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Preface

Within the manufacturing industry, the complexity of production plants is steadily
increasing due to more product variances, product complexity, and pressures for
production efficiency. Production systems must operate more autonomously, cre-
ating challenges for larger Industries and serious problems for SMEs without the
needed expertise or sufficient resources to adapt new technical possibilities.

To meet these challenges, the European research and innovation project IM-
PROVE — Innovative Modelling Approaches for Production Systems to Raise Val-
idatable Efficiency — has developed novel data-based solutions to enhance machine
reliability and efficiency. Innovative solutions in the fields of artificial intelligence,
simulation & optimization, condition monitoring and alarm management provide
manufacturers with a human machine interface (HMI) and decision support system
(DSS) to ensure an optimized production.

This book presents a selection of results from the IMPROVE project. Methods
from artificial intelligence, software engineering, social science, and machine learn-
ing are employed for solving important Industry 4.0 topics such as self-optimization,
anomaly detection, alarm flood management, and root cause analysis.

The editors would like to thank all authors which provided high-quality contri-
butions and all reviewers which spent significant effort to make each of the following
chapters scientifically sound as well as practically relevant in an industrial setting.
We hope that this collection will form a valuable addition to the knowledge in the
research fields of Machine Learning, technologies for Cyber-Physical Systems and
Industry 4.0.

The IMPROVE project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 678867.

Prof. Dr.-Ing. Oliver Niggemann
Dr. Dipl.-Ing. Peter Schüller
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Abstract. The integration of smart devices into the production process results in the 
emergence of cyber-physical production systems (CPPSs) that are a key part of In-
dustrie 4.0. Various sensors, actuators, Programmable Logic Controllers (PLCs), 
Manufacturing Execution Systems (MES) and Enterprise Resource Planning (ERP) 
systems produce huge amounts of data and meta data that can hardly be handled by 
conventional analytic methods. The main goal of this work is to develop an innova-
tive architecture for handling big data from various heterogeneous sources within an 
automated production system (aPS). Moreover, enabling data analysis to gain a bet-
ter understanding of the whole process, spotting possible defects in advance and in-
creasing the overall equipment effectiveness (OEE), is in focus. This new architec-
ture vertically connects the production lines to the analysts by using a generic data 
format for dealing with various types of data. The presented model is applied proto-
typically to a lab-scale production unit. Based on a message broker, the presented 
prototype is able to process messages from different sources, using e.g. OPC UA 
and MQTT protocols, storing them in a database and providing them for live-analy-
sis. Furthermore, data can be anonymized, depending on granted access rights, and 
can be provided to external analyzers. The prototypical implementation of the archi-
tecture is able to operate in a heterogeneous environment supporting many plat-
forms. The prototype is stress tested with different workloads showing hardly any 
response in the form of longer delivery times. Thus, feasibility of the architecture 
and its suitability for industrial, near real-time applications can be shown on a lab-
scale. 

Keywords:  Automated Production System (aPS), Big Data Applications, Cyber-
physical Systems (CPS), Data Acquisition, Data Analysis, Heterogeneous Net-
works, Industrie 4.0, Industry 4.0, Internet of Things (IoT), Message-oriented Mid-
dleware, Systems Architecture 
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2 Software Architecture for Unifying Data Transfer in Automated Production Systems 

1 Introduction and Motivation 

Globalization and high competitive pressure require manufacturing companies to develop 
new solutions such as the digitalization of existing production processes, massive infor-
mation exchange, and development of new business models. Embracing new technologies, 
those efforts are known, amongst others, as Industrie 4.0, Cyber Physical Production Sys-
tems (CPPS), or Industrial Internet of Things (IIoT). [1] 

A major requirement for leveraging the full potential of Industrie 4.0 applications is the 
utilization of big data and data analytics methods in production systems. These methods 
are used to reveal otherwise unknown knowledge, enable process improvements, and in-
crease the overall equipment efficiency (OEE). In modern automated production systems, 
the generated data shares many similarities with big data, defined via the four V’s (volume, 
variety, velocity, and value) [2]. Several factors handicap automated data analysis in the 
field of automation. Especially the multitude and heterogeneity of data sources, formats, 
and protocols due to long lifecycles (up to 30 years) in the production environment pose 
a challenge (variety). In addition, large amounts of historic data (volume) have to be com-
bined with constantly streamed data from the plant in order to make decisions (value) 
based on the analysis results in time (velocity). Classical data analysis approaches are not 
applicable in this heterogeneous automation context. Therefore, new, innovative system 
architectures for applying big data techniques in automated production systems have to be 
developed. [3–5] 

These difficulties become evident using an example from process industry: A multitude 
of sensors continuously collect process data, which is stored in databases mainly for doc-
umentation purposes. A manufacturing execution system (MES) is used to manage data 
concerning resource planning and order execution. Moreover, a shift book contains infor-
mation about operators responsible for surveying the mode of operation and incidents hap-
pening during their shifts. Adding additional complexity, quality and maintenance data 
may be stored in other systems or databases. Together, they form a complex network of 
interwoven IT systems, based in different physical locations, relying on different, often 
incompatible data formats. Extracting knowledge from this heterogeneous setup is diffi-
cult and can often impossible without a huge manual effort carried out by experts. Conse-
quently, an architecture for unifying data access could greatly enhance the possibilities 
and impact of data analysis in production environments. This could be achieved by includ-
ing all relevant sources and providing their data for analysis tools and enabling ubiquitous 
computing. In this context, we consider the term “architecture” to be defining the descrip-
tion of the overall system layout based on principles and rules in order to describe its 
construction, enhancement and usage. This definition is compliant with the Reference Ar-
chitecture Model Industrie 4.0 (RAMI 4.0) [6].  

We therefore suggest that the implementation of such a software architecture in pro-
duction systems is desirable and possible, simplifying data acquisition, aggregation, inte-
gration and warehousing, as well as providing data for analysis. This paper describes a 
generic architecture that can be applied to various scenarios and shows its concrete use 
and practicability in a lab-scale production system. It pays special attention to the multi-
tude of requirements arising from automated production systems, legacy systems, hetero-
geneous sources, and data processing, 
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This contribution is an extended and adapted version of the contribution presented  at 
the 2017 IEEE International Conference on Industrial Technology (ICIT 2017) [7]. In ad-
dition to the original version, the literature review is expanded and a prototypical imple-
mentation is added.  

The remainder of the paper is structured as follows: We first derive requirements for a 
system architecture to support Industrie 4.0 principles, then evaluate how other authors 
fulfill them, and identify a research gap. After deriving a concept for a new architecture, 
we evaluate it, using expert interviews and a prototypical lab-scale implementation. The 
last part summarizes the findings and provides an outlook for further applications and 
fields of research.  

2 Requirements for a System Architecture to  
Support Industrie 4.0 Principles 

One of the main goals of Industrie 4.0 is the optimization of the manufacturing process 
based on algorithms and data to increase the OEE [3]. This can be achieved by gaining a 
better understanding of complex procedures inside the plant and thus reducing mainte-
nance and downtimes. Therefore, new ways of knowledge discovery have to be provided 
and the vertical integration of the production process has to be enhanced. In order to es-
tablish a new system architecture to support Industrie 4.0 principles, several requirements 
have to be considered. 

Supporting various data sources, including legacy systems, is one of the key aspects for 
successfully implementing a common architecture (requirement R1). Characteristic for the 
data landscape of a manufacturing enterprise is its heterogeneity and variety of systems. 
Currently, each layer of an enterprise typically operates using a multitude of layer-specific 
protocols and formats. These communication channels were often not explicitly designed 
to operate with other tools. Long lifespans in automation industry ensure the presence of 
legacy devices that prohibit disruptive changes. [8–10] The new architecture thus has to 
be able to operate without interfering with the mode of operation of existing systems. 
Moreover, integration of tools and machines has to be possible regardless of their technol-
ogy or capabilities [11–13]. A support for various sources can be achieved by defining 
interfaces, which have to be implemented by data adapters, transferring specific protocols 
and data formats into a common one. 

Thus, we derive as requirement R2 a common data model. As Hashem et al. [2] stated, 
data staging is an open research issue that needs more attention in the future. Introducing 
a reference data model [5, 14] can greatly reduce manual work for data integration if it 
serves towards a common understanding of the data from all involved systems.  An exem-
plary data model is the ontology defined in ISO 15926 Part 8 [15], standardizing data 
exchange between different IT systems, or the Common Information Model (CIM) defined 
in the standards EN 61968 and EN 61970 [16, 17] for electrical distribution systems. 

Having successfully integrated various sources and transferred data to a common 
model, dealing with data of different timeliness and message sizes has to be considered. 
A suitable architecture should be able to process both historic and near real-time data cor-
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rectly (R3). One the one hand, some sources may constantly send small messages contain-
ing information about single variables from within the production process. On the other 
hand, other sources only send a single message with enormous message size (batch mes-
sage) when queried, containing for example order information. Some messages may con-
tain near real-time information about current processes, others time-insensitive contents. 
This implies that the architecture has to be able to extract knowledge from constantly ar-
riving message streams and huge amounts of batch messages. [18] Marz and Warren [19] 
suggest the so-called lambda architecture. The lambda architecture consists of different 
layers, namely a speed layer for real-time tasks, a batch layer for accessing historical data 
from a storage, and a serving layer, combining the results of batch and speed layer. Being 
capable of handling hybrid processing at near- real-time, their concept is one example for 
achieving this task. 

In order to be applicable for a wide range of use cases, the architecture has to be able 
to handle various analysis methods and thus provide interfaces for including different 
GUIs and HMIs, export possibilities, and query tools (R4). In order to simplify data re-
trieval, the architecture should be able to provide users the collected data at the right level 
of abstraction (depending on the request) [4]. Also, due to the nature of Big Data, a single 
form of data visualization is not sufficient. It is problematic to find user-friendly visuali-
zations. Thus, new techniques and frameworks should be includable into the architecture, 
requiring well-defined interfaces for queries. [20] Begoli and Horey [21] suggest the usage 
of open, popular standards, exposition of results via web interfaces, and the adoption of 
lightweight, web-oriented architectures. They also confirm that many different visualiza-
tions across many datasets are necessary to extract knowledge from the data. 

