
Svein Linge · Hans Petter Langtangen

Programming for 
Computations – 
Python

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

15

Second Edition



Texts in Computational
Science and Engineering 15

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick



More information about this series at http://www.springer.com/series/5151

http://www.springer.com/series/5151


Svein Linge • Hans Petter Langtangen

Programming for
Computations - Python

A Gentle Introduction to Numerical
Simulations with Python 3.6

Second Edition



Svein Linge
Fac of Tech, Natural Sci & Maritime Sci
University of South-Eastern Norway
Porsgrunn, Norway

Hans Petter Langtangen
Simula Research Laboratory BioComp
Lysaker, Norway

ISSN 1611-0994 ISSN 2197-179X (electronic)
Texts in Computational Science and Engineering
ISBN 978-3-030-16876-6 ISBN 978-3-030-16877-3 (eBook)
https://doi.org/10.1007/978-3-030-16877-3

Mathematics Subject Classification (2010): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15,
65D25, 65D30, 68-01, 68N01, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50

This book is an open access publication.

© The Editor(s) (if applicable) and The Author(s) 2020
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the
book’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors
or the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-16877-3
http://creativecommons.org/licenses/by/4.0/


To My Family
Thanks to my dear wife, Katrin, and our lovely
children, Stian, Mia, and Magnus, for their love,
support, and patience. I am a very lucky man.

To Hans Petter
Dear friend and coauthor, it is so sad you are no
longer among us.1 Thank you for everything. I
dedicate this second edition of our book to you.

Porsgrunn, Norway Svein Linge
June 2018

1 Professor Hans Petter Langtangen (https://en.wikipedia.org/wiki/Hans_Petter_Langtangen)
passed away with cancer on the 10th of October, 2016.

https://en.wikipedia.org/wiki/Hans_Petter_Langtangen


Preface

Computing, in the sense of doing mathematical calculations, is a skill that mankind
has developed over thousands of years. Programming, on the other hand, is in
its infancy, with a history that spans a few decades only. Both topics are vastly
comprehensive and usually taught as separate subjects in educational institutions
around the world, especially at the undergraduate level. This book is about the
combination of the two, because computing today becomes so much more powerful
when combined with programming.

Most universities and colleges implicitly require students to specialize in com-
puter science if they want to learn the craft of programming, since other student
programs usually do not offer programming to an extent demanded for really
mastering this craft. Common arguments claim that it is sufficient with a brief
introduction, that there is not enough room for learning programming in addition
to all other must-have subjects, and that there is so much software available that
few really need to program themselves. A consequence is that engineering students
often graduate with shallow knowledge about programming, unless they happened
to choose the computer science direction.

We think this is an unfortunate situation. There is no doubt that practicing
engineers and scientists need to know their pen-and-paper mathematics. They must
also be able to run off-the-shelf software for important standard tasks and will
certainly do that a lot. Nevertheless, the benefits of mastering programming are
many.

Why Learn Programming?

1. Ready-made software is limited to handling certain standard problems. What do
you do when the problem at hand is not covered by the software you bought?
Fortunately, a lot of modern software systems are extensible via programming.
In fact, many systems demand parts of the problem specification (e.g., material
models) to be specified by computer code.

2. With programming skills, you may extend the flexibility of existing software
packages by combining them. For example, you may integrate packages that do
not speak to each other from the outset. This makes the work flow simpler, more
efficient, and more reliable, and it puts you in a position to attack new problems.
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3. It is easy to use excellent ready-made software the wrong way. The insight
in programming and the mathematics behind is fundamental for understanding
complex software, avoiding pitfalls, and becoming a safe user.

4. Bugs (errors in computer code) are present in most larger computer programs
(also in the ones from the shop!). What do you do when your ready-made
software gives unexpected results? Is it a bug, is it the wrong use, or is it the
mathematically correct result? Experience with programming of mathematics
gives you a good background for answering these questions. The one who can
program can also make tailored code for a simplified problem setting and use
that to verify the computations done with off-the-shelf software.

5. Lots of skilled people around the world solve computational problems by writing
their own code and offering those for free on the Internet. To take advantage of
this truly great source of software in a reliable way, one must normally be able
to understand and possibly modify computer code offered by others.

6. It is recognized worldwide that students struggle with mathematics and physics.
Too many find such subjects difficult and boring. With programming, we can
execute the good old subjects in a brand new way! According to the authors’
own experience, students find it much more motivating and enlightening when
programming is made an integrated part of mathematics and physical science
courses. In particular, the problem being solved can be much more realistic than
when the mathematics is restricted to what you can do with pen and paper.

7. Finally, we launch our most important argument for learning computer program-
ming: the algorithmic thinking that comes with the process of writing a program
for a computational problem enforces a thorough understanding of both the
problem and the solution method. We can simply quote the famous Norwegian
computer scientist Kristen Nygaard: “Programming is understanding.”

In the authors’ experience, programming is an excellent pedagogical tool for
understanding mathematics: “You think you know when you can learn, are more
sure when you can write, even more when you can teach, but certain when you
can program” (Alan Perlis, computer scientist, 1922–1990). Consider, for example,
integration. A numerical method for integration has a much stronger focus on what
the integral actually is and means compared to analytical methods, where much
time and effort must be devoted to integration by parts, integration by substitution,
etc. Moreover, when programming the numerical integration formula, it becomes
evident that it works for “all” mathematical functions and that the implementation
should be in terms of a general function applicable to “all” integrals. In this way,
students learn to recognize a special problem as belonging to a class of problems
(e.g., integration, differential equations, root finding), for which we have general
numerical methods implemented in a widely applicable software. When they write
this software, as we do in this book, they learn how to generalize and increase the
abstraction level of the mathematical problem. When they use this software, they
learn how a special case should be attacked by general methods and software for
the class of problems that comprises the special case at hand. This is the power of
mathematics in a nutshell, and it is paramount that students understand this way of
thinking.



Preface ix

Target Audience and Background Knowledge This book was written for
students, teachers, engineers, and scientists who know nothing about programming
and numerical methods from before but who seek a minimum of the fundamental
skills required to get started with programming as a tool for solving scientific
and engineering problems. Some knowledge of one- and multivariable calculus
is assumed. The basic programming concepts are presented in Chaps. 1–5 (about
150 pages), before practical applications of these concepts are demonstrated in
important mathematical subjects addressed in the remaining parts of the book
(Chaps. 6–9). Each chapter is followed by a set of exercises that covers a wide range
of application areas, e.g., biology, geology, statistics, physics, and mathematics.
The exercises were particularly designed to bring across important points from the
text.

Learning the very basics of programming should not take long, but as with any
other craft, mastering the skill requires continued and extensive practice. Some
beginning practice is gained through Chaps. 6–9, but the authors strongly emphasize
that this is only a start. Students should continue to practice programming in
subsequent courses, while those who exercise self-study should keep up the learning
process through continued application of the craft. The book is a good starting point
when teaching computer programming as an integrated part of standard university
courses in mathematics and natural science. In our experience, such an integration
is doable and indeed rewarding.

Numerical Methods An overall goal with this book is to motivate computer pro-
gramming as a very powerful tool for doing mathematics. All examples are related to
mathematics and its use in engineering and science. However, to solve mathematical
problems through computer programming, we need numerical methods. Explaining
basic numerical methods is therefore an integral part of the book. Our choice of
topics is governed by what is most needed in science and engineering, as well as
in the teaching of applied natural science courses. Mathematical models are then
central, with differential equations constituting the most frequent type of models.
Consequently, the numerical focus in this book is on differential equations. As soft
pedagogical starters for the programming of mathematics, we have chosen the topics
of numerical integration and root finding. We remark that the book is deliberately
brief on numerical methods. This is because our focus is on implementing numerical
algorithms, and to develop reliable, working programs, the programmer must be
confident about the basic ideas of the numerical approximations involved.

The Computer Language: Python We have chosen to use the programming
language Python, because this language gives a very compact and readable code
that closely resembles the mathematical recipe for solving the problem at hand.
Python also has a gentle learning curve.

Other computer languages, like Fortran, C, and C++, have a strong position in
science and engineering. During the last two decades, however, there has been a
significant shift in popularity from these compiled languages to more high-level and
easier-to-read languages, for instance, MATLAB, Python, R, Maple, Mathematica,
and IDL. This latter class of languages is computationally less efficient but superior
with respect to overall human problem-solving efficiency. This book emphasizes
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how to think like a programmer, rather than focusing on technical language
details. Thus, the book should put the reader in a good position for learning other
programming languages later, including the classic ones: Fortran, C, and C++.

How This Book Is Different There are numerous texts on computer programming
and numerical methods, so how does the present one differ from the existing
literature? Compared to standard books on numerical methods, our book has a much
stronger emphasis on the craft of programming and on verification. We want to give
students a thorough understanding of how to think about programming as a problem-
solving method and how to provide convincing evidence for program correctness.

Even though there are lots of books on numerical methods where many algo-
rithms have a corresponding computer implementation (see, e.g., [1, 3–6, 10, 15–
17, 20, 23, 25, 27–31]—the latter two apply Python), it is often assumed that the
reader “can program” beforehand. The present book teaches the craft of structured
programming along with the fundamental ideas of numerical methods. In this book,
unit testing and corresponding test functions are introduced early on. We also put
much emphasis on coding algorithms as functions, as opposed to “flat programs,”
which often dominate in the literature and among practitioners. Functions are
reusable because they utilize the general formulation of a mathematical algorithm
such that it becomes applicable to a large class of problems.

There are also numerous books on computer programming, but not many that
really emphasize how to think about programming in the context of numerical
methods and scientific applications. One such book is [11], which gives a compre-
hensive introduction to Python programming and the thinking about programming
as a computer scientist.

Sometimes, however, one needs a text like the present one. It does not go so
deep into language-specific details, but rather targets the shortest path to reliable
mathematical problem-solving through programming. With this attitude in mind, a
lot of topics were left out of the present book, simply because they were not strictly
needed in the mathematical problem-solving process. Examples of such topics are
object-oriented programming and Python dictionaries (of which the latter omission
is possibly subject to more debate). If you find the present book too shallow, [11]
might be the right choice for you. That source should also work nicely as a more
in-depth successor of the present text.

Whenever the need for a structured introduction to programming arises in science
and engineering courses, the present book may be your option, either for self-study
or for use in organized teaching. The thinking, habits, and practice covered herein
will put readers in a firm position for utilizing and understanding the power of
computers for problem-solving in science and engineering.

Changes to the First Edition

1. All code is now in Python version 3.6 (the previous edition was based on Python
version 2.7).

2. In the first edition, the introduction to programming was basically covered in 50
pages by Chap. 1 (The First Few Steps) and Chap. 2 (Basic Constructions). This
is enough to get going, but many readers soon want more details. In this second
edition, these two chapters have therefore been extended and split up into five
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chapters. Explanations are now more complete, previous examples have been
modified, new examples have been added, and more. In particular, the importing
of code is now elaborated on in a greater detail, so is the making of modules.
Also, Sect. 4.2 is new, illustrating the important stepwise strategy of code writing
through a dedicated example. The five first chapters now cover about 150 pages
that explain, in a brief and simple manner, all the code basics required to follow
the remaining parts of the book.

3. The new Chap. 6 (Computing Integrals and Testing Code) and Chap. 7 (Solving
Nonlinear Algebraic Equations) are seen as gentle first applications of program-
ming to problem-solving in mathematics. Both these chapters now precede the
mathematically more challenging Chaps. 8 and 9, which treat basic numerical
solving of ODEs and PDEs, respectively (the chapter Solving Nonlinear Alge-
braic Equations was, in the first edition, the final chapter of the book, but it
seems more appropriate to let it act as a “warm-up” chapter, together with the
new Chap. 6, for the two final chapters on differential equation solving).

4. Section 8.1 (Filling a Water Tank: Two Cases) is new, particularly written for
readers who lack experience with differential equations.

5. Section 8.5 (Rate of Convergence) is new, explaining convergence rate related to
differential equations.

6. New exercises have been added, e.g., on Fibonacci numbers, the Leapfrog
method, Adams-Bashforth methods, and more.

7. Errors and typos have been corrected, and many explanations have been refor-
mulated throughout.

Supplementary Materials All program and data files referred to herein are
available from the book’s (2nd edition) primary web site:
https://github.com/slgit/prog4comp_2.
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Abstract

This second edition of the book presents computer programming as a key method
for solving mathematical problems and represents a major revision: all code is now
written in Python version 3.6 (the first edition was based on Python version 2.7).
The first two chapters of the previous edition have been extended and split up into
five new chapters, thus expanding the introduction to programming from 50 to 150
pages. Throughout, explanations are now more complete, previous examples have
been modified, and new sections, examples, and exercises have been added. Also,
errors and typos have been corrected. The book was inspired by the Springer book
TCSE 6, A Primer on Scientific Programming with Python (by Langtangen), but
the style is more accessible and concise in keeping with the needs of engineering
students. The book outlines the shortest possible path from no previous experience
with programming to a set of skills that allows the students to write simple programs
for solving common mathematical problems with numerical methods in engineering
and science courses. The emphasis is on generic algorithms, clean design of
programs, use of functions, and automatic tests for verification.
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1The First Few Steps

1.1 What Is a Program? AndWhat Is Programming?

Computer Programs Today, most people are experienced with computer pro-
grams, typically programs such as Word, Excel, PowerPoint, Internet Explorer, and
Photoshop. The interaction with such programs is usually quite simple and intuitive:
you click on buttons, pull down menus and select operations, drag visual elements
into locations, and so forth. The possible operations you can do in these programs
can be combined in seemingly an infinite number of ways, only limited by your
creativity and imagination.
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Nevertheless, programs often make us frustrated when they cannot do what
we wish. One typical situation might be the following. Say you have some
measurements from a device, and the data are stored in a file with a specific format.
You may want to analyze these data in Excel and make some graphics out of it.
However, assume there is no menu in Excel that allows you to import data in this
specific format. Excel can work with many different data formats, but not this one.
You start searching for alternatives to Excel that can do the same and read this type
of data files. Maybe you cannot find any ready-made program directly applicable.
You have reached the point where knowing how to write programs on your own
would be of great help to you! With some programming skills, you may write your
own little program which can translate one data format to another. With that little
piece of tailored code, your data may be read and analyzed, perhaps in Excel, or
perhaps by a new program tailored to the computations that the measurement data
demand.

Programming The real power of computers can only be utilized if you can
program them, i.e., write the programs yourself. With programming, you can tell
the computer what you want it to do, which is great, since it frees you from possible
limitations that come with programs written by others! Thus, with this skill, you get
an important extra option for problem solving that goes beyond what ready-made
programs offer.

A program that you write, will be a set of instructions that you store in a file.
These instructions must be written (according to certain rules) in a very specialized
language that has adopted words and expressions from English. Such languages
are known as programming (or computer) languages. When you have written your
instructions (your program), you may ask the programming language to read your
program and carry out the instructions. The programming language will then (if
there are no errors) translate the meaning of your instructions into real actions inside
the computer.

To write a program that solves a computing problem, you need to have a thorough
understanding of the given problem. That understanding may have to be developed
along the way and will obviously guide the way you write your solution program.
Typically, you need to write, test and re-write your program several times until you
get it right. Thus, what starts out with a computing problem and ends with a sensible
computer program for its solution, is a process that may take some time. By the term
programming, we will mean the whole of this process.

The purpose of this book is to teach you how to develop computer programs ded-
icated to solve mathematical and engineering problems by fundamental numerical
methods.

Programming Languages There are numerous computer languages for different
purposes. Within the engineering area, the most widely used ones are Python,
MATLAB, Octave, Fortran, C, C++, and to some extent, Maple and Mathematica.
The rules for how to write the instructions (i.e. the syntax) differ between the
languages. Let us use an analogy.

Assume you are an international kind of person, having friends abroad in
England, Russia and China. They want to try your favorite cake. What can you
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do? Well, you may write down the recipe in those three languages and send them
over. Now, if you have been able to think correctly when writing down the recipe,
and you have written the explanations according to the rules in each language, each
of your friends will produce the same cake. Your recipe is the “computer program”,
while English, Russian and Chinese represent the “computer languages” with their
own rules of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”. Depending
on the error, this may cause “baking execution” to stop, or perhaps produce the
wrong cake. In your computer program, the errors you introduce are called bugs
(yes, small insects! . . . for historical reasons), and the process of fixing them is called
debugging. When you try to run your program that contains errors, you usually get
warnings or error messages. However, the response you get depends on the error and
the programming language. You may even get no response, but simply the wrong
“cake”. Note that the rules of a programming language have to be followed very
strictly. This differs from languages like English etc., where the meaning might be
understood even with spelling errors and “slang” included.

We Use Python 3.6 in This Book For good reasons, the programming language
used in this book is Python (version 3.6). It is an excellent language for beginners
(and experts!), with a simple and clear syntax. Some of Python’s other strong
properties are1: It has a huge and excellent library (i.e., ready-made pieces of
code that you can utilize for certain tasks in your own programs), many global
functions can be placed in only one file, functions are straightforwardly transferred
as arguments to other functions, there is good support for interfacing C, C++ and
Fortran code (i.e., a Python program may use code written in other languages), and
functions explicitly written for scalar input often work fine, without modification,
also with vector input. Another important thing, is that Python is available for free.
It can be downloaded at no cost from the Internet and will run on most platforms.

A Primer on Scientific Programming with Python

Readers who want to expand their scientific programming skills beyond the
introductory level of the present exposition, are encouraged to study A Primer
on Scientific Programming with Python [11]. This comprehensive book is
as suitable for beginners as for professional programmers, and teaches the
art of programming through a huge collection of dedicated examples. This
book is considered the primary reference, and a natural extension, of the
programming matters in the present book. Note, however, that this reference
[11] uses version 2.7 of Python, which means that, in a few cases, instructions
will differ somewhat from what you find in the present book.

1 Some of the words here will be new to you, but relax, they will all be explained as we move
along.



4 1 The First Few Steps

Some computer science terms

Note that, quite often, the terms script and scripting are used as synonyms for
program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried to
explain the difference between script and program in a humorous way (from
perl.coma): Suppose you went back to Ada Lovelaceb and asked her the
difference between a script and a program. She’d probably look at you funny,
then say something like: Well, a script is what you give the actors, but a
program is what you give the audience. That Ada was one sharp lady. . . Since
her time, we seem to have gotten a bit more confused about what we mean
when we say scripting. It confuses even me, and I’m supposed to be one of the
experts.

There are many other widely used computer science terms to pick up as
well. For example, writing a program (or script or code) is often expressed as
implementing the program. Executing a program means running the program.
A default value is what will be used if nothing is specified. An algorithm
is a recipe for how to construct a program. A bug is an error in a program,
and the art of tracking down and removing bugs is called debugging (see,
e.g., Wikipediac). Simulating or simulation refers to using a program to mimic
processes in the real world, often through solving differential equations that
govern the physics of the processes. A plot is a graphical representation of
a data set. For example, if you walk along a straight road, recording your
position y with time t , say every second, your data set will consist of pairs
with corresponding y and t values. With two perpendicular axes in a plane
(e.g., a computer screen or a sheet of paper), one “horizontal” axis for t and
one “vertical” axis for y, each pair of points could be marked in that plane. The
axes and the points make up a plot, which represents the data set graphically.
Usually, such plotting is done by a computer.

a http://www.perl.com/pub/2007/12/06/soto-11.html.
b http://en.wikipedia.org/wiki/Ada_Lovelace.
c http://en.wikipedia.org/wiki/Software_bug#Etymology.

1.1.1 Installing Python

To study this book, you need a Python installation that fits the purpose. The quickest
way to get a useful Python installation on your Windows, Mac, or Linux computer,
is to download and install Anaconda.2 There are alternatives (as you can find on
the internet), but we have had very good experiences with Anaconda for several
years, so that is our first choice. No separate installation of Python or Spyder (our
recommended environment for writing Python code) is then required, as they are
both included in Anaconda.

2 https://www.anaconda.com/distribution.

http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
https://www.anaconda.com/distribution
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To download Anaconda, you must pick the Anaconda version suitable for your
machine (Windows/Mac/Linux) and choose which version of Python you want
(3.6 is used for this book). When the download has completed, proceed with the
installation of Anaconda.

After installation, you may want to (search for and) start up Spyder to see what
it looks like (see also Appendix A). Spyder is an excellent tool for developing
Python code. So, unless you have good reasons to choose otherwise, we recommend
Spyder to be your main “working” environment, meaning that to read, write and run
code you start Spyder and do it there. Thus, it is a good idea to make Spyder easy
accessible on your machine.

With Anaconda installed, the only additional package you need to install is
Odespy.3 Odespy is relevant for the solving of differential equations that we treat in
Chaps. 8 and 9.

In Appendix A you will find more information on the installation and use of
Python.

1.2 A Python Programwith Variables

Our first example regards programming a mathematical model that predicts the
height of a ball thrown straight up into the air. From Newton’s 2nd law, and
by assuming negligible air resistance, one can derive a mathematical model that
predicts the vertical position y of the ball at time t:

y = v0t − 0.5gt2.

Here, v0 is the initial upwards velocity and g is the acceleration of gravity, for which
9.81 ms−2 is a reasonable value (even if it depends on things like location on the
earth).

With this formula at hand, and when v0 is known, you may plug in a value for
time and get out the corresponding height.

1.2.1 The Program

Let us next look at a Python program for evaluating this simple formula. To do this,
we need some values for v0 and t , so we pick v0 = 5 ms−1 and t = 0.6 s (other
choices would of course have been just as good). Assume the program is contained
as text in a file named ball.py, reading

# Program for computing the height of a ball in vertical motion

v0 = 5 # Initial velocity
g = 9.81 # Acceleration of gravity

3 The original version of Odespy (https://github.com/hplgit/odespy) was written in Python 2.7 by
H.P. Langtangen and L. Wang. However, since the sad loss of Prof. Langtangen in 2016, Ode-
spy has been updated to Python 3.6 (https://github.com/thomasantony/odespy/tree/py36/odespy),
thanks to Thomas Antony. This version is the one used herein.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball.py
https://github.com/hplgit/odespy
https://github.com/thomasantony/odespy/tree/py36/odespy
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t = 0.6 # Time

y = v0*t - 0.5*g*t**2 # Vertical position

print(y)

Let us now explain this program in full detail.

Typesetting of Code Computer programs, and parts of programs, are typeset with
a blue background in this book. When a complete program is shown, the blue
background has a slightly darker top and bottom bar (as for ball.py here). Without
the bars, the code is just a snippet and will normally need additional lines to run
properly.

We also use the blue background, without bars, for interactive sessions
(Sect. 2.1).

1.2.2 Dissecting the Program

A computer program like ball.py contains instructions to the computer written as
plain text. Humans can read the code and understand what the program is capable
of doing, but the program itself does not trigger any actions on a computer before
another program, the Python interpreter, reads the program text and translates this
text into specific actions.

You must learn to play the role of a computer

Although Python is responsible for reading and understanding your program,
it is of fundamental importance that you fully understand the program
yourself. You have to know the implication of every instruction in the program
and be able to figure out the consequences of the instructions. In other words,
you must be able to play the role of a computer.

One important reason for this strong demand is that errors unavoidably, and
quite often, will be committed in the program text, and to track down these
errors, you have to simulate what the computer does with the program. Also,
you will often need to understand code written by other people. If you are able
to understand their code properly, you may modify and use it as it suits you.

When you run your program in Python, it will interpret the text in your file line
by line, from the top, reading each line from left to right. The first line it reads is

# Program for computing the height of a ball in vertical motion.

This line is what we call a comment. That is, the line is not meant for Python to read
and execute, but rather for a human that reads the code and tries to understand what
is going on. Therefore, one rule in Python says that whenever Python encounters the
sign # it takes the rest of the line as a comment. Python then simply skips reading
the rest of the line and jumps to the next line. In the code, you see several such
comments and probably realize that they make it easier for you to understand (or
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guess) what is meant with the code. In simple cases, comments are probably not
much needed, but will soon be justified as the level of complexity steps up.

The next line read by Python is

v0 = 5 # Initial velocity

In Python, a statement like v0 = 5 is known as an assignment statement.
After this assignment, any appearance of v0 in the code will “represent” the initial
velocity, being 5 ms−1 in this case. This means that, whenever Python reads v0,
it will replace v0 by the integer value 5. One simple way to think of this, might
be as follows. With the assignment v0 = 5, Python generates a “box” in computer
memory with the name v0 written on top. The number 5 is then put into that box.
Whenever Python later meets the name v0 in the code, it finds the box, opens it,
takes out the number (here 5) and replaces the name v0 with the number.

The next two lines

g = 9.81 # Acceleration of gravity
t = 0.6 # Time

are also assignment statements, giving two more “boxes” in computer memory. The
box named g will contain the value 9.81, while the box named t contains 0.6.
Similarly, when Python later reads g and t in the code, it plugs in the numerical
values found in the corresponding boxes.

The assignments in a bit more detail

When Python interprets the assignment statement v0 = 5, the integer 5
becomes an object of type int and the variable name on the left-hand side
becomes a named reference for that object. Similarly, when interpreting the
assignment statements g = 9.81 and t = 0.6, g and t become named
references to objects created for the real numbers given. However, since we
have real numbers, these objects will be of type float (in computer language,
a real number is called a “floating point number”).

Now, with these assignments in place, Python knows of three variables (v0, g, t)
and their values. These variables are then used by Python when it reads the next
line, the actual “formula”,

y = v0*t - 0.5*g*t**2 # Vertical position

Again, according to its rules, Python interprets * as multiplication, − as minus and
** as exponentiation (let us also add here that, not surprisingly, + and / would
have been understood as addition and division, if such signs had been present in the
expression). Having read the line, Python performs the mathematics on the right-
hand side, and then assigns the result (in this case the number 1.2342) to the variable
name y.

Finally, Python reads

print(y)
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This is a print function call, which makes Python print the value of y on the
screen.4 Simply stated, the value of y is sent to a ready-made piece of code named
print (being a function—see Chap. 4, here called with a single argument named
y), which then takes care of the printing. Thus, when ball.py is run, the number
1.2342 appears on the screen.

Readability and Coding Style In the code above, you see several blank lines too.
These are simply skipped by Python and you may use as many as you want to make a
nice and readable layout of the code. Similarly, you notice that spaces are introduced
to each side of − in the “formula” and to each side of = in the assignments. These
spaces are not required, i.e., Python will understand perfectly well without them.
However, they contribute to readability and it is recommended to use them5 as part
of good coding style.6 Had there been a + sign in there, it too should have a space
to each side. To the contrary, no extra spaces are recommended for /, * and **.

Several Statements on One Line Note that it’s allowed to have several statements
on the same line if they are separated by a semi-colon. So, with our program here,
we could have written, e.g.,

# Program for computing the height of a ball in vertical motion

# v0 is the intial velocity, g is the acceleration of gravity, t is time
v0 = 5; g = 9.81; t = 0.6

y = v0*t - 0.5*g*t**2 # vertical position

print(y)

In general, however, readability is easily degraded this way, e.g., making comment-
ing more difficult, so it should be done with care.

Assignments like a=2*a

Frequently, you will meet assignment statements in which the variable name
on the left hand side (of =) also appears in the expression on the right hand
side. Take, e.g., a = 2*a. Python would then, according to its rules, first
compute the expression on the right hand side with the current value of a
and then let the result become the updated value of a through the assignment
(the updated value of a is placed in a new “box” in computer memory).

4 In Python 2.7, this would have been a print command reading print y.
5 Be aware that in certain situations programmers do skip such spaces, e.g., when listing arguments
in function calls, as you will learn more about in Chap. 4.
6 You might like to check out the style guide for Python coding at https://www.python.org/dev/
peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/
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1.2.3 Why Use Variables?

But why do we introduce variables at all? Would it not be just as fine, or even
simpler, to just use the numbers directly in the formula?

If we did, using the same numerical values, ball.pywould become even shorter,
reading

# Program for computing the height of a ball in vertical motion

y = 5*0.6 - 0.5*9.81*0.6**2 # vertical position

print(y)

What is wrong with this? After all, we do get the correct result when running the
code!

Coding and Mathematical Formulation If you compare this coded formula with
the corresponding mathematical formulation

y = v0t − 0.5gt2,

the equivalence between code and mathematics is not as clear now as in our original
program ball.py, where the formula was coded as

y = v0*t - 0.5*g*t**2

In our little example here, this may not seem dramatic. Generally, however, you bet-
ter believe that when, e.g., trying to find errors in code that lacks clear equivalence
to the corresponding mathematical formulation, human code interpretation typically
gets much harder and it might take you a while to track down those bugs!

Changing Numerical Values In addition, if we would like to redo the computation
for another point in time, say t = 0.9 s, we would have to change the code in two
places to arrive at the new code line

y = 5*0.9 - 0.5*9.81*0.9**2

You may think that this is not a problem, but imagine some other formula (and
program) where the same number enters in a 100 places! Are you certain that you
can do the right edit in all those places without any mistakes?7 You should realize
that by using a variable, you get away with changing in one place only! So, to
change the point in time from 0.6 to 0.9 in our original program ball.py, we could
simply change t = 0.6 into t = 0.9. That would be it! Quick and much safer
than editing in many places.

7 Using the editor to replace 0.6 in all places might seem like a quick fix, but you would have to
be sure you did not change 0.6 in the wrong places. For example, another number in the code,
e.g. 0.666, could easily be turned into 0.966, unless you were careful.
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1.2.4 Mathematical Notation Versus Coding

Make sure you understand that, from the outset, we had a pure mathematical
formulation of our formula

y = v0t − 0.5gt2,

which does not contain any connection to programming at all. Remember, this
formula was derived hundreds of years ago, long before computers entered the
scene! When we next wrote a piece of code that applied this formula, that code had
to obey the rules of the programming language, which in this case is Python. This
means, for example, that multiplication had to be written with a star, simply because
that is the way multiplication is coded in Python. In some other programming
language, the multiplication could in principle have been coded otherwise, but the
mathematical formulation would still read the same.

We have seen how the equals sign (=) is interpreted in Python code. This
interpretation is very different from the interpretation in mathematics, as might be
illustrated by the following little example. In mathematics, x = 2 − x would imply
that 2x = 2, giving x = 1. In Python code, however, a code line like x = 2 -
x would be interpreted, not as an equation, but rather as an assignment statement:
compute the right hand side by subtracting the current value of x from 2 and let the
result be the new value of x. In the code, the new value of x could thus be anything,
all depending on the value x had above the assignment statement!

1.2.5 Write and Run Your First Program

Reading only does not teach you computer programming: you have to program
yourself and practice heavily before you master mathematical problem solving via
programming. In fact, this is very much like learning to swim. Nobody can do that
by just reading about it! You simply have to practice real swimming to get good
at it. Therefore, it is crucial at this stage that you start writing and running Python
programs. We just went through the program ball.py above, so let us next write
and run that code.

But first a warning: there are many things that must come together in the right
way for ball.py to run correctly. There might be problems with your Python
installation, with your writing of the program (it is very easy to introduce errors!),
or with the location of the file, just to mention some of the most common difficulties
for beginners. Fortunately, such problems are solvable, and if you do not understand
how to fix the problem, ask somebody. Very often the guy next to you experienced
the same problem and has already fixed it!

Start up Spyder and, in the editor (left pane), type in each line of the program
ball.py shown earlier. Then you save the program (select File -> save as) where
you prefer and finally run it (select Run -> Run, . . . or press F5). With a bit of luck,
you should now get the number 1.2342 out in the rightmost lower pane in the Spyder
GUI. If so, congratulations, you have just executed your first self-written computer
program in Python!



1.2 A Python Programwith Variables 11

The documentation for Spyder8 might be useful to you. Also, more information
on writing and running Python programs is found in Appendix A.4 herein.

Why not a pocket calculator instead?

Certainly, finding the answer as with the program above could easily have
been done with a pocket calculator. No objections to that and no programming
would have been needed. However, what if you would like to have the position
of the ball for every milli-second of the flight? All that punching on the
calculator would have taken you something like 4 h!

If you know how to program, however, you could modify the code above
slightly, using a minute or two of writing, and easily get all the positions
computed in one go within a second.

An even stronger argument, however, is that mathematical models from
real life are often complicated and comprehensive. The pocket calculator
cannot cope with such problems, even not the programmable ones, because
their computational power and their programming tools are far too weak
compared to what a real computer can offer.

Write programs with a text editor

When Python interprets some code in a file, it is concerned with every
character in the file, exactly as it was typed in. This makes it trouble-
some to write the code into a file with word processors like, e.g., Mi-
crosoft Word, since such a program will insert extra characters, invisible
to us, with information on how to format the text (e.g., the font size and
type).

Such extra information is necessary for the text to be nicely formatted
for the human eye. Python, however, will be much annoyed by the extra
characters in the file inserted by a word processor. Therefore, it is fundamental
that you write your program in a text editor where what you type on the
keyboard is exactly the characters that appear in the file and what Python
will later read. There are many text editors around. Some are stand-alone
programs like Emacs, Vim, Gedit, Notepad++, and TextWrangler. Others
are integrated in graphical development environments for Python, such as
Spyder.

8 See, e.g., https://www.spyder-ide.org/.

https://www.spyder-ide.org/
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What about units?

The observant reader has noticed that the handling of quantities in ball.py
did not include units, even though velocity (v0), acceleration (g) and time (t)
of course do have the units of ms−1, ms−2, and s, respectively. Even though
there are toolsa in Python to include units, it is usually considered out of scope
in a beginner’s book on programming. So also in this book.

a See, e.g., https://github.com/juhasch/PhysicalQuantities, https://github.com/hgrecco/pint
and https://github.com/hplgit/parampool if you are curious.

1.3 A Python Programwith a Library Function

Imagine you stand on a distance, say 10.0 m away, watching someone throwing a
ball upwards. A straight line from you to the ball will then make an angle with the
horizontal that increases and decreases as the ball goes up and down. Let us consider
the ball at a particular moment in time, at which it has a height of 10.0 m. What is
the angle of the line then?

Well, we do know (with, or without, a calculator) that the answer is 45◦. However,
when learning to code, it is generally a good idea to deal with simple problems
with known answers. Simplicity ensures that the problem is well understood before
writing any code. Also, knowing the answer allows an easy check on what your
coding has produced when the program is run.

Before thinking of writing a program, one should always formulate the algo-
rithm, i.e., the recipe for what kind of calculations that must be performed. Here,
if the ball is x m away and y m up in the air, it makes an angle θ with the ground,
where tan θ = y/x. The angle is then tan−1(y/x).

The Program Let us make a Python program for doing these calculations. We
introduce names x and y for the position data x and y, and the descriptive name
angle for the angle θ . The program is stored in a file ball_angle_first_try.py:

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = atan(y/x)

print((angle/pi)*180)

Before we turn our attention to the running of this program, let us take a look
at one new thing in the code. The line angle = atan(y/x), illustrates how the
function atan, corresponding to tan−1 in mathematics, is called with the ratio y/x
as argument. The atan function takes one argument, and the computed value is
returned from atan. This means that where we see atan(y/x), a computation
is performed (tan−1(y/x)) and the result “replaces” the text atan(y/x). This is
actually no more magic than if we had written just y/x: then the computation of

https://github.com/juhasch/PhysicalQuantities
https://github.com/hgrecco/pint
https://github.com/hplgit/parampool
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle_first_try.py
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y/x would take place, and the result of that division would replace the text y/x.
Thereafter, the result is assigned to angle on the left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles in
radians. Thus, if we want the answer in degrees, the return value of atan
must be converted accordingly. This conversion is performed by the computation
(angle/pi)*180. Two things happen in the print command: first, the computa-
tion of (angle/pi)*180 is performed, resulting in a number, and second, print
prints that number. Again, we may think that the arithmetic expression is replaced
by its result and then print starts working with that result.

Running the Program If we next execute ball_angle_first_try.py, we get
an error message on the screen saying

NameError: name ’atan’ is not defined
WARNING: Failure executing file: <ball_angle_first_try.py>

We have definitely run into trouble, but why? We are told that

name ’atan’ is not defined

so apparently Python does not recognize this part of the code as anything familiar.
On a pocket calculator the inverse tangent function is straightforward to use in a
similar way as we have written in the code. In Python, however, this function is one
of many that must be imported before use. A lot of functionality9 is immediately
available to us (from the Python standard library) as we start a new programming
session, but much more functionality exists in additional Python libraries. To
activate functionality from these libraries, we must explicitly import it. In Python,
the atan function is grouped together with many other mathematical functions in a
library module called math. To get access to atan in our program, we may write an
import statement:

from math import atan

Inserting this statement at the top of the program and rerunning it, leads to a new
problem: pi is not defined. The constant pi, representing π , is also available in the
math module, but it has to be imported too. We can achieve this by including both
items atan and pi in the import statement,

from math import atan, pi

With this latter statement in place, we save the code as ball_angle.py:

from math import atan, pi

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = atan(y/x)

print((angle/pi)*180)

This script correctly produces 45.0 as output when executed.

9 https://docs.python.org/3/library/functions.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle.py
https://docs.python.org/3/library/functions.html
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Alternatively, we could use the import statement import math. This
would require atan and pi to be prefixed with math, however, as shown in
ball_angle_prefix.py:

import math

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = math.atan(y/x)

print (angle/math.pi)*180

The essential difference between the two import techniques shown here, is the
prefix required by the latter. Both techniques are commonly used and represent the
two basic ways of importing library code in Python. Importing code is an evident
part of Python programming, so we better shed some more light on it.

1.4 Importing fromModules and Packages

At first, it may seem cumbersome to have code in different libraries, since it means
you have to know (or find out) what resides in which library.10 Also, there are
many libraries around in addition to the Python standard library itself. To your
comfort, you come a long way with just a few libraries, and for easy reference, the
handful of libraries used in this book is listed below (Sect. 1.4.5). Having everything
available at any time would be convenient, but this would also mean that computer
memory would be filled with a lot of unused information, causing less memory to be
available for computations on big data. Python has so many libraries, with so much
functionality, that importing what is needed is indeed a very sensible strategy.

Where to Place Import Statements? The general recommendation is to place
import statements at the top of a program, making them easy to spot.

1.4.1 Importing for UseWithout Prefix

The need to prefix item names is avoided when import statements are on the form

from some_library import ... # i.e., items will be used without prefix

as we saw in ball_angle.py above. Without prefixing, coded formulas often
become easier to read, since code generally comes “closer” to mathematical writing.
On the other hand, it is less evident where imported items “come from” and this may
complicate matters, particularly when trying to understand more comprehensive
code written by others.

10 There is a built-in function called dir, which gives all the names defined in a library module.
Another built-in function called help prints documentation. To see how they work, write (in
Spyder, pane down to the right) import math followed by dir(math) or help(math).

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle_prefix.py
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Importing Individual Items With ball_angle.py, we just learned that the
import statement

from math import atan, pi

made the atan function and pi available to the program. To bring in even more
functionality from math, the import statement could simply have been extended
with the relevant items, say

from math import atan, pi, sin, cos, log

and so on.

Having Several Import Statements Very often, we need to import functionality
from several libraries. This is straight forward, as we may show by combining
imports from math with imports from the useful Numerical Python (or NumPy)
library,11 named numpy in Python:

from math import atan, pi, sin, cos, log
from numpy import zeros, linspace

Right now, do not worry what the functions zeros and linspace do, we will
explain and use them soon.

Importing All Items with “Import *” The approach of importing individual items
(atan, pi, etc.) might appear less attractive if you need many of them in your
program. There is another way, though, but it should be used with care, for reasons
to be explained. In fact, many programmers will advice you not to use it at all,
unless you know very well what you are doing. With this import technique, the list
of items in the import statement is exchanged with simply a star (i.e., *). The import
statement then appears as

from some_library import * # import all items from some_library

which with the math library reads

from math import * # import all items from math

This will cause all items from math to be imported, however, also the ones you
do not need! So, with this “lazy” import technique, Python has to deal with a lot
of names that are not used. Like when importing individual items, items are used
without prefix.

Disadvantage: No Prefix Allows Name Conflicts! When importing so that items
are written without prefix, there is a potential problem with name conflicts. Let
us illustrate the point with a simple example. Assume that, being new to Python,
we want to write a little program for checking out some of the functions that the
language has got to offer.

Our first candidate could be the exponential function and we might like to
compute and print out et for t = 0, 1, 2. A fellow student explains us how a function
exp in the numpy library allows our calculations to be done with a single function

11 The NumPy library (http://www.numpy.org/) is included in Anaconda. If you have not installed
Anaconda, you may have to install NumPy separately.

http://www.numpy.org/
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call. This sounds good to us, so based on what we were told, we start writing our
program as

from numpy import exp

x = exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

The script runs without any problems and the printed numbers seem fine,

[ 1. 2.71828183 7.3890561 ]

Moving on, we want to test a number of functions from the math library (cos, sin,
tan, etc.). Since we foresee testing quite many functions, we choose the “lazy”
import technique and plan to extend the code with one function at a time.

Extending the program with a simple usage of the cos function, it reads

from numpy import exp
from math import *

x = exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = cos(0)
print(y)

Running this version of the script, however, we get a longer printout (most of which
is irrelevant at this point) ending with

TypeError: a float is required

Clearly, something has gone wrong! But why?
The explanation is the following. With the second import statement, i.e.,

from math import *

all items from math were imported, including a function from math that is also
named exp. That is, there are two functions in play here that both go by the name
exp! One exp function is found in the numpy library, while the other exp function is
found in the math library, and the implementations of these two are different. This
now becomes a problem, since the last imported exp function silently “takes the
place” of the previous one, so that the name exp hereafter will be associated with
the exp function from math! Thus, when Python interprets x = exp([0, 1, 2]),
it tries to use exp from math for the calculations, but that version of exp can only
take a single number (real or integer) as input argument, not several (as exp from
numpy can). This mismatch then triggers the error message12 and causes program
execution to stop before reaching y = cos(0).

Similar name conflicts may arise also with other functions than exp, since a lot
of items appear with identical names in different libraries (e.g., also cos, sin, tan,
and many more, exist with different implementations in both numpy and math).
The fact that programmers may create, and share, their own libraries containing self

12 It should be mentioned here, that error messages can not always be very accurate. With
some experience, however, you will find them very helpful at many occasions. More about error
messages later (Sect. 1.7).
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chosen item names, makes it even more obvious that “name conflicts” is an issue
that should be understood.

Several other coding alternatives would have helped the situation here. For ex-
ample, instead of from math import *, we could switch the star (*) with a list of
item names, i.e. as from math import cos for the present version. As long as we
stay away from (by a mistake) importing exp also from math, no name conflict will
occur and the program will run fine. Alternatively, we could simply have switched
the order of the import statements (can you explain13 why?), or, we could have
moved the import statement from math import * down, so that it comes after
the statement x = exp([0, 1, 2]) and before the line y = cos(0). Note that, in
Python 3, import statements on the form from module import * are only allowed
at module level, i.e., when placed inside functions, they give an error message.

Next, we will address the safer “standard” way of importing.

1.4.2 Importing for Usewith Prefix

A safer implementation of our program would use the “standard” method of
importing, which we saw a glimpse of in ball_angle_prefix.py above. With
this import technique, the code would read

import numpy
import math

x = numpy.exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = math.cos(0)
print(y)

We note that the import statements are on the form

import some_library # i.e., items will be used with prefix

and that item names belonging to some_library are prefixed with some_library
and a “dot”. This means that, e.g., numpy.exp([0, 1, 2]) refers to the (unique)
exp function from the numpy library. When the import statements are on the
“standard” form, the prefix is required. Leaving it out gives an error message. This
version of the program runs fine, producing the expected output.

With the prefixing method, the order of imports does not matter, as there is no
doubt where the functions (or items) come from. At the same time, though, it is clear
that prefixing does not make it any easier for a human to read the “math meaning”
out of the code. In mathematical writing, there would be no prefix, so a prefix will
just complicate the job for a human interpreter, and more so the more comprehensive
the expressions are.

13 By switching the order, Python would first read from math import * and would import
everything, including exp, from math. Then, it would read from numpy import exp, which
would cause Python to import the numpy version of exp, which effectively means that the math
version of exp is “overwritten” by the one from numpy. At any later point in the code then, Python
will associate the word exp with the numpy function.
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1.4.3 Imports with Name Change

Whether we import for use with or without prefix, we may change names of the im-
ported items by minor adjustments of the import statements. Introducing such name
changes in our program and saving this final version as check_functions.py, it
reads

import numpy as np
import math as m

x = np.exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = m.cos(0)
print(y)

Effectively, the module names in this program now become np and m (by our
own choice) instead of numpy and math, respectively. We still enjoy the safety
of prefixing and notice that such name changes might bring computer coded
expressions closer to mathematical writing and thus ease human interpretation.

When importing library items for use without prefix, name changes can be done,
e.g., like

from math import cos as c, sin as s

print(c(0) + s(0))

1.4.4 Importing from Packages

Modules may be grouped into packages, often together with functions, variables,
and more. We may import items (modules, functions, etc.) from such packages
also, but the appearance of an import statement will then depend on the structure
of the package in question. We leave out the details14 and just exemplify with two
packages often used in this book.

The numpy library used above is, in fact, a package and we saw how it could be
used with different import statements, just as if it had been a module. Note that the
import statement

import numpy as np # standard way of importing numpy

is the standard way of importing numpy, i.e., also the “nickname” np is standard.
This will be the standard import technique for numpy also in our book, meaning that
we will generally use numpy items with the np prefix. We will deviate from this at
times, typically during brief interactive sessions (see Sect. 2.1), in which case we
will import items explicitly specified by name.

Another popular package you will meet often in this book, is the plotting library
matplotlib (Sect. 1.5), used for generating and handling plots. The standard
import statement, including the “nickname”, is then

import matplotlib.pyplot as plt # standard way of importing pyplot

14 If you are curious, check for more details at https://docs.python.org/3.6/tutorial/modules.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/check_functions.py
https://docs.python.org/3.6/tutorial/modules.html
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Here, pyplot is a module in the matplotlib package15 that is named plt when
imported. Thus, when imported this way, all items from pyplotmust have the prefix
plt. We will stick to this import and naming standard for pyplot also in the present
book, whenever plotting is on the agenda.

1.4.5 TheModules/Packages Used in This Book

Some readers might be curious to know which libraries are used in this book (apart
from the modules we make ourselves). Well, here they are:

• math—see, e.g., ball_angle.py, Sect. 1.3.
• numpy—see, e.g., check_functions.py above.
• matplotlib.pyplot—see, e.g., ball_plot.py, Sect. 1.5.
• random—see, e.g., throw_2_dice.py in Sect. 2.4.
• sympy—see, e.g., Sect. 5.3.
• timeit—see, e.g., Sect. 5.6.
• sys—see, e.g., Sect. 7.2.2.

These libraries are all well known to Python programmers. The three first ones
(math, numpy and matplotlib.pyplot) are used repeatedly throughout the
text, while the remaining ones (random, sympy, timeit and sys) appear just
occasionally.

Not listed, are two modules that are used just once each, the keyword module
(Sect. 2.2) and the os module (Sect. 9.2.4). It should be mentioned that we also use
a package called odespy (Sect. 8.4.6), previously developed by one of the authors
(Langtangen).

1.5 A Python Programwith Vectorization and Plotting

We return to the problem where a ball is thrown up in the air and we have a formula
for the vertical position y of the ball. Say we are interested in y at every milli-second
for the first second of the flight. This requires repeating the calculation of y =
v0t − 0.5gt2 one thousand times. As we will see, the computed heights appear very
informative when presented graphically with time, as opposed to a long printout of
all the numbers.

The Program In Python, the calculations and the visualization of the curve may
be done with the program ball_plot.py, reading

import numpy as np
import matplotlib.pyplot as plt

v0 = 5
g = 9.81

15 The matplotlib package (https://matplotlib.org/) comes with Anaconda. If you have not
installed Anaconda, you may have to install matplotlib separately.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/check_functions.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_plot.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/throw_2_dice.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_plot.py
https://matplotlib.org/
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t = np.linspace(0, 1, 1001)

y = v0*t - 0.5*g*t**2

plt.plot(t, y) # plots all y coordinates vs. all t coordinates
plt.xlabel(’t (s)’) # places the text t (s) on x-axis
plt.ylabel(’y (m)’) # places the text y (m) on y-axis
plt.show() # displays the figure

This program produces a plot of the vertical position with time, as seen in
Fig. 1.1. As you notice, the code lines from the ball.py program in Sect. 1.2 have
not changed much, but the height is now computed and plotted for a thousand points
in time!

Let us take a closer look at this program. At the top, we recognize the import
statements

import numpy as np
import matplotlib.pyplot as plt

As we know by now, these statements imply that items from numpy and
matplotlib.pyplotmust be prefixed with np and plt, respectively.

The linspace Function Next, there is a call to the function linspace from the
numpy library. When n evenly spaced floating point numbers are sought on an
interval [a, b], linspace may generally be called like this:

np.linspace(a, b, n)

This means that the call

t = np.linspace(0, 1, 1001)

creates 1001 coordinates between 0 and 1, inclusive at both ends. The mathemati-
cally inclined reader might agree that 1001 coordinates correspond to 1000 equal-

Fig. 1.1 Plot generated by the script ball_plot.py showing the vertical position of the ball
(computed for a thousand points in time)
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sized intervals in [0, 1] and that the coordinates are then given by ti = 1−0
1000 i = i

1000 ,
i = 0, 1, . . . , 1000.

The object returned from linspace is an array, i.e., a certain collection of (in
this case) numbers. Through the assignment, this array gets the name t. If we like,
we may think of the array t as a collection of “boxes” in computer memory (each
containing a number) that collectively go by the name t (later, we will demonstrate
how these boxes are numbered consecutively from zero and upwards, so that each
“box” may be identified and used individually).

Vectorization When we start computing with t in

y = v0*t - 0.5*g*t**2

the right hand side is computed for every number in t (i.e., every ti for i =
0, 1, . . . , 1000), yielding a similar collection of 1001 numbers in the result y, which
(automatically) also becomes an array!

This technique of computing all numbers “in one chunk” is referred to as
vectorization. When it can be used, it is very handy, since both the amount of
code and computation time is reduced compared to writing a corresponding loop16

(Chap. 3) for doing the same thing.

Plotting The plotting commands are new, but simple:

plt.plot(t, y) # plots all y coordinates vs. all t coordinates
plt.xlabel(’t (s)’) # places the text t (s) on x-axis
plt.ylabel(’y (m)’) # places the text y (m) on y-axis
plt.show() # displays the figure

At this stage, you are encouraged to do Exercise 1.4. It builds on the example
above, but is much simpler both with respect to the mathematics and the amount of
numbers involved.

1.6 Plotting, Printing and Input Data

1.6.1 PlottingwithMatplotlib

Often, computations and analyses produce data that are best illustrated graphically.
Thus, programming languages usually have many good tools available for producing
and working with plots, and Python is no exception.17

In this book, we shall stick to the excellent plotting library Matplotlib, which has
become the standard plotting package in Python. Below, we demonstrate just a few
of the possibilities that come with Matplotlib, much more information is found on
the Matplotlib website.18

16 It should be mentioned, though, that the computations are still done with loops “behind the
scenes” (coded in C or Fortran). They generally run much quicker than the Python loops we write
ourselves.
17 In Sect. 9.2.4 we give a brief example of how plots may be turned into videos.
18 https://matplotlib.org/index.html.

https://matplotlib.org/index.html
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A Single Curve In Fig. 1.1, we saw a nice and smooth curve, showing how the
height of a ball developed with time. The reader should realize that, even though
the curve is continuous and apparently smooth, it is generated from a collection of
points only. That is, for the chosen points in time, we have computed the height. For
times in between, we have computed nothing! So, in principle, we actually do not
know what the height is there. However, if only the time step between consecutive
height computations is “small enough”, the ball can not experience any significant
change in its state of motion. Thus, inserting straight lines between two and two
consecutive data points will be a good approximation. This is exactly what Python
does, unless otherwise is specified. With “many” data points, as in Fig. 1.1, the curve
appears smooth.

We saw previously, in ball_plot.py, how an array y (heights) could be plotted
against another corresponding array t (points in time) with the statement

plt.plot(t, y)

A plot command like this is very typical and often just what we prefer, for example,
in our case with the ball.

It is also possible, however, to plot an array without involving any second array
at all. With reference to ball_plot.py, this means that y could have been plotted
without any mention of t, and to do that, one could write the plot command rather
like

plt.plot(y)

The curve would then have looked just like the one in Fig. 1.1, except that the x-axis
would span the y array indices from 0 to 1000 instead of the corresponding points
in time (check it and see for yourself).

Quickly testing a (minor) code change

Let us take the opportunity here, to mention how many programmers
would go about to check the alternative plot command just mentioned. In
ball_plot.py, one would typically just comment out the original lines and
insert alternative code for these, i.e., as

#plt.plot(t, y)
#plt.xlabel(’t (s)’)
plt.plot(y)
plt.xlabel(’Array indices’)

One would then run the code and observe the impact of the change, which in
this case is the modified plot described above.

After running the modified code, there are, generally, two alternatives.
Should the original version be kept or should we make the change permanent?
With the present ball example, most of us would prefer the original plot, so
we would change the code back to its original form (remember to check that
it works as before!).

When the code change to test is more comprehensive, it is much better to
make a separate copy of the whole program, and then do the testing there.
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The characteristics of a plotted line may also be changed in many ways with just
minor modifications of the plot command. For example, a black line is achieved
with

plt.plot(t, y, ’k’) # k - black, b - blue, r - red, g - green, ...

Other colors could be achieved by exchanging the k with certain other letters. For
example, using b, you get a blue line, r gives a red line, while g makes the line
green. In addition, the line style may be changed, either alone, or together with a
color change. For example,

plt.plot(t, y, ’--’) # default color, dashed line

plt.plot(t, y, ’r--’) # red and dashed line

plt.plot(t, y, ’g:’) # green and dotted line

Note that to avoid destroying a previously generated plot, you may precede your
plot command by

plt.figure()

This causes a new figure to be created alongside any already present.

Plotting Points Only When there are not too many data points, it is sometimes
desirable to plot each data point as a “point”, rather than representing all the data
points with a line. To illustrate, we may consider our case with the ball again,
but this time computing the height each 0.1 s, rather than every millisecond. In
ball_plot.py, we would then have to change our call to linspace into

t = np.linspace(0, 1, 11) # 11 values give 10 intervals of 0.1

Note that we need to give 11 as the final argument here, since there will be 10
intervals of 0.1 s when 11 equally distributed values on [0, 1] are asked for. In
addition, we would have to change the plot command to specify the plotting of
data points as “points”. To mark the points themselves, we may use one of many
different alternatives, e.g., a circle (the lower case letter o) or a star (*). Using a star,
for example, the plot command could read

plt.plot(t, y, ’*’) # default color, points marked with *

With these changes, the plot from Fig. 1.1 would change as seen in Fig. 1.2.
Of course, not only can we choose between different kinds of point markers, but

also their color may be specified. Some examples are:

plt.plot(t, y, ’r*’) # points marked with * in red

plt.plot(t, y, ’bo’) # points marked with o in blue

plt.plot(t, y, ’g+’) # points marked with + in green

When are the data points “too many” for plotting data points as points (and not
as a line)? If plotting the data points with point markers and those markers overlap
in the plot, the points will not appear as points, but rather as a very thick line. This
is hardly what you want.
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Fig. 1.2 Vertical position of the ball computed and plotted for every 0.1 s

Decorating a Plot We have seen how the code lines plt.xlabel(’t (s)’) and
plt.ylabel(’y (m)’) in ball_plot.py put labels t (s) and y (m) on the t-
and y-axis, respectively. There are other ways to enrich a plot as well.

One thing, is to add a legend so that the curve itself gets labeled. With
ball_plot.py, we could get the legend v0*t - 0.5*g*t**2, for example, by
coding

plt.legend([’v0*t - 0.5*g*t**2’])

When there is more than a single curve, a legend is particularly important of course
(see section below on “multiple curves” for a plot example).

Another thing, is to add a grid. This is useful when you want a more detailed
impression of the curve and may be coded in this way,

plt.grid(’on’)

A plot may also get a title on top. To get a title like This is a great title, for
example, we could write

plt.title(’This is a great title’)

Sometimes, the default ranges appearing on the axes are not what you want them to
be. This may then be specified by a code line like

plt.axis([0, 1.2, -0.2, 1.5]) # x in [0, 1.2] and y in [-0.2, 1.5]

All statements just explained will be demonstrated in the next section, when we
show how multiple curves may be plotted together in a single plot.

Multiple Curves in the Same Plot Assume we want to plot f (t) = t2 and
g(t) = et in the same plot for t on the interval [−2, 2]. The following script
(plot_multiple_curves.py) will accomplish this task:

import numpy as np
import matplotlib.pyplot as plt

https://github.com/slgit/prog4comp_2/blob/master/py36-src/plot_multiple_curves.py
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t = np.linspace(-2, 2, 100) # choose 100 points in time interval

f_values = t**2
g_values = np.exp(t)

plt.plot(t, f_values, ’r’, t, g_values, ’b--’)
plt.xlabel(’t’)
plt.ylabel(’f and g’)
plt.legend([’t**2’, ’e**t’])
plt.title(’Plotting of two functions (t**2 and e**t)’)
plt.grid(’on’)
plt.axis([-3, 3, -1, 10])
plt.show()

In this code, you recognize the commands explained just above. Their impact on
the plot may be seen in Fig. 1.3, which is produced when the program is executed.

Fig. 1.3 The functions f (t) = t2 and g(t) = et

In addition, you see how

plt.plot(t, f_values, ’r’, t, g_values, ’b--’)

causes both curves to be seen in the same plot. Notice the structure here, within the
parenthesis, we first describe plotting of the one curve with t, f_values, ’r’,
before plotting of the second curve is specified by t, g_values, ’b--’. These
two “plot specifications” are separated by a comma. Had there been more curves
to plot in the same plot, we would simply extend the list in a similar way. For each
curve, color and line style is specified independently of the other curve specifications
in the plot command (no specification gives default appearance). Furthermore, you
notice how

plt.legend([’t**2’, ’e**t’])

creates the right labelling of the curves. Note that the order of curve specifications
in the plot command must be the same as the order of legend specifications in
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the legend command. In the plot command above, we first specify the plotting of
f_values and then g_values. In the legend command, t**2 should thus appear
before e**t (as it does).

Multiple Plots in One Figure With the subplot command you may
combine several plots into one. We may demonstrate this with the script
two_plots_one_fig.py, which reproduces Figs. 1.2 and 1.3 as one:

import numpy as np
import matplotlib.pyplot as plt

plt.subplot(2, 1, 1) # 2 rows, 1 column, plot number 1
v0 = 5
g = 9.81
t = np.linspace(0, 1, 11)
y = v0*t - 0.5*g*t**2
plt.plot(t, y, ’*’)
plt.xlabel(’t (s)’)
plt.ylabel(’y (m)’)
plt.title(’Ball moving vertically’)

plt.subplot(2, 1, 2) # 2 rows, 1 column, plot number 2
t = np.linspace(-2, 2, 100)
f_values = t**2
g_values = np.exp(t)
plt.plot(t, f_values, ’r’, t, g_values, ’b--’)
plt.xlabel(’t’)
plt.ylabel(’f and g’)
plt.legend([’t**2’, ’e**t’])
plt.title(’Plotting of two functions (t**2 and e**t)’)
plt.grid(’on’)
plt.axis([-3, 3, -1, 10])

plt.tight_layout() # make subplots fit figure area
plt.show()

You observe that subplot appears in two places, first as plt.subplot(2, 1,
1), then as plt.subplot(2, 1, 2). This may be explained as follows. With a
code line like

plt.subplot(r, c, n)

we tell Python that in an arrangement of r by c subplots, r being the number of
rows and c being the number of columns, we address subplot number n, counted
row-wise. So, in two_plots_one_fig.py, when we first write

plt.subplot(2, 1, 1)

Python understands that we want to plot in subplot number 1 in an arrangement with
two rows and one column of subplots. Further down, Python interprets

plt.subplot(2, 1, 2)

and understands that plotting now is supposed to occur in subplot number 2 of the
same arrangement.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/two_plots_one_fig.py


1.6 Plotting, Printing and Input Data 27

Fig. 1.4 Ball trajectory and functions f (t) = t2 and g(t) = et as two plots in one figure

Note that, when dealing with subplots, some overlapping of subplots may occur.
Usually, this is solved nicely by inserting the following line (as at the end of our
code),

plt.tight_layout()

This will cause subplot parameters to be automatically adjusted, so that the subplots
fit in to the figure area.

The plot generated by the code is shown in Fig. 1.4.

Making a Hardcopy Saving a figure to file is achieved by

plt.savefig(’some_plot.png’) # PNG format
plt.savefig(’some_plot.pdf’) # PDF format
plt.savefig(’some_plot.jpg’) # JPG format
plt.savefig(’some_plot.eps’) # Encanspulated PostScript format

1.6.2 Printing: The String Format Method

We have previously seen that

print(y)

will print the value of the variable y. In an equally simple way, the line

print(’This is some text’)

will print This is some text (note the enclosing single quotes in the call to
print). Often, however, it is of interest to print variable values together with some
descriptive text. As shown below, such printing can be done nicely and controlled
in Python, since the language basically allows text and numbers to be mixed and
formatted in any way you need.
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One Variable and Text Combined Assume there is a variable v1 in your program,
and that v1 has the value 10.0, for example. If you want your code to print the value
of v1, so that the printout reads

v1 is 10.0

you can achieve that with the following line in your program:

print(’v1 is {}’.format(v1))

This is a call to the function print with “an argument composed of two parts”. The
first part reads v1 is {} enclosed in single quotes (note the single quotes, they
must be there!), while the second part is .format(v1). The single quotes of the
first part means that it is a string (alternatively, double quotes may be used).19 That
string contains a pair of curly brackets {}, which acts as a placeholder. The brackets
tell Python where to place the value of, in this case, v1, as specified in the second
part .format(v1). So, the formatting creates the string v1 is 10.0, which then
gets printed by print.

Several Variables and Text Combined Often, we have more variables to print,
and with two variables v1 and v2, we could print them by

print(’v1 is {}, v2 is {}’.format(v1, v2))

In this case, there are two placeholders {}, and—note the following: the order of v1
and v2 given in .format(v1, v2) will dictate the order in which values are filled
into the preceding string. That is, reading the string from left to right, the value of
v1 is placed where the first {} is found, while the value of v2 is placed where the
second {} is located.

So, if v1 and v2 have values 10.0 and 20.0, respectively, the printout will read

v1 is 10.0, v2 is 20.0

When printing the values of several variables, it is often natural to use one line for
each. This may be achieved by using \n as

print(’v1 is {} \nv2 is {}’.format(v1, v2)) # \n gives new line

which will produce

v1 is 10.0
v2 is 20.0

We could print the values of more variables by a straight forward extension of what
was shown here.

Note that, if we had accidentally switched the order of the variables as

print(’v1 is {}, \nv2 is {}’.format(v2, v1))

where .format(v2, v1) is used instead of .format(v1, v2)), we would have
got no error message, just an erroneous printout where the values are switched:

v1 is 20.0
v2 is 10.0

19 Previously, we have met objects of type int and float. A string is an object of type str.
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So, make sure the order of the arguments is correct. An alternative is to name the
arguments.

Naming the Arguments If we name the arguments (v1 and v2 are arguments to
format), we get the correct printout whether we call print as

print(’v1 is {v1}, \nv2 is {v2}’.format(v1=v1, v2=v2))

or, switching the order,

print(’v1 is {v1}, \nv2 is {v2}’.format(v2=v2, v1=v1))

Note that the names introduced do not have to be the same as the variable names,
i.e., “any” names would do. Thus, if we (for the sake of demonstration) rather use
the names a and b, any of the following calls to print would work just as fine (try
it!):

print(’v1 is {a}, \nv2 is {b}’.format(a=v1, b=v2))

or

print(’v1 is {a}, \nv2 is {b}’.format(b=v2, a=v1))

Controlling the printout like we have demonstrated this far, may be sufficient
in many cases. However, as we will see next, even more printing details can be
controlled.

Formatting More Details Often, we want to control how numbers are formatted.
For example, we may want to write 1/3 as 0.33 or 3.3333e-01 (3.3333 · 10−1),
and as the following example will demonstrate, such details may indeed be specified
in the argument to print. The essential new thing then, is that we supply the
placeholders {} with some extra information in between the brackets.

Suppose we have a real number 12.89643, an integer 42, and a text ’some
message’ that we want to write out in the following two different ways:

real=12.896, integer=42, string=some message
real=1.290e+01, integer= 42, string=some message

The real number is first to be written in decimal notation with three decimals, as
12.896, but afterwards in scientific notation as 1.290e+01. The integer should first
be written as compactly as possible, while the second time, 42 should be placed in
a five character wide text field.

The following program, formatted_print.py, produces the requested output:

r = 12.89643 # real number
i = 42 # integer
s = ’some message’ # string (equivalent: s = "some message")

print(’real={:.3f}, integer={:d}, string={:s}’.format(r, i, s))
print(’real={:9.3e}, integer={:5d}, string={:s}’.format(r, i, s))

Here, each placeholder carries a specification of what object type that will enter in
the corresponding place, with f symbolizing a float (real number), d symbolizing
an int (integer), and s symbolizing a str (string). Also, there is a specification of
how each number is to be printed. Note the colon within the brackets, it must be
there!

https://github.com/slgit/prog4comp_2/blob/master/py36-src/formatted_print.py
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In the first call to print,

print(’real={:.3f}, integer={:d}, string={:s}’.format(r, i, s))

:.3f tells Python that the floating point number r is to be written as compactly as
possible in decimal notation with three decimals, :d tells Python that the integer i
is to be written as compactly as possible, and :s tells Python to write the string s.

In the second call to print,

print(’real={:9.3e}, integer={:5d}, string={:s}’.format(r, i, s))

the interpretation is the same, except that r and i now should be formatted according
to :9.3e and :5d, respectively. For r, this means that its float value will be written
in scientific notation (the e) with 3 decimals, in a field that has a width of 9
characters. As for i, its integer value will be written in a field of width 5 characters.

Other ways of formatting the numbers would also have been possible.20 For
example, specifying the printing of r rather as :9.3f (i.e., f instead of e), would
give decimal notation, while with :g, Python itself would choose between scientific
and decimal notation, automatically choosing the one resulting in the most compact
output. Typically, scientific notation is appropriate for very small and very large
numbers and decimal notation for the intermediate range.

Printing with old string formatting

There is another older string formatting that, when used with print, gives the
same printout as the string format method. Since you will meet it frequently
in Python programs found elsewhere, you better know about it. With this
formatting, the calls to print in the previous example would rather read

print(’real=%.3f, integer=%d, string=%s’ % (r, i, s))
print(’real=%9.3e, integer=%5d, string=%s’ % (r, i, s))

As you might guess, the overall “structure” of the argument to print is the
same as with the string format method, but, essentially, % is used instead of {}
(with : inside) and .format.

An Example: Printing Nicely Aligned Columns A typical example of when
formatted printing is required, arises when nicely aligned columns of numbers are to
be printed. Suppose we want to print a column of t values together with associated
function values g(t) = t sin(t) in a second column.

We could achieve this in the following way (note that, repeating the same
set of statements multiple times, like we do in the following code, is not good
programming practice—one should use a loop. You will learn about loops in
Chap. 3.)

from math import sin

t0 = 2

20 https://docs.python.org/3/library/string.html#format-string-syntax.

https://docs.python.org/3/library/string.html#format-string-syntax
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dt = 0.55

t = t0 + 0*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

t = t0 + 1*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

t = t0 + 2*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

Running this program, we get the printout

2.00 1.819
2.55 1.422
3.10 0.129

Observe that the columns are nicely aligned here. With the formatting, we effec-
tively control the width of each column and also the number of decimals. The
numbers in each column will then become nicely aligned under each other and
written with the same precision.

To the contrary, if we had skipped the detailed formatting, and rather used a
simpler call to print like

print(t, g)

the columns would be printed as

2.0 1.81859485365
2.55 1.42209347935
3.1 0.128900053543

Observe that the nice and easy-to-read structure of the printout now is gone.

1.6.3 Printing: The f-String

We should briefly also mention printing by use of f-strings. Above, we printed the
values of variables v1 and v2, being 10.0 and 20.0, respectively. One of the calls we
used to print was (repeated here for easy reference)

print(’v1 is {} \nv2 is {}’.format(v1, v2)) # \n gives new line

and it produced the output

v1 is 10.0
v2 is 20.0

However, if we rather skip .format(v1, v2), and instead introduce an f in front
of the string, we can produce the very same output by the following simpler call to
print:

print(f’v1 is {v1} \nv2 is {v2}’)

So, f-strings21 are quite handy!

21 Read more about f-strings at https://www.python.org/dev/peps/pep-0498.

https://www.python.org/dev/peps/pep-0498
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Printing Strings that Span Multiple Lines

A handy way to print strings that run over several lines, is to use triple double-
quotes (or, alternatively, triple single-quotes) like this:

print("""This is a long string that will run over several lines
if we just manage to fill in
enough words.""")

The output will then read

This is a long string that will run over several lines
if we just manage to fill in
enough words.

