by
training an agent which learns a general strategy to solve incoming problems. Once
learned, this strategy can then be applied to many problems at comparatively small
computational cost.

A wide variety of optimization problems emerges from production contexts,
including scheduling problems, layout design of shop floors, and tool design. In
this section, the focus is placed on tool design in profile extrusion settings as an
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illustrative example, although the approach is transferable to a wide variety of tool
design tasks.

As mentioned before, one of the remaining challenges in profile extrusion is
the shape optimization of flow channel geometries with the aim of minimizing
shrinkage and warpage in the produced parts, hence improving product quality.
Although this problem concerns the construction of tools and does not require real-
time optimization capabilities as they would be needed in a production context,
it demands numerical high-fidelity solutions from computationally expensive CFD
simulations. This incentivizes the application of efficient optimization approaches.

In this work, the environment corresponds to the digital shadow (Bergs et al.
2021) of an extrusion die, and the agent can modify the shape of the flow channel
in an iterative manner. More specifically, it can deform the computational mesh of
the die geometry by moving individual control points of a spline, which is used
to transform an initial mesh – a method known as Free Form Deformation (FFD)
(Sederberg and Parry 1986). This type of geometry parameterization allows for a
relatively low number of design parameters while simultaneously offering flexibility
with respect to the resulting shapes as well as guaranteeing smooth deformations
if the spline is chosen appropriately. To generate the observations, we solve the
numerical model presented in Sect. 13.2.1 using FEM and provide the results to the
agent.

The geometry modifications of the agent need to adhere to certain constraints so
that the resulting tool design fulfills its intended function. To show the feasibility
of the approach, the agent is trained to optimize a T-shaped geometry with one
inlet and two outlets, which is inspired by the separation of the melt flow inside a
coat hanger distributor. The agent’s objective is to modify this geometry such that
a certain mass flow ratio between the two different outlets is achieved. During each
episode, the agent is provided with a new ratio for which the geometry is supposed
to be optimized. After a certain number of steps during the training, the agent is
evaluated on a set of unseen goal ratios to estimate its learning and generalization
progress. The results of the training and the validation of an agent trained with the
Proximal Policy Optimization (PPO) algorithm (Schulman et al. 2017) are depicted
in Fig. 13.5. As one can see, the agent learns a strategy for achieving the desired goal
ratios, leading to a decrease of the number of steps per episode and an increase of
the average cumulative reward per episode. Here, an incremental shape optimization
strategy has been chosen, where one timestep corresponds to one action, i.e., a single
modification of the geometry. After just roughly 400 episodes (corresponding to
400 different goal ratios), the agent consistently receives an average cumulative
reward greater than 5 (highlighted by the area shaded in dark blue), indicating
successfully accomplished goals. Even for previously unseen mass flow ratios,
the agent’s performance consistently improves as shown in Fig. 13.5b, allowing to
accomplish 4 out of 5 validation runs at the end of training.

The approach presented here forms the basis for further research, e.g., inves-
tigating additional, more complex geometries and incorporating more realistic
optimization criteria such as the flow homogeneity.
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Fig. 13.5 Training progress (a) and the success rate of the validation runs (b) for a PPO agent
following an incremental shape optimization strategy. The area, where the cumulative reward is
greater than five, is shaded in blue, indicating that the agent achieved its goal. The training is
stopped after reaching 1500 episodes

13.3 Metal Processing Process Chain: Rolling, Tempering, and
Fine Blanking

As already mentioned, the relationships and interactions between material, process
parameters, and the final properties are not always known, although continuous
processes such as rolling have been used for a long time and are well-established.
Here, digital shadows in combination with various algorithms can support process
experts in their decision-making process. Such decision support systems can lead to
further optimization of processes and complete process chains. In this chapter, the
development of digital shadows and application of data analysis and optimization
algorithms are shown for selected examples of processes along a metalworking
process chain. First, the steps necessary to develop a digital shadow are presented.
As an example of the use of process models in the context of digital shadows,
physical models are presented for hot rolling and tempering that can provide real-
time information on the microstructure and thus on the final mechanical properties.
Processes that follow tempering, such as press hardening, are not considered further
here for the time being. Subsequently, cold rolling and fine blanking are used
to demonstrate how data from processes can be integrated and processed so that
conclusions can be derived about the final product properties (see Fig. 13.6). Finally,
an exemplary decision support system is presented. Concretely, the previously
presented physical model of hot rolling is combined with reinforcement learning
methods to optimize process parameters.

13.3.1 Prerequisites for Digital Shadows

In this chapter, the prerequisites for developing digital shadows are presented
on the basis of some selected processes of a complete metal processing process
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Fig. 13.6 Selected processes
of the metal processing
process chain

chain. More specifically, the potential of physical and semiempirical models for the
prediction of product quality such as mechanical properties will be demonstrated
using the example of hot rolling and tempering processes. Subsequently, it will
be shown that process data analysis enriches digital shadows. Process data from
cold rolling and fine blanking can be meaningfully aggregated and used to draw
conclusions about material and tool behavior.

13.3.1.1 (Hot) Rolling + Tempering
In the following, the abovementioned processes are briefly presented, starting
with rolling. Rolling is a widely used and established metal forming process
employed in several industrial sectors, e.g., the automotive industry. A rolling pro-
cess produces semifinished or finished products with customer specified geometry
and mechanical properties. About 95 % of steel products undergo at least one
rolling process during their production (Allwood et al. 2012). Rolling consists
of several steps, called passes, in which the material’s thickness is reduced by
moving it through two opposing rolls. In hot rolling, the material is heated above
a material-specific recrystallization temperature (for steel typical 1000 ◦C–1200 ◦C)
and then deformed. Therefore, the microstructure and thus product quality like the
mechanical properties can be directly influenced (Lenard et al. 1999).

After rolling, the rolled materials undergo heat treatment. According to
DIN 10052 (1994), heat treatment is defined as a temperature-time cycle for
desired characteristics of materials or workpieces. Among all the heat treatments,
quenching-tempering combination is aimed to optimize the properties, e.g.,
hardness and toughness of material for end use or for the following process. But
the material also loses its toughness, which makes it not applicable for the further
processing, therefore a reheating and holding at a temperature below a certain
temperature. This process is called tempering and it is applied after quenching as a
following step for regaining toughness with limited loss of hardness. Several factors
have impacts on steel properties during tempering. Among them, temperature
and time are the most important factors for tempering treatment. With designated
temperature and proper holding time, the microstructure and thus the mechanical
properties can be controlled. This affects the subsequent process such as press
hardening.
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First, a physical model for hot rolling is described and then for tempering. Due
to the widespread use of hot rolling processes and their high complexity, modeling
approaches were developed early on. The development goes back to the 1920s of
the last century, where von Kármán (1925) and Siebel (1925) used basic mechanics
to describe and analyze the rolling process. Based on their fundamental findings,
known as the slab method, Sims published simplified equations to predict roll
forces and roll torques (Sims 1954). These simplified mechanical models are able to
calculate complete processes within several seconds; therefore, they are known as
Fast Rolling Models (FRMs). These FRMs are often combined with semiempirical
material equations to describe the microstructure. There are many similar models
described in the literature. One well-known and typical FRM is SLIMMER (Beynon
and Sellars 1992) which uses a thermal, a microstructure, and a mechanical model
(Sims 1954) to predict roll forces, torques, and the microstructure evolution during
multi-pass hot rolling. As mentioned in Sect. 13.1, one challenge is to predict
product quality during the process. To achieve this, suitable process models must
be linked with other data sources in the sense of a digital shadow. Here, an existing
FRM, developed at the Institute of Metal Forming (IBF), is used for convenience
(Lohmar et al. 2014). The model consists of several modules, predicting the defor-
mation, the temperature, and the microstructure evolution as well as rolling forces
and torques. However, it does not predict mechanical properties after rolling which
would be essential for the prediction of the product quality. For this purpose, the
model was extended by additional equations calibrated for a structural steel S355.

For the prediction of mechanical properties such as Yield Strength (YS) and
Ultimate Tensile Strength (UTS), three extensions are implemented. First, the
cooling of the material after rolling until the microstructure transformation of
austenite .γ to ferrite .α is calculated. Second, at the transformation, austenite grain
size .dγ is converted to a ferrite grain size .dα . Third, based on .dα and calibrated
material parameters, predictions on YS and UTS are made.

For the cooling after rolling until the transformation temperature, a one-
dimensional finite-difference method, which considers heat conduction inside the
rolling stock, radiation, and convection on the surface, is used. For the phase
transformation, from austenite .dγ to ferrite .dα , equations according to Hodgson and
Gibbs (1992) and their parameters are used.

Based on .dα and Eq. (13.3) formulated by Hodgson and Gibbs (1992) and Singh
et al. (2013), YS and UTS are predicted. YS and UTS are calculated based on
the chemical composition-dependent solid solution strengthening .σSS and grain-
boundary (Hall-Petch) relationship. In addition to the YS prediction, the strain
hardening due to the dislocation density .σDISYS

is also accounted:

YS = σSSYS
+ σDISYS

+ KYS · d−0,5
α , and UT S = σSSUT S

+ KUT S · d−0,5
α .

(13.3)

Next, the FRM predictions regarding grain sizes and mechanical properties are
compared to experimental data (see Fig. 13.7). For this, a S355 slab was heated
up to 1200 ◦C and hot rolled from an initial thickness of 140 to 25 mm in eight
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Fig. 13.7 Comparison between the measurements and FRM-predicted values

passes. First, the average former .dγ and .dα from the experiment are compared to
the FRM prediction. Both predicted grain sizes agree well with the measured ones
and differ only by a few µm. Finally, tensile tests of the samples according to ISO
6895 are carried out using a Zwick Z100 testing machine. The predicted mechanical
properties are 35 % higher for YS and 13 % lower for UTS. The noticeable
difference in YS might be related to the simplified modeling. Furthermore, a
dedicated calibration of the YS and UTS parameters for S355 structural steel should
improve the accuracy of the FRM. All in all, it becomes evident that fast models can
provide accurate results in real time that usefully complement digital shadows.

The results of this model, such as the final microstructure, can then be passed as
input to the next process model so that more accurate predictions can be made. Here,
hot rolling is followed by tempering. Therefore, a physical and semiempirical model
for tempering is presented. Numerous tempering models are introduced in the recent
years (Lee and Lee 2008; Jung et al. 2009; Smoljan et al. 2010). However, these
models cover only few aspects of the quenching and tempering process with limited
calculation speed, which cannot fulfill the purpose of digital shadows. Therefore,
it is ideal to introduce whole scale, real-time tempering models which can be
utilized for process monitoring and optimization without significant sacrifices to
the accuracy.

There are several mechanisms that are contributing to the yield strength of a
material. Here, the two most important are the dislocation hardening .σdisl and
precipitation hardening .σp. The dislocation density contribution is given by the
Taylor equation (Kocks and Mecking 2003) accounting for the dislocation forest
hardening:

σdisl = αMb2√ρ. (13.4)

The precipitation contribution to strength arises from the Orowan mechanism of
hardening: (Smallman and Ngan 2014)

σp = 0.26μb

R

√
fp log

(
R

b

)

. (13.5)
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The yield strength of the material can therefore be predicted at any point in
the process by having access to the internal microstructural variables such the
dislocation density .ρ precipitate fraction .fp and radius R.

The change in dislocation density as a function of the lath width is given by the
closed relationship (Galindo-Nava and del Castillo 2015):

ρ = 3E

(1 + 2ν2)μ

4ε2dcottrell

d2
lathb

. (13.6)

The precipitation reactions are modeled based on the precipitation phenomenology
described in Deschamps and Brechet (1998). The model calculates the time
evolution of the precipitate radius and the number of precipitates which can be
used directly in Eq. (13.5). The model was evaluated for the tempering behavior
of a hot rolled MMnS. The material was tempered at various temperatures and
times, and the effects of the process were evaluated utilizing microhardness testing.
Figure 13.8 shows the predicted evolution of the material hardness, for various
temperatures and times, compared with the experimental measurements. The MMnS
exhibits typical tempering behavior which is characterized by a steep drop-off at the
beginning followed by a logarithmic reduction in the hardness. The model at its
current state is able to predict quite accurately the hardness evolution at short and
long times. The biggest deviations are encountered in the lower temperature regime
where potentially the presence of metastable carbides is potentially not accurately
predicted.

13.3.1.2 Data Analysis of the Fine Blanking Process
In addition to the model-side description over process borders, as presented earlier
for hot rolling and tempering, data over several processes can also be correlated
with certain properties. Here, fine blanking is chosen as an exemplary sheet metal

Fig. 13.8 Comparison of
experimental and simulated
hardness for tempered
medium manganese steel
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forming process because it is the most frequently used precision cutting process
in industry (Zheng et al. 2019). Fine blanking is a manufacturing process for the
cutting of metallic components. It is similar to blanking in a single-stroke shearing
process, but is extended by a blank holder and a counter punch to improve the quality
of produced component (Klocke 2017). Areas of application for the fine blanking
process arise when there are special requirements with regard to the contact area
of the cut surfaces (smooth cut), the perpendicularity of the cut, as well as the
achievable dimensional and form tolerances.

The process chain prior to fine blanking comprises different steps depending on
the material. Hot-rolled and cold-rolled strips account for the largest share of the fine
blanking material. In this example, cold-rolled material is used as an input for fine
blanking (see Fig. 13.9). Due to the complexity of the interactions along the process
chain and in the fine blanking process, the relationships between the processes are
not fully understood. With an enabled IoP process, signals along the process chain
can be acquired and analyzed in high quantities. The challenge is to aggregate the
data and analyze it in such way that decision support can be deduced. To underline
the potential in a detailed monitoring of the fine blanking process, large series of fine
blanking strokes were conducted and analyzed for wear detection. The information
of the tool wear at the fine blanking process will enrich the digital shadow of the
fine blanking process and is a first step to enable decision support along the process
chain.

For wear detection, data is acquired by nine piezoelectric sensors, which have
been integrated into the tool structure to measure all process forces including punch,
counterpunch, and blank holder force (Niemietz et al. 2020) and with acoustic
emission sensors that have been applied to the upper pressure plate close to the
punch positions (Unterberg et al. 2021). The raw sensor signal is first cleaned and
subsequently segmented into the stripping phase where the sheet metal is stripped
off the punch. This phase is of special importance since tensions during stripping
are a primary indicator for damage of the tools, coating, and geometry. In order to
model the variation in the signal of a wear-sensitive process phase, the stripping
of the sheet metal off the punch, autoencoders have been utilized that are able to
learn a typical force-time curve automatically (Niemietz et al. 2021). In short, a
convolutional autoencoder is used to convolute and devoncolute the input time series

Fig. 13.9 Process chain: cold rolling and fine blanking
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through a bottleneck and reconstruct the original signal utilizing the mean squared
error between the original input time series and the reconstructed output signal as the
loss function. The presented evaluation is based on this loss function also known as
reconstruction error. The hypothesis is that the development of this error over time
throughout stroke series of several thousand strokes can indicate changes in the wear
conditions of important tool components.

The study utilizes four experiments with about 2000–3000 strokes per experi-
ment. For all experiments, the wear increase has been observed to be high in the
first part of the experiment and near zero in the second half of the experiments.

The results presented in Fig. 13.10 on the left show the qualitative change of
the force signals in the stripping segment over time. Stick-slip behavior can be
observed for the first thousand strokes but is not observable for the later strokes.
Similarly, the reconstruction error, especially for experiments 2 and 4, shows high
values for the first part of the experiment but to stabilize later in the experiments.
The cumulative error clearly shows the similarity to a logarithmic behavior. Both
observations match the observed wear increase in the beginning and end of the
experiment execution. The presented plots are found representative for several series
of experiments conducted with the fine blanking process. In summary, using a very
shallow noncomplex autoencoder, the amount of error in the learned encodings seem
to be an indicator for wear increase during fine blanking.

While the presented study is a first step to decode the dependencies within
process signal variations with physical quantities of interest, the verification of
the approach has to be conducted on larger and more heterogeneous experiments.
Nevertheless, the force data can be used for wear detection and is thus can be used
to enrich the digital shadow of the fine blanking process.

But the process is influenced by numerous other parameters such as material
parameters that are defined in upstream cold rolling processes, or lubrication setup.
Especially the mechanical properties of the material are varying along the coil.
Typically, material properties are only measured at the beginning and end of the

Fig. 13.10 (a) The (cumulated) reconstruction errors are presented. (b) Selected strokes of the
second experiment are presented that are representative for the change in the force signal of the
stripping segments (Niemietz et al. 2021)
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coil; therefore, there is no information about the exact material properties along the
coil. This does not allow any conclusions to be drawn about the material quality in
the event of defects in the fine blanking process. Thus, in an enabled IoP, the cold
rolling-induced material variations could be monitored by monitoring the upstream
processes to optimize the fine blanking process.

13.3.2 Process Design and Optimization with Reinforcement
Learning

Due to its high industrial relevance, even small optimizations of the rolling process
have a significant effect regarding energy and material consumption (Allwood et al.
2012). One factor that affects the (hot) rolling process efficiency is the process
design (pass schedule) which defines all process parameters for each pass, e.g.,
the height-reduction and inter-pass time. Pass schedules are generated by complex
heuristics designed by experts based on their experiences and with the support
of FRMs or FEM simulations. Historically, pass schedules where laid out by
iterative approaches where maximum allowable height reduction was applied until
the desired thickness was reached (Pietrzyk et al. 1990). Additionally, there were
first efforts to use genetic algorithms (Hernández Carreón et al. 2019) for multi-
objective optimization.

Designing pass schedules in hot rolling processes (see Sect. 13.3.1.1) is a
time-consuming process typically performed by domain experts. As described in
Sect. 13.2.2, RL is a promising approach for a wide variety of optimization settings
in production, including the automated design of pass schedules, where it could
potentially uncover novel scheduling strategies. One of the requirements of RL
is access to a simulation, since training an agent on the real process would be
prohibitively costly and time-consuming. Instead of computationally expensive
FEM simulations, a FRM (see Sect. 13.3.1.1) can be used in the hot rolling context
to arrive at simulation results within seconds rather than in minutes. A given model
can be enhanced with new measurements, allowing for digital shadows (Bergs et al.
2021) in the hot rolling context to be easily extended.

As in many domains, simulation models such as FRM often contain the
intellectual property of the relevant stakeholders, which may be reluctant to share
the details of their models because they offer a competitive advantage. When third-
party machine learning experts want access to such models in the context of a
World Wide Lab (WWL), this can pose a problem. However, implementing machine
learning solutions does not necessarily require the FRM itself, but only access to
it, i.e. the ability to query the corresponding output to input fed into the model.
In the approach investigated here, this is accomplished with a Simulation-as-a-
Service (SaaS) architecture first introduced in Scheiderer et al. (2020), where a
suitable interface is deployed on the infrastructure of rolling mill operators, which
can access the FRM internally and can provide simulation outputs when queried by
other stakeholders within the WWL. Beyond the scope of this use case, such SaaS
architectures can generally serve as enablers to the IoP wherever giving third parties
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Fig. 13.11 (a) Training progress of a SAC agent on the rolling task shown as the rolling mean
of the received reward with the shaded region showing the rolling standard deviation. (b) Height
and (c) grain size of material throughout pass schedule generated by a trained RL agent and a pass
schedule created by a process expert. (Adapted from Scheiderer et al. 2020)

access to the internals of a simulation model is undesirable, but providing access to
simulation inputs and outputs is not problematic.

The proposed architecture is validated (Scheiderer et al. 2020) by training a SAC
agent (Haarnoja et al. 2018) to create pass schedules of a fixed length by controlling
the roll gap and pause time in a hot rolling scenario. Rather than providing the
agent with direct access to the simulation, it indirectly interacts with it through
the SaaS architecture. The agent trained in this way shows good convergence
behavior as shown in Fig. 13.11a and generates reasonably good pass schedules
compared to those created by domain experts (see Fig. 13.11b, c). While this work
shows the general feasibility of the approach, many opportunities for improvement
remain unexploited. These include improving upon the current design of the reward
function, learning from pass schedules generated by experts and investigating the
transfer of trained agents to scenarios with different material properties.

Next to Sect. 13.2.2, where the applicability of RL for tool design was demon-
strated, this section additionally shows the potential of RL in process design as
exemplified by hot rolling scheduling. The ability to produce schedules similar
to those created by human operators very quickly can be valuable in many other
process design problems as well. Ultimately, such approaches may serve to realize
the vision of the IoP by enabling networks of virtual agents, which can dynamically
respond to changing requirements from other components in the network.

13.4 Conclusion and Outlook

In this contribution, throughout two different process chains with continuous
processes, different stages are presented that enable decision support. A suitable
basis for this are digital shadows. Therefore, the development of the digital shadows
is first given by a detailed description of numerical, physical, and semiempirical
models. For instance, rolling and tempering models are shown that predict in
real-time product properties such as yield strength or hardness. The comparison
with measurement shows that the results of these models can make a valuable



13 Decision Support for the Optimization of Continuous Processes. . . 299

contribution to digital shadows. However, the parameters for the semiempirical
equations have to be determined very precisely; otherwise, the predictions deviate
too much.

In addition to models, digital shadows need process data in real time. Therefore,
a modular concept for data acquisition, aggregation, and processing is demonstrated
on the example of a typical extrusion line. The concept shows how both analog
and digital signals can be recorded with simple and low-cost equipment and
systematically stored in a database using the well-known standard OPC UA.
Systematically stored process data is very useful, as shown by the example of
fine blanking. Based on the time-series data from the stamping force sensors,
convolutional autoencoder is used to extract patterns in order to detect wear. The
results show that such a data-driven approach is promising and generally suitable
to study the highly complex interactions between process parameters and product
quality. For this reason, further research is ongoing with the aim of using the insights
gained for process optimization.

For a decision support system, however, more is needed. For both process chains,
model data is coupled with reinforcement learning to optimize the shape of either
process components or process parameters. For the profile extrusion use case, the
optimization of a T-shaped geometry represents a flow channel in profile extrusion
in order to minimize shrinkage and warpage. The algorithm modifies the geometry
of the flow channel by moving individual points of a spline. In the future, the
approach will be extended to include more complex geometries and incorporate
flow homogeneity as optimization criteria.

In summary, it can be stated that the general approach is independent of the
process. Especially the optimizations by coupling model data with reinforcement
learning show this very clearly. The concrete implementation, however, requires
detailed process knowledge and is only directly transferable to other processes to a
limited extent.
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Smoljan B, Iljkić D, Tomašić N (2010) Computer simulation of mechanical properties of quenched
and tempered steel specimen. J Achiev Mater Manuf Eng 40(2):155–159

Tezduyar TE, Liou J, Behr M (1992) A new strategy for finite element computations involving
moving boundaries and interfaces–the DSD/ST procedure: I. The concept and the preliminary
numerical tests. Comput Methods Appl Mech Eng 94(3):339–351

Unterberg M, Voigts H, Weiser IF, Feuerhack A, Trauth D, Bergs T (2021) Wear monitoring in
fine blanking processes using feature based analysis of acoustic emission signals. Proc CIRP
104:164–169

Urbanek O, Saal W (2011) Euromap study, energy efficiency of plastics and rubber machines in
Europe

Zheng Q, Zhuang X, Zhao Z (2019) State-of-the-art and future challenge in fine-blanking
technology. Prod Eng 13(1):61–70

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/15922.15903
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1179/026708304225022296
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
https://doi.org/10.1016/B978-0-08-098204-5.00013-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


14Modular Control and Services to Operate
Lineless Mobile Assembly Systems

Aline Kluge-Wilkes , Ralph Baier , Ike Kunze ,
Aleksandra Müller , Amir Shahidi , Dominik Wolfschläger ,
Christian Brecher , Burkhard Corves , Mathias Hüsing ,
Verena Nitsch , Robert H. Schmitt , and Klaus Wehrle

Contents

14.1 The Future of Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
14.2 Modular Levels and Layers for LMAS Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
14.3 Toward Modular Station-Level Control Through Formation Planning of

Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.3.1 Tool-Dependent Reachability Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
14.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

14.4 Consensus and Coordination in Sensor-Robot Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
14.4.1 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
14.4.2 Motion Planning Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

14.5 Leveraging Distributed Computing Resources in the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
14.5.1 Laying the Groundwork for In-Network Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
14.5.2 Toward Deployable In-Network Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

14.6 Trustworthy Vision Solutions Through Interpretable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.6.1 Interpretable Machine-Learned Features Using Generative Deep Learning . . . . 316
14.6.2 Initial Implementation on a Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

14.7 Multipurpose Input Device for Human-Robot Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
14.7.1 Application, Implementation, and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
14.7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

14.8 Ontology-Based Knowledge Management in Process Configuration . . . . . . . . . . . . . . . . . . . . 321
14.8.1 Concept and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
14.8.2 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

14.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

A. Kluge-Wilkes (�) · A. Müller · D. Wolfschläger · C. Brecher
Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University,
Aachen, Germany
e-mail: A.Kluge-Wilkes@wzl-mq.rwth-aachen.de; aleksandra.mueller@wzl.rwth-aachen.de;
d.wolfschlaeger@wzl-mq.rwth-aachen.de; c.brecher@wzl.rwth-aachen.de

R. Baier · V. Nitsch
Institute of Industrial Engineering and Ergonomics (IAW), RWTH Aachen University, Aachen,
Germany
e-mail: r.baier@iaw.rwth-aachen.de; v.nitsch@iaw.rwth-aachen.de

© The Author(s) 2024
C. Brecher et al. (eds.), Internet of Production, Interdisciplinary Excellence
Accelerator Series, https://doi.org/10.1007/978-3-031-44497-5_13

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44497-5protect T1	extunderscore 13&domain=pdf
https://orcid.org/0000-0001-7986-241X
https://orcid.org/0000-0001-6247-7785
https://orcid.org/0000-0001-8609-800X
https://orcid.org/0000-0001-6835-716X
https://orcid.org/0000-0001-6295-3235
https://orcid.org/0000-0003-2399-4856
https://orcid.org/0000-0002-8049-3364
https://orcid.org/0000-0003-1824-3433
https://orcid.org/0000-0002-8949-0215
https://orcid.org/0000-0002-4784-1283
https://orcid.org/0000-0002-0011-5962
https://orcid.org/0000-0001-7252-4186

 885 50911 a 885 50911
a
 
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de
mailto:A.Kluge-Wilkes@wzl-mq.rwth-aachen.de

 17444 50911 a 17444 50911 a
 
mailto:aleksandra.mueller@wzl.rwth-aachen.de
mailto:aleksandra.mueller@wzl.rwth-aachen.de
mailto:aleksandra.mueller@wzl.rwth-aachen.de
mailto:aleksandra.mueller@wzl.rwth-aachen.de
mailto:aleksandra.mueller@wzl.rwth-aachen.de

 -2016
52018 a -2016 52018 a
 
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de
mailto:d.wolfschlaeger@wzl-mq.rwth-aachen.de

 14301 52018 a 14301 52018 a
 
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de
mailto:c.brecher@wzl.rwth-aachen.de

 885 56999 a 885 56999 a
 
mailto:r.baier@iaw.rwth-aachen.de
mailto:r.baier@iaw.rwth-aachen.de
mailto:r.baier@iaw.rwth-aachen.de
mailto:r.baier@iaw.rwth-aachen.de
mailto:r.baier@iaw.rwth-aachen.de

 11974
56999 a 11974 56999 a
 
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13
https://doi.org/10.1007/978-3-031-44497-5_13


304 A. Kluge-Wilkes et al.

Abstract

The increasing product variability and lack of skilled workers demand for
autonomous, flexible production. Since assembly is considered a main cost
driver and accounts for a major part of production time, research focuses on
new technologies in assembly. The paradigm of Line-less Mobile Assembly
Systems (LMAS) provides a solution for the future of assembly by mobilizing
all resources. Thus, dynamic product routes through spatiotemporally configured
assembly stations on a shop floor free of fixed obstacles are enabled. In this
chapter, we present research focal points on different levels of LMAS, starting
with the macroscopic level of formation planning, followed by the mesoscopic
level of mobile robot control and multipurpose input devices and the microscopic
level of services, such as interpreting autonomous decisions and in-network
computing. We provide cross-level data and knowledge transfer through a novel
ontology-based knowledge management. Overall, our work contributes to future
safe and predictable human-robot collaboration in dynamic LMAS stations based
on accurate online formation and motion planning of mobile robots, novel
human-machine interfaces and networking technologies, as well as trustworthy
AI-based decisions.

Keywords

Lineless mobile assembly systems (LMAS) · Formation planning · Online
motion planning · In-network computing · Interpretable AI · Human-machine
collaboration · Ontology-based knowledge management
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14.1 The Future of Assembly

Assembly accounts for up to 44% of production costs and 70% of production
time and is therefore an essential step in the production process chain and
impacts the efficiency of production (Lotter and Wiendahl, 2013). It has been
postulated for several decades that conventional, fixed-coupled assembly systems
are reaching their limits of adapting to dynamic changes, such as fluctuating
market requirements and the production of customer-specific products down to
batch size one (Hu, 2013). Fluctuations in supply chains and production capacity
resulting from global crises increase the pressure for sustainable and crisis-resistant
production (Hiscott et al., 2020). The introduction of sustainable product portfolios,
like the transition from combustion-powered vehicles to electric vehicles, leads to
expensive assembly reconfigurations (Hubik, 2021). The resulting paradigm shift to
dynamically coupled assembly systems promotes and requires the design of flexible
and adaptive systems capable of addressing individual assembly sequences and
responding resiliently to changing conditions (Hüttemann, 2021). Assembling parts
to create individualized products results in a high degree of complexity, primarily
caused by the total number of product variants (Asadi et al., 2016). Adaptability can
be seen as fundamental to the success of a company and is enabled through Industry
4.0 (I4.0) technologies (Lanza et al., 2018). Shifting from the Industrial Internet of
Things (IIoT) and I4.0 to the Internet of Production (IoP) will enable a holistic,
cross-domain network and linkage of currently stand-alone industrial technologies,
revealing and harnessing the interdependencies of previously separate production
steps and technologies.

The paradigm of LMAS provides a possible realization of adaptable and flexible
assembly and is based on three principles:

1. clean floor approach: the assembly operation is executed on a fixture-less and
free space, which allows for free placement of assembly resources,

2. mobilization of all physical resources (robots, parts, tools), allowing free and
autonomous formation of assembly stations, and

3. dynamic planning and control creating suitable assembly stations and opti-
mizing schedules, job-routes, and task allocation in dependence on demand and
objective function.

LMAS are characterized by a dynamic sequence of operations, which is not fully
predetermined for most products, requiring sophisticated planning of scheduling,
task allocation, as well as formation and trajectory planning of the mobile robots, to
enable efficient operation (Buckhorst et al., 2019).

In the following, we first conceptualize modular levels and layers to operate
LMAS highlighting included concepts of the IoP (Sect. 14.2) by summarizing
our former research results. This is followed by detailed research focal points
(cf. Fig. 14.2) and future research directions of the modules.
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14.2 Modular Levels and Layers for LMAS Operation

Creating an operating future assembly system following the paradigm of LMAS
requires a connection of currently stand-alone industrial production steps and
technologies. The necessary cross-domain network follows the main principles of
the IoP, namely, the creation of a World Wide Lab and an interrelated network
of digital shadows (Brauner et al., 2022). Accordingly realizing the operation of
LMAS requires answering the following research question: How can efficient
decision-making, modular field, and process-level control in human and machine
factory operation be realized and combined with locally and globally available
information (services) and distributed computing capacities, so that a real-time-
capable response behavior of a LMAS results? Answering this research question
contributes a modular collaboration of cyber-physical and virtual devices to the IoP,
by combining domain-specific benefits and expertise of production engineering,
with data analytic and human factors.

This research group has identified necessary functional blocks (“Holons1”) as
well as communication, authentication, and safety layers to operate LMAS and
structured these into a framework. The resulting framework maps the holons into
a Holarchy (Buckhorst et al., 2021). In particular, this holarchy defines a semantic
framework in which the processes, resources, technologies, and planning steps can
be integrated as dedicated holons and related to each other via interfaces and layers,
as can be seen in Fig. 14.1.

In the contribution at hand, we detail research results and future research direc-
tions of particular holons, based on the application scenario of a truck assembly,
as visualized in Fig. 14.2. Beginning with the macroscopic level of formation
planning, Sect. 14.3 gives an overview over autonomous decision-making involving
capability-based digital shadows to realize planning of the spatial arrangement
(“formation”) of heterogeneous hardware resources in an assembly station (cf.
Fig. 14.2, upper right). This is followed by the mesoscopic level of mobile robot
control. Section 14.4 discusses different possibilities for system modeling of com-
monly utilized robotic manipulators in production lines and introduces appropriate
motion planning algorithms for such systems (cf. Fig. 14.2, bottom left). Thereafter,
the microscopic level of services, such as in-network computing, interpreting
autonomous decisions and input devices is detailed. Section 14.5 addresses the iden-
tified need for fast control algorithms by proposing the deployment of In-Network
Computing (INC) in industrial environments, hereby outlining major challenges that
need to be overcome (cf. Fig. 14.2, bottom right). Subsequently, Sect. 14.6 focuses
on extracting relevant information from images using interpretable features learned
by generative Deep Learning (DL) methods (cf. Fig. 14.2, bottom center) before

1 As defined by Van Brussel et al. (1998): “Holon: An autonomous and co-operative building block
of a manufacturing system for transforming, transporting, storing and or validating information
and physical objects. The holon consists of an information processing part and often a physical
processing part. A holon can be part of another holon.”
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Fig. 14.2 Linking research focal points for operating LMAS with research objectives from the
IoP (in blue) exemplified on a scene from a truck assembly

Sect. 14.7 addresses the question of how human-machine interfaces (HMI) should
be designed to meet the requirements of usability, production process flexibility, and
accounting for robot autonomy in the context of Human-robot collaboration (HRC)
(cf. Fig. 14.2, top left). Lastly, Sect. 14.8 presents an approach to developing an
assistance system for knowledge-based control process configuration (cf. Fig. 14.2,
far right). The research focal points of this chapter are embedded into the following
fields of research in the framework of the IoP:

• Assembly planning and control (Planning Layer, Resource Layer)
• Description models and digital twins (Technology Layer)
• Intelligent computation methods (Technology Layer, Resource Layer)

14.3 TowardModular Station-Level Control Through Formation
Planning of Mobile Robots

Reacting to ever-changing demands regarding production volumes and product mix
and production disruptions, the assembly Planning Holon (cf. Fig. 14.1) regularly
recalculates assembly station compositions and placements to execute the allocated
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assembly tasks, resulting in constantly changing assembly stations (Buckhorst et al.,
2022; Kluge-Wilkes and Schmitt, 2021a). Ideally, the Station Holon – controlling
the assembly stations’ operation as a module of the assembly – reconfigures the
station to allow for optimal assembly operation in dependence on the allocated
assembly tasks. Station Holons control a defined set of multipurpose resources (like
mobile robots or sensors) on a defined area in the assembly (the assembly station)
by allocating tasks to resources and planning the station formation (formation:
temporal-spatial layouts of mobile assembly resources in relation to each other and
their surroundings).

Present research in the field of mobile robotics mostly focuses on optimizing
control algorithms (e.g., in Sect. 14.4) for single robots or the multi-SLAM (simul-
taneous localization and mapping) problem. In both fields, the goal poses of the
robots are assumed to be known. But how are these goal poses determined in the
first place? There is a high number of possible goal poses for robots allowing the
execution of allocated tasks and accordingly a high number of station formations,
necessitating a means of evaluating formations with regard to executability of tasks
to select optimized formations. Such an evaluation as a base for formation planning
closes the gap between high-level factory planning and low-level robot control.

As a first step, a standardized form of describing resources (here: robots),
capabilities, and tasks must be found to realize an allocation of tasks to resource.
We developed the CAPability-based resource AllocatioN Ontology (CAPILANO)
to describe and match the required capabilities to execute the assembly tasks (like
screwing, transporting, or welding) with the capabilities the robots offer (Kluge-
Wilkes, 2022). The allocation in CAPILANO is based on a theoretical model of
capabilities to perform a task, the spatial executability of allocated tasks needs to be
evaluated subsequently. For an overview on evaluation criteria of executability of a
task, see Kluge-Wilkes and Schmitt (2021b). By evaluating the workspace according
to the quantity of reachable orientations by the robot flange at discrete points, a so-
called Reachability Map is generated (Dong and Trinkle, 2015). Since this method
currently only includes the reachability with regard to the robot flange and excludes
tools and equipment (Makhal and Goins, 2018), the inclusion of tool dependence
on reachability is investigated in the following.

14.3.1 Tool-Dependent Reachability Measure

To incorporate the effects of tools and equipment on the feasibility of robots in
performing a given task, we derive the reachability measure of possible robot flange
poses. Therefore, firstly, the multitude of theoretically possible robot flange poses
to perform the assembly task (visualized as yellow circle on the left of Fig. 14.3)
has to be determined. Secondly, the evaluation of the practical reachability of those
robot flange poses as a function of the current base position of the robot (visualized
as color scale on the right of Fig. 14.3) is performed and expressed in a quantitative
measure. The calculated measure depends on the Reachability Index of each of the
identified theoretical robot flange poses. The reachability measure is defined as the
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Fig. 14.3 Calculating the overlap of robot flange poses with a Reachability Map

arithmetic mean of the Reachability Index for all theoretical flange positions of the
respective task pose. In detail, the six process steps are as follows:

1. Determination of the dimensions and degrees of freedom (DoF) of the tool or
equipment (“tool parameter”),

2. Calculation of the theoretical robot flange poses based on DoFs of the tool and
tool center point goal pose,

3. Generation of the robot’s Reachability Map,
4. Overlap of the flange poses with the Reachability Map,
5. Calculation of the Reachability Index for each flange pose, and
6. Calculation of the average value of the Reachability Index.

To enhance the practicability of the process, a GUI was developed in which the
respective parameters can be specified. The calculation runs in the background
and outputs a visual representation of the evaluated workspaces as well as the
quantitative reachability measure.

The process to determine the tool-dependent reachability measure is validated on
a UR10, which is equipped with a screwdriver as a tool. Following Dong and Trinkle
(2015), the Reachability Map of the UR10 is generated. The set of possible robot
flange poses is calculated for a screwdriver with one degree of freedom, resulting
in a circular arrangement of robot flange poses, in which the screwdriver’s tool
center point would reach the goal pose (visualized as yellow circle on the left of
Fig. 14.3). Each of the flange poses is assigned to the Euclidean closest value of the
Reachability Map.

14.3.2 Outlook

Formation planning in assembly stations aims at the capability-based allocation
of tasks to resources and the initiation of a spatial formation of all resources. As
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summarized above, we developed a description model, implemented a capability-
based task allocation, and included an evaluation of task executability in the
environment of the robot. Pending is the derivation of base placements of the robots
in dependence on the executability of the allocated tasks to derive a formation. The
goal is to transfer the finalized formation (consisting of allocated assembly poses,
robots, and base placements) to the next module of motion planning, as presented
in Sect. 14.4.

14.4 Consensus and Coordination in Sensor-Robot Network

Due to their large workspace and high manipulation capabilities, open-chain robotic
manipulators with high DoF (e.g., six DoF for static manipulation tasks or nine DoF
for mobile manipulation) are commonly used in assembly. Therefore, the Robot
Holon and its Sensor Holons are central parts of the Resource Layer of our holarchy
introduced in Fig. 14.1. The interaction of these holons with the Process Holon of
the Process Layer controls the automated execution of operation in LMAS.

Taking the previous task allocation and base placement of robots in Sect. 14.3
as an input follows the motion planning of the robot to execute the allocated tasks.
Although deciding on the appropriate motion is natural for human workers involved
in the assembly process, it can be challenging for automating robotic systems.
Robotic systems should be able to adapt their motions to ongoing changes in
the assembly, developing a natural behavior, i.e., creating a safe and predictable
environment for their human “counterparts.” For reliable motion planning and
motion control algorithms, we must consider the changes of the environment.
Robotic manipulators utilized in collaborative environments should be able to
employ online motion planning, i.e., the manipulators should be able to quickly
react to changes of the environment. This leads to the development of the real-
time-capable response behavior of the systems of a LMAS.

In this context, powerful algorithms have been developed for various aspects of
continuous and discrete planning, for instance, by Biagiotti and Melchiorri (2008),
LaValle (2006), and Lindemann and LaValle (2005). Most of these motion planners
are developed for robotic systems with low-dimensional configuration spaces, e.g.,
planar systems, or mobile robotic platforms. Open-chain robotic manipulators,
however, are normally of high (generally at least six) DoF, to handle the tasks
defined in the six DoFs of the real environments. Thus, the applicability of these
algorithms in dynamic environments, such as LMAS, is rather limited.

14.4.1 SystemModeling

The main hurdle in developing algorithms that enable the integration of open-
chain robotic manipulators in LMAS, i.e., the motion planning algorithms that
enable quick responses to changes in the robot’s environment, is system modeling.
The conventional modeling procedure of the 6D Task space (T -space) of robot
manipulators exhibits representation singularities, i.e., the representation of the
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orientation in some combinations of the EULER angles leads to ambiguities, so that
a unique derivation of the initial combination of the angles is not possible, which
hinders the planning of a unique path. To enable the motion planning for robot
manipulators with online properties, i.e., to react to changes in the environment
during planning, it is advisable to use singularity-free modeling approaches for
the systems, e.g., the modeling approaches based on LIE theoretic conventions as
introduced by Müller (2018) and Lynch and Park (2017) or developed over the
ring of dual quaternions by Shahidi et al. (2020). This type of system modeling
not only enables a compact and singularity-free modeling of the systems in the
T -space of the robotic manipulators but also results in a lower memory footprint for
the calculation of the motion.

14.4.2 Motion Planning Algorithms

An optimal system modeling will only partially address the problem of online
motion planning for open-chain robotic manipulators. The majority of the motion
planning algorithms are either developed in the C-space of the systems or for
systems that have similar C-space and T -space, such as non-holonomic mobile
robotic systems, like the one presented in LaValle (2006) and Koenig and Likhachev
(2005). However, the C-space and the T -space of the robotic manipulators are
basically of different cardinalities. Moreover, the forward kinematics function for
open-chain robotic manipulators is a non-injective surjective function. These facts
are not taken into account when the sampling process for the sampling-based
planning algorithms is performed in the C-space of the system as is common in state
of the art. Hence, the direct adaptation of the successfully developed algorithms
for dynamic environments, e.g., by Koenig and Likhachev (2002), to open-chain
robotic manipulators is only possible to a very limited extent. In recent research
by Shahidi et al. (2022), we have developed a novel algorithm that combines the
information from the C-space and T -space of the open-chain robotic manipulators
and prepared an optimal structure of a graph, dubbed kinematic graph, to be
utilized in the sampling-based planning algorithms. In the proposed algorithm,
it is possible to employ the cost and heuristic functions from both spaces and
facilitate an optimal motion planning within different aspects. Figure 14.4 illustrates
qualitatively different configuration motions generated by the developed motion
planner for a simple two DoF mechanism. It can be observed that the motion of
the mechanism seems more natural, when the manipulability of the mechanism
is considered in the cost and heuristic functions in the planning process. Note
that the computation of the heuristics based on the C-space information demands
the knowledge of the configuration of the mechanism at the goal posture; hence,
the inverse kinematics function should be performed. This can be problematic due
to the non-injective surjective behavior of the forward kinematics function, i.e.,
multiple answer possibilities for the inverse kinematics function. The case where
both the cost and heuristic function rely on the C-space information only is presented
for demonstration purpose.
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Fig. 14.4 Motion of a two DoF mechanism based on different cost and heuristic functions that are
considered in the motion planning problem. The trace of the end-effector of the mechanism and the
configuration of the mechanism evolve from light blue to gray. (a) cost function: the EUCLIDEAN

distance in the T -space; heuristic function: the EUCLIDEAN distance in the T -space. (b) cost
function: the EUCLIDEAN distance in the C-space; heuristic function: the Euclidean distance in the
C-space. (c) cost function: the combination of the EUCLIDEAN distance in the T -space and the
manipulability of the mechanism; heuristic function: the combination of the EUCLIDEAN distance
in the T -space and the manipulability of the mechanism. (d) cost function: the combination
of the EUCLIDEAN distance in the C-space and the manipulability of the mechanism; heuristic
function: the combination of the EUCLIDEAN distance in the C-space and the manipulability of the
mechanism

Finally, a fast and time-efficient control scheme can be used to close the loop
of system modeling, motion planning, and control and complete the online motion
planning for the robotic systems (Shahidi et al., 2020).With the approaches of online
motion planning and control in combination with a real-time vision system, the
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planning of the motion for the robotic systems in assembly can be carried out taking
into account high safety and efficiency requirements. However, latencies arising
during the compute process can still negatively impact the performance of the
control algorithms, e.g., if control signals arrive too late at the robotic manipulators.
Reducing the response times is thus a crucial aspect which can be achieved by
choosing suitable compute locations close to the system, thus decreasing latency.
In the following, we focus on how compute locations in the network might help.

