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Preface

Radio spectrum, as an indispensable enabler of wireless communications, is
becoming a severely scarce resource with the explosive growth of wireless traffic
and massive connections of devices. Because of the spectrum scarcity problem,
millimeter-wave band and Tera-Hertz band are being explored for cellular mobile
communications. However, measurements have shown that the radio spectrum is
experiencing underutilization due to the adoption of static and exclusive spectrum
allocation method. It is expected that the spectrum allocation policy will be evolved
from the fixed manner to dynamic spectrum management (DSM), in order to make
full use of the radio spectrum.

The success of DSM, however, attributes not only to the availability of technical
methodologies, but also to the support from the spectrum policy. Cognitive radio
(CR) is the state-of-the-art enabling technique for DSM. With CR, an unlicensed/
secondary user is able to opportunistically or concurrently access spectrum bands
owned by the licensed/primary users. On the other hand, blockchain, as an essen-
tially open and distributed ledger, incentivizes the formulation and secures the
execution of the policies for DSM. Finally, artificial intelligence (AI) techniques
help the users observe and interact with the dynamic radio environment, thereby
improving the efficiency and robustness of CR and blockchain for DSM.

This book provides a systematic overview of the above three technologies for
DSM, and reviews several communication systems that use DSM. It is intended for
a broad range of readers, including the students and the researchers in wireless
communications, as well as the radio spectrum policymakers. We hope the con-
cepts, theories and methodologies presented in this book could offer useful refer-
ences and guidance to the readers.

Chengdu, China Ying-Chang Liang
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Chapter 1
Introduction

Abstract Facing the increasing demand of radio spectrum to support the emerging
wireless services with heavy traffic, massive connections and various quality-of-
services (QoS) requirements, themanagement of spectrumbecomes unprecedentedly
challenging nowadays. Given that the traditional fixed spectrum allocation policy
leads to an inefficient usage of spectrum, the dynamic spectrummanagement (DSM)
is proposed as a promising way to mitigate the spectrum scarcity problem. This
chapter provides an introduction of DSM by firstly discussing its background, then
presenting the two popular models: the opportunistic spectrum access (OSA) model
and the concurrent spectrumaccess (CSA)model. Threemain enabling techniques for
DSM, including the cognitive radio (CR), the blockchain and the artificial intelligence
(AI) are briefly introduced.

1.1 Background

Radio spectrum is a natural but limited resource that enables wireless communi-
cations. The access to the radio spectrum is under the regulation of government
agencies, such as the Federal Communications Commission (FCC) in the United
States (US), the Office of Communications (Ofcom) in the United Kingdom (UK),
and the Infocomm Development Authority (IDA) in Singapore. Conventionally, the
regulatory authorities adopt the fixed spectrum access (FSA) policy to allocate dif-
ferent parts of the radio spectrum with certain bandwidth to different services. In
Singapore, for example, the 1805–1880MHz band is allocated to GSM-1800, and
it cannot be accessed by other services at any time. With such static and exclusive
spectrum allocation policy, only the authorized users, also known as licensed users,
have the right to utilize the assigned spectrum, and the other users are forbidden
from accessing the spectrum, no matter whether the assigned spectrum is busy or
not. Although the FSA can successfully avoid interference among different appli-
cations and services, it quickly exhausts the radio resource with the proliferation of
new services and networks, resulting in the spectrum scarcity problem.

The statistics of spectrum allocation around the world show that the radio spec-
trum has been almost fully allocated, and the available spectrum for deploying new
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2 1 Introduction

services is quite limited. The emerging of massive connections of internet-of-things
(IoT) devices accelerates the crisis of spectrum scarcity. According to the study in
[1], around 76GHz spectrum resource is needed for accommodating billions of end
devices by exclusive occupying the spectrum. Nevertheless, extensive measurements
conducted worldwide such as US [2], Singapore [3], Germany [4], New Zealand [5]
and China [6], have revealed that large portions of the allocated radio spectrum are
underutilized. For instance, in US, the average occupancy over 0–3GHz radio spec-
trum at Chicago is 17.4%. This number is even as low as approximately 1% at West
Virginia. In Singapore, the average occupancy over 80–5850MHz band is less than
5%. These findings reveal that the inflexible spectrum allocation policy leads to an
inefficient utilization of radio spectrum, and strongly contributes to the spectrum
scarcity problem even more than the physical shortage of the radio spectrum.

1.2 Dynamic Spectrum Management

The contradiction between the scarcity of the available spectrum and the underutiliza-
tion of the allocated spectrum necessitates a paradigm shift from the inefficient FSA
to the flexible and high-efficient spectrum access. In this context, dynamic spectrum
management (DSM) has been proposed and recognized as an effective approach to
mitigate the spectrum scarcity problem. It has been foreseen that by using DSM, the
spectrum requirement for deploying the billions of internet-of-things (IoT) devices
can be sharply reduced from 76 to 19GHz [7]. In DSM, the users without license,
also known as secondary users (SUs), can access the spectrum of authorized users,
also known as primary users (PUs), if the primary spectrum is idle, or can even share
the primary spectrum provided that the services of the PUs can be properly protected.
By doing so, the SUs are able to gain transmission opportunity without requiring ded-
icated spectrum. This spectrum access policy is known as dynamic spectrum access
(DSA). According to the way of coexistence between PUs and SUs, there are two
basic DSA models: (1) The opportunistic spectrum access (OSA) model and (2) the
concurrent spectrum access (CSA) model.

1.2.1 Opportunistic Spectrum Access

A spectrum usage in the OSA model is illustrated in Fig. 1.1. Due to the sporadic
nature of the PU transmission, there are time slots, frequency bands or spatial direc-
tions at which the PU is inactive. The frequency bands on which the PUs are inactive
are referred to as spectrum holes. Once one or multiple spectrum holes are detected,
the SUs can temporarily access the primary spectrum without interfering the PUs by
configuring their carrier frequency, bandwidth andmodulation scheme to transmit on
the spectrum holes. When the PUs become active, the SUs have to cease their trans-
mission and vacate from the current spectrum. To enable the operation of the OSA,
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Fig. 1.1 An illustration of
spectrum usage in the OSA
model

the SU needs to obtain the accurate information of spectrum holes, so that the quality
of services (QoS) of the PUs can be protected. Two factors determine the method
that the SU can adopt to detect the spectrum holes. One factor is the predictability of
the PU’s presence and absence, and the other factor is whether the primary system
can actively provide the information of the spectrum usage. Accordingly, there are
basically two methods which can be adopted by SUs to detect spectrum holes.

(1) Geolocation Database

If the PU’s activity is regular and highly predictable, the geographical and temporal
usage of spectrum can be recorded in a geolocation database to provide the accurate
status of the primary spectrum. For accessing the primary spectrum without inter-
fering the PUs, an SU firstly obtains its own geographic coordinates by its available
positioning system, and then checks the geolocation database for a list of bands on
which the PUs are inactive in the SU’s location. The geolocation database approach
is suitable for the case when the PUs’ presence and absence are highly predictable,
and the spectrum usage information can be publicized for achieving a highly effi-
cient utilization of spectrum [8–10]. For example, in the final rules set by the FCC
for unlicensed access over TV bands, the geolocation database is the only approach
that is adopted by unlicensed devices for protecting the incumbent TV broadcasting
services [11]. Nevertheless, for other services, such as cellular communications, the
activities of users are difficult to be predicted and there is lack of incentive for the PUs
to provide their spectrum usage, especially when the primary and secondary services
belong to different operators. In this case, the geolocation database is inapplicable.

(2) Spectrum Sensing

Without a geolocation database, an SU can carry out spectrum sensing periodically
or consistently to monitor the primary spectrum and detect the spectrum holes.When
there are multiple SUs, cooperative spectrum sensing can be applied to improve the
sensing accuracy [12–17]. Different from the previous method where the accurate
spectrum usage information is recorded in the geolocation database, the spectrum
sensing is essentially a signal detection technique, which could be imperfect due to
the presence of noise and channel impairment, such as small-scale fading and large-
scale shadowing [18]. To measure the performance of spectrum sensing, two main
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metrics, i.e., the probability of detection and the probability of false alarm, are used.
The former one is the probability of detecting the PU as being present when the PU
is active indeed. Thus, it describes the degree of protection to the PUs, i.e., a higher
probability of detection provides a better protection to the PUs. The latter one is the
probability of detecting the PU as being present when the PU is actually inactive.
Therefore, it can be regarded as an indication of exploration to the spectrum access
potential. A lower probability of false alarm indicates more transmission opportuni-
ties can be utilized by the SUs, and thus better SU performance, such as throughput,
can be achieved. To this end, a good design of spectrum sensing should have a high
probability of detection but low probability of false alarm. However, these two met-
rics are generally conflicting with each other. Given a spectrum sensing scheme, the
improvement of probability of detection is achieved at the expense of increasing
probability of false alarm, which leads to less spectrum access opportunities for the
SUs. In another word, a better protection to the PUs is at the expense of the degra-
dation of the SU’s performance. To improve the performance of spectrum sensing,
there has been a lot of work on designing different detection schemes or allowing
multiple SUs to cooperatively perform spectrum sensing [12–17].

It is worth noting that the spectrum sensing is an essential tool for enabling DSA
and deserves continued development from the research communities. Although spec-
trum sensing is not mandatory for the unlicensed access over TV white space, the
current standards developed such as IEEE 802.22 and ECMA 392 still use a combi-
nation of geolocation database and spectrum sensing [19–21]. In some literatures, the
OSAmodel is also referred to as spectrum overlay [22], or interweave paradigm [23].

1.2.2 Concurrent Spectrum Access

A typical CSA model is shown in Fig. 1.2, where the SU and the PU are transmitting
on the same primary spectrum concurrently. In this type of DSA, the secondary trans-
mitter (SU-Tx) inevitably produces interference to the primary receiver (PU-Rx).
Thus, to enable the operation of the CSA, the SU-Tx needs to predict the interfer-
ence level at the PU-Rx caused by its own transmission, and limit the interference
to an acceptable level for the purpose of protecting the PU service. In practice, a
communication system is usually designed to be able to tolerate a certain amount of
interference. For example, a user in a code-division multiple access (CDMA) based
third-generation (3G) cellular network can tolerate interference from other users and
compensate the degradation of signal-to-interference-plus-noise ratio (SINR) via the
embedded inner-loop power control. Such level of tolerable interference is known
as interference temperature, which is also referred to, in some literatures, as inter-
ference margin. The concurrent transmission of SU-Tx is allowed only when the
interference received by the PU-Tx is no larger than the interference temperature.
Therefore, different from the OSA model where the geolocation database or spec-
trum sensing is used for detecting spectrum holes, interference control is critical for
CSA to protect the PU services.



1.2 Dynamic Spectrum Management 5

Fig. 1.2 An illustration of
the spectrum sharing model

The protection of the PU is mathematically formulated as an interference power
constraint. A basic interference power constraint indicates that the instantaneous
interference power received by PU-Rx is no larger than the interference temperature.
Such a formulation requires that the SU-Tx has the information of the interference
temperature provided by PU-Rx and the channel state information (CSI) from SU-Tx
to PU-Rx, also known as cross channel state information (C-CSI), to quantify the
actual interference received by the PU-Rx. Variants of the basic interference power
constraint result in different performance of the secondary system. For example,
the average interference power constraint gives better secondary throughput than
the peak interference power constraint [24, 25]. This is because that the former
constraint is less stringent, and in some fading states it allows the interference exceed
the interference temperature. Furthermore, if there are multiple SUs, the secondary
system can exploit the multiuser diversity (MUD) to improve secondary capacity by
choosing the SU with best receive quality and least interference to the PU-Rx to be
active for transmitting or receiving. The MUD of sharing a single frequency band
was carefully studied in [26–29]. To benefit from the interference diversity or MUD,
the CSI from SU-Tx to SU-Rx and SU-Tx to PU-Rx should be known by the SU-Tx.

Exploiting the primary system information can offer more sharing opportunities.
In [30], rate loss constraint was proposed to restrict the performance degradation of
the PU due to the secondary transmission. To formulate this constraint, not only the
C-CSI, but also the CSI from PU-Tx to PU-Rx and the transmit power of PU-Tx
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are required [31]. Without direct cooperation between the primary and secondary
systems, the SU-Tx can trigger the power adaptation of primary system by inten-
tionally sending the probing signal with a high power [32, 33]. To tackle the strong
interference, PU-Tx will increase its transmit power which can be heard by the SU-
Rx. Then, the secondary system deduces the interference temperature provided by
the primary system and estimates the C-CSI, which is the critical information for
secondary system to successfully share the primary spectrum.

It is worth noting that, similar to OSA, the protection to the primary system and
the secondary throughput are contradictory with each other. A stringent protection
requirement of the primary system leads to a low secondary throughput. Therefore,
making good use of the interference temperature is the way to optimize the per-
formance of the secondary system in the CSA model. In some literatures, the CSA
model is also referred to as spectrum underlay [33].

The comparison of OSA and CSA is summarized in Table1.1. It can be seen
that when the PU is off, the SU can transmit with its maximum power based on
OSA model. However, when the PU is on, the SU can still transmit by regulating
its transmit power based on the CSA model, rather than keep silent according to the
OSA model. Such a hybrid spectrum access model combines the benefits of OSA
and CSA, which gains higher spectrum utilization. Moreover, in the aforementioned
OSA and CSAmodels, the PUs have higher priority than the SUs, and thus should be
protected. Such aDSA is also known as hierarchical accessmodel, since the priorities
of accessing the spectrum are different based on whether the users are licensed or
not. In the hierarchical access model, since the PUs are usually legacy users, the
cooperation between the primary and secondary systems are unavailable, and only
the SUs are responsible to carry out spectrum detection or interference control. In
some cases, the primary system is willing to lease its temporarily unused spectrum
to the SUs by receiving the leasing fee, which is an incentive for the PUs to provide
certain form of cooperation. In the literatures, the DSA model in which all of the
users have equal priorities to access the spectrum has also received lots of attention,
such as license-shared access (LSA) and spectrum sharing in unlicensed band [34–
36]. Although there is no cap of interference introduced to the others, in this DSA
model, each user has to take the responsibility to protect the others or keep fairness
in accessing the spectrum.

Table 1.1 Comparison of OSA and CSA

OSA CSA

Whether SU is always on? No Yes

How to learn the environment? Spectrum sensing, geolocation
database

Channel estimation,
interference prediction

Techniques to protect PU No transmission when PU is on Interference control

Measurement of PU protection Detection probability Interference temperature,
performance loss margin
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1.3 Cognitive Radio for Dynamic Spectrum Management

Cognitive radio (CR) has been widely recognized as the key technology to enable
DSA. A CR refers to an intelligent radio system that can dynamically and
autonomously adapt its transmission strategies, including carrier frequency, band-
width, transmit power, antenna beam or modulation scheme, etc., based on the inter-
action with the surrounding environment and its awareness of its internal states (e.g.,
hardware and software architectures, spectrum use policy, user needs, etc.) to achieve
the best performance. Such reconfiguration capability is realized by software-defined
radio (SDR) processor with which the transmission strategies is adjusted by com-
puter software. Moreover, CR is also built with cognition which allows it to observe
the environment through sensing, to analyse and process the observed information
through learning, and to decide the best transmission strategy through reasoning.
Although most of the existing CR researches to date have been focusing on the
exploration and realization of cognitive capability to facilitate the DSA, the very
recent research has been done to explore more potential inherent in the CR technol-
ogy by artificial intelligence (AI).

A typical cognitive cycle for a CR is shown in Fig. 1.3. An SU with CR capabil-
ity is required to periodically or consistently observe the environment to obtain the
information such as spectrum holes in OSA or interference temperature and C-CSI in
CSA. Based on the collected information, it determines the best operational param-
eters to optimize its own performance subject to the protection to the PUs and then
reconfigures its system accordingly. The information collected over time can also
be used to analyse the radio environment, such as the traffic statistics and channel
fading statistics, so that the CR device can learn to perform better in future dynamic
adaptation.

Fig. 1.3 The cognitive cycle for CR
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Although enabling DSA with CR is a technical issue which involves multidisci-
plinary efforts from various research communities, such as signal processing, infor-
mation theory, communications, computer networking, andmachine learning [37], its
realization also largely depends on the willingness of regulators to open the spectrum
for unlicensed access. Fortunately, over the past decades, we have seen worldwide
efforts from regulatory bodies on eliminating regulatory barriers to facilitate DSA.
For example, in the US, the FCC set forth a few proposals for removing unnecessary
regulations that inhibit the development of secondary spectrum markets in Novem-
ber, 2000 [38]. Later, in December 2003, the FCC recognized the importance of CR
and promoted the use of it for improving spectrum utilization [39]. In May 2004,
the FCC issued a notice of proposed rulemaking (NPRM) that proposes to allow
the unlicensed devices (both fixed and personal/portable) to reuse the temporarily
unused spectrum of TV channels, i.e., TV white space [40], and the rules for such
unlicensed use were finalized in September 2010 [11]. In the national broadband plan
released in March 2010, the FCC also indicated its intention to enable more flexible
access of spectrum for unlicensed and opportunistic uses [41]. The TVwhite space is
considered to be very promising for a wide range of potential applications due to its
favorable propagation characteristics [11], and hence it has also drawn attention from
other regulators worldwide. For example, in the UK, the Ofcom proposed to allow
licence-exemptCRdevices to operate over the spectrum freed up due to analog to dig-
ital TV switchover in the statement of the Digital Dividend Review Project released
in December, 2007 [42]. In Singapore, the IDA has also recognized the potential
of TV white space technology and conducted trials for testing the feasibility and
developing regulatory framework to facilitate it [43].

Besides regulators’ efforts on spectrum “deregulation”, various standardization
communities have also been actively working on developing industrial standards
that expedite the commercialization of CR-based applications. Following the FCC’s
NPRM inMay 2004, the IEEE 802.22 working group was formed in November 2004
that aims to develop the first international standard that utilizes TVwhite space based
onCR [44, 45]. The standard specifies an air interface (both physical (PHY) layer and
medium access control (MAC) layer) for a wireless regional area network (WRAN),
which is designed to provide wireless broadband access for rural or suburban areas
for licensed-exempt fixed devices through secondary opportunistic access over the
VHF/UHF TV broadcast bands between 54 and 862MHz. The finalized version has
been published in July, 2011 [20]. The first international CR standard on the use of
personal/portable devices over TVWhite Spaces is ECMA 392 [46]. The first edition
of the standardwas finalized in December, 2009 by ECMA International based on the
draft specification contributed from cognitive networking alliance (CogNeA) [46]. It
specifies an air interface as well as a MUX sublayer for higher layer protocols [21],
which is targeted for in-home, in-building and neighborhood-area applications in
urban areas [46]. Other standards based on CR include IEEE 802.11af, IEEE 802.19,
IEEE SCC 41 (previously known as IEEE 1900), as well as the Third Generation
Partnership Project (3GPP) LTE Release 13 which introduces the licensed assisted
access (LAA) to utilize the 5GHz unlicensed bands for the operation of LTE [9,
47–49].
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1.4 Blockchain for Dynamic Spectrum Management

The past decade has witnessed the burst of blockchain, which is essentially an open
and distributed ledger. Cryptocurrency, notably represented by bitcoin [50], is one of
the most successful applications of blockchain. The price for one bitcoin started at
$0.30 in the beginning of 2011 and reached to the peak at $19,783.06 on 17December
2017, which reveals the optimism of the financial industry in it. Facebook, one of the
world biggest technology company, announced its own cryptocurrency project Libra
in June 2019. Besides the cryptocurrency, with its salient characteristics, blockchain
has many uses including financial services, smart contracts, and IoT. According to
a report from Tractica, a market intelligence firm, enterprise blockchain revenue
will reach $19.9 Billion by 2025 [51]. Moreover, blockchain is believed to bring
new opportunities to improve the efficiency and to reduce the cost in the dynamic
spectrum management.

Blockchain is essentially an open and distributed ledger, in which transactions
are securely recorded in blocks. In the current block, a unique pointer determined
by transactions in the previous block is recorded. In this way, blocks are chained
chronologically and tamper-evident, i.e., tampering any transaction stored in a pre-
vious block can be detected efficiently. The transactions initiated by one node are
broadcast to other nodes, and a consensus algorithm is used to decide which node
is authorized to validate the new block by appending it to the blockchain. With the
decentralized validation and record mechanism, blockchain becomes transparent,
verifiable and robust against single point of failures. Based on the level of decen-
tralization, blockchain can be categorized into public blockchain, private blockchain
and consortium blockchain. A public blockchain can be verified and accessed by all
nodes in the network, while a private blockchain or a consortium blockchain can
only be maintained by the permissioned nodes.

A smart contract, supported by the blockchain technology, is a self-executable
contract with its clauses being transformed to programming scripts and stored in a
transaction. When such a transaction is stored in the blockchain, the smart contract is
allocated with a unique address, through which nodes in the network can access and
interact with it. A smart contract can be triggered when the pre-defined conditions
are satisfied or when nodes send transactions to its address. Once triggered, the smart
contract will be executed in a prescribed and deterministic manner. Specifically, the
same input, i.e., the transaction sent to the smart contract, will derive the same
output. Using a smart contract, dispute between the nodes about transactions is
eliminated since that node can identify its execution outcome of the smart contract
by accessing it.

Blockchain has been investigated to support various applications of IoT. As a
decentralization ledger, blockchain can help integrate the heterogeneous IoT devices
and securely store the massive data produced by them. For instance, with data such
as how, where and when the different processes of production are completed being
immutably recorded in a blockchain and traceable to consumers, the quality of prod-
ucts can be guaranteed. Other uses of blockchain in IoT include smartmanufacturing,
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smart grid and healthcare [52]. Moreover, blockchain is also applied to manage the
mobile edge computing resources to support the IoT devices with limited computa-
tion capacity [53].

Recently, telecommunication regulator bodies have paid much attention to apply
blockchain technology to improve the quality of services, such as telephone num-
ber management and spectrum management. In the UK, Ofcom initiated a project
to explore how blockchain can be used to manage telephone numbers [54]. Specifi-
cally, a decentralized database could be established using the blockchain technology,
to improve the customer experience when moving a number between the service
providers, to reduce the regulatory costs and to prevent the nuisance calls and fraud.
On the other hand, blockchain is also believed to bring new opportunities to spectrum
management. According to a recent speech by FCC commissioner Jessica Rosen-
worcel, blockchain might be used to monitor and manage the spectrum resources to
reduce the administration cost and speed the process of spectrum auction [55]. It is
also stated that with the transparency of blockchain, the real-time spectrum usage
recorded in it can be accessible by any interested user. Thus, the spectrum utilization
efficiency can be further improved by dynamically allocating the spectrum bands
according to the dynamic demands submitted by users using blockchain.

Researchers have been investigating the application of blockchain in spectrum
management. In [56], applications of blockchain to spectrum management are dis-
cussed by pairing different modes of spectrum sharing with different types of
blockchains. In [57], authors provide the benefits of applying blockchain to the Citi-
zens Broadband Radio Service (CBRS) spectrum sharing scheme. In [58], dynamic
spectrum access enabled by spectrum auctions is secured by the use of blockchain.
In [59], smart contract supported by blockchain is used to intermediate the spec-
trum sensing service, provided by sensors, to the secondary users for opportunistic
spectrum access. In [60], dynamic spectrum access is enabled by the combination of
cryptocurrency which is supported by blockchain, and auction mechanism, to pro-
vide an effective incentive mechanism for cooperative sensing and a fair method to
allocate the collaboratively obtained spectrum access opportunity.

Essentially, there is a need to derive some basic principles to investigate why and
how applying blockchain to the dynamic spectrum management can be beneficial.
Specifically, we can use blockchain (1) as a secure database; (2) to establish a self-
organized spectrum market. Moreover, the challenges such as how to deploy the
blockchain network over the cognitive radio network should be also addressed.

• Blockchain as A Secure Database: The conventional geolocation database for
the usage of spectrum bands, such as TV white spaces, can be achieved by the
blockchain with increased security, decentralization and transparency. Moreover,
other information such as historical sensing results, outcomes of spectrum auctions
and access records can also be stored in the blockchain.

• Self-organized SpectrumMarket: A self-organized spectrummarket is desiredwith
its improved efficiency and reduced cost in administration compared to relying on
a centralized authority to manage the spectrum resources.With the combination of
smart contract, cryptocurrency, and the cryptographic algorithms for identity and
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transaction verification, blockchain can be used to establish a self-organized spec-
trum market. For example, traditional spectrum auctions usually need a trusted
authority to verify the authentication of the users, decide the winning user and
settle the payment process. With blockchain, specifically, with the smart contract,
spectrum auctions can be held in a secure, automatic and uncontroversial way.
Moreover, with the security provided by blockchain, transactions can be made
between users without any trust in each other. Thus, the high bar to obtain the
spectrum resources can be reduced. Besides the spectrum access right, other prop-
erty/services related to the spectrum management, such as the spectrum sensing,
can also be traded between users by smart contracts.

• Deployment of Blockchain: The consensus algorithm, such as Proof of Work
(PoW), through which a new block containing transactions can be added to the
blockchain, is usually computationally intensive. Thus, it is needed to consider
the limited computation capacity and battery of mobile users when deploying the
blockchain over the traditional cognitive radio network. Based on this, wewill pro-
vide three ways, including (1) enabling users to directly maintain a blockchain, (2)
using a dedicated blockchain maintained by a third-party authority, and (3) allow
users to simply offload the computation task to edge computing service providers
(ECSPs) while keeping the verification and validation authority to themselves.

In summary, the blockchain technologies have been believed to bring new
opportunities to the dynamic spectrummanagement, to hopefully improve the decen-
tralization, security and autonomy, and reduce the administration cost. While chal-
lenges such as the energy consumption, the deployment and design of blockchain
network over the traditional cognitive radio network should also be investigated.
With a detailed and systematic investigation on blockchain technologies to dynamic
spectrummanagement, which will be given in Chap.5, we believe the directions will
be more clear for the readers interested in the relevant researches.

1.5 Artificial Intelligence for Dynamic Spectrum
Management

AI,which is a discipline to construct intelligentmachine agents, has received increas-
ing attention. AlphaGo, the most famous AI agent, has beaten many professional
human players in Go games since 2015 [61]. In 2017, AlphaGo Master, the succes-
sor of Alpha Go, even defeated Ke Jie, who was the world No.1 Go player at the
time. The concept of AI was proposed by John McCarthy in 1956, and its primary
goal is to enable the machine agent to perform complex tasks by learning from the
environment [62]. Nowadays, AI has become one of the hottest topic both in the
academia and in the industry, and it is even believed to lead the development in the
information age [63]. Specifically, the AI techniques have been successfully applied
to many fields such as face and speech recognition. Moreover, AI techniques have
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shown potentials in the dynamic spectrum management, to improve the utilization
of the increasingly congested spectrum.

Machine learning (ML), as the core technique of AI, has been greatly developed
both in theories and applications [64]. Generally, there are three branches of the ML
techniques.

• Statistical Machine Learning: With the training data obtained and the task known,
statistical machine learning (SML) first constructs a statistical model, and then
trains the parameters in the model. After that, when new data arrives, the agent
is able to perform the task based on the learnt model. The commonly used SML
methods include support vector machine (SVM), K-nearest neighbor (KNN), K-
means and Gaussian mixture model (GMM).

• Deep Learning: Based on the artificial neural network (ANN), which has a strong
ability to approximate functions, deep learning (DL) is normally used in the classi-
fication tasks. Comparedwith the traditionalANN,DL is distinctivewith its deeper
architecture. Moreover, its performance is improved by designing and adopting
ad-hoc neural networks for data of different types, such as convolutional neural
network (CNN) for image data and recurrent neural network (RNN) for temporal
data.

• Deep Reinforcement Learning: Aiming to solve the sequential decision-making
tasks, deep reinforcement learning (DRL) allows the agent to maximize its long-
term profit by continuously interacting with the environments. The commonly
used DRLmethods are deep Q-network (DQN), double deep Q-network (DDQN),
asynchronous advantage actor-critic (A3C) and deep deterministic policy gradient
(DDPG).

The application of the AI techniques especially the above ML techniques to the
next-generation communications networks has attracted a significant amount of atten-
tion of the telecommunication regulators. In the U.S., the FCC hosted a forum on AI
and machine learning for 5G on Nov 30, 2018. In this forum, the panelists concluded
that the AI techniques could improve network operations and would become a criti-
cal component in the next-generation wireless networks [65]. It is stated by A. Pai,
the chairman of the FCC, that AI has the potentials to construct smarter communica-
tions networks and to improve the efficiency of the spectrum utilization [66]. In the
UK, Ofcom also recognized AI and machine learning as powerful technologies to
support 5G application scenarios such as ultra-reliable low-latency communications
(URLLCs) [67].

Motivated by the superiority of AI, many research organizations have been inves-
tigating on the applications of AI techniques to the dynamic spectrum management
[68]. The defense advanced research projects agency (DARPA) in the U.S. has held
a 3-year grand competition called “spectrum collaboration challenge” (SC2) since
2017 [69]. The main objective of the SC2 is to imbue wireless communications with
AI and machine learning so that intelligent strategies can be developed to optimize
the usage of wireless spectrum resource in real time. Recent works from national
institute of standards and technology (NIST) in the U.S. show that the AI-based
method greatly outperforms the traditional methods on spectrum sensing [70].
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Using the machine learning and AI techniques, the model-based schemes in the
traditionalDSMcan be transformed into data-driven ones. In thisway,DSMbecomes
more flexible and efficient. Specifically, we summarize the benefits of applying AI
techniques to the DSM as follows.

• Autonomous Feature Extraction: Without pre-designing and extracting the expert
features as in the traditional schemes, AI-based schemes can automatically extract
the features from data. In this way, the agent can achieve its objective without any
prior knowledge or assumptions of the wireless network environments.

• Robustness to the Dynamic Environment: With periodic re-training, the perfor-
mance of the data-driven approaches would not be significantly affected by the
change of the radio environment, resulting in the robustness to the environment.

• Decentralized Implementation: With the help of AI techniques, the spectrumman-
agement mechanisms can be achieved in a decentralized manner. This means
that the central controller is no longer needed and each device can independently
and adaptively obtain its required spectrum resource. Moreover, in the distributed
implementation, each device is allowed to only use its local observations of the
radio environment to make decisions. Thus, massive message exchange and sig-
naling overheads to acquire the global observations can be avoided.

• Reduced Complexity: In most AI-based schemes, management policies can be
directly obtained and repeatedly used after the convergence. In this way, the
repeated computation for obtaining the policies in the traditional schemes is
avoided. Additionally, the direct use of raw environmental data in AI-based
approaches eliminates the complexity of designing expert features and can even
achieve better performance.

However, there exist some challenges to achieve the AI-based DSM schemes. For
example, it is needed for an AI-based scheme to differentiate the importance of data
of different types in the radio environment. On that basis, the AI-based scheme is
more likely to extract features useful for its objective. Moreover, since there exist
huge computation overheads in the training of the existing AI techniques, how to
accelerate computation to reduce the latency and the expense is also a matter of
concern.

In summary, it is believed that the DSM would be achieved in a more efficient,
robust, flexible way by applyingAI andmachine learning techniques. However, chal-
lenges in the implementations of AI-based DSM schemes should also be addressed.
A detailed and systematic investigation on machine learning technologies and their
applications to the DSM will be presented in Chap. 6.

1.6 Outline of the Book

DSM has been recognized as an effective way to improve the efficiency of spectrum
utilization. In this book, three enabling techniques to DSM are introduced, including
CR, blockchain and AI.
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Chapters2–4 discuss the CR techniques. Specifically, the Chap.2 focuses on
the CR for OSA. We start with a brief introduction on the OSA model and the
functionality of sensing-access design at PHY and MAC layers. Then three classic
sensing-access design problems are introduced, namely, sensing-throughput trade-
off, spectrum sensing scheduling, and sequential spectrum sensing. Furthermore,
existing works on sensing-access design are reviewed. Finally, the application of the
OSA to operating LTE in unlicensed band (LTE-U) is discussed.

Chapter3 is especially used for discussing the spectrum sensing, which is the
critical technique for OSA. We first provide the fundamental theories on spectrum
sensing from the optimal likelihood ratio test perspective. Then, we review the clas-
sical spectrum sensing methods including Bayesian method, robust hypothesis test,
energy detection, matched filtering detection, and cyclostationary detection. After
that, we discuss the robustness of the classical methods and review techniques that
can enhance the sensing reliability under hostile environment. Finally, we discuss
the cooperative sensing that uses data fusion or decision fusion from multiple senors
to enhance the sensing performance.

Chapter4 focuses on the CR for CSA. We start with an introduction on the chal-
lenges existing in the CSA model. Then, the basic single-antenna CSA is presented
and the optimal transmit power design under different types of power constraints is
discussed. Furthermore, themulti-antennaCSA is presented and the channel informa-
tion acquisition and transceiver beamforming are discussed. After that, the transmit
and receive design for CRmultiple access channel and broadcasting channel are pre-
sented, which is followed by the discussion of the robust design for the multi-antenna
CSA. Finally, the application of CSA to operating LTE in the legacy licensed band,
as known as spectrum refarming, is provided.

Chapter5 presents the applications of blockchain techniques to support DSM.
Generally, the use of the blockchain technologies can achieve the improvement of
the decentralization and security, as well as the reduction in the administration cost.
We investigate the basic principles of applying the blockchain technologies to spec-
trum management and practical implementation of blockchain over the CR network.
Moreover, the recent literatures are reviewed, and the challenges and the future direc-
tions are also discussed.

Chapter6 presents the applications ofAI techniques to supportDSM.With the help
of AI techniques, the spectrum management would be achieved in a more flexible
and efficient way, meanwhile obtaining performance improvement. This chapter
starts with the basic principle of AI. Then, a review of ML techniques, including the
statistical ML, deep learning and reinforcement learning is presented. After that, the
recent applications of AI techniques in spectrum sensing, signal classification and
dynamic spectrum access are discussed.
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Chapter 2
Opportunistic Spectrum Access

Abstract Opportunistic spectrum access (OSA) model is one of the most widely
used model for dynamic spectrum access. Spectrum sensing is the enabling func-
tion for OSA. The inability for a secondary user (SU) to perform spectrum sensing
and spectrum access at the same time requires a joint design of sensing and access
strategies to maximize SUs’ own desire for transmission while ensuring sufficient
protection to the primary users (PUs). This chapter starts with a brief introduction
on the opportunistic spectrum access model and the functionality of sensing-access
design at PHY and MAC layers. Then three classic sensing-access design problems
are introduced, namely, sensing-throughput tradeoff, spectrum sensing scheduling,
and sequential spectrum sensing. Finally, the application of the opportunistic spec-
trum access to operating LTE in unlicensed band (LTE-U) is discussed.

2.1 Introduction

The opportunistic spectrum access (OSA) model, also referred to as interweave
paradigm in [1] or spectrum overlay in [2], is probably the most appealing model
for unlicensed/secondary users to access the radio spectrum. In this model, the sec-
ondary users (SUs) opportunistically access the spectrum bands of primary users
(PUs) which are temporally unused. Enabling the unlicensed use of the spectrum
while guaranteeing the priority of licensed users, the OSA model has received great
attention from both the research and the regulatory organizations.

By definition, before transmission, the SUs in the OSA model need to know the
busy/idle status of the spectrum bands which they are interested in.With such knowl-
edge, the SUs can access the unused spectrum bands of the PUs, i.e., the spectrum
holes, or the spectrum white space so that the PUs’ QoS will not be degraded. As
introduced inChap.1, such knowledge can be acquired using two approaches, includ-
ing the use of a geolocation database and spectrum sensing technique. The former
approach can be applied when the PU’s spectrum usage is highly predictable [3, 4]
and the PUs are willing to publicize the spectrum usage, possibly for improving the
spectrum utilization [5]. However, when the spectrum usage of the PUs might not

© The Author(s) 2020
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Fig. 2.1 Key functions of the PHY and MAC layer in the OSA model

be predictable or the PUs are unwilling to share such information, spectrum sensing
becomes a critical way to detect the available spectrum which enables the operation
of the OSA model.

Spectrum sensing based OSA design has gone through a thriving development
from the academia. One batch of works have focused on improving the accuracy of
spectrum sensing, while others have focused on the coordination of spectrum sensing
and access, i.e., the sensing-access design.As essentially a signal detection technique,
spectrum sensing might lead to incorrect results due to the noise uncertainty and the
channel effects such as multipath fading and shadowing. The accuracy of spectrum
sensing is however crucial in the detection of spectrum holes and the protection of
PUs. Thus, a lot of works have focused on the design of efficient detection algorithms
or the collaboration of SUs for the diversity gain [6–11]. The detailed introduction
on spectrum sensing techniques will be given in Chap.3, while in this chapter, we
will discuss the other important aspect of OSA design which is the sensing-access
design. The sensing-access structure of the OSA reveals that the spectrum access
is largely dependent on the results of spectrum sensing. Moreover, the optimization
of the performance on spectrum sensing and access might be conflicting with some
practical concerns such as the limited computational capability of the SUs, which
gives rise to the tradeoff design between the spectrum sensing and access.