1.6.4 User Input

Computer programs need a set of input data and the purpose is to use these data to
compute output (data), i.e., results. We have previously seen how input data can be
provided simply by assigning values to variables directly in the code. However, to
change values then, one must change them in the program.

There are more flexible ways of handling input, however. For example through
some dialogue with the user (i.e., the person running the program). Here is one
example where the program asks a question, and the user provides an answer by
typing on the keyboard:

age = int(input(’What is your age? ’))
print(’Ok, so you’re half way to {}, wow!’.format(age*2))

In the first line, there are two function calls, first to input and then to int. The func-
tion call input(’What is your age? ’) will cause the question “What is your
age?” to appear in the lower right pane. When the user has (after left-clicking the
pane) typed in an integer for the age and pressed enter, that integer will be returned
by input as a string (since input always returns a string22). Thus, that string must
be converted to an integer by calling int, before the assignment to age takes place.

So, after having interpreted and run the first line, Python has established the
variable age and assigned your input to it. The second line combines the calculation
of twice the age with a message printed on the screen. Try these two lines in a little
test program to see for yourself how it works.

It is possible to get more flexibility into user communication by building a string
before input shows it to the user. Adding a bit to the previous dialogue may
illustrate how it works:

# ...assume the variable "name" contains name of user

message = ’Hello {:s}! What is your age? ’.format(name)

age = int(input(message))
print(’Ok, so you’re half way to {}, wow!’.format(age*2))

22 The input function here in Python 3.6, corresponds to the raw_input function in Python 2.7.
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Thus, if the user name was Paul, for example, he would get this question up on his
screen

Hello Paul! What is your age?

He would type his age, press enter, and the code would proceed like before.
There are other ways of providing input to a program as well, e.g., via a graphical

interface (as many readers will be used to) or at the command line (i.e., as parameters
succeeding, on the same line, the command that starts the program). Reading data
from a file is yet another way.

1.7 Error Messages andWarnings

All programmers experience error messages, and usually to a large extent during the
early learning process. Sometimes error messages are understandable, sometimes
they are not. Anyway, it is important to get used to them.

One idea is to start with a program that initially is working, and then deliberately
introduce errors in it, one by one (but remember to take a copy of the original
working code!). For each error, you try to run the program to see what Python’s
response is. Then you know what the problem is and understand what the error
message is about. This will greatly help you when you get a similar error message
or warning later.

Debugging Very often, you will experience that there are errors in the program you
have written. This is normal, but frustrating in the beginning. You then have to find
the problem, try to fix it, and then run the program again. Typically, you fix one
error just to experience that another error is waiting around the corner. However,
after some time you start to avoid the most common beginner’s errors, and things
run more smoothly. The process of finding and fixing errors, called debugging, is
very important to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do) different
things in the program you need to fix. A simpler procedure, that often brings
you a long way, is to print information to the screen from different places in the
program. First of all, this is something you should do (several times) during program
development anyway, so that things get checked as you go along. However, if the
final program still ends up with error messages, you may save a copy of it, and do
some testing on the copy. Useful testing may then be to remove, e.g., the latter half
of the program (e.g., by inserting comment signs #), and insert print commands at
clever places to see what is the case. When the first half looks ok, possibly after
some corrections, insert parts of what was removed and repeat the process with the
new code. Using simple numbers and doing this in parallel with hand calculations
on a piece of paper (for comparison) is often a very good idea.

Exception Handling Python also offers means to detect and handle errors by the
program itself! The programmer must then foresee (when writing the code) that
there is a potential for error at some particular point. If, for example, a running
program asks the user to give a number, things may go very wrong if the user inputs
the word five in stead of the number 5. In Python, such cases may be handled
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elegantly in the code, since it is possible to (put simply) try some statements,
and if they go wrong, rather run some other code lines! This way, an exception
is handled, and an unintended program stop (“crash”) is avoided. More about
exception handling in Sect. 5.2.

Testing Code When a program finally runs without error messages, it might be
tempting to think that Ah. . . , I am finished!. But no! Then comes program testing,
you need to verify that the program does the computations as planned. This is almost
an art and may take more time than to develop the program, but the program is
useless unless you have much evidence showing that the computations are correct.
Also, having a set of (automatic) tests saves huge amounts of time when you further
develop the program.

Verification Versus Validation

Verification is important, but validation is equally important. It is great if
your program can do the calculations according to the plan, but is it the right
plan? Put otherwise, you need to check that the computations run correctly
according to the formula you have chosen/derived. This is verification: doing
the things right. Thereafter, you must also check whether the formula you have
chosen/derived is the right formula for the case you are investigating. This is
validation: doing the right things.

In the present book, it is beyond scope to question how well the mathe-
matical models describe a given phenomenon in nature or engineering, as the
answer usually involves extensive knowledge of the application area. We will
therefore limit our testing to the verification part.

1.8 Concluding Remarks

1.8.1 Programming Demands You to Be Accurate!

In this chapter, you have seen some examples of how simple things may be done
in Python. Hopefully, you have tried to do the examples on your own. If you have,
most certainly you have discovered that what you write in the code has to be very
accurate.

For example, in our program ball_plot.py, we called linspace in this way

t = np.linspace(0, 1, 1001)

If this had rather been written

t = np.linspace[0, 1, 1001)

we would have got an error message ([ was used instead of (), even if you and I
would understand the meaning perfectly well!

Remember that it is not a human that runs your code, it is a machine. Therefore,
even if the meaning of your code looks fine to a human eye, it still has to comply in
detail to the rules of the programming language. If not, you get warnings and error
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messages. This also goes for lower and upper case letters. If you (after importing
from math) give the command pi, you get 3.1415 . . .. However, if you write Pi,
you get an error message. Pay attention to such details also when they are given in
later chapters.

1.8.2 Write Readable Code

When you write a computer program, you have two very different kinds of
readers. One is Python, which will interpret and run your program according to
the rules. The other is some human, for example, yourself or a peer. It is very
important to organize and comment the code so that you can go back to your
own code after, e.g., a year and still understand what clever constructions you
put in there. This is relevant when you need to change or extend your code
(which usually happens often in reality). Organized coding and good commenting
is even more critical if other people are supposed to understand code that you have
written.

It might be instructive to see an example of code that is not very readable. If we
use our very first problem, i.e. computing the height y of a ball thrown up in the air,
the mathematical formulation reads:

y = v0t − 0.5gt2.

Now, instead of our previous program ball.py, we could write a working program
(in bad style!) like:

# This is an example of bad style!
m=5;u=9.81;y=0.6
t=m*y-u*0.5*y**2;print(t)

Running this code, would give the correct answer printed out. However, upon
comparison with the mathematical writing, it is not even clear that the two are
related, unless you sit down and look carefully at it!

In this code,

• variable names do not correspond to the mathematical variables
• there are no (explaining) comments
• no blank lines
• no space to each side of = and -
• several statements appear on the same line with no space in between

When comparing this “bad style” code to the original code in ball.py, the point
should be clear.

1.8.3 Fast Code or Slower and Readable Code?

In numerical computing, there is a strong tradition for paying much attention to fast
code. Industrial applications of numerical computing often involve simulations that
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run for hours, days, and even weeks. Fast code is tremendously important in those
cases.

The problem with a strong focus on fast code, unfortunately, is that sometimes
clear and easily understandable constructions are replaced by fast (and possibly
clever), but less readable code. For beginners, however, it is definitely most
important to learn writing readable and correct code.

We will make some comments on constructions that are fast or slow, but the main
focus of this book is to teach how to write correct programs, not the fastest possible
programs.

1.8.4 Deleting Data No Longer in Use

Python has automatic garbage collection, meaning that there is no need to delete
variables (or objects) that are no longer in use. Python takes care of this by itself.
This is opposed to, e.g., Matlab, where explicit deleting sometimes may be required.

1.8.5 Code Lines That Are Too Long

If a code line in a program gets too long, it may be continued on the next line
by inserting a back-slash at the end of the line before proceeding on the next line.
However, no blanks must occur after the back-slash! A little demonstration could be
the following,

my_sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 +\
14 + 15 + 16 + 17 + 18 + 19 + 20

So, the back-slash works as a line continuation character here.

1.8.6 Where to Find More Information?

We have already recommended Langtangen’s book, A Primer on Scientific Pro-
gramming with Python (Springer, 2016), as the main reference for the present book.

In addition, there is, of course, the official Python documentation website
(http://docs.python.org/), which provides a Python tutorial, the Python Library
Reference, a Language Reference, and more. Several other great books are also
available, check out, e.g., http://wiki.python.org/moin/PythonBooks.

As you do know, search engines like Google are excellent for finding information
quickly, so also with Python related questions! Finally, you will also find that the
questions and answers at http://stackoverflow.com often cover exactly what you
seek. If not, you may ask your own questions there.

http://docs.python.org/
http://wiki.python.org/moin/PythonBooks
http://stackoverflow.com
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1.9 Exercises

Exercise 1.1: Error Messages
Save a copy of the program ball.py and confirm that the copy runs as the original.
You are now supposed to introduce errors in the code, one by one. For each error in-
troduced, save and run the program, and comment how well Python’s response cor-
responds to the actual error. When you are finished with one error, re-set the program
to correct behavior (and check that it works!) before moving on to the next error.

a) Insert the word hello on the empty line above the assignment to v0.
b) Remove the # sign in front of the comment initial velocity.
c) Remove the = sign in the assignment to v0.
d) Change the reserved word print into pint.
e) Change the calculation of y to y = v0*t.
f) Change the line print(y) to print(x).

Filename: testing_ball.py.

Exercise 1.2: Volume of a Cube
Write a program that computes the volume V of a cube with sides of length L = 4
cm and prints the result to the screen. Both V and L should be defined as separate
variables in the program. Run the program and confirm that the correct result is
printed.

Hint See ball.py in the text.
Filename: cube_volume.py.

Exercise 1.3: Area and Circumference of a Circle
Write a program that computes both the circumference C and the area A of a circle
with radius r = 2 cm. Let the results be printed to the screen on a single line with an
appropriate text. The variables C, A and r should all be defined as separate variables
in the program. Run the program and confirm that the correct results are printed.
Filename: circumference_and_area.py.

Exercise 1.4: Volumes of Three Cubes
We are interested in the volume V of a cube with length L: V = L3, computed for
three different values of L.

a) In a program, use the linspace function to compute and print three values of L,
equally spaced on the interval [1, 3].

b) Carry out, by hand, the computation V = L3 when L is an array with three
elements. That is, compute V for each value of L.

c) Modify the program in a), so that it prints out the result V of V = L**3 when L is
an array with three elements as computed by linspace. Compare the resulting
volumes with your hand calculations.

d) Make a plot of V versus L.
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Filename: volume3cubes.py.

Exercise 1.5: Average of Integers
Write a program that stores the sum 1 + 2 + 3 + 4 + 5 in one variable and then
creates another variable with the average of these five numbers. Print the average to
the screen and check that the result is correct.
Filename: average_int.py.

Exercise 1.6: Formatted Print to Screen
Write a program that defines two variables as x = pi and y = 2. Then let the
program compute the product z of these two variables and print the result to the
screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
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2.1 Using Python Interactively

2.1.1 The IPython Shell

Python can also be used interactively, in which case we do not first write a program,
store it in a file and then execute it. Rather, we give statements and expressions
directly to what is known as a Python shell. This means that we communicate with
the Python interpreter via a particular interface. Interactive use of Python is a great
way to quickly demonstrate different aspects of Python and we will use it repeatedly
for this purpose. It is also very useful for testing out things like function behavior,
syntax issues, etc., before finalizing related code in a program you are writing.

We recommend to use IPython as shell (because it is superior to alternative
Python shells). With Spyder, Ipython is available at startup, appearing in the lower
right pane (the console). An interactive session appears as a succession of pairwise
corresponding input (to Python) and output (from Python). The user writes input
commands after the IPython prompt1 In [p]:, where p = 1, 2, . . ., and gets the
response back (if any) after Out [p]:. Thus, p serves as a counter for each pair of
input and output (when there is no output, this “pair” will consist of only input).
To exemplify, we may write:

In [1]: 2+2
Out[1]: 4

In [2]: 2*3
Out[2]: 6

In [3]: 10/2 # note: gives float
Out[3]: 5.0

In [4]: 2**3
Out[4]: 8

1 A prompt means a “ready sign”, i.e. the program allows you to enter a command, and different
programs often have different looking prompts.

© The Author(s) 2020
S. Linge, H. P. Langtangen, Programming for Computations - Python,
Texts in Computational Science and Engineering 15,
https://doi.org/10.1007/978-3-030-16877-3_2
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Observe that, as in a program, certain items must be imported before use, e.g., pi,
sin, cos, etc. For example, to interactively compute sin(π

2 ), you could write

In [1]: from math import sin, pi

In [2]: sin(pi/2)
Out[2]: 1.0

Observe that the import statement here, i.e. from math import sin, pi, is an
example of input that does not produce any corresponding output.

You may also define variables and use formulas interactively as

In [1]: v0 = 5

In [2]: g = 9.81

In [3]: t = 0.6

In [4]: y = v0*t - 0.5*g*t**2

In [5]: print(y)
1.2342

2.1.2 CommandHistory

IPython stores the dialogue, which allows you to easily repeat a previous command,
with or without modifications. Using the up-arrow key, brings you “backwards” in
command history. Pressing this one time gives you the previous command, pressing
two times gives you the command before that, and so on. With the down-arrow key
you can go “forward” again. When you have the relevant command at the prompt,
you may edit it before pressing enter (which lets Python read it and take action).

2.1.3 TAB Completion

When typing in IPython, you may get assistance from the TAB key to finalize a
variable name or command you are typing.

To illustrate, assume you have written

In [1]: import numpy as np

In [2]: x = np.lins # before pressing TAB key

and then press the TAB key. IPython will then assume you intend to write
np.linspace and therefore fill out the rest for you, so that you suddenly have

In [2]: x = np.linspace # after pressing TAB key

You may then go on and fill out the rest, perhaps like

In [2]: x = np.linspace(0, 1, 11) # after filling out the rest
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Generally, if you press the TAB key “too early”, IPython might have to give you a
list of options, from which you may choose the intended word.

With longer words, or if you are a bit uncertain about the spelling, TAB
completion is a handy tool.

2.2 Variables, Objects and Expressions

2.2.1 Choose Descriptive Variable Names

Names of variables should be chosen so that they are descriptive. If you are coding
some formula that in mathematical writing contains x and y, x and y ought to be
the corresponding names for those variables in your code (unless there are special
considerations for your case).

Some times it is difficult, or even impossible, to have a variable name in the code
that is identical to the corresponding mathematical symbol. Some inventiveness
is then called for, as, for example, when we used the variable name v0 for the
mathematical symbol v0 in our first program ball.py. Similarly, if you need a
variable for the counting of sheep, one appropriate name could be no_of_sheep,
i.e., join well-chosen words by use of an underscore.2 Such naming makes it much
easier for a human to understand the written code, which in turn makes it easier to
find errors or modify the code. Variable names may also contain any digit from 0 to
9, or underscores, but can not start with a digit. Letters may be lower or upper case,
which to Python is different.

2.2.2 ReservedWords

Note that certain names in Python are reserved, meaning that you can not use these
as names for variables. Interactively, we may get a complete list of the reserved
words:

In [1]: import keyword

In [2]: keyword.kwlist
Out[2]:
[’False’, ’None’, ’True’, ’and’, ’as’, ’assert’, ’break’, ’class’,
’continue’, ’def’, ’del’, ’elif’, ’else’, ’except’, ’finally’, ’for’,
’from’, ’global’, ’if’, ’import’, ’in’, ’is’, ’lambda’, ’nonlocal’,
’not’, ’or’, ’pass’, ’raise’, ’return’, ’try’, ’while’, ’with’, ’yield’]

As you can see, we have met some of these already, e.g., from and import. If you
accidentally use a reserved word as a variable name you get an error message.

2 Another common way of joining words into variable names, is to start each new word with
a capital letter, e.g., like in noOfSheep. In this book, however, we stick to the convention with
underscores.
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2.2.3 Assignment

We have learned previously that, for example, x = 2 is an assignment statement.
Also, when discussing ball.py in Sect. 1.2, we learned that writing, e.g., x = x +
4 causes the value of x to be increased by 4. Alternatively, this update could have
been achieved (slightly faster) with x += 4. In a similar way, x -= 4 reduces the
value of x by 4, x *= 4 multiplies x by 4, and x /= 4 divides x by 4, updating the
value of x accordingly.

The following also works as expected (but there is one point to make):

In [1]: x = 2

In [2]: y = x # y gets the value 2

In [3]: y = y + 1 # y gets the value 3

In [4]: x # x value not changed
Out[4]: 2

Observe that, after the assignment y = x, a change in y did not change the value of
x (also, if rather x had been changed, y would have stayed unchanged). We would
observe the same had x been the name of a float or a string, as you will realize
if you try this yourself.3 This probably seems obvious, but it is not the case for all
kinds of objects.4

2.2.4 Object Type and Type Conversion

The Type of an Object By now, we know that an assignment like x = 2 triggers
the creation of an object by the name x. That object will be of type int and have
the value 2. Similarly, the assignment y = 2.0 will generate an object named y,
with value 2.0 and type float, since real numbers like 2.0 are called floating point
numbers in computer language (by the way, note that floats in Python are often
written with just a trailing “dot”, e.g., 2. in stead of 2.0). We have also learned
that when Python interprets, e.g., s = ‘This is a string’, it stores the text (in
between the quotes) in an object of type str named s. These object types, i.e., int,
float and str, are still just a few of the many built-in object types in Python.5

The Type Function There is a useful built-in function type that can be used to
check the type of an object:

3 To test the string, you may try (in the order given): x = ‘yes’; y = x; y = y + ‘no’, and
then give the commands y and x to confirm that y has become yesno and x is still yes.
4 In Python, there is an important distinction between mutable and immutable objects. Mutable
objects can be changed after they have been created, whereas immutable objects can not. Here,
the integer referred to by x is an immutable object, which is why the change in y does not change
x. Among immutable objects we find integers, floats, strings and more, whereas arrays and lists
(Sect. 5.1) are examples of mutable objects.
5 https://docs.python.org/3/library/stdtypes.html.

https://docs.python.org/3/library/stdtypes.html
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In [1]: x = 2

In [2]: y = 4.0

In [3]: s = ’hello’

In [4]: type(x) # ...object named x is an integer
Out[4]: int

In [5]: type(y) # ...object named y is a float
Out[5]: float

In [6]: type(s) # ...object named s is a string
Out[6]: str

Type Conversion Objects may be converted from one type to another if it makes
sense. If, e.g., x is the name of an int object, writing

In [1]: x = 1

In [2]: y = float(x)

In [3]: y
Out[3]: 1.0

shows that y then becomes a floating point representation of x. Similarly, writing

In [1]: x = 1.0

In [2]: y = int(x)

In [3]: y
Out[3]: 1

illustrates that y becomes an integer representation of x. Note that the int function
rounds down, e.g., y = int(1.9) also makes y become the integer 1. Type
conversion may also occur automatically.

2.2.5 Automatic Type Conversion

What if we add a float object to an int object? We could, e.g., write

In [1]: x = 2

In [2]: x = x + 4.0

In [3]: x
Out[3]: 6.0

What happens here, is that automatic type conversion takes place, and the new x
will have the value 6.0, i.e., refer to an object of type float.
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Python is Both Dynamically and Strongly Typed

Python is a dynamically typed language, since a certain variable name may
refer to objects of different types during the execution of a program. This
means that writing

In [1]: z = 10 # z refers to an integer

In [2]: z = 10.0 # z refers to a float

In [3]: z = ’some string’ # z refers to a string

is perfectly fine and we get no error messages. In statically typed languages
(e.g., C and Fortran), this would not be accepted, since a variable then would
have to be of one particular type throughout.

Python is also a strongly typed language, since it is strict about how you
can combine object types:

In [1]: ’yes’ + ’no’ # add two strings
Out[1]: ’yesno’

In [2]: ’yes’ + 10 # ...try adding string and integer
Traceback (most recent call last):

File "<ipython-input-5-fdfd15f88bd0>", line 1, in <module>
’yes’ + 10

TypeError: cannot concatenate ’str’ and ’int’ objects

Adding two strings is straight forward, but trying the same with a string
and an integer gives an error message, since it is not well defined.
In a weakly typed language, this could very well give yes10 without
any error message. If so, it would be based on a (vaguely) founded
assumption that this is what the programmer intended (but perhaps it
is just as likely an error?). For more details on these matters, see, e.g.,
https://en.wikipedia.org/wiki/Python_(programming_language).

2.2.6 Operator Precedence

When the arithmetic operators +, -, *, / and ** appear in an expression, Python
gives them a certain precedence. Python interprets the expression from left to right,
taking one term (part of expression between two successive + or -) at a time. Within
each term, ** is done before * and /.

Consider the expression x = 1*5**2 + 10*3 - 1.0/4. There are three terms
here and interpreting this, Python starts from the left. In the first term, 1*5**2, it
first does 5**2 which equals 25. This is then multiplied by 1 to give 25 again. The
second term is 10*3, i.e., 30. So the first two terms add up to 55. The last term gives
0.25, so the final result is 54.75 which becomes the value of x.

https://en.wikipedia.org/wiki/Python_(programming_language)
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2.2.7 Division—Quotient and Remainder

It is sometimes desirable to pick out the quotient and remainder of a division a
b

,
for integer or floating point numbers a and b. In Python, we can do this with the
operators // (integer division)6 and % (modulo), respectively. They have the same
precedence as *, and their use may be exemplified by

In [1]: 11//2
Out[1]: 5

In [2]: 11%2
Out[2]: 1

Note that the sign of the remainder follows the sign of the denominator, i.e.,

In [1]: -11%2
Out[1]: 1

In [2]: 11%-2
Out[2]: -1

2.2.8 Using Parentheses

Note that parentheses are often very important to group parts of expressions together
in the intended way. Let us consider some variable x with the value 4 and assume
that you want to divide 1.0 by x + 1. We know the answer is 0.2, but the way we
present the task to Python is critical, as shown by the following example.

In [1]: x = 4

In [2]: 1.0/x+1
Out[2]: 1.25

In [3]: 1.0/(x+1)
Out[3]: 0.2

In the first try, we see that 1.0 is divided by x (i.e., 4), giving 0.25, which is then
added to 1. Python did not understand that our complete denominator was x+1. In
our second try, we used parentheses to “group” the denominator, and we got what
we wanted.

2.2.9 Round-Off Errors

Since most numbers can be represented only approximately on the computer, this
gives rise to what is called rounding errors. We may illustrate this if we take a look

6 Note that in Python 2.x, the operator / gives integer division, unless either the numerator and/or
the denominator is a float.
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at the previous calculation in more detail. Let us repeat the calculation, but this time
print more decimals,

In [1]: x = 4

In [2]: y = 1.0/(x+1)

In [3]: print(’The value of y is: {:.17f}’.format(y))
The value of y is: 0.20000000000000001

So, what should have been exactly 0.2, is really a slightly different value! The
inexact number representation gave us a small error. Usually, such errors are so
small compared to the other numbers of the calculation, that we do not need to
bother with them. Still, keep it in mind, since you will encounter this issue from time
to time. More details regarding number representations on a computer are given in
Sect. 6.6.3.

2.2.10 Boolean Expressions

In programming, we often need to check whether something is true or not true,
and then take action accordingly. This is handled by use of logical or boolean
expressions, which evaluate to the Boolean values true or false (i.e., not true).7 In
Python, these values are written True and False, respectively (note capital letters
T and F!).

The following session presents some examples of boolean expressions, while
also explaining the operators involved:

In [1]: x = 4

In [2]: # The following is a series of boolean expressions:

In [3]: x > 5 # x greater than 5
Out[3]: False

In [4]: x >= 5 # x greater than, or equal to, 5
Out[4]: False

In [5]: x < 5 # x smaller than 5
Out[5]: True

In [6]: x <= 5 # x smaller than, or equal to, 5
Out[6]: True

In [7]: x == 4 # x equal to 4
Out[7]: True

In [8]: x != 4 # x not equal to 4
Out[8]: False

Boolean values may also be combined into longer expressions by use of and and
or. Furthermore, preceding a boolean expression by not, will effectively switch

7 https://en.wikipedia.org/wiki/Boolean_data_type.

https://en.wikipedia.org/wiki/Boolean_data_type
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True to False and vice versa. Continuing the preceding session with a few more
examples will illustrate these points,

In [9]: x < 5 and x > 3 # x less than 5 AND x larger than 3
Out[9]: True

In [10]: x == 5 or x == 4 # x equal to 5 OR x equal to 4
Out[10]: True

In [11]: not x == 4 # not x equal to 4
Out[11]: False

The first of these compound expressions, i.e., x < 5 and x > 3, could alterna-
tively be written 3 < x < 5. It may also be added that the final boolean expression,
i.e., not x == 4 is equivalent to x != 4 from above, which most of us find easier
to read.

We will meet boolean expressions again soon, when we address while loops and
branching in Chap. 3.

2.3 Numerical Python Arrays

We have seen simple use of arrays before, in ball_plot.py (Sect. 1.5), when
the height of a ball was computed a thousand times. Corresponding heights and
times were handled with arrays y and t, respectively. The kind of arrays used in
ball_plot.py is the kind we will use in this book. They are not part of standard
Python,8 however, so we import what is needed from numpy. The arrays will be of
type numpy.ndarray, referred to as N-dimensional arrays in NumPy.

Arrays are created and treated according to certain rules, and as a programmer,
you may direct Python to compute and handle arrays as a whole, or as individual
array elements. All array elements must be of the same type, e.g., all integers or all
floating point numbers.

2.3.1 Array Creation and Array Elements

We saw previously how the linspace function from numpy could be used to
generate an array of evenly distributed numbers from an interval [a, b]. As a quick
reminder, we may interactively create an array x with three real numbers, evenly
distributed on [0, 2]:
In [1]: from numpy import linspace

In [2]: x = linspace(0, 2, 3)

In [3]: x
Out[3]: array([ 0., 1., 2.])

8 Standard Python does have an array object, but we will stick to numpy arrays, since they allow
more efficient computations. Thus, whenever we write “array”, it is understood to be a numpy array.
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In [4]: type(x) # check type of array as a whole
Out[4]: numpy.ndarray

In [5]: type(x[0]) # check type of array element
Out[5]: numpy.float64

The line x = linspace(0, 2, 3) makes Python reserve, or allocate, space in
memory for the array produced by linspace. With the assignment, x becomes
a reference to the array object from linspace, i.e. x becomes the “name of the
array”. The array will have three elements with names x[0], x[1] and x[2], where
the bracketed numbers are referred to as indices (note that when reading, we say “x
of zero” to x[0], “x of one” to x[1], and so on).

Observe that the indexing starts with 0, so that an array with n elements will have
n-1 as the last index. We say that Python has zero based indexing, which differs
from one based indexing where array indexing starts with 1 (as, e.g., in Matlab). In
x, the value of x[0] is 0.0, the value of x[1] is 1.0 and, finally, the value of x[2]
is 2.0. These values are given by the printout array([ 0., 1., 2.]) above.

With the command type(x), we confirm that the array object named x has type
numpy.ndarray. Note that, at the same time, the individual array elements refer to
objects with another type. We see this from the very last command, type(x[0]),
which makes Python respond with numpy.float64 (being just a certain float data
type in NumPy9).

If we continue the previous dialogue with a few lines, we can also demonstrate
that use of individual array elements is straight forward:

In [4]: sum_elements = x[0] + x[1] + x[2]

In [5]: sum_elements
Out[5]: 3.0

In [6]: product_2_elements = x[1]*x[2]

In [7]: product_2_elements
Out[7]: 2.0

In [8]: x[0] = 5.0 # overwrite previous value

In [9]: x
Out[9]: array([ 5., 1., 2.])

The Zeros Function There are other common ways to generate arrays too. One
way is to use another numpy function named zeros, which (as the name suggests)
may be used to produce an array with zeros. These zeros can be either floating
point numbers or integers, depending on the arguments provided when zeros is
called.10 Often, the zeros are overwritten in a second step to arrive at an array with
the numbers actually wanted.

9 You may check out the many numerical data types in NumPy at https://docs.scipy.org/
doc/numpy-1.13.0/user/basics.types.html.
10 https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.zeros.html.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.zeros.html
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The Built-In Len Function It is appropriate here to also mention the built-in
function len, which is useful when you need to find the length (i.e., the number
of elements) of an array.11

A quick demonstration of zeros and len may go like this,

In [1]: from numpy import zeros

In [2]: x = zeros(3, int) # get array with integer zeros

In [3]: x
Out[3]: array([ 0, 0, 0])

In [4]: y = zeros(3) # get array with floating point zeros

In [5]: y
Out[5]: array([ 0., 0., 0.])

In [6]: y[0] = 0.0; y[1] = 1.0; y[2] = 2.0 # overwrite

In [7]: y
Out[7]: array([ 0., 1., 2.])

In [8]: len(y)
Out[8]: 3

Note that the line x = zeros(3, int) could, alternatively, have been written a bit
more informative as x = zeros(3, dtype=int), where dtype means data type.
Just like with linspace, the line y = zeros(3) instructs Python to reserve, or
allocate, space in memory for the array produced by zeros. As we see from the
dialogue, the array gets the name y and will have three elements, all with a floating
point zero value. Each element in y is next overwritten by “the numbers we actually
wanted”. Strictly speaking, the assignment y[0] = 0.0 was redundant here, since
the value of y[0] was known to be 0.0 from before. It should be mentioned, though,
that programmers deliberately write such seemingly redundant statements from time
to time, meaning to tell a human code interpreter that the value is not “accidental”.

In our dialogue here, one explicit statement was written for each element value
we changed, i.e. as y[0] = 0.0; y[1] = 1.0; y[2] = 2.0. For arrays with
just a few elements, this is acceptable. However, with many elements, this is
obviously not the way to go. Longer arrays are typically first generated by zeros
(or otherwise), before individual array elements get new values in some loop
arrangement (explained in Chap. 3).

The Array Function Another handy way of creating an array, is by using the
function array, e.g., like this,

In [1]: from numpy import array

In [2]: x = array([0, 1, 2]) # get array with integers

In [3]: x
Out[3]: array([0, 1, 2])

In [4]: x = array([0., 1., 2.]) # get array with real numbers

11 The len function may also be used with other objects, e.g., lists (Sect. 5.1).
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In [5]: x
Out[5]: array([ 0., 1., 2.])

Note the use of “dots” to get floating point numbers and that we call array with
bracketed12 numbers, i.e., [0, 1, 2] and [0., 1., 2.].

2.3.2 Indexing an Array from the End

By use of a minus sign, the elements of an array may be indexed from the end, rather
from the beginning. That is, with our array x here, we could get hold of the very last
element by writing x[-1], the second last element by writing x[-2], and so on.
Continuing the previous interactive session, we may write

In [6]: x[-1]
Out[6]: 2.0

In [7]: x[-2]
Out[7]: 1.0

In [8]: x[-3]
Out[8]: 0.0

2.3.3 Index Out of Bounds

A typical error to make when working with arrays, is to accidentally use an illegal
index. With the array x in our ongoing dialogue, we may illustrate this by

In [9]: x[3]
Traceback (most recent call last):

File "<ipython-input-18-ed224ad0520d>", line 1, in <module>
x[3]

IndexError: index 3 is out of bounds for axis 0 with size 3

Our index 3 is illegal and we get the error message shown. From the above, it should
be clear that legal indices are 0, 1 and 2. Alternatively, if indexing from the end, legal
indices are −1, −2 and −3. Note that counting is a bit “different” then, causing −3
to be a legal index (as we saw above), while 3 is not.

2.3.4 Copying an Array

Copying arrays requires some care, as can be seen next, when we try to make a copy
of the x array from above:

In [10]: y = x

In [11]: y
Out[11]: array([ 0., 1., 2.]) # ...as expected

12 The arguments to array are two examples of lists, which will be addressed in Sect. 5.1.
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In [12]: y[0] = 10.0

In [13]: y
Out[13]: array([ 10., 1., 2.]) # ...as expected

In [14]: x
Out[14]: array([ 10., 1., 2.]) # ...x has changed too!

Intuitively, it may seem very strange that changing an element in y causes a similar
change in x! The thing is, however, that our assignment y = x does not make a copy
of the x array. Rather, Python creates another reference, named y, to the same array
object that x refers to. That is, there is one array object with two names (x and y).
Therefore, changing either x or y, simultaneously changes “the other” (note that this
behavior differs from what we found in Sect. 2.2.3 for single integer, float or string
objects).

To really get a copy that is decoupled from the original array, you may use the
copy function from numpy,

In [15]: from numpy import copy

In [16]: x = linspace(0, 2, 3) # x becomes array([ 0., 1., 2.])

In [17]: y = copy(x)

In [18]: y
Out[18]: array([ 0., 1., 2.])

In [19]: y[0] = 10.0

In [20]: y
Out[20]: array([ 10., 1., 2.]) # ...changed

In [21]: x
Out[21]: array([ 0., 1., 2.]) # ...unchanged

2.3.5 Slicing an Array

By use of a colon, you may work with a slice of an array. For example, by writing
x[i:j], we address all elements from index i (inclusive) to j (exclusive) in an
array x. An interactive session illustrates this,

In [1]: from numpy import linspace

In [2]: x = linspace(11, 16, 6)

In [3]: x
Out[3]: array([ 11., 12., 13., 14., 15., 16.])

In [4]: y = x[1:5]

In [5]: y
Out[5]: array([ 12., 13., 14., 15.])
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When copying a slice, the same logic applies as when copying the whole array. To
demonstrate the problem, we continue the dialogue as

In [6]: y[0] = -1.0

In [7]: y
Out[7]: array([-1., 13., 14., 15.]) # ...changed

In [8]: x
Out[8]: array([ 11., -1., 13., 14., 15., 16.]) # ...changed

As for the whole array, the function copy may be used (after importing: from
numpy import copy) as y = copy(x[1:5]) to give a “real” copy.

2.3.6 Two-Dimensional Arrays andMatrix Computations

For readers who are into linear algebra, it might be useful to see how matrices and
vectors may be handled with NumPy arrays.13 Above, we saw arrays where the
individual elements could be addressed with a single index only. Such arrays are
often called vectors.

To calculate with matrices, we need arrays with more than one “dimension”.
Such arrays may be generated in different ways, for example by use of the same
zeros function that we have seen before, it just has to be called a bit differently. Let
us illustrate by doing a simple matrix-vector multiplication with the numpy function
dot:

In [1]: import numpy as np

In [2]: I = np.zeros((3, 3)) # create matrix (note parentheses!)

In [3]: I
Out[3]:
array([[ 0., 0., 0.],

[ 0., 0., 0.],
[ 0., 0., 0.]])

In [4]: type(I) # confirm that type is ndarray
Out[4]: numpy.ndarray

In [5]: I[0, 0] = 1.0; I[1, 1] = 1.0; I[2, 2] = 1.0 # identity matrix

In [6]: x = np.array([1.0, 2.0, 3.0]) # create vector

In [7]: y = np.dot(I, x) # computes matrix-vector product

In [8]: y
Out[8]: array([ 1., 2., 3.])

13 If you are not familiar with matrices and vectors, and such calculations are not on your
agenda, you should consider skipping (or at least wait with) this section, as it is not required for
understanding the remaining parts of the book.
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Note how zeros must be called with double parentheses now. The accessing of
individual matrix elements should be according to intuition. With some experience
from matrix-vector algebra, it is clear that y is correctly computed here. Note that
most programmers would use the NumPy function eye here, to generate the identity
matrix directly. One would then call I = eye(3) and get I as a two dimensional
array with ones on the diagonal.

If you are experienced with matrices and vectors in Matlab, there is another way
to handle matrices and vectors with NumPy, which will appear more like you are
used to. For example, a matrix-vector product is then coded as A*x and not by use of
the dot function. To achieve this, we must use objects of another type, i.e., matrix
objects (note that a matrix object will have different properties than an ndarray
object!). If we do the same matrix-vector calculation as above, we can show how
ndarray objects may be converted into matrix objects and how the calculations
then can be fulfilled:

In [1]: import numpy as np

In [2]: I = np.eye(3) # create identity matrix

In [3]: I
Out[3]:
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

In [4]: type(I) # confirm that type is ndarray
Out[4]: numpy.ndarray

In [5]: I = np.matrix(I) # convert to matrix object

In [6]: type(I) # confirm that type is matrix
Out[6]: numpy.matrixlib.defmatrix.matrix

In [7]: x = np.array([1.0, 2.0, 3.0]) # create ndarray vector

In [8]: x = np.matrix(x) # convert to matrix object (row vector)

In [9]: x = x.transpose() # convert to column vector

In [10]: y = I*x # computes matrix-vector product

In [11]: y
Out[11]:
matrix([[ 1.],

[ 2.],
[ 3.]])

Note that np.matrix(x) turns x, with type ndarray, into a row vector by default
(type matrix), so x must be transposed with x.transpose() before it can be
multiplied with the matrix I.
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2.4 RandomNumbers

Programming languages usually offer ways to produce (apparently) random num-
bers, referred to as pseudo-random numbers. These numbers are not truly random,
since they are produced in a predictable way once a “seed” has been set (the seed is
a number, which generation depends on the current time).

Drawing One Random Number at a Time Pseudo-random numbers come in
handy if your code is to deal with phenomena characterized by some randomness.
For example, your code could simulate a throw of dice by generating pseudo-
random integers between 1 and 6. A Python program (throw_2_dice.py) that
mimics the throw of two dice could read

import random

a = 1; b = 6
r1 = random.randint(a, b) # first die
r2 = random.randint(a, b) # second die

print(’The dice gave: {:d} and {:d}’.format(r1, r2))

The function randint is available from the imported module random, which
is part of the standard Python library, and returns a pseudo-random integer on
the interval [a, b], a ≤ b. Each number on the interval has equal probability
of being picked. It should be clear that, when numbers are generated pseudo-
randomly, we can not tell in advance what numbers will be produced (unless we
happen to have detailed knowledge about the number generation process). Also,
running the code twice, generally gives different results, as you might confirm with
throw_2_dice.py. Note that, since the seed depends on the current time, this
applies even if you restart your computer in between the two runs.

When debugging programs that involve pseudo-random number generation, it
is a great advantage to fix the seed, which ensures that the very same sequence
of numbers will be generated each time the code is run. This simply means that
you pick the seed yourself and tell Python what that seed should be. For our little
program throw_2_dice.py, we could choose, e.g., 10 as our seed and insert the
line

random.seed(10)

after the import statement (and before randint is called). Test this modification and
confirm that it causes each run to print the same two numbers with every execution.

In fact, it is a good idea to fix the seed from the outset when you write the
program. Later, when (you think) it works for a fixed seed, you change it so that the
number generator sets its own seed, after which you proceed with further testing.

An alternative to throw_2_dice.py, could be to use Python interactively as

In [1]: import random

In [2]: random.randint(1, 6)
Out[2]: 6

https://github.com/slgit/prog4comp_2/blob/master/py36-src/throw_2_dice.py
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In [3]: random.randint(1, 6)
Out[3]: 5

The random module contains also other useful functions, two of which are
random (yes, same name as the module) and uniform. Both of these functions
return a floating point number from an interval where each number has equal
probability of being drawn. For random, the interval is always [0, 1) (i.e. 0 is
included, but 1 is not), while uniform requires the programmer to specify the
interval [a, b] (where both a and b are included14). The functions are used similarly
to randint, so, interactively, we may for example do:

In [1]: import random

In [2]: x = random.random() # draw float from [0, 1), assign to x

In [3]: y = random.uniform(10, 20) # ...float from [10, 20], assign to y

In [4]: print(’x = {:g}, y = {:g}’.format(x, y))
Out[5]: x = 0.714621 , y = 13.1233

Drawing Many Random Numbers at a Time You have now met three useful
functions from the random module in Python’s standard library and seen them in
simple use. However, each of those functions provides only a single number with
each function call. If you need many pseudo-random numbers, one option is to use
such function calls inside a loop (Chap. 3). Another (faster) alternative, is to rather
use functions that allow vectorized drawing of the numbers, so that a single function
call provides all the numbers you need in one go. Such functionality is offered by
another module, which also happens to be called random, but which resides in the
numpy library. All three functions demonstrated above have their counterparts in
numpy and we might show interactively how each of these can be used to generate,
e.g., four numbers with one function call.

In [1]: import numpy as np

In [2]: np.random.randint(1, 6, 4) # ...4 integers from [1, 6)
Out[2]: array([1, 3, 5, 3])

In [3]: np.random.random(4) # ...4 floats from [0, 1)
Out[3]: array([ 0.79183276, 0.01398365, 0.04982849, 0.11630963])

In [4]: np.random.uniform(10, 20, 4) # ...4 floats from [10, 20)
Out[4]: array([ 10.95846078, 17.3971301 , 19.73964488, 18.14332234])

In each case, the size argument is here set to 4 and an array is returned. Of course,
with the size argument, you may ask for thousands of numbers if you like. As is
evident from the interval specifications in the code, none of these functions include
the upper interval limit. However, if we wanted, e.g., randint to have 6 as the
inclusive upper limit, we could simply give 7 as the second argument in stead.

14 Strictly speaking, b may or may not be included (http://docs.python.org/), depending on floating-
point rounding in the equation a + (b-a)*random().

http://docs.python.org/
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One more handy function from numpy deserves mention. If you have an array15

with numbers, you can shuffle those numbers in a randomized way with the
shuffle function,

In [1]: import numpy as np

In [2]: a = np.array([1, 2, 3, 4])

In [3]: np.random.shuffle(a)

In [4]: a
Out[4]: array([1, 3, 4, 2])

Note that also numpy allows the seed to be set. For example, setting the seed to 10
(as above), could be done by

np.random.seed(10)

The fact that a module by the name random is found both in the standard
Python library random and in numpy, calls for some alertness. With proper import
statements (discussed in Sect. 1.4.1), however, there should be no problem.

For more details about the numpy functions for pseudo-random numbers, check
out the documentation (https://docs.scipy.org/doc/).

2.5 Exercises

Exercise 2.1: Interactive Computing of Volume
Redo the task in Exercise 1.2 by using Python interactively. Compare with what you
got previously from the written program.

Exercise 2.2: Interactive Computing of Circumference and Area
Redo the task in Exercise 1.3 by using Python interactively. Compare with what you
got previously from the written program.

Exercise 2.3: Update Variable at Command Prompt
Invoke Python interactively and perform the following steps.

1. Initialize a variable x to 2.
2. Add 3 to x. Print out the result.
3. Print out the result of x + 1*2 and (x+1)*2. (Observe how parentheses make a

difference).
4. What object type does x refer to?

Exercise 2.4: Multiple Statements on One Line
a) The output produced by the following two lines has been removed. Can you tell,

from just reading the input, what the output was in each case?

15 Instead of an array, we can also use a list, see Sect. 5.1.

https://docs.scipy.org/doc/
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In [1]: x = 1; print(x + 1); x = x + 1; x += 1; x = x - 1; x -= 1

In [2]: print(x)

Then type it in and confirm that your predictions are correct.

b) Repeat the previous task, but this time without statements number 3 and 4
(counted from left) of the first input line. To confirm your prediction this time,
use the command history facility to first bring up the previous command line,
which you then edit appropriately before pressing enter.

Remarks With our statements here, it would clearly have been more readable to
write them on separate lines (also making the semi-colon superfluous). Generally,
this is also the case, although the possibility of writing several statements on a single
line comes in handy from time to time.

Exercise 2.5: Boolean Expression—Even or Odd Number?
Let x be an integer. Use the modulo operator and suggest a boolean expression that
can be used to check whether that integer is an even number (or odd, since if not
even, the integer is odd). Then check your suggestion interactively, e.g., for x being
1, 2, 3 and 4.

Exercise 2.6: Plotting Array Data
Assume four members of a family with heights 1.60 m, 1.85 m, 1.75 m, and 1.80 m.
Next door, there is another family, also with four members. Their heights are 0.50 m,
0.70 m, 1.90 m, and 1.75 m.

a) Write a program that creates a single plot with all the heights from both families.
In your code, use the zeros function from numpy to generate three arrays, two
for keeping the heights from each family and one for “numbering” of family
members (e.g., as 1, 2, 3 and 4). Let the code overwrite the zeros in the arrays
with the heights given, using appropriate assignment statements. Let the heights
be presented as two continuous curves in red and blue (solid lines), respectively,
when the heights of each family are plotted against family member number. Use
also the axis function for the plot, so that the axis with family member numbers
run from 0 to 5, while the axis with heights cover 0 to 2.

b) Suggest a minor modification of your code, so that only data points are plotted.
Also, confirm that your suggestion works as planned.

Filename: plot_heights.py.

Exercise 2.7: Switching Values
In an interactive session, use linspace from numpy to generate an array x with
the numbers 1.0, 2.0 and 3.0. Then, switch the content of x[0] and x[1], before
checking x to see that your switching worked as planned.
Filename: switching_values.py.
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Exercise 2.8: Drawing Random Numbers
Write a program that prints four random numbers, from the interval [0, 10], to the
screen. To generate the numbers, the program should use the uniform function from
the random module of the standard Python library.
Filename: drawing_random_numbers.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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3.1 The for Loop

Many computations are repetitive by nature and programming languages have
certain loop structures to deal with this. One such loop structure is the for loop.

3.1.1 Example: Printing the 5 Times Table

Assume the task is to print out the 5 times table. Before having learned about loop
structures in programming, most of us would first think of coding this like:

# Naively printing the 5 times table
print(’{:d}*5 = {:d}’.format(1, 1*5))
print(’{:d}*5 = {:d}’.format(2, 2*5))
print(’{:d}*5 = {:d}’.format(3, 3*5))
print(’{:d}*5 = {:d}’.format(4, 4*5))
print(’{:d}*5 = {:d}’.format(5, 5*5))
print(’{:d}*5 = {:d}’.format(6, 6*5))
print(’{:d}*5 = {:d}’.format(7, 7*5))
print(’{:d}*5 = {:d}’.format(8, 8*5))
print(’{:d}*5 = {:d}’.format(9, 9*5))
print(’{:d}*5 = {:d}’.format(10, 10*5))

© The Author(s) 2020
S. Linge, H. P. Langtangen, Programming for Computations - Python,
Texts in Computational Science and Engineering 15,
https://doi.org/10.1007/978-3-030-16877-3_3
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When executed, the 10 results are printed quite nicely as

1*5 = 5
2*5 = 10
...
...

With a for loop, however, the very same printout may be produced by just two (!)
lines of code:

for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: # Note... for, in and colon
print(’{:d}*5 = {:d}’.format(i, i*5)) # Note indent

With this construction, the loop variable i takes on each of the values 1 to 10, and
for each value, the print function is called.

Since the numbers 1 to 10 appear in square brackets, they constitute a special
structure called a list. The loop here would work equally well if the brackets had
been dropped, but then the numbers would be a tuple:

for i in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: # no brackets...
print(’{:d}*5 = {:d}’.format(i, i*5))

Both lists and tuples have certain properties, which we will come back to in Sect. 5.1.

3.1.2 Characteristics of a Typical for Loop

Loop Structure There are different ways to write for loops, but herein, they are
typically structured as

for loop_variable in some_numbers: # Loop header
<code line 1> # 1st line in loop body
<code line 2> # 2nd line in loop body
...
... # last line in loop body

# First line after the loop

where loop_variable runs through the numbers1 given by some_numbers. In the
very first line, called the for loop header, there are two reserved words, for and
in. They are compulsory, as is the colon at the end. Also, the block of code lines
inside a loop must be indented. These indented lines are referred to as the loop body.
Once the indent is reversed, we are outside (and after) the loop (as commented with
# First line after the loop, see code). One run-through of the loop body is
called an iteration, i.e., in our example above with the 5 times table, the loop will
do 10 iterations.

Loop Variable The name picked for the loop_variable is up to the programmer.
In our times table example, the loop variable i appeared explicitly in the print
command within the loop. Generally, however, the loop variable is not required to
enter in any of the code lines within the loop, it is just available if you need it.

1 In Python, the loop variable does not have to be a number. For example, a header like for name
in [‘John’, ‘Paul’, ‘George’, ‘Ringo’]: is fine, causing the loop variable to be a name.
If you place print(name) inside the loop and run it, you get each of the names printed. In this
book, however, our focus will be loops with numbers.
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This means that if we had, e.g., switched the print command inside our loop with
print(’Hello!’) (i.e., so that i does not appear explicitly within the loop), i
would still run through the numbers 1 to 10 as before, but Hello! would be printed
10 times instead.

The loop variable i takes on the values 1 to 10 in the order listed, and any order
would be acceptable to Python. Thus, if we (for some reason) would like to reverse
the order of the printouts, we could simply reverse the list of numbers, writing [10,
9, 8, 7, 6, 5, 4, 3, 2, 1] instead.

It should be noted that the loop variable is not restricted to run over integers. Our
next example includes looping also over floating point values.

Indentation and Nested Loops In our simple times table example above, the print
command inside the loop was indented 4 spaces, which is in accordance with the
official style guide of Python.2

Strictly speaking, the style guide recommends an indent of 4 spaces per
indentation level. What this means, should become clear if we demonstrate how
a for loop may appear within another for loop, i.e., if we show an arrangement
with nested loops.

for i in [1, 2, 3]:
# First indentation level (4 spaces)
print(’i = {:d}’.format(i))
for j in [4.0, 5.0, 6.0]:

# Second indentation level (4+4 spaces)
print(’ j = {:.1f}’.format(j))

# First line AFTER loop over j
# First line AFTER loop over i

The meaning of indentation levels should be clear from the comments (see code),
and it is straight forward to use more nested loops than shown here (see, e.g.,
Exercise 5.7). Note that, together with the colon, indenting is part of the syntax
also for other basic programming constructions in Python (e.g., in if-elif-else
constructions and functions).

When executing the nested loop construction, we get this printout:

i = 1
j = 4.0
j = 5.0
j = 6.0

i = 2
j = 4.0
j = 5.0
j = 6.0

i = 3
j = 4.0
j = 5.0
j = 6.0

From the printout, we may infer how the execution proceeds. For each value of
i, the loop over j runs through all its values before i is updated (or the loop is
terminated). To test your understanding of nested loops, you are recommended to
do Exercise 5.1.

2 https://www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/
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Other for Loop Structures In this book, you will occasionally meet for loops
with a different structure, and as an example, take a look at this:

for i, j, k in (1, 2, 3), (4, 5, 6), (6, 7, 8):
print(i, j, k)

Here, in the first iteration, the loop variables i, j and k will become 1, 2 and 3,
respectively. In the second iteration, they will become 4, 5 and 6, respectively, and
so on. Thus, the printout reads

1 2 3
4 5 6
6 7 8

As usual, each of i, j and k can be used in any desirable way within the loop.

3.1.3 Combining for Loop and Array

Often, loops are used in combination with arrays, so we should understand how that
works. To reach this understanding, it is beneficial to do an example with just a
small array.

Assume the case is to compute the average height of family members in a family
of 5. We may choose to store all the heights in an array, which we then run through
by use of a for loop to compute the average. The code (average_height.py) may
look like this:

import numpy as np

N = 5
h = np.zeros(N) # heights of family members (in meter)
h[0] = 1.60; h[1] = 1.85; h[2] = 1.75; h[3] = 1.80; h[4] = 0.50

sum = 0
for i in [0, 1, 2, 3, 4]:

sum = sum + h[i]
average = sum/N

print(’Average height: {:g} meter’.format(average))

When executed, the code gives 1.5 m as the average height, which compares
favorably to a simple hand calculation. What happens here, is that we first sum up3

all the heights being stored in the array h, before we divide by the number of family
members N (i.e., just like we would do by hand). Observe how sum is initialized to 0
before entering the loop, and that with each iteration, a new height is added to sum.
Note that the loop variable i takes on the integer index values of the array, which
start with 0 and end with N − 1.

3 Note this way of using a loop to compute a sum, it is a standard technique in programming.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/average_height.py
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Running Through Code “by Hand”

It is appropriate to stress that much understanding is often developed by first
going through code “by hand”, i.e. just read the code while doing calculations
by hand, before comparing these hand calculations to what the code produces
when run (often some print commands must be inserted in the code to enable
detailed comparison).

Thus, to make sure you understand the important details in average_height.
py, you are encouraged to go through that code by hand right now. Also, in a
copy, insert a print command in the loop, so that you can compare the output
from that program to your own calculations, iteration by iteration.

3.1.4 Using the range Function

At this point, the observant reader might argue: “Well, this for loop seems handy,
but what if the loop must do a really large number of iterations? If the loop variable
is to run through hundreds of numbers, we must spend all day typing those numbers
into the loop header”!

An Example This is where the built-in range function enters the picture. When
called, the range function will provide integers according to the arguments given in
the function call. For example, we could have used range in average_height.py
by just changing the header from

for i in [0, 1, 2, 3, 4]: # original code line

to

for i in range(0, 5, 1): # new code line

Here, range(0, 5, 1) is a function call, where the function range is told to
provide the integers from 0 (inclusive) to 5 (exclusive!) in steps of 1. In this case,
range(0, 5, 1) will provide exactly those numbers that we had in the original
code, i.e., the loop variable i will run through the same values (0, 1, 2, 3 and 4) as
before, and program computations stay the same.

With a little interactive test, we may confirm that the range function provides the
promised numbers. However, since what is returned from the range function is an
object of type range, the number sequence is not explicitly available.4 Converting
the range object to a list, however, does the trick.

In [1]: x = range(0, 5, 1)

In [2]: type(x)
Out[2]: range

In [3]: x
Out[3]: range(0, 5)

4 In Python 2, the range function returned the requested numbers as a list.
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In [4]: list(x) # convert to list
Out[4]: [0, 1, 2, 3, 4]

A General Call to range With a header like

for loop_variable in range(start, stop, step):

and a step > 0, loop_variable will run through the numbers start, start +
1*step, start + 2*step, ...., start + n*step, where start+n∗step <

stop <= start + (n + 1) ∗ step. So, the final number is as close as we can get to
the specified stop without equalling, or passing, it. For a negative step (step < 0,
example given below), the same thing applies, meaning that the final number can
not equal, or be more negative, than the argument stop. Note that an integer step
different from 1 and −1 is perfectly legal.

Different Ways of Calling range The function range is most often used in for
loops to produce a required sequence of integers, but the function is not restricted to
for loops only, of course. It may be called in different ways, e.g., utilizing default
values. Some examples are

In [1]: list(range(1, 11, 1))
Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [2]: list(range(1, 11)) # step not given, default 1
Out[2]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [3]: list(range(11)) # start not given either, default 0
Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [4]: list(range(1, -11, -1))
Out[4]: [1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10]

When calling range, there is no argument specifying how many numbers should be
produced, like we saw with the linspace function of numpy. With range, this is
implied by the function arguments start, stop and step.

Computer Memory Considerations Note that range does not return all the
requested numbers at once. Rather, the call to range will cause the numbers to
be provided one by one during loop execution, giving one number per iteration.
This way, simultaneous storing of all (loop variable) numbers in computer memory
is avoided, which may be very important when there is a large number of loop
iterations to make.

3.1.5 Using break and continue

It is possible to break out of a loop, i.e., to jump directly to the first code line after
the loop, by use of a break statement. This might be desirable, for example, if a
certain condition is met during loop execution, which makes the remaining iterations
redundant.

With loops, it may also become relevant to skip any remaining statements of
an ongoing iteration, and rather proceed directly with the next iteration. That is,
contrary to the “loop stop” caused by a break statement, the loop continues to run
after a continue statement, unless the end of the loop has been reached.
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An example of how to use break and continue can be found in Sect. 5.2
(times_tables_4.py).

The break and continue statements may also be used in while loops, to be
treated next.

3.2 The while Loop

The other basic loop construction in Python is the while loop, which runs as long as
a condition is True. Let us move directly to an example, and explain what happens
there, before we consider the loop more generally.

3.2.1 Example: Finding the Time of Flight

To demonstrate a while loop in action, we will make a minor modification of the
case handled with ball_plot.py in Sect. 1.5. Now, we choose to find the time of
flight for the ball.

The Case Assume the ball is thrown with a slightly lower initial velocity, say
4.5 ms−1, while everything else is kept unchanged. Since we still look at the first
second of the flight, the heights at the end of the flight will then become negative.
However, this only means that the ball has fallen below its initial starting position,
i.e., the height where it left the hand, so there is nothing wrong with that. In an array
y, we will then have a series of heights which towards the end of y become negative.
As before, we will also have an array t with all the times for corresponding heights
in y.

The Program In a program named ball_time.py, we may find the time of flight
as the time when heights switch from positive to negative. The program could look
like this

import numpy as np

v0 = 4.5 # Initial velocity
g = 9.81 # Acceleration of gravity
t = np.linspace(0, 1, 1000) # 1000 points in time interval
y = v0*t - 0.5*g*t**2 # Generate all heights

# Find index where ball approximately has reached y=0
i = 0
while y[i] >= 0:

i = i + 1

# Since y[i] is the height at time t[i], we do know the
# time as well when we have the index i...
print(’Time of flight (in seconds): {:g}’.format(t[i]))

# We plot the path again just for comparison
import matplotlib.pyplot as plt
plt.plot(t, y)
plt.plot(t, 0*t, ’g--’)
plt.xlabel(’Time (s)’)
plt.ylabel(’Height (m)’)
plt.show()

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_time.py
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Fig. 3.1 Vertical position of ball

The loop will run as long as the condition y[i] >= 0 evaluates to True. Note
that the programmer introduced a variable by the name i, initialized it (i = 0)
before the loop, and updated it (i = i + 1) in the loop. So, each time the condition
y[i] >= 0 evaluates to True, i is explicitly increased by 1, allowing a check of
successive elements in the array y.

When the condition y[i] >= 0 evaluates to False, program execution proceeds
with the code lines after the loop. This means that, after skipping the comments, the
time of flight is printed, followed by a plotting of the heights (to allow an easy check
of the time of flight).

Reporting the Answer Remember that the height is computed at chosen points
in time only, so, most likely, we do not have the time for when the height is
exactly zero. Thus, reporting t[i] as the time of flight is an approximation. Another
alternative, could be to report 0.5*(t[i-1] + t[i]) as the answer, reasoning that
since y[i] is negative (which is why the loop terminated), t[i] must be too large.

Running the Program If you run this program, you get the printout

Time of flight (in seconds): 0.917918

and the plot seen in Fig. 3.1. The printed time of flight seems consistent with what
we can read off from the plot.

3.2.2 Characteristics of a Typical while Loop

Loop Structure and Interpretation The structure of a typical while loop may be
put up as

while some_condition: # Loop header
<code line 1> # 1st line in loop body
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<code line 2> # 2nd line in loop body
...
...

# This is the first line after the loop

The first line here is the while loop header. It contains the reserved word while and
ends with a colon, both are compulsory. The indented lines that follow the header
(i.e., <code line 1>, <code line 2>, etc.) constitute a block of statements, the
loop body. Indentation is done as with for loops, i.e., 4 spaces by convention. In
our example above with the ball, there was only a single line in the loop body (i.e.,
i = i + 1). As with for loops, one run-through of the loop body is referred to as
an iteration. Once the indentation is reversed, the loop body has ended. Here, the
first line after the loop is # This is the first line after the loop.

Between while and the colon, there is some_condition, which is a boolean
expression that evaluates to either True or False. The boolean expression may be
a compound expression with and, or, etc.

When a while loop is encountered by the Python interpreter, it evaluates
some_condition the first time. If True, one iteration of the loop body is carried
out. After this first iteration, some_condition is evaluated once again (meaning
that program execution goes back up to the top of the loop). If True again, there
is another iteration, and so on, just like we saw above with ball_time.py. Once
some_condition evaluates to False, the loop is finished and execution continues
with the first line after the loop. Note that if some_condition evaluates to False
the very first time, the statements inside the loop will not be executed at all, and
execution simply continues immediately with the first line after the loop.

Compared to a for loop, the programmer does not have to specify the number
of iterations when coding a while loop. It simply runs until the boolean expression
becomes False. Remember that if you want to use a variable analogously to the
loop variable of a for loop, you have to explicitly update that variable inside the
while loop (as we did with i in ball_time.py above). This differs from the
automatic update of a loop variable in for loops.

Just as in for loops, there might be (arbitrarily) many code lines in a while loop.
Also, nested loops work just like nested for loops. Having for loops inside while
loops, and vice versa, is straight forward. Any for loop may also be implemented as
a while loop, but while loops are more flexible, so not all of them can be expressed
as a for loop.

Infinite Loops It is possible to have a while loop in which the condition never
evaluates to False, meaning that program execution can not escape the loop!
This is referred to as an infinite loop. Sometimes, infinite loops are just what you
need, for example, in surveillance camera systems. More often, however, they are
unintentional, and when learning to code, it is quite common to unintentionally end
up with an infinite loop (just wait and see!). If you accidentally enter an infinite loop
and the program just hangs “forever”, press Ctrl+c to stop the program.

To check that you have gained a basic understanding of the while loop
construction, you are recommended to do Exercise 3.4.
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3.3 Branching (if, elif and else)

Very often in life,5 and in computer programs, the next action depends on the
outcome of a question starting with “if”. This gives the possibility of branching
into different types of action depending on some criterion.

As an introduction to branching, let us “build up” a little program that evaluates
a water temperature provided by the program user.

3.3.1 Example: Judging theWater Temperature

Assume we want to write a program that helps us decide, based on water temperature
alone (in degrees Celcius), whether we should go swimming or not.

One if-test As a start, we code our program simply as

T = float(input(’What is the water temperature? ’))
if T > 24:

print(’Great, jump in!’)
# First line after if part

Even if you have never seen an if test before, you are probably able to guess what
will happen with this code. Python will first ask the user for the water temperature.
Let us assume that 25 is entered, so that T becomes 25 through the assignment
(note that, since the input returns a string, we convert it to a float before assigning
to T). Next, the condition T > 24 will evaluate to True, which implies that the print
command gets executed and “Great, jump in!” appears on the screen.

To the contrary, if 24 (or lower) had been entered, the condition would have
evaluated to False and the print command would not have been executed. Rather,
execution would have proceeded directly to the line after the if part, i.e., to
the line # First line after if part, and continued from there. This would
mean, however, that our program would give us no response if we entered a water
temperature of 24, or lower.

Two if-tests Immediately, we realize that this is not satisfactory, so (as a “first fix”)
we extend our code with a second if test, as

T = float(input(’What is the water temperature? ’))
if T > 24: # testing condition 1

print(’Great, jump in!’)
if T <= 24: # testing condition 2

print(’Do not swim. Too cold!’)
# First line after if-if construction

This will work, at least in the way that we get a planned printout (“Do not swim.
Too cold!”) also when the temperature is 24, or lower. However, something is not
quite right here. If T is 24 (or lower), the first condition will evaluate to False, and

5 Some readers may perhaps be puzzled by this sentence, bringing in such a huge thing as life itself.
The truth is, that this sentence is as deep as it appears. My dear co-author Hans Petter Langtangen
wrote this sentence well into his cancer treatment. Hans Petter passed away on October 10th, 2016,
a few months after the 1st edition of this book was published.
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Python will proceed immediately by also testing the second condition. However,
this test is superfluous, since we know beforehand that it will evaluate to True! So,
in this particular case, using two separate if tests is not suitable (generally, however,
separate if tests may be just what you need. It all depends on the problem at hand).

An if-else Construction For our case, it is much better to use an else part, like
this

T = float(input(’What is the water temperature? ’))
if T > 24: # testing condition 1

print(’Great, jump in!’)
else:

print(’Do not swim. Too cold!’)
# First line after if-else construction

When the first condition evaluates to False in this code, execution proceeds directly
with the print command in the else part, with no extra testing!

To students with little programming experience, this may seem like a very small
thing to shout about. However, in addition to avoiding an unnecessary test with
the if-else alternative, it also corresponds better to the actual logic: If the first
condition is false, then the other condition has to be true, and vice versa. No further
checking is needed.

An if-elif-else Construction Considering our “advisor program”, we have to admit
it is a bit crude, having only two categories. If the temperature is larger than 24
degrees, we are advised to swim, otherwise not. Some refinement seems to be the
thing.

Let us say we allow some intermediate case, in which our program is less
categoric for temperatures between 20 and 24 degrees, for example. There is a nice
elif (short for else if) construction which then applies. Introducing that in our
program (and saving it as swim_advisor.py), it reads

T = float(input(’What is the water temperature? ’))
if T > 24: # testing condition 1

print(’Great, jump in!’)
elif 20 <= T <= 24: # testing condition 2

print(’Not bad. Put your toe in first!’)
else:

print(’Do not swim. Too cold!’)
# First line after if-elif-else construction

You probably realize what will happen now. For temperatures above 24 and below
20, our “advisor” will respond just like in the previous version (i.e., the if-else
version). However, for intermediate temperatures, the first condition will evaluate to
False, which implies that the Python interpreter will continue with the elif line.
Here, condition 2 will evaluate to True, which means that “Not bad. Put your toe
in first!” will be printed. The else part is then skipped. As you might expect, more
refinement would be straight forward to include by use of more elif parts.

Programming as a Step-Wise Process The reader should note that, besides
demonstrating branching, the development of the previous program gave a (very)
simple example of how code may be written by a step-wise approach. Starting

https://github.com/slgit/prog4comp_2/blob/master/py36-src/swim_advisor.py
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out with the simplest version of the code, complexity is added step by step, before
arriving at the final version. At each step, you make sure the code works as planned.
Such a procedure is generally a good idea, and we will address it explicitly again,
when we program a (slightly) more comprehensive case in Sect. 4.2.

3.3.2 The Characteristics of Branching

A more general form of an if-elif-else construction reads

if condition_1: # testing condition 1
<code line 1>
<code line 2>
...

elif condition_2: # testing condition 2
<code line 1>
<code line 2>
...

elif condition_3: # testing condition 3
<code line 1>
<code line 2>
...

else:
<code line 1>
<code line 2>
...

# First line after if-elif-else construction

Here we see an if part, two elif parts and an else part. Note the compulsory
colon and indented code lines (a block of statements) in each case. As with loops,
indents are conventionally 4 spaces. In such an arrangement, there may be “any”
number of elif parts (also none) and the else part may, or may not, be present.

When interpreting an arrangement like this, Python starts checking the condi-
tions, one after the other, from the top. If a condition (here, either condition_1,
condition_2 or condition_3) evaluates to True, the corresponding code lines
are executed, before proceeding directly to the first line after the whole arrangement
(here, to the line # First line after if-elif-else construction). This
means that any remaining tests, and the else part, are simply skipped! If none of
the conditions evaluate to True, the else part (when present) is executed.

3.3.3 Example: Finding theMaximumHeight

We have previously modified ball_plot.py from Sect. 1.5 to find the time of
flight instead (see ball_time.py). Let us now change ball_plot.py in a slightly
different way, so that the new program instead finds the maximum height achieved
by the ball.
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The solution illustrates a simple, and very common, search procedure, looping
through an array by use of a for loop to find the maximum value. Our program
ball_max_height.py reads

import numpy as np
import matplotlib.pyplot as plt

v0 = 5 # Initial velocity
g = 9.81 # Acceleration of gravity
t = np.linspace(0, 1, 1000) # 1000 points in time interval
y = v0*t - 0.5*g*t**2 # Generate all heights

# At this point, the array y with all the heights is ready,
# and we need to find the largest value within y.

largest_height = y[0] # Starting value for search
for i in range(1, len(y), 1):

if y[i] > largest_height:
largest_height = y[i]

print(’The largest height achieved was {:g} m’.format(largest_height))

# We might also like to plot the path again just to compare
plt.plot(t,y)
plt.xlabel(’Time (s)’)
plt.ylabel(’Height (m)’)
plt.show()

We focus our attention on the new thing here, the search performed by the for
loop. The value in y[0] is used as a starting value for largest_height. The very
first check then, tests whether y[1] is larger than this height. If so, y[1] is stored
as the largest height. The for loop then updates i to 2, and continues to check
y[2], and so on. Each time we find a larger number, we store it. When finished,
largest_heightwill contain the largest number from the array y.

When you run the program, you get

The largest height achieved was 1.27421 m

which compares favorably to the plot that pops up (see Fig. 1.1).
The observant reader has already seen the similarity of finding the maximum

height and finding the time of flight, as we addressed previously in Sect. 3.2.1.
In fact, we could alternatively have solved the maximum height problem here by
utilizing that y[i+1] > y[i] as the ball moves towards the top. Doing this, our
search loop could have been written

i = 0
while y[i+1] > y[i]:

i = i + 1

When the condition y[i+1] > y[i] becomes False, we could report y[i+1] as
our approximation of the maximum height, for example.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_max_height.py
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Getting indices right

To implement the traversing of arrays with loops and indices, is often
challenging to get right. You need to understand the start, stop and step length
values for the loop variable, and also how the loop variable (possibly) enters
expressions inside the loop. At the same time, however, it is something that
programmers do often, so it is important to develop the right skills on these
matters.

You are encouraged to test your understanding of the search procedure
in ball_max_height.py by doing Exercise 3.9. That exercise will ask you
to compare what you get “by hand” to printouts from the code. It is of
fundamental importance to get this procedure as an established habit of yours,
so do the exercise right now!

3.3.4 Example: RandomWalk in Two Dimensions

We will now turn to an example which represents the core of so-called random walk
algorithms. These are used in many branches of science and engineering, including
such different fields as materials manufacturing and brain research.

