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Preface

This book is aimed at taking the reader step by step through the beautiful concepts of
mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics
and a deep understanding of the concepts is essential for all branches of physics. Many proofs
and examples are included to help the reader grasp the fundamentals fully, paving the way to
deal with more advanced topics. This book is useful for undergraduate students majoring in
physics or other science and engineering disciplines. It can also be used as a reference for more
advanced levels.
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Alzamil for their encouragement and support. I am grateful to all of those who have con-
tributed to this book and made its completion possible. In particular, I would like to thank
Khalid Alzamil, Dr. Laila Babsail, and Abbie Clifford for their efforts in revising the book. My
sincere thanks are also extended to Ardel Flavier and Rodolfo Rodriguez for their assistance in
creating the figures and illustrations. Finally to my daughter Layla, words can’t express my
appreciation to you.

Jeddah, Saudi Arabia Dr. Salma Alrasheed
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1Units andVectors

1.1 Introduction

Physics is an exciting adventure that is concerned with unrav-
eling the secrets of nature based on observations andmeasure-
ments and also on intuition and imagination. Its beauty lies
in having few fundamental principles being able to reach out
to incorporate many phenomena from the atomic to the cos-
mic scale. It is a science that depends heavily on mathematics
to prove and express theories and laws and is considered to
be the most fundamental of physical sciences. Astronomy,
geology, and chemistry all involve applications of physics’
principles and concepts. Physics doesn’t only provide theo-
ries, but it also provides techniques that are used in every
area of life. Modern physical techniques were the major con-
tributors to the wealth of mankind’s knowledge in the past
century.

A simple law in physics can be used to explain awide range
of complex phenomena that may appear to be not related.
When studying a complex physical system, a simplifiedmodel
of the system is usually used, where the minor effects are
neglected and the main features of the system are concen-
trated upon. For example, when dealing with an object falling
near the earth’s surface, air resistance can be neglected. In
addition, the earth is usually assumed to be spherical and
homogeneous. However, in reality, the earth is an ellipsoid
and is not homogeneous. The difference between the cal-
culations of these different models can be assumed to be
insignificant.

Physics can be divided into two branches namely: classical
physics andmodern physics. This book focuses onmechanics,
which is a branch of classical physics. Other branches of clas-
sical physics are: light and optics, sound, electromagnetism,
and thermodynamics. Mechanics is the science of motion of
objects and is the core of classical physics. On the other hand,
modern branches of physics include theories that have been
developed during the past twentieth century. Two main the-
ories are the theory of relativity and the theory of quantum

mechanics. Modern physics explains many physical phenom-
ena that cannot be explained by classical physics.

1.2 The SI Units

A physical quantity is a quantitative description of a physical
phenomenon. For a precise description, one has tomeasure the
physical quantity and represent this measurement by a num-
ber. Such a measurement is made by comparing the quantity
with a standard; this standard is called a unit. For example,
mass is a physical quantity that refers to the quantity of mat-
ter contained in an object. The unit kilogram is one of the
units used to measure mass and is defined as the mass of a
specific platinum–iridium alloy cylinder, kept at the Interna-
tional Bureau of Weights and Measures. Therefore, when we
say that a block’s mass is 300kg, we mean that it is 300 times
the mass of the cylindrical platinum–iridium alloy. All units
chosen should obey certain properties such as being accurate,
accessible, and should remain stable under varied environ-
mental conditions or time.

In 1960, the International System of units (SI) (formally
known as the Metric System MKS) was established. The
abbreviation is derived from the French phrase “System Inter-
national”. As shown in Table1.1, the SI system consists
of seven base fundamental units, each representing a quan-
tity assumed to be naturally independent. The system also
includes two supplementary units, the radian which is a unit
of the plane angle, and the steradianwhich is a unit of the solid
angle. All other quantities in physics are derived from these
base quantities. For example, mechanical quantities such as
force, velocity, volume, and energy can be derived from the
fundamental quantities length, mass, and time. Furthermore,
the powers of ten are used to represent the larger and smaller
values for a certain physical quantity as listed in Table1.2.
The most recent definitions of the units of length, mass, and
time in the SI system are as follows:
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Table 1.1 The SI system consists of seven base fundamental units, each
representing a quantity assumed to be naturally independent

Quantity Unit name Unit symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Electric Current Ampere A

Luminous Intensity Candela cd

Amount of Substance mole mol

Table 1.2 Prefixes for Powers of Ten

Factor Prefix Symbol

10−24 yocto y

10−21 zepto z

10−18 atto a

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro μ

10−3 milli m

10−2 centi c

10−1 deci d

101 deka da

102 hecto h

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P

1018 exa E

1021 zetta Z

• TheMeter: The distance that light travels in vacuumduring
a time of 1/299792458s.

• The Kilogram: The mass of a specific platinum–iridium
alloy cylinder, which is kept at the International Bureau of
Weights and Measures.

• The Second: 9192631770 periods of the radiation from
cesium-133 atoms.

1.3 Conversion Factors

There are twoothermajor systemsof units besides theSI units.
The (CGS) system of units which uses the centimeter, gram
and second as its base units, and the (FPS) system of units
which uses the foot, pound, and second as its base units.The

conversion factors between the SI units and other systems of
units of length, mass, and time are

• 1 m = 39.37 in = 3.281 ft = 6.214 × 10−4 mi
• 1 kg = 103 g = 0.0685 slug = 6.02 × 1026 u
• 1 s = 1.667 × 10−2 min = 2.778 × 10−4 h = 3.169 ×

10−8 yr

Example 1.1 If a tree is measured to be 10m long, what is its
length in inches and in feet?

Solution 1.1

10m = (10m)

(
39.37 in

1m

)
= 393.7 in

10m = (10m)

(
3.281 ft

1m

)
= 32.81 ft

Example 1.2 If a volume of a room is 32 m3, what is the
volume in cubic inches?

Solution 1.2

32 m3 = (32m3)

(
39.37 in

1m

)3

= 1.95 × 106 in3

1.4 Dimension Analysis

The symbols used to specify the dimensions of length, mass,
and time are L,MandT, respectively. Dimension analysis is a
method used to check the validity of an equation and to derive
correct expressions. Only the same dimensions can be added
or subtracted, i.e., they obey the rules of algebra. To check
the validity of an equation, the terms on both sides must have
the same dimension. The dimension of a physical quantity is
denoted using brackets [ ]. For example, the dimension of the
volume is [V ] = L3, and that of acceleration is [a] = L/T3.

Example 1.3 Show that the expression v2 = 2ax is dimen-
sionally consistent, where v represents the speed, x repre-
sent the displacement, and a represents the acceleration of
the object.

Solution 1.3
[v2] = L2/T2

[xa] = (L/T2)(L) = L2/T2

Each term in the equation has the same dimension and there-
fore it is dimensionally correct.
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Fig. 1.1 A vector is represented geometrically by an arrow PQ 129
drawn to scale

1.5 Vectors

When exploring physical quantities in nature, it is found that
some quantities can be completely described by giving a num-
ber alongwith its unit, such as themass of an object or the time
between two events. These quantities are called scalar quanti-
ties. It is also found that other quantities are fully described by
giving a number along with its unit in addition to a specified
direction, such as the force on an object. These quantities are
called vector quantities.

Scalar quantities have magnitude but don’t have a direc-
tion and obey the rules of ordinary arithmetic. Some examples
are mass, volume, temperature, energy, pressure, and time
intervals by a letter such as m, t , E. . ., etc. Vector quantities
have both magnitude and direction and obey the rules of vec-
tor algebra. Examples are displacement, force, velocity, and
acceleration. Analytically, a vector is specified by a bold face
letter such asA. This notation (as used in this book) is usually
used in printed material. In handwriting, the designation

−→
A

is used. The magnitude of A is written as |A| or A in print or
as |−→A | in handwriting.

A vector is represented geometrically by an arrow PQ
drawn to scale as shown in Fig. 1.1. The length and direc-
tion of the arrow represent the magnitude and direction of
the vector, respectively, and is independent of the choice of
coordinate system. The point P is called the initial point (tail
of A) and Q is called the terminal point (head of A).

1.6 Vector Algebra

In this section, we will discuss how mathematical operations
are applied to vectors.

1.6.1 Equality of TwoVectors

The two vectors A and B are said to be equal (A = B) only
if they have the samemagnitude and direction, whether or not
their initial points are the same as shown in
Fig. 1.2.

Fig. 1.2 The two vectors A and
B are said to be equal (A = B)
only if they have the same
magnitude and direction

Fig.1.3 To add two vectorsA and B using the geometric method, place
the head of A at the tail of B and draw a vector from the tail of A to the
head of B

Fig. 1.4 Geometric method for summing more than two vectors

1.6.2 Addition

There are two ways to add vectors, geometrically and alge-
braically. Here, we will discuss the geometric method which
is useful for solving problems without using a coordinate sys-
tem. The algebraic method will be discussed later. To add two
vectors A and B using the geometric method, place the head
of A at the tail of B and draw a vector from the tail of A to
the head of B as shown in Fig. 1.3. This method is known as
the triangle method. An extension to sum up more than two
vectors is shown in Fig. 1.4. An alternative procedure of vec-
tor addition using the geometric method is shown in Fig. 1.5.
This is known as the parallelogram method, where C is the
diagonal of a parallelogram with sides A and B. To find C
analytically, Fig. 1.6 shows that

(DG)2 = (DF)2 + (FG)2, (1.1)

and that

DF = DE + EF = A + B cos θ,

Thus, Eq.1.1 becomes

C2 = (A+ B cos θ)2 + (B sin θ)2 = A2 + B2 + 2AB cos θ,
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Fig. 1.5 The parallelogram method of adding two vectors

Fig. 1.6 Finding the magnitude and the direction of C

Fig. 1.7 The total displacement of the jogger is the vector R

or

C =
√
A2 + B2 + 2AB cos θ,

The direction of C is

tan β = GF

DF
= GF

DE + EF
= B sin θ

A + B cos θ
,

Note that only when A and B are parallel, the magnitude
of the resultant vectorC is equal to A+B (unlike the addition
of scalar quantities, the magnitude of the resultant vector C
is not necessarily equal to A + B).

Fig.1.8 The negative vector ofA
is a vector of the same magnitude
of A but in the opposite direction

Example 1.4 A jogger runs from her home a distance of
0.5km due south and then 1km to the west. Find the mag-
nitude and direction of her resultant displacement.

Solution 1.4 From Fig. 1.7, we can see that the magnitude of
the resultant displacement is given by

R =
√

(0.5 km)2 + (1 km)2 = 1.1 m

The direction of R is

θ = tan−1 (0.5 m)

(1 m)
= 26.6o

south of west.

1.6.3 Negative of aVector

The negative vector of A is a vector of the same magnitude
of A but in the opposite direction as shown in Fig. 1.8, and it
is denoted by −A.

1.6.4 The ZeroVector

The zero vector is a vector of zero magnitude and has no
defined direction. It may result from A = B−B = 0 or from
A = cB = 0 if c = 0.

1.6.5 Subtraction of Vectors

The vector A−B is defined as the vector that when added to
B gives usA. Equivalently,A−B can be defined as the vector
A added to vector −B (A + (−B)) as shown in Fig. 1.9.

Fig. 1.9 Subtraction of two
vectors
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1.6.6 Multiplication of aVector by a Scalar

The product of a vector A by a scalar q is a vector qA or
Aq. Its magnitude is q A and its direction is the same as A if
q is positive and opposite to A if q is negative, as shown in
Fig. 1.10.

1.6.7 Some Properties

• A+ B = B+A (Commutative law of addition). This can
be seen in Fig. 1.11.

• (A + B) + C = A + (B + C), as seen from Fig. 1.12
(Associative law of addition).

• A + 0 = A
• A + (−A) = 0

Fig. 1.10 The product of a vector by a scalar

Fig. 1.11 Commutative law of addition

Fig. 1.12 Associative law of
addition

• p(qA) = (pq)A = q(pA) (where p and q are scalars)
(Associative law for multiplication).

• (p + q)A = pA + qA (Distributive law).
• p(A + B) = pA + pB (Distributive law).
• 1A = A, 0A = 0 (Here, the zero vector has the same

direction as A, i.e., it can have any direction), q0 = 0

1.6.8 The Unit Vector

The unit vector is a vector of magnitude equal to 1, and with
the same direction of A. For every A �= 0, a = A/|A| is a
unit vector.

1.6.9 The Scalar (Dot) Product

The scalar product is a scalar quantity defined as A · B =
AB cos θ , where θ is the smaller angle between A and B
(0 ≤ θ ≤ π) (see Fig. 1.13).

1.6.9.1 Some Properties of the Scalar Product
• A · B = B · A (Commutative law of scalar product).
• A · (B + C) = A · B + A · C (Distributive law).
• m(A · B) = (mA) · B = A · (mB) = (A · B)m, where m

is a scalar.

1.6.10 TheVector (Cross) Product

The vector product is a vector quantity defined as C =
A × B (read A cross B) with magnitude equal to |A × B| =
AB sin θ, (0 ≤ θ ≤ π) . The direction of C is found from the
right-hand rule or of advance of a right-handed screw rotated
from A to B as shown in Fig. 1.14. C is perpendicular to the
plane formed by A and B.

1.6.10.1 Some Properties
• A · A = A2, 0 · A = 0
• A × B = −B × A
• A × (B + C) = A × B + A × C (Distributive law).
• (A + B) × C = A × C + B × C

Fig. 1.13 The scalar product of two vectors
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Fig. 1.14 The vector product of two vectors

Fig.1.15 The magnitude of the vector product |A×B| = is the area of
a parallelogram with sides A and B

• q(A × B) = (qA) × B = A × (qB) = (A × B)q, where
q is a scalar.

• |A × B| = The area of a parallelogram that has sides A
and B as shown in Fig. 1.15.

1.7 Coordinate Systems

To specify the location of a point in space, a coordinate sys-
temmust be used. A coordinate system consists of a reference
point called the originO and a set of labeled axes. The positive
direction of an axis is in the direction of increasing numbers,
whereas the negative direction is opposite. Figures1.16 and
1.17 show the rectangular (or Cartesian) coordinate system
and the polar coordinates of a point, respectively The rectan-
gular coordinates x and y are related to the polar coordinates
r and θ by the following relations:

x = r cos θ

y = r sin θ

tan θ = y/x

r =
√
x2 + y2

In three dimensions, the cartesian coordinate system is shown
in Fig. 1.18. Other used coordinate systems in three dimen-
sions are the spherical and cylindrical coordinates (Figs. 1.19
and 1.20).

Fig. 1.16 The rectangular (cartesian) coordinate system

Fig. 1.17 The polar coordinate system

Fig. 1.18 The cartesian coordinate system in three dimensions
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Fig. 1.19 The spherical coordinate system

Fig. 1.20 The cylindrical coordinate system

1.8 Vectors in Terms of Components

In two dimensions, the vector A can be expressed as the sum
of two other vectors A = Ax +Ay , where Ax = A cos θ and
Ay = A sin θ as shown in Fig. 1.21.

Ax and Ay are called the rectangular components, or sim-
ply components ofA in the x and y directions respectively The
magnitude and direction of A are related to its components
through the expressions:

A =
√
A2
x + A2

y

Fig.1.21 In twodimensions, the vectorA can be expressed as the sumof
two other vectors A = Ax +Ay , where Ax = A cos θ and Ay = A sin θ

Fig. 1.22 In three dimensions the magnitude of A is

A =
√
A2
x + A2

y + A2
z

tan θ = Ay/Ax

In three dimensions (see Fig. 1.22), the magnitude of A is
given by

A =
√
A2
x + A2

y + A2
z

with directions given by

cosα = Ax/A, cosβ = Ay/A, cos γ = Az/A

1.8.1 Rectangular Unit Vectors

The rectangular unit vectors i, j, and k are unit vectors defined
to be in the direction of the positive x-, y-, and z-axes,
respectively, of the rectangular coordinate system as shown
in Fig. 1.23. Note that labeling the axes in this way forms a
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Fig. 1.23 The rectangular unit
vectors i, j and k are unit vectors
defined to be in the direction of
the positive x, y, and z axes
respectively

right-handed system. This name derives from the fact that a
right- handed screw rotated through 90o from the x-axis into
the y-axis will advance in the positive z-direction. (Note that
throughout this book the right-handed coordinate system is
used). In terms of unit vectors, vector A can be written as

A = Ax i + Ayj + Azk

1.8.2 Component Method

Suppose we have A = Ax i + Ayj and B = Bx i + Byj

1.8.2.1 Addition
The resultant vector C is given by

C = A + B = (Ax + Bx )i + (Ay + By)j = Cx i + Cyj

Cx = Ax + Bx

Cy = Ay + By

Thus, the magnitude of C is

C =
√
C2
x + C2

y

with a direction

tan θ = Cy

Cx
= Ay + By

Ax + Bx

in three dimensions

C = (Ax+Bx )i+(Ay+By)j = (Az+Bz)k = Cx i+Cyj+Czk

the magnitude of C is

C =
√
C2
x + C2

y + C2
z

And the directions are

Fig. 1.24 The displacements are drawn to scale with the head of A
placed at the tail of B and the head of B placed at the tail of C.The
resultant vectorR is the vector that extends from the tail ofA to the head
of C

cosα = Cx/C, cosβ = Cy/C, cos γ = Cz/C

This component method is easy to use in adding any number
of vectors.

Example 1.5 A truck travels northwest a distance of 30km,
and then 50km at 30o north of east, and finally travels a dis-
tance of 20km due south. Determine both graphically and
analytically the magnitude and direction of the resultant dis-
placement of the truck from its starting point.

Solution 1.5 Graphically, in Fig. 1.24 the displacements are
drawn to scale with the head of A placed at the tail of B and
the head of B placed at the tail of C.The resultant vector R
is the vector that extends from the tail of A to the head of C.
By using graph paper and a protractor, the magnitude of R
is measured to have the value of 34.8km and a direction of
49.8o from the positive x axis. Analytically, from Fig. 1.24,
we have

Ax = A cos 135o = (30 km)(−0.707) = −21.2 km

Ay = A sin 135o = (30 km)(0.707) = 21.2 km

Bx = B cos 30o = (50 km)(0.866) = 43.3 km

By = B sin 30o = (50 km)(0.5) = 25 km

Cx = C cos 270o = (20 km)(0) = 0

Cy = C sin 270o = (20 km)(−1) = −20 km

R = A+B+C = (Ax +Bx +Cx )i+(Ay+By+Cy )j+(Az+Bz+Cz )k = 22.1i+26.2j

Thus, the magnitude of R is given by
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R =
√
R2
x + R2

y =
√

(221 km)2 + (262 km )2 = 34.3 km

and its direction is

θ = tan−1
(
26.2 km

22.1 km

)
= 49.9o

north of east.

1.8.2.2 Subtraction
C = A − B = (Ax − Bx )i + (Ay − By)j + (Az − Bz)k

Themagnitude and direction ofC are as in the case of addition
except that the plus sign is replaced by the minus sign.

1.8.2.3 Scalar Product
A · B = (Ax i + Ayj + Azk) · (Bx i + Byj + Bzk)

Using the definition of scalar product and by applying the
distributive law we get nine terms: since i · i = j · j = k · k, ·
and i · j = j · k = j · k = 0, we get

A · B = Ax Bx + Ay By + Az Bz

The dot product of any vector (for example A) by itself
is

A · A = A2 = A2
x + A2

y + A2
z

1.8.2.4 The Angle BetweenTwoVectors
A · B = AB cos θ = Ax Bx + Ay By + Az Bz

cos θ = Ax Bx + Ay By + Az Bz

AB

Example 1.6 Two vectors A and B are given by A = i +
5j − 7k and B = 6i − 2j + 3k. Find the angle between
them.

Solution 1.6

A · B = AB cosφ = Ax Bx + Ay By + Az Bz

A =
√
A2
x + A2

y + A2
z = √

1 + 25 + 49 = 8.7

B =
√
B2
x + B2

y + B2
z = √

36 + 4 + 9 = 7

cosφ = Ax Bx + Ay By + Az Bz

AB
= 6 − 10 − 21

(8.7)(7)
= −0.4

φ = 113.6o

1.8.2.5 Perpendicular and Parallel Vectors
Nonzero vectors A and B are perpendicular if A · B = 0 or
Ax Bx + Ay By+ Az Bz = 0 and they are parallel ifA×B = 0.
For any two parallel vectorsA andB, we haveA = qB, where
they have the same direction if q > 0, and are in opposite
direction if q < 0. Also we can write

A
B

= q

or
Ax

Bx
= Ay

By
= Az

Bz

1.8.2.6 Vector Product
From the vector product definition, we can see that

i × i = j × j = k × k = 0

i × j = k, j × k = i, k × i = j

j × i = −k, k × j = −i, i × k = −j

If we write the unit vectors around a circle as shown in
Fig. 1.25, then reading counterclockwise gives the positive
products and reading clockwise gives the negative products.
Note that these results are for a right-handed coordinate sys-
tem. We have

A × B = (Ax i + Ayj + Azk) × (Bx i + Byj + Bzk)

using the distributive law and the above relations of unit vec-
tors we get

A×B = (Ay Bz − Az By)i+ (Az Bx − Ax Bz)j+ (Ax By − Ay Bx )k

since a determinant of order 2 is defined as

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1

Then, the above expression can be written as

Fig. 1.25 If we write the unit
vectors around a circle, then
reading counter clockwise gives
the positive products and reading
clockwise gives the negative
products
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A × B =
∣∣∣∣ Ay Az

By Bz

∣∣∣∣ i −
∣∣∣∣ Ax Az

Bx Bz

∣∣∣∣ j +
∣∣∣∣ Ax Ay

Bx By

∣∣∣∣k

A determinant of order 3 is

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣a2 a3
b2 b3

∣∣∣∣ c1 −
∣∣∣∣a1 a3
b1 b3

∣∣∣∣ c2 +
∣∣∣∣a1 a2
b1 b2

∣∣∣∣ c3

Hence, the cross product can be expressed as

A × B =
∣∣∣∣∣∣
i j k
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣ = (Ay Bz − Az By )i + (Az Bx − Ax Bz )j + (Ax By − Ay Bx )k

Note that this is not a determinant since the elements in
the first row are vectors and not scalars, but it is a convenient
way to represent the cross product.

Example 1.7 Two vectorsA and B are given byA = −i+3j
and B = 2i + j. Find: (a) the sum of A and B, ·(b) − B and
3A, ·(c)A · B and A × B.

Solution 1.7 (a)

R = A+B = (Ax+Bx )i+(Ay+By)j = (−1+2)i+(3+1)j = i+4j

Rx = 1

Ry = 4

(b)
−B = −2i − j

3A = −3i + 9j

(c)
A ·B = (−i+3j)(2i+ j) = −i ·2i− i · j+3j ·2i+3j · j =

−2 + 3 = 1

A×B = (−i+3j)× (2i+ j) = −i× j+3j×2i = −k−6k = −7k

Example 1.8 Find a vector ofmagnitude 1 that is perpendicu-
lar to each of the vectorsA = 5i+j−3k andB = 3i+7j−2k.

Solution 1.8 By the definition of the unit vector, we have

c = A × B
|A × B|

where c is a unit vector perpendicular to the plane formed by
A and B. We have

A × B =
∣∣∣∣∣∣
i j k
5 1 −3
3 7 −2

∣∣∣∣∣∣ = 19i + j + 32k

|A × B| =
√

(19)2 + (1)2 + (32)2 = 37.23

C = 19i + j + 32k
37.23

= 0.5i + 0.027j + 0.86k

Example 1.9 Given that A = 2i − 3j − k,B = 3i − j
and C = j − 4k, find (a) A × B (b)(A × B) × C (c) A ·
(B × C).

Solution 1.9 (a)

A × B =
∣∣∣∣∣∣
i j k
2 −3 −1
3 −1 0

∣∣∣∣∣∣ = −i − 3j + 7k

(b)

A × (B × C) =
∣∣∣∣∣∣
i j k
−1 −3 7
0 1 −4

∣∣∣∣∣∣ = 5i − 4j − k

(c)

B × C =
∣∣∣∣∣∣
i j k
3 −1 0
0 1 −4

∣∣∣∣∣∣ = 4i + 12j + 3k

A·(B×C) = (2i−3j−k)·(4i+12j+3k) = 8−36−3 = −31

Example 1.10 Using vectors method, find the area of a tri-
angle if the coordinates of its three vertices are A(2, 1, 3) ,
B(2, 5, 7) , C(−1, 4, 2) .

Solution 1.10

AB = (2 − 2)i + (5 − 1)j + (7 − 3)k = 4j + 4k

AC = (−1 − 2)i + (4 − 1)j + (2 − 3)k = −3i + 3j − k

Area

= 1

2
|AB × AC| = 1

2
|(4j + 4k) × (−3i + 3j − k)| = 1

2
|4(−4i − 3j + 3k)|

= 2
√

(−4)2 + (−3)2 + (3)2 = 11.7
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Fig. 1.26 The triple scalar product is equal to the volume of a par-
allepiped with sides A,B, and C

1.8.2.7 Triple Product
Scalar Triple Product

The triple scalar product is a scalar quantity defined as A ·
(B × C) . This quantity can be represented by a determinant
that involves the components of the vectors,

A · (B × C) =
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
where A = Ax i + Ayj + Azk,B = Bx i + Byj + Bzk, and
C = Cx i+Cyj+Czk.Furthermore, the triple scalar product is
equal to the volume of a parallepipedwith sidesA,B, andC as
shown in Fig. 1.26. Because any edges can be used, the triple
scalar product can be written as A · (B×C) or as A · (C×B)

. These products are positive and negative for a right-handed
coordinate system respectively. Therefore, there are 6 equal
triple scalar products or 12 if you include the terms of the
form (B×C) ·A . A. Three of these six products are positive
and the rest are negative. By expanding the determinant, you
can prove that

A ·(B×C) = B ·(C×A) = C ·(A×B) = −A ·(C×B) =
−B · (A × C) = −C · (B × A)

Vector Triple Product

The triple vector product is a vector quantity defined as A ×
(B × C) . You can prove by expanding this equation that

A × (B × C) = (A · C)B − (A · B)C

Example 1.11 Given thatA = Ax i,B = Bx i+Bzk, andC =
Cyj, show that the identityA×(B×C) = (A ·C)B−(A ·B)C
is correct.

Solution 1.11

(B × C) =
∣∣∣∣∣∣
i j k
Bx 0 Bz

0 Cy 0

∣∣∣∣∣∣ = −BzCy i + BxCyk

A × (B × C) =
∣∣∣∣∣∣
i j k
Ax 0 0
−BzCy 0 BxCy

∣∣∣∣∣∣ = −Ax BxCyj

(A · C)B = 0

−(A · B)C = −(Ax Bx )C = −Ax BxCyj

Hence, the identity is valid.

1.9 Derivatives of Vectors

If A(t) is a vector function of t , where t is a scalar variable
such as

A(t) = Ax (t)i + Ay(t)j + Az(t)k

Then
dA(t)

dt
= d Ax (t)

dt
i + d Ay(t)

dt
j + d Az(t)

dt
k

1.9.1 Some Rules

If A(t) and B(t) are vector functions and φ(t) is a scalar
function then

d

dt
(φA) = φ

dA
dt

+ dφ

dt
A

d

dt
(A · B) = A · dB

dt
+ dA

dt
· B

d

dt
(A × B) = A × dB

dt
+ dA

dt
× B

Example 1.12 Twovectors r1 and r2 are given by r1 = 2t2i+
cos tj + 4k and r2 = sin t i + cos tk, find at t = 0 (a)

d2r1
dt2

and (b)
d(r1 · r2)

dt
.

Solution 1.12 (a)

dr1
dt

= 4t i − sin tj

d2r1
dt2

= 4i − cos tj

At t = 0
d2r1
dt2

= 4i − j
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(b)

d(r1 · r2)
dt

= d{(2t2i + cos tj + 4k)(sin t i + cos tk)}
dt

=

d(2t2 sin t + 4 cos t)

dt
= 4t sin t+2t2 cos t−4 sin t = 4(t−1) sin t+2t2 cos t

At t = 0

d(r1 · r2)
dt

= 0.

1.9.2 Gradient,Divergence, and Curl

If A = A(x, y, z) is a vector function of x, y, and z then
A(x, y, z) is called a vector field. Similarly, the scalar func-
tion φ(x, y, z) is called a scalar field.

1.9.2.1 Del
The vector differential operator del is defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

1.9.2.2 Gradient

∇φ =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
φ = i

∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z

The vector ∇φ is called the gradient of φ (written
gradφ).

1.9.2.3 Divergence

∇ · A =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (Ax i + Ayj + Azk)

= ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

∇ · A is called the divergence of A (written divA).

1.9.2.4 Curl

∇ × A =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× (Ax i + Ayj + Azk)

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ =
(

∂Az

∂y
− ∂Ay

∂z

)
i+

(
∂Ax

∂z
− ∂Az

∂x

)
j+

(
∂Ay

∂x
− ∂Ax

∂y

)
k

∇ × A is called the curl of A (written curlA).

1.9.2.5 Some Identities
• divcurlA = ∇ · (∇ × A) = 0.
• curlgradφ = ∇ × (∇φ) = 0

.

Example 1.13 A vector field A and a scalar field B are given
by A = 3xyi + (2y2 − x)j and B = 3x2y, Find at the point
(−1,1)(a) ∇ · A (b) ∇ × A (c) ∇B.

Solution 1.13 (a)

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
= 3y + 4y = 7y

at (−1, 1) , ∇ · A = 7.
(b)

∇ × A =
∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

3xy (2y2 − x) 0

∣∣∣∣∣∣ = (−3x − 1)k

at (−1, 1) , ∇ × A = 2k.

(c)

∇B = ∂B

∂x
i + ∂B

∂y
j + ∂B

∂z
k = 6xyi + 3x2j

at (−1, 1) , ∇B = −6i + 3j.

1.10 Integrals of Vectors

If A(t) = Ax (t)i + Ay(t)j + Az(t)k, where t is a scalar
variable, the indefinite integral is defined as

∫
A(t)dt = i

∫
Ax (t)dt + j

∫
Ay(t)dt + k

∫
A(t)dt

If A(t) = dB(t)/dt , then

∫
A(t)dt =

∫
d

dt
{B(t)}dt = B(t) + C

where C is an arbitrary constant vector. The definite integral
between the limits t = a and t = b is defined as

∫ b

a
A(t)dt =

∫ b

a

d

dt
{B(t)}dt = B(t)+C|ba = B(b)−B(a)

1.10.1 Line Integrals

The line integral refers to an integral along a line or a curve.
This curve may be open or closed. The line integral may
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Fig. 1.27 The line integral

appear in three different forms shown by
∫
c
φdr,

∫
c
A. dr,

and
∫
c
A × dr. The second is the most common one and it

will be used throughout this book. Suppose the position vec-
tor of any point (x, y, z) on the curve C (see Fig. 1.27) that
extends from P(x1, y1, z1) at t1 to Q(x2, y2, z2) at t2 is
given by

r(t) = x(t)i + y(t)j + z(t)k

where t is a scalar variable, and suppose thatA = A(x, y, z) =
Ax i + Ayj+ Azk is a vector field, then the line integral of A
is given by

∫ Q

P
A ·dr =

∫
C
A ·dr =

∫
C
(Axdx + Aydy+ Adz) (1.2)

Note that A · r is the tangential component of A along C. If C
is a simple closed curve (does not intersect with itself) then
the line integral is written as

∮
C
A · dr =

∮
C
(Axdx + Aydy + Adz)

1.10.2 Independence of Path

The line integral in general depends on the path, but some-
times it does not. Instead, it depends only on the coordinates
of the end points of the curve (path) but not on the curve itself.
The line integral in Eq.1.2 is independent of the path, joining
the points P and Q if and only if A = ∇φ, or equivalently
∇ × A = 0. The value of Eq. (1.2) is then given by

∫ Q

P
A·dr =

∫ Q

P
dφ = φ(P)−φ(Q) = φ(x2, y2, z2)−φ(x1, y1, z1)

Note that φ(x, y, z) has continuous partial derivatives. Fur-
thermore, if the line integral of A is independent of the path
then the line integral of A about any closed path is equal to
zero: ∮

C
A · dr = 0

Example 1.14 A force field is given by F = (4xy2 + z2)i +
(4yx2)j + (2xz − 1)k

(a) Show that ∇ × F,
(b) Find a scalar function φ such that F = ∇φ.

Solution 1.14 (a)

∇×F =
∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

(4xy2 + z2) (4yx2) (2xz − 1)

∣∣∣∣∣∣ = (2z−2z)j+(8xy−8xy)k = 0

(b)

F · dr = ∇φ · dr = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz = dφ

dφ = (4xy2 + z2)dx + (4yx2)dy + (2xz − 1)dz

Hence

φ = (2x2y2 + z2x) + (2y2x2) + (z2x − z)

Example 1.15 A vector F is given by F = 3x2yi−(4y+ x)j.

Compute
∫
c
F · dr along each of the following paths:

(a) The straight lines from (0, 0) to (0, 1) and then to (1, 1).
(b) Along the straight line y = x . (c) Along the curve

x = t, y = t2.

Solution 1.15 (a) Along the straight line from (0,0) to (0,1)
we have x = 0, and dx = 0, therefore

∫
C
F · dr =

∫
C
3x2ydx − (4y+ x)dy =

∫ 1

y=0
−4ydy = −2y2|10 = −2

Along the straight line from (0, 1) to (1, 1) we have y =
1, dy = 1, hence

∫
C
F · dr =

∫ 1

x=0
3x2dx = x3|10 = 1

Thus, we have for the total path

∫
C
F · dr = −2 + 1 = −1

(b) Along the straight line y = x , we have dy = dx,
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Fig. 1.28 The line integral along the curve using polar coordinates

∫
C
F · dr =

∫
C
3x2ydx − (4y + x)dy =

∫ 1

x=0
(3x3 − 5x)dx

= 3/4x4 − 5/2x2|10 = −3/2.

(c) Finally along the curve x = t, y = t2, we have dx =
dt, dy = 2tdt , furthermore the points (0, 0) and (1, 1) cor-
responds to t = 0 and t = 1, respectively. Hence

∫
C
F· dr =

∫
C
3x2ydx−(4y+x)dy =

∫ 1

t=0
3t4dt−2t (4t2+t)dt

= 3/5t5 − 2t4 − 2/3t3|10 = −31/15.

Example 1.16 If a vector A is given by A = xyi − x2j, find

the line integral
∫
C
A · dr along the circular arc shown in

Fig. 1.28.

Solution 1.16 By using the polar coordinates, we have x =
cos θ and y = sin θ (since r = 1) , dx = − sin θdθ and
dy = cos θdθ , also x2 + y2 = r2 = 1, therefore we have

∫
c
A · dr =

∫ −π/4

θ=π
− cos θ sin2 θdθ − cos3 dθ =

∫ −π/4

θ=π
− cos θ(sin2 θ + cos2 θ)dθ

=
∫ −π/4

θ=π

− cos θdθ = − sin θ |−π/4
π = 0.71

Fig.1.29 Vectors A,B,C and D

Problems

1. Check if the relation v = √
2GME/RE is dimensionally

correct, where v represents the escape speed of a body,ME

and RE are the mass and radius of the earth, respectively,
and G is the universal gravitational constant.

2. If the speed of a car is 180km/h, find its speed in m/s.
3. How many micrometers are there in an area of 3 km2.

4. Figure1.29 shows vectorsA,B,C, andD. Find graphically
the following vectors (a) A+ 2B−C(b)2(A−B) +C−
2D(c) show that (A + B) + C = A + (B + C) .

5. A car travels a distance of 1km due east and then a distance
of 0.5km north of east. Find the magnitude and direction
of the resultant displacement of the car using the algebraic
method.

6. Prove that A · (B + C) = A · B + A · C.
7. A parallelogram has sides A and B. Prove that its area is

equal to |A × B|.
8. If A = 2i − 3j + 4k and B = i + 5j − 2k, find (a) A −

2B(b)A× B (c)A · B (d) the length of A and the length of
B(e) the angle between A and B(f) the scalar projection of
A on B and the scalar projection of B on A.

9. Show that A is perpendicular to B if |A + B| = |A − B|.
10. Given that A = 2i + j + k,B = i + 3j − 5k and C =

6i + 3j + 3k, determine which vectors are perpendicular
and which are parallel.

11. Use the vectorsA = cos θ i+sin θ j andB = cosφi−sin φj
to prove that cos(θ + φ) = cos θ cosφ − sin θ sin φ.

12. IfA = 5x2yi+ yzj−3x2z2k,B = 7y3zi−2zxj+ xz2yk
andφ(x, y, z) = 2z2y, find at (−1,1,1)(a)∂(φA)/∂x(b)∂2

(A × B)/∂z∂y(c)∇φ(d)∇ × (φA) .
13. Evaluate ∇ × (r2r) where r = x i + yj − zk and r = |r|.
14. If r = A cosωt i+A sinωtj, show that d2r/dt2+ω2r = 0.
15. A force field is given by F = −kx i − kyj, find (a) ∇ × F

(b) a scalar field φ such that F = ∇φ(c) Calculate the
line integral along the straight lines from (0, 0) to (1, 0) to
(1, 1) and from (0, 0) to (0, 1) to (1, 1). Is the line integral
independent of path?
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2Kinematics

2.1 Introduction

Mechanics is the science that studies the motion of objects
and can be divided into the following:

1. Kinematics: Describes how objects move in terms of space
and time.

2. Dynamics: Describes the cause of the object’s motion.
3. Statics: Deals with the conditions under which an object

subjected to various forces is in equilibrium.

This chapter is considered with kinematics which answers
manyquestions such as:How long it takes for an apple to reach
the ground when it falls from a tree? What is the maximum
height reached by a baseball when thrown into air? What is
the distance it takes an airplane to take off?

In physics, there are three types of motion: translational,
rotational, and vibrational. A block sliding on a surface is in
translational motion, a (Merry-go-Round) is an example of
rotational motion, and a mass–spring system when stretched
and released is in vibrational motion. From here until Chap. 7,
the object studied will be treated as a particle (i.e., a point
mass with no size). This assumption is possible only if the
object moves in translational motion without rotating and
by neglecting any internal motions that might exist in the
object.

That is, an object can be treated as a particle only if all of
its parts move in exactly the same way.

For example, if aman jumps into a poolwithout rotating by
doing a somersault (freezing his body), he can be treated as a
particle since all particles in his body will move in exactly the
same way. Another example of an object that can be treated
as a particle is the Earth in its motion about the Sun. Since the
dimensions of the Earth are small compared to the dimensions
of its path, it can be considered as a particle. The motion of
an object is described either by equations or by graphs. Both
ways provide information about the motion; however, equa-

tions provide precise information while graphs give greater
insight about the motion.

2.2 Displacement,Velocity, and Acceleration

This section will discuss the concepts of displacement, veloc-
ity, and acceleration in one dimension. These concepts are
essential in analyzing the motion of an object.

2.2.1 Displacement

Consider a car that is treated as a particle moving along the
straight-line path shown in Fig. 2.1. The x-axis of a coordinate
system is used to describe the position of the car with respect
to the origin O, where the points P and Q correspond to the
positions xi at ti and x f at t f , respectively. The position–time
graph of this motion is shown in Fig. 2.2. The displacement
of the truck is a vector quantity defined as the change in its
position during the time interval from ti to t f and is given by

�x = x f − xi

Hence displacement is a quantity that depends only on the
initial and final positions of the object. The direction of the
displacement in one dimension is specified by a plus or minus
sign. It is positive if the particle is moving in the positive x
direction and negative if the particle is moving in the negative
x direction. In two or three dimensions, the displacement is
represented by a vector. The SI unit of the displacement is the
meter (m).

2.2.2 Average Speed

The average speed of an object is a scalar quantity defined as
the total distance traveled divided by the total time:
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Fig. 2.1 A car that is treated as a
particle moving along the
straight-line path

Fig. 2.2 The position time graph of the carõs motion

Average speed = Total distance traveled

Total time

The SI unit of the average speed is meter per second (m/s)
.

2.2.3 Velocity

The average velocity v of an object is a vector quantity defined
in termsof displacement rather than the total distance traveled:

v = �x

�t

v is positive if themotion is in the positive x-direction and neg-
ative if it is in the negative x-direction. On the position–time
graph in Fig. 2.2, v is the slope of the straight line connecting
the points P and Q. The average velocity helps in describing
the overall motion of the particle in a certain time interval. To
describe the motion in more detail, the instantaneous velocity
is defined. This velocity corresponds to the velocity of a parti-
cle at a particular time. That involves allowing�t to approach
zero:

v = lim�t→∞
�x

�t
= dx

dt

Geometrically, the instantaneous velocity of a particle at
a particular time on the position–time curve is the slope (the
tangent) to the position–time curve at that point or instance
(see Fig. 2.3). The SI unit of the velocity is m/s.

Fig. 2.3 Geometrically, the instantaneous velocity of a particle at a
particular time on the position-time curve is the slope (the tangent) to
the position-time curve at that point or instance

2.2.4 Speed

The speed of the particle is defined as the magnitude of its
velocity. Note that speed and average speed are different since
speed is defined in terms of displacement, whereas average
speed is defined in terms of the total distance traveled.

2.2.5 Acceleration

If the particle’s velocity changes with time, it is said to be
accelerating. The average acceleration a of the particle is
defined as the ratio of the change of its velocity �v to the
time interval �t :

a = �v

�t

The SI unit of acceleration is m/s2. The instantaneous
acceleration is defined as

a = lim�t→0

�v

�t
= dv

dt

The average acceleration is the slope of the line joining the
points P andQon the velocity–time graph,whereas the instan-
taneous acceleration is the slope of the curve at a particular
point (see Fig. 2.4). Figure2.5 shows the position, velocity,
and acceleration for a particle simultaneously.

Example 2.1 A car travels along the path shown in Fig. 2.6,
where it is located at xi = 3km at ti = 0, and at x f = 19km
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Fig. 2.4 The average acceleration is the slope of the line joining the
points P and Q on the velocity-time graph, whereas the instantaneous
acceleration is the slope of the curve at a particular point

Fig. 2.5 This figure shows the position, velocity and acceleration as a
function of time of a particle moving in one direction. The particle starts
from rest, accelerates to a certain speed, is maintained at that speed for
some time, then it decelerates back to rest

Fig.2.6 Acarmoving along the curved pathwhere it is located at xi = 3
km at ti = 0, and at x f = 19 km at t f = 0.25 hr

at t f = 0.25h. Find the displacement, average velocity, and
average speed of the car during this time interval if the total
distance traveled is 20km.

Solution 2.1 The displacement of the car is

�x = x f − xi = (19 km) − (3 km) = 16 km

Its average velocity is

v = �x

�t
= x f − xi

t f − ti
= (16 km)

(0.25 h)
= 64 m/s

Average speed = Total distance traveled

Total time

= (2.0 km)

(025 h)
= 80 km/h

Example 2.2 A particle moves along the x-axis according to
the expression x = 2t2.The plot of this equation is shown
in Fig. 2.7. Find : (a) the displacement and average velocity
of the particle during the time interval between t = 1 s and
t = 3 s, ·(b) the instantaneous velocity of the particle as a
function of time and at t = 1 s and t = 3 s.

Solution 2.2 (a)

xi = 2t2i = 2(1)2 = 2 m

x f = 2t2f = 2(3)2 = 18 m

The displacement of the particle is

�x = x f − xi = (18m) − (2 m) = 16 m

The average velocity is

Fig. 2.7 A particle moves along the x-axis according to the expression
x = 2t2
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v = �x

�t
= (16m)

(2 s)
= 8 m/s

(b) The instantaneous velocity is given by

v = dx

dt
= (4t) m/s

at t = 1 s, v = 2 m/s, and at t = 3 s, v = 12 m/s.

Example 2.3 A particle is moving along the x-axis. The
position–time graph of its motion is shown in Fig. 2.8. Find:
(a) the average velocity between a and b, ·(b) the instanta-
neous velocity at the points a, c and d.

Solution 2.3 (a)

vab = �x

�t
= (2 m) − (−1.8 m)

(3 s) − (1 s)
= 1.9 m/s

(b)

va = �x

�t
= 0 − (−2.5 m)

(3 s) − 0
= 0.83 m/s

vc = 0

vd = �x

�t
= 0 − (3 m)

(8.5 s) − (4 s)
= −0.67 m/s

Fig.2.8 The position-time graph of a particle moving along the x-axis

Example 2.4 The acceleration of an object is given by a =
(1−4t) m/s2. If the object has an initial velocity of 3 m/s and
an initial displacement of 2 m, determine (a) its velocity and
displacement at any time; (b) the displacement of the object
when it reaches its maximum speed.

Fig.2.9 Aparticle moving from point P to point Q along a path or curve
C during a time interval �t = t f − tI

Solution 2.4 (a)

v =
∫

adt =
∫

(1 − 4t)dt = t − 2t2 + c1

At t = 0, v = 3 m/s and therefore c1 = 3 m/s. Thus

v = (t − 2t2 + 3) m/s

x =
∫

vdt =
∫

(t − 2t2 + 3)dt = 0.5t2 − 0.66t3 + 3t + c2

At t = 0, x = 2 m and c2 = 2 m. Therefore

x = (0.5t2 − 0.66t3 + 3t + 2) m (2.1)

(b) When the object reaches its maximum speed
dv

dt
= 0 and

hence 1 − 4t = 0, that gives t = 0.25 s. Substituting into
Eq.2.1 gives

x = 1/2(0.25 s)2 − 2/3(0.25 s)3 + 3(0.25 s) + 2 = 2.8 m

2.3 Motion in Three Dimensions

Consider the particle moving from point P to point Q along a
path or curve C during a time interval�t = t f −ti as shown in
Fig. 2.9. To locate the particle at any point the position vector
r = x i+ yj+ zk is used. ri and rf corresponds to the position
vectors of the particle at ti and t f respectively. A position
vector should be drawn from a reference point (usually the
origin of the coordinate system).

The displacement vector is then given by

�r = r f − ri

The average velocity is
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v = �r
�t

= r f − ri
t f − ti

The instantaneous velocity at a particular time is defined as

v = lim�t→0

�r
�t

= dr
dt

As �t approaches zero, �r becomes tangent to the path and
it is replaced by dr. The direction of y is in the direction of dr,
hence, y is always tangent to the path at any point. In terms
of components y is given by

v = dx

dt
i + dy

dt
j + dz

dt
k = vx i + vyj + vzk

The magnitude of the instantaneous velocity is

|v| = |dr
dt

| = v =
√(

dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

= ds

dt

where ds is the infinitesimal arc length along the path and
comes from the fact that as �t approaches zero, the dis-
tance traveled by the particle along the path becomes equal to
the vector displacement |�r|. Figure2.10 shows the instan-
taneous velocities along the path. The average acceleration
is

a = �v
�t

= v f − vi
t f − ti

The direction of a is of the same direction as �v. The instan-
taneous acceleration is then

a = lim�t→0

�v
�t

= dv
dt

In terms of components

a = dvx
dt

i + dvy
dt

j + dvz
dt

k = ax i + ayj + azk

Fig. 2.10 The instantaneous velocity vectors along the path

Another way to describe motion in three dimensions is by
using spherical or cylindrical coordinates. In this book, we
will only use rectangular coordinates for three-dimensional
motion.

2.3.1 Normal andTangential Components of
Acceleration

The acceleration describes the change in both the magni-
tude and direction of the velocity. That is, the acceleration
is not necessarily produced due to the change in the magni-
tude of the velocity only. Sometimes, it is produced due to the
change in the direction of the velocity even if its magnitude
is unchanged, and sometimes due to the change in both the
magnitude and direction. Furthermore, the direction of a is
not necessarily in the direction of v. If v is changed in mag-
nitude only (motion along a straight line) then a is parallel to
v if v is increasing, and antiparallel if v is decreasing. If v is
changed in direction only (motion along a curved path with
constant speed), then a is always perpendicular to v at any
point (see Fig. 2.11). Finally, if v is changed in both magni-
tude and direction then a will be directed at some angle to v
as in Fig. 2.12.

In this case, the acceleration can be resolved into paral-
lel and perpendicular components. The parallel component
corresponds to the change in the magnitude of v, while the
perpendicular component corresponds to the change in the
direction of v. These components can be viewed to be directed
along a rectangular coordinate system thatmoveswith the par-
ticle (as it moves in space), where the particle is located at the
origin of this coordinate system. The parallel (or tangential)
component of the acceleration is always tangent to the path
while the perpendicular (or normal) component is normal to
the path at each point as shown in Fig. 2.13.

Figure2.14 shows the direction of the acceleration of a car
moving down a ramp under the influence of gravity.

In terms of unit vectors, let T be the unit vector along the
tangent axis, N is the unit vector along the normal axis (also
called the principal unit normal vector) and B a third unit
vector called the binormal vector defined by B = T × N.
These unit vectors form a frame called the TNB frame, where
it moves with the particle (see Fig. 2.15). Since v is always
tangent to the path we may write

T = v
|v| = dr/dt

|dr/dt | = dr/dt
ds/dt

BecauseT is a unit vectorwe haveT·T = 1, differentiating
this with respect to s gives

T · dT
ds

+ dT
ds

· T = 2T · dT
ds

= 0

or
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Fig. 2.11 If v is changed in
magnitude only (motion along a
straight line) then a is parallel to
v if v is increasing, and
antiparallel if v is decreasing. If v
is changed in direction only
(motion along a curved path with
constant speed) then a is always
perpendicular to v at any point

Fig. 2.12 If v is changed in both magnitude and direction then a will
be directed at some angle to v

Fig. 2.13 The parallel (or tangential) component of the acceleration is
always tangent to the path while the perpendicular (or normal) compo-
nent is normal to the path at each point

T · dT
ds

= 0

Hence, T is perpendicular to dT/ds. Since N is also perpen-
dicular to T, then we have

N = dT/ds

|dT/ds| = 1

k

dT
ds

k is called the curvature of C at a certain point and it has
the value k = |dT/ds|. The quantity R = 1/k is the radius
of curvature at that point. Thus, N = R(dT/ds) . The total

Fig. 2.14 At A the acceleration of a car is in the same direction of
the velocity since the latter changes only in magnitude. As it moves its
velocity is changed in both magnitude and direction. Therefore at B the
direction of the acceleration is at some angle to the velocity. At C the
speed reaches a maximum and therefore the instantaneous change of
speed is zero at this point and the acceleration has only a perpendicular
component. As the car moves up its velocity decreases and changes in
direction also, thus the acceleration has both parallel and perpendicular
components. Finally at E, the acceleration is in the opposite direction of
the velocity since the velocity is decreasing but its direction is the same

Fig. 2.15 The TNB frame moves with the particle

acceleration of the particle in termsof the unit tangentTvector
and the principal unit normal vector N can be written as

a = dv
dt

= d

dt
(vT) = dv

dt
T + v

dT
dt

(2.2)

Furthermore,

dT
dt

= dT
ds

ds

dt
= N

R

ds

dt
= vN

R
(2.3)

Substituting Eq.2.2 into Eq.2.3 gives
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a = dv

dt
T + v2

R
N

Therefore, an = v2/R and at = dv/dt . Note that unlike
d|v|/dt, |dv/dt | corresponds to the change in the magnitude
of the velocity or in its direction or in both (as it represents the
magnitude of the total acceleration vector), whereas d|v|/dt
corresponds to the change in the magnitude only.