14.5 Leveraging Distributed Computing Resources in the
Network

Modern shop floors can leverage a multitude of distributed computing resources,
ranging from on-premise (edge) deployments to remote cloud services. Choosing
the best option from this spectrum critically depends on the concrete process
requirements. For the aforementioned robot motion control (cf. Sect. 14.4), e.g.,
low response times are of highest importance as control signals arriving too late
might present a danger to the safe working environment of the human workers.
Consequently, motion control algorithms are best executed as close to the controlled
robots as possible or even directly on them. However, computational capabilities in
edge deployments are typically limited. Additionally, large volumes of informa-
tion could be leveraged to influence the control decisions, ranging from data of
sensors directly mounted on the robots to stationary sensors monitoring the work
environments, such as optical sensors (cf. Sect. 14.6). In most cases, processing all
available information on the robots themselves is not feasible due to their limited
compute capacities. Similarly, sending all sensor information to central computing
resources can be prohibitive, either in terms of too high communication latencies or
in terms of data volumes that could overload the network. As a middle ground, a
growing branch of research explores deploying sensible control functionality onto
networking devices which can process high data volumes of several Tbps at sub-
millisecond latencies. This in-network control can potentially provide the desired
real-time-capable response behavior for robot control and LMAS in general.

14.5.1 Laying the Groundwork for In-Network Control

In-Network Computing (INC) has been enabled by latest innovations in networking
technologies (Sapio et al., 2017). In particular, networking hardware can now
be programmed using domain-specific languages, such as P4 (Bosshart et al.,
2014), allowing for highly customizable data processing and filtering directly
on the networking hardware. In the context of these advances, the possibility
of deploying control functionality into the network has already been studied.
For example, we have shown that offloading simple linear-quadratic regulator
(LQR) controllers to networking devices can have benefits in settings with higher
latencies (Rüth et al., 2018). Similarly, Cesen et al. (2020) show that deploying
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latency-critical tasks on networking hardware can improve reaction times of robot
control scenarios compared to pure remote control. In addition to these direct
applications to control tasks, we have focused on providing crucial building blocks
for INC applications and control algorithms in general. In particular, we have
demonstrated that simple image processing methods (Glebke et al., 2019), data
transformation techniques (Kunze et al., 2021a), as well as signal phase detection
and dynamic data pre-processing (Kunze et al., 2021b) are possible using INC.
These results showcase the potential of INC, further diversifying the distributed
computing resource landscape existing today. Thus, INC constitutes one part of our
Technology Layer (cf. Fig. 14.1).

However, the direct applicability of these approaches to existing architectures,
e.g., realistic robot control scenarios using the Robot Operating System (ROS),
is questionable: In our work, we mostly rely on the User Datagram Protocol
(UDP) and provide custom-tailored solutions, while Cesen et al. implicitly intercept
ongoing Transmission Control Protocol (TCP) connections and perform opaque
operations in the network that the central controller is not aware of. Whether this
behavior is an acceptable practice and how INC should interact with transport
protocols in general is still part of ongoing discussions (Kunze et al., 2021c). Similar
questions also arise for many of the other related approaches that initially focused on
identifying sensible application areas for INC (cf. Hauser et al. 2021). With growing
maturity, research on in-network control and INC in general is shifting toward the
development of frameworks that allow for the seamless integration into existing
architectures, addressing some of the concerns raised above as well as additional
criteria that we have collected (Kunze et al., 2022).

14.5.2 Toward Deployable In-Network Control

The fundamental challenge of using INC for control tasks in existing frameworks
is the integration into today’s transport protocols. These protocols establish end-to-
end connectivity between the devices, but typically expect the network to deliver
packets without modifications (Kunze et al., 2021c). INC violates this assumption
and is thus not directly compatible with many of the connection-oriented transport
protocols, such as TCP (Stephens et al., 2021). While connectionless protocols,
such as UDP, often allow for the desired changes to the packets, these approaches
currently require manually defining the semantics of the INC operations and a
corresponding manual adaptation of the application logic. Hence, deployment on
larger scales is far from trivial. Consequently, there is a need for general frameworks
that define standard interactions with INC functionality and, especially, how this
functionality can be included in the transport protocol semantics.

Moving toward this goal, we envision to implement ROS-based control func-
tionality using INC while respecting the semantics of existing transport protocols.
In this context, it is important to note that ROS communication by default uses TCP,
while a module providing UDP connectivity is not well maintained. Thus, currently,
INC-tolerant transport protocols are not yet available. Possible solutions are either
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using a novel, message-oriented protocol that is specifically designed for use with
INC (Stephens et al., 2021) or adapting existing message-oriented protocols, such
as UDP or the Stream Control Transmission Protocol (SCTP), for use in ROS with
INC. Enabling this critical component for ROS-based communication will be key
for deployment-ready robot control scenarios that leverage INC, e.g., for faster
image processing (Glebke et al., 2019) to localize the robot in the shop floor.

While this concrete example will likely benefit from the significantly reduced
processing times, other components of our overall system are far less latency-
sensitive. For example, the aforementioned optical sensors cannot only be used
for robot control, but also for monitoring and assuring the quality of assembled or
produced components. In these settings, deployments that capitalize on INC are thus
not required, and the respective approaches can also be deployed on other compute
resources, consequently leveraging higher program complexity, as we will discuss
next.

14.6 Trustworthy Vision Solutions Through Interpretable AI

As outlined in Sect. 14.4, resources such as mobile robots need to react appropriately
to expected and unexpected events and must therefore understand and interpret
their environment in context-aware real time. While Sect. 14.5 concentrates on
the infrastructural requirements to take data-driven decisions in time, this section
addresses the Technology Layer of the underlying holarchy of LMAS (cf. Fig. 14.1)
by investigating how to intelligently extract the relevant pieces of information from
the image or video data acquired from optical sensor systems.

Vision sensors, such as cameras or triangulation sensors, are often used to acquire
a precise digital representation of a resource’s proximity or performing a quality
control of assembled parts. Analyzing large amounts of images or point clouds and
extracting the relevant pieces of information to make decisions is challenging due
to the complexity of LMAS scenarios. Deep Learning (DL) promises to solve these
obstacles by a rich set of data-driven tools and techniques, many of which were
successfully employed in the field of autonomous driving and operation of resources
(Grigorescu et al., 2020). These methods, however, usually operate as black box
models. For this reason, the underlying criteria of decisions made by these models
remain unknown; thus, the inverse direction of assessing the actual properties of the
input that caused a certain decision is not comprehensible. This leads to a general
level of mistrust in decisions made by DL models and makes them inapplicable for
an autonomous operation as required in LMAS.

14.6.1 Interpretable Machine-Learned Features Using Generative
Deep Learning

The interpretation and explanation of DL models is an active field of fundamental
research in machine learning (Fan et al., 2021; Selvaraju et al., 2017). Current
industrial settings mainly use discriminative DL models that assign a decision
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boundary to a given dataset .X to divide new samples into a set of classes .Y.
Generative DL models approximate the distribution of the data .pX (x) by means
of a function .Gθ : Z → X that maps from a latent space .Z to observation space
.X. The function is thereby modeled by a neural network with parameters .θ which
are inferred during training the model. After training, the generative model can be
used to synthesize samples that possess the characteristics of real data samples and
present an attempt to improve the interpretation of DL models. The properties of a
latent vector .z ∈ Z and the effect of translations .z′ = αz + β, with .z, β ∈ Z and
.α ∈ R, can be visualized by generating the corresponding image with the generative
model. By this, latent space can be interpreted by means of characteristics of the
data.

Style-based Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Karras et al., 2021) learn disentangled factors of variation .z ∈ Z allowing for
the control of distinct characteristics of synthesized data samples, which leads
to a higher level of interpretability of the machine-learned features. By adding a
GAN inversion mechanism to the generative model, such as a dedicated encoder
network mirroring the generation process as in the Adversarial Latent Autoencoder
(ALAE) Framework (Pidhorskyi et al., 2020), real samples can be projected into
the interpreted feature space, which allows for the assessment of the characteristics
of these embedded samples. Through this procedure, .Z can be used, e.g., to
interpret the properties that cause a certain decision by visualizing a corresponding
counterfactual example (Lang et al., 2021).

14.6.2 Initial Implementation on a Synthetic Dataset

To investigate whether machine-learned features from generative models can be
identified and associated with human-understandable image properties, we created
an artificial image dataset containing 10,000 white, centered ellipses on a black
background for this study. The ellipses are fully characterized by three quantities:
major axis length MA, minor axis length ma, and rotational angle .φ. An ALAE
with a style-based GAN was implemented using Python 3.8.5 and the PyTorch
v1.8 framework following the code provided by Pidhorskyi et al. (2020). We have
implemented and applied this framework including a more detailed justification for
metrology applications in Schmitt et al. (2022). In this study, the model was trained
up to a resolution of .32×32 pixels. By sampling random vectors in the disentangled
latent space .W, images of ellipses can be generated and confirm that the model is
able to learn the data manifold (cf. Fig. 14.5 top left). To investigate whether the
encoder network maintains the properties of the ellipses, we passed images through
the encoder and reconstructed them utilizing the generator (cf. Fig. 14.5 top right).
The reconstructed ellipses resemble the properties of the input ellipse, however
leading to slightly blurred edges. One possible reason for this behavior might be
that style-based GANs (that is used as generator network for ALAE) apply moving
average filtering during training, which attenuate high-frequency components in the
image. To identify latent variables .ξi corresponding to properties of the ellipses, we
randomly sampled 1000 vectors .z ∈ Z and applied a principal component analysis
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Fig. 14.5 Results of a preliminary toy implementation on a dataset of synthetic ellipses

(PCA) according to the procedure proposed in Härkönen et al. (2020). Figure 14.5
(bottom) depicts the effect of embedding an ellipse into .Z and observing the effect
of the two components .ξ1 and .ξ3. The first principal component corresponds to a
change of the area of the ellipse, while the third principal component represents a
contraction and rotation of the ellipse.

The initial implementation evaluated on the synthetic ellipse dataset indicates
that unsupervised methods such as PCA can be used to identify relevant char-
acteristics of the data in the disentangled latent spaces of style-based GANs. As
presented in Schmitt et al. (2022), the method is also capable of extracting interest-
ing characteristics from industrial image datasets. These identified characteristics
in combination with the generative capabilities can be used in the Internet of
Production to support humans, e.g., by providing them with explanatory images
for the decision of an autonomous agents, such as those employed in LMAS.

14.7 Multipurpose Input Device for Human-Robot
Collaboration

Due to the combination of the growing number of robots in the industry worldwide
(International Federation of Robotics (IFR), 2018) and the increasing collaboration
between humans and machines (Matheson et al., 2019), the work environment
changes: The assembly of the future will be shaped by

1. Robots with high levels of autonomy – enabled by technologies such as presented
in Sects. 14.3, 14.4, 14.5, 14.6 – and

2. Human-robot collaboration (HRC) in areas where human work is irreplaceable.
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Understanding the behavior of machines – e.g., through explainable AI (cf.
Sect. 14.6) – is an important factor for the acceptance of machines in HRC by
humans.

Krupitzer et al. (2020) provide an overview of the state of the art of human-
machine interfaces (HMI) in the Industry 4.0 domain. Where the workspaces of
human and machine are merging, new, more flexible, and ergonomic operating
concepts for machines are necessary. With the increasing number of (different)
machines in combination with their growing range of functions utilized in pro-
duction, a new generation of input devices is needed that enables operators to
control different machines – if necessary also simultaneously. The resulting HMI
allows the Human Holon (cf. Fig. 14.1) to communicate with other holons of the
assembly station, namely, Robot Holon, Sensor Holon, and Product Holon. Applied
to the LMAS, such an HMI enables the integration of a human worker: When
a station is formed at where a worker is to perform tasks, all robots and tools
can be accessed ergonomically and seamlessly without media discontinuity. The
overarching research question to be answered is how an HMI can be designed to
allow a human to operate several different types of machines focusing on

1. Usability,
2. Workload, and
3. Safety.

14.7.1 Application, Implementation, and Result

The assembly of a truck is chosen as an application scenario: An overhead crane
carries the drive train and an Autonomous Guided Vehicle (AGV) provides the
vehicle frame onto which the drive train is to be mounted. A robot arm assists with
the positioning. Currently, each machine is operated by one worker and an additional
worker supervises, secures, and instructs. For Future Assembly a multipurpose input
device shall be developed, enabling a single worker to handle all listed tasks.

There are two perspectives to this problem:

1. From the technical point of view, the components to be assembled are large and
heavy and move dynamically. Therefore, the handling is nontrivial.

2. From an ergonomic point of view, time pressure as well as the rapid and frequent
changes between different parallel tasks (multitasking) is exhausting for humans.
This leads to fatigue, which can cause errors. The challenge is therefore to
maintain situational awareness and to keep – especially the cognitive – workload
in an optimal range.

The goal is to develop an input device that enables a single operator to control
these different machines (overhead crane, AGV, and robotic arm) without or with
little training. Another aspect is to use available data to assist the operator in
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Fig. 14.6 Schematic design of the multipurpose input device

performing the task and to provide information to the operator. This includes
consideration of not only the technical but also the human factor.

VDI 2221 was chosen as the design methodology. The detailed design procedure
is described in Baier et al. (2022).

Figure 14.6 shows schematically how the input device for simultaneously
controlling different machines is designed. A prototype of the input device is in
the making: The design features a lightweight and wireless wearable. This allows
the operator to move freely during the process and relative to the machines, as a
distinct advantage during HRC. The input device functions as HMI as a dedicated
intermediate layer between the human and machine domains. Mechanical inputs
– in the form of movements or button presses – are received from the operator,
are processed on the device, and are sent to the control unit via Wi-Fi. This is
implemented in the form of a 3-axis acceleration sensor and a 3-axis gyroscope,
which enables the device to control 6 DoF. In addition, there is a touch-sensitive
element on each finger.

Interaction concept Few commands are sufficient for operation, which is why the
interaction concept provides for comparatively simple control with hand movements
and gestures. A decisive factor for the safety of the control system is error
robustness, so that unintentional inputs are not implemented or at least do not
cause any damage. Thus, inputs can only be made when a certain touch element
is touched, which also doubles as a dead man’s switch. As mentioned before, inputs
are evaluated depending on the context and interpreted as commands or discarded.
For this purpose, the input device first detects the movements and then processes
these signals into inputs. Depending on the machine currently being controlled, valid
commands are recognized from these inputs by matching the recognized pattern
with the command set stored for the machine in advance. In addition, assistance
systems based on the digital shadow are designed to increase safety.

14.7.2 Outlook

Simulation studies First, pre-studies will be conducted in the simulator to determine
optimal settings for the device. This will be followed by further simulation studies
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of usability and performance for abstract tasks, and the simulated use case will be
investigated. The outcomes will be validated by a physical laboratory study on an
AGV with a manipulator.

Use of the digital shadow To keep the (cognitive) workload for the operator low, an
assistance system will be created to support the operator by automating tasks that
do not require human intervention. Digital shadows of previous assembly operations
will be used as a source of information. For example, an automated system could
automatically follow previous trajectories in noncritical areas to free the operator
from this task or, as a safety measure, compare the current trajectory with previous
trajectories and warn the operator if the deviation is too large. Behavior trees are to
be used as data structure for this modeling, since they can represent process steps
both discretely and simultaneously.

Section 14.8 is focused on the support of the user by the system as well. All
relevant information is presented to the user through an interface. This information
is collected and processed from various sources using an ontology.

14.8 Ontology-Based KnowledgeManagement in Process
Configuration

Another challenge of human machine collaboration is creating a unified under-
standing of the existing relationships of process parameters. In complex assembly
systems, like LMAS, where the number of process parameters is high, there
is no trivial solution for understanding process relationships and dependencies.
Accounting for this, the Model Composition domain in the Technology Layer of
the Future Assembly Holarchy (cf. Fig. 14.1) can be achieved by ontology-based
knowledge management. To demonstrate the benefit of knowledge-based assistance
systems in LMAS, we modeled the influence parameters of the side window
assembly in automotive body assembly, where industrial robots are being used
for adhesive application. The quality of the application is crucial for the stability
of the subsequent bonding and depends on a number of adhesive and process
parameters, such as flowability, bead cross-section, travel, and adhesive exit speed.
Correct adjustment of the process parameters requires precise knowledge of the
complex relationships between the process and adhesive parameters and their effect
on upstream and downstream process steps. Thus, it is difficult for the operator to
find solutions for suitable control parameters in the event of a process change.

Semantic technologies offer great potential for solving two main challenges of
process parameter configuration (Lipp and Schilling, 2020; Sahlab et al., 2021):
on the one hand, to create a complete system knowledge base including expert
knowledge and, on the other hand, to assist in the search for configuration solutions.
Due to a graph structure consisting of a large number of connected nodes or data
points, ontologies enable a more flexible modeling of existing data relationships
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than tabular databases or hierarchical class diagrams. The set of nodes can be
expanded as desired, which allows the networking of individual data domains to be
modeled and the integration of existing expert knowledge. Furthermore, concepts
of graph theory are particularly well-suited for solving optimization problems in
which pairs of objects are related (Dengel, 2012). Moreover, ontologies can be based
on already existing data management systems, so that no complete remodeling of
existing data is necessary (ontology-based data access, OBDA).

14.8.1 Concept and Implementation

An ontology-based configuration tool can consolidate already existing product and
process information, expand it with expert knowledge, and uncover new knowledge
connections by creating new relationships between the data points of distributed
process data resources such as data models and control units. The generated
knowledge base can be used as the basis for assistance solutions to optimize
process configuration and, thus, shorten the planning and configuration time. This
contribution presents an approach to develop an assistance system for knowledge-
based control process configuration.

Figure 14.7 shows the intended approach for designing an assistance system for
knowledge-based control process configuration. An essential aspect of the approach
is the conception of the knowledge management system.

Based on the specific process requirement description, we carry out the model
specification of the knowledge management system (A). For this purpose, we
analyze existing approaches for semantic modeling of robot-based processes, such

Fig. 14.7 Concept of an assistance system for knowledge-based control process configuration
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as CORA (Core Ontology for Robotics and Automation), MARCO (Manufacturing
Resource Capability Ontology), and SUMO (Suggested Upper Merged Ontology)
and use them as a system basis (Brecher et al., 2021; Prestes, 2013). Subsequently,
we examine the connection possibilities of the system to process-internal data
sources (B and C). Of great importance is the evaluation of the integration possi-
bilities of the developed process interface with the OPC UA information models
of the assembly process (B). OPC UA is considered, because it is one of the most
widespread communication protocols in production technology. Ontologies based
on the Web Ontology Language (OWL) standard can provide formal semantics and
better search functionality compared to OPC UA models (Schiekofer and Weyrich,
2019); thus, we consider a transformation of OPC UA information models to the
ontology-based knowledge management system. Subsequently, we examine the
connection of the knowledge management system to already existing control logic
or process chains (C). Furthermore, the integration of existing expert knowledge in
the form of machine-readable, interpretable metadata into knowledge management
system is in the focus of consideration (D). Finally, we conceive a possibility for
integrating the knowledge management system into a future overarching semantic
network of the IoP (F). This is achieved by designing of a communication possibility
between ontologies of different abstraction levels through a bridge concept between
domain and application ontologies.

The aggregation of data from process control, information models, and
experience-based knowledge across assembly systems opens up new potential
for optimizing assembly process control, which could not be exploited until now
due to the lack of networking of relevant data sources and semantic expressiveness
of existing information. In particular, the use of methods of graph theory and
operations research (OR) opens up new possibilities. Therefore, different methods
can be applied to the use case of robot-based adhesive process described above,
such as, e.g., mixed-integer linear optimisation (MILP) and machine learning
methods (E).

Based on the described architecture, we created a system that simplifies the
solution search for suitable industrial parameters for a programmer. The system
initially includes the following functionalities: suggestions for time optimization,
help in changing the adhesive to be used, and troubleshooting. The functionality
of the assistance system will be briefly presented using the example of time
optimization. The ontology based on CORA concepts is used as a basis for finding
the data, which reveals their interrelationships, e.g., those between the individual
process variables such as pump output and adhesive density. Real process data such
as trajectory values are saved, filtered, and stored in an SQL database. The ontology
can access the database of actual values using the OBDA approach (R2RML),
turning it into a knowledge graph. The resulting knowledge graph is then used as a
guide for the optimization algorithm (parallel machine scheduling), which detects
optimization potential in terms of process time. If optimization potential exists, the
assistance system suggests the process variables that need to be adjusted to achieve
this potential, e.g., the speed of the robot.
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14.8.2 Summary and Outlook

In summary, semantic technologies, such as ontologies, represent a promising
approach to knowledge-based assistance for process configuration of robot-based
assembly processes, which can integrate existing expert knowledge and transfer
already existing knowledge sources such as information models and flow logic
structures. In the further course of the research, we will identify and evaluate
further optimization algorithms describing the assistance performance of the system.
Subsequently, we will use these algorithms to expand the assistance performance
of the developed system with additional functionalities. Moreover, we will create
methodologies for an efficient transformation of common data exchange formats to
a knowledge graph format.

14.9 Conclusion

We present services and concepts for modular control enhancing the future operation
of lineless, mobile assembly, based on a previously developed system architecture.
We contribute the following research focal points through applying and extending
principles of the Internet of Production (IoP) in lineless mobile assembly systems
(LMAS):

Closing the gap between high-level scheduling and low-level robotics control,
we introduce measures for the modular formation planning for mobile robots
in assembly stations. Based on the resulting formation, consisting of robot base
placement and task allocation, the robot motion planning to execute those tasks is
carried out. Firstly, we have developed a compact and representational singularity-
free modeling for the robotic manipulators that enables the use of fast motion control
strategies. Secondly, we have developed the structure of a novel graph specifically
designed for open-chain robotic manipulators to enable the effective implementation
of the sampling-based scheduling algorithms using heuristic functions. There is a lot
of potential in previously unused networking resources that can now be leveraged
using INC, to, e.g., compute the motion planning. Their application to existing
communication scenarios, however, requires new transport protocol solutions that
do not break when subject to INC. Similarly, novel methods based on generative
deep learning might help to visualize and explain the decisions of neural networks
and, thus, increase the level of autonomy of resources in LMAS. In work systems
of future industrial assembly, human work will take place in the context of Human-
robot collaboration. We have presented an approach to enhance safety, ergonomics,
and workload reduction in HRC based on a HMI that allows different machines to be
controlled flexibly and as needed. We introduced semantic technologies (ontologies)
as a promising approach for knowledge-based assistance solutions to automatically
configure robot-based assembly processes.

In future work, we plan to deepen the knowledge of the research focal points
as well as further integrate research labs, engineering, and production sites into a
combined demonstrator, following the principle of the World Wide Lab.
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Abstract

The volatility of today’s markets is constantly rising due to, i.e., the rapid
emergence of new and innovative competitors, changing government policies,
and unknown market acceptance. This affects both short-term and long-term pro-
duction management. While short-term production management must deal with a
higher time sensitivity of decisions, long-term production management must deal
with an increasing level of uncertainty in decisions. Thus, to stay competitive
in the future, short-term production management must especially increase the
implementation speed of decision, whereas long-term production management
focuses on the improvement of decision quality in uncertain environments.
Therefore, the Internet of Production (IoP) develops data-based decision support
methods for both short-term and long-term production management, which are
presented in this chapter. For short-term production management, data-based
decision support methods are presented for quality control loops, production
planning and control, as well as production system configuration. For long-
term production management, methods are presented for factory planning, global
supply chain management, and production network planning.

15.1 Introduction

More and more aspects of our lives are consciously or unconsciously captured and
stored by data. This is especially true in production. According to IBM, a modern
factory generates 1 TB of data per day (IBM 2022). At the same time, data modeling
methods, for example, based on artificial intelligence, are becoming increasingly
powerful. The combination of both aspects makes it obvious to use data-driven
modeling methods in production in order to support decision-making processes with
“what-if” analyses (acatech 2021).

The applied decision support methods depend on the level of production
management, which can generally be divided into two categories: short-term
and long-term production management (cf. Figure 15.1). Short-term production
management includes all operational processes on a machine and shop floor level
and must especially deal with a high volatility of the environment.

Long-term production management includes processes on the level of the whole
factory as well as a worldwide production network with several locations and must
mainly conquer the high uncertainty of the environment. The different expressions
of volatility and uncertainty influence the decision support methods being applied
in short- and long-term production management (Ivanov 2018).

To quickly compensate for disturbances within the production system, time
sensitiveness of decisions is decisive, which is why the decision support methods
in short-term production management aim to significantly increase decision and
implementation speed. To deal with the high level of uncertainty within the
production system, decision support methods in long-term production management
aim to maximize decision quality.



15 Methods and Limits of Data-Based Decision Support in Production Management 333

Fig. 15.1 Time sensitivity and uncertainty of decisions in short-term and long-term production
management

This chapter presents data-based methods to support decision-making in pro-
duction management while dealing with time sensitiveness and uncertainty. These
methods are developed on the basis of six use cases, as shown in Fig. 15.1.
Thereby, decision support is realized with so-called applications (apps) focusing
on the information need of decision-makers in production. The following sections
present these applications. Section 15.2 focuses on short-term production and thus
on increasing decision and implementation speed. Section 15.3 focuses on long-term
production and how to increase decision quality.

15.2 Increasing Decision and Implementation Speed
in Short-Term ProductionManagement

The volatility of today’s markets is constantly rising due to the rapid emergence of
new and innovative competitors, changing government policies, as well as unknown
market acceptance – to only mention some factors. Therefore, production is more
and more characterized by shorter product lifecycles, increased individualization,
and disruptive technological changes (Schlegel et al. 2018). The tasks of short-
term production management thereby include, i.e., occupancy planning, resource
monitoring, quality control, and order scheduling. Thus, short-term production
management must secure that change requests or disruptions on the shop floor (e.g.,
machine failure) are compensated via appropriate control loops. A quick response
to changing circumstances and requirements is crucial to achieving corporate goals.
Consequently, the ability of short-term production management to carry out process
adjustments efficiently is of particular importance (Petschow et al. 2014).
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Fig. 15.2 Potential efficiency enhancement by reducing latencies in short-term production man-
agement

A key requirement for efficient process adjustments is the reduction of the overall
latency between the occurrence of an event and the implementation of the derived
corrective measures. The lower the overall latency, the higher the value creation of
production, as shown in Fig. 15.2 (Zur Muehlen and Shapiro 2015; Kiesel 2022).
Overall latency is composed of four delay times: data transfer latency, data analysis
latency, decision-making latency, and implementation latency. Data transfer latency
refers to the timespan between the occurrence of the event and the moment when
data is available for analysis. Data analysis latency is the time of initiating the
analysis, packaging its results, and delivering them to the appropriate system.
Decision-making latency is the period the system records this information and
takes a decision. Implementation latency describes the time between the decision
and the execution of the corresponding measure (Hackathorn 2002; Kemper et al.
2010; Sejdic 2019). Thus, to pursue the goal of overall latency reduction, the four
presented sub-latencies must be reduced.

In order to compensate disturbances within the production system as well as
to implement changes with the minimum latency possible, the concept of self-
learning production systems is further developed within the Internet of Production
(IoP) (Brecher et al. 2017). Within this concept, the availability of real-time shop
floor data and machine learning algorithms enables process models to learn from
historic process data. This in turn enables the prediction of product quality as
well as the adaption of production processes accordingly (Lee et al. 2014). To
further develop the concept of self-learning production systems, the IoP pursues
three main objectives. First, IoP develops data-driven methods (e.g., in the field
of process mining) that enable self-learning production systems to learn from
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historic process data and events and make autonomous decisions (van der Aalst
et al. 2020). Second, IoP drastically minimizes data and analysis latencies through
the integration of continuous cross-domain data access and the development and
combination of diagnostic, predictive, and prescriptive analytics models. Third,
IoP reduces decision and implementation latencies by means of an appropriate
collaboration of autonomous processes and model-based decision support as well
as the implementation of suitable measures in the production system.

With these three objectives, IoP increases productivity by reducing the impact
of volatile environments on a steady production system. IoP furthermore masters
quick change requests by decreasing the period of time which is required to bring
the production system back into a steady state after process adjustments.

To better understand both the objectives of IoP and their impact on short-
term production management, three applications are presented in the following.
Table 15.1 shows their overall goal and their contribution regarding IoP’s purpose.

15.2.1 Predictive Quality (Quality Control Loops)

Manufacturing processes have become significantly more complex in the past years
due to the ongoing digitalization and interconnection of systems. Early defect
detection in interlinked production steps offers the chance to reject affected parts
at an early stage of the production process so that costs and efforts for dispensable
further processing can be avoided.

Within the IoP, early defect detection is realized by predictive defect models. It
enables companies to identify problems in process and product quality at an early
stage of production by providing the employees with the information they need

Table 15.1 Exemplary applications for short-term production management and their purpose
within the IoP

Application (use case) Application goal

Data-driven
method
development

Data and
analysis
latency
reduction

Decision
and imple-
mentation
latency
reduction

Predictive Quality
(Quality Control Loops)

Prediction of defect
occurrence in production in
early stages based on
machine and inspection
data

x x

Short-Term Production
Planning and Control

Optimization of production
planning and control using
feedback data

x x

Parameter Prediction
(Production System
Configuration)

Prediction of machine
settings based on specific
input data

x x
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to enable data-driven decision support via the application. The models consist of
machine and inspection data being interlinked with the process variables that have
an influence on defect occurrence.

To develop the predictive defect models coping with the requirements of time
sensitiveness of decisions, a flexible process-independent meta-model for produc-
tion data is developed. This model is the basis for the development of data-driven
methods. Based on the context provided by the meta-model, automated machine
learning (AutoML) methods for pre-processing and analysis of production data are
developed. By automating the ML pipeline, AutoML significantly reduces data and
analysis latencies (Schmitt et al. 2021).

15.2.2 Short-Term Production Planning and Control

Production planning and control (PPC) is a highly complex task in job shop
production. Companies often struggle an economically beneficial operation strategy
in the polylemma of short lead times, low working capital, high utilization, and high
adherence to delivery dates. To tackle this polylemma, IoP uses feedback data for
an optimization of PPC tasks (Schuh et al. 2020).

Therefore, IoP focuses on the development of a reinforcement learning agent
that uses realistic simulation models of a job shop production for learning and
optimizing the task of order release. The simulation model allows an instant reaction
to production disturbances via order rescheduling, rerouting, and changing of dis-
patching rules. Thus, considering current production goals, production utilizations
are aligned and optimized. The simulation model is generalized over different types
of production (e.g., mass customization, craft production, batch production) using
transfer learning.

Besides the development of data-driven methods using reinforcement and trans-
fer learning, the app especially enables a reduction of decision and implementation
latencies by an autonomous decision preparation based on digital shadows.

15.2.3 Parameter Prediction (Production System Configuration)

In several industries, e.g., the textile industry and plastics production, to date,
manual process and machine adjustments are the norms rather than the exception.
Thereby, the correct setting of the machine depends on many different parameters
and often requires knowledge of an experienced engineer (Müller et al. 2023). To
become less dependent on expert knowledge of these engineers and shorten the
machine setting duration, the goal of this app is to predict machine settings based
on specific process data, especially quality parameters.

To do so, a holistic machine learning model is created within the IoP. It is
based on reverse neural networks (RNN). Based on historical or synthetically
generated data, the RNN identifies correlations between process parameters and
part quality and then calculates process parameters that can be used to produce
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the desired component with the required properties. This facilitates the induction
of new employees in industries dependent on expert knowledge and at the same
time objectifies existing domain knowledge. Furthermore, a prioritization between
the target parameters of a production system is provided. If, for example, energy
consumption is a priority and fast processing is negligible, these specifications
can be implemented as an optimization problem and adapted recommendations
issued (Müller et al. 2022). Besides the development of predictive models, this app
increases the decision as well as implementation speed in production, as parameters
are objective and no further decision is required by the machine operator.

15.3 Decision Quality Enhancement in Long-Term Production
Management

Long-term production management considers the entire supply chain network and
the internal production network. The main goals of long-term production manage-
ment are cost reduction, flexible production structures, resilience, and sustainability
(Lanza et al. 2019). Long-term production management thereby determines the
future production structure and consequently has a high impact on the long-term
competitiveness. Since long-term decisions often require substantial resources, may
be irreversible, and define an organization’s direction for years to come, the decision
quality is of particular importance. Thus, over the last years, data-based decision
support systems have been identified as an opportunity to support decision-making
processes (Tiwari et al. 2018).

However, achieving a high decision quality through data-based decision sup-
port is very difficult, since decisions in long-term production management occur
uniquely and infrequent and are subject to a high degree of uncertainty. This
uncertainty often results from different and unreliable internal and information
sources, such as sales forecasts or market demands (Lanza et al. 2019). In addition,
new production platform models require a new degree of openness between market
players, which lead to shifting property rights and decision responsibilities and
hence a new dimension of uncertainty. While increasing openness can increase value
creation, it might be a risk to control value capture (Schuh et al. 2018).

Thus, the main lever to increase decision quality in long-term production
management is the reduction of uncertainty in decision situations. Within the IoP,
we thereby distinguish between five types of uncertainties occurring in between
the need for a decision and its final implementation, as summarized in Fig. 15.3.
Action uncertainty describes whether the event requiring a decision will occur at all.
Scope uncertainty is the uncertainty about the environment the decision will affect
(Welsh and Sawyer 2010). Data quality uncertainty includes the uncertainty of
trustworthiness and reliability of the available internal and external data. Prediction
uncertainty refers to the variability in prediction due to plausible alternative input
values (Tavazza et al. 2021).Decision uncertainty refers to the variability in decision
implementation due to different decision alternatives. Thus, to increase decision
quality, these sub-uncertainties must be decreased.
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Fig. 15.3 Potential of decision quality enhancement in long-term production management

Therefore, IoP’s vision is to improve decision quality by supporting the decision-
maker in the proactive design and improvement of production structures in uncertain
business environments through intelligent decision methods and the respective
autonomous algorithms. To realize this vision, IoP pursues three main objectives.
First, adjustment requirements in production structures are proactively identified
by continuously monitoring relevant events in production, product development,
and usage. Second, intelligent methods for an autonomous decision preparation are
developed based on digital shadows. Third, IoP analyzes how the decision-maker
can be supported by a comprehensive suggestion of alternative courses of action
and the assessment of their impact on strategic targets.

With these objectives, IoP delivers higher transparency and trust over decision
needs, influencing factors and uncertainties as well as the impact of domains like
product development and usage. IoP thus enables to continuously monitor and adapt
the long-term targets of production. Furthermore, IoP allows a new way of strategic
decision-making by autonomous decision preparation, analysis, and support. This
enables decision-makers to focus on the value-adding part of long-term decisions in
designing future production structures.

To better understand both the objectives of IoP and their impact on long-
term production management, three applications are presented in the follow-
ing. Table 15.2 shows their overall goal and their contribution regarding IoP’s
purpose.
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Table 15.2 Exemplary applications for long-term production management and their purpose
within the IoP

Application
(use case) Application goal

Proactive
identification
of adjustment
requirements

Methods for
an
autonomous
decision
preparation

Suggestion
of
alternative
courses of
action

Proactive Factory
Planning

Risk-optimized decisions
of greenfield factory
planning to limit and
improve solution space

x x

Supply Chain
Cockpit – Master
Data Quality
Improvement
(MDQI)

Enhancing data quality in
ERP systems to improve
quality of databased
decisions in procurement

x x

Footprint Design Evaluation and
improvement of the
sustainability
characteristics of a global
production network

x x

15.3.1 Proactive Factory Planning

Factory planning projects often fail to comply with time and budget restrictions and
thus expose enterprises to a variety of risks. Especially the planning of greenfield
factories with an almost infinite solution space – thus many uncertainties –
entails the risk of wrong decisions during the planning process. Studies identified
information management to lie at the root of this problem, as the information in the
planning process are often interconnected and must therefore be managed suitable
methods to ameliorate factory planning outcomes. Otherwise, the interconnection
leads to even higher uncertainties, which affects the transparency of decision and
probably reduces decision quality (Burggräf et al. 2021; Herrmann et al. 2020).

To reduce these risks, risk management must be part of the factory planning
process. Risk management aims to identify, assess, and prioritize individual risks
of information so that appropriate decisions and actions can be taken. However,
standardized methods are not implemented in factory planning yet (Burggräf
et al. 2021). Therefore, IoP develops a new risk management method for factory
planning. Especially the scope uncertainty (cf. Figure 15.3) shall be reduced by this
methodology.

The risk management approach bases on fuzzy logic methods. Fuzzy methods
allow to model and calculate decision-making deficits and uncertainty of different
stakeholders (Bellman and Zadeh 1970). Thus, in the factory planning process,
fuzzy logic approaches can be used to make information uncertainties measurable.
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Where otherwise only subjective estimates can be obtained, fuzzy logic can
contribute to capture information for factory planning scenarios transparently,
objectively, and quantitatively (Burggräf et al. 2021).

This objective quantification reduces the uncertainties and thus increases the
decision quality in factory planning. Furthermore, fuzzy logic-based risk assessment
enables an autonomous decision preparation. It also allows a proactive planning
process as risky planning steps are known in early stages of the planning process
and can thus be prevented from the beginning.

15.3.2 Supply Chain Cockpit – Master Data Quality Improvement

As past disruptions of the supply chain, e.g., COVID-19 or the blockage of the Suez
Canal, have demonstrated, their impact on the procurement side is highly critical.
Procurement is responsible for organizing and ensuring the supply of external
material and parts that are required for internal processes. Thus, forward-looking
procurement planning which is prepared for disruptions is key for production
companies (Linnartz et al. 2022).

Thereby, procurement planning is often realized within an ERP system and
requires data from various existing and potential suppliers. Data quality thereby
affects decision quality significantly. Due to its various sources, data of procurement
often lacks quality (Ge and Helfert 2013). Therefore, the IoP developed an app to
practically identify, prioritize, and take measures against poor data quality.

This app thereby executes two main tasks: First, it identifies critical data quality
problems within the master data of the ERP. Second, based on the identified
lacks, the app derives recommended actions and different alternatives to improve
data quality. This way, the app enhances trustworthiness and transparency of the
data on which procurement decisions rely on. It furthermore proactively identifies
adaptation needs in master data quality and recommends alternative courses of
action toward improvement. This way, it contributes to an enhancement of the
decision quality within long-term production management.

15.3.3 Footprint Design (Production Network Planning)

Sustainability of global production networks is critical. While still being efficient
and profitable, production companies must secure sustainability of its network
(Alexander 2020). Therefore, global production networks should be continuously
evaluated and improved regarding their sustainability characteristics. To do so,
IoP develops the Footprint Design App, which is designed for production network
planners to proactively identify adaptation needs in network design regarding
sustainability before the design decision of a network configuration.

The core of this app is a data model to combining production network elements
with sustainability characteristics and attributes. This model is fed with data from



15 Methods and Limits of Data-Based Decision Support in Production Management 341

existing production networks, internal company data, and data from external sources
such as LCA databases and transport information. This data is then related to the
sustainable characteristics and attributes. This way, the app allows an optimization
of global production network footprint.

Decision quality is thereby enhanced in several ways. First, by continuously
updating the database and reconfiguring the network, data quality increases,
and overall uncertainty decreases. Second, by proactively identifying adjustment
requirements as well as suggesting alternatives of network design, the scope of the
decision is narrowed down for the production network planner, which again reduces
uncertainties.

15.4 Conclusion

Data-driven modeling methods in production to support decision-making processes
with “what-if” analyses are of high importance for future production management.
Therefore, the IoP develops apps for decision-makers in production to support the
decision-making process.

In short-term production management, they support reduction of latencies in
the decision process and therefore a faster implementation of decisions, as it was
illustrated by the three apps “Predictive Quality,” “Short-Term Production Planning
and Control,” and “Parameter Prediction.” Thereby, it was shown that data-driven
decision support increases productivity as the impact of volatile environments is
reduced. Additionally, quick change requests can be mastered in a much shorter
time.

In long-term production management, data-based decision support reduces
uncertainties and thus increases decision quality, as it was illustrated by the
three apps “Proactive Factory Planning,” “Supply Chain Cockpit – Master Data
Quality Improvement,” and “Footprint Design.” Here, decision support increases
transparency and trust of decisions. It furthermore allows new ways of strategic
decision-making by autonomous decision preparation, analysis, and support.

This way, IoP secures that business goals are reached and market needs are met
by improving the decision quality and implementation speed in long-term and short-
term production management.
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Abstract

Long-term production management defines the future production structure and
ensures the long-term competitiveness. Companies around the world currently
have to deal with the challenge of making decisions in an uncertain and rapidly
changing environment. The quality of decision-making suffers from the rapidly
changing global market requirements and the uniqueness and infrequency with
which decisions are made. Since decisions in long-term production management
can rarely be reversed and are associated with high costs, an increase in decision
quality is urgently needed. To this end, four different applications are presented in
the following, which support the decision process by increasing decision quality
and make uncertainty manageable. For each of the applications presented, a
separate digital shadow was built with the objective of being able to make better
decisions from existing data from production and the environment. In addition, a
linking of the applications is being pursued:

The Best Practice Sharing App creates transparency about existing produc-
tion knowledge through the data-based identification of comparable production
processes in the production network and helps to share best practices between
sites. With the Supply Chain Cockpit, resilience can be increased through a data-
based design of the procurement strategy that enables to manage disruptions. By
adapting the procurement strategy for example by choosing suppliers at different
locations the impact of disruptions can be reduced. While the Supply Chain
Cockpit focuses on the strategy and decisions that affect the external partners
(e.g., suppliers), the Data-Driven Site Selection concentrates on determining the
sites of the company-internal global production network by creating transparency
in the decision process of site selections. Different external data from various
sources are analyzed and visualized in an appropriate way to support the decision

S.-Y. Kim
Information Systems and Databases (DBIS), RWTH Aachen University, Aachen, Germany
e-mail: soo-yon.kim@rwth-aachen.de

M. Endrikat
Research Unit International Economics, RWTH Aachen University, Aachen, Germany
e-mail: morten.endrikat@rwth-aachen.de

M. Millan
Institute for Technology and Innovation Management (TIM), RWTH Aachen University, Aachen,
Germany
e-mail: millan@time.rwth-aachen.de

S. Decker
Information Systems and Databases (DBIS), RWTH Aachen University, Aachen, Germany

Fraunhofer Institute for Applied Information Technology (FIT), St. Augustin, Germany
e-mail: decker@dbis.rwth-aachen.de

S. Geisler
Data Stream Management and Analysis (DSMA), RWTH Aachen University, Aachen, Germany
e-mail: geisler@dbis.rwth-aachen.de


 885
40046 a 885 40046 a
 
mailto:soo-yon.kim@rwth-aachen.de
mailto:soo-yon.kim@rwth-aachen.de
mailto:soo-yon.kim@rwth-aachen.de
mailto:soo-yon.kim@rwth-aachen.de
mailto:soo-yon.kim@rwth-aachen.de

 885
43920 a 885 43920 a
 
mailto:morten.endrikat@rwth-aachen.de
mailto:morten.endrikat@rwth-aachen.de
mailto:morten.endrikat@rwth-aachen.de
mailto:morten.endrikat@rwth-aachen.de

 885 48902 a 885 48902 a
 
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de

 885 54547 a 885 54547 a
 
mailto:decker@dbis.rwth-aachen.de
mailto:decker@dbis.rwth-aachen.de
mailto:decker@dbis.rwth-aachen.de
mailto:decker@dbis.rwth-aachen.de

 885 58421
a 885 58421 a
 
mailto:geisler@dbis.rwth-aachen.de
mailto:geisler@dbis.rwth-aachen.de
mailto:geisler@dbis.rwth-aachen.de
mailto:geisler@dbis.rwth-aachen.de


16 Managing Growing Uncertainties in Long-Term Production Management 347

process. Finally, the issue of sustainability is also crucial for successful long-term
production management. Thus, the Sustainable Footprint Design App presents an
approach that takes into account key sustainability indicators for network design.