The procedure we will consider, is to walk a series of equally sized steps, and
for each of those steps, there should be the same probability of going to the north
(N), east (E), south (S), or west (W). No other directions are legal. How can we
implement such an action in a computer program?

To prepare our minds for the coding, it might be useful to first reflect upon how
this could be done for real. One way, is to use a deck of cards, letting the four suits
correspond to the four directions: clubs to N, diamonds to E, hearts to S, and spades
to W, for instance. We draw a card, perform the corresponding move, and repeat
the process a large number of times. The resulting path mimics, e.g., a typical path
followed by a diffusing molecule.

In a computer program, we can not draw cards, but we can draw random numbers.
So, we may use a loop to repeatedly draw a random number, and depending on the
number, we update the coordinates of our location. There are many ways to draw
random numbers and “translate” them into our four directions, and the technical
details will typically depend on the programming language. However, our technique
here is universal: we draw a random number from the interval [0, 1) and let [0, 0.25)

correspond to N, [0.25, 0.5) to E, [0.5, 0.75) to S, and [0.75, 1) to W. We decide
to simulate 1000 steps, each of length 1 (e.g., meter), starting from Origo in our
coordinate system. To enable plotting our path, we use two arrays for storing the
coordinate history, one for the x-coordinates and one for the corresponding y-
coordinates.

The suggested code random_walk_2D.py then reads

import random
import numpy as np
import matplotlib.pyplot as plt

N = 1000 # number of steps

https://github.com/slgit/prog4comp_2/blob/master/py36-src/random_walk_2D.py
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d = 1 # step length (e.g., in meter)
x = np.zeros(N+1) # x coordinates
y = np.zeros(N+1) # y coordinates
x[0] = 0; y[0] = 0 # set initial position

for i in range(0, N, 1):
r = random.random() # random number in [0,1)
if 0 <= r < 0.25: # move north

y[i+1] = y[i] + d
x[i+1] = x[i]

elif 0.25 <= r < 0.5: # move east
x[i+1] = x[i] + d
y[i+1] = y[i]

elif 0.5 <= r < 0.75: # move south
y[i+1] = y[i] - d
x[i+1] = x[i]

else: # move west
x[i+1] = x[i] - d
y[i+1] = y[i]

# plot path (mark start and stop with blue o and *, respectively)
plt.plot(x, y, ’r--’, x[0], y[0], ’bo’, x[-1], y[-1], ’b*’)
plt.xlabel(’x’); plt.ylabel(’y’)
plt.show()

Here, the initial position is explicitly set, even if x[0] and y[0] are known to
be zero already. We do this, since the initial position is important, and by setting it
explicitly, it is clearly not accidental what the starting position is. Note that if a step
is taken in the x-direction, the y-coordinate is unchanged, and vice versa.

Executing the program produces the plot seen in Fig. 3.2, where the initial and
final positions are marked in blue with a circle and a star, respectively. Remember
that pseudo-random numbers are involved here, meaning that two consecutive runs
will generally produce totally different paths.

Fig. 3.2 One realization of a random walk (N-E-S-W) with a 1000 steps. Initial and final positions
are marked in blue with a circle and a star, respectively
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3.4 Exercises

Exercise 3.1: A for Loop with Errors
Assume some program has been written for the task of adding all integers i =
1, 2, . . . , 10 and printing the final result:

for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
sum = Sum + x
print ’sum: ’, sum

a) Identify the errors in the program by just reading the code.
b) Write a new version of the program with errors corrected. Run this program and

confirm that it gives the correct output.

Filename: for_loop_errors.py.

Exercise 3.2: The range Function
Write a slightly different version of the program in Exercise 3.1. Now, the range
function should be used in the for loop header, and only the even numbers from
[2, 10] should be added. Also, the (only) statement within the loop should read sum
= sum + i.
Filename: range_function.py.

Exercise 3.3: A while Loop with Errors
Assume some program has been written for the task of adding all integers i =
1, 2, . . . , 10:

some_number = 0
i = 1
while i < 11

some_number += 1
print some_number

a) Identify the errors in the program by just reading the code.
b) Write a new version of the program with errors corrected. Run this program and

confirm that it gives the correct output.

Filename: while_loop_errors.py.

Exercise 3.4: while Loop Instead of for Loop
Rewrite average_height.py from Sect. 3.1.3, using a while loop instead.
Filename: while_instead_of_for.py.

Exercise 3.5: Compare Integers a and b
Explain briefly, in your own words, what the following program does.

a = int(input(’Give an integer a: ’))
b = int(input(’Give an integer b: ’))
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if a < b:
print(’\na is the smallest of the two numbers’)

elif a == b:
print(’\na and b are equal’)

else:
print(’\na is the largest of the two numbers’)

Proceed by writing the program, and then run it a few times with different values
for a and b to confirm that it works as intended. In particular, choose combinations
for a and b so that all three branches of the if construction get tested.
Filename: compare_a_and_b.py.

Remarks The program is not too robust, since it assumes the user types an integer
as input (a real number gives trouble).

Exercise 3.6: Area of Rectangle Versus Circle
Consider one circle and one rectangle. The circle has a radius r = 10.6. The
rectangle has sides a and b, but only a is known from the outset. Let a = 1.3
and write a program that uses a while loop to find the largest possible integer b that
gives a rectangle area smaller than, but as close as possible to, the area of the circle.
Run the program and confirm that it gives the right answer (which is b = 271).
Filename: area_rectangle_vs_circle.py.

Exercise 3.7: Frequency of Random Numbers
Write a program that takes a positive integer N as input and then draws N random
integers from the interval [1, 6]. In the program, count how many of the numbers,
M , that equal 6 and print out the fraction M/N . Also, print all the random numbers
to the screen so that you can check for yourself that the counting is correct. Run the
program with a small value for N (e.g., N = 10) to confirm that it works as intended.

Hint Use random.randint(1,6) to draw a random integer between 1 and 6.

Filename: count_random_numbers.py.

Remarks For large N , this program computes the probability M/N of getting six
eyes when throwing a dice.

Exercise 3.8: Game 21
Consider some game where each participant draws a series of random integers
evenly distributed between 0 and 10, with the aim of getting the sum as close as
possible to 21, but not larger than 21. You are out of the game if the sum passes 21.

After each draw, you are told the number and your total sum, and are asked
whether you want another draw or not. The one coming closest to 21 is the winner.

Implement this game in a program.

Hint Use random.randint(0,10) to draw random integers in [0, 10].
Filename: game_21.py.
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Exercise 3.9: Simple Search: Verification
Check your understanding of the search procedure in ball_max_height.py from
Sect. 3.3.3 by comparing what you get “by hand” to printouts from the code. Work
on a copy of ball_max_height.py. Comment out what you do not need, and use
an array y of just 4 elements (or so). Fill that array with integers, so that you place
a maximum value in a certain location. Then, run through that code by hand for
every iteration of the loop, writing down the numbers in largest_height. Finally,
place a print command in the loop, so that largest_heightgets printed with every
iteration. Run the program and compare to what you found by hand.
Filename: simple_search_verify.py.

Exercise 3.10: Sort Array with Numbers
Write a script that uses the uniform function from the random module to generate
an array of 6 random numbers between 0 and 10.

The program should then sort the array so that numbers appear in increasing
order. Let the program make a formatted print of the array to screen both before and
after sorting. Confirm that the array has been sorted correctly.
Filename: sort_numbers.py.

Exercise 3.11: Compute π

Up through history, great minds have developed different computational schemes
for the number π . We will here consider two such schemes, one by Leibniz (1646–
1716), and one by Euler (1707–1783).

The scheme by Leibniz may be written

π = 8
∞∑

k=0

1

(4k + 1)(4k + 3)
,

while one form of the Euler scheme may appear as

π =
√√
√
√6

∞∑

k=1

1

k2 .

If only the first N terms of each sum are used as an approximation to π , each
modified scheme will have computed π with some error.

Write a program that takes N as input from the user, and plots the error
development with both schemes as the number of iterations approaches N . Your
program should also print out the final error achieved with both schemes, i.e. when
the number of terms is N. Run the program with N = 100 and explain briefly what
the graphs show.
Filename: compute_pi.py.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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4.1 Functions: How toWrite Them?

Until now, we have benefitted from using functions like, e.g., zeros and linspace
from numpy. These have all been written by others for us to use. Now we will
look at how to write such functions ourselves, an absolutely fundamental skill in
programming.

In its simplest form, a function in a program is much like a mathematical
function: some input number x is transformed to some output number. One example
is the tanh−1(x) function, called atan in computer code: it takes one real number
as input and returns another number. Functions in Python are more general and can
take a series of values as input and return one or more results, or simply nothing.
The purpose of functions is twofold:

1. to group code lines that naturally belong together (making such units of code is
a strategy which may ease the problem solving process dramatically), and

2. to parameterize a set of code lines such that they can be written only once and
easily be re-executed with variations.

Functions that we write ourselves are often referred to as user-defined functions.
Throughout this book, we will present many examples, in various contexts, of how
such functions may be written.

4.1.1 Example: Writing Our First Function

To grasp the first few essentials about function writing, we change ball.py from
Sect. 1.2, so that the height y is rather computed by use of a function that we define
ourselves. Also, to better demonstrate the use of our function, we compute y at two
points in time (not only one, as in ball.py). The new program ball_function.py
then appears as

def y(v0, t):
g = 9.81 # Acceleration of gravity
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return v0*t - 0.5*g*t**2

v0 = 5 # Initial velocity

time = 0.6 # Just pick one point in time
print(y(v0, time))
time = 0.9 # Pick another point in time
print(y(v0, time))

The Function Definition When Python reads this program from the top, it takes
the code from the line with def, to the line with return, to be the definition of a
function by the name y. Note that this function (or any function for that matter) is
not executed until it is called. Here, that happens with the two calls (y(v0, time))
appearing in the print commands further down in the code. In other words, when
Python reads the function definition for the first time, it just “stores the definition
for later use” (and checks for syntax errors, see Exercise 4.8).

Calling the Function When the function is called the first time, the values of v0 (5)
and time (0.6) are transferred to the y function such that, in the function, v0 = 5
and t = 0.6. Thereafter, Python executes the function line by line. In the final line
return v0*t - 0.5*g*t**2, the expression v0*t - 0.5*g*t**2 is computed,
resulting in a number which is “returned” to replace y(v0, time) in the calling
code. The function print is then called with this number as input argument and
proceeds to print it (i.e., the height). Alternatively, the number returned from y could
have been assigned to a variable, e.g., like h = y(v0, time), before printing as
print(h).

Python then proceeds with the next line, setting time to 0.9, before a new
function call is triggered in the following line, causing a second execution of the
function y and printout of the new height.

Variable Names in Function Calls Observe that, when calling the function y, the
time was contained in the variable time, whereas the corresponding input variable
(called a parameter) in the function y had the name t. We should reveal already
now, that in general, variable names in function calls do not have to be the same
as the corresponding names in the function definition. However, with v0 here,
we see that variable names can be the same in the function call and the function
definition (but technically, they are then two different variables with the same name,
see Sect. 4.1.4). More rules about this will follow soon.

4.1.2 Characteristics of a Function Definition

Function Structure We may now write up a more general form of a Python
function as

def function_name(p1, p2, p3, ...): # function header
"""This is a docstring""" # ...in function body
<code line> # ...in function body
<code line> # ...in function body
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...

...
return result_1, result_2, ... # last line in function body

# First line after function definition

A function definition must appear before the function is called, and usually, function
definitions are placed one after the other at the top of a program, after import
statements (if any).

Function Header (Positional Parameters) The first line, often called the function
header, always starts with the reserved word def. This word is succeeded by
the name of the function, followed by a listing of comma-separated names in
parentheses, being the parameters of the function (here symbolized with p1, p2,
p3,. . . ). These parameters specify what input the function needs for execution. The
header always ends with a colon. Function and parameter names must be decided
by the programmer.

The function header may contain any number1 of parameters, also none.
When there are no parameters, the parentheses must still be there, i.e., like
def function_name():.

When input parameters are listed on the form above, they are referred to as
positional parameters. Below, in Sect. 4.1.5, we will see what freedom there is when
calling functions defined with such parameters.

Another Typical Function Header (Keyword Parameters) Another kind of
function header that you often will deal with, is one which allows default values
to be given to some, or all, of the input parameters. We may write such a header on
the following form2 (it could replace the previous header that has only positional
parameters):

def function_name(p1, p2, p3=default_3, p4=default_4, ...):

In this case, the two first parameters are positional, whereas p3 and p4 are known
as keyword parameters. This means that, unless other values are specified for p3
and p4 when calling the function, they will get the default values default_3
and default_4, respectively. This will soon (Sect. 4.1.7) be demonstrated and
discussed in more detail through examples.

A function header may have only positional parameters, only keyword parame-
ters, or some of each. However, positional parameters must always be listed before
keyword parameters (as shown in the header above).

Note that there should be no space to each side of = when specifying keyword
parameters.

Function Body All code lines inside a function must be indented, conventionally
with 4 spaces, or more (if there are more indentation levels). In a function, these
indented lines represent a block of statements, collectively referred to as the
function body. Once the indent is reversed, we are outside (and after) the function.

1 It is possible to have a variable number of input parameters (using *args and **kwargs).
However, we do not pursue that any further here.
2 Strictly speaking, this header also incorporates the previous header, but they were split just to
clarify the presentation.



82 4 Functions and the Writing of Code

Here, the comment # First line after function definition is after the
function.

The first line in the function body shown here, is an optional documentation
string, a docstring. This string is meant for a human interpreter, so it should say
something about the purpose with the function and explain input parameters and
return values, unless obvious. By convention, a docstring is enclosed in triple
double quotes ("""), which allows the string to run over several lines. When
present, the docstring must appear immediately after the function header, as shown
above.

The code lines of a function are executed only when the function is called (or
invoked), as explained above with ball_function.py. Usually, a function ends
with a return statement, starting with the reserved word return, which “returns”
one or more results back to the place where the function was called. However, the
explicit return statement may be dropped if not needed.3 How to receive multiple
return values from a function call will be exemplified in Sect. 4.1.6.

A function body can have loops, branching and calls to other functions, and may
contain as many code lines as you need. Sometimes, a function body contains noth-
ing more than a return statement of the form return <some calculation>,
where some calculation is carried out before returning the result. Note that function
input parameters are not required to be numbers. Any object will do, e.g., strings or
other functions.

4.1.3 Functions and theMain Program

An expression you will often encounter in programming, is main program, or that
some code is “in main”. This is nothing particular to Python, and simply refers to
that part of the program which is outside functions, taking function headers as part
of the main program.

We may exemplify this with ball_function.py from above, using comments
to tell which lines are not “in main”.

def y(v0, t):
g = 9.81 # not in main
return v0*t - 0.5*g*t**2 # not in main

v0 = 5

time = 0.6
print(y(v0, time))
time = 0.9
print(y(v0, time))

Thus, everything is in main except the two lines of the function body.

3 In that case, something called None is returned, being a certain object that represents “nothing”.
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4.1.4 Local Versus Global Variables

In our program ball_function.py, we have defined the variable g inside the
function y. This makes g a local variable, meaning that it is only known inside
the function. Thus, if we had tried to use g outside of the function, we would have
got an error message. To see this, we may insert print(v0*t - 0.5*g*t**2) as
a new last line in main (i.e., after the last print(y(v0, time))) and try to run
the code. Now, Python will not recognize g, even if Python just used it inside the
function y (you should try this to see for yourself, but remember to remove the
inserted code after the test!).

The variables v0 and time are defined outside the function and are therefore
global variables. They are known both outside and inside the function.4

Input parameters listed in a function header are by rule local variables inside the
function. If you define one global and one local variable, both with the same name
(as v0 in ball_function.py), the function body only “sees” the local one, so the
global variable is not affected by what happens to its local “name-brother”.

If you want to change the value of a global variable inside a function, you need to
declare the variable as global inside the function. That is, if some global variable was
named x, we would need to write global x inside the function definition before we
let the function change it. After function execution, x would then have a changed
value.

4.1.5 Calling a Function Defined with Positional Parameters

We will here discuss alternative ways of calling the function y from
ballnrea_function.py. This function has only got positional parameters, and
throughout, the definition

def y(v0, t):
g = 9.81
return v0*t - 0.5*g*t**2

is kept unchanged.

Parameter Versus Argument As explained previously, the input variables speci-
fied in a function definition are called the parameters of the function. When we call
that function, however, the values provided in the call are referred to as arguments.5

Mixing the Position of Arguments Assume now, like before, that we just want our
main program to compute the height of the ball after 0.6 s, when the initial velocity

4 The observant reader may then ask why not just define the function y without input parameters
v0 and t, and simply use v0 and time directly inside the function (changing t to time in the return
statement)? The answer is that this would have worked. However, there are several issues related
to the use of global variables, so it is something that should be avoided in general.
5 https://docs.python.org/3.3/faq/programming.html#faq-argument-vs-parameter.

https://docs.python.org/3.3/faq/programming.html#faq-argument-vs-parameter
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is 5 ms−1. In our main program, we could then try two alternative calls,

print(y(5, 0.6)) # works fine
print(y(0.6, 5)) # gives no error message, but the wrong result!

Here, y is called with positional arguments only (also termed ordinary arguments).
The first alternative will do the job. Regarding the second alternative, it will print
a result, but a wrong one, since arguments are in the wrong position when calling.
With the second call to y (i.e., y(0.6, 5)), we get v0 = 0.6 and t = 5 in the
function, which clearly is not what we intended. Note that Python has no way of
knowing that this is wrong, so it will happily compute a height according to the
function definition and print an answer.

Doing the same with variables, e.g., like

initial_velocity = 5
time = 0.6
print(y(initial_velocity, time)) # works fine
print(y(time, initial_velocity)) # No error message, but wrong result!

will of course not change anything. The first call will give the correct result, while
the latter will print the wrong result (without any error message).

Using Keywords in the Call It is possible to use function input parameter names as
keywords when calling the function (note, the function definition is still unchanged
with only positional parameters!). This brings the advantage of making the function
call more readable. Also, it allows the order of arguments to be switched, according
to some rules. A few examples will illustrate how this works.

By use of the parameter names v0 and t from the function definition, we may
have the following statements in main:

print(y(v0=5, t=0.6)) # works fine
print(y(t=0.6, v0=5)) # order switched, works fine with keywords!

Here, y is called with keyword arguments only (also termed named arguments).
Either of the two alternative calls will give the correct printout, since, irrespective of
argument ordering, Python is explicitly told which function parameter should have
which value. This generalizes: as long as keywords are used for all arguments in a
function call, any ordering of arguments can be used.

It is allowed to have a mix of positional and keyword arguments in the call,
however, but then we need to be a bit more careful. With the following lines in
main,

v0 = 5
print(y(v0, t=0.6)) # works fine
print(y(t=0.6, v0)) # gives syntax error!

the first alternative is acceptable, while the second is not. The general rule is,
that when mixing positional and keyword arguments, all the positional arguments
must precede the keyword arguments. The positional arguments must also come in
the very same order as the corresponding input parameters appear in the function
definition, while the order of the keyword arguments may be changed.

Note that, if some function is defined with a “long” list of input parameters, when
calling that function, you can not use a keyword for one of the arguments “in the
middle”, even if placed last in the list (make yourself an example with 3 parameters



4.1 Functions: How to Write Them? 85

and test it!). This is because Python reads the listed arguments from left to right, and
does not know that an argument is taken out of the list before it comes to the end
(but then it is too late).

4.1.6 A Function with Two Return Values

Take a slight variation of our case with the ball, assuming that the ball is not thrown
straight up, but at an angle, so that two coordinates are needed to specify its position
at any time.

According to Newton’s laws (when air resistance is negligible), the vertical
position is given by y(t) = v0y t − 0.5gt2 and, simultaneously, the horizontal
position by x(t) = v0x t . We can include both these expressions in a new version of
our program that finds the position of the ball at a given time:

def xy(v0x, v0y, t):
"""Compute horizontal and vertical positions at time t"""
g = 9.81 # acceleration of gravity
return v0x*t, v0y*t - 0.5*g*t**2

v_init_x = 2.0 # initial velocity in x
v_init_y = 5.0 # initial velocity in y
time = 0.6 # chosen point in time

x, y = xy(v_init_x, v_init_y, time)
print(’Horizontal position: {:g} , Vertical position: {:g}’.format(x, y))

We note that in the return statement, the returned values (two here) are separated
by a comma. Here, the x coordinate will be computed by v0x*t, while the y
coordinate will be computed like before. These two calculations produce two
numbers that are returned to variables x and y in main. Note that, the order of the
results returned from the function must be the same as the order of the corresponding
variables in the assignment statement. Note the use of a comma both in the return
statement and the assignment statement.

4.1.7 Calling a Function Defined with Keyword Parameters

Let us adjust the previous program slightly, introducing keyword parameters in the
definition. For example, if we use 0.6 as a default value for t, and aim to get the
same printout as before, the program reads

def xy(v0x, v0y, t=0.6):
"""Compute horizontal and vertical positions at time t"""
g = 9.81 # acceleration of gravity
return v0x*t, v0y*t - 0.5*g*t**2

v_init_x = 2.0 # initial velocity in x
v_init_y = 5.0 # initial velocity in y

x, y = xy(v_init_x, v_init_y)
print(’Horizontal position: {:g} , Vertical position: {:g}’.format(x, y))
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Alternatively, with default values for all the parameters, and again aiming for the
same printout, our program (ball_position_xy.py) appears as

def xy(v0x=2.0, v0y=5.0, t=0.6):
"""Computes horizontal and vertical positions at time t"""
g = 9.81 # acceleration of gravity
return v0x*t, v0y*t - 0.5*g*t**2

x, y = xy()
print(’Horizontal position: {:g} , Vertical position: {:g}’.format(x, y))

Running the code, we get the printout

Horizontal position: 1.2 , Vertical position: 1.2342

Some, or all, of the default values may also be overridden, e.g., like

x, y = xy(v0y=6.0) # override default value for v0y only

which means that xy will run with default values for v0x and t, while v0y will have
the value 6.0, as specified in the function call. The output then, becomes

Horizontal position: 1.2 , Vertical position: 1.8342

which is reasonable, since the initial velocity for the vertical direction was higher
than in the previous case.

4.1.8 A Function with Another Function as Input Argument

Functions are straightforwardly passed as arguments to other functions. This is
illustrated by the following script function_as_argument.py, where a function
sums up function values of another function:

def f(x):
return x

def g(x):
return x**2

def sum_function_values(f, start, stop):
"""Sum up function values for integer arguments as
f(start) + f(start+1) + f(start+2) + ... + f(stop)"""
S = 0
for i in range(start, stop+1, 1):

S = S + f(i)
return S

print(’Sum with f becomes {:g}’.format(sum_function_values(f, 1, 3)))
print(’Sum with g becomes {:g}’.format(sum_function_values(g, 1, 3)))

We note that the function sum_function_values takes a function as its first
argument and repeatedly calls that function without (of course) knowing what that
function does, it just gets the function values back and sums them up!

Remember that the argument f in the function header sum_funcion_values
(f, start, stop) and the function defined by the name f, is not the same. The

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_position_xy.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/function_as_argument.py
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function argument f in sum_funcion_values(f, start, stop) will act as the
local “nick-name” (inside the function sum_funcion_values) for any function that
is used as first argument when calling sum_funcion_values.

Executing the program, gives the expected printout as

Sum with f becomes 6
Sum with g becomes 14

4.1.9 Lambda Functions

A one-line function may be defined in a compact way, as a so-called lambda
function. This may be illustrated as

g = lambda x: x**2

# ...which is equivalent to:
def g(x):

return x**2

Lambda functions are particularly convenient as function arguments, as seen next,
when calling sum_function_values from above with lambda functions replacing
the functions f and g:

print(sum_function_values(lambda x: x, 1, 3))
print(sum_function_values(lambda x: x**2, 1, 3))

This gives the same output as we got above. In this way, the lambda function is
defined “in” the function call, so we avoid having to define the function separately
prior to the (function) call.

A lambda function may take several comma-separated arguments. A more
general form of a lambda function is thus

function_name = lambda arg1, arg2, ... : <some_expression>

# ...which is equivalent to:
def function_name(arg1, arg2, ...):

return <some_expression>

The general syntax consists of the reserved word lambda, followed by a series of
parameters, then a colon, and, finally, some Python expression resulting in an object
to be returned from the function.

4.1.10 A Function with Several Return Statements

It is possible to have several return statements in a function, as illustrated here:

def check_sign(x):
if x > 0:

return ’x is positive’
elif x < 0:

return ’x is negative’
else:

return ’x is zero’
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Remember that only one of the branches is executed for a single call to
check_sign, so depending on the number x, the return may take place from
any of the three return alternatives.

To Return at the End or Not

Programmers disagree whether it is a good idea to use return inside a
function, or if there should be just a single return statement at the end of
the function. The authors of this book emphasize readable code and think that
return can be useful in branches as in the example above when the function
is short. For longer or more complicated functions, it might be better to have
one single return statement at the end.

Nested Functions

Functions may also be defined within other functions. In that case, they
become local functions, or nested functions, known only to the function inside
which they are defined.

Functions defined in main are referred to as global functions. A nested
function has full access to all variables in the parent function, i.e. the function
within which it is defined.

Overhead of Function Calls

Function calls have the downside of slowing down program execution.
Usually, it is a good thing to split a program into functions, but in very
computing intensive parts, e.g., inside long loops, one must balance the
convenience of calling a function and the computational efficiency of avoiding
function calls. It is a good rule to develop a program using plenty of functions
and then in a later optimization stage, when everything computes correctly,
remove function calls that are quantified to slow down the code. Let it be clear,
however, that newcomers to programming should focus on writing readable
code, not fast code!

In Sect. 5.6, we investigate (for a particular case) the impact that function
calls have on CPU time.

4.2 Programming as a Step-Wise Strategy

When students start out with programming, they usually pick up the basic ideas
quite fast and learn to read simpler code rather swiftly. However, when it comes to
the writing of code, many find it hard to even get started.
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In this chapter, we will use an example to present a typical code writing process
in detail. Our focus will be on a step-wise approach that is so often required, unless
the programmer is experienced and the programming task is “small”.

Often, such a step-wise approach starts out with a very simple version of the
final program you have in mind. You test and modify that simple version until it
runs like you want. Then you include some more code, test and modify that version
until it works fine. Then you include more code, test and modify, and so on. Each of
these steps then brings you closer to your final target program. In some cases, all the
steps are clear in advance, but often, new insight develops along the way, making it
necessary to modify the plan. The step-wise approach is good also in that it allows
you to get started with a step or two (that you see are needed), even if you do not
know how to proceed from there, at least yet.

How to break up a programming task into a series of steps is not unique. It
will also depend on the problem, as well as on the programmer. More experienced
programmers can save time by writing the final version of some program in one go
(or at least with few steps). Beginners, however, may greatly benefit from a step-
wise procedure with the sufficient number of steps. The following example should
illustrate the idea.

4.2.1 Making a Times Tables Test

The Programming Task Write a program that tests the user’s knowledge of the
times tables from 1 to 10.

Breaking up the Task There are many possible ways to do such a times tables
testing, but our reasoning goes as follows. In this test, there will be 10 different
questions for the 1 times table, 10 different questions for the 2 times table, and so
on, giving a 100 different questions in total. We decide to ask each of those questions
one time only. There are quite many questions, so we also allow the user to quit with
Ctrl-c (i.e., hold the Ctrl key down while typing c) before reaching the end.

To code this, the first idea that possibly comes to mind, is to use a double for
loop on a form like:

for a in [1, 2, ..., 10]:
for b in [1, 2, ..., 10]:

< ask user: a*b = ? >
< check answer, give points >

With a construction like this, we see that for each value of a, the second factor b
will run over all values 1 to 10. The questions will then appear in a predictable and
systematic way. First we get the 1 times table (1*1, 1*2, . . . , 1*10), then the 2
times table (2*1, 2*2, . . . , 2*10), and so on. Clearly, this would be an acceptable
approach. However, some would still argue that it might be better if the 100
questions were randomized, depriving the user any benefit from just remembering a
sequence of answers.
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Based on these reflections, we choose to break up the programming task into
three steps:

• 1st version—has no dialogue with the user. It contains the double loop construc-
tion and two functions, ask_user and points. The function ask_user will
(in later versions) ask the user for an answer to a*b, while points (in later
versions) will check that answer, inform the user (correct or not), and give a
score (1 point if correct). To simplify, the function bodies of these two functions
will deliberately not be coded for this version of the program. Rather, we simply
insert a print command in each, essentially printing the arguments provided in
the call, to confirm that the function calls work as planned.

• 2nd version—asking and checking done systematically with predictable ques-
tions (first the 1 times table, then the 2 times table, etc.).

• 3rd version—asking and checking done with randomized questions. How to
implement this randomization, will be kept as an open question till we get there.

(We do reveal, however, that something “unforeseen” will be experienced with the
3rd version, which will motivate us also for a 4th version of the program.)

4.2.2 The 1st Version of Our Code

Our very first version of the code (times_tables_1.py) may be written like this:

def ask_user(a, b): # preliminary
"""get answer from user: a*b = ?"""
print(’{:d}*{:d} = ’.format(a, b))
return a*b

def points(a, b, answer_given): # preliminary
"""Check answer. Correct: 1 point, else 0"""
print(’{:d}*{:d} = {:d}’.format(a, b, a*b))
return 1

print(’\n*** Welcome to the times tables test! ***\
\n (To stop: ctrl-c)’)

# Ask user for a*b, ... a, b are in [1, N]
N = 2
score = 0
for i in range(1, N+1, 1):

for j in range(1, N+1, 1):
user_answer = ask_user(i, j)
score = score + points(i, j, user_answer)
print(’Your score is now: {:d}’.format(score))

print(’\nFinished! \nYour final score: {:d} (max: {:d})’\
.format(score, N*N))

In this implementation, the function ask_user will, by choice, not ask the user
about anything. It will simply return the correct answer. Regarding points, it will

https://github.com/slgit/prog4comp_2/blob/master/py36-src/times_tables_1.py
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return 1 without actually testing anything. In this way, we will be able to run the
program, while still having unfinished parts in there.

We have introduced N as a variable here to allow easy adjustment of “problem
size” (the total number of questions will be N*N). We know N must be 10, but that
requirement applies to the final version only. Thus, we are free to do our steps with
a smaller N, and that makes life much easier for us when assessing code behavior.
If you have not already done so, go through the code by hand to confirm that you
understand what happens, in what order.

When executed, the program simply prints:

*** Welcome to the times tables test! ***
(To stop: ctrl-c)

1*1 =
1*1 = 1
Your score is now: 1
1*2 =
1*2 = 2
Your score is now: 2
2*1 =
2*1 = 2
Your score is now: 3
2*2 =
2*2 = 4
Your score is now: 4

Finished!
Your final score: 4 (max: 4)

From the printout, we see that the two functions seem to get the right arguments in
each call. We are thus ready for the next step, i.e., to implement the function bodies
of the two functions.

4.2.3 The 2nd Version of Our Code

After implementing the remaining parts of the code, we have a version
(times_tables_2.py) of our program that actually does the testing that was
asked for. The code reads

def ask_user(a, b):
"""get answer from user: a*b = ?"""
question = ’{:d} * {:d} = ’.format(a, b)
answer = int(input(question))
return answer

def points(a, b, answer_given):
"""Check answer. Correct: 1 point, else 0"""
true_answer = a*b
if answer_given == true_answer:

print(’Correct!’)
return 1

else:
print(’Sorry! Correct answer was: {:d}’.format(true_answer))
return 0

https://github.com/slgit/prog4comp_2/blob/master/py36-src/times_tables_2.py
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print(’\n*** Welcome to the times tables test! ***\
\n (To stop: ctrl-c)’)

# Ask user for a*b, ... a, b are in [1, N]
N = 2
score = 0
for i in range(1, N+1, 1):

for j in range(1, N+1, 1):
user_answer = ask_user(i, j)
score = score + points(i, j, user_answer)
print(’Your score is now: {:d}’.format(score))

print(’\nFinished! \nYour final score: {:d} (max: {:d})’\
.format(score, N*N))

Running the program, the dialogue could, for example, proceed like

*** Welcome to the times tables test! ***
(To stop: ctrl-c)

1 * 1 = 1
Correct!
Your score is now: 1

1 * 2 = 2
Correct!
Your score is now: 2

2 * 1 = 3
Sorry! Correct answer was: 2
Your score is now: 2

2 * 2 = 4
Correct!
Your score is now: 3

Finished!
Your final score: 3 (max: 4)

We see that the behavior is as expected. Again, it is important that you read the code
and confirm that your understanding is in line with the output shown.

Testing for Equality with ==

In our code, we compare two integers in the if test

if user_answer == true_answer:

Testing for equality with == works fine for the integers we have here.
In general, however, such tests need to account for the inexact number
representation that we have on computers. More about this in Sect. 6.6.3.

Note that the new code implemented when updating from times_tables_1.py
to times_tables_2.py, included the function bodies in both functions ask_user
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and points. Often, however, it is a good idea to finalize one function at a time,
particularly with larger and/or more complicated functions.

The reader should take a moment to reflect on the use of functions in general
(ask_user and points here). They represent “logical units”, each dedicated to a
special task. Structuring code this way, may greatly ease human code interpretation,
which in turn makes debugging and future code changes much simpler. “Seen” from
the main program, ask_user, for example, is given the factors of a*b and returns
the answer. The inner workings of ask_user is neither known, nor of any concern,
to the main program. It just calls the function and waits for the returned value.
Moreover, the inner workings of ask_user may be changed in any way, without
affecting the code elsewhere in the program, as long as function input and output
stays the same.

By setting N = 10 in times_tables_2.py, and confirming that the dialogue
runs correctly, we have a program that carries out the required test. However, we
have yet another step to make, which means we have to figure out how the questions
can be randomized. Let us see what we can make out of it.

4.2.4 The 3rd Version of Our Code

How can we randomize the 100 questions, while keeping to the plan of asking
each question only once? Based on our previous version(s) of the code, it would
be natural to first think of something like

<loop arrangement with 100 iterations>
i = <draw random number from 1 to 10>
j = <draw random number from 1 to 10>
user_answer = ask_user(i, j) # ...NOT what we want!

<check answer, inform user>

However, it is immediately realized that some products a*b then will come several
times, whereas others, are likely to not appear at all. Clearly, this is not what we
want. Some more reasoning is required.

One solution, the one presented here, is based on two key observations. The first
observation, is that the integers 0 to 99 can be used to uniquely represent each of
our 100 products. We might demonstrate this by the following little piece of code:

for i in range(0, 100, 1):
a = i//10 + 1 # integer division
b = i%10 + 1 # modulo

print(’i = {:d}, {:d}*{:d} = ’.format(i, a, b))

When executed, we get a printout like

i = 0 : 1*1 =
i = 1 : 1*2 =
i = 2 : 1*3 =
i = 3 : 1*4 =
i = 4 : 1*5 =
i = 5 : 1*6 =
i = 6 : 1*7 =
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i = 7 : 1*8 =
i = 8 : 1*9 =
i = 9 : 1*10 =
i = 10 : 2*1 =
i = 11 : 2*2 =

...

... < longer printout... author’s comment >

...

i = 97 : 10*8 =
i = 98 : 10*9 =
i = 99 : 10*10 =

Thus, from the 100 values of i, we can uniquely derive the two factors in all the
100 products (!), as the printout confirms. With the sequence of i values just shown,
however, we get the systematic ordering of the questions used in our 2nd version of
the program. So, to get the questions in random order, we need something more.

The second observation, is that the function shuffle (Sect. 2.4) from numpy
can be used to randomize the numbers 0 to 99, and thereby give us a randomized
ordering of the products.

Now, based on these two observations, we are ready to write down the 3rd
version of our program (times_tables_3.py), in which the functions ask_user
and points are unchanged compared to the 2nd version:

import numpy as np

def ask_user(a, b):
"""get answer from user: a*b = ?"""
question = ’{:d} * {:d} = ’.format(a, b)
answer = int(input(question))
return answer

def points(a, b, answer_given):
"""Check answer. Correct: 1 point, else 0"""
true_answer = a*b
if answer_given == true_answer:

print(’Correct!’)
return 1

else:
print(’Sorry! Correct answer was: {:d}’.format(true_answer))
return 0

print(’\n*** Welcome to the times tables test! ***\
\n (To stop: ctrl-c)’)

N = 10
NN = N*N
score = 0
index = list(range(0, NN, 1))
np.random.shuffle(index) # randomize order of integers in index
for i in range(0, NN, 1):

a = (index[i]//N) + 1
b = index[i]%N + 1
user_answer = ask_user(a, b)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/times_tables_3.py
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score = score + points(a, b, user_answer)
print(’Your score is now: {:d}’.format(score))

print(’\nFinished! \nYour final score: {:d} (max: {:d})’\
.format(score, N*N))

Running this code, the order of the questions will be generated anew with each
execution (because of the randomization), but the dialogue may, for example, appear
like:

*** Welcome to the times tables test! ***
(To stop: ctrl-c)

5 * 5 = 25
Correct!
Your score is now: 1

5 * 3 = 15
Correct!
Your score is now: 2

9 * 9 = 81
Correct!
Your score is now: 3

...

... <longer printout... author’s comment>

...

Finished!
Your final score: 95 (max: 100)

Great! Our code seems to run smoothly, so what can possibly go wrong now?
This will go wrong:

*** Welcome to the times tables test! ***
(To stop: ctrl-c)

3 * 2 = six
Traceback (most recent call last):
...
... < longer printout... author’s comment >
...

ValueError: invalid literal for int() with base 10: ’six’

If a user gives some unexpected input that the code is not prepared to handle,
things can go very wrong! In this case, we get an error message (referring to some
ValueError), since our program does not understand that “six” actually means the
number 6.

It would not be very professional to leave our program with this potential
problem, so it should be fixed, but how? The good news is that modern programming
languages, Python inclusive, do have the right tools to deal with such cases. For now,
we will leave our code as it is, but we hereby add yet another step to our program
development plan, and will solve the problem when we turn to exception handling
in Sect. 5.2. That will also bring us to the fourth version of our program, which also
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will be regarded as the final version (in general, however, programs are typically
changed and improved again and again, making it hard to reach the “final” version!).

Developing a Computational Plan

To write a program, you need to plan what that program should do, and a
good plan requires a thorough understanding of the addressed problem. One
fundamentally important thing with the step-wise strategy, is that it invites
you to think through your computational problem very carefully: What bits
and pieces, or “sub-problems”, make up the whole task? Should the “sub-
problems” be solved in any particular order, i.e., do parts of the problem
depend on results from other parts? What is the best way to compute each
of the “sub-problems”?

This kind of thinking, which combines favorably with discussions among
students/colleagues, often pays off in terms of a much deeper understanding
of the problem at hand. Good solutions often require such an understanding.

Compound Statements

The constructions met in this chapter, and the previous chapter, are character-
ized by a grouping of statements that generally span several lines (although
it is possible to write simpler cases on a single line, when statements are
separated with a semi-colon). Such constructions are often referred to as
compound statements, having headers (ending with a colon) and bodies (with
indented statements).a

Interactive handling of compound statements is straight forward. For
example, a for loop may be written (and executed) like

In [1]: for i in [1, 2, 3]: # write header, press enter
...: print(i) # indent comes automatically
...: # press only enter, i.e., finished

1
2
3

When the header has been typed in and we press enter, we are automatically
given the indent on the next line. We can then proceed directly by writing
print(i) and press enter again. We then want to finish our loop, which is
understood when we simply press enter, writing nothing else.

a https://docs.python.org/3/reference/compound_stmts.html.

https://docs.python.org/3/reference/compound_stmts.html
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4.3 Exercises

Exercise 4.1: Errors with Colon, Indent, etc.
Write the program ball_function.py as given in the text and confirm that the
program runs correctly. Then save a copy of the program and use that program
during the following error testing.

You are supposed to introduce errors in the code, one by one. For each error intro-
duced, save and run the program, and comment how well Python’s response corre-
sponds to the actual error. When you are finished with one error, re-set the program
to correct behavior (and check that it works!) before moving on to the next error.

a) Change the first line from def y(v0, t): to def y(v0, t), i.e., remove the
colon.

b) Remove the indent in front of the statement g = 9.81 inside the function y, i.e.,
shift the text four spaces to the left.

c) Now let the statement g = 9.81 inside the function y have an indent of three
spaces (while the remaining two lines of the function have four).

d) Remove the left parenthesis in the first statement def y(v0, t):
e) Change the first line of the function definition from def y(v0, t): to def

y(v0):, i.e., remove the parameter t (and the comma).
f) Change the first occurrence of the command print(y(v0, time)) to

print(y(v0)).

Filename: errors_colon_indent_etc.py.

Exercise 4.2: Reading Code 1
a) Read the following code and predict the printout produced when the program is

executed.

def f(x):
return x**2

def g(x):
return 2*x

for x in [1, 5, 6, 9]:
if x < 5:

# case 1
print(f(x))

elif x == 5:
# case 2
print(2*f(x))

elif x > 5 and x < 8:
# case 3
print(f(x+4) + g(x*2) - g(2))

else:
# case 4
y = x + 2
print(g(y))
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b) Type in the code and run the program to confirm that your predictions are correct.

Filename: read_code_1.py.

Exercise 4.3: Reading Code 2
a) Read the following code and predict the printout produced when the program is

executed.

def f(x):
if x < 2:

return 0
else:

return 2*x

x = 0
for i in range(0, 4, 1):

x += i
print(x)

for i in range(0, 4, 1):
x += i*i

print(x)

for i in range(0, 4, 1):
print(f(3*i-1))

b) Type in the code and run the program to confirm that your predictions are correct.

Filename: read_code_2.py.

Exercise 4.4: Functions for Circumference and Area of a Circle
Write a program that takes a circle radius r as input from the user and then computes
the circumference C and area A of the circle. Implement the computations of C and
A as two separate functions that each takes r as input parameter. Print C and A to the
screen along with an appropriate text. Run the program with r = 1 and confirm that
you get the right answer.
Filename: functions_circumference_area.py.

Exercise 4.5: Function for Adding Vectors
Write a function add_vectors that takes 2 vectors (arrays with one index are often
called vectors) a and b as input arguments and returns the vector c, where c = a+b.
Place the function in a little program that calls the function and prints the result.
The function should check that a and b have the same length. If not, None should be
returned. Confirm that your function works by comparing to hand calculations (i.e.,
just choose some arrays and test).
Filename: add_vectors.py.
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Exercise 4.6: Function for Area of a Rectangle
Write a program that computes the area A = bc of a rectangle. The values of b

and c should be user input to the program. Also, write the area computation as
a function that takes b and c as input parameters and returns the computed area.
Let the program print the result to screen along with an appropriate text. Run the
program with b = 2 and c = 3 to confirm correct program behavior.
Filename: function_area_rectangle.py.

Exercise 4.7: Average of Integers
Write a program that gets an integer N > 1 from the user and computes the average
of all integers i = 1, . . . , N . The computation should be done in a function that
takes N as input parameter. Print the result to the screen with an appropriate text.
Run the program with N = 5 and confirm that you get the correct answer.
Filename: average_1_to_N.py.

Exercise 4.8: When Does Python Check Function Syntax?
You are told that, when Python reads a function definition for the first time, it does
not execute the function, but still checks the syntax.

Now, you come up with some code lines to confirm that this is the case.

Hint You may, for example, use a print command and a deliberate syntax error in
a modification of ball_function.py (note that the modified code is one of those
quick “one-time” tests you might make for yourself, meant to be deleted once you
have the answer).
Filename: when_check_function_syntax.py.

Exercise 4.9: Find Crossing Points of Two Graphs
Consider two functions f (x) = x and g(x) = x2 on the interval [−4, 4].

Write a program that, by trial and error, finds approximately for which values
of x the two graphs cross, i.e., f (x) = g(x). Do this by considering N equally
distributed points on the interval, at each point checking whether |f (x)−g(x)| < ε,
where ε is some small number. Let N and ε be user input to the program and let the
result be printed to screen. Run your program with N = 400 and ε = 0.01. Explain
the output from the program. Finally, try also other values of N , keeping the value
of ε fixed. Explain your observations.
Filename: crossing_2_graphs.py.

Exercise 4.10: Linear Interpolation
Some measurements yi , i = 0, 1, . . . , N , of a quantity y have been collected
regularly, once every minute, at times ti = i, i = 0, 1, . . . , N . We want to find
the value y in between the measurements, e.g., at t = 3.2 min. Computing such y

values is called interpolation.
Let your program use linear interpolation to compute y between two consecutive

measurements:

1. Find i such that ti ≤ t ≤ ti+1.
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2. Find a mathematical expression for the straight line that goes through the points
(i, yi) and (i + 1, yi+1).

3. Compute the y value by inserting the user’s time value in the expression for the
straight line.

a) Implement the linear interpolation technique in a function interpolate that
takes as input an array with the yi measurements, the time between them Δt , and
some time t , for which the interpolated value is requested. The function should
return the interpolated y value at time t .

b) Write another function find_y that finds and prints an interpolated y value at
times requested by the user. Let find_y use a loop in which the user is asked
for a time on the interval [0, N]. The loop can terminate when the user gives a
negative time.

c) Use the following measurements: 4.4, 2.0, 11.0, 21.5, 7.5, corresponding to
times 0, 1, . . . , 4 (min), and compute interpolated values at t = 2.5 and t = 3.1
min. Perform separate hand calculations to check that the output from the
program is correct.

Filename: linear_interpolation.py.

Exercise 4.11: Test Straight Line Requirement
Assume the straight line function f (x) = 4x+1. Write a script that tests the “point-
slope” form for this line as follows. Within a chosen interval on the x-axis (for
example, for x between 0 and 10), randomly pick 100 points on the line and check
if the following requirement is fulfilled for each point:

f (xi) − f (c)

xi − c
= a, i = 1, 2, . . . , 100 ,

where a is the slope of the line and c defines a fixed point (c, f (c)) on the line. Let
c = 2 here.
Filename: test_straight_line.py.

Exercise 4.12: Fit Straight Line to Data
Assume some measurements yi, i = 1, 2, . . . , 5 have been collected, once every
second. Your task is to write a program that fits a straight line to those data.

a) Make a function that, for given measurements and parameter values a and
b, computes the error between the straight line f (x) = ax + b and the
measurements:

e =
5∑

i=1

(axi + b − yi)
2 .

b) Make a function that, in a loop, asks the user to give a and b for the line. The
corresponding value of e should then be computed and printed to screen, and a
plot of the straight line f (x) = ax +b, together with the discrete measurements,
should be produced.
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c) Given the measurements 0.5, 2.0, 1.0, 1.5, 7.5, at times 0, 1, 2, 3, 4, use the
function in b) to interactively search for a and b such that e is minimized.

Filename: fit_straight_line.py.

Remarks Fitting a straight line to measured data points is a very common task. The
manual search procedure in c) can be automated by using a mathematical method
called the method of least squares.

Exercise 4.13: Fit Sines to Straight Line
A lot of technology, especially most types of digital audio devices for processing
sound, is based on representing a signal of time as a sum of sine functions. Say the
signal is some function f (t) on the interval [−π, π] (a more general interval [a, b]
can easily be treated, but leads to slightly more complicated formulas). Instead of
working with f (t) directly, we approximate f by the sum

SN(t) =
N∑

n=1

bn sin(nt), (4.1)

where the coefficients bn must be adjusted such that SN (t) is a good approximation
to f (t). We shall in this exercise adjust bn by a trial-and-error process.

a) Make a function sinesum(t, b) that returns SN(t), given the coefficients bn in
an array b and time coordinates in an array t. Note that if t is an array, the return
value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a) and deter-
mines if the function computes a test case correctly. As test case, let t be an array
with values −π/2 and π/4, choose N = 2, and b1 = 4 and b2 = −3. Compute
SN(t) by hand to get reference values.

c) Make a function plot_compare(f, N, M) that plots the original function f (t)

together with the sum of sines SN(t), so that the quality of the approximation
SN(t) can be examined visually. The argument f is a Python function imple-
menting f (t), N is the number of terms in the sum SN(t), and M is the number of
uniformly distributed t coordinates used to plot f and SN .

d) Write a function error(b, f, M) that returns a mathematical measure of the
error in SN(t) as an approximation to f (t):

E =
√∑

i

(f (ti) − SN(ti ))
2,

where the ti values are M uniformly distributed coordinates on [−π, π]. The
array b holds the coefficients in SN and f is a Python function implementing the
mathematical function f (t).

e) Make a function trial(f, N) for interactively giving bn values and getting
a plot on the screen where the resulting SN (t) is plotted together with f (t).
The error in the approximation should also be computed as indicated in d). The
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argument f is a Python function for f (t) and N is the number of terms N in the
sum SN(t). The trial function can run a loop where the user is asked for the bn

values in each pass of the loop and the corresponding plot is shown. You must
find a way to terminate the loop when the experiments are over. Use M=500 in
the calls to plot_compare and error.

f) Choose f (t) to be a straight line f (t) = 1
π
t on [−π, π]. Call trial(f, 3) and

try to find through experimentation some values b1, b2, and b3 such that the sum
of sines SN(t) is a good approximation to the straight line.

g) Now we shall try to automate the procedure in f). Write a function that has
three nested loops over values of b1, b2, and b3. Let each loop cover the interval
[−1, 1] in steps of 0.1. For each combination of b1, b2, and b3, the error in the
approximation SN should be computed. Use this to find, and print, the smallest
error and the corresponding values of b1, b2, and b3. Let the program also plot f

and the approximation SN corresponding to the smallest error.

Filename: fit_sines.py.

Remarks

1. The function SN (x) is a special case of what is called a Fourier series. At the
beginning of the nineteenth century, Joseph Fourier (1768–1830) showed that
any function can be approximated analytically by a sum of cosines and sines.
The approximation improves as the number of terms (N) is increased. Fourier
series are very important throughout science and engineering today.
(a) Finding the coefficients bn is solved much more accurately in Exercise 6.12,

by a procedure that also requires much less human and computer work!
(b) In real applications, f (t) is not known as a continuous function, but function

values of f (t) are provided. For example, in digital sound applications,
music in a CD-quality WAV file is a signal with 44,100 samples of the
corresponding analog signal f (t) per second.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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5SomeMore Python Essentials

5.1 Lists and Tuples: Alternatives to Arrays

We have seen that a group of numbers may be stored in an array that we may treat
as a whole, or element by element. In Python, there is another way of organizing
data that actually is much used, at least in non-numerical contexts, and that is a
construction called list.

Some Properties of Lists A list is quite similar to an array in many ways, but
there are pros and cons to consider. For example, the number of elements in a list is
allowed to change, whereas arrays have a fixed length that must be known at the time
of memory allocation. Elements in a list can be of different type, so you may mix,
e.g., integers, floats and strings, whereas elements in an array must be of the same
type. In general, lists provide more flexibility than do arrays. On the other hand,
arrays give faster computations than lists, making arrays our prime choice unless
the flexibility of lists is needed. Arrays also require less memory use and there is a
lot of ready-made code for various mathematical operations. Vectorization requires
arrays to be used.

A list has elements that we may use for computations, just like we can with array
elements. As with an array, we may find the number of elements in a list with the
function len (i.e., we find the “length” of the list), and with the array function
from numpy, we may create an array from an existing list:

In [1]: x = list(range(6, 11, 1))

In [2]: x
Out[2]: [6, 7, 8, 9, 10]

In [3]: x[0]
Out[3]: 6

In [4]: x[4]
Out[4]: 10

In [5]: x[0] + x[1]
Out[5]: 13

© The Author(s) 2020
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In [6]: import numpy as np

In [7]: y = np.array(x) # create array y

In [8]: y
Out[8]: array([ 6, 7, 8, 9, 10])

In [9]: x[0] = -1

In [10]: x
Out[10]: [-1, 7, 8, 9, 10] # x is changed

In [11]: y
Out[11]: array([ 6, 7, 8, 9, 10]) # y is not changed

In [12]: len(x)
Out[12]: 5

In [13]: len(y)
Out[13]: 5

A list may also be created by simply writing, e.g.,

x = [’hello’, 4, 3.14, 6]

giving a list where x[0] contains the string hello, x[1] contains the integer 4, etc.
We may add and delete elements anywhere in a list:

x = [’hello’, 4, 3.14, 6]
x.insert(0, -2) # x then becomes [-2, ’hello’, 4, 3.14, 6]
del x[3] # x then becomes [-2, ’hello’, 4, 6]
x.append(3.14) # x then becomes [-2, ’hello’, 4, 6, 3.14]

Note the ways of writing the different operations here. Using append() will always
increase the list at the end. If you like, you may create an empty list as x = []
before you enter a loop which appends element by element. Note that there are
many more operations on lists possible than shown here.

List and for Loops Previously, we saw how a for loop may run over array
elements. When we want to do the same with a list in Python, we may do it simply
like:

x = [’hello’, 4, 3.14, 6]
print(’The elements of the list x:\n’)
for e in x:

print(e)

We observe that e runs over the elements of x directly, avoiding the need for
indexing. Be aware, however, that when loops are written like this, you can not
change any element in x by “changing” e. That is, writing e += 2 will not change
anything in x, since e can only be used to read (as opposed to overwrite) the list
elements. Running the code gives the output
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The elements of the list x:

hello
4
3.14
6

List Comprehension There is a special construct in Python that allows you to
run through all elements of a list, do the same operation on each, and store the
new elements in another list. It is referred to as list comprehension and may be
demonstrated as follows:

In [1]: L1 = [1, 2, 3, 4]

In [2]: L2 = [e*10 for e in L1]

In [3]: L2
Out[3]: [10, 20, 30, 40]

So, we get a new list by the name L2, with the elements 10, 20, 30 and 40, in that
order. Notice the syntax within the brackets for L2, e*10 for e in L1 signals that
e is to successively be each of the list elements in L1, and for each e, create the next
element in L2 by doing e*10. More generally, the syntax may be written as

L2 = [E(e) for e in L1]

where E(e) means some expression involving e.
In some cases, it is required to run through 2 (or more) lists at the same time.

Python has a handy function called zip for this purpose. An example of how to use
zip is provided in Sect. 5.5 (file_handling.py).

Some Properties of Tuples We should also briefly mention about tuples, which are
very much like lists, the main difference being that tuples cannot be changed. To a
freshman, it may seem strange that such “constant lists” could ever be preferable
over lists. However, the property of being constant is a good safeguard against
unintentional changes. Also, it is quicker for Python to handle data in a tuple than
in a list, which contributes to faster code. With the data from above, we may create
a tuple and print the content by writing

x = (’hello’, 4, 3.14, 6)
print(’The elements of the tuple x:\n’)
for e in x:

print(e)

Trying insert or append for the tuple gives an error message (because it cannot
be changed), stating that the tuple object has no such attribute.
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5.2 Exception Handling

An exception, is an error that is detected during program execution. We experienced
such an error previously with our times tables program in Sect. 4.2.4. When we were
asked about 3*2, and replied with the word six in stead of the number 6, we caused
the program to stop and report about some ValueError. The program would have
responded in the same way, for example, if we had rather given 6.0 (i.e., a float) as
input, or just pressed enter (without typing anything else).

Our code could only handle “expected” input from the user, i.e., an integer as an
answer to a*b. It would have been much better, however, if it could account also
for “unexpected” input. If possible, we would prefer our program not to stop (or
“crash”) unexpectedly for some kind of input, it should just handle it, get back on
track, and keep on running. Can this be done in Python? Yes! Python has excellent
constructions for dealing with exceptions in general, and we will show, in particular,
how such exception handling will bring us to the fourth version of our times table
program.

To get the basic idea with exception handling, we will first explain the very
simplest try-except construction, and also see how it could be used in the times
tables program. It will only partly solve our problem, so we will immediately move
on to a more refined try-except construction that will be just what we need.

Generally, a simple try-except construction may be put up as

try:
<block of statements> # ...in try block

except:
<block of statements> # ...in except block

# indent reversed, i.e., first line after ‘try-except‘ construction.

When executed, Python recognizes the reserved words try and except (note colon
and subsequent indent), and will do the following. First, Python will try to execute
the statements in the try block. In the case when these statements execute without
trouble, the except block is skipped (like the else block in an if-else construction).
However, if something goes wrong in the try block, an exception is raised by Python,
and execution jumps immediately to the except block without executing remaining
statements of the try block.

It is up to the programmer what statements to have in the except block (as in
the try block, of course), and that makes the programmer free to choose what will
happen when an exception occurs! Sometimes, e.g., a program stop is desirable,
sometimes not.

5.2.1 The Fourth Version of Our Times Tables Program

Simple Use of try-except Let us now make use of this simple try-except
construction in the main program of times_tables_3.py, as a first attempt to
improve the program. Doing so, the code may appear as (we give the whole program
for easy reference):
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import numpy as np

def ask_user(a, b):
"""get answer from user: a*b = ?"""
question = ’{:d} * {:d} = ’.format(a, b)
answer = int(input(question))
return answer

def points(a, b, answer_given):
"""Check answer. Correct: 1 point, else 0"""
true_answer = a*b
if answer_given == true_answer:

print(’Correct!’)
return 1

else:
print(’Sorry! Correct answer was: {:d}’.format(true_answer))
return 0

print(’\n*** Welcome to the times tables test! ***\
\n (To stop: ctrl-c)’)

N = 10
NN = N*N
score = 0
index = list(range(0, NN, 1))
np.random.shuffle(index) # randomize order of integers in index
for i in range(0, NN, 1):

a = index[i]//N + 1
b = index[i]%N + 1
try:

user_answer = ask_user(a, b)
except:

print(’You must give a valid number!’)
continue # jump to next loop iteration

score = score + points(a, b, user_answer)
print(’Your score is now: {:d}’.format(score))

print(’\nFinished! \nYour final score: {:d} (max: {:d})’\
.format(score, N*N))

What will happen here? During execution, Python will first try to execute
user_answer = ask_user(a, b) in the try block. If it executes without
trouble, the except block is skipped, and execution continues with the line
score = score + points(a, b, user_answer). However, if an exception
is raised, execution proceeds immediately with print and continue in the except
block. If so, the assignment to user_answer does not take place. The continue
statement makes us move to the next question, since it immediately brings execution
to the next loop iteration, i.e., score is neither updated, nor printed, before “leaving”
that iteration.

This solution is a step forward for our program, since we avoid an unintentional
stop if someone accidentally hits the wrong key. However, the except block here will
handle all kinds of exceptions, and, in particular, trying to stop the program with
Ctrl-c will no longer work (in stead, you may choose Consoles and Restart
kernel from the Spyder menu)! It would be better programming to differentiate
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between different kinds of exceptions, coding a dedicated response in each case.
That can be done in Python,1 and it will also allow us to get back the Ctrl-c
functionality that we had in the earlier versions.

A More Detailed Use of try-except We let the final version of our code
(times_tables_4.py) serve as an example of a more refined try-except
construction. It is still simple, but has what we need. We present this final version in
its completeness, before explaining the details. All code changes are still confined
to the main part of the program:

import numpy as np

def ask_user(a, b):
"""Get answer from user: a*b = ?"""
question = ’{:d} * {:d} = ’.format(a, b)
answer = int(input(question))
return answer

def points(a, b, answer_given):
"""Check answer. Correct answer gives 1 point, else zero"""
true_answer = a*b
if answer_given == true_answer:

print(’Correct!’)
return 1

else:
print(’Sorry! Correct answer was: {:d}’.format(true_answer))
return 0

print(’\n*** Welcome to the times tables test! ***\
\n (To stop: ctrl-c)’)

N = 10
NN = N*N
score = 0
index = list(range(0, NN, 1))
np.random.shuffle(index) # randomize order of integers in index
for i in range(0, NN, 1):

a = index[i]//N + 1
b = index[i]%N + 1
try:

user_answer = ask_user(a, b)
except KeyboardInterrupt:

print(’\nOk, you want to stop!’)
break

except ValueError:
print(’You must give a valid number!’)
continue # jump to next loop iteration

score = score + points(a, b, user_answer)
print(’Your score is now: {:d}’.format(score))

print(’\nFinished! \nYour final score: {:d} (max: {:d})’\
.format(score, N*N))

1 https://docs.python.org/3/tutorial/errors.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/times_tables_4.py
https://docs.python.org/3/tutorial/errors.html
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Python has many different exception types, and we use two of them here,
KeyboardInterrupt and ValueError (some more examples will be given soon).
Unless the user answers with a valid integer, one of these exceptions is raised. A
KeyboardInterrupt is raised if we type Ctrl-c to stop execution, whereas a
ValueError is raised otherwise. We note that in each case an appropriate printout is
given first. Furthermore, when a ValueError is raised, execution proceeds directly
with the next question (after the printout). When a KeyboardInterrupt is raised,
the printout is succeeded by execution of the break statement. This implies that
execution breaks out of the for loop and the program stops after printing the final
score.

One dialogue with the program could then be, for example:

*** Welcome to the times tables test! ***
(To stop: ctrl-c)

6 * 8 = 48
Correct!
Your score is now: 1

5 * 8 = u (accidentally hit wrong key - author’s comment)
You must give a valid number!

3 * 10 = (only press enter - author’s comment)
You must give a valid number!

5 * 6 = 30
Correct!
Your score is now: 2

7 * 6 = (type ctrl-c - author’s comment)
Ok, you want to stop!

Finished!
Your final score: 2 (max: 100)

With our final version, we see that some typical error situations are handled accord-
ing to plan, and also that Ctrl-c now works as previously. For the present problem,
we found that only two different types of exceptions (KeyboardInterrupt and
ValueError) were required. Had more exceptions been needed, we could just have
extended the structure straight forwardly, with

except exception_type:
<statements>

for each of them. Note that it is possible to have a unified response to several
exceptions, by just collecting the exception types in a parentheses and separating
them with a comma. For example, with two such exceptions, they would appear on
the form

except (exception_type_1, exception_type_2):
<statements>

Before ending this chapter on exception handling, it is appropriate to briefly
exemplify a few more of the many built-in exceptions in Python.
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If we try to use an uninitialized variable, a NameError exception is raised:

In [1]: print(x) # x is uninitialized
...
...
NameError: name ’x’ is not defined

When division by zero is attempted, it results in a ZeroDivisionError exception:

In [2]: 1.0/0
...
...
ZeroDivisionError: float division by zero

Using illegal indices causes Python to raise an IndexError exception.:

In [3]: x = [7, 8, 9]

In [4]: x[2]
Out[4]: 9

In [5]: x[3] # legal indices are 0, 1 and 2
...
...
IndexError: list index out of range

Wrong Python grammar, or wrong typing of reserved words, gives a SyntaxError
exception:

In [6]: impor numpy as np # typo... missing t in import
...

impor numpy as np
^

SyntaxError: invalid syntax

If object types do not match, Python raises a TypeError exception:

In [7]: ’a string’ + 1 # attempt to add string and integer
...
...
TypeError: must be str, not int

(We might add that, in the last example here, two strings could have been straight
forwardly concatenated with +.)

Abort Execution with sys.exit

In some cases, it is desirable to stop execution there and then. This may
be done effectively by use of the exit function in the sys modulea (a
module with functions and parameters that are specific to the system). For
an application of sys.exit, see Sect. 7.2.2.

a https://docs.python.org/3/library/sys.html.

We have been careful to check code behavior in a step-wise fashion while
developing our program. Still, testing should be done also with (what, for now, is
regarded as) the “final” version. To test our times tables program, we should check

https://docs.python.org/3/library/sys.html
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that all the 100 questions actually get asked, and also that points are given correctly.
The simplicity of the present program allows this to be done while running it.
Experienced programmers, however, usually write dedicated code for such testing.
How to do this for implementations of numerical methods, will be presented later
(see Chap. 6).

Note that, even if some error handling can be implemented by use of
if-elif-else constructions, exception handling allows better programming, and
is the preferred and modern way of handling errors. The recommendation to novice
programmers is therefore to develop the habit of using try-except constructions.

5.3 Symbolic Computations

Even though the main focus in this book is programming of numerical methods,
there are occasions where symbolic (also called exact or analytical) operations are
useful.

5.3.1 Numerical Versus Symbolic Computations

Doing symbolic computations means, as the name suggests, that we do compu-
tations with the symbols themselves rather than with the numerical values they
could represent. Let us illustrate the difference between symbolic and numerical
computations with a little example. A numerical computation could be

x = 2
y = 3
z = x*y
print(z)

which will make the number 6 appear on the screen.
A symbolic counterpart of this code could be written by use of the SymPy

package2 (named sympy in Python):

import sympy as sym

x, y = sym.symbols(’x y’) # define x and y as a mathematical symbols
z = x*y
print(z)

which causes the symbolic result x*y to appear on the screen. Note that no numerical
value was assigned to any of the variables in the symbolic computation. Only the
symbols were used, as when you do symbolic mathematics by hand on a piece of
paper. Note also how symbol names must be declared by using symbols.

2 SymPy (http://docs.sympy.org/latest/index.html) is included in Anaconda. In case you have not
installed Anaconda, you may have to install SymPy separately.

http://docs.sympy.org/latest/index.html
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5.3.2 SymPy: Some Basic Functionality

The following script example_symbolic.py gives a quick demonstration of some
of the basic symbolic operations that are supported in Python.

import sympy as sym

x, y = sym.symbols(’x y’)

print(2*x + 3*x - y) # Algebraic computation
print(sym.diff(x**2, x)) # Differentiates x**2 wrt. x
print(sym.integrate(sym.cos(x), x)) # Integrates cos(x) wrt. x
print(sym.simplify((x**2 + x**3)/x**2)) # Simplifies expression
print(sym.limit(sym.sin(x)/x, x, 0)) # lim of sin(x)/x as x->0
print(sym.solve(5*x - 15, x)) # Solves 5*x = 15

Another useful possibility with sympy, is that sympy expressions may be
converted to lambda functions, which then may be used as “normal” Python
functions for numerical calculations. An example will illustrate.

Let us use sympy to analytically find the derivative of the function f (x) = 5x3 +
2x2 − 1, and then make both f and its derivative into Python functions:

import sympy as sym

x = sym.symbols(’x’)
f_expr = 5*x**3 + 2*x**2 - 1 # symbolic expression for f(x)
dfdx_expr = sym.diff(f_expr, x) # compute f’(x) symbolically

# turn symbolic expressions into functions
f = sym.lambdify([x], f_expr) # f = lambda x: 5*x**3 + 2*x**2 - 1
dfdx = sym.lambdify([x], dfdx_expr) # dfdx = lambda x: 15*x**2 + 4*x

print(f(1), dfdx(1)) # call and print, x = 1

Note the arguments to lambdify. The first argument [x] specifies the argument
that the generated function f (and the function dfdx) is supposed to take, while the
second argument f_expr (and dfdx_expr) specifies the expression to be evaluated.
When executed, the program prints 6 and 19, corresponding to f(1) and dfdx(1),
respectively.

Other symbolic calculations for, e.g., Taylor series3 expansion, linear algebra
(with matrix and vector operations), and (some) differential equation solving are
also possible.

5.3.3 Symbolic Calculations with Some Other Tools

Symbolic computations are also readily accessible through the (partly) free online
tool WolframAlpha,4 which applies the very advanced Mathematica5 package as
symbolic engine. The disadvantage with WolframAlpha compared to the SymPy

3 See, e.g., https://en.wikipedia.org/wiki/Taylor_series.
4 http://www.wolframalpha.com.
5 http://en.wikipedia.org/wiki/Mathematica.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/example_symbolic.py
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/Taylor_series
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
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package is that the results cannot automatically be imported into your code and
used for further analysis. On the other hand, WolframAlpha has the advantage that
it displays many additional mathematical results related to the given problem. For
example, if we type 2x + 3x - y in WolframAlpha, it not only simplifies the
expression to 5x - y, but it also makes plots of the function f (x, y) = 5x − y,
solves the equation 5x − y = 0, and calculates the integral

∫ ∫
(5x + y)dxdy. The

commercial Pro version also offers a step-by-step demonstration of the analytical
computations that solve the problem. You are encouraged to try out these commands
in WolframAlpha:

• diff(x^2, x) or diff(x**2, x)
• integrate(cos(x), x)
• simplify((x**2 + x**3)/x**2)
• limit(sin(x)/x, x, 0)
• solve(5*x - 15, x)

WolframAlpha is very flexible with respect to syntax. In fact, WolframAlpha will
use your input to guess what you want it to do! Depending on what you write, it
may be more or less easy to do that guess, of course. However, in WolframAlpha’s
response, you are also told how your input was interpreted, so that you may adjust
your input in a second try.

Another impressive tool for symbolic computations is Sage,6 which is a very
comprehensive package with the aim of “creating a viable free open source
alternative to Magma, Maple, Mathematica and Matlab”. Sage is implemented in
Python. Projects with extensive symbolic computations will certainly benefit from
exploring Sage.

5.4 Making Our OwnModule

As we know by now, Python has a huge collection of useful modules and packages
written by clever people. This far, we have experienced how these libraries (math,
numpy, matplotlib, etc.) could simplify our own programming, making ready and
professional code available through simple import statements. This is very good, but
it gets even better, since it is straight forward (whether we are programming newbies
or not) to also create modules containing our own code.