In Fig. 2.1, we illustrate the key functions for the physical (PHY) and medium
access control (MAC) layers of the CR networks (CRNs). In the PHY layer, spec-
trum sensing enables the SUs to detect the spectrum holes, while the access control
optimizes the transceiver design with respect to the carrier frequency, the modulation
and coding scheme, etc. In the MAC layer, there are mainly two functions, includ-
ing the sensing scheduling and access scheduling. The former determines when, on
which channel, how long and how frequently the spectrum sensing should be imple-
mented, while the latter governs the access of multiple users to the detected spectrum
holes. A coordinator of the two functions, called as the sensing-access coordinator,
is established. In the following sections, we will investigate three classic problems
in the sensing-access design by first presenting their basic ideas and concerns, and
then reviewing the existing literatures on solving them.
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2.2 Sensing-Throughput Tradeoff

Due to the half duplex operation of a transceiver, an SU cannot perform spectrum
sensing and access at the same time. As a result, it has to alternate between sensing
operation and access operation within a data frame. Assuming that the spectrum
sensing is performed periodically in each frame, the frame structure for the SU is
illustrated in Fig. 2.2. Denote τ as the spectrum sensing time and T as the frame
length. Then the time duration left for potential spectrum access is thus T − τ . Intu-
itively, with longer sensing time, the accuracy of spectrum sensing can be improved
and it is higher chance that the status of the spectrum can be correctly detected. How-
ever, this reduces the time left for spectrum access and thus affects the throughput of
the SU. Therefore, there is a tradeoff between spectrum sensing and throughput. This
problem of sensing-throughput tradeoff is investigated in [12]. In the following, the
basic formulation of such a problem is first presented. Extension to the case when
cooperative spectrum sensing is employed is then followed.

2.2.1 Basic Formulation

The performance of spectrum sensing is characterized by two performance metrics,
namely, the probability of false alarm Pf (i.e., the probability of detecting the PU
as being present when the PU is actually absent) and the probability of detection Pd
(i.e. the probability of detecting the PU as being present when the PU is present). The
decision whether to access the spectrum depends on the result of spectrum sensing.
There are two scenarios when the SU could access the spectrum.

• When the PU is not present and no false alarm is generated by spectrum sensing.
• When the PU is present but is not detected by spectrum sensing.

The average throughput of the secondary network can be calculated by taking into
consideration the achievable throughput for both scenarios

R = R0 + R1 (2.1)

Fig. 2.2 Frame structure for
periodic spectrum sensing
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where R0 is the amount of the throughput contributed by the first scenario whereas
R1 is the one contributed by the second scenario. Denote P(H0) as the probability
that the PU is absent. Denote the C0 and C1 as the throughout of the SU when it
continuously transmits in the first scenario and second scenario, respectively. Then,
R0 and R1 can be expressed as follows

R0(ε, τ ) = P(H0)
T − τ

T
C0(1 − Pf (ε, τ )) (2.2)

R1(ε, τ ) = (1 − P(H0))
T − τ

T
C1(1 − Pd(ε, τ )) (2.3)

where ε is the threshold of energy detection for spectrum sensing. Since both the
threshold ε and the sensing time τ affect the accuracy of spectrum sensing, Pf and
Pd are functions of (ε, τ ) and so are R0 and R1.

Note that different from the first scenario, in the second scenario, the SU transmits
in the presence of the PU. Hence, in general, we have C0 > C1. Furthermore, it is
typically more beneficial to explore the spectrum that is underutilized, for example,
when P(H0) ≥ 0.5. Therefore, it can safely assume that R0 dominates the overall
throughput R. Hence, R(ε, τ ) ≈ R0(ε, τ ).

The problem of sensing-throughput tradeoff is to optimize the spectrum sensing
parameters to maximize the achievable throughput of the SU subject to that the PU
is sufficiently protected. Mathematically, the problem can be expressed as

max
ε,τ

R(ε, τ ) ≈ P(H0)
T − τ

T
C0(1 − Pf (ε, τ )) (2.4a)

s.t. Pd(ε, τ ) ≥ P̄d (2.4b)

0 < τ < T, (2.4c)

where P̄d is the target probability of detection. It has been proved in [12] that the
above optimization achieves its optimality when the constraint (2.4b) is satisfiedwith
equality.

Note that the above formulation highly depends on the two performance metrics
of spectrum sensing, i.e., Pd and Pf . The former can be considered as an indication
to the level of protection to the PU since a higher probability of detection reduces the
chance that the SU accesses the spectrum over which the PU is operating; whereas
the latter is related to the amount of transmission opportunities for the SUs since
the lower the false alarm, the better that the SU can reuse the spectrum. These two
metrics in the form of Pd and 1 − Pf are conflicting with each other. For example,
for a given detection scheme, an increase in the probability of detection can improve
the protection to the PU; however, this is achieved at the expense of increasing
probability of false alarm which leads to decreasing spectrum access opportunities
to the SU.
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By using energy detection and setting Pd = P̄d , the probability of false alarm can
be expressed as [12]

Pf (τ ) = Q
(√

2γ + 1Q−1(P̄d) + √
τ fsγ

)
(2.5)

where γ is the received signal-to-noise ratio (SNR) of the primary signal, τ is the
sensing time and fs is the sampling rate.

Then the above optimization problem reduces to an optimization problem with
only a single variable τ with the objective function given as follows

R(τ ) ≈ C0P(H0)
(
1 − τ

T

) (
1 − Q

(√
2γ + 1Q−1

(
P̄d

) + √
τ fsγ

))
(2.6)

It has been proved in [12] that under certain regulating assumptions on the form and
distribution of the noise and the primary and secondary signals there exists an optimal
sensing time that maximizes the achievable throughput of the secondary network.

Consider the scenario when P(H0) = 0.8, T = 100ms and fs = 6MHz. The
probability of false alarm Pf and the normalized achievable throughput R/C0P(H0)

of the secondary network are plotted with respect to the spectrum sensing time τ in
Figs. 2.3 and 2.4, respectively, under different received SNRs of the primary signal
γ . As expected, it can be seen from Fig. 2.3 that with longer sensing time, the quality
of spectrum sensing improves and thus the probability of false alarm decreases.
However, this leads to a reduction in the available spectrum access time. Overall, it
can be observed from Fig. 2.4 that there is an optimal sensing time which maximizes
the achievable throughput. Furthermore, it can be observed that when γ decreases

Fig. 2.3 Probability of false alarm Pf versus sensing time τ under different received SNRs γ of
the primary signal
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Fig. 2.4 Normalized achievable throughput R/(C0P(H0)) versus sensing time τ under different
received SNRs γ of the primary signal

which indicates more stringent spectrum sensing requirement, the SU has to devote
more time for spectrum sensing in order to protect the PU which leads increased
optimal spectrum sensing time and reduced maximum achievable throughput.

2.2.2 Cooperative Spectrum Sensing

The above formulation considers the case where the result of spectrum sensing is
determined by a single SU. When there are multiple nearby SUs, spectrum sensing
can be improved by combining the sensing result of these users. Thus, the quality
of spectrum sensing does not only depend on the detection threshold ε and the
sensing time τ but also the way how the individual sensing results are combined, i.e.,
the fusion rule. In [13], the basic formulation of the sensing-throughput problem is
extended to the case that cooperative spectrum sensing is used.

Assume that there are N SUs participating in cooperative spectrum sensing and
reporting their individual sensing result to the fusion center. Consider that k-out-of-
N fusion rule [11] is used by which the channel is detected to be busy if there are at
least k out of N users that detect so. The quality of spectrum sensing thus depends
on the parameter k of the fusion rule. The overall probability of false alarm and the
probability of detection are given by

P f (ε, τ, k) =
N∑
i=k

(
N

i

)
Pf (ε, τ )i

(
1 − Pf (ε, τ )

)N−i
(2.7)
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and

Pd(ε, τ, k) =
N∑
i=k

(
N

i

)
Pd(ε, τ )i (1 − Pd(ε, τ ))N−i , (2.8)

respectively.
Then the basic formulation in (2.4) can be revised to the following problem

max
ε,τ,k

R(ε, τ, k) ≈ P(H0)
T − τ

T
C0

(
1 − P f (ε, τ, k)

)
(2.9a)

s.t. Pd(ε, τ, k) ≥ P̄d (2.9b)

0 < τ < T (2.9c)

0 ≤ k ≤ N . (2.9d)

Similar to the basic formulation, it is proved in [14] that optimality is achieved with
(2.9b) satisfied in equality. Then any fixed k value, the value of Pd(ε, τ ) for the
individual SU, denoted by P̄d , that satisfies (2.9b) in equality can be found. For any
given value of P̄d , Pf is related to P̄d by (2.5). Then the above optimization problem
can be reduced to an optimization problem of only two variables (τ, k). In [13], an
iterative algorithm is proposed to compute the optimal value of (τ, k).

2.3 Spectrum Sensing Scheduling

In the sensing-throughput tradeoff problem, spectrum sensing time is optimized by
considering a fixed frame duration. In the above formulation, it implicitly assumes
that the status of the PU remains unchanged throughout the entire frame. In other
words, it implies that the SU has be in synchronization with the PU’s frame. This may
not be easy to achieve if the PU refuses to cooperate to provide such synchronization
information. In this case, for a periodic spectrum sensing scheme, the duration of the
frame, which determines how frequent spectrum sensing is scheduled, also affects
the achievable throughput of the secondary network.

Intuitively, with a fixed sensing time, the longer the frame duration, the more the
effective transmission time. This potentially leads to higher throughput. However,
when the frame duration is long, there is higher chance that the PU’s status will
change during an SU’s transmission. This may result in collision in the middle of the
secondary transmission if the primary user becomes active. The throughput of the
SU, in this case,will suffer. Therefore, the duration of the frame needs to be optimized
to balanced the tradeoff between the PU protection and the SU performance. Such a
problem is investigated in [15] and is presented in the following.

As mentioned in Sect. 2.2.1, there are two scenarios when the SU accesses the
spectrum. Similar to the treatment in the sensing-throughput tradeoff problem, only
the achievable throughput of the first scenario is considered since it is the dominating
factor.
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Fig. 2.5 The considered scenario

Consider the first scenario when the primary user is not active during spectrum
sensing as shown in Fig. 2.5. Assume that the primary user has an exponential on-
off traffic model in which both the durations of the active and inactive periods are
exponential distributed with the mean duration of μ1 and μ0, respectively. Due to
the memoryless property of the exponential distribution, without loss of generality,
the end of the sensing slot can be considered as the starting time t = 0. Denote the
instance that the primary user becomes active by t . Then the duration of time during
which collision occurs is a random variable, which can be expressed as

x(t) =
{
T − τ − t, 0 ≤ t ≤ T − τ

0, t > T − τ
(2.10)

Based on this, the average time that collision occurs in the frame can be calculated
as follows

x̄ = E{x(t)} =
∫ T−τ

0
(T − τ − t)

1

μ0
exp

(
− t

μ0

)
dt (2.11)

= T − τ − μ0

(
1 − exp

(
−T − τ

μ0

))
(2.12)

Then the normalized achievable throughput (normalized by P(H0)(1 − Pf )C0) of
the SU in this scenario is

R̃(T ) = T − τ − x̄

T
= μ0

T

(
1 − exp

(
−T − τ

μ0

))
(2.13)

Next, the collision probability for the PU will be derived. The average collision
time within each active period of the primary user can be calculated as

ȳ = x̄

Pr{0 ≤ t ≤ T − τ } = x̄

1 − exp
(
− T−τ

μ0

) (2.14)
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Then the collision probability can be expressed as

P p
c (T ) = ȳ

μ1
= 1

μ1

⎛
⎝ T − τ

1 − exp
(
− T−τ

μ0

) − μ0

⎞
⎠ (2.15)

The objective is to find the optimal frame duration to maximize the normalized
achievable throughput subject to that the collision probability of the primary user is
kept below a limit. Mathematically, it is expressed as

max
T

R̃(T ) = μ0

T

(
1 − exp

(
−T − τ

μ0

))
(2.16)

s.t. P p
c (T ) ≤ P̄ p

c (2.17)

T > τ (2.18)

Setting the derivative of R̃(T ) to zero, the stationary point of the objective function
can be found as

To = −μ0

(
1 + W−1

(
− exp

(
−μ0 + τ

μ0

)))
(2.19)

Fig. 2.6 The normalized achievable throughput and the PU’s collision probability at different frame
durations T
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where W−1(x) represents the negative branch of the Lambert’s W function which
solves the equation w exp(w) = x for w < −1. If P p

c (To) ≤ P̄ p
c and To > τ , then To

is the optimal frame duration.
Consider the scenario with the average inactive duration of μ0 = 650ms, the

average active duration of μ1 = 352ms, the spectrum sensing time of τ = 1ms
and the target collision probability of P̄ p

c = 0.1. Figure2.6 shows the normalized
achievable throughput and the PU’s collision probability, respectively, with respect
to the frame duration. It can be seen from the figure that in this scenario there is a
unique frame duration that maximizes the normalized achievable throughput and at
the same time satisfies PU’s collision probability constraint.

2.4 Sequential Spectrum Sensing

Periodic spectrum sensing has been considered in the preceding two sections. In such
a sensing framework, if a channel is sensed to be busy, the SU has to wait until the
next frame to sense the same channel or another channel to identify any spectrum
opportunity. This could result in delay in accessing the spectrum. Another approach
that is fundamentally different from periodic spectrum sensing is the sequential spec-
trum sensing. In such a sensing framework, the SU will sequentially sense a number
of channels without any additional waiting period in between before it decides which
channel to transmit over. In this case, the SU can dynamically determine how many
channels should be sensed before a transmission. This approach allows the SU to
explore diversity in the occupancy among different licensed channels. Hence, in case
that one channel is sensed to be busy, the SU can quickly identify a spectrum oppor-
tunity by continuing to sense other channels. Furthermore, it allows the SU to explore
diversity in the secondary channel fading statistics so that the SU can possibly take
advantage of a better channel to maximize its own desire.

Clearly, when more channels are sensed, there is higher chance to identify a chan-
nel with higher throughput. However, this may result in more energy and timewasted
in spectrum sensing. A tradeoff has to be balanced between throughput and energy
consumption. In [16], the sensing-access design for sequential spectrum sensing is
investigated from an energy-efficiency perspective. In particular, the paper designs
the sensing policy which determines when to stop sensing and start transmission,
the access policy which determines how much power is used upon transmission and
the sense order that determines which channel to sense next if the current channel
is given up for transmission to maximize the overall energy efficiency of the entire
sequential spectrum sensing process. In the following, the energy-efficient sensing-
access design with a fixed sensing order is first described and then extended to the
case when sensing order is optimized.
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2.4.1 Given Sensing Order

In [16], the authors consider the sequential spectrum sensing framework under which
the SU can sequentially sense a maximum number of K channels of bandwidth B
each. An example of the considered sequential channel sensing process when the
sensing order is given according to the logical indices of the channels is illustrated
in Fig. 2.7. For each channel, e.g., channel k, the SU will perform spectrum sensing
to find if channel k is busy or idle, i.e., the status δk of channel k with δk = 1 and
δk = 0 representing channel k is busy and idle, respectively. If channel k is sensed
to be busy, the SU will continue to sense the next channel. If channel k is sensed to
be idle, the SU will continue to perform channel estimation to determine the channel
gain hk and then decide whether to select a power level to transmit over this channel
for a period of Tk or to continue to sense the next channel.

Under such a sequential spectrum sensing framework, a decision has to be made
after sensing each channel before the SU decides to access a channel. At maximum,
K decisions have to be made. Such a process can be modeled as a K -stage stochastic
sequential decision-makingproblem,which consists the followingbasic components:

• State:Due to the imperfection of spectrumsensing, only an observation δ̂k about the
true PU channel status δk is available. The system state in this case is characterized
by sk = (δ̂k, hk). It is assumed that hk = 0 when δ̂k = 1 since channel estimation
will not be carried out in this case. An additional state sk = T is introduced to
denote that the sequential spectrum sensing process has been terminated once the
transmission has started.

• Decision: At each stage k, after observing the system state sk , a decision uk has
to be made. When channel k is sensed to be busy, i.e., sk = (1, 0), the only deci-
sion available is uk = C, where C denotes continuing to sense the next channel.
However, when channel k is sensed to be idle, the SU has to decide whether to
continue to sense the next channel, i.e., uk = C or choose a transmit power level,
i.e., uk = pt to transmit, the latter of which leads to the termination state, i.e.,
sk+1 = · · · = sK = T .

• Cost functions: Since energy efficiency is the ratio between the throughput (i.e.,
average number of bits transmitted) and the average energy consumption, two

Fig. 2.7 An illustration of the sequential spectrum sensing process in [16]
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cost functions are defined, i.e., one for the throughput and the other for the energy
consumption.
First, some notations are introduced. Denote r0k and r1k as the number of bits that
can be transmitted over channel k when it is truly idle and truly busy, respectively.
Furthermore,

r0k = Tk B log2 (1 + SN Rk/�) (2.20)

where SN Rk represents the SNR received at the SU-Rx, and � is considered as
the SNR gap to channel capacity. The received SNR can be further defined as

SN Rk(hk, pt ) = ρkhk pt
ισ 2

(2.21)

where ρk captures the propagation loss, ι is the link margin compensating the
hardware process variation and imperfection, and σ 2 is the noise power at the
receiver front end. Moreover, denote θk as the probability that channel k is idle,
i.e., θk = Pr(δk = 0), Pf,k as the probability of false alarm for channel k, P̄d,k as
the target probability of detection for channel k.
When channel k is sensed to be busy, the throughput is gR

k (sk, uk) = 0. Otherwise,
it is defined as

gR
k (sk, uk) = Eδk |δ̂k [rk] = ωkr

0
k + (1 − ωk)r

1
k ≈ ωkr

0
k (2.22)

where ωk = θk (1−Pf,k )

θk (1−Pf,k )+(1−θk )(1−P̄d,k )
is the posterior probability of δk = 0 given

δ̂k = 0. The approximation is due to the fact that P̄k
d ≈ 1 and r0k ≥ r1k [12].

The energy consumption at stage k is defined as

gE
k (sk, uk) =

⎧⎨
⎩
0, if sk = T
τps + Tk(αpt + pc), if sk �= T and uk = pt
τps, otherwise

(2.23)

where ps is the sensing power, pc is the power consumed in various transceiver
electronic circuits excluding the power amplifier (PA), α = ξ/ζ , ξ the peak-to-
average ratio of the PA, and ζ is the drain efficiency of the PA.

The objective of the energy-efficient sequential spectrum sensing is to find a
sequence of functionsφ = {μ1(s1), . . . , μK (sK )}mapping each state sk into a control
uk = μk(sk), such that the energy efficiency of the entire sequential spectrum sensing
process is maximized. Mathematically, this can be expressed as

max
φ

ηφ =
E

{∑K
k=1 g

R
k (sk, μk(sk))

}

E

{∑K
k=1 g

E
k (sk, μk(sk))

} (2.24)

where the expectation is taken over sk, k = 1, . . . , K .
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The above problem is very difficult to solve in its current form as it consists of a
ratio of two addictive cost functions. To tackle it, a new sequential decision-making
problem is formed with the states and decisions defined same as above but the cost
function at stage k, k = 1, . . . , K , which is more precisely considered as a reward
function, defined as follows

Gk(sk, uk; λ) = gR
k (sk, uk) − λgE

k (sk, uk)

=
⎧
⎨
⎩
0, if sk = T
Fk(hk, pt , λ) − λτps, if sk �= T and uk = pt
−λτps, otherwise

(2.25)

where λ ≥ 0 is a parameter which can be considered as the price per unit of energy
consumption, and

Fk(h, p, λ) = ωkTk B log2 (1 + SN Rk(h, p)/�) − λTk(αp + pc) (2.26)

For a given value of λ, the objective of the new sequential decision-making prob-
lem is to find a sequence of functions, φ(λ) = {μ1(s1; λ), . . . , μK (sK ; λ)}, mapping
each (sk; λ) into a controluk = μk(sk; λ) tomaximize the expected long-term reward.
Mathematically, this can be expressed as

max
φ(λ)

Jφ(λ)(λ) = E

{
K∑

k=1

Gk(sk, μk(sk, λ); λ)

}
(2.27)

Equation (2.27) is parameterized by λ. Clearly, for different values of λ, we have
different parametric formulations and thus different resulting optimal policies. Each
of the parametric formulations in (2.27) can be considered as an energy-aware design
of the sensing-access policies since the throughput can be treated as the monetary
reward and both the sensing energy and the transmission energy can be treated as
cost. The beauty of this is that unlike the original problem in (2.24), the parametric
formulation in (2.27) has an additive and separable structure, which allows dynamic
programming to be applied.

By using backward induction, the optimal policy after observing channel k is idle,
i.e., sk �= (1, 0), can be found as

μk(sk; λ) =
{[

ωk B
λα ln(2) − ι�σ 2

ρkhk

]pmax

pmin

, if F ∗
k (hk, λ) ≥ E {Jk+1(sk+1; λ)} or k = N

C, otherwise

(2.28)

where F ∗
k (h, λ) = max

u∈[pmin ,pmax ]
Fk(h, u, λ) represents the maximum immediate net

reward associatedwith transmitting over channel k, pmin is a predefined small positive
power level and pmax is the maximum transmit power allowed due to the hardware
limitation or some other regulations.
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The above result has the following interpretations:

• First, since F ∗
k (hk, λ) is a non-increasing function in hk and E {Jk+1(sk+1; λ)} is a

constant value once it is computed, the conditionF ∗
k (hk, λ) ≥ E {Jk+1(sk+1; λ)} is

equivalent to hk ≥ h̄k where h̄k is the minimum of hk that satisfies the condition.
This indicates that the optimal sensing policy which determines when to stop
sensing has a threshold structure. The SU will transmit over an idle channel only
when the channel condition is good enough.

• Second, the optimal access policy which specifies the optimal power allocation has
a waterfilling structure with the water level determined by the price λ for energy
consumption and the perceived spectrum opportunity of the channel ωk . It can
be seen from the expression that the SU will transmit with a higher power when
the price for energy consumption is lower and/or when the perceived spectrum
opportunity is larger.

In [16], it has been shown that the original problem in (2.24) and the parametric
formulation are related in such a way that ηφ∗ = λ∗ if and only if Jφ∗(λ∗) = 0. This
shows that the energy-aware sensing-access design that has zero expected long-term
reward is the most energy-efficient sensing-access design. In addition, the maximum
energy efficiency is equal to the price for the energy-aware design in this case.
Furthermore, based on themonotonicity of the function Jφ∗(λ), an iterative algorithm
has been proposed to find the optimal λ∗.

Consider the following scenario for the sequential spectrum sensing with a band-
width of B = 6MHz, noise power spectrumdensity of N0/2 = −204dBW/Hz, noise
figure of N f = 10dB, noise power of σ 2 = N0BN f , distance between the SU-TX
and the SU-RX of d = 200m, carrier frequency of fc,1 = 700MHz, fc,k+1 − fc,k =
B for k = 1, . . . , K − 1, propagation loss of ρk =

(
c

4πd fc,k

)2
, link margin of ι =

10dB, bit error rate of BER = 10−5, SNRgap to channel capacity of� ≈ − ln(5BER)

1.5 ,
minimum transmit power of pmin = 1mW, maximum transmit power of pmax =
166.62mW, circuit power of pc = 210mW, sensing power of ps = 110mW, trans-
mission or frame time of T = 100ms, PU idle probability of θk = 0.8, SU channel
distribution of hk = {1, 2, 3, 4, 5} with probability of {0.64, 0.23, 0.09, 0.03, 0.01},
PU worst-case received SNR γk = −20dB, target probability of detection of P̄d,k =
0.9, PAR of ξ = 6 dB, and drain efficiency of ζ = 0.35.

In Fig. 2.8, the achieved energy efficiency of the optimal sensing-access policies
is compared with two suboptimal policies for K = 6 channels and the access time
Tk = T . The first suboptimal scheme consists of a sensing policy that always trans-
mits over the first available channel and an access policy based on adaptive power
allocation. The second suboptimal scheme allows the exploration of diversity of mul-
tiple available channels but always uses the maximum transmit power. It can be seen
from the figure that the optimal scheme outperforms both suboptimal ones.

In Fig. 2.9, the achieved energy-efficiency is plotted versus sensing time when
the number of channels k varies. We can see that with more number of channels,
the energy efficiency is improved and the optimal sensing time is reduced due to the
increased channel diversity effect.
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Fig. 2.8 Energy efficiency versus sensing time for K = 6 channels (constant transmission time)

Fig. 2.9 Energy efficiency versus sensing time (constant transmission time)
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2.4.2 Optimal Sensing Order

The above formulation only considers the design of the sensing policy and the access
policy in terms of power allocation strategy with a given sensing order. However, it
can be modified to incorporate the design of the optimal sensing order. In this case,
the SUwill have to decide which channel to sense next if the current channel is given
up for transmission. To do so, the state and decision have to be modified as follows.

• State: Denote ik as the index of the channel sensed at stage k and �k as the set of
channels that has not been sensed at stage k. Then the joint variable (sik ,�k) can
be taken as the state at stage k. Different from the formulation in Sect. 2.4.1, one
more decision has to be made before the first channel is sensed. To be consistent,
the moment when such a decision is made is denoted as stage 0. At stage 0, we
have (sik ,�k) = (∅,�0) where �0 = {1, . . . , K } and ∅ is a null index.

• Decision: At stage k, in addition to determining the power allocation and the
sensing policy, the SU has to determine the index of the channel to be sensed next
if the current channel is given up. In this case, the decision is uk = j, j ∈ �k .

The objective is to find a sequence of functions φ = {μ0(∅,�0), μ1(si1,�1), . . . ,

μK (siK ,∅)}, with μk, k = 0, 1, . . . , K , mapping each state (sik ,�k) into a control
uk = μk(sik ,�k), to maximize the energy efficiency of the whole process. Mathe-
matically, this can be expressed as

max
φ

η =
E

{∑K
k=0 g

R
k

(
sik ,�k, μk(sik ,�k)

)}

E

{∑K
k=0 g

E
k (sik ,�k, μk(sik ,�k))

} (2.29)

Similar to the case when the sensing order is fixed, the above problem can be
related to a parametric formulation parameterized by λ. The optimal strategy for the
parametric formulation can be found as follows

μk(sik ,�k; λ)

=

⎧⎪⎨
⎪⎩

[
ωk B

λα ln(2) − ι�σ 2

ρkhk

]Pmax

Pmin

, if F ∗
ik
(hik , λ) ≥ max

j∈�k

E{Jk+1(s j ,�k − j; λ)}
argmax

j∈�k

E{Jk+1(s j ,�k − j; λ)}, otherwise
(2.30)

Compared to the result for the case of given sensing order, the following conclusions
can be drawn. First, the optimal power allocation has the same structure as (2.28). Sec-
ond, the optimal sensing strategy also has a threshold structure due to the monotonic-
ity of F ∗

ik
(hik , λ). The condition F ∗

ik
(hik , λ) ≥ max

j∈�k

E{Jk+1(s j ,�k − j; λ)} indicates
that sensing is stopped when the immediate net reward is greater than the expected
future net reward of continuing sensing any of the remaining channels. Lastly, if
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Fig. 2.10 Energy efficiency versus sensing time with {θ1, . . . , θK } = {0.2, 0.4, 0.6, 0.7, 0.8}
(constant transmission time)

the current channel is given up, the best channel to sense next is the one with the
maximum expected future net reward.

Consider that there are K = 5 channelswith the correspondingPU idle probability
set as {θ1, . . . , θK } = {0.2, 0.4, 0.6, 0.7, 0.8} while other settings remain the same
as above. Figure2.10 compares the energy efficiency achieved by using the optimal
sensing order at different values of sensing time with that achieved with two given
sensing orders. It can be seen that the optimization of sensing order is important to
improve the energy efficiency of the sequential spectrum sensing process.

2.5 Applications: LTE-U

An important application ofOSA is the long-term evolution in unlicensed band (LTE-
U), which is also known as licensed-assisted access (LAA) [17, 18]. The motivation
of introducing LTE service in unlicensed band comes from the crisis of licensed
spectrum exhausting of LTE service and the under-utilization of unlicensed bands,
such as 5GHz band which contains 500MHz radio resource and is mainly used by
WiFi service. These bands can be excellent complementary spectrum for enhancing
the LTE performance. Through carrier aggregation, the data information can be
conveyed via licensed and unlicensed spectrum simultaneously, while the control
signal can be still transmitted via licensed spectrum for QoS guarantee. Introducing
LTE in unlicensed bands requires the LTE to be a fair and friendly neighbor of
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the incumbent WiFi in unlicensed bands. To achieve this goal, critical problems,
including the protection to WiFi system, efficient coexistence between LTE and
WiFi system, and efficient user association need to be addressed.

2.5.1 LBT-Based Medium Access Control Protocol Design

Since WiFi adopts contention-based media access, the access of LTE will introduce
collision to theWiFi transmission. Tomitigate this collision, listen-before-talk (LBT)
scheme, which enables the LTE to monitor the channel status, can be adopted by
LTE, which has been shown to be able to maintain the most advantages of LTE when
coexisting with WiFi system [19]. Moreover, when LTE transmits on the channel,
the WiFi users will keep silent and wait for the channel becomes idle. To guarantee
the normal service of WiFi, the LTE should vacate from the channel after a period
of data transmission and leave the channel to WiFi operation. Thus, we can see that
the LBT-based MAC protocol of LTE-U should contain the periodic channel sensing
phase which is followed by data transmission phase and channel vacating phase.
In the channel sensing phase, the LTE monitors the channel idle/busy status. If the
channel is sensed idle, the LTE transmits data for a period of time. After that, the
LTE system vacates from the channel for WiFi transmission.

It can be seen that the LBT-based MAC protocol is similar to the sensing-
transmission protocol of the typical OSA system, except that the channel vacating
phase is absent in the latter one. This is because that in the typical OSA system,
the primary system has higher priority to the secondary system, and thus the sec-
ondary system can only passively adapt than the transmission of primary system.
In the LTE-U system, however, although the legacy WiFi system is protected, the
secondary LTE system can actively control the transmission of WiFi by carefully
designing the sensing period and the transmission time.

To protect WiFi services, the performance of the multiple WiFi users should be
quantified with the coexistence of LTE. There are works on evaluating the perfor-
mance of LTE-U via simulation [20–22]. To facilitate the theoretical analysis of LTE-
U system, anLBT-basedLTE-UMACprotocol is designed as shown in Fig. 2.11 [23].
In this protocol, τs , τt and τv denote the spectrum sensing time, the LTE transmission
time, and the LTE vacating time (WiFi transmission time), respectively. Moreover,
the vacating time τv contains γ (γ ∈ Z

+) transmission periods (TPs), each of which
contains theWiFi packet transmission time and its propagation delay. Assuming that
the spectrum sensing result is perfect, the LBT-basedMAC protocol can be specified
as follows.

• Instead of sensing spectrum at the beginning of each frame, the LTE starts and
keeps sensing from the beginning of the γ th TP in a frame. Once the channel is
sensed to be idle and the TP is not completed, the LTE will send a dummy packet
until the TP ends. By doing so, the WiFi packet arrived during the γ th TP will be
deferred and the channel can be held by the LTE for the next frame.
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Fig. 2.11 An LBT-based MAC protocol design for LTE-U

• Though the spectrum sensing of LTE for the i th frame may happen within the final
TP of the (i − 1)th frame, the length of LTE frame can be consistently quantified
as T = τt + τv. Thus, given T , we can trade off the LTE transmission time and
vacating time to optimize the system performance.

• There is an essential difference between the proposed MAC protocol and the
sensing-transmission protocol of the traditional OSA system, although they are
both frame-based. In the traditional OSA system, SU can transmit only when the
channel is sensed to be idle. In the proposed MAC protocol, however, the LTE
not only senses the channel, but also grabs the channel for data transmission in
the next frame. Therefore, there is always transmission opportunity for the LTE in
each frame.

Based on this protocol design, the performance of the LTE and the WiFi system can
be theoretically quantified by mapping the protocol parameters to that in [24]. With
the closed-form throughput and delay performance ofWiFi, the protocol parameters,
including the LTE transmission time and the frame length can be optimized in terms
of maximizing the LTE throughput or the overall channel utilization.

2.5.2 User Association: To be WiFi or LTE-U User?

One important observation obtained in the performance analysis of the LBT-based
LTE-U MAC protocol design is that when a batch of new users join in the networks,
it is not always advantageous to be LTE-U users in terms of individual throughput of
the new users or the overall channel utilization. The simulation results in [23] have
shown that whether the new users should join in the LTE-U system or the legacy
WiFi system to get a better performance is highly determined by the traffic load of
the existing WiFi system, including the packet arrival rate and the number of WiFi
users. Therefore, the user association, which determines the provider of the service
for the new users, should be optimized.

In order to maximize the normalized throughput of the unlicensed band with guar-
anteeing the QoS of WiFi service, a joint resource allocation and user association
problem is proposed for a heterogeneous network, where the LTE small cells oppor-
tunistically access the spectrum of WiFi system [25]. For solving the problem, a
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two-level learning-based framework is proposed with which the original problem is
decomposed into two subproblems. The master level problem, which aims to opti-
mize the transmission time of LTE, has been solved by a Q-learning based method;
while the slave one, which aims to optimize the user association, has been solved by
a game-theory based learning method. With the proposed scheme, each of the newly
enrolled users can choose the optimal resource allocation strategy and the service
provider autonomously.

Considering that the QoS of the LTE-U users is not guaranteed in the existing
literatures, the authors in [26] study the provision of QoS guarantee for the LTE-U
by jointly optimizing the resource allocation and the user association strategy. To
address the QoS provision problem, the users in the LTE-U system are classified into
best-effort users and QoS-preferred users, while the WiFi users are all treated as the
best-effort users. When the QoS requirement of an LTE-U user can be satisfied, the
user becomes the QoS-preferred user; otherwise, it will join in the WiFi system as a
normal WiFi user to receive the best-effort service. By quantifying the performance
matrices, including the throughput and delay of the WiFi user and the LTE-U user,
the optimization problem is formulated with the objective of maximizing the number
of QoS-preferred users, with guaranteeing the fair coexistence of WiFi and LTE-U
users. To solve this problem, the original problem is equivalently decomposed into
two subproblems, i.e., the sum-power minimization problem and the user association
problem. For the former problem, the deep-cut ellipsoid method is used to optimize
theLTE transmission time, subcarrier assignment, and power allocation. For the latter
one, a successive user removal algorithm is proposed. This scheme can realize that
all the LTE-U users are QoS guaranteed and the number of such users is maximized.

2.6 Summary

In this chapter, we have discussed in detail about the OSA technique from the basic
OSA model based on which the sensing-access protocol is designed. The sensing-
throughput tradeoff has been presented,withwhich the cooperative spectrumsensing,
sensing scheduling and sequential spectrum sensing are introduced. As a recent
application of OSA in practical networks, the LTE-U has been presented, in which
several critical problems, including the MAC protocol design and optimization, the
resource allocation, and the user association, have been addressed.
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Chapter 3
Spectrum Sensing Theories and Methods

Abstract Spectrum sensing is a critical step in cognitive radio based DSM to learn
the radio environment. Despite its long history, in the past decade, the study on spec-
trum sensing has attracted substantial interests from the wireless communications
community. In this chapter, we first provide the fundamental theories on spectrum
sensing from the optimal likelihood ratio test perspective, then we review the clas-
sical methods including Bayesian method, robust hypothesis test, energy detection,
matched filtering detection, and cyclostationary detection. After that, we discuss the
robustness of the classical methods and review techniques that can enhance the sens-
ing reliability under hostile environment. These methods include eigenvalue based
sensing method, covariance based detection method. Finally, we discuss the cooper-
ative sensing that uses data fusion or decision fusion frommultiple senors to enhance
the sensing performance.

3.1 Introduction

As mentioned in Chap.1, the basic idea of a cognitive radio is to support spectrum
reuse or spectrum sharing, which allows the secondary networks/users to communi-
cate over the spectrum allocated/licensed to the primary users (PUs) when they are
not fully utilizing it. To do so, the secondary users (SUs) are required to frequently
perform spectrum sensing, i.e., detecting the presence of the PUs. Whenever the PUs
become active, the SUs have to detect the presence of them with a high probability,
and vacate the channel or reduce transmit power within certain amount of time. For
example, in the IEEE 802.22 standard [1–3], it is required for the SUs to detect the
TV and wireless microphone signals and vacate the channel within two seconds once
they become active. Furthermore, for TV signal detection, it is required to achieve
90% probability of detection and 10% probability of false alarm at signal-to-noise
ratio (SNR) level as low as −20dB [1].

Spectrum sensing has reborn as a very active research topic in the past decade
despite its long history in signal detection field. Quite a few new sensing methods
have been proposed which take into consideration practical requirements and con-
straints. In this chapter, we first provide the fundamental spectrum sensing theories
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from the optimal likelihood ratio test perspective, then review the classical methods
including Bayesian method, robust hypothesis test, energy detection, matched filter-
ing detection, and cyclostationary detection. After that, we discuss the robustness
of the classical methods and review techniques that can enhance the sensing relia-
bility under hostile environment, including eigenvalue based sensing method, and
covariance based detection. Finally, we discuss the cooperative spectrum sensing
techniques that uses data fusion or decision fusion to combine the sensing data from
multiple senors.