Not only in-company analysis can be deducted, but to leverage the full potential of the 
data, a cross-organizational data transfer and analysis process is necessary. This is why as 
requirement R5 a support for anonymized data transfer across organizational borders is 
deduced. Manufacturers could develop models for lifetime prediction, improve production 
lines, and increase the OEE by gathering data from their shipped product. However, once 
a machine is shipped to the customer, the manufacturers of production machines rarely 
can access relevant sensor data to predict lifespan and possible failures. Revealing causes 
for hardware failures can be supported by collecting datasets across corporate boundaries, 
and analyzing process, device, and servicing data. Relying on more data sources and more 
data contents, lifespan predictions can become more accurate. Measures for improving the 
OEE can be deducted through the utilization of better models. [22] In order to guarantee 
privacy protection and security, those datasets have to be anonymized and transferred via 
a secure connection to allow analysis by selected personnel. Developing efficient and se-
cure ways for big data exchange is still an open research issue. [2, 23] Protection of trade 
secrets is a very important aspect for every company, making data transfer across organi-
zational borders a highly sensitive topic. [2] 

All derived requirements are summarized in Table 1. 



 Software Architecture for Unifying Data Transfer in Automated Production Systems  5 

Table 1. Table of Requirements for Industrie 4.0 System Architectures. 

ID Description 
R1 Support of various data sources, including legacy systems. 

Handling of heterogeneous data from all relevant sources, being able to 
include existing legacy systems. 

R2 Usage of a common data model. 
A common understanding of the aggregated data is necessary to simplify 
the analysis task. This implies the definition of a common data model and 
can greatly simplify the communication between different data sources, 
services and business units. 

R3 Processing of historic and near real-time data. 
Being able to handle both batch messages and stream data is an integral 
requirement for processing messages with different timeliness.  

R4 Support different analysis methods and tools. 
Different levels of abstraction and support for various analysis tools are 
important to support users in detecting patterns among the data. 

R5 Support anonymized data transfer across organizational borders 
By including data from various parties into analysis, life span predictions 
can become more accurate and models for determining possible failures 
can become more sophisticated. In order to guarantee privacy protection 
and protection of trade secrets, data transfer has to be done in an anony-
mized and secure way.  

3 State-of-the-Art of Industrie 4.0 System Architectures 

Several reference architectures exist in the context of Industrie 4.0 and the Industrial In-
ternet of Things (IIoT). The most important ones are the German Reference Architecture 
Model Industrie 4.0 (RAMI 4.0) [6], the American Industrial Internet Reference Architec-
ture (IIRA) [24] and the draft international standard ISO/IEC CD 30141 [25] for the In-
ternet of Things Reference Architecture (IoT RA). These reference architectures provide 
an abstract, technology-neutral representation of an IIoT system and rules for the devel-
opment of an actual architecture. Therefore, they feature an abstract description, which 
has to be adopted in order to represent the specific characteristic of an actual system. 

The concept of the Enterprise Service Bus (ESB) was proposed by Chappell [26]. The 
ESB relies on a communication and integration backbone to connect different applications 
and technologies in an enterprise. It employs web service technologies and supports vari-
ous communication protocols and services. One of the main goals of the ESB is to include 
various heterogeneous sources and services (R1). This is achieved by using a common 
data model (R2) for passing messages over the central bus. The design of the ESB also 
supports different analysis methods (R4), since existing APIs can be used. Anonymized 
data transfer across organizational borders (R5) is not covered by the ESB. Different data 
processing ways (R3) are not explicitly mentioned in the description of the ESB and would 
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require special attention during the design and implementation of an Enterprise Service 
Bus. 

The Automation Service Bus (ASB), introduced by Moser, Modrinyi and Winkler [27] 
is based on the concept of the ESB, but narrows down the scope to engineering tasks in 
the field of mechatronics development. The ASB uses a common data model (R2) to pro-
vide a platform for all disciplines taking part in the development of mechatronic systems. 
Since the ASB focuses on engineering phase of the asset lifecycle, operational data is not 
supported (R1). A special consideration of legacy systems is not mentioned, neither 
whether data adapters exist. Different processing ways (R3) and anonymized data transfer 
between enterprises (R5) do not exist in the concept. Since the ASB is tailored towards 
the developed Engineering-Cockpit as a user interface, other analysis methods (R4) are 
not supported. 

The Namur Open Architecture (NOA) presented by Klettner et al. [28] is an additive 
structure to the conventional production pyramid [29]. Its structure allows an open infor-
mation exchange over a secondary communication channel between not-neighboring au-
tomation layers and a secure backflow from an IT environment into process control. The 
Namur Open Architecture specifies how information is transferred from the core process 
control to plant specific monitoring and optimization applications. This is achieved by 
using open and vendor-independent interfaces. A special interest of the NOA is to support 
various existing systems and data sources (R1). The architecture can be connected to var-
ious applications and means of analysis (R4). A cross-organizational data transfer is in-
tended via the “Central Monitoring + Optimization” part, however, anonymization is not 
mentioned (R5). NOA describes two channels for data transfer from shop floor devices to 
the analysis part (“Central M+O”). The direct path could be used to transfer soft real-time 
data, whereas open interfaces could be used to process batch data (R3). The NOA relies 
on a common data model (R2) serving as unified space of information for process data. 

The PERFoRM project [30] focuses on seamless production system reconfiguration, 
combining the human role as flexibility driver and plug-and-produce capabilities. It is 
compliant with legacy systems by using proper adapters to translate all data into a system-
wide language. Special focus is put on integrating systems from all stages of the produc-
tion pyramid using suitable wrappers, interfaces and adapters (R1). Adapters transfer data 
models of legacy devices into a common data model (R2). The architecture’s middleware 
ensures reliable, secure and transparent interconnection of the various hardware devices 
and software application. It therefore follows a service-oriented principle, i.e. offering 
functionalities as services, which can be discovered and requested by other components. 
Since it was designed in a human centered way, various HMIs and analysis methods are 
supported (R4). The proposed middleware is independent from a certain network technol-
ogy; various devices implementing the defined interface can be used for analyzing results. 
A way for transferring data between companies and anonymizing them (R5) is not de-
scribed by the PERFoRM architecture. The different processing ways for batch data and 
soft real-time data (R3) are not taken into consideration by the concept. 

The Line Information System Architecture (LISA), proposed by Theorin et al. [11], is 
an event-driven architecture featuring loose coupling and a prototype-oriented information 
model. LISA puts special focus on integration of devices and services on all levels (R1), 
reducing effort of hardware changes and delivering valuable aggregated information in the 
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form of KPIs. It uses simple messages from various kinds of devices that are translated 
via data adapters to fit the LISA message format (R2) and then sent to an Enterprise Ser-
vice Bus (ESB). The ESB offers publish-subscribe functionality and forwards the mes-
sages to all interested receivers. Knowledge extracted from the messages can be used for 
online monitoring, control, optimization, and reconfiguration. By using data adapters, var-
ious analysis methods can be integrated (R4). As not being based on point-to-point com-
munication, the event-driven architecture can be easily reconfigured. Since new event cre-
ators only need to know that the event occurred, but not who is receiving the message or 
how it has to be processed, loose-coupling is achieved. Real-time data will be available 
directly from the events and historic data can be queried from a suitable storage sys-
tem (R3). Data exchange across organizational borders is not intended by the architecture 
(R5).  

Hufnagel and Vogel-Heuser [31] present a concept for facilitating the capturing of dis-
tributed data sources, relying on the ESB-principle. Their model-based architecture uses 
data mapping and adapters to transfer data of various sources (R1) into a common data 
model (R2). It is able to handle batch data and real-time data from different systems (R3). 
However, the concept does not focus on analysis (R4), or sharing and anonymizing data 
(R5). 

The presented concepts and the degree of requirement fulfillment are summarized in 
Table 2.  None of the existing approaches fulfills all derived requirements.  

Table 2. Classification Matrix for Existing Industrie 4.0 System Architecture Concepts. 

Concept R1 R2 R3 R4 R5 Implemented 
ESB [26] + + O + O + 
ASB [27] - + - - - + 
NOA [28] + + O + O + 
PERFoRM [30] + + - + - - 
LISA [11] + + + + - + 

Hufnagel and 
Vogel-Heuser [31] + + + - - - 

Legend: + fulfilled, O partly fulfilled, - not fulfilled 
 

4 Concept of a Unified Data Transfer Architecture 
(UDaTA) in Automated Production Systems 

In the following, the concept of the Unified Data Transfer Architecture (UDaTA) will be 
derived from the aforementioned requirements, paying special attention to its suitability 
for different use cases. Focus is put on defining the overall concept technology-inde-
pendently, meaning the specific technologies for an implementation can be adjusted to 
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fulfill the requirements of a given use-cases (e.g. usage of MQTT instead of OPC UA or 
Kafka [32] instead of an enterprise service bus). 

In order to support different analysis methods, various tools (R4) and legacy de-
vices (R1), standardized interfaces are necessary. Relying on a layered structure with well-
defined interfaces simplifies reconfiguration and adoption to a variety of use cases. The 
architecture differentiates between layers for providing raw data, analyzing data, and dis-
playing data. Connecting data sources with its destinations, the so-called Data Manage-
ment and Integration Broker transfers and routes data between the components and layers 
of UDaTA. This setting allows for both the connection of existing legacy applications as 
well as newly added tools through interfaces. 

Requirement 3 demands for the ability to process both historical and near real-time 
data. Therefore, UDaTA features a central data storage for saving data and providing it for 
later analysis. Real time data from data sources is streamed by the broker to the data stor-
age and made available there. Depending on the use-case (e.g. number of sources and 
message intensity), the data storage can be a relational or non-relational database. Com-
ponents of the analysis or displaying layer can request data from the storage via the broker, 
using the aforementioned standard interfaces. Handling all types of data, the central data 
storage ensures a wide availability of data for all layers. Making not only historic data, but 
also real-time data available, the Data Management and Integration Broker can stream live 
data to subscribers of the upper layers, as described by the lambda architecture [19]. This 
can be important for live-monitoring and optimization operations executed by the analysis 
layer.  

For enabling data transfer across organizational borders (R5), an access control and 
anonymization component is necessary. Especially, when working with data from other 
organizational units or companies, the privacy and integrity of data become very important 
issues. Leaking data, which was not supposed to be transferred, must be avoided. Hence, 
the broker features an access control and anonymization layer, guaranteeing only approved 
data access. Before transferring content, data may be anonymized or access restricted, de-
pending on the requesting block and its security clearance.  