What is a module then, really? The truth is, that we may regard any of the
Python scripts we have presented in this book as a module! In fact, any text file
with extension .py that contains Python code written with a text editor, is a module.
If the file name is my_module.py, then the module name is my_module. Up until
now, we have written .py files for execution as programs. To design and use such
files as module files, however, there are a few things we better get conscious about.

To bring across the essential points, we will develop our own little demonstration
module for vertical motion, named vertical_motion (surprising!). The motion
is of the kind we have addressed also previously in this book, i.e., a special case
of projectile motion, in which an object starts out with some vertical velocity, and

6 http://sagemath.org/.

http://sagemath.org/
http://sagemath.org/
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moves without any air resistance.7 As with built-in modules, we will see that func-
tionality may be imported in the usual ways, e.g., as import vertical_motion,
which allows easy reuse of module functions.

5.4.1 A Naive Import

Before turning to the making of our vertical motion module, we will do some
“warm-up” testing with a previous script of ours, just to enlighten ourselves a bit.

Let us pick ball_function.py from Sect. 4.1.1 (which addresses vertical
motion), and argue that, if this script is a module, we should be able to “import
it” as import ball_function, right? This sounds like a reasonable expectation,
so without too deep reasoning, let us just start there.

First, however, we better take another look at that code (after all, it has been a
while). For easy reference, we just repeat the few code lines of ball_function.py
here:

def y(v0, t):
g = 9.81 # Acceleration of gravity
return v0*t - 0.5*g*t**2

v0 = 5 # Initial velocity

time = 0.6 # Just pick one point in time
print(y(v0, time))
time = 0.9 # Pick another point in time
print(y(v0, time))

We recognize the function definition of y and the two applications of that
function, involving a function call and a printout for each of the chosen points in
time.

Now, we previously thought of this code as a program, executed it, and got the
printouts. What will happen now, when we rather consider it a module and import it?

Here is what happens:

In [1]: import ball_function
1.2342
0.52695

What? Printing of numbers? We asked for an import,8 not something that looks like
program execution!

The thing is, that when any module is imported, Python does actually execute the
module code (!), i.e., function definitions are read and statements (outside functions)
executed. This is Python’s way of bringing module content “to life”, so that, e.g.,

7 The reader who is into physics, will know that the computations done here, work equally well if
the object has some simultaneous horizontal motion. In that case, our computations apply to the
vertical component of the motion only, not the motion as a whole.
8 Doing the import differently, e.g., like from vertical_motion import y, would still give the
printouts! Also if the import were done in a script.
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functions defined in that module get ready for use. To see that the function y now is
ready for use, we may proceed our interactive session as:

In [2]: ball_function.y(v0=5, t=0.6) # remember to prefix y
Out[2]: 1.2342

Thus, apart from the undesirable printouts, the import seems to work!
To realize how inappropriate those printouts are, we might consider the following

situation. A friend of yours wants to use your function y. You provide the file
ball_function.py, your friend imports ball_function, and gets two numbers
printed on the screen. Your friend did not ask for those numbers, and would probably
end up reading your code to see what they were all about. It should not be like that.

Our main observation here, is that those undesirable printouts came from
statements placed outside of functions. Thus, the lesson learned, is seemingly that
when preparing modules for import, there should be no statements outside functions.
Or, could there be a way to treat such statements, so that undesirable printouts are
avoided? We will see.

These thoughts will be in the back of our minds as we now proceed to design the
vertical motion module.

Multiple Imports of the Same Module

Note that, when executing a program (or during an interactive session), Python
does keep track of which modules that already have been imported. Thus, if
another import is tried for a certain module, Python avoids the time consuming
and unnecessary task of executing the module file once again (all module
functionality is already in place, ready for use). You can check this out
if you like, by doing a second import ball_function. This time, there
are no printouts! Doing the import differently (i.e., with our example, as
from ball_function import y or from ball_function import *),
would not make any difference.

5.4.2 AModule for Vertical Motion

One simple way to avoid undesirable printouts during import, is to let the module
file contain only function definitions. This is how we will arrange the first version
of our vertical motion module.

We proceed to make ourselves a preliminary version9 of our new module
file vertical_motion.py. In this file, we place three function definitions only
(which should suffice for our demonstration). One of these, is the y function from

9 Note that only the final version, presented in Sect. 5.4.3, is found on the book’s website.
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ball_function.py, while the other two, time_of_flight and max_height,
compute the time of flight and maximum height attained, respectively (consult any
introductory book on mechanics regarding the implemented formulas).

In line with good programming practice, we also equip our module file with a doc
string on top. Generally, that doc string should give the purpose of the module and
explain how the module is used. More comprehensive doc strings are often required
for larger and more “complicated” modules (here, our doc string is very simple, but
professional programmers write their doc strings with great care10). The module file
reads:

"""
Module for computing vertical motion
characteristics for a projectile.
"""
def y(v0, t):

"""
Compute vertical position at time t, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return v0*t - 0.5*g*t**2

def time_of_flight(v0):
"""
Compute time in the air, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return 2*v0/g

def max_height(v0):
"""
Compute maximum height reached, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return v0**2/(2*g)

# Other function definitions could be added here...

As with built-in modules, the built-in help function can be used to retrieve
documentation from user-defined modules:

In [1]: import vertical_motion

In [2]: help(vertical_motion)
Help on module vertical_motion:

NAME
vertical_motion

FILE
/.../.../.../vertical_motion.py

10 https://www.python.org/dev/peps/pep-0257/.

https://www.python.org/dev/peps/pep-0257/
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DESCRIPTION
Module for computing vertical motion
characteristics for a projectile.

FUNCTIONS
max_height(v0)

Compute maximum height reached, given the initial vertical
velocity v0. Assume negligible air resistance.

time_of_flight(v0)
Compute time in the air, given the initial vertical
velocity v0. Assume negligible air resistance.

y(v0, t)
Compute vertical position at time t, given the initial vertical
velocity v0. Assume negligible air resistance.

We recognize the doc strings in the printout and should realize that it is a good idea
to keep those doc strings informative.

With the following interactive session, comparing the answers to hand calcula-
tions (using the formulas and a calculator), we confirm that the module now seems
to work as intended,

In [1]: import vertical_motion as vm

In [2]: vm.y(v0=5, t=0.6)
Out[2]: 1.2342

In [3]: vm.time_of_flight(v0=5)
Out[3]: 1.019367991845056

In [4]: vm.max_height(v0=5)
Out[4]: 1.27420998980632

We now have a useful version of our own vertical motion module, from which
imports work just like from built-in modules. Still, there is room for useful
modifications, as we will turn to next.
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Where to Place a Module File?

For a module import to be successful, a first requirement is that Python can
find the module file. A simple way to make this happen, is to place the module
file in the same folder as the program (that tries to import the module).a There
are other alternatives, but then you should know how Python looks for module
files.

When Python proceeds to import a module, it looks for the module file
within the folders contained in the sys.path list. To see the folders in
sys.path, we may do:

In [1]: import sys

In [2]: sys.path
Out[2]:
[’’,
’/.../.../site-packages/spyder/utils/site’,
...
... < longer printout... author’s comment >
...

’/.../.../site-packages/IPython/extensions’,
’/.../.../.ipython’]

Placing your module in one of the folders listed, assures that Python will find
it. If, for some reason, you want to place your module in a folder that is not
listed in sys.path, you may insert that folder name in sys.path. With our
sys.path here, we could insert the folder name my_folder, for example, by
continuing our session as

In [3]: sys.path.insert(0, ’my_folder’) # 0 - location in sys.path

In [2]: sys.path
Out[2]:
[’my_folder’,
’’,
’/.../.../site-packages/spyder/utils/site’,
...
...
...

’/.../.../site-packages/IPython/extensions’,
’/.../.../.ipython’]

The first argument to insert gives the location in the sys.path list where
you want the folder name to be inserted (0 gives first place, 1 gives second,
and so on).

You may also use the PYTHONPATH variable (https://docs.python.org/3/
using/cmdline.html#envvar-PYTHONPATH), but the above should suffice for
a beginner.

If you want to run your module file also as a program, the location of the file
might require that you first update the PATH environment variable (see, e.g.,
http://hplgit.github.io/primer.html/doc/pub/input/._input-readable009.html).

a In this book, we keep to this simple way.***

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
http://hplgit.github.io/primer.html/doc/pub/input/._input-readable009.html
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5.4.3 Module or Program?

We know how a .py file can be executed as a program, and we have seen how
functions may be collected in a .py file, so that imports do not trigger any
undesirable printouts. However, we have already realized that Python does not force
a .py file to be either a program, or a module. No, it can be both, and thanks to a
clever construction, Python allows a very flexible switch between the two ways of
using a .py file.

This clever construction is based on an if test, which tests whether the file should
be run as a program, or act as a module only. This is doable by use of the variable
__name__, which (behind the scenes) Python sets to ’__main__’ only if the file is
executed as a program (note the compulsory two underscores to each side of name
and main here). We may put up a rather general form of the construction, that we
place in the .py file, as

< function definitions >

if __name__ == ’__main__’: # note double underscores (and colon)
< statement 1 >
< statement 2 >

...

...

So, if the file is run as a program, Python immediately sets __name__ to
’__main__’. When reaching the if test, it will thus evaluate to True, which
in turn causes the corresponding (indented) statements, i.e., the statements of the
so-called test block, to be executed. To the contrary, if the file is used for imports
only, __name__ will not be set to ’__main__’, the if test will consequently
evaluate to False, and the corresponding statements are not executed.

Often, the statements in the test block are best placed in one or several functions
(then defined above the if test, together with the other function definitions), so that
when the if test evaluates to True, one or more function calls will follow. This
is particularly important when different tasks are handled, so that each function
contains statements that logically belong together.

As a simple illustration, when one function is natural (e.g., named
application), the construction may be reformulated as

< function definitions >

def application():
< statement 1 >
< statement 2 >

...

...

if __name__ == ’__main__’:
application()

Our .py File as Both Module and Program We will now incorporate this
construction in vertical_motion.py. This allows us to use the functions from
vertical_motion.py also in a program (our application) that asks the user for
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an object’s initial vertical velocity, and then computes height (as it develops with
time), maximum height and flight duration.

The more flexible version of vertical_motion.py then reads,

"""
Module for computing vertical motion
characteristics for a projectile.
"""
def y(v0, t):

"""
Compute vertical position at time t, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return v0*t - 0.5*g*t**2

def time_of_flight(v0):
"""
Compute time in the air, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return 2*v0/g

def max_height(v0):
"""
Compute maximum height reached, given the initial vertical
velocity v0. Assume negligible air resistance.
"""
g = 9.81
return v0**2/(2*g)

def application():
import numpy as np
import matplotlib.pyplot as plt
import sys

print("""This program computes vertical motion characteristics for a
projectile. Given the intial vertical velocity, it computes height
(as it develops with time), maximum height reached, as well as time
of flight.""")

try:
v_initial = float(input(’Give the initial velocity: ’))

except:
print(’You must give a valid number!’)
sys.exit(1)

H = max_height(v_initial)
T = time_of_flight(v_initial)
print(’Maximum height: {:g} m, \nTime of flight: {:g} s’.format(H, T))

# compute and plot position as function of time
dt = 0.001 # just pick a "small" time step
N = int(T/dt) # number of time steps
t = np.linspace(0, N*dt, N+1)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/vertical_motion.py
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position = y(v_initial, t) # compute all positions (over T)
plt.plot(t, position, ’b--’)
plt.xlabel(’Time (s)’)
plt.ylabel(’Vertical position (m)’)
plt.show()
return

if __name__ == ’__main__’:
application()

The code in application represents the main program and should be under-
standable from what we have learned previously. Note that, like we have done
here, it is usually a good idea to print some information about how the program
works.

Testing As a simple test of the code in vertical_motion.py, we might compare
the output to hand calculations, as we did before. In Chap. 6, however, we will learn
how testing ought to be done via dedicated test functions. These test functions may
be run in different ways. One alternative, however, is to include an option within the
test block, which allows the user to run through the test functions whenever wanted,
but more about that later.

Placing Import Statements in Our Module

Note that if we have import statements in our module, it is possible to run into
trouble if we do not place them at the top of the file (which is according to the
general recommendation).

With the following sketchy example module, it will work fine to import
some_function in another program and use it (since, when importing
some_function, the import of numpy is done).

import numpy as np

def some_function(n):
a = np.zeros(n)
...
return r

def application():
....
n = 10
r = some_function(n)
...
return

if __name__ == ’__main__’:
application()

One choice that would not work in the same way, however, would
be to instead have the import statement import numpy as np after
if __name__ == ’__main__’: . Then, this import statement would not
be run if some_function is imported for use in another program.
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5.5 Files: Read andWrite

Input data for a program often come from files and the results of the computations
are often written to file. To illustrate basic file handling, we consider an example
where we read x and y coordinates from two columns in a file, apply a function f

to the y coordinates, and write the results to a new two-column data file. The first
line of the input file is a heading that we can just skip:

# x and y coordinates
1.0 3.44
2.0 4.8
3.5 6.61
4.0 5.0

The relevant Python lines for reading the numbers and writing out a similar file are
given in the file file_handling.py

filename = ’tmp.dat’
infile = open(filename, ’r’) # Open file for reading
line = infile.readline() # Read first line
# Read x and y coordinates from the file and store in lists
x = []
y = []
for line in infile: # Read one line at a time

words = line.split() # Split line into words
x.append(float(words[0]))
y.append(float(words[1]))

infile.close()

# Transform y coordinates
from math import log

def f(y):
return log(y)

for i in range(len(y)):
y[i] = f(y[i])

# Write out x and y to a two-column file
filename = ’tmp_out.dat’
outfile = open(filename, ’w’) # Open file for writing
outfile.write(’# x and y coordinates\n’)
for xi, yi in zip(x, y):

outfile.write(’{:10.5f} {:10.5f}\n’.format(xi, yi))
outfile.close()

If you have problems understanding the details here, make your own copy and
insert printouts of line and the word elements in the (first) loop.

With zip, in the first iteration, xi and yi will represent the first element of x and
y, respectively. In the second iteration, xi and yi will represent the second element
of x and y, and so on.11

11 Generally, zip allows running over multiple lists at the same time, ending when the shortest list
is finished.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/file_handling.py
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5.6 Measuring Execution Time

Even though computational speed should have low priority among beginners to
programming, it might be useful, at least, to have seen how execution time can be
found for some code snippet. This is relevant for more experienced programmers,
when it is required to find a particularly fast code alternative.

The measuring of execution time is complicated by the fact that a number
of background processes (virus scans, check for new mail, check for software
updates, etc.) will affect the timing. To some extent, it is possible to turn off such
background processes, but that strategy soon gets too complicated for most of us.
Fortunately, simpler and safer tools are available. To find the execution time of
small code snippets, a good alternative is to use the timeit module12 from the
Python standard library.

5.6.1 The timeitModule

To demonstrate how this module may be used, we will investigate how function calls
affect execution time. Our brief “investigation” is confined to the filling of an array
with integers, done with and without a particular function call. The details are best
explained with reference to the following code (no timing yet!):

import numpy as np

def add(a, b):
return a + b

x = np.zeros(1000)
y = np.zeros(1000)

for i in range(len(x)):
x[i] = add(i, i+1) # use function call to fill array

for i in range(len(x)):
y[i] = i + (i+1) # ...no function call

So, the sum of two integers is assigned to each array element. The arrays x and y will
contain exactly the same numbers when the second loop is finished, but to fill x, we
use a call to the function add. Thus, the time to fill x is expected to take longer than
filling y, which just adds the numbers directly. Our question is, how much longer
does it take to use the function call?

To answer this question by use of timeit, we may write the script
timing_function_call.py:

import timeit
import numpy as np

def add(a, b):
return a + b

x = np.zeros(1000)

12 https://docs.python.org/3/library/timeit.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/timing_function_call.py
https://docs.python.org/3/library/timeit.html
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y = np.zeros(1000)

# ...use the function add
t = timeit.Timer(’for i in range(len(x)): x[i] = add(i, i+1)’, \

setup=’from __main__ import add, x’)
x_time = t.timeit(10000) # Time 10000 runs of the whole loop
print(’Time, function call: {:g} seconds’.format(x_time))

# ...no use of function add
t = timeit.Timer(’for i in range(len(y)): y[i] = i + (i+1)’, \

setup=’from __main__ import y’)
y_time = t.timeit(10000) # Time 10000 runs of the whole loop
print(’Time: {:g} seconds’.format(y_time))

What will happen here? Well, first of all, note that there are two calls to
timeit.Timer, one for each of the two loops from above. If we look at the first
call to timeit.Timer, i.e.,

t = timeit.Timer(’for i in range(len(x)): x[i] = add(i, i+1)’, \
setup=’from __main__ import add, x’)

we notice that two arguments are provided. You may recognize the first argument,
for i in range(len(x)): x[i] = add(i, i+1), as a one-line version of the
first loop from above, i.e. the loop over x (usually, we prefer to write such loops not
on a single line. However, when used as an argument in a function call like here, the
one-line version is handy). This first argument, given as a string, is what we want
the timing of. The second argument, setup=’from __main__ import add, x’,
is required for initialization, i.e., what the timer needs to do prior to timing of the
loop. If you look carefully at the string-part of this second argument, you notice an
import statement for add and x. You may wonder why you have to do that when they
are defined in your code above, but stay relaxed about that, it is simply the way this
timer function works. What is required for the timer function to execute the code
given in the first argument, must be provided in the setup argument, even if it is
defined in the code above.

The following line,

x_time = t.timeit(10000) # Time 10000 runs of the whole loop

will cause the whole loop to actually be executed, not a single time, but 10000
times! There will be one recorded time, the time required to run the loop 10000
times. Thus, if an average time for a single run-through of the loop is desired, we
must divide the recorded time by (in this case) 10000. Often, however, the total
time is fine for comparison between alternatives. The print command brings the
recorded time to the screen, before the next loop is timed in an equivalent way.

Why is the loop run 10000 times? To get reliable timings, the execution times
must be on the order of seconds, that is why. How many times the requested code
snippet needs to be run, will of course depend on the code snippet in question.
Sometimes, a single execution is enough. Other times, many more executions than
10000 are required. Some trial and error is usually required to find an appropriate
number.

Executing the program produces the following result,

Time, function call: 2.22121 seconds
Time: 1.4738 seconds
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So, using the function add to fill the array, takes 50% longer time!

5.7 Exercises

Exercise 5.1: Nested for Loops and Lists
The code below has for loops that traverse lists of different kinds. One is with
integers, one with real numbers and one with strings. Read the code and write
down the printout you would have got if the program had been run (i.e., you are
not supposed to actually run the program, just read it!).

for i in [1, 2]:
# First indentation level (4 spaces)
print(’i: {:d}’.format(i))
for j in [3.0, 4.0]:

# Second indentation level (4+4 spaces)
print(’ j: {:.1f}’.format(j))
for w in [’yes’, ’no’]:

# Third indentation level (4+4+4 spaces)
print(’ w: {:s}’.format(w))

# First indentation level
for k in [5.0, 6.0]:

# Second indentation level (4+4 spaces)
print(’ k: {:.1f}’.format(k))

Filename: read_nested_for_loops.py.

Exercise 5.2: Exception Handling: Divisions in a Loop
Write a program that N times will ask the user for two real numbers a and
b and print the result of a/b. Any exceptions should be handled properly (for
example, just give an informative printout and let the program proceed with the
next division, if any). The user should also be allowed to stop execution with
Ctrl-c.

Set N = 4 in the code (for simplicity) and demonstrate that it handles different
types of user input (i.e., floats, integers, text, just pressing enter, etc.) in a sensible
way.
Filename: compute_division.py.

Exercise 5.3: Taylor Series, sympy and Documentation
In this exercise, you are supposed to develop a Python function that approximates
sin(x) when x is near zero. To do this, write a program that utilizes sympy to develop
a Taylor series for sin(x) around x = 0, keeping only 5 terms from the resulting
expression. Then, use sympy to turn the expression into a function. Let the program
also plot sin(x) and the developed function together for x in [−π, π].
Filename: symbolic_Taylor.py.

Remarks Part of your task here, is to find and understand the required documenta-
tion. Most likely, this means that you have to seek more information than found in
our book. You might have to read about the Taylor series (perhaps use Wikipedia or
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Google), and you probably have to look into more details about how Taylor series
are handled with sympy.

To your comfort, this is a very typical situation for engineers and scientists. They
need to solve a problem, but do not (yet!) have the required knowledge for all parts
of the problem. Being able to find and understand the required information is then
very important.

Exercise 5.4: Fibonacci Numbers
The Fibonacci numbers13 is a sequence of integers in which each number (except
the two first ones) is given as a sum of the two preceding numbers:

Fn = Fn−1 + Fn−2, F0 = 1, F1 = 1, n = 2, 3, . . .

Thus, the sequence starts out as

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

a) Write a function make_Fibonacci that generates, and returns, the N first
Fibonacci numbers, when N is an input parameter to the function. Place the
function in a module named fibonacci (i.e., a file named fibonacci.py).
The module should have a test block, so that if run as a program, e.g., the 20
first Fibonacci numbers are printed to screen. Check that the program behaves
as intended.

b) The famous Johannes Kepler14 found that the ratio of consecutive Fibonacci
numbers converges to the golden ratio, i.e.

lim
n→∞

Fn+1

Fn

= 1 + √
5

2
.

Extend your module by defining a function converging_ratio, which takes
an array (or a list) F with (e.g., 20) Fibonacci numbers as input and then
checks (you decide how) whether Kepler’s understanding seems correct. Place
a call to the function in the test block and run the program. Was Kepler
right?

c) With the iterative procedure of the previous question, the ratios converged
to the golden ratio at a certain rate. This brings in the concept of
convergence rate, which we have not yet addressed (see, e.g., Sect. 7.5, or
elsewhere). However, if you are motivated, you may get a head start right
now.

In brief, if we define the difference (in absolute value) between Fn+1
Fn

and the golden
ratio as the error en at iteration n, this error (when small enough) will develop as
en+1 = Ce

q
n , where C is some constant and q is the convergence rate (in fact,

this error model is typical for iterative methods). That is, we have a relation that
predicts how the error changes from one iteration to the next. We note that the

13 Read more about the Fibonacci numbers, e.g., on Wikipedia (https://en.wikipedia. org/wiki/Fi-
bonacci_number).
14 https://en.wikipedia.org/wiki/Johannes_Kepler.

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Johannes_Kepler
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larger the q , the quicker the error goes to zero as the number of iterations (n) grows
(when en < 1). With the given error model, we may compute the convergence rate
from

q = ln(en+1/en)

ln(en/en−1)
.

This is derived by considering the error model for three consecutive iterations,
dividing one equation by the other and solving for q . If then a series of iterations is
run, we can compute a sequence of values for q as the iteration counter n increases.
As n increases, the computed q values are expected to approach the convergence
rate that characterizes the particular iterative method. For the ratio we are looking
at here, the convergence ratio is 1.

Extend your module with a function compute_rates, which takes an array (or
a list) F with (e.g., 20) Fibonacci numbers as input and computes (and prints)
the corresponding values for q . Call the function from the test block and run the
program. Do the convergence rates approach the expected value?

Later, in Sect. 6.6.2, you will learn that convergence rates are very useful when
testing (verifying) software.
Filename: Fibonacci_numbers.py.

Exercise 5.5: Read File: Total Volume of Boxes
A file box_data.dat contains volume data for a collection of rectangular boxes.
These boxes all have the same bottom surface area, but (typically) differ in height.
The file could, for example, read:

Volume data for rectangular boxes
10.0 3.0
4.0
2.0
3.0
5.0

Apart from the header, each line represents one box. However, since they all have
the same bottom surface area, that area (10.0) is only given for the first box. For
that first box, also the height (3.0) is given, as it is for each of the following
boxes.

a) Write down a formula for computing the total volume of all boxes represented in
the file. That formula should be written such that a minimum of multiplications
and additions is used.

b) Write a program that reads the file box_data.dat, computes the total volume
of all boxes represented in the file, and prints that volume to the screen. In the
calculations, apply the formula just derived.

(Note that, as a first step, you may read the file and just print (to screen) what
is read. Comparing this printout with file content (use some editor) is then a good
idea.)

c) In the file box_data.dat, after the last line (containing the height of the “last”
box), insert a couple of empty lines, i.e. just press enter a few times. Then, save
the file and run the program anew. What happens? Explain briefly.
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Filename: total_volume_boxes.py.

Exercise 5.6: Area of a Polygon
One of the most important mathematical problems through all times has been to
find the area of a polygon, especially because real estate areas often had the shape
of polygons, and it was necessary to pay tax for the area. We have a polygon as
depicted below.

The vertices (“corners”) of the polygon have coordinates (x1, y1), (x2, y2), . . .,
(xn, yn), numbered either in a clockwise or counter clockwise fashion. The area A of
the polygon can amazingly be computed by just knowing the boundary coordinates:

A= 1

2

∣
∣(x1y2 + x2y3 + · · · + xn−1yn + xny1) − (y1x2 + y2x3 + · · · + yn−1xn + ynx1)

∣
∣ .

Write a function polyarea(x, y) that takes two coordinate arrays with the vertices
as arguments and returns the area.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.

Hint Since Python lists and arrays have 0 as their first index, it is wise to rewrite the
mathematical formula in terms of vertex coordinates numbered as x0, x1, . . . , xn−1
and y0, y1, . . . , yn−1.
Filename: polyarea.py.

Exercise 5.7: Count Occurrences of a String in a String
In the analysis of genes one encounters many problem settings involving searching
for certain combinations of letters in a long string. For example, we may have a
string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string, letter by letter, by the for loop for letter in gene.
The length of the string is given by len(gene), so an alternative traversal over
an index i is for i in range(len(gene)). Letter number i is reached through
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gene[i], and a substring from index i up to, but not including j, is created by
gene[i:j].

a) Write a function freq(letter, text) that returns the frequency of the letter
letter in the string text, i.e., the number of occurrences of letter divided by
the length of text. Call the function to determine the frequency of C and G in the
gene string above. Compute the frequency by hand too.

b) Write a function pairs(letter, text) that counts how many times a pair
of the letter letter (e.g., GG) occurs within the string text. Use the function to
determine how many times the pair AA appears in the string gene above. Perform
a manual counting too to check the answer.

c) Write a function mystruct(text) that counts the number of a certain structure
in the string text. The structure is defined as G followed by A or T until a double
GG. Perform a manual search for the structure too to control the computations by
mystruct.

Filename: count_substrings.py.

Remarks You are supposed to solve the tasks using simple programming with loops
and variables. While a) and b) are quite straightforward, c) quickly involves demand-
ing logic. However, there are powerful tools available in Python that can solve the
tasks efficiently in very compact code: a) text.count(letter)/len(text); b)
text.count(letter*2); c) len(re.findall(’G[AT]+?GG’, text)). That is,
there is rich functionality for analysis of text in Python and this is particularly useful
in analysis of gene sequences.

Exercise 5.8: Compute Combinations of Sets
Consider an ID number consisting of two letters and three digits, e.g., RE198. How
many different numbers can we have, and how can a program generate all these
combinations?

If a collection of n things can have m1 variations of the first thing, m2 of
the second and so on, the total number of variations of the collection equals
m1m2 · · · mn. In particular, the ID number exemplified above can have 26 · 26 ·
10 · 10 · 10 = 676, 000 variations. To generate all the combinations, we must have
five nested for loops. The first two run over all letters A, B, and so on to Z, while
the next three run over all digits 0, 1, . . . , 9.

To convince yourself about this result, start out with an ID number on the form
A3 where the first part can vary among A, B, and C, and the digit can be among 1,
2, or 3. We must start with A and combine it with 1, 2, and 3, then continue with
B, combined with 1, 2, and 3, and finally combine C with 1, 2, and 3. A double for
loop does the work.

a) In a deck of cards, each card is a combination of a rank and a suit. There are 13
ranks: ace (A), 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and four
suits: clubs (C), diamonds (D), hearts (H), and spades (S). A typical card may be
D3. Write statements that generate a deck of cards, i.e., all the combinations CA,
C2, C3, and so on to SK.
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b) A vehicle registration number is on the form DE562, where the letters vary from
A to Z and the digits from 0 to 9. Write statements that compute all the possible
registration numbers and stores them in a list.

c) Generate all the combinations of throwing two dice (the number of eyes can vary
from 1 to 6). Count how many combinations where the sum of the eyes equals 7.

Filename: combine_sets.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.
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6Computing Integrals and Testing Code

We now turn our prime attention to the solving of mathematical problems through
computer programming. A fundamentally important part of programming, is to
check that the written code works as intended. That is, the code must be tested. This
far, we have checked our coding in rather simple ways, e.g., by comparing to hand
calculations. Now, we will look at more powerful test strategies, while addressing
numerical computation of integrals.

There are many reasons to choose integration as our first application. Integration
is well known already from high school mathematics. Most integrals are not
tractable by pen and paper, and a computerized solution approach is both very much
simpler and much more powerful—you can essentially treat all integrals

∫ b

a
f (x)dx

in 10 lines of computer code!
Integration also demonstrates the difference between exact mathematics by pen

and paper and numerical mathematics on a computer. The latter approaches the
result of the former without any worries about rounding errors due to finite precision
arithmetics in computers (in contrast to differentiation, where such errors prevent us
from getting a result as accurate as we desire).

Finally, integration is thought of as a somewhat difficult mathematical concept
to grasp, and programming integration should greatly improve the understanding of
what integration really is and how it works.

Not only shall we understand how to use the computer to integrate, but we shall
also learn a series of good habits to ensure your computer work is of the highest
scientific quality. In particular, we will have a strong focus on how to write Python
code that is free of programming mistakes.
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Calculating an integral is traditionally done by

∫ b

a

f (x) dx = F(b) − F(a), (6.1)

where

f (x) = dF

dx
.

The major problem with this procedure is that we need to find an anti-derivative
F(x) corresponding to a given f (x). For some relatively simple integrands f (x),
finding F(x) is a doable task. Often, however, it is really challenging, and sometimes
even impossible!

The method (6.1) provides an exact or analytical value of the integral. If we relax
the requirement of computing an exact value for the integral, and instead look for
approximate values, produced by numerical methods, integration becomes a very
straightforward task for almost any given f (x)! In particular, we do not need an
anti-derivative F(x) at all, since it is just the known integrand f (x) that enters the
calculations.

The (apparent) downside of a numerical method is that it can only find an
approximate answer. Leaving the exact for the approximate is a mental barrier in
the beginning, but remember that most real applications of integration will involve
an f (x) function that contains physical parameters, which are measured with some
error. That is, f (x) is very seldom exact, and it does not make sense trying to
compute the integral with a smaller error than the one already present in f (x).

Another advantage of numerical methods is that we can easily integrate a
function f (x) that is only known as samples, i.e., discrete values at some x points,
and not as a continuous function of x expressed through a formula. This is highly
relevant when f is measured in a physical experiment.

6.1 Basic Ideas of Numerical Integration

We consider the integral

∫ b

a

f (x)dx . (6.2)

Most numerical methods for computing this integral split up the original integral
into a sum of several integrals, each covering a smaller part of the original
integration interval [a, b]. This re-writing of the integral is based on a selection
of integration points xi , i = 0, 1, . . . , n that are distributed on the interval [a, b].
Integration points may, or may not, be evenly distributed. An even distribution
simplifies expressions and is often sufficient, so we will mostly restrict ourselves
to that choice. The integration points are then computed as

xi = a + ih, i = 0, 1, . . . , n, (6.3)
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where

h = b − a

n
. (6.4)

That is, we get n sub-intervals of the same size h. Given the integration points, the
original integral is re-written as a sum of integrals, each integral being computed
over the sub-interval between two consecutive integration points. The integral
in (6.2) is thus expressed as

∫ b

a

f (x)dx =
∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx + . . . +
∫ xn

xn−1

f (x)dx . (6.5)

Note that x0 = a and xn = b.
Proceeding from (6.5), the different integration methods will differ in the way

they approximate each integral on the right hand side. The fundamental idea is that
each term is an integral over a small interval [xi, xi+1], and over this small interval,
it makes sense to approximate f by a simple shape, say a constant, a straight line, or
a parabola, that can be easily integrated. The details will become clear in the coming
examples.

Computational Example To understand and compare the numerical integration
methods, it is advantageous to use a specific integral for computations and graphical
illustrations. In particular, we want to use an integral that we can calculate
by hand such that the accuracy of the approximation methods can easily be
assessed.

Our specific integral is taken from basic physics. Assume that you speed up your
car from rest, on a straight road, and wonder how far you go in T seconds. The
displacement is given by the integral

∫ T

0 v(t)dt , where v(t) is the velocity as a
function of time. A rapidly increasing velocity function might be

v (t) = 3t2et3
. (6.6)

The distance traveled in 1 s is then

∫ 1

0
v(t)dt, (6.7)

which is the integral we aim to compute by numerical methods.
By hand, we get

∫ 1

0
3t2et3

dt =
[
et3
]1

0
≈ 1.718, (6.8)

which is rounded to 3 decimals for convenience.
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6.2 The Composite Trapezoidal Rule

The integral
∫ b

a
f (x)dx may be interpreted as the area between the x axis and the

graph y = f (x) of the integrand. Figure 6.1 illustrates this area for the case in (6.7).
Computing the integral

∫ 1
0 v(t)dt amounts to computing the area of the hatched

region.
If we replace the true graph in Fig. 6.1 by a set of straight line segments, we

may view the area rather as composed of trapezoids, the areas of which are easy
to compute. This is illustrated in Fig. 6.2, where four straight line segments give
rise to four trapezoids, covering the time intervals [0, 0.2), [0.2, 0.6), [0.6, 0.8)

and [0.8, 1.0]. Note that we have taken the opportunity here to demonstrate the
computations with time intervals that differ in size.

The areas of the four trapezoids shown in Fig. 6.2 now constitute our approxima-
tion to the integral (6.7):

∫ 1

0
v(t)dt ≈ h1(

v(0) + v(0.2)

2
) + h2(

v(0.2) + v(0.6)

2
)

+ h3(
v(0.6) + v(0.8)

2
) + h4(

v(0.8) + v(1.0)

2
), (6.9)

where

h1 = (0.2 − 0.0), (6.10)

h2 = (0.6 − 0.2), (6.11)

Fig. 6.1 The integral of v(t) interpreted as the area under the graph of v
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Fig. 6.2 Computing approximately the integral of a function as the sum of the areas of the
trapezoids

h3 = (0.8 − 0.6), (6.12)

h4 = (1.0 − 0.8) (6.13)

With v(t) = 3t2et3
, each term in (6.9) is readily computed and our approximate

computation gives

∫ 1

0
v(t)dt ≈ 1.895 . (6.14)

Compared to the true answer of 1.718, this is off by about 10%. However, note
that we used just four trapezoids to approximate the area. With more trapezoids,
the approximation would have become better, since the straight line segments
at the upper trapezoid side then would follow the graph more closely. Doing
another hand calculation with more trapezoids is not too tempting for a lazy
human, though, but it is a perfect job for a computer! Let us therefore derive
the expressions for approximating the integral by an arbitrary number of trape-
zoids.

6.2.1 The General Formula

For a given function f (x), we want to approximate the integral
∫ b

a f (x)dx by n

trapezoids (of equal width). We start out with (6.5) and approximate each integral
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on the right hand side with a single trapezoid. In detail,

∫ b

a

f (x) dx =
∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx + . . . +
∫ xn

xn−1

f (x)dx,

≈ h
f (x0) + f (x1)

2
+ h

f (x1) + f (x2)

2
+ . . .+

h
f (xn−1) + f (xn)

2
(6.15)

By simplifying the right hand side of (6.15) we get

∫ b

a

f (x) dx ≈ h

2
[f (x0) + 2f (x1) + 2f (x2) + . . . + 2f (xn−1) + f (xn)]

(6.16)

which is more compactly written as

∫ b

a

f (x) dx ≈ h

[
1

2
f (x0) +

n−1∑

i=1

f (xi) + 1

2
f (xn)

]

. (6.17)

Composite Integration Rules

The word composite is often used when a numerical integration method is
applied with more than one sub-interval. Strictly speaking then, writing, e.g.,
“the trapezoidal method”, should imply the use of only a single trapezoid,
while “the composite trapezoidal method” is the most correct name when
several trapezoids are used. However, this naming convention is not always
followed, so saying just “the trapezoidal method” may point to a single
trapezoid as well as the composite rule with many trapezoids.

6.2.2 A General Implementation

Specific or General Implementation? Suppose we want to compute the specific
integral

∫ 1
0 v(t)dt , where v(t) = 3t2et3

, using the (composite) trapezoidal method
in (6.17). Although simple in principle, the practical steps are often confusing to
many, because the notation in the abstract formulation in (6.17) differs from the
notation in our special problem. Clearly, the f , x, and h in (6.17) correspond to v,
t , and perhaps Δt for the trapezoid width in our special problem.
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The Programmer’s Dilemma

1. Specific implementation: Should we write a special program for the
particular integral, using the ideas from the general rule (6.17), but
replacing f by v, x by t , and h by Δt?

2. General implementation: Should we implement the general
method (6.17), as written, in a general function trapezoidal(f,
a, b, n) and solve the particular integral by a specialized call to this
function?

A general implementation is always the best choice, not only for integrals,
but when programming in general!

The first alternative in the box above sounds less abstract and therefore more
attractive to many. Nevertheless, as we hope will be evident from the following,
the second alternative is actually the simplest and most reliable from both a
mathematical and a programming point of view.

These authors will claim that the second alternative is the essence of the power
of mathematics, while the first alternative is the source of much confusion about
mathematics!

General Implementation For the integral
∫ b

a
f (x)dx, computed by the for-

mula (6.17), we want a corresponding Python function trapezoidal to take any
f , a, b, and n as input and return the approximation to the integral.

We write trapezoidal as close as possible to the formula (6.17), making sure
variable names correspond to the mathematical notation:

def trapezoidal(f, a, b, n):
h = (b-a)/n
f_sum = 0
for i in range(1, n, 1):

x = a + i*h
f_sum = f_sum + f(x)

return h*(0.5*f(a) + f_sum + 0.5*f(b))

Observe how the for loop takes care of (only) the sum over f (xi), and that the
x values start with x = a + h (when i is 1), increases with h for each iteration,
before ending with x = a + (n − 1)h. This is consistent with the x values of the
sum in (6.17). After the loop, we finalize the computation and return the result.
This will be our implementation of choice for the trapezoidal function, even
though, typically for programming, it could have been implemented in different
ways. Which implementation to choose, is sometimes just a matter of personal
taste.

One alternative version could be:

def trapezoidal(f, a, b, n):
h = (b-a)/n
result = 0.5*f(a) + 0.5*f(b)
for i in range(1, n):

result += f(a + i*h)
result *= h
return result
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where 0.5*f(a) + 0.5*f(b) is used in an initialization of result, before adding
all the function evaluations f (xi) in the loop. After the loop, the only remaining
thing, is to multiply by h. In this second alternative, there are also a few other
differences to note. The range function is called with two parameters only, giving
the (default) step of 1. In the loop, instead of computing x = a + i*h prior to
calling f(x), we combine this into f(a + i*h), which first computes a + i*h
and then makes the call to f. Also, the compact operators += and *= have been
used.

Using the General Implementation in a Session Having the trapezoidal
function as the only content of a file trapezoidal.py automatically makes that
file a module that we can import and test in an interactive session:

In [1]: from trapezoidal import trapezoidal

In [2]: from math import exp

In [3]: v = lambda t: 3*(t**2)*exp(t**3)

In [4]: n = 4

In [5]: numerical = trapezoidal(v, 0, 1, n)

In [6]: numerical
Out[6]: 1.9227167504675762

Let us compute the exact expression and the error in the approximation. Using V

for the anti-derivative, we get:

In [7]: V = lambda t: exp(t**3)

In [8]: exact = V(1) - V(0)

In [9]: abs(exact - numerical) # absolute value of error
Out[9]: 0.20443492200853108

Since the sign of the error is irrelevant, we find the absolute value of the error. So,
is this error convincing? We can try a larger n:

In [10]: numerical = trapezoidal(v, 0, 1, n=400)

In [11]: abs(exact - numerical)
Out[11]: 2.1236490512777095e-05

Fortunately, many more trapezoids give a much smaller error.

Using the General Implementation in a Program Instead of computing our
integral in an interactive session, we can do it in a program. In that program, we
need the (general) function definition of trapezoidal, and we need some code
that specifies our particular integrand, as well as the other arguments required for
calling trapezoidal. This code might be placed in a main program. However, it
could also be placed in a function that is called from the main program. This is what
we will do. A chunk of code doing a particular thing is always best isolated as a
function, even if we do not see any future reason to call the function several times,
and even if we have no need for arguments to parameterize what goes on inside the
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function. Thus, in the present case, we put the statements (otherwise placed a main
program) inside a function named application.

To achieve flexibility, we proceed to modify trapezoidal.py, so that it has a
test block and function definitions of trapezoidal and application:

def trapezoidal(f, a, b, n):
h = (b-a)/n
f_sum = 0
for i in range(1, n, 1):

x = a + i*h
f_sum = f_sum + f(x)

return h*(0.5*f(a) + f_sum + 0.5*f(b))

def application():
from math import exp
v = lambda t: 3*(t**2)*exp(t**3)
n = int(input(’n: ’))
numerical = trapezoidal(v, 0, 1, n)

# Compare with exact result
V = lambda t: exp(t**3)
exact = V(1) - V(0)
error = abs(exact - numerical)
print(’n={:d}: {:.16f}, error: {:g}’.format(n, numerical, error))

if __name__ == ’__main__’:
application()

With our newly gained knowledge about the making of modules, we understand
that the if test becomes true when the module file, trapezoidal.py, is run as a
program, and false when the module (or part of it) is imported in another program.
Consequently, with an import like from trapezoidal import trapezoidal,
the test fails and application() is not called. On the other hand, if we run
trapezoidal.py as a program, the test condition is positive and application()
is called. A call to application implies that our special problem gets computed.
The main program now gets very small, being just a single function call to
application.

Running the program, e.g., with n = 4 gives the output

n=4: 1.9227167504675762, error: 0.204435

Clearly, with a module like the one shown here, the trapezoidal function alone
(i.e., without application) can easily be imported by other programs to compute
other integrals.

6.2.3 A Specific Implementation: What’s the Problem?

Let us illustrate the implementation implied by alternative 1 in the Programmer’s
dilemma box in Sect. 6.2.2. That is, we make a special-purpose code, where we
adapt the general formula (6.17) to the specific problem

∫ 1
0 3t2et3

dt , in which the
integrand is a velocity function v(t).

https://github.com/slgit/prog4comp_2/blob/master/py36-src/trapezoidal.py
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Implementation Without Function Definitions Basically, we use a for loop to
compute the sum. Each term with f (x) in the formula (6.17) is replaced by 3t2et3

,
x by t , and h by Δt .1 A first version of this special implementation, without any
function definition, could read

from math import exp

a = 0.0; b = 1.0
n = int(input(’n: ’))
dt = (b - a)/n

# Integral by the trapezoidal method
v_sum = 0
for i in range(1, n, 1):

t = a + i*dt
v_sum = v_sum + 3*(t**2)*exp(t**3)

numerical = dt*(0.5*3*(a**2)*exp(a**3) +
v_sum +
0.5*3*(b**2)*exp(b**3))

exact_value = exp(1**3) - exp(0**3)
error = abs(exact_value - numerical)
rel_error = (error/exact_value)*100
print(’n={:d}: {:.16f}, error: {:g}’.format(n, numerical, error))

The problem with the above strategy is at least three-fold:

1. To write the code, we had to reformulate (6.17) for our special problem with a
different notation. Errors come easy then.

2. To write the code, we had to insert the integrand 3t2et3
several places in the code,

which quickly leads to errors.
3. If we later want to compute a different integral, the code must be edited in several

places. Such edits are likely to introduce errors.

The potential errors related to point 2 serve to illustrate how important it is to define
and use appropriate functions.

Implementation with Function Definitions An improved second version of the
special implementation, now with functions for the integrand v and the anti-
derivative V, might then read

from math import exp

v = lambda t: 3*(t**2)*exp(t**3) # Define integrand
a = 0.0; b = 1.0
n = int(input(’n: ’))
dt = (b - a)/n

# Integral by the trapezoidal method

1 Replacing h by Δt is not strictly required as many use h as interval also along the time axis.
Nevertheless, Δt is an even more popular notation for a small time interval, so we use that here.
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v_sum = 0
for i in range(1, n, 1):

t = a + i*dt
v_sum = v_sum + v(t)

numerical = dt*(0.5*v(a) + v_sum + 0.5*v(b))

V = lambda t: exp(t**3)
exact_value = V(b) - V(a)
error = abs(exact_value - numerical)
rel_error = (error/exact_value)*100
print(’n={:d}: {:.16f}, error: {:g}’.format(n, numerical, error))

Unfortunately, the two other problems (1. and 3.) remain, and they are funda-
mental.

Computing Another Integral Suppose you next want to compute another integral,
say

∫ 1.1
−1 e−x2

dx, using the previous specific implementation as your “starting
point”. What changes are required in the code then?

First of all, an anti-derivative can not (easily) be found2,3 for this new integrand,
so we drop computing the integration error, and must remove the corresponding
code lines. In addition,

• the notation should be changed to fit the new problem. Thus, t and dt should be
replaced by x and h. Also, the integrand is (most likely) not a velocity any more,
so the name v should be changed with, e.g., f. Similarly, v_sum should rather be
f_sum then.

• the formula for v (or f) must be replaced by a new formula
• the limits a and b must be changed

These changes are straightforward to implement, but they are scattered around in
the program, a fact that requires us to be very careful so we do not introduce new
programming errors while we modify the code. It is also very easy to forget one or
two of the required changes.

For the sake of comparison, we might see how easy it is to rather use our general
implementation in trapezoidal.py for the task. With the following interactive
session, it should be clear that this implementation allows us to compute the new
integral

∫ 1.1
−1 e−x2

dx without touching the implemented mathematical algorithm! We
can simply do:

In [1]: from trapezoidal import trapezoidal # ...general implementation

In [2]: from math import exp

In [3]: trapezoidal(lambda x: exp(-x**2), -1, 1.1, 400)
Out[3]: 1.5268823686123285

2 You cannot integrate e−x2
by hand, but this particular integral is appearing so often in so many

contexts that the integral is a special function, called the Error function and written erf(x). In a
code, you can call erf(x). The erf function is found in the math module.
3 http://en.wikipedia.org/wiki/Error_function.

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function
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Looking back on the two different solutions, the specific implementation and the
general implementation, you should realize that implementing a general mathemat-
ical algorithm in a general function requires somewhat more abstract thinking, but
the resulting code can be used over and over again! Essentially, if you apply the
special-purpose style, you have to retest the implementation of the algorithm after
every change of the program.

The present integral problems result in short code. In more challenging en-
gineering problems, the code quickly grows to hundreds and thousands of lines.
Without abstractions, in terms of general algorithms in general reusable functions,
the complexity of the program grows so fast that it will be extremely difficult to
make sure that the program works properly.

Another advantage of packaging mathematical algorithms in functions, is that a
function can be reused by anyone to solve a problem by just calling the function with
a proper set of arguments. Understanding the function’s inner details is strictly not
necessary to compute a new integral. Similarly, you can find libraries of functions
on the Internet and use these functions to solve your problems without specific
knowledge of every mathematical detail in the functions.

This desirable feature has its downside, of course: the user of a function
may misuse it, and the function may contain programming errors and lead to
wrong answers. Testing the output of downloaded functions is therefore extremely
important before relying on the results.

6.3 The Composite Midpoint Method

The Idea Rather than approximating the area under a curve by trapezoids, we can
use plain rectangles. It may sound less accurate to use horizontal lines and not skew
lines following the function to be integrated, but an integration method based on
rectangles (the midpoint method) is in fact slightly more accurate than the one
based on trapezoids! In the midpoint method, we construct a rectangle for every
sub-interval where the height equals the integrand f at the midpoint of the sub-
interval.

For the sake of comparison, we may repeat the hand calculation of
∫ 1

0 v(t)dt

in (6.7), but this time with the midpoint method. With four rectangles (Fig. 6.3) and
the same sub-intervals that we used with the trapezoidal method, [0, 0.2), [0.2, 0.6),
[0.6, 0.8), and [0.8, 1.0], we get

∫ 1

0
v(t)dt ≈ h1v

(
0 + 0.2

2

)

+ h2v

(
0.2 + 0.6

2

)

+ h3v

(
0.6 + 0.8

2

)

+ h4v

(
0.8 + 1.0

2

)

, (6.18)

where h1, h2, h3, and h4 are the widths of the sub-intervals, used previously with
the trapezoidal method and defined in (6.10)–(6.13).

With v(t) = 3t2et3
, the approximation becomes 1.632. Compared with the true

answer (1.718), this is about 5% too small, but it is better than what we got with
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Fig. 6.3 Computing approximately the integral of a function as the sum of the areas of the
rectangles

the trapezoidal method (10%) with the same sub-intervals. More rectangles give a
better approximation.

6.3.1 The General Formula

Let us derive a formula for the midpoint method based on n rectangles of equal
width:
∫ b

a

f (x) dx =
∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx + . . . +
∫ xn

xn−1

f (x)dx,

≈ hf

(
x0 + x1

2

)

+ hf

(
x1 + x2

2

)

+ . . . + hf

(
xn−1 + xn

2

)

,

≈ h

(

f

(
x0 + x1

2

)

+ f

(
x1 + x2

2

)

+ . . . + f

(
xn−1 + xn

2

))

.

(6.19)

This sum may be written more compactly as

∫ b

a

f (x)dx ≈ h

n−1∑

i=0

f (xi), (6.20)

where xi = (a + h
2

)+ ih.
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6.3.2 A General Implementation

We follow the advice and lessons learned from the implementation of the trapezoidal
method. Thus, we make a module midpoint.py with a general implementation
of (6.20) and a function application, just like we did with the trapezoidal
function:

def midpoint(f, a, b, n):
h = (b-a)/n
f_sum = 0
for i in range(0, n, 1):

x = (a + h/2.0) + i*h
f_sum = f_sum + f(x)

return h*f_sum

def application():
from math import exp
v = lambda t: 3*(t**2)*exp(t**3)
n = int(input(’n: ’))
numerical = midpoint(v, 0, 1, n)

# Compare with exact result
V = lambda t: exp(t**3)
exact = V(1) - V(0)
error = abs(exact - numerical)
print(’n={:d}: {:.16f}, error: {:g}’.format(n, numerical, error))

if __name__ == ’__main__’:
application()

In midpoint, observe how the x values in the loop start out at x = a + h
2 (when

i is 0), which is in the middle of the first rectangle. The x values then increase by
h for each iteration, meaning that we repeatedly “jump” to the midpoint of the next
rectangle as i increases. This is consistent with the formula in (6.20), as is the final
x value of x = a + h

2 + (n − 1)h. To convince yourself that the first, intermediate
and final x values are correct, look at a case with only three rectangles, for example.

When application is called, the particular problem
∫ 1

0 3t2et3
dt is computed,

i.e., the same integral that we handled with the trapezoidal method. Running the
program with n = 4 gives the output

n=4: 1.6189751378083810, error: 0.0993067

The magnitude of this error is now about 0.1 in contrast to 0.2, which we got with
the trapezoidal rule. This is in fact not accidental: one can show mathematically that
the error of the midpoint method is a bit smaller than for the trapezoidal method.
The differences are seldom of any practical importance, and on a laptop we can
easily use n = 106 and get the answer with an error of about 10−12 in a couple of
seconds.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/midpoint.py
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6.3.3 Comparing the Trapezoidal and theMidpoint Methods

The next example shows how easy it is to combine the trapezoidal and midpoint
functions to make a comparison of the two methods. The coding is given in
compare_integration_methods.py:

from trapezoidal import trapezoidal
from midpoint import midpoint
from math import exp

g = lambda y: exp(-y**2)
a = 0
b = 2
print(’ n midpoint trapezoidal’)
for i in range(1, 21):

n = 2**i
m = midpoint(g, a, b, n)
t = trapezoidal(g, a, b, n)
print(’{:7d} {:.16f} {:.16f}’.format(n, m, t))

Note the efforts put into nice formatting—the output becomes

n midpoint trapezoidal
2 0.8842000076332692 0.8770372606158094
4 0.8827889485397279 0.8806186341245393
8 0.8822686991994210 0.8817037913321336

16 0.8821288703366458 0.8819862452657772
32 0.8820933014203766 0.8820575578012112
64 0.8820843709743319 0.8820754296107942

128 0.8820821359746071 0.8820799002925637
256 0.8820815770754198 0.8820810181335849
512 0.8820814373412922 0.8820812976045025

1024 0.8820814024071774 0.8820813674728968
2048 0.8820813936736116 0.8820813849400392
4096 0.8820813914902204 0.8820813893068272
8192 0.8820813909443684 0.8820813903985197

16384 0.8820813908079066 0.8820813906714446
32768 0.8820813907737911 0.8820813907396778
65536 0.8820813907652575 0.8820813907567422

131072 0.8820813907631487 0.8820813907610036
262144 0.8820813907625702 0.8820813907620528
524288 0.8820813907624605 0.8820813907623183

1048576 0.8820813907624268 0.8820813907623890

A visual inspection of the numbers shows how fast the digits stabilize in both
methods. It appears that 13 digits have stabilized in the last two rows.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/compare_integration_methods.py
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Remark

The trapezoidal and midpoint methods are just two examples in a jungle of
numerical integration rules. Other famous methods are Simpson’s rule and
Gauss quadrature. They all work in the same way:

∫ b

a

f (x)dx ≈
n−1∑

i=0

wif (xi) .

That is, the integral is approximated by a sum of function evaluations, where
each evaluation f (xi) is given a weight wi . The different methods differ in
the way they construct the evaluation points xi and the weights wi . Higher
accuracy can be obtained by optimizing the location of xi .

6.4 Vectorizing the Functions

The functions midpoint and trapezoidal usually run fast in Python and compute
an integral to satisfactory precision within a fraction of a second. However, long
loops in Python may run slowly in more complicated implementations. To increase
speed, the loops can be replaced by vectorized code. The integration functions offer
simple and good examples on how to vectorize loops.

We have already seen simple examples on vectorization in Sect. 1.5, when we
evaluated a mathematical function f (x) for a large number of x values stored in an
array. Basically, we can write

def f(x):
return exp(-x)*sin(x) + 5*x

from numpy import exp, sin, linspace
x = linspace(0, 4, 101) # coordinates from 100 intervals on [0, 4]
y = f(x) # all points evaluated at once

The result y is an array that, alternatively, could have been computed by running a
for loop over the individual x values and called f for each value. Vectorization es-
sentially eliminates this explicit loop in Python (i.e., the looping over x and applica-
tion of f to each x value are instead performed in a library with fast, compiled code).

6.4.1 Vectorizing theMidpoint Rule

We start by vectorizing the midpoint function, since trapezoidal is not equally
straightforward to vectorize. In both cases, our vectorization will remove the explicit
loop. The fundamental ideas of the vectorized algorithm are to

1. compute and store all the evaluation points in one array x
2. call f(x) to produce an array of corresponding function values
3. use the sum function to sum up the f(x) values
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The evaluation points in the midpoint method are xi = a+ h
2 + ih, i = 0, . . . , n−1.

That is, n uniformly distributed coordinates between a + h/2 and b − h/2. Such
coordinates can be calculated by x = linspace(a+h/2, b-h/2, n). Given that
the Python implementation f of the mathematical function f works with an array
argument, which is very often the case in Python, f(x) will produce all the function
values in an array. The array elements are then summed up by sum, when calling
sum(f(x)). The resulting sum is to be multiplied by the rectangle width h to
produce the integral value. The complete function is listed below.

from numpy import linspace, sum

def midpoint(f, a, b, n):
h = (b-a)/n
x = linspace(a + h/2, b - h/2, n)
return h*sum(f(x))

The code is found in the file integration_methods_vec.py.
Let us test the code interactively in a Python shell by computing

∫ 1
0 3t2et3

dt .
The file with the code above has the name integration_methods_vec.py and is
a valid module from which we can import the vectorized function:

In [1]: from integration_methods_vec import midpoint

In [2]: from numpy import exp

In [3]: v = lambda t: 3*t**2*exp(t**3)

In [4]: midpoint(v, 0, 1, 10)
Out[4]: 1.7014827690091872

Note the necessity to use exp from numpy: our v function will be called with x as
an array, and the exp function must be capable of working with an array.

The vectorized code performs all loops very efficiently in compiled code,
resulting in much faster execution. Moreover, many readers of the code will also
say that the algorithm looks clearer than in the loop-based implementation.

6.4.2 Vectorizing the Trapezoidal Rule

We can use the same approach to vectorize the trapezoidal function. However,
the trapezoidal rule performs a sum where the end points have different weight. If
we do sum(f(x)), we get the end points f(a) and f(b) with a weight of unity
instead of one half. A remedy is to subtract the error from sum(f(x)): sum(f(x))
- 0.5*f(a) - 0.5*f(b). The vectorized version of the trapezoidal method then
becomes (the code is found in integration_methods_vec.py)

def trapezoidal(f, a, b, n):
h = (b-a)/n
x = linspace(a, b, n+1)
s = sum(f(x)) - 0.5*f(a) - 0.5*f(b)
return h*s

https://github.com/slgit/prog4comp_2/blob/master/py36-src/integration_methods_vec.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/integration_methods_vec.py
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6.4.3 Speed up Gained with Vectorization

Now that we have created faster, vectorized versions of the functions, it is of interest
to measure how much faster they are. Restricting ourselves to the midpoint method,
we might proceed as:

import timeit
from integration_methods_vec import midpoint as midpoint_vec
from midpoint import midpoint
from numpy import exp

v = lambda t: 3*t**2*exp(t**3)

t = timeit.Timer(’midpoint(v, 0, 1, 1000000)’, \
setup=’from __main__ import midpoint, v’)

time_midpoint = t.timeit(10)
print(’Time, midpoint: {:g} seconds’.format(time_midpoint))

# Vectorized version
t = timeit.Timer(’midpoint_vec(v, 0, 1, 1000000)’, \

setup=’from __main__ import midpoint_vec, v’)
time_midpoint_vec = t.timeit(10)
print(’Time, midpoint vec: {:g} seconds’.format(time_midpoint_vec))

print(’Efficiency factor: {:g}’.format(time_midpoint/time_midpoint_vec))

Running the program gives

Time, midpoint: 19.6083 seconds
Time, midpoint vec: 0.868379 seconds
Efficiency factor: 22.5804

We see that the vectorized version is about 20 times faster. The results for the
trapezoidal method are very similar, and the factor of about 20 is independent of
the number of intervals.

6.5 Rate of Convergence

We have seen that the numerical integration error drops when the number of sub-
intervals n is increased (causing each sub-interval to become smaller). This is fine
and in line with our expectations, but some important details should be added.

Asymptotic Behavior of the Integration Error It is known that, if only the size
h of the sub-intervals is small enough, numerical integration methods typically give
an error

E = Khr , (6.21)

where K is an unknown constant, while the convergence rate r is a known constant
that depends on the method. When a method has convergence rate r , it is known
as an r-th order method. A large r is beneficial, since E then drops quicker when
h → 0.
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Clearly, when

h = b − a

n
,

(n sub-intervals of equal size h for an integration interval [a, b]), an alternative
expression for E follows from

E = Khr, (6.22)

= K

(
b − a

n

)r

, (6.23)

= K (b − a)r
(

1

n

)r

, (6.24)

which, by introducing another constant C = K (b − a)r , gives

E = Cn−r . (6.25)

Convergence Rate for the Trapezoidal and Midpoint Methods Using, for
example, the trapezoidal method, we may carry out some experimental runs with our
test problem

∫ 1
0 3t2et3

dt , doubling n for each run: n = 4, 8, 16. The corresponding
errors are then 12%, 3% and 0.78%, respectively. These numbers indicate that the
error is reduced by roughly a factor 4 when doubling n. Thus, it seems that the error
converges to zero as n−2, which suggests a convergence rate r = 2. In fact, it can
be shown mathematically that the trapezoidal and the midpoint method both have a
convergence rate r = 2, i.e., they are both second-order methods. Soon, we will see
how this fact (and more) can be exploited in the testing of code.

Remark on the Definition of Convergence Rate

When we later address numerical solution methods for ordinary differential
equations (Chap. 8), convergence rate is essentially defined like in (6.21), we
just switch (not required) the symbol h with Δt (i.e., the spacing between
computed solution values).

However, with iterative methods for the solving of nonlinear algebraic
equations (Chap. 7), convergence rate is defined differently. In that case, one
usually relates the error at an iteration to the error at the previous iteration,
and the convergence rate appears as a parameter in that relation.
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6.6 Testing Code

6.6.1 Problems with Brief Testing Procedures

Previously in this book, our programs have been tested in very simple ways, usually
by comparing to hand calculations. For numerical integration, in particular, testing
has so far employed two strategies. When the exact solution was available, we
computed the error and saw that an increase of n gave a decrease in the error. When
the exact solution was not available, we could (as in the comparison example of the
previous section) look at the integral values and see that they stabilized as n grew.

Unfortunately, these are very weak test procedures and not at all satisfactory for
claiming that the software we have produced is correctly implemented.

A Deliberate Bug To see this, we can introduce a bug in the application func-
tion that calls trapezoidal: instead of integrating 3t2et3

, we write “accidentally”
3t3et3

, but keep the same anti-derivative x(t) = et3
for computing the error. With

the bug and n = 4, the error is 0.1, but without the bug the error is 0.2! It is of course
completely impossible to tell if 0.1 is the right value of the error. Fortunately, in this
case, increasing n shows that the error stays about 0.3 in the program with the bug,
so the test procedure with increasing n (and checking that the error then decreases)
points to a problem in the code.

Another Deliberate Bug Let us look at another bug, this time in the mathematical
algorithm: instead of computing 1

2 (f (a) + f (b)) as we should, we “forget” the
second 1

2 and write 0.5*f(a) + f(b). The error for n = 440, 400 when com-

puting
∫ 1.9

1.1 3t2et3
dt goes like 1400, 107, 10, respectively, which looks promising.

The problem is that the right errors should be 369, 4.08, and 0.04. That is, the
error should be reduced faster in the correct than in the buggy code. The problem,
however, is that it is reduced in both codes, and we may stop further testing and
believe everything is correctly implemented.

Unit Testing

A good habit is to test small pieces of a larger code individually, one at a time.
This is known as unit testing: A (small) unit of the code is identified, so that a
separate test for this unit can be made. The unit test should be “stand-alone” in
the sense that it can be run without the outcome of other tests. Typically, one
algorithm in scientific programs is considered a unit. The challenge with unit
tests in numerical computing, is to deal with numerical approximation errors.
A fortunate side effect of unit testing is that the programmer is forced to use
functions to modularize the code into smaller, logical pieces.
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6.6.2 Proper Test Procedures

There are three serious ways to test the implementation of numerical methods via
unit tests:

1. Comparing with hand-computed results. Relevant for problems with few arith-
metic operations, i.e., small n.

2. Solving a problem without numerical errors. We know, for example, that the
trapezoidal rule must be exact for linear integrand functions. The error produced
by the program must then be zero (to machine precision).

3. Demonstrating correct convergence rates. When exact errors can be computed,
a strong test is to let n grow and see if the error approaches zero as fast as theory
predicts. As stated previously, for the trapezoidal and midpoint rules it is known
that the error depends on n as n−2 when n → ∞.

Remark

When testing code, we usually choose computational problems for which
the exact solution is known. This is obviously a good idea, since it allows
the quality of approximate numerical answers to be judged. Do not forget,
however, that the exact solution is available because we deliberately chose
a problem with known exact solution. When we have finished testing (and
probably fixing) the code, our belief is that the code will work also for
problems with unknown exact solutions. Our strategy then, is to trust the
approximate answer from our code.

Hand-Computed Results Let us use two trapezoids and compute the integral∫ 1
0 v(t)dt , where v(t) = 3t2et3

:

h
(v(0) + v(0.5))

2
+ h

(v(0.5) + v(1))

2
= 2.463642041244344,

when h = 0.5 is the width of each trapezoid. Running the program gives exactly the
same result.

Note that the exact solution is not involved here. We simply carry out the
numerical algorithm by hand, “independent” from the code. We should of course
get agreement between these hand calculations and program output when the same
n is used. However, assuming we do get agreement, that numerical answer may still
differ substantially from the exact solution to the problem. That is of no concern in
this test, as the aim is not to get as good an answer as possible (potentially achieved
with a large n), but rather to check in a simple manner whether the algorithm “seems
to be” correctly implemented.

Solving a Problem Without Numerical Errors The best unit tests for numerical
algorithms involve mathematical problems where we know the numerical result
beforehand. For these unit tests, we choose problems that fulfill two criteria. One
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criterion is that the exact solution is known. The other criterion is that the numerical
algorithm should produce the exact solution, within machine precision, for any
chosen n.

The second criterion may seem strange at first, but take the trapezoidal method,
for example, and consider an integral like

∫ b

a (6x − 4)dx. The integrand is here a
straight line, and if you sketch it in a coordinate system along with some relevant
trapezoids, you realize that the topmost side of each trapezoid comes exactly on the
straight line. This is the case for whatever number n of trapezoids you may choose to
use. Thus, the trapezoidal method should solve that problem without any numerical
error.4 We can therefore pick some linear function and construct a test function that
checks for equality between the exact solution and the numerical approximation
produced by our implementation of the trapezoidal method.

Note that, when testing, numbers should not just be taken out of the air. For
example, a specific test case can be

∫ 4.4
1.2 (6x − 4)dx. This integral involves an

“arbitrary” interval [1.2, 4.4] and an “arbitrary” linear function f (x) = 6x − 4. By
“arbitrary”, we mean expressions where the special numbers 0 and 1 are avoided,
since these have special properties in arithmetic operations (e.g., forgetting to
multiply is equivalent to multiplying by 1, and forgetting to add is equivalent to
adding 0).

Demonstrating Correct Convergence Rates Also for these unit tests we choose
problems for which the exact solution is known. However, contrary to the previous
test procedure, we now work with problems for which the numerical algorithm does
not give zero approximation error. Normally, unit tests must be based on that kind
of problems. Thus, the answer we get from our code will contain an approximation
error, and since we know the exact solution, we may compute the size of this error.
Unfortunately, this is not too helpful, since we have little chance telling if this error
is what we should have got for the particular n used!

Now the convergence rate comes in handy. If we know (or have reason to assume)
that the numerical error has a certain asymptotic behavior when n → ∞, we know
at what rate the numerical error should be reduced. The idea of a corresponding unit
test is then to run the algorithm for some n values, compute the error (the absolute
value of the difference between the exact solution and the one produced by the
numerical method), and check that the error has approximately correct asymptotic
behavior. For the trapezoidal and midpoint methods in particular, this means that the
error should become proportional to n−2 when n → ∞.

Let us develop a more precise method for such unit tests based on convergence
rates. Consider a set of q + 1 experiments with various n: n0, n1, n2, . . . , nq . We
compute the corresponding errors E0, . . . , Eq . For two consecutive experiments,
number i and i − 1, we have the error model

Ei = Cn−r
i , (6.26)

Ei−1 = Cn−r
i−1 . (6.27)

4 In fact, so would the midpoint method! This is because, for each rectangle, the error to each side
of the midpoint is equally large with opposite signs, meaning that they cancel each other.
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These are two equations for two unknowns C and r . We can easily eliminate C by
dividing, e.g., (6.26) by (6.27). Doing so, and proceeding to solve for r , followed by
also introducing a subscript i − 1 for r , gives

ri−1 = − ln(Ei/Ei−1)

ln(ni/ni−1)
. (6.28)

The subscript is introduced, since the estimated value for r will vary with i.
Hopefully, ri−1 approaches the correct convergence rate as the number of intervals
increases and i → q .

6.6.3 Finite Precision of Floating-Point Numbers

The test procedures above lead to comparison of numbers for checking that
calculations were correct. Such comparison is more complicated than what a
newcomer might think. Suppose we have a calculation a + b and want to check
that the result is what we expect.

Adding Integers We start with 1 + 2:

In [1]: a = 1; b = 2; expected = 3

In [2]: a + b == expected
Out[2]: True

Adding Real Numbers Then we proceed with 0.1 + 0.2:

In [3]: a = 0.1; b = 0.2; expected = 0.3

In [4]: a + b == expected
Out[4]: False

Approximate Representation of Real Numbers on a Computer So why is 0.1 +
0.2 	= 0.3? The reason is that, generally, real numbers cannot be represented exactly
on a computer. They must instead be approximated by a floating-point number5

that can only store a finite amount of information, usually about 17 digits of a real
number. Let us print 0.1, 0.2, 0.1 + 0.2, and 0.3 with 17 decimals:

In [5]: print(’{:.17f}\n{:.17f}\n{:.17f}\n{:.17f}’\
.format(0.1, 0.2, 0.1 + 0.2, 0.3))

0.10000000000000001
0.20000000000000001
0.30000000000000004
0.29999999999999999

We see that all of the numbers have an inaccurate digit in the 17th decimal place.
Because 0.1 + 0.2 evaluates to 0.30000000000000004 and 0.3 is represented as
0.29999999999999999, these two numbers are not equal. In general, real numbers
in Python have (at most) 16 correct decimals.