Example 2.5 A particle is moving in space according to the
expression

r = (5 cos t i + 5 sin tj + 7tk) m

Find the radius of curvature at any point on the space curve.

Solution 2.5

dr
dt

= (−5 sin t i + 5 cos tj + 7k) m/s

ds

dt
=

∣∣∣∣drdt
∣∣∣∣ =

√
(−5 sin t)2 + (5 cos t)2 + (7)2 = 10 m/s

Hence

T = dr/dt
ds/dt

= (−5 sin t i + 5 cos tj + 7k)

10
= −0.5 sin t i+ 0.5 cos tj+ 0.7k

The radius of curvature is

R = 1

k
= 1

|dT/ds |
dT
ds

= dT
dt

dt

ds
= dT/dt

ds/dt
= −0.5 cos t i − 0.5 sin tj

10
=

−0.05 cos t i − 0.05 sin tj

∣∣∣∣dTds
∣∣∣∣ =

√
(−005 cos t)2 + (−005 sin t)2 = 0.07

R = 1

0.07
= 14.3 m

Example 2.6 A car moves with constant tangential accelera-
tion down a ramp as shown in Fig. 2.16. If it starts from rest
at A and reaches B after 4 s with a speed of 10 m/s, find the
radius of curvature at B if the total acceleration of the car at
that point is 3.2 m/s2.

Solution 2.6 Since the tangential acceleration of the car is
constant, it can be found from

at = vB − vA
t

= (10 m/s) − 0

4 s
= 2.5 m/s2

Fig.2.16 A car moving with a constant tangential acceleration down a
ramp

Since the total acceleration of the car at B is 2 m/s2 then the
normal acceleration is

a2n = a2 − a2t = (3.2 m/s2)2 − (2.5 m/s2)2 = 4 (m/s2)2

an = 2 m/s2

The radius of curvature is

R = v2

an
= (10 m/s)2

(2 m/s2)
= 50 m

2.4 Some Applications

2.4.1 One-Dimensional Motion with Constant
Acceleration

An acceleration that does not change with time is said to be a
constant or uniform acceleration. In that case, the average and
instantaneous accelerations are equal. This type of motion is
more easily analyzed than when the acceleration is varied.
Since the motion is in one dimension, it follows that the y and
z components are zero. That is,

r = x i

�r = (x f − xi )i

Hence, as we’ve mentioned earlier, the direction of the
displacement can be specified with a plus or minus sign, as
well as the directions of the velocity and acceleration. Let us
assume that ti = 0, t f = t, vx f = v, vxi = v0, xi = x0 and
x f = x . Since the acceleration is constant, the velocity will
vary linearly with time, and thus the average velocity can be
expressed as

v = v0 + v

2

a = − = v f − vi
t f − ti

= v − v0
t

v = v0 + at (2.4)
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v = �x

�t
= (v + v0)

2

x − x0 = 1

2
(v + v0)t (2.5)

Furthermore,

x − x0 = 1

2
(v + v0)t = 1

2
(v0 + v0 + at)t

x − x0 = v0t + 1

2
at2 (2.6)

Finally,

x − x0 = 1

2
(v + v0)t = 1

2
(v + v0)

(
v − v0

a

)

v2 = v20 + 2a(x − x0) (2.7)

Equations2.4, 2.5, 2.6, and 2.7 are called the kinematic equa-
tions for motion in a straight line under constant acceleration.
The motion graphs for an object moving with constant accel-
eration in the positive x-direction are shown in Fig. 2.17.

Fig.2.17 The motion graphs for an object moving with constant accel-
eration in the positive x-direction

Example 2.7 A train accelerates uniformly from rest and
travels a distance of 200m in the first 8 s. Determine: (a) the
acceleration of the train; (b) the time it takes the train to reach
a velocity of 70m/s,(c) the distance traveled during that time;
(d) the velocity of the train 5 s later from the time calculated
in (b).

Solution 2.7 (a)

x − x0 = v0t − 1

2
at2

Since v0 = 0, we have

a = 2(x − x0)

t2
= 2(200 m)

(8 s)2
= 6.25 m/s2

(b)
v = v0 + at

v0 = 0 and therefore

t = v

a
= (70 m/s)

(6.25 m/s2)
= 11.2 s

(c)

x − x0 = 1

2
at2 = 1

2
(6.25)(11.2)2 = 392 m

(d)

v = v0 + at = (70 m/s) + (6.25 m/s2)(5 s) = 101.25 m/s

Example 2.8 An airplane accelerates uniformly from rest at
a rate of 3 m/s2 before taking off. If it is to take off at a speed
of 100m/s : (a) how much time is required for it to take off;
(b) what distance will it have traveled before taking off?

Solution 2.8 (a)
v = v0 + at

We have v0 = 0, this gives

t = v

a
= (100 m/s)

(3 m/s2)
= 33.3 s

(b)

x = 1

2
at2 = 1

2
(3 m/s2)(33.3 s)2 = 1.7 × 103 m

Example 2.9 Acarmoving at a constant velocity of 140km/h
passed apolice carmoving at a constant velocity of 80km/h.5s
after the car had passed the police car, the police vehicle
begins to accelerate toward the car at a constant rate of
1.4 × 104 km/h2 (a) How much time will it take the police
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car to catch the other car? (b) What is the distance traveled by
both during that time? (c) How much time has passed from
where the car passed the police car to where it was caught?

Solution 2.9 Let’s assume that x = 0 at where the car passed
the police car and that t = 0 at the instant the police car begins
to accelerate. The velocity of the car is equal to 38.9m/s,
and the initial velocity and acceleration of the police car are
22.2m/s and 1.1m/s2, respectively The police will catch the
car when both their displacements from x = 0 are equal. (a)

From the expression x = x0 + v0t + 1

2
at2, the displacement

of the car at any time is

xc = x0c + v0ct = (194.5 m) + (38.9 m/s)t

The displacement of the police car at any time is

xp = x0p +v0pt + 1

2
apt

2 = (111 m)+ (22.2 m/s)t + 1

2
(1.1 m/s2)t2

The police will catch the car when xc = xp, and therefore if
(194.5 m) + (38.9 m/s)t = (111 m) + (22.2 m/s)t +

1

2
(1.1 m/s2)t2 or

t2 − 30.4t − 151.8 = 0

Thus

t = (30.4) ± √
(304)2 + (4)(1518)

2

That gives t = 34.8 s.
(b)

xp = xc = (111 m) + (22.2 m/s)(34.8 s) + 1

2
(1.1 m/s2)

(34.8 s)2 = 1.55 × 103 m
(c)

t = (5 s) + (34.8 s) = 39.8 s

2.4.2 Free-Falling Objects

Galileo Galilei (1564–1642) was an Italian scientist, who
studied and experimented the acceleration of falling objects.
By dropping various objects from the Leaning Tower of Pisa
(or by releasing objects from inclined planes according to
another story), Galileo discovered that when air resistance is
neglected then all objects would fall with the same constant
acceleration regardless of theirmass or size. This acceleration,
denoted by g, is known as the free-fall acceleration since air
resistance is neglected and the object is assumed to be mov-
ing freely under gravity alone. The direction of the vector g is
downwards toward the earth’s center. However, g varies with

altitude as well as other factors which will be discussed in
Chap.9.

In solving problems involving objects falling near the sur-
face of the earth, g can be assumed to be constant with a value
of 9.8m/s2 and air resistance can be neglected. A free-falling
motion is a motion along a straight line (for example along
the y-axis) where objects may move upwards or downwards.
The kinematics equations of the free-falling motion with con-
stant acceleration can be found from Eqs. (2.4), (2.5), (2.6),
and (2.7) by simply replacing x with y and a with g. If the
positive direction of y is chosen to be upwards, then the accel-
eration is negative (downwards) and is given by (a = −g) .
These substitutions give

v = v0 − gt

y − y0 = 1

2
(v + v0)t

y − y0 = v0t − 1

2
gt2

v2 = v20 − 2g(y − y0)

The displacement and velocity graphs are shown in Fig. 2.18.
Note that it does not matter whether the object is falling or
moving upward, it will experience the same acceleration g
which is directed downwards. Figure2.19 shows the impor-
tant features of a free-falling object that is dropped from rest.

Fig.2.18 The displacement and velocity graph for a free-falling object
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Fig. 2.19 The important features
of a free falling object that is
dropped from rest

Example 2.10 A ball is thrown directly upwards with an ini-
tial velocity of 15m/s. On its way down, it was caught at
a distance of lm below the point from where it was thrown.
Determine (a) the maximum height reached by the ball; (b)
the time it takes the ball to reach that height; (c) the velocity
of the ball when it is caught; (d) the total time elapsed from
where the ball was thrown to where it was caught.

Solution 2.10 (a) First we take y = 0 at the position where
the ball is thrown and positive y to be upwards. At the maxi-
mum height the velocity of the ball is zero,

v2 = v20 − 2g(y − y0)

0 = (15 m/s)2 − 2(9.8 m/s2)hmax

hmax = 11.5 m

(b) Using the expression v = v0 − gt we have

0 = (15 m/s) − (9.8 m/s2)t

t = 1.5 s

(c) When the ball is caught its position is y = −1 m,

v2 = v20 − 2g(y − y0)

taking the initial position of the ball at y = 0, we get

v2 = (15 m/s)2 − 2(9.8 m/s2)((−1 m) − 0)

and
v = −15.6 m/s

or if we take the initial position at y = 11.5 m we have

v2 = 0 − 2(9.8 m/s2)((−l m) − (11.5 m))

and
v = −15.6 m/s.

(d) v = v0 − gt , substituting for v and v0 we have

(−15.6 m/s) = (15 m/s) − (9.8 m/s2)t

t = 3.1 s

Example 2.11 A tennis ball is dropped from a building that is
30 m high. Find (a) its position and velocity 2 s later; (b) the
total time it takes the ball to fall to the ground; (c) its velocity
just before it hits the ground.

Solution 2.11 (a) Taking y0 = 0 and v0 = 0 at t = 0 we
have

y − y0 = v0t − 1

2
gt2

at t = 2 s

y − 0 = 0 − 1

2
(9.8 m/s2)(2s)2 = −19.6 m

v = v0 − gt = 0 − (9.8 m/s2)(2 s) = −19.6 m/s

(b)

y − y0 = v0t − 1

2
gt2

(−30 m) − 0 = 0 − 1

2
(9.8 m/s2)t2

t = 2.5 s

(c)
v = v0 − gt = 0 − (9.8 m/s2)(2.5 s)

v = −24.5 m/s

Example 2.12 A ball is thrown vertically downwards from a
100m high building with an initial speed of 1m/s.3s later a
second ball is thrown.What initial speed must the second ball
have so that the two balls hit the ground at the same time?
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Solution 2.12 The time it takes the first ball to hit the ground
is found from

y − y0 = v0t − 1

2
gt2

0 − (100 m) = (−1 m/s)t1 − 1

2
(9.8 m/s2)t21

t1 = 6.4 s

The second ball must fall the same distance during a time of

t1 − (3 s) = (6.4 s) − (3 s) = 3.4 s

and therefore

y − y0 = v0t − 1

2
gt2

0 − (100m) = v0(3.4 s) − 1

2
(9.8 m/s2)(3.4 s)2

v0 = −12.6 m/s

2.4.3 Motion in Two Dimensions with Constant
Acceleration

The position vector can be written as

r = x i + yj

v = vx i + vyj

a = ax i + ayj

Because a is a constant both ax and ay are constants. There-
fore, the kinematic in Sect. 2.4.1 applies in each direction:

vx = v0x + ax t (2.8)

x = x0 + v0x t + 1

2
ax t

2 (2.9)

vy = v0y + ayt (2.10)

y = y0 + v0yt + 1

2
ayt2 (2.11)

r = x i + yj = (x0 + v0x t + 1

2
ax t

2)i+ (y0 + v0yt + 1

2
ayt

2)j

r = r0 + v0t + 1

2
at2 (2.12)

v = vx i + vyj = (v0x + ax t)i + (v0y + ayt)j

= (v0x i + v0yj) + (ax i + ayj)t

v = v0 + at (2.13)

Example 2.13 If themotionof a particle in a plane is described
by vy = (−8t) m/s and x = (5 − 2t2) m : (a) plot
the y component of the particle as a function of time if at
t = 0, y = 0, ·(b) find the total speed and magnitude of the
acceleration of the particle at t = 2 s.

Solution 2.13 (a)The y-component of position is

y =
∫

vydt =
∫

(−8t)dt = −4t2 + c

since at t = 0, y = 0, then

y = (−4t2) m

The plot of y against t is shown in Fig. 2.20.
(b) The x-components of velocity and acceleration is

vx = dx

dt
= d(5 − 2t2)

dt

vx = (−4t) m/s

Fig. 2.20 The y component of the particle as a function of time
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ax = dvx
dt

= d(−4t)

dt

ax = −4 m/s2

The y-component of acceleration is

ay = dvy
dt

= d(−8t)

dt

or
ay = (−8) m/s2

at t = 2 s, vx = −8 m/s, vy = −16 m/s and the velocity is

v = √
vx + vy =

√
(−8 m/s)2 + (−16 m/s)2 = 17.9 m/s

ax = −4 m/s2

and
ay = (−8) m/s2

Therefore, the acceleration of the particle is constant at any
time and is given by

a = √
ax + ay =

√
(−4 m/s2)2 + (−8 m/s2)2 = 8.9 m/s2

2.4.4 Projectile Motion

Projectilemotion is themotion of an object thrown (projected)
into the air at some angle with respect to the surface of the
earth, such as the motion of a baseball thrown into the air or
an object dropped from a moving airplane. In the simplified
model where air resistance as well as other factors such as
the Earth’s curvature and rotation are neglected, and if the
free-fall acceleration g is assumed constant in magnitude and
direction throughout the motion of the object, then the path
of the projectile is always a parabola that depends on the
magnitude and direction of its initial velocity. Therefore, the
projectile can be considered as a combination of a vertical
motion with a constant acceleration directed downwards and
a horizontalmotionwith zero acceleration (constant velocity).
We can see from Fig. 2.21 that

cos θ0 = v0x/vo

sin θ0 = v0y/vo

At t = 0, we have x0 = y0 = 0 and vi = v0. Because
ay = −g and ax = 0 and by substituting in Eqs. 2.8, 2.9,
2.10, and 2.11 gives

Fig. 2.21 The projectile motion

vx = v0x = v0 cos θ0 = constant (2.14)

vy = vy0 − gt = v0 sin θ0 − gt (2.15)

x = vx0t = (v0 cos θ0)t (2.16)

y = vy0t − 1

2
gt2 = (v0 sin θ0)t − 1

2
gt2 (2.17)

Combining and eliminating t from Eqs. 2.16 and 2.17 we
find that

y = (tan θ0)x −
(

g

2v20 cos
2 θ0

)
x2

(0 < θ0 <
π

2
)

This equation which is of the form y = ax–bx2 (a and b
are constants), is the equation of a parabola. Therefore, when
air resistance is neglected (when using the simplified model
of the system), the trajectory of the projectile is always a
parabola. At any instant, the velocity of the object is tangent
to its trajectory Its magnitude and direction with respect to
the positive x-direction are given by

v =
√
v2x + v2y

and

θ = tan−1 (vy/vx )

respectively The maximum height h of the projectile, as in
Fig. 2.22 , is found at t = t1 by noting that at the peak h, vy =
0. Substituting this in Eq.2.15 gives

v0 sin θ0 = gt1



2.4 Some Applications 29

Fig. 2.22 The maximum height of a projectile

t1 = v0 sin θ0

g

Substituting t1 into Eq.2.17 we get

ymax = h = (v0 sin θ0)t1 − 1

2
gt21

h = (v0 sin θ0)

(
v0 sin θ0

g

)
− 1

2
g

(
v0 sin θ0

g

)2

h = v20 sin
2 θ0

2g

The maximum range R is at t = 2t1. Substituting t into
Eq.2.16 gives

x = R = (v0 cos θ0)2t1 = (v0 cos θ0)
2v0 sin θ0

g
= 2v20 sin θ0 cos θ0

g

R = v20 sin 2θ0
g

Example 2.14 Abaseball is thrown at angle of 35o to the hor-
izontal with an initial speed of 20m/s. Neglecting air resis-
tance, find: (a) the maximum height reached by the ball; (b)
the time it takes the ball to hit the ground; (c) the range; and
(d) the speed of the ball just before it strikes the ground.

Solution 2.14 (a) The maximum height reached by the ball
is

h = v20 sin
2 θ0

2g
= (20 m/s)2 sin2(35o)

2(9.8 m/s2)
= 6.7 m

(b) The time it takes the ball to hit the ground is

t = 2t1 = 2v0 sin θ0

g
= 2(20 m/s) sin(35o)

(9.8 m/s2)
= 2.34 s

(c) The range is

R = v20 sin 2θ0
g

= (20 m/s)2 sin(70o)

(9.8 m/s2)
= 38.4 m

(d) The x-component of the velocity of the ball just before it
hits the ground is

vx = v0x = v0 cos θ0 = (20 m/s) cos(35o) = 16.4 m/s

The y-component is

vy = v0y −gt = v0 sin θ0−gt = (20 m/s) sin(35o)−(9.8 m/s2)(2.34 s) = −11.5 m/s

Hence, the speed is

v =
√
v2x + v2y =

√
(164 m/s)2 + (−11.5 m/s)2 = 20 m/s

Example 2.15 A boy throws a ball with a constant horizontal
velocity of 1m/s at an altitude of 0.6m. Find the horizontal
distance between the releasing point to the point where the
ball hits the ground.

Solution 2.15 Let the origin of the reference frame be the
releasing point. Since v0y = 0 we have

y = −1

2
gt2

and
x = v0x t

Hence, when the ball reaches the ground, the elapsed time is

t =
√

−2y

g
=

√
−2(0.6 m)

(−9.8 m/s2)
=0.34 s

and
x = (1 m/s)(0.34 s) = 0.34 m

2.4.5 Uniform Circular Motion

A particle moving in a circular path with constant speed is
said to be in uniform circular motion. Themotion of themoon
about earth, and the motion of clothes in a washing machine
are examples of uniform circular motion. In this motion, the
direction of the velocity of the particle is continuously chang-
ing but its magnitude is constant. As we have mentioned in
Sect. 2.3.1, when only the direction of the velocity changes,
the acceleration is then always perpendicular to the velocity
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Fig. 2.23 The directions of y and a change continuously with time but
their magnitudes are constant

at any time. Therefore, we have only the normal component
of the acceleration an = v2/R, and the tangential component
of the acceleration at = dv/dt is zero. In the case of the cir-
cular path the radius of curvature R is constant, denoted by
r , and the normal acceleration is directed along the radius of
the circle

arad = v2

r

The subscript rad is for radial. Thus, this radial or centripetal
acceleration arad is always directed toward the center of
the circle. Therefore, the directions of v and a change con-
tinuously with time but their magnitudes are constant (see
Fig. 2.23). The time required for the particle to complete one
revolution around the circle is called the period of revolution
and is given by

T = 2πr

v

Thus

arad = 4π2r

T 2

Example 2.16 In a fun fair ride, the passengers rotate in a cir-
cle with a constant speed of 3m/s. If the period of revolution
is 1.5 s, find the total acceleration of the passenger.

Solution 2.16 Since the speed of the passenger is constant,
it follows that the passenger’s total acceleration is just the
centripetal acceleration given by

arad = v2

r

The radius of the circular path is

r = vT

2π
= (3 m/s)(1.5 s)

2(3.14)
= 0.7 m

Fig.2.24 The velocity and total acceleration vectors of a particle mov-
ing in a circular path with increasing speed (clockwise) until it reaches
the maximum speed at the bottom, and then slows down as it goes back
up. An example of this motion is in a roller coaster ride in a vertical
circle

arad = v2

r
= (3 m/s)2

(0.7 m)
= 12.86 m/s2

2.4.6 Nonuniform Circular Motion

In nonuniform circular motion, the velocity of the particle
varies in both magnitude and direction. As mentioned in
Sect. 2.3.1, when both the magnitude and direction of the
particle’s velocity change then its acceleration is directed at
some angle to v. Thus, in addition to the normal acceleration
in uniform circular motion that corresponds to the change in
the direction of v, there is a tangential component that cor-
responds to the change in the magnitude of v. Furthermore
arad is not constant since v changes with time. Therefore, the
resultant acceleration is

a = an + at = v2

r
N + d|v|

dt
T

In Chap.8, the concepts of angular velocity and acceleration
and their vector relationship with the normal and tangential
accelerations are introduced. Figure2.24 shows the velocity
and total acceleration vectors of a particlemoving in a circular
path with increasing speed (clockwise) until it reaches the
maximum speed at the bottom, and then slows down as it
goes back up. An example of this motion is in a roller coaster
ride in a vertical circle.

Example 2.17 A car moving on a circular track of a 20m
radius accelerates uniformly from a speed of 30km/h to a
speed of 50km/h in 3 s. Find the total acceleration of the car
at the instant its speed is 40km/s.
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Solution 2.17 Since both the direction and the magnitude of
the car’s velocity change, its total acceleration is the vector
sum of its tangential and radial accelerations. The tangential
acceleration is

at = v − v0
t

= (13.8 m/s) − (8.3 m/s)

(3 s)
= 1.83 m/s2

When v = 40 km/h = 11.1 m/s the radial acceleration is

arad = v2

r
= (11.1 m/s)2

(20 m)
= 6.2 m/s2

And the total acceleration is

a =
√

(1.83 m/s2)2 + (6.2 m/s2)2 = 6.5 m/s2

2.5 RelativeVelocity

In this section, we will see how observers moving relative to
each other obtain different results when measuring the veloc-
ity of a moving body. Suppose two cars are moving besides
each other at the same speed of 120km/h with respect to
earth. In this case, any of the two cars is at rest relative to
the other. According to an observer who is stationary with
respect to earth, each car is moving with a speed of 120km/s.
A second observer, in any of the cars, will see the station-
ary observer moving backwards at a speed of 120km/h. In
addition, if a third car is moving ahead of the two cars at a
speedof 140km/h relative to earth, then its speed relative to an
observer in any of the two cars is 20km/s. Thus, the displace-
ment and velocities may have different values whenmeasured
relative to different observers. Therefore, the description of
motion depends on the observer. By attaching a coordinate
system to an observer together with an appropriate time scale,
he or she are then said to be in a reference frame. In measur-
ing quantities, it is essential to specify the reference frame. In
most situations, the earth (the lab) is used as our frame of ref-
erence. To understand this, consider a particle moving in one
dimension in the positive x-direction. Suppose two observers
want to describe its motion, one is observer S who is station-
ary relative to the ground, and the other is observer S′, who
is moving in the positive x-direction with a constant velocity
relative to the ground (see Fig. 2.25). At any instant, the posi-
tion of the particle relative to S is xPS , and its position relative
to S′ is xPS′ . The relation between these two observations is

xPS = xPS′ + xS′S (2.18)

Therefore, the position of P relative to OS is equal to the
position of P relative to OS′ plus the distance between OS and
OS′ . Differentiating Eq.2.18 with respect to time we get

Fig. 2.25 Observer S is stationary relative to the ground, and observer
S′ is moving in the positive x-direction with a constant velocity relative
to the ground

Fig. 2.26 The velocity of S′ with respect to S(vS′S) is constant in both
magnitude and direction

dxPS
dt

= dxPS′

dt
+ dxS′S

dt

or
vPS = vPS′ + vS′S

We will extend this to three dimensions in the case where
the velocity of S′ with respect to S(vS′S) is constant in both
magnitude and direction (see Fig. 2.26). The position vector
of the particle P relative to S is given by

rPS = rPS′ + rS′S (2.19)

Differentiating this with respect to time gives

vPS = vPS′ + vS′S (2.20)

Equations2.19 and 2.20 are called the Galilean transfor-
mation equations. In addition, for any two frames of reference
S and S we have

vSS′ = −vS′S

Example 2.18 Two motor cyclists A and B are driving along
the same road (SeeFig. 2.27)with speeds 90km/h and50km/s,
respectively.Determine: (a) the velocity ofmotorcyclistA rel-
ative to B and of B relative to A?, · and (b) if the two motor
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cyclists approach each other along two parallel roads, (See
Fig. 2.28), A moving at 80km/s, and B moving at 60 km/s,
what is the velocity of motorcyclist A relative to B and of B
relative to A.

Fig.2.27 Twomotor cyclists A and B driving with speeds 90 km/h and
50 km/s respectively

Fig. 2.28 A is moving at 80 km/s, and B moving at 60 km/s

Solution 2.18 Using the above discussion, consider S as the
Earth’s frame of reference denoted E, S′ as the frame of refer-
ence of motorcyclist B and the point P as the motor cyclist A

(a) The velocity of A relative to B is found from

vAB = vAE − vBE = (90 km/h) − (50 km/h) = 40 km/h

The velocity of B relative to A is

vBA = −40 km/h

(b)

vAB = vAE − vBE = (80 km) − (−60 km/h) = 140 km/h

vBA = −140 km/h

Fig.2.29 A boat is traveling at 8 km/h north relative to the sea’s waves,
and the waves are traveling northeast relative to the earth at a constant
speed of 4 km/h

Example 2.19 A boat is traveling at sea at 8km/h north rel-
ative to the sea’s waves, and the waves are traveling northeast
relative to the earth at a constant speed of 4km/h. What is the
velocity of the boat relative to the earth?

Solution 2.19 UsingFig. 2.26, consider theEarth asS (denoted
E), the waves as S′, and the boat as the point P. As we can see
from Fig. 2.29, the velocity of the boat relative to the earth
is given by vbE = vbw + vwE , where vbw and vwE are the
velocities of the boat relative to the waves and the velocity of
the waves relative to the earth respectively With the east as
the direction of the positive x-axis we get

v(bE)y = v(bw)y + v(wE)y = (8 km/h)+ (4 km/h) sin 45◦ = 10.83 km/h

v(bE)x = v(wE)x = (4 km/h) cos 45◦ = 2.83 km/h

Hence

vbE =
√

(v(bE)x )2 + (v(bE)y )
2 =

√
(10.83 km/h)2 + (2.83 km/h)2 = 11.2 km/h

The direction of vbE is

θ = tan−1 (vbE )y

(vbE )x
= tan−1 (10.83 km/h)

(2.83 km/h)
= 75.35o

2.6 Motion in a Plane Using Polar
Coordinates

Consider a particle moving in the x–y plane. A useful way to
describe the position, velocity, and acceleration of the parti-
cle is by using its polar coordinates (r, θ) . The relationship
between the polar and rectangular coordinates is
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Fig. 2.30 r1 is a unit vector
along the increasing r direction
and θ1 is a unit vector in the
direction of increasing θ

(anticlockwise direction)

x = r cos θ

y = r sin θ

where θ is measured from the positive x- axis. Suppose a par-
ticle is located at (r, θ) . If the particle moves in a straight line
along the r direction, then θ is constant through the motion
of the particle. If the particle moves in a circle, then r is con-
stant. Let r1 be a unit vector along the increasing r direction
and θ1 to be a unit vector in the direction of increasing θ

(anticlockwise direction). From Fig. 2.30, we have

r1 = cos θ i + sin θ j

and
θ1 = − sin θ i + cos θ j

Unlike the rectangular unit vectors, the polar unit vectors are
not fixed in direction. Their direction changes as the particle
moves along some path. Therefore, when finding the velocity
and acceleration of a particle the derivatives of the polar unit
vectorsmust be considered. The position vector of the particle
is given by

r = rr1

To find the velocity in terms of the polar unit vectors let us
differentiate r1 and θ1 with respect to time. That gives

ṙ1 = dr1
dt

= − sin θ
dθ

dt
i + cos θ

dθ

dt
j

= θ1
dθ

dt
= θ̇θ1

θ̇1 = dθ1

dt
= − cos θ

dθ

dt
i − sin θ

dθ

dt
j

= −r1
dθ

dt
= −θ̇r1

The velocity of the particle is given by

v = dr
dt

= d

dt
(rr1) = dr

dt
r1 + r

dr1
dt

= ṙr1 + r ṙ1 = ṙr1 + r θ̇θ1

Hence, the velocity is (Fig. 2.31)

v = ṙr1 + r θ̇θ1 (2.21)

We may write
v = vrr1 + vθθ1

where vr = ṙ and vθ = r θ̇ and v =
√
v2r + v2θ . The total

acceleration is

a = dv
dt

= d

dt
(ṙr1+r θ̇θ1) = r̈r1+ ṙṙ1+ ṙθ̇θ1+r θ̈θ1+r θ̇ θ̇1

= r̈r1 + ṙ(θ̇θ1) + ṙθ̇θ1 + r θ̈θ1 + r θ̇ (−θ̇r1)

a = (r̈ − r θ̇2)r1 + (r θ̈ + 2ṙθ̇ )θ1 (2.22)

or
a = arr1 + aθθ1

where
ar = (r̈ − r θ̇2)
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Fig. 2.31 Unlike the rectangular
unit vectors, the polar unit vectors
are not fixed in direction. Their
direction changes as the particle
moves along some path

and
aθ = (r θ̈ + 2ṙθ̇ )

and

a =
√
a2r + a2θ

Example 2.20 If a particle moves in a plane according to the
expressions θ = 0.3t + 0.2t2 and r = 0.5t + 0.4t2. Find its
velocity and acceleration at t = 2 s

Solution 2.20 At t = 2 s, θ = 0.3t + 0.2t2 = 1.4 rad,
θ̇ = 0.3 + 0.4t = 1.1 rad/s and θ̈ = 0.4 rad/s2. Also
r = 0.5t + 0.4t2 = 2.6 m, ṙ = 0.5 + 0.8t = 2.1 m/s and
r̈ = 0.8 m/s2. Therefore

vr = r = 2.1 m/s

vθ = r θ̇ = (2.6 m)(1.1rad/s) = 2.9 m/s

v =
√
v2r + v2θ =

√
(2.1 m/s)2 + (2.9 m/s)2 = 3.6 m/s

and

ar = r̈ − r θ̇2 = (0.8 m/s2) − (2.6 m)(1.1rad/s)2 = −2.35 m/s2

aθ = r θ̈ +2ṙ θ̇ = (2.6 m)(0.4 rad/s2)+2(2.1 m/s)(1.1 rad/s) = 5.7 m/s2

a =
√
a2r + a2θ =

√
(−2.35 m/s2)2 + (5.7 m/s2)2 = 6.2 m/s2

Fig. 2.32 An object moving in one dimension along the x-axis

Fig.2.33 The position-time graph of a particle moving along the x-axis

Problems

1. A sports car moves around a circular track of radius of
100m. If the car makes one round in 75s, find the car’s
(a) average speed (b) average velocity.

2. An object is moving in one dimension along the x-
axis according to Fig. 2.32. Describe the motion of the
object.
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Fig. 2.34 The speed of a motorcyclist varying with time

Fig. 2.35 A car moves at a constant speed of 40 km/h along curved
path

Fig. 2.36 An aircraft tracked by
a radar coordinates

3. The position–time graph of a particle moving along the
x-axis is shown in Fig. 2.33. Find (a) the average veloc-
ity between a and b(b) the instantaneous velocity at a, b,
and c.

4. A motorist drives along a straight-line road. His speed
varies with time according to Fig. 2.34. Sketch the posi-
tion versus time and acceleration versus time graphs of
the motorist.

5. A particlemoves along the curve defined by x = 5e−t and
y = sin 5t. Find the position, velocity and acceleration
of the particle at any time.

6. A car moves at constant speed of 40km/h along the road
shown in Fig. 2.35. If the radius of curvature at A is 350m
and the total acceleration of the car at B is 1m/s2, find (a)
the total acceleration of the car at A and C(b) the radius
of curvature at B.(Hint: the radius of curvature at C is
infinite).

7. A body with initial speed of 15m/s undergoes a uniform
acceleration of −2m/s2. Find the elapsed time and the
distance it traveled when it reaches a speed of 3m/s.

8. A stone is thrown downwards from a height of 10m. Find
its initial speed if it reaches the ground after l s.

9. A block is thrown horizontally from the top of a cliff
that is 30m high with a speed of 10m/s. Find (a) the
block’s magnitude of displacement from the origin and
its velocity after 1.5 s, (b) the horizontal distance from the
releasing point to where the block hits the ground.(Hint:
the magnitude of displacement from the origin is d =√
x2 + y2).

10. A river has a uniform speed of 0.5m/s due east. If a boat
travels east at a speed of 3m/s relative to the water, find
the time it takes the boat to travel a distance of 1100km
and return to its starting point.

11. An aircraft is tracked by a radar (see Fig. 2.36). If at a
certain instant the radar measurements give r = 7 ×
104 m, r = 1000 m/s, r̈ = 7 m/s2, θ = 45o, θ̇ =
0.6 deg /s, and θ̈ = 0.02 deg /s2. Find the velocity and
acceleration of the airplane at that instant.
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3Newton’s Laws

3.1 Introduction

In this chapter, dynamics which is a branch of mechanics will
be discussed. Dynamics is concerned with the cause behind
the motion of objects and answers questions such as: Why
does a skydiver float in air? What makes an apple fall from
a tree? Why a block connected to a spring oscillates when
the spring is stretched? We will find that these motions occur
when objects interact with each other, i.e., the apple is inter-
acting with earth, the skydiver is interacting with air, and the
block is interacting with the spring.

3.1.1 The Concept of Force

The interaction between one object and another or between
the object and its environment defines a quantity called force.
A force is a pull or a push in a certain direction that may
cause the object tomove or deform.However,motion does not
always occur if the force is not large enough to overcomeother
forces such as friction or gravity But whether or not an object
moves due to a force, there is always some deformation. In
this book, it is assumed that objects remain undeformed under
the influence of any forces. Experimentally, a force is found to
be a vector quantity The net external force acting on an object
(the vector sum of all forces acting on the object) causes the
object to accelerate where the direction of the acceleration is
in the direction of that force.

Hence, acceleration is a measure of force. If the net force
equals zero, the acceleration of the object is zero, and the
velocity of the object remains unchanged (constant). Forces
in nature are one of two:

1. Contact forces resulting from direct contact between two
objects (e.g., kicking a ball or punching a bag);

2. Field forces that can act through empty space and in which
physical contact is not necessary (e.g., gravitational force
between two objects and the electric force between two
electric charges).

3.1.2 The Fundamental Forces in Nature

The following fundamental forces are all field forces:

1. The gravitational force between any two objects;
2. The electromagnetic force between two electric charges;
3. The strong nuclear force between subatomic particles

which is responsible for the stability of the nuclei;
4. The weak nuclear force which produces certain kinds of

radioactive decay and is responsible for the instability of
some nuclei.

The first two fundamental forces are examples of long-
range forces, which act over a great distance. The second two
are examples of short-range forces, which are forces that act
over a very short distance. Note that contact forces are funda-
mentally electromagnetic since they involve electromagnetic
forces between the atoms of the surfaces in contact.

3.2 Newton’s Laws

Sir Isaac Newton (1642–1727) formulated his three famous
laws of motion describing the relationship between the force
acting on an object and the acceleration of that object. New-
tonian or classical mechanics which is based mainly on New-
ton’s three laws of motion, deals only with objects
that are

• Large compared to the size of an atom (≈10−10 m).
• Moving at speeds much less than the speed of light (≈3×

108 m/s).

Einstein’s special theory of relativity replaces Newtonian
mechanics when an object’s speed approaches the speed of
light. On the other hand, quantum mechanics replaces New-
tonian mechanics when the object’s dimensions are close to
atomic scale.
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3.2.1 Newton’s First Law

It was believed long ago that a force is necessary to keep an
object moving and that any object’s natural state is to be at
rest. Later, these statements were proved to be incorrect. To
understand this, suppose a block resting on a surface is given
a push and is released. As a result, the block will slide for
sometime before coming to rest. The time elapsed between
pushing the block until it comes to rest will increase as the
surface gets smoother. If the surface becomes so smooth, such
that friction is almost negligible, the block will continue to
move along a straight line with constant speed for a greater
distance before coming to rest.

An example of frictionless motion is the motion of the
puck in the air-hockey table. The puck floats on a thin column
of air that is used as the lubricant. In situations where there
is no friction at all, the object will continue to move along a
straight line with constant speed without requiring any force
to keep it moving. However, a force is required to initiate
motion. This concept was formulated by Newton and became
his first law of motion:An object at rest remains at rest and an
object inmotionwill continue inmotionwith constant velocity
(constant speed in a straight line) unless acted upon by a net
external force. That is, if

�F = 0

a = 0

A body’s tendency to stay at rest or maintain uniform motion
in a straight line is called inertia. Thus, Newton’s first law is
often referred to as the law of inertia, where it defines specific
kinds of reference frames called inertial reference frames. An
inertial reference frame is a frame in which Newton’s first law
is valid. That is, in an inertial frame of reference, an object
has no acceleration if there is no net force acting upon it. Any
reference frame moving with constant velocity relative to an
inertial frame is also inertial. Observers in different inertial
frames measure the same acceleration for a moving object.
To prove this, consider the two inertial reference frames S
and S′ mentioned in Sect. 2.5, where S is stationary and S′ is
movingwith constant velocity relative to S. By differentiating
Eq.2.20, we have

dvPS
dt

= dvPS′

dt
+ dvS′S

dt

Because vS′S is constant we have

aPS = aPS′

That is, the acceleration of the particle P measured from both
inertial reference frames S and S′ is the same. To show that

Newton’s first law is only valid when applied with respect to
an inertial frame of reference; consider a girl named Mia that
is at rest while watching her friend Lea driving a car mov-
ing at constant velocity. Lea has her seatbelt fastened and put
her suitcase in the seat right next to her without restraining
it. Now, suppose that Lea steps on the brakes, which would
cause her vehicle to decelerate, her suitcase will start to move
forward. According to Lea, who is in an accelerated frame,
the suitcase moved from rest even though there was no appar-
ent net external force acting on it. Therefore, in Lea’s frame,
Newton’s first law seems to be incorrect.

The situation, however, is different to Mia, who is in an
inertial frame of reference. In her perspective, the suitcase
was initially moving with constant velocity and the net force
on it was zero.When the car started to decelerate, the net force
on the suitcase is still equal to zero and thus the suitcase must
continue to move forward with constant velocity and stop by
friction or impact with the inside of the car. Therefore, it is
apparent to Mia that Newton’s first law is valid. From the
previous example, we conclude that Newton’s first law (and
in general Newton’s laws) is not valid in all kinds of reference
frames; it is only valid when applied with respect to inertial
frames. That is, Lea must not apply Newton’s first law in her
reference frame.

The same situation would be observed by Lea if she were
to turn her car while moving. When the car turns, the suit-
case will start to move in the direction opposite to the turn.
Once again, Lea observes that the suitcase has moved from
rest without any apparent force acting on it which contra-
dicts Newton’s first law in her opinion. Mia sees no contra-
diction with Newton’s first law because when the car turns,
the suitcase tends to continue its initial uniform straight line
motion, and thus it moves toward the direction opposite to the
turn. Therefore Newton’s laws are obeyed by objects when
observed from inertial frames of reference (see Fig. 3.1).

To apply classical (Newtonian) mechanics with respect to
a noninertial reference frame, new forces named as pseudo
forces are introduced. In this book, only inertial frames are
used, and all laws are stated with respect to those frames. One
convenient inertial frame of reference, used throughout this
book, is the surface of the earth. The earth can be considered
as an inertial frame since its motion about its axis and about
the sun has a small effect on calculations and thus can be
neglected.

3.2.2 The Principle of Invariance

Some quantities such as mass, force, time, and acceleration
are invariant, which means that they have the same numerical
values when measured in different inertial frames of refer-
ence. Other quantities such as velocity, kinetic energy, and
work have different values in different inertial frames. How-
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Fig. 3.1 The boy is throwing the water out by pitching the bucket for-
ward. If he stops, the water will continue its motion along a straight line.
However, because of the force of gravity, it follows a parabolic path

ever, the laws of physics have the same form in all inertial
frames of reference. This is called the principle of invariance.

3.2.3 Mass

As mentioned earlier, the tendency of an object to resist any
change in itsmotion (i.e., to remain at rest ormaintain uniform
motion along a straight line) is called inertia. From exper-
iments and everyday experience, it is observed that a cer-
tain force produces different accelerations when applied to
different bodies. This variation in the produced acceleration
depends upon the quantity of matter contained in the body
Such quantity is known as the mass of the body Therefore,
mass is a measure of inertia. Objects with large masses have
less acceleration when exposed to the same force. Thus, mass
is a quantity that relates the acceleration of the body to the
force acting on it. The SI unit of mass is the kilogram (kg).
Experimentally, it is found that the ratio of the masses of any
two bodies (saym1 andm2) is equal to the inverse of the ratio
of the magnitudes of their accelerations if both are acted upon
by the same force. That is, we have

m1

m2
= a2

a1

Themass of any body can be found by comparing its accel-
eration to the acceleration of a l kg mass when both bodies are
acted upon by the same force. This leads to the conclusion that

mass is independent of force; it is an inherent characteristic of
matter. Furthermore, it has been experimentally proved that
when two masses m1 and m2 are attached together, the com-
bined body behaves as a single body of mass m1 +m2. Thus,
mass is a scalar quantity and obeys the rules of ordinary arith-
metic.

3.2.4 Newton’s Second Law

Unlike Newton’s first law, Newton’s second law describes
the situation in which the net force acting on an object is not
zero. It was found that when different forces act on an object,
the object undergoes different accelerations. The magnitude
of the acceleration is directly proportional to the magnitude
of the applied force, and its direction is in the direction of
that force. Furthermore, this acceleration is inversely propor-
tional to the mass of the object for a certain applied force.
These observations are summarized in Newton’s second law
of motion: The acceleration of an object produced by a net
external force is directly proportional to the force in a direc-
tion parallel to that force and is inversely proportional to its
mass That is,

�F = ma

In terms of components, the vector equation�F = ma can
be written as

�Fx = max

�Fy = may

�Fz = maz

where ax = ẍ, ay = ÿ and az = z̈ In terms of normal and
tangential coordinates, the net normal force is

�Fn = man

and the net tangential force is

�Ft = mat

where an = v2/R and at = dv/dt . Finally, in terms of polar
coordinates we have

�Fr = mar

and
�Fθ = maθ

where ar = (r̈ − r θ̇2) and aθ = (r θ̈ + 2ṙ θ̇ ). The unit of
force in the SI system is the Newton (N). One Newton (1N)
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Fig.3.2 A body is exposed to three forces acting in different directions

is defined as the force that gives a l kg mass an acceleration
of 1m/s2.

1N = 1 kg.m/s2

Example 3.1 A body is exposed to three forces acting in dif-
ferent directions as shown in Fig. 3.2. Find the magnitude and
direction of the resultant force acting on the body and the
corresponding acceleration.

Solution 3.1 The net force in the x-direction is

∑
Fx = F1x +F2x +F3x = F1 cos 60

o+F2 cos 20
o−F3 cos 30

o

= (100N)(0.5) + (50N)(0.94) − (75N)(0.866) = 32.1N

The net force in the y-direction is

∑
Fy = F1y + F2y + F3y = F1 sin 60

o − F2 sin 20
o − F3 sin 30

o

= (100N)(0.866) − (50N)(0.34) − (75N)(0.5) = 32.1N

The magnitude of the net force is

Fnet =
√

(32.1)2 + (32.1)2 = 45.4N

The direction of Fnet relative to the x-axis is

θ = tan−1 Fnety
Fnetx

= tan−1 (32.1N)

(32.1N)
= 45o

The acceleration of the body is, therefore,

a = F

m
= (45.4N)

(50 kg)
= 0.91m/s2

and its direction is the same as that of the force.

Example 3.2 If a man pushes a 60kg box with a constant
horizontal force of 100 N : (a) how far will the container be
moved when its speed reaches a value of 3m/s; (b) how far
will the container be moved when its speed reaches a value
of 3m/s if the same force is applied at 30o to the horizontal;
(c) find the normal force acting on the block in (a) and (b).

Solution 3.2 (a) The acceleration of the container is given by

a = F

m
= (100N)

(60 kg)
= 1.67m/s2

the distance moved when its speed reaches 3m/s is found
from

v2 − v20 = 2a(x − x0)

By taking x0 = 0 at the starting point we have

(3m/s)2 − 0 = 2(1.67m/s2)(x − 0)

That gives x = 2.7m.

(b) If the force is at 30o to the horizontal, the acceleration
is

a = F

m
= (100N) cos 30o

(60 kg)
= 1.45m/s2

(3m/s)2 − 0 = 2(1.45m/s2)(x − 0)

and x = 3.1m.

(c) In situation (a) we have

∑
Fy = n − mg = 0

and
n = mg = (60 kg)(9.8m/s2) = 588N

In (b) we have

∑
Fy = n + F sin θ − mg = 0

and

n = (588N) − (100N) sin 30o = 538N

Example 3.3 A particle of mass 0.5kg is moving along the
curve given by r = (1/3t4i − t3j)m where t is time. Deter-
mine the force acting on the particle.

Solution 3.3 The force acting on the particle is

F = m
d2r
dt2

= m
d

dt
(4/3t3i − 3t2j) = m(4t2i − 6tj)

= (0.5 kg)(4t2i − 6tj) = (2t2i − 3tj) N
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Example 3.4 A particle of mass of 1kg is moving under the
influence of a force given by

F = ((12t2 − 5t)i + (9t − 1)j − 3t2k)N

If at t = 0, r0 = 0 and v0 = 0, find the velocity and the
position of the particle at any time.

Solution 3.4
F = ma

a = F
m

= ((12t2 − 5t)i + (9t − 1)j − 3t2k)m/s2

v =
∫

adt =
(
4t3 − 5

2
t2

)
i +

(
9

2
t2 − t

)
j − t3k + c1

Since at t = 0, v0 = 0, then c1 = 0 and the velocity at any
time is

v =
((

4t3 − 5

2
t2

)
i +

(
9

2
t2 − t

)
j − t3k

)
m/s

v = dr
dt

r =
∫

vdt =
∫ [(

4t3 − 5

2
t2

)
i +

(
9

2
t2 − t

)
j − t3k

]
dt

r =
((

t4 − 5

6
t3

)
i +

(
3

2
t3 − 1

2
t2

)
j − 1

4
t4k

)
m

Example 3.5 If a man weighs himself on an elevator that is
accelerating upwards at a rate a relative to an observer out-
side the elevator (in an inertial frame) as shown in Fig. 3.3,
what reading will he get for the normal force acting on him
by the floor? what is the force if the elevator is accelerating
downwards?

Solution 3.5 The normal force is n = m(a + g) for upward
acceleration and n = m(g − a) for downward acceleration.
Since a weighing scale measures the normal force and calcu-
lates the mass from it, the downward journey might be a more
pleasant one!

3.2.5 Newton’s Third Law

A force acting on an object is always due to another object in
the surrounding environment. Newton’s third law shows that:
if body 1 exerts a force F21 on body 2 then body 2 will exert
an equal and opposite force F12 on body 1. That is

F12 = −F21

Fig. 3.3 A man weighing himself in an elevator

Any of these forces can be called an action force.When one of
these forces is called an action force the other force is called
a reaction (see Fig. 3.4). This law is sometimes stated as “To
every action there is an equal and opposite reaction.” Note
that the action and reaction forces always act on different
objects, i.e., they can’t cancel each other out. This law also
shows that forces come in pairs and that there is no such thing
as a single isolated force.

Fig. 3.4 The gravitational force exerted by the Earth on the apple and
that exerted by the apple to the Earth form an action-reaction pair

Example 3.6 Three blocks of masses m1,m2, and m3 are
placed on a frictionless surface and pushed by a horizontal
force F as in Fig. 3.5. Determine (a) the acceleration of the
system; (b) the contact forces betweenm1 andm2 andbetween
m2 and m3.

Solution 3.6 The free-body diagram of each block is shown
in Fig. 3.5, where F21 is the force exerted on m2 by m1. (a)
Applying Newton’s second law for the ,
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Fig. 3.5 Three blocks of masses m1,m2, and m3 are placed on a fric-
tionless surface and pushed by a horizontal force F

F = (m1 + m2 + m3)a

a = F

(m1 + m2 + m3)

(b) Applying Newton’s second law for each block, we have
F − F12 = m1a, F21 − F23 = m2a and F32 = m3a. From
Newton’s law of action and reaction we have F12 = F21, and
F32 = F23, and therefore

F12 = m2a + F23 = (m2 + m3)a = (m2 + m3)

(m1 + m2 + m3)
F

F32 = m3F

(m1 + m2 + m3)

3.3 Some Particular Forces

3.3.1 Weight

In Sect. 2.4.2, we’ve seen that an object in free fall near the
surface of the earth has a gravitational acceleration of mag-
nitude 9.8m/s2 that is directed toward the center of earth.
Using Newton’s second law, we can calculate the force that
caused this acceleration. If an object has a mass m then the
gravitational force is given by mg, and is denoted by w, i.e.,
w = mg.w is known as the weight of an object and is defined
as the gravitational force exerted on it by earth (or any other
astronomical body, where g is different than that of earth). In
Chap.9, we will see that a gravitational force exists between
any two bodies. When one of the bodies is an astronomical
body, such as the earth or moon, and the other body is rela-
tively smaller in size and mass the gravitational force is then
called the weight of the bodyWewill also see that the gravita-
tional force varies with the distance between objects, and that
the value of g becomes less at greater altitudes. Thus, weight

is not an intrinsic property of an object. In everyday life, it
is common to use the word weight when measuring the mass
of a body mass and weight represent different quantities but
they are proportional for a given value of g. For two masses
at the same location, the ratio of their weights is equal to the
ratio of their masses.

3.3.2 The Normal Force

If an object is in contact with a surface, either at rest ormoving
on it, the surface exerts a supporting force n on the object that
is always perpendicular to the surface of contact. This force
is called the normal force.