16.1 Introduction

Production management faces a variety of challenges. Increasing uncertainty
combined with growing complexity hinders decision-making and reliable plan-
ning. However, shorter product life cycles and disruptive changes require rapid
adaptation to change. The benefit of the Internet of Production for production
management is to provide data-driven decision support on all levels of managing
production in dynamic company environments (Schuh et al. 2019a). Long-term
production management sets the future production structure and determines long-
term competitiveness. Due to rapidly changing global market requirements and the
uniqueness and infrequency of the decisions to be made, it is difficult to achieve
a high decision quality (Lanza et al. 2019). However, these decisions in long-
term production management are associated with significant costs and can hardly
be reversed (Balderjahn 2000). Therefore, the aim of this research work is to
improve decision quality despite uncertainty through data-driven decision support.
The use of historical data from the company and its environment is combined with
appropriate analysis and methods. Decisions in long-term production management
are always dependent on the knowledge and experience of the management, so that
the interactivity and usability of the data-driven decision supports plays a decisive
role in practice (Schuh et al. 2019b).

The data-driven decision support tools are developed for specific tasks and chal-
lenges in long-term production management. The Best Practice Sharing application
aims to facilitate knowledge transfer across sites. In this way, production sites can
learn from each other and adapt more agilely to changes. The Supply Chain Cockpit
can be used to increase resilience through a data-driven design of the procurement
strategy to persist in times of disruption. Data from company’s internal business
application systems like orders and material master data from an ERP system are
used to characterize a company’s procurement strategy. The approach also explores
how improving data quality can drive such data-driven decisions, since the quality
of the data included is critical. In the application Data-driven Site Selection, the
complex process of site selection can be improved in terms of decision quality by
using external data such as quantitative and qualitative data from macroeconomics,
microeconomics, political economy, foreign trade, and foreign direct investment. A
corresponding procedure as well as extensive databases are presented and applied.
Further, the growing importance of sustainability is considered in the application
Sustainable Footprint Design. By means of a software solution, existing cost-based
approaches are supplemented by sustainability parameters.

The practical realization of the described decision support tools takes place
through the development of a Production Control Center for long-term production
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Fig. 16.1 Production Control Center for long-term production management

management. Interlinked applications contribute to increasing decision-making
quality under consideration of uncertainty in the production environment. Context-
specific data from the IoP data lake is used in the sense of a control loop to generate
data-driven transparency via the various applications with regard to emerging
adjustment needs and to address these by deriving and implementing suitable
measures (Fig. 16.1).

The four applications developed, their specific challenges, the methods used,
underlying digitals shadows, and the results obtained through interdisciplinary
research are described in detail in the following Sects. 16.2, 16.3, 16.4, and 16.5.
Closing, a short summary and outlook is given in Sect. 16.6.

16.2 Best Practice Sharing in Global Production Networks

The sites of manufacturing companies are often globally distributed and form
complex and historically grown production networks (Lanza et al. 2019). As a
consequence, the sites of these production networks have developed individually
and independently of one another and exhibit differences in performance within
the network (Reuter et al. 2016). Systematic knowledge transfer between different
production sites is not frequently practiced, although globally active companies
carry out comparable production processes in different ways at several locations
(Schuh et al. 2019a). However, a systematic exchange of best practices in the
global production network enables production sites to learn from each other and
minimize variance in performance (Friedli et al. 2014). Furthermore, the exchange
of knowledge can increase the ability to react to unexpected events by learning
from the experiences of others, which makes cross-site knowledge sharing a success
factor (Cheng et al. 2008). At the same time, companies face a major challenge
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when implementing systematic best practice sharing due to the high number and
complexity of different production processes in practice (Deflorin et al. 2012).

In the field of knowledge transfer within production networks, there are various
approaches that focus on different aspects. Depending on the knowledge type,
several approaches suggest distinct transfer mechanisms and develop solutions to
increase the absorptive capacity of the recipient (e.g., Nonaka 1991; Ferdows 2006).
Often also social aspects of knowledge transfer are considered, but rarely a practical
solution to increase transfer acceptance is proposed. In addition, the topic of
initiating a knowledge transfer has not yet been adequately addressed, nor have the
possibilities of new methods for data analysis and new information technologies for
efficient preparation of the knowledge transfer. In general, existing approaches focus
only on single criteria to increase the efficiency of the knowledge transfer, but to our
knowledge, no approach to date addresses all needs for learning across sites from
transfer initiation to transfer mechanism to empowering knowledge assimilation.
Thus, there is a need for a holistic approach to enable the implementation of efficient
knowledge transfer in production networks (Schuh et al. 2020a). The presented
approach tries to close this gap.

16.2.1 Approach for Best Practice Sharing in Global Production
Networks

The approach for cross-site best practice sharing is divided into three steps starting
with the identification of the requirements for comparing production processes in
production networks, followed by determining the utility for cross-site learning and
finally performing an efficient and user-friendly transfer of knowledge.

The first step creates the foundation for learning across sites by enabling
the comparability of diverse production processes within a global production
network. For this purpose, a solution space is defined to determine which types
of production processes can be compared under which conditions. In addition, a
target system is defined. In this way, only meaningful knowledge transfers between
comparable production processes are allowed and the motivation of knowledge
transfers between sender and receiver can be maintained. This requires a description
of production processes in order to identify comparable processes across sites.
Following Steinwasser, a production process is defined as a composition of product
and resource (Steinwasser 1996). Constituent features were developed for both
product and resource. For example, a product can be described in terms of its
materials, size and weight, or a resource in terms of its degree of automation,
machine designation or the necessary employee skills. On the basis of the features
and their values, a precise description of the production processes is possible, which
is transferred into a data model to enable the data-based mapping of the process
description. The sources of the required data are the company-specific information
systems such as ERP, MES, PLM, or CRM. Next, a cluster algorithm is used to
identify where comparable production processes exist in the production network
concerning metric product and resource characteristics (e.g., product weight). If
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a production process belongs to a cluster is determined by the distance of the
characteristics between the individual objects. For clarity, the categories material
and technology are plotted on the screenshot of the prototype as an example. The
points in the graph each represent a production process. The individual production
processes can be entered on the graph with regard to their material and technology. It
should be noted that non-numeric features (e.g., material) are converted into binary
features. Production processes of a cluster are characterized by the fact that they are
close to each other in the considered categories, i.e., the distance between the points
in the graph is low. Currently, only two categories can be displayed next to each
other in the prototype in order to analyze the differences between the clusters. An
extension is being worked on to be able to determine the decisive categories in view
of the large number of categories. The two other diagrams in the screenshot allow
the user to further analyze the similarities. For example, they show how the various
clusters (each color represents a cluster) differ in the categories under consideration.
The lower diagram in particular illustrates that there is a clear division of the clusters
in terms of technology. However, even here there are overlaps between two clusters
that can be caused by a different category.

The decision whether the identified production processes are comparable is made
by the user within the qualitative evaluation of the results and a plausibility check.
The described approach is already implemented in a prototype including a feedback
loop to enable the evaluation of comparability by the user. Furthermore, the proto-
type has already been evaluated with real data from a coupling manufacturer and
it was shown that the approach allows the identification of comparable production
processes, but that a weighting of the characteristics has to be done by the user to
ensure plausible results (Fig. 16.2).

Fig. 16.2 App prototype for best practice sharing in global production networks
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The second step of the approach is to identify the knowledge transfer needs
based on the determined cluster of comparable production processes. A clus-
ter of comparable production processes does not necessarily require a need for
knowledge transfer, as these processes may already be coordinated with each
other. A knowledge transfer always involves effort and should only be carried
out when there is a need. Therefore, feedback from production can be used to
analyze the performance of production processes. Statistical process control (SPC)
is a commonly used method for monitoring processes and to automatically detect
process deviations. For the implementation of SPC statistical control charts are used
to systematically analyze the output of processes. Upper and lower control limits
(UCL, LCL) are determined as a function of the mean value of the outputs within a
process cluster (Chatti et al. 2019). For process monitoring in production networks,
an adaptive control chart is required because the design parameters vary over time.
For example, the width of the control limits must be adapted according to the
sensitivity of the processes in a company-specific manner. As an outcome of SPC,
process deviations within a cluster of comparable processes can be identified and the
upper and lower control limits can be utilized as knowledge transfer trigger points.

If there is a need for learning across sites, the third step should be to make the
knowledge transfer as efficient and user-friendly as possible so as not to consume
too many resources and not to reduce the motivation of the sender and receiver of the
transfer. Therefore, an appropriate knowledge transfer mechanism is required. Here,
the right transfer mechanism depends on the type of knowledge and the background
of the participants of the transfer (e.g., Chang and Lin 2015; Shen et al. 2015;
Asrar-ul-Haq and Anwar 2016). Within the research work an approach to select
a communication medium depending on the situation was developed. The approach
characterizes a knowledge transfer situation on the basis of three groups: knowledge
type (explicit or tacit/implicit knowledge, its complexity, its specificity, and its
significance for the receiving unit’s performance in cost, quality, and adherence
to schedules), communication situation (number of hierarchical levels involved,
number of knowledge recipients, degree of familiarity between the participants,
prior knowledge levels of the recipients and the participants’ language skills),
and the urgency of the transfer (Schuh et al. 2020b). Once a knowledge transfer
situation has been characterized, the relevant characteristics can be weighted using
a metric and a requirement level can be calculated. Depending on the requirement
level, the appropriate communication medium can subsequently be selected. For
global production networks, the following media are suggested as possible means
of communication: face-to-face, video/telephone conference, video/telephone call,
short message, email, and the companies’ intranet database. The selection of the
right medium depends on the need to be able to receive feedback and whether
sending non-verbal signals is beneficial. In addition, the usage effort in the context
of daily application is important and influences the selection of the medium for a
knowledge transfer situation.
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16.2.2 Outlook of Best Practice Sharing in Global Production
Networks

While the current development of the Best Practice Sharing application focuses on
inducing knowledge transfer to optimize the productivity of production processes,
overall productivity is not the only criterion in production system design that can
be addressed using the outlined approach. Following the agenda of the International
Ergonomics Association, work system design should always jointly consider the
two objectives of system performance (i.e., system productivity) and human well-
being (IEA Council 2020). Not only are both goals of significant value in their
own right, but they also tend to complement each other, leading to an alignment
of business and social goals (Neumann and Dul 2010). Expanding the framework
of the Best Practice Sharing application to include an anthropocentric perspective
aimed at improving human working conditions thus offers the opportunity of a more
holistic approach to process optimization. First, the aspects that are considered
for identifying similar processes can be extended by adding task characteristics
of the involved production workers. Second, the evaluation system that is used to
compare similar processes and to identify knowledge transfer opportunities can be
expanded to include metrics and assessment methods that quantify the impact of
the production system design on workers. Here, a special focus can be placed on the
imposed physical and cognitive workload. While the outlined advancement of the
Best Practice Sharing application is the subject of current research efforts, the first
results are presented and discussed in the publication �Chap. 22, “Human-Centered
Work Design for the Internet of Production”

16.3 Supply Chain Cockpit – Improving Data-Driven Decisions
in the Context of Procurement

Companies are part of complex supply chains and operate in an increasingly volatile
environment (Kamalahmadi and Parast 2016). This affects procurement which
focuses on the supply of external materials and parts required for the internal
processes (Pereira et al. 2014). Current developments show that the complexity
of companies’ procurement processes is increasing, which contributes to a higher
vulnerability to supply chain disruptions (Piya et al. 2020). A means to prepare
for disruption is strengthening the company’s resilience. Supply chain resilience
involves reducing the likelihood of facing sudden disruptions, resisting the spread
of disruptions by maintaining control over structures and functions, and recovering
and responding through reactive plans to overcome the disruption and restore the
supply chain to a robust operating state (Kamalahmadi and Parast 2016). Resilience
is significantly influenced by long-term decisions which makes the design of the
procurement strategy particularly important (Pereira et al. 2020). To take into
account various factors that influence the procurement strategy and ensure objective
decisions, data-based approaches for decision support are required. Especially for
long-term decisions, the quality of data plays a major role: insufficient data quality


 22262 29146 a 22262 29146 a
 


16 Managing Growing Uncertainties in Long-Term Production Management 353

hinders the exploitation of data-based decision support. Therefore, this approach
aims at analyzing how the data-based design of the procurement strategy can
increase resilience and also investigates how improving data quality can enable such
data-based decisions.

16.3.1 Data-Based Design of the Procurement Strategy

Through the design of the procurement strategy, a company specifies the fun-
damental design of the supply processes. It determines for example from how
many suppliers what type of objects are purchased (Lasch 2019). Since each
manufactured product requires different articles and raw materials, and the various
articles have different characteristics, the procurement strategies must be adapted
accordingly (Schiele 2019). The main objective of this research is to identify “how
the procurement strategy can be evaluated and designed based on internal and
external data to ensure high logistics performance in an uncertain environment”
(Linnartz et al. 2021). By taking into account different data sources and considering
the criticality of purchased articles the complexity can be handled. This allows a
systematic design of the procurement strategy that focuses on the articles with a
major impact on resilience.

Existing approaches for procurement strategy design rarely use business data
to assess the procurement strategy or supply risks but instead focus on qualitative
assessments. In order to increase resilience in procurement, recommendations for
designing the procurement strategy and an evaluation of purchased items concerning
the supply risks are required. Data-based approaches are currently uncommon in
the context of criticality assessment of these items, as they require an overview of
various risks and criticality factors. Nevertheless, it becomes apparent that a data-
based approach is necessary for such an assessment to ensure objectivity (Linnartz
et al. 2021).

The proposed approach is based on a combination of action research and
the CRISP-DM (Cross Industry Standard Process for Data Mining) framework
for data mining projects. It builds on three action research cycles, which are
detailed according to the different phases of CRISP-DM. Within the first cycle, an
application is developed that supports the characterization of purchased articles with
regard to supply risks. In the second cycle a calculation logic to identify success-
critical purchased articles is designed, while the third cycle focuses on adapting the
application to ensure general applicability (Linnartz et al. 2021).

The current results focus on the first action research cycle and contribute to
increased transparency of the procurement situation. For a structured evaluation of
purchased articles and supply risks, a systematic literature review was conducted. It
aimed at identifying and structuring relevant supply risks that need to be considered
when designing the procurement strategy. The identified supply risks were divided
into five categories, including factors such as transport complexity or natural
hazards. Additionally, factors to characterize purchased articles were systematically
identified building on existing raw material criticality assessments. The framework
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for purchased article characteristics contains both supplier-related factors, like their
location or delivery reliability, and non-supplier-related factors, for instance, eco-
nomic aspects (price volatility, purchasing volume, etc.) or product characteristics
(specialization, substitutability, etc.). It serves as the basis for implementing an app
prototype that supports companies in analyzing their purchased articles.

The app prototype integrates data from the company’s business information
systems and classifies purchased articles based on different characteristics. The
characteristics are described through indicators. In the upper part, each column
represents one indicator and its expression using a vertical scale. As an example, the
app contains the indicator “number of potential supplier” which is derived from past
orders, material master data, and supplier master data from an ERP system. Another
example is the indicator “transport distance” which is calculated using the location
of a supplier. Each horizontal line represents one purchased article and its values
regarding the indicators. It thus gives an overview over the specific combination
of a purchased article’s characteristics. Different colors enable to highlight one
characteristic and further contribute to an increased transparency of the procurement
situation. The app prototype further allows for multidimensional filtering. Further
below, product and supplier data are linked to show how final products (left),
purchased articles (middle), and suppliers (right) are connected to each other. The
lines in the left part of the sankey diagram demonstrate which purchased articles are
part of which final products. The lines in the right part demonstrate which supplier
delivers which purchased article (Fig. 16.3).

The developed frameworks for structuring supply risks and characterizing
purchased articles are the foundation for analyzing the interdependencies between
article characteristics and supply risks. Further research focuses on developing a
calculation logic to identify critical articles which will be integrated into the app
prototype.

Fig. 16.3 App prototype for increasing transparency of current procurement situation
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16.3.2 Master Data Quality Improvement

In the context of the Supply Chain Cockpit, the topic of master data quality is also
being developed in an interdisciplinary research project. A crucial aspect for a data-
driven procurement strategy design is the quality of the incorporated data. However,
this aspect can also be applied to all other decision supports presented. Unreliable
data can bear high costs for businesses and may lead to poor strategic decisions
(Haug et al. 2011). Data about the most essential entities within a business, such
as suppliers, employees, or materials, is called master data. Master data presents
the fundament for many business decisions: For example, replenishment times of
purchased articles are used in production planning and sourcing. While the need for
high-quality master data is clear, several challenges arise regarding its realization.
For one, the lack of responsibilities for maintenance of master data presents a
main quality barrier (Haug and Albjørn 2011). Furthermore, a lack of both, intra-
and cross-company data standards, may limit master data’s fitness for shared use
(Otto and Österle 2016). This occurs for example, when supplier and purchaser
intend to refer to the same product, but run into issues as they each maintain
their own product master data. Our work aims at developing a data ecosystem
model for the procurement context which captures how master data is produced,
maintained, and used. This model will serve as the fundament for an application
that identifies and prioritizes data quality requirements in master data and gives
actionable recommendations for quality improvements.

Data quality can be described in the form of various dimensions, such as
accuracy, completeness, or timeliness. There exist approaches to identify relevant
dimensions per master data class (Falge et al. 2012) and to develop master data
management frameworks incorporating data quality (Otto and Österle 2016). The
approaches rarely focus on illustrating the environment and contexts in which data
is produced, exchanged, and used. An emerging concept for modeling such an
environment is data ecosystems (Geisler et al. 2021; Oliveira and Lóscio 2018).
Data ecosystem models incorporate components such as the resources of interest,
the involved actors, and their relationships to each other, but also the key elements
regarding the functionality of the ecosystem, such as data operators, security,
and services. While there exist several reference models for general business
collaborations (Otto et al. 2019), there is a need to adapt these models to the context
of supply chain management and procurement.

We propose a design science research approach (Hevner et al. 2004) for
developing an adapted data ecosystem model. A literature review on the “flows” of
master data will be conducted, i.e., the processes in which master data is generated
and maintained as well as an analysis on which master data is used in which
procurement decision. Incorporating this knowledge, a first model, adapted from
existing reference models, will be built. The model will be applied and evaluated on
use cases and consistently refined.
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As a first result, existing data ecosystem models have been analyzed and a
framework for an adapted model has been developed. The framework comprises
five levels. The first level specifies the business processes and involved actors. In the
second level, the relevant master data is elaborated and connected to the processes
from the first level. This mapping of data onto processes is used in the third level
to derive data quality metrics appropriate to the context in which the data is used.
On the base of those metrics, the quality of data is evaluated. In the fourth level,
required functionalities are formulated, e.g., regarding security. Finally, governance
aspects such as policies are contained in the fifth level. By structuring the framework
into these levels, a detailed analysis of the aspects that have to be taken into account
when improving the data quality is enabled.

The developed model is intended to reveal requirements for master data quality
management in the procurement context as well as to highlight how data quality
aspects can reduce risks and leverage opportunities in the functionality of such an
environment.

16.4 Data-Driven Site Selection

Supply bottlenecks, increasing regulations and growing market uncertainties pose
major challenges for global production networks and force companies to constantly
adapt to new conditions (Lanza et al. 2019). In this context, the search, evaluation,
and selection of potential new locations is an important factor in ensuring the future
competitiveness of manufacturing companies.

According to the approaches in the literature, location factor systems are usually
classified according to global, regional, and local aspects (Burggräf and Schuh
2021), but there is no consensus-based location factor system, since location
factors cannot be clearly delimited and overlapping aspects exist (Haas 2015). In
general, location factors can be divided into quantitative and qualitative aspects
(Hansmann 1974), whereby internal and external factors (Hummel 1997) and
network aspects also play a role (Kinkel 2009). Furthermore, country- and sector-
specific differentiations are possible (Hummel 1997). A distinction between hard
and soft location factors is also required. Hard location factors are characterized by
quantitative data (e.g., wage costs, taxes) and soft factors by qualitative data (e.g.,
political stability, culture) (Kinkel 2009), whereby all factors must ultimately be
aligned in the location evaluation. The evaluation of location alternatives is carried
out using established methods such as utility value analysis (Zangemeister 1976),
checklists, or country rankings (Kinkel 2009). Since these established methods
require the evaluation of both qualitative and quantitative data, a large number of
subjective decisions are made, especially with regard to qualitative data (Blohm and
Lüder 1995). However, these evaluation methods do not fully reflect the complexity
of the current environment and thus do not adequately meet today’s requirements
(Burggräf and Schuh 2021). Since the development of new locations is associated
with high, often irreversible costs, an approach is required that takes into account



16 Managing Growing Uncertainties in Long-Term Production Management 357

quantitative, objectively assessable information in particular (Verhaelen et al. 2021).
Therefore, this subchapter presents an approach for systematic and data-driven
decision support in the site selection. This makes it possible to map all factors by
means of exclusively quantitative data. This can increase the quality of decisions
as well as the transparency in the decision-making process in order to improve site
selection on a global and regional levels.

16.4.1 Data-Driven Site Selection Framework

In the following, a four-step approach is presented, which objectifies the site
selection process individually for each company (Schuh et al. 2022).

16.4.1.1 Step 1: Analysis of the Industry Sector, Its Dynamics,
and Competitors

The first step is to analyze the business environment in order to identify possible
trends and changes. Detailed sector analyses already provide a high added value,
as they deepen the understanding of the strategies of competitors, the needs of
the markets, and possible future developments. Existing clusters of competitors
provide valuable information about potential regions for new locations, as they, in
combination with region-specific economic and political indicators, allow conclu-
sions to be drawn about the background of past location decisions. The identified
agglomeration effects have a significant influence on location decisions not only
against the background of possible knowledge transfers, but also with regard to
available resources (Krenz 2019). The evaluation of geocoded information on
foreign direct investment in production locations is suitable for determining existing
clusters. Such representations also allow for the calculation of distances and travel
times as well as the combination of such data with other data sets on topography,
geography, and infrastructure. Panel (a) of the GIS-supported competitor and
supplier analysis shows the investment projects in production sites of foreign
automobile manufacturers in North America in the period 2010 to 2019 and the
identification of clusters using an appropriate density-based spatial cluster algorithm
in panel (b). Furthermore, in panel (c) comparable investment projects of the
automotive supplier industry are localized in the same period. The agglomeration
of supplier locations within a radius of 3 h travel time around the OEM locations is
clearly visible for the exemplary extract (Fig. 16.4).

16.4.1.2 Step 2: Analysis of Regional and Supra-regional Location
Determinants

To further narrow down the location alternatives, potential regions are evaluated in
the second step top-down with regard to relevant criteria (Wiendahl et al. 2014). The
analysis is also possible without a prior industry sector and competitor analysis, but
it offers the possibility of implicitly comparing one’s own location assessments with
those of the competition. Relevant variables should include as many dimensions as
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Fig. 16.4 GIS-supported competitor and supplier analysis

Fig. 16.5 Sample visualization of regional labor market and infrastructure parameters based on
data from the U.S. Bureau of Labor Statistics and FDI Markets

possible, whereby the exact information required is ultimately case-specific and can
include economic, political-economic, foreign-economic, infra-structural as well as
geographical and topographical variables. In the sample visualization of regional
labor market and infrastructure parameters based on data from the U.S. Bureau of
Labor Statistics and FDI Markets, it is shown how the analysis is initially narrowed
down from a global level to a national level (panel (a) for the eastern United States)
and further to a local level (panel (b) for the Indianapolis/Cincinnati metropolitan
area). It shows that significant differences (e.g., in wage levels or the availability of
skilled labor) can also differ both nationally and regionally (Fig. 16.5).
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16.4.1.3 Step 3: Comparison of Potential Locations Using a Target
FunctionMethod

The third step is to quantitatively evaluate and compare the potential locations. In
order to integrate the large number of variables, which can be grouped into different
dimensions in terms of content, into a common framework, an analysis using a
target function method is suitable. The variables are standardized and combined
into appropriate groups of assessment dimensions. These evaluation dimensions
are then weighted. The weighing has to be defined individually for each company
and even for each project. A pairwise comparison is recommended, in which the
different dimensions are prioritized against each other and the weights of the
assessment dimensions can be derived from this. In the methodology described, the
weighting of the evaluation dimensions is the only decision to be made subjectively
by the management. All other steps in the site selection process are based on
quantitative data. The methodology now allows the calculation of marginal rates of
substitution, a common concept in economic utility theory. This makes it possible to
quantitatively assess cross-border decisions on a national, regional, and international
level.

16.4.1.4 Step 4: Sensitivity and Scenario Analysis for the Ranking
of Alternatives

In the last step, the ranking of the alternatives must be checked with regard to
their resilience. Compared to other approaches, this minimizes the risk that the
derived recommendations for action are influenced by measurement errors in the
raw data or misspecification of the target function due to subjective misjudgments.
Possibilities for sensitivity analyses are, for example, the (slight) variation of
the weights or the variation of the indicators used. In addition to the sensitivity
analysis, a scenario analysis is carried out based on the target function method.
On the one hand, scenarios can concern company-specific factors, such as different
forecasts regarding future growth strategies. On the other hand, scenarios can also be
differentiated with regard to location factors, especially if not only present and past
values are taken into account for certain valuation dimensions, but also projections
about their future development. Based on the ranking with regard to the objective
function and the resilience of the alternatives, the suitable location alternative can
now be derived.

16.4.2 Conclusion and Outlook of Data-Driven Site Selection

This subchapter presents a systematization of site selection by means of a data-
driven approach that creates the preconditions for more objective decisions com-
pared to existing approaches. The step-by-step approach and the economic data on
which the selection process is based combined with geo-information, allow better
location decisions. This approach offers the user an improved understanding of
the information through the data-driven approach and the underlying empiricism
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paired with the geo-designed visualization and provides decision support. Compared
to other established approaches, the described methodology provides an increased
degree of transparency and objectives in the decision process. All decision-making
steps are mapped as quantitative data with regard to both soft and hard factors
and are therefore transparent, measurable, and comparable. In the next steps, the
approach will be expanded to include further functions. For example, an assessment
of the dynamics of industries and the development of industrial clusters will be used
to derive patterns. The resulting insights about future emerging regions should help
companies to realize first-mover advantages by being able to develop regions at an
early stage.

16.5 Sustainable Footprint Design App

The location of an industrial activity is a major influence to determine whether it is
sustainable or not (Sihag et al. 2019). Depending on the environmental and societal
conditions around a factory, renewable resources can be provided in different
quantities (May et al. 2020). Therefore, the relocation of production processes can
enhance the sustainability of a company without any changes to the processes or
products. For example, water-intense production processes should be moved from
regions with water scarcity to regions with sufficient precipitation to enhance the
ecological footprint. To benefit from this potential, companies need to evaluate their
production footprint not only with respect to their economic advantage, but should
also consider the social and ecological consequences of their global production
network. However, it is widely acknowledged that global production networks of
manufacturing companies are one of the most complex and dynamic man-made
systems (Váncza 2016). Hence, the required level of transparency is only possible
with database solutions. The Sustainable Footprint Design App is a web-based
application with the ability to provide decision-makers in industrial cooperation
with all crucial information to evaluate the site-dependent sustainability criteria of
their production network.

Several authors have identified both, the need for and the challenge of a trans-
parent evaluation of global production networks. This section provides a brief
overview of existing approaches and compares them with the unique vantages of the
Sustainable Footprint Design App. Mourtzis et al. present a toolbox for the design,
planning, and operation of manufacturing networks. This software required data
about the plant capabilities, locations as well as the bill of materials and processes
to evaluate a production network with respect to cost, lead time, quality, CO2
emissions, and energy consumption. Other relevant sustainability criteria like water,
waste, or biodiversity are not part of the evaluation scope (Mourtzis et al. 2015).
The approach of Govindan et al. supports the design of a sustainable supply chain
network with the use of hybrid swarm intelligence metaheuristics. Although this
considers a broad variety of sustainability-related criteria, the optimization model
is too complex for adaption in the industrial practice, due to its extended data
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requirements (Govindan et al. 2019). The web-based platform for eco-sustainable
supply chain management from Papetti et al. trace supplier and their processes.
Additionally, this information can be used to perform a life cycle assessment of these
processes within the tool. With these features, the tool provides both transparency
and a comprehensive ecological evaluation. However, the focus is on suppliers and
not on intra-organizational processes (Papetti et al. 2019). The MS Excel-based
toolbox of Blume is designed to evaluate the resource efficiency in manufacturing
value chains. This approach includes economic and ecological criteria, but does not
focus on the characteristics of production networks. It can be seen that no approach
takes ecological factors into account to a sufficient extent in the design of global
production networks. The following section presents an approach to this problem.

16.5.1 Approach for Sustainable Footprint Design

The Sustainable Footprint Design App allows the calculation of all ecological key
performance indicators (KPIs), which can be influenced with the design of the
production network. This is the case, if a site-dependent factor is combined with
the characteristics of a production process. For example, a machine might need a lot
of thermal energy for a production process and the possible production locations can
provide either geothermal heat or fossil fuel-based heat. In that case, the difference
of CO2-Emissions can be influenced by the network design and is included in the
set of ecological KPIs.

The Screenshot of the Sustainable Footprint Design App with Emission-KPIs
shows how the CO2-Emission are visualized in the app, which is based on the
existing software OptiWo (Schuh et al. 2019b). The upper part contains a map
with the locations and transport connections of the production network. The size
of the arrows and bubbles presents the absolute amount of emissions, while the
color represents their intensity (e.g., emissions per part). Other KPIs, which are
included in the tool, are the amount of energy required by each machine, facility,
and transport vehicle. For every energy consumed the corresponding emissions
are calculated. In addition, the required water and effluents at each location are
combined with the local water stress to evaluate the water footprint. Further, the
amount recycled feedstock and waste material are estimated with respect to the
local recycling infrastructure. On top of this, the land use of each location is set
into context with the local biodiversity (Fig. 16.6).

Besides the described ecological KPIs there is also the option to evaluate
additional ecological, social, and governmental KPIs on a holistic country level
for a further benchmark of the existing production network. For an assessment of
countries’ ecological performance we selected 41 KPIs focusing on emission, pollu-
tion, energy, agriculture, biodiversity, resource productivity, waste, and water. Eight
social KPIs cover equality and diversity, workforce, and hygiene performance of the
respective country. For an evaluation of the governmental risks and opportunities of
the country, six KPIs were included in the tool. In total 55 KPIs were included from
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Fig. 16.6 Screenshot of the Sustainable Footprint Design App with Emission-KPIs

160 countries and with a timespan of more than 15 years ensuring an historical
assessment and performance tracking. The set of KPIs is based on the following
sources: United Nations Statistics Division, 2020 Environmental Performance Index
Report (EPI) and the World Bank and Global competitiveness reports from 2006
to 2019. Data, which is company specific and cannot be found in public database
needs to be imported by the planner from local IT-systems, such as ERP, MES,
PLM, or FMS. For an assessment, the percentile rank scoring methodology is
applied to calculate an overall score for each KPI per country. The calculation is
based on the following aspects: countries with worse score, countries with same
values, and countries with a value at all. Besides the overall score from zero to one
per KPI, a best-in-category value and the respective country name are displayed.
An aggregated environmental, social, and governmental score per country is also
available.

The tool creates transparency for companies due to an aggregated and bundled
overview of important sustainable KPIs. With this they can quickly select relevant
KPIs, e.g., hiring and firing practices or the estimate for control of corruption and
assess countries, which they are operating their production in, with best-in-class
countries.

16.5.2 Conclusion and Outlook of Sustainable Footprint Design App

The app demonstrates how the production footprint design can enhance the sus-
tainability of a manufacturing company. To benefit from all possibilities, a close
integration with existing IT-systems like the ERP or MES is required. The design
and implementation of such APIs remain a future research topic. Another challenge
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is the need to transfer the insights gained from the transparency of the app into
strategic guidelines and operational measures to change the production network.
Further, the relocation of production processes to enhance sustainability should
always be a midterm solution for process technologies, which cannot be adapted
easily. For a truly sustainable manufacturing company, all processes must be
redesigned to reduce their negative impact on nature and society.

16.6 Conclusion

In this paper, the work of the IoP’s long-term production management research
group was presented. This includes four individual and partially interlinked appli-
cations that address a variety of issues in long-term production management.
They pursue the common goal of data-driven decision support in the Production
Control Center in order to increase the decision quality concerning uncertainty
in the dynamic and changing environment. The applications presented currently
differ partially in their implementation status and are continuously being developed
further. This includes in particular the continued interlinking of the work within
the research group as well as in the entire IoP. In the medium term, all developed
prototypes are to be integrated into the IoP Kubernetes cluster, and in the long term,
the real-time capability is to be increased for use in real production environments.
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Abstract

In short-term production management of the Internet of Production (IoP) the
vision of a Production Control Center is pursued, in which interlinked decision-
support applications contribute to increasing decision-making quality and speed.
The applications developed focus in particular on use cases near the shop
floor with an emphasis on the key topics of production planning and control,
production system configuration, and quality control loops.

Within the Predictive Quality application, predictive models are used to
derive insights from production data and subsequently improve the process-
and product-related quality as well as enable automated Root Cause Analysis.
The Parameter Prediction application uses invertible neural networks to predict
process parameters that can be used to produce components with desired quality
properties. The application Production Scheduling investigates the feasibility of
applying reinforcement learning to common scheduling tasks in production and
compares the performance of trained reinforcement learning agents to traditional
methods. In the two applications Deviation Detection and Process Analyzer,
the potentials of process mining in the context of production management
are investigated. While the Deviation Detection application is designed to
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identify and mitigate performance and compliance deviations in production
systems, the Process Analyzer concept enables the semi-automated detection of
weaknesses in business and production processes utilizing event logs.

With regard to the overall vision of the IoP, the developed applications
contribute significantly to the intended interdisciplinary of production and infor-
mation technology. For example, application-specific digital shadows are drafted
based on the ongoing research work, and the applications are prototypically
embedded in the IoP.

17.1 Introduction

Production management today faces numerous challenges such as increasing
uncertainty and simultaneously growing complexity (Westkämper and Löffler
2016). Shorter product life cycles, individualization, and disruptive technological
innovations require efficient implementation of changes (Schuh et al. 2017). The
potential of the IoP for production management lies in providing data-driven
decision support on all levels of managing production in volatile and uncertain
business environments (Schuh et al. 2019a). Short-term production management
focuses in particular on decision support in time-sensitive scenarios on or near the
shop floor. Therefore, the aim of the research work is to learn and profit from
historical data by developing self-learning production systems and, as a result, to
significantly increase the decision-making quality and the decision-making speed
in production environments (Müller et al. 2022). This is important to ensure the
robustness of production processes by quickly making decisions and implementing
appropriate measures (Stricker et al. 2015).

For this purpose, data and analysis latencies are to be minimized through
the integration of continuous cross-domain data access and the development and
combination of diagnostic, predictive, and prescriptive analytics models. Moreover,
decision and implementation latencies are to be reduced by means of an appropriate
collaboration of autonomous processes and model-based decision support as well as
the implementation of suitable measures in the production system.

The practical realization of such decision support takes place through the
development of a Production Control Center as shown in Fig. 17.1, in which
interlinked applications contribute to increasing decision-making quality and speed
in the production environment. Context-specific data from the IoP data lake is used
in the sense of a control loop to generate data-driven transparency via the various
applications with regard to emerging adjustment needs and to address these by
deriving and implementing suitable measures.

The five applications developed (cf. Fig. 17.1) focus in particular on use cases
near the shop floor with an emphasis on the key topics of production planning and
control, production system configuration, and quality control loops. The specific
challenges, the methods used, and the results obtained through interdisciplinary
research are described in detail in the following Sects. 17.2, 17.3, 17.4, 17.5,
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Fig. 17.1 Production Control Center

and 17.6. A summary and outlook are given in Sect. 17.7. The five applications
described in this paper certainly do not address all possible challenges and problems
in short-term production management, which is why further icons for future linked
applications are already included in the proposed production control center (see
Fig. 17.1).

17.2 Intelligent ProductionManagement Through Predictive
Quality

In order to continuously improve process- and product-related quality, data-based
methods for decision support in production are being investigated as part of the
Intelligent Production Management through Predictive Quality (PQ) application.
The focus is on data analysis for PQ, which enable an early prediction of quality
deviations and production defects, as well as the identification of the underlying
causes. This information can then be used for deriving target-oriented corrective
measures. As shown in Fig. 17.2, primarily production processes with two or more
production steps are considered. This enables the investigation and development
of approaches that lead to process step overarching predictions, as well as the
identification of interactions between different process steps (Schäfer et al. 2019).

17.2.1 State of the Art

Currently, existing quality management methods are progressively supplemented
with data-based approaches to face the challenges arising with increasingly complex
products. One of the main challenges in implementing data-based decision support
through PQ is the pre-processing and integration of diverse data sources (Groggert
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Fig. 17.2 Intelligent Production Management through Predictive Quality

et al. 2017). Due to the various sources, there are a variety of formats and data
types (Wang 2017). Common data management methods, such as Data Warehouse
(Bauer and Günzel 2013) and Smart Factory Information (Yoon et al. 2019),
mostly consider the technical implementation rather than a clear structure for the
data which is needed for PQ applications. This results in the necessity of a data
model with a comprehensive data structure. Various information modeling standards
already exist. However, they omit standardized instructions on how to perform the
modeling process (Sudarsan et al. 2005). Moreover, no product-centric models for
manufacturing data could be found in the literature so far.

Utilizing data structured by a product-centric data model, PQ is able to derive
product- and process-oriented predictions about quality using data analytics meth-
ods. To subsequently optimize quality, it is crucial to get insights into the trained
model (Cramer et al. 2021). Model-agnostic methods allow to detect to what extent
the model prediction depends on the different input variables as well as to compare
different types of models (Vilone and Longo 2021). A systematic investigation of
the methods with regard to their applicability in the context of PQ has not yet been
conducted (Goldman et al. 2021).

17.2.2 Approach andMethods

The predictive capabilities of the PQ application will empower the operator to
improve product and process quality. For automating these operations, a universal
process-independent data model is required, especially in cross-process approaches
(cf. Fig. 17.2) the heterogeneity of the processes and the associated data lead
to problems during analyses. To solve these, a comprehensive meta-model for
production data (MMPD) was developed by Cramer et al. (2021), which allows
the derivation of production-related data models. These universal, yet application-
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Fig. 17.3 Extract of the MMPD on the left, Partial Dependence Plot (PDP, marked in blue) with
Individual Conditional Expectation (ICE, marked in gray) lines on the right

specific data models ensure compatibility between the data and the required data
analysis pipelines for PQ applications. The MMPD is a product-centric model
and focuses on the holistic view of product-related data. The metadata provides
the ability to incorporate the domain- or application-specific context required
to accurately interpret the data points (cf. Fig. 17.3). Uniform interfaces and
standards for data integration and consolidation procedures allow product-centric
PQ applications to access only the data and information they required. In this way,
the MMPD, with the automated data analysis pipeline built on it, serves as the basis
for a PQ application ecosystem.

To provide decision support in the optimization of production processes and
quality improvement, the most important process parameters are identified and
investigated. A requirement for the investigation of important features or parameters
in the production process are accurate prediction models. The prediction models
are used as a proxy for a simulation or a digital shadow of the production line,
and it is assumed that a good prediction model captures all the intricacies of the
production process that can reveal opportunities for optimization. These prediction
models are trained in the data analysis pipeline discussed above, with the options of
more specific or complicated model specifications if it is required.

The most influential parameters are identified with feature importance methods
and on three levels of complexity. The first and most intensively researched level of
investigation is singular feature importance. Singular features can indicate the most
influential parameters to the prediction and by proxy, the overall quality. The second
level of the feature investigation refers to the identification of interactions between
features in the model. This could refer to parameters in one production step, but the
more valuable outcome is finding interactions across production steps. This means
the intervention or optimization point can be moved to the earliest possible step
in the production line. The third level of feature importance is related to causality
inference and the generation of causal graphical models that capture all relationships
between parameters in the production line.
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An example of the first level of investigation is partial dependence plot (PDP)
(Friedman 2001) as the four examples in Fig. 17.3 show. The PDP displays the
average relationship between the different values of a considered input feature
and the predicted value of the target feature. For this purpose, marginalization is
performed over the distribution of the feature of interest and the machine learning
model prediction. As the other input features are marginalized, a function only
depending on the feature of interest is obtained, including interactions with other
input features. Figure 17.3 illustrates for example that higher values of input X1
lead to a higher model prediction. The PDP can also be used for interactions,
including first and second-order effects and indicating the effect on the outcome
when two features would be adjusted together. The PDP plot is enriched with
Individual Conditional Expectation (ICE) plots, which indicate the prediction for
different values of a feature of interest separately for each data point (Goldstein
et al. 2015). ICE lines not parallel to the PDP indicate that there are interactions with
other features. Figure 17.3 depicts that for input feature X1 the ICE lines roughly
run in parallel to the PDP, which indicates that the impact of feature X1 on the
model prediction surpasses the interaction with other input features. For causality
representation, undirected graphical models prove to be useful by representing
interactions in a digestible format, without committing to a direction of causality.
Directed graphical models capture the directionality of the influences along the
production line and provide a visual overview of all relationships identified.

17.2.3 Results and Conclusion

The developed MMPD enables the efficient use of universal data analysis pipelines
for production data. Based on feature importance methods, both main and interac-
tion effects can be detected to build causal models for root cause analysis in the
future. The results presented here serve as a baseline for further work on improving
product- and process-related quality. For example, this includes the integration of
measurement uncertainties in model building for quality prediction. In addition, the
elaboration of a concrete approach and the development of methods for the creation
of causal models for production processes to determine the causes of predicted
defects and quality deviations will be examined. Finally, a further necessary research
priority will be focused on defining a practical way for integrating the data-based
methods into established processes and workflows.

17.3 Enabling Decentralized Production by Objectifying
Machine Setup Using Parameter Prediction

The events of recent years have changed the world of manufacturing. The Covid-
19 pandemic demanded manufacturers of textile and plastic goods to flexibly and
quickly switch their production to needed goods, such as masks or face shields
(Missoni et al. 2021). Nowadays, due to globalization, companies operate in an
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increasingly volatile and uncertain environment and are often confronted with
various types of disruptions.

One approach to address those issues is decentralized production. By switch-
ing from a centralized model with a single or few large production sites to a
manufacturing environment with many smaller, widely distributed micro-factories,
dependence on individual production sites is reduced and fast and flexible reactions
to sudden, unforeseen events are enabled. Besides increased resilience, decentral-
ized production networks offer many benefits, such as shorter delivery routes and
times as well as a reduction in packaging material, reducing waste and increasing
sustainability (Essers and Vaneker 2016; Morgan et al. 2021).

Two technologies, additive manufacturing (AM) and textile production, have
proven their adaptiveness during the beginning of the Covid-19 pandemic. While
traditional supply chains couldn’t keep up with the demand for personal protective
equipment (PPE), a Czech manufacturer of 3D printers was able to ramp up mass
production of face shields in just 3 days, in which dozens of prototypes were
manufactured (Prusa Research 2022). By distributing the geometry files digitally,
face shields could be produced globally at short notice. A similar observation was
made in the textile industry. Clothing manufacturers in Germany switched their
production to masks and protective equipment in a short time, producing up to
10,000 masks per day (Oertel 2020). Moreover, material suppliers and producers
were connected via a founded platform (Schmelzeisen 2020).

To exploit the potential of decentralized production, managing increasing com-
plexity in production planning and control, and a constant part quality must
be guaranteed. This is increasingly difficult in a highly decentralized system,
since the type of machines, the available resources, the environmental conditions,
and the operator’s skill level can vary heavily. This is paired with the fact that for
the presented manufacturing technologies, many process parameters are available
that influence the resulting part quality and are oftentimes not fully understood.
Additionally, there is a shortage of skilled workers in the above-mentioned, highly
knowledge-dependent industries. In summary, to harness the full potential of a
decentralized production network, the individual process must be flexible while
being reliable and a defined, high-part quality must be achievable, regardless of
variations in machines, material, environment, or operator skill.

17.3.1 State of the Art

The freedom and flexibility in part production via AM also entails high process
complexity in form of many adjustable process parameters that influence the
resulting part properties, like part strength and surface roughness, but also process
factors, like manufacturing time. Those process parameters are typically adjusted
for each part, based on expert knowledge or via a trial-and-error approach. Some
parameters can have a significant effect on resulting part properties, like orientation
on tensile strength. For example, one study found a 45.8% decrease in tensile
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strength between parts that were oriented horizontally and vertically on the build
plate (Zaldivar et al. 2017). Currently, correlations between process parameters and
part properties are mostly studied for each parameter individually. However, for
a complete characterization of the process, interdependencies between parameters
must be considered. For example, increasing layer height reduces the manufacturing
time but increases surface roughness (Bintara et al. 2021), while reducing process
speed has the inverse effect (Luzanin et al. 2013).

To handle the high amount of adjustable process parameters and their influence
on part properties in various manufacturing technologies, previous studies have
utilized machine learning-based techniques (Hsieh 2006; Jagadish et al. 2019; Jang
et al. 2016). While typically reporting high prediction accuracies, the presented
methods are not easily scalable, need a lot of computing power for each prediction,
and rely on a very large set of training data.