A common data model (R2) is essential in order to describe the represented system and 
its data in a unified way and in a language that is understood by all layers and components. 
The data model of UDaTA has to include representations of the raw data, additional 
metadata (enriching raw data with information about units of measurement, associated 
devices, and so on), previously learned and preconfigured models, operator knowledge, 
parameter sets, and configurations of the service blocks. Each block can work with a sub-
set of the overall data model for carrying out its operations. Data that does not match the 
common model has to be transferred by adapters in order to be compliant with the other 
data as presented in [33, 34]. Wrappers can be used to encapsulate third-party applications 
and provide standardized, compatible interfaces. Those mappings and adaptions have to 
be carried out by hand, when dealing with a new data model or changes during the asset 
lifecycle. Especially for legacy blocks, the effort for translating data can sometimes be 
high, but the benefits of dealing with only one common data format, like easy plug-in of 
new blocks, as well as high compatibility and increased flexibility, are significant. This is 
also a reason why a parallel rollout of UDaTA to existing systems and a stepwise adaption 
is suggested as deployment strategy. 
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Fig. 1. gives a representation of the Unified Data Transfer Architecture, reflecting one 
company or organizational structure. Each company or structure can have its own slice of 
the architecture deployed, allowing a communication over the broker and the analysis of 
data stored in a different location. Several instances of the broker can communicate with 
each other and exchange data.  
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Fig. 1. Schematic Structure of the Unified Data Transfer Architecture (UDaTA). 

5 Evaluation 

The proposed architecture was evaluated in two ways. At first, an expert evaluation was 
carried out. Therefore, technical experts were interviewed about an adapted version of the 
architecture for their specific use-cases. The use-cases originate from different fields, 
namely process industry and discrete manufacturing. In addition, questionnaires were used 
to query specific aspects of the architecture. 

Furthermore, a prototypical, lab-scale demonstration was implemented using concrete 
technologies in order to reflect the realization for a specific use-case. 
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5.1 Expert Evaluation 

Semi-structured interviews with technical experts were carried out for two distinct use-
cases from the field of process industry and discrete manufacturing. Both use-cases are 
characterized by a multitude of existing legacy systems, complex system layouts and in-
teractions between software components, as well as a high degree of heterogeneity in the 
used communication channels (e.g. different field buses) and data formats. For the inter-
views, the generic UDaTA was adapted for the specific use-cases, reflecting the specific 
requirements of the field of application. It was evaluated whether there is a need for a 
unified architecture for data access under the given boundary conditions. In addition, the 
interviewees were asked about the shortcomings of their current system architectures and 
if the proposed UDaTA has the potential to solve these disadvantages and inefficiencies. 
The interviews were supported by questionnaires for capturing specific needs and require-
ments in the field of application. 

In both existing solutions, data is often aggregated and integrated manually by a process 
expert. Therefore, data from various sources is combined, e.g. written maintenance logs 
are digitized and combined with the historic process data queried from a plant information 
management system (PIMS). This task is highly time-consuming and error-prone, espe-
cially for repetitive analysis.  

Existing legacy systems with proprietary interfaces or the possibility to export data only 
file-based, e.g. export to csv-files, further complicate the existing solutions and lead to 
countless point-to-point connections and tailor-made solutions for specific applications. 

For both use-cases, the interviewed experts expressed the need for a unifying and inno-
vative architecture. Therefore, the characteristics and flexibility of UDaTA were evaluated 
positively in both cases. Furthermore, the experts highlighted the importance of access 
control and anonymization, as well as the significance of cross-organizational data ex-
change for information extraction from local raw data. 

As problematic aspects of UDaTA the definition of an accepted common information 
model as well as the high effort for a first implementation were mentioned. Overcoming 
the issue of the definition of a data model is challenging. It can be carried out use-case 
specific by an interdisciplinary team of experts focusing on the specific needs for the use-
case. Alternatively, it could be promoted by a standardization body, for instance following 
the example of the common information model (CIM) in the energy distribution sector 
[16, 17]. For the field of automated and cyber-physical production systems, there is an 
immediate need for such an accepted meta-model. The CIM reflects the evolution of an 
accepted meta-model unifying the data understanding between different parties and should 
act as a guidance for such a model in the field of automation. 

In order to overcome the complex introduction phase of UDaTA, a stepwise migration 
is proposed, leaving the existing ISA 95 layout intact. This allows to deploy the architec-
ture in parallel to the existing infrastructure and to integrate the different processes of the 
production plant over time, therefore benefiting from already migrated applications while 
leaving the vital, production-relevant infrastructure untouched. 
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5.2 Prototypical Lab-Scale Implementation 

In order to verify the practicability of the concept, a prototypical implementation is de-
ployed on a lab-scale. To simulate a heterogeneous production environment, a bench-scale 
platform, called extended pick and place unit (xPPU) [35], is used as the main data source 
for production data. The xPPU is able to sort, pick, and place work pieces, using amongst 
others cranes, conveyor belts, and a multitude of sensors. As secondary data source, ex-
emplary order data from a csv file is read. The data is sent to a message broker, translated 
into a common data format and stored in a relational database. Analyzers can send requests 
for batch data to the broker. These requests are forwarded to the database, the results are 
anonymized if necessary, and provided to analyzers. In addition, analyzers can subscribe 
to live data originating from the sources. In order to replicate the heterogeneity of the 
production environment, various different operating systems, as well as programming lan-
guages to realize the separate applications, are used. The whole setup is depicted in Fig. 
2, showing hardware components, operating systems, software, and exemplary data flows 
among the elements of the architecture. The setup is described in detail in the following 
paragraphs. 

In the prototypical setup, the bus couplers of the xPPU are communicating via  
EtherCAT with a Beckhoff CX9020 PLC that runs on Windows 7 CE and TwinCAT 3. 
This PLC makes its process data available over two different communication channels, 
namely MQTT messages and an OPC-UA server. 

MQTT [36] is a publish-subscribe-based, lightweight messaging protocol that is suita-
ble for Machine-to-Machine (M2M).  Using the TwinCAT function block “Tc3_IotBase”, 
MQTT-client functionality becomes available on the PLC. This way, messages with topics 
like “EnergyMonitoringHardware/CurrentPressure/Int” or “LightGrid/EmergencyS-
top/Bool” are sent every cycle (currently 10ms). These messages contain the values of the 
respective variables of the xPPU. 

Furthermore, the PLC runs an OPC UA server that provides the states of other selected 
variables to clients. In our case, a Raspberry Pi 3 is used as a client for the PLC. It operates 
with Raspbian running an OPC UA client using the .Net Standard reference implementa-
tion by the OPC Foundation [37]. Furthermore, it subscribes to a number of variables and 
translates the received data into the common data model. This data is then sent to the 
connected broker. 
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Fig. 2. Hardware and Software Setup of the Prototypical Implementation for the xPPU. 

To simulate the processing of batch data, a csv-file containing hypothetic order infor-
mation is read by a Java program on another Raspberry Pi 3 with Raspbian, translated 
directly into the common data format and sent to the broker.  

Using Hyper-V on a Windows Server 2016 Datacenter host, that is equipped with a 
Core i7-6700 CPU and 16 GB RAM, we installed Linux Ubuntu 16.04 LTS x64 on two 
virtual machines (VM). 

On the first VM, we installed the open source broker RabbitMQ [38] in version 3.6.11, 
as well as a .Net Core 2.0 based Anonymizer and Translator for MQTT messages. Rab-
bitMQ works with exchanges, to which messages can be sent. An exchange can be con-
nected to several queues that store messages until they are polled or being subscribed to. 
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This setup allows for a distribution of messages to the correct destinations. The Translator 
receives MQTT messages sent by the PLC and translates those into the common data for-
mat. If the requesting analyzer has only limited access rights, the Anonymizer for instance 
changes data and time values to a relative scale in order to minimize information leakage. 

The second VM runs the database components. In is this case they compromise a Mi-
crosoft SQL Server 2017 RC2 and a .NET Core 2.0 based SQL Connector that receives 
messages and queries from the broker and handles database communication using Mi-
crosoft Entity Framework Core 2.0. 

Using two more Raspberry Pis 3, one with Raspbian, one with Windows 10 IoT, in-
stances of .NET Core 2.0 based analyzers are executed. These can subscribe to live data 
from sources, request data from the database, perform calculations on the data, send cal-
culated data to the broker, or listen to the results of other analyzers.  

With this setup, the feasibility of the implementation of an architecture for unifying 
data transfer in automated production systems is demonstrated. Relying on platform inde-
pendent technologies like .NET Core 2.0, Java and an open source message broker, that 
can be executed on Windows, Linux, and macOS, the implementation can be rolled-out in 
heterogeneous IT environments (R1). By using adapters and translators, the transfor-
mation of messages into a common data model is carried out (R2). It is possible to connect 
arbitrary analyzers (R4) (including legacy components) to the open source message broker 
RabbitMQ, since it provides clients and developer tools for many programming languages 
(such as Java, .Net, Ruby, Python, PHP, JavaScript, Objective-C, C, C++), which was also 
demonstrated in the heterogeneous environment chosen for the demonstration. Analyzers 
are able to access both historic and live data (R3). Using different roles with different 
access rights on the broker, data security is ensured. Moreover, as data can be automati-
cally anonymized if necessary, also sensitive information can be shared. Connecting bro-
kers at different physical locations is possible with the Shovel plugin [39] of Rab-
bitMQ  (R5). For the realization of UDaTA, it is emphasized, that the selected technolo-
gies, languages, or brokers are only of subordinate relevance; the shown prototypical im-
plementation is only one possible solution for this specific use-case. 