3.3.3 Tension

The tension force T is the force that a cord, rope, cable, or
any other similar object exerts on an object attached to it. This
force is directed along the rope away from the object at the
point where the rope is attached. In solving problems, ropes
are usually assumed to be massless (referred to as light ropes)
and unstretchable. For any light rope, the magnitude of the
tension force T is the same at all points along the rope.

3.3.4 Friction

Imagine that everything aroundyou is coatedwith an extremely
good lubricant. Simple activities such aswalking, sitting, driv-
ing a car, or holding objects would become extremely difficult
or impossible. Therefore, friction plays a very important role
in our everyday life. The frictional force is due to the interac-
tion between the surface atoms of any two bodies in contact.
The direction of this force is always parallel to the surface of
contact, opposing the motion or the planned motion of one
object relative to the other. Hence, the normal and frictional
forces are both contact forces and they are always perpendic-
ular to each other.

Consider a block resting on a table. If the block is pushed
with a horizontal force F and remains stationary, it is because
that the applied force is balanced by an equal and opposite
force. This opposing force is known as the statistical fric-
tional force fs and it has the value fs = F . The statistical
frictional force increases with increasing F (see Fig. 3.6). The
name statistical comes from the fact that the block remains
stationary.

However, if F is increased to a certain maximum value, the
block will eventually accelerate (see Fig. 3.7). This maximum
value is equal to themaximum frictional force fsmax = F and
it represents the applied force when the block is at the verge
of slipping, i.e., it is the minimum force necessary to initiate
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Fig. 3.6 The opposing force is
known as the statistical frictional
force fs and it has the value
fs = F . Its maximum value
fsmax = F represents the applied
force when the block is at the
verge of slipping i.e. it is the
minimum force necessary to
initiate motion. When the block
moves, the retarding frictional
force is then called the kinetic
frictional force fk

motion. When the block moves, the retarding frictional force
is then called the kinetic frictional force fk and is usually less
than fsmax. If fk = F , the block will move with a constant
speed. If F < fs or if F is removed, the block will decelerate
and will eventually be brought to rest. Experiments show that
fsmax and fk have the following properties:

Fig. 3.7 A graph of the friction force versus the applied force

1. fsmax = μsn, where μs is the coefficient of static friction
and n is the normal force acting on the block. As long as
the block is at rest fs = F, where fs ≤ μsn.

2. fk = μknwhereμk is the coefficient of the kinetic friction.
3. The directions of fs and fk are always parallel to the sur-

face. fs is opposite to the component of the applied force
that is parallel to the surface and fk is opposite to the instan-

Table 3.1 Coefficients of Friction

Materials μs (static) μk (kinetic)

Steel on steel 0.74 0.57

Aluminum on steel 0.61 0.47

Copper on steel 0.53 0.36

Wood on wood 0.25–0.5 0.2

Rubber on concrete 1.0 0.8

Glass on glass 0.94 0.4

Copper on glass 0.68 0.53

Teflon on teflon 0.04 0.04

taneous velocity of the body relative to the surface.
The dimensionless coefficients μs and μk depend on the
nature of the surfaces in contact and are independent of the
area of contact between these surfaces.μk is generally less
thanμs . Table3.1 listsμs andμk for some materials. Note
that μk may vary with speed but such variations are not
included here. Friction is a very complex phenomenon.
One reason behind this is that the actual area of contact
viewed from amicroscopic level is much less than the area
of contact viewed from a macroscopic level, as in Fig. 3.8,
even for very smooth surfaces. For our purposes here, the
detailed friction mechanism will not be discussed.

Fig. 3.8 The actual area of contact viewed from a microscopic level is
much less than the area of contact viewed from a macroscopic level

3.3.5 The Drag Force

If a fluid (such as gas or liquid) and a body are in relative
motion, the body will experience a resistive force opposing
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the relative motion called the drag force D. The direction of
D is the direction in which the fluid is flowing relative to the
body. The drag force depends on some factors, such as the
speed of the object. We will consider the situation in which
a relatively large object is moving through air at high speed
(such as a skydiver or an airplane). In this case, the drag force
D is proportional to the square of the body’s speed and is
given by

D = 1

2
cρAv2

where ρ is the air density, A is the effective cross-sectional
area of the body taken in a plane perpendicular to its velocity,
and c is the drag coefficient. c is a dimensionless constant that
has a value ranging from 0.4 to 2. The value of c may vary
with v, but such variations will be ignored.

As an example, consider an object falling through air far
from the earth’s surface. The forces acting on the object are
the drag force and the gravitational force as in Fig. 3.9. As
the object falls, its speed increases and thus D increases from
zero until it eventually becomes equal to the object’s weight
(D = −mg). The net force on the object when (D = −mg)
will be equal to zero, and hence the object’s acceleration will
become zero (a = 0). As a result the body will fall at a
constant speed called the terminal speed vt :

�F = 0

1

2
cρAv2t − mg = 0

1

2
cρAv2t = mg

vt =
√
2mg

cρA

where m is the mass of the body.

Fig.3.9 An object falling through air experiences a drag force D and a
gravitational force mg

3.4 Applying Newton’s Laws

It is necessary to follow some steps when solving problems
using Newton’s second law. These steps can be summarized
in the following:

1. Draw a simple diagram of the objects in the system ana-
lyzed;

2. Draw a free-body diagram for each object in the system.
In a free-body diagram, the body is represented by a dot,
and all external forces (represented by vectors) acting on
the body are shown. The forces exerted by the body on
other bodies in the system are not included in its free-body
diagram;

3. A coordinate system should be drawn in a free-body dia-
gram with the body at its origin. Newton’s second law is
then applied along each axis using the components of each
force. The coordinate system must be oriented in such a
way that simplifies the analysis, i.e., some forces should
be directed along the axes;

4. Solve obtained equations for the unknowns.

Note that from here until Chap. 5, any object is assumed
to behave as a particle, i.e., all of its parts move in exactly the
same way When applying Newton’s second law, a particle is
represented by a dot on the free-body diagram. Furthermore,
the mass or friction of any rope or pulley is
neglected.

Example 3.7 A 25kg block is released from rest at the top of
a rough 40o inclined surface. It then accelerates at a constant
rate of 0.1m/s2. Find: (a) the coefficient of kinetic friction
between the box and the surface; (b) the maximum angle the
boxwould be at the verge of slipping if the angle of the incline
is changeable.

Fig. 3.10 The free-body diagram of a block accelerating down an
incline
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Solution 3.7 (a) The free-body diagram is shown in Fig. 3.10.
Applying Newton’s second law to the box gives

∑
Fx = mg sin θ − fk = ma

∑
Fy = n − mg cos θ = 0

fk = mg sin θ − ma = (25 kg)(9.8m/s2) sin 40◦ − (25 kg)(0.1m/s2)

= 155N

n = mg cos θ = (25 kg)(9.8m/s2) cos 40◦ = 187.7N

The coefficient of kinetic friction is

μk = fk
n

μk = (120N)

(212.2N)
= 0.57

(c) At the verge of slipping the force of static friction is max-
imum:

fsmax = μsn

Applying Newton’s second law we get

∑
Fx = mg sin θ − fsmax = 0

fsmax = mg sin θ

Also we have n = mg cos θ , therefore

μs = mg sin θ

mg cos θ
= tan θ

Since μs = 0.74 from Table3.1, we have

θ = tan−1 0.74 = 36.5o

Example 3.8 Two masses m1 = 2kg and m2 = 5kg are
connected by a massless cord that passes over a massless and
frictionless pulley (Atwood’s machine) as shown in Fig. 3.11.
Find the acceleration of the system and the tension in the cord.

Solution 3.8 The free-body diagram of each mass is shown
in Fig. 3.11. Applying Newton’s second law to each block
(taking positive y to be upwards) gives

∑
F1y = T − m1g = m1a

Fig. 3.11 The free-body diagram of an Atwoodõs machine

∑
F2y = T − m2g = −m2a

adding the two equations we have

a =
(
m2 − m1

m1 + m2

)
g =

(
3 kg

7 kg

)
(9.8m/s2) = 4.2m/s2

Substituting a in any of the two equations gives

T =
(

2m1m2

m1 + m2

)
g =

(
2(10 kg)

(7 kg)

)
(9.8m/s2) = 28N

Example 3.9 Two blocks of masses m1 = 1.5kg and m2 =
3.2kg are connected by a light string that passes over a mass-
less frictionless pulley as shown in Fig. 3.12. If the surface is
frictionless: (a) what is the distance that m2 will drop during
the first 0.6 s? (b) if a third block is attached tom1 using strong
glue, what must its mass be such that the system moves with
constant speed?

Solution 3.9 (a) The acceleration value is the same for both
masses since they are connected by a string. Figure3.12 shows
the free-body diagram for each mass. Applying Newton’s law
to m1 and m2 in the direction of motion we have for m2

∑
F2y = T − m2g = −m2a

and for m1

∑
F1x = m1g sin θ − T = −m1a

from this we have
T = m2(g − a)

and
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Fig. 3.12 The free-body diagram showing the forces on each block

m1g sin θ − m2(g − a) = −m1a

and therefore

a = (m2 − m1 sin θ)g

m1 + m2
= ((3.2 kg) − (1.5 kg) sin 45o)(9.8m/s2)

4.7 kg
= 4.5m/s2

After 0. 6s, the distance that m2 falls is

h = 1

2
at2 = 1

2
(−4.5m/s2)(0.6 s)2 = −0.81m

(b) If the system moves with constant speed, its acceleration
is zero

∑
F1x = (m1 + m3)g sin θ − T = 0

and ∑
F2y = T − m2g = 0

that gives
T = m2g

and
(m1 + m3)g sin θ − m2g = 0

hence

m3 = m2 − m1 sin θ

sin θ
= ((3.2 kg) − (1.5 kg) sin 45o)

sin 45◦ = 3.03 kg

Example 3.10 A 3kg block is hanged from the ceiling as in
Fig. 3.13. Find the magnitude of T1, T2, and T3.

Solution 3.10 The free-body diagrams of the block and the
knot are shown in Fig. 3.14. From Newton’s second law T3 is
equal to the weight of the block, i.e.,

Fig. 3.13 A block hanged from
the ceiling

Fig.3.14 The free-body diagram
of the block

T3 = w = mg = (3 kg)(9.8m/s2) = 29.4N

For the knot, we have

∑
Fx = T2 − T1 sin 50

o = 0 (3.1)

∑
Fy = T1 cos 50

o − T3 = 0 (3.2)

Solving for T1 from Eq.3.2 gives

T1 = T3
cos 50o

= (29.4N)

(0.64)
= 45.7N

Substituting this result into Eq.3.1 we get

T2 = T1 sin 50
◦ = (45.7N)(0.76) = 35N

Example 3.11 Figure3.15 shows a weight of 200 N that is
lifted with a constant speed. Find the tension in each part of
the rope and the force of lift.

Solution 3.11 Since the pulleys are massless and frictionless
we have 2T1 = T2 (T1 is the tension in each rope)and T2 =
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Fig. 3.15 Using two pulleys to
reduce the force necessary to lift
a weight

w = 200N, thus

T1 = T2
2

= (200N)

2
= 100N

we also have
T1 = F = 100N

3.4.1 Uniform Circular Motion

In Sect. 2.4.5, it was found that a particle moving in a circle
with a constant linear speed v (uniform circular motion) has
a centripetal acceleration directed towards the center of the
circle. Its magnitude is given by

arad = v2

r

where r is the radius of the circle. Figure3.16 shows an object
attached to a string in uniform circular motion (the plane of
motion is parallel to the Earth’s surface). From Newton’s sec-
ond law, the centripetal acceleration is caused by a force or net
force directed towards the center of the circle. Therefore, as
arad , the centripetal (or radial) force Frad has a constant mag-
nitude but its direction changes continuously The magnitude
of this centripetal force is given by

|�F| = Frad = marad = m
v2

r

If at some instant the radial force becomes zero, the object
would then move along a straight line path tangent to the
circle. Hence, the centripetal force is necessary to keep the
object in its circular path. The centripetal force may be any
kind of force such as friction, gravity, or tension.

Example 3.12 A conical pendulum consists of a bob of mass
m attached to a light string rotating in a horizontal circle as in

Fig. 3.16 An object attached to a string in uniform circular motion

Fig. 3.17 A conical pendulum consisting of a bob of mass m attached
to a light string rotating in a horizontal circle

Fig. 3.17. If the bob rotates with a constant speed and if θ and
m are known, find: (a) the tension in the string; (b) the speed
of the bob; (c) the period of motion.

Solution 3.12 The horizontal component of the tension force
supplies the required centripetal force to keep the bob in its
circular pathwhile the vertical component balances theweight
of the bob. (a) Applying Newton’s second law in both the x-
and y-directions we have

T cos θ − mg = 0

T = mg

cos θ
(3.3)

and

T sin θ = mv2

R
(3.4)

(b) Dividing Eq.3.4 by Eq.3.3 gives

v = √
gR tan θ
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(c) The period of motion is given by

τ = 2πR

v
= 2π

√
R

g tan θ

Since R = L sin θ , we have

τ = 2π

√
L cos θ

g

Example 3.13 (a) A car needs to turn on a level road without
skidding as in Fig. 3.18. Find the maximum speed for which
the car can take the curved path of the level road safely (b)
If the road is banked, i.e., the outer edge is raised relative to
the inner edge as in Fig. 3.19, find the maximum speed for
which the car can take the curved path of the level road safely
without depending on friction.

Solution 3.13 (a) The centripetal force required for the car to
remain in its circular path, is in this case, is the force of static
friction. The maximum speed for which the car can take the
curve without skidding is when the static frictional force is a
maximum. That is,

fsmax = μmg = mv2max

r

Hence
vmax = √

μrg

(b) If the road is banked the car can take the turn without
depending on friction as the required centripetal force. In that
case, the horizontal component of the normal force supplies

Fig. 3.18 A car turning without skidding

Fig. 3.19 A car turning on a banked road

the necessary centripetal force. Thus we have

n sin θ = mv2

r

and
n cos θ = mg

where v is the speed of the car. Dividing these two equations
gives

tan θ = v2

rg

If the angle θ and the curvature r are known, then the safe
speed limit can be found. If the car moves at a speed lower or
higher than that speed then the frictional force must supply
the additional centripetal force for the car to stay in its circular
path.

3.4.2 Nonuniform Circular Motion

In Sect. 2.4.6, we saw that an object in nonuniform circular
motion has both perpendicular (centripetal) and parallel com-
ponents of acceleration given by

arad = v2

r

and

at = d|v|
dt

The total acceleration is

a = arad + at

These radial and tangential accelerations are caused by radial
and tangential forces respectively (see Fig. 3.20):

Frad = marad = m
v2

r

Ft = mat = m
d|v|
dt

The net force is
F = Frad + Ft

Example 3.14 An object attached to a light string is rotat-
ing in a vertical circle of radius r (see Fig. 3.21). Find: (a)
the tension in the cord at the lowest and highest points; (b)
the minimum speed at the highest point such that the object
remains in its circular path.
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Fig. 3.20 The radial and tangential forces in nonuniform circular
motion

Fig. 3.21 An object attached to a string rotating in a vertical circle

Solution 3.14 (a) Applying Newton’s second law in both the
tangential and radial directions gives

mg sin θ = mat

and

T − mg cos θ = mv2

r

At the bottom θ = 0 and therefore at = 0 and

Tb = m

(
v2b
r

+ g

)

At the top θ = 1800 and at = 0 and

Tt = m

(
v2t
r

− g

)

(b) For the object to remain in its circular path, the string must
remain taut, i.e., Tt must be positive (Tt > 0). If Tt = 0 then
vt = √

gr . Hence, the velocity must satisfy vt >
√
gr .

Fig.3.22 Anobject subjected to two forces acting in different directions

Fig. 3.23 A block released from the top of an incline

Fig. 3.24 Two masses connected
by a light string over a frictionless
pulley of negligible mass
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Fig. 3.25 A block hanged from
the ceiling

Fig. 3.26 A block held in
equilibrium

Fig. 3.27 Two blocks connected by a light rope and pulled by a force

Problems

1. A 4kg object is exposed to two forces (see Fig. 3.22).
Find the magnitude and direction of the acceleration of
the object.

2. A 0.2kg block is released from the top of an inclined plane
of angle 30o as in Fig. 3.23. Find the speed of the block
just as it reaches the bottom.

3. Two masses are connected by a light string that is con-
nected to a frictionless pulley of negligible mass as in
Fig. 3.24. Find the magnitude of the acceleration of the
masses and the tension in the string.

4. A block is pushed up along a smooth inclined plane of
angle of 45o where it is given an initial velocity of 8m/s.
Determine the time it takes the block to return to its initial
position.

5. Find the tension in each string in the system shown in
Fig. 3.25.

6. A 5kg block is held in equilibrium as in Fig. 3.26. Find
the normal force acting on the block.

7. Find the normal force exerted on a 70kg man standing
inside an elevator that is accelerating upwards at a rate of
2m/s2.

8. Find the acceleration of the system shown in Fig. 3.27
and the tension in the string if m1 = 3kg and m2 = 4kg
(assume massless string and frictionless surface).

Fig. 3.28 Two blocks placed on top of each other, where a horizontal
force is applied to the lower block

Fig. 3.29 A car moving on a
curved path

Fig. 3.30 A block of mass m on
a frictionless table is attached to
light string that passes through
the center of the table and is
connected to a larger block of
mass M

9. Two blocks of masses 3 and 5kg are placed on top of each
other as in Fig. 3.28. If the coefficient of static friction
between the blocks is 0.2 and assuming there is no friction
between the lower block and the surface on which it rests,
find the maximum horizontal force that can be applied to
the lower block such that the blocks move together.

10. A 1000kg car move along the track shown in Fig. 3.29.
Find (a) the maximum speed the car can have at point A
such that it does not leave the track (b) the normal force
exerted on the car at B if its speed there is 15m/s.

11. A block of mass m on a frictionless table is attached to
light string that passes through the center of the table
and is connected to a larger block of mass M (see
Fig. 3.30). Ifmmoves in uniformcircularmotion of radius
r and speed v, find v such that M remains at rest when
released.

12. A lkg particle moves in the force field given by F =
2t i + (5t − 1)j − 6t2k. Find the position of the particle
at any time if at t = 0, r0 = 0, and v0 = 0.



3.4 Applying Newton’s Laws 51

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


4Work and Energy

4.1 Introduction

Energy is a very important concept that is heavily used in
everyday life. Everything around us, including ourselves,
needs energy to function. For example, electricity provides
home appliances with the energy they require, food gives us
energy to survive, and the sun provides earth with the energy
needed for the existence of life!

Experiments show that energy is a scalar quantity related
to the state of an object. Energy may exist in various forms:
mechanical, chemical, gravitational, electromagnetic, nuclear,
and thermal. Furthermore, energy cannot be createdor destroyed;
it can only be transformed from one form to another. In other
words, if energy were to be exchanged between objects inside
a system, then the total amount of energy (the sum of all forms
of energy) in the system will remain constant.

A transformation of energy occurs due to the action of a
force known as work or due to heat exchange between objects
(or between an object and its environment). If energy is trans-
ferred due to work then it may be defined as the capacity of
doing work. This book is concerned with mechanical energy
which involves kinetic energy (associated with the object’s
motion) and potential energy (associated with the position of
the object in space).

4.2 Work

Work may have many meanings. Sometimes, work is said to
be done when a muscular activity is performed. Work may
also refer to mental activity (mental work). In physics, the
definition of work is different. Work is said to be done if a
force is applied to an object while it is moving, i.e., if there
is no resulting displacement, no work is done. Suppose that
a person holds a heavy box for sometime and then starts to
feel tired. The reason he/she feels tired is because chemical
energy in his/her body is converted into internal microscopic
motions of the muscles. Since the energy is not transferred to

the box being carried (the box did not move), the work done
on the box is equal to zero.

4.2.1 Work Done by a Constant Force

Consider an object exposed to a constant force F (see Fig. 4.1).
If the object is displaced through a displacement s, then the
work done on the object is a scalar quantity defined as

W = Fs cos θ = F · s

where θ is the smaller angle between F and s. The component
ofF in the direction of s (F cos θ) is the only effective compo-
nent that produces motion. The work done represents energy
transferred to or from the object via that force. If (θ = 0), the
work done on the object is positive, i.e. energy is transferred
to the object. If (θ = 180o), the work done is negative, i.e.,
energy is transferred from the object. The SI unit of work is
Newton meter (N.m) also named as the Joule.

1 Joul = 1 J = 1 kg.m2/s2

Note that energy and work have the same units.

4.2.2 Work Done by Several Forces

Consider an object exposed to several forces as in Fig. 4.2. The
work done by all of these forces is the sum of the individual
amounts of work done by each force:

W = F1 · s + F2 · s + F3 · s + · · ·

W = W1 + W2 + W3+
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Fig. 4.1 An object exposed to a constant force F and undergoes a dis-
placement of s

Fig.4.2 An object exposed to several forces undergoes a displacement
of s

Another method to find the work is by considering the resul-
tant of these forces:

W =
( ∑

F
)

· s

where
�F = F1 + F2 + F3+

Example 4.1 A lady pulls an 80 kg block horizontally on a
rough surface by a constant force of 400 N that is at 20o to
the horizontal. If the block is pulled a distance of 6m and if
the opposing force of friction has a magnitude of 118 N : (a)
determine the work done on the block by each of the applied
force, the frictional force, the normal force, and the force of
gravity; (b) find the totalworkdoneon theblock; (c) determine
if it is easier for the lady to pull the block at an angle larger
than 20◦.

Solution 4.1 (a) The work done by the applied force is

Wapp = F·s = Fs cos θ = (400N)(6m) cos 20◦ = 2255.3 J

The work done by the frictional force is

W f = Fs cos θ = (118N)(6m) cos 180◦ = −708 J

The work done by the normal force and the force of grav-
ity are both zero since each force is perpendicular to the
displacement.

(b) The total work done is

Wtot = Wapp + W f = (2255.3 J) − (708 J) = 1547.3 J

The total work done can also be found by computing the net
force acting on the block and calculating its work.

(c) For (0 ≤ θ ≤ 90o), If θ2 > θ1, then cos θ2 < cos θ1
and therefore Wapp2 < Wapp1, i.e., it is easier for the man to
pull at an angle larger than 20o.

Example 4.2 A delivery man wants to push a crate up a ramp
of length s: (a) find the minimum work the man must do to
lift the crate to the top of the ramp; (b) determine if a ramp
with a steeper incline would be more difficult for the man to
push the crate.

Solution 4.2 (a) The minimum work that the delivery man
must do is the work done against gravity The work done on
the crate by the force of gravity is

Wg = −mgs sin θ

Hence the minimum work Ww that the delivery man must do
is equal to +mgs sin θ.

(b) For angles between 0 and 90o, if θ2 > θ1, then sin θ2 >

sin θ1. Hence Ww2 ≥ Ww1, i.e., the more inclined the ramp is
the more difficult it is to move the crate.

4.2.3 Work Done by aVarying Force

Previously, the work done in the special case of a force that is
constant in both magnitude and direction was discussed. The
object there moved along a straight line. In many situations,
the force may vary in magnitude or in direction or in both, and
the object may move along a curved path. To find the work
done in this case, consider a particle moving along the curved
path shown in Fig. 4.3. While it is moving, a force F that
varies in bothmagnitude and direction with the position of the
particle acts on it. Let us divide the path into a large number n
of very small displacements where each is tangent to the path.
For each displacement, the force can be approximated to be
constant in bothmagnitude and direction. The total work done
as the particle moves from P to Q is the sum of the individual
amounts of work done along each displacement, that is

W = F1 · �r1 + F2 · �r2 + F3 · �r2 + · · ·Fn · �rn

W =
n∑

i=1

Fi · �ri

By dividing the path into more displacements we have
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Fig. 4.3 A particle moving along a curved path. While itõs moving, a
force F that varies in both magnitude and direction with the position of
the particle acts on it

W = lim�ri→0

n∑
i=1

Fi · �ri

or

W =
∫
C
F · dr =

∫ Q

P
F · dr

As mentioned in Sect. 1.10.1, this integral is called the line
integral. Each component of F(Fx , Fy or Fz) may be a func-
tion of x, y, and z, and the curve can be determined by its
equations that relates x, y, and z to each other. The compo-
nent form of the above equation is

W =
∫ r f

ri
F · dr =

∫ x f

xi
Fxdx +

∫ y f

yi
Fydy +

∫ z f

zi
Fzdz

(4.1)

Now consider the case in which the particle moves along a
straight line (for example the positive x-axis) and in which
the force acting on the particle has a constant direction along
the x-axis and a magnitude that varies with x . Equation 4.1 is
then reduced to

W =
∫ x f

xi
Fx (x)dx (4.2)

This equation represents the area under the curve in Fig. 4.4.
If F(x) is constant then we have

W =
∫ x f

xi
Fx (x)dx = F

∫ x f

xi
dx = F(x f − xi ) = Fs

The work is then equal to the rectangular area shown in
Fig. 4.5.

Example 4.3 In Example 3.3, find the work done by the force
in moving the particle during the time interval from t = 0 to
t = 1 s.

Solution 4.3 The work done from t = 0 to t = 1 s is

Fig. 4.4 The area under the curve represents the work

Fig. 4.5 The work is equal to the rectangular area

W =
∫ t=1

t=0
F · dr =

∫ t=1

t=0
(2t2i − 3tj).(1/3t4i − t3j)dt

=
∫ t=1

t=0
(0.66t6 + 3t4)dt

= (0.1t7 + 0.6t5)|t=1
t=0 = 0.7 J

Example 4.4 A force acting on a particle is a function of
position according to Fig. 4.6. Find the work done by this
force as the particle moves from xi = 0 to x f = 9m.

Solution 4.4 Thework done is equal to the area of the triangle
under the curve between xi = 0 to x f = 9m, i.e.

W = 1

2
(9m)(4N) = 18 J

Example 4.5 A ball that is suspended from a ceiling by a
light rope is displaced a small distance to the position shown
in Fig. 4.7. If it is released from rest at B, find the work done
by the tension force and the force of gravity as the ball moves
from B to A.

Solution 4.5 Because the tension force is always perpendicu-
lar to the displacement, the work done by it is zero at all times.
The only component of the gravitational force that does work
is its tangential component. Therefore,
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Fig. 4.6 A force acting on a particle is a function of position

Fig.4.7 A ball suspended by a light rope and displaced a small distance
from the position of equilibrium

W =
∫ θ0

0
F · ds =

∫ θ0

0
mg sin θ cos(0)ds

Since s = Rθ , then ds = Rdθ , and we have

W = mgR
∫ θ0

0
sin θdθ = −mgR cos θ |θ00 = mgR(1 − cos θ0)

4.3 Kinetic Energy (KE) and the
Work–Energy Theorem

Consider a particle that is exposed to a net field force and is
moving along a curve in space. Suppose that the particle is
at P at ti and at Q at t f and that its velocity at P and Q is vi
and v f , respectively. The net work done on the particle as it
moves from P to Q is then given by

W =
∫ Q

P
F·dr =

∫ t f

ti
F·dr

dt
dt =

∫ t f

ti
F·vdt =

∫
ti
m
dv
dt

·vdt

= m
∫ v f

vi
v · dv = 1

2
m

∫ v f

vi
d(v · v) = 1

2
m(v · v)|v f

vi

= 1

2
mv2f − 1

2
mv2i

The quantity
1

2
mv2 is the energy associatedwith themotion of

the particle called the kinetic energy (KE). Thus, if a particle
of constant massm is moving with a speed v, its KE is a scalar
quantity defined as

K = 1

2
mv2

It also can be written as K = 1

2
m(v ·v). Hence, the total work

done by the net force in displacing the particle is equal to the
change in the KE of the particle

Wnet = K f − Ki = �K

Similar to work, the SI unit of kinetic energy is the Joul. Note
that the work–energy theorem is applied only if the object
is treated as a particle (all of its parts move in exactly the
same way). As an example of how the theorem is applied
only for particle-like objects consider a man standing on a
skateboard on a horizontal surface (see Fig. 4.8). If the man

Fig.4.8 The center of mass of the system (man+skateboard) moves and
the work-energy theorem can be applied to that point
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pushes the bar then that would move him backwards along
with his skateboard. This motion is due to the reaction force
F exerted on him by the bar. The work done by n orw is equal
to zero since each force is perpendicular to the displacement.
Because the point of application of F did not move it follows
that the work done by that force is zero. Thus, from the work–
energy theorem theman should notmove. The question iswhy
did he move?

The fact here is that it is incorrect to treat the man as a
particle, since different parts of his body move in different
ways as he pushes the bar. Therefore, the work–energy the-
orem does not hold. The man must be treated as a system of
particles. In Chap.6, we will see that the motion of a system
of particles can be represented by the motion of its center of
mass. The center of mass behaves as if all of the mass of the
object (or system) is concentrated there and as if the net exter-
nal force is applied there. In the case of the skateboarder, the
center of mass of the system (man + skateboard) moves and
the work–energy theorem can be applied to that point.

The work–energy theorem is an alternative method for
describing motion without using Newton’s laws. It is espe-
cially useful in problems involving a varying force. Note that
the work and the kinetic energy are not invariant quantities;
they have different values when measured in different inertial
frames of reference. However, from the principle of invari-
ance, the equation Wnet = �K still holds for any inertial
frame.

Example 4.6 A 5 kg block resting on a surface is given an
initial velocity of 5 m/s. If the coefficient of kinetic friction
of the surface is μk = 0.2, find the distance the block would
move before it stops.

Solution 4.6 As we will see later in Sect. 4.3.1, the change in
the kinetic energy of the block due to friction is�K = − fks,
where s is the displacement of the block.

W f = �K = − fkd = −μkmgd = 1

2
mv2f − 1

2
mv2i

= −(0.2)(5 kg)(9.8m/s2)d = 0 − 1

2
(5 kg)(5m/s)2

d = 6.4m

Example 4.7 A 10 kg block is pushed on a frictionless hori-
zontal surface by a constant force of magnitude of 100 N and
that is at 30o below the horizontal. If the block starts from
rest, find its final speed after it has moved a distance of 3m
using work–energy theorem.

Solution 4.7

W = F · s = Fs cos θ = (100N)(3m) cos(−30o) = 259.8 J

From the work–energy theorem, we have

W = 1

2
mv2f − 1

2
mv2i

since vi = 0 we get

v2f = 2W

m
= 2(259.8 J)

(10 kg)
= 52m2/s2

v f = 7.2m/s

4.3.1 Work Done by a Spring Force

Consider a block attached to a light spring fixed at the other
end on a frictionless horizontal surface as in Fig. 4.9. Sup-
pose an external force Fext is applied to the block by either
stretching or compressing it through a small displacement
from its equilibrium (relaxed) position taken at x = 0. The
spring will then exert a restoring force Fs on the block that
opposes the applied force and restores the block to its equi-
librium position. For many kinds of springs and in the case
of small displacements, the spring force varies linearly with
the displacement x of the block (or any other object) from its
equilibrium position (x = 0). That is

Fs = −kx

where k is a constant called the force or spring constant. k
measures the stiffness of the spring. The stiffer the spring
the larger is k. This equation is known as Hook’s law. The
minus sign indicates that the spring force is always acting in
a direction opposing the displacement. The work done by the
spring force in moving the block from an initial position xi to
a final position x f is:

Fig. 4.9 A block attached to a light spring on a frictionless surface
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Fig. 4.10 A plot of Fs versus x for the mass-spring system

Fig. 4.11 A 2 kg block attached to a light spring of force constant 300
N/m on a horizontal smooth surface

Ws =
∫ x f

xi
Fxdx =

∫ x f

xi
(−kx)dx = −k

∫ x f

xi
xdx

Ws = 1

2
kx2i − 1

2
kx2f

The work done on the block by the spring as it moves from
an initial position xi = x to a final position x f = 0 is

Ws = 1

2
kx2

Figure4.10 shows a plot of Fs versus x for the mass–spring
system.

Example 4.8 A2kgblock is attached to a light spring of force
constant 300N/m on a horizontal smooth surface as shown
in Fig. 4.11. If the system is initially at rest at the position of
equilibrium and is then stretched a distance of 3cm, find the
work done by the spring on the block as it moves from xi = 0
to x f = 3cm.

Solution 4.8

Ws = 1

2
kx2i − 1

2
kx2f = 0− 1

2
(300N/m)(0.03m)2 = −0.135 J

4.3.2 Work Done by the Gravitational Force
(Weight)

If a particle-like object of massm is moving vertically upward
or downward near the surface of the earth where g is assumed

Fig.4.12 By taking y = 0 at the hand level, in the work done by gravity
a is −mgy f and in b is +mgyi

to be constant (see Fig. 4.12), and if air resistance is neglected,
then the only force that does work on the object is the gravita-
tional force mg. By taking the y-axis along the line of motion
(positive upwards) with y = 0 at the earth’s surface, the work
done by the gravitational force is

Wg =
∫ y f

yi
Fydy = −mg

∫ y f

yi
dy

Wg = mgyi − mgy f

Note that unlike the spring force the reference point yi may
be chosen anywhere. If the object moved downwards from
yi = y to y f = 0, the work done by the gravitational
force is

Wg = mgy

Now suppose the object moves along a curved path from P to
Q as in Fig. 4.13. The work done by the gravitational force is

W =
∫ Q

P
mg · ds = −

∫ Q

P
mgi · d(dx i + dyj) = −

∫ y f

yi
mgdy = mgyi − mgy f

This result is the same as if the object has followed a
straight vertical path. Therefore, the work done by the grav-
itational force depends only on the initial and final positions
of the object.

Example 4.9 A man lifts a 300 kg weight a distance of 2m
above the ground. Find the work done by the force of gravity
on the weight.

Solution 4.9

W = mgyi − mgy f = 0 − (300 kg)(9.8m/s2)(2m) = −5880 J
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Fig.4.13 a The total work done by the spring force on the block is zero
since xi = x f . b Along any path the work done by the gravitational
force is the same since the initial and final positions are the same

4.3.3 Power

Power is a quantity that defines how much work is done over
a period of time, i.e., power is the time rate of doing work,
or more generally, it is the time rate of energy transfer. If an
external force F does workW on an object for a time interval
�t , then the average power during that time is

P = W

�t

The instantaneous power is

P = lim�t→0

W

�t
= dW

dt

Our concern in this book is the mechanical power since it
involves mechanical work. If y is the velocity of the object,
we have

P = dW

dt
= F · ds

dt

for a constant force, or

P = F · v

The SI unit of power is joules per second (J/s) and is called
the watt (W).

1 W = 1 J/s = 1 kg.m2/s3

Another unit of power that is often used is the horsepower:

1 hp = 746W

4.4 Conservative and Nonconservative
Forces

In nature, there are two kinds of forces: conservative and non-
conservative forces. A conservative force is a force that con-
serves the energy of a system when acting upon it. The action
of this force results in changing the kinetic energy of any
object in the system. This change will be stored in the sys-
tem in the form of potential energy. For every conservative
force, there is a certain potential energy that is associated with
it. Such potential energy can be retransformed into kinetic
energy Thus, the total energy of the system would not be dis-
sipated, instead it would be conserved. A force that does not
act in this way is said to be a nonconservative force. Properties
of a conservative force are given as follows:

1. The net work done by a conservative force on a particle
moving from one point to another is independent of the
path taken by the particle;

2. The net work done by a conservative force in moving a
particle through any closed path is equal to zero.

A force not meeting these conditions is a nonconservative
force. As mentioned in Sect. 1.10.2, property 2 of a conser-
vative force can be obtained from property 1 (if A is a vector
field and the line integral of A between any two points is

independent of path, then
∮
C
A · r = 0). That is, these two

properties are equivalent. Examples of conservative forces in
mechanics are the gravitational and spring forces. To show
this let us go back to Sects. 4.3.1 and 4.3.2, where the work
done by the gravitational force or the spring force was calcu-
lated. We have seen that the work done in each case depends
only on the initial and final positions of the object. There-
fore, the work done by any of these forces is independent of
the path joining the initial and final positions. Furthermore, if
(xi = x f ) in the case of the spring or (yi = y f ) in the case
of the gravitational force the net work done is zero. Hence,
these forces are conservative.
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Fig.4.14 The longer the path the
more interaction between the
block and the surface and the
more the force of friction will act
and do work on the block

The force of friction is an example of a nonconservative
force. To show that, consider a block sliding on a rough sur-
face. Figure4.14 shows two possible paths connecting two
points. The longer the path the more interaction between the
block and the surface and the more the force of friction will
act and do work on the block. Thus, the work depends on the
path taken between the two points and therefore the frictional
force is a nonconservative force.

4.4.1 Potential Energy

For a system consisting of two or more objects, the poten-
tial energy U of the system is the energy associated with the
configuration of the system. That is, the potential energy is
the energy associated with the position of objects in the sys-
tem relative to each other. If the configuration of the system is
changed, then the potential energy of the system also changes.
Such energy is defined only in terms of a conservative force
because if such a force acts on a system then it can transform
the kinetic energy of any object in the system into potential
energy of the system and vice versa. The potential energy
means that the system has potential to do work.

In Sect. 1.10.2 it has been proven that the line integral in
Eq. (1.2) is independent of the path joining the points P and
Q if and only if A = ∇φ, or equivalently ∇ ×A = 0. Where
φ(x, y, z) is some scalar that has continuous partial deriva-
tives. Therefore, for a conservative force field F(x, y, z),
there always exist a scalar field U = U (x, y, z) (called the
potential energy) such that

F = −∇U = −
(

∂U

∂x
i + ∂U

∂y
j + ∂U

∂z
k
)

Furthermore
∇ × F = 0

Thus, the total work done by a conservative force in moving
a particle from Pi to Pf (see Fig. 4.15) is

W =
∫ Pf

Pi
F · ds =

∫ Pf

Pi
−∇U · ds =

∫ Pf

′Pi
−dU = Ui −U f = −�U

or

�U = −
∫ Pf

Pi
F · ds

where U = U (x, y, z). Because only the change in the
potential energy is significant, it does not matter where the

Fig. 4.15 The total work done by a conservative force in moving a
particle from Pi to Pf

reference point (U) is chosen. This is because ifUi is changed
U f will be also changed but �U will remain constant.

Example 4.10 A force acting on a particle is given by F =
−kr. Determine: (a) whether or not the force is conserva-
tive; (b) the potential energy associated with the force if it is
conservative.

Solution 4.10 (a)

∇ × F =
∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−kx −ky −kz

∣∣∣∣∣∣

=
[

∂

∂y
(−kz)− ∂

∂z
(−ky)

]
i+

[
∂

∂z
(−kx)− ∂

∂x
(−kz)

]
j+

[
∂

∂x
(−ky)− ∂

∂y
(−kx)

]
k = 0

Therefore, the force is conservative.
(b)

U = −
∫

F · dr = −
∫

−kr · dr =
∫

krdr = 1

2
kr2 = 1

2
k(x2 + y2 + z2)

Example 4.11 If a force acting on a particle is given by F =
ayj, where a is a positive constant: (a) find the work done in
moving the particle along the closed path shown in Fig. 4.16;
(b) determine if the force is conservative.

Solution 4.11 (a) Along path 1 we have y = 1 and dy = 0
and along path 3 we have y = 2 and dy = 0.

W =
∮
c
F·dr =

∫
1
F·dr+

∫
2
F·dr+

∫
3
F·dr+

∫
4
F·dr = 0+

∫ 2

y=1
aydy+0+

∫ 1

y=2
aydy = 0

(b) Since the total work done through the closed path is
zero, the force is conservative.
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Fig. 4.16 The work done in moving the particle along a closed path

Example 4.12 Find the force acting on a particle if the poten-
tial energy associated with it is U = 5y2 − 3z.

Solution 4.12

Fy = −∂U

∂y
= −10y

Fz = −∂U

∂z
= 3

and therefore F = −10yj + 3k.

4.4.1.1 The Gravitational Potential Energy
As we have mentioned in Sect. (4.1.7), the work done by the
gravitational force in displacing a particle near the earth’s
surface from yi to y f is

Wg = mgyi − mgy f

Since Wg = −�Ug = Ugi −Ug f , we have

Ugi −Ug f = mgyi − mgy f

If y f = 0 and yi = y, the gravitational potential energy of
the object–earth system may be written as

Ug = mgy

The force of gravity near the surface of the earth can be found
from the gravitational potential energy In general we have
F = −∇U here, since the motion is in one direction we have

Fg = −dU

dy
j = − d

dy
(mgy)j = −mgj

4.4.1.2 The Elastic Potential Energy
It was found in Sect. (4.1.6) that the work done by the spring
force when moving a block from xi to x f (when it is stretched

or compressed) is

Ws = 1

2
kx2i − 1

2
kx2f

Since Ws = −�Us = Usi −Us f , we have

Usi −Us f = 1

2
kx2i − 1

2
kx2f

If xi = 0 and x f = x , the elastic potential energy of the
block-spring system can be written as

Us = 1

2
kx2

The spring force can be found from the elastic potential energy

F = −dU

dx
i = − d

dx

(
1

2
kx2

)
i = −kx i

4.5 Conservation of Mechanical Energy

The total mechanical energy of a system is defined as the sum
of all of the kinetic energies of the objects within the system
plus all of the potential energies of the system.

Etot = Ktot +Utot

Now, consider an isolated system in which there are no exter-
nal forces acting on it, or the net external force is zero. The
only forces acting on the system will be the internal forces
within the system. These forces may be conservative or non-
conservative. If only internal conservative forces exist, then
thework done by any of these forces on an object in the system
will transform its kinetic energy into potential energy (associ-
ated with that force), or vice versa. The internal conservative
force can also transform one form of potential energy into
another. The work done by such a force on an object in the
system is

W = �K

The change in potential energy due to this work is

W = −�U

Thus,
�K = −�U

or
�K + �U = 0

or
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Ki +Ui = K f +U f

If more than one conservative force acts, there will be a poten-
tial energy associated with each force. That is

Ki +
∑

Ui = K f +
∑

U f

Therefore we have
Ei = E f

or
�E = 0

From the previous discussion, we conclude that for an iso-
lated system in which only conservative forces act, the total
mechanical energy of the system remains constant (con-
served). Figure4.17 shows the changes of energy of a ball
thrown upwards. Now suppose that the system is not isolated
and that the external forces acting on the system are conser-
vative. The change in the kinetic energy of the system is then
equal to the work done on the system by an internal conser-
vative force plus the amount of kinetic energy changed due
to an external conservative force, that is,

�K = Wintc + �Kext

or
�K = −�U − �Uext

Hence
�K + �U + �Uext = 0

Therefore, the totalmechanical energyof the system remains
constant under both external and internal conservative forces.
If external nonconservative forces act on the system, or if
there is heat transfer, or if internal nonconservative forces
act, then the total mechanical energy may change and is no
longer conserved.

4.5.1 Changes of theMechanical Energy of a
System due to External Nonconservative
Forces

External nonconservative forces may act on a system if it is
not isolated. Consider a system that is not isolated in which
only internal conservative forces act. The change in the kinetic
energy of the system is then equal to the work done on the
system by an internal conservative force plus the amount of
kinetic energy changed due to an external nonconservative
force. This can be expressed as

�K = Wintc + �Kext

Fig.4.17 Changes in the kinetic and potential energies of a ball thrown
vertically upwards

or
�K = −�U + �Kext

Thus
�E = �Kext (4.3)

This implies that the total mechanical energy has changed by
an amount of �Kext . Not that the work done by a nonconser-
vative force cannot be calculated generally but the change in
the kinetic energy can be observed.

4.5.2 Friction

Friction is a nonconservative force as seen in Sect. 4.2. If this
force is applied externally to a system in which only internal
conservative forces act, it will decrease (dissipate) the kinetic
energy of the system by transforming it into thermal energy
The change in the mechanical energy of the system is

�E = �Kext

The work done by friction or any other nonconservative force
cannot be calculated. In otherwords, thework done by friction
is not simply − fks, where s is the displacement of the object
in the system. The reason behind not being able to calculate
the work done by friction is that at a microscopic level the
frictional force is not a single force that acts at one point.
Rather, it is a combination of forces acting at different points
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in the object. However, the loss in kinetic energy of the object
can be calculated as shown below: Consider a block sliding on
a rough surface. Let’s choose the block only to be our system.
From the equation of motion, we have

v2f − v2i = 2as

Newton’s second law gives

− fk = ma

Thus
− f s = mas

or

− fss = 1

2
mv2f − 1

2
mv2i

Therefore
�Kext = − fks

This quantity represents the magnitude of the loss in the
kinetic energy of the block due to friction. This loss of energy
appears as thermal energy of the block and of the surface on
which it slides.

4.5.3 Changes in Mechanical Energy due to
Internal Nonconservative Forces

In solving problems you are free to choose the system. If
we considered the block plus the surface as our system, then
friction will be an internal nonconservative force and we may
write

�E = −�Eint = �Kin,nc = − fks

where �Kin,nc is the change in the kinetic energy of the sys-
tem due to an internal nonconservative force. Another exam-
ple of a nonconservative force is the force that you exert on
your body by your muscles. This force transfers the chemi-
cal energy of your body into kinetic energy In Sect. (4.1.5),
we have seen that the motion of the skateboarder can be
explained using the concept of the center of mass. Another
way to explain the motion of the skateboarder is that the inter-
nal chemical energy of the man is transformed into kinetic
energy, and we may write

�E = �K = −�Eint

Since �U = 0 in his case. An additional example of noncon-
servative forces is the forces that different parts in an object
exert on each other when the object is deformed. These forces
transform the kinetic energy of the object into internal energy.

In all cases, even though energy can transfer from one object
to another or to the environment, the total amount of energy
in the universe is constant. That is, energy gained by a sys-
tem is lost by another system. In other words, energy cannot
be created or destroyed it can only be transformed from one
form to another and the total energy of an isolated system is
conserved (constant). This statement is known as the law of
conservation of energy The law of conservation of energy is
also valid in relativity and quantum mechanics.

4.5.4 Changes in Mechanical Energy due to All
Forces

Consider a system inwhich there are both internal and external
conservative and nonconservative forces acting on it. In this
case, the change in the total mechanical energy of the system
can be written as

�E = �K + �U + �Uext = �Kext − �Eint

Example 4.13 A 0.2 kg apple falls from a tree at a distance
of 3m above the ground. Find: (a) the velocity of the apple
at an altitude of 2m and at the instance just before it hits the
ground; (b) the altitude of the apple when its velocity is 4m/s.

Solution 4.13 (a) Consider the system to be the earth + the
apple. By neglecting air resistance (the apple is in free-fall),
the only internal force that acts within the earth–apple system
is the force of gravity. Because the gravitational force is a con-
servative force, the total mechanical energy of the system is
conserved. Therefore as the apple falls its gravitational poten-
tial energy is converted into kinetic energy such that at any
instant the total mechanical energy of the system is constant.
Applying the law of conservation of energy to the system and
by taking y = 0 at the earth’s surface and the gravitational
potential energy to be zero at y = 0, we have

K f +U f = Ki +Ui

1

2
mv2f + mgy = 0 + mgh

where h is its initial altitude. That gives

v f = √
2g(h − y)

At y = 2m,

v f =
√
2(9.8m/s2)(1m) = 4.43m/s

At y = 0
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Fig.4.18 By ignoring friction, the total energy of the roller coaster can
be considered to be conserved

v f =
√
2(9.8m/s2)(3m) = 7.7m/s

(b)

y = h − v2f
2g

= (3m) − (4m/s)2

2(9.8m/s2)
= 2.2m

Example 4.14 A roller coaster of mass 500 kg starts from
rest at point A, and rolls down the track as shown in Fig. 4.18.
Ignoring friction, determine: (a) the roller coaster speed at B
and C; (b) the work done by gravity as the rollercoaster moves
from A to B.

Solution 4.14 (a) Consider the system to consist of the roller-
coaster+ the track+ the earth. Taking the gravitational poten-
tial energy to be zero at the earth’s surface and from the con-
servation of energy we have

K f +U f = Ki +Ui

1

2
mv2B + mghB = 0 + mghA

Therefore,

vB = √
2g(hA − hB) =

√
2(9.8m/s2)(25m) = 22.13m/s

Similarly, the velocity at C is

vC = √
2g(hA − hC ) =

√
2(9.8m/s2)(20m) = 19.8m/s

You may also calculate the velocity at C by taking B as the
initial point.

(b) As the car moves fromA to B the work done by gravity
is

Wg = −�U

Fig. 4.19 A block released from rest on top of an incline

Wg = −(mghb − mgha) = 1.22 × 105 J

Example 4.15 A block of mass 5 kg is released from rest at
the top of a 45o incline that is 0.5m long as shown in Fig. 4.19.
It then slides on a horizontal surface that is 0.7m long and
goes up again on a second ramp that is at 30o to the horizontal.
If the coefficient of kinetic friction between the block and all
three surfaces is 0.2, find themaximumdistance that the block
would move up the second ramp?

Solution 4.15 First, we divide the path into three parts. Let us
consider the system as the block only Along the first part the
change in the total mechanical energy of the system is equal
to the energy dissipated by friction. Thus,

�E = �Kext

K f +U f = Ki +Ui + �Kext

1

2
mv2f 1 + 0 = 0 + mgh − fk1s1

the force of kinetic friction is

fk1 = μkn = μkmg cos θ1 = (0.2)(5 kg)(9.8m/s2) cos 45o = 6.93N

That gives

1

2
mv2f 1 = mgs1 sin θ1 − fk1s1 = (5 kg)(9.8m/s2)(0.5m) sin 45o

− (6.93N)(0.5m) = 13.9 J

v f 1 = 2.35m/s. Along the second path we have again

K f +U f = Ki +Ui + �Kext

1

2
mv2f 2 + 0 = 1

2
mv2i2 + 0 − fk2s2

The force of kinetic friction is given by

fk2 = μkmg = (0.2)(5 kg)(9.8m/s2) = 9.8N
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and therefore

1

2
mv2f 2 = 1

2
(5 kg)(2.35)2 − (9.8N)(0.7m) = 6.95 J

v f 2 =
√
2
(6.94 J)

(5 kg)
= 1.7m/s

Finally, along the third path, we also have

K f +U f = Ki +Ui + �Kext

and

0 + mgs3 sin 30
o = 1

2
mv2i3 + 0 − fk3s3

but we have

fk3 = μkmg cos 30o = (0.2)(5kg)(9.8m/s2)(0.866) = 8.5N

and thus

(5 kg)(9.8m/s2)s3(0.5) = 1

2
(5 kg)(1.7m/s)2 − (8.5N)s3

That gives s3 = 0.2m.