3.1.1 System Model for Spectrum Sensing

We consider an SU spectrum sensor with M ≥ 1 antennas. A similar scenario is
the multi-node cooperative sensing, if all M distributed nodes are able to send their
observed signals to a central node. There are two hypotheses:H0, the PU is inactive;
and H1, the PU is active. The received signal at antenna/node i , i = 1, . . . , M , is
given by

H0 : xi (n) = ηi (n) (3.1)

H1 : xi (n) = si (n) + ηi (n) (3.2)

where ηi (n) is the received noise plus possible interference. At hypothesisH1, si (n)

is the received primary signal at antenna/node i , which is the transmitted primary
signal passing through the wireless channel to the sensing antenna/node. That is,
si (n) can be written as

si (n) =
qi∑

l=0

hi (l)s̃(n−l) (3.3)

where s̃(n) stands for the transmitted primary signal, hi (l) and qi denote the propa-
gation channel coefficient and channel order from the PU to the i th antenna/node. For
simplicity, it is assumed that the signal, noise, interference, and channel coefficients
are all real numbers, though the theory and derivation can be directly extended to
complex signals in most of the cases.

The objective of spectrum sensing is to choose one of the two hypotheses, H0

or H1, based on the received signal samples at the SU sensor. The probability of
detection, Pd , and probability of false alarm, Pf a , are defined as follows:

Pd = P (H1|H1) (3.4)

Pf a = P (H1|H0) (3.5)

where P(·|·) defines the conditional probability. There are interesting physical mean-
ings for the above two probabilities: Pd defines how well the PU is protected when
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it is using the spectrum, while Pf a determines the opportunity the SU misses out
when the PU is not using the spectrum. In general, a sensing algorithm is said to be
“optimal” if it achieves the lowest Pf a for a given Pd with a fixed number of sam-
ples, though there could be other criteria to evaluate the performance of a sensing
algorithm.

In order to apply both space and time processing, we stack the signals from the
M antennas/nodes and L time samples to yield the following ML × 1 vectors:

x(n) = [x1(n) . . . xM(n) x1(n − 1) . . . xM(n − 1)

. . . x1(n − L + 1) . . . xM(n − L + 1)]T (3.6)

s(n) = [s1(n) . . . sM(n) s1(n − 1) . . . sM(n − 1)

. . . s1(n − L + 1) . . . sM(n − L + 1)]T (3.7)

η(n) = [η1(n) . . . ηM(n) η1(n − 1) . . . ηM(n − 1)

. . . η1(n − L + 1) . . . ηM(n − L + 1)]T (3.8)

Based on the above vector forms, the hypothesis testing problem can be reformu-
lated as

H0 : x(n) = η(n), n = 0, . . . , N − 1. (3.9)

H1 : x(n) = s(n) + η(n), n = 0, . . . , N − 1. (3.10)

Accurate knowledge on the noise power σ 2
η is the key formany detectionmethods.

Unfortunately, in practice, the noise uncertainty always presents. Due to the noise
uncertainty [4–6], the estimated (or assumed) noise power may be different from
the real noise power. Let the estimated noise power be σ̂ 2

η = ασ 2
η . It is assumed

that α (in dB) is uniformly distributed in an interval [−B, B], where B is called the
noise uncertainty factor [5]. In practice, the noise uncertainty factor of a receiving
device is typically in the range from 1 to 2 dB, but the environment/interference noise
uncertainty can be much higher [5].

3.1.2 Design Challenges for Spectrum Sensing

The design of spectrum sensing methods in CR faces a few specific challenges
including, among others, the following.

1. Low sensing SNR: A cognitive radio may need to sense the primary signal at
very low SNR condition. This is to overcome the hidden node problem, i.e., a
SU sensor hears very weak signal from the primary transmitter but can strongly
interfere the primary receiver if it transmits (here the primary receiver looks like a
hidden node). To avoid such interference, one solution is to require the SU sensor
to have the capability to sense the presence of the primary signal at very low SNR.



44 3 Spectrum Sensing Theories and Methods

For example, in the 802.22 standard, the sensing sensitivity requirement is as low
as −20dB.

2. Channel uncertainty: Inwireless communications, the propagation channel is usu-
ally unknown and time variant. Such unknown channel makes coherent detection
methods unreliable in practice.

3. Non-synchronization: It is hard to synchronize the received signal with the pri-
mary signal in time and frequency domains. This will cause traditional methods
like preamble/pilot based detections less effective.

4. Noise uncertainty: The noise level may vary with time and location, which yields
the noise power uncertainty issue for detection [4–7]. This makesmethods relying
on accurate noise power unreliable. Furthermore, the noise may not be white,
which will further affect the effectiveness of many methods with white noise
assumption.

5. Interference: There could be interferences from intentional or unintentional trans-
mitters. Thus, the detector needs to have the capability to suppress the interference
while identifying the primary signals.

While there have been a lot of spectrum sensing methods in the literature [8–15],
many of them are based on ideal assumptions, and cannot work well in a hostile radio
environment. We need the spectrum sensing to be robust to the unknown and maybe
time-varying channel, noise and interference.

3.2 Classical Detection Theories and Methods

In this section, we first provide the fundamental theories on spectrum sensing from
the optimal likelihood ratio test perspective, then we review the classical methods
including Bayesian method, robust hypothesis test, energy detection, matched filter-
ing detection, and cyclostationary detection.

3.2.1 Neyman–Pearson Theorem

The Neyman–Pearson (NP) theorem [16–18] states that, for a given probability of
false alarm, the test statistic that maximizes the probability of detection is the likeli-
hood ratio test (LRT) defined as

TLRT (x) = p(x|H1)

p(x|H0)
(3.11)

where p(·) denotes the probability density function (PDF), and x denotes the received
signal vector that is the aggregation of x(n), n = 0, 1, . . . , N − 1. Such a likelihood
ratio test decides H1 when TLRT (x) exceeds a threshold γ , and H0 otherwise.
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The major difficulty in using the LRT is its requirement on the exact distributions
given in (3.11). Obviously, the distribution of random vector x under H1 is related
to the source signal distribution, the wireless channels, and the noise distribution,
while the distribution of x under H0 is related to the noise distribution. In order to
use the LRT, we need to obtain the knowledge of the channels as well as the signal
and noise distributions, which is practically difficult to realize.

If we assume that the channels are flat-fading, and the received source signal
sample si (n)’s are independent over n, the PDFs in LRT are decoupled as

p(x|H1) =
N−1∏

n=0

p(x(n)|H1) (3.12)

p(x|H0) =
N−1∏

n=0

p(x(n)|H0) (3.13)

If we further assume that noise and signal samples are both Gaussian distributed, i.e.,
η(n) ∼ N(0, σ 2

η I) and s(n) ∼ N(0,Rs), the LRT becomes the estimator-correlator
(EC) [16] detector for which the test statistic is given by

TEC(x) =
N−1∑

n=0

xT (n)Rs(Rs + σ 2
η I)

−1x(n) (3.14)

From (3.10), we see that Rs(Rs + 2σ 2
η I)

−1x(n) is actually the minimum-mean-
squared-error (MMSE) estimation of the source signal s(n). Thus, TEC(x) in (3.14)
can be seen as the correlation of the observed signal x(n)with the MMSE estimation
of s(n).

The EC detector needs to know the source signal covariance matrix Rs and noise
power σ 2

η . When the signal presence is unknown yet, it is unrealistic to have the
knowledge on the source signal covariance matrix which is related to unknown
channels.

3.2.2 Bayesian Method and the Generalized Likelihood Ratio
Test

In practical scenarios, it is difficult to know the likelihood functions exactly. For
instance, we may not know the noise power σ 2

η and/or source signal covariance Rs .
Hypothesis testing in the presence of uncertain parameters is known as “composite”
hypothesis testing. In classic detection theory, there are two main approaches to
tackle this problem: the Bayesian method and the generalized likelihood ratio test
(GLRT).
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In the Bayesian method [16], the objective is to evaluate the likelihood functions
needed in the LRT through marginalization, i.e.,

p(x|H0) =
∫

p(x|H0,�0)p(�0|H0)d�0 (3.15)

where �0 represents all the unknowns when H0 is true. Note that the integration
operation in (3.15) should be replaced with a summation if the elements in �0 are
drawn from a discrete sample space. Critically, we have to assign a prior distribu-
tion p(�0|H0) to the unknown parameters. In other words, we need to treat these
unknowns as random variables, and use their known distributions to express our
belief in their values. Similarly, p(x|H1) can be defined. The main drawbacks of the
Bayesian approach are listed as follows:

1. The marginalization operation in (3.15) is often not tractable except for very
simple cases;

2. The choice of prior distributions affects the detection performance dramatically
and thus it is not a trivial task to choose them.

To make the LRT applicable, we may estimate the unknown parameters first
and then use the estimated parameters in the LRT. Known estimation techniques
could be used for this purpose. However, there is one major difference from the
conventional estimation problem where we know that signal is present, while in the
case of spectrum sensing we are not sure whether there is source signal or not (the
first priority here is the detection of signal presence). At different hypothesis,H0 or
H1, the unknown parameters are also different.

The GLRT is one efficient method [16, 18] to resolve the above problem, which
has been used in many applications, e.g., radar and sonar signal processing. For this
method, the maximum likelihood estimation of the unknown parameters under H0

and H1 are first obtained as

�̂0 = argmax
�0

p(x|H0,�0)

�̂1 = argmax
�1

p(x|H1,�1)

where �0 and �1 are the set of unknown parameters underH0 andH1, respectively.
Then, the GLRT statistic is formed as

TGLRT = p(x|�̂1,H1)

p(x|�̂0,H0)
(3.16)

Finally, the GLRT decides H1 if TGLRT (x) > γ , where γ is a threshold, and H0

otherwise.
It is not guaranteed that the GLRT is optimal or closes to the optimum when the

sample size goes to infinity. Since the unknown parameters in �0 and �1 are highly
dependent on the noise and signal statistical models, the estimations of them could
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be vulnerable to the modeling errors. Under the assumption of Gaussian distributed
source signals and noises, and flat-fading channels, some efficient spectrum sensing
methods based on the GLRT can be found in [19–21].

3.2.3 Robust Hypothesis Testing

The searching for robust detection methods has been of great interest in the field of
signal processing and many others. In this section, we start from a general paradigm
that is called robust hypothesis testing, thenwe reviewa fewmethods that are robust to
certain impairments. In Sects. 3.3–3.5, we will discuss a few newmethods, including
eigenvalue based detections, covariance based detections, and cooperative sensing.

A useful paradigm to design robust detectors is the maxmin approach, which
maximizes the worst case detection performance. Among others, two techniques are
very useful for robust spectrum sensing: the robust hypothesis testing [22, 23] and
the robust matched filtering [24, 25]. In the following, we will give a brief overview
on them.

Let thePDFof a received signal sample be f1 at hypothesisH1 and f0 at hypothesis
H0. If we know these two functions, the LRT-based detection described in Sect. 3.2.2
is optimal. However, in practice, due to the channel impairment, noise uncertainty,
and interference, it is very hard to obtain these two functions exactly. One possible
situation is when we only know that f1 and f0 belong to certain classes. One such
class is called the ε-contamination class given by

H0 : f0 ∈ F0, F0 = {(1 − ε0) f 00 + ε0g0}
H1 : f1 ∈ F1, F1 = {(1 − ε1) f 01 + ε1g1} (3.17)

where f 0j ( j = 0, 1) is the nominal PDF under hypothesis H j , ε j in [1, 0] is the
maximum degree of contamination, and g j is an arbitrary density function. Assume
that we only know f 0j and ε j (an upper bound for contamination), j = 1, 2. The
problem is then to design a detection scheme to minimize the worst-case probability
of error (e.g., probability of false alarmplus probability ofmis-detection), i.e., finding
a detector �̂ such that

�̂ = argmin
�

max
( f0, f1)∈F0×F1

(Pf a( f0, f1, �) + 1 − Pd( f0, f1, �)) (3.18)

Hubber [22] proved that the optimal test statistic is a “censored” version of the LRT
given by

�̂ = TCLRT (x) =
N−1∏

n=0

r(x(n)) (3.19)
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where

r(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1, c1 ≤ f 01 (t)
f 00 (t)

f 01 (t)
f 00 (t)

, c0 <
f 01 (t)
f 00 (t)

< c1

c0,
f 01 (t)
f 00 (t)

≤ c0

(3.20)

and c0, c1 are nonnegative numbers related to ε0, ε1, f 00 , and f 01 [22, 26]. Note that
if choosing c0 = 0 and c1 = +∞, the test is the conventional LRT with respect to
nominal PDFs, f 00 and f 01 .

One special case is the robust matched filtering. We turn the model (3.10) into a
vector form as

H0 : x = η (3.21)

H1 : x = s + η (3.22)

where s is the signal vector and η is the noise vector. Suppose that s is known. In
general, a matched-filtering detection is TMF = gT x. Let the covariance matrix of
the noise be Rη = E(ηηT ). If Rη = σ 2

η I, it is known that choosing g = s is optimal.
In general, it is easy to verify that the optimal g to maximize the SNR is

g = R−1
η s. (3.23)

In practice, the signal vector s may not be known exactly. For example, s may be
only known to be around s0 with some errors modeled by

||s − s0|| ≤ 	 (3.24)

where 	 is an upper bound on the Euclidean-norm of the error. In this case, we are
interested in finding a proper value for g such that the worst-case SNR is maximized,
i.e.,

ĝ = argmax
g

min
s:||s−s0||≤	

SNR(s, g) (3.25)

It was proved in [24, 25] that the optimal solution for the above maxmin problem is

ĝ = (Rη + δI)−1s0 (3.26)

where δ is a nonnegative number such that δ2||ĝ||2 = 	.
It is noted that there are also researches on the robust matched filtering detec-

tion when the signal has other types of uncertainty [26]. Moreover, if the noise has
uncertainties, i.e., Rη is not known exactly, or both noise and signal have uncertain-
ties, the optimal robust matched-filtering detector was also found for some specific
uncertainty models in [26].
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3.2.4 Energy Detection

If we further assume that Rs = σ 2
s I, the EC detection in (3.14) reduces to the well-

known energy detector (ED) [4, 27, 28] for which the test statistic is given as follows
(by discarding irrelevant constant terms).

TED = 1

N

N−1∑

n=0

xT (n)x(n) (3.27)

Note that for the multi-antenna/node case, TED is actually the summation of energies
from all antennas/nodes, which is a straightforward cooperative sensing scheme [29–
31].

The test statistic is compared with a threshold to make to decision. Obviously the
threshold should be related to the noise power. Hence energy detection needs a priori
information of the noise variance (power). It has been shown that energy detection is
very sensitive to the inaccurate estimation of the noise power. We will give detailed
discussion on this later.

From the derivation above, we know that energy detection is the optimal detection
if there is only one antenna, the signal and noise samples are independent and iden-
tically distributed (iid) Gaussian random variables, and the noise variance (power)
is known. Even if the signal and noise do not have Gaussian distribution, in most
cases, energy detection is still approximately optimal for uncorrelated signal and
noise at low SNR [32]. In general, the ED is not optimal if signals or noise samples
are correlated.

The energy detection can be used in different ways and sometimes combined with
other techniques.

(1) We can filter the signal before the energy detection is implemented. Let f (l)
(l = 0, 1, . . . , L) be a filter or the combining of a bank of filters. The received signal
after filtering is

yi (n) =
L∑

l=0

f (l)xi (n − l) (3.28)

The energy detection after the filtering is therefore

TED,Filter = 1

N

N−1∑

n=0

||y(n)||2 (3.29)

For practical applications, we can choose a narrowband filter or a bank of narrowband
filters if we want to detect the signals in specific frequency bands.

(2) Energy detection can also be done in frequency domain. Let Si (k) be the power
spectrum density (PSD) of the received signal xi (n). There are different methods to
estimate thePSD includingperiodogram,multitapermethod (MTM) [33, 34] andoth-
ers. For the periodogrammethod, the received signal is divided into P non-overlapped
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blocks: xi,p(n) with length N f . Let Xi,p(k) be the discrete Fourier transform (DFT)
of xi,p(n). Note that DFT can be computed by the fast Fourier transform (FFT). The
PSD is estimated as

Si (k) = 1

P

P∑

p=1

|Xi,p(k)|2 (3.30)

The test statistic of the frequency domain energy detection is:

TED,F = 1

NM

M∑

i=1

N f −1∑

k=0

Si (k) (3.31)

Again the test statistic is compared with a threshold to make a decision and the
threshold should be related to the noise power.

Among all the spectral estimation methods, the MTM is proved to achieve the
performance close to the maximum likelihood PSD estimator [33, 34]. Thus it can
be used to make a more accurate estimation of the PSD for spectrum sensing [35].
However, the computational complexity is also increased.

(3)The frequencydomain energydetection can also be done in amoreflexibleway.
Letψ be a subset of set {0, 1, . . . , N f − 1}.We can select the signal frequencywithin
the bin ψ for detection and may also give different weights to different antennas and
frequencies [36]. The test statistic is therefore

TED,F = 1

M |ψ |
M∑

i=1

∑

k∈ψ

gi,k Si (k) (3.32)

where gi,k is the weight for antenna i and frequency index k. This can have a better
performance if we know that the interested signal power has peaks or is concentrated
in the frequency bin ψ . For example, for ATSC signal detection, we know that the
signal has a strong peak at the pilot. So we can choose the set ψ to be the frequency
index around the pilot location. A special case is to choose just one frequency index
nearest to the pilot location. In some OFDM based standards, the pilot subcarriers
have higher power than other subcarriers. We can put more weights to the pilot
subcarriers.

Another variation of the method is to change the averaging of the signal PSD to
maximizing [37]. The test statistic becomes

TED,Max = max
k∈ψ

1

M

M∑

i=1

Si (k) (3.33)

The energy detection can also be done in other transform domains other than
the Fourier transform domain. In general, let Xi,T (k) (k = 0, 1, . . . , K − 1) be the
transformed signal of the original received signal xi (n). The transformdomain energy
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detection is

TED,T = 1

MK

M∑

i=1

K∑

k=1

|Xi,T (k)|2 (3.34)

For example, the wavelet can be chosen as the transform, which turns to the wavelet
multi-resolution detection [38]. In general, the transform should be chosen based on
the signal and noise property or/and purpose of detection.

3.2.5 Sequential Energy Detection

In the discussions above, we assume that the sensing time (number of signal samples
N ) is a predefined fixed number. The detector is designed to have the optimal per-
formance with the given sample size. In some applications, the sensing time may not
be predefined. Our purpose is to design a detector that has the least average sensing
time. A popular approach for this is the sequential detection [39–41].

In general, a sequential detector makes a decision whenever a new signal sam-
ple is available. For simplicity, here we consider single detector case. Let xk =
(x(0), x(1), . . . , x(k − 1))T be signal samples currently available at time k. The
sequential detector calculates a test statistic T (xk). It then makes a decision using
two thresholds:

T (xk) ≥ γ1,H1 (3.35)

T (xk) ≤ γ0,H0 (3.36)

where γ1 > γ0 are some predefined thresholds. If the test statistic is between γ1 and
γ0, that is, γ0 < T (xk) < γ1, the detector does not make a decision onH1 orH0 yet:
more samples are required. The detector will continue this process when new signal
samples are available till a decision on H1 orH0 is reached.

Thuswe do not knowwhen the detectionwill finished to achieve the target sensing
performance. The sensing time is a random number. It is proved that the average
sensing time is shorter than the conventional methods (theWald–Wolfowitz theorem
[40]). However, the worst case sensing time could be much longer.

Using the energy detection for sequential detection is discussed in [40]. Some
extensions and refinements can be found in [40].

3.2.6 Matched Filtering

If we assume that noise is Gaussian distributed and source signal s(n) is deterministic
and known to the receiver, it is easy to show that the LRT in this case becomes the
matched filtering based detector [16–18], for which the test statistic is
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TMF = Re

(
1√
N

N−1∑

n=0

s†(n)x(n)

)
(3.37)

The test statistic is compared with a threshold to make a decision. Obviously the
threshold should be related to the noise power. Unlike energy detection, matched
filtering (MF) is more robust to the inaccurate noise power estimation [6, 7]. MF is
also widely used in other fields like radar signal processing.

Hence, theoretically matched filtering is optimal if the signal is deterministic and
known at the receiver. The major difficulties in MF are the time delay, frequency
offset and time dispersive channel.

For simplicity, we consider single antenna case here. In general, for a deterministic
transmitted signal s(n), the received signal x(n) can be written as

x(n) = e j2πεn

√
N

L∑

l=0

h(l)s(n − 1 − τ) + η(n) (3.38)

where τ is the timing error, ε is the normalized frequency offset and h(l) is the
channel.

At ideal case of ε = 0, τ = 0, L = 0 and h(0) > 0,

TMF = h(0)√
N

N−1∑

n=0

|s(n)|2 + Re

(
1√
N

N−1∑

n=0

s∗(n)η(n)

)
(3.39)

In this case, MF is optimal.
In practical wireless communication applications, the CFO ε and timing error

may not be zero, also the channel is most likely frequency selective: L > 0. So in
general, the test statistic of MF should be expressed as

TMF = Re

(
1√
N

N−1∑

n=0

L∑

l=0

e j2πεns∗(n)s(n − l − τ)

)
+ Re

(
1√
N

N−1∑

n=0

s∗(n)η(n)

)

(3.40)
The CFO ε, timing error and frequency selective are three major obstacles for the
MF. Anyone of them could reduce the performance of MF dramatically.

To deal with the timing error, a commonly used solution is to averaging or taking
the maximum of the test statistic at different time delays of the received signal. Let

TMF (υ) = Re

(
1√
N

N−1∑

n=0

s†(n)x(n + υ)

)
(3.41)

be the test statistic of the signal with time delay −υ. Obviously the best value is
υ = τ . If we do not know the value of τ , we can average on different υ or take the
maximum, that is,
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T̂MF,A = 1

2	

	∑

υ=−	

TMF (υ) (3.42)

or
T̂MF,M = 	

max
υ=−	

TMF (υ) (3.43)

To tack the problem of CFO, we can modify the test of MF using the absolute
value

TMF = 1√
N

N−1∑

n=0

|s†(n)x(n)| (3.44)

This test is not affected by the carrier frequency offset.
Similarly we can also average or take the maximum of the absolute value test

statistics to deal with the timing error problem.
Like the energy detection, the MF can also be implemented in frequency domain

or transformed domain. Using theMF for ATSC signal detection is discussed in [42].

3.2.7 Cyclostationary Detection

Practical communication signals may have special statistical features. For example,
digitally modulated signals have non-random components such as double sideness
due to sine wave carrier and keying rate due to symbol period. Such signals have
a special statistical feature called cyclostationarity, i.e., their statistical parameters
vary periodically in time. This cyclostationarity can be extracted by the cyclic auto-
correlation (CAC) or the spectral-correlation density (SCD) [43–45].

For simplicity, in this section we consider single antenna case, that is, M = 1. For
notation simplicity, we omit the subscript for antenna. For a given α and time lag τ ,
the CAC of a signal x(t) is defined as

Rα
x (τ ) = lim

	→∞
1

	

∫ 	
2

− 	
2

x
(
t + τ

2

)
x∗
(
t − τ

2

)
e− j2παtdt (3.45)

where α is called a cyclic frequency. If there exists at least one non-zero α such
that maxτ |Rα

x (τ )| > 0, we say that x(t) exhibits cyclostationarity. The value of such
α depends on the type of modulation, symbol duration, etc. For example, for a
digitally modulated signal with symbol duration Tb, cyclostationary features exist at
α = k

Tb
and α = ±2 fc + k

Tb
, where fc is the carrier frequency, and k is an integer.

Equivalently, we can define the SCD, the Fourier transform of the CAC, as follows:

Sα
x ( f ) =

∫ ∞

−∞
Rα
x (τ )e− j2π f τdτ (3.46)
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In binary spectrum sensing or signal detection, there are two hypotheses: H0,
signal absent; and H1, signal present. The received signal can be written as

H0 : y(t) = η(t) (3.47)

H1 : y(t) = h(t) ⊗ x(t) + η(t) (3.48)

where x(t) denotes the transmitted signal from the primary user, h(t) is the channel
response, and η(t) is the additive noise.

When source signal x(t) passes through a wireless channel h(t), the received
signal is impaired by the unknown propagation channel. It can be shown that the
SCD function of y(t) is

Sy( f ) = H( f + α/2)H∗( f − α/2)Sx ( f ) (3.49)

where ∗ denotes the conjugate, α denotes the cyclic frequency for x(t), H( f ) is the
Fourier transform of the channel h(t), and Sx ( f ) is the SCD function of x(t). Thus,
the unknown channel could have major impacts on the strength of SCD at certain
cyclic frequencies.

Cyclostationary detection (CSD) is well studiedwhenNyquist rate signal samples
are available. The rationale behind the CSD is that the signal x(t) has cyclostationar-
ity, that is, there exists at least one non-zero cyclic frequency α such that Rα

x (τ ) �= 0
for some τ , while the noise η(t) is a pure stationary process, that is, for any non-zero
α Rα

η (τ ) = 0 for all τ ’s, or equivalently Sα
η ( f ) = 0 for all f ’s. In the following,

we list the cyclic frequencies for some signals with cyclostationarity in practical
applications [44, 45].

1. Analog TV signal: It has cyclic frequencies at multiples of the TV-signal hori-
zontal line-scan rate (15.75 KHz in USA, 15.625 KHz in Europe).

2. AM signal: x(t) = a(t) cos(2π fct + φ0). It has cyclic frequencies at ±2 fc.
3. PM and FM signal: x(t) = cos(2π fct + φ(t)). It usually has cyclic frequencies at

±2 fc. The characteristics of the SCD function at cyclic frequency ±2 fc depend
on φ(t).

4. Digital modulated signals:

a. Amplitude-Shift Keying: x(t) = [∑∞
n=−∞ an p(t − n	s − t0)] cos(2π fct +

φ0). It has cyclic frequencies at k/	s, k �= 0 and ±2 fc + k/	s, k = 0,
±1,±2, . . ..

b. Phase-Shift Keying: x(t) = cos[2π fct +∑∞
n=−∞ an p(t − n	s − t0)]. For

BPSK, it has cyclic frequencies at k/	s, k �= 0, and ±2 fc + k/	s, k =
0,±1,±2, . . .. For QPSK, it has cycle frequencies at k/	s, k �= 0.

5. OFDM modulated signal: It has cyclic features at cyclic frequency k/(NtTb),
where k is an integer number, Nt is the length of an OFDM block (FFT size plus
CP size), and Tb is the symbol duration.
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Let α0 be a non-zero cyclic frequency such that Rα0
x (τ ) �= 0 for some τ . Assume

that the signal and noise are mutually independent. Then we have

H0 : Rα0
y (τ ) = 0 (3.50)

H1 : Rα0
y (τ ) = Rα0

x (τ ) �= 0, for some τ (3.51)

In the frequency domain, this turns to

H0 : Sα0
y ( f ) = 0 (3.52)

H1 : Sα0
y ( f ) = Sα0

x ( f ) �= 0, for some f (3.53)

Therefore, H0 and H1 can be distinguished by generating a test statistic from the
CAC/SCD of the received signal at cyclic frequency α0 and comparing the test
statisticwith a threshold.A typical test statistic isC1 = ∫ |Rα0

y (τ )|2dτ or equivalently
C1 = ∫ |Sα0

y ( f )|2d f .
In practice, the received signal is sampled and only limited number of samples

are available. Let Ts be the sampling period and N be the number of samples. The
discrete version of the CAC is

Rα
y (kTs) = 1

N

N−1∑

n=0

y((n + k)Ts)y
∗(nTs)e− j2παnTs (3.54)

where the lag k = 0, 1, . . . , M − 1 with M << N . Accordingly the discrete version
of the test statistic is

C1 =
M−1∑

k=0

|Rα0
y (kTs)|2 (3.55)

In CSD, the test statistic is compared with a threshold to make a decision. Intuitively
the threshold should be related to noise power. Due to the difficulty in acquiring the
accurate noise power in practice [7, 46, 47], we can use the maximum likelihood
estimation of the noise power. The maximum likelihood estimation of the noise
power is

σ̂ 2
η = 1

N

N−1∑

n=0

|y(nTs)|2 (3.56)

The threshold is thus chosen as βσ̂ 4
η , where β is a scalar to meet the pre-defined

probability of false alarm.
There are other different test statistics and decision rules (thresholds) for the

CSD. Especially, if the signal has cyclostationarity at multiple cyclic frequencies,
how to use them to form a single test statistic is an interesting problem. In [48, 49], a
general structure based on the GLRT principle is proposed to use the multiple cyclic
frequencies. However, the method needs very high complexity and also some priori
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information on the channel. Some simplified approaches have also been studied [50].
The use of the CSD for ATSC signal is proposed [51]. There are also researches on
OFDM signal detections using the CSD [50, 52–54].

When interference exists, the CSD may still work well as long as the interference
does not have the same cyclostationary feature as the primary signal. In general, the
chance that the primary signal and the interference have the same cyclostationary
feature is slim. That means CSD is robust to interference and noise uncertainty.
Furthermore, it is possible to distinguish the signal type because different signal may
have different non-zero cyclic frequencies.

Although cyclostationary detection has certain advantages, it also has some dis-
advantages:

1. The method needs a very high sampling rate;
2. The computation of SCD function requires large number of samples and thus high

computational complexity;
3. The strength of SCD could be affected by the unknown channel [46];
4. The sampling time error and frequency offset could affect the cyclic frequencies

[55, 56], which will be discussed further in the next section.

3.2.8 Detection Threshold and Test Statistic Distribution

To make a decision on whether signal is present, we need to set a threshold γ for
each proposed test statistic, such that certain Pd and/or Pf a can be achieved. For a
fixed sample size N , we cannot set the threshold to meet the targets for arbitrarily
high Pd and low Pf a at the same time, as they are conflicting to each other. Since
we have little or no prior information on the signal (actually we even do not know
whether there is a signal or not), it is difficult to set the threshold based on Pd . Hence,
a common practice is to choose the threshold based on Pf a under hypothesis H0.

Without loss of generality, the test threshold can be decomposed into the following
form: γ = γ1T0(x), where γ1 is related to the sample size N and the target Pf a , and
T0(x) is a statistic related to the noise distribution under H0. For example, for the
energy detection with known noise power, we have

T0(x) = σ 2
η (3.57)

For the matched-filtering detection with known noise power, we have

T0(x) = ση (3.58)

In practice, the parameterγ1 can be set either empirically based on the observations
over a period of time when the signal is known to be absent, or analytically based
on the distribution of the test statistic under H0. In general, such distributions are
difficult to find, while some known results are given as follows.
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For energy detection defined in (3.27), it can be shown that for a sufficiently large
values of N , its test statistic can be well approximated by the Gaussian distribution
[14, 28], i.e.,

1

NM
TED(x) ∼ N

(
σ 2

η ,
2σ 4

η

NM

)
under H0 (3.59)

Accordingly, for given Pf a and N , the corresponding γ1 can be found as

γ1 = NM

(√
2

NM
Q−1(Pf a) + 1

)
(3.60)

where

Q(t) = 1√
2π

∫ +∞

t
e−u2/2du (3.61)

For the matched-filtering detection defined in (3.37), for a sufficiently large N ,
we have

1√∑N−1
n=0 ||s(n)||2

TMF (x) ∼ N
(
0, σ 2

η

)
under H0 (3.62)

Thereby, for given Pf a and N , it can be shown that

γ1 = Q−1(Pf a)

√√√√
N−1∑

n=0

||s(n)||2 (3.63)

For the GLRT-based detection, it can be shown that the asymptotic (as N → ∞)
log-likelihood ratio is central chi-square distributed [16]. More precisely,

2 ln TGLRT (x) ∼ χ2
r under H0 (3.64)

where r is the number of independent scalar unknowns under H0 and H1. For
instance, if σ 2

η is known while Rs is not, r will be equal to the number of inde-
pendent real-valued scalar variables in Rs . However, there is no explicit expression
for γ1 in this case.

3.3 Eigenvalue Based Detections

Eigenvalue based detections (EBD) was first proposed in [47, 57–60]. The method
was later studied and refined in [19, 61–64]. EBD can be derived from different
approaches such as the GLRT principle or information theory. Some examples on
the derivations can be found in [19, 20, 64]. The threshold setting of the EBD needs
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random matrix theory [47, 57–60]. The EDB methods solve the noise uncertainty
problem by using statistical covariance matrix to estimate the noise power. The
method can detect signal without knowing explicit information of the signal. The
method was also adopted by IEEE802.22 standard as a solution to detect TV and
wireless microphone signals.

3.3.1 The Methods

We consider the same model as defined at the beginning of this chapter. Let N j
def=

max
i

(qi j ), zero-pad hi j (k) if necessary, and define

h j (n)
def= [h1 j (n), h2 j (n), . . . , hMj (n)]T (3.65)

We have [47]

x(n) = Hs(n) + η(n) (3.66)

where H is a ML × (N̂ + PL) (N̂
def=

P∑
j=1

N j ) matrix defined as

H
def= [H1,H2, . . . ,HP ], (3.67)

H j
def=

⎡

⎢⎢⎢⎣

h j (0) · · · · · · h j (N j ) 0 · · · 0
0 h j (0) · · · · · · h j (N j ) · · · 0

. . .
. . .

0 0 · · · h j (0) · · · · · · h j (N j )

⎤

⎥⎥⎥⎦ (3.68)

Note that the dimension of H j is ML × (N j + L).
Define the statistical covariance matrices of the signals and noise as

Rx = E(x(n)x†(n)) (3.69)

Rs = E(s(n)s†(n)) (3.70)

Rη = E(η(n)η†(n)) (3.71)

We can verify that

Rx = HRsH
† + σ 2

η IML (3.72)

where σ 2
η is the variance of the noise, and IML is the identity matrix of order ML .
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Let the eigenvalues of Rx and HRsH
† be λ1 ≥ λ2 ≥ · · · ≥ λML and ρ1 ≥ ρ2 ≥

· · · ≥ ρML , respectively. Obviously, λn = ρn + σ 2
η . When there is no signal, that is,

s(n) = 0 (then Rs = 0), we have λ1 = λ2 = · · · = λML = σ 2
η . Hence, λ1/λML = 1.

When there is a signal, if ρ1 > ρML , we have λ1/λML > 1. Hence, we can detect
if signal exists by checking the ratio λ1/λML . Obviously, ρ1 = ρML if and only if
HRsH

† = λIML , where λ is a positive number. From the definition of the matrix H

andRs , it is highly probable thatHRsH
† �= λIML . In fact, theworst case isRs = σ 2

s I,
that is, the source signal samples are iid. At this case,HRsH

† = σ 2
s HH

†. Obviously,
σ 2
s HH

† = λIML if and only if all the rows of H have the same power and they are
co-orthogonal. This is only possible when N j = 0, j = 1, . . . , P and M = 1, that
is, the source signal samples are iid, all the channels are flat-fading and there is only
one receiver.

Thus, if M > 1 (multiple antennas) or the channel has multiple paths or the
source signal itself is correlated, the eigenvalues of the Rx are not identical, while at
pure noise case, the Rx should have identical eigenvalues. Hence, we can check the
eigenvalues of Rx to see if signal presents.

In practice, we only have finite number of samples. Hence, we can only obtain
the sample covariance matrix other than the statistic covariance matrix. The sample
covariance matrix is defined as

Rx (N )
def= 1

N

L−2+N∑

n=L−1

x(n)x†(n) (3.73)

where N is the number of collected samples. Based on the sample covariance matrix
and its eigenvalues, a few methods have been proposed based on different prospec-
tives [19, 47, 57–64]. Such methods are called eigenvalue based detections (EBD).
Here we summarize the methods as follows.

Let λ1 ≥ λ2 ≥ · · · ≥ λML be the eigenvalues of the sample covariance matrix.

Algorithm Eigenvalue based detections
Step 1. Compute the sample covariance matrix as defined in (3.73).
Step 2. Calculate the eigenvalues of the sample covariance matrix.
Step3.Compute a test statistic from the eigenvalues.There are different approaches

to construct the test statistic. A few simple but effective method are as follows:

1. Maximum eigenvalue to trace detection (MET). The test statistic is

TMET = λ1/tr(Rx (N )) (3.74)

where tr(·) is the trace of a matrix, tr(Rx (N )) =∑ML
i=1 λi . This method is also

called blindly combined energy detection (BCED) in [60].
2. Maximum to minimum eigenvalue detection (MME) [47]. The test statistic is

TMME = λ1/λML (3.75)
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3. Arithmetic to geometric mean (AGM) [19]. The test statistic is

TAGM = 1

ML

ML∑

i=1

λi/

(
ML∏

i=1

λi

)1/ML

(3.76)

Step 4. Compare the test statistic with a threshold to make a decision.

All thesemethods donot use the informationof the signal, channel andnoise power
as well. The methods are robust to synchronization error, channel impairment, and
noise uncertainty.