17.3.2 Approach andMethods

To objectify the setting of process parameters in situations where high decision
speed is necessary and based on a limited set of training data to achieve defined,
high-part quality, an invertible neural network (INN) is set up.

The desired part quality can be achieved by several combinations of machine
settings. Conventional (forward) neural networks determine the possibly achievable
quality based on one particular parameter setting. INNs allow the problem to be
inverted so that combinations of parameter settings are suggested to achieve the
desired quality. The term INN was introduced in 2019 by Ardizzone et al. (2019).
INNs differ in structure from conventional neural networks by the base layer, also
called the “inverse coupling layer” (Dinh et al. 2017). In contrast with other neural
networks, they can be inverted trivially. An advantage of using INNs in the AM
and textile use cases is the possibility of further optimizing the production process
according to certain criteria, such as production time or quality. Since different
machine settings generating the same output are suggested, the most suitable ones
for the specific task can be selected.

To improve the applicability of extrusion-based AM as a method for producing
high-quality plastic parts decentrally, a method for non-planar AM with variable
layer height was developed. Using this method, the technology’s freedom, based on
a layer-by-layer manufacturing approach, is retained, while typical shortcomings
like high anisotropy and high surface roughness are addressed. This is done by
deliberately curving layers in three-dimensional space instead of manufacturing
those layers in a planar way, parallel to the build platform. Three-dimensional layers
inside the part can be shaped such that mechanical loads on the part are taken in
strand direction as opposed to perpendicular to the strands. Outer layers are used
to accurately represent the desired geometry, including potential freeform surfaces.
This way, surface roughness can be reduced by 76% (Pelzer and Hopmann 2021),
while retaining a large layer height for the majority of the part, therefore reducing
manufacturing time.



376 R. H. Schmitt et al.

17.3.3 Results and Conclusion

The benefits of agile, quickly adaptable manufacturing processes were utilized
during the beginning of the Covid-19 pandemic. To aid in the need for PPE,
face shields were manufactured around the world using AM. Since most people
were printing the forehead part and buying elastic straps for securely wearing the
face shield, the latter were in short supply. By designing a 3D printable elastic
strap, setting up the associated manufacturing process while going through several
iterations quickly, a highly efficient process could be set up in just 3 days. This way,
it was possible to manufacture more than 800 elastic straps per day per machine. In
combination with injection-molded and film-extruded parts, complete face shields
could be produced in-house (Schmitz 2020). Similarly, designs for textile masks
were elaborated and distributed to manufacturers who changed their production
focus to masks. By setting up a supplier-manufacturer platform, it was possible
to enable the exchange and distribution of close to 2 billion masks and 79 million
protective clothes.

In a separate study, it was shown that using the developed INN for parameter
prediction, it is possible to automatically generate sets of process parameters that are
capable of accurately replicating the demanded part properties. In most cases, the
accuracy of the tested part properties was within 82.76% to 99.98% of the demanded
output (Pelzer et al. 2023). Only few cases resulted in lower accuracies; however,
this could be attributed to extreme combinations of demanded part properties and
was identified beforehand as unlikely to succeed, regardless of chosen parameters.
These edge-cases were used to identify the barriers of achievable quality.

The research on non-planar AM shows that previously present conflicts, like
the trade-off between manufacturing speed and surface roughness, can be resolved,
resulting in a more capable manufacturing technology and higher quality parts.

In conclusion, it was shown that all necessary aspects for a decentralized
production – agility and flexibility, part quality as well as reliability and objectivity
in process setup – could be achieved. By combining all mentioned advances, the
foundation for decentralized manufacturing is laid.

17.4 Reinforcement Learning in Production Scheduling

A general shift toward growing product individualizations and more flexible pro-
duction environments has led to a significantly increased complexity in production
management (Haeussler et al. 2020; Schuh et al. 2019b). Coping with smaller batch
sizes, flexible material flows and frequent disturbances on the shop floor creates
additional requirements especially on the short-term production management (Lang
et al. 2019). Conventional ERP systems could not yet support these challenges
sufficiently, so new systems continue to be developed, e.g., Advanced Planning
Systems (Zijm and Regattieri 2019).
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In addition to traditional optimization methods, recent approaches investigate the
feasibility of applying learning-based methods, e.g., reinforcement learning (RL) to
scheduling tasks in production (Xie et al. 2019). What most approaches have in
common is the focus on the main control tasks order release and dispatching. By
comparing the performance to traditional methods used to solve such problems,
e.g., ConWIP or Shifting Bottleneck, trained RL agents show promising solutions
for scheduling tasks (Kemmerling et al. 2021). Rather than a purely academic
investigation of RL in abstract scheduling tasks, the goal in the work presented here
is to enable the use of RL approaches in realistic production scenarios by identifying
remaining obstacles and addressing them.

17.4.1 State of the Art

During the last decades of research on production planning and control many
approaches and frameworks have been published (Wiendahl et al. 2005; Schuh
2012; Lödding 2016). In accordance with Lödding, general production control tasks,
e.g., order release and dispatching, with short-term influence on the production
performance still get special attention in order to cope with the stated challenges
(Kemmerling et al. 2021; Waschneck et al. 2018). As depicted in Fig. 17.4, the
order release task determines the time and sequence in which orders are released for
production and thus controls the actual input to the production system. Dispatching
or sequencing determines the sequence in which orders are processed at each work
system (Lödding 2016).

With a growing level of complexity, especially for flexible material flows and
a high number of machines and orders, classical approaches like mathematical
optimization were complemented by heuristics to reduce the scope of consideration
(Samsonov et al. 2021). Due to an increasing operational use of assistance systems
based on simulation, it becomes feasible to depict and hence understand a higher
complexity level as present methods could provide (Rabe et al. 2008). In the
production context, discrete-event simulation is broadly used to map the production

Fig. 17.4 Task of production control (Lödding 2016)



378 R. H. Schmitt et al.

process including orders, resources, material flows, production plans, buffers,
sequences, and performances (Fishman 2001). Discrete-event simulations provide
the foundation for the application of learning-based methods such as RL.

The application of RL to scheduling problems in production is an emerging field
of study with a wide range of different approaches being investigated. They differ in
their structure as single-agents (Samsonov et al. 2021; Zhang et al. 2020) or multi-
agent systems (Waschneck et al. 2018), use different kinds of algorithms such as
value-based (Waschneck et al. 2018; Samsonov et al. 2021) and actor-critic methods
(Zhang et al. 2020), and consider different ways of modeling state and action spaces.
RL is well suited to be applied to scheduling problems, because a strategy can be
derived by direct interaction with unknown environments and without having to rely
on externalized expert knowledge (Panzer and Bender 2022).

While the problem has been receiving increasing attention in the literature, the
focus of present works tends to be on solving heavily abstracted problems rather
than researching the transfer of RL systems to real production environments.

17.4.2 Approach andMethods

Solving a problem using RL requires formulating it as a sequential decision
problem, in which an agent interacts with an environment by performing certain
actions after observing the environment’s state. The agent receives a reward
depending on how well it solves the given problem and, during a training period,
learns a strategy that maximizes its long-term rewards. The agent’s observations
in response to actions are typically computed by a simulation (Gosavi 2015). While
commercial, widely accepted simulation tools for order release and other production
scheduling problems exist, they generally do not provide interfaces which allow
them to be used by common RL software. RL libraries and frameworks tend to
be written in programming languages like Python, which offer advantages such
as easy adaptability for research, but do not provide the sufficient standard for
direct implementation in an industrial application. Compatibility with commercial
simulation tools is, however, of paramount importance to enable the use of RL
learning in real production environments. To facilitate this, an interface based on
network sockets was created for the practical application of the use case presented
here (Kemmerling et al. 2021). This makes it possible for the RL agent created
in Python to communicate directly with a simulation in the commercial tool Plant
Simulation.

As the user acceptance of automated scheduling agents must be assured, an
application to compare and visualize different order release scenarios based on
their performance in terms of the adherence to delivery dates and utilization of
available resources has been developed. The integration of real problem cases into
the application and the combination of the different functionalities in an online
application, i.e., simulation, RL algorithm, and visualization for different scenarios,
ensures the precise aim of solving practical problems.
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17.4.3 Results and Conclusion

Research performed during the development of the application presented here has
investigated both order release (Kemmerling et al. 2021) as well as combined order
release and sequencing problems (Samsonov et al. 2021) and demonstrated that
RL agents can learn successful strategies to solve such problems. In addition, RL
agents trained in this way have been shown to solve order release problems within
the software Plant Simulation (Kemmerling et al. 2021), which is an important
step toward practical use of RL in real-world scenarios. However, this transfer
onto commercial simulation software also highlights the remaining challenges,
which need to be overcome by RL solutions. These include incorporating further
optimization objectives and constraints such as adherence to delivery dates, scaling
the approach toward larger problem instances as they are encountered in real
production scenarios, and transfer learning over different types of production.
Further challenges lie in the investigation of how well RL solutions can perform
disturbance management to appropriately respond to production interruptions and
in examining how online optimization with RL can affect response times.

17.5 Process Analyzer –Weakness Detection in Event Logs

For companies, business process improvement is becoming more important
(Schmelzer and Sesselmann 2020). One of the key tasks within business process
improvement is the weakness detection during the process analysis phase (Dumas
et al. 2018). Based on workshop formats and interviews, these approaches are
time-consuming, cost-intensive (Schmelzer and Sesselmann 2020), and exposed to
subjective influences (Bergener et al. 2015). For process mapping, process mining
discovery algorithms can increase the objectivity and reduce the effort by analyzing
event logs (van der Aalst et al. 2021). For weakness detection in process analysis,
however, methodological knowledge is needed to analyze an actual process flow
and ensure applicability in practice (Bergener et al. 2015). The Deviation Detection
application focuses on the automatic detection of definitions as well as root cause
analysis using machine learning techniques, while here the focus is on the user-
defined deviation. The main objective is to bring user domain knowledge into the
framework.

17.5.1 State of the Art

Various approaches from the literature aim to address the explained challenges.
Authors like Bergener et al. (2015), Hoehenberger and Delfmann (2015), and
Rittmeier et al. (2019) use weakness patterns that formalize knowledge about the
structure of process weakness types to apply them to process models with pattern-
matching algorithms. In approaches such as Outmazgin and Soffer (2016) this idea
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Fig. 17.5 Elements of process weakness type model (Schuh et al. 2021)

is applied to event logs, but only for specific workaround weakness types. Hence,
huge automation potential remains for the weaknesses identification in real business
processes with low effort. Several process mining techniques for general weakness
detection do already exist but often rely on reference “to be” process models. The
remaining challenge is to develop weakness models of generic business process
weakness types. Their application on event logs enables weakness detection in as-
is-processes without a reference model and hence can reduce effort and subjectivity.

17.5.2 Approach andMethods

The Process Analyzer enables semi-automated detection of weaknesses in business
and production processes based on event logs. To this end, domain expert knowledge
on relevant process weakness types is transformed into weakness models, which are
applied with algorithms to event logs.

A weakness model is the formalized description of a weakness type with regard
to its characteristic properties (Schuh et al. 2021). The graphic description method
IDEF0 (ICAM Definition for Function Modelling) is used as a framework for
the modeling of process weakness types. IDEF0 models consist of five elements:
Activity/Process, Input Information, Control Information, Resources, and Output
Information (Presley and Liles 1995). It can be applied to describe weakness models
using the elements weakness type and data requirements necessary to detect a
weakness, a mathematical description as a rule for detection, algorithmic functions
that enable the application of the weakness model as well as the shape of the
identified weakness (e.g., event, tuple of events, . . . ). Figure 17.5 shows a generic
model for process weakness types.
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17.5.3 Results

Seven generic weakness types were derived from systematic literature followed by
a multi-criteria relevance assessment by Schuh et al. (2021): A redundant activity
describes the repeated execution of a single activity within a process instance. A
repetition of an activity sequence within a process instance is labeled as a backloop.
Unwanted activities that occur at least once (e.g., printing) represent the weakness
type unintentional activity. Parallelizable activities indicate a reduction in lead
time in comparison to sequential execution. The potential for activity acceleration
is addressed by the weakness type unsuitable execution time. A bottleneck is an
activity in a process instance with the longest execution time. Transition times
specify the time between two consecutive events, which is generally considered a
process weakness.

Regarding the data requirements, all the mentioned weakness types require the
basic event log attributes, process instance, activity, and time stamp for identifica-
tion. Additionally, the weakness types unsuitable scope of activities, bottleneck, and
transition time require start and end timestamps for each event.

The mathematical description of weakness follows the consideration that
algorithms must be able to process the information from event logs. To ensure
practical relevance the concept’s database is the event log, which is a set of
events stored in the information system. In this work, the mathematical rule-based
description of an event i is defined as:

i = (m, n, o) or i = (m, n, oi, oe) (17.1)

with i = event; m(i) = process instance of event i; n(i) = activity name of i;
o(i) = timestamp of i; oi(i) = initial timestamp of i; oe(i) = end timestamp of
activity i

The given attributes m(i), n(i), and o(i) or oi(i)/oe(i) are variables, specific values
of these attributes are indicated with “*”. Following, the mathematical descriptions
are derived for the example of the weakness type redundant activity. The set I(m*,
n*) is defined as all events in the event log with a specific process instance m* and
specific activity name n*:

I
(
m∗, n∗) = {

i ∈ I | m(i) = m∗ ∧ n(i) = n∗} (17.2)

The set I(m*, n*) equals all redundant activities that occur more than once in a
process instance, leading to a mathematical description for a redundant activity:

| I
(
m∗, n∗) |> 1 → I

(
m∗, n∗) = “redundant activity” (17.3)

In practice, this means that the weakness type “redundant activities” exits, if a
process instance contains two events with the identical activity name. Based on the
mathematical rule-based descriptions, Schuh et al. (2021) defined nine algorithmic
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requirements on how to apply the models to event logs. In the context of this paper
the requirements have been translated into a pseudo-code, which is followingly
illustrated for the weakness type of redundancy:

for each activity in the set of events in the event log:
for a process instance in Process Instances (as a set of process instances in the event

log)
if count of number of activities in process instance > 1:
then return duplicate activity found

Using this structure, the requirements for an executable algorithm can be derived.
For the process analyzer, algorithms were designed and tested using simulated data
generated from real event logs (Pourbafrani et al. 2021a). The provided platform
allows to generate event logs with known deviations and assesses whether the formal
definitions are able to catch these deviations.

17.5.4 Conclusion

With increased pressure on process performance, also the effectivity and efficiency
requirements for the methods for business process improvements increase. By
process weakness type modeling and algorithmic implementation, the process
analyzer enables automated weakness detection in event logs, thus offering signif-
icant reductions in effort and subjectivity compared to conventional approaches in
practice. Further research should address the quantification of performance losses
due to process weaknesses as well as the standardized derivation of measures
including the quantification of their impact on process performance. Combined,
those concepts could serve as holistic decision support for process analysis and
design, which is already being pursued by the authors.

17.6 Deviation Detection in Production Lines Using Process
Mining

In order to meet the high customer requirements in terms of individualized products
and short delivery times, global supply chains with strong interdependencies have
formed in recent decades. In order to absorb possible external and internal disrup-
tions, it is necessary to build robust production systems. The response to disruptions
in production is the task of the production controller. The task of the production
controller is to make high-quality decisions in a short time. Furthermore, the
production systems and the dependencies between the subsystems are complicated,
and because of this, it is difficult for one person to derive suitable countermeasures.
The complex processes of production planning and control require appropriate
decision support so that the decision quality can be improved. In the current
case, however, there is a lack of suitable IT support, so that complex decisions
are primarily made on the basis of experience. Often, the production controller
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is insufficiently supported by IT systems and therefore relies on experience. In
the area of production planning and control, it is expected that decision support
systems will improve the decision-making processes and reduce the probability of
making the wrong decisions. The recorded execution data of production systems is
a great source of information that can be used to support production controllers in
deviation management. This information is transformed into the form of event logs
in the context of process mining. The aim of this research is to create a decision
support system to enhance the decision-making quality on the shop floor (Mühge
2018; Fischer et al. 2020). This chapter presents a framework and demonstrator
for the management of detection and reaction of disturbances on the shop floor by
using process mining and machine learning. Compared to the application Process
Analyzer, this application supports daily operational decisions on the detection and
handling of disturbances automatically, whereas the Process Analyzer application
is based on the user’s input for the definition of deviations. The following chapter
presents how the framework and demonstrator have been approached within the
context of the Internet of Production.

17.6.1 State of the Art

To understand disturbance and deviation handling, deviations and disturbances
are defined. Unplanned and unforecasted deviations from the planned status are
referred to as disturbances. These result in production shortfalls or performance
reductions without intervention (Schwartz 2004). Deviations are characterized by
comparing planned and actual values. Deviations do not necessarily have negative
consequences for a production system, while disturbances normally have. If a
defined tolerance range is exceeded, deviations are classified as disturbances due
to the negative effects on the production system. If the tolerance range is regularly
violated, this is referred to as systematic disturbance. One of the typical tasks of
production controllers is to manage the performance of production, so reducing the
negative impact of disturbances is particularly important (Meissner 2017).

The state of the current research in this fields aims to support the produc-
tion controller in automatic disturbance handling. Existing approaches in the
field of disturbance management by production controllers can be divided into
simulation-based support, methodical support, process mining techniques, and
machine learning-based support. The machine-learning-based approaches use case-
based reasoning for knowledge representation for a rescheduling approach (Priore
et al. 2015; Khosravani et al. 2019). Other approaches use Support Vector Machines
(SVM) or complex event processing for the prediction of deviations and distur-
bances.

In this research, the focus is on process mining techniques since they are data-
driven and use historical event data to interactively improve processes (Pourbafrani
et al. 2021a). Each product in a production system is a process instance, and the
recorded process instances are able to reveal performance and compliance devia-
tions and potential root causes. Process mining deviation detection approaches are
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aligned and supported by machine learning techniques (Pourbafrani et al. 2021b),
which makes providing a novel deviation detection framework for production lines
possible.

17.6.2 Approach andMethods

To develop a first demonstrator, a framework for decision support systems (DSS)
was developed based on the structure proposed in Sauter. DSS is described as an
IT-based system that enables the user to access context-relevant data, analyze it, and
evaluate different alternatives for a specific decision situation (Sauter 2010). Due to
the tasks of the DSS, it is structured into three parts, namely, a data module, a model
module, and a user interface (Sauter 2010). In the following, the adapted framework
for deviation detection and its components will be described. The data component
uses feedback data from production and machines and has the task of gathering data
from different enterprise IT-Systems like ERP, MES, or IoT platforms to combine
as much data as possible to enable the comparison between the actual and planned
states of the production system. The data component will provide the data in the
form of an event log, which is needed for the process mining and the later machine-
learning components (Fig. 17.6).

The framework consists of three main modules. The first module is process
mining, which discovers the current process flow of the products and orders in
progress. Process mining not only enables the representation of the actual and
planned process flow but also enables the identification of deviations in the actual
process and in comparison to its planned flow. The set of labeled deviations in the
context of performance and conformance that the framework is able to identify is
presented in Fig. 17.6. The identified deviations will then be labeled in the second
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deviations)
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deviation
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Case ID
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Fig. 17.6 The defined and considered list of deviations w.r.t. performance and activity flow in the
production lines using their event logs
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module by a machine-learning algorithm, and it will be checked if they are a dis-
turbance. Afterward, the potential causes of the detected disturbances are identified,
which can be used as a recommender system for similar disturbances in the future.
This represents the third module of the framework. The process flow, identified
deviations, and labeled disturbances, as well as the proposed countermeasures from
the recommended system, will be presented to the production controller in the user
interface. There, he can give feedback to the model component on whether the
disturbances were labeled correctly and if the recommended countermeasures were
suitable. With the feedback, the model components are trained continuously and
enable a continuous improvement of the DSS.

17.6.3 Results and Conclusion

The framework was implemented as a Python web application. With the process
mining algorithms, deviations are detected w.r.t. activities, resources, process
instances (cases), and the overall processes. Afterward, using different techniques
such as decision trees, the decision trees are trained using the detected deviations.
The resulting trees are able to present the potential causes and situations that
lead to the specific types of deviation happening. The causes are identified, and
countermeasures are proposed. Furthermore, the application of process mining was
evaluated in the context of a pipe manufacturer. A sample-derived decision tree can
be based on the duration of process instances as a deviation in the application.

The purpose of the proposed framework is to identify and react to disturbances
in production lines w.r.t. their event logs. The framework and its modules were
designed and implemented to make the evaluation using real data possible. This
framework was evaluated using simulated event data and real-world data of
processes in the Cluster of Excellence “Internet of Production” project with the
main purpose of making decisions within certain constraints. The comprehensive
considered types of deviation and extracted attributes are the proper platform for
the use of predictive process monitoring in the case of online detection and reaction
of deviations in production lines. The next step is to make the framework executable
for the streaming data of production lines, which requires deployment on the actual
shop floor settings.

17.7 Conclusion

In this paper, the work of the IoP’s short-term production management research
group was presented. This includes five individual and partially interlinked appli-
cations that address a variety of issues in short-term production management. They
pursue the common goal of data-driven decision support in the Production Control
Center in order to increase both the decision quality and the decision speed in
production environments on or near the shoop floor. The vision of the self-learning
production system, in which learning and profiting from historical data are intended,
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is central to this. Subsequently, the context-specific selection and processing of data
provide the basis for the research contributions achieved in the various applications.

Regarding the Predictive Quality and automated RCA application (17.2), three
major research contributions are made: defining a comprehensive data model and
an exhaustive ML framework, quantifying uncertainty for predictive models, and
using feature importance as well as other model-agnostic methods to gain process
insights. A similar contribution is made with the application Parameter Prediction
using INN (17.3). By training an invertible neural network based on historical and
synthetically generated data, process parameters are predicted which can be used to
produce components with the desired quality properties.

The application of RL in production scheduling investigates the feasibility of
applying reinforcement learning to common scheduling tasks in production and
compares the performance of trained reinforcement learning agents to traditional
methods used to solve such problems (17.4). While reinforcement learning shows
promise, it has to be pointed out that challenges such as scalability and compatibility
with common simulation software remain.

In both applications Process Analyzer (17.5) and Deviation Detection (17.6),
the potentials of process mining in the context of production management are
investigated. While the Deviation Detection application is designed to identify and
mitigate performance and compliance deviations in production systems, the Process
Analyzer concept enables the semi-automated detection of weaknesses in business
and production processes utilizing event logs. By using process mining techniques
on event logs, effort and subjectivity for the weakness detection in as-is-processes
can be reduced without requiring a reference process model.

The applications presented currently differ partially in their implementation
status and are continuously being developed further. This includes in particular the
continued interlinking of the work within the research group as well as in the entire
IoP. In the medium term, all developed prototypes are to be integrated into the IoP
Kubernetes cluster, and in the long term, the real-time capability is to be increased
for use in real production environments.
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Abstract

The manufacturing industry, especially in high-wage countries, faces new chal-
lenges in recent times. The environment of development projects gets more
dynamic and uncertain and is characterized by fast-paced changes of technologi-
cal and economical aspects as well as heterogeneous customer requirements and
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volatile markets. In combination with an increasing complexity of cyber-physical
products, the challenges within product development are constantly growing.
Furthermore, companies need to be more flexible and be able to adjust to
changing conditions (Schuh & Dölle 2021, S. 11). To increase flexibility, enablers
(i.e., advanced manufacturing technologies) and tools (i.e., data-based automated
design tools) are presented, whose further development and integration into
the product development process reduce development times. Agile product
development for cyber-physical products has become a significant research focus
in order to meet the challenges described and to ensure the future competitiveness
of manufacturing companies. The following paper and respective sections will
describe the vision and main research activities within the Cluster of Excellence
“Internet of Production” (IoP) in the context of agile product development for
cyber-physical products.

18.1 Introduction and Research Objective

The Cluster Research Domain C (CRD-C) “Agile Product Development” focuses
on the determination of processes, structures, as well as enablers and tools for
agile product development for cyber-physical products. In this context, the Internet
of Production allows stakeholder integration for an effective development and
eliminates latencies for radically reducing development lead time. Multiperspective
and persistent datasets within the IoP are an absolute precondition for the implemen-
tation of agile product development in manufacturing companies as an opportunity
to confront today’s volatile market conditions.

Conventional plan-oriented development approaches are reaching their limits
in terms of dealing with the radical reduction of development times (Kantelberg
2018). Particularly in the context of cyber-physical systems, the fulfillment of
functions by sub-functions of the various domains of mechanics, electronics, and
software leads to major challenges in development (Drossel et al. 2018). Thereby,
the linking of physical and data processing virtual objects results in a significantly
more complex product and its development process. Over the past years, research
focused on the acceleration of the pace of adaption and the improvement of agility
within product development (Cooper & Sommer 2016). Whereas agile procedure
models are popular within the software industry, a systematic transmission of the
advantages of these models on the development of cyber-physical products is still
pending.

This is due in particular to changed restrictions in the software industry compared
to cyber-physical products within the manufacturing industry (Cooper & Sommer
2016). In addition to existing organizational hierarchies and the willingness of
employees to change, the significantly increased effort required to implement
prototypes should be mentioned in particular in this context (Schuh et al. 2017a).
Furthermore, there is a need for synchronization and coordination of the devel-
opment streams with regard to required information from and for the various
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disciplines in order to enable rapid and flawless development. Therefore, the CRD-C
“Agile Product Development” addresses the following main objective:

To enable agile product development for cyber-physical products in terms
of radical reduction of lead time while at the same time enhancing customer
satisfaction.

The reduction of lead time and enhancing of customer satisfaction can be
achieved by changing the conventional and plan-driven development approach
toward an agile process. Therefore, the IoP supports the databased determination
of product concepts as well as the related constraints and offers a possibility to
deal with unpredictable environmental changes. Accepting and handling uncer-
tainties during the product development process means overcoming the typical
completeness paranoia, which describes today’s demand of full specifications prior
to a development activity. Databased tools as well as advanced manufacturing
technologies allow a new way of stakeholder integration resulting in exceeding
customer and user expectations. The direct integration of stakeholder feedback
in terms of rapid engineering change requests also allows the derivation of even
more suitable products. In order to answer this question, the research domain is
subdivided into the two focus areas and respective workstreams “Processes and
Structures” and “Enablers and Tools” for agile product development, which are
introduced in the following sections.

18.2 Processes and Structures for Agile Product Development

The first research area focuses on processes and structures for agile product
development. In terms of processes, the market development, engineering and
production of prototypes must be evaluated. Furthermore, the necessary structures
in terms of organization and data structures for an agile product development in the
context of the IoP are derived. Thus, the following research questions structure the
research in this field:

1. How should agile processes and methods be designed to support market develop-
ment, engineering and production of prototypes?

2. How should agile organizational structures be designed and how can an agile
culture be implemented?

3. What are the data structures needed to eliminate semantical conflicts and
latencies?

The first question addresses agile processes and methods. The IoP differentiates
between the three areas market development, data and engineering, as well as
production of prototypes. Accordingly, underlying procedure models are derived
considering multiperspective and persistent datasets. In this context, the system-
atic transmission of the advantages of agile software methods on cyber-physical
products is addressed. The respective organizational structures in combination
with an agile culture enable the realization of advantages. Finally, the processes
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are enhanced as transparent exchange of data along the process erases latencies
and semantical conflicts. In order to reflect the relevant literature with respect to
processes and structures for agile product development, state of the art is discussed
in the following.

18.2.1 State of the Art

The SCRUM approach constitutes an established agile method for the software
industry. A key element is the definition of iterative cycles named sprints creating
a testable, functional product increment (Schwaber 2004). Smith considers the
requirements of manufacturing companies for implementing agile processes (Smith
2007). Klein additionally provides promising approaches toward agile engineering
(Klein & Reinhart 2016). Cooper as well as Ahmed-Kristensen and Daalhuizen
presented approaches constituting an integrated approach of the conventional Stage-
Gate process and agile methods (Cooper & Sommer 2016; Ahmed-Kristensen &
Daalhuizen 2015). Conforto defined an iterative development approach integrated
into a Stage-Gate process (Conforto & Amaral 2016). The authors’ prior work
concerned the development of physical products as well as the design of innovation
and development processes. The SFB 361 focused methods to increase development
effectiveness and efficiency. In addition, several researchers have contributed to
the research on agile product development in the context of the manufacturing
industry (Schuh et al. 2017a; Rebentisch et al. 2018; Schloesser 2020; Kuhn
2021). Nevertheless, the described approaches do not emphasize the design of agile
processes supporting the collaboration of different cross-domain departments in
different types of development sprint. In addition, the approaches do not concretize
organizational and data structures.

18.2.2 Overview of Research AreasWithin “Processes and
Structures”

The focus of the research area “Processes and Structures for Agile Product Develop-
ment” lies on processes and respective methods as well as organizational structures
and data structures for agile product development. Therefore, “Processes and
Methods” address the derivation of the underlying procedure models. The research
field “Organization” discusses working structures as well as the implementation of
an agile culture. To build a connection toward the IoP as the main driver for the
databased reduction of latencies, the research field “Data” covers the development of
a digital shadow for the entire engineering-oriented value chain of the development
cycle. Furthermore, this research field comprises the requirements of the tools of the
development cycle regarding the IoP (see Fig. 18.1).

In order to radically shorten the development time and increase customer
and user satisfaction, the IoP offers several possibilities in terms of stakeholder
integration and latency reduction. Within the area of “Processes and Methods,”
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Fig. 18.1 Conceptual overview of processes and structures for agile product development

the three research fields “Market Development,” “Engineering,” and “Production
of Prototypes” concentrate on the systematic transmission of the advantages of
agile software methods to the development of cyber-physical products and therefore
contribute to realize the potentials of agile product development for cyber-physical
products. In order to define an underlying procedure model for agile development,
the sprint targets (e.g., market teaser, feasibility, functional prototype, etc.) are
taken into account. In addition, the definition of target-dependent sprint lengths
as well as necessary IoP-based tools to address the identified latency drivers is
required. The definition of the sprint types also shows a strong connection to the
definition of working structures within the research field “Organization” as roles
and team composition depend on the sprint type. Synchronization of the different
sprints is important to ensure the effectiveness and efficiency of cross-domain
product development. Multiple agile sprints are combined into one overarching
development cycle. This development cycle can vary in length and has the primary
goal of answering a set of central development questions and reducing uncertainty
in the development project. Development questions are derived from the core
requirements that are expected to achieve high customer satisfaction. The focus on
a few significant development questions, instead of a complete specification list,
represents a paradigm shift in product development and supports the rejection of
the so-called completeness paranoia. The validation of the development questions
is achieved with the involvement of different stakeholders and the generation of
minimum viable products (MVP). MVP are (virtual or physical) “extracts” from
a product. Based on a generated minimum viable product, different stakeholders
can provide feedback regarding selected development questions so that the next
development cycle can be pursued. The early uncertainty reduction and knowledge
generation with the help of the iterative generation of minimum viable prototypes
or product increments is a crucial characteristic within agile product development
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(Riesener et al. 2019). In addition to the previously described processes and meth-
ods, respective structures need to be acquired. The research field “Organization”
focuses on agile working structures and teams as well as the implementation
of an agile culture. First, the necessary members within an agile development
team have to be defined. The so-called voice of the product exists, for example,
in the form of a group of project managers who hold overall responsibility. As
another example, cross-functional team members participate depending on sprint
target, process type, and targeted viability of the sprint outcome. In conclusion, the
combination of hierarchical organization with lateral working structures can be a
solution, as it supports direct communication (lateral structure) as well as instant
decision-making (hierarchical organization). Moreover, culture and acceptance are
important for the transformation toward agile product development. Management
principles, values, and working environment present some of the main factors,
whose adaption becomes necessary in the context of agile processes. In addition, the
analysis of behavioral patterns provides further information about the acceptance of
agile product development. Due to the networked and cross-company collaboration
in today’s development projects, it is not sufficient to focus the design of the
company organization, but the scaling of agile product development in development
networks must also be organized. The last field of research addresses data structures,
thus depicting an important part for the connection of agile product development
and the IoP. To support the agile development processes, a transparent, legible,
and plausible exchange of data is necessary. Such a structure allows the provision
of data aggregated according to the requirements of the operator, without seman-
tical errors. Furthermore, the data structure supports system orientation. Whereas
nowadays, experts work domain oriented (e.g., mechanics), the aggregation of data
without semantical errors allows the consideration of different domains by each
expert (Mauerhoefer et al. 2017). In this regard, the approach of model-based
systems engineering (MBSE) becomes crucial for the realization of agile product
development.

In summary, the described structure of the “Processes and Structures” and
the included research fields form the basis for the realization of agile product
development in the context of the Internet of Production. The tools to be developed
in this context take into account the implementation of development cycles based on
development questions for the generation of minimum viable products. With focus
on the definition of agile processes, the collaboration in different process types can
be improved in all areas in the IoP. By concretizing an agile organization for the own
company and also across companies in the network, cross-domain teams including
the required roles and responsibilities are defined as a required part of agile product
development. Semantic conflicts and latencies can be eliminated by identifying the
required data structures. The IoP also improves stakeholder integration and helps to
increase customer and user satisfaction and acceptance.
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18.3 Enablers and Tools for Agile Product Development

The present chapter, in general, focuses on the determination of structures, pro-
cesses, and methods as well as enablers and tools for agile product development
for cyber-physical products. The following second part of the chapter focuses on
the research of enablers (i.e., advanced manufacturing technologies) and tools (i.e.,
data-based automated design tools) and their sufficient integration in agile product
development processes. The following research questions structure the research in
this field:

1. How can advanced manufacturing technologies and data acquired from corre-
sponding prototypes be used and integrated to enable agile product development?

2. How can relevant data from production and material be used to determine the
minimum viability of a product increment as well as to select, adapt, and improve
the corresponding prototyping technologies?

3. How can relevant data provided by the IoP be integrated into automated and
interactive design tools to support continuous stakeholder integration as well as
latency elimination and thereby enable agile product development?

The first research question focuses on advanced manufacturing technologies and
their qualification for an efficient and rapid realization of market teasers, feasibility
studies, and functional prototypes. Beyond the determination of the minimum viable
product increment and the corresponding prototyping technologies, the second
research question addresses the actual technological limitations of prototyping
technologies. In this context, the data gathered during the production process of
the product increments supports the continuous process optimization of advanced
manufacturing technologies. Finally, the focus of the third research question –
the ubiquitously available data, information, models, and knowledge across user,
production, and development cycle provided by the IoP – has to be condensed
into design-specific digital shadows. The respective tools considering the data from
user, production, and development cycle support the developer within the different
sprints in terms of easy-to-use applications. In order to reflect the relevant literature
with respect to enablers and tools for agile product development, state of the art is
discussed in the following.

18.3.1 State of the Art

Concerning manufacturing technologies efficiently transferring digital design data
into physical products, additive manufacturing (AM) and more general advanced
manufacturing technologies (AMT) are growing fields of international research
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(Gu et al. 2021; Poprawe et al. 2018; Behera et al. 2013). In particular, metal AM is
of increasing interest, and several international research groups are working on this
topic (Baumers et al. 2016; Zaeh & Ott 2011).

Research at the RWTH Aachen University via the Cluster of Excellence (CoE)
“Integrative Production Technologies” in the field of AMT focused on direct,
mold-less production technologies – especially metal AM (Poprawe & Bültmann
2017), hybrid incremental sheet forming (ISF) processes (Göttmann et al. 2013),
efficient 3D-ultrafast laser ablation (Finger et al. 2015), and new advanced weaving
technologies (Gloy et al. 2015).

While concentrating on solving the dilemma between scale and scope (i.e.,
enhancing process efficiency and quality), there has been little research on inte-
grating AMT into agile product development processes (Schuh et al. 2017a).
Technical limitations and the systematic deviations between AMT and conventional
manufacturing technologies (e.g., spring-back for incremental sheet forming or
resulting microstructure for AM) restrict a wider use of AMT for minimum viable
products (Schmitz et al. 2020).

AMT typically provides a new “freedom of design” (e.g., lattice structures by
AM, functional surface structures by laser ablation, or complex patterns by 3D
weaving), resulting in a multiscale problem. To adopt a product or component
to specific functional requirements, thousands or millions of lattice or surface
structures must be adopted to those requirements. Due to the increased design effort
and the according lead time, the potential of such functional adopted multiscale
structures could not fully be utilized today. Therefore, current international research
focuses on the field of automated or generative design (Wu et al. 2015; Panesar et al.
2018; Hinke 2018).

18.3.2 Overview of Research AreasWithin “Enablers and Tools”

As described in the first section, the concept of minimum viable products (MVP)
is an auspicious approach to radically reduce development lead time while drasti-
cally increasing customer/user satisfaction simultaneously. To answer development
questions with the aid of MVP, the respective MVP has to adequately represent the
requirements derived from the research questions. In this context, MVP represents
not only the product/component geometric or haptic design but all relevant func-
tional and mechanical properties necessary for answering the development question
focused on by a sprint (see Fig. 18.2).

The research field “Advanced Manufacturing Technologies” (AMT) focuses on
the industrialization of AMT and its integration into agile product development
processes. Additive and subtractive Digital Photonic Production (DPP) technologies
like additive manufacturing (AM) and ultrafast laser ablation, as well as incremental
sheet forming (ISF) or advanced weaving technologies for 4D textiles, enable
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Fig. 18.2 Conceptual overview of automated design tools and advanced manufacturing for agile
product development

the efficient and rapid production of small lot sizes and complex geometries.
Furthermore, such technologies allow the direct transfer of product ideas into
physical MVPs. Thereby, these technologies enable agile product development in
two ways:

1. AMT allows for the efficient and rapid realization of market teasers, feasibility
studies, and functional prototypes in terms of MVP.

2. AMT enables the efficient series production of small lot sizes, a critical success
factor for agile developed products – especially when it comes to the realization
of product releases in small numbers.

Based on the digital material shadow and the digital production shadow, the
focus is on understanding, managing, and reducing systematic deviations (e.g.,
microstructure, mechanical properties, or surface quality) of components manufac-
tured with diverse AMT. Based on these findings, it is possible to evaluate different
AMT in terms of applicability to develop a question-focused MVP. Due to the
modelling and understanding with the aid of gathered data, the optimal AMT for
MVP production can be selected considering the development question as well as
time and cost. The intended integration of AMT into agile product development is
based on the systematic management of deviations of the components by means
of model and databased optimization of technology chains and process parameters.
Selecting the optimal AMT concerning the development question becomes essential
for agile product development. In combination with the respective minimum
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viability mentioned Sect. 18.2 and the understanding of the AMT processes, it
is possible to allow databased selection of the respective technology to be used
for producing an MVP. Therefore, evaluation, and selection of the appropriate
manufacturing technology an IoP-based, interactive prototyping toolbox is derived,
mapping the MVP requirements (e.g., geometric tolerance and mechanical prop-
erties of a security-sensitive car body component), the digital shadow of potential
AMT from (e.g., geometric tolerance of ISF) and the digital shadow of resulting
material behavior from (e.g., achievable microstructure of AM). Although AMT
are promising for agile product development, there are still many technological
limitations. In order to accomplish the intended industrialization and applicability
of AMT the research in this the respective following section on enablers and
tools focuses on enhancing the performance of advanced manufacturing processes
(e.g., mechanical properties, surface quality, efficiency) and corresponding machine
tools. The examples described in Sect. 18.3, are reduced spring-back of ISF
components due to model-based CAD-CAM chains or increased flexibility of laser
ablation machine tools due to new kinematic approaches based on machine learning.
Data from the production process of MVP allows the continuous evaluation and
adjustment of parameters for process optimization.

Beyond AMT for the efficient and rapid realization of MVP, another key
enabler for agile product development are IoP-based automated, interactive, and
networked design tools. These tools are integrated into the different sprint types
(market development, engineering, and production of prototypes). Based on reduced
models and model-based AI methods, these interactive tools should automatically
design product or component geometries, respectively, geometric structures based
on the material-specific digital shadow, the process-specific digital shadow, and
continuously tracked data from production processes. The examples described in
Sect. 18.3 are a design tool for algorithmic generation of lattice structures for AM
and an AI-based design tool for Optical Systems Development.

18.4 Conclusion

As described, the Cluster Research Domain C (CRD-C) “Agile Product Develop-
ment” focuses on the determination of processes, structures, as well as enablers
and tools for agile product development for cyber-physical products. According to
the current state of research, the previously described structure and the included
research questions are elaborated in the following chapters of CRD-C.I and CRD-
C.II. Within these chapters, research results and use cases are presented. In future
research, the aim is to expand and scale the results obtained to date. Overall, the
increasing importance of the topic sustainability will be taken into account for
future research. The question of the influence of sustainability on agile product
development will be addressed. Longer product life cycles, but more individualized
products, are to be expected.
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Abstract

The work stream CRD-C.I of the Cluster of Excellence Internet of Production
focuses on the topic of agile product development in order to enable reduced lead-
times as well as exceeded customer and user satisfaction in product development.
The main emphasis of the research lies on the associated processes and structures.
In the course of the first 3 years of the Internet of Production, answers to
relevant research questions of agile product development were developed within
and between the research areas of market development, organization, data and
engineering as well as production of prototypes. This chapter presents selected
focus areas and insights from these research areas.
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19.1 Introduction

The overall goal of agile product development is to enable a radical reduction of
lead-times while at the same time exceeding customer and user satisfaction. In
order to achieve this goal, procedural and structural elements of the conventional
and plan-driven product development approach need to be questioned and adapted.
The work stream CRD-C.I of the Internet of Production focuses its research on
necessary processes, methods, and structures in terms of market development, data
and engineering, production of prototypes, and organization. Thus, the following
research questions structure the work stream: How should agile processes and
methods be designed to support market development, data and engineering, and
production of prototypes? How should agile organizational structures be designed
and how can an agile culture be implemented? What are the data structures needed
to eliminate semantical conflicts and latencies?

The Internet of Production differentiates between the three areas of market
development, engineering, and production of prototypes. Accordingly, underlying
procedure models are derived considering multi-perspective and persistent datasets.
In this context, the systematic transmission of the advantages of agile software
methods on cyber-physical products is addressed. The respective organizational
structures in combination with an agile culture enable the realization of advantages.
Finally, the processes are enhanced as the transparent exchange of data along the
process erases latencies and semantical conflicts.

In the course of the first 3 years of the Cluster of Excellence Internet of
Production, answers to the relevant research questions of agile product development
were developed within and between the research areas of market development,
organization, data and engineering, and production of prototypes of the work stream
CRD-C.I. Research results were elaborated in short-term cycles and presented on a
cross-research-areas basis. The following sub-chapters present highlights from the
results of these research areas. The chapter closes with a conclusion.

19.2 Market Development

Product development is increasingly characterized by high volatility, uncertainty,
complexity, and ambiguity of customer and market requirements – especially at the
beginning of the development process. The optimal product concept is impeded
by constantly changing customer requirements and technological evolution. In
this dynamic environment, a lack of customer integration can be a reason why
companies fail to achieve user acceptance. The research area market development
addresses this by providing data-based tools and methods that help explore and
assess requirements based on usage data or explorative studies and transform them
into product innovations. Early stakeholder integration in the agile development
process allows requirements to be met more precisely, reducing uncertainty, leap
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Fig. 19.1 Agile Process from virtual to physical state with iterations and development stages with
feedback loops

time, and unnecessary product iterations. In order to achieve this, the research area
market development investigates the following research questions:

• What is the process to perform a non-hypothesis-based requirement assessment?
• Which data, methods, and tools must be located in the process to identify and

validate the requirements?

Figure 19.1 shows the sequence of such an agile development process with its
stages, incremental outcomes, and iterative steps. The process is exemplary. Hence,
stages and outcomes may be adapted according to the actual needs, and each stage
may be implemented with its own agile development method.

The process starts with the recognition of potential demands. Focusing on
the transition from a hypothesis-based to a data-driven requirement assessment,
demands should be identified from the available data. The data is stored in a data
lake, a collection of databases containing Digital Shadows for the product and the
customer. Once a Digital Shadow has been generated, results and procedures can
be reused for subsequent tasks. Thereby, Digital Shadows continuously improve
with their usage since the underlying models are validated and extended with each
additional experiment.

The Digital Shadow of the Product can be seen as more than solely a digital
counterpart to a physical object, but also a virtual product with a particular set
of properties that may further evolve into a physical product at later stages of
development iterations. The Digital Shadow of the Customer, on the other hand,
is the digital representation of the customers, whose usage data relates to the usage
of a product and whose profile data provides insights about their preferences and
behaviors.