Example 4.16 Two masses m1 = 5 kg and m2 = 9 kg are
connected by a light rope that passes over a massless friction-
less pulley as in Fig. 4.20. If the system is released from rest
when m2 is at 0. 5m above the ground, use the principle of
conservation of energy to determine the speed with whichm2

will hit the ground.

Solution 4.16 If air resistance is neglected, the only force
acting in the masses-earth system is the gravitational force
between them and hence the total mechanical energy of the
system is conserved, i.e.,

K f +U f = Ki +Ui

Fig. 4.20 Two masses connected
by a light rope that passes over a
massless frictionless pulley

Because the two masses are connected by a rope, they have
the same speed at any instant. Ifm2 descends a distance h,m1

will rise through the same distance and we have

1

2
m1v

2 + 1

2
m2v

2 + m1gh = m2gh

1

2
(m1 + m2)v

2 = g(m2 − m1)h

and therefore

v =
√
2gh(m2 − m1)

(m1 + m2)
=

√
2(0.5m)(9.8m/s2)(4 kg)

(14 kg)
= 1.7m/s

Example 4.17 A 0.25 kg ball is attached to alight string of
length L = 0.5m as in Fig. 4.21. Find (a) the tension in the
string at B(θ = 10◦) if the ball is given an initial velocity
va = 0.5m/s at its lowest position; (b) the velocity of the
ball at A if the ball is released from rest at B.

Solution 4.17 (a) At point B some of the kinetic energy of
the ball is converted into potential energy By taking the origin
of the x-y coordinates at the lowest point A, we have

K f +U f = Ki +Ui

1

2
mv2b + mgL(1 − cos θ) = 1

2
mv2a + 0

and therefore we get

v2b = v2a − 2gL(1 − cos θ) (4.4)

Applying Newton’s second law along the radial direction to
the ball at B we have

Fig. 4.21 A ball attached to a light string
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T − mg cos θ = mv2b
L

(4.5)

Substituting Eq. 4.4 into Eq. 4.5 gives

T = mg cos θ + m

L
(v2a − 2gL(1 − cos θ))

thus

T = m

(
g cos θ + v2a

L
− 2g + 2g cos θ

)

and hence

T = m

(
3g cos θ − 2g + v2a

L

)

Substituting the values of θ and va gives T = 2.5 N.
(b) If vb = 0, we have from K f +U f = Ki +Ui

1

2
mv2a + 0 = 0 + mgL(1 − cos θ)

hence

va = √
2gL(1 − cos θ) =

√
2(9.8m/s2)(0.5m)(1 − cos 10o) = 0.4m/s

Example 4.18 A3kg block compresses a spring of negligible
mass a distance of 0.1m from its equilibrium position as in
Fig. 4.22. If the surface is frictionless and the force constant
of the spring is 200N/m, and the block is free to move, find:
(a) the speed of the block just as it leaves the spring; (b) the
maximum height that the block will reach; (c) suppose that a
part of the horizontal track is rough with a length of 0.05 m,
find the coefficient of kinetic friction if the block reaches a
maximum height of 0.014m.

Solution 4.18 (a) The only force acting inside the spring–
mass–earth system is the spring force that acts on the block.
This force is conservative and therefore the total mechanical
energy of the system is conserved. The potential energy of the
spring is transformed into kinetic energy of the block,

K f +U f = Ki +Ui

1

2
mv2f + 0 = 0 + 1

2
kx2

Fig.4.22 A3kgblock compresses a spring of negligiblemass a distance
of 0.1 m from its equilibrium position

and therefore

v2f = k

m
x2 = (200N/m)

(3 kg)
(−0.1m)2

this gives v f = 0.82m/s.
(b)

K f +U f = Ki +Ui

0 + mgh = 1

2
mv2i + 0

and hence

h = v2i
2g

= (0.8.2m/s)2

2(9.8m/s2)
= 0.034m

We can also take the initial position before the block is
released.

(c)
K f +U f = Ki +Ui + �Kin,nc

0 + mgh = 0 + 1

2
kx2 − fkd

along the rough surface fk = μkmgd, and therefore

μkmgd = 1

2
kx2 − mgh

thus

μk(3 kg)(9.8m/s2)(0.05m) = 1

2
(200N/m)(0.1)2−(3 kg)(9.8m/s2)(0.014)

That gives μk = 0.2

Example 4.19 A small stone of mass 0.1 kg is released from
rest inside a large hemispherical bowl of radius R = 0.2m. It
then slides along the surface as in Fig. 4.23. (a) Find the speed
of the stone at point B and C; (b) If the surface of the bowl is
not frictionless, how much energy is dissipated by friction as
the stone moves from A to B if the speed at B is 1.7m/s?

Fig. 4.23 A small stone of mass 0.1 kg is released from rest inside a
large hemispherical bowl of radius R = 0.2m



4.5 Conservation of Mechanical Energy 67

Solution 4.19 (a)

K f +U f = Ki +Ui

1

2
mv2B + 0 = 0 + mgR

thus

vB = √
2gR =

√
2(9.8m/s2)(0.2m) = 2m/s

At point C some of the kinetic energy at B is converted into
potential energy and we have

1

2
mv2C + mg

(
R − R

4

)
= 1

2
mv2B + 0

v2C = v2B − 3

2
gR = (2m/s)2 − 3

2
(9.8m/s2)(0.2m)

and therefore vC = 1m/s.
(b) If a force of kinetic friction exists between the stone

and the bowl, the total mechanical energy at point B is given
by

E f = Ei + �Kext

where the stone is considered as the system, therefore

K f +U f = Ki +Ui + �Kext

1

2
mv2b + 0 = 0 + mgR + �Kext

hence the energy dissipated by friction is

�Kext = 1

2
mv2b − mgR = (0.1 kg)

(
1

2
(1.7m/s)2 − (9.8m/s2)(0.2m)

)
=

−0.05 J

Example 4.20 A skier starts at the top of a frictionless incline
as in Fig. 4.24. Find the velocity with which he will leave the
second incline.

Solution 4.20 From the conservation of energy the velocity
when he leaves the track is

K f +U f = Ki +Ui

1

2
mv2 + mgh2 = mgh1

v = √
2g(h1 − h2) =

√
2(98m/s2)((20m) − (10m))

That gives v = 14m/s.

Fig. 4.24 A skier slides from rest on top of an incline

Fig.4.25 A0.4 kg stone is released from rest at point Awhere hA = 2m

Example 4.21 A 0.4 kg stone is released from rest at point A
where hA = 2m (see Fig. 4.25). It then slides without friction
along the track shown where R = 0.5m. Determine: (a) the
speed of the stone at B; (b) the normal force exerted on the
stone at B; (c) the magnitude of the total acceleration of the
stone at C; (d) the minimum height in which the stone must
be released such that it does not fall off the track.

Solution 4.21 (a) From the conservation of energy, we have

mghA = 1

2
mv2B + 2mgR

vB = √
2g(hA − 2R) =

√
2(9.8m/s2)((2m) − 2(0.5m)) = 4.43m/s

(b) From Newton’s second law, we have

n + mg = m
v2B
R

n = m
v2B
R

− mg = (0.4 kg)

[
(4.43m/s)2

(0.5m)
− (9.8m/s2)

]
= 11.78N

(c) The velocity of the stone at C is

vC = √
2g(hA − R) =

√
2(9.8m/s2)((2m) − (0.5m)) = 5.42m/s

Therefore, the radial acceleration at C is

ar = v2C
R

= (5.42m/s)2

(0.5m)
= 58.8m/s2

The tangential force exerted on the stone at C is its weight
Ft = −mg, hence the tangential acceleration of the stone at
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C is at = −g and the magnitude of the total acceleration is

a =
√
a2r + a2t =

√
(58.8m/s2)2 + (−9.8m/s2)2 = 59.6m/s2

(d) When the stone is at the verge of falling at B, then the
only force acting on it is the force of gravity and we have
mg = mv2B/R, v2B = gR. From conservation of energy

vB = √
2g(hAmin − 2R)

or
2g(hAmin − 2R) = gR

and

hAmin = R

2
+ 2R = (0.25m) + (1m) = 1.25m

4.5.5 Power

Expanding on the definition of power, power is the rate of
energy transfer due to a force. If �E is the amount of energy
transferred in an amount of time �t, the average power is

P = �E

�t

The instantaneous power is then

P = lim�t→0

�E

�t
= dE

dt

4.5.6 Energy Diagrams

Consider a particle that is a part of an isolated system where
only internal conservative forces act. Suppose this particle
is moving along the x-axis while a conservative force that
depends only on the position of the particle acts on it. For
simplicity, we will assume that is the only force acting on
the system and that it does work only on that particle. The
potential energy of the system as a function of the particle’s
position (x) is shown in Fig. 4.26. At any point F(x) is given
by

F(x) = −dU (x)

dx

That is, it is the negative of the slope of the curve at that
point. Because this force is conservative it follows that the
total mechanical energy of the system is conserved. Therefore
the kinetic energy of the particle as a function of position is
given by

K (x) = E −U (x)

Fig.4.26 The potential energy of the system as a function of the parti-
cle’s position (x)

On the U versus x curve, the kinetic energy at any point can
be found by subtracting the value of U (at that certain point)
from E .

4.5.7 Turning Points

A turning point is a point in which the particle changes its
direction ofmotion. The points x1, x3, x5 and x7 are all turning
points.

4.5.8 Equilibrium Points

Equilibriumpoints occur in generalwhen∇U = 0. In the case
of one dimensional motion it occurs when dU (x)/dx = 0,
i.e. when F(x) = 0.

4.5.9 Positions of Stable Equilibrium

If at an equilibrium point d2U (x)/dx2 > 0, then U (x) is a
minimum at that point. The point is then said to be a position
of stable equilibrium, i.e., any minimum on theU (x) curve is
a position of stable equilibrium. Another method to find the
position of stable equilibrium is to find the sign of F(x) at
each side of the point. As an example, consider the point x2.

This point is a position of stable equilibrium since if the
particle is displaced slightly to the right of x2 then dU (x)/dx
is positive which leads to F(x) being negative and the particle
will accelerate back towards x2. On the other hand, if the
particle is displaced slightly to the left of x2, then dU (x)/dx
is negative and thus F(x) is positive and the particle will
also accelerates back to x2. Therefore, because F(x) tends to
restore the particle back to that position when the particle is
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Fig. 4.27 The potential energy of a mass-spring system as a function
of x

displaced in either direction, it is called a position of stable
equilibrium. x6 is also a position of stable equilibrium.

4.5.10 Positions of Unstable Equilibrium

If at an equilibrium point d2U (x)/dx2 < 0, then U (x) is
maximum at that point, and the point is called a position of
unstable equilibrium. In Fig. 4.26, x4 is a position of unstable
equilibrium since if the particle is slightly displaced to the
right of x4, F(x) is positive and the particle will accelerate
away from x4. If the particle is displaced to the left of x4, F(x)
is negative and the particle will also accelerate away from that
position. Therefore, because F(x) tends to repel the particle
away from that position, it is called a position of unstable
equilibrium. In general this force tends to move the particle
towards the minimum value of U (x). Figure4.27 shows the
potential energy of a mass–spring system as a function of x .

4.5.11 Positions of Neutral Equilibrium

Any point in a region where U (x) is constant and F(x) = 0
is called a position of neutral equilibrium. x8 is a position of
neutral equilibrium. If the particle is slightly displaced to the
right or left of x8, no restoring or repelling forces will act on
the particle and it will remain stationary The position of the
particle as a function of time can be obtained from

U (x) + K (x) = E

U (x) + 1

2
mv2 = E

v = ±
√

2

m
[E −U (x)]

Fig.4.28 The potential energy of a particle as a function of its displace-
ment

or
dx

dt
= ±

√
2

m
[E −U (x)]

hence

t =
∫ x

xi

dx

±
√

2
m [E −U (x)]

By evaluating this integral, we would obtain the time as a
function of the position, then by solving for x we get the
position as a function of time.

Example 4.22 Figure4.28 shows the potential energy of a
particle as a function of its displacement. Find: (a) the values
of x where the particle is in stable or unstable equilibrium;
(b) the direction of the force acting on the particle at 0.5 m.

Solution 4.22 (a) We have x = 1m and x = 4m are posi-
tions of stable equilibrium, x = 3m is a position of unstable
equilibrium.

(b) At 0.5 m, dU (x)/dx is negative and hence F(x) is
positive which means that the particle will accelerate in the
positive x-direction.

Example 4.23 Consider a block attached to a light spring and
released from rest at x = A. Find the position of the block as
a function of time using energy methods.

Solution 4.23

t =
∫ x f =x

xi=A

dx

±
√

2
m [E −U (x)]

=
∫ x f =x

xi=A

dx

±
√

2
m [(1/2)k A2 − (1/2)kx2]

=
∫ x f =x

xi=A

dx

±
√

k
m [A2 − x2]

= ±
√
m

k

∫ x f =x

xi=A

dx√[A2 − x2]
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= ±
√
m

k

[
− cos−1

( x

A

)]x f =x

xi=A
= ±

√
m

k

[
− cos−1(

x

A
)
]

− cos

(
±

√
k

m
t

)
= cos

(
cos−1

( x

A

))

or

x = A cos

√
k

m
t

Since cos(±θ) = θ and − cos θ = cos θ . In Chap.10, we
will see that this equation represents the equation of a simple
harmonic motion.

Problems

1. A force acting on a particle varies with position as in
Fig. 4.29. Find the work done by the force as the particle
moves from x = 0 to x = 8m.

2. A force F = (3i+ j− 5k)N acts on a particle that under-
goes a displacement r = (−2i+3j−k)m. Find the work
done by the force on the particle.

3. A 5 kg block is pulled from rest on a rough surface by a
constant force of 10 N that is at 30o to the horizontal. If
the coefficient of kinetic friction between the block and
the surface is 0.15, find the final speed of the block as
it moves through a displacement of 2m using the work–
energy theorem.

4. Calculate the work done against gravity in moving a 30
kg box through a height of 6m.

5. A 1600 kg car accelerates from rest at a rate of 1m/s2.
Find the average power delivered to the car during the
first 5 s.

6. Determine whether or not the force F = −mω2(x i + yj)
is conservative, where ω is constant and m is the mass
of the particle. If the force is conservative determine the
potential energy associated with it.

Fig. 4.29 A force acting on a particle varies with position

7. A 5 kg block slides down an inclined plane of angle 50o

(see Fig. 4.30). Using energy methods, find the speed of
the block just as it reaches the bottom if the coefficient of
kinetic friction is μk = 0.2.

8. A block of mass of 2 kg is pressed against a light spring
of force constant 400N/m (see Fig. 4.31). If the compres-
sion of the spring is 10cm, find the maximum height the
block will reach when it is released.

9. A force acting on a particle is given by F = −βy2j. Find
thework done inmoving the particle along the path shown
in Fig. 4.32.

Fig. 4.30 A block slides down
an inclined plane

Fig. 4.31 A block pressed
against a light spring and released

Fig. 4.32 The work done in moving the particle along a closed path
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Fig. 4.33 Two blocks connected
by a light rope that passes over a
massless frictionless pulley

Fig. 4.34 The potential energy versus displacement of a particle

Fig. 4.35 A block of mass m resting on a hemispherical mound of ice

Fig. 4.36 A block hanging from a spring

Fig. 4.37 The potential energy versus position of a particle

10. Two blocks are connected by a light rope that passes over
amassless frictionless pulley (see Fig. 4.33). If the system
is released from rest, find the total kinetic energy of the
blocks when the 5 kg block descends a distance of 0.5m
assuming that the surface is frictionless.

11. A particle of mass 1.5 kg moves along the x-axis where
its potential energy varies as in Fig. 4.34. Plot the force
Fx (x) versus x from x = 0 to x = 8m.

12. A block of mass m rests on a hemispherical mound of
ice as shown in Fig. 4.35. If it is given a very small push
and start sliding, find the height of the point in which the
block will lose contact with the mound.

13. A 3 kg block hangs from a spring as in Fig. 4.36. If the
spring stretches a distance of 10cm, find (a) the force
constant of the spring (b) the work done in expanding the
spring a distance of 5cm without accelerating it.

14. In Fig. 4.37, determine the Turning points and the posi-
tions of stable and unstable equilibrium.
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5Impulse,Momentum,and Collisions

5.1 Linear Momentum and Collisions

When two billiard balls collide, in which direction would they
travel after the collision? If ameteorite hits the earth,whydoes
the earth remain in its orbit? When two cars collide with each
other, why is one of the cars more damaged than the other?
Wewill find that to answer such questions, new conceptsmust
be introduced.

Consider the situation where two bodies collide with each
other. During the collision, each body exerts a force on the
other. This force is called an impulsive force, because it acts
for a short period of time compared to the wholemotion of the
objects, and its value is usually large. To solve collision prob-
lems by using Newton’s second law, it is required to know
the exact form of the impulsive forces. Because these forces
are complex functions of the collision time, it is difficult to
find their exact form and would make it difficult to use New-
ton’s second law to solve such problems. Thus, new concepts
known as momentum and impulse were introduced. These
concepts enable us to analyze problems that involve colli-
sions, as well as many other problems.

The law of conservation of momentum is especially used
in analyzing collisions and is applied immediately before and
immediately after the collision. Therefore, it is not necessary
to know the exact form of the impulsive forces, which makes
the problem easy to analyze. Next, we will discuss and verify
the concepts of momentum and impulse, and the law of con-
servation of momentum. The linear momentum (or quantity
of motion as was called by Newton) of a particle of mass m
is a vector quantity defined as

p = mv

where y is the velocity of the particle. A fast moving car has
more momentum than a slow moving car of the same mass.
Another example is that a bowling ball has more momentum
than a basketball moving at the same speed. The SI unit of

linear momentum is kg.m/s. In terms of components, wemay
write px = mvx , py = mvy , and pz = mvz . Newton’s second
law can be expressed in terms ofmomentum for a particle-like
object of constant mass as

�F = ma = m
dv
dt

= d(mv)
dt

or

�F = dp
dt

That is, the rate of change of the linearmomentumof an object
is equal to the resultant force acting on the object and is in the
same direction as that force.

5.2 Conservation of Linear Momentum

The law of conservation of linear momentum states that if the
net external force acting on a system equals zero (isolated)
and if there is no mass exchange with the surroundings of the
system (closed), then the total linearmomentum of the system
remains constant. To show that, consider an isolated system
consisting of two particles where the only forces that act in
the system are internal forces (see Fig. 5.1). The total linear
momentum of the system at any particular time is given by

ptot = p1 + p2 (5.1)

If the net force exerted on particle 2 by particle 1 is F21, then
from Newton’s third law, the net force exerted on particle 1
by particle 2 is F12, That is

F12 = −F21

Differentiating Eq.5.1 with respect to time and by using
Newton’s second law, we have
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Fig. 5.1 An isolated system consisting of two particles where the only
forces that act in the system are internal forces

dptot
dt

= dp1
dt

+ dp2
dt

= F12 + F21 = F12 − F12 = 0

That is,

ptot = constant

or
pi = p f

That is, the linear momentum of each particle may change,
but the total linear momentum of the system is the same
at all times. This statement is known as the law of con-
servation of linear momentum: If the net external force on
a system is zero, the total linear momentum of the system
remains unchanged (constant). In terms of components, we
have pix = p f x , piy = p f y , and piz = p f z . In solving prob-
lems involving collisions, pi and p f refers to the total momen-
tum of the system immediately before and immediately after
the collision, respectively. For a two-particle system, we have

p1i + p2i = p1 f + p2 f

From the principle of invariance, the law of conservation of
momentum is valid with respect to any inertial frame of refer-
ence. Furthermore, as the law of conservation of energy, the
law of conservation of momentum is valid in relativity and
quantum mechanics.

5.3 Impulse andMomentum

Impulse is a quantity that defines how a certain force acting
on a particle changes the linear momentum of that particle.
Now, consider a time-dependent force acting on a particle.
From Newton’s second law (F = dp/dt), we have

dp = Fdt

Fig. 5.2 One example of the variation of F over time

∫ p f

pi
dp =

∫
ti
Fdt

p f − pi = �p =
∫ t f

ti
Fdt

The right side of the equation is a vector quantity known as
the impulse I

I =
∫ t f

ti
Fdt

Hence,
I = �P

Which is known as the impulse–momentum theorem. In com-
ponent form, we have Ix = �px , Iy = �py , and Iz = �pz .
That is, the impulse of a force that acts on a particle during
a time interval is equal to the change in the momentum of the
particle during that interval. The direction of the impulse is
in the same direction as the change of momentum. If F has
a constant direction, the variation of its magnitude with time
may be of the form as shown in Fig. 5.2. The average of F is
given by

F = 1

�t

∫ t f

ti
Fdt

And thus, I can be written as

I = �p = F�t

That is, F is a constant force that gives the same impulse as F.
In the case of a collision between two bodies, the variation of
the impulsive force that each body exerts on the other during
the collision time takes the form as shown in Fig. 5.2.

5.4 Collisions

As discussed previously, when two bodies collide, they exert
large forces on one another (during the time of the collision)
called impulsive forces. These forces are very large such that
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any other forces ( e.g., friction or gravity) present during the
short time of the collision can be neglected. This approxima-
tion is known as the impulse approximation. For example, if a
golf ball was hit by a golf club, the change in the momentum
of the ball can be assumed to be only due to the impulsive
force exerted on it by the club. The change in its momen-
tum due to any other force present during the collision can be
neglected. That is, the force in the expression I = �p = F�t
can be assumed to be the impulsive force only The neglected
forces present during the collision time are external to the two-
body system, whereas the impulsive forces are internal. The
two-body system can therefore be considered to be isolated
during the short time of the collision (which is in the order
of a few milliseconds). Hence, the total linear momentum of
the system is conserved during the collision, which enables
us to apply the law of conservation of momentum immedi-
ately before and immediately after the collision. In general,
for any type of collision, the total linear momentum is con-
served during the time of the collision. That is, pi = p f .,
where pi and p f are the momenta immediately before and
after the collision. In the next sections, we will define various
types of two- body collisions, depending on whether or not
the kinetic energy of the system is conserved.

Example 5.1 A 50g golf ball initially at rest is struck by a
golf club. The golf club exerts a force on the ball that varies
during a very short time interval from zero before impact, to
a maximum value and back to zero when the ball is no longer
in contact with the club. If the ball is given a speed of 25m/s,
and if the club is in contact with the ball for 7 × 10−4 s, find
the average force exerted by the club on the ball.

Solution 5.1 The impulse of the force is

I = �p = mv f − 0 = (0.05 kg)(25m/s) = 1.25 kg · m/s

the average force exerted on the ball by the club is then

F = I

�t
= (1.25 kgm/s)

(7 × 10−4 s)
= 1785.7N

Example 5.2 A canon placed on a carriage fires a 250kg ball
to the horizontal with a speed of 50m/s. If the mass of the
canon and the carriage is 4000kg, find the recoil speed of the
canon.

Solution 5.2 Because there are no external horizontal forces
acting on the cannon-carriage-ball system, then the total
momentum of the system is constant (conserved) in the x-
direction

p f x = pix

m1v1 f + m2v2 f = 0

therefore,

v2 f = −m1

m2
v1 f = − (250 kg)

(4000 kg)
(50m/s) = −3.1m/s

i.e., the cannon recoils in the negative x-direction.

Example 5.3 A hockey puck of mass 0.16kg traveling on a
smooth ice surface collides with the court’s edge. If its initial
and final velocities are vi = −2 im/s and vf = 1 im/s and if
the hockey puck is in contact with the wall for 2ms, find the
impulse delivered to the puck and the average force exerted
on it by the wall.

Solution 5.3

I = �p = p f − pi = mv f − mvi = (0.16 kg)((l m/s) − (−2m/s))i = 0.48i kg · m/s

F = I
�t

= (0.48 i kg · m/s)

(0.002 s)
= 240 iN

Example 5.4 A 0.5kg hockey puck is initially moving in the
negative y-direction as shown in Fig. 5.3, with a speed of
7m/s. If a hockey player hits the puck giving it a velocity
of magnitude 12m/s in a direction of 60o to the vertical, and
if the collision lasts for 0.008 s, find the impulse due to the
collision and the average force exerted on the puck.

Solution 5.4 Along the x-direction, we have

pix = mvix = 0

and

p f x = mv f x = (0.5 kg)(12m/s) cos 30o = 5.2 kg · m/s

along the y-direction, we have

Fig. 5.3 A hockey player changing the momentum of the puck
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piy = mviy = (0.5 kg)(−7m/s) = −3.5 kg · m/s

and

p f y = mv f y = (0.5 kg)(12m/s) sin 30◦ = 3 kg · m/s

Therefore, the impulse of the force in each direction is

Ix = p f x − pix = (5.2 kg · m/s) − 0 = 5.2 kg · m/s

and

Iy = p f y−piy = (3 kg·m/s)−(−3.5 kg·m/s) = 6.5 kg·m/s

I = (5.2 i + 6.5 j)kg · m/s

I =
√

(5.2 kgm/s)2 + (6.5 kgm/s)2 = 8.3 kg · m/s

The direction of the impulse is

tan θ = Iy
Ix

= (6.5 kg · m/s)

(5.2 kg · m/s)
= 1.25

θ = 51.3o

where θ is measured from the positive x-axis. The average
force acting on the puck is

F = I

�t
= (8.3 kg · m/s)

(0.008 s)
= 1037.5N

Example 5.5 Two ice skaters of masses m1 = 50kg and
m1 = 62kg standing face to face push each other on a fric-
tionless horizontal surface. If skater (1) recoils with a speed
of 5m/s, find the recoil speed of the other skater.

Solution 5.5 For the two-skater system, the sum of the verti-
cal forces are zero (weight and normal forces) and the forces
exerted by one skater on the other is internal to the system.
That is, there are no external forces acting on the system and
the total momentum is conserved. Because the motion takes
place in a straight line, we have

p1i + p2i = p1 f + p2 f

0 = m1v1 f + m2v2 f

and hence,

v2 f = −m1

m2
v1 f = −(50 kg)

(62 kg)
(5m/s) = −4.03m/s

Example 5.6 A particle is moving in space under the influ-
ence of a force. If its momentum as a function of
time is

p = ((4t2 + t)i − (3t − 1)j + (5t3 + 2t)k) kg. m/s

(a) Find the force acting on the particle at any time; (b) Find
the impulse of the force from t = 0 to t = 1 s.

Solution 5.6 (a)

F = dp
dt

= ((8t + 1)i − 3j + (15t2 + 2)k)N

(b)

I = �p = (5i − 2j + 7k) − j = (5i − 3j + 7k) kg.m/s

5.4.1 Elastic Collisions

An elastic collision is one in which the total kinetic energy,
as well as momentum, of the two-colliding-body system is
conserved. These collisions exist when the impulsive force
exerted by one body on the other is conservative. Such force
converts the kinetic energy of the body into elastic potential
energy when the two bodies are in contact. It then recon-
verts the elastic potential energy into kinetic energy when
there is no more contact. After collision, each body may
have a different velocity and therefore a different kinetic
energy. However, the total energy as well as the total momen-
tum of the system is constant during the time of the colli-
sion. An example of such collisions is those between billiard
balls.

5.4.2 Inelastic Collisions

An inelastic collision is one in which the total kinetic energy
of the two-colliding-body system is not conserved, although
momentum is conserved. In such a collision, some of the
kinetic energy of the system is lost due to deformation and
appear as internal or thermal energy. In other words, the
(internal) impulsive forces are not conservative. Therefore,
the kinetic energy of the system before the collision is less
than that after the collision. If the two colliding objects
stick together, the collision is said to be perfectly inelas-
tic. There are some types of collisions in which the total
kinetic energy after the collision occurs is greater than that
before it occurs. This type of collision is called an explosive
collision.
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Fig. 5.4 Two particles of masses m1 and m2 experiencing an elastic
head-on collision

5.4.3 Elastic Collision in One Dimension

When a collision takes place in one dimension, it is referred
to as a head-on collision. Consider two particles of masses
m1 and m2 experiencing an elastic head-on collision as in
Fig. 5.4. Applying the law of conservation of energy and the
law of conservation of linear momentum gives

m1v1i + m2v2i = m1v1 f + m2v2 f

1

2
m1v

2
1i + 1

2
m2v

2
2i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

Solving these equations for v1 f and v2 f , we get

v1 f =
(
m1 − m2

m1 + m2

)
v1i +

(
2m2

m1 + m2

)
v2i (5.2)

v2 f =
(

2m1

m1 + m2

)
v1i +

(
m2 − m1

m1 + m2

)
v2i (5.3)

5.4.3.1 Special Cases
1. Ifm1 = m2, it follows from Eqs. 5.2 and 5.3 that v1 f = v2i
and v2 f = v1i . In other words, if the particles have equal
masses they exchange velocities.

2. If m2 is stationary (v2i = 0) , then from Eqs. 5.2 and
5.3, we have

v1 f =
(
m1 − m2

m1 + m2

)
v1i (5.4)

v2 f =
(

2m1

m1 + m2

)
v1i (5.5)

In that case m2 is called the target and m1 is called the pro-
jectile. Furthermore, ifm1 � m2, then from Eqs. 5.4 and 5.5,
we find that v1 f ≈ v1i and v2 f ≈ 2v1i . While if m2 � m1,
then from Eqs. 5.4 and 5.5, we see that v1 f ≈ −v1i , and
v2 f ≈ v2i = 0.

5.4.4 Inelastic Collision in One Dimension

Figure5.5 showsaone-dimensional (head-on) perfectly inelas-
tic collision between two particles of mass m1 and m2. Here,
the kinetic energy of the system is not conserved, but the law
of conservation of linear momentum still holds

Fig. 5.5 A one dimensional (head-on) perfectly inelastic collision
between two particles of mass m1 and m2

m1v1i + m2v2i = (m1 + m2)v f

v f = m1v1i + m2v2i
m1 + m2

5.4.5 Coefficient of Restitution

For any collision between two bodies in one dimension, the
coefficient of restitution is defined as

e = v2 f − v1 f
v1i − v2i

where v1i and v2i are velocities before the collision. v1 f and
v2 f are velocities after the collision. |v1i − v2i | is called the
relative speed of approach and |v2 f −v1 f | is the relative speed
of recession.

• If e = 1 the collision is perfectly elastic.
• If e < 1 the collision is inelastic.
• If e = 0 the collision is perfectly inelastic (the two bodies

stick together).

Example 5.7 Two marble balls of masses m1 = 7kg and
m2 = 3kg are sliding toward each other on a straight fric-
tionless track. If they experience a head-on elastic collision
and if the initial velocities of m1 and m2 are 0.5m/s to the
right and 2m/s to the left, respectively, find the final velocities
of m1 and m2.

Solution 5.7 For an elastic head-on collision, we have

v1 f =
(
m1 − m2
m1 + m2

)
v1i+

(
2m2

m1 + m2

)
v2i = (0.4)(0.5m/s)+(0.6)(−2m/s) = −1m/s

v2 f =
(

2m1

m1 + m2

)
v1i +

(
m2 − m1

m1 + m2

)
v2i = (1.4)(0.5m/s)+(−0.4)(−2m/s) = 1.5m/s

Example 5.8 The ballistic pendulum consists of a large
woodenblocksuspendedbya lightwire (seeFig. 5.6).Thesys-
tem is used to measure the speed of a bullet where the bullet
is fired horizontally into the block. The collision is perfectly
inelastic and the system (bullet+block) swings up a height h.
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Fig. 5.6 The ballistic pendulum consists of a large wooden block sus-
pended by a light wire

IfM = 3kg,m = 5 gandh = 5cm,find (a) the initial speedof
the bullet; (b) themechanical energy lost due to the collision.

Solution 5.8 (a) Using the impulse approximation, the law
of conservation of momentum gives the velocities just before
and after the collision when the string is still nearly vertical.
For a perfectly inelastic collision, the total momentum is con-
served but the total kinetic energy is not conserved during the
collision. Thus, we have

mv1i = (m + M)v f

v1i = (m + M)

m
v f

After the collision, the energy of the (bullet +block+earth)
system is conserved since the gravitational force is the only
force acting in the system.

Ei = E f

1

2
(m + M)v2f = (m + M)gh

v f = √
2gh

That gives

v1i = (m + M)

m

√
2gh = (3.005 kg)

(0.005 kg)

√
2(9.8m/s2)(0.05m) = 595 m/s

(b) The kinetic energy of the bullet before collision is

1

2
mv21i = 1

2
0.005 kg)(595m/s)2 = 885 J

After collision, the kinetic energy of the (bullet+block) is

1

2
(m + M)v2f = (m + M) (gh) = (3.005 kg)(9.8m/s2)(0.05m) = 1.5 J

therefore,

�E = (885 J) − (1.5 J) = 883.5 J

Fig. 5.7 Two blocks colliding head-on on a frictionless surface

That is, nearly, all the mechanical energy is dissipated and
converted into internal (thermal) energy of the (block+bullet)
system.

Example 5.9 Two masses m1 = 0.8kg and m2 = 0.5kg
are heading toward each other with speeds of 0.25m/s and
−0.5m/s, respectively. If they have a perfectly inelastic col-
lision, find the final velocity of the system just after the colli-
sion.

Solution 5.9

v f = m1v1i + m2v2i
(m1 + m2)

= (0.8 kg)(0.25m/s) − (0.5 kg)(0.5m/s)

(1.3 kg)
= −0.04m/s

Example 5.10 Two blocks m1 = 2kg and m2 = 1kg collide
head-on with each other on a frictionless surface (see Fig. 5.7.
If v1i = −10m/s and v2i = 15m/s and the coefficient of
restitution is e = 1/4, determine the final velocities of the
masses just after the collision.

Solution 5.10

e = v2 f − v1 f
v1i − v2i

1

4
= v2 f − v1 f

(−25m/s)

v2 f − v1 f = −6.25m/s (5.6)

From the conservation of momentum, we have

m1v1i + m2v2i = m1v1 f + m2v2 f

(2 kg)(−10m/s) + (1 kg)(15m/s) = (2 kg)v1 f + (1 kg)v2 f

That gives

v2 f + (2 kg)v1 f = −5m/s (5.7)

Solving Eqs. 5.6 and 5.7 gives v1 f = 0.42m/s and v2 f =
−5.83 m/s.

Example 5.11 A m1 = 5 g bullet is fired horizontally at the
center of a wooden block with a mass of m2 = 2 kg. The
bullet embeds itself in the block and the two slides a distance
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of 0.5m on a rough surface (μk = 0.2) before coming to rest.
Find the initial speed of the bullet.

Solution 5.11 Applying the law of conservation of momen-
tum immediately before and after the collision gives

pix = p f x

m1v1i + 0 = (m1 + m2)v f

v1i = (2.005 kg)

(0.005 kg)
v f = (401)v f

by taking the (block+bullet) as the system after the collision
until it comes to rest, we have

K f +U f = Ki +Ui + �Kext

that gives

0 = 1

2
(m1 + m2)v

2
f − μk(m1 + m2)gd

v f = √
2μkgd =

√
2(0.2)(9.8m/s2)(0.5m) = 1.4m/s

Hence,
v1i = (401)(1.4m/s) = 561.4m/s

5.4.6 Collision in Two Dimension

When a collision takes place in space, the total linear momen-
tum is conserved along each of the x−, y-, and z-directions.
That is, pix = p f x , piy = p f y , and piz = p f z .Here, we will
analyze a two-dimensional elastic collision between two par-
ticles where one particle is moving and the other is at rest as
shown in Fig. 5.8. This type of collision is known as a glanc-
ing collision. Since the collision is elastic, it follows that the
total linearmomentum aswell as the kinetic energy of the sys-
tem are conserved. Applying these laws immediately before
and immediately after the collision, we have pix = p f x and
piy = p f y or

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

and
m1v1iy + m2v2iy = m1v1 f y + m2v2 f y

From Fig. 5.8, we have

m1v1i = m1v1 f cosα1 + m2v2 f cosα2

and

Fig. 5.8 A two dimensional elastic collision between two particles
where one particle is moving and the other is at rest

0 = m1v1 f sin α1 + m2v2 f sin α2

Furthermore,

1

2
m1v

2
1i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

Therefore, we have three equations and seven unknown quan-
tities. By knowing any four of these quantities, the three equa-
tions for the three variables can be solved.

Example 5.12 A ball of mass of 2kg is sliding along a hori-
zontal frictionless surface at a speed of 3m/s. It then collides
with a second ball of mass of 5kg that is initially at rest.
After the collision, the second ball is deflected with a speed
of 1m/s at an angle of 30o below the horizontal as shown in
Fig. 5.9. (a) Find the final velocity of the first ball; (b) show
that the collision is inelastic; (c) suppose that the two balls
have equal masses and the collision is perfectly elastic, show
that θ1 + θ2 = 90o.

Fig. 5.9 A ball sliding along a horizontal frictionless surface collides
with a second ball that is initially at rest
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Solution 5.12 Applying the law of conservation of momen-
tum immediately before and after the collision in each direc-
tion gives pix = p f x and piy = p f y . Thus,

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

v1 f x = m1v1i x + m2v2i x − m2v2 f x
m1

= (2 kg)(3m/s) + 0 − ((5 kg)(1m/s) cos(−30))

(2 kg)

v1 f x = 0.84m/s

Along the y-direction, we have

m1v1iy + m2v2iy = m1v1 f y + m2v2 f y

v1 f y = m1v1iy + m2v2iy − m2v2 f y
m1

= 0 − ((5 kg)(1m/s) sin(−30o))

(2 kg)

v1 f y = 1.25m/s

Thus, the final velocity of the first ball is

v1 f =
√
v21 f x + v21 f y =

√
(0.84m/s)2 + (1.25m/s)2 = 1.5m/s

The direction of the velocity is

tan θ1 = v1 f y
v1 f x

= (1.25m/s)

(0.84m/s)
= 1.5

θ1 = 56o

(b) The total kinetic energy before the collision is

Ki = 1

2
m1v

2
1i = 1

2
(2 kg)(3m/s)2 = 9 J

The total kinetic energy after the collision is

K f = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f = 1

2
(2 kg)(1.5m/s)2 + 1

2
(5 kg)(1m/s)2 = 4.75 J

That is, some of the energy of the system is lost and thus
the collision is inelastic.

(c) In a perfectly elastic collision, both the totalmomentum
and the total mechanical energy of the system are conserved.
That is

pix = p f x

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

v1i = v1 f cos θ1 + v2 f cos θ2 (5.8)

piy = p f y

0 = v1 f sin θ1 − v2 f sin θ2

v1 f sin θ1 = v2 f sin θ2 (5.9)

From the conservation of kinetic energy, we have

1

2
m1v

2
1i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

or
v21i = v21 f + v22 f (5.10)

Substituting Eq.5.8 into Eq.5.9 gives

v1i = v2 f
sin θ2

sin θ1
cos θ1 + v2 f cos θ2

or

v1i = v2 f sin(θ1 + θ2)

sin θ1
(5.11)

Substituting Eq.5.11 into Eq.5.10 gives

v22 f sin
2(θ1 + θ2)

sin2 θ1
= v22 f sin

2 θ2

sin2 θ1
+ v22 f

Therefore,

sin2(θ1 + θ2) = sin2 θ1 + sin2 θ2

This is satisfied only if θ1 + θ2 = 90o.

Example 5.13 A 1200kg car traveling east at a speed of
18m/s collides with another car of mass of 2500kg that is
traveling north at a speed of 23m/s as shown in Fig. 5.10.
If the collision is perfectly inelastic, how much mechanical
energy is lost due to the collision?

Fig. 5.10 A 1200 kg car traveling east at a speed of 18 m/s collides
with another car of mass of 2500 kg that is traveling north at a speed of
23 m/s
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Solution 5.13
pix = p f x

m1v1i x = (m1 + m2)v f x

v f x = m1v1i x
(m1 + m2)

= (1200 kg)(18m/s)

(3700 kg)
= 5.8m/s

piy = p f y

m2v2iy = (m1 + m2)v f y

v f y = m2v2iy
(m1 + m2)

= (2500 kg)(23m/s)

(3700 kg)
= 15.5m/s

v f =
√
v2f x + v2f y =

√
(5.8m/s)2 + (15.5m/s)2 = 16.5m/s

The direction of v f is

θ = tan−1 v f y

v f x
= tan−1 (15.5m/s)

(5.8m/s)
= 69.5o

from the positive x-axis. The change in the kinetic energy of
the system is

�K = K f − Ki = 1

2
(m1 + m2)v

2
f −

(
1

2
m1v

2
1i + 1

2
m2v

2
2i

)

= 1

2
(3700 kg)(16.5m/s)2 −

(
1

2
(1200 kg)(18m/s)2 + 1

2
(2500 kg)(23m/s)2

)

�K = −3.5 × 105 J

5.5 Torque

Consider a force F acting on a particle that has a position vec-
tor r with respect to some origin O that is in an inertial frame.
The torque is a vector quantity that measures the tendency of
that force to rotate the particle about O and is defined as

τ = r × F

The direction of τ is perpendicular to the plane formed by
r and F and its sense is given by the right-hand rule or of
advance of a right-handed screw rotating from r to F. From
the vector product definition, this quantity has a magnitude
given by

τ = r F sin φ

where φ is the smaller angle between r and F, τ is positive
if the force tends to rotate the particle counterclockwise and
negative if it tends to rotate it clockwise. If φ = 0 or 180◦,

Fig.5.11 A particle in the x-y plane exposed to a force that lies in that
plane. The resulting torque is then perpendicular to the x-y plane parallel
to the z-axis

the force is radial and thus it has no rotating tendency. In
component form, we may write

τ = r × F = (x i + yj + zk) × (Fx i + Fyj + Fzk)

= (yFz − zFy)i + (zFx − xFz)j + (xFy − yFx )k

Let us consider a particle in the x–y plane exposed to a force
that lies in that plane (see Fig. 5.11). The resulting torque is
then perpendicular to the x–y plane parallel to the z-axis. τ

can also be written as
τ = Fd

where d = r sin φ is called the moment arm of F where it
represents the perpendicular distance from the axis of rotation
to the line of action of F as shown in Fig. 5.12. Note that
because τ depends on r, it follows that τ depends on the
choice of the origin O. The force F can be resolved into two
components Ft = F sin φ and Fr = F cosφ. Since the line
of action of Fr passes through O, it has no rotating effect.
Hence, Ft is the only component of F that causes rotation.
The SI unit of torque is the Newton-metre (N m). This unit
is the same unit of work, but they are different quantities and
the torque should never be expressed in joules.

Example 5.14 A force F = (−2t i− (t2 −3)j+4t5k) N acts

on a particle that has a position vector r =
(

− 6i + 5tj +

(
t

2
− 1) k

)
m find the torque of the particle about the origin

at t = 1 s.

Solution 5.14

τ = r × F =
∣∣∣∣∣∣
i j k
−6 5t ( t2 − 1)
−2t −(t2 − 3) 4t5

∣∣∣∣∣∣
Evaluating this at t = 1 s gives
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Fig. 5.12 d = r sin φ is called the moment arm of F and it represents
the perpendicular distance from the axis of rotation to the line of action
of F

τ = (2li + 25j − 2k)N/m

5.6 Angular Momentum

The angular momentum L of a particle of mass m and linear
momentum p is a vector quantity defined as

L = r × p

where r is the position vector of the particle relative to an
origin O that is in an inertial frame. Therefore, as τ ,L also
depends on the choice of the origin. Suppose the particle
moves in the x–y plane (see Fig. 5.13). The direction of L
is then perpendicular to the plane containing r and p and its
sense is found by the right-hand rule. The magnitude of L is
given by

L = mvr sin φ

where φ is the smaller angle between r and p. This quantity
is the rotational analog of linear momentum in translational
motion. If φ = 0 or 180◦ the particle will move along a line
passing through O and its angular momentum is zero. The SI
unit of angular momentum is kg.m2/s. In terms of rectangular
components, we have

L = r × p = (x i + yj + zk) × (px i + pyj + pzk)

= (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k

5.6.1 Newton’s Second Law in Angular Form

From the definition of torque, we have

Fig. 5.13 If the particle is moving in the x-y plane, then the direction
of L is perpendicular to the plane containing r and p and is found by the
right-hand rule

τ = r × F = r × d(mv)
dt

dL
dt

= d(r × mv)
dt

= dr
dt

× (mv) + r × d(mv)
dt

= v × (mv) + r × d(mv)
dt

= 0 + r × F = τ

τ = dL
dt

(5.12)

This implies that the torque acting on a particle is equal to
the time rate of change of the angular momentum for that
particle. This equation is valid only if τ and L are evaluated
with respect to the same origin or any other fixed point in an
inertial frame. If several forces act on the particle, Eq. 5.12
can be written as

�τ = dL
dt

where�τ is the net torqueon theparticle. This is the rotational
analog of Newton’s second law in linear form, which states
that the net force acting on a particle is equal to the time rate
of change of its linear momentum. In component form, we
have �τx = dLx/dt, �τy = dLy/dt and �τz = dLz/dt.

5.6.2 Conservation of Angular Momentum

The total angular momentum of a particle is constant if the
net external torque acting on it is zero:

�τ ext = dL
dt

= 0

L = constant
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Fig. 5.14 A cat watching a mouse run by

m(r × v) = contant

or

Li = L f

The law of conservation of angular momentum is a funda-
mental law of physics and it holds in relativity and quantum
mechanics. Thus, for an isolated system, the linear momen-
tum and angular momentum are conserved.

Example 5.15 A cat watches a mouse of mass m run by, as
shown in Fig. 5.14. Determine the mouse’s angular momen-
tum relative to the cat as a function of time if the mouse has
a constant acceleration a and if it starts from rest.

Solution 5.15 Suppose the plane is the x–y plane. Since v =
at , we have

L = m(r × v) = mrat cos θk

Example 5.16 A 0.2kg particle is moving in the x–y plane.
If at a certain instant r = 3m and v = 10m/s (see Fig. 5.15),
find the magnitude and direction of the angular momentum
of the particle at that instant relative to the origin.

Solution 5.16

L = m(r × v) = −(mvr sin φ)k = −(0.2 kg)(10m/s)(3m) sin 60◦k = (−5.2 k)kg.m2/s

Example 5.17 A particle is moving under the influence of a
force given by F = −kr. Prove that the angular momentum
of the particle is conserved.

Solution 5.17

τ = r × F = −k(r × r) = 0

Fig. 5.15 A particle moving in the x-y plane

Since τ = dL/dt , it follows that the total angular momentum
of the particle is conserved. That is,

L = constant

Example 5.18 A particle is moving in a circle where its
position as a function of time is given by the expression
r = a(cosωt i + sinωtj) , where ω is a constant. Show that
the total angular momentum of the particle is constant.

Solution 5.18

v = dr
dt

= a(−ω sinωt i + ω cosωtj)

L = m(r × v) = ma2[(cosωt i + sinωtj) × (−ω sinωt i + ω cosωtj)]

= ma2(ω cos2 ωtk + ω sin2 ωtk)

= mωa2k = constant

Problems

1. A tennis ball of mass of 0.06kg is initially traveling at an
angle of 47o to the horizontal at a speed of 45 m/s. It then
was shot by the tennis player and return horizontally at a
speed of 35 m/s. Find the impulse delivered to the ball.

2. A force on a 0.5kg particle varies with time according to
Fig. 5.16. Find (a) The impulse delivered to the particle,
(b) the average force exerted on the particle from t = 0
to t = 6 s(c). The final velocity of the particle if its initial
velocity is 2 m/s.

3. A 1kg particlemoves in a force field given byF = (2t2i+
(5t − 3)j − 6tk) N. Find the impulse delivered to the
particle during the time interval from t = 1 s to t = 3 s.

4. A boy of mass 45kg runs and jump with a horizontal
speed of 4.5 m/s into a 70kg cart that is initially at rest
(see Fig. 5.17). Find the final velocity of the boy and the
cart.
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Fig. 5.16 A force acting on a particle varies with time

Fig. 5.17 A boy jumps on a cart that is initially at rest

Fig. 5.18 A ball bouncing off a smooth surface

5. A rubber ball of mass of 0.2kg is dropped from a height
of 2.2 m. It re- bounds to a height of 1.1 m. Find (a) the
coefficient of restitution, (b) the energy lost due to impact.

6. A 1200kg car initially traveling at 12 m/s due east col-
lides with another car of mass of 1600kg that is initially
at rest. If the cars become entangled after the collision,
find the common final speed of the cars.

7. Figure5.18 shows a ball that strikes a smooth surfacewith
a velocity of 20m/s at an angle of 45o with the horizontal.
If the coefficient of restitution for the impact between the
ball and the surface is e = 0.85, find the magnitude and
direction of the velocity in which the ball rebounds from
the surface. (Hint: use the velocity components in the
direction perpendicular to the surface for the coefficient
of restitution).

8. Two gliders moving on a frictionless linear air track expe-
rience a perfectly elastic collision (see Fig. 5.19). Find the
velocity of each glider after the collision.

9. A bullet of mass of m is fired with a horizontal velocity v
into a block of mass M . The block is initially at rest on a
frictionless surface and is connected to a spring of force

Fig. 5.19 Two gliders moving on a frictionless linear air track experi-
ence a perfectly elastic collision

Fig.5.20 A bullet of mass ofm is fired with a horizontal velocity v into
a block of mass M

Fig. 5.21 A block moving along the y-axis subject to a force

Fig. 5.22 A conical pendulum of
mass m and length L is in
uniform circular motion with a
velocity v

constant of k (see Fig. 5.20). If the bullet embeds itself in
the block causing the spring to compress to a maximum
distance d, find the initial speed of the bullet.

10. A block moves along the y-axis due to a force given by
F = ai (see Fig. 5.21). Find the torque on the block about
(a) the origin (b) point A.

11. A conical pendulum of massm and length L is in uniform
circular motion with a velocity v (see Fig. 5.22). Find the
angular momentum and torque on the mass about O.
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6System of Particles

6.1 System of Particles

In the previous chapters, objects that can be treated as particles
were only considered. We have seen that this is possible only
if all parts of the object move in exactly the same way. An
object that does not meet this condition must be treated as a
system of particles. Next, wewill see that the complexmotion
of this object or system of particles can be represented by the
motion of a point located at the center of mass of the system.
The center of mass moves as if all of the mass of the object
is concentrated there and as if the net external force acting on
the system is applied there (at the center of mass). As well as
representing an object by a particle, the concept of the center
of mass is used to analyze the motion of many systems such
as a system of two colliding blocks (particle-like objects) and
the system of two colliding subatomic particles such as the
neutron with the nucleus.