3.3.2 Threshold Setting

To find a formula for the threshold is mathematically involved. In general we need to
find the theoretical distribution of some combination of the eigenvalues of a random
matrix. There have been some exciting works on this by using the random matrix
theory [47, 61–63, 65–68]. For simplicity, in the following, we provide an example
for the maximum eigenvalue detection (MED) with known noise power [59]. At
this case, we actually compare the ratio of the maximum eigenvalue of the sample
covariance matrix Rx (N ) to the noise power σ 2

η with a threshold γ1. To set the value
for γ1, we need to know the distribution of λ1(N )/σ 2

η for any finite N . Fortunately,
the random matrix theory has laid the foundation to derive the distributions.

When there is no signal,Rx (N ) reduces toRη(N ), which is the sample covariance
matrix of the noise only. It is known that Rη(N ) is a Wishart random matrix [69].
The study of the eigenvalue distributions for random matrices is a very hot research
topic over recent years in mathematics, communications engineering, and physics
[69–72]. The joint PDF of the ordered eigenvalues of a Wishart random matrix has
been known for many years [69]. However, since the expression of the joint PDF
is very complicated, no simple closed-form expressions have been found for the
marginal PDFs of the ordered eigenvalues, although some computable expressions
have been found in [73]. Recently, I. M. Johnstone and K. Johansson have found
the distribution of the largest eigenvalue [70, 71] of a Wishart random matrix as
described in the following theorem.

Theorem 3.1 LetA(N )= N
σ 2

η
Rη(N ),μ = (

√
N − 1 + √

M)2, and ν = (
√
N − 1 +√

M)( 1√
N−1

+ 1√
M

)1/3. Assume that lim
N→∞

M
N = y (0 < y < 1). Then, λmax (A(N ))−μ

ν

converges (with probability one) to the Tracy–Widom distribution of order 1 [74,
75].
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Table 3.1 Numerical table for the Tracy–Widom distribution of order 1

t −3.90 −3.18 −2.78 −1.91 −1.27 −0.59 0.45 0.98 2.02

F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

The Tracy–Widomdistribution provides the limiting law for the largest eigenvalue
of certain random matrices [74, 75]. Let F1 be the cumulative distribution function
(CDF) of the Tracy–Widom distribution of order 1. We have

F1(t) = exp

(
−1

2

∫ ∞

t

(
q(u) + (u − t)q2(u)

)
du

)
(3.77)

where q(u) is the solution of the nonlinear Painlevé II differential equation given by

q ′′(u) = uq(u) + 2q3(u) (3.78)

Accordingly, numerical solutions can be found for function F1(t) at different values
of t . Also, there have been tables for values of F1(t) [70] as shown in Table 3.1.

Using the above results, we can derive the probability of false alarm as

Pf a = P
(
λ1(N ) > γ1σ

2
η

)

= P

(
λmax (A(N )) − μ

ν
>

γ1N − μ

ν

)
≈ 1 − F1

(
γ1N − μ

ν

)
(3.79)

Thus we have

F1

(
γ1N − μ

ν

)
≈ 1 − Pf a (3.80)

or equivalently,

γ1N − μ

ν
≈ F−1

1 (1 − Pf a) (3.81)

From the definitions of μ and ν in Theorem 3.1, we finally obtain the value for γ1 as

γ1 ≈ (
√
N + √

M)2

N

(
1 + (

√
N + √

M)−2/3

(NM)1/6
F−1
1 (1 − Pf a)

)
(3.82)

Note that γ1 depends only on N and Pf a . A similar approach like the above can be
used for the case of MME detection, as shown in [47, 68].

Figure3.1 shows the expected (theoretical) and actual (by simulation) probability
of false alarm values based on the theoretical threshold in (3.82) for N = 5000,
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Fig. 3.1 Comparison of theoretical and actual Pf a

M = 8, and L = 1. It is observed that the differences between these two sets of
values are reasonably small, suggesting that the choice of the theoretical threshold
is quite accurate.

3.3.3 Performances of the Methods

To show the performance and the robustness of the methods, here we give some
simulation results for the EBDs. Comparison with the energy detection (ED) is also
included. We consider two cases here: the signal is time uncorrelated and the signal
is time correlated. The Receiver Operating Characteristics (ROC) curves (Pd versus
Pf a) at SNR = −15 dB, N = 5000, and M = 4 are plotted at the two cases. The
performance at first case in shown in Fig. 3.2 with L = 1 and that at the second case
is shown in Fig. 3.3 with L = 6, where “ED-udB” means energy detection with u
dB noise uncertainty. In Fig. 3.3, the source signal is the wireless microphone signal
[76] and a multipath fading channel (with eight independent taps of equal power)
is assumed. For both cases, MET, MME and AGM perform better than ED. MET,
MME and AGM are totally immune to noise uncertainty. However, the ED is very
vulnerable to noise power uncertainty [4–6].

Obviously the eigenvalue based detections do not use the information of the signal,
channel and noise power as well. The methods are robust to synchronization error,
channel impairment, and noise uncertainty. However, like other blind detections, the
methods are vulnerable to unknown narrowband interferences.



3.4 Covariance Based Detections 63

Fig. 3.2 ROC curve: i.i.d source signal

Fig. 3.3 ROC curve: wireless microphone source signal

3.4 Covariance Based Detections

Covariance based detections (CBD) was first proposed in [65, 77]. The method
solved the noise uncertainty problem by using the online estimated noise power. The
method can detect signal without knowing explicit information of the signal. The
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method was also adopted by IEEE802.22 standard for detecting TV signal and as
the first choice for sensing the wireless microphone signals.

3.4.1 The Methods

As shown in the last section, the covariance matrix of the received signal can be
written as

Rx = HRsH
† + σ 2

η IML (3.83)

If the signal s(n) is not present, Rs = 0. Hence the off-diagonal elements of Rx are
all zeros. If there is signal and the signal samples are correlated, Rs is not a diagonal
matrix. Hence, some of the off-diagonal elements of Rx should be non-zeros.

In practice, the statistical covariance matrix can only be calculated using a limited
number of signal samples. For notation simplicity, here we consider the case of single
antenna/sensor M = 1, and drop the indices for antenna/sensor. Define the sample
auto-correlations of the received signal as

r(l) = 1

Ns

Ns−1∑

m=0

x(m)x(m − l), l = 0, 1, . . . , L − 1 (3.84)

where x(m) is the received signal samples, and Ns is the number of available samples.
The statistical covariance matrix Rx can be approximated by the sample covariance
matrix Rx (Ns) as defined in the last section. At M = 1, Rx (Ns) can be formed by
the auto-correlations r(l). Note that the sample covariance matrix is symmetric and
Toeplitz.

Based on the generalized likelihood ratio test (GLRT) or information/signal pro-
cessing theory, there have been a few methods proposed based on the sample covari-
ance matrix. One class of such methods is called covariance based detections (CBD)
[1, 65, 76, 77]. Somemethods that directly use the auto-correlations of the signal can
also be included in this class [78]. The covariance based detections directly use the
elements of the covariance matrix to construct detection methods, which can reduce
computational complexity. The methods are summarized in the following.

Let the entries of the matrix Rx (Ns) be cmn (m, n = 1, 2, . . . , ML).

Algorithm Covariance based detections
Step 1. Compute the sample covariance matrix Rx (Ns) as defined in (3.73).
Step 2. Construct a test statistic directly from the entries of the sample covariance

matrix. In general, the test statistic of the CBD is

TCBD = F1(cmn)/F2(cmm) (3.85)
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where F1 and F2 are two functions. At single antenna/sensor case, it can be written
equivalently as

TCBD = F1(r(0), . . . , r(L − 1))/F2(r(0), . . . , r(L − 1)) (3.86)

There are many ways to choose the two functions. Some special cases are shown in
the following.

1. Covariance absolute value detection (CAVD). The test statistic is

TCAV D =
ML∑

m=1

ML∑

n=1

|cmn|/
ML∑

m=1

|cmm | (3.87)

2. Maximum auto-correlation detection (MACD). The test statistic is

TMACD = max
m �=n

|cmn|/
ML∑

m=1

|cmm | (3.88)

3. Fixed auto-correlation detection (FACD): The test statistic is

TFACD = |cm0n0 |/
ML∑

m=1

|cmm | (3.89)

where m0 and n0 are fixed numbers between 1 and ML . At single antenna case,
the detection can be written equivalently as

TFACD = |r(l0)|/r(0) (3.90)

This detection is especially useful when we have some prior information on the
source signal correlation and knows the lag that produces the maximum auto-
correlation. For example, it can be used for detect the OFDM signal by using the
CP or pilot property [52]. �

Step 3. Compare the test statistic with a threshold to make a decision.

All thesemethods donot use the informationof the signal, channel andnoise power
as well. The methods are robust to synchronization error, channel impairment, and
noise uncertainty.

The test statistic is compared with a threshold γ to make a decision. The threshold
γ is determined based on the given Pf a . To find a formula for the thresholds is math-
ematically involved [65, 77]. We will show an example for M = 1 in the following
subsection.
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The computational complexity of the algorithm is as follows (for M = 1). Com-
puting the auto-correlations of the received signal requires about LNs multiplications
and additions. Computing T1(Ns) and T2(Ns) requires about L2 additions. Therefore,
the total number of multiplications and additions is about LNs + L2.

3.4.2 Detection Probability and Threshold Determination

It is generally difficult to find closed-form detection probabilities. For this purpose,
we need to find the distribution of test statistics. In [65, 76, 77], approximations for
the distribution of the test statistics has been found by using central limit theorem for
M = 1. Furthermore, the theoretical estimations for the two probabilities, Pd , Pf a ,
as well as the threshold associated with these probabilities, were also discussed. Here
we summarize the results as follows.

In the following, we consider the case of M = 1. Denote cnm as the element of
sample covariance matrix Rx (Ns) at the nth row and mth column, and let

T1(Ns) = 1

L

L∑

n=1

L∑

m=1

|cnm | (3.91)

T2(Ns) = 1

L

L∑

n=1

|cnn| (3.92)

The test statistic of the CAVD is then TCAV D = T1(Ns)/T2(Ns).
It is shown in [65, 76, 77] that

lim
Ns→∞E(T1(Ns)) = σ 2

s + σ 2
η + 2σ 2

s

L

L−1∑

l=1

(L − l)|αl | (3.93)

where
αl = E[s(n)s(n − l)]/σ 2

s (3.94)

σ 2
s is the signal power, σ 2

s = E[s2(n)]. |αl | defines the correlation strength among
the signal samples, here 0 � |αl | � 1. For simplicity, we denote

ϒL � 2

L

L−1∑

l=1

(L − l)|αl | (3.95)

which is the overall correlation strength among the consecutive L samples. When
there is no signal, we have
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T1(Ns)/T2(Ns) ≈ E(T1(Ns))/E(T2(Ns)) = 1 + (L − 1)

√
2

πNs
(3.96)

Note that this ratio approaches to 1 as Ns approaches to infinite. Also note that the
ratio is not related to the noise power (variance). On the other hand, when there is
signal (signal plus noise case), we have

T1(Ns)/T2(Ns) ≈ E(T1(Ns))/E(T2(Ns))

≈ 1 + σ 2
s

σ 2
s + σ 2

η

ϒL = 1 + SNR

SNR + 1
ϒL (3.97)

Here the ratio approaches to a number larger than 1 as Ns approaches to infinite. The
number is determined by the correlation strength among the signal samples and the
SNR. Hence, for any fixed SNR, if there are sufficiently large number of samples,
we can always differentiate if there is signal or not based on the ratio.

However, in practice we have only limited number of samples. So, we need to
evaluate the performance at fixed Ns .

First we analyze the Pf a at hypothesisH0. For given threshold γ1, the probability
of false alarm for the CAVD algorithm is

Pf a = P (T1(Ns) > γ1T2(Ns)) ≈ P

(
T2(Ns) <

1

γ1

(
1 + (L − 1)

√
2

Nsπ

)
σ 2

η

)

= P

⎛

⎝T2(Ns) − σ 2
η√

2
Ns

σ 2
η

<

1
γ1

(
1 + (L − 1)

√
2

Nsπ

)
− 1

√
2/Ns

⎞

⎠

≈ 1 − Q

⎛

⎝
1
γ1

(
1 + (L − 1)

√
2

Nsπ

)
− 1

√
2/Ns

⎞

⎠ (3.98)

where

Q(t) = 1√
2π

∫ +∞

t
e−u2/2du (3.99)

For a given Pf a , the associated threshold should be chosen such that

1
γ1

(
1 + (L − 1)

√
2

Nsπ

)
− 1

√
2/Ns

= −Q−1(Pf a) (3.100)

That is,

γ1 =
1 + (L − 1)

√
2

Nsπ

1 − Q−1(Pf a)
√

2
Ns

(3.101)
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Note that here the threshold is not related to noise power and SNR. After the
threshold is set, we now calculate the probability of detection at various SNR. For
the given threshold γ1, when signal presents,

Pd = P (T1(Ns) > γ1T2(Ns)) = P

(
T2(Ns) <

1

γ1
T1(Ns)

)

≈ P

(
T2(Ns) <

1

γ1
E(T1(Ns))

)

= P

(
T2(Ns) − σ 2

s − σ 2
η√

Var(T2(Ns))
<

1
γ1
E(T1(Ns)) − σ 2

s − σ 2
η√

Var(T2(Ns))

)

= 1 − Q

( 1
γ1
E(T1(Ns)) − σ 2

s − σ 2
η√

Var(T2(Ns))

)
(3.102)

For very large Ns and low SNR, we have

Var(T2(Ns)) ≈ 2σ 2
η

Ns

(
2σ 2

s + σ 2
η

) ≈ 2(σ 2
s + σ 2

η )2

Ns
(3.103)

and

E(T1(Ns)) ≈ σ 2
s + σ 2

η + σ 2
s ϒL (3.104)

Hence, we have a further approximation

Pd ≈ 1 − Q

⎛

⎝
1
γ1

+ ϒLσ 2
s

γ1(σ 2
s +σ 2

η )
− 1

√
2/Ns

⎞

⎠ = 1 − Q

( 1
γ1

+ ϒLSNR
γ1(SNR+1) − 1√
2/Ns

)

(3.105)

Obviously, the Pd increases with the number of samples, Ns , the SNR and the cor-
relation strength among the signal samples. Note that γ1 is also related to Ns as
shown above, and lim

Ns→∞ γ1 = 1. Hence, for fixed SNR, Pd approaches to 1 when Ns

approaches to infinite.

3.4.3 Performance Analysis and Comparison

To compare the performances of any methods, first we need a criterion. By properly
choosing the thresholds, many methods can achieve any given Pd and Pf a > 0 if
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sufficiently large number of samples are available. Thekeypoint is howmany samples
are needed to achieve the given Pd and Pf a > 0.Hence,we choose this as the criterion
to compare the two algorithms.

For a target pair of Pd and Pf a , based on (3.105) and (3.101), we can find the
required number of samples for the CAVD as

Nc ≈ 2
(
Q−1(Pf a) − Q−1(Pd) + (L − 1)/

√
π
)2

(ϒLSNR)2
(3.106)

For fixed Pd and Pf a , Nc is only related to the smoothing factor L and the overall
correlation strength ϒL . Hence, the best smoothing factor is

Lbest = min
L

{Nc} (3.107)

which is related to the correlation strength among the signal samples.
Herewegive a comparison of theCBDwith the energy detection. Energy detection

simply compares the average power of the received signal with the noise power to
make a decision. Toguarantee a reliable detection, the thresholdmust be set according
to the noise power and the number of samples [4–6]. On the other hand, the proposed
methods do not rely on the noise power to set the threshold (see Eq. (3.101)), while
keeping other advantages of the energy detection. Simulations have shown that the
proposed method is much better than the energy detection when noise uncertainty
is present [65, 76, 77]. Hence, here we only compare the proposed method with the
ideal energy detection (assume that noise power is known exactly).

For energy detection, the required number of samples is approximately [5]

Ne = 2
(
Q−1(Pf a) − Q−1(Pd)

)2

SNR2 (3.108)

Comparing (3.106) and (3.108), if we want Nc < Ne, we need

ϒL > 1 + L − 1√
π
(
Q−1(Pf a) − Q−1(Pd)

) (3.109)

For example, if Pd = 0.9 and Pf a = 0.1, we need ϒL > 1 + L−1
4.54 . In conclusion, if

the signal samples are highly correlated such that (3.109) holds, the CAVD is better
than the ideal energy detection; otherwise, the ideal energy detection is better.

In terms of the computational complexity, the energy detection needs about Ns

multiplications and additions. Hence, the computational complexity of the proposed
methods is about L times that of the energy detection.
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3.5 Cooperative Spectrum Sensing

When there are multiple secondary users/receivers distributed at different locations,
it is possible for them to cooperate to achieve higher sensing reliability. There are
various sensing cooperation schemes in the current literature [28, 29, 41, 79–92]. In
general, these schemes can be classified into two categories: (A) Data fusion: each
user sends its raw data or processed data to a specific user, which processes the data
collected and then makes the final decision; and (B) Decision fusion: multiple users
process their data independently and send their decisions to a specific user, which
then makes the final decision.

3.5.1 Data Fusion

Theoretically, the LRT based on the multiple sensors is the best. However, there
are two major difficulties in using the optimal LRT based method: (1) it needs the
exact distribution of x, which is related to the source signal distribution, the wireless
channels, and the noise distribution; (2) it may needs the raw data from all sensors,
which is very expensive for practical applications.

In some situations, the signal samples are independent in time, that is, E(si (n)

si (m)) = 0, for n �= m. If we further assume that the noise and signal samples have
Gaussian distribution, i.e., η(n) ∼ N(0,Rη) and s(n) ∼ N(0,Rs), where

Rs = E(s(n)sT (n)), Rη = E(η(n)ηT (n)) (3.110)

the LRT can be obtained explicitly as [89]

log TLRT = 1

N

N−1∑

n=0

xT (n)R−1
η Rs(Rs + Rη)

−1x(n) (3.111)

Note that in general the cross-correlations among the signals from different sensors
are used in the detection here. It means that the fusion center needs the raw data from
all sensors, if the signals from different sensors are correlated in space. The reporting
of the raw data is very expensive for practical applications.

If the sensors are distributed at different locations and far apart, the primary signal
will very likely arrive at different sensors at different times. That is, in (3.3) τik may
be different for different i . For example, assuming that we are sensing a channel with
6MHz bandwidthwith sampling rate 6MHz, delay of one data sample approximately
equals to 50mdistance. In a large size network like a 802.22 cell (typicallywith radius
30km), the distance differences of different sensors to the primary user could be as
large as several kilo-meters. Therefore, the relative time delays τik can be as large
as 20 samples or more. If the delays are different, the signals at the sensors will be
independent in space.
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For distributed sensors, their noises are independent in space. If we aim for sensing
at very low SNR, the received signal at a sensor will be dominated by noise. Hence
even if the primary signals at different sensors may be weakly correlated, the whole
signals (primary signals plus noises) can be treated approximately as independent in
space at low SNR. So, in the following, we further assume that E(si (n)s j (n)) = 0,
for i �= j .

Under the assumptions we have

Rη = diag(σ 2
η,1, . . . , σ

2
η,M) (3.112)

Rs = diag(σ 2
s,1, . . . , σ

2
s,M) (3.113)

where σ 2
η,i = E(|ηi (n)|2) and σ 2

s,i = E(|si (n)|2). Under the assumptions, we can
express the LRT equivalently as

log TLRT = 1

N

N−1∑

n=0

M∑

i=1

σ 2
s,i

σ 2
η,i (σ

2
s,i + σ 2

η,i )
|xi (n)|2 =

M∑

i=1

γi

1 + γi
TED,i (3.114)

where

TED,i = 1

Nσ 2
η,i

N−1∑

n=0

|xi (n)|2 (3.115)

and γi = σ 2
s,i/σ

2
η,i .

Note that TED,i is the normalized energy at sensor i . The LRT is simply a linearly
combined (LC) cooperative sensing. This method is also called cooperative energy
detection (CED), which combines the energy from different sensors to make a deci-
sion. Thus there are three assertions for cooperative sensing by distributed sensors
with time independent signals:

1. the optimal cooperative sensing is the linearly combined energy detection;
2. the combining coefficient is a simple function of the SNR at the sensor;
3. a sensor only needs to report its normalized energy and SNR to the fusion center,

and no raw data transmission is necessary.

If the signals are time dependent, the derivation of the LRT becomes much more
difficult. Furthermore, the information of correlation among the signal samples is
required. There have been methods to exploit the time and space correlations of the
signals in a multi-antenna system [14]. If the raw data from all sensors are sent to the
fusion center, the sensor network may be treated as a single multi-antenna system
(virtual multi-antenna system). If the fusion center does not have the raw data, how
to fully use the time and space correlations is still an open question, though there
have been some sub-optimal methods. For example, a fusion scheme based on the
CAVD is given in [87], which has the capability to mitigate interference and noise
uncertainty.
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A major difficulty in implementing the method is that the fusion center needs to
know the SNR at each user. Also the decision and threshold are related to the SNR’s,
which means that the detection process changes dynamically with the signal strength
and noise power.

If P = 1, the propagation channels are flat-fading (qik = 0,∀i, k), and τik =
0,∀i, k, the signal at different antennas can be coherently combined first and then the
energy detection is used [28, 31, 93]. Themethod is called maximum ratio combined
(MRC) cooperative energy detection.

TMRC = 1

N

N−1∑

n=0

|
M∑

i=1

hi xi (n)|2 (3.116)

It is optimal if the noise powers at different sensors are equal. Note that the MRC
needs the raw data from all sensors and also the channel information.

We have proved that the LRT is actually a LC scheme. It is natural to also consider
other LC schemes. In general, a LC scheme simply sums the weighted energy values
to obtain the following test statistic

TLC =
M∑

i=1

gi TED,i (3.117)

where gi is the combining coefficient with gi ≥ 0. If we allow the combining coef-
ficients to depend on the SNRs of sensors, we know that the optimal sensing should
choose gi = γi/(1 + γi ). So the problem is howwe design a LC scheme that does not
need the SNR information or only uses partially available SNR information, while
its performance does not degrade much.

One such scheme is the equal gain combine (EGC) [14, 28, 83, 84, 93, 94], i.e.,
gi = 1/M for all i :

TEGC = 1

M

M∑

i=1

TED,i (3.118)

EGC totally ignores the differences of sensors.
If the normalized signal energies at different sensors have large differences, a

natural way is to choose the largest normalized energy for detection. We call this
maximum normalized energy (MNE) cooperative sensing. The test statistic is

TMNE = max
1≤i≤M

TED,i (3.119)

Note that this is different from the method that uses the known sensor with the
largest normalized signal energies. The largest normalized energy may not always
be at the same sensor due to the dynamic changes of wireless channels. The method
is equivalent to the “OR decision rule” [79, 86].



3.5 Cooperative Spectrum Sensing 73

There have beenmany researches for the “selective energy detection”. Suchmeth-
ods select the “optimal” sensor to do the sensing based on different criterias [41,
90–92, 95–98].

3.5.2 Decision Fusion

In decision fusion, each sensor sends its one-bit (hard decision) or multiple-bit deci-
sion (soft-decision) to a central processor that deploys a fusion rule to make the final
decision.

Let us consider the case of hard decision: sensor i sends its decision bit ui (“1”
for signal present and “0” for signal absent) to the fusion center. Let u be the vector
formed from ui . The test statistic of the optimal fusion rule is thus the LRT [79]:

TDFLRT = p(u|H1)

p(u|H0)
(3.120)

Assuming that the sensors are independent, we have

TDFLRT =
M∏

i=1

p(ui |H1)

p(ui |H0)
(3.121)

Let A1 be the set of i such that ui = 1 and A0 be the set of i such that ui = 0. The
above expression can be rewritten as

TDFLRT =
M∏

i∈A1

Pd,i

Pf a,i

M∏

A0

1 − Pd,i

1 − Pf a,i
(3.122)

where Pd,i and Pf a,i are the probability of detection and probability of false alarm
for user i , respectively. Taking logarithm, we obtain

log TDFLRT =
M∑

i∈A1

log
Pd,i

Pf a,i

M∑

A0

log
1 − Pd,i

1 − Pf a,i
(3.123)

By ignoring some constants not related to ui , the expression can be rewritten as

log TDFLRT =
M∑

i=1

ui log
Pd,i (1 − Pf a,i )

Pf a,i (1 − Pd,i )
(3.124)

The test statistic is a weighted linear combination of the decisions from all sensors.
The weight for a particular sensor reflects its reliability, which is related to the
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status of the sensor (for example, signal strength, noise power, channel response,
and threshold).

If all sensors have the same status and choose the same threshold, the weights are
equal and therefore the LRT is equivalent to the popular “K out of M” rule: if and
only if K decisions ormore are “1”s, the final decision is “1”. This includes “Logical-
OR (LO)” (K = 1), “Logical-AND (LA)” (K = M) and “Majority” (K = �M

2 �) as
special cases [79]. Let the probability of detection and probability of false alarm of
the method are respectively

Pd =
M∑

i=K

(
M

i

) (
1 − Pd,i

)M−i
Pi
d,i (3.125)

and

Pf a =
M∑

i=K

(
M

i

) (
1 − Pf a,i

)M−i
Pi
f a,i . (3.126)

While the Neyman–Pearson Theorem tells us that “K out of M” rule is optimal
(for equal sensors case), it does not stipulate how to choose the threshold th and K .
In general, to get the best threshold th and K we need to solve some optimization
problems for different purpose.

If each user can send multiple-bit decision to the fusion center, a more reliable
decision can be made. A fusion scheme based on multiple-bit decisions is shown in
[29]. In general, there is a tradeoff between the number of decision bits and the fusion
reliability. There are also other fusion rules that may require additional information
[79, 99].

3.5.3 Robustness of Cooperative Sensing

Let the noise uncertainty factor of sensor i be αi . Assume that all sensors have the
same noise uncertainty bound. For the linear combination, the expectation of noise
power in TLC is therefore

σ 2
LC =

M∑

i=1

gi σ̂
2
η /αi = σ̂ 2

η

M∑

i=1

gi/αi (3.127)

Hence, the noise uncertainty factor for LC fusion is αLC = 1/
∑M

i=1(gi/αi ). Note
that αi and 1/αi are limited in [10−B/10, 10B/10] and have the same distribution.
Hence αLC is also limited in [10−B/10, 10B/10]. EGC is a special case of LC. Based
on the well-known central limit theorem (CLT), it is easy to verify the following
theorem for EGC [56].
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Fig. 3.4 ROC curve for data fusion: N = 5000, μ = −15dB, 20 sensors

Theorem 3.2 Assume that all sensors have the same noise uncertainty bound B
and their noise uncertainty factors are independent. As M goes to infinite, the noise
uncertainty factor of EGC αLC converges in probability to a deterministic number
1/E(αi ) = log(10)B

5(10B/10−10−B/10)
, that is, for any ε > 0,

P (|αLC − 1/E(αi )| > ε) = 0 (3.128)

It means that, as M approaches to infinite, there is no noise uncertainty for EGC
fusion rule. We can prove similar result for some other data fusion rules. Hence, data
fusion does reduce the noise uncertainty impact. For example, at N = 5000 and SNR
μ = −15dB, the ROC curve for 20 sensors is shown in Fig. 3.4.

Although cooperative sensing can achieve better robustness and performance,
there are some issues associated with it. First, additional bandwidth is required to
exchange information among the cooperating users. In an ad-hoc network, this is by
no means a simple task. Second, the information exchange may induce errors, which
may have a major impact on fusion performance.

3.5.4 Cooperative CBD and EBD

As shown in the last sections, CBD and EBD are robust sensing methods that are
immune to noise uncertainty. Thus it is interesting to use it for cooperative sensing
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as well. In [87], methods were proposed to use the CBD and EBD for cooperative
sensing. Here we give a brief review of the methods.

It is assumed that there are M ≥ 1 sensors/receivers in a network. The sensors are
distributed in different locations so that their local environments are different and
independent. Each sensor has only one antenna. Other than the previous model, here
we consider that the received signal may be contaminated by interference. There
are two hypothesizes: H0 and H1, which corresponds to signal absent or present,
respectively. The received signal at sensor/receiver i and time n is given as

H0 : xi (n) = ρi (n) + ηi (n) (3.129)

H1 : xi (n) = hi s(n − τi ) + ρi (n) + ηi (n) (3.130)

Here ρi (n) is the interference (like spurious signals) to sensor i , which may be
emitted from other electronic devices due to non-linear Analog-to-Digital Converters
(ADC) or from other intentional/un-intentional transmitters. Note that interferences
to different sensors could be different due to their location differences. ηi (n) is
the Gaussian white noise to receiver i . s(n) is the primary user’s signal and hi
is the propagation channel from the primary to receiver i . τi is the relative time
delay of the primary signal reaching sensor i . Note that primary signal may reach
different sensors at different times due to their location differences. In the following
we consider baseband processing and assume that the signal, noise and channel
coefficients are complex numbers.

3.5.4.1 The Methods

Let the auto-correlation of the signal be

r̂i (l) = E(xi (n)x∗
i (n − l)), l = 0, 1, . . . , L − 1 (3.131)

where L is the number of lags. Then, at hypothesis H0,

r̂i (l) = r̂ρ,i (l) + r̂η,i (l) (3.132)

where

r̂ρ,i (l) = E(ρi (n)ρ∗
i (n − l)) (3.133)

r̂η,i (l) = E(ηi (n)η∗
i (n − l)) (3.134)

Since ηi (n) are white noise samples, we have

r̂η,i (0) = σ 2
η,i , r̂η,i (l) = 0, l > 0 (3.135)

where σ 2
η,i is the expected noise power at sensor i . At hypothesis H1, we have
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r̂i (l) = |hi |2r̂s(l) + r̂ρ,i (l) + r̂η,i (l) (3.136)

where

r̂s(l) = E(s(n)s∗(n − l)) (3.137)

In practice, there are only limited number of samples at each sensor. Let N be the
number of samples. Then the auto-correlations can only be estimated by the sample
auto-correlations defined as

ri (l) = 1

N

N−1∑

n=0

xi (n)x∗
i (n − l), l = 0, 1, . . . , L − 1 (3.138)

It is known that ri (l) approaches to r̂i (l) if N is large. Each sensor computes its sample
auto-correlations ri (l) and then sends them to a fusion center (the fusion center could
be one of the sensor). The fusion center first averages the received auto-correlations,
that is, compute

r(l) = 1

M

M∑

i=1

ri (l) (3.139)

Then the covariance based detection (CBD) in [65] is used for the detection. Let

T1 =
L−1∑

l=0

g(l)|r(l)|, T2 = r(0) (3.140)

where g(l) are positive weight coefficients and g(0) = 1. The decision statistic of
the cooperative covariance based detection (CCBD) is

TCCBD = T1/T2 (3.141)

Let

r̂(l) = 1

M

M∑

i=1

r̂i (l) (3.142)

Then r(l) approaches to r̂(l) for large simple size. At hypothesis H0,

r̂(l) = 1

M

M∑

i=1

r̂ρ,i (l) + 1

M

M∑

i=1

r̂η,i (l) (3.143)

At hypothesis H1,
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r̂(l) =
{

1

M

M∑

i=1

|hi |2
}
r̂s(l) + 1

M

M∑

i=1

r̂ρ,i (l) + 1

M

M∑

i=1

r̂η,i (l) (3.144)

Therefore, at hypothesis H0,

T1/T2 ≈
∑L−1

l=0 g(l)
∣∣∣ 1M
∑M

i=1 r̂ρ,i (l)
∣∣∣+ 1

M

∑M
i=1 σ 2

η,i

1
M

∑M
i=1

(
r̂ρ,i (0) + σ 2

η,i

) (3.145)

while at hypothesis H1,

T1/T2 ≈
∑L−1

l=0 g(l)
∣∣∣ 1M
∑M

i=1

(|hi |2r̂s(l) + r̂ρ,i (l)
)∣∣∣+ 1

M

∑M
i=1 σ 2

η,i

1
M

∑M
i=1

(
|hi |2r̂s(0) + r̂ρ,i (0) + σ 2

η,i

) (3.146)

Unlike white noise, the interference may be correlated in time. Hence it is pos-
sible that r̂ρ,i (l) �= 0 for l > 0. However, if we assume that the interferences at
different sensors are different and independently distributed, it is highly possible
that 1

M

∑M
i=1 r̂ρ,i (l) (l > 0) will be small. This is proved in [87] for some special

cases. Thus CCBD does improve the robustness to interference.
As long as the primary signal samples are time correlated, we have T1/T2 > 1 at

hypothesisH1. Hence, we can use T1/T2 to differentiate hypothesisH0 andH1. We
summarize the cooperative covariance based detection (CCBD) as follows.

Algorithm Cooperative Covariance Based Detection
Step 1. Each sensor computes its sample auto-correlations ri (l), l = 0, 1, . . . , L −

1.
Step 2. Every sensor sends its sample auto-correlations to the fusion center.
Step 3. The fusion center computes the average of the sample auto-correlations

of all sensors as described in (3.139).
Step 4. The fusion center computes two statistics T1 and T2 as described in (3.140).
Step 5. Determine the presence of the signal based on T1, T2 and a threshold γ .

That is, if T1/T2 > γ , signal exists; otherwise, signal does not exist. �

In Algorithm CCBD, a special choice for the weights is: g(0) = 1, g(l) =
2(L − l)/L (l = 1, . . . , L − 1). For this choice, it is equivalent to choose T1 as the
summation of absolute values of all the entries of matrixRx , and T2 as the summation
of absolute values of all the diagonal entries of the matrix.

We can form the sample covariance matrix defined as

Rx =
⎡

⎢⎣
r(0) · · · r(L − 1)

...
...

...

r∗(L − 1) · · · r(0)

⎤

⎥⎦ (3.147)
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Based on the analysis above, at hypothesis H0, Rx is approximately an diagonal
matrix, while at hypothesisH1,Rx is far from diagonal if the primary signal samples
are time correlated.

Based on the sample covariance matrix, the eigenvalue based detections (EBD)
discussed in the last sections can also be used here. We summarize the cooperative
eigenvalue based detection (CEBD) as follows.

Algorithm Cooperative Eigenvalue Based Detection
Step 1–Step 3. Same as Algorithm CCBD.
Step 4. Form the sample covariance matrix and compute the maximum eigenvalue

ζmax , and trace of the matrix Rx , denoted as Tr .
Step 5. Determine the presence of the signal based on ζmax and Tr and a threshold

γ . That is, if ζmax/Tr > γ , signal exists; otherwise, signal does not exist. �

3.5.4.2 Comparisons with Other Methods

There have been extensive studies on cooperative sensing. Some of the methods have
been discussed in Sect. 3.5.1. Among them, the cooperative energy detection (CED)
is the most popular method. Here we choose the CED for comparison.

In general, ED needs to know the noise power. A wrong estimation of noise
power will greatly degrade its performance [7, 47]. CED improves somewhat but
still vulnerable to the noise power uncertainty as shown above. Furthermore, when
unexpected interference presents, CED will treat it as signal and hence gives high
probability of false alarm.

Comparedwith CED, advantages of CCBD/CEBD are: (1) as an inherent property
of covariance and eigenvalue based detection [47, 65], CCBD/CEBD is robust to
noise uncertainty; (2) due to the cancellation of auto-correlations at non-zeros lags,
CCBD/CEBD is not sensitive to interferences; (3) it is naturally immune to wide-
band interference, since such interferences have very weak time correlations; (4)
there is no need for noise power estimation at all which reduces implementation
complexity.

Compared to single sensor covariance and eigenvalue based detections [47, 65],
which may be affected by correlated interferences, CCBD/CEBD overcomes this
drawback by cancelation of the adversary impact in the data fusion.

3.6 Summary

In this chapter, spectrumsensing techniques, including classical andnewly-developed
robustmethods, have been reviewed in a systematicway.We start with the fundamen-
tal sensing theories from the optimal likelihood ratio test perspective, then review the
classical methods including Bayesian method, robust hypothesis test, energy detec-
tion, matched filtering detection, and cyclostationary detection. After that, robust
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sensing methods, including eigenvalue based sensing method, and covariance based
detection, are discussed in detail, which enhance the sensing reliability under hostile
environment, Finally, cooperative spectrum sensing techniques are reviewed which
improve the sensing performance through combining the test statistics or decision
data from multiple senors. It is pointed out that this chapter only covers the basics of
spectrum sensing, but there are many topics are not covered here, such as wideband
spectrum sensing [100–103] and compressive sensing [104–107], interested readers
are encouraged to refer to the relevant literatures.
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Chapter 4
Concurrent Spectrum Access

Abstract Concurrent spectrum access (CSA), which allows different communica-
tion systems simultaneously transmit on the same frequency band, has been rec-
ognized as one of the most important techniques to realize the dynamic spectrum
management (DSM). By regulating the interference to be received by primary users,
the secondary users are able to gain continuous transmission opportunity. Without
the need of frequent spectrum detection and reconfiguration, the CSA has the merit
of low cost and easy implementation in practice. In this chapter, wewill present some
important CSAmodels, discuss the key problems existing in these CSA systems, and
review the techniques to deal with these problems.