5 https://en.wikipedia.org/wiki/Floating_point.

https://en.wikipedia.org/wiki/Floating_point
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Rounding Errors When we compute with real numbers, these numbers are
inaccurately represented on the computer, and arithmetic operations with inaccurate
numbers lead to small rounding errors in the final results. Depending on the type of
numerical algorithm, the rounding errors may or may not accumulate.

Testing with a Tolerance If we cannot make tests like 0.1 + 0.2 == 0.3, what
should we then do? The answer is that we must accept some small inaccuracy and
make a test with a tolerance. Here is the recipe:

In [1]: a = 0.1; b = 0.2; expected = 0.3

In [2]: computed = a + b

In [3]: diff = abs(expected - computed)

In [4]: tol = 1E-15

In [5]: diff < tol
Out[5]: True

Here we have set the tolerance for comparison to 10−15, but calculating 0.3 -
(0.1 + 0.2) shows that it equals -5.55e-17, so a lower tolerance could be used
in this particular example. However, in other calculations we have little idea about
how accurate the answer is (there could be accumulation of rounding errors in more
complicated algorithms), so 10−15 or 10−14 are robust values. As we demonstrate
below, these tolerances depend on the magnitude of the numbers in the calculations.

Absolute and Relative Differences Doing an experiment with 10k + 0.3 − (10k +
0.1 + 0.2) for k = 1, . . . , 10 shows that the answer (which should be zero) is
around 1016−k. This means that the tolerance must be larger if we compute with
larger numbers. Setting a proper tolerance therefore requires some experiments to
see what level of accuracy one can expect. A way out of this difficulty is to work
with relative instead of absolute differences. In a relative difference we divide by
one of the operands, e.g.,

a = 10k + 0.3, b = (10k + 0.1 + 0.2), c = a − b

a
.

Computing this c for various k shows a value around 10−16. A safer procedure is
thus to use relative differences.

We may exemplify this in a quick session, using k = 10,

In [1]: a = 10**10 + 0.3

In [2]: b = 10**10 + 0.1 + 0.2

In [3]: diff = a-b

In [4]: diff
Out[4]: -1.9073486328125e-06

In [5]: rel_diff = (a-b)/a
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In [6]: rel_diff
Out[6]: -1.9073486327552798e-16

Clearly, diff here would certainly not be smaller than a tolerance of 1E − 15 (as
we used above). So, to check whether a and b are equal, we should rather proceed
as

In [7]: tol = 1E-15

In [8]: rel_diff < tol
Out[8]: True

6.6.4 Constructing Unit Tests andWriting Test Functions

Python has several frameworks for automatic testing of software. By just one
command, you can get Python to run through a (potentially) very large number of
tests for various parts of your software. This is an extremely useful feature during
program development: whenever you have done some changes to one or more files,
launch the test command and make sure nothing is broken because of your edits.

The test frameworks nose and py.test are particularly attractive, since they are
very easy to use. Tests are placed in special test functions that the frameworks can
recognize and run for you. The requirements to a test function are simple:

• the name must start with test_
• the test function cannot have any arguments
• the tests inside test functions must be boolean expressions
• a boolean expression b must be tested in an assert statement of the form assert

b, msg. When b is true, nothing happens. However, if b is false, msg is written
out, where msg is an optional object (string or number).

Suppose we have written a function

def add(a, b):
return a + b

A corresponding test function can then be

def test_add():
expected = 2
computed = add(1, 1)
assert computed == expected, ’1+1={:g}’.format(computed)

Test functions can be in any program file or in separate files, typically with names
starting with test. You can also collect tests in subdirectories: running py.test
-s -v will actually run all tests in all test*.py files in all subdirectories, while
nosetests -s -v restricts the attention to subdirectories whose names start with
test or end with _test or _tests.

As long as we add integers, the equality test in the test_add function is
appropriate, but if we try to call add(0.1, 0.2) instead, we will face the rounding
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error problems explained in Sect. 6.6.3, and we must use a test with tolerance
instead:

def test_add():
expected = 0.3
computed = add(0.1, 0.2)
tol = 1E-14
diff = abs(expected - computed)
assert diff < tol, ’diff={:g}’.format(diff)

Below we shall write test functions for each of the three test procedures we
suggested: comparison with hand calculations, checking problems that can be
exactly solved, and checking convergence rates. We stick to testing the trapezoidal
integration code and collect all test functions in one common file by the name
test_trapezoidal.py.

Hand-Computed Numerical Results Our previous hand calculations for two
trapezoids can be utilized in a test function like this:

from trapezoidal import trapezoidal

def test_trapezoidal_one_exact_result():
"""Compare one hand-computed result."""
from math import exp
v = lambda t: 3*(t**2)*exp(t**3)
n = 2
computed = trapezoidal(v, 0, 1, n)
expected = 2.463642041244344
error = abs(expected - computed)
tol = 1E-14
success = error < tol
msg = ’error={:g} > tol={:g}’.format(error, tol)
assert success, msg

Note the importance of checking computed against expected with a tolerance:
rounding errors from the arithmetics inside trapezoidal will not make the result
exactly like the hand-computed one.

Solving a Problem Without Numerical Errors We know that the trapezoidal rule
is exact for linear integrands. Choosing the integral

∫ 4.4
1.2 (6x−4)dx as a test case, the

corresponding test function could, for example, check with three different n values,
and may look like

def test_trapezoidal_linear():
"""Check that linear functions are integrated exactly."""
f = lambda x: 6*x - 4
F = lambda x: 3*x**2 - 4*x # Anti-derivative
a = 1.2; b = 4.4
expected = F(b) - F(a)
tol = 1E-14
for n in 2, 20, 21:

computed = trapezoidal(f, a, b, n)
error = abs(expected - computed)
success = error < tol
msg = ’n={:d}, err={:g}’.format(n, error)
assert success, msg

https://github.com/slgit/prog4comp_2/blob/master/py36-src/test_trapezoidal.py
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Demonstrating Correct Convergence Rates Computing convergence rates re-
quires somewhat more tedious programming than for the previous tests, but it can
be applied to more general integrands. The algorithm typically goes like

• for i = 0, 1, 2, . . . , q

– ni = 2i+1

– Compute integral with ni intervals
– Compute the error Ei

– Estimate ri from (6.28) if i > 0

The corresponding code may look like

def convergence_rates(f, F, a, b, num_experiments=14):
from math import log
from numpy import zeros
expected = F(b) - F(a)
n = zeros(num_experiments, dtype=int)
E = zeros(num_experiments)
r = zeros(num_experiments-1)
for i in range(num_experiments):

n[i] = 2**(i+1)
computed = trapezoidal(f, a, b, n[i])
E[i] = abs(expected - computed)
if i > 0:

r_im1 = -log(E[i]/E[i-1])/log(n[i]/n[i-1])
# Truncate to two decimals:
r[i-1] = float(’{:.2f}’.format(r_im1))

return r

Making a test function is a matter of choosing f, F, a, and b, and then checking
the value of ri for the largest i:

def test_trapezoidal_conv_rate():
"""Check empirical convergence rates against the expected value 2."""
from math import exp
v = lambda t: 3*(t**2)*exp(t**3)
V = lambda t: exp(t**3)
a = 1.1; b = 1.9
r = convergence_rates(v, V, a, b, 14)
print(r)
tol = 0.01
msg = str(r[-4:]) # show last 4 estimated rates
assert (abs(r[-1]) - 2) < tol, msg

Running the test shows that all ri , except the first one, equal the target limit 2
within two decimals. This observation suggests a tolerance of 10−2.

6.7 Double and Triple Integrals

6.7.1 TheMidpoint Rule for a Double Integral

Given a double integral over a rectangular domain [a, b] × [c, d],
∫ b

a

∫ d

c

f (x, y)dydx,
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how can we approximate this integral by numerical methods?

Derivation via One-Dimensional Integrals Since we know how to deal with
integrals in one variable, a fruitful approach is to view the double integral as two
integrals, each in one variable, which can be approximated numerically by previous
one-dimensional formulas. To this end, we introduce a help function g(x) and write

∫ b

a

∫ d

c

f (x, y)dydx =
∫ b

a

g(x)dx, g(x) =
∫ d

c

f (x, y)dy .

Each of the integrals

∫ b

a

g(x)dx, g(x) =
∫ d

c

f (x, y)dy

can be discretized by any numerical integration rule for an integral in one variable.
Let us use the midpoint method (6.20) and start with g(x) = ∫ d

c
f (x, y)dy. We

introduce ny intervals on [c, d] with length hy . The midpoint rule for this integral
then becomes

g(x) =
∫ d

c

f (x, y)dy ≈ hy

ny−1∑

j=0

f (x, yj ), yj = c + 1

2
hy + jhy .

The expression looks somewhat different from (6.20), but that is because of the
notation: since we integrate in the y direction and will have to work with both x and
y as coordinates, we must use ny for n, hy for h, and the counter i is more naturally
called j when integrating in y. Integrals in the x direction will use hx and nx for h

and n, and i as counter.

The double integral is
∫ b

a
g(x)dx, which can be approximated by the midpoint

method:
∫ b

a

g(x)dx ≈ hx

nx−1∑

i=0

g(xi), xi = a + 1

2
hx + ihx .

Putting the formulas together, we arrive at the composite midpoint method for a
double integral:

∫ b

a

∫ d

c

f (x, y)dydx ≈ hx

nx−1∑

i=0

hy

ny−1∑

j=0

f (xi, yj )

= hxhy

nx−1∑

i=0

ny−1∑

j=0

f (a + hx

2
+ ihx, c + hy

2
+ jhy) .

(6.29)
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Direct Derivation The formula (6.29) can also be derived directly in the two-
dimensional case by applying the idea of the midpoint method. We divide the
rectangle [a, b] × [c, d] into nx × ny equal-sized parts called cells. The idea of
the midpoint method is to approximate f by a constant over each cell, and evaluate
the constant at the midpoint. Cell (i, j) occupies the area

[a + ihx, a + (i + 1)hx ] × [c + jhy, c + (j + 1)hy ],

and the midpoint is (xi, yj ) with

xi = a + ihx + 1

2
hx, yj = c + jhy + 1

2
hy .

The integral over the cell is therefore hxhyf (xi, yj ), and the total double integral is
the sum over all cells, which is nothing but formula (6.29).

Programming a Double Sum The formula (6.29) involves a double sum, which is
normally implemented as a double for loop. A Python function implementing (6.29)
may look like

def midpoint_double1(f, a, b, c, d, nx, ny):
hx = (b - a)/nx
hy = (d - c)/ny
I = 0
for i in range(nx):

for j in range(ny):
xi = a + hx/2 + i*hx
yj = c + hy/2 + j*hy
I = I + hx*hy*f(xi, yj)

return I

If this function is stored in a module file midpoint_double.py,we can compute
some integral, e.g.,

∫ 3
2

∫ 2
0 (2x + y)dxdy = 9 in an interactive shell and demonstrate

that the function computes the right number:

In [1]: from midpoint_double import midpoint_double1

In [2]: def f(x, y):
...: return 2*x + y
...:

In [3]: midpoint_double1(f, 0, 2, 2, 3, 5, 5)
Out[3]: 9.000000000000005

Reusing Code for One-Dimensional Integrals It is very natural to write a two-
dimensional midpoint method as we did in function midpoint_double1 when we
have the formula (6.29). However, we could alternatively ask, much as we did in
the mathematics, can we reuse a well-tested implementation for one-dimensional
integrals to compute double integrals? That is, can we use function midpoint

def midpoint(f, a, b, n):
h = (b-a)/n
f_sum = 0

https://github.com/slgit/prog4comp_2/blob/master/py36-src/midpoint_double.py
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for i in range(0, n, 1):
x = (a + h/2.0) + i*h
f_sum = f_sum + f(x)

return h*f_sum

from Sect. 6.3.2 “twice”? The answer is yes, if we think as we did in the mathemat-
ics: compute the double integral as a midpoint rule for integrating g(x) and define
g(xi) in terms of a midpoint rule over f in the y coordinate. The corresponding
function has very short code:

def midpoint_double2(f, a, b, c, d, nx, ny):
def g(x):

return midpoint(lambda y: f(x, y), c, d, ny)

return midpoint(g, a, b, nx)

The important advantage of this implementation is that we reuse a well-tested
function for the standard one-dimensional midpoint rule and that we apply the one-
dimensional rule exactly as in the mathematics.

Verification via Test Functions How can we test that our functions for the
double integral work? The best unit test is to find a problem where the numerical
approximation error vanishes because then we know exactly what the numerical
answer should be. The midpoint rule is exact for linear functions, regardless of
how many subinterval we use. Also, any linear two-dimensional function f (x, y) =
px + qy + r will be integrated exactly by the two-dimensional midpoint rule. We
may pick f (x, y) = 2x + y and create a proper test function that can automatically
verify our two alternative implementations of the two-dimensional midpoint rule.
To compute the integral of f (x, y) we take advantage of SymPy to eliminate the
possibility of errors in hand calculations. The test function becomes

def test_midpoint_double():
"""Test that a linear function is integrated exactly."""
def f(x, y):

return 2*x + y

a = 0; b = 2; c = 2; d = 3
import sympy
x, y = sympy.symbols(’x y’)
I_expected = sympy.integrate(f(x, y), (x, a, b), (y, c, d))
# Test three cases: nx < ny, nx = ny, nx > ny
for nx, ny in (3, 5), (4, 4), (5, 3):

I_computed1 = midpoint_double1(f, a, b, c, d, nx, ny)
I_computed2 = midpoint_double2(f, a, b, c, d, nx, ny)
tol = 1E-14
#print I_expected, I_computed1, I_computed2
assert abs(I_computed1 - I_expected) < tol
assert abs(I_computed2 - I_expected) < tol
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Let Test Functions Speak Up?

If we call the above test_midpoint_double function and nothing happens,
our implementations are correct. However, it is somewhat annoying to have
a function that is completely silent when it works—are we sure all things are
properly computed? During development it is therefore highly recommended
to insert a print command such that we can monitor the calculations and be
convinced that the test function does what we want. Since a test function
should not have any print command, we simply comment it out as we have
done in the function listed above.

The trapezoidal method can be used as alternative for the midpoint method.
The derivation of a formula for the double integral and the implementations follow
exactly the same ideas as we explained with the midpoint method, but there are
more terms to write in the formulas. Exercise 6.13 asks you to carry out the details.
That exercise is a very good test on your understanding of the mathematical and
programming ideas in the present section.

6.7.2 TheMidpoint Rule for a Triple Integral

Theory Once a method that works for a one-dimensional problem is generalized
to two dimensions, it is usually quite straightforward to extend the method to three
dimensions. This will now be demonstrated for integrals. We have the triple integral

∫ b

a

∫ d

c

∫ f

e

g(x, y, z)dzdydx

and want to approximate the integral by a midpoint rule. Following the ideas for the
double integral, we split this integral into one-dimensional integrals:

p(x, y) =
∫ f

e

g(x, y, z)dz

q(x) =
∫ d

c

p(x, y)dy

∫ b

a

∫ d

c

∫ f

e

g(x, y, z)dzdydx =
∫ b

a

q(x)dx
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For each of these one-dimensional integrals we apply the midpoint rule:

p(x, y) =
∫ f

e

g(x, y, z)dz ≈
nz−1∑

k=0

g(x, y, zk),

q(x) =
∫ d

c

p(x, y)dy ≈
ny−1∑

j=0

p(x, yj ),

∫ b

a

∫ d

c

∫ f

e

g(x, y, z)dzdydx =
∫ b

a

q(x)dx ≈
nx−1∑

i=0

q(xi),

where

zk = e + 1

2
hz + khz, yj = c + 1

2
hy + jhy xi = a + 1

2
hx + ihx .

Starting with the formula for
∫ b

a

∫ d

c

∫ f

e
g(x, y, z)dzdydx and inserting the two

previous formulas gives

∫ b

a

∫ d

c

∫ f

e

g(x, y, z) dzdydx ≈

hxhyhz

nx−1∑

i=0

ny−1∑

j=0

nz−1∑

k=0

g(a + 1

2
hx + ihx, c + 1

2
hy + jhy, e + 1

2
hz + khz) .

(6.30)

Note that we may apply the ideas under Direct derivation at the end of Sect. 6.7.1
to arrive at (6.30) directly: divide the domain into nx × ny × nz cells of volumes
hxhyhz; approximate g by a constant, evaluated at the midpoint (xi, yj , zk), in each
cell; and sum the cell integrals hxhyhzg(xi, yj , zk).

Implementation We follow the ideas for the implementations of the midpoint rule
for a double integral. The corresponding functions are shown below and found in
the file midpoint_triple.py.

def midpoint_triple1(g, a, b, c, d, e, f, nx, ny, nz):
hx = (b - a)/nx
hy = (d - c)/ny
hz = (f - e)/nz
I = 0
for i in range(nx):

for j in range(ny):
for k in range(nz):

xi = a + hx/2 + i*hx
yj = c + hy/2 + j*hy
zk = e + hz/2 + k*hz
I = I + hx*hy*hz*g(xi, yj, zk)

return I

https://github.com/slgit/prog4comp_2/blob/master/py36-src/midpoint_triple.py
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def midpoint(f, a, b, n):
h = (b-a)/n
f_sum = 0
for i in range(0, n, 1):

x = (a + h/2.0) + i*h
f_sum = f_sum + f(x)

return h*f_sum

def midpoint_triple2(g, a, b, c, d, e, f, nx, ny, nz):
def p(x, y):

return midpoint(lambda z: g(x, y, z), e, f, nz)

def q(x):
return midpoint(lambda y: p(x, y), c, d, ny)

return midpoint(q, a, b, nx)

def test_midpoint_triple():
"""Test that a linear function is integrated exactly."""
def g(x, y, z):

return 2*x + y - 4*z

a = 0; b = 2; c = 2; d = 3; e = -1; f = 2
import sympy
x, y, z = sympy.symbols(’x y z’)
I_expected = sympy.integrate(

g(x, y, z), (x, a, b), (y, c, d), (z, e, f))
for nx, ny, nz in (3, 5, 2), (4, 4, 4), (5, 3, 6):

I_computed1 = midpoint_triple1(
g, a, b, c, d, e, f, nx, ny, nz)

I_computed2 = midpoint_triple2(
g, a, b, c, d, e, f, nx, ny, nz)

tol = 1E-14
print(I_expected, I_computed1, I_computed2)
assert abs(I_computed1 - I_expected) < tol
assert abs(I_computed2 - I_expected) < tol

if __name__ == ’__main__’:
test_midpoint_triple()

6.7.3 Monte Carlo Integration for Complex-ShapedDomains

Repeated use of one-dimensional integration rules to handle double and triple
integrals constitute a working strategy only if the integration domain is a rectangle
or box. For any other shape of domain, completely different methods must be
used. A common approach for two- and three-dimensional domains is to divide
the domain into many small triangles or tetrahedra and use numerical integration
methods for each triangle or tetrahedron. The overall algorithm and implementation
is too complicated to be addressed in this book. Instead, we shall employ an
alternative, very simple and general method, called Monte Carlo integration. It can
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be implemented in half a page of code, but requires orders of magnitude more
function evaluations in double integrals compared to the midpoint rule.

Monte Carlo integration, however, is much more computationally efficient than
the midpoint rule when computing higher-dimensional integrals in more than three
variables over hypercube domains. Our ideas for double and triple integrals can
easily be generalized to handle an integral in m variables. A midpoint formula then
involves m sums. With n cells in each coordinate direction, the formula requires nm

function evaluations. That is, the computational work explodes as an exponential
function of the number of space dimensions. Monte Carlo integration, on the
other hand, does not suffer from this explosion of computational work and is the
preferred method for computing higher-dimensional integrals. So, it makes sense
in a chapter on numerical integration to address Monte Carlo methods, both for
handling complex domains and for handling integrals with many variables.

The Monte Carlo Integration Algorithm The idea of Monte Carlo integration
of
∫ b

a f (x)dx is to use the mean-value theorem from calculus, which states that

the integral
∫ b

a
f (x)dx equals the length of the integration domain, here b − a,

times the average value of f , f̄ , in [a, b]. The average value can be computed by
sampling f at a set of random points inside the domain and take the mean of the
function values. In higher dimensions, an integral is estimated as the area/volume
of the domain times the average value, and again one can evaluate the integrand
at a set of random points in the domain and compute the mean value of those
evaluations.

Let us introduce some quantities to help us make the specification of the integra-
tion algorithm more precise. Suppose we have some two-dimensional integral

∫

Ω

f (x, y)dxdx,

where Ω is a two-dimensional domain defined via a help function g(x, y):

Ω = {(x, y) | g(x, y) ≥ 0}

That is, points (x, y) for which g(x, y) ≥ 0 lie inside Ω , and points for
which g(x, y) < Ω are outside Ω . The boundary of the domain ∂Ω is given
by the implicit curve g(x, y) = 0. Such formulations of geometries have been
very common during the last couple of decades, and one refers to g as a level-
set function and the boundary g = 0 as the zero-level contour of the level-set
function. For simple geometries one can easily construct g by hand, while in more
complicated industrial applications one must resort to mathematical models for
constructing g.

Let A(Ω) be the area of a domain Ω . We can estimate the integral by this Monte
Carlo integration method:

1. embed the geometry Ω in a rectangular area R

2. draw a large number of random points (x, y) in R
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3. count the fraction q of points that are inside Ω

4. approximate A(Ω)/A(R) by q , i.e., set A(Ω) = qA(R)

5. evaluate the mean of f , f̄ , at the points inside Ω

6. estimate the integral as A(Ω)f̄

Note that A(R) is trivial to compute since R is a rectangle, while A(Ω) is
unknown. However, if we assume that the fraction of A(R) occupied by A(Ω) is
the same as the fraction of random points inside Ω , we get a simple estimate for
A(Ω).

To get an idea of the method, consider a circular domain Ω embedded in a
rectangle as shown below. A collection of random points is illustrated by black
dots.

Implementation A Python function implementing
∫
Ω f (x, y)dxdy can be written

like this:

import numpy as np

def MonteCarlo_double(f, g, x0, x1, y0, y1, n):
"""
Monte Carlo integration of f over a domain g>=0, embedded
in a rectangle [x0,x1]x[y0,y1]. n^2 is the number of
random points.
"""
# Draw n**2 random points in the rectangle
x = np.random.uniform(x0, x1, n)
y = np.random.uniform(y0, y1, n)
# Compute sum of f values inside the integration domain
f_mean = 0
num_inside = 0 # number of x,y points inside domain (g>=0)
for i in range(len(x)):

for j in range(len(y)):
if g(x[i], y[j]) >= 0:

num_inside = num_inside + 1
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f_mean = f_mean + f(x[i], y[j])
f_mean = f_mean/num_inside
area = num_inside/(n**2)*(x1 - x0)*(y1 - y0)
return area*f_mean

(See the file MC_double.py.)

Verification A simple test case is to check the area of a rectangle [0, 2] × [3, 4.5]
embedded in a rectangle [0, 3] × [2, 5]. The right answer is 3, but Monte Carlo
integration is, unfortunately, never exact so it is impossible to predict the output of
the algorithm. All we know is that the estimated integral should approach 3 as the
number of random points goes to infinity. Also, for a fixed number of points, we can
run the algorithm several times and get different numbers that fluctuate around the
exact value, since different sample points are used in different calls to the Monte
Carlo integration algorithm.

The area of the rectangle can be computed by the integral
∫ 2

0

∫ 4.5
3 dydx, so in

this case we identify f (x, y) = 1, and the g function can be specified as (e.g.)
1 if (x, y) is inside [0, 2] × [3, 4.5] and −1 otherwise. Here is an example, using
samples of different sizes, on how we can utilize the MonteCarlo_double function
to compute the area:

In [1]: from MC_double import MonteCarlo_double

In [2]: def g(x, y):
...: return (1 if (0 <= x <= 2 and 3 <= y <= 4.5) else -1)
...:

In [3]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 100)
Out[3]: 2.9484

In [4]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 1000)
Out[4]: 2.947032

In [5]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 1000)
Out[5]: 3.0234600000000005

In [6]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 2000)
Out[6]: 2.9984580000000003

In [7]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 2000)
Out[7]: 3.1903469999999996

In [8]: MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 5000)
Out[8]: 2.986515

Note the compact if-else construction in the definition of g. It is a one-line
alternative to, for example,

if (0 <= x <= 2) and (3 <= y <= 4.5):
return 1

else:
return -1

From the output, we see that the values fluctuate around 3, a fact that supports a
correct implementation, but in principle, bugs could be hidden behind the inaccurate
answers.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/MC_double.py
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It is mathematically known that the standard deviation of the Monte Carlo
estimate of an integral converges as n−1/2, where n is the number of samples. This
kind of convergence rate estimate could be used to verify the implementation, but
the topic is beyond the scope of this book.

Test Function for Function with Random Numbers To make a test function, we
need a unit test that has identical behavior each time we run the test. Thus, since
the algorithm generates pseudo-random numbers, we apply the standard technique
of fixing the seed (of the random number generator), so that the sequence of
numbers generated is the same every time we run the algorithm. Assuming that the
MonteCarlo_double function works, we fix the seed, observe a certain result, and
take this result as the correct result. Provided the test function always uses this seed,
we should get exactly this result every time the MonteCarlo_double function is
called. Of course, this procedure does not test whether the MonteCarlo_double
function works right now (but we hope our assumption of correctness is well
founded!). Still, it is nevertheless useful when future changes are made, since at any
time we can confirm that MonteCarlo_double gives the same answer as before.
The test function can be written as shown below.

def test_MonteCarlo_double_rectangle_area():
"""Check the area of a rectangle."""
def g(x, y):

return (1 if (0 <= x <= 2 and 3 <= y <= 4.5) else -1)

x0 = 0; x1 = 3; y0 = 2; y1 = 5 # embedded rectangle
n = 1000
np.random.seed(8) # must fix the seed!
I_expected = 3.121092 # computed with this seed
I_computed = MonteCarlo_double(

lambda x, y: 1, g, x0, x1, y0, y1, n)
assert abs(I_expected - I_computed) < 1E-14

(See the file MC_double.py.)

Integral Over a Circle The test above involves a trivial function f (x, y) = 1. We
should also test a non-constant f function and a more complicated domain. Let Ω

be a circle at the origin with radius 2, and let f = √
x2 + y2. This choice makes it

possible to compute an exact result: in polar coordinates,
∫
Ω f (x, y)dxdy simplifies

to 2π
∫ 2

0 r2dr = 16π/3. We must be prepared for quite crude approximations that
fluctuate around this exact result. As in the test case above, we experience better
results with larger number of points. When we have such evidence for a working
implementation, we can turn the test into a proper test function. Here is an example:

def test_MonteCarlo_double_circle_r():
"""Check the integral of r over a circle with radius 2."""
def g(x, y):

xc, yc = 0, 0 # center
R = 2 # radius
return R**2 - ((x-xc)**2 + (y-yc)**2)

# Exact: integral of r*r*dr over circle with radius R becomes
# 2*pi*1/3*R**3
import sympy

https://github.com/slgit/prog4comp_2/blob/master/py36-src/MC_double.py
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r = sympy.symbols(’r’)
I_exact = sympy.integrate(2*sympy.pi*r*r, (r, 0, 2))
print(’Exact integral: {:g}’.format(I_exact.evalf()))
x0 = -2; x1 = 2; y0 = -2; y1 = 2
n = 1000
np.random.seed(6)
I_expected = 16.7970837117376384 # Computed with this seed
I_computed = MonteCarlo_double(

lambda x, y: np.sqrt(x**2 + y**2),
g, x0, x1, y0, y1, n)

print(’MC approximation, {:d} samples: {:.16f}’\
.format(n**2, I_computed))

assert abs(I_expected - I_computed) < 1E-15

(See the file MC_double.py.)

Remark About Version Control of Files

Having a suite of test functions for automatically checking that your software
works is considered as a fundamental requirement for reliable computing.
Equally important is a system that can keep track of different versions of the
files and the tests, known as a version control system. Today’s most popular
version control system is Git,a which the authors strongly recommend the
reader to use for programming and writing reports. The combination of Git
and cloud storage such as GitHub is a very common way of organizing
scientific or engineering work. We have a quick introb to Git and GitHub that
gets you up and running within minutes.

The typical workflow with Git goes as follows.

1. Before you start working with files, make sure you have the latest
version of them by running git pull.

2. Edit files, remove or create files (new files must be registered by git
add).

3. When a natural piece of work is done, commit your changes by the git
commit command.

4. Implement your changes also in the cloud by doing git push.

A nice feature of Git is that people can edit the same file at the same time and
very often Git will be able to automatically merge the changes (!). Therefore,
version control is crucial when you work with others or when you do your
work on different types of computers. Another key feature is that anyone
can at any time view the history of a file, see who did what when, and roll
back the entire file collection to a previous commit. This feature is, of course,
fundamental for reliable work.
a https://en.wikipedia.org/wiki/Git_(software).
b http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/MC_double.py
https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
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6.8 Exercises

Exercise 6.1: Hand Calculations for the Trapezoidal Method
Compute by hand the area composed of two trapezoids (of equal width) that ap-
proximates the integral

∫ 3
1 2x3dx. Make a test function that calls the trapezoidal

function in trapezoidal.py and compares the return value with the hand-
calculated value.
Filename: trapezoidal_test_func.py.

Exercise 6.2: Hand Calculations for the Midpoint Method
Compute by hand the area composed of two rectangles (of equal width) that approx-
imates the integral

∫ 3
1 2x3dx. Make a test function that calls the midpoint function

in midpoint.py and compares the return value with the hand-calculated value.
Filename: midpoint_test_func.py.

Exercise 6.3: Compute a Simple Integral
Apply the trapezoidal and midpoint functions to compute the integral

∫ 6
2 x(x −

1)dx with 2 and 100 subintervals. Compute the error too.
Filename: integrate_parabola.py.

Exercise 6.4: Hand-Calculations with Sine Integrals
We consider integrating the sine function:

∫ b

0 sin(x)dx.

a) Let b = π and use two intervals in the trapezoidal and midpoint method.
Compute the integral by hand and illustrate how the two numerical methods
approximate the integral. Compare with the exact value.

b) Do a) when b = 2π .

Filename: integrate_sine.py.

Exercise 6.5: Make Test Functions for the Midpoint Method
Modify the file test_trapezoidal.py such that the three tests are applied to the
function midpoint implementing the midpoint method for integration.
Filename: test_midpoint.py.

Exercise 6.6: Explore Rounding Errors with Large Numbers
The trapezoidal method integrates linear functions exactly, and this prop-
erty was used in the test function test_trapezoidal_linear in the file
test_trapezoidal.py. Change the function used in Sect. 6.6.2 to f (x) =
6 · 108x − 4 · 106 and rerun the test. What happens? How must you change
the test to make it useful? How does the convergence rate test behave? Any need for
adjustment?
Filename: test_trapezoidal2.py.
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Fig. 6.4 Illustration of the rectangle method with evaluating the rectangle height by either the left
or right point

Exercise 6.7: Write Test Functions for
∫ 4

0

√
xdx

We want to test how the trapezoidal function works for the integral
∫ 4

0

√
xdx.

Two of the tests in test_trapezoidal.py are meaningful for this integral.
Compute by hand the result of using two or three trapezoids and modify the
test_trapezoidal_one_exact_result function accordingly. Then modify
test_trapezoidal_conv_rate to handle the square root integral.
Filename: test_trapezoidal3.py.

Remarks The convergence rate test fails. Printing out r shows that the actual
convergence rate for this integral is 1.5 and not 2. The reason is that the error in the
trapezoidal method6 is −(b − a)3n−2f ′′(ξ) for some (unknown) ξ ∈ [a, b]. With
f (x) = √

x, f ′′(ξ) → −∞ as ξ → 0, pointing to a potential problem in the size of
the error. Running a test with a > 0, say

∫ 4
0.1

√
xdx shows that the convergence rate

is indeed restored to 2.

Exercise 6.8: Rectangle Methods
The midpoint method divides the interval of integration into equal-sized subintervals
and approximates the integral in each subinterval by a rectangle whose height equals
the function value at the midpoint of the subinterval. Instead, one might use either
the left or right end of the subinterval as illustrated in Fig. 6.4. This defines a
rectangle method of integration. The height of the rectangle can be based on the
left or right end or the midpoint.

a) Write a function rectangle(f, a, b, n, height=’left’) for computing
an integral

∫ b

a
f (x)dx by the rectangle method with height computed based on

the value of height, which is either left, right, or mid.
b) Write three test functions for the three unit test procedures described in

Sect. 6.6.2. Make sure you test for height equal to left, right, and mid.
You may call the midpoint function for checking the result when height=mid.

6 http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis.

http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
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Hint Edit test_trapezoidal.py.
Filename: rectangle_methods.py.

Exercise 6.9: Adaptive Integration
Suppose we want to use the trapezoidal or midpoint method to compute an integral∫ b

a f (x)dx with an error less than a prescribed tolerance ε. What is the appropriate
size of n?

To answer this question, we may enter an iterative procedure where we compare
the results produced by n and 2n intervals, and if the difference is smaller than ε,
the value corresponding to 2n is returned. Otherwise, we halve n and repeat the
procedure.

Hint It may be a good idea to organize your code so that the function
adaptive_integration can be used easily in future programs you write.

a) Write a function

adaptive_integration(f, a, b, eps, method=midpoint)

that implements the idea above (eps corresponds to the tolerance ε, and method
can be midpoint or trapezoidal).

b) Test the method on
∫ 2

0 x2dx and
∫ 2

0
√

xdx for ε = 10−1, 10−10 and write out the
exact error.

c) Make a plot of n versus ε ∈ [10−1, 10−10] for
∫ 2

0
√

xdx. Use logarithmic scale
for ε.

Filename: adaptive_integration.py.

Remarks The type of method explored in this exercise is called adaptive, because
it tries to adapt the value of n to meet a given error criterion. The true error can very
seldom be computed (since we do not know the exact answer to the computational
problem), so one has to find other indicators of the error, such as the one here where
the changes in the integral value, as the number of intervals is doubled, is taken to
reflect the error.

Exercise 6.10: Integrating x Raised to x
Consider the integral

I =
∫ 4

0
xx dx .

The integrand xx does not have an anti-derivative that can be expressed in terms of
standard functions (visit http://wolframalpha.com and type integral(x**x,x) to
convince yourself that our claim is right. Note that Wolfram alpha does give you an
answer, but that answer is an approximation, it is not exact. This is because Wolfram
alpha too uses numerical methods to arrive at the answer, just as you will in this

http://wolframalpha.com
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exercise). Therefore, we are forced to compute the integral by numerical methods.
Compute a result that is right to four digits.

Hint Use ideas from Exercise 6.9.
Filename: integrate_x2x.py.

Exercise 6.11: Integrate Products of Sine Functions
In this exercise we shall integrate

Ij,k =
∫ π

−π

sin(jx) sin(kx)dx,

where j and k are integers.

a) Plot sin(x) sin(2x) and sin(2x) sin(3x) for x ∈ [−π, π] in separate plots. Explain
why you expect

∫ π

−π
sin x sin 2x dx = 0 and

∫ π

−π
sin 2x sin 3x dx = 0.

b) Use the trapezoidal rule to compute Ij,k for j = 1, . . . , 10 and k = 1, . . . , 10.

Filename: products_sines.py.

Exercise 6.12: Revisit Fit of Sines to a Function
This is a continuation of Exercise 4.13. The task is to approximate a given function
f (t) on [−π, π] by a sum of sines,

SN (t) =
N∑

n=1

bn sin(nt) . (6.31)

We are now interested in computing the unknown coefficients bn such that SN(t) is
in some sense the best approximation to f (t). One common way of doing this is to
first set up a general expression for the approximation error, measured by “summing
up” the squared deviation of SN from f :

E =
∫ π

−π

(SN (t) − f (t))2dt .

We may view E as a function of b1, . . . , bN . Minimizing E with respect to
b1, . . . , bN will give us a best approximation, in the sense that we adjust b1, . . . , bN

such that SN deviates as little as possible from f .
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Minimization of a function of N variables, E(b1, . . . , bN) is mathematically
performed by requiring all the partial derivatives to be zero:

∂E

∂b1
= 0,

∂E

∂b2
= 0,

...

∂E

∂bN

= 0 .

a) Compute the partial derivative ∂E/∂b1 and generalize to the arbitrary case
∂E/∂bn, 1 ≤ n ≤ N .

b) Show that

bn = 1

π

∫ π

−π

f (t) sin(nt) dt .

c) Write a function integrate_coeffs(f, N, M) that computes b1, . . . , bN by
numerical integration, using M intervals in the trapezoidal rule.

d) A remarkable property of the trapezoidal rule is that it is exact for inte-
grals

∫ π

−π sin nt dt (when subintervals are of equal size). Use this property
to create a function test_integrate_coeff to verify the implementation of
integrate_coeffs.

e) Implement the choice f (t) = 1
π
t as a Python function f(t) and call

integrate_coeffs(f, 3, 100) to see what the optimal choice of b1, b2, b3
is.

f) Make a function plot_approx(f, N, M, filename) where you plot f(t)
together with the best approximation SN as computed above, using M intervals
for numerical integration. Save the plot to a file with name filename.

g) Run plot_approx(f, N, M, filename) for f (t) = 1
π
t for N = 3, 6, 12, 24.

Observe how the approximation improves.
h) Run plot_approx for f (t) = e−(t−π) and N = 100. Observe a fundamental

problem: regardless of N , SN (−π) = 0, not e2π ≈ 535. (There are ways to fix
this issue.)

Filename: autofit_sines.py.

Exercise 6.13: Derive the Trapezoidal Rule for a Double Integral
Use ideas in Sect. 6.7.1 to derive a formula for computing a double integral∫ b

a

∫ d

c
f (x, y)dydx by the trapezoidal rule. Implement and test this rule.

Filename: trapezoidal_double.py.
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Exercise 6.14: Compute the Area of a Triangle by Monte Carlo Integration
Use the Monte Carlo method from Sect. 6.7.3 to compute the area of a triangle with
vertices at (−1, 0), (1, 0), and (3, 0).
Filename: MC_triangle.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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7Solving Nonlinear Algebraic Equations

As a reader of this book, you might be well into mathematics and often “accused” of
being particularly good at solving equations (a typical comment at family dinners!).
How true is it, however, that you can solve many types of equations with pen and
paper alone? Restricting our attention to algebraic equations in one unknown x, you
can certainly do linear equations: ax + b = 0, and quadratic ones: ax2 + bx + c =
0. You may also know that there are formulas for the roots of cubic and quartic
equations too. Maybe you can do the special trigonometric equation sin x + cos x =
1 as well, but there it (probably?) stops. Equations that are not reducible to one of
those mentioned, cannot be solved by general analytical techniques, which means
that most algebraic equations arising in applications cannot be treated with pen and
paper!

If we exchange the traditional idea of finding exact solutions to equations with
the idea of rather finding approximate solutions, a whole new world of possibilities
opens up. With such an approach, we can in principle solve any algebraic equation.

Let us start by introducing a common generic form for any algebraic equation:

f (x) = 0 .

© The Author(s) 2020
S. Linge, H. P. Langtangen, Programming for Computations - Python,
Texts in Computational Science and Engineering 15,
https://doi.org/10.1007/978-3-030-16877-3_7
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Here, f (x) is some prescribed formula involving x. For example, the equation

e−x sin x = cos x

has

f (x) = e−x sin x − cos x .

Just move all terms to the left-hand side and then the formula to the left of the
equality sign is f (x).

So, when do we really need to solve algebraic equations beyond the simplest
types we can treat with pen and paper? There are two major application areas. One
is when using implicit numerical methods for ordinary differential equations. These
give rise to one or a system of algebraic equations. The other major application type
is optimization, i.e., finding the maxima or minima of a function. These maxima and
minima are normally found by solving the algebraic equation F ′(x) = 0 if F(x) is
the function to be optimized. Differential equations are very much used throughout
science and engineering, and actually most engineering problems are optimization
problems in the end, because one wants a design that maximizes performance and
minimizes cost.

We first consider one algebraic equation in one variable, for which we present
some fundamental solution algorithms that any reader should get to know. Our
focus will, as usual, be placed on the programming of the algorithms. Systems of
nonlinear algebraic equations with many variables arise from implicit methods for
ordinary and partial differential equations as well as in multivariate optimization.
Our attention will be restricted to Newton’s method for such systems of nonlinear
algebraic equations.

Root Finding

When solving algebraic equations f (x) = 0, we often say that the solution x

is a root of the equation. The solution process itself is thus often called root
finding.

7.1 Brute Force Methods

The representation of a mathematical function f (x) on a computer takes two forms.
One is a Python function returning the function value given the argument, while the
other is a collection of points (x, f (x)) along the function curve. The latter is the
representation we use for plotting, together with an assumption of linear variation
between the points. This representation is also very well suited for equation solving:
we simply go through all points and see if the function crosses the x axis, or for
optimization: we test for local maximum or minimum points. Because there is a lot
of work to examine a huge number of points, and also because the idea is extremely
simple, such approaches are often referred to as brute force methods.
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7.1.1 Brute Force Root Finding

Assume that we have a set of points along the curve of a continuous function f (x):

We want to solve f (x) = 0, i.e., find the points x where f crosses the x axis.
A brute force algorithm is to run through all points on the curve and check if one
point is below the x axis and if the next point is above the x axis, or the other way
around. If this is found to be the case, we know that, when f is continuous, it has to
cross the x axis at least once between these two x values. In other words, f is zero
at least once on that sub-interval.

Note that, in the following algorithm, we refer to “the” root on a sub-interval,
even if there may be more than one root in principle. Whether there are more than
one root on a sub-interval will of course depend on the function, as well as on the
size and location of the sub-interval. For simplicity, we will just assume there is at
most one root on a sub-interval (or that it is sufficiently precise to talk about one
root, even if there could be more).

Numerical Algorithm More precisely, we have a set of n + 1 points (xi, yi), yi =
f (xi), i = 0, . . . , n, where x0 < . . . < xn. We check if yi < 0 and yi+1 > 0 (or
the other way around). A compact expression for this check is to perform the test
yiyi+1 < 0. If so, the root of f (x) = 0 is in [xi, xi+1].

Assuming a linear variation of f between xi and xi+1, we have the approximation

f (x) ≈ f (xi+1) − f (xi)

xi+1 − xi

(x − xi) + f (xi) = yi+1 − yi

xi+1 − xi

(x − xi) + yi,

which, when set equal to zero, gives the root

x = xi − xi+1 − xi

yi+1 − yi

yi .
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Implementation Given some Python implementation f(x) of our mathematical
function, a straightforward implementation of the above algorithm that quits after
finding one root, looks like

x = linspace(0, 4, 10001)
y = f(x)

root = None # Initialization
for i in range(len(x)-1):

if y[i]*y[i+1] < 0:
root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]
break # Jump out of loop

elif y[i] == 0:
root = x[i]
break # Jump out of loop

if root is None:
print(’Could not find any root in [{:g}, {:g}]’.format(x[0], x[-1]))

else:
print(’Find (the first) root as x={:.17f}’.format(root))

(See the file brute_force_root_finder_flat.py.)
Note the nice use of setting root to None: we can simply test if root is None

to see if we found a root and overwrote the None value, or if we did not find any
root among the tested points.

Running this program with some function, say f (x) = e−x2
cos(4x) (which has

a solution at x = π
8 ), gives the root 0.39269910538048097, which has an error of

2.4 × 10−8. Increasing the number of points with a factor of ten gives a root with an
error of 2.9 × 10−10.

After such a quick “flat” implementation of an algorithm, we should always try
to offer the algorithm as a Python function, applicable to as wide a problem domain
as possible. The function should take f and an associated interval [a, b] as input, as
well as a number of points (n), and return a list of all the roots in [a, b]. Here is our
candidate for a good implementation of the brute force root finding algorithm:

def brute_force_root_finder(f, a, b, n):
from numpy import linspace
x = linspace(a, b, n)
y = f(x)
roots = []
for i in range(n-1):

if y[i]*y[i+1] < 0:
root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]
roots.append(root)

elif y[i] == 0:
root = x[i]
roots.append(root)

return roots

(See the file brute_force_root_finder_function.py.)
This time we use another elegant technique to indicate if roots were found or not:

roots is an empty list if the root finding was unsuccessful, otherwise it contains all
the roots. Application of the function to the previous example can be coded as

https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_root_finder_flat.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_root_finder_function.py
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def demo():
from numpy import exp, cos
roots = brute_force_root_finder(

lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
if roots:

print(roots)
else:

print(’Could not find any roots’)

Note that if roots evaluates to True if roots is non-empty. This is a general test
in Python: if X evaluates to True if X is non-empty or has a nonzero value.

Running the program gives the output

[0.39270091800495166, 1.1781066425246509, 1.9635022750438742,
2.7489089483136029, 3.534319340895673]

7.1.2 Brute Force Optimization

Numerical Algorithm We realize that xi corresponds to a maximum point if
yi−1 < yi > yi+1. Similarly, xi corresponds to a minimum if yi−1 > yi < yi+1.
We can do this test for all “inner” points i = 1, . . . , n − 1 to find all local minima
and maxima. In addition, we need to add an end point, i = 0 or i = n, if the
corresponding yi is a global maximum or minimum.

Implementation The algorithm above can be translated to the following Python
function (file brute_force_optimizer.py):

def brute_force_optimizer(f, a, b, n):
from numpy import linspace
x = linspace(a, b, n)
y = f(x)
# Let maxima and minima hold the indices corresponding
# to (local) maxima and minima points
minima = []
maxima = []
for i in range(1, n-1):

if y[i-1] < y[i] > y[i+1]:
maxima.append(i)

if y[i-1] > y[i] < y[i+1]:
minima.append(i)

# What about the end points?
y_max_inner = max([y[i] for i in maxima])
y_min_inner = min([y[i] for i in minima])
if y[0] > y_max_inner:

maxima.append(0)
if y[len(x)-1] > y_max_inner:

maxima.append(len(x)-1)
if y[0] < y_min_inner:

minima.append(0)
if y[len(x)-1] < y_min_inner:

minima.append(len(x)-1)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_optimizer.py
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# Return x and y values
return [(x[i], y[i]) for i in minima], \

[(x[i], y[i]) for i in maxima]

The max and min functions are standard Python functions for finding the maximum
and minimum element of a list or an object that one can iterate over with a for loop.

An application to f (x) = e−x2
cos(4x) looks like

def demo():
from numpy import exp, cos
minima, maxima = brute_force_optimizer(

lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
print(’Minima:\n’, minima)
print(’Maxima:\n’, maxima)

Running the program gives

Minima:
[(0.70000000000000007, -0.5772302750838405), (2.1520000000000001,

-0.0066704807422565023), (3.6600000000000001, -7.3338267339366542e-07)]
Maxima:
[(1.4159999999999999, 0.10965467991643564), (2.8999999999999999,

0.00012651823896373234), (0.0, 1.0)]

7.1.3 Model Problem for Algebraic Equations

We shall consider the very simple problem of finding the square root of 9. That is,
we want to solve x2 = 9, but will (for simplicity) seek only the positive solution.
Knowing the solution beforehand, allows us to easily investigate how the numerical
method (and the implementation of it) performs in the search for a solution. The
f (x) function that corresponds to the equation x2 = 9 is

f (x) = x2 − 9 .

Our interval of interest for solutions will be [0, 1000] (the upper limit here is chosen
somewhat arbitrarily).

In the following, we will present several efficient and accurate methods for solv-
ing nonlinear algebraic equations, both single equation and systems of equations.
The methods all have in common that they search for approximate solutions. The
methods differ, however, in the way they perform the search for solutions. The idea
for the search influences the efficiency of the search and the reliability of actually
finding a solution. For example, Newton’s method is very fast, but not reliable, while
the bisection method is the slowest, but absolutely reliable. No method is best at all
problems, so we need different methods for different problems.



7.2 Newton’s Method 181

What Is the Difference Between Linear and Nonlinear Equations?

You know how to solve linear equations ax + b = 0: x = −b/a. All other
types of equations f (x) = 0, i.e., when f (x) is not a linear function of x,
are called nonlinear. A typical way of recognizing a nonlinear equation is to
observe that x is “not alone” as in ax, but involved in a product with itself,
such as in x3 + 2x2 − 9 = 0. We say that x3 and 2x2 are nonlinear terms. An
equation like sin x +ex cos x = 0 is also nonlinear although x is not explicitly
multiplied by itself, but the Taylor series of sin x, ex , and cos x all involve
polynomials of x where x is multiplied by itself.

7.2 Newton’s Method

Newton’s method, also known as Newton-Raphson’s method, is a very famous and
widely used method for solving nonlinear algebraic equations.1 Compared to the
other methods presented in this chapter, i.e., secant and bisection, it is generally the
fastest one (although computational speed rarely is an issue with a single equation
on modern laptops). However, it does not guarantee that an existing solution will be
found.

A fundamental idea of numerical methods for nonlinear equations is to construct
a series of linear equations (since we know how to solve linear equations) and hope
that the solutions of these linear equations bring us closer and closer to the solution
of the nonlinear equation. The idea will be clearer when we present Newton’s
method and the secant method.

7.2.1 Deriving and Implementing Newton’s Method

Figure 7.1 shows the f (x) function in our model equation x2 − 9 = 0. Numerical
methods for algebraic equations require us to guess at a solution first. Here, this
guess is called x0. The fundamental idea of Newton’s method is to approximate
the original function f (x) by a straight line, i.e., a linear function, since it is
straightforward to solve linear equations. There are infinitely many choices of how
to approximate f (x) by a straight line. Newton’s method applies the tangent of f (x)

at x0, see the rightmost tangent in Fig. 7.1. This linear tangent function crosses the x

axis at a point we call x1. This is (hopefully) a better approximation to the solution
of f (x) = 0 than x0. The next fundamental idea is to repeat this process. We find
the tangent of f at x1, compute where it crosses the x axis, at a point called x2,
and repeat the process again. Figure 7.1 shows that the process brings us closer and
closer to the left. It remains, however, to see if we hit x = 3 or come sufficiently
close to this solution.

1 Read more about Newton’s method, e.g., on https://en.wikipedia.org/wiki/Newton%27s_method.

https://en.wikipedia.org/wiki/Newton%27s_method
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Fig. 7.1 Illustrates the idea of Newton’s method with f (x) = x2 − 9, repeatedly solving for
crossing of tangent lines with the x axis

How do we compute the tangent of a function f (x) at a point x0? The tangent
function, here called f̃ (x), is linear and has two properties:

1. the slope equals to f ′(x0)

2. the tangent touches the f (x) curve at x0

So, if we write the tangent function as f̃ (x) = ax + b, we must require f̃ ′(x0) =
f ′(x0) and f̃ (x0) = f (x0), resulting in

f̃ (x) = f (x0) + f ′(x0)(x − x0) .

The key step in Newton’s method is to find where the tangent crosses the x axis,
which means solving f̃ (x) = 0:

f̃ (x) = 0 ⇒ x = x0 − f (x0)

f ′(x0)
.

This is our new candidate point, which we call x1:

x1 = x0 − f (x0)

f ′(x0)
.



7.2 Newton’s Method 183

With x0 = 1000, we get x1 ≈ 500, which is in accordance with the graph in Fig. 7.1.
Repeating the process, we get

x2 = x1 − f (x1)

f ′(x1)
≈ 250 .

The general scheme2 of Newton’s method may be written as

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (7.1)

The computation in (7.1) is repeated until f (xn) is close enough to zero. More
precisely, we test if |f (xn)| < ε, with ε being a small number.

We moved from 1000 to 250 in two iterations, so it is exciting to see how
fast we can approach the solution x = 3. A computer program can automate
the calculations. Our first try at implementing Newton’s method is in a function
naive_Newton (found in naive_Newton.py):

def naive_Newton(f, dfdx, x, eps):
while abs(f(x)) > eps:

x = x - (f(x))/dfdx(x)
return x

The argument x is the starting value, called x0 in our previous mathematical
description.

To solve the problem x2 = 9 we also need to implement

def f(x):
return x**2 - 9

def dfdx(x):
return 2*x

print(naive_Newton(f, dfdx, 1000, 0.001))

which in naive_Newton.py is included by use of an extra function and a test block.

2 The term scheme is often used as a synonym for method or computational recipe.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/naive_Newton.py
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Why Not Use an Array for the x Approximations?

Newton’s method is normally formulated with an iteration index n,

xn+1 = xn − f (xn)

f ′(xn)
.

Seeing such an index, many would implement this as

x[n+1] = x[n] - f(x[n])/dfdx(x[n])

Such an array is fine, but requires storage of all the approximations. In large
industrial applications, where Newton’s method solves millions of equations
at once, one cannot afford to store all the intermediate approximations in
memory, so then it is important to understand that the algorithm in Newton’s
method has no more need for xn when xn+1 is computed. Therefore, we can
work with one variable x and overwrite the previous value:

x = x - f(x)/dfdx(x)

Running naive_Newton(f, dfdx, 1000, eps=0.001) results in the approx-
imate solution 3.000027639. A smaller value of eps will produce a more accurate
solution. Unfortunately, the plain naive_Newton function does not return how
many iterations it used, nor does it print out all the approximations x0, x1, x2, . . .,
which would indeed be a nice feature. If we insert such a printout (print(x) in the
while loop), a rerun results in

500.0045
250.011249919
125.02362415
62.5478052723
31.3458476066
15.816483488
8.1927550496
4.64564330569
3.2914711388
3.01290538807
3.00002763928

We clearly see that the iterations approach the solution quickly. This speed of the
search for the solution is the primary strength of Newton’s method compared to
other methods.

7.2.2 Making aMore Efficient and Robust Implementation

The naive_Newton function works fine for the example we are considering here.
However, for more general use, there are some pitfalls that should be fixed in an
improved version of the code. An example may illustrate what the problem is.

Let us use naive_Newton to solve tanh(x) = 0, which has solution x = 0
(interactively, you may define f (x) = tanh(x) and f ′(x) = 1−tanh2(x) as Python
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functions and import the naive_Newton function from naive_Newton.py). With
|x0| ≤ 1.08 everything works fine. For example, x0 = 1.08 leads to six iterations if
ε = 0.001:

-1.05895313436
0.989404207298
-0.784566773086
0.36399816111
-0.0330146961372
2.3995252668e-05

Adjusting x0 slightly to 1.09 gives division by zero! The approximations computed
by Newton’s method become

-1.09331618202
1.10490354324
-1.14615550788
1.30303261823
-2.06492300238
13.4731428006
-1.26055913647e+11

The division by zero is caused by x7 = −1.26055913647 × 1011, because tanh(x7)

is 1.0 to machine precision, and then f ′(x) = 1 − tanh(x)2 becomes zero in the
denominator in Newton’s method.

The underlying problem, leading to the division by zero in the above example,
is that Newton’s method diverges: the approximations move further and further
away from x = 0. If it had not been for the division by zero, the condition in
the while loop would always be true and the loop would run forever. Divergence
of Newton’s method occasionally happens, and the remedy is to abort the method
when a maximum number of iterations is reached.

Another disadvantage of the naive_Newton function is that it calls the f (x)

function twice as many times as necessary. This extra work is of no concern when
f (x) is fast to evaluate, but in large-scale industrial software, one call to f (x) might
take hours or days, and then removing unnecessary calls is important. The solution
in our function is to store the call f(x) in a variable (f_value) and reuse the value
instead of making a new call f(x).

To summarize, we want to write an improved function for implementing
Newton’s method where we

• handle division by zero properly
• allow a maximum number of iterations
• avoid the extra evaluation of f (x)

A more robust and efficient version of the function, inserted in a complete program
(Newtons_method.py) for solving x2 − 9 = 0, is listed below.

import sys

def Newton(f, dfdx, x, eps):
f_value = f(x)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/Newtons_method.py
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iteration_counter = 0
while abs(f_value) > eps and iteration_counter < 100:

try:
x = x - f_value/dfdx(x)

except ZeroDivisionError:
print(’Error! - derivative zero for x = ’, x)
sys.exit(1) # Abort with error

f_value = f(x)
iteration_counter = iteration_counter + 1

# Here, either a solution is found, or too many iterations
if abs(f_value) > eps:

iteration_counter = -1
return x, iteration_counter

if __name__ == ’__main__’:
def f(x):

return x**2 - 9

def dfdx(x):
return 2*x

solution, no_iterations = Newton(f, dfdx, x=1000, eps=1.0e-6)

if no_iterations > 0: # Solution found
print(’Number of function calls: {:d}’.format(1+2*no_iterations))
print(’A solution is: {:f}’.format(solution))

else:
print(’Solution not found!’)

Handling of the potential division by zero is done by a try-except construc-
tion.3

The division by zero will always be detected and the program will be stopped.
The main purpose of our way of treating the division by zero is to give the user a
more informative error message and stop the program in a gentler way.

Calling sys.exit with an argument different from zero (here 1) signifies that
the program stopped because of an error. It is a good habit to supply the value 1,
because tools in the operating system can then be used by other programs to detect
that our program failed.

To prevent an infinite loop because of divergent iterations, we have introduced
the integer variable iteration_counter to count the number of iterations in
Newton’s method. With iteration_counterwe can easily extend the condition in
the while loop such that no more iterations take place when the number of iterations
reaches 100. We could easily let this limit be an argument to the function rather than
a fixed constant.

The Newton function returns the approximate solution and the number of
iterations. The latter equals −1 if the convergence criterion |f (x)| < ε was not
reached within the maximum number of iterations. In the calling code, we print out

3 Professional programmers would avoid calling sys.exit inside a function. Instead, they would
raise a new exception with an informative error message, and let the calling code have another
try-except construction to stop the program.
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the solution and the number of function calls. The main cost of a method for solving
f (x) = 0 equations is usually the evaluation of f (x) and f ′(x), so the total number
of calls to these functions is an interesting measure of the computational work. Note
that in function Newton there is an initial call to f (x) and then one call to f and
one to f ′ in each iteration.

Running Newtons_method.py, we get the following printout on the screen:

Number of function calls: 25
A solution is: 3.000000

The Newton scheme will work better if the starting value is close to the solution.
A good starting value may often make the difference as to whether the code actually
finds a solution or not. Because of its speed (and when speed matters), Newton’s
method is often the method of first choice for solving nonlinear algebraic equations,
even if the scheme is not guaranteed to work. In cases where the initial guess may
be far from the solution, a good strategy is to run a few iterations with the bisection
method (see Sect. 7.4) to narrow down the region where f is close to zero and then
switch to Newton’s method for fast convergence to the solution.

Using sympy to Find the Derivative Newton’s method requires the analytical
expression for the derivative f ′(x). Derivation of f ′(x) is not always a reliable
process by hand if f (x) is a complicated function. However, Python has the
symbolic package SymPy, which we may use to create the required dfdx function.
With our sample problem, we get:

import sympy as sym

x = sym.symbols(’x’)
f_expr = x**2 - 9 # symbolic expression for f(x)
dfdx_expr = sym.diff(f_expr, x) # compute f’(x) symbolically

# turn f_expr and dfdx_expr into plain Python functions
f = sym.lambdify([x], # argument to f

f_expr) # symbolic expression to be evaluated

dfdx = sym.lambdify([x], dfdx_expr)

print(f(3), dfdx(3)) # will print 0 and 6

The nice feature of this code snippet is that dfdx_expr is the exact analytical
expression for the derivative, 2*x (seen if you print it out). This is a symbolic
expression, so we cannot do numerical computing with it. However, with lambdify,
such symbolic expression are turned into callable Python functions, as seen here
with f and dfdx.

The next method is the secant method, which is usually slower than Newton’s
method, but it does not require an expression for f ′(x), and it has only one function
call per iteration.
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7.3 The Secant Method

When finding the derivative f ′(x) in Newton’s method is problematic, or when
function evaluations take too long; we may adjust the method slightly. Instead of
using tangent lines to the graph we may use secants.4 The approach is referred to as
the secant method, and the idea is illustrated graphically in Fig. 7.2 for our example
problem x2 − 9 = 0.

The idea of the secant method is to think as in Newton’s method, but instead of
using f ′(xn), we approximate this derivative by a finite difference or the secant,
i.e., the slope of the straight line that goes through the points (xn, f (xn)) and
(xn−1, f (xn−1)) on the graph, given by the two most recent approximations xn and
xn−1. This slope reads

f (xn) − f (xn−1)

xn − xn−1
. (7.2)

Inserting this expression for f ′(xn) in Newton’s method simply gives us the secant
method:

xn+1 = xn − f (xn)

f (xn)−f (xn−1)

xn−xn−1

,

or

xn+1 = xn − f (xn)
xn − xn−1

f (xn) − f (xn−1)
. (7.3)

Comparing (7.3) to the graph in Fig. 7.2, we see how two chosen starting points
(x0 = 1000, x1 = 700, and corresponding function values) are used to compute
x2. Once we have x2, we similarly use x1 and x2 to compute x3. As with Newton’s
method, the procedure is repeated until f (xn) is below some chosen limit value,
or some limit on the number of iterations has been reached. We use an iteration
counter here too, based on the same thinking as in the implementation of Newton’s
method.

We can store the approximations xn in an array, but as in Newton’s method,
we notice that the computation of xn+1 only needs knowledge of xn and xn−1, not
“older” approximations. Therefore, we can make use of only three variables: x for
xn+1, x1 for xn, and x0 for xn−1. Note that x0 and x1 must be given (guessed) for
the algorithm to start.

A program secant_method.py that solves our example problem may be written
as:

import sys

def secant(f, x0, x1, eps):
f_x0 = f(x0)
f_x1 = f(x1)

4 https://en.wikipedia.org/wiki/Secant_line.

https://en.wikipedia.org/wiki/Secant_line
https://github.com/slgit/prog4comp_2/blob/master/py36-src/secant_method.py
https://en.wikipedia.org/wiki/Secant_line
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Fig. 7.2 Illustrates the use of secants in the secant method when solving x2−9 = 0, x ∈ [0, 1000].
From two chosen starting values, x0 = 1000 and x1 = 700 the crossing x2 of the corresponding
secant with the x axis is computed, followed by a similar computation of x3 from x1 and x2

iteration_counter = 0
while abs(f_x1) > eps and iteration_counter < 100:

try:
denominator = (f_x1 - f_x0)/(x1 - x0)
x = x1 - f_x1/denominator

except ZeroDivisionError:
print(’Error! - denominator zero for x = ’, x)
sys.exit(1) # Abort with error

x0 = x1
x1 = x
f_x0 = f_x1
f_x1 = f(x1)
iteration_counter = iteration_counter + 1

# Here, either a solution is found, or too many iterations
if abs(f_x1) > eps:

iteration_counter = -1
return x, iteration_counter

if __name__ == ’__main__’:
def f(x):

return x**2 - 9

x0 = 1000; x1 = x0 - 1

solution, no_iterations = secant(f, x0, x1, eps=1.0e-6)

if no_iterations > 0: # Solution found
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print(’Number of function calls: {:d}’.format(2+no_iterations))
print(’A solution is: {:f}’.format(solution))

else:
print(’Solution not found!’)

The number of function calls is now related to no_iterations, i.e., the
number of iterations, as 2 + no_iterations, since we need two function calls
before entering the while loop, and then one function call per loop iteration.
Note that, even though we need two points on the graph to compute each
updated estimate, only a single function call (f(x1)) is required in each it-
eration since f(x0) becomes the “old” f(x1) and may simply be copied as
f_x0 = f_x1 (the exception is the very first iteration where two function evalu-
ations are needed).

Running secant_method.py, gives the following printout on the screen:

Number of function calls: 19
A solution is: 3.000000

7.4 The BisectionMethod

Neither Newton’s method nor the secant method can guarantee that an existing
solution will be found (see Exercises 7.1 and 7.2). The bisection method, however,
does that. However, if there are several solutions present, it finds only one of them,
just as Newton’s method and the secant method. The bisection method is slower
than the other two methods, so reliability comes with a cost of speed (but, again, for
a single equation that is rarely an issue with laptops of today).

To solve x2 − 9 = 0, x ∈ [0, 1000], with the bisection method, we reason as
follows. The first key idea is that if f (x) = x2 − 9 is continuous on the interval and
the function values for the interval endpoints (xL = 0, xR = 1000) have opposite
signs, f (x) must cross the x axis at least once on the interval. That is, we know
there is at least one solution.

The second key idea comes from dividing the interval in two equal parts, one
to the left and one to the right of the midpoint xM = 500. By evaluating the sign
of f (xM), we will immediately know whether a solution must exist to the left or
right of xM . This is so, since if f (xM) ≥ 0, we know that f (x) has to cross the x

axis between xL and xM at least once (using the same argument as for the original
interval). Likewise, if instead f (xM) ≤ 0, we know that f (x) has to cross the x axis
between xM and xR at least once.

In any case, we may proceed with half the interval only. The exception is if
f (xM) ≈ 0, in which case a solution is found. Such interval halving can be
continued until a solution is found. A “solution” in this case, is when |f (xM)| is
sufficiently close to zero, more precisely (as before): |f (xM)| < ε, where ε is a
small number specified by the user.
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The sketched strategy seems reasonable, so let us write a reusable function that
can solve a general algebraic equation f (x) = 0 (bisection_method.py):

import sys

def bisection(f, x_L, x_R, eps):
f_L = f(x_L)
if f_L*f(x_R) > 0:

print(’Error! Function does not have opposite \
signs at interval endpoints!’)

sys.exit(1)
x_M = (x_L + x_R)/2.0
f_M = f(x_M)
iteration_counter = 1

while abs(f_M) > eps:
if f_L*f_M > 0: # i.e. same sign

x_L = x_M
f_L = f_M

else:
x_R = x_M

x_M = (x_L + x_R)/2
f_M = f(x_M)
iteration_counter = iteration_counter + 1

return x_M, iteration_counter

if __name__ == ’__main__’:
def f(x):

return x**2 - 9

a = 0; b = 1000

solution, no_iterations = bisection(f, a, b, eps=1.0e-6)

print(’Number of function calls: {:d}’.format(1 + 2*no_iterations))
print(’A solution is: {:f}’.format(solution))

Note that we first check if f changes sign in [a, b], because that is a requirement
for the algorithm to work. The algorithm also relies on a continuous f (x) function,
but this is very challenging for a computer code to check.

We get the following printout to the screen when bisection_method.py is run:

Number of function calls: 63
A solution is: 3.000000

We notice that the number of function calls is much higher than with the previous
methods.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/bisection_method.py
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Required Work in the Bisection Method

If the starting interval of the bisection method is bounded by a and b, and the
solution at step n is taken to be the middle value, the error is bounded as

|b − a|
2n

, (7.4)

because the initial interval has been halved n times. Therefore, to meet a
tolerance ε, we need n iterations such that the length of the current interval
equals ε:

|b − a|
2n

= ε ⇒ n = ln((b − a)/ε)

ln 2
.

This is a great advantage of the bisection method: we know beforehand how
many iterations n it takes to meet a certain accuracy ε in the solution.

7.5 Rate of Convergence

With the methods above, we noticed that the number of iterations or function calls
could differ quite substantially. The number of iterations needed to find a solution is
closely related to the rate of convergence, which dictates the speed of error reduction
as we approach the root. More precisely, we introduce the error in iteration n as
en = |x − xn|, and define the convergence rate q as

en+1 = Ce
q
n, (7.5)

where C is a constant. The exponent q measures how fast the error is reduced from
one iteration to the next. The larger q is, the faster the error goes to zero (when
en < 1), and the fewer iterations we need to meet the stopping criterion |f (x)| < ε.

Convergence Rate and Iterations

When we previously addressed numerical integration (Chap. 6), the approx-
imation error E was related to the size h of the sub-intervals and the
convergence rate r as E = Khr , K being some constant.

Observe that (7.5) gives a different definition of convergence rate. This
makes sense, since numerical integration is based on a partitioning of the
original integration interval into n sub-intervals, which is very different from
the iterative procedures used here for solving nonlinear algebraic equations.



7.5 Rate of Convergence 193

A single q in (7.5) is defined in the limit n → ∞. For finite n, and especially
smaller n, q will vary with n. To estimate q , we can compute all the errors en and
set up (7.5) for three consecutive experiments n − 1, n, and n + 1:

en = Ce
q

n−1,

en+1 = Ce
q
n .

Dividing, e.g., the latter equation by the former, and solving with respect to q , we
get that

q = ln(en+1/en)

ln(en/en−1)
.

Since this q will vary somewhat with n, we call it qn. As n grows, we expect qn to
approach a limit (qn → q).

Modifying Our Functions to Return All Approximations To compute all the qn

values, we need all the xn approximations. However, our previous implementations
of Newton’s method, the secant method, and the bisection method returned just the
final approximation.

Therefore, we have modified our solvers5 accordingly, and placed them in
nonlinear_solvers.py. A user can choose whether the final value or the whole
history of solutions is to be returned. Each of the extended implementations now
takes an extra parameter return_x_list. This parameter is a boolean, set to True
if the function is supposed to return all the root approximations, or False, if the
function should only return the final approximation.