6.2 Discrete and Continuous System of
Particles

6.2.1 Discrete System of Particles

A discrete system of particles is a system in which particles
are separated from each other.

6.2.2 Continuous System of Particles

A continuous system of particles is a system where the sepa-
ration of particles is very small such that it approaches zero.
An extended object is a continuous system of particles. Now,
consider the skateboarder example mentioned in Sect. 4.3. It
has been shown that the system (man+skateboard) cannot be
treated as a particle since different parts of the systemmove in
different ways. By representing the skateboarder as a system
of particles its motion can be represented by the motion of

its center of mass, hence, the work–energy theorem can be
applied to that point. The work done by the force, exerted on
the skateboarder by the bar, is not zero because the point of
application of that force (which is at the center of mass) has
moved.

6.3 The Center of Mass of a System of
Particles

For a system of particles of total mass M the acceleration of
its center of mass is given by

a = F
M

6.3.1 Two Particle System

Consider two particles of massesm1 andm2 moving in space.
Suppose that their position vectors at a particular instant of
time are given by r1 and r2 as shown in Fig. 6.1. The center
of mass of the system lies somewhere along the line joining
the two particles and its position vector is given by

rcm = m1r1 + m2r2
m1 + m2

The x, y and z components of the center of mass is

xcm = m1x1 + m2x2
m1 + m2

ycm = m1y1 + m2y2
m1 + m2

and
zcm = m1z1 + m2z2

m1 + m2
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Fig. 6.1 Two particles of masses m1 and m2 moving in space. Their
position vectors at a particular instant of time are given by r1 and r2

Fig. 6.2 A discrete system of particles consisting of n particles

6.3.2 Discrete System of Particles

Consider a discrete system of particles consisting of n parti-
cles (see Fig. 6.2). The position vector of the center of mass
at a particular instant is given by

rcm = m1r1 + m2r2 + m3r3. + · · · · · · · · · · · ·mnrn
m1 + m2 + m3 + · · · + mn

= Σn
i=1miri
M

where ri is the position vector of the ith particle and M =
n∑

i=1

mi is the total mass of the system. In component form, ri

can be written as

ri = xi i + yi j + zik

The x, y and z components of the center of mass vector are

xcm =
∑n

i=1 mi xi
M

ycm =
∑n

i=1 mi yi
M

and

zcm =
∑n

i=1 mi zi
M

Fig. 6.3 The center of mass of a system in the x-y plane

Example 6.1 Find the center of mass of the system shown
in Fig. 6.3 where the three particles have an equal mass of
m = 1 kg.

Solution 6.1

xcm = (1 kg)((0.1m) + (0.5m) + (0.3m))

(3 kg)
= 0.3m

ycm = 0 + 0 + (1 kg)(0.2m) tan(60o)

(3 kg)
= 0.12m

rcm = xcm i + ycmj = (0.3m) i + (0.12m) j

Example 6.2 A system of particles consists of three masses
mA = 0.5kg, mB = 2kg and mC = 5kg located at
PA(−3, 1, 2) , PB(0, 1, 2) and PC(−1, 3, 0), respectively.
Find the position vector of the center of mass of the
system.

Solution 6.2 The position vector of each particle is

rA = (−3i + j + 2k)m

rB = (j + 2k)m

and
rC = (−i + 3j)m

The center of mass of the system is

rcm =
∑n

i=1 mi ri∑n
i=1 mi

= (0.5 kg)((−3i + j + 2k)m) + (2 kg)((j + 2k)m) + (5 kg)((−i + 3j)m)

(7.5 kg)

That gives

rcm = (−0.87i + 2.3j + 0.7k)m.
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Fig. 6.4 An extended object of mass M divided into small volume
elements each of mass �mi and a vector position rI

6.3.3 Continuous System of Particles (Extended
Object)

A continuous system of particles is a system consisting of a
large number of particles separated by very small distances.
Consider an extended object of mass M divided into small
volume elements each of mass �mi and a vector position ri
(see Fig. 6.4). The position vector of the center of mass at a
particular instant is then approximately given by

rcm ≈
∑n

i=1 ri�mi

M

For a very large number of particles where n → ∞ we have
�mi → 0, that gives

rcm = lim�mi

∑n
i=1 ri�mi

M
= 1

M

∫
rdm

Since r = x i + yj + zk, the x, y and z components of the
center of mass are given by

xcm = 1

M

∫
xdm

ycm = 1

M

∫
ydm

and

zcm = 1

M

∫
zdm

6.3.4 Elastic and Rigid Bodies

Abody is called an elastic (deformable) body if the separation
between its particles changes when a force is applied to it.
This change or deformation is sometimes so small that it can

be neglected. A body that behaves in this way is called a
rigid body. A rigid body can be defined as a body in which
the separation between its particles remain constant with time
despite the applied force, i.e., the body has a constant size and
shape. Therefore, the center of mass of a rigid object remains
fixed at the same location at all times. In this book, only rigid
bodies are discussed. In solving problems, it is common to
use the volume density ρ defined as the mass per unit volume
given by

ρ = dm

dV

Therefore, the total mass of a rigid object is

M =
∫

ρdV

The center of mass of a rigid object can thus be written as

rcm = 1

M

∫
rdm =

∫
ρrdV∫
ρdV

ρ may be a function of position, i.e., it can vary from point to
point in the body If the body has a uniform density (homoge-
neous body), then ρ can be written as

ρ = dm

dV
= Tota1Mass

Tota1Volume
= constant

If the continuous distribution of particles occupies a sur-
face, then the surface density σ is used and is given by

σ = dm

dA
(massperunit area)

σ = Tota1Mass

Tota1Area
= constant (homogeneous body)

If the particles occupy a curve or a line, the linear density
λ is used given by

λ = dm

dl
(massperunit length)

λ = Tota1Mass

Tota1Length
= constant (homogeneous body)

The center of mass of any homogeneous symmetric object
is at its geometrical center and it is not necessarily located
within the object.

Example 6.3 A thin rod of length L = 2m has a linear
density that increases with x according to the expression
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Fig.6.5 A thin rod of length L = 2 m has a linear density that increases
with x

λ(x) = (2x − 1) kg/m (see Fig. 6.5). Locate the center of
mass of the rod relative to O.

Solution 6.3

xcm = 1

M

∫
xdm =

∫ L
0 xλ(x)dx
∫ L
0 λ(x)dx

=
∫ L
0 (2x2 − x)dx
∫ L
0 (2x − 1)dx

= ((2/3)x3 − x2/2)|Lx=0

(x2 − x)|Lx=0

= L((2/3)L − 1/2)

(L − 1)

Substituting L = 2m gives xcm = 1.7m.

Example 6.4 A uniform square sheet is suspended by a uni-
form rod where they both lie in the same plane as shown in
Fig. 6.6. Find the center of mass of the system.

Solution 6.4 Because the sheet and the rod are homogeneous,
the center of mass of each is at its geometric center. Since the
center of the sheet is at the origin we have

xcm =
∑

i mi xi∑
i mi

= 0 + (M2L/2)

M1 + M2
= LM2

2(M1 + M2)

Fig.6.6 Auniform square sheet suspended by a uniform rodwhere they
both lie in the same plane

Fig. 6.7 The center of mass of a rectangular plate

Example 6.5 Find the center of mass of the rectangular plate
shown in Fig. 6.7. The plate has a uniform surface density σ.

Solution 6.5 • Method 1:

xcm =
∫
xdm

M
=

∫
xσd A∫
σd A

=
∫ b
y=0

∫ a
x=0 xdxdy

∫ b
y=0

∫ a
x=0 dxdy

= ba2

2ab
= a

2

ycm =
∫
ydm

M
=

∫
xσd A∫
σd A

=
∫ a
x=0

∫ b
y=0 ydxdy

∫ a
x=0

∫ b
y=0 dxdy

= ab2

2ab
= b

2

Hence

rcm = a

2
i + b

2
j

• Method 2:

Dividing the plate into very thin rods each of mass σbdx
gives

xcm =
∫
xdm

M
= 1

M

∫
xσd A = 1

M

(
M

ab

) ∫ a

x=0
xbdx = 1

a

[
x2

2

]a

x=0
= a

2

Similarly by dividing the plate into thin horizontal rods
each of mass σady gives

ycm =
∫
ydm

M
= 1

M

∫
yσd A = 1

M

(
M

ab

) ∫ b

y=0
aydy = 1

b

[
y2

2

]b

y=0
= b

2

and

rcm = a

2
i + b

2
j

Example 6.6 An object of uniform surface density σ and
mass M has the shape shown in Fig. 6.8 (half of an ellipse).
Find the center of mass of the object.

Solution 6.6 The equation of an ellipse is

x2

a2
+ y2

b2
= 1
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Fig. 6.8 The center of mass of half an ellipse

therefore
2xdx

a2
+ 2ydy

b2
= 0

or

xdx = −a2

b2
ydy

By dividing the area into very thin rectangles each of mass
σ ydx gives

xcm =
∫
xdm

M
= 1

M

∫
xσd A = 1

M

∫ a

x=−a
x

(
2M

πab

)
ydx

= 2

πab

∫ 0

y=0

(−a2

b2

)
y2dy = −2a

πb3

[
y3

3

]0

y=0
= 0

To obtain the y coordinate of the center of mass we divide
the area into very thin rectangles each of mass σ xdy as in
Fig. 6.8. That gives

ycm = 1

M

∫
ydm = 1

M

∫
yσd A = 2

πab

∫ b

y=0
yxdy

= 2

πab

∫ −a

x=a

(−b2

a2

)
x2dx = −2b

πa3

∫ −a

x=a
x2dx = −2b

πa3

[
x3

3

]−a

x=a

−2b

πa3

[
x3

3

]−a

x=a
= −2b

πa3

(−a3

3
− a3

3

)
= 4b

3π

Example 6.7 Determine the center of mass of the cylindrical
shell shown inFig. 6.9. The shell has a uniform surface density
σ.

Solution 6.7 From symmetry, the center of mass lies on the
z-axis. By dividing the shell into very thin rings each of mass
σ2πRdz we have

zcm =
∫
zdm

M
=

∫
zσd A

M
= 1

M

∫ h

z=0
zσ2πRdz = 1

M

(
M

2πRh

) ∫ h

z=0
2πRzdz

Fig. 6.9 The center of mass of a cylindrical shell

= 1

h

[
z2

2

]h

z=0
= h

2

Example 6.8 Aboy standing on a smooth ice surfacewants to
fetch a container that is at a distance of 10m away from him.
To do that, he throws a rope around the container and start
to pull. Because the surface is smooth, both the boy and the
container will move until they meet. If the masses of the boy
and of the container are 40kg and 70kg respectively, how far
will the container move when the boy has moved a distance
of 2m?

Solution 6.8 By taking the midpoint between the boy and the
container as the origin (see Fig. 6.10) and by neglecting the
mass of the rope, the center of mass of the system is

xcm = Σimi xi
Σimi

= (70 kg)(5m) + (40 kg)(−5m)

(110 kg)
= 1.36m

Fig. 6.10 A boy pulling a container on a smooth surface
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Fig. 6.11 A boy walking on a small boat

Because the surface may be assumed to be frictionless, the
resultant external force on the system is zero and therefore the
center of mass must remain stationary at all times. Hence, if
the boy has moved a distance of 2m, he will be at a distance
of −3m from the origin. Thus, we have

(1.36m) = (70 kg)xc + (40 kg)(−3m)

(110 kg)

That gives xc = 3.86m, therefore the distance moved by the
container towards the center of mass is (5m) − (3.86m) =
1.14m.

Example 6.9 A boy is standing at the rear of a boat as shown
in Fig. 6.11. The masses of the boy and of the boat are 45 kg
and 80kg respectively Find the distance that the boat would
move relative to the origin if the boy moves a distance of lm
from the rear of the boat (the length of the boat is 5m).

Solution 6.9 By neglecting air and water resistance, the net
external force on the (boy+ boat) system is zero. Therefore
the center of mass of the system must remain at rest. Suppose
that the boat is a symmetrical homogeneous object where its
center of mass is at its geometrical center. The center of mass
of the boat is therefore at a distance of 2.5m from the origin.
Thus, the center of mass of the system is

xcm =
∑n

i=1 mi xi
M

= m1x1 + m2x2
m1 + m2

= (45 kg)(0) + (80 kg)(2.5m)

(125 kg)
= 1.6m

If the boy moves a distance of 1m, the center of mass is
still at the same position, and we have

(1.6m) = (45 kg)(1m) + (80 kg)xb
(125 kg)

That gives xb = 1.94m. Thus, the displacement of the center
of mass of the boat is (1.94m) − (2.5m) = −0.56m.

6.3.5 Velocity of the Center of Mass

The velocity of the center of mass of a system of particles that
has a constant mass M is

vcm = drcm
dt

= 1

M

d

dt

( n∑

i=1

miri

)
= 1

M

n∑

i=1

mi ṙi

where ṙi = dri/dt , or

vcm =
n∑

i=1

mivi
M

(6.1)

where vi is the ith particle velocity. The acceleration of the
center of mass is given by

acm = dvcm
dt

= 1

M

d

dt

( n∑

i=1

mivi

)
= 1

M

n∑

i=1

mi r̈i

acm = 1

M

n∑

i=1

miai (6.2)

where ai is the acceleration of the ith particle.

6.3.6 Momentum of a System of Particles

The total linear momentum of a system of particles is the
vector sum of the linear momenta of the individual particles:

n∑

i=1

mivi =
n∑

i=1

pi = ptot (6.3)

By using Eq.6.1
ptot = Mvcm (6.4)

Example 6.10 Two particles of masses m1 = 1kg and m2 =
2kg have position vectors given by r1 = (2t i − 4j)m and
r2 = (5t i − 2tj)m respectively where t is time. Determine
the velocity and linear momentum of the center of mass of
the two- particle system at any time and at t = 1 s.

Solution 6.10

rcm =
∑

i miri∑
i mi

= (1 kg)(2t i − 4j) + (2 kg)(5t i − 2tj)
(3 kg)

That gives

rcm =
(
4t i − 4

3
(t + 1)j

)
m

vcm = drcm
dt

=
(
4i − 4

3
j
)

m/s
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The total linear momentum is

ptot = Mvcm = (3kg)

(
4i − 4

3
j
)

= (12i − 4j) kg.m/s

at t = 1s

rcm = (4i − 8

3
j)m

vcm = (4i − 4

3
j)m/s

and
ptot = (12i − 4j) kg.m/s

6.3.7 Motion of a System of Particles

From Newton’s second law Eq.6.2 can be written as

acm = 1

M

n∑

i=1

Fi (6.5)

where Fi is the net force acting on the ith particle. If both the
external forces on the system and the internal forces between
the particles in the system are included, thenFi maybewritten
as

Fi = Fi(ext) +
∑

j

fi j (6.6)

Where Fi(ext) is the resultant external force acting on the ith
particle. fi j is the internal force exerted on the ith particle by
the jth particle. Note that it is as- sumed that no force is exerted
on the particle by itself, i.e., fi i = 0. Substituting Eq.6.6 into
Eq.6.5 gives:

acm = 1

M

(∑

i

Fi(ext) +
∑

i

∑

j

fi j

)
(6.7)

Now, from Newton’s third law we have

fi j = −f j i

Therefore, the second term in Eq.6.7 is equal to zero. Hence
the net force acting on the system is due only to external
forces. That gives

Fnet =
∑

i

Fi(ext) = Macm

whereFnet is the resultant external force on the center ofmass,
i.e.,

Fnet =
∑

Fext = Macm

By differentiating Eq.6.4 with respect to time we have

Macm = dptot
dt

thus ∑
Fext = dptot

dt

Thus, the net external force acting on a system of particles is
equal to the time rate of change of the total linear momentum
of the system.

6.3.8 Conservation of Momentum

For an isolated system of particles, we have

∑
Fext = 0

Thus
dptot
dt

= 0

and

ptot = Mvcm = constant

Which is the law of conservation of linear momentum for
a system of particles.

6.3.9 Angular Momentum of a System of
Particles

The angular momentum L of a system of particles about a
fixed point is the vector sum of angular momenta of the indi-
vidual particles:

L = L1 + L2 + L3 + +Ln =
n∑

i=1

Li =
n∑

i=1

(ri × pi ) =
n∑

i=1

mi (ri × vi )

6.3.10 TheTotal Torque on a System

The total torque acting on a particle in a system is the sum
of torques associated with the internal forces and of torques
associated with external forces. Using Eq.6.6 we have
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τi = ri ×Fi = ri ×
⎛

⎝Fiext +
∑

j

fi j

⎞

⎠ = ri ×Fiext +
∑

j

ri × fi j

Summing over i we get

∑

i

τi =
∑

i

ri×Fi =
∑

i

ri×Fiext+
∑

i

∑

j

ri×fi j (6.8)

By usingNewton’s third lawof action and reaction, the double
sum in Eq.6.8 has terms of the form

ri × fi j + r j × f j i = (ri − r j ) × fi j

Now, suppose that the internal forces between the two parti-
cles lie along the line joining the particles (i.e., the vectors
fi j and (ri − r j ) have the same direction). This condition is
known as the strong law of action and reaction. It requires the
internal forces to be central. If the internal forces are equal
and opposite but not central, then they are said to satisfy the
weak law of action and reaction. The force of gravity is an
example of a force satisfying the strong law of action and
reaction. Some forces such as the forces between two moving
charges are not central. From this, it follows that the double
summation in Eq.6.8 is equal to zero.

τnet =
∑

i

τi =
∑

i

ri × Fi =
∑

i

ri × Fiext

Therefore, the total torque on the system about the origin is
only the torque associated with external forces

τnet =
∑

τext =
n∑

i=1

ri × Fi(ext) (6.9)

6.3.11 The Angular Momentum and the Total
External Torque

Theangularmomentumof the individual particlesmaychange
with time. This will change the total angular momentum of
the system

dL
dt

=
n∑

i=1

dLi

dt

Eq.6.9 may be written as

τnet =
∑

τext =
n∑

i=1

ri × Fi(ext) = d

dt

{ n∑

i=1

mi (ri × vi )
}

= d

dt

{ n∑

i=1

Li

}
= dL

dt

i.e., the net external torque about some origin exerted on a
system of particles is equal to the time rate of change of the
total angular momentum of the system.

6.3.12 Conservation of Angular Momentum

If ∑
τext = 0

L =
n∑

i=1

mi (ri × vi ) = constant

or
Li = L f

Hence, if the resultant external torque acting on a system is
zero, the total angular momentum remains constant.

6.3.13 Kinetic Energy of a System of Particles

The total kinetic energy of a system of particles is the sum of
the kinetic energies of the individual particles

K = 1

2

n∑

i=1

miv
2
i

6.3.14 Work

Since the total force acting on the ith particle is given by

Fi = Fi(ext) +
∑

j

fi j

then the total work done on such particle is given by

W12 =
∑

i

∫ 2

1
Fi · dsi

6.3.15 Work–Energy Theorem

The total work done in moving a system from one state to
another is

W12 =
∑

i

∫ 2

1
Fi · dsi =

∑

i

∫ 2

1
Fi · dsi

dt
dt =

∑

i

∫ 2

1
Fi · vi dt

=
∑

i

∫ 2

1
vi · Fi dt =

∑

i

∫ 2

1
vi · d

dt
(mivi )dt

Since

vi
d

dt
(mivi ) = 1

2

d

dt
(mi (vi · vi )) = 1

2

d

dt
(miv

2
i )
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it follows that

W12 = 1

2

∑

i

∫ 2

1

d

dt
(miv

2
i )dt = 1

2

∑

i

(
miv

2
i

)|21 = K2−K1

where
1

2

∑

i

miv
2
i is the total kinetic energy of the system.

6.3.16 Potential Energy and Conservation of
Energy of a System of Particles

Consider a system of particles in which the external and inter-
nal forces acting on the system are conservative. First, let us
calculate the work done by the internal conservative forces.
Suppose that fi j is the conservative force acting on the ith
particle due to the jth particle and f j i is the force acting on the
jth particle due to the ith particle. Note that fi j and f j i form
an action and reaction pair, i.e., fi j = −f j i . Because these
forces are conservative there is a potential energy associated
with each force. That is,

fi j = −∇iUi j

and
f j i = −∇ jUi j

From the law of action and reaction,Ui j is a function only of
the distance between the particles. That is

Ui j = Ui j (|ri − r j |) = Uji (|ri − r j |)

or
Ui j (ri j ) = Uji (r ji )

where |ri − r j | = ri j = r ji is the distance between the
ith and jth particles. The work done by each pair of forces
in displacing the ith and jth particles through dri and dr j ,
respectively, is

fi j · dri + f j i · dr j = −∇iUi j · dri − ∇ jUi j · dr j

= −
[

∂Ui j

∂xi
dxi +

∂Ui j

∂yi
dyi +

∂Ui j

∂zi
dzi +

∂Ui j

∂x j
dx j +· · · · · · · · ·

]
= −dUi j

Hence, the total work done by the internal conservative forces
in moving the system from stage 1 to stage 2 is

W12(in,c) =
∑

i

∑

j

∫ 2

1
fi j · dri = −1

2

∑

i

∑

j

∫ 2

1
dUi j

= −1

2

∑

i

∑

j

Ui j |21 = U1(int) −U2(int) = −�U(int)

The factor 1/2 occurs since each term in the summation
appears twice. Now, consider the total work done by the exter-
nal conservative forces

W12(ext,c) =
∑

i

∫ 2

1
Fi(ext).dsi = −

∑

i

∫ 2

1
∇iUi · dsi = −

∑

i

Ui |21 = U1(ext) −U2(ext)

To show that energy is conserved when both the external
and internal forces are conservative, we may define a total
potential of the system as

U =
∑

i

Ui + 1

2

∑

i

∑

j

Ui j

From the work–energy theorem, the work done by the total
force Fi acting on the ith particle is equal to the change in the
kinetic energy of that particle

W12 =
∑

i

∫ 2

1
Fi · dri = K2 − K1

and since
W12 = W12(in,c) + W12(ext,c)

From this, we conclude that for a system of particles in which
the internal and external forces are conservative, the total
mechanical energy of the system is conserved

U1(int) −U2(int) +U1(ext) −U2(ext) = K2 − K1

or
U1 −U2 = K2 − K1

or
�K = −�U

Thus
�K + �U = 0

�E = 0

6.3.17 Impulse

In Sect. 6.3.7, we have seen that the net external force on a
system of particles is equal to the rate of change of the total
linear momentum of the system

Fnet = dptot
dt
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The total linear impulse on the system as the system goes
from one state to another is defined as

I =
∫ t2

t1
Fnetdt =

∫ t2

t1

dptot
dt

dt = ptot2 − ptot1

That is, the total linear impulse on the system is equal to the
change in the total momentum of the system.

6.4 Motion Relative to the Center of Mass

The motion of a system of particles is sometimes described
relative to the center of mass of the system. This method is
used in some problems to simplify the analysis and add a
particular symmetry to it.

6.4.1 TheTotal Linear Momentum of a System of
Particles Relative to the Center of Mass

The position vector of the center of mass of the system with
respect to an origin in an inertial frame of reference (for exam-
ple, the lab frame) is given by

rcm = Σn
i miri
M

(6.10)

From Fig. 6.12, the position vector (r′
i ) of the ith particle rel-

ative to the center of mass is

r′
i = ri − rcm

or
ri = r′

i + rcm (6.11)

Where ri is the position vector of the ith particle relative to
the origin O. Substituting Eq.6.11 into Eq.6.10 gives

rcm = 1

M

n∑

i=1

mi (r′
i + rcm) = 1

M

n∑

i=1

mir′
i +

∑n
i=1 mi

M
rcm

Fig.6.12 The position vector (r′
i ) of the ith particle relative to the center

of mass

= 1

M

n∑

i=1

mir′
i + rcm

therefore
1

M

n∑

i=1

mir′
i = rcm − rcm = 0

That gives
n∑

i=1

mir′
i = 0 (6.12)

Differentiating Eq.6.12 with respect to t gives

n∑

i=1

mv′
i =0 (6.13)

or
n∑

i=1

p′
i = 0

or
p′ = 0

That is, the total linear momentum of the system is zero when
observed from the center of mass frame.

6.4.2 TheTotal Angular MomentumAbout the
Center of Mass

By differentiating Eq.6.11 with respect to time gives

vi=v′
i + vcm (6.14)

where vi and v′
i are the velocities of the particle relative to the

originO and the center ofmass respectively vcm is the velocity
of the center of mass relative to O. The angular momentum
of the system about the origin O is

L =
∑

i

mi (ri × vi ) =
∑

i

mi {(r′
i + rcm) × (v′

i + vcm)}

=
∑

i

mi (r
′
i×v′

i )+
∑

i

mi (r
′
i×vcm )+

∑

i

mi (rcm×v′
i )+

∑

i

mi (rcm×vcm )

The secondand third terms are zero followed fromEqs. 6.12

and6.13where

(
∑

i

mir′
i

)
×vcm = 0 and rcm×

(
∑

i

miv′
i

)
=

0, hence



6.4 Motion Relative to the Center of Mass 97

L =
∑

i

mi (r′
i × v′

i ) +
∑

i

mi (rcm × vcm)

Thus, the total angular momentum of the system of particles
about an origin O equals the angular momentum of the system
about the center of mass plus the angular momentum of the
center of mass about O. Therefore, the total angular momen-
tum L′ about the center of mass is

L′ =
∑

i

mi (r′
i × v′

i ) =
∑

i

mi (ri × vi ) − M(rcm × vcm)

(6.15)

6.4.3 TheTotal Kinetic Energy of a System of
Particles About the Center of Mass

The total kinetic energy of a system of particles relative to an
origin in an inertial frame of reference is given by

K = 1

2

∑

i

miv
2
i = 1

2

∑

i

mi (vi · vi )

From Eq.6.14 we have

K = 1

2

∑

i

mi ((v′
i + vcm) · (v′

i + vcm))

= 1

2

∑

i

mi (v′
i · v′

i )+
∑

i

mi (v′
i · vcm)+ 1

2

∑

i

mi (vcm · vcm)

= 1

2

∑

i

miv
′2
i + vcm ·

( ∑

i

miv′
i

)
+ 1

2

( ∑

i

mi

)
v2cm

FromEq.6.13, the term in brackets in the second term is equal
to zero. Hence

K = 1

2

∑

i

miv
′2
i + 1

2
Mv2cm

That is the total kinetic energy of a system of particles about
an origin is equal to the kinetic energy of the system with
respect to the center of mass plus the kinetic energy of the
center of mass relative to the origin O. Therefore, the total
kinetic energy of the system with respect to the center of
mass is

K ′ = 1

2

∑

i

miv
′2
i = 1

2

∑

i

miv
2
i − 1

2
Mv2cm

6.4.4 Total Torque on a System of Particles
About the Center of Mass of the System

The total torque acting on a system of particles about the
center of mass is (from theorem (5.6.1)) equal to the time rate
of change of the angular momentum of the system about the
center of mass. That is,

τ ′ = dL′

dt

Example 6.11 Two particles of masses m1 = 1kg and m2 =
2kg are moving in the x-y plane. Their position vectors rela-
tive to the origin are r1 = (t2i− 2tj)m and r2 = (3t i+ j)m
where t is time. Find: (a) the total angular momentum of
the system; the total external torque acting on the system;
and the total kinetic energy of the system all relative to the
origin at any time; (b) repeat (a) relative to the center of
mass.

Solution 6.11 (a)

v1 = dr1
dt

= (2t i − 2j)m/s

v2 = dr2
dt

= (3i)m/s

The total angular momentum of the system relative to the
origin is

L =
∑

i

mi (ri × vi ) = (1)[(t2i− 2tj) × (2t i − 2j)] + (2)[(3t i + j) × (3)i]

that gives

L = ((2t2 − 6)k) kg.m2/s

The total kinetic energy of the system relative to O is

K = 1

2

n∑

i=1

mi v
2
i = 1

2
(m1v

2
1 + m2v

2
2 ) = 1

2
[(1)(4t2 + 4) + (2)(9)] = (2t2 + 11) J

The net external torque about the origin is

∑
τext = dL

dt
= ((4t)k)N.m

(b) To find the total angular momentum relative to the cen-
ter of mass let’s find first the total angular momentum of the
center of mass relative to the origin
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rcm =
∑

i miri∑
i mi

= (1)(t2i − 2tj) + (2)(3t i + j)
(3)

=
((

t2

3
+ 2t

)
i +

(
2

3
− 2

3
t

)
j
)
m

The velocity of the center of mass is

vcm =
((

2

3
t + 2

)
i −

(
2

3

)
j
)
m/s

and the total angular momentum of the center of mass relative
to O is

Lcm = M(rcm ×vcm ) = (3)

[((
t2

3
+2t

)
i+

(
2

3
− 2

3
t

)
j
)

×
((

2

3
t +2

)
i−

(
2

3

)
j
)]

=
(

−
(
2

3
t2 + 4

3
t + 4

)
k
)
kg.m2/s

From Eq.6.15, the total angular momentum relative to the
center of mass is

L′ =
∑

i

mi (r′
i × v′

i ) =
∑

i

mi (ri × vi ) − M(rcm × vcm)

= (2t2−6)k+
(
2t2

3
+ 4

3
t+4

)
k =

((
8

3
t2+ 4

3
t−2

)
k
)
kg.m2/s

The net external torque about the center of mass is

τ ′ = dL′

dt
=

((
16

3
t + 4

3

)
k
)
N.m

The total kinetic energy of the system relative to the center of
mass is

K ′ = 1

2

∑

i

miv
′2
i =

∑

i

miv
2
i − 1

2
Mv2cm

= (2t2+11)− 1

2
(3)

[(
2

3
t+2

)2

+ 4

9

]
=

(
4t2

3
−2t− 13

3

)
J

Example 6.12 Two particles of equal mass m are rotating
about their center of mass with a constant speed v as in
Fig. 6.13. If they are separated by a distance 2d, find the total
angular momentum of the system.

Solution 6.12

L = mvd + mvd = 2mvd

Fig. 6.13 Two particles rotating about their center of mass

6.4.5 Collisions and the Center of Mass Frame
of Reference

In problems involving collisions, it is useful to use an inertial
frame of reference that is attached to the center of mass to
analyze the collision. This method is most commonly used
in analyzing collisions between subatomic particles or atoms.
In section (6.4.1), we proved that the total linear momentum
of a system when observed from the center of mass frame is
equal to zero.

p′
i = p′

f = 0 (6.16)

Now consider a system consisting of two bodies undergoing a
one-dimensional collision (see Fig. 6.14). Then from Eq.6.16
we have

p′
1i = −p′

2i

and
p′
1 f = −p′

2 f

That is, when viewed from the center of mass frame the two
objects approach each otherwith equal and oppositemomenta
and move away from each other with an equal and opposite
momenta. Therefore, the center of mass frame simplifies the
analysis since it exhibits a particular symmetry to the problem
(see Fig. 6.15).

Example 6.13 A rocket is projected vertically upward and
explodes into three fragments of equal mass when it reaches
the top of its flight at an altitude of 40m (see Fig. 6.16). If the
two fragments land to the ground after 3 s from the explosion,
find the time it takes the third fragment to hit the ground.

Solution 6.13 When the rocket reaches the top its velocity
immediately before explosion is zero. Since v1, v2 and v3 are
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Fig. 6.14 Consider a system consisting of two bodies undergoing a
one-dimensional collision

Fig. 6.15 The center of mass frame analysis of a collision

Fig. 6.16 A rocket is projected
vertically upward and explodes
into three fragments of equal
mass when it reaches the top of
its flight at an altitude of 40 m

the velocities of the fragments immediately after explosion,
we have from the conservation of momentum

m1v1 + m2v2 + m3v3 = 0

Since m1 = m2 = m3, then v1 + v2 + v3 = 0. The first and
second fragments land at the same time t ′ and hence they have
the same vertical velocity initially which is equal to −v3/2.
Therefore

h = v3t + gt2

2

and

h = −v3t ′

2
+ gt ′2

2

That gives

v3 = g(t ′2 − t2)

2t + t ′

and

h = gtt ′(t + 2t ′)
2(2t + t ′)

Substituting the values of h and t ′ gives

29.4t2 + 160t + 63.6 = 0

Thus, t = 2.3 s.

Example 6.14 Find the center of mass of the Earth–Moon
System and describe its motion around the sun.

Solution 6.14 As we shall see in Chap.9, the center of mass
of two bodies with different masses moving under gravity
will trace an ellipse. Since the external forces on the sun can
be neglected, we may consider it to be at rest in an inertial
frame of reference and at the origin of a coordinate system
(see Fig. 6.17). The center of mass of the Earth–Moon system
is

rcm = MErE + MMrM
ME + MM

where r̂E and r̂M are unit vectors in the direction of rE and
rM respectively. The equation of motion of the center of mass
is

F = (ME + MM )r̈cm

The gravitational force on the Earth–Moon system exerted by
the sun is

F = −GMS

(
ME

r2E
r̂E + MM

r2M
r̂M

)

Since the distance between the earth and the moon is so
small compared to their distance from the sun we may write
rE ≈ rM ≈ rcm

F = −GMS

r2cm
(ME + MM )r̂cm = (ME + MM )r̈cm

Hence, the center of mass of the Earth–Moon system moves
as a single planet of mass (ME +MM ) about the sun as shown
in Fig. 6.18.

Example 6.15 Describe the motion of a rocket in space using
the law of conservation of momentum.

Fig. 6.17 The center of mass of
the Earth-Moon system
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Fig. 6.18 The center of mass of the Earth-Moon system moves as a
single planet of mass (ME + MM ) about the sun

Fig. 6.19 A rocket moving in
space is a system with varying
mass. Its motion is analyzed
using the law of conservation of
momentum

Solution 6.15 A rocket moving in space is a system with
varying mass. Its motion is analyzed using the law of conser-
vation of momentum. In order for a rocket to move in space,
its fuel is burned and gases are produced and ejected from its
rear. This will cause the mass of the rocket to decrease contin-
uously The ejected gases producemomentum in the backward
direction and as a result the rocket receives a forwardmomen-
tum and its velocity increases (see Fig. 6.19). Suppose at an
instant t , the rocket has a mass M and velocity v relative to a
stationary frame of reference. During a time interval t, a mass
�m of the fuel is expelled as gas with a velocity u relative to
the rocket. The speed of the rocket increases to v+�v and the
speed of the fuel relative to the stationary frame of reference
is v − u. The initial momentum of the rocket is

p(t) = (M + �m)v

and the final momentum is

p(t + �t) = M(v + �v) + �m (v − u)

The change in the momentum is

�p(t + �t) = p(t + �t) − p(t) = M�v − (�m)u

Therefore, the force acting on the rocket is

F = dp
dt

= lim�t→0

�p
�t

= M
dv
dt

− u
dm

dt

Since the increase in the exhaust mass produce an equal
decrease in the rocket mass, we have

dm = −dM

Fig. 6.20 A system of particles in x-y plane

Thus

F = M
dv
dt

+ u
dM

dt

If no external forces act on the rocket we have F = 0 and

M
dv
dt

= −u
dM

dt

hence

∫ t

t0

dv
dt

dt = −u
∫ M

M0

1

M

dM

dt
dt = −u

∫ M

M0

dM

M

That gives

v − v0 = u ln
(
M0

M

)

Therefore, the final speed of the rocket depends on the exhaust
speed and on the ratio of the initial and final masses.

Problems

1. Find the coordinate of the center of mass of the system
shown in Fig. 6.20.

2. Find the center of mass of a uniform plate bounded by
y = −0.24x2+6 and the x-axis from x = −5 to x = 5m.

3. Find the center of mass of the homogeneous sheet shown
in Fig. 6.21.

4. Find the center of mass of the homogeneous sheet shown
in Fig. 6.22.

5. Find the center of mass of a uniform solid circular cone of
radius a and height h.

6. Find the center of mass of a uniform solid hemisphere of
radius R.
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Fig. 6.21 A homogenous sheet with a hole

Fig. 6.22 A homogenous sheet in the x-y plane

Fig. 6.23 The acceleration of the center of mass of two masses acted
upon by different forces

7. Two masses initially at rest are located at the points shown
in Fig. 6.23. If external forces act on the particles as in
Fig. 6.23, find the acceleration of the center of mass.

Fig.6.24 By neglecting friction between the boat and water, the center
of mass can be used to find the distance moved by the boat

8. A projectile of mass 15kg is fired from the ground with
an initial velocity of 12m/s at an angle of 45o to the hor-
izontal. 1 second later, the projectile explodes into two
fragments A and B. If immediately after explosion, frag-
ment A has a mass of 5kg and a speed of 5m/s at an angle
of 30o to the horizontal, find the velocity of fragment B
(assuming air resistance is neglected).

9. Two boys of masses 45 and 40kg are standing on a boat
of mass 150kg and length 5m as in Fig. 6.24. The boat
is initially lm from the pier. Assuming that there is no
friction between the boat and the water, find the distance
moved by the boat when the two meet at the middle of the
boat.

10. Two particles of masses m1 = 3kg and m2 = 5kg are
moving relative to the lab frame with velocities of 10m/s
along the y-axis and 15m/s at an angle of 30o to the x-
axis. Find (a) the velocity of their center of mass (b) the
momentum of each particle in the center of mass frame (c)
the total kinetic energy of the particles relative to the lab
frame and relative to the center of mass frame.

11. Two particles of masses m1 = 1kg and m2 = 2kg are
moving relative to the lab frame with velocities of v1 =
2i − 3j + k and v2 = 7i + j − 2k. If at a certain instant
they are located at (−1, 1, 2) and (3, 0, 1) , find the angular
momentum of the system relative to the origin and relative
to the center of mass.
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7Rotation of Rigid Bodies

7.1 Rotational Motion

Rotational motion exists everywhere in the universe. The
motion of electrons about an atom and the motion of the
moon about the earth are examples of rotational motion.
Objects cannot be treated as particles when exhibiting rota-
tional motion since different parts of the object move with
different velocities and accelerations. Therefore, it is neces-
sary to treat the object as a system of particles.

7.2 The PlaneMotion of a Rigid Body

When all parts of a rigid body move parallel to a fixed plane,
then the motion of the object is referred to as plane motion.
Therearetwotypesofplanemotion,whicharegivenasfollows:

1. The pure rotational motion: The rigid body in such a
motion rotates about a fixed axis that is perpendicular to a
fixed plane. In other words, the axis is fixed and does not
move or change its direction relative to an inertial frame
of reference.

2. The general plane motion: The motion here can be consid-
ered as a combination of pure translational motion parallel
to a fixed plane in addition to a pure rotationalmotion about
an axis that is perpendicular to that plane. This chapter
discusses the kinematics and dynamics of pure rotational
motion.

7.2.1 The Rotational Variables

Suppose a rigid body of an arbitrary shape is in pure rotational
motion about the z-axis (see Fig. 7.1). Let us analyze the
motion of a particle that lies in a slice of the body in the x-y
plane as in Fig. 7.2. This particle (at point P) will rotate in
a circle of fixed radius r which represents the perpendicular
distance from P to the axis of rotation. If you look at any other

particle in the object youwill see that every particle will rotate
in its own circle that has the axis of rotation at its center. In
other words, different particles move in different circles but
the center of all of these circles lies on the rotational axis.
Suppose the particle moves through an arc length s starting at
the positive x-axis. Its angular position is then given by

θ = s

r

r and θ are the polar coordinates of a point in a plane (which
was mentioned in Sect. 2.6) where θ is always measured from
the positive x-axis. Because θ is the ratio of the arc length
to the radius, it is a pure (dimensionless) number. The unit
usually used to measure θ is the radians (rad). One radian
is defined as the angle subtended by an arc of length that is
equal to the radius of the circle. Since one rotation (360◦)
corresponds to θ = 2πr/r = 2π rad, it follows that:

1 rev = 360◦ = 2π rad

1 rad = 57.3◦ = 0.159 rev

Note that if the particle completes one revolution, θ will
not become zero again, it is then equal to 2π rad. Thus for
example for three revolutions the angular position is given by

θ = (2π + 2π + 2π) rad = 6π rad

Suppose that the particle in Fig. 7.2 is at point P1 at t1 and
at point P2 at t2 where it changes its angular position from θ1
to θ2 (see Fig. 7.3). Its angular displacement is then given by

�θ = θ2 − θ1

�θ is positive for counterclockwise rotations (increasing θ )
and negative for clockwise rotations (decreasing θ ). If the
particle undergoes this angular displacement during a time
interval �t, the average angular velocity ω is then defined as
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Fig.7.1 A rigid body of an arbitrary shape is in pure rotational motion
about the z-axis

Fig. 7.2 The motion of a particle that lies in a slice of the body in the
x-y plane

Fig.7.3 The particle is at point P1 at t1 and at P2 at t2, where it changes
its angular position from θ1 to θ2

ω = θ2 − θ1

t2 − t1
= �θ

�t

The instantaneous angular velocity is

ω = lim�t→0

�θ

�t
= dθ

dt

ω has units of rad/s or s−1. The average angular acceleration
is defined as

α = ω2 − ω1

t2 − t1
= �ω

�t

The instantaneous angular acceleration is

α = lim�t→0

�ω

�t
= dω

dt

where α is in rad/s2 or s−2. Note thatω is positive for increas-
ing θ and negative for decreasing θ , while α is positive for
increasing ω and negative for decreasing ω. When a rigid
body is in pure rotational motion, all particles in the body
rotate through the same angle during the same time interval.
Thus, all particles have the same angular velocity and the same
angular acceleration. Therefore,ω and α describes themotion
of the whole body In the case of pure rotational motion, the
direction of ω is along the axis of rotation (also see Sect. 7.4),
it can be determined by the right-hand rule or of advance of
a right-handed screw as in Fig. 7.4. The direction of α is in
the same direction of ω if ω is increasing or in the opposite
direction if ω is decreasing.

The quantities θ, ω and α in pure rotational motion are
the rotational analog of x, v and a in translational one-
dimensional motion. The vectors ω and α are not used in the
case of pure rotational motion, they are used in the general
rotational motion when the axis of rotation changes its
direction with time. Note that only the infinitesimal angular
displacement dθ can be represented by a vector but not the
finite angular displacement �θ . This is because the finite
angular displacement �θ does not obey the commutative
law of vector addition (see Fig. 7.5) and therefore cannot be
represented by a vector. Hence, the instantaneous angular
velocity and acceleration (ω and α) can be represented by
vectors but not their average values (ω and α).

Example 7.1 Convert each of the following into the other
angular units: 15◦, 0.25 rev/s2, 3 rad/s.

Solution 7.1

15o = (15 deg)

(
1 rev

360 deg

)
= 0.042 rev

15o = (15 deg)

(
2 π rad

360 deg

)
= 0.26 rad

0.25 rev/s2 =
(
0.25

rev

s2

)(
2π rad

1rev

)
= 1.57 rad/s2

0.25 rev/s2 =
(
0.25

rev

s2

)(
360 deg

1 rev

)
= 90 deg/s2
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Fig. 7.4 The direction of ω is along the axis of rotation and can be
determined by the right-hand rule or of advance of a right-handed screw

Fig. 7.5 Changing the order of addition will change the final result

3 rad/s =
(
3
rad

s

)(
1 rev

2π rad

)
= 0.48 rev/s

3 rad/s =
(
3
rad

s

)(
360o deg

2π rad

)
= 172 deg/s

Example 7.2 A rotating rigid object has an angular position
given by θ(t) = ((0.3)t2 + (0.4)t3) rad. Determine: (a) the
angular displacement of the object and the average angular
velocity during the time interval from t1 = 1s to t2 = 2 s.
(b) the instantaneous angular velocity and the instantaneous
angular acceleration at t = 5 s.

Solution 7.2 (a)
�θ = θ2 − θ1

θ1 = ((0.3)(1 s)2 + (0.4)(1 s)3) = 0.7 rad

and
θ2 = ((0.3)(2 s)2 + (0.4)(2 s)3) = 4.4 rad

�θ = (4.4 rad) − (0.7 rad) = 3.7 rad

ω = �θ

�t
= (3.7 rad)

(1 s)
= 3.7 rad/s

(b)

ω = dθ

dt
= ((0.6)t + (1.2)t2) rad/s

at t = 5 s

ω = (0.6)(5 s) + (1.2)(5 s)2 = 33 rad/s

α = dω

dt
= ((0.6) + (2.4)t) rad/s2

at t = 5s

α = (0.6) + (2.4)(5 s) = 12.6 rad/s2

Example 7.3 Awheel is rotatingwith an angular acceleration
that is given by α = (9 − 2t) rad/s2. (a) Find the angular
velocity and displacement at any time if at t = 0 the wheel
has an angular velocity of 2 rad/s and an (initial) angular
displacement of 3 rad; (b) at what angular displacement will
the wheel reach its maximum angular velocity

Solution 7.3 (a)

ω =
∫

αdt =
∫

(9 − 2t)dt = 9t − t2 + c1

Since at t = 0 ω = 2 rad/s, we have c1 = 2 rad/s and
hence

ω = (9t − t2 + 2) rad/s

θ =
∫

ωdt =
∫

(9t − t2 + 2)dt = 9

2
t2 − 1

3
t3 + 2t + c2

Since at t = 0, θ = 3 rad, then c2 = 3 rad and

θ =
(
9

2
t2 − 1

3
t3 + 2t + 3

)
rad

(b) The maximum velocity is when α = dω/dt = 0, or
9 − 2t = 0, i.e. at t = 4.5 s The angular displacement at that
time is

θ = 9

2
(4.5 s)2 − 1

3
(4.5 s)3 + 2(4.5 s) + 3 = 72.8 rad
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7.3 Rotational Motion with Constant
Acceleration

Apure rotational motionwith constant angular acceleration is
the rotational analogue of the pure translational motion with
constant acceleration.The correspondingkinematic equations
of pure rotational motion can be obtained by using the same
method that is used for obtaining the kinematic equations
of pure translational motion. To show this, consider a rigid
object rotating with a constant angular acceleration during a
time interval from t1 to t2 through an angle from θ1 to θ2.
Let t1 = 0, t2 = t, ω1 = ωo, ω2 = ω, θ1 = θo, and θ2 = θ.

Because the angular acceleration is constant it follows that the
angular velocity changes linearly with time and the average
angular velocity is given by

ω = ω0 + ω

2

Since
α = α = ω2 − ω1

t2 − t1
= ω − ω0

t

we have
ω = ω0 + αt (7.1)

Furthermore

ω = θ2 − θ1

t2 − t1
= θ − θ0

t
= ω0 + ω

2

Hence

θ = θ0 + 1

2
(ω0 + ω)t (7.2)

Substituting Eq. 7.1 into Eq. 7.2 gives

θ = θ0 + 1

2
(ω0 + ω)t = θ0 + 1

2
(ω0 + ω0 + αt)t

or

θ = θ0 + ω0t + 1

2
αt2 (7.3)

Finally solving for t from Eq. 7.1 and substituting into Eq. 7.2
gives

θ = θ0 + 1

2
(ω0 + ω)t = θ0 + 1

2
(ω0 + ω)

(
ω − ω0

α

)

or
ω2 = ω2

0 + 2α(θ − θ0) (7.4)

Note that as mentioned earlier, if a rigid object is in pure
rotational motion, all particles in the object have the same
angular velocity and angular acceleration. Different particles
move in different circles but the center of these circles lies

at the axis of rotation. As the rigid body rotates, a particle
in the body will move through a distance s along its circular
path (see Fig. 7.6). The angular displacement of the particle
is related to s by

s = rθ

where r is the radius of the circle in which the particle is
moving along.Differentiating the above equationwith respect
to t gives

ds

dt
= r

dθ

dt

Since ds/dt is the magnitude of the linear velocity of the
particle and dθ/dt is the angular velocity of the body we may
write

v = rω (7.5)

Therefore, the farther the particle is from the rotational axis
the greater its linear speed. The direction of the linear speed
of the particles is always tangent to the path (as mentioned
in Sect. 2.2.3). In Sect. 2.4.6 we have seen that a particle in
nonuniform circular motion has both tangential and radial
components of acceleration. The radial component is due to
the change in the direction of the velocity and is given by

ar = v2

r
(7.6)

Substituting Eq. 7.5 into Eq. 7.6 gives

ar = v2

r
= rω2

The tangential component of the acceleration is due to the
change in the magnitude of the velocity and it is given by

at = dv

dt
= r

dω

dt

or
at = rα

The total linear acceleration of the particle (see Fig. 7.7)
is given by

a = at + ar

It’s magnitude is given by

a =
√
at2 + ar2 =

√
r2α2 + r2ω4 = r

√
α2 + ω4

Table. 7.1 shows the linear/rotational analogous equations.

Example 7.4 A disc of radius of 10 cm rotates from rest with
a constant angular acceleration. If it requires 2 s for it to rotate
through an angular displacement of 60o: (a) find the angular
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Fig. 7.6 As the rigid body rotates, a particle in the body will move
through a distance s along its circular path

Fig. 7.7 The total acceleration of the particle

Table 7.1 Kinematic equations

Rotational motion about a fixed
axis with constant α

Linear motion with constant a

ω = ω0 + αt v = v0 + at

θ = θ0 + 1

2
(ω + ω0)t x = x0 + 1

2
(v + v)t

θ = θ0 + ω0t + 1

2
αt2 x = x0 + v0t + 1

2
at2

ω2 = ω2
0 + 2α(θ − θ0) v2 = v20 + 2a(x − x0)

acceleration of the disc; (b) its angular velocity at t = 2s and
at t = 6s, (c) the linear speed at t = 2s of a point that is at a
distance of 7 cm from the center of the disc; (d) the distance
that this point has moved during that time interval.

Solution 7.4 (a) We have ω0 = 0 and θ = (60 deg)
(2π rad/360 deg) = 1.05 rad. By choosing the reference
position θ0 = 0 we have

θ = θ0 + ω0t + 1

2
αt2

α = 2θ

t2
= 2(1.05 rad)

(2 s)2
= 0.525 rad/s2

Fig. 7.8 Two sprockets connected at the rim

(b)

ω = ω0 + αt = (0.525 rad/s2)(2 s) = 1.05 rad/s

at t = 6 s

ω = (0.525 rad/s2)(6s) = 3.15 rad/s

(c)
v = rω = (0.07 m)(1.05 rad/s) = 0.074 m/s

(d)
s = rθ = (0.07 m)(1.05 rad) = 0.074 m

Example 7.5 Two sprockets are attached to each other as in
Fig. 7.8. There radii are r1 = 2 cm and r2 = 5 cm. If the
angular velocity of the smaller sprocket is 2 rad/s, find the
angular velocity of the other.