After recognizing potential demands, each stage goes through its iterative
development sub-process with a respective focus, resulting in an outcome. This
outcome can be, for example, a concept, a prototype, or eventually the actual
product. Results and insights from each stage flow back as new information into the
previous stage as well as the data lake, indicated by the feedback arrows in Fig. 19.1.
With that, the generation of feedback to the Digital Shadow of the Customer and
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the Digital Shadow of the Product at each development step is implemented as
a mechanism in the process itself. Thus, creating an overall loop, integrating the
Production Cycle and User Cycle into the Development Cycle.

At the early stages of the process, a product or demand may be handled entirely
virtually. That means the intended improvement or new product is designed as a
virtual prototype, which is meant to be tested and entirely deployed in a virtual
environment. Developing in a virtual environment allows for preserving scarce
(physical) resources. The strategic decision on what opportunity (i.e., demand) to
follow postpones to a later point when more knowledge about the later potential
products exists. Hence, reducing the uncertainty and complexity beforehand. With
the progression of the process, each development stage enables a more and
more physical implementation of the newly developed concept, thus gradually
transforming the virtual prototype into a physical prototype.

19.2.1 Focus Area I – Data Types in Product Development

The main research questions of the research area market development establish a
definite goal: the transition from a hypothesis-based to data-driven decision-making
in product development in order to enhance decision quality and decrease decision
latency. This section focuses on the foundation for this goal – data. Successful
products are based on customer needs, actively expressed or latent. It is the task
of the company to identify those needs and translate them into technical product
requirements (Brettel et al. 2014).

In production, the analysis of process data has a long history due to structured
data from sensors and clear targets (e.g., failure or no failure). For product
development, however, a variety of data sources is useful, which makes automation
of data processing and data analysis harder. This requires a standardized description
of the heterogeneous data. This work for the Internet of Production focuses on a
bottom-up approach to describe and structure data types and its implications on the
digital shadow (Briele et al. 2022, Schuh et al. 2020).

Product development not only uses customer-centered data but also product-
centered data, e.g., Social Media data, usage data, sales data and quality data,
measurement data. The data types differ not only in their sources but also in
their properties. Six main properties show the difference between those data types:
subjectivity, degree of structure, degree of specificity, number of data points, update
frequency, and cost (initial and running). This standardized structure helps to
identify similarities and differences and to select the right data for the application.

One trend is the use of big data. With the use of embedded sensors in everyday
objects like fridges, a high amount of data is recorded from a large population.
Also, natural language processing enables the automated recording of text-based
data like social media data. Both offer unfiltered and unbiased information about
the usage of products and latent needs in the best case but require advanced
data science methods and bear the inherent risk of unspecific data. Another
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trend is to join multiple data types to multiply customer insights. For example,
joint use of both, customer- and product-centered data, offers an end-to-end
description from customer needs to technical requirement that singular data types
cannot.

The implications toward the digital shadow are manifold: Firstly, the gathering
and storing of the data need to be tailored to each data type, and the access is
determined by development cycles in product development. Secondly, the high
number of decisions in product development prevents an easy automation of the
data analysis. While at the beginning, the most important product features must
be identified and ranked, they later must be specified exactly. Thus, every digital
shadow is tailored to a specific decision in product development.

19.2.2 Focus Area II – Integrating the Digital Shadow into the Fuzzy
Frontend of Innovation

One of the biggest challenges in product development is the question of which devel-
opment activities the company should invest in. Since identifying and exploring the
most promising development paths are usually highly complex and uncertain, they
are also called the fuzzy front end of innovation (Harraf et al. 2015).

In the past, various methods and tools have been developed to generate knowl-
edge and systematize the decision to manage the complexity and reduce the
uncertainty. However, due to their contextual and time-related constraints, those
methods and tools might not be fully applicable in the context of the IoP. This raises
questions about how the Digital Shadow can be applied using existing tools or how
these tools can be adapted to make the Digital Shadow applicable. On the other
hand, each method and tool are based on underlying assumptions, which raises
the question of whether data integration and automation are even desirable goals
(Harsch et al. 2020).

Multiple methods and tools have been selected and structured, and each step
has been analyzed for its constraints and underlying assumptions. Based on that, a
potential level of digitalization has been assessed. Further, some methods have been
empirically tested (e.g., Lead User identification using social and usage data) or
have been already implemented as a digital tool (e.g., Outcome-Driven Innovation).

Moreover, several constraints influence the choice of appropriate methods and
tools, forcing organizations to decide what method or tool to use and adapt them to
each purpose. E.g., SMEs often do not have the capacity or prerequisites to acquire
or analyze the necessary data, let alone build their own IoP. Such constraints limit the
applicability of the theoretical Digital Shadow. Decision support is needed, which
considers the respective goal of the endeavor and the available resources of the
company. The insights gained from the analysis of the methods and tools are the
basis for such a decision support tool.

In addition to the purely functional aspects, other hurdles can hinder the effective
integration of the Digital Shadow – for example, the paradox of openness at the
strategic level (Laursen and Salter 2014). While the commercialization of innovation
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requires protection, the creation of innovation often requires openness, or in this
context, the release of one’s own data into the data lake. That often leads to the
consequence that many companies participate in open platforms but are not willing
to share their data. As a result, any data-driven concepts such as digital shadows
come to a standstill.

Another example would be the aversion to algorithms on the psychological or
human level (Castelo et al. 2019). Data-driven concepts such as the digital shadow
include automatic analyzes and artificial intelligence. However, the best artificial
intelligence in the world does not bring benefits if there is internal resistance to
accepting possible decisions or outcomes.

Therefore, by analyzing innovation methods and tools for the systematic identi-
fication and exploration of the most promising development paths, taking possible
constraints and hurdles into account, theoretical and practical solutions for effec-
tively integrating the Digital Shadow can be derived and developed.

19.2.3 Focus Area III – Human Systems Exploration with Tangible XR

The early involvement of users, usability experts, and other relevant stakeholders
in the development process can help to reduce the uncertainty of customer require-
ments at an early stage. However, this can be difficult because the product is not in
a usable state. One solution to explore and evaluate possible interaction concepts of
a product before it is physically developed is the tangible mixed reality (Tangible
XR) (Ays et al. 2018; Flemisch et al. 2020; Meyer et al. 2021).

In the IoP, this is investigated for the multimodal prototyping of a car door
opening mechanism. The prototype contains both physical and virtual components.
The physical mock-up consists of a frame made of aluminum profiles, which are
assembled into a doorframe. This doorframe is connected to a virtual simulation
environment via a force feedback device. The user feels the forces of the device as
passive resistance when opening the door. The parameters of the device, e.g., forces
or damping, can be adapted in real-time. In addition to the real haptic impression,
the user perceives the visual impression of the door in a virtual environment (Schuh
et al. 2021).

Through this approach, Tangible XR addresses the tension field between virtual
and physical development, shown in Fig. 19.1. The goal is to integrate physical
components into the virtual prototype at an early stage. By doing this, more detailed
feedback, e.g., on haptic product properties, can be obtained at an earlier stage.
The possibility to modify parameters of the product prosperities in real-time also
allows exploring new interaction concepts with users and other stakeholders. Thus,
exploration is a method that cannot only be used for human systems design, but
also for non-hypothesis-based requirements assessment (e.g., Flemisch et al. 2021).
The data obtained can be used to identify customer requirements and thus reduce
uncertainties in the agile development process.
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19.3 Organization

The overall goal of agile product development is to enable a radical reduction of
lead-time while at the same time exceeding customer and user satisfaction. To
achieve this goal, procedural and structural elements of the conventional and plan-
driven product development approach need to be questioned and adapted. In order to
drive agile product development comprehensively, several research areas need to be
addressed. The research areas of market development, engineering, and production
of prototypes address the derivation of the underlying procedure models that need
to be defined and maintained to drive agility. However, an overarching perspective
with a strategic focus on how to implement agile structures and values within the
entire organization is essential to drive an “agile transformation.”

The research area organization focuses its research on agile working structures
and teams as well as the implementation of agile culture to provide a holistic and
strategic view on how to effectively implement organizational agility. First and
foremost, the necessary members within an agile development team must be defined.
As an example, the so-called “Voice of the Product” exists in terms of a group
of project managers, who hold the overall responsibility. As another example,
cross-functional team members participate depending on the sprint target, process
type, and targeted viability of the sprint outcome. In conclusion, the combination
of hierarchical organization with lateral working structures can be a solution, as
it supports direct communication (lateral structure) as well as instant decision-
making (hierarchical organization). Next to the agile working structure, culture
and acceptance are important for the transformation towards an agile company.
Management principles, values, and working environment present three main
factors whose adaption becomes necessary to implement agile processes. Basic
mechanisms within this context exist within several management theories (e.g., team
theory, lean management, flexible organization, system-oriented management).
After the mechanism abstraction, their connection to a theory for the transformation
towards an agile company is possible. Furthermore, the analysis of behavior patterns
gives further insight into an agile culture. In this context, acceptance profiles, which
are derived in CRD-D, allow further organization design.

The research field organization has derived several best practices and recom-
mended actions to effectively establish organizational agility. Selective key insights,
which could be organized into the focus areas of (1) Culture & Mindset, (2)
Organization and Team composition, and (3) Strategy and Leadership, are presented
in the following. The overall framework is illustrated in Fig. 19.2.

19.3.1 Focus Area I – Culture andMindset

Agile cultures require a new understanding of leadership. This new form of
leadership is based on the separation of technical and disciplinary leadership and
responsibility. Separating technical and disciplinary responsibility allows managers
to concentrate on individual strengths and simultaneously focus on actual task
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Fig. 19.2 Organizational
agility framework: Selective
key focus

requirements. This way, both the development of individual employees and teams
as well as the development of the product can be driven most effectively, allowing to
increase employee satisfaction while fostering motivation, efficiency, and creativity.
Managers that focus on agility understand the need to replace a culture of “command
& control” with a focus on personal responsibility, commitment, and feedback. This
also allows key decision-makers to regularly exchange ideas with their teams and
to inspire, encourage, challenge, and learn from their employees. Agility requires a
corporate culture that enables a balanced and equal focus on the development of its
products as well as its employees.

Furthermore, agile companies create corporate cultures that allow them to
overcome “completeness paranoia” and rigorously facilitate output-oriented work
methods. Embedding an agile mindset within the company requires the departure
from previous premises and the need to let go of old structures and pieces of
wisdom. Especially in the early phases of product development, agile organizational
cultures foster approaches of proactive trial and error, the permission to make
and learn from mistakes, and an appreciation of “work in progress” that allows
for iterative and quick adoption along the way. Development teams should be
able to focus on essential features in the early stages of development and present
interim results that do not have to be perfectly detailed and complete. Managers
that try to implement agile cultures need to focus on building trust and cooperation
among team members and need to act as role models when it comes to exchanging
that allows for mistakes, failures, and mutual learning. This way, companies can
establish a results-oriented working and product development style that allows for
quick initialization and adaption, leading to shorter time-to-market and better and
quicker fulfillment of changing customer requirements.
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19.3.2 Focus Area II – Organization and Team Composition

To ensure that companies can benefit sustainably from an agile culture and an
agile mindset, this must be embedded within the organizational structure of the
company. Thus, organizing processes and frameworks can be set up and established
in particular. For this, training on agile fundamentals in form of agile concepts,
methods, and processes is indispensable. However, these should not only be made
available to multipliers who are to disseminate them within the company but should
also be made available to as many employees as possible at the operational working
level. In addition to relying on a bottom-up strategy, it is important to teach
management how to exercise agile leadership. In this way, a top-down approach
can also be implemented and the commitment of management to an increased
establishment of agility in the company can be manifested at an early stage.
Management support is one of the most frequently mentioned success factors for
kick-starting the agile transformation to this end. Since the introduction of agile
product development involves a great deal of effort, it must not be an end in itself. To
be able to fully realize the potential of agile development, holistic implementation
is required in all relevant divisions of the company.

In addition to the organizational embedding and the training of the employees,
the team composition is particularly important to establish agility in the company.
The composition of the team is one of the most important decisions to be made in
the course of a project, as a suitable mix of experience, competencies in product
development, creativity, and marketing competencies must be found. Therefore,
a cross-functional team is required for mastering all challenges within the team
and being responsible for the project from the beginning to the end. Especially,
cross-functional teams can be enabled organizationally to identify and communicate
problems. To ensure the development of solutions to the identified problems within
the team in a targeted manner, a dedicated transfer of responsibility to the team and
a suitable process for solving problems are required in addition to the successful
cross-functional team composition. Both are part of the agile transformation and
therefore part of the previously mentioned training. In order to keep the performance
of the team on a constant and high level over the project duration, a long-term team
composition is to be strived for and the composition is not to be changed, if possible,
thus the work mode and the communication culture can be maintained. Since this
process may take some time, a dedicated responsibility assigned to the team and
its results is necessary to increase the commitment within the team to achieve good
results.

19.3.3 Focus Area III – Strategy and Leadership

To ensure a sustainable and long-term establishment of the agile culture in the
company, it must also be embedded in the corporate strategy. Even though the
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approaches of agile product development and classic plan-driven development are
often perceived as incompatible, the integration of agile culture into corporate
strategy is not a binary decision. Companies therefore often decide to combine
approaches of agile and plan-driven product development and thus benefit from
the advantages of both perspectives. In particular, the systematic processes of plan-
driven development and the more reactive working method of agile development are
to be mentioned here. There are different levels of integration for the combination
of agile and plan-driven approaches in product development, from the integration
of selected agile methods to the agile working between project parts or at the
beginning of a project in the early development phase. The extent to which the
agile culture is embedded in the company’s strategy must therefore be decided by
the management and is dependent on the company-specific boundary conditions.
Regardless of the specific form of the agile transformation, embedding it in the
corporate strategy helps to increase visibility and commitment within the company.
This is particularly advantageous for a longer transformation process in which
numerous challenges have to be mastered at the beginning. Nevertheless, the
support of the top management is essential to overcome these situations. As already
mentioned in the Sect. 19.3.2, the commitment of the company’s management is
important in the implementation of an agile culture.

To foster top management support, it is advisable to promote institutional-
ization with a board member. To this end, a more intensive commitment of
the board to the agile strategy is achieved and experienced. Furthermore, clear
reporting and decision-making paths must be established to avoid uncertainties
in decision-making within the agile team, which should make everyday decisions
as independently as possible so that bureaucratic and hierarchical hurdles can
be avoided. To strengthen the idea of leadership in an agile organization, the
technical and disciplinary management should be separated, as can be successfully
implemented by means of a product owner and agile manager. Regular exchange
between the managers and the operational teams is thus becoming increasingly
important. Overall, embedding agile thinking in strategy and management can
enable the company to allow both managers and employees to concentrate on
the essential tasks and prevent micromanagement. This can only be achieved by
breaking up previous structures and transferring responsibility for decisions to the
agile teams.

19.4 Data and Engineering

The research area data and engineering addresses the research questions “How
should agile processes and methods be designed to support market development,
data and engineering and production of prototypes?” and “What are the data
structures needed to eliminate semantical conflicts and latencies?”
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Fig. 19.3 General framework of the research area data and engineering

The ever-increasing demand for variant creation and engineering change requests
(ECRs) results in the need for flexible product development and production. This
entails agile development and manufacturing of products down to batch size
one while simultaneously dealing with the growing complexity of the fabricated
systems. An agile process includes the automation of tasks, which in turn means
that engineering artifacts must be available in machine-processable form. In this
regard, the approach of model-based systems engineering (MBSE) can be applied,
where formalized and structured models represent the central development artifacts.
A central element in many MBSE approaches is the so-called system model, which
describes the overall structure and behavior of the system. It serves as single-source-
of-truth in the development process and is often established using the systems
modeling language (SysML).

The ability to perform ECRs adaptively while maintaining data consistency and
avoiding media disruption is central to an agile yet stable production line. However,
MBSE is basically characterized by a strong frontloading. Thus, the challenge is
to synchronize agile development and model-based development. Overall, MBSE
is a promising opportunity for agile product development and production. It offers
various opportunities, such as virtual prototyping or digital twins. The integration
of MBSE into agile product development is illustrated in Fig. 19.3 and represents
the objective of the research area data and engineering.

The target is the synchronization between agile development and MBSE via
the systematic construction of system models, including the consistent connection
of domain-specific development tools. In the following, three focus areas are
explained, focusing on the necessary processes, methods, and infrastructure to
introduce an agile development through MBSE.
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19.4.1 Focus Area I – Synchronization of Agile Development
Processes and System Engineering Processes

To build a system model at the beginning of the development process, an initial
time investment is substantial as the modeling is a complex procedure. Furthermore,
there are numerous uncertainties about the relevant requirements and artifacts to be
implemented. Therefore, an iterative approach should be applied to transfer agile
principles to system modeling. Within the research area data and engineering, an
approach for iterative system modeling in agile product development was developed.
It focuses on defining the relevant design parameters, which need to be considered
in a sprint (Riesener et al. 2019). Furthermore, the methodology developed enables
the determination of a specific selection of development tools that are required to
answer the questions arising from agile development and considers the previously
identified design parameters (Riesener et al. 2021).

In an agile product development process, the development proceeds in defined
sprints in which specified increments are realized. The evaluable increments provide
the answer for the development questions to be clarified within the development
process. They are composed of various product-oriented design parameters such as
height, length, weight, and material. Thus, it is necessary to evaluate to what extent
the design parameters contribute to the resolution of uncertainties and identify the
design parameters that fit together into a validatable increment due to their technical
relations. Based on this, sprint-specific prioritizations and selection of technical
design parameters can be conducted. These product-oriented design parameters
need to be transformed into system-model-oriented design parameters to build up
the corresponding system model. The structure of the system model is discussed in
detail in the following focus area.

As the system model can only provide information to answer the development
questions, it is relevant to integrate development tools, which are able to process
the information to support answering the development question of a specific
sprint. Different domain-specific tools can be used for this purpose. Within the
developed methodology, the focus initially lay on the integration of computer-aided
development tools (CAx). A developed tool description framework can be used
to formally describe input and output information of the respective development
tools, and therefore, it provides the basis for the evaluation of question-specific
toolsets. By linking the framework to the design parameters, which provide the
respective input information, it is possible to evaluate which development tools
are best suited to elaborate the respective inputs (design parameters) and generate
corresponding outputs. As a result, an optimized set of development tools for
each sprint can be derived in order to answer specific development questions.
The first focus area presents an approach for synchronizing agile development
processes and system engineering processes, especially to use CAx development
tools iteratively in the context of system modeling. In the following focus area,
the structure of system models, as well as the opportunity of handling ECRs, are
specified.
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Fig. 19.4 Overview of the SysML system model architecture and linkage to domain specific
models shown for the example of an electric motor (Jacobs et al. 2022)

19.4.2 Focus Area II – The SystemModel as an Enabler for Rapid
Engineering Change Requests

A successful implementation of MBSE approaches requires a function-oriented and
model-based system architecture, the classification of domain expert models, and
the linkage of the system architecture and expert models and calculation workflows
(see Fig. 19.4) (Jacobs et al. 2022). The system architecture is represented by
a SysML system model and consists of requirements, functional architecture,
principle solution models, and solution elements (containing principle solution and
domain models). The presented methodology allows linking all system elements on
a parameter level with each other. Similarly, the domain models (e.g., MBS, FEM)
can be linked to the solution elements of the architecture model. This generates a
high level of data consistency from requirements over functions to solutions.

The ability to perform rapid ECRs is a major premise to be able to increase agility
in future development processes. MBSE approaches as described above promise to
provide an engineering environment in which rapid ECRs can be enabled. A first
approach on how a SysML system model can enable rapid ECRs was developed
(Meißner et al. 2021). The focus of this approach lies on the linkage of requirements,
system parameters, and domain models. First, the system parameters, which are
needed to verify the requirement satisfaction, are identified and linked to the
respective requirements. Then suitable domain models determining the identified
system parameters have to be linked to these system parameters in the SysML
system model. This allows an automatic check of whether a requirement is satisfied
or not. In case of unmet requirements, the system parameters responsible as well as
system parameters relevant to be changed can be identified. For specific test cases
that consider multiple system elements and require different models to be executed,
model workflows can be implemented within the system model to automatically
check these scenarios. Therefore, feedback loops can be drastically shortened.
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In focus area II, the general structure of the system model (Jacobs et al. 2022), as
well as an approach to use a SysML-based system model for the execution of rapid
ECRs (Meißner et al. 2021), was presented. The following focus area elaborates on
flexible parameter extraction from such models to enable this linkage.

19.4.3 Focus Area III – Information Distribution and Change
Propagation over Heterogeneous Engineering Artifacts

To harness the benefits of integrated system modeling, the different domain-specific
models have to be interconnected. This requires extracting relevant parameters from
models and synchronizing these with parameters of other incorporated models. As
systems engineering is highly interdisciplinary, this poses a challenge as termi-
nology, and thus, the distinct domain-specific models are highly heterogeneous.
Standardization and exchange formats help to bridge this gap but only provide a
mere foundation for data distribution. Connecting parameters of relevant models
enables tracing information across the heterogeneous tooling landscape (Dalibor
et al. 2019a) and validating domain-specific configurations in the context of the
overall system under development. To support rapid ECRs while simultaneously
ensuring product quality, automation of this process is essential. Whenever a
developer makes a contribution to the system, a continuous integration pipeline
is triggered to check whether the changes are feasible with respect to the existing
artifacts.

The general notion of automation and continuous integration, thus, perfectly
matches the problem of agile MBSE by integrating engineering models of various
domains. Here, these concepts are applied to the broader field of systems engineer-
ing, resulting in a huge challenge of connecting models and distributing information
in a semantically sound way. Furthermore, in contrast to software engineering, the
engineering models in MBSE generally do not appear as plain text artifacts but are
often encoded in a carrier language (such as XML), making it harder (for humans
and machines) to detect the impacts of a change. In the worst case, the engineering
model is only available as a binary file, requiring an application programming
interface (API) for proper access to parameters.

Thus, information distribution and change propagation require the underlying
continuous integration platform to handle the different artifact types, being able
to extract parameters independent of the encoding. As new models and model
types can constantly be incorporated during development, when synchronizing agile
development processes and MBSE, an underlying framework that handles parameter
extraction must be equally extensible. In a respective approach, models must be
parsed (in the case of textual formats) or (for binary artifacts) accessed via an
API. For each model type, an associated module can be defined in the framework
that can read and reintegrate parameters from the models, enabling standard-
ized information interchange. These modules serve as a communication interface
between the domain-specific syntax of the models and the general exchange of data
(Dalibor et al. 2019b). To enable this information distribution, the control flow of
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included tools and the data flow between the models must be specified. In software
engineering, this is handled by building scripts, such as Makefiles or Gradle. While
additional, specially tailored solutions for systems engineering exist, which provide
more accessible user interfaces (especially for non-programmers), the basic concept
remains the same. However, these frameworks need to be able to run in batch mode,
operating without manual input, to ensure automation in the overall data exchange
and validation process. Combining these approaches of a continuous integration
platform for MBSE with seamless integration of interdisciplinary engineering
models enables continuous data transfer and facilitates agile development.

19.5 Production of Prototypes

The rapid change of product requirements (Engineering Change Request ECR)
in the agile development process poses new challenges for technology planning
in the design of manufacturing systems for series production. In particular, the
interface between engineering and technology planning is significant due to the
need for rapid and efficient analysis of technological and economic effects of
ECRs on manufacturing. In addition to ECRs, the increased dynamics and agility
of the product development process result in new challenges for the design
and dimensioning of manufacturing systems. However, there are also numerous
opportunities to meet the existing challenges as well as the increasing cost and
time pressure through the production of prototypes for information acquisition and
validation of planning. To exploit the potential of increased agility as well as the
generated knowledge, it is necessary to understand the cause-effect relationships at
the interfaces of engineering, technology planning, and the design of individual pro-
cesses. Prototypes are a particularly valuable source of information in this context,
as they are exposed to the actual environmental influences of physical production
and thus provide valuable information for process design in addition to validating
simulation and planning results. The research area production of prototypes aims
to use the information generated by prototype tests to develop models and methods
for optimizing and increasing the efficiency of product development processes and
to analyze the cause-effect relationships at the interfaces of engineering, technology
planning, and process design. For this purpose, four focus areas were defined, which
attack the different interfaces to analyze and model the interactions. In the following,
the focus areas and the current research results are described.

19.5.1 Focus Area I – Engineering Change Requests in the Product
Development Process

Engineering Change Requests (ECR) in the product development process repeatedly
present manufacturing companies with economic and technological challenges, as
they lead to time-consuming and cost-intensive change measures, especially in the
late phases of the development process. To meet this challenge, a software prototype
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was developed that analyzes the impact of design changes in terms of technological
feasibility and forecasts the economic impact based on a volumetric cost calculation.
This enables the engineering department to get direct feedback on design changes,
thus achieving significant time and cost advantages in the development process
and increasing the competitiveness of companies. Furthermore, the tool offers the
possibility to derive corresponding prototype tests by comparing the technological
feasibility and the deviating product requirement profile to generate missing infor-
mation.

19.5.2 Focus Area II – Agile Ramp-Up Production

Due to the shortened product life cycles and the increased time and cost pressure of
efficient production, the pressure on manufacturing companies to carry out more
ramp-up productions in ever shorter periods of time has increased (Rey et al.
2019). Currently, however, the time and cost targets for ramp-up productions are not
achieved, which results in competitive disadvantages for manufacturing companies.
The failure to achieve these targets is due, for example, to production-related
engineering and manufacturing changes (E/MCRs), which lead to time-consuming
and cost-intensive changes during the ramp-up production (Kukulies and Schmitt
2018). The idea of current research work is to transfer the methodology of agile
product development to the ramp-up production and to integrate it into product
development in accordance with the hypothesis that E/MCRs in the ramp-up
production correspond to the same problems as the changing customer requirements
in the product development process. This is referred to in the following as agile
ramp-up production (Bergs et al. 2021). The aim is to use the increased agility
and the knowledge generated from the prototype tests to identify E/MCRs at an
early stage and to stabilize the ramp-up production in a targeted manner. Due to the
uncertainty that thus prevails during the ramp-up production, it is necessary to know
exactly where which uncertainties exist and what effects they have. Various models
and methods have been developed for this purpose as part of the research work in
the Cluster of Excellence IoP. Based on the modeling of uncertainties, a prognosis
model was developed, which enables the prognosis, evaluation, and prioritization
of E/MCRs based on the modeled uncertainties. Expanding on the results, another
model was developed that enables the optimal derivation of prototypes to be
manufactured for early reduction and validation of E/MCRs. Based on these
models, a methodology was then developed that supports companies in technology-
specific decision-making, considering product and process maturity as well as the
probability of use of manufacturing technologies in the series manufacturing system
in agile ramp-up production.

Furthermore, research was also conducted into how the manufacturing process
sequences to be designed in the agile ramp-up production can be optimized
economically (late ramp-up phase). The aim here is to design the manufacturing
processes (definition of process parameters) according to the available information
basis so that a cross-process, economical optimum is achieved and at the same time
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the required component characteristics for the final component (quality) are met. For
this purpose, however, both economic and technological interdependencies between
the different manufacturing processes have to be modeled. The concept developed
for this purpose provides for the individual processes to be represented by meta-
models, which approximate known system states, and are linked to corresponding
transfer variables (intermediate component state characteristics). The advantage
of meta-modeling is that these models can be quickly extended and detailed by
further data from the ramp-up production (e.g., from prototypes or analogy tests).
The linked meta-models make it possible to evaluate the effects of individual
process parameters on final component characteristics and to predict component
characteristics for different designs of the process sequence. Parallel to this, an
economical evaluation of the manufacturing process sequence is carried out, in
which the costs of the individual processes are determined as a function of the
respective process design and transferred to a higher-level evaluation model. These
two variables (predicted component characteristics and economical result) then
form the input variables for a metaheuristic optimization approach (selection due
to non-linear correlations and binary variables) to identify the most suitable process
parameter combination. This result is then evaluated according to the information
basis so that the meta-models are increasingly validated and improved by prototype
tests within the agile ramp-up production.

19.5.3 Focus Area III – First Part Quick, Right, and Productive

The importance of detailed process simulations as a basis for quick and correct pro-
cess design of manufacturing processes is undisputed. Extending existing simulation
approaches through increasing networking and data availability can overcome the
barrier to flexible, cost-efficient prediction of manufacturing processes caused by
data-driven models with higher accuracy. For a quick and correct design of milling
processes, knowledge about expected process forces is of great importance. The
calibration of existing simulation approaches is time-consuming and transferable
only to a limited extent due to the complexity of manufacturing situations (Altintaş
et al. 2014; Grossi et al. 2015). The Internet of Production creates the possibility of a
worldwide laboratory approach through cross-domain, continuous data availability
down to the machine level: Every production situation is recorded and documented
by measurements. On this basis, the target is to quickly adapt known physical
relationships to the current situation as well as to extract and quantify previously
unknown relationships as new knowledge from the data. This hybrid combination
enables manufacturing simulations to be used broadly and validly in the long
term, so that processes can be designed quickly, correctly, and productively up to
prototype production.

Three elementary steps are derived to achieve the target: In the first step, all
cross-domain data along the product creation chain (CAD, CAM, manufacturing,
and quality data) are automatically contextualized based on a digital shadow of
the manufacturing object (Brecher et al. 2021). The basis is a material removal
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model in the area of manufacturing simulation, which, based on the designed or
driven NC path, compares the material to be removed with the data measured at
this time contextualized (live data: positions, torque-forming currents of the spindle
and axis, spindle speed, process forces from a spindle-integrated force sensor; meta
information: tool, NC block, workpiece and tool geometry, manufacturing feature,
required quality features from the design). As a result, the data plane is transferred
from the time domain to a location domain, which forms the basis for the digital
shadow.

In the second step, the digital shadow is combined with known physical cause-
effect relationships. Thereby it is possible to define each manufacturing situation
as a so-called behavior cluster based on the cross-domain data. A behavior
cluster forms a delimited multivariable data domain. Within this behavior cluster,
manufacturing conditions are similarly based on the contextualized multivariable
data. Physical effect relationships such as the parameterization of known, empirical
force models as the Kienzle model, shown in Brecher et al. (2021), can be quickly
parameterized due to the contextualized availability of the data within the current
behavior cluster. In Brecher et al. (2022), the authors show the results of a cluster-
based calibration process of empirical force models. If this behavior pattern is
recognized via the available data exchange from planning to production within
the manufacturing design, the stored parameterized empirical process force model
can be used to estimate valid forces. Over time, as more manufacturing situations
become available based on the data, a cluster space will be achieved that can predict
potential impacts from ECR on the overall manufacturing process based on valid
relationships.

In the third and final step, the target is to extract the knowledge implicit in the
data with respect to manufacturing behavior using AI-based methods, to quantify
it. The key advantage of the global laboratory approach through networking and
the associated continuous data availability captures complex situations representing
behavior that is not represented by conventional physical contexts. Based on the
new insights extracted by data-based approaches, the previous process simulation
can be further improved. For this purpose, the previous cluster-based modeling of
physical contexts will be extended to a holistic hybrid model structure. As soon
as the prediction of the process forces deviates via the cluster-based approach
in the second step, this deviation is intercepted via an artificial neural network
(ANN), which searches for correlations from the deviations in the data as a basis
for quantifying unknown correlations. The authors show in Brecher et al. (2021)
the impact of unknown correlations on process force during tool breakage. The
deviations in prediction and measured force have been continuously processed by
the network structure. This processing shows the potential of the ANN structure
to represent other influences, such as here the vibration influence of the machine
structure and its influence on the process force, in addition to the valid models in
the cluster. As a result, such a network structure provides the basis to determine
quantitative relationships in the long term. Current and future work uses AI-based
algorithms such as LIME to quantify these new findings and make them available
to process simulation.
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19.6 Conclusion

In the first 3 years of the Cluster of Excellence Internet of Production, answers
to relevant research questions of agile product development were developed in the
research areas of the work stream CRD-C.I. Focus areas of these research areas and
central results were presented in this chapter.

The research area of market development dealt with several questions on an
abstract theoretical level as well as on a practical level. By making adequate use
of the digital shadow within product development and by enabling design and
deployment in a virtual environment, different ideas and concepts can be tested
quickly. The research area intends to create at least a semi-automated, continuous,
and iterative process of requirements elicitation while conserving resources. The
research area of organization identified agile values in corporate culture, employees,
organization, structures as well as strategy and leadership as the basis for success
in dynamic and uncertain environments. Disruptive market changes, technological
changes, and environmental shocks require companies to constantly rethink, react,
and reinvent. The research area of data and engineering showed that systems
engineering is a promising enabler for agile product development. Within the
research area, a function-oriented and model-based system architecture as well as an
approach to select relevant design parameters and development tools are presented.
Furthermore, the integration of models in a fully automated continuous integration
platform is described. The research area of production of prototypes provided a
methodological and technical overview of the procedure for exploiting the potential
of data-driven approaches to increase flexibility in prototype production due to
agile product development. Due to the availability and exchange of data from
product development to technology planning, detailed production planning, and
manufacturing, new relationships can be extracted that have the potential to boost
an agile and fast technology and process ramp-up in terms of expected effects,
quality, productivity, and costs. Further research results will be the content of future
publications of the Cluster of Excellence Internet of Production.
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Abstract

Today’s industrial world is characterized by ever-shortening product develop-
ment cycles and increasing degrees of product individualization which demand
tools and enablers for accelerated prototyping. In addition, the existing uncer-
tainty in the product development cycle should be reduced by involving stake-
holders as early as possible. However, should an engineering change request
(ECR) be necessary in the product development cycle, a fast iteration step into
production is inevitable. The methodological description of such an ECR in
the product development cycle is described in the previous chapter. Together
with researchers from the Internet of Production (IoP), information from the
product development process will be transferred to the digital shadow estab-
lished in the IoP. The digital shadow collects information from all areas of
the product lifecycle and provides it to the appropriate departments, adapted
to the corresponding task. To tackle this challenge, a new type of product
development process, the method of agile product development, is applied.
Within the Enablers and Tools project, the development of various advanced
manufacturing technologies (AMTs) for agile product development are at the
forefront of the work. The enablers and tools are further developed with
the principles of agile product development. They also serve to map the
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requirements for rapidly available and specific prototypes which are used to
answer specific questions that arise during the product development cycle. To
answer these questions, the concept of the Minimum Viable Product (MVP),
an approach to reduce development time and increase customer satisfaction, is
introduced and applied to all development tasks.

20.1 Introduction

Manufacturing companies continue to account for a high share of added value
in Germany (Statistisches Bundesamt 2022). At the same time, companies are
dependent on stable framework conditions. Changes in the framework conditions,
e.g., due to changed value chains, rising raw material prices, or changes in consumer
behavior, pose particular challenges for manufacturing companies (Brecher et al.
2017). In this context, sustainable corporate success is only possible through
innovative products due to global competition (Schuh et al. 2017). To meet this
challenge, flexible production processes and fast and efficient product development
are required (Brecher et al. 2017).

To establish faster product development processes, the Enablers and Tools for
agile product development subproject is investigating how the principles and meth-
ods of agile product development can be transferred to manufacturing companies.
Agile product development methods are characterized in particular by the fact that
uncertainties in the product development process can be reduced at an early stage
through the early involvement of stakeholders. The new role of prototypes, in which
prototypes are to answer specific questions in the product development process, also
serve to reduce the uncertainty in the product development process. In this context,
the subproject investigates how the maturity and execution level of prototypes can
be determined in order to be able to answer specific questions (Schuh 2017).

For the meaningful and rapid production of these prototypes, enablers and tools
are needed that can produce prototypes quickly and under the given boundary
conditions. One major focus of the project is the further development of so-called
advanced manufacturing technologies (AMTs) and how AMTs and data acquired
from prototyping technologies can be used for agile product development. The
second focus is the use of all relevant data from production and material to determine
the minimum viability of a product prototype as well as to select, adapt and improve
the respective prototyping technologies. In the long term, all relevant data provided
shall be integrated into automated and interactive design tools to support continuous
stakeholder integration as well as latency elimination for agile product development.

The following section describes the state of the art in agile product develop-
ment and AMTs. Subsequently, the AMTs investigated in the subproject, such as
4D-textiles, additive manufacturing or robot-based laser material processing and
interactive tools such as the automated design of optical systems, are presented.
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20.2 State of the Art

Agile process methods are adaptive approaches originally used in software devel-
opment and are characterized by an iterative development process. In each cycle
with a defined length, increments are generated and validated by the customer.
The strong involvement of the customer enables the development process to react
proactively to new requirements. The development process is characterized by
informal communication (Goll 2015). These methods aim to counteract the deficits
of a requirements analysis at the beginning of a development project and allow an
earlier usage of preliminary versions of the (software) product (Sommerville 2010).

The basis of agile process methods is the “Agile Manifesto” which defines
four guiding values and 12 principles to aid implementation of agile methods into
development processes, accepting the limited plannability of complex processes
(Highsmith and Fowler 2001).

Defining characteristics of agile methods are (Sommerville 2010):

• Flexibility and transparency: Processes are designed efficiently and superflu-
ous work steps are avoided as far as possible

• Focus on people: Processes are aligned according to the people involved and
their capabilities. Developers work independently in close cooperation and are
freed from strict procedural requirements

• Involvement of the customer: The customer is regularly involved in the
development process. The customer’s task is to review the development process
and help shape the further procedure

• Accommodating change: Changes are welcomed and actively addressed by
developers

• Iterative development: The process is characterized by recurring activities
• Incremental delivery: Functional product increments are delivered to the

customer at regular intervals. New requirements for the product are implemented
with each delivery

In comparison to conventional development methods, the development cycles
and the lead time to a marketable product are shortened significantly and the
customer can intervene early since deviations between understanding of customer
and developing team are detected at an early stage (Sommerville 2010). After each
iteration cycle, the customer has a potentially applicable prototype. The Minimum
Viable Product (MVP) is usable by early customers who can provide feedback for
further product development.

Advanced manufacturing technologies (AMT) such as additive manufacturing
(AM) allow an efficient transformation from digital design data into physical
products and present a growing field of international research (Behera et al. 2013).
Especially metal AM is of growing interest and several international research groups
are working on this topic (Baumers et al. 2016; Zaeh and Ott 2011). While focused
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on solving the dilemma between scale and scope, i.e., enhancing process efficiency
and quality, there is very little research on integrating advanced manufacturing tech-
nologies into agile product development processes. Technical limitations and the
systematic deviations between AMT and conventional manufacturing technologies
(e.g., spring-back for Incremental Sheet Forming or resulting microstructure for
AM) restrict a wider use of AMT for functional prototypes.

Advanced manufacturing technologies typically provide a new “freedom of
design” (e.g., lattice structures by AM, functional surface structures by laser abla-
tion, or complex patterns by 3D-weaving) which results in a multi-scale problem.
To adopt a product or component to specific functional requirements, thousands or
millions of lattice or surface structures must be adopted to these requirements. Due
to the increased design effort and the according lead-time, the potential of such
functional adopted multi-scale structures cannot be fully utilized today. Therefore,
we currently face a growing international research in the field of automated or
generative design (Panesar et al. 2018; Wu et al. 2015).

One way of implementing agile techniques from software development into
physical product development involves recording the work steps in the previous
product development and defining suitable agile techniques as a replacement model
in each case. Product development is carried out in an agile manner using the
substitute models and finally merged into a complete process model (Kantelberg
2018; Klein 2016). Step 1 is used to capture the original product development
process to identify the activities, decisions, and interactions of the stakeholders
in the individual development steps. The development sub-steps are decomposed
to define their modes of action based on processes, activities, tools, and roles.
In step 2, a suitable agile technique such as Scrum is selected. The procedure is
divided into processes, activities, tools, and roles, analogous to the previous product
development process. In step 3, the processes, activities, tools, and roles of the two
product development processes are transferred from the previous to agile product
development in tabular form. Activity and decision maps as well as profiles of the
agile techniques can be used as an aid. Agile submodels are assembled to form
the rough concept of the workflow for physical product development (step 4), and
product development is carried out in an agile manner using the developed concept
(step 5) (Kantelberg 2018; Klein 2016).

By applying this general workstream, agile techniques can help enable a faster
and more efficient product development process in the physical world. In the
following chapters, examples of suitable AMTs and possible applications in the
context of agile product development are presented. For each AMT, usage and
integration of the technology and data acquired during manufacturing in agile
development environments is explored. Also, the use of relevant data from pro-
duction and material to determine the minimum viability of a product prototype
as well as to select, adapt and improve the according prototyping technologies is
investigated.



432 T. Kaster et al.

20.3 Contributions

20.3.1 Innovative Kinematic Systems for Laser Material Processing

In recent years, lasers have been established as a manufacturing tool with a
wide variety of production processes, such as laser cutting, laser welding, or
laser structuring in production technology (Hügel 2009; Poprawe 2005). Photonic
technologies are also considered enablers for global environmental sustainability
(BMBF 2018; Cochard and d‘Humières 2019; Poprawe 2019). Furthermore, laser
technology can be seen as a particularly flexible process that is suitable for the rapid
and cost-effective production of prototypes and small series, also in the context of
agile product development (Hinke 2018; Poprawe 2005). To apply laser technology
in material processing, a relative motion between the laser tool and the material
to be processed must be realized. This relative motion is typically implemented
via kinematic systems that have been adapted from other manufacturing processes.
Accordingly, these kinematic systems are not optimized for the requirements of
laser technology and do not exploit the advantages of laser technology. Within the
subproject, the suitability of new, innovative kinematic systems for laser material
processing (LMP) is systematically investigated. With these new kinematics sys-
tems, LMP can be used as an enabler for agile product development in science and
industry (Poprawe 2005).

Due to the non-contact processing of workpieces by laser radiation, no restoring
forces act on the kinematic systems (Hügel 2009). Accordingly, the kinematic
systems do not have to absorb these forces and can be designed to be less rigid than
for other manufacturing processes, such as milling (Cen et al. 2016). As a result,
flexible kinematics systems such as robots are suitable for LMP. The challenge here
is that current, low-cost robotic systems do not meet the accuracy requirements.

The aim of the project is to investigate the potential of LMP with respect to new
kinematic systems. For this purpose, concepts for new kinematic systems will be
developed and their suitability for LMP will be investigated. The focus of the work
is on increasing the accuracy of the kinematic systems. The kinematic systems are
not developed to series production readiness, but the suitability of the systems in
principle for LMP is investigated with prototypes via proof of concept. Currently,
this is being investigated on two different prototypes.

The prototypes are themselves being developed using agile product development
methods and each represents a Minimum Viable Product (MVP). For flexible
3D machining of components by using low-cost articulated robots (cobots) is
investigated. A sensor system is being developed to accurately determine the Tool
Center Point (TCP) state of the robot, see Fig. 20.1, left. The processing of large-
area components by mobile robot systems is also being investigated, see Fig. 20.1,
right.

Higher-level issues, such as how data generated during prototype development
and use can be used, are also part of the work. The question of under what circum-
stances the components produced by means of the prototypes can be compared with
later series components is being investigated as part of the work.
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Fig. 20.1 MVP of a Tool Center Point sensing unit (left), MVP of a mobile robotic system for
laser material processing (right)

Among other things, the following questions, some of which are of a higher
order, will be addressed in the project:

• How can data generated during prototype development and use be applied?
• Under what circumstances are the components produced by means of the

prototypes comparable with later, series-produced components.

Furthermore, the integration of the prototypes into the data lake planned in the
Internet of Production (IoP) is being pursued .

20.3.2 Automated Process Optimization for the Production
of Individualized Sheet Metal Parts

Flexible manufacturing processes, such as 3D printing, enable rapid product devel-
opment and highly individualized products. A promising process to manufacture
individual sheet metal parts in small quantities is incremental sheet forming
(ISF), which has high geometric flexibility due to low tool binding. The process
combination with stretch forming enables overcoming known process limits and
significantly reduces the process time. In the part shown in Fig. 20.2, the global part
curvature has been achieved by stretch forming, and ISF has been used for forming
the cavities and other part features (Taleb et al. 2011).

The combination of the two forming processes results in a more complicated
process planning (Bambach et al. 2009; Schmitz et al. 2020). At the same time,
however, short development times and costs must be ensured, which is an important
factor in efficient prototype design, especially for small quantities. For this reason,
the Institute for Metal Forming (IBF) at RWTH Aachen University has been
working on the further development of the planning chain for the digital automation
and optimization of the process combination of stretch forming and ISF as part of
the Cluster of Excellence.

The first step in process planning is the analysis of the part to be produced. For
this purpose, the part surface is transferred to the planning tool and converted into
a suitable three-dimensional mesh within the tool. With the help of the mesh, it can
be evaluated whether the part can be produced with this process combination.
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Fig. 20.2 Exemplary
application part (inspection
door Airbus A320), produced
with the process combination
of stretch forming and
incremental sheet forming

After the first evaluation of the part, the process parameters, boundary conditions,
and tool paths suggested by the tool are then automatically prepared for subsequent
finite element (FE) simulations and transferred to the FE software via an interface.
LS-Dyna from Livermore Software Technology Corporation is used as the FE solver
for the simulation of the automatically planned forming process. Based on the
automatic planning and simulation chain, an autonomous optimization loop was
established with the help of an interface to the optimization program LS-Opt.