As an example, let us take a closer look at Newton:

def Newton(f, dfdx, x, eps, return_x_list=False):
f_value = f(x)
iteration_counter = 0
if return_x_list:

x_list = []

while abs(f_value) > eps and iteration_counter < 100:
try:

x = x - float(f_value)/dfdx(x)
except ZeroDivisionError:

print(’Error! - derivative zero for x = {:g}’.format(x))
sys.exit(1) # Abort with error

f_value = f(x)
iteration_counter += 1
if return_x_list:

x_list.append(x)

# Here, either a solution is found, or too many iterations
if abs(f_value) > eps:

iteration_counter = -1 # i.e., lack of convergence

5 An implemented numerical solution algorithm is often called a solver.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/nonlinear_solvers.py
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if return_x_list:
return x_list, iteration_counter

else:
return x, iteration_counter

We can now make a call

x, iter = Newton(f, dfdx, x=1000, eps=1e-6, return_x_list=True)

and get a list x returned. With knowledge of the exact solution x of f (x) = 0 we can
compute all the errors en and all the associated qn values with the compact function
(also found in nonlinear_solvers.py)

def rate(x, x_exact):
e = [abs(x_ - x_exact) for x_ in x]
q = [log(e[n+1]/e[n])/log(e[n]/e[n-1])

for n in range(1, len(e)-1, 1)]
return q

The error model (7.5) works well for Newton’s method and the secant method.
For the bisection method, however, it works well in the beginning, but not when the
solution is approached.

We can compute the rates qn and print them nicely (print_rates.py),

def print_rates(method, x, x_exact):
q = [’{:.2f}’.format(q_) for q_ in rate(x, x_exact)]
print(method + ’:’)
for q_ in q:

print(q_, " ", end="") # end="" suppresses newline

The result for print_rates(’Newton’, x, 3) is

Newton:
1.01 1.02 1.03 1.07 1.14 1.27 1.51 1.80 1.97 2.00

indicating that q = 2 is the rate for Newton’s method. A similar computation using
the secant method, gives the rates

secant:
1.26 0.93 1.05 1.01 1.04 1.05 1.08 1.13 1.20 1.30 1.43
1.54 1.60 1.62 1.62

Here it seems that q ≈ 1.6 is the limit.

Remark If we in the bisection method think of the length of the current interval
containing the solution as the error en, then (7.5) works perfectly since en+1 = 1

2en,
i.e., q = 1 and C = 1

2 , but if en is the true error |x−xn|, it is easily seen from a sketch
that this error can oscillate between the current interval length and a potentially very
small value as we approach the exact solution. The corresponding rates qn fluctuate
widely and are of no interest.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/print_rates.py
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7.6 Solving Multiple Nonlinear Algebraic Equations

So far in this chapter, we have considered a single nonlinear algebraic equation.
However, systems of such equations arise in a number of applications, foremost
nonlinear ordinary and partial differential equations. Of the previous algorithms,
only Newton’s method is suitable for extension to systems of nonlinear equa-
tions.

7.6.1 Abstract Notation

Suppose we have n nonlinear equations, written in the following abstract form:

F0(x0, x1, . . . , xn) = 0, (7.6)

F1(x0, x1, . . . , xn) = 0, (7.7)

... = ... (7.8)

Fn(x0, x1, . . . , xn) = 0 . (7.9)

It will be convenient to introduce a vector notation

F = (F0, . . . , F1), x = (x0, . . . , xn) .

The system can now be written as F (x) = 0.
As a specific example on the notation above, the system

x2 = y − x cos(πx) (7.10)

yx + e−y = x−1 (7.11)

can be written in our abstract form by introducing x0 = x and x1 = y. Then

F0(x0, x1) = x2 − y + x cos(πx) = 0,

F1(x0, x1) = yx + e−y − x−1 = 0 .

7.6.2 Taylor Expansions for Multi-Variable Functions

We follow the ideas of Newton’s method for one equation in one variable:
approximate the nonlinear f by a linear function and find the root of that function.
When n variables are involved, we need to approximate a vector function F (x) by
some linear function F̃ = Jx + c, where J is an n × n matrix and c is some vector
of length n.

The technique for approximating F by a linear function is to use the first two
terms in a Taylor series expansion. Given the value of F and its partial derivatives
with respect to x at some point xi , we can approximate the value at some point xi+1
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by the two first term in a Taylor series expansion around xi :

F (xi+1) ≈ F (xi ) + ∇F (xi )(xi+1 − xi ) .

The next terms in the expansions are omitted here and of size ||xi+1 − xi ||2, which
are assumed to be small compared with the two terms above.

The expression ∇F is the matrix of all the partial derivatives of F . Component
(i, j) in ∇F is

∂Fi

∂xj

.

For example, in our 2 × 2 system (7.10) and (7.11) we can use SymPy to compute
the Jacobian:

In [1]: from sympy import *

In [2]: x0, x1 = symbols(’x0 x1’)

In [3]: F0 = x0**2 - x1 + x0*cos(pi*x0)

In [4]: F1 = x0*x1 + exp(-x1) - x0**(-1)

In [5]: diff(F0, x0)
Out[5]: -pi*x0*sin(pi*x0) + 2*x0 + cos(pi*x0)

In [6]: diff(F0, x1)
Out[6]: -1

In [7]: diff(F1, x0)
Out[7]: x1 + x0**(-2)

In [8]: diff(F1, x1)
Out[8]: x0 - exp(-x1)

We can then write

∇F =
(

∂F0
∂x0

∂F0
∂x1

∂F1
∂x0

∂F1
∂x1

)

=
(

2x0 + cos(πx0) − πx0 sin(πx0) −1
x1 + x−2

0 x0 − e−x1

)

The matrix ∇F is called the Jacobian of F and often denoted by J .

7.6.3 Newton’sMethod

The idea of Newton’s method is that we have some approximation xi to the root and
seek a new (and hopefully better) approximation xi+1 by approximating F (xi+1) by
a linear function and solve the corresponding linear system of algebraic equations.
We approximate the nonlinear problem F (xi+1) = 0 by the linear problem

F (xi ) + J (xi )(xi+1 − xi ) = 0, (7.12)



7.6 Solving Multiple Nonlinear Algebraic Equations 197

where J (xi ) is just another notation for ∇F (xi ). The Eq. (7.12) is a linear system
with coefficient matrix J and right-hand side vector F (xi ). We therefore write this
system in the more familiar form

J (xi )δ = −F (xi ),

where we have introduced a symbol δ for the unknown vector xi+1 − xi that
multiplies the Jacobian J .

The i-th iteration of Newton’s method for systems of algebraic equations consists
of two steps:

1. Solve the linear system J (xi )δ = −F (xi ) with respect to δ.
2. Set xi+1 = xi + δ.

Solving systems of linear equations must make use of appropriate software. Gaus-
sian elimination is the most common, and in general the most robust, method for this
purpose. Python’s numpy package has a module linalg that interfaces the well-
known LAPACK package with high-quality and very well tested subroutines for
linear algebra. The statement x = numpy.linalg.solve(A, b) solves a system
Ax = b with a LAPACK method based on Gaussian elimination.

When nonlinear systems of algebraic equations arise from discretization of
partial differential equations, the Jacobian is very often sparse, i.e., most of its
elements are zero. In such cases it is important to use algorithms that can take
advantage of the many zeros. Gaussian elimination is then a slow method, and
(much) faster methods are based on iterative techniques.

7.6.4 Implementation

Here is a very simple implementation of Newton’s method for systems of nonlinear
algebraic equations:

import numpy as np

def Newton_system(F, J, x, eps):
"""
Solve nonlinear system F=0 by Newton’s method.
J is the Jacobian of F. Both F and J must be functions of x.
At input, x holds the start value. The iteration continues
until ||F|| < eps.
"""
F_value = F(x)
F_norm = np.linalg.norm(F_value, ord=2) # l2 norm of vector
iteration_counter = 0
while abs(F_norm) > eps and iteration_counter < 100:

delta = np.linalg.solve(J(x), -F_value)
x = x + delta
F_value = F(x)
F_norm = np.linalg.norm(F_value, ord=2)
iteration_counter = iteration_counter + 1
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# Here, either a solution is found, or too many iterations
if abs(F_norm) > eps:

iteration_counter = -1
return x, iteration_counter

We can test the function Newton_systemwith the 2×2 system (7.10) and (7.11):

def test_Newton_system1():
from numpy import cos, sin, pi, exp

def F(x):
return np.array(

[x[0]**2 - x[1] + x[0]*cos(pi*x[0]),
x[0]*x[1] + exp(-x[1]) - x[0]**(-1.)])

def J(x):
return np.array(

[[2*x[0] + cos(pi*x[0]) - pi*x[0]*sin(pi*x[0]), -1],
[x[1] + x[0]**(-2.), x[0] - exp(-x[1])]])

expected = np.array([1, 0])
tol = 1e-4
x, n = Newton_system(F, J, x=np.array([2, -1]), eps=0.0001)
print(n, x)
error_norm = np.linalg.norm(expected - x, ord=2)
assert error_norm < tol, ’norm of error ={:g}’.format(error_norm)
print(’norm of error ={:g}’.format(error_norm))

Here, the testing is based on the L2 norm6 of the error vector. Alternatively,
we could test against the values of x that the algorithm finds, with appropriate
tolerances. For example, as chosen for the error norm, if eps=0.0001, a tolerance
of 10−4 can be used for x[0] and x[1].

7.7 Exercises

Exercise 7.1: Understand Why Newton’s Method Can Fail
The purpose of this exercise is to understand when Newton’s method works and
fails. To this end, solve tanh x = 0 by Newton’s method and study the intermediate
details of the algorithm. Start with x0 = 1.08. Plot the tangent in each iteration of
Newton’s method. Then repeat the calculations and the plotting when x0 = 1.09.
Explain what you observe.
Filename: Newton_failure.*.

Exercise 7.2: See If the Secant Method Fails
Does the secant method behave better than Newton’s method in the problem
described in Exercise 7.1? Try the initial guesses

1. x0 = 1.08 and x1 = 1.09
2. x0 = 1.09 and x1 = 1.1

6 https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm.

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm


7.7 Exercises 199

3. x0 = 1 and x1 = 2.3
4. x0 = 1 and x1 = 2.4

Filename: secant_failure.*.

Exercise 7.3: Understand Why the Bisection Method Cannot Fail
Solve the same problem as in Exercise 7.1, using the bisection method, but let the
initial interval be [−5, 3]. Report how the interval containing the solution evolves
during the iterations.
Filename: bisection_nonfailure.*.

Exercise 7.4: Combine the Bisection Method with Newton’s Method
An attractive idea is to combine the reliability of the bisection method with the speed
of Newton’s method. Such a combination is implemented by running the bisection
method until we have a narrow interval, and then switch to Newton’s method for
speed.

Write a function that implements this idea. Start with an interval [a, b] and switch
to Newton’s method when the current interval in the bisection method is a fraction s

of the initial interval (i.e., when the interval has length s(b−a)). Potential divergence
of Newton’s method is still an issue, so if the approximate root jumps out of the
narrowed interval (where the solution is known to lie), one can switch back to the
bisection method. The value of s must be given as an argument to the function, but
it may have a default value of 0.1.

Try the new method on tanh(x) = 0 with an initial interval [−10, 15].
Filename: bisection_Newton.py.

Exercise 7.5: Write a Test Function for Newton’s Method
The purpose of this function is to verify the implementation of Newton’s method
in the Newton function in the file nonlinear_solvers.py. Construct an algebraic
equation and perform two iterations of Newton’s method by hand or with the aid of
SymPy. Find the corresponding size of |f (x)| and use this as value for eps when
calling Newton. The function should then also perform two iterations and return the
same approximation to the root as you calculated manually. Implement this idea for
a unit test as a test function test_Newton().
Filename: test_Newton.py.

Exercise 7.6: Halley’s Method and the Decimal Module
A nonlinear algebraic equation f (x) = 0 may also be solved by Halley’s method,7

given as:

xn+1 = xn − 2f (xn)f
′(xn)

2f ′(xn)2 − f (xn)f ′′(xn)
, n = 0, 1, . . . ,

with some starting value x0.

7 http://mathworld.wolfram.com/HalleysMethod.html.

http://mathworld.wolfram.com/HalleysMethod.html
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a) Implement Halley’s method as a function Halley. Place the function in a module
that has a test block, and test the function by solving x2−9 = 0, using x0 = 1000
as your initial guess.

b) Compared to Newton’s method, more computations per iteration are needed
with Halley’s method, but a convergence rate of 3 may be achieved close
to the root. You are now supposed to extend your module with a function
compute_rates_decimal, which computes the convergence rates achieved
with your implementation of Halley (for the given problem).

The implementation of compute_rates_decimal should involve the
decimal module (you search for the right documentation!), to better handle
very small errors that may enter the rate computations. For comparison, you
should also compute the rates without using the decimal module. Test and
compare with several parameter values.

Hint The logarithms in the rate calculation might require some extra consideration
when you use the decimal module.
Filename: Halleys_method.py.

Exercise 7.7: Fixed Point Iteration
A nonlinear algebraic equation f (x) = 0 may be solved in many different ways, and
we have met some of these in this chapter. Another, very useful, solution approach
is to first re-write the equation into x = φ(x) (this re-write is not unique), and then
formulate the iteration

xn+1 = φ(xn), n = 0, 1, . . . ,

with some starting value x0. If φ(x) is continuous, and if φ(xn) approaches α as xn

approaches α (i.e., we get α = φ(α) as n → ∞), the iteration is called a fixed point
iteration and α is referred to as a fixed point of the mapping x → φ(x). Clearly, if
a fixed point α is found, α will also be a solution to the original equation f (x) = 0.

In this exercise, we will briefly explore the fixed point iteration method by
solving

x3 + 2x = e−x, x ∈ [−2, 2] .

For comparison, however, you will first be asked to solve the equation by
Newton’s method (which, in fact, can be seen as fixed point iteration8).

a) Write a program that solves this equation by Newton’s method. Use x = 1
as your starting value. To better judge the printed answer found by Newton’s
method, let the code also plot the relevant function on the given interval.

b) The given equation may be rewritten as x = e−x−x3

2 . Extend your program with
a function fixed_point_iteration, which takes appropriate parameters, and
uses fixed point iteration to find and return a solution (if found), as well as the
number of iterations required. Use x = 1 as starting value.

8 Check out https://en.wikipedia.org/wiki/Fixed_point_iteration.

https://en.wikipedia.org/wiki/Fixed_point_iteration
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When the program is executed, the original equation should be solved both
with Newton’s method and via fixed point iterations (as just described). Compare
the output from the two methods.

Filename: fixed_point_iteration.py.

Exercise 7.8: Solve Nonlinear Equation for a Vibrating Beam
An important engineering problem that arises in a lot of applications is the vibrations
of a clamped beam where the other end is free. This problem can be analyzed
analytically, but the calculations boil down to solving the following nonlinear
algebraic equation:

cosh β cos β = −1,

where β is related to important beam parameters through

β4 = ω2 A

EI
,

where  is the density of the beam, A is the area of the cross section, E is Young’s
modulus, and I is the moment of the inertia of the cross section. The most important
parameter of interest is ω, which is the frequency of the beam. We want to compute
the frequencies of a vibrating steel beam with a rectangular cross section having
width b = 25 mm and height h = 8 mm. The density of steel is 7850 kg/m3, and
E = 2 × 1011 Pa. The moment of inertia of a rectangular cross section is I =
bh3/12.

a) Plot the equation to be solved so that one can inspect where the zero crossings
occur.

Hint When writing the equation as f (β) = 0, the f function increases its
amplitude dramatically with β. It is therefore wise to look at an equation with
damped amplitude, g(β) = e−βf (β) = 0. Plot g instead.

b) Compute the first three frequencies.

Filename: beam_vib.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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8Solving Ordinary Differential Equations

Differential equations constitute one of the most powerful mathematical tools to
understand and predict the behavior of dynamical systems in nature, engineering,
and society. A dynamical system is some system with some state, usually expressed
by a set of variables, that evolves in time. For example, an oscillating pendulum,
the spreading of a disease, and the weather are examples of dynamical systems. We
can use basic laws of physics, or plain intuition, to express mathematical rules that
govern the evolution of a system in time. These rules take the form of differential
equations.

You are probably well experienced with equations, at least equations like ax +
b = 0 and ax2 + bx + c = 0, where a, b and c are constants. Such equations
are known as algebraic equations, and the unknowns are numbers. In a differential
equation, the unknown is a function, and a differential equation will usually involve
this function and one or more of its derivatives. When this function depends on a
single independent variable, the equation is called an ordinary differential equation
(ODE, plural: ODEs), which is different from a partial differential equation (PDE,
plural: PDEs), in which the function depends on several independent variables
(Chap. 9). As an example, f ′(x) = f (x) is a simple ODE (asking if there is
any function f such that it equals its derivative—you might remember that ex

© The Author(s) 2020
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is a candidate).1 This is also an example of a first-order ODE, since the highest
derivative appearing in the equation is a first derivative. When the highest derivative
in an ODE is a second derivative, it is a second-order ODE, and so on (a similar
terminology is used also for PDEs).

Order of ODE versus order of numerical solution method

Note that an ODE will have an order as just explained. This order, however,
should not be confused with the order of a numerical solution method applied
to solve that ODE. The latter refers to the convergence rate of the numerical
solution method, addressed at the end of this chapter. We will present several
such solution methods in this chapter, being first-order, second-order or
fourth-order, for example (and a first-order ODE might, in principle, be solved
by any of these methods).

The present chapter2 starts out preparing for ODEs and the Forward Euler
method, which is a first-order method. Then we explain in detail how to solve
ODEs numerically with the Forward Euler method, both single (scalar) first-order
ODEs and systems of first-order ODEs. After the “warm-up” application—filling
of a water tank—aimed at the less mathematically trained reader, we demonstrate
all the mathematical and programming details through two specific applications:
population growth and spreading of diseases. The first few programs we write, are
deliberately made very simple and similar, while we focus the computational ideas.

Then we turn to oscillating mechanical systems, which arise in a wide range of
engineering situations. The differential equation is now of second order, and the For-
ward Euler method does not perform too well. This observation motivates the need
for other solution methods, and we derive the Euler-Cromer scheme, the second- and
fourth-order Runge-Kutta schemes, as well as a finite difference scheme (the latter
to handle the second-order differential equation directly without reformulating it as
a first-order system). The presentation starts with undamped free oscillations and
then treats general oscillatory systems with possibly nonlinear damping, nonlinear
spring forces, and arbitrary external excitation. Besides developing programs from
scratch, we also demonstrate how to access ready-made implementations of more
advanced differential equation solvers in Python.

As we progress with more advanced methods, we develop more sophisticated
and reusable programs. In particular, we incorporate good testing strategies, which
allows us to bring solid evidence of correct computations. Consequently, the
beginning—with water tank, population growth and disease modeling examples—
has a very gentle learning curve, while that curve gets significantly steeper towards
the end of our section on oscillatory systems.

1 Note that the notation for the derivative may differ. For example, f ′(x) could equally well be
written as just f ′ (where the dependence on x is to be understood), or as df

dx
.

2 The reader should be aware of another excellent easy-to-read text by the late Prof. Langtangen,
“Finite Difference Computing with Exponential Decay Models” (Springer, open access, 2016,
https://www.springer.com/gp/book/9783319294384). It fits right in with the material on ODEs and
PDEs of the present book.

https://www.springer.com/gp/book/9783319294384
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8.1 Filling aWater Tank: Two Cases

If “ordinary differential equation” is not among your favorite expressions, then this
section is for you.

Consider a 25 L tank that will be filled with water in two different ways. In the
first case, the water volume that enters the tank per time (rate of volume increase) is
piecewise constant, while in the second case, it is continuously increasing.

For each of these two cases, we are asked to develop a code that can predict (i.e.,
compute) how the total water volume V in the tank will develop with time t over a
period of 3 s. Our calculations must be based on the information given: the initial
volume of water (1L in both cases), and the volume of water entering the tank per
time.

8.1.1 Case 1: Piecewise Constant Rate

In this simpler case, there is initially 1 L of water in the tank, i.e.,

V (0) = 1 L,

while the rates of volume increase are given as:

r = 1 L s−1, 0 s < t < 1 s ,

r = 3 L s−1, 1 s ≤ t < 2 s ,

r = 7 L s−1, 2 s ≤ t ≤ 3 s .

Before turning to the programming, we should work out the exact solution by hand
for this problem, since that is rather straight forward. Such a solution will of course
be useful for verifying our implementation. In fact, comparing program output to
these hand calculations should suffice for this particular problem.

Exact Solution by Hand Our reasoning goes like this: For each of the given sub-
intervals (on the time axis), the total volume V of water in the tank will increase
linearly. Thus, if we compute V after 1, 2 and 3 s, we will have what we need. We
get

V (0) = 1 L ,

V (1) = 1 L + (1 s)(1 L s−1) = 2 L ,

V (2) = 2 L + (1 s)(3 L s−1) = 5 L ,

V (3) = 5 L + (1 s)(7 L s−1) = 12 L .

We also have what is required for plotting the exact solution, since we can just tell
Python to plot the computed V values against t for t = 0, 1, 2, 3, and let Python fill
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in the straight lines in between these points. Therefore, the exact solution is ready
and we may proceed to bring our reasoning into code.

Implementation and Performance A simple implementation may read
(rate_piecewise_constant.py):

import numpy as np
import matplotlib.pyplot as plt

a = 0.0; b = 3.0 # time interval
N = 3 # number of time steps
dt = (b - a)/N # time step (s)
V_exact = [1.0, 2.0, 5.0, 12.0] # exact volumes (L)
V = np.zeros(4) # numerically computed volume (L)
V[0] = 1 # initial volume
r = np.zeros(3) # rates of volume increase (L/s)
r[0] = 1; r[1] = 3; r[2] = 7

for i in [0, 1, 2]:
V[i+1] = V[i] + dt*r[i]

time = [0, 1, 2, 3]
plt.plot(time, V, ’bo-’, time, V_exact, ’r’)
plt.title(’Case 1’)
plt.legend([’numerical’,’exact’], loc=’upper left’)
plt.xlabel(’t (s)’)
plt.ylabel(’V (L)’)
plt.show()

As you can see, we have included the exact (hand computed) solution in the code,
so that it gets plotted together with the numerical solution found by the program.
The time step dt will become 1 s here, and running the code, produces the plot seen
in Fig. 8.1. We note that the numerical and exact solution can not be distinguished
in the plot.

Fig. 8.1 Water volume in a tank as it develops with piecewise constant rate of volume increase

https://github.com/slgit/prog4comp_2/blob/master/py36-src/rate_piecewise_constant.py
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8.1.2 Case 2: Continuously Increasing Rate

This case is more tricky. As in the previous case, there is 1 L of water in the tank
from the start. When the tank fills up, however, the rate of volume increase, r , is
always equal to the current volume of water, i.e., r = V (in units of L s−1). So, for
example, at the time when there is 2 L in the tank, water enters the tank at 2 L s−1,
when there is 2.1 L in the tank, water comes in at 2.1 L s−1, and so on. Thus, contrary
to what we had in Case 1, r is not constant for any period of time within the 3 s
interval, it increases continuously and gives us a steeper and steeper curve for V (t).
Writing this up as for Case 1, the information we have is

V (0) = 1 L,

and, for the rate (in L s−1),

r(t) = V (t), 0 s < t ≤ 3 s .

Let us, for simplicity, assume that we also are given the exact solution in this case,
which is V (t) = et . This allows us to easily check out the performance of any
computational idea that we might try.

So, how can we compute the development of V , making it compare favorably to
the given solution?

An Idea Clearly, we will be happy with an approximately correct solution, as
long as the error can be made “small enough”. In Case 1, we effectively computed
connected straight line segments that matched the true development of V because
of piecewise constant r values. Would it be possible to do something similar here
in Case 2, i.e., compute straight line segments and use them as an approximation
to the true solution curve? If so, it seems we could benefit from a very simple
computational scheme! Let us pursue this idea further to see what comes out of
it.

The First Time Step Considering the very first time step, we should realize that,
since we are given the initial volume V (0) = 1 L, we do know the correct volume
and correct rate at t = 0, since r(t) = V (t). Thus, using this information and
pretending that r stays constant as time increases, we will be able to compute a
straight line segment for the very first time step (some Δt must be chosen). This
straight line segment will then become tangent to the true solution curve when t = 0.
The computed volume at the end of the first time step will have an error, but if our
time step is not too large, the straight line segment will stay close to the true solution
curve and the error in V should be “small”.

The Second Time Step What about the second time step? Well, the volume we
computed (with an error) at the end of the first time step, must now serve as the
starting volume and (“constant”) rate for the second time step. This allows us to
compute an approximation to the volume also at the end of the second time step. If
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errors are “small”, also the second straight line segment should be close to the true
solution curve.

What About the Errors? We realize that, in this way, we can work our way all
along the total time interval. Immediately, we suspect that the error may grow with
the number of time steps, but since the total time interval is not too large, and since
we may choose a very small time step on modern computers, this could still work!

Implementation and Performance Let us write down the code, which by choice
gets very similar to the code in Case 1, and see how it performs. We realize that,
for our strategy to work, the time steps should not be too large. However, during
these initial investigations of ours, our aim is first and foremost to check out the
computational idea. So, we pick a time step Δt = 0.1 s for a first try. A simple
version of the code (rate_exponential.py) may then read:

import numpy as np
import matplotlib.pyplot as plt

a = 0.0; b = 3.0 # time interval
N = 30 # number of time steps
dt = (b - a)/N # time step (s)
V = np.zeros(N+1) # numerically computed volume (L)
V[0] = 1 # initial volume

for i in range(0, N, 1):
V[i+1] = V[i] + dt*V[i] # ...r is V now

time_exact = np.linspace(a, b, 1000)
V_exact = np.exp(time_exact) # make exact solution (for plotting)
time = np.linspace(0, 3, N+1)
plt.plot(time, V, ’bo-’, time_exact, V_exact, ’r’)
plt.title(’Case 2’)
plt.legend([’numerical’,’exact’], loc=’upper left’)
plt.xlabel(’t (s)’)
plt.ylabel(’V (L)’)
plt.show()

To plot the exact solution, we just picked 1000 points in time, which we consider
“large enough” to get a representative curve. Compared to the code for Case 1,
some more flexibility is introduced here, using range and N in the for loop header.
Running the code gives the plot shown in Fig. 8.2.

This looks promising! Not surprisingly, the error grows with time, reaching about
2.64 L at the end. However, the time step is not particularly small, so we should
expect much more accurate computations if Δt is reduced. We skip showing the
plots,3 but if we increase N from 30 to 300, the maximum error drops to 0.30 L,
while an N value of 3 · 106 gives an error of 3 · 10−5 L. It seems we are on to
something!

3 With smaller time steps, it becomes inappropriate to use filled circles on the graph for the
numerical values. Thus, in the plot command, one should change bo- to, e.g., only b.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/rate_exponential.py
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Fig. 8.2 Water volume in a tank as it develops with constantly increasing rate of volume change
(r = V ). The numerical computations use piecewise constant rates as an approximation to the true
rate

The similar code structures used for Case 1 and Case 2 suggests that a more
general (and improved) code may be written, applicable to both cases. As we move
on with our next example, population growth, we will see how this can be done.

8.1.3 Reformulating the Problems as ODEs

Typically, the problems we solved in Case 1 and Case 2, would rather have been
presented in “more proper mathematical language” as ODEs.

Case 1 When the rates were piecewise constant, we could have been requested to
solve

V ′(t) = 1 L s−1, 0 s < t < 1 s ,

V ′(t) = 3 L s−1, 1 s ≤ t < 2 s ,

V ′(t) = 7 L s−1, 2 s ≤ t ≤ 3 s ,

with

V (0) = 1 L,

where V (0) is known as an initial condition.
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Case 2 With a continuously increasing rate, we could have been asked to solve

V ′(t) = V (t), V (0) = 1 L, 0 s < t ≤ 3 s .

This particular ODE is very similar to the ODE we will address when we next turn
to population growth (in fact, it may be seen as a special case of the latter).

The Forward Euler Method: A Brief Encounter If we had proceeded to solve
these ODEs by something called the Forward Euler method (or Euler’s method), we
could (if we wanted) have written the solution codes exactly as they were developed
above! Thus, we have already used the essentials of Euler’s method without stating
it.

In the following sections, the Forward Euler method will be thoroughly explained
and elaborated on, while we demonstrate how the approach may be used to solve
different ODEs numerically.

8.2 Population Growth: A First Order ODE

Our first real taste of differential equations regards modeling the growth of some
population, such as a cell culture, an animal population, or a human population. The
ideas even extend trivially to growth of money in a bank.

Let N(t) be the number of individuals in the population at time t . How can we
predict the evolution of N with time? Below we shall derive a differential equation
whose solution is N(t). The equation we will derive reads

N ′(t) = rN(t), (8.1)

where r is a number. Note that although N obviously is an integer in real life, we
model N as a real-valued function. We choose to do this, because the solutions of
differential equations are (normally continuous) real-valued functions. An integer-
valued N(t) in the model would lead to a lot of mathematical difficulties. Also,
talking about, e.g., 2.5 individuals is no problem in mathematics, even though we
must be a bit careful when applying this in a practical setting!

You may know, or find out, that the solution N(t) = Cert , where C is
any number. To make this solution unique, we need to fix C, which is done by
prescribing the value of N at some time, usually at t = 0. If N(0) is given as N0,
we get N(t) = N0e

rt .
In general, a differential equation model consists of a differential equation, such

as (8.1) and an initial condition, such as N(0) = N0. With a known initial condition,
the differential equation can be solved for the unknown function and the solution is
unique.

It is very rare that we can find the solution of a differential equation as easy as
the ODE in this example allows. Normally, one has to apply certain mathematical
methods. Still, these methods can only handle some of the simplest differential
equations. However, with numerical methods and a bit of programming, we can
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easily deal with almost any differential equation! This is exactly the topic of the
present chapter.

8.2.1 Derivation of theModel

It can be instructive to show how an equation like (8.1) arises. Consider some
population of an animal species and let N(t) be the number of individuals in
a certain spatial region, e.g. an island. We are not concerned with the spatial
distribution of the animals, just the number of them in some region where there is no
exchange of individuals with other regions. During a time interval Δt , some animals
will die and some will be born. The numbers of deaths and births are expected to be
proportional to N . For example, if there are twice as many individuals, we expect
them to get twice as many newborns. In a time interval Δt , the net growth of the
population will then be

N(t + Δt) − N(t) = b̄N(t) − d̄N(t),

where b̄N(t) is the number of newborns and d̄N(t) is the number of deaths. If
we double Δt , we expect the proportionality constants b̄ and d̄ to double too, so
it makes sense to think of b̄ and d̄ as proportional to Δt and “factor out” Δt .
That is, we introduce b = b̄/Δt and d = d̄/Δt to be proportionality constants
for newborns and deaths independent of Δt . Also, we introduce r = b − d ,
which is the net rate of growth of the population per time unit. Our model then
becomes

N(t + Δt) − N(t) = Δt rN(t) . (8.2)

Equation (8.2) is actually a computational model. Given N(t), we can advance
the population size by

N(t + Δt) = N(t) + Δt rN(t) .

This is called a difference equation. If we know N(t) for some t , e.g., N(0) = N0,
we can compute

N(Δt) = N0 + Δt rN0,

N(2Δt) = N(Δt) + Δt rN(Δt),

N(3Δt) = N(2Δt) + Δt rN(2Δt),

...

N((k + 1)Δt) = N(kΔt) + Δt rN(kΔt),
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where k is some arbitrary integer. A computer program can easily compute N((k +
1)Δt) for us with the aid of a little loop.

The initial condition

Observe that the computational formula cannot be started unless we have an
initial condition!

The solution of N ′ = rN is N = Cert for any constant C, and the initial
condition is needed to fix C so the solution becomes unique. However, from
a mathematical point of view, knowing N(t) at any point t is sufficient as
initial condition. Numerically, we more literally need an initial condition: we
need to know a starting value at the left end of the interval in order to get the
computational formula going.

In fact, we do not really need a computer in this particular case, since we see
a repetitive pattern when doing hand calculations. This leads us to a mathematical
formula for N((k + 1)Δt):

N((k + 1)Δt) = N(kΔt) + Δt rN(kΔt) = N(kΔt)(1 + Δt r)

= N((k − 1)Δt)(1 + Δt r)2

...

= N0(1 + Δt r)k+1 .

Rather than using (8.2) as a computational model directly, there is a strong
tradition for deriving a differential equation from this difference equation. The idea
is to consider a very small time interval Δt and look at the instantaneous growth
as this time interval is shrunk to an infinitesimally small size. In mathematical
terms, it means that we let Δt → 0. As (8.2) stands, letting Δt → 0 will
just produce an equation 0 = 0, so we have to divide by Δt and then take the
limit:

lim
Δt→0

N(t + Δt) − N(t)

Δt
= rN(t) .

The term on the left-hand side is actually the definition of the derivative N ′(t), so
we have

N ′(t) = rN(t),

which is the corresponding differential equation.
There is nothing in our derivation that forces the parameter r to be constant—it

can change with time due to, e.g., seasonal changes or more permanent environmen-
tal changes.
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Detour: Exact mathematical solution

If you have taken a course on mathematical solution methods for differential
equations, you may want to recap how an equation like N ′ = rN or N ′ =
r(t)N is solved. The method of separation of variables is the most convenient
solution strategy in this case:

N ′ = rN

dN

dt
= rN

dN

N
= rdt

∫ N

N0

dN

N
=
∫ t

0
rdt

ln N − ln N0 =
∫ t

0
r(t)dt

N = N0 exp (

∫ t

0
r(t)dt),

which for constant r results in N = N0e
rt . Note that exp (t) is the same as et .

As will be described later, r must in more realistic models depend
on N . The method of separation of variables then requires to integrate∫ N

N0
N/r(N)dN , which quickly becomes non-trivial for many choices of

r(N). The only generally applicable solution approach is therefore a numeri-
cal method.

8.2.2 Numerical Solution: The Forward Euler (FE) Method

There is a huge collection of numerical methods for problems like (8.1), and in
general any equation of the form u′ = f (u, t), where u(t) is the unknown function
in the problem, and f is some known formula of u and optionally t . In our case with
population growth, i.e., (8.1), u′(t) corresponds to N ′(t), while f (u, t) corresponds
to rN(t).

We will first present a simple finite difference method solving u′ = f (u, t). The
idea is fourfold:

1. Introduce Nt + 1 points in time, t0, t1, . . . , tNt , for the relevant time interval. We
seek the unknown u at these points in time, and introduce un as the numerical
approximation to u(tn), see Fig. 8.3.

2. Utilize that the differential equation is valid at the mesh points.
3. Approximate derivatives by finite differences, see Fig. 8.4.
4. Formulate a computational algorithm that can compute a new value un based on

previously computed values ui , i < n.
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Fig. 8.3 Mesh in time with corresponding discrete values (unknowns)

Fig. 8.4 Illustration of a forward difference approximation to the derivative

The collection of points t0, t1, . . . , tNt is called a mesh (or grid), while the
corresponding un values4 collectively are referred to as a mesh function.

Let us use an example to illustrate the given steps. First, we introduce the mesh,
which often is uniform, meaning that the spacing between mesh points tn and tn+1

4 To get an estimate of u in between the mesh points, one often assumes a straight line
relationship between computed un values. Check out linear interpolation, e.g., on Wikipedia
(https://en.wikipedia.org/wiki/Linear_interpolation).

https://en.wikipedia.org/wiki/Linear_interpolation
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is constant. This property implies that

tn = nΔt, n = 0, 1, . . . , Nt .

Second, the differential equation is supposed to hold at the mesh points. Note that
this is an approximation, because the differential equation is originally valid for all
real values of t . We can express this property mathematically as

u′(tn) = f (un, tn), n = 0, 1, . . . , Nt .

For example, with our model equation u′ = ru, we have the special case

u′(tn) = run, n = 0, 1, . . . , Nt ,

or

u′(tn) = r(tn)u
n, n = 0, 1, . . . , Nt ,

if r depends explicitly on t .
Third, derivatives are to be replaced by finite differences. To this end, we

need to know specific formulas for how derivatives can be approximated by finite
differences. One simple possibility is to use the definition of the derivative from any
calculus book,

u′(t) = lim
Δt→0

u(t + Δt) − u(t)

Δt
.

At an arbitrary mesh point tn this definition can be written as

u′(tn) = lim
Δt→0

un+1 − un

Δt
.

Instead of going to the limit Δt → 0 we can use a small Δt , which yields a
computable approximation to u′(tn):

u′(tn) ≈ un+1 − un

Δt
.

This is known as a forward difference since we go forward in time (un+1) to collect
information in u to estimate the derivative. Figure 8.4 illustrates the idea. The error
of the forward difference is proportional to Δt (often written as O(Δt), but we will
not use this notation in the present book).

We can now plug in the forward difference in our differential equation sampled
at the arbitrary mesh point tn:

un+1 − un

Δt
= f (un, tn), (8.3)
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or with f (u, t) = ru in our special model problem for population growth,

un+1 − un

Δt
= run . (8.4)

If r depends on time, we insert r(tn) = rn for r in this latter equation.
The fourth step is to derive a computational algorithm. Looking at (8.3), we

realize that if un should be known, we can easily solve with respect to un+1 to
get a formula for u at the next time level tn+1:

un+1 = un + Δtf (un, tn) . (8.5)

Provided we have a known starting value, u0 = U0, we can use (8.5) to advance the
solution by first computing u1 from u0, then u2 from u1, u3 from u2, and so forth.

Such an algorithm is called a numerical scheme for the differential equation. It is
often written compactly as

un+1 = un + Δtf (un, tn), u0 = U0, n = 0, 1, . . . , Nt − 1 . (8.6)

This scheme is known as the Forward Euler scheme, also called Euler’s method.
In our special population growth model, we have

un+1 = un + Δt run, u0 = U0, n = 0, 1, . . . , Nt − 1 . (8.7)

We may also write this model using the problem-specific symbol N instead of the
generic u function:

Nn+1 = Nn + Δt rNn, N0 = N0, n = 0, 1, . . . , Nt − 1 . (8.8)

The observant reader will realize that (8.8) is nothing but the computational
model (8.2) arising directly in the model derivation. The formula (8.8) arises,
however, from a detour via a differential equation and a numerical method for the
differential equation. This looks rather unnecessary! The reason why we bother to
derive the differential equation model and then discretize it by a numerical method is
simply that the discretization can be done in many ways, and we can create (much)
more accurate and more computationally efficient methods than (8.8) or (8.6). This
can be useful in many problems! Nevertheless, the Forward Euler scheme is intuitive
and widely applicable, at least when Δt is chosen to be small.

The numerical solution between the mesh points

Our numerical method computes the unknown function u at discrete mesh
points t1, t2, . . . , tNt . What if we want to evaluate the numerical solution
between the mesh points? The most natural choice is to assume a linear
variation between the mesh points, see Fig. 8.5. This is compatible with the
fact that when we plot the array u0, u1, . . . versus t0, t1, . . ., a straight line is
automatically drawn between the discrete points (unless we specify otherwise
in the plot command).
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Fig. 8.5 The numerical solution at points can be extended by linear segments between the mesh
points

8.2.3 Programming the FE Scheme; the Special Case

Let us compute (8.8) in a program. The input variables are N0, Δt , r , and Nt . Note
that we need to compute Nt new values N1, . . . , NNt . A total of Nt + 1 values are
needed in an array representation of Nn, n = 0, . . . , Nt .

Our first version of this program (growth1.py) is as simple as possible, and very
similar to the codes we wrote previously for the water tank example:

import numpy as np
import matplotlib.pyplot as plt

N_0 = int(input(’Give initial population size N_0: ’))
r = float(input(’Give net growth rate r: ’))
dt = float(input(’Give time step size: ’))
N_t = int(input(’Give number of steps: ’))

t = np.linspace(0, N_t*dt, N_t+1)
N = np.zeros(N_t+1)

N[0] = N_0
for n in range(N_t):

N[n+1] = N[n] + r*dt*N[n]

numerical_sol = ’bo’ if N_t < 70 else ’b-’
plt.plot(t, N, numerical_sol, t, N_0*np.exp(r*t), ’r-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’); plt.ylabel(’N(t)’)
filestem = ’growth1_{:d}steps’.format(N_t)
plt.savefig(’{:s}.png’.format(filestem))
plt.savefig(’{:s}.pdf’.format(filestem))

https://github.com/slgit/prog4comp_2/blob/master/py36-src/growth1.py
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Note the compact assignment statement

numerical_sol = ’bo’ if N_t < 70 else ’b-’

This is a one-line alternative to, e.g.,

if N_t < 70:
numerical_sol = ’bo’

else:
numerical_sol = ’b-’

Let us demonstrate a simulation where we start with 100 animals, a net growth
rate of 10% (0.1) per time unit, which can be 1 month, and t ∈ [0, 20] months. We
may first try Δt of half a month (0.5), which implies Nt = 40. Figure 8.6 shows
the results. The solid line is the exact solution, while the circles are the computed
numerical solution. The discrepancy is clearly visible. What if we make Δt 10 times
smaller? The result is displayed in Fig. 8.7, where we now use a solid line also for the
numerical solution (otherwise, 400 circles would look very cluttered, so the program
has a test on how to display the numerical solution, either as circles or a solid line).
We can hardly distinguish the exact and the numerical solution. The computing
time is also a fraction of a second on a laptop, so it appears that the Forward Euler
method is sufficiently accurate for practical purposes. (This is not always true for
large, complicated simulation models in engineering, so more sophisticated methods
may be needed.)

It is also of interest to see what happens if we increase Δt to 2 months. The
results in Fig. 8.8 indicate that this is an inaccurate computation.

Fig. 8.6 Evolution of a population computed with time step 0.5 month
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Fig. 8.7 Evolution of a population computed with time step 0.05 month

Fig. 8.8 Evolution of a population computed with time step 2 months

8.2.4 Understanding the Forward Euler Method

The good thing about the Forward Euler method is that it gives an understanding
of what a differential equation is and a geometrical picture of how to construct the
solution. The first idea is that we have already computed the solution up to some
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time point tn. The second idea is that we want to progress the solution from tn to
tn+1 as a straight line.

We know that the line must go through the solution at tn, i.e., the point (tn, u
n).

The differential equation tells us the slope of the line: u′(tn) = f (un, tn) = run.
That is, the differential equation gives a direct formula for the further direction of the
solution curve. We can say that the differential equation expresses how the system
(u) undergoes changes at a point.

There is a general formula for a straight line y = ax + b with slope a that goes
through the point (x0, y0): y = a(x − x0) + y0. Using this formula adapted to the
present case, and evaluating the formula for tn+1, results in

un+1 = run(tn+1 − tn) + un = un + Δt run,

which is nothing but the Forward Euler formula. You are now encouraged to do
Exercise 8.2 to become more familiar with the geometric interpretation of the
Forward Euler method.

8.2.5 Programming the FE Scheme; the General Case

Our previous program was just a simple main program without function definitions,
tailored to a special differential equation. When programming mathematics, it is
always good to consider a (large) class of problems and making a Python function
to solve any problem that fits into the class. More specifically, we will make software
for the class of differential equation problems of the form

u′(t) = f (u, t), u = U0, t ∈ [0, T ],

for some given function f , and numbers U0 and T . We also take the opportunity
to illustrate what is commonly called a demo function. As the name implies,
the purpose of such a function is solely to demonstrate how the function works
(not to be confused with a test function, which does verification by use of
assert). The Python function calculating the solution must take f , U0, Δt , and
T as input, find the corresponding Nt , compute the solution, and return an array
with u0, u1, . . . , uNt and an array with t0, t1, . . . , tNt . The Forward Euler scheme
reads

un+1 = un + Δtf (un, tn), n = 0, . . . , Nt − 1 .

The corresponding program may now take the form (file ode_FE.py):

import numpy as np
import matplotlib.pyplot as plt

def ode_FE(f, U_0, dt, T):
N_t = int(round(T/dt))
u = np.zeros(N_t+1)
t = np.linspace(0, N_t*dt, len(u))
u[0] = U_0

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ode_FE.py
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for n in range(N_t):
u[n+1] = u[n] + dt*f(u[n], t[n])

return u, t

def demo_population_growth():
"""Test case: u’=r*u, u(0)=100."""
def f(u, t):

return 0.1*u

u, t = ode_FE(f=f, U_0=100, dt=0.5, T=20)
plt.plot(t, u, t, 100*np.exp(0.1*t))
plt.show()

if __name__ == ’__main__’:
demo_population_growth()

This program file, called ode_FE.py, is a reusable piece of code with a general
ode_FE function that can solve any differential equation u′ = f (u, t) and a demo
function for the special case u′ = 0.1u, u(0) = 100. Observe that the call to the
demo function is placed in a test block. This implies that the call is not active if
ode_FE is imported as a module in another program, but active if ode_FE.py is run
as a program.

The solution should be identical to what the growth1.py program produces with
the same parameter settings (r = 0.1, N0 = 100). This feature can easily be tested
by inserting a print command, but a much better, automated verification is suggested
in Exercise 8.2. You are strongly encouraged to take a “break” and do that exercise
now.

Remark on the Use of u as Variable

In the ode_FE program, the variable u is used in different contexts. Inside the
ode_FE function, u is an array, but in the f(u,t) function, as exemplified
in the demo_population_growth function, the argument u is a number.
Typically, we call f (in ode_FE) with the u argument as one element of the
array u in the ode_FE function: u[n].

8.2.6 AMore Realistic Population GrowthModel

Exponential growth of a population according the model N ′ = rN , with exponential
solution N = N0e

rt , is unrealistic in the long run because the resources needed to
feed the population are finite. At some point there will not be enough resources and
the growth will decline. A common model taking this effect into account assumes
that r depends on the size of the population, N :

N(t + Δt) − N(t) = r(N(t))N(t) .
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The corresponding differential equation becomes

N ′ = r(N)N .

The reader is strongly encouraged to repeat the steps in the derivation of the Forward
Euler scheme and establish that we get

Nn+1 = Nn + Δt r(Nn)Nn,

which computes as easy as for a constant r , since r(Nn) is known when computing
Nn+1. Alternatively, one can use the Forward Euler formula for the general problem
u′ = f (u, t) and use f (u, t) = r(u)u and replace u by N .

The simplest choice of r(N) is a linear function, starting with some growth value
r̄ and declining until the population has reached its maximum, M , according to the
available resources:

r(N) = r̄(1 − N/M) .

In the beginning, N � M and we will have exponential growth er̄t , but as N

increases, r(N) decreases, and when N reaches M , r(N) = 0 so there is no more
growth and the population remains at N(t) = M . This linear choice of r(N) gives
rise to a model that is called the logistic model. The parameter M is known as the
carrying capacity of the population.

Let us run the logistic model with aid of the ode_FE function. We choose N(0) =
100, Δt = 0.5 month, T = 60 months, r = 0.1, and M = 500. The complete
program, called logistic.py, is basically a call to ode_FE:

from ode_FE import ode_FE
import matplotlib.pyplot as plt

for dt, T in zip((0.5, 20), (60, 100)):
u, t = ode_FE(f=lambda u, t: 0.1*(1 - u/500.)*u, \

U_0=100, dt=dt, T=T)
plt.figure() # Make separate figures for each pass in the loop
plt.plot(t, u, ’b-’)
plt.xlabel(’t’); plt.ylabel(’N(t)’)
plt.savefig(’tmp_{:g}.png’.format(dt))
plt.savefig(’tmp_{:g}.pdf’.format(dt))

Figure 8.9 shows the resulting curve. We see that the population stabilizes around
M = 500 individuals. A corresponding exponential growth would reach N0e

rt =
100e0.1·60 ≈ 40, 300 individuals!

What happens if we use “large” Δt values here? We may set Δt = 20 and
T = 100. Now the solution, seen in Fig. 8.10, oscillates and is hence qualitatively
wrong, because one can prove that the exact solution of the differential equation is
monotone.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/logistic.py
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Fig. 8.9 Logistic growth of a population

Fig. 8.10 Logistic growth with large time step
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Remark on the world population

The number of people on the planet (http://en.wikipedia.org/wiki/Population_
growth) follows the model N ′ = r(t)N , where the net reproduction r(t) varies
with time and has decreased since its top in 1990. The current world value
of r is 1.2%, and it is difficult to predict future values. At the moment, the
predictions of the world population point to a growth to 9.6 billion before
declining.

This example shows the limitation of a differential equation model: we
need to know all input parameters, including r(t), in order to predict the
future. It is seldom the case that we know all input parameters. Sometimes
knowledge of the solution from measurements can help estimate missing input
parameters.

8.2.7 Verification: Exact Linear Solution of the Discrete
Equations

How can we verify that the programming of an ODE model is correct? One way, is
to compute convergence rates with a solver and confirm that the rates are according
to expectations. We address convergence rates for ODE solvers later (in Sect. 8.5)
and will then show how a corresponding test function for the ode_FE solver may be
written.

The best verification method, however, is to find a problem where there are no
unknown numerical approximation errors, because we can then compare the exact
solution of the problem with the result produced by our implementation and expect
the difference to be within a very small tolerance. We shall base a unit test on this
idea and implement a corresponding test function (see Sect. 6.6.4) for automatic
verification of our implementation.

It appears that most numerical methods for ODEs will exactly reproduce a
solution u that is linear in t . We may therefore set u = at + b and choose any
f whose derivative is a. The choice f (u, t) = a is very simple, but we may add
anything that is zero, e.g.,

f (u, t) = a + (u − (at + b))m.

This is a valid f (u, t) for any a, b, and m. The corresponding ODE looks highly
non-trivial, however:

u′ = a + (u − (at + b))m.

Using the general ode_FE function in ode_FE.py, we may write a proper test
function as follows (in file test_ode_FE_exact_linear.py):

def test_ode_FE():
"""Test that a linear u(t)=a*t+b is exactly reproduced."""

http://en.wikipedia.org/wiki/Population_growth
http://en.wikipedia.org/wiki/Population_growth
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ode_FE.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/test_ode_FE_exact_linear.py
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def exact_solution(t):
return a*t + b

def f(u, t): # ODE
return a + (u - exact_solution(t))**m

a = 4
b = -1
m = 6

dt = 0.5
T = 20.0

u, t = ode_FE(f, exact_solution(0), dt, T)
diff = abs(exact_solution(t) - u).max()
tol = 1E-15 # Tolerance for float comparison
success = diff < tol
assert success

As a measure of the error, we have here simply used the maximum error (picked out
by a call to max and assigned to diff).

Recall that test functions should start with the name test_, have no arguments,
and formulate the test as a boolean expression success that is True if the test passes
and False if it fails. Test functions should make the test as assert success (here
success can also be a boolean expression as in assert diff < tol).

Observe that we cannot compare diff to zero, which is what we mathematically
expect, because diff is a floating-point variable that most likely contains small
rounding errors. Therefore, we must compare diff to zero with a tolerance, here
10−15.

You are encouraged to do Exercise 8.3 where the goal is to make a test function
for a verification based on comparison with hand-calculated results for a few time
steps.

8.3 Spreading of Disease: A System of First Order ODEs

Our aim with this section is to show in detail how one can apply mathematics
and programming to solve a system of first-order ODEs. We will do this as we
investigate the spreading of disease. The mathematical model is now a system of
three differential equations with three unknown functions. To derive such a model,
we can use mainly intuition, so no specific background knowledge of diseases is
required.

8.3.1 Spreading of Flu

Imagine a boarding school out in the country side. This school is a small and closed
society. Suddenly, one or more of the pupils get the flu. We expect that the flu may
spread quite effectively or die out. The question is how many of the pupils and the
school’s staff will be affected. Some quite simple mathematics can help us to achieve
insight into the dynamics of how the disease spreads.
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Let the mathematical function S(t) count how many individuals, at time t , that
have the possibility to get infected. Here, t may count hours or days, for instance.
These individuals make up a category called susceptibles, labeled as S. Another
category, I, consists of the individuals that are infected. Let I (t) count how many
there are in category I at time t . An individual having recovered from the disease is
assumed to gain immunity. There is also a small possibility that an infected will die.
In either case, the individual is moved from the I category to a category we call the
removed category, labeled with R. We let R(t) count the number of individuals in
the R category at time t . Those who enter the R category, cannot leave this category.

To summarize, the spreading of this disease is essentially the dynamics of moving
individuals from the S to the I and then to the R category:

We can use mathematics to more precisely describe the exchange between the
categories. The fundamental idea is to describe the changes that take place during a
small time interval, denoted by Δt .

Our disease model is often referred to as a compartment model, where quantities
are shuffled between compartments (here a synonym for categories) according to
some rules. The rules express changes in a small time interval Δt , and from these
changes we can let Δt go to zero and obtain derivatives. The resulting equations then
go from difference equations (with finite Δt) to differential equations (Δt → 0).

We introduce a uniform mesh in time, tn = nΔt , n = 0, . . . , Nt , and seek S

at the mesh points. The numerical approximation to S at time tn is denoted by Sn.
Similarly, we seek the unknown values of I (t) and R(t) at the mesh points and
introduce a similar notation In and Rn for the approximations to the exact values
I (tn) and R(tn).

In the time interval Δt we know that some people will be infected, so S will
decrease. We shall soon argue by mathematics that there will be βΔtSI new
infected individuals in this time interval, where β is a parameter reflecting how easy
people get infected during a time interval of unit length. If the loss in S is βΔtSI ,
we have that the change in S is

Sn+1 − Sn = −βΔtSnIn . (8.9)

Dividing by Δt and letting Δt → 0, makes the left-hand side approach S′(tn) such
that we obtain a differential equation

S′ = −βSI . (8.10)

The reasoning in going from the difference equation (8.9) to the differential
equation (8.10) follows exactly the steps explained in Sect. 8.2.1.

Before proceeding with how I and R develops in time, let us explain the formula
βΔtSI . We have S susceptibles and I infected people. These can make up SI pairs.
Now, suppose that during a time interval T we measure that m actual pairwise
meetings do occur among n theoretically possible pairings of people from the S
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and I categories. The probability that people meet in pairs during a time T is (by
the empirical frequency definition of probability) equal to m/n, i.e., the number
of successes divided by the number of possible outcomes. From such statistics we
normally derive quantities expressed per unit time, i.e., here we want the probability
per unit time, μ, which is found from dividing by T : μ = m/(nT ).

Given the probability μ, the expected number of meetings per time interval of
SI possible pairs of people is (from basic statistics) μSI . During a time interval
Δt , there will be μSIΔt expected number of meetings between susceptibles and
infected people such that the virus may spread. Only a fraction of the μΔtSI

meetings are effective in the sense that the susceptible actually becomes infected.
Counting that m people get infected in n such pairwise meetings (say 5 are infected
from 1000 meetings), we can estimate the probability of being infected as p = m/n.
The expected number of individuals in the S category that in a time interval Δt catch
the virus and get infected is then pμΔtSI . Introducing a new constant β = pμ to
save some writing, we arrive at the formula βΔtSI .

The value of β must be known in order to predict the future with the disease
model. One possibility is to estimate p and μ from their meanings in the derivation
above. Alternatively, we can observe an “experiment” where there are S0 suscepti-
bles and I0 infected at some point in time. During a time interval T we count that N

susceptibles have become infected. Using (8.9) as a rough approximation of how S

has developed during time T (and now T is not necessarily small, but we use (8.9)
anyway), we get

N = βT S0I0 ⇒ β = N

T S0I0
. (8.11)

We need an additional equation to describe the evolution of I (t). Such an
equation is easy to establish by noting that the loss in the S category is a
corresponding gain in the I category. More precisely,

In+1 − In = βΔtSnIn . (8.12)

However, there is also a loss in the I category because people recover from the
disease. Suppose that we can measure that m out of n individuals recover in a time
period T (say 10 of 40 sick people recover during a day: m = 10, n = 40, T = 24
h). Now, γ = m/(nT ) is the probability that one individual recovers in a unit time
interval. Then (on average) γΔtI infected will recover in a time interval Δt . This
quantity represents a loss in the I category and a gain in the R category. We can
therefore write the total change in the I category as

In+1 − In = βΔtSnIn − γΔtIn . (8.13)

The change in the R category is simple: there is always an increase got from the
I category:

Rn+1 − Rn = γΔtIn . (8.14)
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Since there is no loss in the R category (people are either recovered and immune,
or dead), we are done with the modeling of this category. In fact, we do not strictly
need Eq. (8.14) for R, but extensions of the model later will need an equation for R.

Dividing by Δt in (8.13) and (8.14) and letting Δt → 0, results in the
corresponding differential equations

I ′ = βSI − γ I, (8.15)

and

R′ = γ I . (8.16)

To summarize, we have derived three difference equations and three differential
equations, which we list here for easy reference. The difference equations are:

Sn+1 = Sn − βΔtSnIn, (8.17)

In+1 = In + βΔtSnIn − γΔtIn, (8.18)

Rn+1 = Rn + γΔtIn . (8.19)

Note that we have isolated the new unknown quantities Sn+1, In+1, and Rn+1 on
the left-hand side, such that these can readily be computed if Sn, In, and Rn are
known. To get such a procedure started, we need to know S0, I 0, R0. Obviously, we
also need to have values for the parameters β and γ .

The three differential equations are:

S′ = −βSI, (8.20)

I ′ = βSI − γ I, (8.21)

R′ = γ I . (8.22)

This differential equation model (and also its discrete counterpart above) is known
as an SIR model. The input data to the differential equation model consist of the
parameter values for β and γ , as well as the initial conditions S(0) = S0, I (0) = I0,
and R(0) = R0.

8.3.2 A FE Method for the System of ODEs

Let us apply the same principles as we did in Sect. 8.2.2 to discretize the differential
equation system by the Forward Euler method. We already have a time mesh and
time-discrete quantities Sn, In, Rn, n = 0, . . . , Nt . The three differential equations
are assumed to be valid at the mesh points. At the point tn we then have

S′(tn) = −βS(tn)I (tn), (8.23)

I ′(tn) = βS(tn)I (tn) − γ I (tn), (8.24)

R′(tn) = γ I (tn), (8.25)
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for n = 0, 1, . . . , Nt . This is an approximation since the differential equations are
originally valid at all times t (usually in some finite interval [0, T ]). Using forward
finite differences for the derivatives results in an additional approximation,

Sn+1 − Sn

Δt
= −βSnIn, (8.26)

In+1 − In

Δt
= βSnIn − γ In, (8.27)

Rn+1 − Rn

Δt
= γ In . (8.28)

As we can see, these equations are identical to the difference equations that
naturally arise in the derivation of the model. However, other numerical methods
than the Forward Euler scheme will result in slightly different difference equa-
tions.

8.3.3 Programming the FE Scheme; the Special Case

The computation of (8.26)–(8.28) can be readily made in a computer program
SIR1.py:

import numpy as np
import matplotlib.pyplot as plt

# Time unit: 1 h
beta = 10./(40*8*24)
gamma = 3./(15*24)
dt = 0.1 # 6 min
D = 30 # Simulate for D days
N_t = int(D*24/dt) # Corresponding no of time steps

t = np.linspace(0, N_t*dt, N_t+1)
S = np.zeros(N_t+1)
I = np.zeros(N_t+1)
R = np.zeros(N_t+1)

# Initial condition
S[0] = 50
I[0] = 1
R[0] = 0

# Step equations forward in time
for n in range(N_t):

S[n+1] = S[n] - dt*beta*S[n]*I[n]
I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
R[n+1] = R[n] + dt*gamma*I[n]

fig = plt.figure()
l1, l2, l3 = plt.plot(t, S, t, I, t, R)
fig.legend((l1, l2, l3), (’S’, ’I’, ’R’), ’center right’)
plt.xlabel(’hours’)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/SIR1.py
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plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
plt.show()

This program was written to investigate the spreading of flu at the mentioned
boarding school, and the reasoning for the specific choices β and γ goes as follows.
At some other school where the disease has already spread, it was observed that
in the beginning of a day there were 40 susceptibles and 8 infected, while the
numbers were 30 and 18, respectively, 24 h later. Using 1 h as time unit, we then
have from (8.11) that β = 10/(40 · 8 · 24). Among 15 infected, it was observed
that 3 recovered during a day, giving γ = 3/(15 · 24). Applying these parameters
to a new case where there is one infected initially and 50 susceptibles, gives
the graphs in Fig. 8.11. These graphs are just straight lines between the values
at times ti = iΔt as computed by the program. We observe that S reduces
as I and R grows. After about 30 days everyone has become ill and recovered
again.

We can experiment with β and γ to see whether we get an outbreak of the disease
or not. Imagine that a “wash your hands” campaign was successful and that the other
school in this case experienced a reduction of β by a factor of 5. With this lower β

the disease spreads very slowly so we simulate for 60 days. The curves appear in
Fig. 8.12.

8.3.4 Outbreak or Not

Looking at the equation for I , it is clear that we must have βSI − γ I > 0 for I to
increase. When we start the simulation it means that

βS(0)I (0) − γ I (0) > 0,

Fig. 8.11 Natural evolution of flu at a boarding school
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Fig. 8.12 Small outbreak of flu at a boarding school (β is much smaller than in Fig. 8.11)

or simpler

βS(0)

γ
> 1 (8.29)

to increase the number of infected people and accelerate the spreading of the disease.
You can run the SIR1.py program with a smaller β such that (8.29) is violated and
observe that there is no outbreak.

The power of mathematical modeling

The reader should notice our careful use of words in the previous paragraphs.
We started out with modeling a very specific case, namely the spreading of
flu among pupils and staff at a boarding school. With purpose we exchanged
words like pupils and flu with more neutral and general words like individuals
and disease, respectively. Phrased equivalently, we raised the abstraction level
by moving from a specific case (flu at a boarding school) to a more general
case (disease in a closed society). Very often, when developing mathematical
models, we start with a specific example and see, through the modeling, that
what is going on of essence in this example also will take place in many
similar problem settings. We try to incorporate this generalization in the model
so that the model has a much wider application area than what we aimed at in
the beginning. This is the very power of mathematical modeling: by solving
one specific case we have often developed more generic tools that can readily
be applied to solve seemingly different problems. The next sections will give
substance to this assertion.
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8.3.5 Abstract Problem and Notation

When we had a specific differential equation with one unknown, we quickly turned
to an abstract differential equation written in the generic form u′ = f (u, t). We refer
to such a problem as a scalar ODE. A specific equation corresponds to a specific
choice of the formula f (u, t) involving u and (optionally) t .

It is advantageous to also write a system of differential equations in the same
abstract notation,

u′ = f (u, t),

but this time it is understood that u is a vector of functions and f is also vector. We
say that u′ = f (u, t) is a vector ODE or system of ODEs in this case. For the SIR
model we introduce the two 3-vectors, one for the unknowns,

u = (S(t), I (t), R(t)),

and one for the right-hand side functions,

f (u, t) = (−βSI, βSI − γ I, γ I) .

The equation u′ = f (u, t) means setting the two vectors equal, i.e., the components
must be pairwise equal. Since u′ = (S′, I ′, R′), we get that u′ = f implies

S′ = −βSI,

I ′ = βSI − γ I,

R′ = γ I .

The generalized short notation u′ = f (u, t) is very handy since we can derive
numerical methods and implement software for this abstract system and in a
particular application just identify the formulas in the f vector, implement these,
and call functionality that solves the differential equation system.

8.3.6 Programming the FE Scheme; the General Case

In Python code, the Forward Euler step

un+1 = un + Δtf (un, tn),

being a scalar or a vector equation, can be coded as

u[n+1] = u[n] + dt*f(u[n], t[n])

both in the scalar and vector case. In the vector case, u[n] is a one-dimensional
numpy array of length m + 1 holding the mathematical quantity un, and the Python
function f must return a numpy array of length m + 1. Then the expression u[n] +
dt*f(u[n], t[n]) is an array plus a scalar times an array.
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For all this to work, the complete numerical solution must be represented by
a two-dimensional array, created by u = zeros((N_t+1, m+1)). The first index
counts the time points and the second the components of the solution vector at one
time point. That is, u[n,i] corresponds to the mathematical quantity un

i . When we
use only one index, as in u[n], this is the same as u[n,:] and picks out all the
components in the solution at the time point with index n. Then the assignment
u[n+1] = ... becomes correct because it is actually an in-place assignment
u[n+1, :] = .... The nice feature of these facts is that the same piece of Python
code works for both a scalar ODE and a system of ODEs!

The ode_FE function for the vector ODE is placed in the file ode_system_FE.py
and was written as follows:

import numpy as np
import matplotlib.pyplot as plt

def ode_FE(f, U_0, dt, T):
N_t = int(round(T/dt))
# Ensure that any list/tuple returned from f_ is wrapped as array
f_ = lambda u, t: np.asarray(f(u, t))
u = np.zeros((N_t+1, len(U_0)))
t = np.linspace(0, N_t*dt, len(u))
u[0] = U_0
for n in range(N_t):

u[n+1] = u[n] + dt*f_(u[n], t[n])
return u, t

The line f_ = lambda ... needs an explanation. For a user, who just needs to
define the f in the ODE system, it is convenient to insert the various mathematical
expressions on the right-hand sides in a list and return that list. Obviously, we
could demand the user to convert the list to a numpy array, but it is so easy to do
a general such conversion in the ode_FE function as well. To make sure that the
result from f is indeed an array that can be used for array computing in the formula
u[n] + dt*f(u[n], t[n]), we introduce a new function f_ that calls the user’s
f and sends the results through the numpy function asarray, which ensures that its
argument is converted to a numpy array (if it is not already an array).

Note also the extra parenthesis required when calling zeros with two indices.
Let us show how the previous SIR model can be solved using the new general

ode_FE that can solve any vector ODE. The user’s f(u, t) function takes a vector
u, with three components corresponding to S, I , and R as argument, along with the
current time point t[n], and must return the values of the formulas of the right-hand
sides in the vector ODE. An appropriate implementation is

def f(u, t):
S, I, R = u
return [-beta*S*I, beta*S*I - gamma*I, gamma*I]

Note that the S, I, and R values correspond to Sn, In, and Rn. These values are then
just inserted in the various formulas in the vector ODE. Here we collect the values
in a list since the ode_FE function will anyway wrap this list in an array. We could,
of course, returned an array instead:

def f(u, t):
S, I, R = u
return array([-beta*S*I, beta*S*I - gamma*I, gamma*I])

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ode_system_FE.py
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The list version looks a bit nicer, so that is why we prefer a list and rather introduce
f_ = lambda u, t: asarray(f(u,t)) in the general ode_FE function.

We can now show a function that runs the previous SIR example, while using the
generic ode_FE function:

def demo_SIR():
"""Test case using a SIR model."""
def f(u, t):

S, I, R = u
return [-beta*S*I, beta*S*I - gamma*I, gamma*I]

beta = 10./(40*8*24)
gamma = 3./(15*24)
dt = 0.1 # 6 min
D = 30 # Simulate for D days
N_t = int(D*24/dt) # Corresponding no of time steps
T = dt*N_t # End time
U_0 = [50, 1, 0]

u, t = ode_FE(f, U_0, dt, T)

S = u[:,0]
I = u[:,1]
R = u[:,2]
fig = plt.figure()
l1, l2, l3 = plt.plot(t, S, t, I, t, R)
fig.legend((l1, l2, l3), (’S’, ’I’, ’R’), ’center right’)
plt.xlabel(’hours’)
plt.show()

# Consistency check:
N = S[0] + I[0] + R[0]
eps = 1E-12 # Tolerance for comparing real numbers
for n in range(len(S)):

SIR_sum = S[n] + I[n] + R[n]
if abs(SIR_sum - N) > eps:

print(’*** consistency check failed: S+I+R={:g} != {:g}’\
.format(SIR_sum, N))

if __name__ == ’__main__’:
demo_SIR()

Recall that the u returned from ode_FE contains all components (S, I , R) in the
solution vector at all time points. We therefore need to extract the S, I , and R values
in separate arrays for further analysis and easy plotting.

Another key feature of this higher-quality code is the consistency check. By
adding the three differential equations in the SIR model, we realize that S′ +
I ′ + R′ = 0, which means that S + I + R = const. We can check that this
relation holds by comparing Sn + In + Rn to the sum of the initial conditions.
Exercise 8.6 suggests another method for controlling the quality of the numerical
solution.
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8.3.7 Time-Restricted Immunity

Let us now assume that immunity after the disease only lasts for some certain time
period. This means that there is transport from the R state to the S state:

Modeling the loss of immunity is very similar to modeling recovery from the
disease: the amount of people losing immunity is proportional to the amount of
recovered patients and the length of the time interval Δt . We can therefore write the
loss in the R category as −νΔtR in time Δt , where ν−1 is the typical time it takes
to lose immunity. The loss in R(t) is a gain in S(t). The “budgets” for the categories
therefore become

Sn+1 = Sn − βΔtSnIn + νΔtRn, (8.30)

In+1 = In + βΔtSnIn − γΔtIn, (8.31)

Rn+1 = Rn + γΔtIn − νΔtRn . (8.32)

Dividing by Δt and letting Δt → 0 gives the differential equation system

S′ = −βSI + νR, (8.33)

I ′ = βSI − γ I, (8.34)

R′ = γ I − νR . (8.35)

This system can be solved by the same methods as we demonstrated for the original
SIR model. Only one modification in the program is necessary: adding dt*nu*R[n]
to the S[n+1] update and subtracting the same quantity in the R[n+1] update:

for n in range(N_t):
S[n+1] = S[n] - dt*beta*S[n]*I[n] + dt*nu*R[n]
I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
R[n+1] = R[n] + dt*gamma*I[n] - dt*nu*R[n]

The modified code is found in the file SIR2.py.
Setting ν−1 to 50 days, reducing β by a factor of 4 compared to the previous

example (β = 0.00033), and simulating for 300 days gives an oscillatory behavior
in the categories, as depicted in Fig. 8.13. It is easy now to play around and study
how the parameters affect the spreading of the disease. For example, making the
disease slightly more effective (increase β to 0.00043) and increasing the average
time to loss of immunity to 90 days lead to other oscillations, see Fig. 8.14.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/SIR2.py
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Fig. 8.13 Including loss of immunity

Fig. 8.14 Increasing β and reducing ν compared to Fig. 8.13

8.3.8 Incorporating Vaccination

We can extend the model to also include vaccination. To this end, it can be useful
to track those who are vaccinated and those who are not. So, we introduce a fourth
category, V, for those who have taken a successful vaccination. Furthermore, we
assume that in a time interval Δt , a fraction pΔt of the S category is subject to a
successful vaccination. This means that in the time Δt , pΔtS people leave from the
S to the V category. Since the vaccinated ones cannot get the disease, there is no
impact on the I or R categories. We can visualize the categories, and the movement
between them, as
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The new, extended differential equations with the V quantity become

S′ = −βSI + νR − pS, (8.36)

V ′ = pS, (8.37)

I ′ = βSI − γ I, (8.38)

R′ = γ I − νR . (8.39)

We shall refer to this model as the SIRV model.
The new equation for V ′ poses no difficulties when it comes to the numerical

method. In a Forward Euler scheme we simply add an update

V n+1 = V n + pΔtSn .