Solution 7.5 A point at the rim of one sprocket has the same
linear speed as a point at the rim of the other sprocket since
they are attached to each other, i.e.,

r1ω1 = r2ω2 = v

hence

ω2 = r1
r2

ω1 = (2 cm)

(5 cm)
(2 rad/s) = 0.8 rad/s

Example 7.6 Find the angular speed of the moon in its orbit
about the earth in rev/day.

Solution 7.6 Assuming that the moon’s orbit is circular, the
linear speed of the moon is given by v = 2πr/T , where r
is the mean distance from the earth to the moon and T is its
period. Thus, the angular velocity of the moon is

ω = rv = 2π

T
= 2(3.14)

(27.3 day)
= 0.23 rad/day

or
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ω =
(
0.23

rad

day

)(
1 rev

2π rad

)
= 0.037 rev/day

7.4 Vector Relationship Between Angular
and Linear Variables

Consider a rigid body in pure rotational motion about a fixed
axis (for example the z-axis). For any particle in the object,
its linear velocity is given by

v = rω = R sin θω

where R is the position vector of the particle from the origin
(see Fig. 7.9) and θ is the angle between the position vector
and the z-axis. As shown in Fig. 7.9, the direction of y is
perpendicular to the plane formed by ω and R where it can
be verified using the right-hand rule. Therefore, by using the
definition of vector product we may write

v = ω × R (7.7)

The total linear acceleration is

a = dv
dt

= d

dt
(ω × R)

From Sect. 1.9.1 (d/dt(A×B) = A× dB/dt + dA/dt ×B)

we have

a = dω

dt
× R + ω × dR

dt

= α × R + ω × v

|α × R| = αR sin θ = rα = at

Furthermore, the direction of α ×R is tangent to the circular
path of the particle at any instant (see Fig. 7.9). Thus the
quantity α × R is just the tangential component of the total
acceleration

at = α × R (7.8)

In addition

|ω × v| = ωv sin 90o = ωv = rω2 = ar

The direction of ω×v is along the direction of r (radial direc-
tion). Hence, the quantity ω × v is the radial component of
the total acceleration

ar = ω × v (7.9)

Equations 7.7–7.9 are the vector relationship between angular
and linear quantities.

Fig.7.9 A rigid body in pure rotational motion about a fixed axis (here
the z-axis)

7.5 Rotational Energy

In Chap. 6 we have seen that the kinetic energy of a discrete

system of particles isK = 1

2

∑
i

miv
2
i wheremi and vi are the

mass and linear velocity of the ith particle respectively (see
Fig. 7.10). From Eq. 7.5, we have

vi = riω

where ri is the perpendicular distance from the particle to
the axis of rotation. Therefore the total kinetic energy of the
system is

KR = 1

2

∑
i

(mir
2
i )ω

2

The quantity between brackets is known as the moment of
inertia of the system

I =
∑
i

mir
2
i

This quantity shows how the mass of the system is distributed
about the axis of rotation. Thus, to find the rotational inertia,
the axis of rotation must be specified. If the rotational axis
changes its position or direction, I changes as well. The SI
unit of the moment of inertia is kgm2. The rotational kinetic
energy can thus be written as

KR = 1

2
Iω2

This quantity is the rotational analogue of the kinetic energy
in translational motion. Note that this energy is not a new kind
of energy; it is just the sumof the translational kinetic energies
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Fig. 7.10 A system of particles rotating about the z-axis

of the particles. For a rigid body which is a continuous system
of particles, the sum is replaced by an integral

I = lim�mi→0

∑
i

mir
2
i =

∫
r2dm

In solving problems ρ, σ , and λ (see Sect. 6.3.4) are often
used to express dm in terms of its position coordinates.

7.6 The Parallel-Axis Theorem

The parallel-axis theorem states that the moment of inertia I
of a system about any axis that is parallel to an axis passing
through the center of mass is

I = Icm + MD2

where Icm is the moment of inertia about an axis passing
through the center of mass, M is the total mass of the sys-
tem, and D is the perpendicular distance between the two
parallel axes.

Proof Consider an axis that is perpendicular to the page and
passing through the center of mass of the object. Figure 7.11
shows a thin slice of the object that lies in the x-y plane.
Because the origin is taken at the center of mass we have

zcm = xcm = ycm = 0

The moment of inertia of the object about the center of mass
axis is

Icm =
∫

r2dm =
∫

(x2 + y2)dm

Fig. 7.11 The Parallel-axis Theorem

where x and y are the coordinates of the mass element dm
from the center of mass (the origin). Now consider another
axis that is parallel to the first axis and that passes through
a point P as shown in Fig. 7.11. Suppose that the x and y
coordinates of P from the center of mass are xp and yp. The
moment of inertia about an axis passing through P is

IP =
∫

[(x − xP)2 + (y − yP)2]dm

where (x− xP) and (y− yP) are coordinates of dm from point
P Expanding this equation gives

IP =
∫

(x2 + y2)dm − 2xP

∫
xdm − 2yP

∫
ydm +

∫
(x2P + y2P)dm

Since xcm = ycm = 0 and since

xcm = 1

M

∫
xdm

and

ycm = 1

M

∫
ydm

it follows that the second and third terms are zero. Thus

IP = Icm + D2
∫

dm

where

D =
√

(x2P + y2P)

is the perpendicular distance between the two parallel axes.
Hence



110 7 Rotation of Rigid Bodies

Fig.7.12 The rotational inertia of various rigid bodies of uniform den-
sity

IP = Icm + MD2 (Parallel–Axis Theorem)

Special Moment of Inertia Fig. 7.12 gives the rotational
inertia of various rigid bodies of uniform density.

7.7 Angular Momentum of a Rigid Body
Rotating about a Fixed Axis

Consider a rigid body rotating about a fixed axis (the z-axis)
with an angular speed ω as shown in Fig. 7.13. The angular
momentum of the ith particle with respect to the origin is
given by

Li = Ri × pi

Since the angle between Ri and pi is 90, then Li = Ripi. As
seen from Fig. 7.13,Li is not parallel toω.Li can be analyzed
to two components, a component parallel to ω written (Liz)

and a component perpendicular to ω, (Li⊥). The magnitude
of Liz is given by

Fig. 7.13 A rigid body rotating about a fixed axis (the z-axis) with an
angular speed ω

Liz = Li sin θ = Ripi sin θ = Ri(mivi) sin θ

= Rimi(riω) sin θ = mir
2
i ω

where ri is the radius of the circle in which the particle is
moving along and Ri = ri sin θ . Therefore, the total angular
momentum of the rigid body along the z-direction is

Lz =
∑
i

mir
2
i ω =

( ∑
i

mir
2
i

)
ω

Lz = Iω

where I is the moment of inertia of the rigid body about the
rotational axis (z-axis). This equation can also be written in
component form since Lz is parallel to ω, that is,

Lz = Iω (7.10)

Therefore, if a rigid body is rotating about a fixed axis (say
the z-axis), the component of the angular momentum along
that axis is given by Eq. 7.10. Now suppose that the rigid body
is symmetric and homogeneous and that it is rotating about
its symmetrical axis (see Fig. 7.14). For any two particles (1
and 2) opposing each other with an equal angular momenta
L1 and L2, the perpendicular components, L1⊥ and L2⊥, of
the angular momenta cancel each other out since they are in
opposite directions. That leaves the parallel components L1z

and L2z which add up since they have the same direction.
For all particles in the object the total angular momentum is,
therefore, given by

L =
∑
i

Liz = Lz = Iω
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Fig.7.14 Ahomogenous symmetrical rigid body rotating about its sym-
metrical axis

Hence, the total angular momentum of a symmetrical homo-
geneous body in pure rotation about its symmetrical axis is
given by

L = Iω (7.11)

Note that Eq. 7.10 is valid for any rigid object in pure rotation
where it only gives the component of the angular momen-
tum that is parallel to the rotational axis. On the other hand,
Eq. 7.11 is valid only for a symmetrical homogeneous rigid
object rotating about its symmetrical axis, where the angular
momentum in the equation is the total angular momentum
and it is directed along the axis of rotation. The net external
torque acing on the rigid object is equal to the rate of change
of the total angular momentum of the object, i.e.,

	τ ext = dL
dt

In the case of any rigid object symmetrical or not, the net
external torque acting on the object about the axis of rotation
(say the z-axis) is equal to the rate of change of the component
of angular momentum that is along that axis

	τ extz = dLz

dt
= d(Iω)

dt
= Iα

However, if the object is symmetric and homogeneous in pure
rotation about its symmetrical axis we may write

	τ ext = dL
dt

= d(Iω)

dt
= Iα

Example 7.7 A 5 kg wheel of radius of 0.1 m decelerates
from an angular speed of 5 rad/s to rest after going through
an angular displacement of 10 rev If a frictional force causes
the wheel to decelerate, find the torque due to this force.

Solution 7.7 The angular displacement is

�θ = (10 rev)

(
2π rad

1 rev

)
= 62.8 rad

The angular acceleration of the wheel is

α = ω2 − ω2
0

2�θ
= 0 − (5 rad/s)2

2(62.8 rad)
= −0.2 rad/s

The external torque is

τ = Iα = MR2α = (5 kg)(0.1 m)2(−0.2 rad/s2) = −0.01 Nm

Example 7.8 Three masses are connected by massless rods
as in Fig. 7.15. If m = 0.1 kg, find the moment of inertia of
the system and the corresponding kinetic energy if it rotates
with an angular speed of 5 rad/s about: (a) the z-axis; (b) the
y-axis and; (c) the x-axis (a = 0.2 m).

Solution 7.8 (a)

Iz =
∑
i

mir
2
i = 2ma2 + m

2
a2 + ma2 = 7

2
ma2

= 7

2
(0.1 kg)(0.2 m)2 = 0.014 kgm2

KR = 1

2
Izω

2 = 1

2
(0.014 kgm2)(5 rad/s)2 = 0.175 J

(b)

Iy = m

2
a2 + 2ma2 = 5

2
ma2 = 5

2
(0.1 kg)(0.2 m)2 = 0.01 kgm2

Fig. 7.15 Three masses connected by massless rods



112 7 Rotation of Rigid Bodies

Fig. 7.16 A uniform thin rod of massM and length L

KR = 1

2
Iyω

2 = 1

2
(0.01 kgm2)(5 rad/s)2 = 0.125 J

(c)

Ix = ma2 = (0.1 kg)(0.2 m)2 = 4 × 10−3 kgm2

KR = 1

2
Ixω

2 = 1

2
(4 × 10−3 kgm2)(5 rad/s)2 = 0.05 J

Example 7.9 Fig. 7.16 shows a uniform thin rod of mass M
and length L. Find the moment of inertia of the rod about an
axis that is perpendicular to it and passing through: (a) the
center of mass; (b) at one end; (c) at a distance of L/6 from
one end.

Solution 7.9 (a) The mass dm of an element in the rod is

dm = λdx =
(
M

L

)
dx

Icm = Iy =
∫

r2dm =
∫ L

2

x=− L
2

x2
(
M

L

)
dx = M

L

(
x3

3

)∣∣∣∣
L/2

−L/2
= 1

12
ML2

(b)

Iy′ = Icm + MD2 = 1

12
ML2 + M

(
L

2

)2

= 1

3
ML2

(c)

Iy′′ = Icm + MD2 = 1

12
ML2 + M

(
L

2
− L

6

)2

= 7

36
ML2

Example 7.10 Fig. 7.17 shows a uniform thin plate of mass
M and surface density σ . Find the moment of inertia of the
plate about an axis passing through its center of mass if its
length is b and its width is a (the z-axis).

Fig. 7.17 A uniform thin plate of massM and surface density σ

Solution 7.10 A mass element dm has an area dxdy and is at
a distance r = √

x2 + y2 from the axis of rotation. Therefore,
we have

Icm =
∫

r2dm =
∫

r2σdA =
∫ a/2

y=−a/2

∫ b/2

y=−b/2
(x2 + y2)

(
M

ab

)
dxdy

= M

ab

∫ a/2

y=−a/2

(
x3

3
+ xy2

)
|b/2x=−b/2dy = M

ab

∫ a/2

y=−a/2

(
b3

12
+ by2

)
dy

= M

ab

(
b3y

12
+ y3b

3

)∣∣∣∣
a/2

x=−a/2
= M

ab

[
ab3

12
+ ab3

12

]
= 1

12
M

(
a2 + b2

)

Example 7.11 Find the moment of inertia of a uniform solid
cylinder of radius R, length L and mass M about its axis of
symmetry.

Solution 7.11 Method 1: Using a single integration by divid-
ing the cylinder into thin cylindrical shells each of radius r,
length L and thickness dr as in Fig. 7.18, then each volume
element is given by

dV = 2πrdrL

and
dm = ρdV = ρ(2πrdrL)

I =
∫

r2dm =
∫ R

0
r2(ρ2πrLdr) = 2πρL

∫ R

0
r3dr = πρL

2
R4

Since

ρ = M

πR2L

then

I = 1

2
MR2

Method 2:Using double integration: dividing the cylinder into
thin rods each of mass
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Fig.7.18 Calculating the moment of inertia of a uniform solid cylinder
with the volume element defined in different ways

dm = ρdV = ρLrdrdθ

I =
∫

r2dm =
∫ 2π

0

∫ R

r=0
r3ρLdrdθ = ρ

L

4
R4

∫ 2π

θ=0
dθ = πρLR4

2

Since

ρ = M

πR2L

We have

I = 1

2
MR2

Method 3: Using triple integration Dividing the cylinder into
small cubes each of mass given by

dm = ρrdrdθdz

I =
∫

r2dm =
∫ 2π

θ=0

∫ R

r=0

∫ L

z=0
ρr3drdθdz = ρL

R4

4

∫ 2π

θ=0
dθ = πρLR4

2

Fig. 7.19 Three rods of length L and massM are connected together

Since

ρ = M

πR2L

Therefore,

I = 1

2
MR2

Example 7.12 Three rods of length L and mass M are con-
nected together as in Fig. 7.19. Determine the moment of
inertia of the system about an axis passing through O and
perpendicular to the page (the rods lie in the same plane).

Solution 7.12 The moment of inertia of a thin rod about an
axis that is perpendicular to it and passing through one end is
1/3ML2. The total moment of inertia at O is the sum of the
moment of inertias of the rods, i.e.,

I = I1 + I2 + I3 = 3

(
1

3
ML2

)
= ML2

Example 7.13 Find the moment of inertia of a spherical shell
of radius R and mass M about an axis passing through its
center of mass.

Solution 7.13 Let us divide the spherical shell into thin rings
each of area (see Fig. 7.20) given by

dA = 2πR sin θRdθ = 2πR2 sin θdθ

I =
∫

r2dm =
∫

R2 sin2 θσ2πR2 sin θdθ

since σ = M /4πR2, we have

I = M

2
R2

∫ π

θ=0
sin3 θdθ = M

2
R2

∫ π

θ=0
(1 − cos2 θ) sin θdθ

= M

2
R2

[
− cos θ + cos3 θ

3

]π

θ=0
= 2

3
MR2
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Fig. 7.20 A spherical shell divided into thin rings

7.8 Conservation of Angular Momentum of
a Rigid Body Rotating About a Fixed Axis

In Chap.5 we have seen that if the net external torque acting
on a system of particles relative to an origin is zero then the
total angular momentum of the system about that origin is
conserved

Li = Lf = constant (isolated system)

In the case of a rigid object in pure rotational motion, if
the component of the net external torque about the rotational
axis (say the z-axis) is zero then the component of angular
momentum along that axis is conserved, i.e., if

τz = dLz
dt

= 0

then
Iiωi = If ωf

That is, the angular momentum is not necessarily conserved
in all directions. It is conserved in the direction where the net
external torque is equal to zero.

7.9 Work and Rotational Energy

Consider a rigid body rotating about a fixed axis as in
Fig. 7.21. If a force that lies in the x-y plane is applied to
the body at P, then the work done on the body if it rotates
through an angle dθ is

Fig. 7.21 A rigid body rotating about a fixed axis

dW = F · ds = F · ds
dt

dt = F · vdt = F · (ω × r)dt

= (r × F) · ωdt = τ · ωdt

Since τ and ω are parallel, (the force lies in the x-y plane
therefore the total torque is parallel to the z-axis) we have

dW = τωdt = τ
dθ

dt
dt = τdθ

Therefore, the total work done in displacing the body from θ1
to θ2 is

W =
∫ θ2

θ1

τdθ (7.12)

If this torque is constant we have

W = τ(θ2 − θ1) = τ�θ

The Work–Energy Theorem The work–energy theorem
states that the work done by an external force while a rigid
object rotate from θ1 to θ2 is equal to the change in the rota-
tional energy of the object. This follows from Eq. 7.12 and
by using the fact that along the axis of rotation the torque is
given by τz = Iα (see Sect. 7.7), thus

W =
∫ θ2

θ1

τdθ =
∫ θ2

θ1

Iαdθ =
∫ ω2

ω1

Iω
dω

dt
dt =

∫ ω2

ω1

Iωdω = 1

2
Iω2

2 − 1

2
Iω2

1

W = �K = 1

2
Iω2

2 − 1

2
Iω2

1
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Table7.2 AnalogousEquations in linearMotion andRotationalMotion
about a Fixed Axis

Rotational motion Linear motion

τ = Iα F = ma

W = ∫ θ

θ0
τdθ W = ∫ x

x0
Fdx

KR = 1
2 Iω

2 K = 1
2mv

2

P = τω P = Fv

7.10 Power

The instantaneous power delivered to rotate an object about
a fixed axis is found from

P = dW

dt
= τzdθ

dt
= τzωz

Table. 7.2 shows analogous equations in linear motion and
rotational motion about a fixed axis

Example 7.14 A disc of radius R = 0.08 m and mass of 5 kg
is rotating about its central axis with an angular speed of 170
rev/min. Find: (a) the rotational kinetic energy of the disc; (b)
Suppose that the same disc rotate using a motor that delivers
an instantaneous of power 0. 2hp, find in that case the torque
applied to the disc.

Solution 7.14 (a) Since the rotational axis is the axis of sym-
metry of the disc, then the moment of inertia is

I = 1

2
MR2 = 1

2
(5 kg)(0.08 m)2 = 0.016 kgm2

The angular velocity of the disc is

ω =
(
170 rev

min

)(
2π rad

1 rev

)(
1 min

60 s

)
= 17.8 rad/s

K = 1

2
Iω2 = 1

2
(0.016 kgm2)(17.8 rad/s)2 = 2.5 J

(b)

P = (0.2 hp )

(
746 W

1hp

)
= 149.2 W

and

τ = P

ω
= (149.2 W)

(17.8 rad/s)
= 8.4 Nm

Example 7.15 Consider a light rope wrapped around a uni-
form cylindrical shell of mass 30 kg and radius of 0.2 m as
in Fig. 7.22. Suppose that the cylinder is free to rotate about
its central axis and that the rope is pulled from rest with a
constant force of magnitude of 35 N. Assuming that the rope
does not slip, find: (a) the torque applied to the cylinder about

Fig. 7.22 A light rope wrapped around a uniform cylindrical shell

its central axis; (b) the angular acceleration of the cylinder;
(c) the acceleration of a point in the unwinding rope; (d) the
number of revolutions made by the cylinder when it reaches
an angular velocity of 12 rad/s, (e) the work done by the
applied force when the rope is pulled a distance of 1m, (f)
the work done using the work–energy theorem.

Solution 7.15 (a) Because the line of action of both the
weight and the normal forces passes through the central axis
of the cylinder, they produce no torque.Hence, the total torque
acting on the cylinder is

τ = FR = (35 N)(0.2 m) = 7 N/m

(b) The moment of inertia of the cylinder is

I = MR2 = (30 kg)(0.2 m)2 = 1.2 kgm2

and

α = τ

I
= (7 Nm)

(1.2 kgm2)
= 5.8 rad/s2

(c) The acceleration of a point in the unwinding rope is the
same as the acceleration of a point at the rim of the cylinder,
i.e.,

a = Rα = (0.2 m)(5.8 rad/s2) = 1.2 m/s2

(d)
ω2 = ω2

0 + 2αθ

Since ω0 = 0,

θ = (12 rad/s)2

2(5.8 rad/s2)
= 12.4 rad

or
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θ = (12.4 rad)

(
1 rev

2π rad

)
= 2 rev

(e) If the rope has moved a distance of lm, the angular
displacement of the cylinder is

θ = s

R
= (1 m)

(0.2 m)
= 5 rad

the work done is

W =
∫ θ

θ0

τdθ = τ(θ − θ0) = (7 Nm) ((5 rad) − 0) = 35 J

(f) The final angular speed when θ = 5 rad is

ω2 = ω2
0 + 2αθ = 0 + 2(5.8 rad/s2)(5 rad)

That gives ω = 7.6 rad/s. From the work–energy theorem
we have

W = �K = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(1.2 kgm2)(7.6 rad/s)2 − 0 = 35 J

Example 7.16 A uniform rod of mass M = 0.75kg and
length L = 1m is hinged at one end and is free to rotate
in a vertical plane as in Fig. 7.23. If the rod is released from
rest at an angle θ = 30o to the horizontal, find; (a) the initial
angular acceleration of the rod when it is released; (b) the
initial acceleration of a point at the end of the rod; (c) from
conservation of energy find the angular speed of the rod at its
lowest position (Neglect friction at the pivot).

Solution 7.16 (a) Since the normal force exerted by the pin on
the rod passes through O, then the only force that contributes
to the torque is the force of gravity This force acts at the
center of gravity which is at the center of mass (see Sect. 8.4).
Therefore the net external torque is

Fig. 7.23 A uniform rod free to rotate at one end

τ = MgL

2
cos θ = (0.75 kg)(9.8 m/s2)(1 m)

2
cos 30◦ = 3.2Nm

The moment of inertia about the rotational axis is

I = 1

3
ML2 = (0.75 kg)(1 m)2

3
= 0.25 kgm2

and hence

α = τ

I
= (3.2 Nm)

(0.25 kgm2)
= 12.8 rad/s2

(b) The acceleration of a point at the end of the rod is

at = rα = Lα = (1 m)(12.8 rad/s2) = 12.8 m/s2

(c) When the rod reaches its lowest position, the potential
energy of its center of mass is transformed into rotational
kinetic energy of the rod. From conservation of energy we
have Ki + Ui = Kf + Uf . Taking the potential energy to be
zero at the lowest position, gives

0 + Mg
L

2
(sin θ + 1) = 1

2
Iω2 + 0

That gives

ω =
√
Mg

L

I
(sin θ + 1) =

√
(0.75 kg)(9.8 m/s2)(1m)

(0.25 kgm2)
(sin 30◦ + 1) = 6.64 rad/s

Example 7.17 Find the net torque on the system shown in
Fig. 7.24 where r1 = 5 cm, r2 = 15 cm, F1 = 10 N,F2 =

Fig.7.24 A cylinder with a core section is free to rotate about its center.
Ropes wrapped around the inner and outer sections exert different forces
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Fig. 7.25 A block of mass m is
attached to a light string that is
wrapped around the rim of a
uniform solid disk of radius R and
massM

20 N and F3 = 15 N. Neglect the mass and friction of the
ropes and pulleys.

Solution 7.17 Since all forces lie in the same plane the net
torque is

τnet = τ1 + τ2 + τ3 = (10 N)(0.05 m) + (20 N)(0.05 m)

− (15 N)(0.15 m) = −0.75 Nm

Example 7.18 A block of mass m is attached to a light string
that is wrapped around the rim of a uniform solid disc of
radius R and massM as in Fig. 7.25. Assuming that the string
does not slip and that the disc rotates without friction, find:
(a) the acceleration of the block; (b) the angular acceleration
of the disc, and; (c) the tension in the string when the system
is released from rest.

Solution 7.18 The free-body diagrams of the disc and the
block are shown in Fig. 7.25. Applying Newton’s second law
to the block gives

T − mg = −ma

or

a = mg − T

m
(7.13)

where positive y is chosen to be directed upwards. Applying
Newton’s second law in angular form to the disc gives

τ = RT = Iα

or

α = RT

I

Since the acceleration of the block is equal to the (tangential)
acceleration of a point at the rim of the disc we have

a = Rα = TR2

I
(7.14)

Equating Eqs. 7.13 and 7.14 gives

TR2

I
= mg − T

m

T = g

1/m + R2/I
= g

1/m + 2R2/MR2

that gives

T = mg

1 + 2m/M

Substituting this into Eq. 7.14

a = TR2

I
= 2TR2

MR2

gives

a = g

1 + M /2m

Finally

α = a

R
= g

R(1 + M /2m)

Example 7.19 A homogeneous solid sphere of mass 4.7 kg
and radius of 0.05 m rotate from rest about its central axis
with a constant angular acceleration of 3 rad/s2. Find: (a) the
torque that produces this angular acceleration; (b) the work
done on the sphere after 7 revolutions; (c) the work done after
7 revolutions using the work–energy theorem.

Solution 7.19 (a)

τ = Iα = 2

5
MR2α = 2

5
(4.7 kg)(0.05 m)2(3 rad/s2) = 0.014 N

(b)

θ = (7 rev)

(
2π rad

1 rev

)
= 44 rad

and

W = τ�θ = (0.014 N/m)(44 rad) = 0.6 J
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Fig. 7.26 AtwoodÕs machine

assuming θ0 = 0.
(c) After seven revolutions the angular velocity is

ω2 = ω2
0 + 2α(θ − θ0)

Since ω0 = 0, we have

ω2 = 2αθ = 2(3 rad/s2)(44 rad)

that gives ω = 16.24 rad/s. Hence

W = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(4.7 × 10−3 kgm2)(16.24 rad/s2)2 − 0 = 0.6 J

Example 7.20 Fig. 7.26 shows Atwood’s machine when the
mass of the pulley is considered. If the system is released
from rest (and assuming that the string does not stretch or
slip) and that the friction of the pulley is negligible, find linear
acceleration of the blocks and the angular acceleration of the
pulley.

Solution 7.20 Fig. 7.26 shows the free-bodydiagram for each
block and for the pulley Applying Newton’s second law gives

T1 − m1g = m1a

T2 − m2g = −m2a

τ = (T1 − T2)R = −Iα

and

n − T1 − T2 − Mg = 0

The torque is negative because the pulley rotates in the clock-
wise direction. Therefore we have

T1 − T2 + g(m2 − m1) = a(m1 + m2)

and

T2 − T1 = Iα

R
= Ia

R2

That gives

a = g(m2 − m1)

(m1 + m2 + I/R2)

If the pulley is a uniform solid disc then

I = 1

2
MR2

and

a = g(m2 − m1)

(m1 + m2 + M /2)

α = g(m2 − m1)

R(m1 + m2 + M /2)

Example 7.21 Auniform solid cylinder of radius of 0.2m and
mass of 10 kg is rotating about its central axis. If the angu-
lar speed of the cylinder is 5 rad/s:(a) calculate the angular
momentum of the cylinder about its central axis; (b) Suppose
the cylinder accelerates at a constant rate of 0.5 rad/s2, find
the angular momentum of the cylinder at t = 3s(c) find the
applied torque; (d) find the work done after 3s.

Solution 7.21 (a) The moment of inertia of the cylinder is

I = 1

2
MR2 = 1

2
(10 kg)(0.2 m)2 = 0.2 kgm2

for homogeneous symmetrical objects the total angular
momentum is

L = Iω = (0.2 kgm2)(5 rad/s) = 1 kgm2/s

(b) At t = 3 s

ω = ω0 + αt = (5 rad/s) + (0.5 rad/s2)(3 s) = 6.5 rad/s

at that instant

L = Iω = (0.2 kgm2)(6.5 rad/s) = 1.3 kgm2/s

(c)
τ = Iα = (0.2 kgm2)(0.5 rad/s2) = 0.1 Nm
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Fig.7.27 A uniform solid sphere
rotating about an axis tangent to
the sphere

(d)

W = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(0.2 kgm2)((6.5 rad/s)2 − (5 rad/s)2) = 1.72 J

Example 7.22 A uniform solid sphere of radius of 5 cm and
mass of 4.7 kg is rotating about an axis that is tangent to the
sphere (see Fig. 7.27). If its angular acceleration is given by
α = (4t) rad/s2 and if at t = 0, ω0 = 0, find the angular
momentum of the sphere and the applied torque as a function
of time.

Solution 7.22

ω =
∫

αdt =
∫

4tdt = 2t2 + c

since at t = 0, ω0 = 0 then c = 0 and

ω = (2t2) rad/s

The moment of inertia of the sphere is

I = 2

5
MR2 + MR2 = 7

5
MR2 = 7

5
(4.7 kg)(0.05 m)2 = 0.016 kgm2

and

L = Iω = (0.016 kgm2)((2t2) rad/s) = (0.03t2) kgm2/s

τ = dL

dt
= (0.06t)Nm

Example 7.23 In Example 7.8 find the angular momentum in
each case.

Solution 7.23 (a)

L = Izω = (0.014 kgm2)(5 rad/s) = 0.07 kgm2/s

(b)

L = Iyω = (0.01 kgm2)(5 rad/s) = 0.05 kgm2/s

(c)

L = Ixω = (4 × 10−3 kgm2)(5 rad/s) = 0.02 kgm2/s

Example 7.24 A uniform solid sphere of radius of 0.2 m is
rotating about its central axis with an angular speed of 5 rad/s.
If an impulsive force that has an average value of 100 N acts
at the rim of the sphere at the center level for a short time of
2 ms:(a) find the angular impulse of the force; (b) the final
angular speed of the sphere.

Solution 7.24 (a)

�L =
∫ t2

t1
τdt = τave�t = FRt = (100 N)(0.2 m)(2 ×

10−3 s) = 0.04 kgm2/s
(b)

�L = I(ωf − ωi)

(0.04 kgm2/s) = (0.2 kgm2)(ωf − (5 rad/s))

That gives ωf = 5.2 rad/s.

Example 7.25 Aman stands on a platform that is free to rotate
without friction about a vertical axis as in Fig. 7.28. If the sys-
tem is initially rotating with an angular speed of 0.3 rev/s: (a)
find the final angular speed of the system if the man draws the
weights in; (b) find the increase in the kinetic energy of the
system and its source. (Ii = 15 kgm2 And If = 3 kgm2).

Solution 7.25 Because the resultant external torque on the
system is zero, it follows that the total angular momentum of
the system is conserved. That is

Li = Lf

Iiωi = If ωf

hence

ωf = Ii
If

ωi = (15 kgm2/s)

(3 kgm2/s)
(0.3 rev/s) = 1.5 rev/s

(b)

ωi =
(
0.3

rev

s

)(
2π rad

1 rev

)
= 1.9 rad/s
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Fig. 7.28 A man stands on a
platform that is free to rotate
without friction about a vertical
axis

ωf =
(
1.5

rev

s

)(
2π rad

1 rev

)
= 9.4 rad/s

Ki = 1

2
Iiω

2
i = 1

2
(15 kgm2)(1.9 rad/s)2 = 27 J

Kf = 1

2
If ω

2
f = 1

2
(3 kgm2)(9.4 rad/s)2 = 132.5 J

This increase in the kinetic energy is because the man does
work when he moves the dumbbells inwards.

Example 7.26 A uniform disc of moment of inertia of 0.1
kg m2 is rotating without friction with an angular speed of 3
rad/s about an axle passing through its center of mass as in
Fig. 7.29. When another disc of moment of inertia of 0.05 kg
m2 that is initially at rest is dropped on the first, the two will
eventually rotate with the same angular speed due to friction
between them. Determine (a) the final angular speed; (b) the
change in the kinetic energy of the system.

Solution 7.26 (a) Since the net external torque acting on the
system is zero, it follows that the total angular momentum of
the system is conserved, i.e.,

Li = Lf

or
I1ω1 = (I1 + I2)ω

hence

Fig.7.29 A uniform disc rotating without friction. Another disc that is
initially at rest is dropped on the first, the two will eventually rotate with
the same angular speed due to friction between them

ω = I1ω1

(I1 + I2)
= (0.1 kgm2)(3 rad/s)

(0.15 kgm2)
= 2 rad/s

(b)

Ki = 1

2
I1ω

2
1 = 1

2
(0.1 kgm2)(3 rad/s)2 = 0.45 J

Kf = 1

2
(I1 + I2)ω

2 = 1

2
(0.15 kgm2)(2 rad/s)2 = 0.3 J

This decrease in kinetic energy is due to the internal noncon-
servative (frictional) force that acts within the system.

Problems

1. A wheel is initially rotating at 60 rad/s in the clockwise
direction. If a counterclockwise torque acts on the wheel
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producing a counterclockwise angular acceleration α =
2t rad/s2, find the time required for the wheel to reverse
its direction of motion.

2. If the angular position of a point on a rotating wheel is
given by θ = 2t + 5t2 rad, find the angular speed and
angular acceleration of the point at t = 2 s.

3. A wheel of radius of 0.5 m rotates from rest at a constant
angular acceleration of 2.5 rad/s2. At t = 2 s Find (a)
the angular speed of the wheel (b) the angle in radians
through which the wheel rotates (c) the tangential and
radial acceleration of a point at the rim of the wheel.

4. Find the angular speed in radians per second of the earth
about (a) its axis (b) the sun.

5. An L-shaped bar rotates counterclockwise with an angu-
lar acceleration of ω (see Fig. 7.30). Find (in vector form)
the linear velocity and acceleration of the point P on the
bar.

6. Four masses are connected by light rigid rods as in
Fig. 7.31. Calculate the moment of inertia of the system
about (a) the x-axis (b) the y-axis (c) the z-axis.

7. Find the moment of inertia of a uniform solid sphere of
radius R and mass M about an axis passing through its
center of mass.

Fig. 7.30 An L-shaped bar rotating counterclockwise

Fig. 7.31 Four masses connected by light rigid rods

Fig. 7.32 An elliptical quadrant

Fig. 7.33 A uniform rod of
length L and massM is pivoted at
O. A projectile of mass m moving
at velocity v collides with the rod
and sticks to it

8. Find the moment of inertia of an elliptical quadrant about
the y-axis (see Fig. 7.32).

9. A 5 kg uniform solid cylinder of radius 0.2 m rotate
about its center of mass axis with an angular speed of
10 rev/min. Find (a) its rotational kinetic energy (b) its
angular momentum.

10. A wheel of mass of 20 kg and radius of 0.75 m is initially
rotating at 120 rev/min. If its angular speed is increased to
300 rev/min in 20 s, find (a) the work done on the wheel
(b) the average power delivered to the wheel.

11. A wheel of mass 10 kg and radius 0.4 m accelerates uni-
formly from rest to an angular speed of 800 rev/min in 20
s. Find (a) the torque applied to the wheel (b) the work
done on the wheel (c) the work done using the work–
energy theorem.

12. A uniform rod of length L and mass M is pivoted at O
(see Fig. 7.33). If a projectile of massmmoving at veloc-
ity v collide with the rod and stick to it, find the angular
momentum of the system immediately before and imme-
diately after the collision.

13. A disc of radius 2.2 m and mass of 120 kg rotate about
a frictionless vertical axle that passes through its center.
A man of mass 65 kg walks slowly from the rim of the
disc towards the center. Find the angular speed of the disc
when the man is at a distance of 0.7 m from the center
if its angular speed when the man starts walking is 1.6
rad/s.
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8Rolling and Static Equilibrium

8.1 RollingMotion

Rolling motion represents the general plane motion of a rigid
body It can be considered as a combination of pure transla-
tional motion parallel to a fixed plane plus a pure rotational
motion about an axis that is perpendicular to that plane. The
axis of rotation usually passes through the center of mass. In
Sect. 6.4, we’ve seen that the motion of an object (or a sys-
tem of particles) can always be considered as a combination
of the motion of the object relative to its center of mass plus
the motion of its center of mass relative to some origin O.
From Sect. 6.4.3, the kinetic energy of an object relative to
the origin is

K = 1

2

∑

i

miv
′2
i + 1

2
Mv2cm (8.1)

where vcm is the velocity of the center of mass of the object
relative to the origin O,mi is the mass of the ith particle and
v′
i is the linear velocity of the ith particle relative to the center
of mass. In the case of the general plane motion of a rigid
body, the motion can be considered as a combination of pure
translational motion of the center of mass plus pure rotational
motion about an axis passing through the center of mass and
perpendicular to the plane of motion. Therefore, the first term
in Eq. 8.1 can be written as

v′
i = ωr ′

i

where r ′
i is the perpendicular distance from the ith particle to

the center of mass axis. Hence

K = 1

2

(
∑

i

mir
′2
i

)
ω2 + 1

2
Mv2cm

K = 1

2
Icmω2 + 1

2
Mv2cm

Thus, the total kinetic energy of a rolling object is the sum of
the translational kinetic energy of its center of mass and the
rotational kinetic energy about its center of mass.

8.2 RollingWithout Slipping

An important special case of the general plane motion is
rolling without slipping. Such motion occurs if a perfectly
rigid body rolls on a perfectly rigid surface. As the object rolls
without slipping, the instantaneous s′ point of contact between
the object and the surface is at rest relative to the surface since
there is no slipping. Now, consider a wheel of radius R rolling
without slipping along the straight track shown in Fig. 8.1.
The center of mass of the wheel moves along a straight line,
while a point on the rim such as P moves in a cycloid path. As
the wheel rotates through an angle θ , its center of mass moves
through a distance equal to the arc length s (see Fig. 8.2) given
by

Fig.8.1 Awheel of radius R rolling without slipping along the straight
track

Fig. 8.2 As the wheel rotates through an angle θ , its center of mass
moves through a distance equal to the arc length s

© The Author(s) 2019
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Fig. 8.3 The combination of
pure rotational and translational
motions

s = Rθ

Hence, the speed of the center of mass is

vcm = ds

dt
= R

dθ

dt
= Rω

The acceleration of the center of mass is given by

acm = dvcm

dt
= R

dω

dt
= Rα

The combination of pure rotational and translational motions
is viewed in Fig. 8.3. In the pure translational motion (see
Fig. 8.3 part a) every particle in the wheel moves with the
velocity vcm . In pure rotational motion (see Fig. 8.3 part b),
each particle moves with an angular speed ω about the center
of mass axis and the linear speed of any particle at the rim is

vcm = Rω (8.2)

The resultingmotion of these two combinedmotions is shown
in Fig. 8.3 part c, where the linear velocity of each particle
is the vector sum of its linear velocity in pure translational
motion and its linear velocity in pure rotationalmotion. There-
fore, the instantaneous velocity of the point of contact is equal
to zero (v1 = 0) and of a point at the top of the wheel is equal
to twice the velocity of the center of mass (v2 = 2vcm). Note
that Eq. 8.2 is valid only in the special case of rolling without
slipping; in the general rolling motion this equation does not
hold. The total kinetic energy of a rigid object rolling without
slipping is therefore given by

K = 1

2
Icmω2 + 1

2
Mv2cm

= 1

2
Icmω2 + 1

2
MR2ω2

Anotherway to view rollingwithout slipping is to consider the
wheel to be in pure rotational motion about an instantaneous
axis that passes through the point of contact P (see Fig. 8.4).
In that case, the velocity of the point of contact P is zero and

Fig.8.4 Another way to view rolling without slipping is to consider the
wheel to be in pure rotational motion about an instantaneous axis that
passes through the point of contact P

Fig.8.5 A statistical frictional force acts on it at the instantaneous point
of contact producing a torque about the center

the velocity of the center of mass is vcm = Rω (since it is at
a distance R from the axis of rotation) and the velocity of a
point at the top is vt = 2Rω = 2vcm . Note that the angular
velocity ω of the wheel is the same as its angular velocity if
the axis of rotation is at the center of mass.

For simplicity, only homogeneous symmetrical objects
will be considered here such as hoops, cylinders, and spheres.
When a rigid body rolls without slipping with a constant
speed, there will be no frictional force acting on the body
at the instantaneous point of contact. However, if the object
is accelerating, then a statistical frictional force acts on it at
the instantaneous point of contact producing a torque about
the center (see Fig. 8.5). This will cause the object to rotate
about its center of mass. The direction of the statistical force
opposes the tendency of the object to slide. For example, if a
wheel is rolling down an incline, the direction of the frictional
force will be opposing the downward motion.

In most situations, the body and the surface are not per-
fectly rigid. As a result, the normal force would not be a single
force; rather it would be a number of forces that are distributed
over the area of contact (see Fig. 8.6). Therefore, each normal
force will exert an opposing torque since its line of action will
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Fig. 8.6 If the body and the surface are not perfectly, the normal force
would not be a single force; rather it would be a number of forces that
are distributed over the area of contact

not pass through the center ofmass. Furthermore, as the object
rolls over the surface, both the object and the surface undergo
deformation resulting in a loss in the mechanical energy.

Example 8.1 A uniform solid hoop of mass of 32 kg and
radius of 1.2 m rolls without slipping on a horizontal track
where the center of mass speed is 2 m/s. Find: (a) the total
energy of the hoop and compare it with its total energy if it
would slide without rolling; (b) the speed of the hoop at its
top and bottom.

Solution 8.1 (a) the total energy is given by

K = 1

2
Icmω2 + 1

2
Mv2cm

= 1

2
(MR2)

(
vcm

R

)2
+ 1

2
Mv2cm = Mv2cm = (32 kg)(2 m/s)2 = 128 J

If the hoop slides without rolling its total kinetic energy is
1

2
Mv2cm , that is, its value is half of that if the hoop were to

roll without slipping.
(b)

vtop = 2vcm = 2(2 m/s) = 4 m/s

vbottom = 0

Example 8.2 A uniform solid cylinder, sphere, and hoop roll
without slipping from rest at the top of an incline (seeFig. 8.7).
Find out which object would reach the bottom first.

Solution 8.2 For each object, we have

Ki +Ui = K f +U f

0 + Mgh = 1

2
Mv2cm + 1

2
Icm

(
vcm

R

)2

Fig.8.7 Auniform solid cylinder, sphere and hoop roll without slipping
from rest at the top of an incline

Fig. 8.8 A marble ball of radius R and mass M rolls without slipping
down the incline

vcm =
√

2gh

1 + Icm/MR2

Hence, the speed of the center of mass of any object at the
bottom of the incline does not depend on its mass or size; it
depends only on its shape. Therefore, all objects of the same
shape such as spheres (of any mass or size) have the same
speed at the bottom. That is, the smaller the ratio Icm/MR2

the faster the object moves since less of its energy goes to
rotational kinetic energy andmore goes to translational kinetic
energy The ratio Icm/MR2 is equal to 0.4, 0.5, and 1 for
a sphere, cylinder, and hoop, respectively Therefore, these
objects will finish in the order of any sphere, any cylinder,
and any hoop.

Example 8.3 A marble ball of radius R and mass M rolls
without slipping down the incline shown in Fig. 8.8. Find: (a)
its acceleration; (b) the minimum coefficient of static friction
that is required to prevent slipping.

Solution 8.3 (a)ApplyingNewton’s second law inboth linear
and angular form (see Fig. 8.7) we have

∑
Fx = Mg sin θ − fs = Macm (8.3)

∑
Fy = n − Mg cos θ = 0

and ∑
τ = fs R = Icmα =

(
2

5
MR2

)(
acm
R

)

that gives

fs = 2

5
Macm (8.4)

Substituting Eq. 8.4 into Eq. 8.3 gives

Mg sin θ − 2

5
Macm = Macm

hence
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Fig. 8.9 A string wrapped
around a uniform solid cylinder
of radius of R and mass of M

acm = 5

7
g sin θ

and

fs == 2

7
Mg sin θ

(b) At the verge of slipping, the statistical frictional force is a
maximum given by

fsmax = μsn = 2

7
Mg sin θ

Hence, the coefficient of static frictionmust be at least as great

as μs = 2

7
tan θ in order for the ball not to slip.

Example 8.4 A string is wrapped around a uniform solid
cylinder of radius of R and mass of M as in Fig. 8.9. If the
cylinder is released from rest while the string is fixed in place
and assuming that the string does not slip at the cylinder’s
surface, find: (a) the acceleration of the center of mass using
Newton’s laws (b) the acceleration of the center of mass using
energy methods if the cylinder descends a distance h(c) the
tension in the string.

Solution 8.4 (a) Applying Newton’s second law in both the
linear and angular form gives

∑
Fy = T − Mg = −Macm (8.5)

∑
τ = T R = Icmα = 1

2
MR2(

acm
R

)

hence

T = 1

2
Macm (8.6)

Substituting Eq. 8.6 into Eq. 8.5 gives

−M9 + 1

2
Macm = −Macm

that gives

acm = 2

3
g

(b) Energy Method

Ki +Ui = K f +U f

0 + Mgh = 1

2
Mv2cm + 1

2
Icmω2

0 + Mgh = 1

2
Mv2cm + 1

2

(
1

2
MR2

)(
vcm

R

)2

that gives

vcm =
√
4

3
gh

From the expression v2 = v20 + 2acmh, and since v0 = 0 we
have

acm = v2cm

2h
= 4gh

3(2h)
= 2

3
g

(b) From Eq. 8.6,

T = 1

2
Macm = 1

2
M

(
2

3
g

)
= 1

3
Mg

Example 8.5 A uniform solid sphere of radius R and mass
M is released from rest at the top of an incline at a distance h
above the ground. If it rolls without slipping, find the speed
of the center of mass at the bottom of the incline.

Solution 8.5
Ki +Ui = K f +U f

0 + Mgh = 1

2
Mv2cm + 1

2
Icmω2

0 + Mgh = 1

2
Mv2cm + 1

2

(
2

5
MR2

)(
vcm

R

)2

That gives

vcm =
√
10

7
gh

Example 8.6 A block of mass m is attached to a light string
that passes over a light pulley and is connected to a uniform
solid sphere of radius R andmassM as in Fig. 8.10. Show that

the acceleration of the system is a = g

1 + 7/5(M/m)
when

the block is released from rest.
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Fig. 8.10 A block of mass m is attached to a light string that passes
over a light pulley connected to a uniform solid sphere of radius R and
mass M

Solution 8.6 From conservation of energy, we have

mgh = 1

2
Mv2cm + 1

2
Icmω2 + 1

2
mv2

Since the block and the sphere are connected, they have the
same speed, therefore

mgh = 1

2
Mv2 + 1

2

(
2

5
MR2

)(
v2

R

)2

+ 1

2
mv2

Therefore, the speed of the system when the block is at the
bottom of the incline is

v =
√

2gh

1 + 7M/5m

The acceleration of the system is

v2 − v20 = 2ah

or

a = v2

2h
= 2gh

2h(1 + 7/5(M/m))

that gives

a = g

(1 + 7/5(M/m))

8.3 Static Equilibrium

An extended object is said to be in equilibrium if two condi-
tions are satisfied. First, the net external force acting on the
object must be equal to zero. Second, the net external torque
on the object about any origin must also be equal to zero.
In other words, an object is in equilibrium if its total linear
momentum and its total angular momentum (about any ori-
gin) are constants. Only the first condition is necessary if the
object can be treated as a particle. Thus, the conditions of
equilibrium may be written as

∑
F = 0 (Translational Equilibrium) (8.7)

∑
τ = 0 (Rotational Equilibrium) (8.8)

In terms of components, we may write

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0 (8.9)

∑
τx = 0,

∑
τy = 0,

∑
τz = 0 (8.10)

An object is said to be in static equilibrium if it is at rest (there
isn’t any kind of motion with respect to our inertial frame of
reference). Now consider the case in which all external forces
acting on the object lie in the same plane (for example the
x–y plane). Such forces are called coplanar forces. The net
external torque due to these forces is then perpendicular to the
x–y plane and parallel to the z-axis. Equations 8.9 and 8.10
are, therefore, reduced to

∑
Fx = 0,

∑
Fy = 0,

∑
τz = 0

Next, we will prove that if the object is in translational equi-
librium where (ΣF = 0) and the net external torque on the
object is equal to zero about some origin, it is also equal to
zero about anyother origin.Note that the originmaybe chosen
anywhere inside or outside the object. Suppose that a num-
ber of forces F1,F2,F3, . . .Fn are acting on a rigid object at
different points (see Fig. 8.11) and that the object is in trans-
lational equilibrium. The point of application of F1 relative
to O is r1 and of F2 is r2 and so on. The net external torque
about O is given by

∑
τ0 = τ1+τ2+· · ·+τn = r1 × F1+r2 × F2+ + · · · rn × Fn

The net external torque about O′ (see Fig. 8.12) is
∑

τ0′ = τ ′
1+τ ′

2+ + · · · τ ′
n = r′1×F1+r′2×F2+ + · · · r′n ×Fn

= (r1 − r0′) ×F1 + (r2 − r0′) ×F2 + · + · · · (rn − r0′) ×Fn

= r1 × F1 + r2 × F2 + . + · · · rn × Fn − (r0′ × F1 + r0′ ×
F2 + + · · · r0′ × Fn)

=
∑

τ 0− (r0′ × (F1+F2+ +Fn)) =
∑

τ0−(r0′ ×
∑

F)

Since ΣF = 0 we have

∑
τ 0′ =

∑
τ 0
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Fig. 8.11 A number of forces F1,F2,F3, ..Fn act on a rigid object at
different points

Fig. 8.12 The net external torque on the object about Oõ

8.4 The Center of Gravity

The resultant gravitational force acting on an object is the
resultant of the individual gravitational forces acting on dif-
ferent mass elements of the object (see Fig. 8.13), i.e.,

∑
F =

∑
mig (8.11)

This force can be replaced by a single force that is equal to the
weight of the object (Mg) and that acts at a single point called
the center of gravity Now consider an object that is near the
earth’s surface where the force of gravity is assumed to be
constant over that range. Equation 8.11 becomes

∑
F =

∑
mig = g

∑
mi = Mg = w

To locate the center of gravity, let us calculate the net torque
acting on an object about an origin due to gravity This torque
is the vector sum of the individual torques acting on different
mass elements. That is,

Fig. 8.13 The resultant gravitational force acting on an object is the
resultant of the individual gravitational forces acting on different mass
elements of the object

τ =
∑

i

τ i =
∑

i

(ri × mig) =
(∑

i

miri

)
× g

τ =

( ∑
i miri

)

M
× Mg = rcm × w

τ = rcm × w

Therefore, we conclude that if the gravitational field (g) is
constant over the body, the center of gravity of the object
coincides with its center of mass.

Example 8.7 Two blocks of masses m2 = 20 kg and m1 =
10 kg are supported by a uniform horizontal beam of length
L = 1.5m and mass M = 6 kg (see Fig. 8.14). Find: (a) the
normal force exerted by the fulcrum (supporting point) on the
beam if it is placed under the center of gravity of the beam;
(b) the distance x in whichm2 must be placed in order for the
system to be balanced.