In order to validate the feasibility of the broker for a large number of incoming and 
outgoing messages, a time measurement of the delivery times from start to destination is 
performed. Before carrying out the tests, the internal clocks of each device were synchro-
nized. Afterwards, timestamps are added to the message headers and the timespan it took 
to deliver the message is calculated. Performing these tests with low message intensity (~2 
msg/ sec published), middle intensity (~80 msg/ sec published) and high intensity (~1650 
msg/ sec published) for several minutes, no influence of the message intensity on the de-
livery times is observed. The average message times varied for all intensities between 2.5 
and 10.0 milliseconds. These absolute times, however, have to be interpreted with caution 
since it cannot be guaranteed that the clocks were perfectly synced in the range of milli-
seconds. What can however be stated is that no evidence of prolonged message times due 
to higher message intensity is measured for the given setup. Therefore, RabbitMQ is a 
suitable message broker for providing live data to analyzers in a Unified Data Transfer 
Architecture with near real-time requirements under the given load scenario. 
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6 Conclusion and Outlook 

Applying big data techniques in the field of manufacturing is currently strongly handi-
capped due the multitude of protocols and data formats used by legacy devices deployed 
to the field. Manual data acquisition from closed, proprietary system and subsequent inte-
gration of data by experts are often the only chance to access the vast amount of measured 
data. However, there is a need for making this data automatically available in order to gain 
information from it, especially with the rise of the ideas of the industrial internet of things 
(IIoT) and Industrie 4.0. For Cyber-physical systems (CPS) and cyber-physical production 
systems (CPPS), the transparency of information, as well as big data analytics play a major 
role. New, flexible architectures are required in order to make this information accessible 
and apply big data in the field of automation. 

This contribution presents a conceptual architecture named UDaTA for data acquisi-
tion, integration, and handling from the field device layer up to business applications. 
Therefore, it provides mechanisms for vertical, as well as horizontal integration. A strong 
effort is put on the unification of data access and transport for abstracting the complexity 
of the involved systems. Reference models for IIoT, like the German RAMI4.0 or Amer-
ican IIRA, lay the cornerstones for such an architecture, but due to their generic nature do 
not capture application specific aspects. Existing concepts for data acquisition and inte-
gration in the field of automation often lack the consideration of cross-company data ex-
change for collaboration and openness of the interfaces. The conceptualized architecture 
uses a middleware-approach to make the data available and minimizes the number of data 
transformations between the involved systems by proposing the use of a common infor-
mation model (CIM).  

The concept was evaluated with expert interviews showing an apparent need for the 
implementation of such an architecture. Moreover, using a bench-scale production system, 
it was possible to show that UDaTA can be prototypically implemented and is able to 
transfer and handle data from heterogeneous sources. Acting as middleware component, 
the open source message broker RabbitMQ received data input from MQTT and OPC UA 
sources, which was transferred via adapters into a common information model. Both, ac-
cess to streamed live data and historic batch data, could be demonstrated and opened new 
possibilities for data analysis. 

In order to prove its suitability for real production environments, further testing with 
larger prototypes and more data sources is required. Special focus has to be put on the 
formulation of a CIM that is suitable for generic use cases and allows translation from 
various data formats. Other technologies for the middleware, for example Apache Kafka, 
OPC UA or DDS-Systems, should also be evaluated and their eligibility for real world use 
cases compared. Even more important, real analysis of the data and usage of the newly 
gained knowledge is required. Next steps should focus on using the acquired data for the 
analysis process. 
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Abstract. With this paper, we will illustrate the synergetic potential of interdiscipli-
nary research by demonstrating how socio-scientific perspectives can serve engi-
neering purposes and contribute to engineering assignments. This especially con-
cerns eliciting knowledge models and ergonomically optimizing technological de-
sign. For this purpose, we report on our findings on socio-technical arrangements 
within smart factory research initiatives that are part of the IMPROVE project. We 
focus our findings on the systemic interplay between the formally modelled plant, 
its actual physical state and the social environment. We also look at how operators, 
as parts of the plant’s environment, adapt themselves and thereby develop their own 
particular work culture. We then integrate these findings by reconstructing this op-
erator work culture as a specific way of performing, accounting for and addressing 
particular issues. We enhance these findings using the lenses of recent concepts de-
veloped in the field of social theory, namely the praxeological understanding of tacit 
knowledge, systems theory differentiations and an actor-network-theory understand-
ing of human-machine agency. Applying these concepts from social theory, we re-
visit our empirical findings and integrate them to provide context-sensitive, socio-
scientifically informed suggestions for engineering research on knowledge models 
concerning HMI design. 

Keywords: Socio-technical Arrangements, smart industry, HMI design. 

1 Introduction 

Imagine you are in a factory and hear someone (or something) say: “Although this seems 
to be a batch problem, you should rather consider checking the rolls”. With the contem-
porary smartification of industries, you cannot know whether you are hearing a human 
operator or a decision support system (DSS) speaking. The machines and devices in smart 
factories are no mere high-tech devices; they connect, cooperate and synergize with hu-
man actors. They are no simple tools of monitoring and control but a nexus of human-
computer interaction (HCI), enhancing the capabilities and capacities of both human op-
erators and the industrial plant complex. This development raises new concerns, issues 
and objectives of human machine interface (HMI) design: How to organize changing 
knowledge models? How to integrate informal intervention suggestions and formal auto-
mation? How to introduce new tools like smart glasses, tablets, smart watches? And, not 
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least, how to alter rather passive tools of knowledge assessment like dashboards and op-
erating panels so that they include a close, pro-active entanglement of these features, ren-
dering the smart factory, in terms of HCI, sensorimotor and self-reflexive?  

However, these are well-known issues of HMI engineering, especially concerning 
smart, recursively learning software and human machine cooperation. Topics such as re-
sponsibility management, the avoidance of human errors and overcoming bounded ration-
ality have been intensively discussed by HMI engineers and HCI scholars. [1] [2] With 
the critical momentum created by HMI software’s ability to learn from its users’ behavior, 
human-centered engineering is required and must be adjusted to the new assignments de-
riving from this significant technical shift: there are no longer any clear boundaries be-
tween passive technological tools and active users. While operators have developed their 
own particular ways of handling (their) HMIs, these interfaces themselves are beginning 
to be designed and act in a creative style, since they are the media technologies through 
which new patterns of knowledge and expertise can emerge and evolve.  

Because of all this, new forms and sets of expertise for interdisciplinary research are 
being invoked. We claim that the social sciences can contribute a suitable perspective and 
methodology that goes beyond the canon of cognitive science, psychology and ergonomics 
that has been used so far to support and enhance HMI research. The social sciences are 
specialized in analyzing and understanding integral shifts of technology that affect not 
only work routines but the necessities of organization having to do with entrepreneurial, 
economic and personnel issues. Furthermore, the social sciences, like sociology and Sci-
ence & Technology Studies (STS) in particular, are designed to tackle the kinds of com-
plex entanglements that withstand technical approaches of proper explication, operation-
alization, formalization and trivialization. Patterns and meanings of complex work rou-
tines and conduct cannot be modeled by means of data mining for they cannot be opera-
tionalized accurately in numbers.  

Being focused on the study of societal phenomena, the social sciences possess a specific 
repertoire of theories, concepts, methods and strategies for understanding the diverse and 
simultaneous dynamics of practices and situations that draw together knowledge, aware-
ness, technology, incorporated routines, work cultures, organizational frameworks and 
business requirements. There are specialized disciplines for each of these aspects; how-
ever, when it comes to such complex assemblages with opaque effects and conditions, the 
social sciences can offer mediation and informed intuitions to supplement design pro-
cesses and complement implementation scenarios. 

2 Introducing our role(s) as social science researchers 

2.1 What do social scientists do? 

With the turn from HCI to human machine cooperation, it is necessary to draw stronger 
epistemological connections between the individual actors, experts and stakeholders in-
volved in and affected by HMI development and assessment. Since the social sciences 
specialize in questioning the things that are taken for granted, they can thus help bridging 
the assumptive bounds that seem to analytically separate them. This conduct of question-
ing and looking out for the danger of implicit ontologies is accompanied by a sensitivity 
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for latent, implicit structures, practices and knowledges. In the social sciences it is com-
mon to conceive ‘knowledge’ in plural terms because there are many different kinds, 
forms and constellations of knowledge(s). The peculiar perspectives, conduct, thinking 
and mindset of social science research have already been indicated. So far, we have 
claimed that this includes capacities which can contribute to engineering projects beyond 
technological expertise. 

Socio-scientific perspectives have their own particular ways and strategies of research. 
Some readers will already have recognized that the social sciences not only have their own 
epistemological and methodological set(up), but also a specific style of thought and com-
munication. Sociologists in particular tend to produce illustrative and passionate narra-
tions instead of modest reports. This is not a (mere) result of the social sciences being so-
called soft sciences, but rather reflects their genuine interest in issues of self-reflection and 
self-involvement. [3] Hence, we tell the story of our particular scientific role within and 
experiences with the IMPROVE project, for our experiences are a great part of – or at least 
complement to – our research material and practices. [4] 

Social science research is empirical research; looking for the prerequisites of (inter)ac-
tions and practices, and that reconstructs seemingly non-social entities like technology as 
deeply entangled with social, cultural path dependencies and events. We therefore look 
for social artifacts (like documents, reports, communications) as well as for social pro-
cesses like work practices, decision making, etc. Sociology stresses terms like practices 
to highlight that conscious and rational modi operandi are the exception, not the standard 
of how actors act. From this perspective the social and our everyday lives mostly consists 
of latent structures and behavioral routines that are usually reflected and reasoned about 
only retrospectively, not in advance. Thus, the social sciences have developed an elaborate 
terminology around latency and implicit patterns that shed some light on meanings em-
bedded with social practices like work routines and HCI beyond the explicit dimensions 
of phenomena and data.  

Another distinctive feature of empirical, socio-scientific research is that it regularly re-
gards the social sciences regard qualitative research as sufficient for a certain subset of 
questions. Such research is characterized by small sample sizes, often have highly diverse 
data types (e.g. observations, documents, interviews) and an iterative, open (i.e. not fully 
formalized) methodological conduct. We organize, reflect and report our research process 
using the technique of memoing. Memos are a specific type of data: they are research notes 
that help to organize further research steps and which reconstruct the (subjective) research 
project to compensate this sociologically inevitable subjectivity. We process these data by 
coding, i.e. clustering different semantic commonalities. These commonalities are studied 
by means of comparison, organized by structural features of the smallest and greatest sim-
ilarities/differences. As a result, we identify central concepts hidden in the data and codes 
which then structure our account of the phenomena in question. Social scientists handle 
the given lack of standardization by a theoretically informed and detailed description of 
how they reach their conclusion. [5][6][7]  

2.2 What did we do as IMPROVE (social science) researchers? 

As STS and sociology researchers, during our participation in the IMPROVE project, we 
investigated socio-technical arrangements in automatized, smart factories that applied 
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HMI and DSS. For this particular research, we collected three ethnographic meeting pro-
tocols, one complementary ethnographic protocol of the interview situation with our HMI 
partners, 29 project-internal documents (mental models, project plans, communication, 
HMI drafts, etc.), eight memos, and, both elicited by our HMI partners, three operator 
interviews, eight technician interviews.  