4.1 Introduction

Comparedwith the opportunistic spectrum access (OSA), in recent years, the concur-
rent spectrum access (CSA) has been attracting increasing interests from academia
and industry [1, 2]. The main reason is three-fold. Firstly, the CSA allows one or
multiple secondary users (SUs) simultaneously transmit on the primary spectrum,
provided that the interference to the primary users (PUs) can be regulated. Thus, the
SUs can transmission continuously regardless whether the PU is transmitting or not.
Secondly, neither inquiry of geolocation database nor spectrum sensing is needed,
and thus frequent spectrum reconfiguration can be avoided. This makes the cognitive
device be with low-cost hardware, which is thus more easier to be deployed. Thirdly,
the CSA can achieve higher area spectral efficiency due to its spatial reuse of spec-
trum [3, 4], and therefore, can be used to accommodate the dense wireless traffic in
host-spot areas.

To enable CSA, the secondary transmitter (SU-Tx) needs to refrain the interfer-
ence power produced to primary receiver (PU-Rx) by designing its transmit strategy,
such as transmit power, bit-rate, bandwidth and antenna beam, according to the chan-
nel state information (CSI) of the primary and the secondary systems. Mathemati-
cally, the design problem can be formulated to optimize the secondary performance
under the restrictions of the physical resource limitation of secondary system and the
protection requirement of primary system. The physical resource constraint has been
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taken into consideration in the transmission design for the traditional communica-
tion system with dedicated operation spectrum [5–7]. While, the additional primary
protection constraint poses new challenges to the design of both single-antenna and
multi-antenna CSA systems.

According to whether the interference temperature is explicitly given, the primary
protection constraint is rendered in two forms. When the interference temperature
is given as a predefined value, the primary protection constraint can be explicitly
expressed as interference power constraint. There are basically two types of inter-
ference power constraint which are known as peak interference power constraint
and average interference power constraint [8]. Peak interference power constraint
restricts the interference power levels for all the channel states, while the average
interference power constraint regulates the average interference power across all the
channel states. The peak interference power constraint is more stringent with which
the PUs can be protected all the time. Thus, it is suitable for protecting the PUs with
delay-sensitive services. The average interference power constraint is less stringent
compared with the former one, since it allows the interference power exceed the
interference temperature for some channel states. Thus, it is suitable to protect the
PUswith delay-insensitive services. On the other hand, when the explicit interference
temperature is unavailable, primary performance loss constraint is used to protect
the PUs [9, 10]. In fact, this is a fundamental formulation of primary protection
constraint, and can help the SUs to exploit the sharing opportunity more efficiently.
However, this constraint requires the information including the CSI of the primary
signal link and the transmit power of the PU, which is hard to be obtained in practice
due to the lack of cooperation between the primary and secondary systems.

The research on the CSA system with SUs being equipped with single antenna
mainly focuses on the analysis of secondary channel capacity. It has been shown
that the capacity of secondary system with fading channel exceeds that with addi-
tive white Gaussian noise (AWGN) channel, under the interference power constraint
[11]. The reason lies in that the fading channel with variation can provide more
transmission opportunities for the secondary system. For flat-fading channel, the
secondary channel capacity under the peak and the average interference power con-
straints are studied in [12], whereas the ergodic capacity and the outage capacity
under various combinations of the peak/average interference power constraint and
the peak/average transmit power constraint are studied in [13]. It shows that the
capacity under the average power constraint outperforms that under the peak power
constraint, since the former one can provide more flexibilities for the SU transmit
power design. In [9], the ergodic capacity and the outage capacity under the PU-Rx
outage constraint are analysed. It shows that to fulfill the same level of outage loss of
PU-Rx, the SU can achieve larger transmission rate under the PU outage constraint.
With zero outage loss permitted, the SU still achieves scalable transmit rate with the
PU outage constraint. In [14], the primary channel information is exploited to further
improve the secondary performance. To predict the interference power received by
the PU-Rx, the CSI from the SU-Tx to the PU-Rx, which is referred to as cross chan-
nel state information (C-CSI), should be known by the SU-Tx. The mean secondary
link capacity with imperfect knowledge of C-CSI is addressed in [15]. To protect the
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PU under imperfect C-CSI, it is shown that the interference temperature should be
decreased, which thus leads to a decrement of secondary link capacity.

The use of multiple antennas provides both multiplexing and diversity gains in
wireless transmissions [16, 17]. In particular, its function of co-channel interference
suppression formultiuser transmissionmakes it a promising technique to enhance the
CSA performance [18]. Generally speaking, multiple antennas can provide the SU-
Tx in an CSA system more degrees of freedom in space, which can be split between
the signal transmission to maximize the secondary transmit rate and the interference
avoidance for the PUs. In [19], the multiple-input multiple-output (MIMO) channel
capacity of the SU in a multi-antenna CSA system has been investigated. It shows
that the primary protection constraint makes the methods proposed for the tradi-
tional MIMO system inapplicable for the CR transmit and receive design. Similar
to the single-antenna CSA, moreover, the C-CSI is critical for the transmit design
for interference avoidance in the multi-antenna CSA. In [20], it shows that when
the effective interference channel can be perfectly estimated, the interference power
received by the PUs can be perfectly avoided via cognitive beamforming. In [21], it
further shows that the joint transmit and receive beamforming can effectively improve
the secondary transmit rate by suppressing the interference produced by the PU-Tx.
The use of multiple antennas also facilitates the multiple access and the broadcasting
of secondary system [22]. Similar to the single-antenna case, due to the restriction of
both transmit power and interference power, the transmit and receive design for the
traditional multiple-access channel and the broadcasting channel in multi-antenna
system is inapplicable and thus should be revisited [23, 24]. Moreover, the design for
multi-antenna CSA should take into consideration the uncertainty in the estimated
channel [25, 26] and the security issue [27, 28].

In the remainder of this chapter, we first present the single-antenna CSA system
and discuss the optimal transmit power design under different types of power con-
straint to maximize the secondary channel capacity. Then, the multi-antenna CSA
is discussed and the transceiver beamforming is presented under the condition of
known and unknown related CSI. After that, the transmit and receive design for the
cognitive multiple-access channel and the cognitive broadcasting channel are pre-
sented, which is followed by the discussion of robust design for the multi-antenna
CSA. As an application of CSA in practice, the spectrum refarming technique is
presented. Finally, the chapter is concluded with a summary.

4.2 Single-Antenna CSA

The simplest but most fundamental CSA system is comprised by a pair of SUs
and a pair of PUs. Each of the terminals is equipped with single antenna. A single
narrow frequency band is shared by the primary and secondary transmission. All
the channels involved in the system are independent block fading (BF) channels. As
shown in Fig. 4.1, gpp, gps, gsp and gss denote the instantaneous channel power gains
from PU-Tx to PU-Rx, PU-Tx to SU-Rx, SU-Tx to SU-Rx, and SU-Tx to SU-Rx,
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Fig. 4.1 The model of
single-antenna CSA system

respectively. All the channel power gains are assumed to be independent with each
other and be ergodic and stationary with continuous probability density function.
In order to study the limit of the secondary channel capacity, we consider that the
instantaneous channel power gains at each fading state are available at the SU-Tx.
The AWGN at the PU-Rx and the SU-Rx is assumed to be independent circularly
symmetric complexGaussian variableswith zeromean and variance N0.We consider
that the PU-Tx is not aware of the coexistence of SU, and thus adopts fixed transmit
power Pp. Note that in practice, the transmission of SU can be noticed by the PU
since the interference power received by the PU is increased. To compensate its
performance loss, the PU can increase its transmit power. Thus, rather than being
fixed, the PU transmit power can be adaptive according the secondary transmission.
This property has been utilized in the CR design for indirectly exploiting the primary
system information [14].

4.2.1 Power Constraints

In this CR system, the SU-Tx needs to regulate its transmit power to protect the PU
service. There are mainly two categories of power constraints, which are the transmit
power constraint and the primary protection constraint.

(1) Transmit Power Constraint

This is a physical resource constraint that restricts the transmit power of the SU
according to its power budget. Let ν = (gpp, gps, gsp, gss), and the SU transmit power
under ν be P(ν). Given the maximum peak and average transmit power of the SU
as Ppk and Pav, respectively, the transmit power constraint can be formulated as
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P(ν) ≥ 0, ∀ν (4.1)

P(ν) ≤ Ppk, ∀ν (4.2)

E[P(ν)] ≤ Pav (4.3)

Equation (4.2) is known as the peak transmit power constraint, which is used to
address the non-linearity of the power amplifier of SU. Equation (4.3) is known as
the average transmit power constraint, which describes that the power consumption
of the SU should be affordable in a long-term sense.

(2) Primary Protection Constraint

The transmission of SU is allowed only when the primary service can be well pro-
tected. Thus, the primary protection constraint should be properly formulated. This
constraint also differentiates the CR design from the traditional one which is solely
restricted by the physical resource constraint. Generally, there are two kinds of pri-
mary protection constraints:

• Interference power constraint:When the peak or average interference temperature,
which are respectively denoted by Qpk and Qav, can be known by the SU-Tx, the
primaryprotection constraint canbe expressed as the interferencepower constraint,
i.e.,

gspP(ν) ≤ Qpk, ∀ν (4.4)

E[gspP(ν)] ≤ Qav (4.5)

Equation (4.4) is known as the peak interference power constraint. It can be seen
that the PU under this constraint can be fully protected at any fading status; thus,
this constraint is suitable for protecting the delay-sensitive services. Equation (4.5)
is known as the average interference power constraint. Since this constraint only
protects the PU in a long-term sense, and there can be cases that the interfer-
ence power exceeds the interference temperature at some fading states. Thus, it is
suitable to protect the delay-insensitive services.

• Primary performance loss constraint: When the peak or average interference tem-
perature is not available, the primary protection constraint can be formulated as

εp ≤ ε0, (4.6)

�rp ≤ δ0, ∀ν (4.7)

Equation (4.6) is known as the PU outage constraint [29], in which ε0 denotes
the target outage probability of the PU that should be maintained, and εp is the
outage probability of PU under the co-transmission of SU. Letting γp be the
target signal-to-interference-plus-noise ratio (SINR) of the PU, εp can be derived

as εp = Pr
{

gppPp

gspP(ν)+N0
< γp

}
. Equation (4.7) is known as the primary rate loss

constraint [10], in which δ0 is the maximum rate loss that is tolerable by the PU.
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Note that in either (4.6) or (4.7), the primary system information, including gpp
and Pp should be known by the SU-Tx. Such information can be transmitted
from PU to SU if the cooperation between the two systems is available. When
the inter-system cooperation is unavailable, the authors in [14] propose a scheme
to allow the SU-Tx send probing signal which triggers the power adaptation of
primary system. By doing so, the information of primary system can be exploited
to improve the performance of secondary system.

Thus, the power constraints of the SU-Tx can be formulated as different combi-
nations of the transmit power constraint and the primary protection constraint, i.e.,

F1 = {P(ν) : (4.1), (4.2), (4.4)}
F2 = {P(ν) : (4.1), (4.2), (4.5)}
F3 = {P(ν) : (4.1), (4.3), (4.4)}
F4 = {P(ν) : (4.1), (4.3), (4.5)}
F5 = {P(ν) : (4.1), (4.2), (4.6)}
F6 = {P(ν) : (4.1), (4.3), (4.6)}
F7 = {P(ν) : (4.1), (4.2), (4.7)}
F8 = {P(ν) : (4.1), (4.3), (4.7)}

4.2.2 Optimal Transmit Power Design

The transmit power of theSUcanbe optimized to achieve different kinds of secondary
channel capacity. Here, we discuss the optimization of the SU transmit power for
maximizing the ergodic capacity and minimizing the outage capacity of secondary
system under different power constraints, respectively.

(1)Maximizing Ergodic Capacity

The ergodic capacity of BF channels is defined as the achievable rate averaged over
all the fading blocks. Note that the interference from the PU-Tx to the SU-Rx can be
ignored or treated as AWGN, the ergodic capacity of the secondary system can be
expressed as

Cerg = E

[
log2

(
1 + gssP(ν)

N0

)]
(4.8)

where the expectation is taken over ν. Then, the achievable ergodic capacity under
different sets of power constraint can be formulated as

max
P(ν)∈Fi

Cerg (P4-1)
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(2)Minimizing Outage Capacity

The outage capacity of BF channels is defined as the maximum rate that can be
maintained over the fading blocks with a given outage probability. Equivalently,
given the outage capacity of the secondary system, denoted by r0, the corresponding
outage probability can be expressed as

pout = Pr

{
log2

(
1 + gssP(ν)

N0

)
< r0

}
(4.9)

Thus, maximizing the outage capacity is equivalent to minimizing the outage prob-
ability given the target outage capacity, i.e.,

min
P(ν)∈Fi

pout (P4-2)

Solving P4-1 and P4-2 gives the following observations.

• P4-1 and P4-2 have structural optimal solutions. For example, in P4-1, under
the peak transmit and peak interference power constraints (F1), P(ν) = Ppk when
gsp <

Qpk

Ppk
. When gsp ≥ Qpk

Ppk
, the optimal transmit power follows channel inversion

with gsp, i.e., P(ν) = Qpk

gsp
. This indicates that deep fading in the interference

channel is helpful to the secondary performance. Under the average transmit and
peak interference power constraints (F3), the SU transmit power is capped by Qpk

gsp
,

and is decided by gsp and gss simultaneously. Specifically, the transmit power is
higher when the interference channel suffers from deep fadingwhile the secondary
signal channel is not faded. In P4-2, under the peak transmit and peak interference
power constraints (F1), P(ν) has the truncated channel inversion structure which
is similar to the conventional fading channel [5]. The difference lies in that the
condition for channel inversion here is determined by both the secondary signal
channel and the interference channel, while that in [5] it is determined by signal
channel solely. Therefore, this power allocation strategy is also referred to as two-
dimensional-truncated channel-inversion (2D-TCI).

• For both problems, the average interference power constraint is superior to the peak
counterpart, as the former one provides more flexibility to the power allocation of
the SU. Specifically, with the average interference power constraint, more power
can be used when the interference channel experiences deep fading while the
secondary signal channel is not faded.

• For both problems, the primary performance loss constraint is superior to the peak
interference power constraint, since the SU can transmit more opportunistically
with the former constraint. Moreover, when no additional outage of the PU is
allowed, the SU transmission is not possible under the peak interference power
constraint. However, under the primary performance loss constraint, the SU trans-
mission is not only allowed, but also sustains capacity increase with the transmit
power.
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4.3 Cognitive Beamforming

The use of multiple antennas in wireless communication can achieve beamform-
ing gain. Specifically, receive beamforming can suppress interference, while trans-
mit beamforming can avoid interference. By equipping multiple antennas, the SUs
can jointly design the transmit precoding and transmit power to effectively balance
between the interference avoidance to the PU and the performance optimization for
the secondary link. Such a technique is known as cognitive beamforming (CB).

A model of CB is shown in Fig. 4.2, where an SU-Tx transmits signal to the
SU-Rx by concurrently sharing the spectrum of primary system in which two PUs
communicate with each other. The SU-Tx is required to be equipped with more
than one antennas, and the other terminals can be equipped with one or multiple
antennas. Let M1, M2, Mst, and Msr be the number of antennas on PU1, PU2, SU-
Tx and SU-Rx, respectively. The full-rank transmit beamforming matrix of PU j is
denoted by A j ∈ C

Mj×d j where j ∈ {1, 2}, d j denotes the corresponding number
of transmit data streams and 1 ≤ d j ≤ Mj . Then, the transmit covariance matrix
of PU j can be written as S j = A jAH

j . The receive beamforming matrix of PU j is
denoted by B j ∈ C

d j×Mj , where j ∈ {1, 2}. The primary terminals are considered to
be oblivious to the SUs, and treat the interference from the SU-Tx as additional noise.
In the secondary system, the transmit beamformingmatrix of the SU-Tx is denoted by
the full-rank matrixAc ∈ C

Mst×dc , where dc ≤ Mst. Then, Sc = AcAH
c is the transmit

covariance matrix of the SU-Tx. Finally,H ∈ C
Msr×Mst denotes the secondary signal

channel matrix and G j ∈ C
Msr×Mst denotes the matrix of interference channel from

the SU-Tx to PU j .

4.3.1 Interference Channel Learning

The beamforming design, nomatter at the receiver side or the transmitter side, heavily
relies on channel matrix. The beamforming in the conventional multi-antenna system
with dedicated spectrum is designed based on the signal channel matrix. However,
the CB design needs the information of both the secondary signal channel matrix
and the interference channel matrix from the SU-Tx to the PUs. The CB design with

Fig. 4.2 A model of
cognitive beamforming
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Fig. 4.3 The two-phase
protocol of learning-based
CSA

perfect knowledge of interference channel matrix is studied in [30]. However, in
a CSA network, the primary system is usually legacy that has been deployed and
operating for a period of time. The primary and secondary systems can also belong
to different operators. Therefore, although sharing the same spectrum, it is hard for
the primary system to provide cooperation for the secondary system in terms of
estimating and sending back the information of interference channel. Thus, the key
problem for the practical CB is how to obtain the interference channel matrix at the
SU-Tx.

To get some knowledge of the interference channel, a viable way is to allow
the SU-Tx listen to the signal sent by the PUs before its own transmission, and
estimate the channel from the PUs to the SU-Tx. Since the system operates at time-
division duplex (TDD)mode, the estimated channel can be treated as the interference
channel from the SU-Tx to the PUs according to channel reciprocity. This process is
referred to as channel learning. The learning-and-transmission protocol is illustrated
in Fig. 4.3, in which T is the frame length, τ is the time duration used for learning
the interference channel and the remainder T − τ is used for data transmission.

In the channel learning phase, the SU-Tx listens to the transmission of PUs on
the spectrum of interest for N symbol periods. The received signal can be written as

y(n) = GH
j A jx j (n) + z(n), n = 1, . . . , N (4.10)

where j = 1 indicates that the signal is transmitted from PU1; otherwise j = 2. The
vector x(n) contains the encoded signals without power allocation and precoding.
Then, the covariance matrix of the received signals at the SU-Tx can be derived as

Qy = E[y(n)(y(n))H ] = Qs + ρ0I (4.11)

where Qs represents the covariance matrix due to the signals from the two PUs, and
ρ0I is the variance matrix of AWGNnoise. At the SU-Tx, only the sample covariance
matrix can be obtained, i.e.,

Q̂y = 1

N

N∑
n=1

y(n)(y(n))H (4.12)

Denote Q̂s as the estimation of Qs that can be abstracted from Q̂y . The aggregate
“effective” channel from both PUs to the SU-Tx can be derived as

GH
eff = Q̂1/2

s (4.13)
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It should be noted that the channel which has been estimated is the so called effective
interference channel (EIC) rather than the actual interference channel. This chan-
nel propagates interference to both of the PUs. Under the assumption of channel
reciprocity, EIC from SU-Tx to both PUs can be denoted by Geff .

4.3.2 CB with Perfect Channel Learning

In this part, the transmit beamforming at the SU-Tx, including the transmit precoding
and power allocation, under perfect learning of EIC is discussed. In the EIC learning,
the noise effect on estimatingQs based on Q̂y can be completely removedby choosing
a large enough N , i.e., N → ∞.

To avoid the interference caused by the SU-Tx to both of the PUs, the precoding
matrix of the SU-Tx should meet

GeffAc = 0 (4.14)

Denote deff as the rank of Geff . The eigenvalue decomposition (EVD) of Qs can be
written as Qs = V	VH , where V ∈ C

Mst×deff and 	 is a positive deff × deff diago-
nal matrix. LettingU ∈ C

Mst×(Mst−deff ) satisfiesVHU = 0, the transmit beamforming
matrix of the SU-Tx can be written as

Ac = UC1/2
c (4.15)

where C1/2
c ∈ C

(Mst−deff )×dc and dc denotes the number of transmit data streams of
the SU-Tx. Cc satisfies Cc � 0 and Tr(Cc) ≤ Pt , where Pt denotes the maximum
transmit power of the SU-Tx. Equation (4.15) indicates that the design of trans-
mit beamforming matrix for the CR channel is equivalent to the design of transmit
covariance matrix Cc for an auxiliary multi-antenna channel, i.e.,HU, subject to the
transmit power constraint, i.e., Tr(Cc) ≤ Pt . This simplifies the design of Cc, since
the existing solutions are available for this well-studied precoder design problem
(see [31] and the references therein).

When the conditions AH
j G j 	 B jG j , j ∈ {1, 2} hold,1 and one or both of the

PUs have multiple antennas but transmit only through a subspace of the overall spa-
tial dimensions, i.e., d j < min{M1, M2}, the proposed CB scheme based on (4.15)
outperforms the “P-SVD” scheme proposed in [30] whereG j ’s are perfectly known
by the SU-Tx, in terms of the achievable degree of freedom (DoF) of CR transmis-
sion. The reason lies in that the Geff contains the information of AH

j G j . Based on
the condition AH

j G j 	 B jG j ,Geff also contains the information of B jG j . Thus, the
propose scheme can have a strictly positive DoF even when M1 + M2 ≥ Mst, pro-
vided that d1 + d2 < Mst. In contrary, the B jG j is unknown in the P-SVD scheme.

1X 	 Y means that for two given matrices with the same column size, X and Y, if Xe = 0 for any
arbitrary vector e, then Ye = 0 always holds.
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Therefore, theDoF becomes zerowhenM1 + M2 ≥ Mst. Inmost practical scenarios,
it has (d1 + d2) ≤ (M1 + M2), and thereby the DoF gain achieved by the proposed
scheme ((min(Mst − d1 − d2)+, Msr)) is always no less than theDoF achieved by the
P-SVD ((min(Mst − M1 − M2)

+, Msr)). Moreover, the maximum DoF is achieved
when d1 = d2 = 0, i.e., the PU links are switched off.

4.3.3 CB with Imperfect Channel Learning:
A Learning-Throughput Tradeoff

In this part, the CB with imperfect estimation of EIC due to finite sample size is
discussed. With finite N , the noise effect on estimating Qs cannot be removed, and
thus error appears in the EIC estimation. Denote Ĝeff as the estimated EICwith error.
Recall the two-phase protocol given in Fig. 4.3. It can be seen that the number of
sample size N increases as the learning duration τ increases. This improves the esti-
mation accuracy of Ĝeff , and therefore contributes to the CR throughput. However,
increasing the learning duration will lead to a decrement of data transmission dura-
tion, which harms the CR throughput. Given that the overall frame length is limited
by the delay requirement of the secondary service, there exists an optimal learning
duration thatmaximizes the CR throughput. This is the so called learning-throughput
tradeoff in the CB design.

To exploit the learning-throughput tradeoff, the optimization problem can be for-
mulated as

max
τ,Cc

T − τ

T
log

∣∣∣I + HÛCcÛHH/ρ1

∣∣∣ (P4-3)

s.t. Tr(Cc) ≤ J, Cc � 0, 0 ≤ τ ≤ T

where Û is obtained from Ĝeff , and J is the threshold that considers the interference
power limit and the transmit power limit. In what follows, we present the imperfect
estimation of EIC and the derivation of J .

(1) Imperfect Estimation of EIC

Since Ĝeff depends solely on Q̂s , we derive Q̂s based on Q̂y , whose EVD is

Q̂y = T̂y
̂yT̂H
y (4.16)

where 
̂y = Diag(λ̂1, λ̂2, . . . , λ̂Mst ) is the eigenvalue matrix of Q̂y . Then, we con-
sider two cases:

• With known noise power: When the noise power ρ0 is known, the estimation of
Qs based on the maximum likelihood criterion can be written as
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Q̂s = T̂yDiag
(
(λ̂1 − ρ0)

+, . . . , (λ̂Mst − ρ0)
+
)
T̂H

y (4.17)

whose rank is d̂eff . The first d̂eff columns of T̂y give the estimate of V, and the last
Mst − d̂eff columns of T̂y give Û. This will be used to design the CB precoding
matrix.

• With unknown noise power: When the noise power ρ0 is unknown, the noise power
should be estimated along with Q̂s . By obtaining ρ̂0, d̂eff , V̂ and Û, the maximum
likelihood estimate of Qs can be derived as

Q̂s = V̂Diag
(
λ̂1 − ρ̂0, . . . , λ̂d̂eff

− ρ̂0

)
V̂H (4.18)

which has the same structure with (4.17).

With Q̂s being derived, the estimate of EIC can be determined according to (4.13).

(2) Interference Leakage to PUs

Since the estimated EIC is imperfect, there will be interference power leaked to the
PUs. Thus, the power constraint Tr(Cc) ≤ J should consider the interference leakage
and transmit power limit simultaneously. Based on the CB design in (4.15) with U
being replaced with Û, the precoded transmit signal at the SU-Tx can be written as
sc(n) = ÛC1/2

c tc(n), n > N . Then, the average interference leakage to PU j can be
expressed as

I j = E[‖B jG j sc(n)‖2] (4.19)

The normalized interference leakage with respective to ρ0Tr(B jBH
j ) is then upper

bounded by

Ī j ≤ Tr(Cc)

α j N

λmax(G jGH
j )

λmin(AH
j G jGH

j A j )
(4.20)

where α j is defined as E
[
N j

N

]
, and N j is the number of samples during the trans-

mission of PU j . The upper bound of the average interference leakage in (4.20) has
some interesting properties:

• The upper bound is finite, since α j > 0;
• The upper bound is invariant with any scaler multiplication with G j . This means
that the normalized interference received by each PU is independent with its posi-
tion.

• The upper bound is inversely proportional to the number of samples and the trans-
mit power of the PU. Therefore, the PU with longer transmit time within the
learning duration and/or with higher transmit power will suffer from less interfer-
ence. This is the main principle based on which the SU-Tx designs a fair transmit
scheme in terms of distributing the interference among PUs.
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With the upper bound of interference leakage, the SINRof PU j , denoted by γ j , can be
derived. Let γ = min

j∈{1,2}{γ j }. The threshold J in the constraint of P4-3 can be derived

as J = min (Pt , γ τ )with peak transmit power constraint, and J = min
(

T
T−τ

Pt , γ τ
)

with average transmit power constraint.
After Û and J are determined, P4-3 can be solved. It can be seen that by intro-

ducing learning phase before data transmission, the multi-antenna SU-Tx is able to
estimate the interference channel information which is indispensable for interference
control, and has a good balance between the interference avoidance and throughput
maximization.

4.4 Cognitive MIMO

In this section, we exploit multi-antennas at the secondary terminals to effectively
balance between the spatial multiplexing at the SU-Tx and the interference avoidance
at the PUs. The main challenges to be addressed include:

• The spatial spectrum design for the SU-Tx under the condition that the secondary
signal channel and the interference channel are perfectly known;

• The joint transmit and receive beamforming for the SUs to avoid interference to the
PUs and suppress interference from the PUs simultaneously, under the condition
that the secondary signal channel and the interference channel are unknown.

The model of the cognitive multiple-input multiple-output (MIMO) system is
shown in Fig. 4.4, where a pair of SUs shares the same spectrum with K primary
users. The number of antennas of PU k is denoted by Mk , and the number of antennas
of the SU-Tx and that of the SU-Rx are denoted by Mst and Msr, respectively. The
single-band frequency is shared by the primary and secondary systems.H ∈ C

Mst×Msr

denotes the secondary signal channel matrix andGk ∈ C
Mk×Mst denotes the interfer-

ence channel matrix from the SU-Tx to PUk .

Fig. 4.4 The model of
cognitive MIMO system
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4.4.1 Spatial Spectrum Design

In this part, we discuss the spatial spectrum design for the SU-Tx to optimize the CR
throughput and avoid the interference to the PUs. To exploit the performance limit,
we consider that the channel matrices from the SU-Tx to the SU-Rx and that from
the SU-Tx to each PU are perfectly known by the SU-Tx. Let x(n) be the transmit
signal vector of the SU-Tx, which has been encoded and precoded. The received
signal at the SU-Rx can be represented by

y(n) = Hx(n) + z(n) (4.21)

where z(n) is the AWGN vector with normalized variance I. Let S be the trans-
mit covariance matrix of the secondary system. It has S = E[x(n)x(n)H ] where the
expectation is taken over the codebook. Assuming that the ideal Gaussian code-
book with infinitely large number of codeword symbols is used, it has x(n) ∼
CN(0,S), n = 1, 2, . . .. Then, by applying EVD, the transmit covariance matrix
can be written as

S = V	VH (4.22)

whereV ∈ C
Mst×dc is the precodingmatrix withVVH = I, and dc ≤ Mst is the length

of transmit data stream. dc is usually referred to as the degree of spatial multiplexing
because it measures the number of transmit dimensions in the spatial domain. When
dc = 1, the transmit strategy is known as beamforming, while when dc > 1, it is
known as spatial multiplexing. The transmit power of the SU-Tx is limited by its
power budget Pt . Thus, the transmit power constraint can be formulated as Tr(S) ≤
Pt . Letting gk, j ∈ C

1×Mst be the channel vector from the SU-Tx to the j th receive

antenna of the kth PU, it hasGk = [
gTk,1, . . . , g

T
k,Mk

]T
. Then, two kinds of interference

power constraint can be formulated:

• Total interference power constraint: If the total interference power received by all
the receive antennas of each PU is limited, the interference power constraint can
be formulated as

Tr(GkSGH
k ) ≤ Qk, k = 1, . . . , K (4.23)

where Qk is the total interference temperature of PUk .
• Individual interference power constraint: If the individual interference power
received by each antenna of the PU is limited, the interference power constraint
can be formulated as

gk, jSgH
k, j ≤ qk, j = 1, . . . , Mk, k = 1, . . . , K (4.24)

where qk is the individual interference temperature of PUk on each of its antennas.
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Then, the problem that aims to maximize the secondary capacity by optimizing
the spatial spectrum S of the SU-Tx can be formulated as

max
S

log2
∣∣I + HSHH

∣∣ (P4-4)

s.t. Tr(S) ≤ Pt
(4.23) or (4.24)

S � 0

In what follows, we will discuss the solving of P4-4.

4.4.1.1 One Single-Antenna PU

When K = 1 andMk = 1, there is only one single-antenna PU in the primary system.
In this case, the channel from the SU-Tx to the PU is a multiple-input single-output
(MISO) channel which can be represented as g ∈ C

1×Mst . Then, P4-4 can be simpli-
fied as

max
S

log2
∣∣I + HSHH

∣∣ (P4-5)

s.t. Tr(S) ≤ Pt

gSgH ≤ q

S � 0

where q denotes the interference temperature of the PU. To solve this problem, we
consider the following two cases.

(1)MISO Secondary Channel, i.e., Msr = 1

In this case, H can be written as h ∈ C
1×Mst , and the rank of S is one. This indicates

that beamforming is optimal for the secondary transmission, and S can be written as
S = vvH , where v ∈ C

Mst×1. Then, P4-5 can be simplified as

max
v

log2
(
1 + ‖hv‖2) (P4-6)

s.t. ‖v‖2 ≤ Pt

‖gv‖2 ≤ q

(2)MIMO Secondary Channel, i.e., Msr > 1

In this case, the rank of S is larger than one, and thus spatial multiplexing is optimal
instead of beamforming. In general, there is no closed-form solution of the optimal
S. Thus, two suboptimal algorithms that achieve the closed-form solution of S are
proposed as follows.
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• D-SVD:
Direct-channel SVD (D-SVD) method applies singular value decomposition
(SVD) to the secondary signal channel matrix, which can be expressed as
H = Q
1/2UH . Thus, the precoding matrix V can be obtained as V = U. Let
Ms = min{Mst, Msr}. The optimal power allocation p = [p1, . . . , Ms] can be
obtained by solving

max
p

Ms∑
i=1

log2(1 + piλi ) (P4-7)

s.t.
Ms∑
i=1

pi ≤ Pt

Ms∑
i=1

αi pi ≤ q

p � 0

where λi is the diagonal element of 
, αi = ‖gui‖2 and ui is the i th column of U.
The problem is shown convex and the closed-form optimal pi is given by

pi =
(

1

ν + αiμ
− 1

λi

)+
, i = 1, . . . , Ms (4.25)

where ν and μ are the nonnegative dual variables associated with the transmit
power constraint and the interference power constraint, respectively. Therefore, it
can be seen that by using D-SVD method, the optimal power allocation for the
MIMO secondary channel follows multi-level water-filling form.

• P-SVD:
Projected-channel SVD (P-SVD) method applies SVD to the projected channel
of H, i.e., H⊥ = H(I − ĝĝH ) with ĝ = gH/‖g‖. Applying SVD to H⊥ yields
H⊥ = Q⊥


1/2
⊥ (U⊥)H . Thus, the precoding matrix V can be obtained as V = U⊥,

and the optimal power allocation can be derived as

pi =
(

ν − 1

λ⊥
i

)+
, i = 1, . . . , Ms (4.26)

where λ⊥
i is the diagonal element of 
⊥ and ν is the dual variable associated

with the transmit power constraint. Here we can see that, by using P-SVD, it has
(U⊥)H ĝ = 0. Since S = U⊥	(U⊥)H , we have gSgH = 0, which indicates that the
interference power produced to the PU can be perfectly avoided.
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4.4.1.2 Multiple Multi-antenna PUs

With multiple PUs which are equipped with single or multiple antennas, the trans-
mission of the SU-Tx can be designed by considering the following two cases.

(1)MISO Secondary Channel, Msr = 1

Since the closed-form solution of the optimalS is hard to achieve in this case, efficient
numerical optimization method can be proposed to solve the equivalent problem:

max
v

‖hv‖2 (P4-8)

s.t. ‖v‖2 ≤ Pt

‖Gkv‖2 ≤ Qk, k = 1, . . . , K

Although both of the constraints in P4-8 specify convex set of v, the non-convexity
of the objective function makes the overall problem non-concave in its current form.
However, we can observe that given any value of θ , e jθv satisfies the constraints of
P4-8, if v satisfies these constraints. At the meantime, the objective value is main-
tained. Thus, we can assume that hv is a real number, and P4-8 can be transformed to

max
v

Re(hv) (P4-9)

s.t. Im(hv) = 0

‖v‖2 ≤ Pt

‖Gkv‖2 ≤ Qk, k = 1, . . . , K

This problem can be cast as a second-order cone programming (SOCP) [32], which
can be solved by standard numerical optimization software.

(2)MIMO Secondary Channel, i.e., Msr > 1

In this case, the D-SVD and the P-SVD methods which are proposed for the one
single-antenna PU can be used. Specifically, the multi-level water-filling power allo-
cation by using D-SVD in this case becomes

pi =
(

1

ν + ∑K
k=1

∑Mk
j=1 αi,k, jμk

− 1

λi

)+
, i = 1, 2, . . . , Ms (4.27)

where αi,k, j = ‖gk, jui‖2. ν and μk are the non-negative dual variables associated
with the transmit power constraint and the interference power constraint for PUk ,
respectively. For P-SVDmethod, we construct the matrix of channel from the SU-Tx
to all primary receivers/antennas, denoted asG ∈ C

Mk×Mst , by taking each gk, j as the(∑k
k ′=1 Mk ′−1 + j

)
th row of the matrix. Then, the SVD ofG = [GT

1 , . . . ,GT
K ]T can

be expressed as G = QG

1/2
G UH

G . Thus, given Mst > Mk (otherwise, the projection
will be trivial), the projection of H can be expressed as H⊥ = H(I − UGUH

G ).
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Fig. 4.5 The three-phase protocol for the cognitive MIMO system

4.4.2 Learning-Based Joint Spatial Spectrum Design

In this part, we investigate the cognitive MIMO by solving the two problems:

• The secondary signal channel and the interference channel are unknown;
• The interference from the PUs is suppressed by designing the spatial spectrum at
the SU-Rx.

For simplicity, we consider there are two PUs in the primary system, i.e., K = 2,
and only one of the PUs is located within the coverage of secondary transmission.
However, the proposed method is applicable without this assumption by using the
EIC which has been introduced in the previous section.

To enable the CR transmission, a three-phase protocol is proposed as shown in
Fig. 4.5, whose interpretation is as follows.

• Channel Learning Stage: A duration of τl is used for channel learning, in which the
SU-Tx and SU-Rx gain partial knowledge on the interference channel G1 and G2

via listening to the transmission of the PUs. Specifically, the SUs blindly estimate
the noise subspace matrix from the covariance matrix of the received signal. It
should be noted that, due to the finite number of samples, perturbation inevitably
appears in the noise subspace matrix.

• Channel Training Stage: Since the secondary signal channel is unknown by the
SU-Tx, in the training stage with duration of τt , the SUs estimate the channel after
applying joint transmit and receive beamforming. By considering the interference
to and from the PUs, the optimal training structure can be derived to minimize
the channel estimation error. It is noted that the channel to be estimated is not the
actual channel from the SU-Tx to the SU-Rx, but is the effective channel, which
contains the information of transmit and receive beamforming matrices and the
actual signal channel.

• Data Transmission Stage: With the interference channel information learnt in the
first stage and the signal channel information estimated in the second stage, the SU-
Tx transmits signal during the data transmission stage with length of T − τl − τt .