The optimization model can change the originally defined orientation of the
part as well as the tool paths depending on the simulation result. Metamodels are
used to optimize the process simulation and their predictive capability is iteratively
improved until the model can predict an optimal parameter combination.

The developed automated planning and optimization tool can optimize the
individual steps of the process chain by coupling CAD/CAM software with an FE
solver.

By optimizing with the help of metamodels, various process parameters can be
flexibly tested and evaluated automatically by the planning tool with the help of FE
models, without the need for time-consuming and cost-intensive experiments. The
usually iterative experimental procedure to find process parameters that enable a
successful manufacturing process is replaced by a more efficient iterative optimiza-
tion within an FE environment. In this way, the best possible parameter selection can
be determined directly without material expenditure, in order to then manufacture
the parts using the process combination. The optimization is mostly automated and
virtual. As part of the further development of the tool, the remaining manual steps
(such as the transfer of the results of the optimization between the process steps) are
also to be supported by a software solution and the expansion and validation of the
planning tool for other geometries is to be advanced.

20.3.3 Toward an Agile Development of Laser Process Simulations
Using Port-Hamiltonian Systems

Models of laser manufacturing processes live in different physical domains. The
laser beam is an electromagnetic wave and, therefore, obeys Maxwell’s equations.
The beam can heat up a material, which is described by the heat equation.
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High-temperature gradients occur during processing yield distortions, which is
studied in solid mechanics. Hence, the analysis of laser manufacturing processes
is a multi-physical endeavor. In addition, even small changes in the process, such
as the switch from a sheet metal body to a plastic body in a car, can cause
significant changes in the physical phenomena of, e.g., laser welding, which needs
to be accounted for in a simulation. Finally, the laser manufacturing industry has
already matured, and the trend goes toward the analysis of whole processes, e.g.,
the additive manufacturing process, instead of individual phenomena like laser-
material interaction (Dahotre et al. 2022). To develop digital shadows and design
tools, which predict desired properties of a prototype and hence enable an agile
product development, it is therefore essential to account for the relevant multi-
physical regimes and processes as well as material data.

In recent years, port-based modeling techniques from electrical engineering
have been combined with Hamiltonian mechanics and concepts from differential
geometry to form port-Hamiltonian systems (pHs) (van der Schaft and Jeltsema
2014). One of the key ideas underlying this modeling language is the separate
description of energy-storing, energy-dissipating, and energy-routing elements as
well as the definition of an interconnection structure, called (Stokes-) Dirac
structure, which preserves power. Within the pHs framework, different physical
phenomena can be described and analyzed separately from another. There is an
ongoing effort to apply structure-preserving model reduction techniques to pHs
to solve distributed parameter systems keeping the properties of the pHs, i.e., the
power conservation and composability (Argus et al. 2021). In addition, a visual
modeling language called bond-graphs exists, which is used to describe and reason
about the simulations at an abstract level (Borutzky 2011). The interconnection
properties of pHs enable the simulation of complex processes systematically
composing simulations of elementary processes. This systematic approach also
allows modifying or adding sub-models, which enables short development iterations
and continuous feedback. Therefore, pHs have the potential to enable an agile
product development tool with which one can interchange sub-models to more
easily answer change requests that might require different physical phenomena to
be included in a simulation. In addition, the ability to bring problems in input-
state-output form can be used to integrate process data in, e.g., a control loop or
to integrate machine learning techniques. The input-state-output form also allows
the integration of simulations in a data pipeline as it consumes a data stream as
input and produces another one as output.

The separation of concerns inherent in pHs modeling has been used to model
the different physical phenomena occurring in a coupled thermo-elasticity problem
(Brugnoli et al. 2021; Argus et al. 2021) separately (c.f. Fig. 20.3 top left and top
right).

Coupling the pHs of the heat conduction and linear elasticity problems yields
again a pHs which can be represented as another bond graph (see Fig. 20.3 bottom
center).

To show the potential of pHs in laser process simulations the authors are going
to apply this modeling technique to predict thermally induced distortions occurring
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Fig. 20.3 The top left and top right bond graphs model a heat conduction, and a linear elastic
structural mechanics problem, respectively. The combined bond graph is shown below

in laser additive manufacturing. The focus will be on the separate implementation
of the sub-processes, and the interconnection of the reduced models at a later
stage to form a co-simulation, which enables the use in design tools for additive
manufacturing.

The pHs framework is a flexible approach to the mathematical modeling of multi-
physical phenomena. It is used to study lumped and distributed parameter systems
alike and, because of its interconnection properties, paves the way to develop co-
simulations of complex systems or processes one step at a time.

20.3.4 Modularity for 4D Textiles

The production of textiles is one of the oldest production techniques for products
often worn close to the body. Recent developments focus on the creation of
near net shape fabrics that allow for individualization on the one hand and
conserving resources on the other hand. The process of three-dimensional printing,
creating 3D structures by adding layer by layer of material, goes along with these
requirements. The process of 3D printing with plastics was further developed into
four-dimensional (4D) printing. In 4D printing, material structures are produced that
can change their properties over time in a targeted manner. The fourth dimension
describes the time in which a change in properties might occur after 3D printing,
introduced by the influence of an external stimulus. The energy for the change of
property is stored in the material and/or is introduced by the stimulus (Tibbits 2017).
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Building on the principle of 4D printing, 4D textiles are textiles that can change
shape or function over time by the influence of a stimulus, mainly force and heat.
The shape change properties can be introduced in all textile production steps, such
as fiber and fabric production and finishing (Pei et al. 2015). 4D textiles produced by
3D printing on prestressed textile (usually warp or weft knitted with elastic material)
shape change from a 2,5D structure to a 3D structure resulting in bistable structures
and hybrid systems of a minimum of two materials. By prestressing the textile,
energy is brought in by using both the structural and material-based elasticity of the
fabric. The prestressed textile is brought in as the new build surface. By printing
beams on the fabric, the reset can be programmed thus resulting in defined 3D
shapes (Koch et al. 2021).

Mainly fused filament fabrication (FFF) with thermoplastic materials such as
PLA, TPU, or ABS is usually used. Tessellation techniques are used to design the
printing patterns (Koch et al. 2021). Only few approaches exist that model aspects of
the behavior of 4D textiles. Kycia and Guiducci present an approach to model lines
(Kycia and Guiducci 2020), Perèz et al. model Kirchhoffsche plateau principles to
design complex interaction principles (Pérez et al. 2017). 4D textiles have proven
to allow rapid prototyping of complex shapes and prototypes. As a design method,
Schmelzeisen et al. proposed an adapted Design Thinking approach to integrate both
the need-finding and the technical definition process in one (Schmelzeisen et al.
2018). The current process results in a variety of models and applications. Models
rarely build on each other thus knowledge must be generated for every new model
(Fig. 20.4).

To enable the development of MVPs, 4D textiles are defined as propagating
structures, a concept derived from nature. These structures are open and entangled
which enable them to be resilient and adaptable. Building on this, 4D textiles
are digital materials that consist of a discrete set of parts (modules), which are
reversibly joined (Popescu et al. 2006). Each module performs a function and is
linked to other modules along the edge to build a system. An input at one point
of the systems can turn the whole system into something completely different with
a different function. For validation, three basic modules have been designed and
the concept of propagation using user interaction with these modules and simple
joints has been tested. The modules represent three core properties of the material:

Fig. 20.4 Basic modules of 4D printing on textiles: Self-folding, self-bending, and self-
contracting
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Self-contracting, self-bending, and self-folding. The combination of modules with
joints allows for complex structures. Modularity as design approach for MVPs thus
for agile product development has a high potential for three reasons: the complexity
to describe separated modules decreases, standardization of the modules helps
to bring them as objects in the product design process (e.g., CAD) and scaling
principles from micro to nano level. The modular design allows to build complex
systems of basic modules for different application fields. Huge potential lies in
architecture, medicine, interactive surfaces, and robotics.

20.3.5 Functionality for Free – Paving theWay for Multi-Material
Additive Manufacturing

Fused filament fabrication (FFF)) is an established additive manufacturing (AM)
process for prototyping of thermoplastic components. Its popularity is based on
inexpensive equipment, high usability, and accessible process control (Osswald
2017). Many FFF processes are suitable to process two different colors or materials
subsequently. A second material is mostly used for support structures, and interlayer
adhesion between different materials is often weak. Due to its manner of adding
material locally, one major advantage of AM is the ability to change material
composition and density within a component. By intentionally varying applied
materials and thereby integrating multiple functionalities in a single component,
tremendous potential for agile prototyping is unlocked. This technology enables
the evolution from a contour-dependent design approach to a material-centric,
performance-driven design approach (Loh et al. 2018). Starting from the initial
idea, the final product can be conceptualized by focusing on the material and its
distribution rather than having manufacturing or design constraints shape the final
morphology. Employing agile principles, this allows a rapid response to design and
requirement changes as the material can be adapted in its composition and thus
its function in a single-step process. Therefore, the time from idea to prototype
and finally the product shortens significantly. Single components can substitute
assemblies and users are able to reduce the dependency on suppliers for off-the-
shelf equipment of small products. A low degree of adhesion between multiple
materials in FFF, however, limits the range of possible applications and displayable
functionality.

This research aims to understand and improve the process of multi-material FFF
to support prototyping within the scope of agile product development. Smooth
transitions between different materials can be generated by employing a nozzle
design that combines two feedstock materials and deposits them in a single bead.
Adhesion is expected to improve as opposed to distinct and subsequent material
extrusion due to molecular processes that are initiated by pressure and temperature
within the nozzle, as well as macroscopic mechanical interlocking within the proto-
type (Kennedy and Christ 2020; Khondoker et al. 2018). Moreover, compositional
changes during printing allow for the creation of so-called functionally graded
materials (FGM) whose properties can be tuned spatially. FGMs are known from
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nature where a graded structural transition allows for, e.g., optimized load transfer
in bones or wood (Oxman 2011).

Identified use-cases for components by functionally graded multi-material addi-
tive manufacturing (FGAM) spread from e-mobility to an integrated Internet of
Production. Within e-mobility, graded reinforcement can support the design and
production of lightweight structural components. Within the Internet of Production,
conductive gradients within components may support failure monitoring: By con-
tinuously measuring conductivity of abrasion-loaded manufacturing tools, existing
machinery may be digitalized without the need for larger investments.

Experiments are conducted with a modified FFF desktop machine. The two
materials are jointly molten and deposited by a single nozzle. The modification
of common g-codes by a parser allows the continuous adjustment of the ratio
of extruded material according to a previously determined gradient. During the
built-up, process data is continuously measured. A hotspot allows the data transfer
between printer and an exchangeable computer. Data records shall be analyzed to
indicate both building progress and potential failure. General knowledge shall be
extracted to be applicable for any subsequent and unique prototyping process.

Holistic experiments have been conducted for the combination of a brittle
polylactide acid (PLA) and a ductile thermoplastic polyurethane (TPU) with the
possibility of changing the composition in the process. Statistical analysis of
the samples demonstrates a profound relationship between the content of TPU
and properties like the elastic modulus, tensile strength, and correlated strain.
Specimen’s properties depend on design features like the composition ratio or the
course of the gradient as well as on process parameters like temperature profiles.

Two main challenges remain within the process: First, material selection requires
careful consideration, since the separation of jointly processed FGMs of dissimilar
materials is difficult. A possible solution may be the combination of a com-
postable and a recyclable material. The combination of a virgin material with a
secondary material might increase the usability of pre-used materials of lower
quality but limits the integration of advanced functionality compared to the use
of dissimilar materials. Second, the complexity for designers in FGAM increases
drastically due to adding the dimension of material composition. An intuitive and
predictive software to support users with the spatial assignment of macroscopic
and microscopic material properties is required (Gebhardt et al. 2019). Only by
ensuring predictability of part performance of a heterogeneous component with
compositional material changes, FGAM will be suitable for advanced prototyping
in different industries.

20.3.6 A Tool for Algorithmic Generation of Lattice Structures for
Additive Manufacturing

Lattice structures are lightweight constructions which have specific characteristics,
such as high surface area to volume ratio and excellent strength to weight ratio
(Savio et al. 2018). Additive manufacturing (AM) technologies for the processing of
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metals, specifically laser powder bed fusion (LPBF), enable the fabrication of such
complex structures. However, there exist challenges with the generation, data pre-
processing, data handling, and simulation of AM-compliant lattice structures. The
lattice structures created by most of the CAD software products are usually non-
conformal, and they usually do not consider AM-specific producibility constraints
such as minimum allowed distance between CAD features or threshold overhang
angle which could result in failure of the AM fabrication of lattice structures.
Furthermore, working with volumetric CAD data for the creation and pre-processing
of lattices is usually difficult and non-real-time, and the generation process may
fail when working on CAD data generated by another software. Moreover, the
simulation of lattice structures is challenging due to a large number of mesh
elements (Dong et al. 2017).

To address these issues, an algorithmic approach for the generation of lattice
structures is introduced in which the AM producibility constraints are respected.
This requires creation of a database including producibility data for each AM
production machine and material. Furthermore, algorithms for the generation of
AM-compliant conformal lattices are developed; the stiffness and strength of
conformal lattice structures could be higher than trimmed lattices (Liang et al.
2018). To analyze and improve the behavior of lattice structures under mechanical
loading, they are simulated and optimized. The simulation approaches aiming at the
reduction of mesh elements while predicting the behavior with high accuracy are
also developed and linked to the lattice generation tool, as depicted in Fig. 20.5.

The developed tool can automatically create lattice structures which conform to
AM production constraints and then locally adapt the meshing techniques to ensure
finer meshes at strut joints. Cubic/cuboid use cases with an f2cc, z unit cell of a size
of 3 × 3 × 3 mm3 were meshed adaptively and simulated under mechanical loading

Fig. 20.5 The framework for the algorithmic generation and optimization of lattice structures
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in the elastic regime, and they produced comparable results with that of uniform
meshing with a difference below 1% while reducing the number of elements per
unit cell by approx. 70%.

The developed tool should be further equipped with algorithms for the creation
of lattice structures for arbitrary freeform design spaces. In addition, the simulation
approaches should be further enhanced for lattice structures with a larger number
of mesh elements. For the optimization of lattice structures, refinement algorithms
and/or size optimization methods should be implemented. The created tool enables
agile product development of lightweight efficient structures by quick adaptation
of the design in response to the requirements of the material, load and boundary
conditions, and customer demands such as the topology and geometry of lattice
structures. Furthermore, the tool handles the data in a smart manner by generation,
simulation, and optimization of the structures in one platform to eliminate or
remarkably reduce the involved challenges with lattice processing. The created
lattice structures could be used in biomedical, heat transfer, hydrogen storage and
vibration control applications (Du Plessis et al. 2022) as well as in heterogeneous
catalysis. The data acquired from simulations can be stored as a part of the digital
twin of lattices and can be used for optimization purposes.

20.3.7 Agile Alloy Development for Metal Additive Manufacturing

During the last years, the field of additive manufacturing (AM) of metals has
witnessed the rise of data-driven approaches as an enabler for agile product devel-
opment. Numerous examples of data-driven approaches can be found in component
design (Oh et al. 2019), in quality control (Tian et al. 2021), and defect detection
(Scime and Beuth 2018). So far, the development of new alloys for metal AM
depends on time-consuming experiments and simulations to understand process-
microstructure-property (PSP) linkages and requires high computational costs. We
propose a framework (Fig. 20.6) that provides python-based tools for an efficient
description of linkages between additive manufacturing process, microstructure,
and mechanical response of metals for AM. The framework contains different
strategies to differentiate cases of different complexity level (e.g., low-complexity
morphology-dominated and high-complexity morphology- and texture-dominated
microstructures).

The results in Fig. 20.7 present an example for building a relationship between
process parameters based on physics-based kinetics Monte Carlo (kMC) simulations
and the corresponding microstructural feature in terms of the directional chord
length distribution (CLD). Directional CLDs capture the morphological characteris-
tics in 3D of AM microstructures. Further data compression by principal component
analysis (PCA) reduces the data space for building efficient relationships by ML-
based regression algorithms. Regression models substitute computational expensive
kMC simulations for new queries on the process parameters of interest. The
framework will be extended by an invertible neural network to get direct predictions
on the design space (e.g., chemical composition, laser speed, etc.), since typically
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Fig. 20.6 Data-driven/ML framework to establish Process-(micro)Structure (P-S) and
(micro)Structure-Property (S-P) linkages (forward-propagation) as the basis to find inverse
solutions for an optimized AM design space

Fig. 20.7 Revealing the P-S linkage during AM derived from 3D microstructures using a
data-driven framework. Applied 3D chord length distributions (in x-y-z directions) of the
microstructures reduced by PCA represent input data for the model. The P-S relationships are
predicted by ML-based regression as output. In total 960 represented volume elements (RVE)
simulated with a SPPARKS kMC subroutine (modified Potts-Monte Carlo model (Rodgers et al.
2017)) account for the used input data

the development of new alloys requires answers to inverse-directed questions (e.g.,
what is the process parameter space to reach a certain deformability?). In summary,
the framework enables fast and computational efficient predictions along the P-S-P
chain.
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20.3.8 Optical Systems Development

For various applications in laser material processing, such as laser welding,
polishing, or engraving, individual optical systems are required depending on the
laser source and desired beam characteristics. The optics design is a time-consuming
process and depending on the complexity of the system experts need up to several
weeks or months for designing, analyzing, and tolerancing. For many custom
designs the employed lenses must be individually manufactured, which is expensive.
This can be circumvented by adaption of the optics design for the use of low-
cost stock lenses. For agile product development, the time and cost factor for an
individual lens manufacturing is not sustainable.

To make the design of optical systems accessible for agile product development,
an application is developed which automatically designs optical systems from stock
components, which are available quickly and at low costs. These optical systems
are used for the first prototype application and are continuously improved during
the agile development circle. In the first prototyping step, as a demonstrator a three-
lens system is considered.

The design of a three-lens system is realized by computing all possible combi-
nations of commercially available stock lenses from a given catalog (König 2021;
König et al. 2021). In order to avoid a calculation time that increases cubically
with the number of stock lenses and to minimize the amount of time-consuming
exact ray-tracing calculations, clustering methods of the configuration space as
well as simplifications of the optical propagation (the so-called paraxial raytracing)
are used. A subsequent automated tolerance analysis (König et al. 2017) against
assembly deviations allows the design of robust optical systems such as the plane-
field optics shown in Fig. 20.8.

For agile product development, continuous adjustments of the optical design are
necessary to meet the changing requirements of the stakeholders. The three-lens

Fig. 20.8 Exemplary design – Plane-field optics with 6 mm laser beam diameter, 150 mm focal
length, 10◦ field angle, and 1064 nm wavelength. The system is smaller than 50 mm in the length.
The incident rays on the image plane are within the airy disk, which describes the maximal physical
focusability for an optical system
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system must therefore be adapted, improved, and finalized to the new requirements.
This usually results in optical systems with a large number of lenses.

To carry out these adaptations, the next step is the development of a method
based on artificial intelligence (AI) for automated optics design (Fu et al. 2021,
2022). Utilizing reinforcement learning an agent has to be trained to set up and
optimize an optical system. The agent automatically adapts an existing prototype
(start system) to find a design matching the new requirements of the stakeholders.
This can be done within few minutes to reduce the latency time in the agile product
development.

20.4 Conclusion

In this chapter, the development of enabling technologies and interactive tools for
an agile product development in the context of the Internet of Production (IoP) is
presented. For this purpose, the state of the art of agile product development is
described as an introduction. Building on this, advanced manufacturing technologies
(AMTs) are presented as enablers and tools in the context of agile product develop-
ment. Here, the possible uses of AMTs as manufacturing processes for prototypes
are further developed. For each AMT, usage and integration of the technology and
data acquired during manufacturing in agile development environments is explored.
Also, the use of relevant data from production and material to determine the
minimum viability of a product prototype as well as to select, adapt, and improve
the respective prototyping technologies is investigated.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC–2023 Internet of Production –
390621612.

References

Argus FJ, Bradley CP, Hunter PJ (2021) Theory and implementation of coupled port-Hamiltonian
continuum and lumped parameter models. J Elast:339–382. https://doi.org/10.1007/s10659-
021-09846-4

Bambach M, Taleb AB, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric
single point incremental forming. Prod Eng Res Dev:145–156. https://doi.org/10.1007/s11740-
009-0150-8

Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: machine
productivity, economies of scale and technology-push. Technol Forecast Soc Chang 102:193–
201. https://doi.org/10.1016/j.techfore.2015.02.015

Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single
point incremental sheet forming using multivariate adaptive regression splines. Comput Aided
Des 45:575–590. https://doi.org/10.1016/j.cad.2012.10.045

BMBF (2018) Forschung und Innovation für die Menschen. Die Hightech-Strategie 2025. Edited
by Bundesministerium für Bildung und Forschung (BMBF), Referat Grundsatzfragen der
Innovationspolitik, checked on 2/8/2022


 22932 42511 a 22932
42511 a
 
https://doi.org/10.1007/s10659-021-09846-4

 22932 45832 a 22932 45832 a
 
https://doi.org/10.1007/s11740-009-0150-8

 973 50260 a 973 50260 a
 
https://doi.org/10.1016/j.techfore.2015.02.015

 5756 53581 a 5756 53581
a
 
https://doi.org/10.1016/j.cad.2012.10.045


20 Enablers and Tools for Agile Product Development 445

Borutzky W (ed) (2011) Bond graph modelling of engineering systems: theory, applications and
software support. Springer

Brecher C, Özdemir D, Weber AR (2017) Integrative production technology – theory and
applications. In: Brecher C, Özdemir D (eds) Integrative production technology: theory and
applications. Springer, Cham, pp 1–17

Brugnoli A, Alazard D, Pommier-Budinger V, Matignon D (2021) A port-Hamiltonian formulation
of linear thermoelasticity and its mixed finite element discretization. J Ther Stress 44:643–661.
https://doi.org/10.1080/01495739.2021.1917322

Cen L, Melkote SN, Castle J, Appelman H (2016) A wireless force-sensing and model-based
approach for enhancement of machining accuracy in robotic milling. IEEE/ASME Trans
Mechatron 21:2227–2235. https://doi.org/10.1109/TMECH.2016.2567319

Cochard J, d’Humières B (2019) Der globale Mindestbeitrag der Photonik zum Klimaschutz
anhand ausgewählter Beispiele: 3 Milliarden Tonnen weniger CO2. In: Messe München GmbH,
SPECTARIS (eds) Licht als Schlüssel zur globalen ökologischen Nachhaltigkeit

Dahotre NB, Pantawane MV, Sharma S (2022) Laser-based additive manufacturing modeling,
simulation and experiments. Wiley-VCH

Dong G, Tang Y, Zhao Y (2017) Simulation of elastic properties of solid-lattice hybrid struc-
tures fabricated by additive manufacturing. Proc Manuf 10:760–770. https://doi.org/10.1016/j.
promfg.2017.07.072

Du Plessis A, Razavi SMJ, Benedetti M, Murchio S, Leary M, Watson M, Bhate D, Berto F (2022)
Properties and applications of additively manufactured metallic cellular materials: a review.
Prog Mater Sci 125:100918. https://doi.org/10.1016/j.pmatsci.2021.100918

Fu C, Stollenwerk J, Holly C (2021) Lens bending with reinforcement learning for reduced optical
aberrations. In: Frontiers in optics + laser science 2021. OSA, Washington, DC

Fu C, Stollenwerk J, Holly C (2022) Reinforcement learning for guiding optimization processes
in optical design. Proc. SPIE 12227, Applications of Machine Learning 2022, 1222709. https://
doi.org/10.1117/12.2632425

Gebhardt A, Kessler J, Schwarz A (2019) Produktgestaltung für die Additive Fertigung. Hanser;
Ciando, München

Goll J (2015) Mit Scrum zum gewünschten System. Springer eBook Collection. Springer Vieweg,
Wiesbaden

Highsmith J, Fowler M (2001) The agile manifesto. Softw Dev Mag 9:29–30
Hinke C (2018) Digitale photonische Produktion. Dissertation, RWTH Aachen University
Hügel H (2009) Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren, 2nd edn.

SpringerLink Bücher, Wiesbaden
Kantelberg J (2018) Gestaltung agiler Entwicklungsprozesse technischer Produkte. Dissertation,

RWTH Aachen University
Kennedy ZC, Christ JF (2020) Printing polymer blends through in situ active mixing during fused

filament fabrication. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101233
Khondoker MAH, Asad A, Sameoto D (2018) Printing with mechanically interlocked extrudates

using a custom bi-extruder for fused deposition modelling. Rapid Prototyp J. https://doi.org/10.
1108/RPJ-03-2017-0046

Klein T (2016) Agiles Engineering im Maschinen- und Anlagenbau. Dissertation
Koch HC, Schmelzeisen D, Gries T (2021) 4D textiles made by additive manufacturing on pre-

stressed textiles – an overview. Actuators 10:31. https://doi.org/10.3390/act10020031
König H-GM (2021) Automated design of optical systems made of stock lenses. RWTH Aachen

University
König G, Chen C-W, Holters M, Stollenwerk J, Loosen P (2017) Comparison of different methods

for robustness estimation of simple lens systems. In: Pfisterer RN, Rogers JR, Muschaweck JA,
Clark PP (eds) International optical design conference 2017. SPIE, p 32

König G, Fu C, Stollenwerk J, Holly C, Loosen P (2021) Automated lens design for optical systems
consisting of stock lenses. Opt Express 29:39027–39041. https://doi.org/10.1364/OE.442176


 -909 7442 a -909 7442
a
 
https://doi.org/10.1080/01495739.2021.1917322

 9310 10763 a 9310 10763 a
 
https://doi.org/10.1109/TMECH.2016.2567319

 25467 18512 a 25467 18512 a
 
https://doi.org/10.1016/j.promfg.2017.07.072

 9990 22940 a 9990 22940
a
 
https://doi.org/10.1016/j.pmatsci.2021.100918

 32220 27367 a 32220 27367
a
 
https://doi.org/10.1117/12.2632425

 12305 41758 a 12305 41758 a
 
https://doi.org/10.1016/j.addma.2020.101233

 28107 43972 a 28107 43972 a
 
https://doi.org/10.1108/RPJ-03-2017-0046

 17440 48400 a 17440 48400 a
 
https://doi.org/10.3390/act10020031

 20862 56148 a 20862 56148 a
 
https://doi.org/10.1364/OE.442176


446 T. Kaster et al.

Kycia A, Guiducci L (2020) Self-shaping textiles: a material platform for digitally designed,
material-informed surface elements. In: Werner LC, Köring D (eds) Anthropologic – archi-
tecture and fabrication in the cognitive age, 1st edn. eCAADe, Brussels

Liang Y, Yoo D, Han H (2018) An effective geometric modeling method for 3D lattice structures
using volumetric distance field. JEMM 3. https://doi.org/10.23977/jemm.2018.31004

Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive
manufacturing. Addit Manuf 23:34–44. https://doi.org/10.1016/j.addma.2018.06.023

Oh S, Jung Y, Kim S, Lee I, Kang N (2019) Deep generative design: integration of topology
optimization and generative models. J Mech Des 141:436. https://doi.org/10.1115/1.4044229

Osswald TA (2017) Understanding polymer processing: processes and governing equations, 2nd
edn. Hanser Publishers, Munich/Cincinnati

Oxman N (2011) Variable property rapid prototyping. Virtual Phys Prototyp 6:3–31. https://doi.
org/10.1080/17452759.2011.558588

Panesar A, Abdi M, Hickman D, Ashcroft I (2018) Strategies for functionally graded lattice
structures derived using topology optimisation for Additive Manufacturing. Addit Manuf
19:81–94. https://doi.org/10.1016/j.addma.2017.11.008

Pei E, Shen J, Watling J (2015) Direct 3D printing of polymers onto textiles: experimental studies
and applications. Rapid Prototyp J 21:556–571. https://doi.org/10.1108/RPJ-09-2014-0126

Pérez J, Otaduy MA, Thomaszewski B (2017) Computational design and automated fabrication
of kirchhoff-plateau surfaces. ACM Trans Graph 36:1–12. https://doi.org/10.1145/3072959.
3073695

Popescu GA, Kunzler P, Gershenfeld N (2006) Digital printing of digital materials. In: Digital
fabrication 2006 final program and proceedings, Society for Imaging Science and Technology,
Denver, pp 55–57

Poprawe R (2005) Lasertechnik für die Fertigung: Grundlagen, Perspektiven und Beispiele für den
innovativen Ingenieur. SpringerLink Bücher. Springer Berlin Heidelberg, Berlin/Heidelberg

Poprawe R (2019) Photonik als “Enabler” für den Klima- und Umweltschutz. In: Messe
München GmbH, SPECTARIS (eds) Licht als Schlüssel zur globalen ökologischen Nach-
haltigkeit. Hightech-Lösungen der Photonik für den Schutz von Umweld und Ressourcen,
Berlin/München, pp 12–17

Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing
microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89. https://doi.org/10.
1016/j.commatsci.2017.03.053

Savio G, Rosso S, Meneghello R, Concheri G (2018) Geometric modeling of cellular materials
for additive manufacturing in biomedical field: a review. Appl Bionics Biomech 2018:1654782.
https://doi.org/10.1155/2018/1654782

Schmelzeisen D, Koch H, Pastore C, Gries T (2018) 4D textiles: hybrid textile structures that can
change structural form with time by 3D printing. In: Kyosev Y, Mahltig B, Schwarz-Pfeiffer A
(eds) Narrow and smart textiles. Springer, Cham, pp 189–201

Schmitz RUC, Bremen T, Bailly DB, Hirt G (2020) On the influence of the tool path and intrusion
depth on the geometrical accuracy in incremental sheet forming. Metals 10:661. https://doi.org/
10.3390/met10050661

Schuh G (2017) Agile Produktentwicklung. In: Brecher C, Klocke F, Schmitt R, Schuh G (eds)
Internet of production für agile Unternehmen, 1st edn. Apprimus Verlag, Aachen

Schuh G, Haller C, Lindner N, Spangler T, Walch M, van Dijk L, Lau F, Kantelberg JE
(2017) Radikale Innovation und neue Geschäftsmodelle. In: Brecher C, Klocke F, Schmitt R,
Schuh G (eds) Internet of Production für agile Unternehmen, 1st edn. Apprimus Verlag, Aachen,
pp 109–131

Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly
detection and classification in a laser powder bed fusion additive manufacturing process. Addit
Manuf 24:273–286. https://doi.org/10.1016/j.addma.2018.09.034

Sommerville I (2010) Software engineering, 9th edn. Pearson, Boston/Munich
Statistisches Bundesamt (2022) Volkswirtschaftliche Gesamtrechnungen. Inlandsprodukt-

berechnung Vierteljahresergebnisse - 4. Vierteljahr 2021. Fachserie 18 Reihe 1.2. Edited


 14911
4121 a 14911 4121 a
 
https://doi.org/10.23977/jemm.2018.31004

 14187 6335 a 14187 6335
a
 
https://doi.org/10.1016/j.addma.2018.06.023

 21215
8549 a 21215 8549 a
 
https://doi.org/10.1115/1.4044229

 30782 11870 a 30782 11870
a
 
https://doi.org/10.1080/17452759.2011.558588

 3116 16298 a 3116 16298 a
 
https://doi.org/10.1016/j.addma.2017.11.008

 17230 18512 a 17230 18512 a
 
https://doi.org/10.1108/RPJ-09-2014-0126

 22435 20726 a 22435 20726
a
 
https://doi.org/10.1145/3072959.3073695

 28107 34009 a 28107 34009 a
 
https://doi.org/10.1016/j.commatsci.2017.03.053

 -909 38437 a -909 38437 a
 
https://doi.org/10.1155/2018/1654782

 29283 43972 a 29283 43972 a
 
https://doi.org/10.3390/met10050661

 6801 55041 a 6801 55041 a
 
https://doi.org/10.1016/j.addma.2018.09.034


20 Enablers and Tools for Agile Product Development 447

by Statistisches Bundesamt (Destatis). Statistisches Bundesamt (Destatis). Available online
at https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-
Inlandsprodukt/Publikationen/Downloads-Inlandsprodukt/inlandsprodukt-vierteljahr-pdf-
2180120.pdf?__blob=publicationFile, checked on 4/20/2022

Taleb B, Göttmann A, Bambach M, Hirt G (2011) Review on the development of a hybrid
incremental sheet forming system for small batch sizes and individualized production. Prod
Eng 5:393–404. https://doi.org/10.1007/s11740-011-0325-y

Tian Q, Guo S, Melder E, Bian L, Guo WG (2021) Deep learning-based data fusion method for in
situ porosity detection in laser-based additive manufacturing. J Manuf Sci Eng 143. https://doi.
org/10.1115/1.4048957

Tibbits S (2017) Skylar tibbits: the emergence of “4D printing”. https://www.ted.com/talks/
skylar_tibbits_the_emergence_of_4d_printing. Accessed 29 Mar 2022

van der Schaft A, Jeltsema D (2014) Port-Hamiltonian systems theory: an introductory overview,
Foundations and Trends in Systems and Control: Vol. 1(2-3): 173–378. https://doi.org/10.1561/
2600000002

Wu D, Rosen DW, Wang L, Schaefer D (2015) Cloud-based design and manufacturing: a new
paradigm in digital manufacturing and design innovation. Comput Aided Des 59:1–14. https://
doi.org/10.1016/j.cad.2014.07.006

Zaeh MF, Ott M (2011) Investigations on heat regulation of additive manufacturing processes for
metal structures. CIRP Ann 60:259–262. https://doi.org/10.1016/j.cirp.2011.03.109

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 1135 800
a 1135 800 a
 
https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-Inlandsprodukt/Publikationen/Downloads-Inlandsprodukt/inlandsprodukt-vierteljahr-pdf-2180120.pdf?__blob=publicationFile

 5338 6335 a 5338 6335
a
 
https://doi.org/10.1007/s11740-011-0325-y

 30782 8549 a 30782 8549
a
 
https://doi.org/10.1115/1.4048957

 24702 10763
a 24702 10763 a
 
https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing

 25964 14084 a 25964 14084 a
 
https://doi.org/10.1561/2600000002

 32220 17405 a 32220
17405 a
 
https://doi.org/10.1016/j.cad.2014.07.006

 14694 20726 a 14694
20726 a
 
https://doi.org/10.1016/j.cirp.2011.03.109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part VII

Integrated Usage



21Interplay Between Company-Internal
and -External Perspectives on the Internet
of Production: Implications for Governance,
Organization, Capabilities, and Interfaces

Dirk Lüttgens, Alexander Mertens, Michael Millan, Verena Nitsch,
Frank T. Piller , and Sebastian Pütz

Contents

21.1 Integrated Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
21.2 Internal Perspective: Acceptance and Sustainability of the IoP Application

Within a Socio-Technical System Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
21.2.1 Research Direction and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
21.2.2 Preliminary Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
21.2.3 GOCI Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

21.3 External Perspective: Designing Mechanisms for Value Capture in Business
Ecosystems for the IoP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
21.3.1 Research Direction and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
21.3.2 Preliminary Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
21.3.3 GOCI Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

21.4 Interplay Between Internal and External Perspective: A Delphi Study . . . . . . . . . . . . . . . . . . 460
21.5 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

D. Lüttgens · M. Millan · F. T. Piller
Institute for Technology and Innovation Management (TIM), RWTH Aachen University,
Aachen, Germany
e-mail: luettgens@time.rwth-aachen.de; millan@time.rwth-aachen.de;
piller@time.rwth-aachen.de

A. Mertens (�) · V. Nitsch · S. Pütz
Institute of Industrial Engineering and Ergonomics (IAW), RWTH Aachen University,
Aachen, Germany
e-mail: a.mertens@iaw.rwth-aachen.de; v.nitsch@iaw.rwth-aachen.de;
s.puetz@iaw.rwth-aachen.de

© The Author(s) 2024
C. Brecher et al. (eds.), Internet of Production, Interdisciplinary Excellence
Accelerator Series, https://doi.org/10.1007/978-3-031-44497-5_27

451

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44497-5protect T1	extunderscore 27&domain=pdf
https://orcid.org/0000-0003-2532-4020

 885 49585 a 885 49585 a
 
mailto:luettgens@time.rwth-aachen.de
mailto:luettgens@time.rwth-aachen.de
mailto:luettgens@time.rwth-aachen.de
mailto:luettgens@time.rwth-aachen.de

 13383 49585 a 13383 49585 a
 
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de
mailto:millan@time.rwth-aachen.de

 -2016 50692 a -2016
50692 a
 
mailto:piller@time.rwth-aachen.de
mailto:piller@time.rwth-aachen.de
mailto:piller@time.rwth-aachen.de
mailto:piller@time.rwth-aachen.de

 885 55673 a 885 55673 a
 
mailto:a.mertens@iaw.rwth-aachen.de
mailto:a.mertens@iaw.rwth-aachen.de
mailto:a.mertens@iaw.rwth-aachen.de
mailto:a.mertens@iaw.rwth-aachen.de
mailto:a.mertens@iaw.rwth-aachen.de

 13228 55673 a 13228 55673 a
 
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de
mailto:v.nitsch@iaw.rwth-aachen.de

 -2016 56780 a -2016
56780 a
 
mailto:s.puetz@iaw.rwth-aachen.de
mailto:s.puetz@iaw.rwth-aachen.de
mailto:s.puetz@iaw.rwth-aachen.de
mailto:s.puetz@iaw.rwth-aachen.de
mailto:s.puetz@iaw.rwth-aachen.de


452 D. Lüttgens et al.

Abstract

The Internet of Production (IoP), the global and integrated use of production data,
will completely reshape how organizations operate and interact with each other.
We introduce how these developments will affect the usage phase including value
creation and capture in the future manufacturing ecosystem. Our analysis high-
lights requirements and implications for governance, organization, capabilities,
and interfaces. These factors are considered from both a company internal and
a company external perspective on usage as well as in terms of their interplay.
The internal perspective focuses on the role of humans in interacting with IoP-
based technology in future socio-technical production systems. The external
perspective describes how value is captured and shared between stakeholders by
incorporating data based on platform-based industrial ecosystems. The interplay
of the two perspectives is exemplarily discussed using a foresight study on next-
generation manufacturing.

21.1 Integrated Usage

The Internet of Production increases the opportunities for gathering data in the
development, production, and the usage cycle of companies. Within the user cycle,
data about the usage of products is collected and shared between other domains to
enable the development of products, processes, and even business models. However,
usage data are seldom utilized across companies or departments to optimize opera-
tions, investment decisions, or innovation processes. Learning and analytics can take
place faster and more efficiently if manufacturers not only utilize their own data but
also can access data from similar contexts in other entities. Our work describes
the interplay and trade-offs between governance, organization, capabilities, and
interfaces (GOCI) from a company-internal and -external perspective to enhance
sustainability and profitability in an Internet of Production (IoP, see �Chap. 1, “The
Internet of Production: Interdisciplinary Visions and Concepts for the Production
of Tomorrow”). The vision is to foster IoP-based value creation during the usage
of connected data, products, and equipment by the selection of a governance mode,
a specific organizational structure, development of capabilities, and the design of
interfaces. Both an internal perspective and an external perspective resulting from
the connectivity and networking of data, assets, and users forming a business
ecosystem are needed to realize this vision.

From an internal perspective, context-aware and user-adaptive interfaces between
humans and machines are the enablers for realizing the operational benefits of
the IoP. Task demands must correspond to human operators’ physical and cog-
nitive ergonomic requirements to support efficient task execution and responsible
decision-making. The external perspective covers the availability of data and
capacity of third parties and how the resulting value is captured and shared among
the actors. A third focus is on the interplay between the internal and the external
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Internal Perspective 

External Perspective

Governance Organization Capabilites Interfaces

Fig. 21.1 The GOCI-Framework

perspective and the tradeoffs and frictions that evolve from different principles of
sustainable value creation from both perspectives. For the realization of this vision,
our research builds on the work of Gawer (2014) and Parker and van Alstyne (2018).
The structure is guided by a set of four factors that govern the implementation of the
IoP internally and externally: governance, organization, capabilities, and interfaces
(see Fig. 21.1).

The four factors are discussed in detail for the internal and external perspective
as well as the interplay between the two.

21.2 Internal Perspective: Acceptance and Sustainability of the
IoP ApplicationWithin a Socio-Technical SystemApproach

21.2.1 Research Direction and Issues

Irrespective of their role and background, humans will continue to be an essential
part of the complex socio-technical system into which the IoP is embedded.
However, their tasks, required qualifications, and work structures will change, as
will the tools they use, how they exert influence in the overall work system, and the
allocation of responsibility for decisions.

Novel forms of hybrid teamwork in production context, e.g., human-robot
collaboration, AI-based support for decision-making processes, and an appropriate
mapping of human skills and capabilities to the technical systems form the basis
for an efficient, target-group specific interaction in cyber-physical systems. The
integration of more and more technical support systems and progressive process
automation, particularly in the area of production systems, will constantly increase
the proportion of knowledge-intensive work, while the proportion of physically
demanding work that must be performed by humans will constantly decrease. As
a result, the focus, which has traditionally tended to be on the physical strain of
employees, must shift to take cognitive strain into account to ensure sustainable
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working conditions. To this end, the approach already established in the production
process of using digital shadows to analyze and prospect for future developments
must be explicitly expanded to include relevant data from human actors. This will
allow for enabling the socially sustainable design of the entire work system in all
four GOCI dimensions, taking into account appropriate data protection, privacy, and
personal self-determination in the form of a human digital shadow (Mertens et al.
2021). Finally, possibilities to establish operational and organizational structures to
support collective production intelligence have to be identified to enable holistic
knowledge building and management. The goals of the internal perspective are,
therefore:

1. Create ergonomic, transparent, trustful, and responsible interfaces and decision
support systems for production systems and the IoP.

2. Automate human knowledge and expertise for the human-centered design of
hybrid teamwork and for the exchange of best practices.

3. Ensure professional profiles and qualifications of the working person to allow
efficient, effective, and satisfactory interaction between all entities of socio-
technical production system.

4. Support in work process design and strategy development to promote socially
sustainable solutions and to take into account ethical, legal and social implica-
tions as an immanent part of change management.

21.2.2 PreliminaryWork and Background

Earlier research has already considered human-centered design aspects for creating
a socio-technical framework for the Internet of Things (Shin 2014). Taking the
example of human-robot collaboration, previous work mainly focused on safe
collaboration and technological solutions in order to avoid safety guards (Wang
et al. 2017). In contrast, ethical and moral aspects have been investigated in
social robotics or medical applications. For mastering the increasing complexity
and information available in the IoP, decision support systems must be adapted to
the requirements of human operators and their diverse needs (Keim et al. 2010).
Despite the vast amount of research on visual, cognitive complexity, and interface
design methodology, these findings are often neither transferable for the context
of production, nor do they provide actionable guidelines for designing sustainable
interfaces for socio-technical production systems.

Prior work in the context of previous funding phases has covered the iterative
and user-centered design, development, and evaluation of support systems for
working persons. Here, an empirical modeling of users’ needs considered factors
like user diversity, acceptance, and compliance with interactive systems. Human-
centered interaction design was applied, for instance, in contexts of intelligent
decision support assistance systems for production planning and control, supporting
the operator as a decision maker with appropriate information acquisition, data
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aggregation, and operation choice (Nelles et al. 2016). Further studies on infor-
mation complexity (Ziefle et al. 2015) and the relations between trust, technology
acceptance, human efficiency, and effectivity (Brauner et al. 2017) stressed the
importance of a user-centered approach (Stiller et al. 2014). To enhance the confor-
mity of semiautonomous robotic assembly processes with operator’s expectations,
cognitive automation was applied by simulating human assembly and decision-
making strategies (Faber et al. 2017). While higher degrees of automation and
occupational safety have already been addressed, important ergonomic and moral
questions are still open.

21.2.3 GOCI Dimensions

The internal perspective on usage in the socio-technical workings system IoP is
mainly shaped by the involvement of the human in the underlying production
processes. An economically and socially sustainable implementation of the IoP
requires appropriate operational and organizational structures to enhance commu-
nication and knowledge transfer between working persons, digitalized production
technology, and customers as well as the readiness to adapt to changing conditions
in the sense of continuous human-oriented change management (see Fig. 21.2).