Our designated role with IMPROVE was to investigate and reflect on the socio-tech-
nical arrangements involved with or stressed by the project’s technological development 
or by smart factory environments. We were commissioned to derive a methodological 
toolkit from our research experiences which was intended to work as a ready to use meth-
odology for further inquiries into socio-technical arrangements. Eventually, this is a meth-
odological conundrum because socio-scientific methods often require practical training 
and can barely be standardized. Yet this was also an opportunity to develop strategies and 
precedents for interdisciplinary diplomacy [8]. For this purpose, we developed and set up 
a preliminary, socio-scientifically informed methodology that is formulated in a propae-
deutic manner and takes into account discrepancies of disciplinary perspectives, demands 
and their matters of concern. Yet, this toolkit is rather a how-to-become-socio-scientific 
than a how-to-do-social-science. Furthermore, it has been our task to design a learning 
center for operators of smart factory plants. For this purpose, we made specific didactic 
suggestions regarding our own research on field-specific socio-technical arrangements 
and drafted tentative training scenarios and tools. Again, we brought in a dash of sociol-
ogy, since we proposed not a positive, finalized learning center but a recursive re-learning 
center that would reflect the dynamic developments of both the usage of our toolkit and 
the matters of concern.  

We we started our participation in the IMPROVE project with a review of project doc-
uments and the industrial engineering literature. We revisited the industrial sociology lit-
erature and papers on STS and the sociology of technology to deepen and broaden our 
understanding of the project’s specific topics, issues and perspectives. We focused on re-
quirement engineering, knowledge elicitation and modelling, as well as on HMI and DSS 
in smart factories and issues of human error and responsibility accounts. We thus focused 
on the role of tacit knowledge. By doing this, we discovered the fundamental discrepancy 
between engineering and sociological terminology mentioned in chapter one. However, 
we stressed the sociological or praxeological term of tacit knowledge, which contains ex-
plicitly non-explicit (and even non-explicable) knowledges (e.g. body movement, sensing 
practices or of latent structures and interrelations of communication). Hence, we concen-
trated our research efforts on the elicitation and exploitation of these technically neglected 
aspects of tacit, implicit practice knowledges. 

We assisted and consulted the elicitation process and post-processed the empirical data 
(interview recordings, mental models, etc.). Inquiring [sic!] these empirical data, we iden-
tified central socio-technical arrangements. We also protocolled the project progress meet-
ings in a socio-scientific manner to get our own understanding of engineering mindsets, 
assignments, communication and organization. 

Methodologically, our research case produced two key concepts: “operators’ work cul-
ture/particularization” and “explicity/implicity”. These key concepts include codes like 
responsibility, routines, sensitivity and bounded rationality of operators, several industrial 
assignments, and the boundary between the formal, technological plant and the vast, vi-
brant plant environment (e.g. batch quality, machine quality, environmental parameters, 
organizational amendments, economic demands and limits). Thus, the physical plant itself 
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is not identical to its formal, technological and scientific model, a technical discrepancy 
that is continuously bridged in terms of actualisation and contextualisation by human, so-
cial praxes. It is this realm beyond automatization which renders human operation neces-
sary (aside from normative regulations for supervising high-risk processes). However, we 
wanted to avoid complacent sociological research that would exclusively follow the es-
sential interests of our discipline. Therefore, we tried to work more towards applicable 
results and strategies of interdisciplinary diplomacy because these two assignments are 
interrelated: while interdisciplinary diplomacy is an applicable contribution, playing 
(with) the role of an applied science researcher supported our immersion in the discipli-
nary realms of our project partners. The results of this (re)search for a synergy of applica-
tion orientation and mediation will be explained and illustrated in the subsequent chapters.  

3 Empirical findings on socio-technical arrangements in HMI 
supported operating of smart factory plants 

First of all, in social science, especially in qualitative research, theory is not always pre-
sented before empirical analysis. This is due to the fact that we distinguish between em-
pirical and social theory. Social science, and quantitative research in particular, has em-
pirical theories that have to be taken into account in advance in order to render deduction 
tests or explanations feasible. Qualitative social research, however, applies so-called so-
cial theory, which consists of non-empirical, theoretical considerations that give the social 
scientist perspectives, concepts, terms, suspicions or connections that can be used to or-
ganize the study and its findings according to the chosen social theory. This is a necessary 
part of socio-scientific research, since social phenomena are vastly complex and entangled 
in terms of synchronicity and overdetermination. Thus, classic deductive nomological 
models are insufficient, and simple, empirically grounded statements will fail to organize 
the socio-scientific knowledge and facts. Hence, social scientists apply similarly complex 
theoretical considerations in advance in order to identify significant data and draw plausi-
ble connections beyond everyday life plausibilities. 

However, social theory is not the absolute first step of social science activities. It is 
rather integrated in an iterative research cycle, as also described by Grounded Theory. 
Grounded Theory is one of the first and greater disseminated proposals regarding how to 
do socio-scientific research in a way that generates theory from empirical data. [9] Such 
grounded theories are always, somehow, associated with social theory assumptions. Even-
tually, however, they must be integrated by means of greater social theories. Hence, social 
theory consists of both the presumed concepts that render socio-scientific observations or 
interpretations feasible and the conclusive integration of findings in a common terminol-
ogy and conceptual perspective. 

Nevertheless, we will now begin with a report on our empirical findings which will 
then be enhanced by social theory accounts. These social theories will elevate our quali-
tative findings on an analytical level of deeper understanding that can provide insights for 
technical design, planning and organization issues. 

Concerning socio-technical arrangements, we encountered two significant features re-
garding human-operated industrial production. There is 1) a particular relation between a 
machine’s formal system and its unstable environment. The formal machine system is the 
explicit, technological model that grounds any automation or overall technological design, 
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e.g. the correlation between orifice width and film diameter, and the unstable environment 
is all those qualities which elude the idealized models due to their complexity (e.g. given 
climate variations and machine deterioration, market fluctuations). Hence, this complex 
environment is composed of physical and social entities and processes. In addition to this, 
operators established 2) a specific kind of work culture that derives from the intersection 
of historic, socio-economic subjectivity and their concrete task of flexibly operating these 
machines. We have already indicated that this is a necessity that results from the discrep-
ancies between formalized technology and actual materiality. 

Following our experience with and analysis of operator interviews, industrial plant op-
erators have developed a work culture centered around particularity. This is no arbitrary 
quality, but a strategic outcome of the tension between the machine’s formal system and 
its unstable environment. By work culture, we mean the self-descriptions, accountings and 
practical structuring of (re-)actions. We call it culture because it is a contingent result of 
adaptation between a specific (organizational) role within the given formal and practical 
limits of operators’ work. While this work culture re-addresses itself as being particular to 
every individual, it organizes these individuals within their common situation through cul-
tural presets of self-conception, praxis and perceiving. Thus, operator self-descriptions 
integrate an individualization of their role with the given requirements for common rou-
tines, semantics, etc. As a result of our tracing this work culture, we have learned that 
operators describe their own tasks as highly particular and often as incomprehensible from 
the exclusive perspective of formalization. Thus, the particularity produced by this work 
culture is a social reaction of personal and physical individuality confronted with bounded-
rationality operating situations. This particularity results from plain psycho-physical, fac-
tual individuality and as a reaction to complex situations that cannot be reasoned beyond 
(individual) intuition.  

However, there are also strategic reasons for operators to avoid describing their work 
as trivial so as to articulate their (technical) indispensability. Nevertheless, the resources 
of this self-presentation are no artifact of this strategy. Particularity within operating is 
rather a result of organizationally given frameworks (e.g. which adjustments are permitted 
to be done, which production assignments are set) and the actual, material complexity of 
the operated plant itself. 

Thus, the operators who were studied produced a conglomeration of individualization 
figures, e.g. comparisons to driving a car (although it is a common practice, everyone has 
his own particular way of doing it) and explicit demarcations of the individuality and par-
ticularity of their work: Everybody has another way of handling this problem, everyone 
has his or her favorite way of solving such situations and issues, etc. Or, as they said: ask 
any operator about a specific problem and you will get at least one opinion, but probably 
more than one.  

However, in contrast to these claims, operating work is, partially, more standardizable 
than depicted in these interviews, a fact which results in the further automatization of pro-
duction plants. Automation is easily regarded as a threat of job loss by industrial workers. 
This conduct can result in rejection of automation innovations. Although this rejection is 
another issue, the practical results for operator practices and self-conceptions have to be 
taken into account. Nevertheless, there is a particularity which exists through the plant’s 
realm of opaqueness, where different solutions can be applied, and thus different problems 
are identified. As a result, particularity is no simple self-display but part of the operators’ 
practical self-specialization. However, there is a communality of operating which can be 
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found on several levels (facility-wide, company-wide, etc.). This is indicated by the oper-
ators’ shared terminology and conception of the plant. Beyond these facility- and individ-
ual-ordered cultures, other role-specific cultures and discrepancies can be found. These 
are marked by conflicts between technologists and operators in particular. There are, in 
general, latent conflicts and tensions which are expressed by the plain fact of how im-
portant it was, during our research, to guarantee that our elicitations were not and cannot 
be used for operator assessment. These conflicts represent a basic tension between edu-
cated, abstract and formal expertise on the one side, and practical, application-grounded 
expertise on the other. Intriguingly, during the experimental production scenarios, operat-
ing experience could not be successfully applied (as those scenarios were exceptional), 
nor could the formal models be completely confirmed. These conflicts can also be under-
stood as tensions between those who design new technology and install and initialize 
plants, and those who maintain plants and keep them running. From our STS perspective, 
this is a particular socio-technical conflict of technologically shaped and undergirded so-
cial order: e.g. the responsibility of accounting for or reflecting organizational structures 
by means of technology access and the particular meanings that it has for its users. [10] 
[11] Thus, the tensions that appear when discussing a plant’s reality happen between the 
two poles of formally understanding a machine complex and practically operating it in 
running scenarios. 