It is worth noting that the parameter τl plays an important role in the CR performance.
Intuitively, a larger τl might be preferred in terms of better space estimation, so
that the interference to and from the PUs can be minimized. However, increasing
learning time will decease the data transmission time, if the training duration is fixed.
This harms the CR throughput. Moreover, taking the interference constraints into
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consideration during training and data transmitting, the freedom of power allocation
is reduced. Thus, to investigate theCRperformance, the lower bound of the secondary
ergodic capacity is evaluated, which is related to both the channel-estimation error
and the interference leakage to and from the PUs [33]. The lower bound of the CR
ergodic capacity is then maximized by optimizing the transmit power and the time
allocation over learning, training and transmission stages. A closed-form optimal
power allocation can be found for a given time allocation, whereas the optimal time
allocation can be found via two-dimensional search over a confined set [21].

4.5 Cognitive Multiple-Access and Broadcasting Channels

In the previous sections, the CR system under investigation has only one pair of
SUs. In this section, we present the CR system that contains multiple transmitters
or receivers, which forms the cognitive multiple-access channel (C-MAC) and the
cognitive broadcasting channel (C-BC), respectively.

4.5.1 Cognitive Multiple-Access Channel

In some practical scenarios, there are multiple SUs concurrently transmit signals to
their common receiver, such as the base station (BS) in the cellular networks or the
WiFi access point (AP). Such a secondary system can be modelled as the C-MAC as
is shown in Fig. 4.6. In this model, N SUs concurrently transmit signals to the BS by
sharing the primary spectrum.There are K PUs, each ofwhich is equippedwith single
antenna. To enable the multi-access of the SUs, the BS is equipped with Mr receive
antennas. Denote H = [h1, . . . ,hN ] ∈ C

Mr×N and H̃ = [h̃1, . . . , h̃K ] ∈ C
Mr×K as

the channel matrices from the SUs and the PUs to the BS, respectively. The signal
vector received by the BS can be written as

y = Hx + H̃x̃ + z (4.28)

where x and x̃ are the vectors of transmit signal from the SUs and the PUs, and z is
the AWGN vector whose entries are assumed to be with zero mean and variance N0.
Then, the following two optimization problems can be formulated.

(1) Sum-Rate Maximization Problem

With the aim of maximizing the total transmission rate of all the N SUs, the sum-rate
maximization problem for the single-input multiple-output multiple-access channel
can be formulated as
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Fig. 4.6 The system model
of C-MAC

max
U,p

N∑
n=1

rn (P4-10)

s.t. pn ≤ Pt , n = 1, . . . N (4.29)

gTk p ≤ Qk, k = 1, . . . , K (4.30)

where U = [u1, . . . ,uN ] with ui denoting the beamforming vector of SUi , and ri is
the information rate of SUi . Equation (4.29) is the peak transmit power constraint
with Pt being the maximum allowable transmit power. Equation (4.30) indicates the
interference power constraints where gk is the channel power gain from the SUs to
PUk and Qk is the interference temperature of PUk . Using the zero-forcing based
decision feedback equalizer (ZF-DFE) at the BS and applying QR decomposition to
the channel matrix H, the channel can be decomposed as independent subchannels,
each of which is associated with one SU. This receiver can thus be viewed as receive
beamforming,where the beamformingvector is determinedby theQRdecomposition
ofH. Thus, only the power vector p is remained to be optimized, and the objective of

the problem can be rewritten as max
p

∑N
n=1 log

(
1 + pnλn

N0

)
, where λn is the effective

channel gain.
In P4-10, if the interference constraints are replaced with the single sum transmit

power constraint, the optimal power allocation can be derived as the conventional
water-filling solution. The multiple interference power constraints complicate the
solving of the problem, and thus, we solve the problem by considering the following
two cases.

• Single-PU case: When there is only one PU, and thus there remains one interfer-
ence power constraint, the optimal power allocation follows water-filling form.
Different from the conventional water-filling power allocation which has a com-
mon water level, this solution has different water levels for different SUs. More-
over, each water level is upper-bounded by the individual maximum allowable
transmit power. Therefore, this power allocation scheme is also referred to as
capped multi-level (CML) water-filling. Figure4.7 gives an example of the CML
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Fig. 4.7 The CML
water-filling power
allocation

water-filling, where we can see that the power allocated to each SU is limited by
the minimum value between its specific water level and the water cap.

• Multiple-PU case: The method to solve P4-10 with multiple interference con-
straints is summarized as follows. The method first removes the non-effective
interference constraints. Suppose m effective constraints remain. It starts with the
sub-problemswith a single interference constraint. For the case of i constraints, we
select i out of N constraints (thus, there are Ci

m combinations) and check whether
the solution of the sub-problems also satisfies the remained (m − i) constraints.
If yes, this solution is globally optimal; otherwise, we continue to search the case
of (i + 1).

(2) SINR Balancing Problem

Taking the fairness among the SUs into consideration, the SINR balancing problem
is formulated as

max
U,p

min
1≤n≤N

γn(un,p)

γn,0
(P4-11)

s.t. (4.29), (4.30)

where γn,0 is the target SINR of SUn and γn(un,p) is the SINR of SUn which can be
derived as

γn(un,p) = pnuH
n Rnun

uH
n

(∑
i �=n piRi + N0I + ∑K

k=1 p̃kR̃k

)
un

(4.31)

whereRi = hihH
i , R̃k = h̃k h̃H

k and p̃k is the transmit power of PUk . By investigating
the property of P4-11, we can see that (1) the N power constraints and K interference
constraints can be equally treated; (2) there is only one dominant constraint in the
problem, and thus the problem can be decoupled into (N + K ) sub-problems each
of which is with single constraint; (3) the sub-problems can be sequentially solved,
which profoundly reduces the complexing of the algorithm. In fact,when one solution
of a sub-optimal problem is obtained, we can check whether it satisfies the other
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Fig. 4.8 The system model
of C-BC

constraints. If yes, it can be treated as the global optimum without solving the other
sub-problems.

4.5.2 Cognitive Broadcasting Channel

When a BS is equipped with Mt antennas and broadcasts information to N SUs,
cognitive broadcasting channel (C-BC) is built. A typical C-BC model is shown in
Fig. 4.8, in which g denotes the vector of channel from the BS to the PU. The SUn

has Mn antennas. The precoding design for the C-BC is different from that for the
conventional MIMO-BC, because the transmission of the BS is restricted not only by
a sum-power constraint, but also by an interference power constraint. In literatures,
the MIMO-BC precoding design is solved by establishing the BC-MAC duality.
As one type of BC-MAC duality, the conventional BC-MAC duality is proposed to
derive the capacity region of MIMO-BC under a sum-power constraint [34, 35]. As
another type of BC-MAC duality, theminimax duality can obtain any boundary point
of a broadcasting channel capacity region under the single sum-power constraint or
multiple linear transmit covariance constraints (LTCC) [36, 37]. For solving the C-
BC precoding problem which is restricted by both of the sum-power constraint and
the interference power constraint, the general BC-MAC duality is proposed which
handles the multiple general LTCCs and simplifies the problem formulation [24].

The general LTCC is expressed as

Tr(QA) ≤ J (2.32)

where Q is the transmit covariance matrix, A is a positive semidefinite matrix, and
J is a predefined threshold. The general LTCC includes various practical power
constraints, such as

• Total transmit power constraint: if A is an identity matrix;
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• Individual transmit power constraint: if A is a diagonal matrix in which one of
the diagonal elements is one and the others are zeros;

• Interference power constraint: if A = ggH where g is the vector of channel
response from the SU to the PU.

Then, the C-BC precoding problem can be formulated with subject to any com-
bination of the above constraints. For demonstrating how to transform the C-BC
precoding problem to its dual C-MAC problem, we take the following weighted
sum-rate maximization problem as an example.

max
Ub

i

N∑
n=1

wnrn (P4-12)

s.t.
N∑

n=1

Tr(Ub
n) ≤ P

N∑
n=1

gHUb
ng ≤ Q

where rn andwn are the achievable rate and theweight coefficient ofSUn , respectively.
Ub

i denotes the precodingmatrix of theBS.By applying the general BC-MACduality,
non-negative auxiliary variables qt , qu are introduced, with which P4-12 can be
transformed to

min
qt ,qu

max
Ub

n

N∑
n=1

wnrn

s.t. qu

(
N∑

n=1

Tr(Ub
n) − P

)
+ qt

(
N∑

n=1

gHUb
ng − Q

)
≤ 0

Letting J = qt P + quQ, the equivalent C-BC problem can be written as

max
Ub

n

N∑
n=1

wnrn

s.t. qu

N∑
n=1

Tr(Ub
n) + qt

N∑
n=1

gHUb
ng ≤ J

based on which the dual C-MAC problem can be written as
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max
Um

i

N∑
n=1

wnr
m
n

s.t.
N∑

n=1

Tr(Um
n )σ 2 ≤ J

where the noise covariance matrix is qtggH + quI.

4.6 Robust Design

The CSI, including the C-CSI and S-CSI, is critical for the CR system to control
interference and optimize its performance. In practice, the CSI obtained by the SU
is normally imperfect, for which robust design is needed to be identified so that
the cognitive transmission strategy is less sensitive to the uncertainty in the CSI.
In the literature, there are a few of related robust designs. One kind of ideas is
to design the robust beamforming so that a high probability that the interference
power constraint is satisfied can be achieved. Another kind of ideas is to model
the uncertainty in related CSI with boundary and design the robust beamforming to
guarantee the interference power constraint. In this part, we consider two scenarios,
i.e., only the C-CSI contains uncertainty [38] and both of the C-CSI and S-CSI
contain uncertainty [26], respectively.

4.6.1 Uncertain Interference Channel

To focus on the uncertainty in the interference channel,we consider that the secondary
S-CSI is perfectly known by the SU-Tx, and the uncertainty in the interference
channel is causedby thePU inmoving environment or causedby the indistinguishable
PU-Rx due to mutual transmission between two PUs in TDD mode. In both cases,
the PU can be protected by considering that the degree of arrival (DoA) varies within
a certain range. The model of the system can be referred to Fig. 4.9 by letting K = 1
and N = 1, meaning that there is a single PU and a pair of SU-Tx and SU-Rx. To
characterize the interference channel, we use the spatial multipath model. Let L and
θ(l) be the number of multipaths and the DoA of the lth path, respectively. The fading
coefficient of the lth path can be denoted by αl . Then, the channel from the SU-Tx
to the PU can be expressed as

g =
L∑

l=1

αla(θ (l)) (4.32)
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where a(θ (l)) is the steering vector of the lth path. Note that given the angular
spread of the PU, denoted by �θ , the range of the DoA can be written as θ(l) ∈
[θ̄ − �θ/2, θ̄ + �θ/2], where θ̄ is the nominal DoA with respect ot the SU-Tx
antenna array. Generally, if the DoA region of the PU, denoted by � = [θ1, θ2], can
be perfectly known, we can set θ̄ − �θ/2 = θ1 and θ̄ + �θ/2 = θ2. If� is unknown,
we can choose a larger angular spread for estimating the position of the PU so that
sufficient protection to the PU can be provided. The rate optimization problem with
the aim of maximizing the secondary throughput can be formulated as

max
w

r (P4-13)

s.t. |aH (θ (l))w|2 ≤ Q, ∀θ(l) ∈ �

‖w‖2 ≤ 1

where r is the downlink rate that achieved by the secondary transmission, which can
be derived as r = |hHw|2. The first constraint is the interference power constraint
and the second constraint is the transmit power constraint in which the maximum
peak transmit power is normalized as one. Thus, similar to P4-8, the problem can be
transformed to

max
w

Re[hHw]
s.t. Im[hHw] = 0,

|aH (θ (l))w| ≤ √
Q, ∀l

‖w‖2 ≤ 1 (4.33)

Such a robust beamforming design can allocate themajority of the SU transmit power
along the SU-Rx DoA with refraining the transmit power along the DoA of the PU
below the interference temperature.

4.6.2 Uncertain Interference and Secondary Signal Channels

This part discusses the robust beamforming design for a multi-user MISO system to
address the uncertainty in both of the C-CSI and the secondary S-CSI. Only partial
knowledge of these channels are available. As shown in Fig. 4.9, the SU-Tx with M
antennas transmits independent signal to the N SU-Rx’s, each of which is equipped
with single antenna. The channel from the SU-Tx to the nth SU-Rx is denoted by
hn ∈ C

M×1. The uncertainty in hn is described by the Euclidean ball

Hn =
{
h : ‖h − h̃n‖ ≤ δn

}
(4.34)
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Fig. 4.9 The system model for robust design

where h̃n is the actual channel to the nth SU-Rx, and δn > 0 is the radius of the
Euclidean ball. Then, the channel from SU-Tx to the nth SU-Rx can be modelled as

hn = h̃n + an, n = 1, . . . , N (4.35)

wherean is a norm-boundeduncertainty vectorwith‖an‖ ≤ δn . Similarly, the channel
from the SU-Tx to PUk can be modelled as

gk = g̃k + bk, k = 1, . . . , K (4.36)

and the uncertainty set of gk is Gk . Denoting the SU-Tx precoding matrix by W =
[w1, . . . ,wN ] ∈ C

K×N , the total transmit power of the SU-Tx, denoted by Ps , can be
derived as E[‖x‖2] = ∑N

n=1 ‖wn‖2. At the receiver side, the SINR at the nth SU-Rx

can be derived as γn = |wH
n hn |2

N0+∑N
i=1,�=n |wH

n hn |2 . The interference received by PUk , denoted

by Pk
int, can be derived as

∑N
n=1 |wH

n gk |2. With �n and Qk representing the target
SINR of the nth SU-Rx and the interference temperature of PUk , the beamforming
design problem can be formulated as

min
W

Ps (P4-14)

s.t. γn ≥ �n, ∀h ∈ Hn and ∀n
Pk
int ≤ Qk, ∀gk ∈ Gk and ∀k

This problem aims to minimize the transmit power of the SU-Tx with guaranteeing
the QoS requirement for each SU-Rx and keeping the interference received by each
PU below its interference temperature. Note that the constraints should be satisfied
under all possible channel conditions with the bounded uncertainty. In another word,
the QoS of SUs and the interference constraints should be satisfied for the worst case,
i.e., the constraints can be transformed as min

hn∈Hn

γn ≥ �n,∀n and max
gk∈Gk

Pk
int ≤ Qk,∀k.

Thus, before solving P4-14, the problem min
hn∈Hn

γn and max
gk∈Gk

Pk
int should be solved first.
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For solving these problems, loose bounds, strict bounds and exact robust methods
are proposed in [26], which shows that the robust design allows the SU-Tx transmit
with higher power than the non-robust design, and thus can achieve better secondary
performance.

4.7 Application: Spectrum Refarming

Applying the CSA technique in cellular networks is by no mean a trivial task
[39]. Although the resource allocation for the traditional cellular networks has been
extensively investigated both in single-cell [40] and multi-cell scenarios [41], the
spectrum sharing among cellular networks is challenging due to the additional inter-
ference power constraint. Moreover, the concrete characteristics of each cellular net-
work, such as the infrastructure deployment and the radio access technique (RAT)
profoundly affect the CSA design. Quite a few of literatures have investigated the
spectrum sharing between systems with the same RAT. For example, an orthogonal
frequency division multiple access (OFDMA) secondary system shares the spectrum
of an OFDMA primary system, or both of them are CDMA-based. In fact, due to
the explosive growth of the fourth generation (4G) wireless traffic, spectrum sharing
among OFDMA systems will be increasingly difficult as the 4G licensed spectrum
has been crowded. In addition, since the 4Gwireless network outperforms the second
generation (2G) and the third generation (3G) in terms of peak data rate, latency and
throughput, the legacy subscribers have been migrating to the 4G cellular networks.
The out-moving of the legacy users decreases the utilization of the legacy licensed
spectrum, which thus provides sharing opportunity for the 4G networks. To this
end, the CSA between different generations of cellular networks, which is known as
spectrum refarming (SR), attracts more attentions in recent years.

There are two SR models, i.e., the opportunistic SRmodel and the concurrent SR
model, which are developed based on OSA and CSA, respectively.

• Opportunistic SR allows the OFDMA system dynamically access the spectrum
hole in the legacy bands. Due to the narrowband nature of global system formobile
communications (GSM), the SR on GSM spectrum belongs to this model. As the
traffic of GSM decreases, there exist idle subbands that can be opportunistically
accessed. The authors in [42] proposed an Long-Term Evolution (LTE)/GSM SR
by reserving partial subbands for GSM transmission and controlling the transmit
power for both GSM and LTE to refrain the inter-technology interference. This
model was further extended to the heterogeneous cellular networks where the
OFDMA small cells access the idle spectrum of the GSM macrocell [43].

• Concurrent SR allows the different generations of networks co-transmit at the same
legacy band, provided that the primary system can be protected. The SR between
the OFDMA and CDMA systems belongs to this model, due to the wideband
nature for both systems. Since the channel destroys the orthogonality among the
CDMA users, there exists inter-user interference which is related to the number
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of CDMA users [44]. When the number of CDMA users decreases, each CDMA
user will experience less inter-user interference. Thus, they can tolerate an amount
of interference introduced by the OFDMA system, with which the target SINR of
the CDMA user can be maintained.

In what follows, we discuss the OFDMA/CDMA concurrent SR. The key challenges
to be addressed include: (1) Quantification of interference temperature: In related
literatures, the interference temperature is usually given as a predefined threshold
without any justification [45, 46]; (2) Joint optimization of the primary and sec-
ondary resource allocation: By taking the interference from the PU-Tx to the SU-Rx
into consideration, the primary and secondary power allocation can be jointly opti-
mized through exploiting the primary inner power control scheme. (3) Robust power
allocation: Without the information of C-CSI, robust power allocation should be
designed for the OFDMA system to provide sufficient protection to CDMA users.
The study also extends to the SR of multi-band CDMA system [47] and the hetero-
geneous SR systems [48, 49].

4.7.1 SR with Active Infrastructure Sharing

For the easy of deployment, the OFDMA can share the same cell site and same BS
antenna with the CDMA system, as shown in Fig. 4.10 (Scenario I). This kind of
infrastructure sharing is known as active infrastructure sharing. Take the wideband
CDMA uplink as an example. In practice, it operates at a 5 MHz bandwidth with the
chip rate of 3.84Mcps. The spreading gain can vary from 2 to 256 [50]. The LTE can
adopt 256 subcarriers when working at 5 MHz mode with subcarrier spacing of 15
kHz. The sampling rate is thus 15 kHz × 256 = 3.84 MHz that equals the wideband
CDMA chip rate. Thus, the two systems can easily get synchronized with the same
clock reference.

(1) Quantification of Interference Temperature

To quantify the interference temperature provided by the CDMA users, the SINR of
CDMA users with the interference from OFDMA system should be derived. Given
the number of CDMA users (denoted by U ) and the spreading gain (denoted by N ),
the SINR of CDMA user is determined by the specific spreading codes assigned
among users and the instantaneous S-CSI of the CDMA system. Due to the lack of
cooperationbetween theCDMAandOFDMAsystems, these information is unknown
by the OFDMA system, and thus it is hard for the OFDMA system to predict the
CDMA SINR. By considering a large-dimension system where U, N → ∞ and U

N
approaches a finite constant, the SINR of the CDMA users approaches an asymptotic
value which is independent with the specific codes and instantaneous S-CSI. Thus,
by limiting the asymptotic SINR to be no less than the target SINR, the closed-form
interference temperature can be obtained [51].
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Fig. 4.10 Different scenarios of the concurrent SR.Scenario I: SRwith active infrastructure sharing;
Scenario II: SR with passive infrastructure sharing; Scenario III: SR in heterogeneous networks

(2) Joint Resource Optimization of CDMA and OFDMA Systems

Note that the interference temperature of the CDMA system is a function of the trans-
mit power of the CDMA user. A larger transmit power provides a higher interference
temperature but also introduces higher interference to the OFDMA user. Thus, there
exists an optimal CDMA transmit power to maximize the OFDMA throughput. An
efficient algorithm was proposed in [52] to solve the joint resource optimization of
the CDMA and OFDMA systems by investigating the convexity of the problem over
the CDMA transmit power and the OFDMA resource allocation.Moreover, although
the transmit power of CDMAandOFDMA systems are jointly optimized, it is unnec-
essary to inform the CDMA user with the optimal value of the transmit power in
practice. In fact, once the OFDMA system operates with its optimal transmit power
and subcarrier allocation, so as the CDMA system due to the inner power control of
the CDMA system.

4.7.2 SR with Passive Infrastructure Sharing

Passive infrastructure sharing refers to the sharing of passive elements in their radio
access networks, such as cell sites. When the SR technique is applied with passive
infrastructure sharing, the licensed legacy system and the unlicensed system are
equipped with separate BS antennas, as shown in Fig. 4.10 (Scenario II). Intuitively,
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this additional BS antenna should bring along more diversity that can be exploited by
the OFDMA system to improve the refarming performance [11, 53, 54]. However,
without active participation of the legacy system, it is difficult to obtain the C-CSI,
which is the necessary information for the OFDMA system to predict the produced
interference.

To solve this problem, a robust resource allocation scheme was proposed in [55],
where the S-CSI of the OFDMA system is used as the C-CSI to predict the interfer-
ence power. It has been proved that under this scheme, the CDMA service can be
over-protected, i.e., the actual interference power is always no larger than the inter-
ference temperature. Furthermore, to fully utilize the interference temperature, an
iterative resource allocation scheme is proposed which gradually increases the trans-
mit power of OFDMA users until the actual interference received by the CDMA
system reaches the interference temperature.

4.7.3 SR in Heterogeneous Networks

To provide high throughput and seamless coverage for the wireless communications,
small cells have been proposed to overlay the existing cellular networks [56]. Con-
ventionally, small cells are deployed to share the radio spectrum by using the same
RAT with the macrocell [57, 58]. By doing so, the small cells can offload macrocell
traffic directly. However, they inevitably introduce interference to themacrocell users
and thus degrade their performance. To address this problem, SR in heterogeneous
networks is a viable solution.

Consider a heterogeneous network as shown in Fig. 4.10 (Scenario III), where
multiple OFDMA small cells share the spectrum of CDMA macrocell. Specifically,
the downlink of small cells share the spectrum used for the CDMA uplink, since the
uplink traffic of the CDMA system is normally lighter than the downlink. By quan-
tifying the interference power produced by each small cell, the resource allocation
problem can be formulated, where the objective is to maximize the total through-
put of all small cells and the constraints are the total interference power constraint
and individual transmit power constraint. The problem is transformed to optimize the
transmit power and the allocation of interference temperature among small cells [48].

In practice, due to the limited signaling between the macrocell and the small cells,
the C-CSI between the small cell BS (SBS) and macrocell base station (MBS) is usu-
ally absent. Since theC-CSI accounts for the distance-based path loss, the small-scale
fading and the large-scale shadowing, only the latter two are to be determined, as the
distance between SBS and MBS is fixed and can be easily known from the global
geographical information. It is found that the optimal power allocation for the SR
heterogeneous networks is essentially independent with the fading and shadowing
components of the C-CSI and is only related to the distance-based path loss. There-
fore, the need of instantaneous information about the fading and shadowing of C-CSI
can be avoided.
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4.8 Summary

In this chapter, we have discussed the CSA technique by introducing the single-
antennaCSAsystem, themulti-antenna cognitive beamforming, the cognitiveMIMO,
the C-MAC and C-BC, and the robust design for the CSA system. The application
of the CSA technique to operating the LTE cellular system on the legacy spectrum,
also known as the spectrum refarming, has been discussed. Several critical problems
in the CSA have been addressed, including the absence of the interference channel
and signal channel knowledge, the optimal beamforming and multiplexing, as well
as the interference avoidance and suppression.
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Chapter 5
Blockchain for Dynamic Spectrum
Management

Abstract Blockchain is believed to bring new opportunities to dynamic spectrum
management (DSM). With features of blockchain, the traditional spectrum manage-
ment method, such as the spectrum auction, can be improved. It can also help to
overcome the challenges about the security or the lack of incentive mechanisms for
collaboration in DSM. Moreover, with blockchain, spectrum usage of the DSM sys-
tem can be recorded in a decentralized manner. In this chapter, we will discuss the
potentials of blockchain for spectrum management in a systematic way and using
multiple case studies.

5.1 Introduction

Recently, blockchain has received increasing attention, with bitcoin [1] supported
by it being the most famous cryptocurrency. Blockchain is essentially an open and
distributed ledger, with some key characteristics such as immutability, transparency,
decentralization and security. The main idea behind blockchain is to distribute the
validation authority of the transactions to a community of the nodes and to use
the cryptographic techniques to guarantee the immutability of the transactions. Far
from being used only as a ledger, blockchain has been able to support various kinds
of cyptocurrencies and smart contracts, which autonomously executes agreements
reached between nodes in blockchain networks.

The aforementioned characteristics of blockchainmake it beneficial inmany areas
in communications. For examples, with the encryption algorithms, blockchain has
been used to guarantee the integrity of data in the Internet of Things (IoT) [2],
and with the traceability, blockchain has been used to design a collaborated video
streaming framework forMobile Edge Computing (MEC) [3].Moreover, blockchain
is seen as a promising technology to achieve more efficient dynamic spectrum man-
agement (DSM) [4, 5]. According to Federal Communications Commission (FCC),
blockchain could be used to reduce the administrative expenses of dynamic spectrum
access systems and thus increase the spectrum efficiency [6].

As a secure ledger, blockchain has been introduced to record the spectrum auction
initiated by the licensed users [7]. With the use of blockchain, spectrum transactions
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are recorded and maintained by all the users in an immutable and verifiable manner.
Moreover, a dynamic spectrum access system featuring secure cooperative sensing
is proposed with the use of blockchain [8]. In such a system, the opportunity of
spectrum access is first explored by cooperative sensing and the access right is then
allocated through an auction, with all the information of the spectrum auction being
securely stored in a blockchain. Besides, the use of a smart contract, which is built
on the top of blockchain, has also been explored to execute the spectrum sensing
service provided for secondary users [9].

In this chapter, we first give a brief overview of blockchain. Then, from a system-
atic view, we give some basic principles to illustrate how and why blockchain can
be used in DSM, and also address the cost and challenges of using the blockchain.
Several instances of blockchain for DSM are then introduced. Finally, a conclusive
summary of this chapter is given.

5.2 Blockchain Technologies

Blockchain is essentially an open and distributed database maintained by nodes in
a Peer-to-Peer (P2P) network. When a blockchain is used to record transactions
between nodes, it can be seen as a distributed ledger. Through cryptographic tech-
niques, the transactions recorded in a blockchain are tamper-resilient; and by dis-
tributing copies of the ledger to all the nodes in the network, a blockchain is robust
to single point of failures compared to a centralized ledger. In this section, we will
give an overview of the blockchain technology, summarize its features and introduce
the smart contract, which is an important application of blockchain.

5.2.1 Overview of Blockchain

We give an overview of blockchain from the following five aspects, including the
blockchain structure, consensus algorithm, solution of discrepancy in the nodes,
digital signature and types of blockchain. Finally, we will illustrate the work flow of
a blockchain.

Blockchain Structure: In a blockchain network, transactions are validated by a
community of nodes and then recorded in a block. As shown in Fig. 5.1, a block is
composed of a header and a body, in the latter of which the transaction data is stored.
The block header contains the hash of the previous block, a timestamp, Nonce and the
Merkle root. The hash value is calculated by passing the header of the previous block
to a hash function. With the hash of the previous block stored in the current block,
blockchain is thus growing with new blocks being created and linked to it. Moreover,
this guarantees that tampering on the previous block will efficiently detected. The
timestamp is to record the time when a block is created. Nonce is used in the creation
and verification of a block. The Merkle tree is a binary tree with each leaf node
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Fig. 5.1 The structure of a Blockchain. A block is composed of a header and a body, where a
header contains the hash of previous block, a timestamp, Nonce and the Merkle root. The Merkle
root is the root hash of a Merkle tree which is stored in the block body. We denote a transaction as
TX and take the 3-th block, which only contains four transactions, as an example to illustrate the
structure of a Merkle tree

labelled with the hash of one transaction stored in the block body, and the non-leaf
nodes labelled with the concatenation of the hash of its child nodes. Merkle root, i.e.,
the root hash of a Merkle tree, is used to reduce the efforts to verify the transactions
in a block. Since a tiny change in one transaction can produce a significantly different
Merkle root, the verification can be completed by simply comparing the Merkle root
instead of verifying all the transactions in the block.

Consensus Algorithm: As a distinctive feature, blockchain eliminates the need
for a trusted third-party to validate the transactions. Instead, a consensus is reached
between all the nodes before a block, recordingmultiple transactions, is included into
the blockchain. Essentially, a consensus algorithm is used to regulate the creation
of a block in an unbiased manner to resist malicious attack. There are different
consensus algorithms, such as Proof of Work (PoW), Proof of Stake (PoS) and
Practical Byzantine Fault Tolerance (PBFT), to adapt to the blockchain of different
types and the performance requirements in different applications.

PoW is widely used in blockchain networks such as bitcoin. With PoW, a new
block is created when a random number called Nonce is found. The nonce can be
verified by checking if the hash of the block header, addedwith Nonce, satisfy certain
conditions. Due to the characteristic of hash function, Nonce is easy to verify but can
only be found by trial and error. Thus, devoting computation resources to find a valid
Nonce can be seen as a form of work to create a new block. The success of finding
Nonce is thus the proof of the work one node has done. To incentivize the nodes to
participate in mining, network tokens and transaction fees will be rewarded to the
miner which successfully publishes a block. The process of creating a new block is
thus called mining and the node who participates in mining is called a miner.

PoS is another consensus algorithm, with the objective to reduce the intensive
computation in the PoW algorithm. PoS is first used in Peercoin, in which the right
to publish a new block is still granted by allowing nodes to compete to solve a
mathematical problem as in PoW, i.e., to find a valid Nonce. However, the difference
lies in the difficulty of solving the problem, which is inversely proportional to the
tokens and the holding time of these tokens that a node has. In particular, with
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more tokens and longer time of holding the tokens, the difficulty of mining for a
node reduces. Further, the problem-solving process is eliminated in the latter PoS
algorithms, and the block creator is elected based on the stakes the nodes hold
[10]. With PoS, the computational resources one node occupies no longer determine
the probability that it successfully finds a new block, and thus the computational
resources required to reach a consensus can be largely reduced.

PBFT [11], is a practical voting-based algorithm that allows a consortium of nodes
to reach consensus without the assumption of synchronization among them. With a
Byzantine Fault Tolerance (BFT), nodes can still reach consensus even when there
are some faulty nodes, i.e., byzantine nodes which can behave arbitrarily. There are
two kinds of nodes in the PBFT algorithm, including a primary node and backup
nodes. One node in the network, acting as a client, first issues transactions, as a
request to the primary node, and the primary node decides the execution order of
the request and then broadcasts it to all the other backup nodes. After receiving the
request, the backup nodes check the authentication of the request, decide whether to
execute the request and send replies to the clients. The consensus of the transaction
is reached after the client receives f +1 ( f is denoted as the number of byzantine
nodes) replies from different backup nodes with the same results. PBFT algorithm
guarantees the security and liveness, i.e., a request from a client will eventually be
replied, when there are less than � n−1

3 � byzantine nodes, where n is denoted as the
number of nodes which participate in the consensus process. PBFT eliminates the
heavy computation as in PoW to elect a node to publish a new block. However,
the benefit comes at the cost of requiring a high level of trust between the nodes to
resist the sybil attacks [12] where a malicious party can create many nodes to bias
the consensus toward itself. Thus, PBFT algorithm is usually used in consortium
blockchain networks, e.g., Hyperledger Fabric.

Solution to Discrepancy: Since a blockchain is built upon a distributed network, it
might take some time for all nodes in such a network to update a new block. Besides,
there are multiple nodes mining at the same time. The latency of distributing a new
block and the probability that another block is created during the latency make it
possible that there exists more than one chains in the network at the same time. In this
case, discrepancy about which chain is valid between the nodes arises. Specifically,
nodes need to decide to believe one chain by working to extend it with a new block.
The discrepancy is solved with the longest chain rule, i.e., the longest chain will
be accepted with the other chains being discarded. A simple rationale behind this
solution is that the longest chain is the chain that the majority of the nodes trust and
work on extending. Over the long time scale, the solution guarantees that only one
chain prevails.

Digital Signature: To verify the authentication and integrity of transactions, digital
signatures based on asymmetric encryption are used in blockchain networks. Each
node in a blockchain network has two keys, including a public key and a private key,
and the content encrypted by the private key can only be decrypted by the private
key. Before a node initiates/broadcasts a transaction, it first signs the transaction
with its private key. Other nodes in the network can then verify the authenticity of
the transaction using the public key. With the private key kept confidential to its
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owner and the public key accessible by all nodes, the authenticity and the integrity of
transactions can be easily verified. Thus, one cannot masquerade as others to initiate
transactions or to forge the contents in the initiated transactions.

Types of Blockchain: Based on the rule to regulate which nodes can access, verify
and validate the transactions initiated by other nodes, blockchains are typically cate-
gorized into public blockchains, private blockchains and consortium blockchains to
satisfy the requirements in different applications.

1. A Public Blockchain is designed to be accessible and verifiable by all the nodes
in the network. Specifically, all nodes in a public blockchain network can verify
transactions, maintain a local replica of the blockchain, and publish a new block
into the blockchain. By granting the authority of maintaining a ledger to all the
nodes, public blockchains are fully distributed. Such a blockchain is widely used in
anonymous trading. However, the system suffers from the low speed of transaction
validation, and requires certain level of computation to secure that an unbiased
block is created. Bitcoin [1] is one of the most popular cryptocurrency supported
by a public blockchain.

2. A Private Blockchain is usually maintained by a single organization. The rights to
access the blockchain and to verify the transactions are granted through a central
controller to the permissioned nodes. A permissioned network is thus established,
inwhich only the authorized nodes can access certain transactions of the blockchain
or participate in working to publish new blocks. In this way, the privacy of the
transactions is highly improved and the decentralization of authority of transaction
validation is under the control of the organization. Moreover, with a high level of
trust among the nodes in the permissioned network, the computation-intensive
consensus algorithm is not needed.

3. AConsortiumBlockchain is similar to a private blockchain in the sense that they are
both maintained in a permissioned network. The difference is that in consortium
blockchain, there involve multiple organizations to share the right to access and
validate the transactions. Although these organizations might not fully trust each
other, they can work together by altering the consensus algorithm based on the
level of trust among them.

Work Flow of Blockchain: In Fig. 5.2, we show the work flow of a blockchain
using the PoW consensus algorithm. Firstly, a transaction is initiated and broadcast
to other nodes in the network. The nodes which receive the transaction use the
digital signature to verify the authentication of the transaction. After verified, the
transaction is appended to the list of valid transactions in the nodes. To record the
verified transactions, nodes in the network work to publish the new block, i.e., find
Nonce. Once one node finds a valid Nonce, it is allowed to publish a block which
contains the initiated transaction. The other nodes then verify transactions in the
block received by comparing the Merkle root, and once the transactions in the newly
published block are proven to be authenticated and not tampered, the new block is
added to the local replica of the blockchain. The update of the blockchain has been
completed.
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Fig. 5.2 The work flow of a blockchain network

5.2.2 Features and the Potential Attacks on Blockchain

The features of a public blockchain are summarized below.

• Decentralization: In a public blockchain network, the transactions are recorded by
all the nodes in the network and each node has a local copy of the ledger in which
transactions are recorded. In this way, the distributed ledger is protected against
the single point of failures.

• Trustless: In a blockchain network, a trusted third party is not needed to validate
the transactions, neither should one node need to trust others before they can
transact. The consensus algorithm in the blockchain is used to validate and record
the transactions in a more democratic manner than the centralized approach.

• Immutability: Using a one-way cryptographic hash function, any modification of
the previous blocks in a blockchain invalidates all the consequently generated
blocks. Thus, to tamper transactions recorded in a previous block, the malicious
node needs to create a new block and replicate all the following blocks. With other
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nodes continuing to create new blocks, the manipulation is hard to achieve, which
makes the blockchain immutable.

• Non-repudiation: A transaction is cryptographically signed with a private key
before broadcast to others. The authentication of transactions can be verified by
others via the corresponding public key which is accessible to other nodes. Since
the private key is kept by its owner, one node cannot masquerade others to initiate
transactions and one verified transaction cannot be denied by its initiator.

• Transparency: In a public blockchain network, every node can access the transac-
tions stored in the blockchain and verify the initiated transactions. Data stored in
blockchain is thus transparent to the public.

• Traceability: The block header is attached with a timestamp which records the
time when the block is created. Nodes can thus easily verify and trace the origin
of the historical blocks.

Although relatively secure, the blockchain is still under the risk of multiple kinds
of attacks, such as selfishmining attack, majority attack andDenial of Service (DOS)
attack [13].

• Selfish Mining is applied by the malicious nodes to withhold the blocks they have
successfullymined or to hold and then release the blocks. In this way, the nodes can
make other miners waste their computational resources to find the Nonce which
has been found by the attackers. On the other hand, by withholding a mined block,
the attacker can start earlier than others to find the Nonce of the next block.