Fig. 8.14 Two blocks supported by a uniform horizontal beam
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Fig.8.15 The free-body diagram
of a ladder of length L and mass
M = 20 kg resting against a
smooth vertical wall

Solution 8.7 (a) The free-body diagram of the system in
shown in Fig. 8.14 where w1 = 196 N, w2 = 98 N, and
w = 58.8 N. Applying Newton’s second law to the beam
gives

∑
Fy = n − (59 N) − (98 N) − (196 N) = 0

and
n = 353 N

(b) The net external torque about an axis passing through the
center of the beam and perpendicular to the page is

∑
τz = (98 N)(0.75 m) − (196 N)x = 0

x = 0.37 m

Example 8.8 A ladder of length L and mass M = 20 kg
rests against a smooth vertical wall as shown in Fig. 8.15.
If the center of gravity of the ladder is at a distance of L/3
from the base, determine: (a) theminimumcoefficient of static
friction such that the ladder does not slip; (b) the magnitude
and direction of the resultant of the contact forces acting on
the ladder at the base; (c) if a man of mass of 70 kg climbs up

the ladder, what is the maximum distance the man can climb
before the ladder slips if μs = 0.4.

Solution 8.8 (a) Figure 8.15 shows the free-body diagram of
the ladder. Applying Newton’s second law to the ladder gives

∑
Fx = fs − n2 = 0

fs = n2

and

∑
Fy = n1 − Mg = 0

n1 = Mg

Applying Newton’s second law in angular form about O
(the point must be chosen to give minimum unknowns) we
have

∑
τz = n2L sin θ − 1

3
MgL cos θ = 0 (8.12)

If the ladder is at the verge of slipping the statistical frictional
force is maximum fs = μsn1. From Eq. 8.12, we have
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n2 = Mg

3 tan θ
= (196 N)

3 tan(51◦)
= 53 N = fs

hence

μs = fs
n1

= (53 N)

(196 N)
= 0.27

(b) The resultant of the contact forces on the ladder at the base
is

FR =
√

f 2s + n21 =
√

(53 N)2 + (196)2 N = 203 N

the direction of FR is

φ = tan−1 n1
fs

= tan−1 (196 N)

(52.9 N)
= 75◦

(c) The free-body diagram is shown in Fig. 8.15. From the
equilibrium condition, we have

∑
Fx = fs − n2 = 0

and ∑
Fy = n1 − mg − Mg = 0

or
fs = n2

and
n1 = (m + M)g

Furthermore, the resultant external torque about O is

∑
τz = n2L sin θ − 1

3
MgL cos θ − mgx cos θ = 0

thus

n2 = g

tan θ

(
M

3
+ m

(
x

L

))

at the verge of slipping

fs = μsn1 = μs g(M + m) = (0.4)(9.8 m/s2)(90 kg) = 353 N = n2

Hence
x = 0.54 L

Example 8.9 A uniform beam of weight w and length L is
held by two supports as in Fig. 8.16. A block of weight w1

is resting on the beam at a distance of L/6 from the center of
gravity of the beam. Find the magnitude of the forces exerted
by the supports on the beam.

Solution 8.9 The free-body diagram of the system is shown
in Fig. 8.16. Because the beam has a uniform density its cen-

ter of mass and gravity are located at its geometrical center.
Applying Newton’s second law gives

∑
Fy = 0

F2 + F1 − w − w1 = 0 (8.13)

Taking the torque about an axis passing through one end (at
F1) gives ∑

τz = 0

F2L − 2

3
Lw1 − L

2
w = 0 (8.14)

From Eqs. 8.13 and 8.14 we have

F2 = 2

3
w1 + w

2

and
F1 = w1

3
+ w

2

Example 8.10 A man of mass of 80 kg is standing at the
end of a uniform beam of mass of 30 kg and length of 12 m
as shown in Fig. 8.17. Find the tension in the rope and the
reaction force exerted by the hinge on the beam.

Solution 8.10 (a)The free-bodydiagram is shown inFig. 8.17.
Applying Newton’s second law to the beam
gives

∑
Fy = T sin 50◦ + FR sin θ − (294 N) − (784 N) = 0

∑
Fx = FR cos θ − T cos 50◦ = 0

The resultant torque about an axis passing through O is

∑
τz = T sin 50◦L − L(784N) − L

2
(294N) = 0

That gives T = 1215.3 N. Hence

FR cos θ = T cos 50◦ = (1215.3 N)(0.64) = 781.2 N
(8.15)

and

FR sin θ = −T sin 50◦ + (294 N) + (784 N)

= −(1215.3 N)(0.76) + (294 N) + (784 N) = 147 N
(8.16)

Dividing Eq. 8.16 by Eq. 8.15 gives
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Fig. 8.16 A uniform beam of weight w and length L balanced by two supports

Fig. 8.17 A man standing at the
end of a uniform beam

tan θ = (147 N)

(781.2 N)
= 0.2

θ = 10.6◦

and
FR =

√
(147)2 + (7812)2 = 795 N

Example 8.11 Auniformbeamofweight of 120N and length
of L is in horizontal static equilibrium as in Fig. 8.18.Neglect-
ing the masses of the ropes, find the tension in each string.
(The center of mass is at L/3 from one end).

Solution 8.11 The free-body diagram is shown in Fig. 8.18.
Applying Newton’s second law to the beam gives

∑
Fy = T1 cos θ + T2 cos 30

◦ − (120 N) = 0

or

T1 cos θ + T2(0.87) = (120 N) (8.17)

Also ∑
Fx = T1 sin θ − T2 sin 30

◦ = 0

or
T1 sin θ = T2 sin 30

◦ (8.18)

Taking the resultant torque on the beam about one end (at T1)
gives

∑
τ = (120 N)

L

3
− LT2 cos 30

◦ = 0

or

T2 = 46.2 N

Substituting T2 into Eqs. 8.18 and 8.17 gives

T1 sin θ = (46.2 N) sin 30◦ = 23.1 N

and
T1 cos θ + (46.2 N)(0.87) = (120 N)

T1 cos θ = 80 N

Hence

tan θ = (23.1 N)

(80 N)
= 0.3

That gives θ = 16.7◦ and T1 = (23.1 N)/ sin 16.7◦ =
80.3 N.

Example 8.12 A solid sphere of mass of 12 kg is in static
equilibrium inside thewedge shown in Fig. 8.19. If the surface
of the wedge is frictionless, find the forces that the wedge
exerts on the sphere.
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Fig. 8.18 A uniform beam held
by ropes in static equilibrium

Fig. 8.19 A solid sphere in static equilibrium inside a wedge

Solution 8.12 Applying Newton’s second law gives

∑
Fx = F1 sin 50

◦ − F2 sin 30
◦ = 0

or
F1 = 0.65F2

Also we have

∑
Fy = F1 cos 50

◦ + F2 cos 30
◦ − Mg = 0

or
0.65F2 cos 50

◦ + F2 cos 30
◦ − Mg = 0

That gives F2 = 91.6 N. Therefore

F1 = 0.65F2 = 0.65(91.6 N) = 59.5 N

Problems

1. A uniform cylinder of mass 3 kg and radius of 0.05 m rolls
without slipping along a horizontal surface. Find the total
energy of the cylinder at the instant its speed is 2 m/s.

2. A uniform solid cylinder of mass 10 kg and radius of 0.2
m rolls up the incline of angle 45◦ with an initial veloc-
ity of 15 m/s. Find the height in which the cylinder will
stop.

Fig. 8.20 A block suspended by
a cable attached to a uniform rod

Fig. 8.21 A uniform sphere
suspended by a light string and
leaning on a frictionless wall

3. A wheel of mass 2 kg and radius of 0.05 m rolls without
slipping with an angular speed of 3 rad/s on a horizontal
surface.Howmuchwork is required to accelerate thewheel
to an angular speed of 15 rad/s.

4. A blockweighing 1000N is held by a cable that is attached
to a uniform rod of weight 500 N (see Fig. 8.20). Find (a)
the tension in the cable, (b) the horizontal and vertical
components of the force exerted on the base of the rod.

5. A uniform sphere of radius r and massm is held by a light
string and leans on a frictionless wall as in Fig. 8.21. If
the string is attached a distance d above the center of the
sphere, find (a) the tension in the string, (b) the reaction
force exerted by the wall on the sphere.

6. Find the minimum force applied at the top of a wheel of
mass M and radius R to raise it over a step of height h as
in Fig. 8.22. Assume that the wheel does not slip on the
step.
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Fig. 8.22 A wheel raised over a step

Fig. 8.23 Three identical uniform blocks on top of each other

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

7. Three identical uniform blocks each of length L are on top
of each other as in Fig. 8.23. Find the maximum value of
h in order for the stack to be in equilibrium.

http://creativecommons.org/licenses/by/4.0/


9Central Force Motion

9.1 Motion in a Central Force Field

A force is said to be central under two conditions. First, the
direction of the force must always be toward or away from a
fixed point (see Fig. 9.1). This point is known as the center
of the force. Second, the magnitude of the force should only
be proportional to the distance r between the particle and the
center of the force. The central force may be written as

F = f (r)r1 (9.1)

where r1 is a unit vector in the direction of r. Therefore, if
f (r) < 0, then the central force is an attractive force since
it is directed toward the center of the force O (as shown in
Fig. 9.1) and if f (r) > 0, the force is repulsively directed
away from O.

Example 9.1 Which of the following forces are repulsive and

which are attractive? (a)F = −3√
r
r1(b)F = 4r2r1(c)F =

r(r − 2)r1.

Solution 9.1 (a) Attractive, (b) repulsive, and (c) attractive if
0 < r < 2 and repulsive if r > 2.

9.1.1 Properties of a Central Force

1. The resulting motion of the particle takes place in a plane.
To show that we have from Eq. 9.1

F = f (r)r1 = ma

thus, a is parallel to r(r = rr1) and we may write

r × a = 0

Hence,

r × dv
dt

= 0

or
d

dt
(r × v) = 0

Thus,

r × v = h = constant (9.2)

where h is a constant vector. Therefore, r and v always lie
in the same plane where h is perpendicular to that plane
for every value of t. As a result, the path of the particle
takes place in a plane.

2. The angular momentum of the particle is conserved. From
Eq. 9.2, we have

m(r × v) = mh

or

L = mh = constant

Thus, the angular momentum is equal to a constant at all
times (conserved).

3. The position vector r of the particle with respect to the
center of force sweeps out equal areas in equal times or in
other words, the areal velocity is constant. To show that,
consider the plane of motion to be the x–y plane. During
an infinitesimally small time interval dt, the radius vector
r sweeps out an area equal to dA. From Fig. 9.2, this area
is equal to half of the area of a parallelogram with sides r
and dr. That is,

dA = 1

2
|r × dr|

or

dA = 1

2
|r × vdt|
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Fig. 9.1 The central force

Fig. 9.2 During an infinitesimally small time interval dt, the radius
vector r sweeps out an area equal to dA

or
dA
dt

= 1

2
|r × v|

Thus,

dA

dt
= h

2
= constant

9.1.2 Equations of Motion in a Central Force
Field

Themost convenient coordinate system to describe themotion
of a particle, under the influence of a central force, is the polar
coordinate system. This convenience lies in the fact that the
central force is in the r-direction. In Sect. 2.6, it has been
shown that the acceleration of a particle in a plane, in terms
of its polar coordinates, is given by

a = (r̈ − rθ̇2)r1 + (rθ̈ + 2ṙθ̇ )θ1

Applying Newton’s second law to the particle gives

F = ma

f (r)r1 = m[(r̈ − rθ̇2)r1 + (rθ̈ + 2ṙθ̇ )θ1]

That gives
f (r) = m(r̈ − rθ̇2) (9.3)

m(rθ̈ + 2ṙθ̇ ) = 0 (9.4)

In Sect. 2.6, we’ve also seen that the velocity of a particle in
polar coordinates is given by

v = ṙr1 + rθ̇θ1

Therefore, we have

r × v = rr1 × (ṙr1 + rθ̇θ1) = rṙ (r1 × r1) + r2θ̇ (r1 × θ1)

= 0 + r2θ̇ (r1 × θ1) = h

Taking the plane ofmotion to be the x–y plane, then r1×θ1
is parallel to the z-direction and we have

h = r2θ̇k = hk

Hence,
r2θ̇ = h (9.5)

and Eq. 9.2 can be written as

d

dt
(r2θ̇ ) = 0

or
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r2θ̇ = constant

Substituting Eq. 9.5 into Eq. 9.3 gives

f (r) = m

(
r̈ − h2

r3

)
(9.6)

Let u = 1/r, then ṙ = −u̇(1/u2). Since r2θ̇ = h, we have
u2 = θ̇/h. Thus

ṙ = −h

(
u̇

θ̇

)
= −h

(
du/dt

dθ/dt

)
= −h

(
du

dθ

)
(9.7)

And

r̈ = d

dt

(
− h

du

dθ

)
= d

dθ

(
− h

du

dθ

)
dθ

dt

r̈ = −h

(
d2u

dθ2

)
θ̇ = −h2u2

(
d2u

dθ2

)
(9.8)

Substituting Eq. 9.8 into Eq. 9.6 gives

f (1/u) = m
( − h2u2

(
d2u

dθ2

)
− h2u3

)

or
d2u

dθ2
+ u = −1

mh2u2
f (1/u) (9.9)

This is the equation of path in a central force field.

9.1.3 Potential Energy of a Central Force

Consider a particle moving from point P1 to P2 (see Fig. 9.3)
while a central force that has its center at the origin acts on it.
The path of the particlemay be considered as a combination of
radial and curved segments. The central force is always acting
in the direction of the radial segments and is perpendicular to
the displacement along any of the curved segments. Thus, the
work done by the central force along any curved segment is
zero and the total work done in moving the particle along any
path is equal to the work done along a radial line from ri to
rf (see Fig. 9.4). That is, the work done by a central force is
independent of path. It depends only on the initial and final
positions of the particle.

From this, we conclude that the central force is a conserva-
tive force. You may also prove that ∇ × F = 0. Hence, there
exists a potential energy and the work done by the gravita-
tional force may be written as

W = −�U

Fig. 9.3 A particle moving from point P1 to P2, while a central force
that has its center at the origin acts on it

Fig.9.4 The central force is always acting in the direction of the radial
segments and is perpendicular to the displacement along any of the
curved segments. Therefore, the total work done in moving the parti-
cle along any path is equal to the work done along a radial line from
ri to rf

The work done in moving the particle from P1 to P2 is

W =
∫ P2

P1
F · dr =

∫ rf

ri
f (r)r1 · dr =

∫ rf

ri
f (r)

r
r

· dr

Since r · dr = rdr, we have

W =
∫ rf

ri
f (r)dr

or

�U = Uf −Ui = −
∫ rf

ri
f (r)dr (9.10)

9.1.4 TheTotal Energy

Since F is a conservative force, it follows that the total energy
is conserved (constant), that is,

E = 1

2
mv2 +U (r)
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Since
v2 = v · v = ṙ2 + r2θ̇2

we have

E = 1

2
m(ṙ2 + r2θ̇2) +U (r) (9.11)

Substituting Eqs. 9.5 and 9.7 into Eq. 9.11 gives

E = 1

2
m

(
h2

(
du

dθ

)2

+
(

1

u2

)
(hu2)2

)
+U

or (
du

dθ

)2

+ u2 = 2(E −U )

mh2
(9.12)

9.2 The Law of Gravity

In 1687, Isaac Newton made a remarkable discovery. Newton
stated that the force that holds planets in their orbit is the
same force that makes an apple fall from a tree. Newton’s law
of gravity states that every particle in the universe attracts
every other particle with a force that is directly proportional
to the product of the masses of the particles and inversely
proportional to the square of the distance between them. The
magnitude of this gravitational force is given by

F = Gm1m2

r2

where m1 and m2 are the masses of the particles, r is the
distance between them, and G is the universal gravitational
constant. G has the same value if the particles (or objects) are
located anywhere in the universe and it is given by

G = 6.672 × 10−11 N.m2/kg2

The gravitational force is effective when one or both the
masses are very large. This is because G is a very small num-
ber. Note that, the gravitational force is not a contact force; it
is a field force that can act through any medium. The direc-
tion of the gravitational force is along the line joining the two
particles.

Therefore, the gravitational force is a central force since
its magnitude is proportional only to the distance between the
two particles (where one of the particles can be considered as
the center of force), and its direction is along the line joining
them (toward the center of force).

Figure 9.5 shows two particles of massesm1 andm2. Each
particle exerts a gravitational force on the other. Let the grav-
itational force exerted onm2 bym1 to be F21, and that exerted
on m1 by m2 to be F12. From Newton’s third law of action
and reaction, we have

Fig. 9.5 Two particles of masses
m1 and m2. Each particle exerts a
gravitational force on the other

F12 = −F21

That is, the two forces form an action and reaction pair. In
terms of unit vectors, we may write

F21 = −Gm1m2

r212
r12

and

F12 = −Gm1m2

r221
r21

where r12 is a unit vector that is directed along the line joining
the two particles (directed from m1 to m2) and r21 is a unit
vector directed from m2 to m1. The negative sign indicates
that the force is attractive. That is, the force exerted on m1

by m2 will move m1 in the direction opposite of r21, i.e.,
toward m2. Where the force exerted on m2 by m1 will move
m2 opposite to r12 (toward m1). If particle P of mass of mP

interacts with a system of particles, the resultant gravitational
forceFP exerted on particle P due to all particles in the system
is the vector sum of the individual forces that each particle in
the system exerts on particle P:

FP =
n∑

i=1

FPi =
n∑

i=1

−GmPmi

r2iP
riP

where riP is a unit vector directed from the ith particle in the
system toward the particle P and FPi is the force exerted on
particle P by the ith particle. If particle P of mass m interacts
with an extended body of massM , the resultant gravitational
force FP exerted on particle P is the vector sum of the individ-
ual forces dF exerted on particle P due to each mass element
dM in the object, but in this case, the sum is replaced by an
integral

FP =
∫

dF = −Gm
∫

dM

r2
r1

where r1 is a unit vector directed from the mass element dM
to the particle as shown in Fig. 9.6. The force of gravity gives
planets and other heavy celestial bodies their spherical shape.
That is because as the mass of the body becomes larger the
force of gravity becomes stronger and all particles from all
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Fig. 9.6 A particle P of mass m
interacting with an extended body
of massM

sides are attracted evenly toward the center. As a result, the
body tends to have a spherical shape.

Example 9.2 Two particles of massesm1 = 0.2 kg andm2 =
0.3 kg are separated by a distance of 0.05 m. Find (a) the
gravitational force that each particle exerts on the other; (b)
at what distance a third particle m3 = 0.5 kg must be placed
at the other side of m1 such that the net gravitational force on
m1 is zero. (All particles lie on a straight line).

Solution 9.2 (a)

F12 = F21 = Gm1m2

r212
= (6.67 × 10−11 Nm2/kg2)(0.2 kg)(0.3 kg)

(0.05 m)2
= 1.6 × 10−9N

(b)

F13 = Gm1m3

r231

F12 = Gm1m2

r221

If the net force on m1 is zero, we have

∑
F1 = F13 − F12 = 0

or
F13 = F12

Gm1m3

r231
= Gm1m2

r221

that gives

r231 = m3

m2
r221 = (0.5 kg)

(0.3 kg)
(0.05 m)2

r31 = 0.064 m

9.2.1 The Gravitational Force Between a Particle
and a Uniform Spherical Shell

Case I: A Particle outside the Shell Consider a particle of
massm located outside a uniform spherical shell at point P as
in Fig. 9.7. Imagine this shell to be made of a large number
of thin rings each of outer thickness Rdθ and inner thickness
l. The ring is so thin (since dθ is used) that every particle in
the ring is at a distance s from P Furthermore, each particle
in the ring exerts a gravitational force on the particle at P.

From the symmetry of the ring, if a particle (1) on the
upper side exerts a gravitational forceF1 onm, there is always
another particle (2) at the opposite side of the ring exerting
another force (F2) on the particle. Because F1 and F2 are
equal inmagnitude, then their y components cancel each other
out and their x components add up (see Fig. 9.7). Thus, the
resultant force exerted on m due to all particles of the sphere
is the sum of the x components of their forces. Therefore the
resultant force onm is along the x direction (toward the center
of the shell). The gravitational force exerted on m by a thin
ring of mass dM is

dFg = GmdM

s2
cosφ

To express dM in terms of the density of the ring, we find the
volume of the thin ring

dV = (2πR sin θ)(Rdθ)l = 2π lR2 sin θdθ

Since the shell has a uniform volume density ρ, dM is given
by

dM = ρdV = ρ2π lR2 sin θdθ

Thus,

dFg = 2πρlmGR2 cosφ sin θdθ

s2
(9.13)

From Fig. 9.7,

cosφ = r − R cos θ

s
(9.14)

From the cosines law, we have

s2 = R2 + r2 − 2Rr cos θ (9.15)

Substituting Eqs. 9.14 and 9.15 into Eq. 9.13 gives

dFg = 2πρlmGR2(r − R cos θ) sin θdθ

(r2 + R2 − 2rR cos θ)3/2
(9.16)

From Eq. 9.15, we have
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Fig. 9.7 Because F1 and F2 are
equal in magnitude, then their y
components cancel each other out
and their x components add up

2sds = 2rR sin θdθ

To integrate over all rings, θ will change from θ = 0 to π .
From Eq. 9.15, we have at θ = 0, s = r − R since (r ≥ R),
and at θ = π, s = r + R. Also, we have from Eq. 9.15

cos θ = R2 + r2 − s2

2rR

Thus

r − R cos θ = r2 + s2 − R2

2r

Substituting this into Eq. 9.16 gives

Fg = πGρlRm

r2

∫ r+R

r−R

(
1 + r2 − R2

s2

)
ds = 4πGρlR2m

r2
(9.17)

Since 4πR2ρl = M , it follows that

Fg = GMm

r2

That is, the spherical shell behaves as a particle of mass M
located at its center.

Case II: A Particle inside the Shell If a particle is inside
a uniform spherical shell, the derivation of the gravitational
force exerted on the particle by the spherical shell is the same
as if the particle were outside the shell, except that the lower
integration limit is different. At θ = 0, s = R−r since r < R.
Thus, we have

Fg = πGρlRm

r2

∫ r+R

R−r

(
1 + r2 − R2

s2

)
ds = 0

where r < R. That is, if the particle is inside the shell, the
gravitational force exerted on it by the shell is zero. However,
objects outside the shell may still exerts forces on the particle.
In summary, we have

Fg = GMm

r2
(r ≥ R)

Fig. 9.8 The force exerted on a particle as a function of its r

Fg = 0 (r < R)

Figure 9.8 shows the force exerted on a particle as a function
of its location.

9.2.2 The Gravitational Force between a Particle
and a Uniform Solid Sphere

Case I: A Particle outside the Sphere Consider a particle
of mass m located outside a uniform solid sphere. The sphere
may be considered to be made of a series of concentric spher-
ical shells. The force exerted on the particle by each shell is
given by

dFg = GdMm

r2

The mass of each shell is dM = ρdV = ρ4πa2da. Where ρ

is the volume density of the sphere and a is the distance from
the shell to the center of the sphere and da is the thickness of
the shell, Hence,

dFg = Gmρ4πa2da

r2
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Fig.9.9 If a particle of mass m is located inside a uniform solid sphere
of mass M , then the gravitational force exerted on the particle is due
only to the part of the sphere of radius r < R and of mass of M

The total force exerted on m by the sphere is

Fg = Gmρ4π

r2

∫ R

0
a2da

Fg = G(ρ4/3πR3)m

r2

Fg = GMm

r2
(9.18)

Thus, the solid sphere behaves as a particle of massM located
at the center of the sphere.

Case II: A Particle inside the Sphere If a particle of mass
m is located inside a uniform solid sphere of mass M , then
the gravitational force exerted on the particle is due only to
the part of the sphere of radius r < R and of mass of M
(see Fig. 9.9). The remaining part of the sphere is a spherical
shell which exerts no force on the particle since the particle
is located inside it. From Eq. 9.18, the gravitational force
exerted on the particle due to a sphere of radius r and mass
M1 is given by

Fg = GM1m

r2
(9.19)

Since the sphere has a uniform density, we have

ρ = M1

V1
= M

V

or
M1

M
= V1

V
= 4/3πr3

4/3πR3 = r3

R3

or

M1 = M
r3

R3 (9.20)

Fig. 9.10 The force exerted on a particle as a function of its r

Fig.9.11 The force exerted on a particle of mass m that is at a distance
of a from a thin rod of mass M and length L

Substituting Eq. 9.20 into Eq. 9.19 gives

Fg = GmMr

R3

where r < R. Therefore at the center of the sphere,

Fg = 0

Figure 9.10 shows the force exerted on a particle as a function
of its location.

Example 9.3 (a) Find the gravitational force exerted on a par-
ticle of mass m that is at a distance of a from a thin rod of
mass M and length L as in Fig. 9.11; (b) find the force in (a)
if a � L.

Solution 9.3 (a)

dF = GmdM

x2

since the rod is uniform we have

dM = λdx = M

L
dx

Thus

dF = GmM

Lx2
dx
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Fig. 9.12 The gravitational force exerted on a particle of mass m that
is at a distance a from the center of a uniform solid disk of radius R and
massM

Integrating from a to a + L gives

F = GmM

L

∫ a+L

a

dx

x2
= GmM

L

[ −1

x

]a+L

a
= GmM

L

[
1

a
− 1

a + L

]
= GmM

a(a + L)

In vector form,

F = GmM

a(a + L)
i

(b) if a � L, then

F = GmM

a2
i

That is, the rod can be considered as a particle of massM that
is at a distance a from m.

Example 9.4 Find the gravitational force exerted on a particle
of mass m that is at a distance a from the center of a uniform
solid disk of radius R and mass M as shown in Fig. 9.12.

Solution 9.4 Let us divide the disk into thin concentric rings
of radius r and thickness dr. By symmetry, the resultant force
on the particle is directed along the axis of the ring, since the
y-components of the forces exerted by all particles of the ring
will cancel out, where their x-componentswill add up. That is,

dF = GdMm cos θ

r2 + a2

Since the mass element dM is given by dM = σ(2πrdr), we
have

dF = Gσ(2πrdr)m cos θ

r2 + a2

or

dF = Gσ(2πrdr)ma

(r2 + a2)3/2

The total force is

F = 2πGσma
∫ R

r=0

rdr

(r2 + a2)3/2
= πGσma

[
(r2 + a2)−1/2

−1/2

]R
0

F = 2πGσm

[
1 − a√

a2 + R2

]

Example 9.5 Auniform solid sphere has amass of 4.7 kg and
a radius of 0.05 m. Find the magnitude of the gravitational
force that the sphere exerts on a 0.02 kg particle located at
(a) 0.5 m from the center of the sphere; (b) 0.03 m from the
center of the sphere; (c) at the surface of the sphere; (d) at the
center of the sphere.

Solution 9.5 (a)

F1s = GmM

r2
= (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)

(0.5 m)2
= 2.5 × 10−11 N

(b)

F1s = GmMr

R3 = (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)(0.03 m)

(0.05 m)3
= 1.5 × 10−9 N

(c)

F1s = GmM

R2 = (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)

(0.05 m2)
= 2.5 × 10−9 N

(d)
F1s = 0

Example 9.6 Three concentric spherical shells have masses
ofM1,M2, andM3 and radius of R1,R2, and R3, respectively,
as in Fig. 9.13. Find the gravitational force exerted on a parti-
cle of mass m located at (a) r = a(b)r = b(c)r = c(d)r = d .

Solution 9.6 (a)
F = 0

(b)

Fig. 9.13 Three concentric spherical shells
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F = GM1m

b2

(c)

F = GM1m

c2
+ GM2m

c2
= Gm

c2
(M1 + M2)

(d)

F = Gm

d2 (M1 + M2 + M3)

Example 9.7 A spaceship of mass m1 is moving along a
straight line path between the earth and the sun. At what dis-
tance from the center of the earth will the gravitational force
of the sun balances that of the earth?

Solution 9.7 At that point, we have

F1E = F1S

Gm1ME

r2
= Gm1MS

(d − r)2

or
(d − r)2

r2
= MS

ME

r = d [ME − (MEMS)
1/2 ]

ME − MS

Example 9.8 An artificial satellite is moving in a circular
orbit about the earth at a distance of 1500 km above the earth’s
surface. Find its speed and period.

Solution 9.8
GmsME

r2
= msv2

r

v =
√
GME

r

where r is the distance between the center of the earth and the
satellite. That is,

r = (6.37 × 106m) + (1500 × 103m) = 7.9 × 106m

Hence,

v =
√

GME
r

=
√

(6.67 × 10−11Nm2/kg2)(5.98 × 1024kg)

(7.9 × l06m)
= 7.1 × 103m/s

T = 2πr

v
= 2(3.1.4)(7.9 × 106m)

(71 × 103m/s)
= 6968.8s = 116.15min

9.2.3 Weight and Gravitational Force

In Chap. 4, we’ve seen that the weight of an object is defined
as the gravitational force exerted on the object by the earth
(or any other astronomical object) and it is directed toward
the center of the earth. The weight of an object is given by
w = mg, where g is the free-falling acceleration and its value
near the earth’s surface is 9.8 m/s2. The exact form of the
gravitational force between any two objects was given earlier
in this chapter by Newton’s law of gravity In the case of an
earth–particle system, the gravitational force that each one
exerts on the other is

Fg = GMEm

r2

where ME is the mass of the earth and m is the mass of the
particle that is at a distance r from the center of the earth. Note
that, it is assumed that the earth is a perfect sphere of uniform
mass distribution, and therefore behaves as a particle. In real-
ity, the earth is not a perfect sphere but rather an ellipsoid.
Furthermore, the earth’s density is not uniform since it varies
with the radius of earth.

The earth’s density also varies at the earth’s surface from
one region to another. In addition, if the earth’s rotation is
included, then the resultant force on an object will be its
weight plus the centripetal force exerted on the object due
to the rotation. However, these variations are often neglected.
From the definition of weight, we have

w = mg = Fg = GMEm

r2

therefore

g = GME

r2
(9.21)

As you can see the free-falling acceleration does not depend
on the mass of the object as was predicted before. If the object
is falling near the earth’s surface, then distance r in Eq. 9.21
can be replaced by RE which is the radius of the earth and we
have

g = GME

R2
E

If the object is at a distance h from the earth’s surface, we
may write

g = GME

(RE + h)2

Thus, the weight of an object decreases with increasing alti-
tude. Table 9.1 shows the variation of g with altitude.
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Table 9.1 Variation of g with altitude

Altitude h (km) g (m/s2)

1000 7.34

6000 2.6

10000 1.49

30000 0.3

60000 0.09

Example 9.9 A man can jump vertically upward from the
earth’s surface and reach an altitude of 0.2m. Find the altitude
the man can reach if he jumps with the same initial velocity
on the surface of the moon.

Solution 9.9 Using the formula y−y0 = v2−v20−2g and by taking
y0 = 0 at the earth’s surface and y = h at themaximum height
and that v = 0 there, we have

h = v20
2g

Since the initial velocity of the man is the same on earth and
on moon, we have

hEgE = hmgm

At the surface of the moon

gm = GMm

R2m
= (6.67 × 10−11 Nm2/kg2)(7.36 × 1022 kg)

(1.74 × l06 m)2
= 1.6 m/s2

hm = hE
gE
gm

= (0.2 m)
(9.8 m/s2)

(1.6 m/s2)
= 1.2 m

That is, the maximum height reached by the man on the moon
is six times the height reached on earth.

Example 9.10 A neutron star of radius of 12 km has a gravi-
tational acceleration of 1×1012 m/s2 at its surface. Calculate
its average density.

Solution 9.10 The gravitational acceleration of a particle
near the surface of the star is

g = GMn

R2
n

Mn = gR2n
G

= (1 × 1012 m/s2)(12 × 103 m)2

(6.67 × 10−11 Nm2/kg2)
= 2 × 1030 kg

ρ = 3Mn

4πR3
n

= 3(2 × 1030 kg)

4(3.14)(12 × 103 m)3
= 2.8 × 1017 kg/m3

Example 9.11 Find the free-fall acceleration of a body that
is at a distance of 0.05RE above the surface of the earth.

Solution 9.11

g = GME

(RE + h)2
= GME

(RE + 0.05RE)2
= GME

(1.05RE)2

= (6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.7 × 106 m)2
= 8.9 m/s2

9.2.4 The Gravitational Field

As mentioned previously, the gravitational force is a field
force that can act through empty space, i.e., physical contact
between objects is not necessary for such a force to act. An
alternative way in describing the gravitational attraction is
by introducing the concept of the gravitational field. Suppose
a test particle of mass m0 is placed at different points from
another mass M (which represents the center of the gravita-
tional force). At each point, the test particle will experience
a gravitational force that depends on its distance fromM and
is given by

Fg = −GMm0

r2
r1

where r1 is a unit vector that points radially outwards. There-
fore,M may be considered as producing a gravitational field
in the space around it. This field can be sensed by the force
that the test particle experience when placed in the vicinity
of M . The gravitational field produced by M at any point in
space is thus given by

g = Fg

m0
= −GM

r2
r1

That is, the gravitational field at a point is defined as the
gravitational force per unit mass at that point. A map of the
field can be drawn showing the gravitational field at any point
in space. Figure 9.14 shows the gravitational field vectors near
the earth’s surface and at large distances from the earth. Note
that, the gravitational field is an example of a static field since
the field at any point is constant with time.

Example 9.12 Find the magnitude and direction of the grav-
itational field at the point P in the arrangement shown in
Fig. 9.15, where all particles have equal masses.

Solution 9.12 Since allmasses are equal, the net gravitational
force at P is due to the sum of the x-components of F3 and
F2. That is,
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Fig. 9.14 The gravitational field vectors near the earth’s surface and at
large distances from the earth

Fig.9.15 Finding the magnitude and direction of the gravitational field
at P

F = 2F3 cos θ i = 4Gmm0

5a2
cos θ i = 4Gmm0

5a2
2√
5
i = 8Gmm0

5
√
5a2

i

g = 8Gm

5
√
5a2

i

9.3 Conic Sections

Conic sections are produced if a double right circular cone
intersects with a plane. It may be a circle, a parabola, an
ellipse, or a hyperbola.

Fig. 9.16 A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve (for example
point P) and another point called the focus (F) to the distance between
P and a line called the directrix is equal to a constant

9.3.1 The Polar Equation of a Conic Section

A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve
(for example pointP) and another point called the focus (F) to
the distance between P and a line called the directrix is equal
to a constant (see Fig. 9.16). This constant differs from one
conic section to another. Consider Fig. 9.16 where the focus
F is at the origin O of the x and y coordinate system and the
directrix is at x = d . Since the distance between P and F is

PF = r

then, the nearest distance between P and the directrix is

PD = d − FE = d − r cos θ

The eccentricity is therefore given by

e = PF

PD
= r

d − r cos θ

Hence,

r = ed

1 + e cos θ
(9.22)

This equation is the polar equation of a conic section.
1. Ellipse: e < 1 From Fig. 9.17, you can see that at

θ = 0, r = OV and at θ = π, r = OV ′. Substituting this into
Eq. 9.22 gives

OV = ed

1 + e

and

OV ′ = ed

1 − e

Since VV ′ is the length of the major axis which is equal to
2a, (a is the length of the semimajor axis) we have
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Fig. 9.17 In an ellipse, at θ = 0, r = OV and at θ = π, r = OV ′

OV + OV ′ = 2a (9.23)

or
ed

1 + e
+ ed

1 − e
= 2a

Hence,

a = ed

1 − e2

Or
ed = a(1 − e2)

Substituting into Eq. 9.22, the polar equation of an ellipse is

r = a(1 − e2)

1 + e cos θ

That gives

OV = a(1 − e2)

1 + e
= a(1 − e) (9.24)

and

OV ′ = a(1 − e2)

1 − e
= a(1 + e) (9.25)

The distanceC between the center of the ellipse and the focus
is

C = CV − OV = a − a(1 − e) = ae

Since fromFig. 9.17,we have c < a, i.e., the distance between
the foci is less than that between the vertices, then e < 1. Fur-
thermore, you can prove that c = √

a2 − b2 or b = a
√
1 − e2

where b is the length of the semiminor axis of the ellipse.
2. Parabola: e = 1 Since e = 1, Eq. 9.22 becomes

r = d

1 + cos θ

Fig.9.18 In a parabola, as θ approachesπ, r becomes infinite and hence
a → ∞

(Polar Equation of a Parabola) As θ approaches π, r becomes
infinite and hence a → ∞ (see Fig. 9.18).

3. Hyperbola: e > 1 The hyperbola has two branches as
shown in Fig. 9.19. For the gravitational force, only the first
branch (I) represents a possible motion of the particle since
GM /h2 must be positive. The polar equation of a hyperbola
is given by

r = a(e2 − 1)

1 + e cos θ

9.3.2 Motion in a Gravitational Force Field

The path of a particle in any central force field can be
found by solving the equation of motion (d2u/dθ2 + u =
−1/(mh2u2)f (1/u) (Eq. 9.9) if the formof the force is known.
In the case of a gravitational force, we have

f (r) = −GMm

r2

where M is assumed to be fixed and that it is attracting a
particle of mass m and r is the distance between them. In
terms of u, we have

f (1/u) = −GMmu2

Substituting this into the equation of motion gives

d2u

dθ2
+ u = −1

mh2u2
(−GMmu2)

or
d2u

dθ2
+ u = GM

h2
(9.26)

This equation is a nonhomogeneous linear differential equa-
tion. Its solution may be given by
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Fig. 9.19 The hyperbola

u = 1

r
= C cos(θ − φ) + GM

h2

where C and φ are integration constants. φ is known as the
phase angle and it can be chosen to be φ = 0 if the x-axis is
chosen such that at θ = 0, r is a minimum. That gives

u = 1

r
= C cos θ + GM

h2
(9.27)

or

r = h2/GM

1 + Ch2
GM cos θ

= ed

1 + e cos θ

Thus, the path of the particle under the influence of the gravita-
tional force field is a conic with ed = h2/GM and d = 1/C
and e = h2C/GM . If a planet is moving in elliptical orbit
about the sun, then the maximum and minimum distances of
the planet from the sun (OV and OV ′) are called the aphe-
lion and perihelion respectively If a satellite is moving about
a planet in an elliptical orbit, the maximum and minimum
distances of the satellite from the planet are called the apogee
and perigee respectively.

9.3.3 The Gravitational Potential Energy

Consider a particle of mass m moving under the influence
of a larger particle of mass M (M � m). By using Eq. 9.10

(�U = Uf − Ui = −
∫ rf

ri
f (r)dr) and noting that f (r) =

−GMm/r2, the change in the gravitational potential energy
of the system as m moves from ri to rf in the field of M is

�Ug = Ugf −Ugi =
∫ rf

ri

GMm

r2
dr = GMm

∫ rf

ri

dr

r2

= GMm

[−1

r

]rf
ri

= GMm

(
1

ri
− 1

rf

)

That is, as the particle of mass m moves toward or away
from M , the potential energy of the system decreases and
increases respectively Note that, the lighter particle (m) gains
most of the kinetic energy as the potential energy changes. By
choosing the reference point at infinity (ri = ∞) thenUi = 0
and taking rf = r gives

Ug(r) = −GMm

r

For more than two-particle systems, there is more than one
gravitational force (one for each pair of particles). Hence,
there is more than one potential energy The total potential
energy is the sum of the potential energies of each pair. For
example if there are three particles, the total potential energy is

Utot = U12 +U13 +U23 = −
(
Gm1m2

r12
+ Gm1m3

r13
+ Gm2m3

r23

)

Force from Potential Energy The gravitational force may
be obtained from its corresponding potential energy. That is,

Fg = − d

dr

(−GMm

r

)
r1 = −GMm

r2
r1

Example 9.13 Find the potential energy of the system as
shown in Fig. 9.20.

Solution 9.13

U = U12 +U13 +U23

= −G

(
m1m2

r12
+ m1m3

r13
+ m2m3

r23

)

= −(6.67×10−11 Nm2/kg2)

(
(8 × 104 kg)

(0.3 m)
+ (12 × 104 kg)

(0.32 m)
+ (6 × 104 kg)

(0.36 m)

)
= −5.4×10−5 J

Example 9.14 Two particles of equal masses (3kg) are sep-
arated by a distance of 0.3 m : (a) Find the potential energy
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Fig. 9.20 The gravitational potential energy of a system of three parti-
cles

of the system; (b) how much work is required to reduce their
separation to 0.1 m, (c) to increase their separation to 0.5 m.

Solution 9.14 (a)

U = −Gm2

r
= −(6.67 × 10−11 Nm2/kg2)(3 kg)2

(0.3 m)
= −2 × 10−9 J

(b) The work done by the gravitational force is

W = −�U = Ui −Uf = −Gm2
(
1

ri
− 1

rf

)

= −(6.67×10−11 Nm2/kg2)(3 kg)2
(

1

(0.3 m)
− 1

(0.1 m)

)

that gives W = 4 × 10−9 J. The work done by an external
agent is W = −4 × 10−9 J.
(c) The work done by the gravitational force is

W = −�U = −Gm2
(
1

ri
− 1

rf

)
= −(6.67×10−11 Nm2/kg2)(3 kg)2

(
1

(0.3 m)
− 1

(0.5 m)

)

W = −8 × 10−10 J

The work done by an external agent is +8 × 10−10J.

9.3.4 Energy in a Gravitational Force Field

The equation ofmotion in termsof energy is givenbyEq. 9.12:

(
du

dθ

)2

+ u2 = 2(E −U )

mh2

The gravitational potential energy of a two-particle system of
masses M and m is given by

Ug(r) = −GMm

r

In terms of u we may write

Ug(1/u) = −GMmu (9.28)

Furthermore, the solution of the equation (Eq. 9.26) of
motion in the gravitational force field is

u = 1

r
= C cos θ + GM

h2
(9.29)

Substituting Eqs. 9.28 and 9.29 into Eq. 9.12 gives

(C sin θ)2 +
(
C cos θ + GM

h2

)2

= 2E

mh2
− 2

mh2

(
− GMm

(
C cos θ + GM

h2

))

That gives

C2 = 2E

mh2
+ G2M 2

h4

or

C =
√

2E

mh2
+ G2M 2

h4
(assuming C > 0)

Substituting this value of C into Eq. 9.29 gives

u = GM

h2
+

√
2E

mh2
+ G2M 2

h4
cos θ

= GM

h2
+ GM

h2

√
1 + 2Eh2

G2M 2m
cos θ

or

u = GM

h2

[
1 +

√
1 + 2Eh2

G2M 2m
cos θ

]
(9.30)

Comparing this equation with the polar equation of a conic
section (Eq. 9.22), we have

e =
√
1 + 2Eh2

G2M 2m

Thus the trajectory of the particle is an ellipse if e < 1, that is
if E < 0. Therefore, if the potential energy of the particle is
greater than its kinetic energy the particle’s path is an ellipse
since it does not have enough energy to reach infinity. The
trajectory of the particle is a parabola if e = 1 and hence
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Fig. 9.21 Different paths

if E = 0. In that case, the kinetic energy of the particle is
equal to its potential energy and thus it can reach infinity
with zero kinetic energy. Finally, the trajectory of the particle
is a hyperbola if e > 1 and therefore if E > 0. That is, if
the kinetic energy of the particle is greater than its potential
energy, then it will reach infinity with positive kinetic energy

• Elliptical Orbit E < 0
• Parabolic Orbit E = 0
• Hyperbolic Orbit E > 0

Different paths are shown in Fig. 9.21.

9.4 Kepler’s Laws

After analyzing the astronomical data of theDanish astronomer
Tycho Brahe, the German astronomer Johannes Kepler for-
mulated his three laws of planetary motion.

9.4.1 Kepler’s First Law

Every planet moves in an elliptical orbit with the sun at one
focus as shown in Fig. 9.21.

Proof The gravitational force between the sun and a planet is

F = −GMSMP

r2
r1

where MS and MP are the masses of the sun and the planet,
respectively The acceleration of the planet is

Fig. 9.22 From the first property of a central force we have r × v =
h =constant, where h is a constant vector perpendicular to the x-y plane

a = −GMS

r2
r1

From the first property of a central force, we have r × v =
h =constant, where h is a constant vector perpendicular to
the x–y plane (see Fig. 9.22). Since r = rr1 and v = dr/dt =
drr1/dt = rdr1/dt + (dr/dt)r1 we have

h = rr1×
(
r
dr1
dt

+ dr

dt
r1

)
= r2

(
r1× dr1

dt

)
+r

dr

dt

(
r1×r1

)

= r2
(
r1 × dr1

dt

)
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a × h =
( −GMS

r2
r1

)
×

(
r2

(
r1 × dr1

dt

))
= −GMS

[(
r1

dr1
dt

)
r1 − (r1 · r1) dr1dt

]

Using
A × (B × C) = (A · C)B − (A · B)C

Since r1 · dr1/dt = 0 and r1 · r1 = r21 = 1, we have

a × h = GMS
dr1
dt

= d

dt
(GMSr1)

Also we have

a × h = dv
dt

× h = d

dt
(v × h)

since h is a constant vector. That gives

d

dt
(v × h) = d

dt
(GMSr1)

or
v × h = GMSr1 + C

where C is a constant vector. Since

h2 = h · h = (r × v) · h = r · (v × h)

= (rr1) · (GMSr1 + C) = rGMS(r1 · r1) + r(r1 · C)

and since
r1 · C = C cos θ

we have
h2 = rGMS + rC cos θ

or

r = h2

GMS + C cos θ
= h2/GMS

1 + C/GMScos θ

This equation is of a conic section and since the only closed
conic section is an ellipse the law is proved.

9.4.2 Kepler’s Second Law

The radius vector drawn from the sun to the planet sweeps
out equal areas in equal periods of time.

Proof This was proved in Sect. 9.1 as a property of a central
force, where we’ve seen that for any central force, the position
vector r of the particle from the center of force O sweeps out
equal areas in equal times. That is,

dA

dt
= h

2
= constant

or

dA

dt
= L

2m
= constant

Here, the center of force is the sun and the particle is the
planet, hence we have

dA

dt
= L

2MP

9.4.3 Kepler’s Third Law

The square of the period of revolution of any planet about the
sun is proportional to the cube of the semimajor axis of its
orbit.

Proof The area of an ellipse is given by A = πab, where a
and b are the semimajor and semiminor axis of the ellipse,
respectively. From Kepler’s second law, the areal velocity is
a constant given by

dA

dt
= h

2
= constant

Therefore, the period of revolution may be considered as
the time it takes the radius vector to sweep an area of πab

T = πab

h/2

From Sect. 9.3, we have b = a
√
1 − e2. That gives

T = πa2
√
1 − e2

h/2

Also, we’ve seen that the eccentricity for the gravitational
force is given by e = h2C/GM or e = h2C/GMS in the case
of the planet–sun system. Since ed = a(1 − e2), we have

h2

GMS
= a(1 − e2)

or √
1 − e2 = h√

GMSa

Thus,

T = 2πa2h

h
√
GMSa

= 2π√
GMS

a3/2

or
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T 2 =
(

4π2

GMS

)
a3 = KSa

3

where KS is a constant that has a value given by

KS = 4π2

GMS
= 2.97 × 10−19 s2/m3

This proves Kepler’s third law. Note that, Kepler’s laws apply
also for satellites. In such cases, the mass of the sun in the
previous equations is replaced by the earth or any other planet
about which the satellite revolves.

9.5 Circular Orbits

The orbits of most planets in our solar system are almost
circular. Next, we will find the total energy of a body of mass
m moving in a circular orbit about a massive body of mass
M that is assumed to be fixed (at rest) in an inertial frame of
reference. From that energy, we will find the eccentricity and
prove that the orbit is circular. The potential energy of such
system is

U = −GMm

r

where r is the radius of the circular orbit. Applying Newton’s
second law to m gives

GMm

r2
= m

v2

r
(9.31)

Therefore, the kinetic energy of the particle is

K = 1

2
mv2 = GMm

2r

The total energy of m is therefore given by

E = K +U = GMm

2r
− GMm

r

or

E = −GMm

2r
(9.32)

In Sect. 9.4, the eccentricity of orbit in terms of energy was
given by

e =
√
1 + 2Eh2

G2M 2m
(9.33)

Substituting Eq. 9.32 into Eq. 9.33 gives

e =
√
1 +

(−GMm

2r

2h2

G2M 2m

)

Fig. 9.23 The potential, kinetic
and total energy as functions of r
of an object in a circular orbit

Since h = rv for a circular orbit and since GMm/r2 = mv2/r
and thus v = √

GM /r, we have

h = √
rGM

and

e =
√
1 +

(−GMm

2r

2rGM

G2M 2m

)
= 0

Hence the orbit is circular. The potential, kinetic, and total
energy as functions of r of an object in circular orbit are
shown in Fig. 9.23.

Example 9.15 A satellite of mass of 1000 kg is in circular
orbit about the earth at an altitude ofRE/2.What is the amount
of work required to move the satellite to an altitude of 2RE .

Solution 9.15

W = �E = Ef − Ei = GMEms

( −1

2rf
−

( −1

2ri

))
= GMEms

( −1

4RE
+ 1

RE

)

= 3GMEms

4RE
= 3(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)(1000 kg)

4(6.37 × 106 m)
= 4.7×1010 J

9.6 Elliptical Orbits

For an elliptical orbit, we have

ed = a(1 − e2) = h2

GM
(9.34)

Substituting Eq. 9.33 into Eq. 9.34 gives

a

(
1 −

(
1 + 2Eh2

G2M 2m

))
= h2

GM

That gives

E = −GMm

2a

The speed of an object in an elliptical orbit can be found from

K = E −U
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1

2
mv2 = −GmM

2a
+ GmM

r

v2 = GM

(
2

r
− 1

a

)

v =
√
GM

(
2

r
− 1

a

)

9.7 The Escape Speed

The escape speed vesc is the speed required for an object to
escape from the influence of the gravitational field of an astro-
nomical object or system. Suppose an object of massm is pro-
jected from the surface of a planet of massM . The minimum
speed for the object to escape the gravitational field of the
planet is that in which the object has zero total mechanical
energy at infinity. From conservation of energy, we have

Ki +Ui = Kf +Uf

1

2
mv2esc +

(−GMm

R

)
= 0

Hence

vesc =
√
2GM

R

where R is the radius of the planet. If the object’s initial speed
is greater than the escape speed from that planet, then the
object will still have some kinetic energy at infinity. Table.9.2
shows planetary data escape speeds

Example 9.16 What is the escape speed from the surface of:
(a) Earth; (b) Mars; (c) Pluto.