These examples and observations are highly redundant in our given data. They applied 
to both case studies and they were repeated with each interviewed and observed operator. 
Even the one exceptional interviewee, an operator who was regarded as someone who 
shared the technological expertise of technologists and was familiar with both engineering 
expertise and practical efforts of operating, confirmed this particularity: whenever it 
comes to practically operating a plant, particularity is required or just results from the 
particularity of events. 

Significantly, operators did not stress their particularity when describing their individ-
ual skill-sets. Instead, they particularized the description of their practices when it came 
to tacit knowledge requirements. They described their sensitivity towards the plant itself 
as being multi-sensitive: a feeling for the temperature and tension of the produced film, 
and even olfactory and acoustic signals were taken into account. Hence, their particularity 
cannot be reduced to mere expressions of an individualization discourse or a responsibil-
ity-handling strategy. It is first and foremost their practical way of operating plants beyond 
formality. 

However, the operators we studied often told us about their indispensability, that not 
everything could be automated. This is, obviously, an expression of their own (economic) 
interest, highlighting their own importance within the industrial processes. Therefore, they 
often referred to the necessity of their work in terms of the limits of automatization. Hu-
man work cannot be completely replaced by software, they claim. From a neutral stand-
point, automatization limits imply much more than the concerns uttered by operators. 
Those limits are less of a purely technological limitation than the economic limits of tech-
nological development (e.g. sensors) and legal or organizational limits (e.g. accountability 
requirements). Requirements that are not covered by contemporary software infrastruc-
tures include problems of accountability, responsible learning, etc. However, when it 
comes to tacit knowledge, the socio-technical arrangements of the plant itself and its hu-
man operators have their own path dependency and their own evolution: they are adapted 
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to each other and their development cannot be understood without each other. Anything 
else would require a radical redesign.  

This incorporated and situated, tacit knowledge contains many valuable capacities that 
could, in principal, be extracted from the field’s practices. However, it cannot be trans-
formed into formal, explicit knowledge and remains, thus far, a human peculiarity and 
privilege. While the use of machine and deep learning technologies enables machines to 
reach insights beyond human scales, they are still unable to smoothly integrate themselves 
into an ever-changing environment. This is a result of machines’ strict mode of perception 
and due to limited real world training and test data. While their cognitive processing is 
impressive, they often ignore events and data that are out of their preset scope. Hence, 
they fail in terms of human perception since we are used to understanding and assessing 
everything from our very own perceptive scope. Nevertheless, this human perceptual 
worldliness must not neglect the greater sensory opportunities that machines present. 
However, neither engineers nor operators seem to regard human work in this way and are 
merely addressing an opaque complexity to render their industrial value and indispensa-
bility plausible. 

4 Social Theory Plugins 

We will briefly present three selected social theory perspectives in connection with our 
empirical findings. Since we want to avoid a simple eclecticism of theoretical possibilities, 
the selected concepts presented below are all commensurable with each other and will be 
reflectively interconnected in the final theoretical subsection. 

Three different social theories were chosen concerning their specific theoretical and 
terminological accounts: systems theory (system/environment), practice theory (tacit 
knowledge), actor-network-theory (agency). We chose those conceptualizations for they 
each feature particular sensitivities towards the empirical field of our research.   

First, we will introduce systems theory for its accounts and differentiation of system 
and environment can organize our research inquired socio-technical arrangements’ com-
plexity and take into account the difference between the assumed, formalized concept of 
an industrial plant and its actual physical existence. 

Second, we will tackle tacit knowledge which already is a theoretical account of prac-
tice theory (or: praxeology). Tacit knowledge fills in the gap between formalized rules and 
models and the actual physical entities. It is a modus operandi which we encountered di-
rectly in our research field. With the lens of praxeology we will thus enhance our empirical 
findings. 

Third and last, we will introduce actor-network-theory (ANT) and its theoretical ac-
count of “agency” which focusses on the relations that make action and behavior possible 
at all. Hence, we will use the concept of agency to shed (more) light on the difficult rela-
tionship of human-machine interaction and co-operation (in the rather descriptive, not 
normative sense). Such a concept of agency will allow us to integrate the other two social 
theories into one analytical canon for the concept of network driven agency touches both 
systemic complexity and the body, physicality orientated praxeology. 

However, note that although we try to create a coherent theoretical setup for the analysis 
of our findings, it works rather heuristically and in terms of applied science or (socio-
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scientific) technique. From a genuine sociological point of view, however, this needs fur-
ther theoretical elaboration and empirical substantiation. What we present here is, so far, 
rather an illustration and proof of concept. 

4.1 A systems theory of (smart) factories 

The social theory accounts we are first to introduce are ‘systems’ and ‘environment’ as 
they are defined by contemporary, sociological system theory. It is a conceptualization 
that focusses on process, time and distributed logics of cognition and perception. We will 
begin with a basic introduction of the central systems theory terminology: autopoiesis, 
system and environment. Also, we will highlight the cybernetic design of systems theory 
and how our empirical findings can be organized in autopoietic systems and their environ-
ments. This organization will then be used to structure our empirical findings and to iden-
tify its contained complexity requirements in particular. 

The sociological Systems Theory that we stress here might remind engineers of cyber-
netics. There are, by design, many similarities and congruencies, since sociology’s sys-
tems theory is, basically, sociologically applied cybernetics [12].  From a technological 
point of view, production plants are operatively closed systems and appear identical to 
their formal depiction. Any external event or stimulus that occurs within the scope of this 
formal setup of the plant will be reproduced as a part of the plant itself. Nevertheless, 
formal models can be applied, and smart factories are even capable of further processing 
those data points into their own behavioral model. When they detect an increase of heat, 
they can compensate in order to maintain the plant’s functional homeostasis. However, 
what suffices for the formal system might be different from the needs of the actual physical 
plant. Required transformations run through the different systems with their frames of 
reference e.g. formal correctness and practical viability. This reference discrepancy might 
cause errors or confusions, but a forced breaching of the system bounds would lead to a 
malfunction: e.g. breaking down production for the sake of formal comprehension. This 
is an error typical of bureaucratic processes that tend to ignore non-bureaucratic semantics 
of logic. 

 Systems theory calls such selective reproduction processes autopoiesis [13] since the 
systems (e.g. plants) are marked and constituted by their own boundaries, which are con-
stantly reproduced by the decision regarding whether something is part of the plant (or the 
system) or not. The very feature of  sociological systems theory is that any event might be 
interpreted as an event of autopoiesis. This way, interconnections between entities become 
more complex, but environmental differences of meaning can be integrated and a system’s 
stability can be explained by understanding its boundaries. Furthermore, unintentional ef-
fects can be traced back to their systemic source so that amendments do not lead to infinite 
sequences of (re)irritating the treated system. This radical systems theory conceptualiza-
tion was actually developed in neurobiology and has been intensively and extensively re-
designed in terms of social theory by Niklas Luhmann [14]. 

The technological design, development and maintenance of a plant are, however, sec-
ond order cybernetics, which is a systemic observation that takes into account both the 
differentiated system and its acts of differentiation, including their residues. Adjusting and 
further developing components is a reflection on the functionality of the whole system, 
and operating is even more a matter of highlighting the external overview of the plant in 
terms of restoring its formal normality and applying (inter-)actions beyond the formal 
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scope. However, with the development of formal models and their formalization grades, 
system boundaries are set. It is important to recognize that not only is a plant’s common 
environment (socio-economic or material environments, i.e. markets, climate, batches, 
etc.) beyond the systemic scope of the plant, but so are parts of the plant that seem to 
belong to it itself, e.g. randomly deteriorating components. Furthermore, overdetermined 
correlations are part of the system’s environment insofar as they cannot be rationalized 
and raise the risk of system’s misunderstanding, i.e. being unable to continue its behavioral 
reproduction (e.g. if intervening is not optional but the chosen measure is only possibly 
correct). 

Being aware of the systemic boundaries of a plant supports its conceptualization to-
wards socio-technical assignments of organizing responsibilities, accountabilities and 
handling ergonomic assignments within different, complex environments. It signifies or-
ganizational and social demands as well as technological limitations that might be com-
plemented through human work. Human operating work can thus be regarded as a com-
plementary system that reproduces itself from everything that lies within the re-entry of 
the plant’s system but falls out of its formal scope. ‘Re-entry’ describes how, for any sys-
tem, it is necessary not only to differentiate between stimulus acceptance or non-ac-
ceptance (e.g. a reflection that might indicate an unclean film) but also between those 
events that concern this differentiation and those that do not (e.g. a bird flying over the 
facility). 

With this, we encounter another feature of systems theory perspective: Even though 
cybernetics was, traditionally, a philosophy of control, modern systems theory no longer 
uses the term ‘control’ because of the system bounds that render immediate control im-
possible. Instead, regulation is defined as a specific, evolved arrangement of irritations. 
This requires interface systems that arrange different irritations (as action resources) in a 
way that renders operating and maintenance feasible. For smart factories, this also requires 
an HCI that can organize, foster and synergize knowledge from this irritation ecology.  

However, this systems theory perspective can structure the different areas that are at 
stake or matter when it comes to technological and organizational or economic design. 
Regarding HMI and other technological design issues, HMIs are used as a materialized 
systems-interface. While this theoretical perspective will depict anything as inter-systemic 
irritations, HMI can take into account insights about a system’s order by structuring its 
own knowledge- and decision-management in a way that is informed by identified system 
boundaries. This corresponds, for example, with required rule behavior, which addresses 
the physical plant as the plant’s systems environment, etc. Note that the software/hardware 
and algorithms behind an HMI can only work as second order cybernetics if their system 
environment is both computably commensurable and can observe its first order systems 
under its own system code. In other words, second order cybernetics software requires 
explicit and expectable objects. However, second order cybernetics can easily be attained 
by integrating human actors. This can even be enhanced through HMI or DSS technology 
that is specifically designed not as a second order, but as a second cybernetic entity of 
order and organization, providing feedback to its surrounding systems (which are environ-
mental towards the HMI itself) and shaping irritations in terms of translation by supple-
menting semantic interaction homeostasis, i.e. by identifying signals and interventions, or 
means and results. As a constructive act within itself, systems theory analysis reflects the 
engineers’ own adaptation towards their use-cases and technologies, thus integrating con-
structive reflection into the theoretical framework of design: taking into account system 
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functions and bounds without mistaking it for the differentiation of explicit and implicit 
data, knowledge, processes, structures, etc.  