Governance. The IoP changes organizational processes, structures, and man-
agement strategies, yielding new requirements for the internal governance of these

Internal Perspective

Governance

Capabilities

Organization

Interfaces

Hybrid team organization

Flexible division of tasks

Degree of automation

Human qualifications

Interaction between human and artificial intelligence

Embedding of human expertise

Acceptance by all stakeholders

Security and privacy

Moral & machine ethics

Cognitive and visual complexity

Context-sensitive interaction

External 
Perspective

Fig. 21.2 Main aspects of the internal perspective on the usage phase in the IoP (structured
according to GOCI scheme)
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systems. To ensure broad acceptance, the diverse stakeholder perspectives must be
continuously taken into account to allow holistic decisions. The ethical, legal, and
social implications should be an intrinsic part of this decision-making process. To
enable this in such a dynamic environment, there is also a need for appropriate
methods that guide the people involved and consider the entire utilization phase. At
the same time, decision-making by autonomous, human-like systems must ensure
transparent processes, security, and privacy.

Organization. A sustainable socio-technical production system is characterized
by a highly flexible organizational structure and hybrid team organization, which
enables reacting to changing conditions in a short-cycle manner. The example
of human-robot collaboration stresses that inter-team communication as well as
ergonomics in the workflow are crucial for safe and effective collaboration. Hybrid
team organization has to ensure acceptance by the working persons, flexible division
of tasks, and mutual learning and adaption processes. Despite the elimination of
mindless decisions, strategic decisions still depend on humans who have to perceive
and process increasingly complex multi-dimensional data sets and to make decisions
whose effects are increasingly difficult to forecast. In particular, this demands
an organizational setup facilitating higher work productivity, the acceptance and
willingness of the human actors to adopt and use novel technology, the ergonomic
design of working and learning environments, and the promotion of mutual learning.

Capabilities. With raising amounts of available data, persons involved into
production need to manage multiple production processes or collaborate with
multiple robots simultaneously. Advanced decision support systems can reduce the
cognitive load by analyzing, e.g., best practice examples with regard to the relevant
success factors. Necessary qualifications will be deviated and concepts to enhance
trust into this artificial intelligence investigated within the context of holistic change
management to develop the future of production work in a participatory way.
Aiming at intelligent support and control systems, ways of representing human
experience and competence in solving indecisive and unstructured problems are of
particular importance for a sustainable solution.

Interfaces. An increasing digitalization and connectivity of devices implies chal-
lenges by raising the amount of production data available, causing high cognitive
and visual complexity to handle these data and associated cognitive strain. Although
the data of cyber-physical production systems are generally preprocessed by the
infrastructure to be understandable for people at all, there are multiple application
scenarios which require context-specific data visualization. Especially with an
increasing complexity of the operator’s task, appropriate decision support systems
following context-sensitive design principles are required. In case of human-robot
collaboration, for instance, both the interface for data visualization and the physical
interaction design are of crucial importance.

The aforementioned challenges require placing the human directly into the loop
of the development and production process, providing knowledge about human
factor requirements in digitalized production environments.
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21.3 External Perspective: DesigningMechanisms for Value
Capture in Business Ecosystems for the IoP

21.3.1 Research Direction and Issues

The IoP is, by definition, not restricted to a focal company or value creation within
a closed network of established partners. Instead, it resembles the vision of an open
network of sensors, assets, products, and actors that continuously generate data.
A core element hence is the (re-)use of data, digital shadows, and applications by
other parties to facilitate faster and more efficient learning and analytics. Therefore,
incentives, governance as well as new ways of user integration are necessary
elements to make this vision a reality. The rise of platforms (business ecosystems)
where these data is being exchanged and enhanced by dedicated “apps,” often
offered by specialized third-party entities, is one of the largest current economic
trends (Rietveld and Schilling 2021). To create value, ecosystems rely on com-
plementary inputs made by loosely interconnected, yet independent stakeholders
(Parker and van Alstyne 2018). In the case of the IoP, platform participants include
the orchestrator of the platform, operators of production assets (users in form of
factories), and providers of applications analyzing data and providing decision
support (app programmers). In addition, the goods being produced can also become
part of the platform in form of connected (“smart”) products. With this, end-
users (customers) also become a participant. Among these participants, dedicated
mechanisms governing data access and privacy are required. At the same time, the
ability to implement the vision of the IoP is a question of setting the right incentives
to align the different interests and priorities of the partners involved. Objectives of
the external perspective are therefore:

1. Establish the IoP as an open ecosystem for industrial data of both machines
(assets) and products produced in the usage stage

2. Managing the tension between openness and control in order to allow for value
capture of all actors involved

3. Provide a set of managerial decision parameters when setting up an industry
platform around the IoP

21.3.2 PreliminaryWork and Background

Open platforms offer distinct economic advantages. They allow a firm to harness
external inputs and innovation as a complement to internal innovation by facilitating
an exchange between users who otherwise could not transact with each other
(Parker and van Alstyne 2018). Theoretically, platforms (also: two-sided markets)
have been investigated in the industrial organization literature. Essential to most
economic definitions are the existence of “network effects” that arise between the
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participants (Gawer 2014; Allen et al. 2021). Platforms typically reside upon a
layered digital infrastructure, where lower-level layers (e.g., physical components)
enable and support functionalities at higher, user-facing layers. A recent stream
of literature complements the economic analysis by studying distinct governance
and orchestration challenges. Less work has addressed the situation of the IoP that
depends on the concurrent commitment of complementary inputs from independent
stakeholders towards a de novo ecosystem creation effort (Dattée et al. 2018). A
core decision here is platform openness (e.g., Ondrus et al. 2015; Parker and van
Alstyne, 2018). Dattée (2018) provides an analytical model for this situation, and
Benlian et al. (2015) investigates complementors’ decision to join a platform based
on its openness.

Jiang et al. (2017) investigated market structure effects and the rise of man-
ufacturing platforms for Additive Manufacturing, highlighting the demand for
appropriate governance mechanisms (IP protection, user integration, etc.). Platforms
also represent a key concept in research on business models for Industry 4.0, where
methodologies were developed to model BM alternatives (Adner and Rahul 2010;
Kapoor and Nathan 2015; Wang and Miller 2019). The Fraunhofer Industrial Data
Space initiative (Otto et al. 2017; Jarke 2017) has focused on requirements and
rather technological challenges of inter-organizational data exchange. This requires
novel conceptual information modeling and significant research for applications
in production engineering. In conclusion, previous research has investigated the
application layer, i.e., defining elements for value creation out of the digital
shadow. Basic mechanisms of platform markets are well understood, too. However,
dedicated research in the context of industrial data applications is missing, as well as
on work on value capture, i.e., models to appropriate economic rents from the IoP.
Platform openness has been derived as a key variable in this context. The larger the
openness, the higher the likelihood of value creation (in terms of generating novel
insights from data), but the lower the ability to capture value by one actor. Large
openness also supports free-riding, i.e., participating at the fruits of data sharing
while not contributing to the data stock.

21.3.3 GOCI Dimensions

Also, for the external perspective the four layers from the GOCI framework guide
the research on value creation and capture through the integration of data based on
data- and platform-based industrial ecosystems. (Gawer 2014) – see Fig. 21.3.

Governance. The central construct here is the degree of openness vs. desire for
control of each actor in the ecosystem. This delicate tension balances the level
of value creation for all ecosystem participants and the level of value capture for
each participant, i.e., how actors can contribute to and profit from the ecosystem.
Governance also determines the rules for data exchange across organizations.
Possible governance modes (and patterns of platform governance) need to be
identified and matched to the performance of observed use cases.
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Fig. 21.3 Main aspects of the external perspective on the usage phase in the IoP (structured
according to GOCI scheme)

Organization. Organizational forms refer to the design patterns of a platform
business model that structure value creation and capture. This also asks the question
whether firms shall join an existing ecosystem (under which conditions) or try to
orchestrate their own. The main question platform players need to ask is how they
want to play and use an ecosystem. Further, organizational design deals with new
forms of collaboration across organization and how to organize this within a focal
organization.

Capabilities. Operating on an IoP platform demand new capabilities in firms,
including business model innovation, mastering organizational change, or building
an ecosystem. Actors in the ecosystem should all have the skills to contribute to
the overall value creation. It is important to ask which capabilities are currently
available and which need to be built up or provided by others. Platform-based
ecosystems manage complementary capabilities to provide value that a single
organization would not have access to. Further transparency can be generated across
organizations which can lead to a more sustainable ecosystem. This leads to a re-
interpretation of the central economic question of the boundaries of a firm.

Interfaces. With interfaces, a distinction must be made between interfaces on
the platform and interfaces between platforms. From a platform perspective, the
openness of an API is a signal of willingness to share data and knowledge, hence
attracting third parties. At the same time, open interfaces can be a technical risk and
reduce the ability to capture value. The central question for the platform orchestrator
is how to achieve a competitive advantage through strategic openness. Interfaces
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need to be designed to enable these exchanges and access while maintaining privacy
and security. Open machine-to-machine interfaces are thus being investigated as a
key design factor for the Internet of Production.

21.4 Interplay Between Internal and External Perspective:
A Delphi Study

The elaborated GOCI framework does not only provide a structure in which
individual research efforts from the internal and external perspective of usage can
be integrated, but it also highlights opportunities for interdisciplinary research that
combines the two perspectives and spans across the four dimensions. Thereby,
the interplay between the internal and external perspective can be investigated
identifying areas where tensions between the corresponding visions and future
developments might arise. As an example, the approach and results of a Delphi study
on usage-centered developments in the manufacturing industry in the upcoming
decade are presented. A full presentation of the obtained results and a detailed
discussion of their implications have been published by Piller et al. (2022).

Forecasting the future implications of IoP technology and processes on the
manufacturing industry is made difficult by the high uncertainty of the technological
advancements. Here, the Delphi method provides a structured approach to derive
reliable future scenarios based on expert assessments (Landeta 2006). In an
anonymous and multi-stage format, the experts rate the likelihood and future impact
of a set of projections, aiming for a consensus in their assessments. By ensuring a
high degree of diversity in the selection of both projections and experts, the method
enables the inclusion of the perspectives of different stakeholder groups (Linstone
1981).

For the IoP Delphi study on the next generation of manufacturing, projections
were developed for the four dimensions of the GOCI framework and a fifth, added
dimension of resilience (Van Dyck et al. 2022a). The projection development
process included workshops with a first group of experts from different scientific
fields as well as a complementary literature review. After systematic refinement
and pre-testing, 24 projections were selected for the expert survey (see Fig. 21.4).
Then, an international panel of experts from both industry and academia assessed
the projections in a real-time Delphi format (Gnatzy et al. 2011). The obtained
quantitative and qualitative responses formed the basis for developing future
scenarios for the manufacturing industry (Van Dyck et al. 2022a).

Overall, the experts agreed that the emergence of IoP concepts such as digital
twins and digital shadows will shape the future manufacturing ecosystem (Pütz
et al. 2022). Nevertheless, the expert assessments also highlight a high level
of uncertainty about how exactly this digital transformation will look like. This
observation emphasizes the need and opportunities for future research in this area. In
the following, some of the key findings for each dimension of the GOCI framework
are presented (Van Dyck et al. 2022b):
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(1) Subscription models

(2) Digital services

(3) Data sharing

(4) Central platform

(5) Sharing-Mediator

(6) Industrial GDPR

Governance

Organization

Capabilities

Interfaces

Resilience

(14) Expert knowledge

(15) Environmental sustainability

(16) Production transparency

(17) University degrees

(22) Decentralization

(23) Production costs

(24) Production resilience

(7) Autonomous robots

(8) Hybrid intelligence

(9) AI-based Assistants

(10) New leadership

(11) Human digital twins

(12) Employees' rights

(13) Workforce reduction

(18) Implicit HMI

(19) Open interfaces

(20) Production from Home

(21) Plant mgmt. from Home

Fig. 21.4 The 24 projections investigated in the Delphi study on usage-centered developments in
the manufacturing industry in the upcoming decade

Governance. Introducing open data sharing into the manufacturing industry
is expected to create new opportunities for the cooperation of business partners
within the manufacturing ecosystem and facilitate the emergence of corresponding
business models. Based on this forecast, the experts also predict that digital services
for production machinery will offer decisive competitive advantages as the margin
for improving physical efficiency diminishes. Simultaneously, adequate measures
for data protection and data security were identified as central internal prerequisites
for the acceptance of these forms of collaboration. Consequently, industrial data
protection regulations may be necessary to manage the tensions between internal
requirements and external opportunities.

Organization. Experts project that the advancement of AI technology will have a
significant impact on decision-making processes in the manufacturing industry, both
on the shop floor and in production management. On the shop floor, the high level
of standardization and large number of repetitions of individual work steps provide
the optimal data basis for supporting production workers via AI-based assistance
systems. In production management, managers will use similar assistance systems
for short-term decision-making, improving multi-criteria optimization. However,
experts also expect that when these forms of hybrid intelligence are used, humans
will retain the responsibility and final decision-making, emphasizing the need for a
highly skilled workforce.

Capabilities. The experts’ assessments highlighted improving the environmental
sustainability in the manufacturing industry as a major opportunity enabled by IoP
capabilities. Similar to offering digital services for production machinery, providing
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solutions for making products and processes more environmental sustainable is
expected to bring competitive advantages, as the corresponding demand from both
customers and employees rises. In addition, the introduction of digital shadows and
the associated increase in the transparency of production processes can facilitate
production planning and forecasting, which benefits resource efficiency. Thus, the
internal use of production data and the external demands imposed on the company
can work hand in hand to push companies toward environmentally sustainable
manufacturing.

Interfaces. The global use of production data in the form of digital twins and
digital shadows will require the development of new interfaces both within and
between companies. From the external perspective, the experts project a demand
for regulatory requirements ensuring open and standardized data interfaces between
organizations. However, they are doubtful that such standards can be reached in the
next 10 years. From the internal perspective, the ongoing automation of production
processes, shifting the focus more from repetitive manual work to cognitive tasks
like automation supervision and decision-making, creates the need for new human-
machine interfaces. Again, the experts doubt, however, that it will be possible to
develop reliable implicit interfaces in the next decade, placing the focus instead on
assistance systems such as cobots and AI-based decision support systems.

To conclude, the IoP Delphi study on future usage-centered developments in the
manufacturing industry is an example for the methodical implementation of the
elaborated GOCI framework. Specifically, the study demonstrated the feasibility
of including research questions from all four dimensions of the framework into
a joint research approach. Moreover, the analysis combined the internal and
external perspective on usage, enabling the investigation of their interplay. The
study, thereby, offered a holistic perspective on the usage dimension in the future
manufacturing ecosystem.

21.5 Further Research

Current research results and a holistic view on the internal role of human actors
within the socio-technical system of the IoP can be found in the �Chap. 22,
“Human-Centered Work Design for the Internet of Production.” Specifically, mea-
sures across different levels of human-centered work design are presented to
highlight the range of design dimensions that must be considered when aiming for a
human-centered transformation of production work systems. For the work task level,
guidelines for enabling efficient collaboration and cooperation of humans, robots,
and smart agents in digitalized production systems are presented. A new framework
for the classification of human-robot collaboration workplaces is introduced for the
working condition level, and approaches for using corporate data to facilitate the
knowledge transfer in global production networks and the implications of the IoP
for new leadership models are discussed for the organizational level. Finally, the


 30315 43000
a 30315 43000 a
 


21 Interplay Between Company-Internal and -External Perspectives on. . . 463

supra-organizational level is addressed in form of ethical considerations of how the
IoP affects the understanding of responsibility and normative values in the work
context.

An extensive literature overview of platform-based ecosystems and a holistic
process model for platform-based ecosystems which builds on the four GOCI factors
and the external perspective can be found in the �Chap. 23, “Design Elements of a
Platform-Based Ecosystem for Industry Applications.” The process model bundles
most relevant findings of 130 papers and classifies them into 4 phases and 16 design
elements for a process-oriented approach. Further, four industrial use cases for
specific phases and design elements are shown for an exemplary application in an
Industry 4.0 context. It highlights the importance of specific data and outlines what
data can be shared from an external perspective. Further, the research deals with the
strategic modeling of platform-based ecosystems and the research addresses control
points that platform actors can proactively establish in order to adapt their business
models and to jointly create and capture value. Both researchers and practitioners
benefit from a holistic framework for platform-based ecosystems and from concrete
examples that provide insight into this emerging research area.
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Abstract

Like all preceding transformations of the manufacturing industry, the large-
scale usage of production data will reshape the role of humans within the
sociotechnical production ecosystem. To ensure that this transformation creates
work systems in which employees are empowered, productive, healthy, and
motivated, the transformation must be guided by principles of and research on
human-centered work design. Specifically, measures must be taken at all levels
of work design, ranging from (1) the work tasks to (2) the working conditions to
(3) the organizational level and (4) the supra-organizational level. We present
selected research across all four levels that showcase the opportunities and
requirements that surface when striving for human-centered work design for
the Internet of Production (IoP). (1) On the work task level, we illustrate the
user-centered design of human-robot collaboration (HRC) and process planning
in the composite industry as well as user-centered design factors for cognitive
assistance systems. (2) On the working conditions level, we present a newly
developed framework for the classification of HRC workplaces. (3) Moving to
the organizational level, we show how corporate data can be used to facilitate best
practice sharing in production networks, and we discuss the implications of the
IoP for new leadership models. Finally, (4) on the supra-organizational level, we
examine overarching ethical dimensions, investigating, e.g., how the new work
contexts affect our understanding of responsibility and normative values such
as autonomy and privacy. Overall, these interdisciplinary research perspectives
highlight the importance and necessary scope of considering the human factor in
the IoP.

22.1 Introduction

The goal in developing an Internet of Production (IoP) is to realize distributed
networks of cyber-physical production systems (CPPS) by integrating digital manu-
facturing technologies and the large-scale collection and analysis of corresponding
production data. Using this infrastructure, CPPS can effectively connect sensors
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capturing information about the physical environment and actuators interacting with
it, linking the physical and digital worlds (Lee and Seshia 2016). While CPPS will
enable further automation of production processes even in dynamic and complex
task environments, their introduction is not expected to eliminate the need for human
presence in production systems (Neumann et al. 2021). Instead, future production
systems will be characterized by the close collaboration between humans and
machines, thereby benefiting from the respective strength of both sides (Becker and
Stern 2016). This observation highlights that the introduction of the IoP will not
only transform the technical side of socio-technical production systems but will also
reshape the role of the humans within them (Kaasinen et al. 2020; Rauch et al. 2020;
Neumann et al. 2021). Most importantly, humans’ tasks will continue to move away
from repetitive manual tasks (Kadir et al. 2019) and towards cognitive tasks such
as strategic decision making in production planning and control as well as problem
solving (Fantini et al. 2016; Kaasinen et al. 2020). This shift in tasks will also change
the skills and competencies required of workers, with an emphasis on information
technology skills, self-organization, problem-solving, and communication skills for
collaboration in interdisciplinary teams (Hecklau et al. 2016).

As the role of humans within production systems changes, it is important to
consider how these changes affect both the humans’ work performance as well as
their physical and mental well-being (Dul and Neumann 2009). On the one hand,
introducing CPPS provides unique opportunities for improving human work. Rather
than replacing humans with technology, the transformation can be used to extend
human capabilities so that their contributions become more effective and efficient
(Gorecky et al. 2014). Central opportunities for this involve the flexible adaptation
of the work system to the individual worker and the use of advanced assistance
systems. Regarding work system adaptation, the analysis of production data can
enable the adaptation of machine behavior, user interfaces, and production planning
to the physical attributes, skills, experience, preferences, and current state of the
human users (Villani et al. 2017; Kaasinen et al. 2020; Mertens et al. 2021). In
addition, advanced assistance systems can support humans in dealing with a wider
range of task responsibilities (Gorecky et al. 2014). Whereas cobots as a form
of physical assistance system have the potential to reduce physical workload to a
minimum, aid systems such as decision support systems can improve human task
performance in cognitive tasks by providing the user with task-specific information
and suggesting alternative actions (Rauch et al. 2020). Based on the aforementioned
opportunities, researchers have envisioned the human worker in future production
systems as a close collaborator of technical systems, using digital skills in innovative
work processes that provide greater work autonomy and opportunities for self-
development (Romero et al. 2016a, b; Kaasinen et al. 2020; Taylor et al. 2020).

On the other hand, the upcoming transformation of the production industry is
also associated with threats for human job quality and job security. Foremost,
while the described opportunities may benefit the human workers in the future,
current real-world implementations of such adaptive work systems and advanced
assistance systems are limited and may still be considered far-fetched (Kaasinen
et al. 2020). In contrast, the replacement of humans by cyber-physical systems
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for highly standardized tasks will certainly become reality, thus creating fears of
unemployment and limited job opportunities in the workforce (Adam et al. 2018).
To acquire the necessary capabilities for the newly developing task environments,
workers will require skill development programs with a particular focus on contin-
uous learning (Gorecky et al. 2014; Bonekamp and Sure 2015; Longo et al. 2017).
While these trainings provide opportunities for self-development, the constant need
for learning also places additional demands on workers and can raise concerns
about not being able to keep up with new requirements (Kadir and Broberg 2020).
Moreover, the integration of humans in CPPS can also have detrimental effects on
human job characteristics. While cobots can reduce physical strain by supporting
humans in handling heavy objects, the close interaction of humans and machines
also evokes new safety concerns (Kadir et al. 2019). Regarding system automation,
increasing the automation level of a production system can move the human’s role
away from active control to passive monitoring, introducing the risk for automation
complacency and deskilling (Bainbridge 1982; Parasuraman and Manzey 2010;
Wickens et al. 2015). The changing balance between physical and cognitive tasks
can also lead to cognitive overload when the required information is not provided
to the worker in a suitable manner (Dombrowski and Wagner 2014; Czerniak et al.
2017; Kong 2019). Finally, the omnipresent collection of data in CPPS can threaten
the privacy of the employees when personal information is stored and analyzed
(Bonekamp and Sure 2015; Mannhardt et al. 2019).

The changing role of production workers in the transition to an IoP-based
production ecosystem has led many researchers to suggest a stronger consideration
of the human factor in this line of research (Romero et al. 2016b; Pacaux-Lemoine
et al. 2017; Kadir and Broberg 2021; Nitsch et al. 2022). However, the amount of
research that considers the human role in the future of production is still limited
(Kadir et al. 2019; Sgarbossa et al. 2020; Sony and Naik 2020; Neumann et al.
2021). This is concerning, as a human-centered work design approach will be
crucial to ensure that the upcoming transformation of production systems will in
fact enable the improvement of human work characteristics and that threats to
human job quality and job security are averted. Thus, only by considering the
human early on in the development, the deployment of new technology will benefit
human performance and well-being, ensuring organizational profitability (Dul and
Neumann 2009) and preventing the erosion of anticipated profits due to poor system
design (Rose et al. 2013).

To contribute to the body of research on the human-centered design of work
systems shaped by the IoP, we present selected research addressing different levels
of work design. To structure the individual research contributions, we follow the
model of human-centered work design proposed by Mütze-Niewöhner and Nitsch
(2020). The authors differentiate four levels of work design: (1) the work task, (2)
the working conditions, (3) the organizational level, and (4) the supra-organizational
level (see Fig. 22.1). Whereas the work task level addresses the interaction between
the worker, with her/his individual characteristics, needs, and expectations, and
technical systems to fulfill the task goal, the second level encompasses general
conditions that influence this interaction. The higher levels leave the focus of
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Fig. 22.1 Levels of human-centered work design, adapted from Mütze-Niewöhner and Nitsch
(2020, p. 1198), as the structure for the selected research topics presented in this chapter

individual work systems and concentrate on strategic and cultural changes in work
design within organizations, as well as on the discussion of work design principles
that takes place in a societal and economic sphere. By presenting research across
the various levels of work design, we seek to motivate researchers and practitioners
to consider the transformation of work systems and human work in the course of
implementing the IoP and to highlight the range of design dimensions that need to
be taken into account.

22.2 Work Task Level: Human-Technology Interaction in
Knowledge-Based Processes

Work tasks incorporating disruptive technologies such as artificial intelligence,
collaborative and autonomous robotics, or augmented reality, face two major
hurdles: the goal-oriented, successful technical implementation and the acceptance
of the worker. In terms of technical implementation, production companies often
face challenges with regard to data scarcity, possibilities for data collection, and
methods for data exploitation. Additionally, difficulties may occur relating to the
material processed, the optimization of production parameters, or logistics. To
ensure the acceptance of the workers, it is essential to consider their concerns,
wishes, and requirements, such as usefulness, fun, trust, previous experience, and
knowledge (Frazzon et al. 2013).

When developing work tasks and the associated work systems, it is thus crucial
to take a technology-centered as well as a human-centered perspective. This applies
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in particular to processes of which the outcome is heavily dependent on humans and
their expert knowledge, both in work tasks that require largely manual labor (e.g.,
assembly, post-processing) and in work tasks with high cognitive demands (e.g.,
planning, design). However, the knowledge usually remains only with the respective
expert, because (especially in SMEs) little to no documentation or knowledge
management is implemented (Durst and Runar Edvardsson 2012). This can limit
the competitiveness of companies as experts and their knowledge become scarce
once senior employees leave the company or retire. Accordingly, it is necessary to
extract, store, and transfer expert knowledge, for which both physical and cognitive
support can be useful (Lewandowski et al. 2014; Brillowski et al. 2021a).

One industry that is strongly affected by the growing shortage of skilled
workers and the associated loss of expert knowledge is the composite industry.
The automation of composite part production is not worthwhile in all cases, for
example, when a high amount of flexibility is required or if a part’s geometric
complexity is too high (Fleischer et al. 2018). Thus, two use cases in the composites
industry are investigated regarding human-technology interaction: (a) human-robot
collaboration in composite part production and (b) user-centered selection and
planning of composite production processes.

To overcome the balancing act between requirements from technology and
people in these use cases, we measured acceptance and user factors within usability
studies. As a theoretical basis, the Technology Acceptance Model (TAM) is used
to investigate perceived usefulness and perceived ease of use as well as attitude
towards use, behavioral intention, and the actual use of the technology. Furthermore,
the factors hedonic motivation, trust in automation, fun, mental/physical effort, and
perceived autonomy when using automated systems are investigated (Davis 1989;
Lee and See 2004; Bradshaw et al. 2005).

The two use cases are presented in more detail below.

22.2.1 Human-Robot Collaboration in Composite Part Production

Automation of composite part production is very complex due to the use of
limp textiles and is therefore associated with high investment costs and a loss of
flexibility. This applies in particular to composite parts with high complexity and
the need for class A surfaces. Therefore, almost every second composite part is
manufactured in elaborate manual processes, even though the needed experts are
rare and expensive. Up to now, only laser projectors have been used as an assistance
system to support these manual work tasks. Using these laser assistance systems
in composite part production can result in timesaving of up to 45% and increases
in the positioning accuracy of the textile layers. While these effects are especially
applicable to the support of inexperienced employees, an increase in efficiency and
high acceptance for the system can be noted for all employees, from laymen to
professionals (Dammers et al. 2020b).

In order to further support workers and thus retain expert knowledge, we
investigate how manual work tasks in composite production can be performed with
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the help of human-robot collaboration. Thereby, the work task is divided between
human and robot based on complexity and experience, so that part quality and
worker ergonomics are improved. For this purpose, robot tools for draping and
handling were developed so that the efficiency and effectiveness of the process can
be increased. During tool development, special attention was paid to work safety
and technical limitation (robot payload and range) (Dammers et al. 2021).

Within a usability study (N = 21), the tools developed are generally perceived
as valuable, so that the robot is regarded as a technical assistant performing the
given collaboration task well. No dependence of the worker’s satisfaction on the
collaboration type, i.e., the degree of autonomy from the human perspective, can be
observed. Low mental and physical challenges are indicated for the studied tasks. In
general, autonomy and control are perceived as positive as are ease of use, trust, and
hedonic motivation. However, usage intention for human-robot collaboration within
composite production is rated positive but rather low, which can be attributed to the
simplicity and low complexity of the examined tasks. A detailed description of the
usability study can be found in the publication (Dammers et al. 2022).

Future research will therefore aim at further optimizing human-robot collabora-
tion with respect to the factors of usage intention and usability. For this purpose,
it is necessary to investigate the production of composite parts with a higher
degree of complexity and more difficult work tasks. In addition, more suitable
interfaces for robot operation will be developed, e.g., voice control or hand/food
switches. Furthermore, the aforementioned technologies are to be combined in
one workstation to enable more intuitive operation and execution. In order to
secure expert knowledge for composite part production, the imitation of human
movements by robots is also pursued so that the knowledge is collected, saved,
and can be transferred by the supporting systems. For that purpose, artificial
intelligence approaches will be investigated, e.g., imitation learning, learning from
demonstration, and behavior trees.

22.2.2 User-Centered Selection and Planning of Composite
Production Processes

Planning of production processes for composite parts is responsible for up to 70%
of manufacturing costs (Ehrlenspiel et al. 2020). To minimize production costs
and to comply with shortening product life cycles, an efficient and systematic
planning of production processes is necessary for companies to remain competitive.
However, existing planning methods for conventional materials like metals or wood
cannot be applied to composites due to changing material properties during the
production process (Brillowski et al. 2020). Therefore, the first approaches were
developed to foster a systematic process planning. While these approaches increase
effectiveness and efficiency, the accompanying methodologies and especially the
developed decision supporting tools lack user acceptance (Brillowski et al. 2021b).

As a consequence, we investigate how decision support systems for production
planning have to be developed to ensure a high level of acceptance among users. As
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planning decisions depend on a multitude of influencing factors, we intend to apply
artificial intelligence for planning and examine its influences on user acceptance
as well (Brillowski et al. 2021a). For this purpose, we developed two decision
support systems based on different approaches. One app focuses on user-centered
design and makes suggestions that can be rejected by the user. The second app
integrates an optimization model, giving the user a mere supporting role. In the
course of a user study (N = 17) we investigated, how usability, acceptance, trust
in automation, performance expectancy, planning efficiency, and objectivity are
perceived among domain experts (Brillowski et al. 2022; Zarte et al. 2020). The
user-centered approach achieved the highest scores for usability and acceptance
as well as performance expectancy, planning efficiency, and objectivity. In regards
of trust in automation, users trusted the optimization-app most. However, in some
cases, this leads to blind trust, not critically questioning the given results and
neglecting crucial tasks, as participants expect the optimization app to relieve them
from these tasks. Due to the non-existent transparency of the decision process,
the optimization approach achieved an overall insufficient user acceptance. We
conclude that automation can help to foster trust and acceptance. However, there is a
degree of too much automation, which absolves the user of his responsibility. More
detailed information on the user study can be found in the referenced publications.
For future work, we want to research the optimal degree of automation to keep the
user engaged on the one hand and to support them in the best possible way on the
other hand .

22.3 Work Task Level: Needs and Requirements for Cognitive
Assistance Systems – Towards Effective and Trusted
Interaction

Increased information and automation through the digital transformation of pro-
duction will significantly influence people’s work tasks in CPPS, what their needs
are for information, explanation, and decision support, and how future industrial
workplaces and user interfaces must be designed (Brauner et al. 2022; Kadir et al.
2019; Neuman et al. 2021; Pinzone et al. 2017).

Despite the increasing possibilities of automation and data-driven optimization
technologies in the IoP, humans remain one of the most important factors for
the flexibility of production systems. Due to the changing socio-technical work
systems, it is necessary to consider the needs and requirements as well as the
skills of employees, which they will have to relearn or adapt and expand their
knowledge. However, so far there is a lack of knowledge about the optimal trade-
off between productivity goals, technical requirements, and the integration of user
needs (Zarte et al. 2020). To improve the productivity of production processes and at
the same time the acceptance of employees, extensive considerations are necessary
for the design of cognitive assistance systems. In this section, we approach this
challenge from the perspective of later users. Therefore, we present three studies
which demonstrate important challenges as well as acceptance-relevant factors in
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the context of human-robot collaboration that have to be considered for a successful
change of the socio-technical systems.

Cognitive assistance systems are technical systems that process information and
support workers in performing their tasks and to improve their skills (Schlick and
Trzcieliński 2016). The kind of support they can provide is divided into three
different processing steps (Stair and Reynolds 2020), referring to the detection
and recognition of tasks (1. task perception), assessing and generating tasks
(2. task decision), and exporting the task (3. task execution). When designing new
industrial user interfaces, it is important that they support cognitive tasks. However,
the affective dimension must also be taken into account. A new system may be
technically better, but if employees do not trust it, it will be used reluctantly or not
used at all and thus cannot unfold its potential.

To study the affective dimension and task perception of cognitive assistance
systems, we investigated moral decision-making in the context of human-robot and
human-autonomous vehicle collaboration. A detailed description of the study can be
derived from Liehner et al. (2022). In three different scenarios (production logistics,
medical, and autonomous driving), participants (N = 43) could decide between
assigning a task to an automatic agent or performing it manually depending on
costs or possibly faulty automation which could result in damage to property or
personal injury. The results indicate that both context and risk significantly impact
people’s decisions. The higher the perceived sensitivity of the context, such as in
a medical context, the stronger the tendency to perform the task manually and
avoid any personal harm. In addition to ethical and legal perspectives on automation
and the interaction with robots (human-robot interaction = HRI), these findings
suggest studying individual and contextual factors that influence trust in automated
systems.

Considering the above-mentioned study about decision support systems for
production planning (Brillowksi et al. 2022), we looked at it from a social accepted
instead of a technical perspective. The process of task decision portrays an example
for a cognitive assistance system. It supports by assessing and generating tasks. For
an effective interaction it turned out that factors such as usability, speed, and func-
tional superiority are relevant. Furthermore, trust was a decisive factor. However,
considering that trust is evoked through transparency and comprehensibility of the
suggested solutions, it was overshadowed by acceptance relevant features such as
performance expectancy. Further information about the study can be extracted from
Brillowksi et al. (2022).

For future work, focusing on the needs and requirements for cognitive assistance
systems, it is therefore important to develop an understanding for the context
of work and, of course, for the prospects of users (Courage and Baxter 2005).
Moreover, a participatory design approach is recommended with frequent evaluation
cycles as well as the users’ involvement from the beginning and taking all
stakeholders into account. Thus, the system functionality and interface match with
the user and reduce interaction errors and unnecessary frustration.

For a task execution process of a cognitive assistance system, we investigated the
collaboration between worker and cobot in textile production concerning different
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degrees of autonomy (low, middle, high) from the human perspective (Dammers
et al. 2022). The technical perspective regarding the tools used in this study
was already described in the previous section about human-robot collaboration in
composite part production.

The results highlight that the interaction with a cobot generally promotes
satisfactory task performance and high perceived control, with low perceived
autonomy across all types of collaboration. The study further found ease of use,
hedonic motivation, and experience in textile processing as factors relevant to
acceptance. More detailed information on the study can be found in the publication
of Dammers et al. (2022). Since autonomy and control are related to a higher task
performance and job satisfaction (Deci and Ryan 2008), we propose to adapt robot
movements and workflows to the workers and to set up intelligent interfaces for
better individual robot support. Additionally, the results indicate that participants
with little experience in textile processing rate the usability higher. An explanation
for this could be that more experienced people already have familiar work processes.
Therefore, they consider the cobot as a limitation of their freedom and intervention
possibilities. For increasing the usability and acceptance of HRI, the workflows
and robot operation should be optimized and the user diversity factors should be
examined in more detail.

Across all studies, we identified trust, acceptance, and usability as essential
factors for a positive attitude toward cognitive assistance systems which facilitate
work tasks. Since in all processing steps of a cognitive assistance system data
and information are collected, processed, stored, and evaluated, it is necessary to
focus on the acceptance of data sharing especially out of a worker perspective.
Therefore, there is a need to investigate information in future studies referring to
the willingness to disclose personal data in an increasingly interconnected smart
factory. Only broad empirical investigations with regard to the design of cognitive
assistance systems can improve acceptance, trust, and usability and consequently
increase the productivity of production processes.

22.4 Working Conditions Level: Classification of Human-Robot
Interaction

In the production of the future, human-robot interaction (HRI) and collaboration
(HRC; commonly viewed as a particular case of HRI) will gain importance
(Matheson et al. 2019). For this reason, a deep understanding of this type of work
system and a way to synthesize and analyze it is important. In order to achieve this,
a suitable HRI framework is among the things required.

Existing HRI frameworks can be grouped according to which aspects they
classify: There are classifications (1) by function (e.g., Parasuraman et al. 2000),
(2) by degree of robot autonomy (e.g., Parasuraman et al. 2000) and (3) by work- and
spatial distribution (e.g., Otto & Zunke 2015). In addition to these main categories,
there are other approaches, mostly targeting specific applications, which will not be
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discussed further here. Onnasch and Roesler (2021) provide a detailed overview of
existing HRI frameworks.

To survey HRI-relevant research activities in IoP, a survey was conducted,
and from its results, requirements for HRC were elaborated in a workshop. In a
subsequent literature search, no framework could be found that fulfills all these
requirements of HRI applications of the production of the future, as they are being
researched in the IoP. The problem, in particular, is that existing frameworks cannot
map the entire range of applications across many disciplines. Moreover, many
of them are designed for HRI within a social context and not for the industrial
production domain.

Accordingly, it was decided to adapt and extend the framework of Otto and Zunke
(2015): In addition to the dimension “HRI level,” the two dimensions “precondition
& implication” and “data sources” were added (see Fig. 22.2; Baier et al. 2022).

The framework uses (shape- and) color-coded dots that indicate strengths and
weaknesses and can also be labeled with text to represent information in the grid
fields.

Dimension HRI level. For the distinction of the HRI level, the overlap of
the workspaces of human and machine is used – from (physically) separated to
completely overlapping. In addition to the categories in the original framework,

Fig. 22.2 Extended human-robot interaction (HRI) framework (Baier et al. 2022) – example
filled in
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another category has been added that refers to a common platform, as needed for
wearables, prostheses, or exoskeletons.

Dimension Precondition and Implication. The preconditions and implications
of the HRI application are described here from technical, legal, and social per-
spectives. For example, a technically well-engineered solution that is also legally
compliant can nevertheless trigger a problem from the social perspective in the form
of dissatisfaction due to a feared job loss among employees.

Dimension Data Source. For many HRI applications, the source of the data is
relevant. The distinction between mounted and external sensors as well as digital
shadow/digital twin reflects the dependence of the HRI application on external
infrastructure. For example, mounted sensors as the primary data source allow for
more independent operation from data infrastructure, but this can be at the expense
of quality.

Figure 22.2 shows a completed schematic: In this fictitious example, the intro-
duction of an automated guided vehicle (AGV) with manipulator in a warehouse
is being planned. The shape- and color-coding allows for a quick overview and
simplifies the identification of problematic and unproblematic areas of this solution.
The obstacles apparently lie in the legal area as well as in the acceptance of the
robots by the employees. Except for the fact that a sensor infrastructure has to be
installed, there is no technical reason not to implement the robots.

With the HRI framework developed, it is now possible to analyze (classify)
and synthesize (design) HRI as it pertains to production of the future and relevant
research. Hence, the framework can also be used for the human-centered design
or optimization of an HRI work system. For this purpose, special requirements
resulting from the technologies used in a sector or specific legal regulations within
it, as well as the demographics of the employees can be taken into account. Solutions
can also be compared by filling in multiple schemas. Here, the degree of detail can
be freely selected according to the needs. The clear presentation makes it easy to
communicate proposals and decisions to superiors or the workforce.

Validation with respect to applications outside the IoP is still pending. In
addition, more in-depth research in the Precondition and Implication dimension is
planned – especially with regard to the social perspective.

22.5 Organizational Level: Data-Driven Best Practices Sharing
of Human-Centered Work Design

As the intended result of an IoP, CPPS enable the continuous automation of
production processes while simultaneously increasing productivity. Nevertheless,
human work remains a key factor for productivity due to the specific capabilities of
humans and the associated flexibility (Ansari 2019). To realize this productivity,
employees are exposed to various forms of work demands during production
processes. In addition to enabling cyber-physical collaborations, the increasing
digitalization of work processes offers the opportunity to record relevant data and
to use this information for the assessment of these work demands (Neumann et al.



22 Human-Centered Work Design for the Internet of Production 479

2021). The analysis of these data can thus be used to secure competitive advantages
by using a data-based comparison of the production processes to identify optimum
configurations (Schuh et al. 2021).

In accordance with this optimization principle, the Best Practice Sharing Tool
presented in the �Chap. 16, “Managing Growing Uncertainties in Long-Term
Production Management” was developed within the IoP. Despite the relevance of
knowledge as one of the most important resources in the industrial context, the
transfer of production knowledge for the realization of a continuous learning process
between employees presents a challenge for manufacturing companies (Ferdows
2006). The complexity of this transfer is increased by the distribution of knowledge
in global production networks, making this field of research particularly relevant
(Yang et al. 2008). While the evaluation of production processes in terms of
productivity has been elaborated, the necessary consideration of human workload
in this data-driven optimization approach for production process design remains
a challenge. Accordingly, with the objective of initiating workplace improvement
measures across the production network, corporate data are used to identify compa-
rable production processes in terms of human work characteristics and identify best
practices by comparing human work demands, extending the current version of the
Best Practice Sharing Tool.

For the Best Practice Sharing Tool, two key building blocks were developed
to identify knowledge transfer opportunities: First, the data-based identification of
comparable production processes, and second, the development of an assessment
methodology to identify trigger points for the need of knowledge transfers based on
productivity performance indicators. To identify comparable production processes,
processes are represented based on a morphological box by linking the constituent
product and resource characteristics. Subsequently, the description of the production
processes is transferred into a digital shadow, which is used for the data-based
formation of clusters of comparable production processes. By means of a cluster
analysis, the metric characteristics can be divided into different proficiency cate-
gories (Schuh et al. 2020). As a result, performance differences within clusters of
comparable production processes can be identified. These clusters are transferred
into a dynamic assessment system to identify trigger points for determining knowl-
edge transfer needs in the global production network. The operator can then interact
with the tool to initiate the deployment of improvement measures. These are derived
from the system-based identification of ideal characteristics. The application thereby
serves as a decision support tool for initiating a best practice-sharing approach in the
context of production processes in global production networks (Hast 2021).

The transfer of the described method to the human-centered focus requires the
capability to compare production processes with each other. Since the criteria used
for the elaborated method are only of economic or technological orientation, it is
necessary to define the constituting characteristics of production processes from the
workers’ point of view. Here, the model of human-centered work design by Mütze-
Niewöhner and Nitsch is applied to structure the approach (see Fig. 22.1). The Best
Practice Sharing Tool as a decision support system for managers, supporting them
in the identification and implementation of measures to reduce the work demands
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on production workers, is itself located on the organizational level. The individual
level subsuming the worker, the work task, and the working conditions serves as
a framework for the constituting characteristics of production processes from a
human-centered perspective.

Based on a systematic literature review, criteria and description factors of
production processes with a human-centered focus are identified (Fettke 2006). The
comprehensive database of indicators from this research area is used to compile a
long list of criteria in terms of the frequency of occurrence, relevance to the focus of
observation, and possible quantification or evaluation for the later identification of
trigger points. The indicators can then be classified according to the applied model
of human-centered work design.

As the goal of the criteria list is to compare the design of production processes,
the worker level is excluded from the analysis as it relates to the individual character-
istics of the respective workers. The level of the work task includes the execution of
the production process and the associated demands on the employee. Thus, the work
demands of the process execution by means of intensity, duration, or complexity,
but also, for instance, local vibrations and other emissions are included. Working
conditions represent more general conditions, encompassing job design as a station-
specific perspective and the work environment as a macroscopic perspective. The
workplace is considered from an ergonomic point of view with regard to working
position and accessibility or work equipment. The work environment describes
cross-workstation characteristics and thus represents criteria such as noise, air
conditions, lighting, or temperature.

Based on the general assignment of the indicators of the long list, a criteria
short list is developed via further classification, consolidation, and relevance
consideration. Eventually, the short list can be used to compare production processes
from a human-centered perspective in order to provide the basis for the identification
of best practices through an assessment system of human work demands factors for
production processes in global production networks.

Following the presented approach, the current research project focuses on the
elaboration of the criteria long list through a comprehensive examination of existing
research. After the assignment to the three defined domains, the criteria short list
can be elaborated in order to present a practicable data-based method for the
comparability of production processes with human-centered focus based on the
application of corporate data in several iteration and optimization loops.