• Majority Attack might happen when one node or a coalition of nodes possesses
more than 50% of the computational resources of all the nodes in the network.
With the PoW consensus algorithm, such nodes have a probability larger than 0.5
to successfully mine and publish a new block. Thus, they can arbitrarily reverse
or halt the transactions by publishing new blocks. The majority attack can also
be performed by an attacker without such a high proportion of computational
resources. Specifically, they can employ other nodes to help it privately extend a
chain with a block published by itself. Once the private chain is longer than the
existing one in the network, the attacker can make the new chain public. Based
on the longest chain rule, the new chain will be accepted by other nodes in the
network, and the transactions in the newly accepted blockchain, whichmight favor
the attacker, will also be accepted.

• Denial of Service Attack happens when malicious nodes completely occupy the
resources to verify or to transmit the blocks and transactions. Specifically, mali-
cious nodes can initiate plenty of transactions to other nodes to disable the trans-
mission and verification of transactions from other nodes.

5.2.3 Smart Contracts Enabled by Blockchain

Smart contracts, enabled by the blockchain technology, are self-executing contracts
without extra enforcement. The contractual clauses between nodes are converted



128 5 Blockchain for Dynamic Spectrum Management

Fig. 5.3 The generation and recording of smart contracts

into computer programs in a form such as “If-Then” statements. The executable
computer programs are then securely stored in the blockchain. When the predefined
conditions in smart contract are satisfied, the clauses in smart contracts will be exe-
cuted autonomously, and the execution will be recorded as an immutable transaction
in the blockchain.

The generation procedures of a smart contract are shown in Fig. 5.3, and the
work flow of the smart contracts is demonstrated as follows. The involved nodes
first negotiate to agree upon and sign contractual clauses. The approved clauses are
further recorded in a transaction. Similar as other transactions, such a transaction
which records the smart contract will be verified by other nodes and then appended
to other transactions in a block. With the consensus algorithm, a block contains the
smart contract will be added into the blockchain. The smart contract will then be
allocated with a unique address, through which the nodes in the network can access
or interactwith it. Once some node sends transactions to that address or the conditions
in the smart contract are satisfied, the corresponding clause in the smart contract will
be strictly executed.

Bitcoin is known as the first cryptocurrency that supports basic smart contract
in the sense that the network allows one user to transfer value to another. However,
the limited programmability makes it impossible to support a smart contract with
complex logic. Ethereum is the first public blockchain-based platform which sup-
ports the advanced smart contracts which are encoded by high level programming
implementation.

5.3 Blockchain for Spectrum Management: Basic
Principles

In this section, we will first provide the potential aspects from which the application
of the blockchain technology can benefit DSM. Note that we mainly consider the
spectrummanagement in a sharing use. If not specifically mentioned, all blockchains
in this section are public blockchains. Then, we outline three different ways to deploy
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a blockchain network over a cognitive radio network. Finally, we will bring up and
discuss challenges in the application of blockchain to DSM.

5.3.1 Blockchain as a Secure Database for Spectrum
Management

Blockchain, as essentially an open and distributed database, can be used to record any
kind of information as a form of transaction. On the other hand, spectrum manage-
ment can benefit from the assistance of a database, such as a geo-location database
for the protection of incumbent users in TV white spaces [14]. Based on this, one
potential trend of applying blockchain to spectrum management is to record the
information about spectrum management (Fig. 5.4).

One main reason of this application is that blockchain makes such information
accessible to all the secondary users. Such kinds of information include the TVWhite
Spaces, the spectrum auction results, the spectrum access history and the spectrum
sensing results. Here, we discuss the benefits of recording these kinds of information
on spectrum management.

Information of TV White Spaces and other underutilized spectrum bands can be
dynamically recorded in a blockchain. In a secure blockchain, the information includ-
ing interference protection requirements of the primary users and the spectrum usage
with respect to time, frequency and geo-location of TVwhite spaces can be recorded.
Compared to a traditional third party database, blockchain allows users directly con-
trol the data in the blockchain and thus guarantees the accuracy of data. Another
concern of spectrum management is its dynamic characteristic. With the mobility of
mobile secondary users or the variation of traffic demands of the primary users, the
availability of spectrum bands might change dynamically. With the decentralization
of blockchain, the information of idle spectrum bands can be dynamically recorded
by primary users and easily accessed by all the unlicensed users. Moreover, by ini-
tiating a transaction, SUs can inform others their departure or arrival to some area,
to help others to capture the potential spectrum opportunities in the area where they
are located, to finally optimize their transmission strategies. Thus, the efficiency of
spectrum utilization can be improved.

Spectrum Access History of the unlicensed spectrum bands can be recorded in
a blockchain. With the existing access protocol such as Carrier Sensing Multiple
Access with Collision Avoidance (CSMA/CA) and Listen-Before-Talk (LBT), the
access is not needed to be coordinated. However, the access history needs to be
recorded in the blockchain to achieve the fairness in all the users. For example, with
the autonomous implementation of smart contracts, the users which are recorded to
access the unlicensed spectrum bands up to a frequency threshold will be not allowed
to access the same spectrum bands in a fixed period.
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Spectrum Auction Results can also be recorded in a blockchain. Auction mech-
anisms have been shown as an efficient way for dynamic spectrum allocation [15].
Among the spectrum auctions, the secondary auctions are used when the licensed
primary user (PU) shares the spectrum with secondary users (SUs). The sealed-
bid spectrum auctions, where the SUs as bidders send their bids to the PU who
is auctioneer privately, can improve the efficiency of spectrum auction. Moreover,
the second-price sealed-bid auction, can guarantee the truthfulness of spectrum auc-
tions, which means that SUs will obtain optimal utilities by submitting the bid with
respect to their true valuation of the spectrum bands, instead of deceiving the auc-
tioneer. Although sealing the spectrum auction results can be beneficial from the
above aspects, recording the auction results such as the bids and the hammer price,
at which the SUs and the PU make a deal, after the auction is completed, is also
important. Blockchain provides an secure and verifiable way to record such infor-
mation. Specifically, recording of spectrum auction results in a blockchain can be
beneficial from the following aspects.

1. Prevent the frauds from a PU. The lack of transparency of bids and the hammer
price can lead to the occurrence of frauds. For example, it is possible that one
dishonest PU charges the winning SU with a forged price or grants more than
one SUs the exclusive access right of spectrum bands, to increase its revenues.
However, this kind of frauds cannot be detected by the SUs since the bids are
sealed. With the use of blockchain, the bids and hammer price can be immutably
recorded as a transaction after the auction is ended and the information can be
verified and accessible by all the SUs. It is thus easy to detect and prevent the
frauds of a PU.

2. Guarantee the non-repudiation of auction payment. Since that the transaction
which records the bids and hammer prices is verified by all SUs before being
recorded in a blockchain, the wining SU cannot repudiate the bid they submit.
Thus, the PU as the spectrum resource provider, can be secured to obtain its right-
ful payment after the auction is completed.

3. Prevent the unauthorized access of SUs. Recorded in a blockchain, the results of
spectrum auctions are accessible to all the SUs. To ensure the fairness of spectrum
auctions, all SUs can collaboratively supervise andprevent the unauthorized access.
In this way, no SU can access the spectrum without participating in and wining the
spectrum auctions.

Spectrum Sensing Results are another kind of information which can be stored in
a blockchain. The sensing results stored in the blockchain can be used to map the
spectrum usage of the primary networks and hence provide them an additional tool
for monitoring and maintaining of their networks. Moreover, this could potentially
encourage more licensed users to allow shared use of spectrum. Without the help of
secondary users to submit the sensing reports, however, a cellular network operator
can achieve the above objective by deploying a sensor network to monitor and record
the spectrum usage in a blockchain. On the other hand, the sensing results recorded
in the blockchain can be used as prior information when SUs need to choose which
licensed spectrum bands to sense and access. In particular, SUs can estimate the
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utilization rate of different spectrum bands from the historical sensing results, and
SUs can thus choose the spectrum bands with a relatively low utilization rate.

5.3.2 Self-organized Spectrum Market Supported by
Blockchain

With the tamper-proof record of transactions, the autonomous contract execution and
payment settlement enabled by smart contracts, blockchain is a powerful platform to
construct a self-organized spectrum market, to provide the following applications.

Services Implementation: A smart contract, which is a self-executing contract
built upon a blockchain, can be used in spectrum management, with the clauses in
the smart contract being autonomously executed and immutably recorded.Moreover,
the payment process can also be autonomously completed by smart contracts. Thus,
with the usage of smart contracts, services such as spectrum sensing service [9], the
trading of transmission capabilities can be explored to be securely executed between
the users in the blockchain network.

Identity Management: Besides executing the services with smart contracts,
blockchain can also provide an identity management mechanism in the spectrum
market. Specifically, a consortium blockchain as an intermediary first collects and
records the information from the service seekers, such as SUs, to complete the regis-
tration process. The blockchain can then be used to authenticate the registered users
and to only allow the registered users to access the data recorded in it. To protect
the privacy of the users, the blockchain only provides the pseudonymous identity of
the users when the service providers seek for the user identity authentication. Such
a configuration is first proposed in [16], where an Identity and Credibility Service
(ICS) is built upon a consortium blockchain.

5.3.3 Deployment of Blockchain over Cognitive Radio
Networks

Blockchain, as a distributed ledger, is maintained by all the nodes in the network.
However, it can be energy-consuming for a node to maintain the blockchain. For
example, in the blockchain using the PoW consensus algorithm, the nodes need to
devote computational resources to publish a new block. Thus, the deployment of
blockchain network with the communication network should be studied. Here, we
outline three ways to deploy the blockchain network to the cognitive radio network
and analyze the pros and cons of these ways.

The first way is to directly deploy a blockchain network over a communication
network, as shown in Fig. 5.5. Specifically, since the information regarding the spec-
trum management, which needs to be recorded in the blockchain, is produced or
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Fig. 5.4 Blockchain as a secure database for spectrum management. The information such as
spectrum sensing results, spectrum auction results, spectrum access history and the idle spectrum
bands information can be securely recorded in blockchain

Fig. 5.5 Deploy the blockchain network directly on a cognitive radio network

obtained by the nodes in the communication network, i.e., SUs and PUs, it is intu-
itive for the nodes in the cognitive radio network to also act as nodes in the blockchain
network. To deploy the blockchain in this way, the SUs and PUs should be equipped
with the mining and other functions in the blockchain. Thus, all the functions of the
blockchain, such as the distributed verification of transactions, can be performed by
all the users. However, such kind of deployment requires a control channel through
which the users can transmit the transactions and blocks. If a wireless control chan-
nel is used, there exists the risk that the control channel is jammed by the malicious
users. Once the control channel is paralyzed, the blockchain network cannot func-
tion.
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Fig. 5.6 The coexistence of a dedicated blockchain network and a cognitive radio network

Another way is to use a dedicated blockchain network to help record the relevant
information. For users in the cognitive radio network, the limited computational
capabilities make it difficult for them to access the spectrum bands and maintain
the blockchain at the same time. Specifically, mining, which might consume a lot of
energy, is impractical for SUs with constrained battery to implement. To overcome
this challenge, one possible way is to allow users to offload the task of recording
transactions to a dedicated blockchain network, as shown in Fig. 5.6. In this way, the
blockchain functions as an independent database. However, the transaction cannot
be verified directly by users and the overhead of transmitting the transactions to the
dedicated blockchain network also increases. Moreover, the nodes lose the control
over information recorded in the blockchain. To this end, a more practical way for the
users is to only offload the mining task, which is energy-consuming, to a cloud/edge
computing service provider, and to record the transaction into the blockchain by
themselves. Researchers have designed auction mechanisms to allocate computing
resources in this case [17]. However, the offloading of mining task might lead to a
malicious competitions between the users, which also needs to be considered when
a blockchain network is deployed in this way.

Besides the cognitive radio network and the blockchain network, there sometimes
exists a third network, e.g., a sensor network, where sensors can be deployed to
perform cooperative spectrum sensing to obtain the diversity gain. Under the same
principle of dedicated blockchain, the above three networks can coexist and interact
with others. Traditionally, the third network such as the sensor network directly
communicates with the cognitive radio network. Blockchain network, however, can
become an intermediate of the two networks.
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5.3.4 Challenges of Applying Blockchain to Spectrum
Management

The application to blockchain in spectrummanagement is promising. However, there
remain a few challenges with respect to, for example, transaction cost, the latency
and the privacy leakage. Generally, the challenges can be solved by trading off
different characteristics of a blockchain, which is shown in Fig. 5.7. As it can be
seen, the decentralization of blockchain is helpful to guarantee the non-repudiation,
transparency and immutability, while decreasing the privacy and the scalability, and
increasing the latency and transaction cost in the blockchain network. We introduce
the challenges and discuss their potential solutions as follows.

TransactionCost: The transaction cost for a node in a blockchain network includes
the cost to publish a new block and the communication overhead to transmit the
transactions initiated by all the nodes. The consensus algorithm, throughwhich a new
block is published, such as PoW, is too computationally intensive to be sustainable
for cognitive devices with limited computational resources and battery. Although
users can upload the mining task to a cloud/edge computing provider to save their
energy, it still costs them to pay for the computing service. Another solution is to
adopt or design a more suitable consensus algorithm to lower the cost of maintaining
the blockchain. However, an energy-efficient consensus algorithm usually required

Fig. 5.7 The tradeoffs in different characteristics in a blockchain network
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a higher level of trust between nodes in the network to guarantee the security, which
limits the flexibility of the blockchain network.

Another cost in maintaining a blockchain is caused by the transmission of trans-
actions. A transaction, initiated by one node in a blockchain network, needs to be
broadcast and verified by other nodes before it can be recorded in a new block. After
that, the new block is also needed to be broadcast to other nodes for verification and
storage. In the case when the generation of transactions is frequent, the overhead of
transaction transmission cannot be neglected. On the other hand, the transmission
of transactions usually requires a control channel, which is under the risk of being
jammed by the malicious nodes. The risk also increases the cost of transaction trans-
mission. To conclude, tradeoff of the cost and the benefits should be considered when
applying the blockchain to spectrum management.

Latency and Synchronization: The latency in a blockchain network is caused
by two phases including the mining process, and updating local blockchain of all
the users. Firstly, the mining process, e.g., PoW consensus algorithm, is energy-
consuming and time-consuming to guarantee unbiased selection of nodes to publish
a new block. Moreover, after a block is published, it still requires some time for the
successful miner to broadcast the new block and all other nodes to verify and add the
new block to their local replicas of the blockchain. The high latency in the blockchain
network might make it unsuitable to the applications with stringent latency require-
ments. For example, the latency of writing the results of an spectrum auction in the
blockchain can delay the execution of spectrum access. This will impair the rev-
enues for the secondary users and increase the latency for transmission. On the other
hand, the latency can also lead the fork of a blockchain, i.e., the existence of multiple
blockchains in a network. In the fork of a blockchain, multiple auction results such as
the recorded winner and its allocated spectrum bands might be different from that of
the original blockchain. This will lead to the discrepancy in the spectrum access allo-
cation among the users and even result in interferences between the users when they
simultaneously access the same spectrum bands. Although this discrepancy could
eventually be solved by the longest chain rule, the effect on secondary users can not
be reversible. To conclude, the delayed spectrum access caused by the latency of the
blockchain impairs its revenue and further discourages the users from participating
in the spectrum auctions.

PrivacyLeakage:Ablockchain guarantees its security bydistributing the authority
of maintaining the database to all the nodes in the network. As a result, any node
can access and verify the data stored in the blockchain. In DSM, the data can be
some private information collected by users, which might leak their location or other
features. However, the easy and open access to the public blockchain might prevent
users from recording any private information in it. Although a private blockchain,
in which the access to blockchain is distributed only to permissioned nodes, can be
employed to improve the privacy of data recorded in blockchain, this will reduce the
decentralization of blockchain and increase the administration cost to supervise the
nodes in the blockchain network.

Scalability: A newly published block needs to be broadcast to all the other nodes
and stored in the local replica of all nodes. Thus, the number of transactions in a block
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is limited since containing too many transactions might make it be orphaned, which
occurs when it can not be included to the local blockchain replica of all the nodes
on time. On the other hand, in public blockchains, there is usually a pre-defined
block interval, which can be adjusted by setting the difficulty of block creation.
Reducing the block interval can increase the transaction throughput. However, it
also increases the risk of creating blockchain forks and thus reduces the security.
Thus, the scalability of blockchain, defined as the transaction throughput per second,
is limited. To solve this, a more efficient consensus algorithm can be adopted to
decrease the block interval, or a private/consortium blockchain can be used instead
of a public blockchain, to decrease the number of nodes which need to store a local
blockchain copy, and to increase the speed of propagation of a new block to all the
nodes.

Attacks on Blockchain: The major kinds of attacks on a blockchain are introduced
in Sect. 5.2. These attacks can degrade the security or increase the latency of the
blockchain, to further affect the dynamic spectrum management which uses the
blockchain. Take the selfish mining attacks as an example. In an application which
uses a blockchain to record the spectrum auction results, the selfish mining attacks
will delay the time for a transaction, i.e., spectrum auction results, to be successfully
recorded in the blockchain. Thus, the allocation of spectrumbands cannot be executed
on time. The denial of services (DoS) attacks can also be implemented by jamming
the control channel, through which the transactions are transmitted.

5.4 Blockchain for Spectrum Management: Examples

In this section, we give some examples to show how the blockchain technologies
can be applied to DSM. Firstly, using the consensus algorithm, researchers have
enhanced the performance of traditional spectrum access or developed new spectrum
access protocol. Besides, the spectrum auctions secured by a blockchain will also
be introduced. Moreover, we introduce a novel cooperative-sensing-based spectrum
access protocol, which is also enabled by the blockchain technologies.

5.4.1 Consensus-Based Dynamic Spectrum Access

A consensus algorithm adopted in the competition of mining in blockchain, such
as the PoW algorithm, is used to select one node to create a new block in an unbi-
ased and distributive manner. They can be also used to manage the spectrum access
where the coordination of the access requests from SUs is needed to avoid colli-
sion. Furthermore, with the use of Distributed Ledger Technology (DLT), the queue
derived using a consensus algorithm can be distributively recorded. Overall, using
the consensus algorithm, we can either enhance the performance of traditional access
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protocols or propose new access protocols. Here, we introduce two instances of the
consensus-based dynamic spectrum access (DSA).

It is noted that in traditional spectrum auctions, the computational complexity to
derive the optimal bid might be high for cognitive devices limited computational
capabilities, and the time to derive the optimal bid might occupy the time for trans-
mission. In [18], authors proposed a puzzle-based auction to improve the efficiency
of spectrum auctions. The essence of the puzzle-based auction mechanism is to make
SUs win the spectrum auction by competing to solve a complex math problem, rather
than through traditional bidding. Specifically, in a puzzle-based auction, an auction-
eer advertises an access opportunity, and SUs who are interested then respond to
the auctioneer to obtain a math problem and will be charged with an entry fee. The
involved SUs then start working on solving the math problem. The first SU who sub-
mits the correct answer of the problem to the auctioneer will be granted to access the
advertised spectrum band. To guarantee the fairness of the auction, the math problem
is set to be non-parallelizable, e.g., to find the n-th digit of π , meaning that the prob-
lem cannot be computed in a parallel manner. By doing so, the SUs cannot devote
more parallel computational resources to obtain a greater chance to win the auction,
which ensures the fairness and prevents the malicious competition of the spectrum
auction. Since the competition of winning one puzzle-based auction is similar to the
mining process, the auction can be seen as a centralized consensus algorithm, where
the verification of the winner of the auction is performed only by the PU.

In [19], with the use of the DLT, the authors proposed a distributed DSA protocol,
so called consensus-before-talk in which the access requests of the SUs are stored as
transactions and queued with a consensus which is distributively achieved between
all the nodes by a pre-defined rule. The system is shown in Fig. 5.8. In such a sys-
tem, the collision of SUs is avoided by distributively queuing the access requests
from different users and the latency of transmission for SUs can thus be reduced.
Specifically, an SU first generates an access request as a form of transaction and
uses the gossip-of-gossip protocol to spread the transaction. The SU who receives
the transaction then verifies the authentication of the request through digital signa-
ture and adds its verification time to the transaction, and finally sends the modified
transaction to another SU. After all the SUs have verified the transaction, the SUs
spread the transaction again. Lastly, each SU has a copy of the transaction with the
verification/generation time from all SUs and each SU can calculate the consensus
time using the verification and generation time of the transaction. After that, the
transactions are added to their local ledger in a order decided by the calculated con-
sensus time. Through these procedures, a consensus, which regulates the queue of
spectrum access, is distributively reached among all the SUs.

5.4.2 Secure Spectrum Auctions with Blockchain

Auction mechanisms have been proven to be an efficient way for dynamic spectrum
management. However, the security of the spectrum auctions is mainly guaranteed
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Fig. 5.8 A consensus-based dynamic spectrum access framework

by third-party entities [15]. On the other hand, there usually lacks validation of the
transactions in a traditional spectrum auction. Although some centralized valida-
tion mechanisms, which are executed by a centralized authority, are proposed, such
mechanisms are vulnerable to single point of failures [7]. A distributed validation
mechanism, which is accessible to and verifiable by all the users in the network, is
thus desired. Blockchain, as a distributed ledger, can be used to overcome the security
challenges in the spectrum auctions.

In [7], authors proposed a blockchain-enabled DSA scheme based on the puzzle-
based auction. In such a DSA system, SUs are seen as both sensing nodes in the
cognitive radio network and mining nodes in the blockchain network. A PU leases
its idle spectrum to the SUs through a blockchain without an auctioneer. Leveraging
on the blockchain, the spectrum transactions are recorded and verified in immutable
and distributed manner by the SUs. The procedures of the spectrum auction system
in [7] are introduced below. Firstly, the advertisement of spectrum opportunity is
broadcast by an PU through a control channel, and a puzzle-based auction is used
to determine the winner of the auction. If the the winner has sufficient tokens to
sustain the pre-defined spectrum payment, then the access is granted. Otherwise,
the auction is restarted, and the malicious bidder, i.e., the SU who takes part in the
auction but has an insufficient budget, will be deprived of the bidding right. After
the auction is completed, a new transaction recording the auction result needs to be
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Fig. 5.9 Procedures in a blockchain-secured spectrum auction

recorded in the blockchain. SUs then work to create a new block via mining. The
SU which successfully publishes a block will be rewarded with the tokens, named
as specoins, in the network. With the PoW consensus mechanism, the difficulty
of creating a new block increases as the blockchain grows longer. To prevent the
creation of a new block from being impossible for SUs which are equipped with
limited computational capabilities, the blockchain will be reset at a fixed frequency.
The reset can be achieved by creating the first block of a new blockchain, in which
the balances of SUs and the PU are recorded.

Although [7] uses the puzzle-based auction to reduce the complexity and thus
to improve the efficiency of spectrum auctions, it is straightforward to extend this
system to adapt to other auction mechanisms since a blockchain is only used to
verify and record the result of a spectrum auction. A more general blockchain-
secured spectrum auction system is depicted in Fig. 5.9, where we omit the detailed
procedures of spectrum auction.

Enabled by the blockchain technologies, the security of spectrum auctions using
a blockchain has been improved with the following features.

• Decentralization: The spectrum transactions are verified and recorded in a dis-
tributed and immutable manner. Compared to the centralized auction system,
where the transaction is verified and stored by a trusted third-party, the blockchain-
enabled auction system is robust against the single point of failures.

• Accessibility: With a mechanism to help exchange the real currency with the cryp-
tocurrency, and using the public blockchain which is accessible to any node in the
public, any interested SU can participate in the spectrum auction. Moreover, the
registration procedures of users and the reliance on the trust between the user and
the auctioneer are eliminated. In this way, the spectrum resource is more accessible
by all the users.
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• Verification of User Identity: With the use of the digital signature in each trans-
action, the authentication of SUs and PUs can be verified by all the users. Thus,
malicious user cannot impersonate another SU to submit bid in the spectrum auc-
tions or impersonate the PU to initiate an auction. The account of users can thus
be secured.

• Fraud Prevention: The transparency of transactions prevents the frauds of a PU,
e.g., overcharging the winning SU with a forged price.

5.4.3 Secure Spectrum Sensing Service with Smart Contracts

In [9], the authors use smart contracts to autonomously execute the spectrum sensing
service. It is known that without the cooperation of PUs, the access opportunity can
only be obtained by spectrum sensing. However, due to the adverse channel fading
effect, the sensing result of a single SU might be incorrect. Cooperative sensing by
multiple SUs can be used to improve the sensing performance. However, when an
SU does not need to access the spectrum, there lacks incentive for it to participate
in the cooperative sensing, which is energy-consuming. To this end, in [9], authors
proposed to improve the sensing performance by deploying multiple sensing nodes,
so called helpers to provide the SUs with the sensing service and to use the smart
contract to implement the spectrum sensing service. In this way, an SU can offload
its sensing task to the sensing helpers, and the sensing helpers can obtain revenues
by charging the SUs. Specifically, the SU firstly broadcasts the smart contract, in
which a sensing quality requirement is recorded, to the sensing helpers. Then, the
sensing helper checks if it satisfies the requirement and then decides whether to
provide the sensing service. After that, smart contract selects the helpers and collects
the sensing reports from them. Moreover, the algorithms to detect and remove the
malicious sensing helpers, which reports a false or random sensing report, can be also
executed autonomously by smart contract. The last procedure in the smart contract
is to autonomously pay the service provider. From the above execution process, it is
noted that with the use of smart contract, the sensing service can be implemented and
supervised in an autonomous and immutableway, andwith the use of a permissionless
blockchain, an elaborate registration of sensing helpers is eliminated.

5.4.4 Blockchain-Enabled Cooperative Dynamic Spectrum
Access

Cooperative sensing is used to improve the accuracy of spectrum sensing, which
gives the SUs a better chance for opportunistic access. To achieve cooperative sens-
ing, a centralized approach is to deploy a fusion centre to collect and fuse the sensing
reports from SUs. Moreover, the fusion centre can analyze the collected sensing
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Fig. 5.10 The sequence of operations in a time slot

reports to detect the malicious SUs which report false or random reports for maxi-
mizing its own benefits. Although easy to be implemented, this centralized scheme
is vulnerable to single point of failures. In particular, the cooperative sensing scheme
will break down when the fusion centre is hacked. In this case, the whole secondary
network is no longer secure.Moreover, there exits a potential type of attacks in which
an attacker emulates an SU to report false sensing results to the fusion centre. Thus,
the authentication of SUs should verified [20]. A decentralized and secure cooper-
ative sensing scheme to address the above concerns is thus desired. Furthermore,
cooperative sensing also needs an incentive mechanism to encourage the SUs to
spend the additional energy for cooperative sensing.

Here, we propose a decentralized cooperative sensing scheme, where the sensing
reports of SUs are spread collaboratively by all the SUs, and once an SU collects all
the sensing reports, it derives the final result by its local fusion rule. Moreover, the
sensing results are securely recorded as a transaction in the blockchain. To achieve
this, one SU acts as both a sensing node and a mining node. However, the energy
consumed by sensing and mining might prevent SUs from collaboration. To this
end, we propose an effective incentive mechanism which guarantees that the efforts
of SUs paid to cooperatively sensing and mining are proportional to their chances
to access one cooperatively sensed the idle spectrum band. Specifically, the SUs
which participate in cooperative sensing and win the mining will be rewarded with
tokens in a virtual currency and the SUs can bid for the access opportunity using
the tokens they earn. Note that the virtual currency will be supported and secured by
the blockchain. In this sense, by fairly allocating the cooperatively obtained access
opportunity, SUs are effectively incentivized to participate in cooperative spectrum
sensing and mining, and a DSA framework is thus established.

The proposed DSA framework includes a protocol that specifies a time-slotted
five-phase operation by the SUs to obtain an access to the spectrum, as shown in
Fig. 5.10. Specifically, the SUs first choose whether to sense the primary channel
according to its sensing policy (Phase I). Then, SUs exchange their sensing results
through a control channel (Phase II). If the fused sensing result shows that the
spectrum is idle, SUs decide the bid for the access according its bidding policy
and exchange their bids (Phase III). Then, SUs decide whether to work on mining
according to its mining policy, and the successful miner will create and broadcast a
new block that records the sensing results, bids of SUs and the wining bidder (Phase
IV ). Finally, the winning SU accesses the spectrum to transmit its packets (Phase V ).



142 5 Blockchain for Dynamic Spectrum Management

The benefits of the proposed cooperative-spectrum-sensing-based DSA frame-
work are as follows:

• By allocating the spectrum band through auctions, it prevents the collision of SUs
which sense and access the same spectrum band.

• With the help of hashing and digital signature in the blockchain technology to dis-
tributively verify the authentication of SUs, the proposed DSA framework thwarts
the SU emulation attack in the cooperative sensing.

• The decentralized cooperative sensing scheme in the DSA framework is free from
single point of failures by eliminating the need of a fusion centre.

• The virtual currency, secured by the blockchain, provides an effective mechanism
to incentivize SUs to cooperative sensing and mining.

• The use of blockchain helps to securely record the historical sensing, bidding, and
access results.

• The recorded historical sensing results in the blockchain can be used by SUs to
predict the spectrum usage or to detect the dishonest/malicious SUs which send
random/false reports. Moreover, they can be used for PUs to monitor and maintain
the usage of its licensed spectrum bands.

According to the DSA framework, three policies are important for the SUs to
finally obtain the spectrum access opportunity. For each SU, to maximize its token
revenues, it needs to sense and mine in all the time slots. However, it might be a
waste of energy for all SUs to always sense and mine. In this sense, we propose a set
of heuristic policies for SUs to distributively make the sensing, bidding and mining
decisions.

1. SensingPolicy ai (t): By a sensing policy, denoted asai (t), SU i determineswhether
it should sense the primary channel, with ai (t) = 1 and ai (t) = 0 representing
sensing and not sensing, respectively. We consider a probabilistic sensing policy
bywhich each SU decides whether to sense in t-th time slot with a fixed probability
Ps , i.e.,

ai (t) =
{
1, with probability Ps,
0, with probability 1 − Ps .

(5.1)

2. Bidding Policy bi (t): By a bidding policy, denoted as bi (t), SU i determines how
many tokens that it should use to bid for the spectrum access. Denote ni (t) as
the balance of SU i’s wallet. Then the bid that an SU can place is limited by the
maximum number of tokens that it has, i.e., bi (t) ≤ ni (t). We consider a bidding
policy that is based on its current buffer occupancy ratio and its currently available
token values. Mathematically, the bid of SU i in t-th time slot is determined to be

bi (t) = qi (t)

Qi
ni (t), (5.2)

where qi (t), Qi denote the number of packets in the buffer and the buffer size of
SU i , respectively. Under this bidding policy, an SU dynamically adapts its bid
to its current buffer state, which represents its urgency to access. Thus, when its
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buffer occupancy ratio is high, it is allowed to submit a high bid to obtain a better
chance to access.

3. Mining Policy ci (t): By a mining policy, denoted as ci (t), SU i determines whether
it should work on mining to update the blockchain, with ci (t) = 1 and ci (t) =
0 representing mining and not mining, respectively. Similarly with the sensing
policy, we consider a probabilistic mining policy according to which each SU
randomly decides whether to participates in mining in the t-th time slot with a
fixed probability Pm , i.e.,

ci (t) =
{
1, with probability Pm,

0, with probability 1 − Pm .
(5.3)

5.5 Future Directions

The application of the blockchain technologies to dynamic spectrum access is still at
its infancy. As mentioned in the preceding sections, there still exist many challenges
to be addressed. In this section, we will give some future directions of work so
the benefits of the blockchain technology can be better harvested to support more
efficient dynamic spectrum access in the future.

• Incentive Mechanisms Using Blockchain: Blockchain has successfully supported
many kinds of cryptocurrency. With cryptocurrency, it is convenient to design
incentive mechanism for users to contribute to the spectrum management. For
example, tokens in the cryptocurreny can be rewarded to the users which partici-
pates in the spectrum sensing, to help explore the access opportunity or monitor
the spectrum utilization efficiency of licensed bands. The tokens can also be used
to obtain the access opportunity or to get other services provided by other users.

• Design of Consensus Algorithms: Besides the properties including correctness,
consistency, termination and total order [21], which a consensus algorithm needs
to satisfy, the latency and computational cost of the consensus algorithm should
also be considered when applying blockchain to dynamic spectrum management.
Generally, a computationally efficient consensus algorithm is needed to reduce the
computation consumption of users with the limited battery. On the other hand, the
PoW consensus algorithm, with which the nodes reach the consensus by devoting
computational resources to solve a puzzle, costs the nodes in the network to perform
useless computation, i.e., finding a random number by trial and error. To this end,
proof of useful work [22] can be employed to let the users solve a practical puzzle
to increase the usefulness of computation to reach the consensus.

• Flexibility of Blockchain Networks: With the communication overhead of transac-
tion transmission determined by the distance of the users, it is needed for the users
in the blockchain network to stay in a relative small area. On the other hand, same
spectrum bands can be allocated to users in different areas since the interference
of them reduces with the increase of their distance. To control the transaction cost
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and improve the utilization of spectrum resources, it is thus practical to design dif-
ferent blockchain networks to manage the spectrum resources in different areas.
However, it is not suitable to use private blockchain network which needs to verify
the identity of nodes in the network and assign the permission to the trusted nodes.
This is because the mobile users can frequently change its locations and need to
be permissioned once they get into a new private blockchain network. Thus, how
to adopt or design an efficient blockchain to guarantee the flexibility should be
considered in the future researches.

• Allocation of Energy and Maximization of Revenue: With the consensus algorithm
such as PoW, the creation of block can be computationally intensive. It is thus
crucial for users to allocate their limited computational resources/energy between
mining and data transmission. The former helps the users to obtain the revenue
from token rewards and transaction fees, while the latter helps to obtain the revenue
by providing the transmission service. With limited energy, there exits a tradeoff
between the revenue from the blockchain and the revenue from data transmission
service provisioning. Specifically, if one node spends more energy on mining, it is
more probable for them tomine a new block and obtain the token reward. However,
the power for transmission is reduced which degrades the performance of trans-
mission. Although the mining task can be offloaded to an edge computing service
provider, the balance should be considered between the cost on the computing
service and the revenue from the transmission service. An interesting trade-off
on the achievable throughput arises when the tokens rewarded by mining can be
used for purchasing the spectrum access license. That is, if a user spends more
energy in mining, although its probability to obtain the spectrum access opportu-
nity increases, the transmission performance such as achievable throughput will
be degraded as the energy left for transmission will be less.

• Frequency of Blockchain-based SpectrumAuctions: One application of blockchain
to dynamic spectrummanagement is in the spectrum auction, which is designed to
dynamically allocate the spectrum resources to improve the spectrum utilization
efficiency. Besides themerits such as security, transparency and accessibility, using
the blockchain to hold and record the spectrum auction can reduce the administra-
tion cost on it. However, the cost of blockchain to validate the transactions cannot
be ignored. Although increasing the frequency of spectrum auctions can achieve
better utilization of the spectrum resources, the cost of recording the increasing
number of transactions also increases. Under some circumstances, the increase of
frequency to hold the spectrum auctions can even affect the execution of spectrum
auction results. Specifically, if the frequency of spectrum auctions is so high that
there is not enough time for all the users to validate and record the transactions,
the results of auctions cannot be executed on time. To conclude, the frequency
of blockchain-based spectrum auction should be optimized to tradeoff between
the spectrum utilization efficiency and the cost of recording transactions in the
blockchain.
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5.6 Summary

In this chapter, we have investigated the applications of blockchain to dynamic spec-
trum management. We have first briefly introduced blockchain technologies. We
have then given the basic principles which illustrate how and why it is helpful to
apply blockchain technologies to dynamic spectrum management, with challenges
summarized at last. Moreover, we have introduced some instances of blockchain for
dynamic spectrum management. Finally, we have discussed the future directions.
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Chapter 6
Artificial Intelligence for Dynamic
Spectrum Management

Abstract In the past decade, a significant advancement has been made in artifi-
cial intelligence (AI) research from both theoretical and application perspectives.
Researchers have also applied AI techniques, particularly machine learning (ML)
algorithms, to DSM, the results of which have shown superior performance as com-
pared to traditional ones. In this chapter, we first provide a brief review on ML
techniques. Then we introduce recent applications of ML algorithms to enablers of
DSM, which include spectrum sensing, signal classification and dynamic spectrum
access.

6.1 Introduction

Artificial intelligence (AI), also known as machine intelligence, has been seen as
the key power to drive the development of future information industry [1]. The term
AI was coined by John McCarthy in a workshop at Dartmouth College in 1956,
and he defined AI as “the science and engineering of making machines, especially
intelligent computers” [2]. Generally, AI is defined as the study of the intelligent
agent, which is able to judge and execute actions by observing the surrounding
environment so as to complete certain tasks. The intelligent agent can be a system or a
computer program.With the significant advancement in the computational capability
of computer hardware, various theories, especially machine learning techniques, and
applications of AI have been developed in the past two decades.