The program needs to store V (t) in an additional array V, and the plotting command
must be extended with more arguments to plot V versus t as well. The complete
code is found in the file SIRV1.py.

Using p = 0.0005 and p = 0.0001 as values for the vaccine efficiency
parameter, the effect of vaccination is seen in Figs. 8.15 and 8.16, respectively.
(other parameters are as in Fig. 8.13).

8.3.9 Discontinuous Coefficients: A Vaccination Campaign

What about modeling a vaccination campaign? Imagine that 6 days after the
outbreak of the disease, the local health station launches a vaccination campaign.
They reach out to many people, say 10 times as efficiently as in the previous
(constant vaccination) case. If the campaign lasts for 10 days we can write

p(t) =
{

0.005, 6 · 24 ≤ t ≤ 15 · 24,

0, otherwise

Note that we must multiply the t value by 24 because t is measured in hours, not
days. In the differential equation system, pS(t) must be replaced by p(t)S(t), and in
this case we get a differential equation system with a term that is discontinuous. This

https://github.com/slgit/prog4comp_2/blob/master/py36-src/SIRV1.py
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Fig. 8.15 The effect of vaccination: p = 0.0005

Fig. 8.16 The effect of vaccination: p = 0.0001

is usually quite a challenge in mathematics, but as long as we solve the equations
numerically in a program, a discontinuous coefficient is easy to treat.

There are two ways to implement the discontinuous coefficient p(t): through a
function and through an array. The function approach is perhaps the easiest:

def p(t):
return 0.005 if (6*24 <= t <= 15*24) else 0

Note the handy if-else construction in the return statement here. It is a one-line
alternative to, for example,

if (6*24 <= t <= 15*24):
return 0.005
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Fig. 8.17 The effect of a vaccination campaign

else:
return 0

In the code for updating the arrays S and V, we then get a term p(t[n])*S[n].
Alternatively, we can instead let p(t) be an array filled with correct values prior

to the simulation. Then we need to allocate an array p of length N_t+1 and find the
indices corresponding to the time period between 6 and 15 days. These indices are
found from the time point divided by Δt . That is,

p = zeros(N_t+1)
start_index = 6*24/dt
stop_index = 15*24/dt
p[start_index:stop_index] = 0.005

The p(t)S(t) term in the updating formulas for S and V simply becomes
p[n]*S[n]. The file SIRV2.py contains a program based on filling an array p.

The effect of a vaccination campaign is illustrated in Fig. 8.17. All the data are
as in Fig. 8.15, except that p is ten times stronger for a period of 10 days and p = 0
elsewhere.

8.4 Oscillating 1D Systems: A Second Order ODE

Numerous engineering constructions and devices contain materials that act like
springs. Such springs give rise to oscillations, and controlling oscillations is a key
engineering task. We shall now learn to simulate oscillating systems.

As always, we start with the simplest meaningful mathematical model, which for
oscillations is a second-order differential equation:

u′′(t) + ω2u(t) = 0, (8.40)
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where ω is a given physical parameter. Equation (8.40) models a one-dimensional
system oscillating without damping (i.e., with negligible damping). One-
dimensional here means that some motion takes place along one dimension only in
some coordinate system. Along with (8.40) we need the two initial conditions u(0)

and u′(0).

8.4.1 Derivation of a Simple Model

Many engineering systems undergo oscillations, and differential equations consti-
tute the key tool to understand, predict, and control the oscillations. We start with
the simplest possible model that captures the essential dynamics of an oscillating
system. Some body with mass m is attached to a spring and moves along a line
without friction, see Fig. 8.18 for a sketch (rolling wheels indicate “no friction”).
When the spring is stretched (or compressed), the spring force pulls (or pushes) the
body back and work “against” the motion. More precisely, let x(t) be the position
of the body on the x axis, along which the body moves. The spring is not stretched
when x = 0, so the force is zero, and x = 0 is hence the equilibrium position of the
body. The spring force is −kx, where k is a constant to be measured. We assume that
there are no other forces (e.g., no friction). Newton’s second law of motion F = ma

then has F = −kx and a = ẍ,

−kx = mẍ, (8.41)

which can be rewritten as

ẍ + ω2x = 0, (8.42)

by introducing ω = √
k/m (which is very common).

Equation (8.42) is a second-order differential equation, and therefore we need
two initial conditions, one on the position x(0) and one on the velocity x ′(0). Here

Fig. 8.18 Sketch of a one-dimensional, oscillating dynamic system (without friction)
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we choose the body to be at rest, but moved away from its equilibrium position:

x(0) = X0, x ′(0) = 0 .

The exact solution of (8.42) with these initial conditions is x(t) = X0 cos ωt . This
can easily be verified by substituting into (8.42) and checking the initial conditions.
The solution tells us that such a spring-mass system oscillates back and forth as
described by a cosine curve.

The differential equation (8.42) appears in numerous other contexts. A classical
example is a simple pendulum that oscillates back and forth. Physics books derive,
from Newton’s second law of motion, that

mLθ ′′ + mg sin θ = 0,

where m is the mass of the body at the end of a pendulum with length L, g is the
acceleration of gravity, and θ is the angle the pendulum makes with the vertical.
Considering small angles θ , sin θ ≈ θ , and we get (8.42) with x = θ , ω = √

g/L,
x(0) = Θ , and x ′(0) = 0, if Θ is the initial angle and the pendulum is at rest at
t = 0.

8.4.2 Numerical Solution

We have not looked at numerical methods for handling second-order derivatives,
and such methods are an option, but we know how to solve first-order differential
equations and even systems of first-order equations. With a little, yet very common,
trick we can rewrite (8.42) as a first-order system of two differential equations.
We introduce u = x and v = x ′ = u′ as two new unknown functions. The
two corresponding equations arise from the definition v = u′ and the original
equation (8.42):

u′ = v, (8.43)

v′ = −ω2u . (8.44)

(Notice that we can use u′′ = v′ to remove the second-order derivative from
Newton’s second law.)

We can now apply the Forward Euler method to (8.43)–(8.44), exactly as we did
in Sect. 8.3.2:

un+1 − un

Δt
= vn, (8.45)

vn+1 − vn

Δt
= −ω2un, (8.46)
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resulting in the computational scheme

un+1 = un + Δt vn, (8.47)

vn+1 = vn − Δt ω2un . (8.48)

8.4.3 Programming the FE Scheme; the Special Case

A simple program for (8.47)–(8.48) follows the same ideas as in Sect. 8.3.3:

import numpy as np
import matplotlib.pyplot as plt

omega = 2
P = 2*np.pi/omega
dt = P/20
T = 3*P
N_t = int(round(T/dt))
t = np.linspace(0, N_t*dt, N_t+1)

u = np.zeros(N_t+1)
v = np.zeros(N_t+1)

# Initial condition
X_0 = 2
u[0] = X_0
v[0] = 0

# Step equations forward in time
for n in range(N_t):

u[n+1] = u[n] + dt*v[n]
v[n+1] = v[n] - dt*omega**2*u[n]

fig = plt.figure()
l1, l2 = plt.plot(t, u, ’b-’, t, X_0*np.cos(omega*t), ’r--’)
fig.legend((l1, l2), (’numerical’, ’exact’), ’upper right’)
plt.xlabel(’t’)
plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
plt.show()

(See file osc_FE.py.)
Since we already know the exact solution as u(t) = X0 cos ωt , we have reasoned

as follows to find an appropriate simulation interval [0, T ] and also how many points
we should choose. The solution has a period P = 2π/ω. (The period P is the time
difference between two peaks of the u(t) ∼ cos ωt curve.) Simulating for three
periods of the cosine function, T = 3P , and choosing Δt such that there are 20
intervals per period gives Δt = P/20 and a total of Nt = T/Δt intervals. The rest
of the program is a straightforward coding of the Forward Euler scheme.

Figure 8.19 shows a comparison between the numerical solution and the exact
solution of the differential equation. To our surprise, the numerical solution looks
wrong. Is this discrepancy due to a programming error or a problem with the
Forward Euler method?

https://github.com/slgit/prog4comp_2/blob/master/py36-src/osc_FE.py
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Fig. 8.19 Simulation of an oscillating system

First of all, even before trying to run the program, you should sit down and
compute two steps in the time loop with a calculator so you have some intermediate
results to compare with. Using X0 = 2, dt = 0.157079632679, and ω = 2, we
get u1 = 2, v1 = −1.25663706, u2 = 1.80260791, and v2 = −2.51327412. Such
calculations show that the program is seemingly correct. (Later, we can use such
values to construct a unit test and a corresponding test function.)

The next step is to reduce the discretization parameter Δt and see if the results
become more accurate. Figure 8.20 shows the numerical and exact solution for the
cases Δt = P/40, P/160, P/2000. The results clearly become better, and the finest
resolution gives graphs that cannot be visually distinguished. Nevertheless, the finest
resolution involves 6000 computational intervals in total, which is considered quite
much. This is no problem on a modern laptop, however, as the computations take
just a fraction of a second.

Although 2000 intervals per oscillation period seem sufficient for an accurate
numerical solution, the lower right graph in Fig. 8.20 shows that if we increase the
simulation time, here to 20 periods, there is a little growth of the amplitude, which
becomes significant over time. The conclusion is that the Forward Euler method has
a fundamental problem with its growing amplitudes, and that a very small Δt is
required to achieve satisfactory results. The longer the simulation is, the smaller Δt

has to be. It is certainly time to look for more effective numerical methods!

8.4.4 AMagic Fix of the Numerical Method

In the Forward Euler scheme,

un+1 = un + Δt vn,

vn+1 = vn − Δt ω2un,
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Fig. 8.20 Simulation of an oscillating system with different time steps. Upper left: 40 steps per
oscillation period. Upper right: 160 steps per period. Lower left: 2000 steps per period. Lower
right: 2000 steps per period, but longer simulation

we can replace un in the last equation by the recently computed value un+1 from the
first equation:

un+1 = un + Δt vn, (8.49)

vn+1 = vn − Δt ω2un+1 . (8.50)

Before justifying this fix more mathematically, let us try it on the previous
example. The results appear in Fig. 8.21. We see that the amplitude does not grow,
but the phase is not entirely correct. After 40 periods (Fig. 8.21 right) we see a
significant difference between the numerical and the exact solution. Decreasing Δt

decreases the error. For example, with 2000 intervals per period, we only see a small
phase error even after 50,000 periods (!). We can safely conclude that the fix results
in an excellent numerical method!

Let us interpret the adjusted scheme mathematically. First we order (8.49)–(8.50)
such that the difference approximations to derivatives become transparent:

un+1 − un

Δt
= vn, (8.51)

vn+1 − vn

Δt
= −ω2un+1 . (8.52)
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Fig. 8.21 Adjusted method: first three periods (left) and period 36–40 (right)

Fig. 8.22 Illustration of a backward difference approximation to the derivative

We interpret (8.51) as the differential equation sampled at mesh point tn, because
we have vn on the right-hand side. The left-hand side is then a forward difference or
Forward Euler approximation to the derivative u′, see Fig. 8.4. On the other hand,
we interpret (8.52) as the differential equation sampled at mesh point tn+1, since we
have un+1 on the right-hand side. In this case, the difference approximation on the
left-hand side is a backward difference,

v′(tn+1) ≈ vn+1 − vn

Δt
or v′(tn) ≈ vn − vn−1

Δt
.

Figure 8.22 illustrates the backward difference. The error in the backward difference
is proportional to Δt , the same as for the forward difference (but the proportionality
constant in the error term has different sign). The resulting discretization method,
seen in (8.52), is often referred to as a Backward Euler scheme (a first-order scheme,
just like Forward Euler).

To summarize, using a forward difference for the first equation and a backward
difference for the second equation results in a much better method than just using
forward differences in both equations.
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The standard way of expressing this scheme in physics is to change the order of
the equations,

v′ = −ω2u, (8.53)

u′ = v, (8.54)

and apply a forward difference to (8.53) and a backward difference to (8.54):

vn+1 = vn − Δt ω2un, (8.55)

un+1 = un + Δt vn+1 . (8.56)

That is, first the velocity v is updated and then the position u, using the most recently
computed velocity. There is no difference between (8.55)–(8.56) and (8.49)–(8.50)
with respect to accuracy, so how you order the original differential equations does
not matter. The scheme (8.55)–(8.56) goes by the name Semi-implicit Euler,5 or
Euler-Cromer (a first-order method). The implementation of (8.55)–(8.56) is found
in the file osc_EC.py. The core of the code goes like

u = zeros(N_t+1)
v = zeros(N_t+1)

# Initial condition
u[0] = 2
v[0] = 0

# Step equations forward in time
for n in range(N_t):

v[n+1] = v[n] - dt*omega**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

Explicit and implicit methods

When we solve an ODE (linear or nonlinear) by the Forward Euler method,
we get an explicit updating formula for the unknown at each time step,
see, e.g., (8.6). Methods with this characteristic are known as explicit. We
also have implicit methods. In that case, one or more algebraic equations
must typically be solved for each time step. The Backward Euler method,
for example, is such an implicit method (you will realize that when you do
Exercise 8.24).

8.4.5 The Second-Order Runge-Kutta Method (or Heun’s
Method)

A very popular method for solving scalar and vector ODEs of first order is the
second-order Runge-Kutta method (RK2), also known as Heun’s method. The idea,

5 http://en.wikipedia.org/wiki/Semi-implicit_Euler_method.

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
https://github.com/slgit/prog4comp_2/blob/master/py36-src/osc_EC.py
http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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Fig. 8.23 Illustration of a centered difference approximation to the derivative

first thinking of a scalar ODE, is to form a centered difference approximation to the
derivative between two time points:

u′(tn + 1

2
Δt) ≈ un+1 − un

Δt
.

The centered difference formula is visualized in Fig. 8.23. The error in the centered
difference is proportional to Δt2, one order higher than the forward and backward
differences, which means that if we halve Δt , the error is more effectively reduced
in the centered difference since it is reduced by a factor of four rather than
two.

The problem with such a centered scheme for the general ODE u′ = f (u, t) is
that we get

un+1 − un

Δt
= f (un+ 1

2 , t
n+ 1

2
),

which leads to difficulties since we do not know what un+ 1
2 is. However, we can

approximate the value of f between two time levels by the arithmetic average of the
values at tn and tn+1:

f (un+ 1
2 , t

n+ 1
2
) ≈ 1

2
(f (un, tn) + f (un+1, tn+1)) .

This results in

un+1 − un

Δt
= 1

2
(f (un, tn) + f (un+1, tn+1)),

which in general is a nonlinear algebraic equation for un+1 if f (u, t) is not a
linear function of u. To deal with the unknown term f (un+1, tn+1), without solving
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nonlinear equations, we can approximate or predict un+1 using a Forward Euler
step:

un+1 = un + Δtf (un, tn) .

This reasoning gives rise to the method

u∗ = un + Δtf (un, tn), (8.57)

un+1 = un + Δt

2
(f (un, tn) + f (u∗, tn+1)) . (8.58)

The scheme applies to both scalar and vector ODEs.
For an oscillating system with f = (v,−ω2u) the file osc_Heun.py implements

this method. The demo function in that file runs the simulation for 10 periods with 20
time steps per period. The corresponding numerical and exact solutions are shown
in Fig. 8.24. We see that the amplitude grows, but not as much as for the Forward
Euler method. However, the Euler-Cromer method performs better!

We should add that in problems where the Forward Euler method gives satisfac-
tory approximations, such as growth/decay problems or the SIR model, the second-
order Runge-Kutta method (Heun’s method) usually works considerably better and
produces greater accuracy for the same computational cost. It is therefore a very
valuable method to be aware of, although it cannot compete with the Euler-Cromer
scheme for oscillation problems. The derivation of the RK2/Heun scheme is also
good general training in “numerical thinking”.

Fig. 8.24 Simulation of 10 periods of oscillations by Heun’s method

https://github.com/slgit/prog4comp_2/blob/master/py36-src/osc_Heun.py
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8.4.6 Software for Solving ODEs

There is a jungle of methods for solving ODEs, and it would be nice to
have easy access to implementations of a wide range of methods, espe-
cially the sophisticated and complicated adaptive methods that adjust Δt

automatically to obtain a prescribed accuracy. The Python package Odespy
(https://github.com/thomasantony/odespy/tree/py36/odespy) gives easy access to
a lot of numerical methods for ODEs.

Odespy: Example with Exponential Growth The simplest possible example on
using Odespy is to solve u′ = u, u(0) = 2, for 100 time steps until t = 4:

import odespy
import numpy as np
import matplotlib.pyplot as plt

def f(u, t):
return u

method = odespy.Heun # or, e.g., odespy.ForwardEuler
solver = method(f)
solver.set_initial_condition(2)
time_points = np.linspace(0, 4, 101)
u, t = solver.solve(time_points)
plt.plot(t, u)
plt.show()

In other words, you define your right-hand side function f(u, t), initialize an
Odespy solver object, set the initial condition, compute a collection of time points
where you want the solution, and ask for the solution. If you run the code, you get
the expected plot of the exponential function (not shown).

A nice feature of Odespy is that problem parameters can be arguments to the
user’s f(u, t) function. For example, if our ODE problem is u′ = −au + b, with
two problem parameters a and b, we may write our f function as

def f(u, t, a, b):
return -a*u + b

The extra, problem-dependent arguments a and b can be transferred to this function
if we collect their values in a list or tuple when creating the Odespy solver and use
the f_args argument:

a = 2
b = 1
solver = method(f, f_args=[a, b])

This is a good feature because problem parameters must otherwise be global
variables—now they can be arguments in our right-hand side function in a natural
way. Exercise 8.21 asks you to make a complete implementation of this problem
and plot the solution.

https://github.com/thomasantony/odespy/tree/py36/odespy
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Odespy: Example with Oscillations Using Odespy to solve oscillation ODEs like
u′′ + ω2u = 0, reformulated as a system u′ = v and v′ = −ω2u, can be done with
the following code:

import odespy
import numpy as np
import matplotlib.pyplot as plt

# Define the ODE system
# u’ = v
# v’ = -omega**2*u

def f(sol, t, omega=2):
u, v = sol
return [v, -omega**2*u]

# Set and compute problem dependent parameters
omega = 2
X_0 = 1
number_of_periods = 40
time_steps_per_period = 20
P = 2*np.pi/omega # length of one period
dt = P/time_steps_per_period # time step
T = number_of_periods*P # final simulation time

# Create Odespy solver object
odespy_method = odespy.RK2
solver = odespy_method(f, f_args=[omega])

# The initial condition for the system is collected in a list
solver.set_initial_condition([X_0, 0])

# Compute the desired time points where we want the solution
N_t = int(round(T/dt)) # no of time intervals
time_points = np.linspace(0, T, N_t+1)

# Solve the ODE problem
sol, t = solver.solve(time_points)

# Note: sol contains both displacement and velocity
# Extract original variables
u = sol[:,0]
v = sol[:,1]

plt.plot(t, u, t, v) # ...for a quick check on u and v
plt.show()

After specifying the number of periods to simulate, as well as the number of time
steps per period, we compute the time step (dt) and simulation end time (T).

The two statements u = sol[:,0] and v = sol[:,1] are important, since our
two functions u and v in the ODE system are packed together in one array inside the
Odespy solver (the solution of the ODE system is returned from solver.solve as
a two-dimensional array where the first column (sol[:,0]) stores u and the second
(sol[:,1]) stores v).
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Remark

In the right-hand side function we write f(sol, t, omega) instead of f(u,
t, omega) to indicate that the solution sent to f is a solution at time t where
the values of u and v are packed together: sol = [u, v]. We might well use
u as argument:

def f(u, t, omega=2):
u, v = u
return [v, -omega**2*u]

This just means that we redefine the name u inside the function to mean the
solution at time t for the first component of the ODE system.

To switch to another numerical method, just substitute RK2 by the proper name
of the desired method. Typing pydoc odespy in the terminal window brings up a
list of all the implemented methods. This very simple way of choosing a method
suggests an obvious extension of the code above: we can define a list of methods,
run all methods, and compare their u curves in a plot. As Odespy also contains the
Euler-Cromer scheme, we rewrite the system with v′ = −ω2u as the first ODE
and u′ = v as the second ODE, because this is the standard choice when using the
Euler-Cromer method (also in Odespy):

def f(u, t, omega=2):
v, u = u
return [-omega**2*u, v]

This change of equations also affects the initial condition: the first component
is zero and second is X_0, so we need to pass the list [0, X_0] to
solver.set_initial_condition.

The function compare in osc_odespy.py contains the details:

def compare(odespy_methods,
omega,
X_0,
number_of_periods,
time_intervals_per_period=20):

P = 2*np.pi/omega # length of one period
dt = P/time_intervals_per_period
T = number_of_periods*P

# If odespy_methods is not a list, but just the name of
# a single Odespy solver, we wrap that name in a list
# so we always have odespy_methods as a list
if type(odespy_methods) != type([]):

odespy_methods = [odespy_methods]

# Make a list of solver objects
solvers = [method(f, f_args=[omega]) for method in

odespy_methods]
for solver in solvers:

solver.set_initial_condition([0, X_0])

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_odespy.py
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# Compute the time points where we want the solution
N_t = int(round(T/dt))
time_points = np.linspace(0, N_t*dt, N_t+1)

legends = []
for solver in solvers:

sol, t = solver.solve(time_points)
v = sol[:,0]
u = sol[:,1]

# Plot only the last p periods
p = 6
m = p*time_intervals_per_period # no time steps to plot
plt.plot(t[-m:], u[-m:])
plt.hold(’on’)
legends.append(solver.name())
plt.xlabel(’t’)

# Plot exact solution too
plt.plot(t[-m:], X_0*np.cos(omega*t)[-m:], ’k--’)
legends.append(’exact’)
plt.legend(legends, loc=’lower left’)
plt.axis([t[-m], t[-1], -2*X_0, 2*X_0])
plt.title(’Simulation of {:d} periods with {:d} intervals per period’\

.format(number_of_periods, time_intervals_per_period))
plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
plt.show()

A new feature in this code is the ability to plot only the last p periods, which allows
us to perform long time simulations and watch the end results without a cluttered
plot with too many periods. The syntax t[-m:] plots the last m elements in t (a
negative index in Python arrays/lists counts from the end).

We may compare Heun’s method (i.e., the RK2 method) with the Euler-Cromer
scheme:

compare(odespy_methods=[odespy.Heun, odespy.EulerCromer],
omega=2, X_0=2, number_of_periods=20,
time_intervals_per_period=20)

Figure 8.25 shows how Heun’s method (blue line) has considerable error in both
amplitude and phase already after 14–20 periods (upper left), but using three times
as many time steps makes the curves almost equal (upper right). However, after
194–200 periods the errors have grown (lower left), but can be sufficiently reduced
by halving the time step (lower right).

With all the methods in Odespy at hand, it is now easy to start exploring other
methods, such as backward differences instead of the forward differences used in
the Forward Euler scheme. Exercise 8.22 addresses that problem.

Odespy contains quite sophisticated adaptive methods where the user is “guaran-
teed” to get a solution with prescribed accuracy. There is no mathematical guarantee,
but the error will for most cases not deviate significantly from the user’s tolerance
that reflects the accuracy. A very popular method of this type is the Runge-Kutta-
Fehlberg method, which runs a fourth-order Runge-Kutta method and uses a fifth-
order Runge-Kutta method to estimate the error so that Δt can be adjusted to
keep the error below a tolerance. This method is also widely known as ode45,
because that is the name of the function implementing the method in Matlab. We can
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Fig. 8.25 Illustration of the impact of resolution (time steps per period) and length of simulation

easily test the Runge-Kutta-Fehlberg method as soon as we know the corresponding
Odespy name, which is RKFehlberg:

compare(odespy_methods=[odespy.EulerCromer, odespy.RKFehlberg],
omega=2, X_0=2, number_of_periods=200,
time_intervals_per_period=40)

Note that the time_intervals_per_period argument refers to the time points
where we want the solution. These points are also the ones used for numerical
computations in the odespy.EulerCromer solver, while the odespy.RKFehlberg
solver will use an unknown set of time points since the time intervals are adjusted
as the method runs. One can easily look at the points actually used by the method as
these are available as an array solver.t_all (but plotting or examining the points
requires modifications inside the compare method).

Figure 8.26 shows a computational example where the Runge-Kutta-Fehlberg
method is clearly superior to the Euler-Cromer scheme in long time simulations, but
the comparison is not really fair because the Runge-Kutta-Fehlberg method applies
about twice as many time steps in this computation and performs much more work
per time step. It is quite a complicated task to compare two so different methods
in a fair way so that the computational work versus accuracy is scientifically well
reported.



254 8 Solving Ordinary Differential Equations

Fig. 8.26 Comparison of the Runge-Kutta-Fehlberg adaptive method against the Euler-Cromer
scheme for a long time simulation (200 periods)

8.4.7 The Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method (RK4) is clearly the most widely used
method to solve ODEs. Its power comes from high accuracy even with not so small
time steps.

The Algorithm We first just state the four-stage algorithm:

un+1 = un + Δt

6

(
f n + 2f̂ n+ 1

2 + 2f̃ n+ 1
2 + f̄ n+1

)
, (8.59)

where

f̂ n+ 1
2 = f (un + 1

2
Δtf n, tn+ 1

2
), (8.60)

f̃ n+ 1
2 = f (un + 1

2
Δtf̂ n+ 1

2 , t
n+ 1

2
), (8.61)

f̄ n+1 = f (un + Δtf̃ n+ 1
2 , tn+1) . (8.62)

Application We can run the same simulation as in Figs. 8.19, 8.21, and 8.24, for 40
periods. The 10 last periods are shown in Fig. 8.27. The results look as impressive
as those of the Euler-Cromer method.
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Fig. 8.27 The last 10 of 40 periods of oscillations by the fourth-order Runge-Kutta method

Implementation The stages in the fourth-order Runge-Kutta method can easily
be implemented as a modification of the osc_Heun.py code. Alternatively,
one can use the osc_odespy.py code by just providing the argument
odespy_methods=[odespy.RK4] to the compare function.

Derivation The derivation of the fourth-order Runge-Kutta method can be pre-
sented in a pedagogical way that brings many fundamental elements of nu-
merical discretization techniques together. It also illustrates many aspects of
the “numerical thinking” required for constructing approximate solution meth-
ods.

We start with integrating the general ODE u′ = f (u, t) over a time step, from tn
to tn+1,

u(tn+1) − u(tn) =
tn+1∫

tn

f (u(t), t)dt .

The goal of the computation is u(tn+1) (written un+1), while u(tn) (written un) is the
most recently known value of u. The challenge with the integral is that the integrand
involves the unknown u between tn and tn+1.
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The integral can be approximated by the famous Simpson’s rule6:

tn+1∫

tn

f (u(t), t)dt ≈ Δt

6

(
f n + 4f n+ 1

2 + f n+1
)

.

The problem with this formula is that we do not know f n+ 1
2 = f (un+ 1

2 , tn+ 1
2
)

and f n+1 = (un+1, tn+1) as only un is available and only f n can then readily be
computed.

To proceed, the idea is to use various approximations for f n+ 1
2 and f n+1 based

on using well-known schemes for the ODE in the intervals [tn, tn+ 1
2
] and [tn, tn+1].

Let us split the integral into four terms:

tn+1∫

tn

f (u(t), t)dt ≈ Δt

6

(
f n + 2f̂ n+ 1

2 + 2f̃ n+ 1
2 + f̄ n+1

)
,

where f̂ n+ 1
2 , f̃ n+ 1

2 , and f̄ n+1 are approximations to f n+ 1
2 and f n+1 that can utilize

already computed quantities. For f̂ n+ 1
2 we can simply apply an approximation to

un+ 1
2 based on a Forward Euler step of size 1

2Δt:

f̂ n+ 1
2 = f (un + 1

2
Δtf n, tn+ 1

2
) (8.63)

This formula provides a prediction of f n+ 1
2 , so we can for f̃ n+ 1

2 try a Backward

Euler method to approximate un+ 1
2 :

f̃ n+ 1
2 = f (un + 1

2
Δtf̂ n+ 1

2 , t
n+ 1

2
) . (8.64)

With f̃ n+ 1
2 as an approximation to f n+ 1

2 , we can for the final term f̄ n+1 use a
midpoint method (or central difference, also called a Crank-Nicolson method) to
approximate un+1:

f̄ n+1 = f (un + Δtf̂ n+ 1
2 , tn+1) . (8.65)

We have now used the Forward and Backward Euler methods as well as the centered
difference approximation in the context of Simpson’s rule. The hope is that the
combination of these methods yields an overall time-stepping scheme from tn
to tn+1 that is much more accurate than the individual steps which have errors
proportional to Δt and Δt2. This is indeed true: the numerical error goes in fact like
CΔt4 for a constant C, which means that the error approaches zero very quickly as
we reduce the time step size, compared to the Forward Euler method (error ∼ Δt),

6 http://en.wikipedia.org/wiki/Simpson’s_rule.

http://en.wikipedia.org/wiki/Simpson's_rule
http://en.wikipedia.org/wiki/Simpson's_rule
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the Euler-Cromer method (error ∼ Δt) or the second-order Runge-Kutta, or Heun’s,
method (error ∼ Δt2).

Note that the fourth-order Runge-Kutta method is fully explicit so there is never
any need to solve linear or nonlinear algebraic equations, regardless of what f

looks like. However, the stability is conditional and depends on f . There is a large
family of implicit Runge-Kutta methods that are unconditionally stable, but require
solution of algebraic equations involving f at each time step. The Odespy package
has support for a lot of sophisticated explicit Runge-Kutta methods, but not yet
implicit Runge-Kutta methods.

8.4.8 More Effects: Damping, Nonlinearity, and External Forces

Our model problem u′′ + ω2u = 0 is the simplest possible mathematical model for
oscillating systems. Nevertheless, this model makes strong demands to numerical
methods, as we have seen, and is very useful as a benchmark for evaluating the
performance of numerical methods.

Real-life applications involve more physical effects, which lead to a differential
equation with more terms and also more complicated terms. Typically, one has
a damping force f (u′) and a spring force s(u). Both these forces may depend
nonlinearly on their argument, u′ or u. In addition, environmental forces F(t) may
act on the system. For example, the classical pendulum has a nonlinear “spring”
or restoring force s(u) ∼ sin(u), and air resistance on the pendulum leads to a
damping force f (u′) ∼ |u′|u′. Examples on environmental forces include shaking
of the ground (e.g., due to an earthquake) as well as forces from waves and
wind.

With three types of forces on the system: F , f , and s, the sum of forces is
written F(t) − f (u′) − s(u). Note the minus sign in front of f and s, which
indicates that these functions are defined such that they represent forces acting
against the motion. For example, springs attached to the wheels in a car are
combined with effective dampers, each providing a damping force f (u′) = bu′
that acts against the spring velocity u′. The corresponding physical force is then
−f : −bu′, which points downwards when the spring is being stretched (and u′
points upwards), while −f acts upwards when the spring is being compressed (and
u′ points downwards).

Figure 8.28 shows an example of a mass m attached to a potentially nonlinear
spring and dashpot, and subject to an environmental force F(t). Nevertheless, our
general model can equally well be a pendulum as in Fig. 8.29 with s(u) = mg sin θ

and f (u̇) = 1
2CDAθ̇ |θ̇ | (where CD = 0.4, A is the cross sectional area of the

body, and  is the density of air).
Newton’s second law for the system can be written with mass times acceleration

on the left-hand side and the forces on the right-hand side:

mu′′ = F(t) − f (u′) − s(u) .
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Fig. 8.28 General oscillating system

Fig. 8.29 A pendulum with forces

This equation is, however, more commonly reordered to

mu′′ + f (u′) + s(u) = F(t) . (8.66)

Because the differential equation is of second order, due to the term u′′, we need
two initial conditions:

u(0) = U0, u′(0) = V0 . (8.67)
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Note that with the choices f (u′) = 0, s(u) = ku, and F(t) = 0 we recover the
original ODE u′′ + ω2u = 0 with ω = √

k/m.
How can we solve (8.66)? As for the simple ODE u′′ + ω2u = 0, we start by

rewriting the second-order ODE as a system of two first-order ODEs:

v′ = 1

m
(F(t) − s(u) − f (v)) , (8.68)

u′ = v . (8.69)

The initial conditions become u(0) = U0 and v(0) = V0.
Any method for a system of first-order ODEs can be used to solve for u(t) and

v(t).

The Euler-Cromer Scheme An attractive choice from an implementational, ac-
curacy, and efficiency point of view is the Euler-Cromer scheme where we take a
forward difference in (8.68) and a backward difference in (8.69):

vn+1 − vn

Δt
= 1

m

(
F(tn) − s(un) − f (vn)

)
, (8.70)

un+1 − un

Δt
= vn+1, (8.71)

We can easily solve for the new unknowns vn+1 and un+1:

vn+1 = vn + Δt

m

(
F(tn) − s(un) − f (vn)

)
, (8.72)

un+1 = un + Δtvn+1 . (8.73)

Remark on the ordering of the ODEs

The ordering of the ODEs in the ODE system is important for the extended
model (8.68)–(8.69). Imagine that we write the equation for u′ first and then
the one for v′. The Euler-Cromer method would then first use a forward
difference for un+1 and then a backward difference for vn+1. The latter would
lead to a nonlinear algebraic equation for vn+1,

vn+1 + Δt

m
f (vn+1) = vn + Δt

m

(
F(tn+1) − s(un+1)

)
,

if f (v) is a nonlinear function of v. This would require a numerical method
for nonlinear algebraic equations to find vn+1, while updating vn+1 through a
forward difference gives an equation for vn+1 that is linear and trivial to solve
by hand.
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The file osc_EC_general.pyhas a function EulerCromer that implements this
method:

def EulerCromer(f, s, F, m, T, U_0, V_0, dt):
import numpy as np
N_t = int(round(T/dt))
print(’N_t:’, N_t)
t = np.linspace(0, N_t*dt, N_t+1)

u = np.zeros(N_t+1)
v = np.zeros(N_t+1)

# Initial condition
u[0] = U_0
v[0] = V_0

# Step equations forward in time
for n in range(N_t):

v[n+1] = v[n] + dt*(1./m)*(F(t[n]) - f(v[n]) - s(u[n]))
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

The Fourth Order Runge-Kutta Method The RK4 method just evaluates the
right-hand side of the ODE system,

(
1

m
(F(t) − s(u) − f (v)) , v)

for known values of u, v, and t , so the method is very simple to use regardless of
how the functions s(u) and f (v) are chosen.

8.4.9 Illustration of Linear Damping

We consider an engineering system with a linear spring, s(u) = kx, and a viscous
damper, where the damping force is proportional to u′, f (u′) = bu′, for some
constant b > 0. This choice may model the vertical spring system in a car (but
engineers often like to illustrate such a system by a horizontally moving mass, like
the one depicted in Fig. 8.28). We may choose simple values for the constants to
illustrate basic effects of damping (and later excitations). Choosing the oscillations
to be the simple u(t) = cos t function in the undamped case, we may set m = 1,
k = 1, b = 0.3, U0 = 1, V0 = 0. The following function implements this
case:

def linear_damping():
import numpy as np
b = 0.3
f = lambda v: b*v
s = lambda u: k*u
F = lambda t: 0

m = 1
k = 1

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_EC_general.py
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U_0 = 1
V_0 = 0

T = 12*np.pi
dt = T/5000.

u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,
U_0=U_0, V_0=V_0, dt=dt)

plot_u(u, t)

The plot_u function is a collection of plot commands for plotting u(t), or a part
of it. Figure 8.30 shows the effect of the bu′ term: we have oscillations with (an
approximate) period 2π , as expected, but the amplitude is efficiently damped.

Remark about working with a scaled problem

Instead of setting b = 0.3 and m = k = U0 = 1 as fairly “unlikely”
physical values, it would be better to scale the equation mu′′ + bu′ + ku = 0.
This means that we introduce dimensionless independent and dependent
variables:

t̄ = t

tc
, ū = u

uc

,

where tc and uc are characteristic sizes of time and displacement, respectively,
such that t̄ and ū have their typical size around unity (which minimizes
rounding errors). In the present problem, we can choose uc = U0 and
tc = √

m/k. This gives the following scaled (or dimensionless) problem for
the dimensionless quantity ū(t̄):

d2ū

dt̄2
+ β

dū

dt̄
+ ū = 0, ū(0) = 1, ū′(0) = 0, β = b√

mk
.

The striking fact is that there is only one physical parameter in this
problem: the dimensionless number β. Solving this problem corre-
sponds to solving the original problem (with dimensions) with the
parameters m = k = U0 = 1 and b = β. However, solving
the dimensionless problem is more general: if we have a solution
ū(t̄; β), we can find the physical solution of a range of problems
since

u(t) = U0ū(t
√

k/m; β) .

As long as β is fixed, we can find u for any U0, k, and m from
the above formula! In this way, a time consuming simulation can
be done only once, but still provide many solutions. This demon-
strates the power of working with scaled or dimensionless prob-
lems.
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Fig. 8.30 Effect of linear damping

8.4.10 Illustration of Linear Damping with Sinusoidal Excitation

We now extend the previous example to also involve some external oscillating force
on the system: F(t) = A sin(wt). Driving a car on a road with sinusoidal bumps
might give such an external excitation on the spring system in the car (w is related
to the velocity of the car).

With A = 0.5 and w = 3,

import math
w = 3
A = 0.5
F = lambda t: A*math.sin(w*t)

we get the graph in Fig. 8.31. The striking difference from Fig. 8.30 is that the
oscillations start out as a damped cos t signal without much influence of the external
force, but then the free oscillations of the undamped system (cos t) u′′ + u = 0
die out and the external force 0.5 sin(3t) induces oscillations with a shorter period
2π/3. You are encouraged to play around with a larger A and switch from a sine to
a cosine in F and observe the effects. If you look this up in a physics book, you can
find exact analytical solutions to the differential equation problem in these cases.

A particularly interesting case arises when the excitation force has the same
frequency as the free oscillations of the undamped system, i.e., F(t) = A sin t .
With the same amplitude A = 0.5, but a smaller damping b = 0.1, the oscillations
in Fig. 8.31 becomes qualitatively very different as the amplitude grows significantly
larger over some periods. This phenomenon is called resonance and is exemplified
in Fig. 8.32. Removing the damping results in an amplitude that grows linearly in
time.
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Fig. 8.31 Effect of linear damping in combination with a sinusoidal external force

Fig. 8.32 Excitation force that causes resonance
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Fig. 8.33 Sketch of a one-dimensional, oscillating dynamic system subject to sliding friction and
a spring force

8.4.11 Spring-Mass Systemwith Sliding Friction

A body with mass m is attached to a spring with stiffness k while sliding on a plane
surface. The body is also subject to a friction force f (u′) due to the contact between
the body and the plane. Figure 8.33 depicts the situation. The friction force f (u′)
can be modeled by Coulomb friction:

f (u′) =
⎧
⎨

⎩

−μmg, u′ < 0,

μmg, u′ > 0,

0, u′ = 0

where μ is the friction coefficient, and mg is the normal force on the surface where
the body slides. This formula can also be written as f (u′) = μmg sign(u′), provided
the signum function sign(x) is defined to be zero for x = 0 (numpy.sign has this
property). To check that the signs in the definition of f are right, recall that the
actual physical force is −f and this is positive (i.e., f < 0) when it works against
the body moving with velocity u′ < 0.

The nonlinear spring force is taken as

s(u) = −kα−1 tanh(αu),

which is approximately −ku for small u, but stabilizes at ±k/α for large ±αu. Here
is a plot with k = 1000 and u ∈ [−0.1, 0.1] for three α values:
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If there is no external excitation force acting on the body, we have the equation
of motion

mu′′ + μmg sign(u′) + kα−1 tanh(αu) = 0 .

Let us simulate a situation where a body of mass 1 kg slides on a surface with
μ = 0.4, while attached to a spring with stiffness k = 1000 kg/s2. The initial
displacement of the body is 10 cm, and the α parameter in s(u) is set to 60 1/m.
Using the EulerCromer function from the osc_EC_general code, we can write a
function sliding_friction for solving this problem:

def sliding_friction():
from numpy import tanh, sign

f = lambda v: mu*m*g*sign(v)
alpha = 60.0
s = lambda u: k/alpha*tanh(alpha*u)
F = lambda t: 0

g = 9.81
mu = 0.4
m = 1
k = 1000

U_0 = 0.1
V_0 = 0

T = 2
dt = T/5000.

u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,
U_0=U_0, V_0=V_0, dt=dt)

plot_u(u, t)

Running the sliding_friction function gives us the results in Fig. 8.34 with
s(u) = kα−1 tanh(αu) (left) and the linearized version s(u) = ku (right).
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Fig. 8.34 Effect of nonlinear (left) and linear (right) spring on sliding friction

8.4.12 A Finite Difference Method; Undamped, Linear Case

We shall now address numerical methods for the second-order ODE

u′′ + ω2u = 0, u(0) = U0, u′(0) = 0, t ∈ (0, T ],

without rewriting the ODE as a system of first-order ODEs. The primary motivation
for “yet another solution method” is that the discretization principles result in a very
good scheme, and more importantly, the thinking around the discretization can be
reused when solving partial differential equations.

The main idea of this numerical method is to approximate the second-order
derivative u′′ by a finite difference. While there are several choices of difference
approximations to first-order derivatives, there is one dominating formula for the
second-order derivative:

u′′(tn) ≈ un+1 − 2un + un−1

Δt2 . (8.74)

The error in this approximation is proportional to Δt2. Letting the ODE be valid at
some arbitrary time point tn,

u′′(tn) + ω2u(tn) = 0,

we just insert the approximation (8.74) to get

un+1 − 2un + un−1

Δt2 = −ω2un . (8.75)

We now assume that un−1 and un are already computed and that un+1 is the new
unknown. Solving with respect to un+1 gives

un+1 = 2un − un−1 − Δt2ω2un . (8.76)
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A major problem arises when we want to start the scheme. We know that u0 =
U0, but applying (8.76) for n = 0 to compute u1 leads to

u1 = 2u0 − u−1 − Δt2ω2u0, (8.77)

where we do not know u−1. The initial condition u′(0) = 0 can help us to eliminate
u−1—and this condition must anyway be incorporated in some way. To this end, we
discretize u′(0) = 0 by a centered difference,

u′(0) ≈ u1 − u−1

2Δt
= 0 .

It follows that u−1 = u1, and we can use this relation to eliminate u−1 in (8.77):

u1 = u0 − 1

2
Δt2ω2u0 . (8.78)

With u0 = U0 and u1 computed from (8.78), we can compute u2, u3, and so forth
from (8.76). Exercise 8.25 asks you to explore how the steps above are modified in
case we have a nonzero initial condition u′(0) = V0.

Remark on a simpler method for computing u1

We could approximate the initial condition u′(0) by a forward difference:

u′(0) ≈ u1 − u0

Δt
= 0,

leading to u1 = u0. Then we can use (8.76) for the coming time steps.
However, this forward difference has an error proportional to Δt , while
the centered difference we used has an error proportional to Δt2, which is
compatible with the accuracy (error goes like Δt2) used in the discretization
of the differential equation.

The method for the second-order ODE described above goes under the name
Störmer’s method or Verlet integration.7 It turns out that this method is math-
ematically equivalent with the Euler-Cromer scheme (!). Or more precisely, the
general formula (8.76) is equivalent with the Euler-Cromer formula, but the scheme
for the first time level (8.78) implements the initial condition u′(0) slightly more
accurately than what is naturally done in the Euler-Cromer scheme. The latter will
do

v1 = v0 − Δtω2u0, u1 = u0 + Δtv1 = u0 − Δt2ω2u0,

7 http://en.wikipedia.org/wiki/Verlet_integration.

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration
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which differs from u1 in (8.78) by an amount 1
2Δt2ω2u0.

Because of the equivalence of (8.76) with the Euler-Cromer scheme, the numer-
ical results will have the same nice properties such as a constant amplitude. There
will be a phase error as in the Euler-Cromer scheme, but this error is effectively
reduced by reducing Δt , as already demonstrated.

The implementation of (8.78) and (8.76) is straightforward in a function (file
osc_2nd_order.py):

import numpy as np

def osc_2nd_order(U_0, omega, dt, T):
"""
Solve u’’ + omega**2*u = 0 for t in (0,T], u(0)=U_0 and u’(0)=0,
by a central finite difference method with time step dt.
"""
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = U_0
u[1] = u[0] - 0.5*dt**2*omega**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*omega**2*u[n]
return u, t

8.4.13 A Finite Difference Method; Linear Damping

A key issue is how to generalize the scheme from Sect. 8.4.12 to a differential
equation with more terms. We start with the case of a linear damping term f (u′) =
bu′, a possibly nonlinear spring force s(u), and an excitation force F(t):

mu′′ + bu′ + s(u) = F(t), u(0) = U0, u′(0) = 0, t ∈ (0, T ] . (8.79)

We need to find the appropriate difference approximation to u′ in the bu′ term. A
good choice is the centered difference

u′(tn) ≈ un+1 − un−1

2Δt
. (8.80)

Sampling the equation at a time point tn,

mu′′(tn) + bu′(tn) + s(un) = F(tn),

and inserting the finite difference approximations to u′′ and u′ results in

m
un+1 − 2un + un−1

Δt2 + b
un+1 − un−1

2Δt
+ s(un) = Fn, (8.81)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/osc_2nd_order.py
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where Fn is a short notation for F(tn). Equation (8.81) is linear in the unknown
un+1, so we can easily solve for this quantity:

un+1 = (2mun + (
b

2
Δt − m)un−1 + Δt2(F n − s(un)))(m + b

2
Δt)−1 . (8.82)

As in the case without damping, we need to derive a special formula for u1. The
initial condition u′(0) = 0 implies also now that u−1 = u1, and with (8.82) for
n = 0, we get

u1 = u0 + Δt2

2m
(F 0 − s(u0)) . (8.83)

In the more general case with a nonlinear damping term f (u′),

mu′′ + f (u′) + s(u) = F(t),

we get

m
un+1 − 2un + un−1

Δt2 + f (
un+1 − un−1

2Δt
) + s(un) = Fn,

which is a nonlinear algebraic equation for un+1 that must be solved by numerical
methods. A much more convenient scheme arises from using a backward difference
for u′,

u′(tn) ≈ un − un−1

Δt
,

because the damping term will then be known, involving only un and un−1, and we
can easily solve for un+1.

The downside of the backward difference compared to the centered differ-
ence (8.80) is that it reduces the order of the accuracy in the overall scheme from
Δt2 to Δt . In fact, the Euler-Cromer scheme evaluates a nonlinear damping term as
f (vn) when computing vn+1, and this is equivalent to using the backward difference
above. Consequently, the convenience of the Euler-Cromer scheme for nonlinear
damping comes at a cost of lowering the overall accuracy of the scheme from
second to first order in Δt . Using the same trick in the finite difference scheme for
the second-order differential equation, i.e., using the backward difference in f (u′),
makes this scheme equally convenient and accurate as the Euler-Cromer scheme in
the general nonlinear case mu′′ + f (u′) + s(u) = F .

8.5 Rate of Convergence

In this chapter, we have seen how the numerical solutions improve as the time
step Δt is reduced, just like we would expect. Thinking back on numerical
computation of integrals (Chap. 6), we experienced the same when reducing the
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sub-interval size h, i.e., computations became more accurate. Not too surprising
then, the asymptotic error models are similar, and the convergence rate is computed
in essentially the same way (except that the error computation requires some
more consideration with the methods of the present chapter). Let us look at the
details.

8.5.1 Asymptotic Behavior of the Error

For numerical methods that solve ODEs, it is known that when Δt → 0, the
approximation error8 usually behaves like

E = C (Δt)r , (8.84)

for positive constants C and r . The constant r is known as the convergence rate, and
its value will depend on the method (r could be 1, 2 or 4, for example). A method
with convergence rate r is said to be an r-th order method, and we understand that
the larger the r value, the quicker the error E drops when the time step Δt is reduced.

8.5.2 Computing the Convergence Rate

Consider a set of experiments, i = 0, 1, . . ., each depending on a discretization
parameter Δti that typically is halved from one experiment to the next. For each
experiment, a corresponding error Ei is computed. We may then estimate r (C is
not really interesting) from two experiments:

Ei−1 = CΔtri−1

Ei = CΔtri .

We eliminate C by, e.g., dividing the latter equation by the former, and proceed to
solve for r:

r = ln(Ei/Ei−1)

ln(Δti/Δti−1)
.

Clearly, r will vary with the pair of experiments used in the above formula, i.e.,
the value of i. Thus, what we actually compute, is a sequence of ri−1 values
(i = 1, 2, . . .), where each ri−1 value is computed from two experiments (Ei,Δti)

and (Ei−1,Δti−1). Since the error model is asymptotic (i.e., valid as Δt → 0),
the r value corresponding to the smallest Δt value will be the best estimate of the
convergence rate.

But How Do We Compute the Error Ei? When we previously addressed the
computing of convergence rates for numerical integration methods (trapezoidal and

8 As will be addressed below, there are several options for how to quantify this error.
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midpoint methods), the error was a single number for each choice of n, i.e., the
number of sub-intervals. With each Δti now, however, there is basically one error
for each point in the mesh (remember: we compute an approximation to a function
now, not a single number, as we did with integrals)! What we would like to have,
is a single number Ei that we could refer to as “the error” of the corresponding
experiment.

There are different ways to arrive at Ei , and we might reason as follows. For each
of our experiments, at each point in the mesh, there will be a difference (generally
not zero) between the true solution and our computed approximation. The collection
of all these differences makes up an error mesh function, having values at the mesh
points only. Also, with a total of Nt time steps, there will be Nt + 1 points in
the time mesh (Nt increases when Δt decreases, for a fixed time interval [0, T ]).
Thus, for each Δti , the error mesh function comprises Nt + 1 function values
en, n = 0, 1, . . . , Nt . Now, one simple way to get to Ei , is to use the maximum
of all en values,9 comparing absolute values. In fact, we did that previously in
test_ode_FE_exact_linear.py (Sect. 8.2.7).

Other alternatives utilize a constructed error function e(t), being a continuous
function of time. The function e(t) may be generated from the error mesh function
by simply connecting successive en values with straight lines. With e(t) in place,
one may choose to use the L2 norm (read “L-two norm”) of e(t),

‖e‖L2 =
√∫ T

0
e(t)2dt , (8.85)

for Ei . The L2 norm has nice mathematical properties and is much used. When
computing the integral of the L2 norm, we may use the trapezoidal method, and let
the integration points coincide with the mesh points. Because of the straight lines
composing e(t), the integral computation will then become exact (within machine
precision). Thus, assuming a uniform mesh, we can proceed to write (8.85) as

‖e‖L2 ≈
√√
√
√Δt

(
1

2
(e0) + 1

2

(
eNt

)+
Nt−1∑

n=1

(en)
2

)

, (8.86)

Finally, we make yet another approximation, by simply disregarding the contribu-
tions from e0 and eNt . This is acceptable, since these contributions go to zero as
Δt → 0. The resulting expression is called the discrete L2 norm, and is denoted by
l2. In this way, we get the final and simpler expression10 as

‖en‖l2 =
√√
√
√Δt

Nt−1∑

n=1

(en)
2 . (8.87)

9 This is referred to as the discrete (L∞) norm (read “L-infinity norm”, but often called the “max
norm”) for the error mesh function en.
10 We should add that, in this expression, Δt may be switched with T

Nt
, followed by dropping T ,

since this common scaling factor is independent of the vector values. Finally, it is usually preferred
to use the length of the vector, i.e. Nt + 1 in stead of Nt .

https://github.com/slgit/prog4comp_2/blob/master/py36-src/test_ode_FE_exact_linear.py
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With (8.87), we have a simple way of computing the error Ei , letting

Ei = ‖en‖l2 . (8.88)

We are now in position to compute convergence rates, and write corresponding test
functions, also for ODE solvers.

8.5.3 Test Function: Convergence Rates for the FE Solver

To illustrate, we write a simple test function for ode_FE that we implemented
previously (Sect. 8.2.5). Applying the solver to a population growth model, the test
function could be written:

def test_convergence_rates_ode_FE(number_of_experiments):
"""
Test that the convergence rate with the ode_FE solver is 1.
Use population growth model as test case.
"""
U_0=100 # initial value
T=20 # total time span
dt = 2.0 # initial time step
expected_rate_FE = 1.0

def f(u, t):
"""Population growth, u’ = a*u, with a = 0.1 here."""
return 0.1*u

def u_exact(t):
return 100*np.exp(0.1*t)

dt_values = []
E_values = []
for i in range(number_of_experiments):

u, t = ode_FE(f=f, U_0=U_0, dt=dt, T=T)
u_e = u_exact(t) # get exact solution at time mesh points (in t)
E = np.sqrt(dt*np.sum((u_e-u)**2)) # ...discrete L^2 norm

dt_values.append(dt)
E_values.append(E)
dt = dt/2 # Halving time step for next solve

r = [np.log(E_values[i]/E_values[i-1])/
np.log(dt_values[i]/dt_values[i-1])
for i in range(1, number_of_experiments, 1)]

#print(r)

# Accept rate to 1 decimal place
tol = 0.1
assert abs(r[-1] - expected_rate_FE) < tol
return

When test_convergence_rates_ode_FE is called, the for loop will
execute ode_FE the number of times specified by the input parameter
number_of_experiments. Each execution of ode_FE happens with half the
time step of the previous execution. Errors (E) and time steps (dt) are stored in
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corresponding lists, so that convergence rates (r) can be computed after the loop.
Observe, in the loop, how ode_FE returns (the solution u and) the time mesh t,
which then is used as input to the u_exact function, causing the exact function
values to also be computed at the very same mesh points as u.

The Forward Euler method is a first order method, so we should get r near 1 as
the time step becomes small enough. A call to this test function does indeed confirm
(remove # in front of print(r)) that r comes very close to 1 as dt gets smaller.

8.6 Exercises

Exercise 8.1: Restructure a Given Code
Section 8.1.1 gives a code for computing the development of water volume V in
a tank. Restructure the code by introducing an appropriate function compute_V
that computes and returns the volumes, and a function application that calls the
former function and plots the result.

Note that your restructuring should not cause any change in program behavior,
as experienced by a user of the program.
Filename: restruct_tank_case1.py.

Exercise 8.2: Geometric Construction of the Forward Euler Method
Section 8.2.4 describes a geometric interpretation of the Forward Euler method.
This exercise will demonstrate the geometric construction of the solution in detail.
Consider the differential equation u′ = u with u(0) = 1. We use time steps Δt = 1.

a) Start at t = 0 and draw a straight line with slope u′(0) = u(0) = 1. Go one time
step forward to t = Δt and mark the solution point on the line.

b) Draw a straight line through the solution point (Δt, u1) with slope u′(Δt) = u1.
Go one time step forward to t = 2Δt and mark the solution point on the line.

c) Draw a straight line through the solution point (2Δt, u2) with slope u′(2Δt) =
u2. Go one time step forward to t = 3Δt and mark the solution point on the line.

d) Set up the Forward Euler scheme for the problem u′ = u. Calculate u1, u2, and
u3. Check that the numbers are the same as obtained in a)-c).

Filename: ForwardEuler_geometric_solution.py.

Exercise 8.3: Make Test Functions for the Forward Euler Method
The purpose of this exercise is to make a file test_ode_FE.py that makes use
of the ode_FE function in the file ode_FE.py and automatically verifies the
implementation of ode_FE.

a) The solution computed by hand in Exercise 8.2 can be used as a reference
solution. Make a function test_ode_FE_1() that calls ode_FE to compute three
time steps in the problem u′ = u, u(0) = 1, and compare the three values u1, u2,
and u3 with the values obtained in Exercise 8.2.

b) The test in a) can be made more general using the fact that if f is linear in
u and does not depend on t , i.e., we have u′ = ru, for some constant r , the
Forward Euler method has a closed form solution as outlined in Sect. 8.2.1: un =
U0(1+rΔt)n. Use this result to construct a test function test_ode_FE_2() that
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runs a number of steps in ode_FE and compares the computed solution with the
listed formula for un.

Filename: test_ode_FE.py.

Exercise 8.4: Implement and Evaluate Heun’s Method
a) A second-order Runge-Kutta method, also known has Heun’s method, is derived

in Sect. 8.4.5. Make a function ode_Heun(f, U_0, dt, T) (as a counterpart
to ode_FE(f, U_0, dt, T) in ode_FE.py) for solving a scalar ODE problem
u′ = f (u, t), u(0) = U0, t ∈ (0, T ], with this method using a time step size
Δt .

b) Solve the simple ODE problem u′ = u, u(0) = 1, by the ode_Heun and the
ode_FE function. Make a plot that compares Heun’s method and the Forward
Euler method with the exact solution u(t) = et for t ∈ [0, 6]. Use a time step
Δt = 0.5.

c) For the case in b), find through experimentation the largest value of Δt where
the exact solution and the numerical solution by Heun’s method cannot be
distinguished visually. It is of interest to see how far off the curve the Forward
Euler method is when Heun’s method can be regarded as “exact” (for visual
purposes).

Filename: ode_Heun.py.

Exercise 8.5: Find an Appropriate Time Step; Logistic Model
Compute the numerical solution of the logistic equation for a set of repeatedly
halved time steps: Δtk = 2−kΔt , k = 0, 1, . . .. Plot the solutions corresponding
to the last two time steps Δtk and Δtk−1 in the same plot. Continue doing this until
you cannot visually distinguish the two curves in the plot. Then one has found a
sufficiently small time step.

Hint Extend the logistic.py file. Introduce a loop over k, write out Δtk , and ask
the user if the loop is to be continued.

Filename: logistic_dt.py.

Exercise 8.6: Find an Appropriate Time Step; SIR Model
Repeat Exercise 8.5 for the SIR model.

Hint Import the ode_FE function from the ode_system_FE module and make a
modified demo_SIR function that has a loop over repeatedly halved time steps. Plot
S, I , and R versus time for the two last time step sizes in the same plot.

Filename: SIR_dt.py.

Exercise 8.7: Model an Adaptive Vaccination Campaign
In the SIRV model with time-dependent vaccination from Sect. 8.3.9, we want to
test the effect of an adaptive vaccination campaign where vaccination is offered
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as long as half of the population is not vaccinated. The campaign starts after
Δ days. That is, p = p0 if V < 1

2 (S0 + I 0) and t > Δ days, otherwise
p = 0.

Demonstrate the effect of this vaccination policy: choose β, γ , and ν as in
Sect. 8.3.9, set p = 0.001, Δ = 10 days, and simulate for 200 days.

Hint This discontinuous p(t) function is easiest implemented as a Python function
containing the indicated if test. You may use the file SIRV1.py as starting point,
but note that it implements a time-dependent p(t) via an array.

Filename: SIRV_p_adapt.py.

Exercise 8.8: Make a SIRV Model with Time-Limited Effect of Vaccination
We consider the SIRV model from Sect. 8.3.8, but now the effect of vaccination
is time-limited. After a characteristic period of time, π , the vaccination is no more
effective and individuals are consequently moved from the V to the S category and
can be infected again. Mathematically, this can be modeled as an average leakage
−π−1V from the V category to the S category (i.e., a gain π−1V in the latter).
Write up the complete model, implement it, and rerun the case from Sect. 8.3.8 with
various choices of parameters to illustrate various effects.
Filename: SIRV1_V2S.py.

Exercise 8.9: Refactor a Flat Program
Consider the file osc_FE.py implementing the Forward Euler method for the
oscillating system model (8.43)–(8.44). The osc_FE.py code is what we often refer
to as a flat program, meaning that it is just one main program with no functions. Your
task is to refactor the code in osc_FE.py according to the specifications below.
Refactoring, means to alter the inner structure of the code, while, to a user, the
program works just as before.

To easily reuse the numerical computations in other contexts, place the part
that produces the numerical solution (allocation of arrays, initializing the arrays
at time zero, and the time loop) in a function osc_FE(X_0, omega, dt, T),
which returns u, v, t. Place the particular computational example in osc_FE.py
in a function demo(). Construct the file osc_FE_func.py such that the osc_FE
function can easily be reused in other programs. In Python, this means that
osc_FE_func.py is a module that can be imported in other programs. The
requirement of a module is that there should be no main program, except in the
test block. You must therefore call demo from a test block (i.e., the block after
if __name__ == ’__main__’).
Filename: osc_FE_func.py.

Exercise 8.10: Simulate Oscillations by a General ODE Solver
Solve the system (8.43)–(8.44) using the general solver ode_FE described in
Sect. 8.3.6. Program the ODE system and the call to the ode_FE function in a
separate file osc_ode_FE.py.

Equip this file with a test function that reads a file with correct u values and
compares these with those computed by the ode_FE function. To find correct u
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values, modify the program osc_FE.py to dump the u array to file, run osc_FE.py,
and let the test function read the reference results from that file.
Filename: osc_ode_FE.py.

Exercise 8.11: Compute the Energy in Oscillations
a) Make a function osc_energy(u, v, omega) for returning the potential and

kinetic energy of an oscillating system described by (8.43)–(8.44). The potential
energy is taken as 1

2ω2u2 while the kinetic energy is 1
2v2. (Note that these

expressions are not exactly the physical potential and kinetic energy, since these
would be 1

2mv2 and 1
2ku2 for a model mx ′′ + kx = 0.)

Place the osc_energy in a separate file osc_energy.py such that the
function can be called from other functions.

b) Add a call to osc_energy in the programs osc_FE.py and osc_EC.py and plot
the sum of the kinetic and potential energy. How does the total energy develop
for the Forward Euler and the Euler-Cromer schemes?

Filenames: osc_energy.py, osc_FE_energy.py, osc_EC_energy.py.

Exercise 8.12: Use a Backward Euler Scheme for Population Growth
We consider the ODE problem N ′(t) = rN(t), N(0) = N0. At some time,
tn = nΔt , we can approximate the derivative N ′(tn) by a backward difference,
see Fig. 8.22:

N ′(tn) ≈ N(tn) − N(tn − Δt)

Δt
= Nn − Nn−1

Δt
,

which leads to

Nn − Nn−1

Δt
= rNn ,

called the Backward Euler scheme.

a) Find an expression for the Nn in terms of Nn−1 and formulate an algorithm for
computing Nn, n = 1, 2, . . . , Nt .

b) Implement the algorithm in a) in a function growth_BE(N_0, dt, T) for
solving N ′ = rN , N(0) = N0, t ∈ (0, T ], with time step Δt (dt).

c) Implement the Forward Euler scheme in a function growth_FE(N_0, dt, T)
as described in b).

d) Compare visually the solution produced by the Forward and Backward Euler
schemes with the exact solution when r = 1 and T = 6. Make two plots, one
with Δt = 0.5 and one with Δt = 0.05.

Filename: growth_BE.py.
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Exercise 8.13: Use a Crank-Nicolson Scheme for Population Growth
It is recommended to do Exercise 8.12 prior to the present one. Here we look at the
same population growth model N ′(t) = rN(t), N(0) = N0. The time derivative
N ′(t) can be approximated by various types of finite differences. Exercise 8.12
considers a backward difference (Fig. 8.22), while Sect. 8.2.2 explained the forward
difference (Fig. 8.4). A centered difference is more accurate than a backward or
forward difference:

N ′(tn + 1

2
Δt) ≈ N(tn + Δt) − N(tn)

Δt
= Nn+1 − Nn

Δt
.

This type of difference, applied at the point tn+ 1
2

= tn + 1
2Δt , is illustrated

geometrically in Fig. 8.23.

a) Insert the finite difference approximation in the ODE N ′ = rN and solve for
the unknown Nn+1, assuming Nn is already computed and hence known. The
resulting computational scheme is often referred to as a Crank-Nicolson scheme.

b) Implement the algorithm in a) in a function growth_CN(N_0, dt, T) for
solving N ′ = rN , N(0) = N0, t ∈ (0, T ], with time step Δt (dt).

c) Make plots for comparing the Crank-Nicolson scheme with the Forward and
Backward Euler schemes in the same test problem as in Exercise 8.12.

Filename: growth_CN.py.

Exercise 8.14: Understand Finite Differences via Taylor Series
The Taylor series around a point x = a can for a function f (x) be written

f (x) = f (a) + d

dx
f (a)(x − a) + 1

2!
d2

dx2 f (a)(x − a)2

+ 1

3!
d3

dx3
f (a)(x − a)3 + . . .

=
∞∑

i=0

1

i!
di

dxi
f (a)(x − a)i .

For a function of time, as addressed in our ODE problems, we would use u instead
of f , t instead of x, and a time point tn instead of a:

u(t) = u(tn) + d

dt
u(tn)(t − tn) + 1

2!
d2

dt2
u(tn)(t − tn)

2

+ 1

3!
d3

dt3 u(tn)(t − tn)
3 + . . .

=
∞∑

i=0

1

i!
di

dti
u(tn)(t − tn)

i .
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a) A forward finite difference approximation to the derivative f ′(a) reads

u′(tn) ≈ u(tn + Δt) − u(tn)

Δt
.

We can justify this formula mathematically through Taylor series. Write up the
Taylor series for u(tn + Δt) (around t = tn, as given above), and then solve
the expression with respect to u′(tn). Identify, on the right-hand side, the finite
difference approximation and an infinite series. This series is then the error in the
finite difference approximation. If Δt is assumed small (i.e. Δt << 1), Δt will
be much larger than Δt2, which will be much larger than Δt3, and so on. The
leading order term in the series for the error, i.e., the error with the least power
of Δt is a good approximation of the error. Identify this term.

b) Repeat a) for a backward difference:

u′(tn) ≈ u(tn) − u(tn − Δt)

Δt
.

This time, write up the Taylor series for u(tn −Δt) around tn. Solve with respect
to u′(tn), and identify the leading order term in the error. How is the error
compared to the forward difference?

c) A centered difference approximation to the derivative, as explored in Exer-
cise 8.13, can be written

u′(tn + 1

2
Δt) ≈ u(tn + Δt) − u(tn)

Δt
.

Write up the Taylor series for u(tn) around tn + 1
2Δt and the Taylor series for

u(tn + Δt) around tn + 1
2Δt . Subtract the two series, solve with respect to

u′(tn + 1
2Δt), identify the finite difference approximation and the error terms

on the right-hand side, and write up the leading order error term. How is this
term compared to the ones for the forward and backward differences?

d) Can you use the leading order error terms in a)–c) to explain the visual
observations in the numerical experiment in Exercise 8.13?

e) Find the leading order error term in the following standard finite difference
approximation to the second-order derivative:

u′′(tn) ≈ u(tn + Δt) − 2u(tn) + u(tn − Δt)

Δt2 .

Hint Express u(tn±Δt) via Taylor series and insert them in the difference formula.

Filename: Taylor_differences.pdf.
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Exercise 8.15: The Leapfrog Method
We consider the general ODE problem u′(t) = f (u, t), u(0) = U0. To solve such
an ODE numerically, the second order Leapfrog method approximates the derivative
(at some time tn = nΔt) by use of a centered difference over two time steps,

u′(tn) ≈ u(tn+1) − u(tn−1)

2Δt
= un+1 − un−1

2Δt
.

a) Replace the derivative in the ODE by the given centered difference approxima-
tion and show that this allows us to formulate:

un+1 = un−1 + 2Δtf (un, tn) , n = 1, 2, . . . , Nt − 1,

with u0 = U0. Do we have the information we need to get the scheme started?
b) The problem you discovered in the previous question, may be fixed by using the

Forward Euler method. However, the Leapfrog method is a second order method,
while the Forward Euler method is first order.