22.6 Organizational Level: Demand-Driven Management and
Leadership in Processes of Digital Transformation

Krcmar (2018) emphasizes four elements of digital transformation processes
that must be considered. From his perspective, transformation processes are
(a) inevitable, (b) irreversible, (c) characterized by a high degree of speed, and
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(d) accompanied by a high degree of uncertainty in their execution (Krcmar
2018). For companies, therefore, the main question should not be how they can
decouple themselves from the coming change, but how they can actively shape
the transformation process (Krcmar 2018). In this context, the management
of digitization processes seems to play a special role. Hoberg et al. (2018)
indicate that digital transformation projects are characterized by a high degree
of social complexity that needs to be managed actively. They conclude that
digitization projects, face the challenge of having to overcome rigid or at least
existing and thus mostly established corporate structures (Hoberg et al. 2018).
Correspondingly, Hoberg et al. (2018) found in a quantitative study 84% agreement
among participants regarding the statement that change management skills are
of great importance for the organizational transformation and that management
support is required at various management levels (Hoberg et al. 2018). His result
is affirmed by research on organizational change projects, showing that support
from management is necessary to ensure the targeted allocation of financial and
human resources required for the change process (Premkumar and Potter 1995). In
addition, unforeseen obstacles that arise during the change process can be overcome
more easily if the transformative processes are actively managed (Hwang et al.
2004). Recapped, digitization represents a major challenge for organizations, as it
affects the working environment of employees as well as employees’ requirement
profiles. Moreover, it must overcome organizational structures and processes to
be implemented sustainably. Consequently, it results in the need for organization-
specific and thus demand-oriented management, to better counter the effects of the
change process on the organization and its people. To ensure this, an analysis of the
realities on the technical, structural, and personnel sides represents the first step.

The need for a requirement-specific approach becomes even clearer when
reflecting industry-specific characteristics. The manufacturing sector is confronted
with special requirements that intensify, e.g., element (4), namely a high degree
of uncertainty, of Krcmars’ (2018) formulated aspects of transformative processes.
Production data, which is to be shared if an organization adheres to the idea of
an IoP, often represent the core value. As a result, the willingness to share these
data is low since sharing such valuable data triggers feelings of uncertainty, which
was confirmed by a qualitative study of the Research Group Gender and Diversity
in Engineering (GDI) of RWTH Aachen University in 2020/2021. In addition,
established and therefore partly old plants and production systems represent the
central value of companies in the manufacturing sector. Yet, digitizing these plant
systems can only be realized with a corresponding effort. Furthermore, management
must consider the people in change processes, diverse target groups, resulting
diverse demands and fears that arise. This diversity results on the one hand from the
different areas of activity, namely in production itself as well as in the administration
and management of the organization. On the other hand, diversity results for
example from the individual affinity for digital solutions and age diversity in the
workforce. Consequently, diversity must be actively considered when implementing
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corresponding digitization projects, to increase the acceptance of digital strategies
and technologies in the context of change processes (Steuer-Dankert 2020).

To cope with the challenges mentioned, different management methods such as
new and digital leadership are currently being discussed. Research has shown that
success in organizational aspirations toward a productive digital transformation is
positively correlate to the enablement, development, and implementation of such
a form of managemental leadership (Sprenger 2017; Kane et al. 2018; Abbu et al.
2020; Araujo et al. 2021). Sprenger (2017) sees the future viability of companies
in their ability to discuss probable and improbable scenarios and to generate the
necessary redundancy through a diversity of opinion. Likewise, he sees companies
as well prepared that encourage stubbornness and a spirit of contradiction. For
Sprenger (2017), transformational leadership style, therefore, represents the ability
to create an organization that is willing and able to change, especially in this context
of digitalization. So, the active enablement, development as well as implementation
of a new and digital style of managemental leadership can be seen as crucial to
guarantee the successful satisfaction of transformative demands in digital contexts.

Linking a further management style with digitalization, Araujo et al. (2021)
define digital leadership in its most fundamental sense as “the use of digital assets
of an organization to achieve business goals at both organizational and individual
levels” (p. 46), while referring to Dimitrios et al. (2013) and Thomson et al. (2016).
What seems to be the most crucial aspect in the light of the addressed challenging
demands of digital transformation is the interactive and behavioral cultural change
that such a form of leadership brings into the organization and its internal processes;
something that is highly needed within such processes of digital transformation
(Kane et al. 2018; Abbu et al. 2020; Araujo et al. 2021). What is meant by that
is that digital leadership or digital leaders, as role models, should actively help
the organization to detect and evaluate the given demands of the transformation
and to change the organization towards these demands of digitalization by showing,
guiding, and enabling: flexibility/agility, curiosity, openness, a willingness to learn,
an open, egalitarian and non-hierarchal style of communication and decision-
making, innovative entrepreneurial tendencies, trust, and credibility as well as
transparently laying out a vision and purpose of the ongoing change processes
(Kane et al. 2018; Abbu et al. 2020; Araujo et al. 2021). Doing so is not only
positively related to the organizations’ success in terms of digitalization (Araujo
et al. 2021), but also to the psychological well-being of employees, like in this case
the leaders/managers themselves, that are involved in these transformative processes
(Zeike et al. 2019).

Taken together, all of this highlights that if organizations want to satisfy the
demand of an increasingly digitizing industry and, thereby, be successful in terms
of implementing digital innovations or strategies as, e.g., needed in the context of
the IoP, there is also the need to actively implement a demand-driven, evaluative,
and reflective management that is able to deal with the arising diverse needs and
challenges on a human as well as on a technical level.
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22.7 Supra-Organizational Level: Ethical Dimensions of Work
in the Internet of Production

Work takes up a large amount of time in people’s lives as their main occupation
and activity, and is often a source of their identity, stability, and safety. Changes
in the conditions of someone’s work thus reflect not only their immediate daily
activities, but also often their orientation in life, their sense of identity and social
status, and consequently their overall happiness and other ethical values, such
as dignity, autonomy, and freedom (European Group on Ethics in Science and
New Technologies 2018). The main source of the changes of work conditions are
technologically mediated changes, namely via automation and digitization. These
necessitate ethical reflection on the impact of those changes on human flourishing
in their everyday life (Danaher 2019). It is vital to consider those ethical dimensions
early on, together with engineers and social scientists to be able to assess, evaluate,
and guide the design and implementation challenges of such technology.

In the IoP, we closely cooperate across disciplines to achieve these aims through
exchange of perspectives and ideas. This way, ethical reflection and research is
informed of the latest technological developments, while also being able to offer
assistance and guidance for engineers and scientists in their work. Next to the
more fundamental changes in people’s understanding of their own work in light
of automation and digitization, there emerge more practical challenges to the way
people work. Increased digital capabilities of surveilling workers in their actions
and overall performance poses the question of privacy at work (European Group
on Ethics in Science and New Technologies 2018; Königs 2022). How much is
an employer entitled to control and supervise their employees’ actions? With both
new tools of surveillance and a more digitized workplace, the work performance
of an employee can be measured and supervised to a previously unseen, intrusive
degree.

Another issue of changing work environments in the IoP are the ever more dis-
tributed and thus shared decision-making processes between humans and machines.
Our previous understanding of technology placed agency exclusively in the hands
of human agents. Technology thus far has been seen as a mere range of tools to
achieve self-set aims. However, the increased and further increasing sophistication
of automated and autonomous processes of technological systems in workplaces
not only makes it difficult to determine where human decisions played into an
automated decision-making process, but also may make these decision-making
processes necessarily cooperative in the first place. For the IoP, this was identified
as a key challenge for the future of work (Nitsch et al. 2022).

It is important to consider that some decisions may not be made by sole
human decision-making but are predicated on decision-support systems that pre-
select evidence and with that recommend certain paths of decision-making the
human decider has little to no control or knowledge of. If, for example, automated
systems seek out, evaluate, and on this basis recommend certain paths of action,
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it will increase the burden of proof of humans when disagreeing with those
recommendations. The question arises of just how much autonomous machines
can support human decisions without influencing them to the degree it affects our
autonomy.

From this development, distributing responsibility in human-technology interac-
tions emerges as an ethical challenge. With more sophisticated and autonomously
behaving machines, the bearers of responsibility become less clear. When doubts
emerge of how much meaningful human control can be exerted in these processes,
just how much should a person be held responsible for the outcome of such a process
(Königs 2022)?

These considerations pose genuinely new and hard questions regarding the future
of ever more automated work environments and the social sustainability of these
developments. Ethical considerations are needed at every step of these develop-
ments, as they change the meaning of work as a source of identity, stability, and
human flourishing. In the coming steps, we aim to contribute to these developments
through analyses of concepts of autonomy, freedom, and manipulation in those
more automated work environments. Notably, we aim to incorporate the normative
dimensions of the concept of sustainability in both its environmental and social
dimension into these analyses and assessments.

22.8 Conclusion

Realizing the IoP will lead to fundamental changes of how humans work in
future socio-technical production systems. To ensure that this digital transformation
enables the anticipated improvements in both overall productivity as well as
workers’ physical and psychological well-being, it is of most importance to consider
the human factor as early as possible, implementing a human-centered work
design process. The selected research from the IoP presented here highlights the
multitude of factors and levels in the design of work systems that needs to be
taken into account. For example, the development and deployment of advanced
human-machine interfaces such as human-robot collaboration or AI-based cognitive
assistance systems require the context-specific analysis of human factors such as
trust, acceptance, and usability. Furthermore, the consideration of such interfaces
needs to incorporate influences from the present working conditions, including
characteristics of the workplace and the work environment. These work system
design processes must, in turn, be guided by human-centered approaches on the
organizational level. For example, processes should be implemented that enable
a large-scale human-centered analysis of work system design. Moreover, the
associated transformation poses new and diverse requirements on leadership, raising
the need for demand-driven, evaluative, and reflective management. Finally, all these
developments must also be considered from an ethical perspective, evaluating how
technological changes affect central human needs such as privacy and autonomy.
It is important to note that, while these aspects have been discussed in separate
sections here, companies that strive towards an IoP will have to consider all these
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factors and levels of work design at the same time in order to remain competitive for
an increasingly mobile workforce in a global market. This emphasizes the challenge
that companies face and that must be overcome to ensure the desired outcomes of
this digital transformation. To support the companies in this transformation, further
and continuing research efforts on the human-centered work design of future socio-
technical production systems are required.
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Abstract

Many companies in the Industry 4.0 (I4.0) environment are still lacking knowl-
edge and experience of how to enter and participate in a platform-based
ecosystem to gain long-term competitive advantages. This leads to uncertainty
among firms when transforming into platform-based ecosystems. The article
presents a structuralist approach to conceptualize the platform-based ecosystem
construct, giving an overview of the literature landscape in a model bundled
with unified terminology and different perspectives. The holistic process model
aggregates the findings of 130 papers regarding platform-based ecosystem
literature. It consists of 4 phases and 16 design elements that unify different
terminologies from various research disciplines in one framework and provide a
structured and process-oriented approach. Besides, use cases for different design
elements were developed to make the model apply in an I4.0 context. Use Case
I is a methodology that can be used to model and validate usage hypotheses
based on usage data to derive optimization potential from identified deviations
from real product usage. By collecting and refining data for analyzing different
manufacturing applications and machine tool behavior the importance of specific
data is shown in Use Case II and it is highlighted which data can be shared from
an external perspective. Use Case III deals with strategic modeling of platform-
based ecosystems and the research identifies control points that platform players
can actively set to adjust their business models within alliance-driven cooperation
to create and capture value jointly. Use Case IV investigates the status quo and
expectations regarding platform-based ecosystems in the field of laser technology
with the help of structured expert interviews. Overall, this chapter presents a
framework on industrial platform-based ecosystems that gives researchers and
practitioners a tool and specific examples to get started in this emerging topic.

23.1 Introduction

The rise of interconnected businesses participating in a platform-based ecosystem
has induced a redesign of existing business models in various industries and
technology sectors. Starting with telecommunication networks, platform-based
business models are prevalent in many industries today; especially in the online
gaming industry (Boudreau and Jeppesen 2015) or social networks (Li and Agar-
wal 2017). As per our understanding ecosystems consist of independent yet
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interdependent actors who interact to generate a joint value proposition. Actors
include (multiple) platforms, users, and complementors. A platform is the tech-
nology that allows the efficient creation of many options by producers and/or
users. Platforms act as an intermediary facilitating exchange/transactions between
different actors and/or serve as a foundation on top of which other firms develop
complementary technologies, products, or services (Adner et al. 2020; Jacobides
et al. 2019; Parker and van Alstyne 2018). Many companies lack knowledge and
experience of how to enter, participate, and position themselves in a platform
ecosystem to gain long-term competitive advantages. The promises of Industry
4.0 lead to increased cross-domain collaboration and industrial data sharing within
an open ecosystem based on underlying platform business models. For example,
when shifting from a product system to a platform-based ecosystem, firms lack
knowledge of how resulting value is captured and shared in the ecosystem. To cope
with interdependencies in the ecosystems, firms need to assess whether they must
build up new competencies (Stonig et al. 2022). So far, only a few companies in an
Industry 4.0 environment have experience in platform design, leading to uncertainty
among firms regarding platform-based ecosystems.

The literature on platforms and ecosystems has grown enormously in recent
years. However, the existing literature is currently very scattered across many disci-
plines (Rietveld and Schilling 2021). Researchers have mostly investigated terms
of platform and ecosystems isolated within their disciplines, delivering insights
from an isolated point of view. Especially in management, information systems, and
engineering disciplines, the research is further based either on platform or ecosystem
literature, with a lack of integrating platform and ecosystem aspects. Further,
existing research does not give a holistic overview of platform-based ecosystems, as
researchers mostly focus on specific aspects. This work fills the gap by combining
research from different disciplines, defining and organizing relevant aspects of
platforms and ecosystems from the perspectives of the ecosystem, the platform
organizer, and the complementor and placing them in a process-oriented framework.
We combine these research strings, giving a holistic overview of relevant litera-
ture related to platform-based ecosystems. Past platform and ecosystem literature
usually discusses specific aspects, either of platforms or ecosystems. McIntyre
and Srinivasan (2017) focus on the view of industrial organization economics,
technology management, and strategic business perspectives of platform-mediated
networks. The research of Hagiu (2014) analyzes four strategic challenges regarding
multisided markets that are the number of sides to bring on board, design, pricing
structure, and governance rules. Jacobides (2019) deals with the emergence of
ecosystems and clarifies the differences from other forms of governance. The
work of Rietveld and Schilling (2021) provides a literature review focusing on
platform competition and providing an overview of key questions around network
externalities, platform ecosystems on corporate level, heterogeneity, and value
creation and capture. Rietveld and Schilling (2021) cover individual aspects on
both, platform and ecosystems, yet not classified within a holistic process model.
Our process model builds on the paper of Rietveld and Schilling by adding further
important aspects to their described key themes as well as showing how individual
elements are interrelated and fit into an overall process.
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23.2 Description of the Process Model for Platform-Based
Ecosystems and Industry Applications

The process model was developed using a hybrid approach combining both common
literature analysis and new machine learning methods for further verification.
Using a Boolean search query string regarding titles and publication outlets, a
comprehensive list of around 400 academic papers could be identified via Web
of Science. To be included in the list, at least one of the following words had to
be in the title: “ecosystem,” “platform,” “network effect,” “complementor,” “sided
market,” “network externality,” “network effect” or a combination between the
phrase’s “innovation” and “ecosystem” or “platform,” “strategy” and “ecosystem*”
or “platform,” “open” and “ecosystem” or “platform.” To ensure an interdisci-
plinary approach, we included journals known for their research on platforms and
ecosystems from management, information systems, and engineering disciplines.
Subsequently, all papers were manually reviewed in aspects of relevance and contex-
tual fitness. For a further verification of the literature, we used the machine learning
software ASRreview which deploys learning techniques for an efficient screening
of titles and abstracts (Van de Schoot et al. 2021). The software was given a training
set of 40 relevant and 10 irrelevant articles which was used to learn and select the
most relevant articles. The result was 130 relevant papers, which were the basis
for our model. From the literature selection, we synthesized 16 design elements for
platform-based ecosystems and allocated at least one design element per paper. To
ensure a structured process, we defined four phases, namely “Strategy,” “Design &
Entry,” “Within-platform competition,” and “Between-platform competition” and
assigned each design element to one of the four phases. Starting point for the
definition of our phases and design elements were the four structural factors from
Gawer (2014) and Parker and van Alstyne (2018): “governance,” “organizational
form,” “capabilities,” and “interfaces.” The “organizational form” and “capabilities”
are in our “Strategy” phase, in which firms need to clarify questions of how to play
and use an ecosystem. The governance dimension is central part for all phases after
the strategy was clarified. The last factor “interfaces” was divided into the phases
“Within-platform competition” and “Between-platform competition.”

Our process model bundles and aggregates the findings of selected papers
regarding platform-based ecosystem literature. It consists of 4 phases and 16 design
elements that unify different terminologies from various research disciplines in one
framework (Fig. 23.1). Each design element is backed up with relevant articles and
key questions for three different perspectives are elaborated, namely the ecosystem,
the platform orchestrator or complementor. The first “Strategy”-phase consisting of
five design elements defines how to play and use an ecosystem. Key questions are
described per design element which should be asked before companies enter the
ecosystem, either as a platform orchestrator or complementor. The second phase
“Design & Entry” describes the design and scale of a platform within in ecosystem
by bringing others on board and is based on three design elements. The “Within-
platform competition”-phase deals with the competition and collaboration with
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Fig. 23.1 Platform-based ecosystem process model

complementors on the platform to maximize value creation and capturing of one’s
ecosystem. The last phase “Between-platform competition” which consists of five
design elements clarifies questions of how to compete and collaborate with other
platforms to ensure platform attractiveness and survival.

23.2.1 Strategy

Being part of a platform-based ecosystem is a strategic action, opening new ways
of capturing value. To be successful in a platform-based ecosystem, actors of the
ecosystem therefore need to define a shared value proposition with their future
stakeholders. Both, the platform orchestrator and the complementors, need to
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outline how to capture value for themselves while serving the focal value propo-
sition of the ecosystem (e.g., Autio and Llewellyn 2015; Zhang et al. 2020;
Clarysse et al. 2014). Role positioning refers to the organizational governance on
an ecosystem level. Platforms take different roles to follow the value proposition.
The positioning (dominant vs. niche) of the platform in the overall ecosystem needs
to be addressed by the platform orchestrator. From the complementor’s point of
view, the number of platforms should be discussed as part of the overall ecosystem
strategy (Chen et al. 2021). The pre-defined shared value proposition of a platform-
based ecosystem requires resources and capabilities to be implemented successfully.
All players of the ecosystem should bring needed capabilities to support the overall
value creation. They also need to identify capabilities that already exist, and
capabilities that need to be assured by other actors (e.g., Hagiu 2014; Henfridsson
et al. 2021). Part of the overall ecosystem strategy is the question of which
existing intellectual property or industry standards can be leveraged by the platform
orchestrator as well as the complementors. Value co-creation in an ecosystem builds
on interdependencies as well as complementarities of the respective goals of the
participants (Bogers et al. 2019). Defined interdependencies and complementarities
shape the ecosystem strategy and the outcome of value capture. Participants of the
ecosystem question how to influence complementarities and interdependencies in
the ecosystem (e.g., Alexy et al. 2018; Autio and Thomas 2018).

23.2.2 Design and Entry

The degree of openness chosen by participants of an ecosystem defines the level
of cooperation with external players. Hence, ecosystem resources can be shared in
order to foster cooperation, using, e.g., an open-source license approach. However,
shared ecosystem resources are vulnerable to being strategically exploited. The plat-
form orchestrator must balance the optimal degree of openness to spur innovation
while still ensuring control. Complementors need to manage the adequate access and
decision rights that are crucial to be successful on the platform (e.g., Ondrus et al.
2015; Cenamor and Frishammar 2021). Network effects describe how the number of
participants of a platform can impact the value generated for the participants of the
platform. The question for both platform orchestrator and complementors is how
to induce new network effects or, if not possible, how to use existing ones (e.g.,
Panico and Cennamo 2019; Markovich and Moenius 2008; Kim et al. 2014; Allen
et al. 2022; Gregory et al. 2021). The decision of pricing accounts for the dynamic
interaction between each side of the ecosystem. The pricing structure of platform-
based ecosystems should balance the value captured for each player, in order to keep
all players on board. The platform orchestrator, on one hand, specifies which side
to subsidize by themselves to bring all sides on board. Complementors, on the other
hand, need to be clear about which pricing structure and pricing mode to accept
(e.g., Economides and Katsamakas 2006; Dushnitsky et al. 2020).
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23.2.3 Within-Platform Competition

Vertical integration addresses the decisions of which activities are performed by the
platform provider and which by the platform complementors, then defining how
the efforts of the players are integrated into a coherent whole (Wang 2021). To
achieve platform health over time, fast and sustainable growth is shaped by the
decision of how to share profit for the platform with multiple stakeholders. As a
platform orchestrator, the challenge lies in determining the maximum share of profit
for the platform without alienating complementors. Complementors will determine
the minimum share of profit that is still acceptable (Oh et al. 2015). Boundary
resources play a critical role in managing the tension between an ecosystem owner
and independent external players. The main challenge for the platform orchestrator
is how to obtain a competitive advantage with strategic openness. Complementors
set which kind of boundary resources can be used (e.g., Woodard 2008; Eaton et al.
2015; Ghazawneh and Henfridsson 2012).

23.2.4 Between-Platform Competition

To orchestrate outbound communication and cooperation with external players,
platform owners should define which kind of bottlenecks can be removed in order
to foster progress and growth (e.g., open innovation by removing technological
bottlenecks). Therefore, control points are crucial to secure profits and competitive
advantages, managing how the network operates and how other players can partic-
ipate in the ecosystem. The main challenge for the platform orchestrator and the
complementors is to identify bottlenecks that can be resolved (Hannah and Eisen-
hardt 2018). The importance of the number as well as the nature of complements
(heterogeneity) are crucial in terms of shaping the ecosystem structure. Leveraging
complementor dynamics plays an important role in gaining a competitive advantage.
Hence, the platform orchestrator needs to solve the trade-off of focusing on many
complements vs. securing exclusive marquee complements (e.g., Rietveld and
Eggers 2016; Panico and Cennamo 2020). Multi-homing describes the decision
about the exclusiveness of complementors and/or users on one hand, and the
affiliation with other platforms on the other hand. From the perspective of a platform
orchestrator, the question of how multi-homing can be prevented plays a central
role. Complementors need to think about how costly it is to affiliate with other
platforms. The main challenge of platform envelopment describes how actors of
different platform markets can combine their functionalities to leverage existing user
relationships and expand into other markets. The platform orchestrator as well as
complementors need to address the question with whom to compete and cooperate
(e.g., Adner et al. 2020; Ansari et al. 2016). Cooperation and competition need to be
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balanced over time. Therefore, it also has to be specified if competition takes place
on specific layers and/or in between platforms.

To transfer the process model into an I4.0 context, four different research topics
are defined as use cases for different design elements.

23.3 Use Case I: Use of Product Usage Information to Identify
Innovations

Product development in the machinery and plant sector is currently facing a variety
of challenges. As in many other industries, the entry of new competitors and the
emergence of overcapacities have led to an increase in the intensity of competition.
Accompanied by an increase in price pressure, this has led to a shift in market
power to the customer side (Schuh and Riesener 2018). At the same time, the
lifetime of a product on the market is decreasing. While this used to be the case
primarily for consumer goods, the lifetime of industrial products, as in machinery
and plant engineering, is also becoming shorter and shorter (Michels 2016). For
the companies in the market, it is important to take the impact on a necessary
reduced time-to-market and shorter innovation cycles into account (Schuh and
Riesener 2018). In addition to price and quality, the short innovation time thus
evolved into the criterion for success (Ehrlenspiel and Meerkamm 2013). In this
context, the development costs for products with overloaded product functions
or product functions that are rarely used in the usage phase raise exponentially
(Schuh et al. 2020). Based on the initial situation described above, the aim is to
increase the effectiveness and efficiency of research and development (Schuh 2013).
Particularly in the context of the innovation process, companies are more than ever
confronted with the challenge of completing the activities from idea generation
to market launch as quickly as possible and with scarce resources, while at the
same time ensuring the highest possible probability of success (Gommel 2016). The
rapid translation of an identified customer need into a market-ready solution has
become one of the key success factors in competition (Michels 2016). Development
activities, especially for new products, must therefore be focused on those product
functions that have a positive influence on the fulfillment of customer needs.

In contrast, product development faces the challenge that companies lack
knowledge about which product functions the customer actually needs and to what
extent. While the range of functions in most products is constantly increasing, it is
still the task of humans to anticipate and develop them (Michels 2016). Similarly, a
consultation of future customers does not prove to be effective, since they usually do
not yet know how the product will be used in the specific application. Development
activities and focus are therefore based on assumptions about later product usage
and the corresponding customer needs. If customer feedback is taken and used to
focus product development, it is usually unstructured and isolated feedback from
distributors or service partners based on warranty cases, complaints, or product
recall (Abramovici and Lindner 2011).
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With regard to the initial situation and challenges presented, the transformation of
machines and plants from mechatronic to cyber-physical products offers enormous
potential. Cyber-physical machines enable information from product usage to be
generated, recorded, stored, and evaluated by means of sensors (Hellinger 2011).
The recorded information can be used to examine how the functions of the machine
are used in order to derive valuable findings for innovations in the next product
generation. Assumptions about later product usage, which were made due to a lack
of knowledge during product development, can be verified by the recorded product
usage information.

This potential was exploited in the presented use case by developing a method-
ology for identifying innovation potential through the analysis of product usage
information. The methodology pursues the objective of systematically formulating
product development assumptions as hypotheses and testing them based on recorded
product usage information to derive innovation potential for the next product
generation.

In the context of the platform-based ecosystem process model, the methodology
can be assigned to the “Strategy”-phase and specifically to design elements “Value
creation & Capture” and “Resources & Capabilities,” as it deals with general
added value that can be derived from usage data. This is particularly evident in the
development and elaboration of the individual phases of the methodology presented
later. Value is generated on the part of the machine and plant manufacturer by the
possibility of better addressing the customer needs, which can lead to an improved
market positioning and an increased competitiveness. Simultaneously, the customer
receives a product with an improved cost-benefit ratio in the long term, as fewer
or even unused functions and the associated higher costs are eliminated. Due to
the level of detail of the methodology it is shown what kind of information and
capabilities are required and could be provided by stakeholders in a platform-
based ecosystem to generate the value. In general, it can be stated that within the
implementation of the methodology in the context of a platform-based ecosystem,
further design elements and their contents need to be elaborated. Nevertheless,
primarily in terms of an exemplary use case, the method illustrates a way to generate
value from data that can be shared via a platform.

The methodology consists of four steps (Fig. 23.2). In the first step, the usage
cycle of the machine is systematically described and it is determined where the
user can influence the machine during usage. Based on this, relevant product
usage information to be recorded is derived in the next step. In the third step, the
assumptions about the product usage are formulated as so-called usage hypothesis

Fig. 23.2 Four steps of the methodology for the identification of innovation potential
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and verified by recorded product usage information. Finally, innovation potentials
for the next machine generation are derived from deviations between the usage
hypothesis and real product usage. The four steps are explained in detail below.

The aim of the first step is to model the usage cycle of the machine as a basis
for the further methodology. In accordance with systems theory, the usage cycle is
defined as a structural system in which the elements of the system are not considered
detached from the context, but only in their interdependencies with other system
elements (Ropohl 2009). In order to develop a suitable method for modeling these
elements, at first various requirements for the modeling were developed. In addition
to other requirements, the modeling of the usage cycle should represent the states of
the product functions, their functional attributes, and the transitions between the
product functions, the so-called transitions. Various existing modeling methods,
such as state machines, Petri nets, and UML, were analyzed with regard to these
requirements, and suitable elements were adopted.

Subsequently, different types of variability were identified, which means the
changeability of the modeled elements due to external influence by the user. It was
determined that the user can influence the duration of the functions, control the
characteristics of the functions and select between different functions or transitions.
Based on modeled elements as well as types of variability, the need for relevant
product usage information to be recorded was derived. The minimum, average,
and maximum attributes, the frequency of use of various functions and transitions,
and the usage duration of functions were among others identified as relevant
information.

Afterward, the usage hypothesis can be defined based on the modeled usage
cycle, the identified variabilities, and required information. The usage hypothesis
comprises the assumptions about the respective information that describe the state
of the modeled elements in usage. The one-sample t-test was identified as a suitable
test procedure for the subsequent verification of the usage hypothesis on the basis of
recorded product usage information (Hedderich and Sachs 2018). This test can be
used to identify significant deviations between the usage hypothesis and the actual
usage of the machine in the usage cycle.

In order to convert the identified deviations into innovation potential, it was
first assumed in the sense of the finality and causality of human action that the
user pursues a specific goal in use with all deviations (Hartmann 1951). Deviations
between usage hypothesis and real product usage were therefore first clustered into
generic use cases and linked to possible targets in the usage of the machinery.
From the analysis of the use cases, various innovation potentials could be derived,
such as the elimination of a function, the change of a solution principle, or the
expansion of the possible attribute value. In order to enable efficient processing in
the subsequent product development, a recommendation for action was elaborated
for each innovation potential.

With these four steps, the methodology addresses the challenges presented above
in the development of machines and plants. Through the targeted recording of
relevant product usage information, innovation potentials can be efficiently derived
and the speed and success in the development of innovations can be increased.
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23.4 Use Case II: Potentials of Knowledge Sharing with
Platform-Based Ecosystems in the Context of Machine
Tools

For the analysis of various manufacturing applications in machining, data can
be collected and refined from different sources along the digital process chain.
Manufacturing execution systems (MES) are widely used in industry to document
discrete-event information on production such as throughput times, set-up times,
or possible quality problems and their respective causes. However, to gain specific
insights into the behavior of the machine tool, its components, and the manufactur-
ing process itself, the acquisition of continuous and high-resolution data is required.
Modern CNC machine tools allow accessing data from machine internal sensors
in the control cycle. This involves recording high-frequency sensor data from the
machine controller such as axis positions, drive currents of the axis, spindle speeds
and spindle positions, as well as discrete-event messages as the active tool or NC
line (Brecher et al. 2018).

In addition to machine-internal data, external sensors such as force, acoustic
emission, or vibration sensors can be applied to the machine tool to monitor
machining operations. Especially the measurement of the occurring process forces
is of crucial importance due to the high sensitivity and rapid response to changes
in cutting states (Teti et al. 2010). In practice, it is not the data from machine-
internal or external sensors during the machining process itself that is of interest,
but the underlying knowledge that is worth sharing from an external perspective.
Therefore, raw data must be refined into characteristic values to share them
between different participants within a platform-based ecosystem. This form of data
exchange enables participants to map correlations based on this knowledge without
having to generate the underlying raw data themselves. Sharing this knowledge
in the form of recommendations in turn offers potential for optimizing machining
processes. In this context, combining raw data from the machining process with
domain-specific models enables the necessary data refinement by addressing known
issues in machining as quality defects, wear condition of tools or components and
creating a Digital Shadow of the respective object of observation (Brecher et al.
2021a).

Brecher et al. (2019) and Königs and Brecher (2018) describe an online material
removal simulation that generates a Digital Shadow of the workpiece based on
process parallel recorded machining data and available manufacturing metadata.
This digital workpiece can be used to assess the manufacturing quality and derive
further information about the engagement situation during machining. Based on
the resulting availability of information on the engagement situation and process
forces this information is mapped on the used tools to monitor the wear condition
during machining (Brecher et al. 2022; Xi et al. 2021). Monitoring the wear
condition facilitates maintenance measures by estimating the remaining service
life. In addition, findings on correlations between the usage of tools in machining
processes achieved workpiece quality and the resulting tool wear can be leveraged
for a more efficient and sustainable use of tools.
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Fig. 23.3 Integration of the machine tool context in the platform-based ecosystem process model

The described use case for collecting and refining data in context of machine
tools can be assigned to the “Strategy”-phase of the platform-based ecosystem
process model. Refining raw data from machining processes creates added value by
gaining knowledge with regard to parameters relevant to practice and thus enables
leveraging existing resources and capabilities in the machine tool environment.
After this form of value creation, the characteristic parameters can be used across
platforms and thus network effects from the “Design & Entry” phase can be
exploited. The integration of the machine tool context into the process model is
shown in Fig. 23.3 on the example of workpiece quality and tool wear.

The success and crisis resistance of digital business models is demonstrated
in particular by examples from the media and entertainment industry (Vonderau
2017; Winter 2017). Adapting these digital business model approaches on the
machine tool industry raises different challenges. Companies underline their high
customer orientation and focus on technology and product. Therefore, the central
value proposition is still the physical machine tool. In some cases, digital add-on
applications are offered as services for machine tools, but these are not integrated
into a service-oriented value chain and thus often cannot lead to additional financial
benefits. In conjunction with a high level of complexity in the provision of services
in machine tool manufacturing, this results in a further cause for the lack of digital
business models such as platform-based approaches (Copani 2014; Kamp et al.
2017).

To address the stated challenges, Brecher et al. (2021b) name two enablers for
successfully implementing a digital business model. Examples from industry show
that the basic technological enablers are in principle already in place. However, these
individual solutions must evolve to cross-company platforms through standards
and guidelines. Although companies face technological problems due to a lack
of competencies in the digital domain, this is not the main obstacle for the
implementation of these business models. Prevailing mindsets at the management
level of manufacturers and users within the machine tool industry are of greater
importance, particularly in the direction of the central value proposition and thus
human enablers. In this regard, expert interviews conducted at the Laboratory for
Machine Tools and Production Engineering (WZL) of RWTH Aachen University
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show that central questions regarding data security, cost transparency and calcu-
lability, liability and risk assessment, and dependence on third-party companies
must be answered before using platform-based business models on the machine tool
industry.

Generally, the pure adaption of digital business models from other industry on
the machine tool context is not possible, as the stated challenges are not solvable
this way. The platform-based ecosystem process model creates a methodological
framework to develop possible solutions to face these challenges.

23.5 Use Case III: Strategic Modeling of Platform Ecosystems

Industry 4.0 as the fourth industrial revolution is based on the digitization of manu-
facturing processes. Collecting data throughout the processes not only create ample
opportunities to improve efficiency and quality, but also enables the possibility to
advance business models, e.g., through selling value-added services based on data
generated at customers, or by creating new subscription models for machines based
on this data. For instance, insights gained through using a machine tool at a company
can be played back to the manufacturer to improve future machine generations.
With these new business models, data-driven platforms emerge that trade machine
data as good. However, these platforms pose major challenges for existing market
participants. Not only do they have to update their machine parks to incorporate new
smart functionality and deal with large amounts of data on the first place, but they
do have to take strategic decisions on the fate of their organization’s business model.
Existential questions are, for instance, whether they should participate in the nascent
data market, or whether they should create a data platform themselves, or join an
existing data platform, possibly from a competitor. Data availability in platforms
also opens opportunities for new members as complementors such as startups
specializing in artificial intelligence (AI) products, as there is a low entry-barrier
without investments in industrial hardware. Examples are service-oriented business
models with multi-angular relationships between companies (Pfeiffer et al. 2017).

Yet, data-related ecosystems are highly complex regarding their operational and
technical level of data management, service exchange, and IT security mechanisms.
To shed light on these opportunities, we observed and analyzed the positioning of
market players in the agricultural industry. The farming sector is dominated by a
few large manufacturers with two market players in Europe and North America,
respectively. In the 2010s, the market leader began with setting up its platform-based
ecosystem including players in its supply chain as well as customers. Based on an
extensive study incorporating the analysis of the strategy of an agricultural machine
manufacturer (Van Dyck et al. 2020), we identified several control points that
influenced their data strategy. We combine the findings of the study with strategic
modeling with the conceptual modeling language iStar (i*) and the setting of control
points (Koren et al. 2021). In the following, we present the resulting model. We
then show how the strategic model can help organizations in finding their strategy
in dealing with new data-driven ecosystems, by actively setting control points.
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The large-scale study follows the suggestions for rigorous case study research by
Yin (2018). To derive the model, we identified several stakeholders participating in
the smart agricultural data platform and their goals. First, the Manufacturer delivers
products and services to the farm. The Dealer provides, sells, and leases farm
machines to a Contractor, that in turn cultivates the fields. The Farmer commissions
the Contractor to efficiently raise living organisms for food or raw materials. A Farm
Management Platform as new actor in the agricultural value chain integrates data
from the farm. It also provides the entry point for complementors to offer new,
innovative services to other stakeholders.

Figure 23.4 shows the conceptual model of the stakeholder relationships in the
described agricultural data ecosystem following the iStar 2.0 modeling notation. It
presents a view on the dependencies between the stakeholders. For instance, from
center right to center left, a Farmer depends on a Manufacturer for machines. An
example for a non-physical asset displayed in the model is machine data, which the
Farm Management Platform depends on from the Contractor.

For organizations in a platform-based ecosystem, it is of high strategic impor-
tance to anticipate their future decisions at an early stage. Strategically, this is best
done top-down, as actively placed management decisions. We therefore combine
our strategic modeling with control points. They can be set to grant access or impose
certain behavior (Eaton et al. 2015). Organizations can, for instance, set up control
points, by adhering to certain technical standards. Platform operators, on the other
hand, could introduce multi-homing costs to promote their own platform. A detailed
discussion of the proposed control points is out of scope, the reader is kindly referred
to an earlier publication (Van Dyck et al. 2020).

Fig. 23.4 Strategic dependency view of stakeholder relationships
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The technological basis for autonomous data exchange between companies are
interfaces. The platform thereby embraces standards that manage the interdependen-
cies in the ecosystem (Thomas et al. 2014). While, for instance, the International
Data Spaces Association introduced an architecture for data sharing between its
members, it does not impose a specific format for the data objects. In the Internet
of Production, we are exploring the notion of Digital Shadows as conceptual
abstractions (Becker et al. 2021).

Platform ecosystems in industrial environments are challenging in terms of
technology layers (Sisinni et al. 2018) and relationships (Schermuly et al. 2019).
Potentials and risks need to be recognized in time, so that companies can take
strategic decisions in advance. Our research portrayed above introduces two tools
that can deal with the complexities: modeling using the i* language and control
points. They are decision-making instruments to plan the next step within platform
ecosystems. Regarding our process model for platform-based ecosystems, they are
therefore tools located in the strategic core. Decisions on this strategic level have
radiating effects toward the other phases. For instance, providing data access to
industrial machines result in a strategic openness, with APIs as possibly boundary
resources that platform players can actively set to adjust their business models
to create and capture value jointly. The challenge is to identify and assess these
opportunities early on. As a next step, we plan on providing an initial repository
of available graphical representations and code structures to facilitate automated
decision support for stakeholders. These design patterns could allow organizations
to discover missing links and potential obvious options.

23.6 Use Case IV: Laser Material ProcessingMarket Pull for
Digital Platforms

Laser material processing is particularly predestined for close coupling to digital
value chains. This is due to the unique properties of laser light (Poprawe et al. 2012).
Like no other tool, laser light can be controlled extremely quickly and extremely
precisely in space and time based on digital data (Hinke 2017). With the various
laser-based subtractive and additive manufacturing processes (e.g., laser beam
cutting, laser beam surface structuring, or laser-based additive manufacturing), it
is thus possible to realize highly individualized components in very small quantities
directly from digital data (Hinke et al. 2015; Gu et al. 2021; Poprawe et al. 2017).

Figure 23.5 shows the concept of Digital Photonic Production. The entire laser-
based manufacturing process is directly controlled by digital data. Digital data or
the digital shadow of the component to be produced (left) controls the entire laser
processing system. This allows raw material (lower right) to be ablated, applied, or
locally modified in the smallest 2D or 3D surface or volume units (lower center).
Essentially, (i) laser beam source (power, time distribution), (ii) optical system
(focal length, spot size), and (iii) beam guiding system (spatial distribution x, y, z)
are controlled by digital data (Poprawe et al. 2018).
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Fig. 23.5 The concept of Digital Photonic Production

At the same time, laser-based manufacturing processes can be adjusted and
thus corrected extremely quickly and precisely during the manufacturing process.
Typically, with optical sensors, large amounts of data can be recorded in high spatial
and temporal resolution during laser manufacturing processes. Based on process
understanding represented in Digital Shadows (reduced real-time process models)
or on trained AI methods, it is possible to control the entire laser processing system
and therewith the laser-based manufacturing process in real time. The blue arrows
(iv–vii) in Fig. 23.5 represent these closed control loops (Knaak et al. 2018).

In many cases, manufacturing defects can be controlled before they lead to
defective components. This is because the time scale with which a laser beam can be
controlled is typically an order of magnitude smaller than the time scale with which
the molten material typically moves. An incorrect energy- or heat-input during
laser-based additive material processing can thus be corrected, for example, before
the liquid melt solidifies in its final geometry (Knaak et al. 2021). However, the
enormous technological potential of Digital Photonic Production can only be fully
exploited if corresponding digital business models and platform-based ecosystem
are developed and implemented. The photonics industry, which is characterized by
many small- and medium-sized companies, is still struggling with the development
of corresponding digital business models and platform-based ecosystem though
(Poprawe et al. 2018).

Against this background, a survey was conducted in 2020 with 34 companies
from the photonics sector. In addition, two workshops were held with senior
representatives from these companies in 2020 and 2021. The various obstacles to
the development and implementation of digital business models and platform-based
ecosystems were discussed and analyzed in six small groups in each case. Based
upon this, recommendations for the design of such digital business models and
platform-based ecosystems were developed.

The study shows that a large majority of company representatives see a medium
to high potential of artificial intelligence (80%) and digital services (74%). At the
same time, a vast majority of companies complain of having no or too little in-house
expertise and appropriately trained personnel in these areas. Especially in the field of
AI, the internal acceptance of this technology is not yet very high. The study shows
a very indifferent picture regarding the internal acceptance, particularly in the field
of AI: the company’s internal acceptance of AI is estimated to be low and rather low
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Table 23.1 Results of a survey on the topics artificial intelligence (AI), digital services, and the
according platforms

Question
Low and rather
low (%)

Neither low
nor high (%)

Rather high and
very high (%)

How do you assess the potential of
AI for your company?

20 20 60

What is your level of interest in
participating in a collaborative AI
platform?

20 40 40

What is your level of interest in AI
education and training formats?

15 20 65

How do you assess the acceptance of
AI within your company?

35 30 35

How do you assess the potential of
digital services for your company?

26 5 69

What is your level of interest in
participating in a collaborative digital
services platform

26 10 64

What is your level of interest in
education and training formats
regarding digital services?

21 37 42

How do you asses the acceptance of
digital services within your
company?

26 22 52

(35%) as well as high and rather high (35%) with the same percentage. However, the
internal acceptance of digital services is significantly better and is rated as medium
to high (74%) by a majority of the surveyed companies (Table 23.1). Accordingly,
the overwhelming majority has a medium to high level of interest in education and
training formats in the field of AI (85%) and digital services (79%).

In the following expert workshops, two main challenges were identified, and cor-
responding solutions were proposed. The companies have broad domain know-how
(laser technology), but according to their own statements hardly any AI-know-how
or any know-how about platform-based ecosystems. Secondly, besides interest and
expectations of the companies in the topics of digitization and artificial intelligence
are great, AI and platform-based ecosystems are seen as a great opportunity, but also
as a potential threat. On this basis, the following recommendations for the design
of such digital business models and platform-based ecosystems were developed: (1)
Analysis of examples from other industries on the use of AI and platform-based
ecosystems and analysis of transferability to laser technology. (2) Development of
transferable design and behavioral rules for dealing with platform-based ecosys-
tems. (3) Development of transferable design and behavioral rules for dealing with
multiple platforms simultaneously in the role of non-dominant designer. In a next
step, we plan a detailed elaboration of our derived recommendations to facilitate
the design and development of such digital business models and platform-based
ecosystems in laser material processing.
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23.7 Conclusion

Our process model provides an overview of the relevant literature regarding impor-
tant design factors of platform-based ecosystem. Building up on the framework,
academia can identify relevant areas for future research. Furthermore, a structured
and process-oriented approach is given due to the division into phases, specific
design elements, and key questions for different perspectives. The holistic process
model helps managers to tackle all relevant aspects before entering in a platform-
based ecosystem as platform orchestrator or complementor. Practical examples in
the context of I4.0 are developed for different design elements and/or phases to
make the model easy to understand and apply. The methodology from Use Case
I can be assigned to the Strategy phase and specifically to the design elements
“Value creation & capture” and “Resources & Capabilities,” since it deals with
general added value that can be derived from usage data. At the same time, it
generally shows how field data can be used in product development, but also
which capabilities are needed. Research of Use Case II can be integrated into the
“Strategy”- and “Design & Entry”-phases. In addition to showing which data can
be shared from an external perspective, Use Case II demonstrates whether digital
business model approaches from other industries can be transferred to the machine
tool industry under the condition of data availability and expected challenges.
Strategic modeling of platform-based ecosystems is shown in Use Case III and
can therefore be understood as the connection of the central “Strategy” phase,
with effects that radiate toward the other phases. Use Case IV can be assigned to
the “Strategy”- and “Design & Entry”-phases. The research identifies the future
potential and possible obstacles regarding platform-based ecosystems in the field of
laser technology.
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