With the surging demand for wireless services and the increasing connections of
wireless devices, the network environments are becoming more and more complex
and dynamic, which imposes stringent requirements on DSM. In the age of 5G, AI
has been seen as an effective tool to support DSM in order to tackle the transmission
challenges, such as high rate,massive connections and low latency [3, 4]. By adopting
ML techniques, the traditional model-based DSM schemes would be transformed to
the data-driven DSM schemes, in which the controller in the network can adjust
itself adaptively and intelligently to improve the efficiency and robustness of DSM.
AI-based DSM schemes have thus attracted more and more attention in recent years,
and have shown great potentials in practical scenarios.
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The applications ofAI techniqueswould bring significant benefits toDSM.Firstly,
the AI-based DSM schemes normally do not need environmental information as
the prior knowledge, and they can extract useful features from the surroundings
automatically. Secondly, AI-based DSM schemes can be re-trained periodically and
thus they are more robust to the changing environment. Additionally, by applying AI
techniques, DSM can be done in a decentralized and distributed manner, leading to a
significant reduction of signal overheads, especially for large-scale systems. Finally,
once trained, AI-based DSM schemes are low in complexity for processing newly
arrived data and thus they are more suitable for practical implementation.

While it is believed that machine learning techniques are effective methods for
developing and optimizing the next generation networks [5], there also exist some
challenges in applying AI techniques in DSM. For example, different from images,
the received signal and its higher order statistics in wireless networks are normally
complex numbers, which are hard to process directly by neural networks. Addi-
tionally, in a typical wireless communication system, accurate network data such as
channel information, is hard to obtain in practice. Hence, there are many remaining
challenges and problems to be addressed for achieving wireless intelligence. In this
chapter, we first provide a brief review of machine learning techniques, then intro-
duce some applications of these algorithms to DSM, including spectrum sensing,
signal classification and dynamic spectrum access.

6.2 Overview of Machine Learning Techniques

As the core technique of AI, machine learning (ML) is a multidisciplinary subject
involving multiple disciplines such as probability theory, statistics, information the-
ory, computational theory, optimization theory, and computer science. T. Mitchell
provided a brief definition ofmachine learning in 1997 as follows: “machine learning
is the study of computer algorithms that improve automatically through experience”
[6]. Hence, themain objective ofML is tomake agents simulate or implement human
learning behaviors. For example, with the help of ML algorithms, a machine agent is
able to learn from training data to achieve different tasks such as image recognition.

Based on the type of training data used, ML can be divided into two branches,
namely, supervised learning and unsupervised learning. The former requires labeled
training data, while the latter only uses unlabeled training data.

In supervised learning, the objective for an agent is to learn a parameterized
function from the given labeled training dataset and then based on the function learnt
to predict the result directly while new data arrives. The common tasks in supervised
learning are regression and classification. Specifically, regression is to determine the
quantitative relationship between certain variables based on a set of training data,
and classification is to find a function to determine the category to which the input
data belongs.

In unsupervised learning, since the training data is unlabeled, the agent needs
to adopt clustering methods to obtain the relationship. A clustering method aims to
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divide the training data into several classes based on the similarity of the data. The
objective of clustering is to minimize intra-class distance while maximizing inter-
class distance. Compared to supervised learning, unsupervised learning is more like
self-study.

Labeled data can also be generated through online learning such as reinforcement
learning (RL). In particular, RL produces labeled experiences to train itself from
continuous interactions with the environment, it is developed to solve a Markov
decision process (MDP) M = {S,A,P,R}, where S is the state space, A is the
action space, P is the transition probability space and R is the reward function [7].

ML techniques can also be grouped into two categories, namely, statistical
machine learning (SML) and deep learning (DL). Using statistics and optimization
theory, SML constructs proper probabilistic and statistical models with training data.
DL, on the other hand, makes use of artificial neural network (ANN), also known as
deep neural network (DNN), to perform supervised learning tasks. In recent years,
neural network techniques have also been applied to RL, leading to the birth of deep
reinforcement learning (DRL). In the following, we will provide a brief introduction
to SML, DL and DRL.

6.2.1 Statistical Machine Learning

The objective of SML is to construct a probabilistic and statistical model using
the training data, then, based on the constructed model, to make inferences with
new data [8]. SML can be applied in both supervised learning and unsupervised
learning. The commonly used supervised learning methods with SML are support
vector machine (SVM) and K-nearest neighbor (KNN), and the commonly used
unsupervised learning methods with SML are K-means and Gaussian mixture model
(GMM).

1. K-NearestNeighbor:K-NearestNeighbor (KNN) algorithm is a basic supervised
learning algorithm for classification. Let T = {(x1, y1), (x2, y2), . . . , (xN , yN )}
denote a given training dataset, where xi is the i-th data set and yi is the corre-
sponding label. Assume that all data sets come from J classes. For a newly arrived
data set x, its label, i.e., class, is determined by its K nearest labeled neighbors
based on the adopted classification decision rules. Hence, the basic elements in
KNN are the number of neighbors K , the distance measure and the classification
decision rule.
Specifically, the classification process consists of two steps: the first step is to
search K labeled data sets which are closest to the newly arrived data set x
according to the given distance measure. Denote the region covering these K data
sets as NK (x). The second step is to determine its label y by using the chosen
classification decision rule based on NK (x). The commonly used classification
decision rule is the majority voting rule, which is given as
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y = arg max
c j , j=1,...,J

∑

xi∈NK (x)

I
(
yi = c j

)
(6.1)

where I (·) is the indicator function that indicates if a label belongs to class c j .
For example, I (yi = c j ) = 1 if yi = c j , and I (yi = c j ) = 0, otherwise.

2. Support Vector Machine: Support vector machine (SVM) algorithm is a typ-
ical binary classification algorithm. The basic idea of the SVM algorithm is to
find a decision hyperplane to maximize the margin between different classes.
Specifically, for a given training data set T = {(x1, y1), (x2, y2), . . . , (xN , yN )},
where yi ∈ {−1, 1}, the objective of the SVM algorithm is to find the hyperplane
denoted byw · x + b = 0 to make the data sets linearly separable, wherew and b
are the normal vector and the intercept of the plane, respectively. If the decision
hyperplane is obtained, the corresponding classification decision function is given
as

f (x) = sign(w · x + b) (6.2)

The hyperplane can be learnt by solving the following convex quadratic program-
ming problem

min
1

2
‖w‖2 + C

N∑

i=1

ξi (6.3)

s.t. yi (w · xi + b) ≥ 1 − ξi , i = 1, 2, . . . , N (6.4)

xi ≥ 0, i = 1, 2, . . . , N (6.5)

where C is a punishment parameter and ξi is the soft constant for i-th data set.
Generally, SVM is used to solve a linear classification problem, but it can also
be used as a nonlinear classifier by introducing different kernel functions such as
Gaussian kernel function and radial basis function.

3. K-means: K-means algorithm is a clustering algorithm, in which the unlabeled
data sets are processed iteratively to form K clusters. Specifically, at the beginning,
K data sets are chosen to form the initial centroids of the K clusters. Then, the K-
means algorithm alternates the following two steps. The first step is to assign each
of the remaining data sets to its nearest cluster. This is determined by evaluating
the Euclidian distance between the data set and the centroid of each cluster and
choosing the cluster with the smallest distance. The second step is to update the
centroid of each cluster, denoted as ck , based on the newly labeled data sets.
Mathematically, this can be expressed as

ck = 1

|Nk |
∑

x∈Nk

x, k = 1, 2, . . . , K (6.6)

where Nk denote the set of examples assigned to cluster k. These two steps will
repeat until a termination condition is met.
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Although K-means algorithm can be implemented with low complexity, its per-
formance is influenced significantly by the initialization parameters such as the
number of clusters and the cluster centroids.

4. Gaussian Mixture Model: Gaussian mixture model (GMM) is a widely used
model for unsupervised learning. The probability density function (PDF) of the
data sets can be expressed as

p (xi ) =
K∑

k=1

πk p
(
xi

∣∣μk,�k
)

(6.7)

where K is the number of Gaussian components, πk is the mixing coefficient that

satisfies
K∑

k=1
πk = 1, and p

(
xi

∣∣μk,�k
)
denotes the PDF of the kth Gaussian

component with mean μk and covariance �k , which can be expressed as

p
(
xi

∣∣μk,�k
) = 1

π |�k | exp
(
−(

xi − μk

)H
�−1

k

(
xi − μk

))
(6.8)

The unknown parameters of the GMM can be denoted as � = {
πk,μk,�k

}K
k=1.

The objective of the GMM algorithm is to find the optimal parameters � ={
πk,μk,�k

}K
k=1 to maximize the following log-likelihood function

L (�) =
N∑

i=1

ln

(
K∑

k=1

πk · p (
xi

∣∣μk,�k
)
)

(6.9)

Since there is no closed-form solution for the above problem, the expectation
maximization (EM) algorithm is usually adopted to solve for the optimal param-
eters � = {

πk,μk,�k
}K
k=1 in an iterative manner with properly chosen initial

values for them. The EM algorithm is generally composed of two steps in each
iteration, namely, the expectation step and the maximization step. Denote γik
as a latent variable which represents the probability that example xi belongs
to the k-th cluster. In the expectation step, the latent variable γik is updated

as: γik = πk p
(
xi

∣∣μk,�k

)

K∑
k=1

πk p
(
xi

∣∣μk,�k

) , for i = 1, . . . , N and k = 1, . . . , K . In the max-

imization step, the parameter � is updated as: πk = 1
N

N∑
i=1

γik , μk =
N∑
i=1

γikxi

N∑
i=1

γik

, and

�k =
N∑
i=1

γik(xi−μk)(xi−μk)
H

N∑
i=1

γik

, for k = 1, . . . , K .
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Fig. 6.1 The basic model of
a fully-connected ANN,
which is composed of input
layer, output layer and
hidden layers. The
commonly used activation
functions are sigmoid
function, Tanh function and
ReLu function

6.2.2 Deep Learning

Deep learning (DL) has significantly advanced the development of computer vision
(CV) and natural language processing (NLP) recently. As the core technique of DL,
ANN has been used to approximate the relationship between an input and an output.
Generally, a typical ANN is composed of three parts, namely, input layer, output
layer and hidden layers as shown in Fig. 6.1. In each layer, many cells with differ-
ent activation functions are placed, and the cells in adjacent layers are connected
with each other in a pre-designed manner. With the development of ANNs, there are
different network structures used for different types of data. For example, a convolu-
tional neural network (CNN), which consists of convolutional layers, pooling layers
and fully connected layers, is suitable for images; while a recurrent neural network
(RNN), which contains many recurrent cells in the hidden layers, is suitable for time
series data. Furthermore, in order to improve the generalization and convergence
performance of the DL, dropout and other techniques are introduced in the design
of neural networks [9].

1. Convolutional Neural Network: Convolutional neural network (CNN) is a spe-
cial network for processing images, in which the cells adopt convolution opera-
tions. A typical CNN is composed ofmultiple convolutional layers, pooling layers
and fully-connected layers [10].
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a. Convolutional Layer: Different from the fully-connected layers, a convo-
lutional layer contains a set of multiple feature maps, which are obtained by
using different convolution kernels to operate on the input image. In particular,
one feature map is calculated by one convolution kernel operating on the input
image, which means all the elements in the same feature map share the same
weight and bias with each other. Besides, the size of the convolution kernel
is smaller than that of the input, and the CNN has the unique characteristic
referred to as sparse interactions.

b. Pooling Layer: A pooling layer is usually placed after a convolutional layer
in a CNN to capture invariant features. Specifically, the pooling operation is to
replace the output of one position in the input image with a summary statistic
of the neighborhood. A commonly used pooling method is the max-pooling
function, which gives the maximum output of the rectangular region. In fact,
the pooling operation can be seen as an action to add a strong prior knowledge.

In order to utilize the extracted feature maps, fully-connected layers are normally
used as the last several layers of a CNN. With the help of the special structure,
CNNs can process data with clear mesh topology effectively.

2. Recurrent Neural Network: Recurrent neural network (RNN) is a powerful tool
for time series data, which have shown superior performance on speech recogni-
tion [11]. Different from traditional neural networks, there are many connected
cells in each layer in an RNN. All cells in the same layer have the same structure
and each of them passes its information to its successor. The output of an RNN
is determined by not only its current input but also the memory recorded in the
past time steps. However, conventional RNNs cannot learn long-term dependent
information and suffer from the gradient vanishing problem easily. Then long
short-term memory (LSTM) network, as a kind of gated RNN network, is pro-
posed to mitigate this problem. Specifically, in each cell of an LSTM network,
there are three gates, namely, the input gate, the forget gate and the output gate,
which are given as follows

it = σ(Wiht−1 + Ui xt + bi )

ft = σ(W f ht−1 + U f xt + b f )

ot = σ(Woht−1 + Uoxt + bo)

(6.10)

where it , ft , and ot are the input gate, the forget gate and the output gate, respec-
tively;Wi , Ui , bi ,W f , U f , b f , Wo, Uo, bo are the weight matrices and biases of
the corresponding gate, respectively; and σ(·) is the sigmoid function. Addition-
ally, each cell has a self-loop and its cell state is jointly controlled by the forget
gate and the input gate. Specifically, the forget gate determines what information
to remove and the input gate determines what information to add to the next cell
state. Mathematically, the cell state can be expressed as

ct = ft · ct−1 + it · tanh(Wcht−1 + Ucxt + bc) (6.11)
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Fig. 6.2 The standard DRL
framework, in which an
agent selects actions by
inputting its state to the
neural network and executes
the action to interact with the
environment continuously

where Wc, Uc and bc are the weight matrices and the bias of the cell memory,
respectively. The gated structure allows the LSTM network to learn the long-term
dependent information while avoiding vanishing gradients.

6.2.3 Deep Reinforcement Learning

As the combination of DL and RL, deep reinforcement learning (DRL) has shown
superior performance in sequential decision-making tasks. In the DRL framework,
as shown in Fig. 6.2, the agent inputs its observation (state) s (t) ∈ S into the neural
network and outputs an action a(t) ∈ A. Then it obtains a rewardR(s(t), a(t))which
is used to evaluate the profit of the selected action by executing it. After a period of
learning, the agent can learn the optimal strategy, which maps an state to an action, to
maximize its long-term accumulative reward from continuous interactions with the
environment. Similar to RL, the basic elements of DRL are also state space S, action
spaceA and the reward function R. Different from the traditional RL, which uses a
table to indicate the relationship between the state space and the action space, DRL
uses a neural network as the function approximator, and therefore it works more
effectively for problems with high dimensional state and action spaces. In DRL,
the commonly used methods are deep Q-network (DQN), double deep Q-network
(DDQN), asynchronous advantage actor-critic (A3C) and deep deterministic policy
gradient (DDPG).

1. Deep Q-network: Different from the tabular method in traditional RL, a neural
network called deep Q-network (DQN) is adopted to approximate the relation-
ship between state space and action space [12]. Since the DQN is optimized by
minimizing the temporal difference error, the loss function of DQN is given as

L (θ) = E

[(
yDQN − Q (s, a; θ)

)2]
(6.12)
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where E [·] indicates the expectation operation, Q(s, a; θ) is the Q-function with
the parameter θ , and the target value yDQN is given as

yDQN = R (s, a) + γ Q
(
s ′, a′; θ

)
(6.13)

To improve the performance of the basic DQN, two other techniques, i.e., experi-
ence replay and quasi-static target network, are introduced in the design of DQN
technique.

• Experience Replay: The agent needs to construct a fixed-length memory M,
which is based on the first-in-first-out (FIFO) rule. In each training step t , the
agent needs to store newly obtained experience into the memory M, and then
a mini-batch dt of experiences is sampled randomly from M for training.

• Quasi-static Target Network: The agent constructs two DQNs of the same
structure, i.e., the target DQN Q(s, a; θ ′) and the trained DQN Q(s, a; θ),
where θ ′ and θ are their respective parameters. In every K steps, the trained
network share its parameter with the target network.

Additionally, in order to balance the relationshipbetween exploration andexploita-
tion, the ε-greedy algorithm is usually adopted in a DRL. Specifically, an agent
selects the action corresponding to the maximum Q-value of the trained network
with a probability 1 − ε, and selects an action randomly otherwise. After the
algorithm converges, the agent just selects the action with the maximumQ-value,
and the target network is closed.

2. Double Deep Q-network: Since the target value is from the same DQN, the
Q-function may be overestimated and trapped in a local optimum, leading to
the performance degradation. To improve the performance of DQN, double deep
Q-network (DDQN) can be adopted to provide more accurate estimation of the Q-
function [13]. In the DDQN, the target value yDDQN can be expressed as follows

yDDQN = R (s, a) + γ Q

(
s ′, argmax

a′∈A
Q

(
s ′, a′; θ

) ; θ ′
)

(6.14)

After years of development, ML has become the most concerned discipline in the
information age and shown strong effectiveness in applications. As the main force
of AI technique, more and more ML algorithms are applied in various fields in order
to achieve industrial intelligence.

6.3 Machine Learning for Spectrum Sensing

Spectrum sensing is an important task to realize DSM in wireless communication
systems, and is usually used to assist users to find out the channel status. In order to
increase the accuracy of spectrum sensing, many spectrum sensing algorithms have
been developed in the past years, such as estimator-correlator (EC) detector, the semi-
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blind energy detector and the blindly combined energy detection (BCED). Although
the EC detector can achieve the optimal performance, it needs the knowledge of PU
signals and noise level. The semi-blind energy detector is more practical, and it only
requires the knowledge of the noise power. However, the performance of the semi-
blind energy detector depends heavily on the accurate knowledge of noise power,
which is usually uncertain. The BCED does not need any prior knowledge about the
PU signals or noise, but the performance is worse than the performance of the semi-
blind energy detector. It is noticed that most existing algorithms are model-driven,
and need the prior knowledge of noise or PU signals to achieve good performance.
However, this feature makes them unsuitable for practical environment, and the lack
of prior knowledge would result in performance degradation.

To solve the above issues, machine learning techniques have been adopted to
develop cooperative spectrum sensing (CSS) framework [14]. Specifically, the work
considers a CR network, in which multiple SUs share a frequency channel with
multiple PUs. The channel is considered to be unavailable for SUs to access if at
least one PU is active and it is available if there is no active PU. For cooperative
sensing, each SU estimates the energy level of the received signals and reports it to
another SU who acts as a fusion center. After the reports of the energy level from
all SUs are collected, the fusion center makes the final classification of the channel
availability.

Using the machine learning technique such as K-means algorithm, GMM cluster-
ing, SVM algorithm and KNN algorithm, the fusion center can construct a classifier
to detect the channel availability. With unsupervised machine learning such as K-
means and GMM clustering, the detection of the channel availability relies on the
cluster that the sensing reports from all the SUs are mapped to. On the other hand,
with supervised machine learning such as SVM algorithm and KNN algorithm, the
classifier is first trained using the labeled sensing reports from all SUs. After the clas-
sifier is trained, it can be directly used to derive the channel availability. Compared
with traditional CSS techniques, the proposedmachine learning framework can bring
the following two advantages: (1) it is robust to the changes in the radio environment;
(2) it can achieve a better performance in terms of classification accuracy.

6.4 Machine Learning for Signal Classification

Signal classification, usually performed before signal detection, is a fundamen-
tal task in cognitive radio networks. Consider the modulation classification as an
example. Traditionally, there are two kinds of modulation classification approaches,
namely, the likelihood-based (LB) approach and the feature-based (FB) approach.
The LB approach is based on computing the likelihood function of received sig-
nals under different modulation schemes hypotheses, and the modulation scheme
with the maximum likelihood value is validated. With perfect knowledge of channel
and noise parameters, the LB approach can achieve the optimal performance in a
Bayesian sense. However, the estimation of these parameters imposes high compu-
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tation complexity. In the FB approach, useful features such as higher-order statistics
are extracted for decision-making. In general, the FB approach has lower compu-
tational complexity but it can only achieve sub-optimal performance. Therefore, in
order to achieve near optimal performance with low computational complexity, ML
techniques have been introduced in solving the modulation classification problem,
and have shown superior performance recently.

6.4.1 Modulation-Constrained Clustering Approach

In [15], a clustering-based LB classifier is proposed for modulation classification in
multiple-input and multiple-output (MIMO) communication systems. In that work, a
spatial-multiplexed MIMO system with Nt transmit antennas and Nr receive anten-
nas is considered, in which data symbols are transmitted independently from each
transmit antenna. The signal model of the n-th received signal vector y (n) is given
as

y (n) = Hs (n) + u (n) , n = 1, . . . , N (6.15)

where H ∈ C
Nr×Nt is the channel matrix which remains constant within each block

of N symbols, and u (n) denotes the AWGN vector.
For LB classifiers, the classification decision is made by selecting the modulation

scheme with the maximum likelihood

M̂ = argmax
M∈M

LM (6.16)

whereLM is the likelihood function corresponding to the modulation scheme M and
M is the set of candidate modulation schemes.

Since the noise at the receiver is Gaussian, the PDF of the received signals fol-
lows the GMM given in (6.7) where K = QNt , the mean and the Covariance matrix
of the k-th Gaussian component are given as μk = Hs(n) and �k = σ 2I, respec-
tively. The likelihood function for each modulation scheme can be calculated by
estimating the parameters of the GMMmodel using the EM algorithm introduced in
Sect. 6.2.1. However, the direct application of the EM algorithm presents the follow-
ing challenges. Firstly, the modulation order Q of a modulation scheme determines
the number of Gaussian components as well as the number of parameters to be esti-
mated in the GMM model. Thus, the computational complexity for calculating the
likelihood function of a higher-order modulation scheme can be extremely high.
Secondly, the initialization of the set of parameters is an important part in the EM
algorithm, and it would influence the converged performance and the convergence
speed of the algorithm significantly. Hence, in order to improve the performance of
the EM algorithm for modulation classification, there is a need to propose an EM
algorithm with less parameters to be estimated and a good initialization method.
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To reduce the number of parameters, a centroid reconstructionmethod is proposed
in [15] by exploiting the relationship among the constellations. With the help of the
proposed centroid reconstruction method, the number of parameters to be estimated
is reduced from QNt to Nt only. This also reduces the number of signal samples
needed for the estimation. Specifically, for multiple-input and single-output (MISO)
channels, the cluster centroidsμ = [μ1, μ2, . . . , μK ] can be reconstructed as follows

μ = 	A (6.17)

where A = [a1, a2, . . . , aNt ]T is the reconstructive coefficient matrix, which is a
known constant matrix for each modulation scheme, and � = [r1, . . . , rNt ] is the
corresponding reconstructive parameter vector.

By introducing constellation-structure-based centroid reconstruction in the EM
algorithm, the iteration of

{
μk

}K
k=1 can be replaced by the iteration of r1, r2, . . . , rNt .

If we denote � = {
r1, r2, . . . , rNt , δ

2I
}
as the set of the unknown parameters, the

likelihood function is shown as

L (�) =
N∑

n=1

ln

(
K∑

k=1

1

K
p (y (n) |� )

)
(6.18)

Hence, the proposed EM algorithm for modulation classification is shown as below.

1. Initialization: A two-stage initialization is proposed. In the first stage, fuzzy
estimation is introduced to transform the parameters into a smaller range. In
the second stage, modulation constrained K-means (MC K-means) algorithm
is adopted, in which the constellation structure and the centroid reconstruction
method are utilized.

2. E-step: Calculate the latent variable

γnk = p
(
y (n) |� )

K∑
k=1

πk · p (
y (n) |� ) (6.19)

and then the reconstructive parameters

r1 =

N∑
n=1

K∑
k=1

γnka1,k
(
y (n) − a2,kr2 − · · · − aNt ,krNt

)

N∑
n=1

K∑
k=1

γnk
(
a1,k

)2
(6.20)
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rm =

N∑
n=1

K∑
k=1

γnkam,k
(
y (n) − a1,kr1 − · · · − aNt ,krNt

)

N∑
n=1

K∑
k=1

γnk
(
am,k

)2
(6.21)

where m = 2, . . . , Nt .
3. M-step: The cluster centroids μ and the noise variance σ are updated iteratively

as below
μk = a1,kr1 + a2,kr2 + · · · + aNt ,krNt , k = 1, . . . , K (6.22)

and

σ 2 =

N∑
n=1

K∑
k=1

γnk
(
y (n) − μk

) (
y (n) − μk

)H

N∑
n=1

K∑
k=1

γnk

(6.23)

where k = 1, . . . , K .
4. Classification Decision: Repeat Step 2 and Step 3 iteratively until the likelihood

function is converged. Then make the classification decision according to the
criterion defined in (6.16).

Simulation results in [15] show that the proposed algorithm performs well with
short observation length in terms of classification accuracy. Additionally, the perfor-
mance achieved by the proposed algorithm is close to that of the average likelihood
ratio-test upper bound (ALRT-UB), which can be seen as the performance upper
bound of any modulation classification algorithm.

6.4.2 Deep Learning Approach

The modulation classifier in Sect. 6.4.1 requires accurate knowledge of the channel
model. In addition, the channel model may not be available in practice. As a powerful
supervised learning framework, DL can also be applied in modulation classification.
In [16], a low-complexity blind data-driven modulation classifier based on DNN is
proposed, which operates under uncertain noise condition modeled by a mixture of
white Gaussian noise, white non-Gaussian noise and time-correlated non-Gaussian
noise.

In [16], a single-input and single-output (SISO) channel is considered, and the
n-th received signal sample is given as

r (n) = hs (n) + u (n) , n = 1, 2, . . . , N (6.24)
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where s (n) is the transmitted symbol from an unknown modulation scheme Mi , N
is the number of symbols in a block, h is the channel coefficient and u (n) denotes
the additive noise.

Denote the set of the candidate modulation schemes and the received signal
sequence by M = {Mi , i = 1, 2, . . . , L} and r = [r(1), r(2), ..., r(N)], respec-
tively. Let P(Mi |r) denote the a posterior probability of the modulation scheme
Mi given the received signal r. The objective of the work is to find the modulation
scheme which maximizes the a posterior probability. This is known as the maximum
a posterior (MAP) criterion.

M̂i = argmax
Mi∈M

P(Mi |r) (6.25)

In order to accurately make classification decisions with low complexity, the
DNN is adopted to learn the a posterior probability P(Mi |r), i = 1, . . . , L . The
DNN is used as an approximation function f mapping the received signal to the a
posterior probability. The in-phase and quadrature (IQ) components of the received
signal samples are chosen as the inputs to the proposed neural network. Motivated
by its superior performance for processing time-dependent data, the long short-
term memory (LSTM) network is introduced in the design of the proposed neural
network. There are three main reasons that the LSTM network is suitable for solving
a modulation classification problem.

1. The LSTM network is able to learn features effectively from highly time-
dependent data. This indicates the neural network with LSTM layer have advan-
tages in learning the a posterior probability from the signal samples which are
highly time-dependent over time-correlated non-Gaussian channels.

2. Different from the fully-connected network which can only receive a one-
dimensional as input, LSTMnetwork allows two-dimensional vectors as the input
in each time step. Hence, the network can process complex signal samples com-
posed of IQ components, and can learn better from the input data.

3. Compared to the conventional fully-connected network, there are fewer parame-
ters in the LSTM network because all time steps share the same weight matrices
and biases.

Additionally, in order to summarize the output form the LSTM network, a tempo-
ral attention mechanism is adopted in the final LSTM layer over the outputs from all
time steps. In the temporal attention mechanism, each output has a different weight,
which indicates the importance of each to the modulation classification results.

Specifically, the proposed seven layer-neural network is composed of three
stacked-LSTM layers and four fully-connected layers. In the training phase, the
one-hot coding vectors of true modulation schemes of the input signal samples are
used as the labels. The Adaptive Moment Estimation (Adam) optimizer is used to
minimize the loss function to optimize the weights and bias in the network. After the
training phase, the modulation classification is made by according to the MAP cri-
terion defined in (6.25). The simulation results show that the classification accuracy
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of the proposed classifier approaches that of the ML classifier with all the chan-
nel and noise parameters known. Moreover, under uncertain noise conditions, with
lower computational online complexity, the proposed classifier can achieve a better
performance than the EM and ECM classifiers.

6.5 Deep Reinforcement Learning for Dynamic Spectrum
Access

In traditional DSA mechanism, there exists a centralized control node responsible
for allocating the spectrum resources to users. Before making the access decisions,
the centralized node needs to collect the global network information, such as the
position information of users and base stations as well as the channel state infor-
mation. However, such global network information is difficult to obtain in practice,
as it imposes significant signal overheads on the system especially when there is a
large number of users. Additionally, the collected information may be outdated in a
highly dynamic network environment, resulting in invalid access strategy and poor
performance. To solve the above issues, intelligent DSA framework operating with
local network information is desirable. Recently, researchers introduced DRL tech-
niques for DSA, showing superior performance on sequential decision-making tasks,
to enable more flexible and intelligent DSA mechanism [17]. Since agents in DRL
can make full use of the representation ability of neural networks, the decision space
can be high-dimensional and continuous, which can guarantee the performance of
the DSA mechanisms for large-scale networks.

In the following sections, we will introduce several typical applications on the
use of DRL techniques for DSA.

6.5.1 Deep Multi-user Reinforcement Learning for
Distributed Dynamic Spectrum Access

In [18], a DRL-based DSA framework is proposed to manage dynamic spectrum
access in multichannel wireless networks, in which each user acts as an agent to
make channel access decisions intelligently and independently to maximize its long-
term transmission rate.

In this work, a wireless network composed of N users and K shared orthogonal
channels is considered. Denote the set of users and the set of channels as N =
{1, 2, . . . , N } andK = {1, 2, . . . , K }, respectively. It is assumed that each user needs
to choose a single channel for transmission in each time slot, and it always has packets
to transmit. Additionally, the transmission is successful if there is only one user
accessing the channel, and the transmission fails otherwise. After each transmission,
each user can receive a binary observation on(t) to indicate whether its transmission
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is successful or not, i.e., on(t) = 1 if the transmission is successful and on(t) = 0
otherwise.

With the assumption that users don’t have message exchange in each time slot,
they can only make access decisions by their local observations. In order solve the
above problem, a DRL-based distributed framework for DSA is proposed, in which
each user acts as an agent and constructs a DQN. The action space, state space and
reward function are described as follows.

1. Action Space: In each time slot, each user needs to choose whether to transmit or
not. If the user chooses to transmit, it needs to select a channel for transmission.
The action of user n in time slot t is given as

an(t) ∈ {0, 1, . . . , K } (6.26)

where an(t) = 0 indicates that user n chooses not to transmit in time slot t .
2. State Space: The state of each user is composed of its action and observation

up to time slot t , which is given as

Hn(t) = ({an (i)}t−1
i=1 , {on (i)}t−1

i=1

)
(6.27)

3. Reward Function: Since the objective is to maximize the long-term rate, the
function of achievable rate is chosen as the reward function

rn(t) = B log2(1 + SN Rn(k)) (6.28)

where B is the channel bandwidth and SN Rn(k) is SNR of user n on channel k.

In the DRL-based framework proposed in [18], in order to capture features from
observations, the LSTM network is introduced in the structure of the adopted DQN.
Additionally, the DDQN method is also adopted to improve the performance of the
DQN. In the training phase, each user trains the parameters of their respective DQN
cooperatively by communicating with a central unit. After updating the parameters,
each user uses the trained DQN to make access decisions autonomously and inde-
pendently. After the DQN is well-trained, the central unit is closed, and users use the
converged DQN to obtain efficient access policy directly.

6.5.2 Deep Reinforcement Learning for Joint User
Association and Resource Allocation

In heterogeneous networks (HetNets), all the base stations (BSs) normally provide
services to users on shared spectrum bands in order to improve the spectrum effi-
ciency. However, most existing methods need accurate global network information,
e.g., channel state information, as the prior knowledge, which is difficult to obtain
in practice.
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In [19], a distributed DRL-based DSA framework is proposed for user association
and resource allocation in the downlink HetNets. Specifically, a three-tier heteroge-
neous network is considered, which consists of Nm macrocell base stations (MBSs),
Np pico base stations (PBSs), N f femto base stations (FBSs) and N user equip-
ments (UEs). The sets of UEs and BSs are denoted, respectively, byN = {1, . . . , N }
and B = {0, 1, . . . , L − 1}, where L = Nm + Np + N f . All the BSs share the same
K orthogonal channels for downlink transmission, and the set of channels can be
denoted as K = {1, . . . , K }.

For each UE i , denote bli (t) = (
b0i (t) , . . . bL−1

i (t)
)
, i ∈ N , l ∈ B as the binary

user-association vector, where bli (t) = 1 if UE i is associated with the BSl at time t
and bli (t) = 0 otherwise. For each BS, a binary channel-allocation vector is defined
as cki (t) = (

c1i (t) , . . . cKi (t)
)
, i ∈ N , k ∈ K , where cli (t) = 1 if UE i uses channel

resource Ck at time t and cli (t) = 0 otherwise. It is assumed that each UE can only
be connected to one BS and each channel can only be allocated to one UE for each
BS in each time slot t .

The transmission power between UE i and its associated BS l on channel Ck at
time t can be denoted as pkli (t) = (

p1li (t) , . . . , pK
li (t)

)
, l ∈ B, i ∈ N, k ∈ K . Since

all the BSs share the common spectrum resource, the co-channel interference should
be considered. Hence, the signal-to-interference-plus-noise-ratio (SINR) of UE i
associated with BS l and allocated with channel Ck is given as

�k
li (t) = bli (t) h

i,k
l (t) cki (t) pkli (t)∑

j∈B\{l}b
j
i (t) hi,kj (t) cki (t) pkji (t) + WN0

(6.29)

where hi,kl (t) is the channel gain between the UE i and BS l at time t , W is the
bandwidth of each channel and N0 is the noise spectral power. Therefore, the total
achievable transmission rate of UE i at time t can be expressed as

ri (t) =
L−1∑

l=0

bli (t)
K∑

k=1

W log2
(
1 + �k

li (t)
)

(6.30)

Considering that the operation cost of the UE i from BS l is determined by the
transmit power pkli (t), the total operation cost of UE i is given as

ϕi (t) =
L−1∑

l=0

ϕl
i (t) =

L−1∑

l=0

λlb
l
i (t)

K∑

k=1

cki (t) pkli (t) (6.31)

where λl is the price per unit of transmit power from BS l. Then we define the utility
function of UE i as the total achievable profit minus the operation cost, which is
denoted as

ωi (t) = ρi (t) ri (t) − ϕi (t) (6.32)

where ρi > 0 is the profit per unit transmission rate.
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In this work, the objective of each UE is to maximize its own long-term utility.
Since the problem is an integer programming problem and the objective of the prob-
lem is long-term, it is difficult to adopt the traditional optimization algorithms such
as convex optimization to solve it. Additionally, the dimension of the decision space
increases exponentially. Hence, a distributed DRL-based multi-agent framework for
user association and resource allocation is proposed to maximize the long-term util-
ity.

The state space, action space and reward function for modeling such a problem
are given as follows.

1. State Space: In each time slot, the state is composed of the QoS of all the UEs,
and we have

s (t) = {s1 (t) , s2 (t) , . . . , sN (t)} (6.33)

where si (t) is a binary index indicating that whether UE i’s QoS is larger than the
minimum threshold �i or not, i.e., if the UE i’s QoS is larger than �i , si (t) = 1
and otherwise, si (t) = 0.

2. Action Space: In each time t , each UE needs to choose a BS and a channel to
access. Hence, the action of UE i consists of two parts, i,e, the user-association
vector and the resource-allocation vector

akli (t) = {
bli (t) , cki (t)

}
(6.34)

where bli (t) ∈ {0, 1} and cki (t) ∈ {0, 1}.
3. Reward Function: The reward function of UE i is mainly determined by its

achievable rate in time slot t . Besides, to improve the convergence performance
of the algorithm, the action-selection cost is also considered in the design of the
reward function.

Ri (t) =
{

ωi (t) , �i (t) ≥ �i

−	i , otherwise
(6.35)

where �i =
L−1∑
l=0

K∑
k=1

�li
k is SINR of UE i , �i is a pre-designed minimum QoS

requirement and 	i is the action-selection cost, which is a positive value.

In the proposed framework, each UE is equipped with a DQN to make access
decisions independently. In the initialization stage, each UE is first connected to the
BS which resulted in the maximum received signal reference power (RSRP) and
constructs a DQN, in which the parameter is initialized randomly. At each training
time t , each UE has a common state s and selects an action, namely, access request,
according to its Q-value Qi (s, ai , θ) obtained from its DDQN. The access request
contains the indices of the required BS and the channel. Then, if the BS accepts
the request, the BS would send a feedback signal to the UE, which indicates the
resource is available, and otherwise, the BS would not reply. After connecting to the
chosen BS and accessing the chosen channel, the UE obtains an immediate reward
ui (s, ai ) and a new state s ′, then stores the current experience

〈
s, ai , ui (s, ai ) , s ′〉
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into its replay memoryD. Finally, each UE updates the parameter θ of its DDQN by
using stochastic gradient descent (SGD) algorithms based on the random samples
from the memory D.

6.6 Summary

In this chapter, we have provided a brief review on machine learning techniques, and
have described some applications on AI-based DSM mechanisms such as spectrum
sensing, signal classification and dynamic spectrum access. These AI-based DSM
mechanism have been shown to achieve better performance and robustness than
conventional schemes. Additionally, they can also provide more efficient and flexible
ways to implement the DSM. In the future, the combination of AI techniques and
the DSM mechanisms would become a novel and promising research direction.
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