4.2 Tacit knowledge beyond explicity 

The role of tacit knowledge for social science and also engineering purposes already has 
been highlighted above. However, this is a specific, elaborated social theory account, 
known as ‘practice theory’ which tries to resemble and understand social events and con-
tinuities as a result of incorporated knowledge and routines, bodies and their (physical) 
environment. Hence, we will begin with an illustration of how focusing on a corporal di-
mension works as a social science epistemology. After briefly describing the concept of 
tacit knowledge and its relation to routines, rules and explicit knowledge, we will elaborate 
on the tacit knowledge we found during our empirical research and which conclusions can 
be drawn by using the lenses of practice theory. 

In contrast to engineering that is informed by ergonomics or cognitive science [15], 
sociologists make use of the more radical concept of implicit knowledge. While the engi-
neering of knowledge modelling and knowledge-driven data mining understands implicit 
knowledge as proto-explicit knowledge hidden in someone’s mind, the sociology of prac-
tice labels this hidden knowledge, which yet has to be elicited, as an explicit one. Engi-
neers thus transform their not-yet-explicit knowledge into explicit knowledge using meth-
ods which only use knowledge-orientated protocols and are designed to literally make 
respondents tell what they think which highlights the boundaries between explicit and im-
plicit knowledge. Such methods suffer from the fact that respondents usually cannot do 
their work or answer that way because they do not actually think consciously about what 
they do and are thus furtherly strained by thinking about what they might think while doing 
their work. What is easily mistaken for implicit knowledge of a practice is rather explicit 
knowledge that is reconstructed in hindsight (as most thoughts are anyway); the actual 
tacit knowledge of a practice is in its actual process and gets partially lost during its re-
constructive explication. 

Praxeological social theory tackle this issue by differentiating knowledge in terms of 
its form: can it be transmitted through textual media? If not, it is implicit or tacit 
knowledge. It is knowledge that is completely dissolved in unconscious bodily practices 
or in emergent behavior patterns (e.g. how we use our native language), or that is generally 
explicable but cannot be learned by using its explicit form (e.g. you cannot learn to ride a 
bike by merely observing it or reading a book about it) [16]. Since engineering is accus-
tomed to processing explicit data, which often can be easily quantified or brought into 
clear logi(sti)c schemes, there is, quite frankly, a whole new world of knowledge out there.  

Tacit knowledge can be elicited by qualitative observations and techniques of praxis 
immersion. While latent, emergent interaction patterns might be comprehended through 
mere long-term observations, some tacit knowledge might require a rather detailed, vide-
ographically supported method. Furthermore, some knowledge even to be elicited through 
participation in the practices which are studied. A large set of methodological suggestions 
and readjustments of perspective within sociology deals with eliciting, analyzing and in-
terpreting tacit knowledge for empirical science purposes [17]. Therefore, HMI for oper-
ators in smart factories would benefit from such qualitative research. Socio-scientifically 
inspired qualitative research might lack objectivity and generalizability, but it can never-
theless make a significant difference in the quality of technology design. 
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However, tacit knowledge is ubiquitous and can be taken into account for all kinds of 
purposes. Any explicit knowledge requires whole sets of tacit knowledges, like grammar 
or an understanding of specific terminology. Much explicit knowledge is already contex-
tualized and therefore is not regarded as involving tacit knowledge and can be taken for 
granted. When it comes to contextual practice, however, tacit knowledge is much more 
significant and visible (since it requires specific incorporated knowledge that might not be 
shared). This especially concerns rule-based practices like checking a machine’s condition 
and being able to focus on particular, distinct features. Following this relation of tacit and 
explicit knowledge, acquiring tacit body knowledge can, indeed, be supported by explicit 
knowledge provisions. It might be required to present this explicit support in media that is 
not text-based, like videos or physical support (from a teacher or trainer). It is worth noting 
that learning and training tacit knowledge can be illustrated and investigated, again, by 
qualitative research. Therefore, for the commissioned learning center and training scenar-
ios, we suggested a relearning center that would learn from its own practice-objective 
relations and their developments. 

As we have discussed in the above section on our empirical findings, particularity is 
stressed and narratively constructed by operators whenever it comes to the application of 
tacit knowledge. With their particularity narrative, they can address those unspeakable 
things which defy plain explication. Since those particularized contents systematically fall 
out of the methodological scope of classic knowledge acquisition, the indicated content is 
structurally missed. It is important to note that not all tacit knowledge is indicated by com-
munication or significant events or phenomena. Sometimes tacit knowledge has to be dug 
out of all the obviousness within a field. Actually, the indication of narrative self-descrip-
tion by particularization is kind of a field-specific situation, and in this specific case it 
might even lead to the most significant issues of practical knowledge. However, a lot more 
can be extracted from the field by observation methods or video analysis (if possible). The 
engineering differentiation of explicit and implicit knowledge is orientated towards ex-
plicit knowledge because engineering is focused on use cases. However, strong research 
on a field’s tacit knowledge might not only contribute to positive technological develop-
ments but might also render observable complementary problem cases that indicate trans-
intentional, perturbing or irritating disturbances that result from the use cases’ positivity. 
For example, physical interfaces like smart glasses might interfere with safety require-
ments for wearing helmets, or be generally inappropriate if performing maintenance also 
requires dirty and rough work that might damage such equipment. We propose, in contrast, 
an additional problem-case focus that highlights not the positive technology but rather the 
frames of reference that situate and perturb socio-technical entities and connections. 

In conclusion, HMI and DSS design can profit from this perspective and complemen-
tary research. Some content, like rules, can be put into the knowledge- and rule-organizing 
structure of the DSS, and some issues might be even capable of ordinal processing. And 
even beyond that, social sciences can highlight the expertise beyond explicit knowledge 
and help to think of an HMI and DSS that is able to synergize an operator’s particular 
experience and further enhance their system regulation skills by providing feedback in the 
form of successful and handy solutions (e.g. applying a recommender system). Or, vice 
versa, an HMI and DSS would be able to warn of reported intuitive deceptions. Socio-
scientifically informed research on tacit knowledge can also be applied for the purpose of 
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automatization. Tacit knowledge not only takes additional, complementary data into ac-
count, it also reveals the complexity of such practices that seem to be simple routines, and 
it can thus contribute to modeling processes for automatization purposes. [18] 

4.3 Conceptualizing human-machine agency 

In this section we will introduce the theoretical account of ‘agency’ to better understand 
human-machine interaction. We will begin with an basic introduction of Actor Network 
Theory (ANT) and pragmatism (as it is applied by social theory). Since these social theo-
ries can appear to be counterintuitive, we will offer typical examples that highlight their 
analytical and interpretative value. We will then integrate our empirical findings into this 
theoretical account and furthermore conclude with a synthesis of the social theory ac-
counts chosen for this study. [19] 

This last sub-section reflects on the common conception of agency, of capabilities of 
being active or passive. HMI engineering has found that HMI software is not a mere tool 
which simply enhances its users’ capabilities, but rather shapes its users’ behavior and 
thus it can sometimes be risky if human actors do not correct machine errors [20]. Never-
theless, there is a theoretical perspective missing that can systematize these insights be-
yond mere empirical observations. There are several theories which focus their perspective 
on the issue of action networks, i.e. the interconnected entities which enable the whole 
network to act since no single entity would be able to act (for further illustration: imagine 
that, if you were the only thing that existed, there would be nothing to towards which you 
could possibly act). Although it is some decades old now, ANT [21] is still being discussed 
and has been further developed by many authors [22]. A similar, much older theoretical 
approach had been developed pragmatist philosophy [23].  

As engineering usually focuses on use-cases, its tool-conception of technology affirms 
the common structure of activity and passivity. Insofar as human actors are regarded as 
detached entities who are just using technological tools, this was at least discipline-intrin-
sically self-sufficient. However, engineering is increasingly taking into account research 
on humans themselves. Humans become objects themselves when it comes to technolog-
ical design and development. Cognitive science, ergonomics and psychology have restruc-
tured our conception of humans within engineering and thus require an appropriate theory 
that makes it possible to overcome the classical differentiation between tools and users, 
passivity and activity. And emerging engineering fields like human-centered software de-
velopment prove that demand of a sociologically supplemented knowledge acquisition. 

Agency is the result of those very difficult networks. These networks are no simple 
condition of action, but they are intersections of interplay and, in terms of systems theory, 
accountable as actions. Things also behave in correspondence with each other. There is no 
so-called “reflex arc”, i.e. the hypothesis that a stimulus, the cognitive processing of a 
stimulus and a response were subsequently ordered and distinct phases of action of behav-
ior. Rather it is a matter of being a sensorimotor nexus [24] that integrates the perceived 
environment into the organism. You can find therein the behavioral description of a cy-
bernetic conception of human action once again. As described above, stability within com-
plex practices exclusively derives from second-order cybernetics that can organize vibrant 
irritations. Since objective environments react depending on an organism’s actions, this 
also goes the other way around. This means that meaning is defined as, first of all, a direct 



32 Social Science Contributions to Engineering Projects 

link between perception, conduct and behavior. If one encounters an emergency, one usu-
ally reacts way before one recognizes what is going on, and this is an indispensable feature, 
in terms of evolution.  

This also touches on issues of social order. Hence, social order might be taken into 
account in HMI design. There are identifications of situations, of sets of stimuli and re-
sponses (which are situationally identical) that are taken for granted or as inevitable. As a 
result, deviance requires high cognitive effort (like acting weird on purpose). This is an 
important fact which was already stated by Durkheim [25] and concerns issues of respon-
sibility, behavior control and raising consciousness.  

However, a stimulus already requires sensorimotor sensitivity. Perceiving something, 
e.g. focusing the eyes, is no mere sensory task, but a task of motoric adjustment. The 
detection of a significant phenomenon (e.g. a threat) requires and involves specific, bodily 
conduct.  

The important fact and lesson of this theoretical conceptualization is that those things 
we usually discuss as explicit knowledge (e.g. feelings, intentions, reasons, meanings) are 
not additional intermediators of stimuli and responses but are operationally identical. This 
perspective can be hard to grasp since this operational identity is separated in analytical 
reconstruction. This is what we address as conscious thought. We can, for example, flee 
spontaneously from a fire, but we will intellectually separate our motives, movements and 
means in retrospect. Thus, reflexive and practical thought is operationally separated, a fact 
that must be taken into account for scenarios that combine practical routines and mindful 
intervention. 