Solution 9.16 (a)

vesc =
√

2GME
RE

=
√

2(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.37 × 106 m)
= 1.12 × 104 m/s

(b)

vesc =
√

2GMM
RM

=
√

2(6.67 × 10−11 Nm2/kg2)(6.42 × 1023 kg)

(3.37 × 106 m)
= 5 × 103 m/s

(c)

vesc =
√

2GMP
RP

=
√

2(6.67 × 10−11 Nm2/kg2)(1.4 × 1022 kg)

(1.5 × 106 m)
= 1.1 × 103 m/s

Example 9.17 What must be the minimum speed of a space-
craft that is at a distance of 3RE from the center of the earth
in order for it to escape the gravitational field of the earth?

Solution 9.17 Theminimum speed is that inwhich the space-
craft has zero total mechanical energy at infinity,

Ki +Ui = Kf +Uf

1

2
mv2esc +

(−GMEm

3RE

)
= 0

vesc =
√

2GME
3RE

=
√

2(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

3(6.37 × l06 m)
= 6.46 × 103 m/s

Example 9.18 Given that the period ofMars in its orbit about
the sun is 1.88 years and its semimajor axis of the orbit is
22.8 × 1010 m, find the mass of the sun.

Solution 9.18 The period in seconds is

T = 5.94 × 107s

From Kepler’s second law, we have

MS = 4π2a3

GT2
= 4(3.14)2(22.8 × 1010 m)3

(6.67 × 10−11 Nm2/kg2)(5.94 × 107 s)2
= 1.99 × 1030 kg

Example 9.19 Halley’s Comet moves in an elliptical orbit
about the sun. Its semimajor axis of orbit is 2.7× 1012 m and
its farthest distance (OV ′ = Ra) from the sun (the aphelion)
is 5.3 × 1012 m. Find its period and its closest approach to
the sun (the perihelion OV = Rp).

Solution 9.19 From Kepler’s third law,

T 2 = KSa
3 = (2.97 × 10−19 s2/m3)(2.7 × 1012 m)3

T = 2.4 × 109 s = 76 years

From Eq. 9.23, we have

OV + OV ′ = 2a

or
Rp + Ra = 2a

Rp = 2a−Ra = 2(2.7× 1012 m) − (5.3× 1012 m) = 1× 1011 m

Example 9.20 If Pluto’s distance from the sun at perihelion
is 4.43× 1012m, find (a) the ratio of its speed at perihelion to
its speed at aphelion; (b) the eccentricity of orbit; (c) the total
energy.
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Table 9.2 Planetary data escape speeds

Body Mass (kg) Radius (m) Semimajor axis a (m) Escape speed (km/s)

Mercury 3.18 × 1023 2.43 × 106 5.79 × 1010 4.3

Venus 4.88 × 1024 6.06 × 106 1.08 × 1011 10.3

Earth 5.98 × 1024 6.37 × 106 1.496 × 1011 11.2

Mars 6.42 × 1023 3.37 × 106 2.28 × 1011 5

Jupiter 1.90 × 1027 6.99 × 107 7.78 × 1011 60

Saturn 5.68 × 1026 5.85 × 107 1.43 × 1012 36

Uranus 8.68 × 1025 2.33 × 107 2.87 × 1012 22

Neptune 1.03 × 1026 2.21 × 107 4.5 × 1012 24

Pluto 1.4 × 1022 1.5 × 106 5.91 × 1012 1.1

Moon 7.36 × 1022 1.74 × 106 2.3

Sun 1.99 × 1030 6.96 × 108 618

Solution 9.20 From Table. 9.2, we have a = 5.9 × 1012 m,
therefore

Ra = 2a−Rp = 2(5.9× 1012 m) − (4.43× 1012 m) = 7.37× 1012 m

From the conservation of angular momentum,

MPvaRa = MPvpRp

hence,
vp
va

= Ra

Rp
= (7.37 × 1012m)

(4.43 × 1012m)
= 1.7

(b) From Eq. 9.24 (OV = Rp = a(1 − e)), we have

e = 1 − Rp

a
= 1 − (4.43 × 1012 m)

(5.9 × 1012 m)
= 0.25

(c)

E = −GMm

2a
= −(6.67 × 10−11 Nm2/kg2)(1.99 × 1030 kg)(1.4 × 1022 kg)

2(5.9 × 1012 m)
= −1.6 × 1029 J

Example 9.21 Two stars of equal massM revolve about their
center of mass with a speed v as shown in Fig. 9.24. Find the
period of motion of each star.

Solution 9.21 The gravitational force that one star exerts on
the other is

F = GM 2

4r2
= Mv2

r

where r is the radius of orbit. Therefore,

v =
√
GM

4r

and

Fig. 9.24 Two stars of equal
massM revolve about their
center of mass with a speed v

T = 2πr

v
= 2πr

√
4r

GM
= 4π

√
r3

GM

Example 9.22 A spaceship is fired from the surface of Mars
with a speed of 12 × 103m/s, find its speed at a very far
distance from Mars.

Solution 9.22
Ki +Ui = Kf +Uf

1

2
mv2i −

(
GmMM

RM

)
= 1

2
mv2f + 0

v2f = v2i − 2GMM

RM

= (12 × 103 m/s)2 − 2(6.67 × 10−11 Nm2/kg2)(6.42 × 1023 kg)

(3.37 × 106 m)

That gives vf = 1.1 × 104 m/s.
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Problems

1. Calculate the gravitational force between the earth and
(a) the sun, (b) the moon.

2. Calculate the gravitational acceleration at the surface of
Mars.

3. Three particles of masses m1 = 2 kg, m2 = 6 kg, and
m3 = 3 kg are located at the points (0, 0), (0, 5), and
(5, 0), respectively. Find magnitude and direction of the
resultant gravitational force exerted on m3.

4. The Geosynchronous satellites move in a circular orbit
in the equatorial plane of the earth. They move in such a
way that they always remain over the same point on the
earth. Find the height and velocity of this satellite.

5. If the eccentricity of the orbit of Mercury about the sun
is e = 0.206 and its semimajor axis is a = 0.387 AU,
find (a) the distance of its farthest and closest approach
to the sun (the aphelion and perihelion), (b) its period,
(c) its total energy, (d) its angular momentum. (1 AU =
1.495 × 1011m).

6. A body is released at a distance r from the center of the
earth. Find its velocity just as it hits the surface of the
earth.
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(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

7. Show that the speed of a satellite in an elliptical orbit
about the earth at apogee and perigee are given by

vp =
√
GM

a

√
1 + e

1 − e
=

√
GM

a

√
Ra

Rp

and

va =
√
GM

a

√
1 − e

1 + e
=

√
GM

a

√
Rp

Ra

8. An artificial satellite moves in an elliptical orbit about
the earth. Its perigee and apogee altitudes are 1100 km
and 4100 km respectively Find (a) the velocity of the
satellite at perigee and apogee, (b) its semimajor axis, (c)
its eccentricity, (d) the equation of its orbit, (e) its period,
(f) its speed when it is at a distance of 3000 km above the
earth’s surface.

9. A satellite is at a distance of 1.2RE from the center of
the earth. Find the speed required for the satellite at this
altitude (where it represents the orbit perigee) to be in
(a) circular orbit, (b) parabolic orbit, (c) elliptical orbit of
eccentricity of e = 0.7.

10. Suppose the earth suddenly stops moving about the sun,
find the time it would take the earth to fall to the sun.

http://creativecommons.org/licenses/by/4.0/
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10.1 Oscillatory Motion

A motion repeating itself is referred to as periodic or oscil-
latory motion. An object in such motion oscillates about an
equilibrium position due to a restoring force or torque. Such
force or torque tends to restore (return) the system toward its
equilibrium position no matter in which direction the system
is displaced. This motion is important to study many phe-
nomena including electromagnetic waves, alternating current
circuits, and molecules. For a vibration to occur, two quanti-
ties are necessary to be present—stiffness and inertia.

10.2 FreeVibrations

When a system vibrates, a restoring force must be present.
In addition to that force, there is always a retarding or damp-
ing force such as friction. If the effect of the damping force
is small and can be neglected, then the motion is classified
as free and undamped motion. Otherwise, the motion is clas-
sified as free damped motion. In both cases, the motion is
known as free vibration since no forces other than the restor-
ing and damping forces exist during vibration. If a driving
force that does positive work on the system exists, the motion
is classified as forced vibration.

This forcemaybe applied externally to the systemor some-
times is produced within the system. In this chapter, the case
in which a restoring force is directly proportional to the dis-
placement is considered. The resulting motion is then known
as a harmonic vibration and the system is said to be linear. If
the restoring force depends on the displacement in some other
way, the resulting motion is known as anharmonic vibration
and the system is said to be nonlinear.

10.3 Free UndampedVibrations

This kind of motion is known as the simple harmonic motion.
Next, we will examine examples of such motion in physics.

10.3.1 Mass Attached to a Spring

Consider a block ofmassm attached to a light spring of spring
constant k that is fixed at the other end (see Fig. 10.1). Suppose
that the system lies on a frictionless horizontal surface. For
small displacements, the restoring force acting on the block
by the spring is given by Hook’s law

Fs = −kx

As we’ve mentioned in Sect. 4.1, if the block is displaced
slightly to the right (for example to x = A), the restoring
spring force will accelerate the block to the left transferring
its potential energy into kinetic energy As the block reaches
its equilibrium position x = 0, all of its potential energy will
be transformed into kinetic energy and it will overshoot to the
other side. Again, as it moves left, the spring force deceler-
ates the block to the right, transferring its kinetic energy into
potential energy until all of its energy is potential at x = −A
where it comes to rest. At that point, it accelerates back to
x = 0 and regains all of its kinetic energy where it over-
shoots again to x = A. Therefore, stiffness restores the mass
where inertia is responsible for the mass to overshoot. From
Newton’s second law we, have

ma = −kx

or

m
d2x

dt2
+ kx = 0

or
d2x

dt2
+ ω2

nx = 0 (10.1)

where ωn = √
k/m is called the natural angular frequency

of the system. The general solution of this equation is of the
form

x(t) = A1 cosωnt + A2 sinωnt (10.2)
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Fig.10.1 Ablock ofmassm attached to a light spring of spring constant
k that is fixed at the other end

Fig. 10.2 Plot of x versus t for a simple harmonic oscillator

where A1 and A2 are arbitrary constants that can be found
from the initial conditions. Therefore, there aremany possible
motions with the same angular frequency ωn. By multiplying

and dividing Eq. 10.2 by
√
A2
1 + A2

2, you can show that the
solution may be written as

x(t) = A cos(ωnt − φ) (10.3)

where A =
√
A2
1 + A2

2 is called the amplitude of motion and

φ = tan−1 A2/A1 is called the phase constant. In general, φ is
chosen such that 0 ≤ φ ≤ π.A and φ can be determined from
the initial conditions, i.e., from the values of the displace-
ment and velocity when the motion starts. The mass therefore
oscillates between A and−A. The quantity (ωnt−φ) is called
the phase angle. If this angle is increased by 2π , all physical
quantities such as the displacement, velocity, and accelera-
tion repeat themselves. The plot of x versus t is shown in
Fig. 10.2. If A is fixed and φ is changed the motion will be
the same except that the same physical quantities will appear
either earlier or later than the preceding motion.

10.3.1.1 The Period and Frequency of Motion
The period of motion is the time required for one complete
cycle or oscillation. Since the phase angle is changed by 2π
after one complete cycle, we have for themass–spring system,

ωnt + 2π = ωn(t + T )

or

T = 2π

ωn
= 2π

√
m

k

The frequency is defined as the number of complete cycles
per unit time

fn = 1

T
= ωn

2π

This frequency is called the natural frequency of the motion.
The unit of the frequency is cycles/s or hertz (Hz).

10.3.1.2 The Phase Difference
The phase constant φ is important when comparing two or
more oscillations of the same frequency Suppose a certain
vibration has φ = 0, this means that at t = 0 the displacement
is maximum x = A. If a second vibration has also φ = 0, then
the two vibrations are said to be in phase (see Fig. 10.3 part a).
Otherwise, the two vibrations are out of phase. If the phase
constant of the second vibration is φ > 0, then the second
vibration is leading the first vibration in phase by φ. If φ < 0,
then the second vibration is lagging the first by φ. If φ = ±π ,
the two vibrations are said to be in antiphase with each other
(see Fig. 10.3 part b).

10.3.1.3 TheVelocity and Acceleration
The velocity of the mass is

v(t) = dx

dt
= −ωnA sin(ωnt − φ) (10.4)

This can also be written as

v(t) = ωnA cos

(
ωnt − φ + π

2

)
(10.5)

The acceleration of the mass is

a(t) = dv

dt
= −ω2

nA cos(ωnt − φ) (10.6)

Fig. 10.3 a Two simple harmonic motions of the same frequency and
same phase constant π = 0 but differing in amplitude. b Two simple
harmonic motions of the same frequency and amplitude but differing in
phase by φ = ±π
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Fig. 10.4 The displacement, velocity and acceleration versus time

or

a(t) = dv

dt
= ω2

nA cos(ωnt − φ + π) (10.7)

Hence, the velocity and acceleration also vary harmonically
with timewith amplitudesωnA andω2

nA, respectively, but they
all have the same angular frequency From Eqs. 10.5 and 10.7
you can see that the velocity leads the displacement by π/2 or
90.Theaccelerationontheotherhandleads thevelocitybyπ/2
and the displacement by π or 180. Figure 10.4 shows the dis-
placement, velocity, and acceleration versus time.

10.3.1.4 Boundary Conditions
Boundary conditions are used to find A and φ for a specific
vibration. Suppose that the vibration is measured when the
stopwatch is set to zero, i.e., at t = 0 and that at that instant the
mass is released from rest at a distance of x = A1 from its equi-
librium position. Substituting these conditions into Eqs. 10.3
and 10.4, we have

x = A cosφ = A1 (10.8)

v = v0 = −ωnA sin φ (10.9)

Dividing Eq. 10.9 by Eq. 10.8 gives

tan φ = −v0
ωnA1

Squaring and adding Eqs. 10.9 and 10.8 gives

A2
1 +

(
v0
ωn

)2

= A2 cos2 φ + A2 sin2 φ

or

A =
√
A2
1 +

(
v0
ωn

)2

Example 10.1 Anobject oscillates in simple harmonicmotion
according to the expression x = (3m) cos(π t + π/3). Find
(a) the amplitude, phase constant, period, and frequency of
motion; (b) the displacement, velocity, and acceleration of
the object at t = 0.5s(c) the time when the object first reach
x = −1.5 m.

Solution 10.1 (a)
A = 3m

φ = π

3

T = 2π

ωn
= (2π)

π
= 2 s

and

fn = 1

T
= 1

(2s)
= 0.5 Hz

(b) At t = 0.5 s

x = (3 m) cos

(
π(0.5 s) + π

3

)
= −2.6 m

v = −(3π m/s) sin

(
π t + π

3

)

At t = 0.5 s

v = (−3π m/s) sin

(
π(0.5 s) + π

3

)
= −4.7 m/s

a = (−3π2 m/s2) cos

(
π t + π

3

)

at t = 0.5 s

a = (−3π2 m/s2) cos

(
π(0.5 s) + π

3

)
= 25.6 m/s2

(c) at x = −1.5 m

(−1.5 m) = (3 m) cos

(
π t + π

3

)
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or

2π

3
= π t + π

3

that gives t = 0.3 s.

Example 10.2 A9 kg object is moving along the x-axis under
the influence of a force given by F = (−3x) N. Find (a) the
equation of motion; (b) the displacement of the mass at any
time if at t = 0, x = 5 m and v = 0.

Solution 10.2 (a)

F = −3x = ma = m
d2x

dt2

hence,
d2x

dt2
+ 3x = 0

(b) The general solution of this equation is

x = A cos
√
3t + B sin

√
3t

Since at t = 0, x = 5 m, then A = 5 m and

x = (5m) cos
√
3t + B sin

√
3t

also we have at t = 0, dx/dt = 0, or

−5
√
3 sin

√
3t + √

3B cos
√
3t = 0

and therefore B = 0. Thus,

x = (5m) cos
√
3t

Example 10.3 A 0.3 kg block is attached to a spring of force
constant 20 N/m on a frictionless horizontal surface. If the
initial displacement and velocity of the system is 0.02 m and
0.2 m/s, respectively, find the period, amplitude, and phase
constant of motion.

Solution 10.3

ωn =
√

k

m
=

√
(20 N/m)

(0.3 kg)
= 8.2 rad/s

A =
√
A21 +

(
v0
ωn

)2
=

√
(0.02 m)2 +

(
(0.2 m/s)

(82 rad/s)

)2
= 0.03 m

tan φ = −v0
ωnA1

= −(0.2 m/.s)

(8.2 rad/s)(0.03 m)
= −0.8

φ = −38.7◦

Fig. 10.5 A particle of mass m is dropped in a straight tunnel that is
drilled through the earth and which passes through the center of earth

Example 10.4 A particle of mass m is dropped in a straight
tunnel that is drilled through the earth and which passes
through the center of earth as shown in Fig. 10.5. Show that
the motion of the particle is simple harmonic motion and find
its period.

Solution 10.4 Assuming that the earth is a perfect sphere of
uniform density and since the particle is inside the earth, then
from Sect. 9.2, the gravitational force exerted on the particle
by the earth is

F = −
(
GmME

R3
E

)
r = −kr

Because this force is directly proportional to the displacement
and is opposite to it, then the particle will move in simple
harmonic motion about the center of the earth. The equation
of motion is

dr2

dt2
+

(
GME

R3
E

)
r = 0

hence,

ωn =
√

GME

R3E
=

√
(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.37 × l06 m)3
= 1.24 × 10−3 rad/s

T = 2π

ωn
= 2(3.14)

(1.24 × 10−3 rad/s)
= 5055.4 s = 84.25 min

Example 10.5 A 0.4 kg block is connected to two springs
of force constants k1 = 20 N/m and k2 = 50 N/m as in
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Fig. 10.6 A block connected to two springs

Fig. 10.7 A second block on top of a block connected to a spring

Fig. 10.6. Find (a) the total force acting on the block; (b) the
period of motion.

Solution 10.5 The force that each spring exerts on the block
acts in the opposite direction of the displacement, therefore
we have

∑
F = −k1x − k2x = −(k1 + k2)x = −(70 N/m)x

Thus the two springs can be considered as one spring of a
force constant of (k1 + k2). The period of motion is therefore

T = 2π

√
m

k1 + k2
= 2(3.14)

√
(0.4 kg)

(70 N/m)
= 0.5 s

Example 10.6 A 6 kg block is connected to a light spring of
force constant of 300N/mon a frictionless horizontal surface.
On top of it a second block of mass of 2 kg is placed. If the
coefficient of static friction between the two blocks is 0.4 (see
Fig. 10.7), find the maximum amplitude the system can have
when it is in simple harmonic motion such that there is no
slipping between the blocks.

Solution 10.6 The maximum acceleration of the lower block
is amax = ω2

nA. In order for the upper block not to slip,
the force of static friction between the two blocks must pro-
duce the same acceleration as the lower block. The maxi-
mum statistical frictional force that can be exerted on the
upper block is μsmg and hence, the maximum acceleration
that the force of static friction can produce is μsg. Therefore,
μsg = amax = ω2

nA. Since

ωn =
√

k

(m + M )

we have

A = μsg

ω2
n

= μsg(m + M )

k
= (0.4)(9.8 m/s2)(8 kg)

(300 N/m)
= 0.1 m

Fig. 10.8 A particle in uniform circular motion

10.3.2 Simple Harmonic Motion and Uniform
Circular Motion

Consider a circle of radius A centered at the x and y axes as
shown in Fig. 10.8. Let A be the position vector of a particle P
rotating with a constant angular speedωn in the anticlockwise
direction. The particle is thus in uniform circularmotion. Sup-
pose P starts the rotation at t = 0 at an angle of φ measured
from the positive x-axis. At any time, the angular position of
the particle is given by (ωnt+φ), therefore the vector position
of the particle at any time is

A = xi + yj = A cos(ωnt + φ)i + A sin(ωnt + φ)j

Hence,
x = A cos(ωnt + φ)

and
y = A sin(ωnt + φ)

That is, as P moves in uniform circular motion, its projec-
tion P′ on the x-axis moves in simple harmonic motion where
the radius of the circle is equal to the amplitude of motion.
The projection of P along the y-axis also undergoes simple
harmonic motion. Thus, uniform circular motion may be con-
sidered as a combination of the simple harmonic motions of
the projections of P on each axis. These two simple harmonic
motions have equal amplitudes and angular frequencies but
are in quadraturewith each other (they differ in phase byπ/2).
The linear tangential velocity of the particle in this uniform
circular motion is given by

v = Aωn

The x component of the velocity is from Fig. 10.9 given by

vx = −ωnA sin(ωnt + φ)
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Fig. 10.9 The velocity components of the particle

Fig. 10.10 The acceleration components of the particle

The acceleration of the particle in uniform circular motion is
just the radial (centripetal) acceleration that is given by

a = v2

A
= Aω2

n

The x components of the acceleration (see Fig. 10.10) is

ax = −ω2
nA cos(ωnt + φ)

Hence as you can see, the displacement, velocity, and acceler-
ation of the projection of P onto the x (or y axis) are the same
as that of a simple harmonic motion. From this, we conclude
that the simple harmonic motion can be represented as the
projection of uniform circular motion along a diameter of the
circle.

10.3.3 Energy of a Simple Harmonic Oscillator

Since in a simple harmonic oscillator, there aren’t any dis-
sipative forces, the total mechanical energy of the system is
conserved and is equal to the sum of its kinetic and potential
energies, that is

E = K +U

K = 1

2
mv2 = 1

2
mω2

nA
2 sin2(ωnt + φ)

U = 1

2
kx2 = 1

2
kA2 cos2(ωnt + φ)

Thus,

E = 1

2
kA2[sin2(ωnt + φ) + cos2(ωnt + φ)]

or

E = 1

2
kA2 = constant

The equation ofmotion of a simple harmonic oscillator can
be obtained from the total mechanical energy of the system
as follows:

E = 1

2
mẋ2 + 1

2
kx2 = 1

2
kA2 (10.10)

dE

dt
= mẋẍ + kxẋ = 0

or
mẍ + kx = 0

Hence
ẍ + ω2

nx = 0

where ωn = √
k/m. As the mass moves, its kinetic energy is

transformed into potential energy and vice versa. Figure 10.11
shows the kinetic energy and potential energy of the system
as a function of time and as a function of the displacement
respectively Note that the variation of U and K with time is
at twice the angular frequency of the variation of x, v, and a
with time. This is because the potential energy is converted to
kinetic energy twice in each cycle. The velocity of the simple
harmonic oscillator can be obtained from the total energy of
the system. From Eq. 10.10, we have

v = ±
√

k

m
(A2 − x2)

Hence, the maximum speed is at x = 0 and is zero at
x = ±A which are called the turning points as discussed
in Chap. chap444.

Example 10.7 A 0.3 kg mass is attached to a light spring. If
the total energy of the system is 0.025 J and the amplitude of
motion is 5 cm, find the period and frequency of motion.

Solution 10.7

E = (0.025 J) = 1

2
kA2 = 1

2
k(0.05 m)2
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Fig. 10.11 As the mass moves, its kinetic energy is transformed into
potential energy and vice versa

hence
k = 20 N/m

The period of motion is therefore

T = 2π

√
m

k
= 2(3.14)

√
(0.3 kg)

(20 N/m)
= 0.8 s

and the frequency is

fn = 1

T
= 1

(0.8 s)
= 1.25 Hz

Example 10.8 A 0.2 kg block is attached to a light spring of
force constant of 11 N/m on a horizontal frictionless surface.
If the block is displaced a distance of 8 cm from its equilibrium
position, find (a) the amplitude, the angular frequency, the
period and the frequency ofmotionwhen the block is released;
(b) the maximum force exerted on the block; (c) the total
mechanical energy of the system; (d) the maximum speed
and maximum acceleration of the block; (e) the velocity of
the block when its displacement is 2 cm; (f) the acceleration
of the block when its displacement is 3 cm.

Solution 10.8 (a)
A = 8 cm

ωn =
√

k

m
=

√
(11 N/m)

(0.2 kg)
= 7.4 rad/s

T = 2π

ωn
= 2(3.14)

(7.4 rad/s)
= 0.85 s

fn = 1

T
= 1

(0.85 s)
= 1.2 Hz

(b)
|F | = kA = (11N/m)(0.08m) = 0.9N

(c)

E = 1

2
kA2 = 1

2
(11 N/m)(0.08 m)2 = 0.035 J

(d)

vmax = ωnA = (7.4 rad/s)(0.08 m) = 0.6 m/s

amax = ω2
nA = (7.4 rad/s)2(0.08 m) = 4.4 m/s2

(e)

v = ±
√

k

m
(A2 − x2) =

√
(11 N/m)

(0.2 kg)
((0.08 m)2 − (0.02 m)2) = 1.8 m/s

(f)

a = −ω2
nx = −(7.4 rad/s)2(0.03 m) = −1.6 m/s2

Example 10.9 An object connected to a spring is in simple
harmonic motion on a frictionless surface. If the object’s dis-
placement when (2vmax/3) is ±0.015 m, find the amplitude
of motion.

Solution 10.9

1

2
kA2 = 1

2
mv2 + 1

2
kx2 = 1

2
m
4ω2

nA
2

9
+ 1

2
kx2

therefore

A2 = 9

5
x2 = 9

5
(0.015 m)2

A = 0.02 m

Example 10.10 A solid cylinder is connected to a light spring
as in Fig. 10.12. If the cylinder rolls without slipping along
the surface, show that the motion of the cylinder is simple
harmonic motion and find its frequency.

Solution 10.10 At any instant the total mechanical energy is

E = 1

2
kx2 + 1

2
Icmω2 + 1

2
Mv2cm = 1

2
kx2 + 1

2
Icm

v2cm
R2

+ 1

2
Mv2cm
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Fig. 10.12 A solid cylinder connected to a light spring

= 1

2
kx2 + 1

2

(
1

2
MR2

)
v2cm
R2 + 1

2
Mv2cm

Since the total mechanical energy is conserved

dE

dt
= kvcmx + 1

2
Mvcmacm + Mvcmacm = 0

kvcmx = −3

2
Mvcmacm

or

acm = −2

3

k

M
x

d2x

dt2
+ 2

3

k

M
x = 0

this equation is of a simple harmonic motion with

ωn =
√
2

3

k

M

10.3.4 The Simple Pendulum

The simple pendulum is an example of an angular vibration in
which the restoring effect is due to a restoring torque.A simple
pendulum consists of a mass (called the bob) suspended by
a light string of length L that is fixed at the other end (see
Fig. 10.13). If the mass is pulled to the right or left from
its equilibrium position and released, then the pendulum will
swing in a vertical plane about an axis passing through O. The
resulting motion is then a periodic or oscillatory motion. The
restoring torque is due to gravity and is given by

τ = −(mg sin θ)L

The minus sign indicates that the torque is a restoring torque,
since it always tends to decrease θ . The moment of inertia of
the bob about an axis passing through O is

I = mL2

Fig. 10.13 The simple pendulum

From Newton’s second law in angular form, we have

τ = Iα = I θ̈

Hence,
−mg sin θL = mL2θ̈

or

θ̈ +
(
g

L

)
sin θ = 0 (10.11)

This equation does not represent a harmonic motion. That is
because the torque is not directly proportional to the angu-
lar displacement. Thus, the system is nonlinear. However
for small angular displacements, we have sin θ ≈ θ(since
sin θ = θ − θ3/3! + θ5/5! . . .) and Eq. 10.11 becomes

θ̈ +
(
g

L

)
θ = 0

or
θ̈ + ω2

nθ = 0 (10.12)

where ωn = √
g/L. Hence for small angular displacements,

the motion is a simple harmonic motion. The solution of
Eq. 10.12 is of the form

θ = θm cos(ωnt − φ)

where θm is the maximum angular displacement and φ is
the phase constant. The plot of this equation is shown in
Fig. 10.14. The period of the simple pendulum is therefore
given by

T = 2π

ωn
= 2π

√
L

g
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Fig. 10.14 The displacement versus time of a simple pendulum

10.3.4.1 Energy
The kinetic energy of the simple pendulum is

K = 1

2
mv2 = 1

2
mL2ω2

n = 1

2
mLθ̇2

Taking the reference point of potential energy of the system
to be zero when the bob is at the bottom, we have

U = MgL(1 − cos θ)

The total energy is therefore given by

E = K +U = 1

2
ML2θ̇2 + MgL(1 − cos θ)

For small θ , we have cos θ ≈ 1− θ2

2
since cos θ = 1−θ2/2!+

θ4/4! . . .) thus

E = 1

2
ML2θ̇2 + 1

2
MgLθ2

Since
θ̇ = −θmωn sin(ωnt − φ)

we have

E = 1

2
ML2θ2mω2

n sin
2(ωnt − φ) + 1

2
MgLθ2m cos2(ωnt − φ)

or

E = 1

2
MgLθ2m

Therefore, the total energyof the system is constant. Figure 10.15
shows the variation of the kinetic and potential energies with
the displacement.

The equation of motion may also be obtained from energy
as follows:

dE

dt
= ML2θ̇ θ̈ + MgLθ θ̇ = 0

or

Fig. 10.15 The total energy of a simple pendulum

θ̈ +
(
g

L

)
θ = 0

Example 10.11 A simple pendulum is 0.5 m long. Find its
period at the surface of Mars and compare it to its period at
the earth’s surface.

Solution 10.11 At Mars’s surface, the gravitational acceler-
ation is

gM = GMM

R2M
= (6.67 × 10−11 Nmathrmm2/kg2)(6.42 × 1023 kg)

(3.37 × l06 m)2
= 3.8 m/s2

The period at Mars is therefore

TM = 2π

√
L

gM
= 2(3.14)

√
(0.5 m)

(3.8 m/s2)
= 2.3 s

At the earth’s surface,

TE = 2π

√
L

gE
= 2(3.14)

√
(0.5 m)

(9.8 m/s2)
= 1.4 s

Thus, TM = 1.6TE .

Example 10.12 A simple pendulum of length of 2 m is dis-
placed through an angle of 12◦ and released. Find (a) the
angular frequency of motion; (b) the maximum angular speed
and maximum angular acceleration.

Solution 10.12 (a) The amplitude of motion is

θmax = (12◦)
(

2π rad

360◦ deg

)
= 0.21 rad

The angular frequency is

ωn =
√
g

L
=

√
(9.8 m/s2)

(2 m)
= 2.2 rad/s

(b) The maximum angular speed is
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θ̇max = ωnA = (2.2 rad/s)(0.21 rad) = 0.5 rad/s

The maximum angular acceleration is

θ̈max = ω2
nA = (2.2 rad/s)2(0.21 rad) = 1 rad/s2

Example 10.13 A simple pendulum 1.4 m in length is dis-
placed through an angle of 10◦ and released. Find the velocity
of the bob when it reaches the bottom.

Solution 10.13

θ = (10◦)
(

2π rad

360◦ deg

)
= 0.17 rad

Taking the potential energy to be zero at the bottom, we
have

mgL(1 − cos θ) = 1

2
mv2

Since θ is small, cos θ ≈ 1 − θ2/2 and therefore

mgL
θ2

2
= 1

2
mv2

and

v = √
gLθ =

√
(9.8 m/s2)(14 m)(0.17 rad) = 0.63m/s

10.3.5 The Physical Pendulum

The physical pendulum is a rigid body that oscillates about an
axis passing through a point in the body other than its center
of mass (the center of mass is assumed to be located at the
center of gravity). Figure 10.16 shows a rigid body pivoted at
point O that is at a distance d from the center of mass. The
equilibrium position of the body is when its center of mass is
directly below the pivotO. If the body is displaced either to the
right or left from the equilibrium position, a restoring torque

Fig. 10.16 The physical pendulum

due to gravity will act on it. As a result, the body will oscillate
in a vertical plane where the axis of rotation is perpendicular
to the page. The restoring torque is given by

τ = −Mgd sin θ

where M is the mass of the body and d is the moment arm
of the tangential component of the weight (Mg sin θ). From
Newton’s second law, we have

τ = Iα

−Mgd sin θ = I θ̈

For small angular displacements sin θ ≈ θ and hence

θ̈ +
(
Mgd

I

)
θ = 0

or
θ̈ + ω2

nθ = 0

This equation is of a simple harmonic motion with an angular
frequency of

ωn =
√
Mgd

I

and a period of motion of

T = 2π

ωn
= 2π

√
I

M gd

Thus,

I = T 2Mgd

4π2

Therefore, the moment of inertia of a body can be found by
measuring its period when it is in simple harmonic motion
as a physical pendulum. Note that, the simple pendulum is
a special case of the physical pendulum since for a simple
pendulum of mass m, the moment of inertia is

I = md2

and thus, the angular frequency is

ωn =
√
mgd

md2 =
√
g

d

This angular frequency is of a simple pendulum where d rep-
resents the length of the string.
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Fig.10.17 A uniform rod suspended at one end oscillated with a small
amplitude

Example 10.14 A uniform rod of length of 0.6 m that is sus-
pended at one end oscillates with a small amplitude as in
Fig. 10.17. Find the frequency of motion.

Solution 10.14

fn = 1

2π

√
Mgd

I
= 1

2π

√
Mg(L/2)

(1/3)ML2
= 1

2π

√
3g

2L
= 1

2(3.14)

√
3(9.8m/s2)

2(0.6m)
= 0.8Hz

Example 10.15 A uniform square plate of length a is pivoted
at one of its corners and oscillates in a vertical plane as in
Fig. 10.18. Find the period ofmotion if the amplitude is small.

Solution 10.15 The moment of inertia of a uniform rectan-
gular plate about its center of mass is

Icm = 1

12
M (a2 + b2)

Thus for a uniform square plate, we have

Icm = 1

6
Ma2

From the parallel axis theorem, the moment of inertia of the
plate about an axis that is parallel to the center of mass axis

Fig. 10.18 A uniform square plate pivoted at one of its corners and
oscillates in a vertical plane

and passing through one corner (D = √
2a) is

I = Icm + MD2 = 1

6
Ma2 + 2Ma2 = 13

6
Ma2

and hence

T = 2π

√
I

M gd
= 2π

√
(13/6)Ma2

Mg
√
2a

= 2π
√
1.5

a

g

10.3.6 TheTorsional Pendulum

The torsional pendulum consists of a rigid body suspended by
a wire from its center of mass where the other end of the wire
is fixed as shown in Fig. 10.19. The body is in equilibrium if
the wire is untwisted. If the body is rotated through an angle
θ it will oscillate about its equilibrium position (the line OP)
due to a restoring torque exerted by the twisted wire on the
body. This torque is found to be directly proportional to the
angular displacement of the body. That is

τ = −kθ

where k is called the torsional constant. Its value depends
on the property of the wire. Note that this equation is the
rotational analogue of Hook’s law in linear form (F = −kx).
From Newton’s second law, we have

τ = Iα

or
−kθ = I θ̈

That gives

θ̈ +
(
k

I

)
θ = 0

or
θ̈ + ω2

nθ = 0

Fig. 10.19 The torsional
pendulum



166 10 Oscillatory Motion

Fig. 10.20 A uniform solid
sphere suspended at its midpoint
by a light string

where ωn = √
k/I and the period is T = 2π

√
I/k.

Example 10.16 A uniform solid sphere of mass of 4.7 kg and
radius of 5 cm is suspended at its midpoint by a light string
(see Fig. 10.20) where it oscillates as a torsional pendulum.
If the period of motion is 3.5 s, find the torsion constant.

Solution 10.16

T = 2π

√
I

k

for a uniform solid sphere

Icm = 2

5
MR2 = 2

5
(4.7 kg)(0.05 m)2 = 4.7 × 10−3 kgm2

hence,

k = 4π2Icm
T

= 4(3.14)2(4.7 × 10−3 kgm2)

(3.5 s)
= 0.05 kgm2/s2

10.4 Damped FreeVibrations

In this section, we will discuss the case in which the effect
of damping that is due to a nonconservative force cannot be
neglected. An example of such a force in mechanical systems
is the force of friction. In this case, the mechanical energy of
the system will be lost, the amplitude of motion will decrease
to zero, and the oscillation dies out eventually. Here, we will
discuss damping due to friction in the simplest case, where the
frictional force is proportional to the first power of the velocity
of the oscillating body. An example of such a frictional force
is the force that an object experience when moving in a fluid
with a low speed and is given by

FD = −bv

Fig. 10.21 A mass-spring system with damping

where b is a positive constant called the damping coefficient.
Its SI units is N(m s−1) = kg s−1. The negative sign shows
that the direction of the force is always opposite to the velocity.
Now consider the spring–mass system as shown in Fig. 10.21,
the cylinder shown in the figure contains a viscous fluid and
a piston moving in it. Such device is known as the viscous
damper. The net force on the oscillating body is

∑
F = Fs + FD = −kx − bv

hence
mẍ + bẋ + kx = 0

or
ẍ + γ ẋ + ω2

nx = 0 (10.13)

where γ = b/m and ωn = √
k/m. The units of γ is s−1.

This equation is a second order linear differential equation of
constant coefficients. We may assume a solution of the form

x = Ceλt

Substituting this solution into Eq. 10.13 gives the character-
istic (auxiliary) equation given by

λ2 + γ λ + ω2
n = 0

The roots of this equation are given by

λ1 = −γ

2
+

√(
γ 2

4
− ω2

n

)

and

λ2 = −γ

2
−

√(
γ 2

4
− ω2

n

)

From superposition, the general solution is given by

x = C1e
λ1t + C2e

λ2t (10.14)

Three possible solutions arise depending on whether the sign
of the bracket (γ 2/4 − ω2

n) is positive, negative or zero, i.e.,
depending on the size of the damping force. The roots λ1 and
λ2 are either distinct real roots, equal real roots or a conjugate
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complex roots. Therefore, there are three possible motions of
the system.

10.4.1 Light Damping (Under-Damped)
(γ < 2ωn)

If γ < 2ωn the resulting roots are complex roots given by

λ1 = −γ

2
+ iωD

and
λ2 = −γ

2
− iωD

where

ωD =
(

ω2
n − γ 2

4

)1/2

Hence, Eq. 10.14 may be written as

x =
[
C1e

iωDt + C2e
−iωDt

]
e

−γ
2 t

Since e±ix = cos x ± i sin x we have

x = [C1(cosωDt+ i sinωDt)+C2(cosωDt− i sinωDt)]e
−γ
2 t

= [(C1 + C2) cosωDt + i(C1 − C2) sinωDt]e
−γ
2 t

= [A1 cosωDt + A2 sinωDt]e
−γ
2 t (10.15)

where A1 = C1 + C2 and A2 = i(C1 − C2). As mentioned
earlier Eq. 10.15 can be written as

x = A cos(ωDt − φ)e
−γ
2 t (10.16)

where A is the initial amplitude of motion. Ae
−γ
2 t is called the

amplitude of motion and φ is the phase constant and ωD is the
angular frequency of the dampedmotion. This equation shows
that the system oscillates in a decreasing harmonic motion
where the amplitude of motion decreases exponentially with
time until eventually the oscillation dies out (see Fig. 10.22).
The dashed lines in Fig. 10.22 are called the envelope of the
oscillation curve. The period of motion in light damping is
therefore given by

τD = 2π

ωD
= 2π√

ω2
n − γ 2

4

If b = 0 and thus γ = 0 the period ofmotion is reduced to that
of a simple harmonic oscillator. If γ � ωD, the situation is
referred to as very light damping and ωD ≈ ωn. Furthermore

Fig. 10.22 In A lightly damped oscillator, the system oscillates in a
decreasing harmonic motion where the amplitude of motion decreases
exponentially with time until eventually the oscillation dies out

if there are two amplitudes Aa and Ab separated by the period
of motion, then their ratio is given by

Aa

Ab
= Ae− γ

2 t1

Ae− γ
2 (t1+τD)

= e
γ
2 τD

A quantity known as the logarithmic decrement is defined
as

δ = ln

(
Aa

Ab

)
= γ

2
τD

Example 10.17 An 8 kg block is attached to a light spring
and a light viscous damper. If at t = 0, x = 0.12 m and v =
0, find (a) the displacement at any time; (b) the logarithmic
decrement. (k = 30 N/m, b = 20 N s/m).

Solution 10.17 (a)

ωn =
√

k

m
=

√
(30 N/m)

(8 kg)
= 1.9 rad/s

γ = b

m
= (20 N s/m)

(8 kg)
= 2.5 s−1

and

ωD =
(

ω2
n−

γ 2

4

)1/2
= ((1.9 rad/s)2−(2.5 Ns/m kg)24)1/2 = 1.43 rad/s

since γ < 2ωn, the damping is light. The displacement as a
function of time is given by

x = A cos(ωDt − φ)e
−γ
2 t

or
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x = A cos(1.43t − φ)e−1.25t

since at t = 0, x = 0.12 m, then

(0.12 m) = A cosφ (10.17)

the velocity of the block at any time is

ẋ = −1.43A sin(1.43t − φ)e−1.25t − 1.25A cos(1.43t − φ)e−1.25t

at t = 0, v = 0 and thus

0 = −1.43A sin φ − 1.25A cosφ (10.18)

Solving Eqs. 10.17 and 10.18 for A and φ gives φ = −0.7
rad and A = 0.17 m. Therefore,

x = 0.17 cos(1.43t − 0.7)e−1.25t

(b)

τD = 2π

ωD
= 2π

(1.43 rad/s)
= 4.4 s

δ = γ

2
τD = (1.25 s−1)(4.4 s) = 5.5

10.4.2 Critically DampedMotion (γ = 2ωn)

If γ = 2ωn, then the roots are equal real roots

λ1 = λ2 = −γ

2
= −ωn

In that case, themotiondecayswithout oscillation (seeFig. 10.23)
and the general solution of Eq. 10.13 is

x = (C1 + C2ωnt)e
−ωnt

C1 and C2 are found from boundary conditions. If at t =
0, x = A, and v = 0, then

x(0) = C1 = A

and
v(0) = ωnC2 − ωnC1 = 0

or
C1 = C2 = A

That gives
x = A(1 + ωnt)e

−ωnt

Fig. 10.23 In a critically damped motion, the motion decays without
oscillation

10.4.3 Over DampedMotion (Heavy Damping)
(γ > 2ωn)

If γ > 2ωn, the roots are distinct real roots given by

λ1 = −γ

2
+

√(
γ 2

4
− ω2

n

)

and

λ2 = −γ

2
−

√(
γ 2

4
− ω2

n

)

The general solution is given by

x = C1e
λ1t + C2e

λ2t

or
x = (C1e

αt + C2e
−αt)e− γ

2 t

where

α =
√(

γ 2

4
− ω2

n

)

C1 andC2 are found from boundary conditions. As critical
damping, the resulting motion here is nonperiodic but the
system returns to its equilibrium position at large values of t
unlike critical damping (see Fig. 10.24).

Fig. 10.24 As critical damping, the resulting motion here is non-
periodic but the system returns to its equilibrium position at large values
of t unlike critical damping
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Example 10.18 In Example 10.17, find the range of values of
the damping coefficient for the system to be: (a) over damped;
(b) critically damped.

Solution 10.18 (a) over damped if γ > 2ωn, i.e., if γ >

3.8s−1(b) critically damped if γ = 3.8s−1.

10.4.4 Energy Decay

In damped free vibrations, the total mechanical energy is not
constant since the damping force opposes the motion and dis-
sipates the energy of the system. Now, consider the mass–
spring system, the total mechanical energy of the system is

E = K +U = 1

2
mẋ2 + 1

2
kx2

The rate of change of energy is

dE

dt
= (mẍ + kx)ẋ

For damped vibrations in which the damping force is directly
proportional to the velocity, we have

mẍ + kx = −bẋ

Hence,
dE

dt
= −bẋ2 ≤ 0

Thus, the energy decreases with time in any damped motion
and the rate in which it decreases is not uniform.

10.5 ForcedVibrations

In the previous sections, only free vibrations have been con-
sidered (i.e., vibrations in which only a restoring and damping
force act within the system during motion). This section con-
siders the case in which an external driving force is applied
to the vibrator. This force is given as a function of time and
we have

mẍ + bẋ + kx = F(t) (10.19)

Here, we will consider the case in which the force is a simple
periodic force given by

F(t) = F0 cosωt (10.20)

whereF0 is the amplitude andω is the driving frequency. This
force does positive work on the system to balance the energy
loss due to damping. Substituting Eq. 10.20 into Eq. 10.19
gives

mẍ + bẋ + kx = F0 cosωt (10.21)

or

ẍ + γ ẋ + ω2
nx = F0 cosωt

m

Let us assume that the solution of Eq. 10.19 is given by

x = C1 cosωt + C2 sinωt

then, we have

ẋ = −ωC1 sinωt + ωC2 cosωt

and
ẍ = −ω2C1 cosωt − ω2C2 sinωt

Substituting into Eq. 10.19 gives

(−ω2C1 cosωt − ω2C2 sinωt) + γ (−ωC1 sinωt + ωC2 cosωt)

+ ω2
n(C1 cosωt + C2 sinωt) = F0 cosωt

m

That gives

−ω2C1 + γωC2 + ω2
nC1 = F0

m

and
−ω2C2 − γωC1 + ω2

nC2 = 0

Solving for C1 and C2 gives

C1 = (F0/m)(ω2
n − ω2)

(ω2 − ω2
n)

2 + γ 2ω2

and

C2 = (F0/m)γω

(ω2 − ω2
n)

2 + γ 2ω2

Hence,

x = (F0/m)[(ω2
n − ω2) cosωt + γω sinωt]

(ω2 − ω2
n)

2 + γ 2ω2

The term in brackets is of the form A1 cosωt + A2 sinωt and
thus it can be written as A′ cos(ωt − φ) where

A′ =
√
A2
1 + A2

2

i.e.,
A′ = ((ω2

n − ω2)2 + γ 2ω2)
1
2

and

φ = tan−1 A2

A1
= tan−1 γω

(ω2 − ω2
n)



170 10 Oscillatory Motion

where 0 ≤ φ ≤ π . Hence,

x = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

cos(ωt − φ) (10.22)

If the driving force is applied for a long time compared with
the time that the damped vibration dies out, then the system
will eventually vibrate at the same frequency of the deriving
force. Therefore, the general solution of Eq. 10.13 is called
the transient solution since it approaches zero in a relativity
short time whereas Eq. 10.21 is called the steady-state solu-
tion where the system oscillates with the same frequency as
the deriving force. Therefore, the amplitude of a steady-state
vibration is

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

When the deriving frequency ω approaches the natural fre-
quency of the systemωD, the amplitude of the resulting forced
oscillation will increase. This is known as resonance. If the
damping is very light, the amplitude reaches its peak when
the deriving frequency is nearly equal to the natural frequency
ωn. As the damping becomes heavier, the maximum ampli-
tude shifts to lower frequencies (see Fig. 10.25). In the case
where there is no damping at all (b = 0), the amplitude of
resonance is infinite at ω = ωn.

Example 10.19 In Example 10.17, if a driving force of the
form F(t) = 5 cos 4t is applied to the system, find the steady-
state displacement as a function of time.

Solution 10.19

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

= (5/8)√
((4)2 − (1.9)2)2 + (2.5)2(4)2

= 0.04 m

Fig. 10.25 When the deriving frequency ω approaches the natural fre-
quency of the systemωD, the amplitude of the resulting forced oscillation
will increase. This is known as resonance. If the damping is very light
the amplitude reaches its peak when the deriving frequency is nearly
equal to the natural frequency ωn. As the damping becomes heavier, the
maximum amplitude shifts to lower frequencies

φ = tan−1 γω

(ω2 − ω2
n)

= tan−1 (2.5)(4)

((4)2 − (1.9)2)
= 0.8◦

Hence,
x = 0.04 cos(4t − 0.8)

Therefore, the forced vibration has the same frequency as the
deriving force but lag in phase by 0.8◦

Example 10.20 In Example (10.17), find the steady-state dis-
placement as a function of time if there is no damping.

Solution 10.20 The amplitude of the forced oscillation when
the angular frequency ω of the deriving force is varied.

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

= (5/8)√
((4)2 − (1.9)2)2

= 0.05 m

x = 0.05 cos 4t, φ = 0.

Problems

1. A 2 kg block is fastened to a spring of force constant
98 N/m on a horizontal frictionless surface. If the block
is released a distance of 6 cm from its equilibrium posi-
tion, find (a) the angular frequency, the frequency and the
period of the resulting motion, (b) the time it takes the
block to first reach x = −5 cm and its velocity at that
time, (c) the maximum speed and maximum acceleration
of the oscillating block, (d) the total mechanical energy
of the oscillator.

Fig. 10.26 A uniform solid
cylinder of radius R and massM
rolls without slipping on a track
of radius 4R

Fig. 10.27 A damped oscillator
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2. A 10 kg block is attached to a light spring of force con-
stant 200 N/m on a smooth horizontal surface. Find the
amplitude of motion if at x = 0.06 m the velocity of the
block is v = 0.5 m/s.

3. A particle rotate counterclockwise in a circle of radius 0.2
m with a constant angular speed of 2 rad/s. If at t = 0 the
x-coordinate of the particle is 0.14 m, find the displace-
ment, velocity and acceleration of the particle at any time.

4. If a simple pendulum has a period of 2 s, find its period
when its length is increased by 20%.

5. A simple pendulum of length lm andmass of 0.4 kg oscil-
lates in a region where g = 9.8 m/s2. If the amplitude of
oscillation is 10◦, find (a) the angular displacement, angu-
lar velocity and angular acceleration of the pendulum as
a function of time.

6. A uniform solid cylinder of radius R and mass M rolls
without slipping on a track of radius 4R as shown in
Fig. 10.26. Find the period of oscillation when the cylin-
der is displaced slightly from its equilibrium position.

7. A planer body of mass 3 kg oscillates as a physical pen-
dulum. If the period of oscillation is 3 s and if the pivot

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

Fig. 10.28 A forced oscillator

point is at 0.2 m from the center of mass, find the moment
of inertia of the body.

8. A uniform hollow cylinder of radius R and mass M is
suspended at itsmidpoint from awire and form a torsional
pendulum. If the period of motion is T , find the torsion
constant.

9. For the system shown in Fig. 10.27, determine the dis-
placement of the block at any time if at t = 0, x = 0 and
v = 0. (k = 200 N/m, b = 200 N s/m).

10. For the system shown in Fig. 10.28, find the steady-state
displacement as a function of time.

http://creativecommons.org/licenses/by/4.0/
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