Argue, with reference to the Taylor series (see, e.g., Exercise 8.14), why the
Forward Euler method can be used without reducing the order of the overall
scheme.

c) Implement the Leapfrog scheme in a function leapfrog. Make sure the function
takes an appropriate set of input parameters, so that it is easy to import and use.

d) Write a function compare_FE_leapfrog that compares graphically the solu-
tions produced by the Forward Euler and Leapfrog methods, when they solve the
population growth model u′ = 0.1u, with u(0) = 100. Let the total time span
T = 20, and use a time step dt = 2. In the plot produced, include also the exact
solution, so that the numerical solutions can be assessed.

e) Suggest a reasonable asymptotic error model before you write a proper test
function test_convergence_rates that may be used to compute and check
the convergence rates of the implemented Leapfrog method. However, the test
function should take appropriate input parameters, so that it can be used also for
other ODE solvers, in particular the ode_FE implemented previously.

Include your test function in a program, together with the two functions you
defined previously (leapfrog and compare_FE_leapfrog). Write the code
with a test block, so that it gets easy to either import functions from the module,
or to run it as a program.

Finally, run the program (so that compare_FE_leapfrog gets called, as well
as test_convergence_rates for both FE and Leapfrog) and confirm that it
works as expected. In particular, does the plot look good, and do you get the
convergence rates you expected for Forward Euler and Leapfrog?

Filename: growth_leapfrog.py.
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Exercise 8.16: The Runge-Kutta Third Order Method
A general ODE problem u′(t) = f (u, t), u(0) = U0, may be solved numerically by
the third order Runge-Kutta method. The computational scheme reads

un+1 = un + Δt

6
(k1 + 4k2 + k3) , n = 0, 1, . . . , Nt − 1,

k1 = f (un, tn),

k2 = f (un + Δt

2
, tn + Δt

2
),

k3 = f (un − Δtk1 + 2Δtk2, tn + Δt) ,

with u0 = U0.

a) Implement the scheme in a function RK3 that takes appropriate parameters, so
that it is easy to import and use whenever needed.

b) Write a function compare_FE_RK3 that compares graphically the solutions pro-
duced by the Forward Euler and RK3 methods, when they solve the population
growth model u′ = 0.1u, with u(0) = 100. Let the total time span T = 20, and
use a time step dt = 2. In the plot produced, include also the exact solution, so
that the numerical solutions can be assessed.

c) Suggest a reasonable asymptotic error model before you write a proper test
function test_convergence_rates that may be used to compute and check the
convergence rates of the implemented RK3 method. However, the test function
should take appropriate input parameters, so that it can be used also for other
ODE solvers, in particular the ode_FE implemented previously (if you already
have written this test function when doing Exercise 8.15, you may prefer to
import the function).

Include your test function in a program, together with the two functions you
defined previously (RK3 and compare_FE_RK3). Write the code with a test block,
so that it gets easy to either import functions from the module, or to run it as a
program.

Finally, run the program (so that compare_FE_RK3 gets called, as well as
test_convergence_rates for both FE and RK3) and confirm that it works as
expected. In particular, does the plot look good, and do you get the convergence
rates you expected for Forward Euler and RK3?

Filename: runge_kutta_3.py.

Exercise 8.17: The Two-Step Adams-Bashforth Method
Differing from the single-step methods presented in this chapter, we have the multi-
step methods, for example the Adams-Bashforth methods. With the single-step
methods, un+1 is computed by use of the solution from the previous time step,
i.e. un. In multi-step methods, the computed solutions from several previous time
steps, e.g., un, un−1 and un−2 are used to estimate un+1. How many time steps
that are involved in the computing of un+1, and how the previous solutions are
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combined, depends on the method.11 With multi-step methods, more than one
starting value is required to get the scheme started. Thus, apart from the given initial
condition, the remaining starting values must be computed. This is done by some
other appropriate scheme (in such a way that the convergence rate of the overall
scheme is not reduced).

Note that the Runge-Kutta methods are single-step methods, even if they use
several intermediate steps (between tn and tn+1) when computing un+1, using no
other previous solution than un.

One of the simplest multi-step methods is the (second order) two-step Adams-
Bashforth method. The computational scheme reads:

un+1 = un + Δt

2

(
3f (un, tn) − f (un−1, tn−1)

)
,

for n = 1, 2, . . . , Nt − 1, with u0 = U0.

a) Implement the scheme in a function adams_bashforth_2 that takes appropriate
parameters, so that it is easy to import and use whenever needed. Use a Forward
Euler scheme to compute the missing starting value.

b) Write a function compare_FE_AdamsBashforth2 that compares graphically
the solutions produced by the Forward Euler and two-step Adams-Bashforth
methods, when they solve the population growth model u′ = 0.1u, with
u(0) = 100. Let the total time span T = 20, and use a time step dt = 2.
In the plot produced, include also the exact solution, so that the numerical
solutions can be assessed.

c) Suggest a reasonable asymptotic error model before you write a proper
test function test_convergence_rates that may be used to com-
pute and check the convergence rates of the implemented AB2 method.
However, the test function should take appropriate input parameters,
so that it can be used also for other ODE solvers, in particular the
ode_FE implemented previously (if you already have written this test
function when doing Exercise 8.15, you may prefer to import the func-
tion).

Include your test function in a program, together with the two functions you
defined previously (AB2 and compare_FE_AdamsBashforth2). Write the code
with a test block, so that it gets easy to either import functions from the module,
or to run it as a program.

Finally, run the program (so that compare_FE_AdamsBashforth2 gets
called, as well as test_convergence_rates for both FE and AB2) and
confirm that it works as expected. In particular, does the plot look good,
and do you get the convergence rates you expected for Forward Euler and
AB2?

Filename: Adams_Bashforth_2.py.

11 Read more about multi-step methods, e.g., on Wikipedia (https://en.wikipedia.org/wiki/Linear_
multistep_method).

https://en.wikipedia.org/wiki/Linear_multistep_method
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Exercise 8.18: The Three-Step Adams-Bashforth Method
This exercise builds on Exercise 8.17, so you better do that one first. Another multi-
step method, is the three-step Adams-Bashforth method. This is a third order method
with a computational scheme that reads:

un+1 = un + Δt

12

(
23f (un, tn) − 16f (un−1, tn−1) + 5f (un−2, tn−2)

)
.

for n = 2, 3, . . . , Nt − 1, with u0 = U0.

a) Assume that someone implemented the scheme as follows:

def adams_bashforth_3(f, U_0, dt, T):
"""Third-order Adams-Bashforth scheme for solving first order ODE"""
N_t = int(round(T/dt))
u = np.zeros(N_t+1)
t = np.linspace(0, N_t*dt, len(u))
u[0] = U_0
# Compute missing starting values
u[1] = 100*np.exp(0.1*dt)
u[2] = 100*np.exp(0.1*(2*dt))
for n in range(1, N_t, 1):

u[n+1] = u[n] + (dt/12)*(23*f(u[n], t[n]) - \
16*f(u[n-1], t[n-1]) +\
5*f(u[n-2], t[n-2]))

return u, t

There is one (known!) bug here, find it! Try first by simply reading the code. If not
successful, you may try to run it and do some testing on your computer.

Also, what would you say about the way that missing starting values are
computed?

b) Repeat Exercise 8.17, using the given three-step method in stead of the two-step
method.

Note that with the three-step method, you need 3 starting values. Use the
Runge-Kutta third order scheme for this purpose. However, check also the
convergence rate of the scheme when missing starting values are computed with
Forward Euler in stead.

Filename: Adams_Bashforth_3.py.

Exercise 8.19: Use a Backward Euler Scheme for Oscillations
Consider (8.43)–(8.44) modeling an oscillating engineering system. This 2×2 ODE
system can be solved by the Backward Euler scheme, which is based on discretizing
derivatives by collecting information backward in time. More specifically, u′(t) is
approximated as

u′(t) ≈ u(t) − u(t − Δt)

Δt
.
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A general vector ODE u′ = f (u, t), where u and f are vectors, can use this
approximation as follows:

un − un−1

Δt
= f (un, tn),

which leads to an equation for the new value un:

un − Δtf (un, tn) = un−1 .

For a general f , this is a system of nonlinear algebraic equations.
However, the ODE (8.43)–(8.44) is linear, so a Backward Euler scheme leads to

a system of two algebraic equations for two unknowns:

un − Δtvn = un−1, (8.89)

vn + Δtω2un = vn−1 . (8.90)

a) Solve the system for un and vn.
b) Implement the found formulas for un and vn in a program for computing the

entire numerical solution of (8.43)–(8.44).
c) Run the program with a Δt corresponding to 20 time steps per period of the

oscillations (see Sect. 8.4.3 for how to find such a Δt). What do you observe?
Increase to 2000 time steps per period. How much does this improve the
solution?

Filename: osc_BE.py.

Remarks While the Forward Euler method applied to oscillation problems u′′ +
ω2u = 0 gives growing amplitudes, the Backward Euler method leads to signifi-
cantly damped amplitudes.

Exercise 8.20: Use Heun’s Method for the SIR Model
Make a program that computes the solution of the SIR model from Sect. 8.3.1 both
by the Forward Euler method and by Heun’s method (or equivalently: the second-
order Runge-Kutta method) from Sect. 8.4.5. Compare the two methods in the
simulation case from Sect. 8.3.3. Make two comparison plots, one for a large and
one for a small time step. Experiment to find what “large” and “small” should be:
the large one gives significant differences, while the small one lead to very similar
curves.
Filename: SIR_Heun.py.

Exercise 8.21: Use Odespy to Solve a Simple ODE
Solve

u′ = −au + b, u(0) = U0, t ∈ (0, T ]
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by the Odespy software. Let the problem parameters a and b be arguments to the
function specifying the derivative. Use 100 time intervals in [0, T ] and plot the
solution when a = 2, b = 1, T = 6/a.
Filename: odespy_demo.py.

Exercise 8.22: Set up a Backward Euler Scheme for Oscillations
Write the ODE u′′ + ω2u = 0 as a system of two first-order ODEs and discretize
these with backward differences as illustrated in Fig. 8.22. The resulting method is
referred to as a Backward Euler scheme. Identify the matrix and right-hand side of
the linear system that has to be solved at each time level. Implement the method, ei-
ther from scratch yourself or using Odespy (the name is odespy.BackwardEuler).
Demonstrate that contrary to a Forward Euler scheme, the Backward Euler scheme
leads to significant non-physical damping. The figure below shows that even with
60 time steps per period, the results after a few periods are useless:
Filename: osc_BE.py.

Exercise 8.23: Set up a Forward Euler Scheme for Nonlinear and Damped
Oscillations
Derive a Forward Euler method for the ODE system (8.68)–(8.69). Compare
the method with the Euler-Cromer scheme for the sliding friction problem from
Sect. 8.4.11:

1. Does the Forward Euler scheme give growing amplitudes?
2. Is the period of oscillation accurate?
3. What is the required time step size for the two methods to have visually

coinciding curves?
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Filename: osc_FE_general.py.

Exercise 8.24: Solving a Nonlinear ODE with Backward Euler
Let y be a scalar function of time t and consider the nonlinear ODE

y ′ + y = ty3, t ∈ (0, 4), y(0) = 1

2
.

a) Assume you want to solve this ODE numerically by the Backward Euler method.
Derive the computational scheme and show that (contrary to the Forward Euler
scheme) you have to solve a nonlinear algebraic equation for each time step
when using this scheme.

b) Implement the scheme in a program that also solves the ODE by a Forward
Euler method. With Backward Euler, use Newton’s method to solve the algebraic
equation. As your initial guess, you have one good alternative, which one?

Let your program plot the two numerical solutions together with the exact
solution, which is known (e.g., from Wolfram Alpha) to be

y(t) =
√

2√
7e2t + 2t + 1

.

Filename: nonlinBE.py.

Exercise 8.25: Discretize an Initial Condition
Assume that the initial condition on u′ is nonzero in the finite difference method
from Sect. 8.4.12: u′(0) = V0. Derive the special formula for u1 in this case.
Filename: ic_with_V_0.pdf.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


9Solving Partial Differential Equations

We now turn to the solving of differential equations in which the solution is a
function that depends on several independent variables. One such equation is called
a partial differential equation (PDE, plural: PDEs).

The subject of PDEs is enormous. At the same time, it is very important, since
so many phenomena in nature and technology find their mathematical formulation
through such equations. Knowing how to solve at least some PDEs is therefore of
great importance to engineers. In an introductory book like this, nowhere near full
justice to the subject can be made. However, we still find it valuable to give the
reader a glimpse of the topic by presenting a few basic and general methods that we
will apply to a very common type of PDE.

We shall focus on one of the most widely encountered partial differential
equations: the diffusion equation, which in one dimension looks like

∂u

∂t
= β

∂2u

∂x2 + g .

The multi-dimensional counterpart is often written as

∂u

∂t
= β∇2u + g .

We shall restrict the attention here to the one-dimensional case.
The unknown in the diffusion equation is a function u(x, t) of space and time.

The physical significance of u depends on what type of process that is described
by the diffusion equation. For example, u is the concentration of a substance if
the diffusion equation models transport of this substance by diffusion. Diffusion
processes are of particular relevance at the microscopic level in biology, e.g.,
diffusive transport of certain ion types in a cell caused by molecular collisions.
There is also diffusion of atoms in a solid, for instance, and diffusion of ink in a
glass of water.

One very popular application of the diffusion equation is for heat transport
in solid bodies. Then u is the temperature, and the equation predicts how the
temperature evolves in space and time within the solid body. For such applications,

© The Author(s) 2020
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the equation is known as the heat equation. We remark that the temperature in a fluid
is influenced not only by diffusion, but also by the flow of the liquid. If present,
the latter effect requires an extra term in the equation (known as an advection or
convection term).

The term g is known as the source term and represents generation, or loss, of heat
(by some mechanism) within the body. For diffusive transport, g models injection
or extraction of the substance.

We should also mention that the diffusion equation may appear after simplifying
more complicated PDEs. For example, flow of a viscous fluid between two flat and
parallel plates is described by a one-dimensional diffusion equation, where u then
is the fluid velocity.

A PDE is solved in some domain Ω in space and for a time interval [0, T ]. The
solution of the equation is not unique unless we also prescribe initial and boundary
conditions. The type and number of such conditions depend on the type of equation.
For the diffusion equation, we need one initial condition, u(x, 0), stating what u

is when the process starts. In addition, the diffusion equation needs one boundary
condition at each point of the boundary ∂Ω of Ω . This condition can either be that
u is known or that we know the normal derivative, ∇u · n = ∂u/∂n (n denotes an
outward unit normal to ∂Ω).

9.1 Example: Temperature Development in a Rod

Let us look at a specific application and how the diffusion equation with initial
and boundary conditions then appears. We consider the evolution of temperature
in a one-dimensional medium, more precisely a long rod, where the surface of
the rod is covered by an insulating material. The heat can then not escape from
the surface, which means that the temperature distribution will only depend on
a coordinate along the rod, x, and time t . At one end of the rod, x = L,
we also assume that the surface is insulated, but at the other end, x = 0, we
assume that we have some device for controlling the temperature of the medium.
Here, a function s(t) tells what the temperature is in time. We therefore have
a boundary condition u(0, t) = s(t). At the other insulated end, x = L, heat
cannot escape, which is expressed by the boundary condition ∂u(L, t)/∂x = 0.
The surface along the rod is also insulated and hence subject to the same boundary
condition (here generalized to ∂u/∂n = 0 at the curved surface). However, since
we have reduced the problem to one dimension, we do not need this physical
boundary condition in our mathematical model. In one dimension, we can set
Ω = [0, L].

To summarize, the PDE with initial and boundary conditions reads

∂u(x, t)

∂t
= β

∂2u(x, t)

∂x2 + g(x, t), x ∈ (0, L) ,t ∈ (0, T ], (9.1)

u(0, t) = s(t), t ∈ (0, T ], (9.2)
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∂

∂x
u(L, t) = 0, t ∈ (0, T ], (9.3)

u(x, 0) = I (x), x ∈ [0, L] . (9.4)

Mathematically, we assume that at t = 0, the initial condition (9.4) holds and
that the PDE (9.1) comes into play for t > 0. Similarly, at the end points, the
boundary conditions (9.2) and (9.3) govern u and the equation therefore is valid for
x ∈ (0, L).

Boundary and initial conditions are needed!

The initial and boundary conditions are extremely important. Without
them, the solution is not unique, and no numerical method will work.
Unfortunately, many physical applications have one or more initial or
boundary conditions as unknowns. Such situations can be dealt with if we
have measurements of u, but the mathematical framework is much more
complicated.

What about the source term g in our example with temperature distribution
in a rod? g(x, t) models heat generation inside the rod. One could think of
chemical reactions at a microscopic level in some materials as a reason to include
g. However, in most applications with temperature evolution, g is zero and heat
generation usually takes place at the boundary (as in our example with u(0, t) =
s(t)).

9.1.1 A Particular Case

Before continuing, we may consider an example of how the temperature distribution
evolves in the rod. At time t = 0, we assume that the temperature is 10 ◦C.
Then we suddenly apply a device at x = 0 that keeps the temperature at 50 ◦C
at this end. What happens inside the rod? Intuitively, you think that the heat
generation at the end will warm up the material in the vicinity of x = 0, and
as time goes by, more and more of the rod will be heated, before the entire rod
has a temperature of 50 ◦C (recall that no heat escapes from the surface of the
rod).

Mathematically, (with the temperature in Kelvin) this example has I (x) = 283
K, except at the end point: I (0) = 323 K, s(t) = 323 K, and g = 0. The
figure below shows snapshots from two different times in the evolution of the
temperature.
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9.2 Finite Difference Methods

We shall now construct a numerical method for the diffusion equation. We know
how to solve ODEs, so in a way we are able to deal with the time derivative.
Very often in mathematics, a new problem can be solved by reducing it to a series
of problems we know how to solve. In the present case, it means that we must
do something with the spatial derivative ∂2/∂x2 in order to reduce the PDE to
ODEs. One important technique for achieving this, is based on finite difference
discretization of spatial derivatives.

9.2.1 Reduction of a PDE to a System of ODEs

Introduce a spatial mesh in Ω with mesh points

x0 = 0 < x1 < x2 < · · · < xN = L .

The space between two mesh points xi and xi+1, i.e. the interval [xi, xi+1], is called
a cell. We shall here, for simplicity, assume that each cell has the same length Δx =
xi+1 − xi , i = 0, . . . , N − 1.
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The PDE is valid at all spatial points x ∈ Ω , but we may relax this condition and
demand that it is fulfilled at the internal mesh points only, x1, . . . , xN−1:

∂u(xi, t)

∂t
= β

∂2u(xi, t)

∂x2 + g(xi , t), i = 1, . . . , N − 1 . (9.5)

Now, at any point xi we can approximate the second-order derivative by a finite
difference:

∂2u(xi, t)

∂x2 ≈ u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

Δx2 . (9.6)

It is common to introduce a short notation ui(t) for u(xi, t), i.e., u approximated at
some mesh point xi in space. With this new notation we can, after inserting (9.6)
in (9.5), write an approximation to the PDE at mesh point (xi, t) as

dui(t)

dt
= β

ui+1(t) − 2ui(t) + ui−1(t)

Δx2
+ gi(t), i = 1, . . . , N − 1 . (9.7)

Note that we have adopted the notation gi(t) for g(xi , t) too.
What is (9.7)? This is nothing but a system of ordinary differential equations in

N−1 unknowns u1(t), . . . , uN−1(t)! In other words, with aid of the finite difference
approximation (9.6), we have reduced the single PDE to a system of ODEs, which
we know how to solve. In the literature, this strategy is called the method of lines.

We need to look into the initial and boundary conditions as well. The initial
condition u(x, 0) = I (x) translates to an initial condition for every unknown
function ui(t): ui(0) = I (xi), i = 0, . . . , N . At the boundary x = 0 we need
an ODE in our ODE system, which must come from the boundary condition at
this point. The boundary condition reads u(0, t) = s(t). We can derive an ODE
from this equation by differentiating both sides: u′

0(t) = s′(t). The ODE system
above cannot be used for u′

0 since that equation involves some quantity u′−1 outside
the domain. Instead, we use the equation u′

0(t) = s′(t) derived from the boundary
condition. For this particular equation we also need to make sure the initial condition
is u0(0) = s(0) (otherwise nothing will happen: we get u = 283 K forever).

We remark that a separate ODE for the (known) boundary condition u0 = s(t)

is not strictly needed. We can just work with the ODE system for u1, . . . , uN , and
in the ODE for u0, replace u0(t) by s(t). However, these authors prefer to have an
ODE for every point value ui , i = 0, . . . , N , which requires formulating the known
boundary at x = 0 as an ODE. The reason for including the boundary values in the
ODE system is that the solution of the system is then the complete solution at all
mesh points, which is convenient, since special treatment of the boundary values is
then avoided.

The condition ∂u/∂x = 0 at x = L is a bit more complicated, but we can
approximate the spatial derivative by a centered finite difference:

∂u

∂x

∣
∣
∣
∣
i=N

≈ uN+1 − uN−1

2Δx
= 0 .
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This approximation involves a fictitious point xN+1 outside the domain. A common
trick is to use (9.7) for i = N and eliminate uN+1 by use of the discrete boundary
condition (uN+1 = uN−1):

duN(t)

dt
= β

2uN−1(t) − 2uN(t)

Δx2 + gN(t) . (9.8)

That is, we have a special version of (9.7) at the boundary i = N .

What about simpler finite differences at the boundary?

Some reader may think that a smarter trick is to approximate the boundary
condition ∂u/∂x at x = L by a one-sided difference:

∂u

∂x

∣
∣
∣
∣
i=N

≈ uN − uN−1

Δx
= 0 .

This gives a simple equation uN = uN−1 for the boundary value, and a
corresponding ODE u′

N = u′
N−1. However, this approximation has an error

of order Δx, while the centered approximation we used above has an error of
order Δx2. The finite difference approximation we used for the second-order
derivative in the diffusion equation also has an error of order Δx2. Thus, if
we use the simpler one-sided difference above, it turns out that we reduce the
overall accuracy of the method.

We are now in a position to summarize how we can approximate the PDE
problem (9.1)–(9.4) by a system of ordinary differential equations:

du0

dt
= s′(t), (9.9)

dui

dt
= β

Δx2 (ui+1(t) − 2ui(t) + ui−1(t)) + gi(t), i = 1, . . . , N − 1, (9.10)

duN

dt
= 2β

Δx2 (uN−1(t) − uN(t)) + gN(t) . (9.11)

The initial conditions are

u0(0) = s(0), (9.12)

ui(0) = I (xi), i = 1, . . . , N . (9.13)

We can apply any method for systems of ODEs to solve (9.9)–(9.11).
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9.2.2 Construction of a Test Problemwith Known Discrete
Solution

At this point, it is tempting to implement a real physical case and run it. However,
PDEs constitute a non-trivial topic where mathematical and programming mistakes
come easy. A better start is therefore to address a carefully designed test example
where we can check that the method works. The most attractive examples for testing
implementations are those without approximation errors, because we know exactly
what numbers the program should produce. It turns out that solutions u(x, t) that are
linear in time and in space can be exactly reproduced by most numerical methods
for PDEs. A candidate solution might be

u(x, t) = (3t + 2)(x − L) .

Inserting this u in the governing equation gives

3(x − L) = 0 + g(x, t) ⇒ g(x, t) = 3(x − L) .

What about the boundary conditions? We realize that ∂u/∂x = 3t + 2 for x =
L, which breaks the assumption of ∂u/∂x = 0 at x = L in the formulation of
the numerical method above. Moreover, u(0, t) = −L(3t + 2), so we must set
s(t) = −L(3t + 2) and s′(t) = −3L. Finally, the initial condition dictates I (x) =
2(x − L), but recall that we must have u0 = s(0), and ui = I (xi), i = 1, . . . , N : it
is important that u0 starts out at the right value dictated by s(t) in case I (0) is not
equal this value.

First we need to generalize our method to handle ∂u/∂x = γ 	= 0 at x = L. We
then have

uN+1(t) − uN−1(t)

2Δx
= γ ⇒ uN+1 = uN−1 + 2γΔx,

which inserted in (9.7) gives

duN(t)

dt
= β

2uN−1(t) + 2γΔx − 2uN(t)

Δx2
+ gN(t) . (9.14)

9.2.3 Implementation: Forward Euler Method

In particular, we may use the Forward Euler method as implemented in the
general function ode_FE in the module ode_system_FE from Sect. 8.3.6. The
ode_FE function needs a specification of the right-hand side of the ODE system.
This is a matter of translating (9.9), (9.10), and (9.14) to Python code (in file
test_diffusion_pde_exact_linear.py):

def rhs(u, t):
N = len(u) - 1
rhs = np.zeros(N+1)
rhs[0] = dsdt(t)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/test_diffusion_pde_exact_linear.py
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for i in range(1, N):
rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \

g(x[i], t)
rhs[N] = (beta/dx**2)*(2*u[N-1] + 2*dx*dudx(t) -

2*u[N]) + g(x[N], t)
return rhs

def u_exact(x, t):
return (3*t + 2)*(x - L)

def dudx(t):
return (3*t + 2)

def s(t):
return u_exact(0, t)

def dsdt(t):
return 3*(-L)

def g(x, t):
return 3*(x-L)

Note that dudx(t) is the function representing the γ parameter in (9.14). Also note
that the rhs function relies on access to global variables beta, dx, L, and x, and
global functions dsdt, g, and dudx.

We expect the solution to be correct regardless of N and Δt , so we can choose a
small N , N = 4, and Δt = 0.1. A test function with N = 4 goes like

def test_diffusion_exact_linear():
global beta, dx, L, x # needed in rhs
L = 1.5
beta = 0.5
N = 4
x = np.linspace(0, L, N+1)
dx = x[1] - x[0]
u = np.zeros(N+1)

U_0 = np.zeros(N+1)
U_0[0] = s(0)
U_0[1:] = u_exact(x[1:], 0)
dt = 0.1
print(dt)

u, t = ode_FE(rhs, U_0, dt, T=1.2)

tol = 1E-12
for i in range(0, u.shape[0]):

diff = np.abs(u_exact(x, t[i]) - u[i,:]).max()
assert diff < tol, ’diff={:.16g}’.format(diff)
print(’diff={:g} at t={:g}’.format(diff, t[i]))

With N = 4 we reproduce the linear solution exactly. This brings confidence to the
implementation, which is just what we need for attacking a real physical problem
next.
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Problems with reusing the rhs function

The rhs function must take u and t as arguments, because that is required by
the ode_FE function. What about the variables beta, dx, L, x, dsdt, g, and
dudx that the rhs function needs? These are global in the solution we have
presented so far. Unfortunately, this has an undesired side effect: we cannot
import the rhs function in a new file, define dudx and dsdt in this new file
and get the imported rhs to use these functions. The imported rhs will use
the global variables, including functions, in its own module.

How can we find solutions to this problem? Technically, we must pack the
extra data beta, dx, L, x, dsdt, g, and dudx with the rhs function, which
requires more advanced programming considered beyond the scope of this
text.

A class is the simplest construction for packing a function together with
data, see the beginning of Chapter 7 in [11] for a detailed example on how
classes can be used in such a context. Another solution in Python, and
especially in computer languages supporting functional programming, is so
called closures. They are also covered in Chapter 7 in the mentioned reference
and behave in a magic way. The third solution is to allow an arbitrary set of
arguments for rhs in a list to be transferred to ode_FE and then back to rhs.
Appendix H.4 in [11] explains the technical details.

9.2.4 Animation: Heat Conduction in a Rod

Let us return to the case with heat conduction in a rod (9.1)–(9.4). Assume that
the rod is 50 cm long and made of aluminum alloy 6082. The β parameter equals
κ/(c), where κ is the heat conduction coefficient,  is the density, and c is the
heat capacity. We can find proper values for these physical quantities in the case

of aluminum alloy 6082:  = 2.7 · 103 kg/m3, κ = 200 W
mK, c = 900 J

Kkg.

This results in β = κ/(c) = 8.2 · 10−5 m2/s. Preliminary simulations show
that we are close to a constant steady state temperature after 1 h, i.e., T =
3600 s.

The rhs function from the previous section can be reused, only the functions s,
dsdt, g, and dudx must be changed (see file rod_FE.py):

def dudx(t):
return 0

def s(t):
return 323

def dsdt(t):
return 0

def g(x, t):
return 0

https://github.com/slgit/prog4comp_2/blob/master/py36-src/rod_FE.py
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Parameters can be set as

L = 0.5
beta = 8.2E-5
N = 40
x = np.linspace(0, L, N+1)
dx = x[1] - x[0]
u = np.zeros(N+1)

U_0 = np.zeros(N+1)
U_0[0] = s(0)
U_0[1:] = 283

Let us use Δt = 1.0. We can now call ode_FE and then make an animation on the
screen to see how u(x, t) develops in time:

from ode_system_FE import ode_FE
u, t = ode_FE(rhs, U_0, dt, T=1*60*60)

# Make movie
import os
os.system(’rm tmp_*.png’)
import matplotlib.pyplot as plt
plt.ion()
y = u[0,:]
lines = plt.plot(x, y)
plt.axis([x[0], x[-1], 273, s(0)+10])
plt.xlabel(’x’)
plt.ylabel(’u(x,t)’)
counter = 0
# Plot each of the first 100 frames, then increase speed by 10x
change_speed = 100
for i in range(0, u.shape[0]):

print(t[i])
plot = True if i <= change_speed else i % 10 == 0
lines[0].set_ydata(u[i,:])
if i > change_speed:

plt.legend([’t={:.0f} 10x’.format(t[i])])
else:

plt.legend([’t={:.0f}’.format(t[i])])
plt.draw()
if plot:

plt.savefig(’tmp_{:04d}.png’.format(counter))
counter += 1

#time.sleep(0.2)

The plotting statements update the u(x, t) curve on the screen. In addition,
we save a fraction of the plots to files tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. These plots can be combined to ordinary video files. A
common tool is ffmpeg or its sister avconv.

These programs take the same type of command-line options. To make a Flash
video movie.flv, run1

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec flv movie.flv

1 You may read about using a terminal in Appendix A.
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Fig. 9.1 Unstable simulation of the temperature in a rod

The -i option specifies the naming of the plot files, and -r specifies the number
of frames per second in the movie. On Mac, run ffmpeg instead of avconv with
the same options. Other video formats, such as MP4, WebM, and Ogg can also be
produced:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libtheora movie.ogg

An Unstable Solution The results of a simulation start out as seen from the
two snapshots in Fig. 9.1. We see that the solution definitely looks wrong. The
temperature is expected to be smooth, not having such a saw-tooth shape. We
say that this solution is unstable, meaning that it does not display the same
characteristics as the true, physical solution. Even though we tested the code
carefully in the previous section, it does not seem to work for a physical application!

Why Is the Solution Unstable? The problem is that Δt is too large, making the
solution unstable. It turns out that the Forward Euler time integration method puts a
restriction on the size of Δt . For the heat equation and the way we have discretized
it, this restriction can be shown to be [14]

Δt ≤ Δx2

2β
. (9.15)

This is called a stability criterion. With the chosen parameters, (9.15) tells us that the
upper limit is Δt = 0.9527439, which is smaller than our choice above. Rerunning
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the case with a Δt equal to Δx2/(2β), indeed shows a smooth evolution of u(x, t).
Find the program rod_FE.py and run it to see an animation of the u(x, t) function
on the screen.

Scaling and dimensionless quantities

Our setting of parameters required finding three physical properties of a
certain material. The time interval for simulation and the time step depend
crucially on the values for β and L, which can vary significantly from case to
case. Often, we are more interested in how the shape of u(x, t) develops, than
in the actual u, x, and t values for a specific material. We can then simplify
the setting of physical parameters by scaling the problem.

Scaling means that we introduce dimensionless independent and dependent
variables, here denoted by a bar:

ū = u − u∗

uc − u∗ , x̄ = x

xc

, t̄ = t

tc
,

where uc is a characteristic size of the temperature, u∗ is some reference
temperature, while xc and tc are characteristic time and space scales. Here,
it is natural to choose u∗ as the initial condition, and set uc to the stationary
(end) temperature. Then ū ∈ [0, 1], starting at 0 and ending at 1 as t → ∞.
The length L is xc, while choosing tc is more challenging, but one can argue
for tc = L2/β. The resulting equation for ū reads

∂ū

∂ t̄
= ∂2ū

∂x̄2 , x̄ ∈ (0, 1) .

Note that in this equation, there are no physical parameters! In other words,
we have found a model that is independent of the length of the rod and the
material it is made of (!).

We can easily solve this equation with our program by setting β = 1,
L = 1, I (x) = 0, and s(t) = 1. It turns out that the total simulation time (to
“infinity”) can be taken as 1.2. When we have the solution ū(x̄, t̄ ), the solution
with dimension Kelvin, reflecting the true temperature in our medium, is given
by

u(x, t) = u∗ + (uc − u∗)ū(x/L, tβ/L2) .

Through this formula we can quickly generate the solutions for a rod made
of aluminum, wood, or rubber—it is just a matter of plugging in the right β

value.
The power of scaling is to reduce the number of physical parameters in

a problem, and in the present case, we found one single problem that is
independent of the material (β) and the geometry (L).
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9.2.5 Vectorization

Occasionally in this book, we show how to speed up code by replacing loops
over arrays by vectorized expressions. The present problem involves a loop for
computing the right-hand side:

for i in range(1, N):
rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + g(x[i], t)

This loop can be replaced by a vectorized expression with the following reasoning.
We want to set all the inner points at once: rhs[1:N-1] (this goes from index 1
up to, but not including, N). As the loop index i runs from 1 to N-1, the u[i+1]
term will cover all the inner u values displaced one index to the right (compared to
1:N-1), i.e., u[2:N]. Similarly, u[i-1] corresponds to all inner u values displaced
one index to the left: u[0:N-2]. Finally, u[i] has the same indices as rhs:
u[1:N-1]. The vectorized loop can therefore be written in terms of slices:

rhs[1:N-1] = (beta/dx**2)*(u[2:N+1] - 2*u[1:N] + u[0:N-1]) +
g(x[1:N], t)

This rewrite speeds up the code by about a factor of 10. A complete code is found
in the file rod_FE_vec.py.

9.2.6 Using Odespy to Solve the System of ODEs

Let us now show how to apply a general ODE package like Odespy (see Sect. 8.4.6)
to solve our diffusion problem. As long as we have defined a right-hand side function
rhs this is very straightforward:

import odespy
import numpy as np

solver = odespy.RKFehlberg(rhs)
solver.set_initial_condition(U_0)

T = 1.2
N_t = int(round(T/dt))
time_points = np.linspace(0, T, N_t+1)
u, t = solver.solve(time_points)

# Check how many time steps are required by adaptive vs
# fixed-step methods
if hasattr(solver, ’t_all’):

print(’# time steps:’, len(solver.t_all))
else:

print(’# time steps:’, len(t))

The very nice thing is that we can now easily experiment with many different
integration methods. Trying out some simple ones first, like RK2 and RK4, quickly
reveals that the time step limitation of the Forward Euler scheme also applies
to these more sophisticated Runge-Kutta methods, but their accuracy is better.
However, the Odespy package offers also adaptive methods. We can then specify a
much larger time step in time_points, and the solver will figure out the appropriate

https://github.com/slgit/prog4comp_2/blob/master/py36-src/rod_FE_vec.py
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Fig. 9.2 Time steps used by the Runge-Kutta-Fehlberg method: error tolerance 10−3 (left) and
10−6 (right)

step. Above we indicated how to use the adaptive Runge-Kutta-Fehlberg 4-5 solver.
While the Δt corresponding to the Forward Euler method requires over 8000 steps
for a simulation, we started the RKFehlberg method with 100 times this time step
and in the end it required just slightly more than 2500 steps, using the default
tolerance parameters. Lowering the tolerance did not save any significant amount
of computational work. Figure 9.2 shows a comparison of the length of all the time
steps for two values of the tolerance. We see that the influence of the tolerance is
minor in this computational example, so it seems that the blow-up due to instability
is what governs the time step size. The nice feature of this adaptive method is that we
can just specify when we want the solution to be computed, and the method figures
out on its own what time step that has to be used because of stability restrictions.

We have seen how easy it is to apply sophisticated methods for ODEs to this PDE
example. We shall take the use of Odespy one step further in the next section.

9.2.7 Implicit Methods

A major problem with the stability criterion (9.15) is that the time step becomes
very small if Δx is small. For example, halving Δx requires four times as many
time steps and eight times the work. Now, with N = 40, which is a reasonable
resolution for the test problem above, the computations are very fast. What takes
time, is the visualization on the screen, but for that purpose one can visualize only
a subset of the time steps. However, there are occasions when you need to take
larger time steps with the diffusion equation, especially if interest is in the long-
term behavior as t → ∞. You must then turn to implicit methods for ODEs. These
methods require the solutions of linear systems, if the underlying PDE is linear, and
systems of nonlinear algebraic equations if the underlying PDE is non-linear.

The simplest implicit method is the Backward Euler scheme, which puts no
restrictions on Δt for stability, but obviously, a large Δt leads to inaccurate results.
The Backward Euler scheme for a scalar ODE u′ = f (u, t) reads

un+1 − un

Δt
= f (un+1, tn+1) .
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This equation is to be solved for un+1. If f is linear in u, it is a linear equation,
but if f is nonlinear in u, one needs approximate methods for nonlinear equations
(Chap. 7).

In our case, we have a system of linear ODEs (9.9)–(9.11). The Backward Euler
scheme applied to each equation leads to

un+1
0 − un

0

Δt
= s′(tn+1), (9.16)

un+1
i − un

i

Δt
= β

Δx2 (un+1
i+1 − 2un+1

i + un+1
i−1 ) + gi(tn+1), (9.17)

i = 1, . . . , N − 1,

un+1
N − un

N

Δt
= 2β

Δx2 (un+1
N−1 − un+1

N ) + gi(tn+1) . (9.18)

This is a system of linear equations in the unknowns un+1
i , i = 0, . . . , N , which is

easy to realize by writing out the equations for the case N = 3, collecting all the
unknown terms on the left-hand side and all the known terms on the right-hand side:

un+1
0 = un

0 + Δt s′(tn+1), (9.19)

un+1
1 − Δt

β

Δx2 (un+1
2 − 2un+1

1 + un+1
0 ) = un

1 + Δt g1(tn+1), (9.20)

un+1
2 − Δt

2β

Δx2 (un+1
1 − un+1

2 ) = un
2 + Δt g2(tn+1) . (9.21)

A system of linear equations like this, is usually written on matrix form Au = b,
where A is a coefficient matrix, u = (un+1

0 , . . . , nn+1
N ) is the vector of unknowns,

and b is a vector of known values. The coefficient matrix for the case (9.19)–(9.21)
becomes

A =
⎛

⎜
⎝

1 0 0
−Δt

β

Δx2 1 + 2Δt
β

Δx2 −Δt
β

Δx2

0 −Δt
2β

Δx2 1 + Δt
2β

Δx2

⎞

⎟
⎠

In the general case (9.16)–(9.18), the coefficient matrix is an (N + 1) × (N + 1)

matrix with zero entries, except for

A1,1 = 1 (9.22)

Ai,i−1 = −Δt
β

Δx2 , i = 2, . . . , N − 1 (9.23)

Ai,i+1 = −Δt
β

Δx2 , i = 2, . . . , N − 1 (9.24)

Ai,i = 1 + 2Δt
β

Δx2 , i = 2, . . . , N − 1 (9.25)
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AN,N−1 = −Δt
2β

Δx2 (9.26)

AN,N = 1 + Δt
2β

Δx2 (9.27)

If we want to apply general methods for systems of ODEs on the form u′ =
f (u, t), we can assume a linear f (u, t) = Ku. The coefficient matrix K is found
from the right-hand side of (9.16)–(9.18) to be

K1,1 = 0 (9.28)

Ki,i−1 = β

Δx2 , i = 2, . . . , N − 1 (9.29)

Ki,i+1 = β

Δx2 , i = 2, . . . , N − 1 (9.30)

Ki,i = − 2β

Δx2
, i = 2, . . . , N − 1 (9.31)

KN,N−1 = 2β

Δx2 (9.32)

KN,N = − 2β

Δx2 (9.33)

We see that A = I − Δt K .
To implement the Backward Euler scheme, we can either fill a matrix and call a

linear solver, or we can apply Odespy. We follow the latter strategy. Implicit methods
in Odespy need the K matrix above, given as an argument jac (Jacobian of f ) in the
call to odespy.BackwardEuler. Here is the Python code for the right-hand side of
the ODE system (rhs) and the K matrix (K) as well as statements for initializing
and running the Odespy solver BackwardEuler (in the file rod_BE.py):

def rhs(u, t):
N = len(u) - 1
rhs = zeros(N+1)
rhs[0] = dsdt(t)
for i in range(1, N):

rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
g(x[i], t)

rhs[N] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
2*u[i]) + g(x[N], t)

return rhs

def K(u, t):
N = len(u) - 1
K = zeros((N+1,N+1))
K[0,0] = 0
for i in range(1, N):

K[i,i-1] = beta/dx**2
K[i,i] = -2*beta/dx**2
K[i,i+1] = beta/dx**2

K[N,N-1] = (beta/dx**2)*2

https://github.com/hplgit/prog4comp/tree/master/src/py/rod_BE.py
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K[N,N] = (beta/dx**2)*(-2)
return K

import odespy
solver = odespy.BackwardEuler(rhs, f_is_linear=True, jac=K)
solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)
solver.set_initial_condition(U_0)
T = 1*60*60
N_t = int(round(T/dt))
time_points = linspace(0, T, N_t+1)
u, t = solver.solve(time_points)

The file rod_BE.py has all the details and shows a movie of the solution. We can
run it with any Δt we want, its size just impacts the accuracy of the first steps.

Odespy solvers apply dense matrices!

Looking at the entries of the K matrix, we realize that there are at maximum
three entries different from zero in each row. Therefore, most of the entries
are zeroes. The Odespy solvers expect dense square matrices as input, here
with (N + 1) × (N + 1) elements. When solving the linear systems, a lot
of storage and work are spent on the zero entries in the matrix. It would be
much more efficient to store the matrix as a tridiagonal matrix and apply a
specialized Gaussian elimination solver for tridiagonal systems. Actually, this
reduces the work from the order N3 to the order N .

In one-dimensional diffusion problems, the savings of using a tridiagonal
matrix are modest in practice, since the matrices are very small anyway. In
two- and three-dimensional PDE problems, however, one cannot afford dense
square matrices. Rather, one must resort to more efficient storage formats and
algorithms tailored to such formats, but this is beyond the scope of the present
text.

9.3 Exercises

Exercise 9.1: Simulate a Diffusion Equation by Hand
Consider the problem given by (9.9), (9.10) and (9.14). Set N = 2 and compute
u0

i , u1
i and u2

i by hand for i = 0, 1, 2. Use these values to construct a test
function for checking that the implementation is correct. Copy useful functions
from test_diffusion_pde_exact_linear.py and make a new test function
test_diffusion_hand_calculation.
Filename: test_rod_hand_calculations.py.

Exercise 9.2: Compute Temperature Variations in the Ground
The surface temperature at the ground shows daily and seasonal oscillations. When
the temperature rises at the surface, heat is propagated into the ground, and the
coefficient β in the diffusion equation determines how fast this propagation is. It
takes some time before the temperature rises down in the ground. At the surface, the
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temperature has then fallen. We are interested in how the temperature varies down
in the ground because of temperature oscillations on the surface.

Assuming homogeneous horizontal properties of the ground, at least locally,
and no variations of the temperature at the surface at a fixed point of time, we
can neglect the horizontal variations of the temperature. Then a one-dimensional
diffusion equation governs the heat propagation along a vertical axis called x. The
surface corresponds to x = 0 and the x axis point downwards into the ground. There
is no source term in the equation (actually, if rocks in the ground are radioactive, they
emit heat and that can be modeled by a source term, but this effect is neglected here).

At some depth x = L we assume that the heat changes in x vanish, so ∂u/∂x = 0
is an appropriate boundary condition at x = L. We assume a simple sinusoidal
temperature variation at the surface:

u(0, t) = T0 + Ta sin

(
2π

P
t

)

,

where P is the period, taken here as 24 h (24 · 60 · 60 s). The β coefficient may be
set to 10−6 m2/s. Time is then measured in seconds. Set appropriate values for T0
and Ta .

a) Show that the present problem has an analytical solution of the form

u(x, t) = A + Be−rx sin(ωt − rx),

for appropriate values of A, B, r , and ω.
b) Solve this heat propagation problem numerically for some days and animate

the temperature. You may use the Forward Euler method in time. Plot both
the numerical and analytical solution. As initial condition for the numerical
solution, use the exact solution during program development, and when the
curves coincide in the animation for all times, your implementation works, and
you can then switch to a constant initial condition: u(x, 0) = T0. For this
latter initial condition, how many periods of oscillations are necessary before
there is a good (visual) match between the numerical and exact solution (despite
differences at t = 0)?

Filename: ground_temp.py.

Exercise 9.3: Compare Implicit Methods
An equally stable, but more accurate method than the Backward Euler scheme, is
the so-called 2-step backward scheme, which for an ODE u′ = f (u, t) can be
expressed by

3un+1 − 4un + un−1

2Δt
= f (un+1, tn+1) .

The Odespy package offers this method as odespy.Backward2Step. The purpose
of this exercise is to compare three methods and animate the three solutions:

1. The Backward Euler method with Δt = 0.001
2. The backward 2-step method with Δt = 0.001
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3. The backward 2-step method with Δt = 0.01

Choose the model problem from Sect. 9.2.4.
Filename: rod_BE_vs_B2Step.py.

Exercise 9.4: Explore Adaptive and Implicit Methods
We consider the same problem as in Exercise 9.2. Now we want to explore the use of
adaptive and implicit methods from Odespy to see if they are more efficient than the
Forward Euler method. Assume that you want the accuracy provided by the Forward
Euler method with its maximum Δt value. Since there exists an analytical solution,
you can compute an error measure that summarizes the error in space and time over
the whole simulation:

E =
√

ΔxΔt
∑

i

∑

n

(Un
i − un

i )
2 .

Here, Un
i is the exact solution. Use the Odespy package to run the following implicit

and adaptive solvers:

1. BackwardEuler
2. Backward2Step
3. RKFehlberg

Experiment to see if you can use larger time steps than what is required by the
Forward Euler method and get solutions with the same order of accuracy.

Hint To avoid oscillations in the solutions when using the RKFehlberg method, the
rtol and atol parameters to RKFFehlberg must be set no larger than 0.001 and
0.0001, respectively. You can print out solver_RKF.t_all to see all the time steps
used by the RKFehlberg solver (if solver is the RKFehlberg object). You can then
compare the number of time steps with what is required by the other methods.

Filename: ground_temp_adaptive.py.

Exercise 9.5: Investigate the θ Rule
a) The Crank-Nicolson method for ODEs is very popular when combined with

diffusion equations. For a linear ODE u′ = au it reads

un+1 − un

Δt
= 1

2
(aun + aun+1) .

Apply the Crank-Nicolson method in time to the ODE system for a one-
dimensional diffusion equation. Identify the linear system to be solved.
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b) The Backward Euler, Forward Euler, and Crank-Nicolson methods can be given
a unified implementation. For a linear ODE u′ = au this formulation is known
as the θ rule:

un+1 − un

Δt
= (1 − θ)aun + θaun+1 .

For θ = 0 we recover the Forward Euler method, θ = 1 gives the Backward
Euler scheme, and θ = 1/2 corresponds to the Crank-Nicolson method. The
approximation error in the θ rule is proportional to Δt , except for θ = 1/2
where it is proportional to Δt2. For θ ≥ 1/2 the method is stable for all Δt .

Apply the θ rule to the ODE system for a one-dimensional diffusion equation.
Identify the linear system to be solved.

c) Implement the θ rule with aid of the Odespy package. The relevant object name
is ThetaRule:

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

d) Consider the physical application from Sect. 9.2.4. Run this case with the θ rule
and θ = 1/2 for the following values of Δt: 0.001, 0.01, 0.05. Report what you
see.

Filename: rod_ThetaRule.py.

Remarks Despite the fact that the Crank-Nicolson method, or the θ rule with
θ = 1/2, is theoretically more accurate than the Backward Euler and Forward
Euler schemes, it may exhibit non-physical oscillations as in the present example
if the solution is very steep. The oscillations are damped in time, and decreases
with decreasing Δt . To avoid oscillations one must have Δt at maximum twice the
stability limit of the Forward Euler method. This is one reason why the Backward
Euler method (or a 2-step backward scheme, see Exercise 9.3) are popular for
diffusion equations with abrupt initial conditions.

Exercise 9.6: Compute the Diffusion of a Gaussian Peak
Solve the following diffusion problem:

∂u

∂t
= β

∂2u

∂x2 , x ∈ (−1, 1), t ∈ (0, T ] (9.34)

u(x, 0) = 1√
2πσ

exp

(

− x2

2σ 2

)

, x ∈ [−1, 1], (9.35)

∂

∂x
u(−1, t) = 0, t ∈ (0, T ], (9.36)

∂

∂x
u(1, t) = 0, t ∈ (0, T ] . (9.37)
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The initial condition is the famous and widely used Gaussian function with standard
deviation (or “width”) σ , which is here taken to be small, σ = 0.01, such that the
initial condition is a peak. This peak will then diffuse and become lower and wider.
Compute u(x, t) until u becomes approximately constant over the domain.
Filename: gaussian_diffusion.py.

Remarks Running the simulation with σ = 0.2 results in a constant solution
u ≈ 1 as t → ∞, while one might expect from “physics of diffusion” that the
solution should approach zero. The reason is that we apply Neumann conditions
as boundary conditions. One can then easily show that the area under the u curve
remains constant. Integrating the PDE gives

∫ 1

−1

∂u

∂t
dx = β

∫ 1

−1

∂2u

∂x2 dx .

Using the Gauss divergence theorem on the integral on the right-hand and moving
the time-derivative outside the integral on the left-hand side results in

∂

∂t

∫ 1

−1
u(x, t)dx = β

[
∂u

∂x

]1

−1
= 0.

(Recall that ∂u/∂x = 0 at the end points.) The result means that
∫ 1
−1 udx remains

constant during the simulation. Giving the PDE an interpretation in terms of heat
conduction can easily explain the result: with Neumann conditions no heat can
escape from the domain so the initial heat will just be evenly distributed, but not leak
out, so the temperature cannot go to zero (or the scaled and translated temperature
u, to be precise). The area under the initial condition is 1, so with a sufficiently fine
mesh, u → 1, regardless of σ .

Exercise 9.7: Vectorize a Function for Computing the Area of a Polygon
Vectorize the implementation of the function for computing the area of a polygon
in Exercise 5.6. Make a test function that compares the scalar implementation in
Exercise 5.6 and the new vectorized implementation for the test cases used in
Exercise 5.6.

Hint Notice that the formula x1y2 + x2y3 + · · · + xn−1yn = ∑n−1
i=0 xiyi+1 is

the dot product of two vectors, x[:-1] and y[1:], which can be computed
as numpy.dot(x[:-1], y[1:]), or more explicitly as numpy.sum(x[:-1]
*y[1:]).

Filename: polyarea_vec.py.

Exercise 9.8: Explore Symmetry
One can observe (and also mathematically prove) that the solution u(x, t) of the
problem in Exercise 9.6 is symmetric around x = 0: u(−x, t) = u(x, t). In such
a case, we can split the domain in two and compute u in only one half, [−1, 0]
or [0, 1]. At the symmetry line x = 0 we have the symmetry boundary condition
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∂u/∂x = 0. Reformulate the problem in Exercise 9.6 such that we compute only
for x ∈ [0, 1]. Display the solution and observe that it equals the right part of the
solution in Exercise 9.6.
Filename: symmetric_gaussian_diffusion.py.

Remarks In 2D and 3D problems, where the CPU time to compute a solution of
PDE can be hours and days, it is very important to utilize symmetry as we do above
to reduce the size of the problem.

Also note the remarks in Exercise 9.6 about the constant area under the u(x, t)

curve: here, the area is 0.5 and u → 0.5 as t → 0.5 (if the mesh is sufficiently
fine—one will get convergence to smaller values for small σ if the mesh is not fine
enough to properly resolve a thin-shaped initial condition).

Exercise 9.9: Compute Solutions as t → ∞
Many diffusion problems reach a stationary time-independent solution as t → ∞.
The model problem from Sect. 9.2.4 is one example where u(x, t) = s(t) = const
for t → ∞. When u does not depend on time, the diffusion equation reduces to

−βu′′(x) = f (x),

in one dimension, and
−β∇2u = f (x),

in 2D and 3D. This is the famous Poisson equation, or if f = 0, it is known as the
Laplace equation. In this limit t → ∞, there is no need for an initial condition, but
the boundary conditions are the same as for the diffusion equation.

We now consider a one-dimensional problem

− u′′(x) = 0, x ∈ (0, L), u(0) = C, u′(L) = 0, (9.38)

which is known as a two-point boundary value problem. This is nothing but the
stationary limit of the diffusion problem in Sect. 9.2.4. How can we solve such a
stationary problem (9.38)? The simplest strategy, when we already have a solver for
the corresponding time-dependent problem, is to use that solver and simulate until
t → ∞, which in practice means that u(x, t) no longer changes in time (within
some tolerance).

A nice feature of implicit methods like the Backward Euler scheme is that one
can take one very long time step to “infinity” and produce the solution of (9.38).

a) Let (9.38) be valid at mesh points xi in space, discretize u′′ by a finite difference,
and set up a system of equations for the point values ui ,i = 0, . . . , N , where ui

is the approximation at mesh point xi .
b) Show that if Δt → ∞ in (9.16)–(9.18), it leads to the same equations as in a).
c) Demonstrate, by running a program, that you can take one large time step with

the Backward Euler scheme and compute the solution of (9.38). The solution is
very boring since it is constant: u(x) = C.

Filename: rod_stationary.py.
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Remarks If the interest is in the stationary limit of a diffusion equation, one can
either solve the associated Laplace or Poisson equation directly, or use a Backward
Euler scheme for the time-dependent diffusion equation with a very long time step.
Using a Forward Euler scheme with small time steps is typically inappropriate in
such situations because the solution changes more and more slowly, but the time
step must still be kept small, and it takes “forever” to approach the stationary state.
This is yet another example why one needs implicit methods like the Backward
Euler scheme.

Exercise 9.10: Solve a Two-Point Boundary Value Problem
Solve the following two-point boundary-value problem

u′′(x) = 2, x ∈ (0, 1), u(0) = 0, u(1) = 1 .

Hint Do Exercise 9.9. Modify the boundary condition in the code so it incorporates
a known value for u(1).

Filename: 2ptBVP.py.
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AInstallation and Use of Python

This appendix addresses1 a few issues related to the installation and use of Python on
different platforms. In addition, the accessing of Python in the cloud is commented
in brief.

A.1 Recommendation: Install Anaconda and Odespy

If you install Anaconda, the only additional package you need for running
all the software in the present book, is Odespy. The original version
of Odespy was written in Python 2.7 by H.P. Langtangen and L. Wei
(https://github.com/hplgit/odespy), but since the sad loss of Prof. Langtangen in
October 2016, Thomas Anthony has made an updated version for Python 3.6
(https://github.com/thomasantony/odespy/tree/py36/odespy). In the present book,
we use this version of Odespy to demonstrate how ordinary differential equations
alternatively may be solved with ready-made software.

A.2 Required Software

If you, for some reason, decide to install something else than Anaconda, you should
know what software components that are required for running the programs in this
book:

• Python2 version 3.6 [24]
• Numerical Python3 (NumPy) [18, 19] for array computing

1 Some of the text is taken from the 4th edition of the book A Primer on Scientific Programming
with Python, by H. P. Langtangen, published by Springer, 2014.
2 http://python.org.
3 http://www.numpy.org.

© The Author(s) 2020
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• Matplotlib4 [7, 8] for plotting
• IPython5 [21, 22] for interactive computing
• SymPy6 [2] for symbolic mathematics
• Spyder7 if you want to write and run your programs as we (primarily) do in this

book.

In addition, allthough not used herein, the following packages might be of interest
to you (probably at some later stage, if you are a newbie):

• SciTools8 [13] for add-ons to NumPy
• ScientificPython9 [26] for add-ons to NumPy
• pytest10 or nose11 for testing programs
• pip12 for installing Python packages
• Cython13 for compiling Python to C
• SciPy14 [9] for advanced scientific computing

Converting a Python 2 Program to Python 3

Python comes in two versions, version 2 and 3, and these are not fully
compatible. However, for the programs in this book, the differences are very
small, the major one being print, which in Python 2 is a statement like

print ’a:’, a, ’b:’, b

while in Python 3 it is a function call

print( ’a:’, a, ’b:’, b)

The code in this book is written in Python 3.6. However, you may come
across code elsewhere that is written in Python 2, and you might prefer to
have that code in Python 3. The good news, is that porting code from Python
2 to Python 3 is usually quite straight forward. One alternative, is to use the
program 2to3. Running 2to3 prog.py will transform a Python 2 program
prog.py to its Python 3 counterpart. One can also use tools like future or
six to easily write programs that run under both Python 2 and 3. Also, the
futurize program can automatically do this for you based on v2.7 code.

4 http://matplotlib.org.
5 http://ipython.org.
6 http://sympy.org.
7 https://github.com/spyder-ide/spyder.
8 https://github.com/hplgit/scitools.
9 http://starship.python.net/crew/hinsen.
10 http://pytest.org/latest/.
11 https://nose.readthedocs.org.
12 http://www.pip-installer.org.
13 http://cython.org.
14 http://scipy.org.
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As alternatives to installing the software on your own laptop, you may:

1. Use a computer system at an institution where the software is installed. Such
a system can also be used from your local laptop through remote login over a
network.

2. Use a web service.

A system administrator can take the list of software packages and install the missing
ones on a computer system.

Using a web service is straightforward, but has the disadvantage that you are
constrained by the packages that you are allowed to install on the service. There
are services (at the time of this writing) that suffice for basic scientific Python
programming. However, for more complicated mathematical problems, you will
need more sophisticated packages, more storage and more computer resources,
which means that you will greatly benefit from having Python installed on your
own computer.

A.3 Anaconda and Spyder

Anaconda15 is a free Python distribution (by Continuum Analytics) with hundreds
of excellent Python packages, as well as Python itself, for doing a wide range of
scientific computations.

The Integrated Development Environment (IDE) Spyder comes with Anaconda
and is our recommended tool for writing and running Python programs, unless
you prefer a plain text editor for the writing of programs and a terminal window
(explained below, see Appendix A.4.3) for running them.

A.3.1 Spyder on Mac

Spyder is started by typing spyder in a (new) Terminal application. If you get an
error message unknown locale, you need to type the following line in the Terminal
application, or preferably put the line in your $HOME/.bashrc Unix initialization
file:

export LANG=en_US.UTF-8; export LC_ALL=en_US.UTF-8

A.3.2 Installation of Additional Packages

Anaconda installs the pip tool that is handy for installing additional packages. In a
Terminal application on Mac, or in a PowerShell terminal on Windows, write

Terminal

pip install --user packagename

15 https://www.anaconda.com/distribution.

https://www.anaconda.com/distribution
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A.4 How toWrite and Run a Python Program

You have basically three choices to develop and test a Python program:

1. use an IDE like Spyder, which offers a window with a text editor and functional-
ity to run programs and observe the output

2. use a text editor and a terminal window
3. use the Jupyter notebook

A.4.1 Spyder

Spyder is a graphical application for developing and running Python programs,
available on all major platforms. Spyder comes with Anaconda and some other
pre-built environments for scientific computing with Python. On Ubuntu it is
conveniently installed by sudo apt-get install spyder.

The left pane in Spyder contains a plain text editor and this is where you
will write your programs. As a quick test, write and run the following lit-
tle program (compare also with Fig. A.1). Click in the editor pane and write
print(’Hello!’). Save this to a file (File and Save as from the menu) called,
e.g., Spyder_test.py. Then, choose Run from the Run pull-down menu, and
observe the output Hello! in the lower right pane, which is where program output
appears. The upper right pane (file explorer) allows you to view and manage files.

With different settings (can be changed via the menu), the appear-
ance and functioning of the Spyder environment may be changed in many
ways. Much more details about the Spyder environment can be found at
https://www.spyder-ide.org/.

Fig. A.1 The Spyder Integrated Development Environment with a simple program that prints
Hello!

https://www.spyder-ide.org/
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A.4.2 Text Editors

The most widely used editors for writing programs are Emacs and Vim, which are
available on all major platforms. Some simpler alternatives for beginners are

• Linux: Gedit
• Mac OS X: TextWrangler
• Windows: Notepad++

We may mention that Python comes with an editor called Idle, which can be used
to write programs on all three platforms, but running the program with command-
line arguments is a bit complicated for beginners in Idle so Idle is not my favorite
recommendation.

Gedit is a standard program on Linux platforms, but all other editors must be
installed in your system. This is easy: just google the name, download the file, and
follow the standard procedure for installation. All of the mentioned editors come
with a graphical user interface that is intuitive to use, but the major popularity of
Emacs and Vim is due to their rich set of short-keys so that you can avoid using the
mouse and consequently edit at higher speed.

A.4.3 Terminal Windows

To run the Python program, you may use a terminal window. This is a window
where you can issue Unix commands in Linux and Mac OS X systems and DOS
commands in Windows. On a Linux computer, gnome-terminal is my favorite, but
other choices work equally well, such as xterm and konsole. On a Mac computer,
launch the application Utilities—Terminal. On Windows, launch PowerShell.

You must first move to the right folder using the cd foldername command.
Then running a python program prog.py is a matter of writing python prog.py.
Whatever the program prints can be seen in the terminal window.

A.4.4 Using a Plain Text Editor and a Terminal Window

1. Create a folder where your Python programs can be located, say with name
mytest under your home folder. This is most conveniently done in the terminal
window since you need to use this window anyway to run the program. The
command for creating a new folder is mkdir mytest.

2. Move to the new folder: cd mytest.
3. Start the editor of your choice.
4. Write a program in the editor, e.g., just the line print(’Hello!’). Save the

program under the name myprog1.py in the mytest folder.
5. Move to the terminal window and write python myprog1.py. You should see

the word Hello! being printed in the window.
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A.5 Python with Jupyter Notebooks andWeb Services

You can avoid installing Python on your machine by using a web service that allows
you to write and run Python programs. One excellent such web service is CoCalc
(https://cocalc.com/), previously known as SageMathCloud, which supports the use
of Jupyter notebooks (and more).

Such notebooks are great, in particular for report writing, in that they allow text,
mathematics, code and graphics to all be worked out in a single document. The code
in the document can be developed, modified and run, producing updated plots that
become part of a new version of the document (or report). You find the information
you need at https://jupyter.org/.

https://cocalc.com/
https://jupyter.org/
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Discontinuous coefficient, 238
Divergence, 185
Division

quotient, 45
remainder, 45

DocOnce, xii
Domain, 157, 162, 163, 288

complex, 163
Double integral

midpoint, 157
Double sum, 159
Dynamical system, 203

elif, 68
else, 68
Emacs, 11, 314
Error

asymptotic, 152
function (erf), 141
message, 33
rounding, 45, 154
tolerance, 154

Euler
pi, 76

Euler’s method, 210, 216
Euler-Cromer method, 245
Exception handling, 33, 106, 186
Execute (a program), 4
exit (sys), 110, 119, 185, 188, 191
exp (notation), 212
Explicit method, 246

False, 46
Fast code, 35
Fibonacci numbers, 125
Finite difference method, 213
Finite precision (of float), 153
Flat program, 275
float

type, 42
Floating point number (float), 7
for loop, 59

header, 59
Format string syntax, 27
Fortran, 2
Forward difference approximation, 215
Forward Euler method, 210
Forward Euler scheme, 216
Fourier series, 101
from, 13
Function, 7, 13, 79

argument, 7
call, 13
definition, 79
global, 88
lambda, 87
local, 88

nested, 88
return, 13, 88

Game, 75
Garbage collection, 36
Gauss quadrature, 145
Gedit, 11, 314
Grid, 213

Halley’s method, 199
Heat equation, 287
Heun’s method, 246
hold (on/off), 24

Idle, 314
if, 68
Implement (a program), 4
Implementation

general, 136
specific, 136

Implicit method, 246
import

interactive session, 39
math, 13, 17
matplotlib.pyplot, 19
matplotlib.pyplot as plt, 18
name change, 18
no prefix, 14
numpy, 17
numpy as np, 19
odespy, 249
prefix, 17
random, 72
sympy as sym, 111
sys, 117

Indent, 60, 66, 68
Indexing

one based, 47
zero based, 47

Infinite loop, 67
Initial condition

ODE, 209
PDE, 288

input, 32
Instability, 299
Instruction, 2
int

type, 42
Integral

analytically, 131
approximately, 131
exact, 131
numerically, 131

Integration points, 132
Interactive session, 5
Interactive use (of Python), 39
Interpreter, 6
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IPython, 39
Item, 12

Lambda function, 87
lambdify, 187
Language

computer, 2
programming, 2

Laplace equation, 308
Leapfrog method, 278
Least squares method, 100
Leibniz

pi, 76
len (function), 47
Library, 13

function, 13
Linear algebra, 52
Linear interpolation, 99
linspace (function), 20
list, 32, 103

append, 103
comprehension, 105
convert to array, 103
create, 103
delete, 103
insert, 103

Logistic model
carrying capacity, 222

Long lines (splitting of), 36
Loop

for, 59
infinite, 67
iteration, 59, 65
variable, 59, 65
while, 65

Main program, 82
Maple, 2
math, 13
Mathematica, 2, 112
Mathematical modeling, 231
MATLAB, 2
matplotlib.pyplot, 19
Matrix, 52

tridiagonal, 303
vector product, 52

max (function), 224
Mesh, 213

function, 213
points, 213, 290
uniform, 213

Method of least squares, 100
Method of lines (MOL), 290
Midpoint method, 142
Model

computational, 211
differential equation, 210

mathematical, 5, 210
Module, 13
MOL, 290

forward Euler, 290
Monte Carlo integration, 163
Multi-step methods, 280

NameError, 13
New line, 27
Newton

starting value, 187
Newton-Raphson’s method, 181
Newton’s method, 181
None, 80, 178
Nonlinear algebraic equation, 175, 247
nose (testing), 155
Notepad++, 11, 314
Numerical Python (NumPy), 14, 47
Numerical scheme, 216
numpy, 14, 54

Object, 7, 41
Octave, 2
ODE, 203

first-order, 203
scalar, 232
second-order, 203
vector, 232

Operator
arithmetic, 44
precedence, 44

Ordinary differential equation, 203

Package, 14, 18
Parameter

input, 79
keyword, 80
positional, 80

Parentheses
use of, 45

PDE, 203, 287
Plot, 4, 19
Poisson equation, 308
print, 5
Printing

formatted, 27
f-string, 31

Program
crash, 33
execute, 6, 10
input, 32
output, 32
run, 6, 10
statement, 6
testing, 34
typing, 10
verification, 34
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Programming, 2
game, 75

Prompt, 39
Pseudo-random numbers, 54
py.test, 155
Python, 2

documentation, 34
installation, 4
interpreter, 6
shell, 39
zero-based indexing, 47

randint, 54
random, 54
random (function), 72
Random numbers, 54

vectorized, 54
Random walk (2D), 72
range (function), 63
Rate of convergence, 152, 192
Read (from file), 122
Readable code, 34
Refactor a program, 275
Reserved words, 41
Resonance, 262
return, 79

value, 85
RK2, 246
Root finding, 176
Rounding error, 45, 154, 169
Runge-Kutta-Fehlberg, 252
Runge-Kutta, 2nd-order method, 246
Runge-Kutta, 3rd order, 279

Sage (symbolic package), 113
Scalar ODE, 232
Scaling, 261, 298
Scheme, 183
Script (and scripting), 3
secant method, 188
Second-order ODE rewritten as two first-order

ODEs, 241
2nd-order Runge-Kutta method, 246
Seed, 54, 167

fixing the, 54
Semi-colon, 8
Semi-implicit Euler method, 245
Simple pendulum, 241
Simpson’s rule, 145
Simulation, 4
Single-step methods, 280
SIR model, 225
Source term, 288
split (function), 122
Spring

damping of, 239, 257
linear, 260

nonlinear, 257
oscillations, 239

Spyder, 4
Stability criterion, 297
Statements, 7
Stop program (Ctrl+c), 67
str

type, 42
Symbolic

computations, 111
operations, 111
simplifications, 111

SymPy, 111
Syntax, 2
sys.exit, 110, 119, 185, 188, 191
System of ODEs, 232

Taylor series, 277
Test block, 119
Test function, 155
Testing, 34
Testing procedures, 151
Text editor, 11
TextWrangler, 11, 314
ThetaRule, 306
Transpose (of matrix), 52
Trapezoidal rule, 134
Tridiagonal matrix, 303
Triple integral

midpoint, 161
True, 46
try-except, 106, 186
Tuple, 32, 103
Type

conversion, 42
float, 42
int, 42
str, 42

uniform, 54
Unit tests, 150
Unstable solutions, 297
User, 32

Validation, 34
Variable, 7

assignment, 7, 41
delete, 36
global, 83
local, 83
name, 41

Vector, 52
vectorization, 146, 299
vector ODE, 232
Verification, 34
Verlet integration, 267
Vim, 11, 314
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WARNING, 13
while loop, 65
WolframAlpha, 112
Write (to file), 122

xlabel, 21

ylabel, 21

zeros (function), 47
zip (function), 103, 122
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