However, there is an analytical meaning in this active-passive conception which 
stresses the role of motives and goals: active actors have goals while passive actors have 
none. Passive actors are therefore very predictable since they do not decide on or rearrange 
stimuli and responses (which are themselves also stimuli just as stimuli are at the same 
time also responses). Thereby, passive actors seem qualified as means. Nevertheless, 
within agency networks, goals and ends might be identified, but they do not actually con-
tribute to a plain, objective description of events. Specifically, they might play a role but 
are superfluous regarding effective outcomes and can even lead in such detailed descrip-
tions to infinite regressions of motives. A common example from ANT [26] is cars, which 
feature the security measure that they can only be driven if the seatbelts are fastened. In 
this scenario, the primary motive for buckling up before driving is the motivation to drive 
itself, while safety is its actual outcome. Such planned networks can nonetheless be ma-
nipulated, e.g. one could put the seatbelt behind one’s back, but this would not really pay 
off and, furthermore, it indicates that there are other actors participating, like discourses 
of law, law enforcement and security. However, safety is no arbitrary outcome since some 
engineers have designed the car that way. Again, their motivation might nonetheless de-
rive from legal prescriptions, economic benefits or specific engineering discourses. Legal 
measures might be mere reactions to faster driving cars. This development, again, can be 
identified as an effect of economic necessities and then be interpreted as a result of capi-
talism, which is, again, again (sic!) a result of necessities within a growing structure of 
work and goods distribution, and so on and so forth. Some technology might seem to have 
a specific goal and, in the end, appear to be the result of the motivation of some graduate 
students to get their PhDs. 

In conclusion, this further illustrates the sociological concept of tacit knowledge, as it 
is beyond explicit reflection or consciousness, rendering any action and practice possible 
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and feasible at all. Thus, our chosen theoretical accounts can be integrated. We understand 
tacit knowledge better when we follow the concept of distributed, synergetic agency and 
comprehend the adjustment of behavior and thought through cybernetic complexes and 
nexuses. For example, when we want to remember a thing, we just decide to do so (even 
though we are used to this image) but have to write a note in our calendars or knot a 
handkerchief since our whole self-control is not an immediate capacity but a strategical 
effort in arranging our own environment, rendering likely those (re)actions which we de-
sire. Although quite different social theories, we can present the sensorimotor actor-net-
works as a certain synthesis of the social theories introduced above. Systems theory can 
be taken into account for the infrastructure and logistics of agency correspond with the 
inter-systemic irritations between any system and its environment: there is no general, 
central point of structure or meaning but a vibrant complex of practices and events that 
are less describable in terms of control but in terms of regulation, resilience and homeo-
stasis. 

Consequently, HMI is a huge part of human machine cooperation, and such an onto-
logically symmetrical perspective, as depicted in this section, can help to understand the 
agency that results from human machine interaction and can thus inspire HMI and DSS 
design considerations with ethnographic insights, contemplation and immersion [27]. For 
IMPROVE, we therefore delivered a qualitative methodological toolbox that grants access 
to structures of tacit knowledge and the difficult inter-reactions in HCI scenarios. Again, 
we cannot produce general knowledge for any (smart) industry scenario, but generic tools 
and strategies to handle each case in particular. The theoretical and disciplinary perspec-
tive we offered can, thus far, only provide general remarks on the design of HMI and DSS 
infrastructures since they have to reflect symmetrical agency: the DSS  has to listen and 
to speak as well; like operators learn to use an HMI, an HMI has to learn to be used (or to 
use) operators. Since this also corresponds to the postulated particularity of operator work 
culture, these are initial, general instructions deriving from our research and reflection. A 
smart factory DSS must learn from situations and its operators and organize and synergize 
given content. A smart HMI and DSS must  be coded counterintuitively, it has to produce 
vibrant dynamics that are by necessity reduced by the particular, practical relation between 
device and operator. Simply put: It has to start making ‘stupid’ requests because clever 
software is set up, but a smart industry setup has to follow the particular interreactions of 
a particular individual in a particular environment. Standardization cannot synergize this 
particularity without erasing it. Hence, it has to be the consequence of operating, not its 
prerequisite. This way, by amplifying the required particularity of particular environ-
ments, systems and scenarios can, in the long run, become a viable way for further stand-
ardization if there are smart digital infrastructures that can assess, construct and dissemi-
nate collective operating knowledges and behavioral patterns. 

HMI can restructure this set-up and smooth the transition from traditional to smart in-
dustry. HMI and smartification affect behaviour and perceptions, and both organize the 
interaction between operator and plant. If the HMI contains a DSS that offers not only 
knowledge and suggestions but learns from the dynamic interaction triangle between 
plant, operator and interface, smartification changes can turn a high-risk challenge to a 
form of incremental progress. This is an opportunity to take systems theory into account 
and to order cases, databases and other informative or instructive notes according to the 
identified systems and environments. Furthermore, it is possible to analytically separate 
tacit knowledge from complex, semi-implicit rule knowledge. That way, DSSs are able to 
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reduce the over-determination of case structures: incidences can be differentiated and 
knowledge organized by the skills required, according to the identified systemic areas. If 
the physical plant environment interferes with the formal system, HCI is sufficient to re-
solve this loss of homeostasis. But operators can also enhance the HMI’s knowledge or-
ganization (and can enhance high-tech interfaces fed with real-time data) and act as appli-
cators and logisticians of tacit knowledge practices. With most HMI in smart factories, 
mechanical adjustments such as adjusting a V-belt, which required almost tacit body skills, 
were replaced by interfaces that represent machine movements and statuses through dis-
tinct, yet rather abstract, numbers. While this is a very good basis for further automatiza-
tion, HMI should be designed in a way that makes it possible for operators to handle those 
issues that are beyond numbers or where it would be inappropriate to treat issues in a 
forceful, formalized way. 

5 Summary and outlook 

Summing up, we have introduced the specific perspectives, capacities and strategies of 
social science researchers. We have then presented our own involvement with the 
IMPROVE project. In the following sections, we illustrated our central empirical findings 
and created accounts and interpretations for them by means of social theory which con-
sisted of three different theoretical accounts: systems, practice and agency. We concluded 
the last section with an integrative synthesis of these accounts, implying first instructive 
suggestions that could be distilled from our analysis. 

We have depicted our findings concerning socio-technical arrangements within smarti-
fied industry. We began by focusing especially on the interplay between operators and 
HMI, and thus identified those environmental connections that are beyond a formal tech-
nological scope and which are located in social areas. Beyond basic environmental factors 
like climate, market, batch and social norms and organizational bureaucracy, the physical 
plant is also part of the plant’s environment with regard to its technologically purified 
model. 

We then sketched the application of three exemplary social theory perspectives to en-
gineering objects and objectives and thereby demonstrated how they can contribute to en-
gineering assignments and why they are appropriate candidates for interdisciplinary re-
search projects. The concept of tacit knowledge, the practical body knowledge that lies 
beyond textual explicity and consciousness, can contribute new fields of knowledge to 
research concerning HMI design, knowledge models and the ergonomics of technological 
fields. Systems theory provides a particular perspective that makes it possible to system-
atically differentiate the factors of a plant’s model that lie beyond proper formalization. It 
is even possible to use a DSS to categorize and synergistically integrate operating cases. 
The symmetrical, pragmatistic perspective of ANT is an appropriate way of thinking 
through HMI design since it can respect the interplay between operators and software and 
understand interaction and coproduced agency, which is, again, a way of integrating tacit 
knowledge in the technological design. Eventually, we drew connections between our ob-
servations and insights into operators’ work culture. 

With this paper, we have illustrated the capacity of the social sciences to contribute to 
engineering purposes, especially concerning HMI development. We have done this by ap-
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plying a socio-scientific perspective in order to identify the described socio-technical ar-
rangements and by cultivating a social theory-inspired perspective on the data and tech-
nological assignments. In doing so, we ignored thus far implicated, practical method is-
sues. However, in order to successfully design an interdisciplinary project that combines 
engineering and the social sciences, and to be able to take tacit knowledge into account 
and make full use of social theory’s potential, methodological readjustments and advance-
ments are required. Since sociologists of practice are already focused on tacit knowledge, 
they have already developed a battery of methods like technography [28], specifically de-
tailed interview interpretations or breaching experiments. Yet, those methods must be re-
interpreted as particular tools for socio-scientifically informed engineering research. Also, 
issues of and strategies for field access have to be discussed and revisited. Hence, as an 
outlook, we want to suggest further methodological considerations and practical, tentative 
experiments in the form of interdisciplinary projects between the social sciences and en-
gineering. 
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Abstract. Model-based diagnosis is a commonly used approach to iden-
tify anomalies and root causes within cyber-physical production systems
(CPPS) through the use of models, which are often times manually cre-
ated by experts. However, manual modelling takes a lot of effort and is
not suitable for today’s fast-changing systems. Today, the large amount
of sensor data provided by modern plants enables data-driven solutions
where models are learned from the systems data, significantly reducing the
manual modelling efforts. This enables tasks such as condition monitoring
where anomalies are detected automatically, giving operators the chance
to restore the plant to a working state before production losses occur. The
choice of the model depends on a couple of factors, one of which is the type
of the available signals. Modern CPPS are usually hybrid systems contain-
ing both binary and real-valued signals. Hybrid timed automata are one
type of model which separate the systems behaviour into different modes
through discrete events which are for example created from binary signals
of the plant or through real-valued signal thresholds, defined by experts.
However, binary signals or expert knowledge to generate the much needed
discrete events are not always available from the plant and automata can
not be learned. The unsupervised, non-parametric approach presented and
evaluated in this paper uses self-organizing maps and watershed transforma-
tions to allow the use of hybrid timed automata on data where learning of
automata was not possible before. Furthermore, the results of the algorithm
are tested on several data sets.

1 Introduction

Increasing product variety, product complexity and pressure for efficiency in a
distributed and global production chain cause production systems to evolve rapidly:
they become modular, can be parameterized and contain a growing set of sensors
[1].

In order to enable European SMEs to face these challenges and to utilize new
technical possibilities, the Horizon2020 project IMPROVE is aimed at develop-
ing user support functions in terms of self-diagnosis (i.e. condition monitoring,
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predictive-maintenance) and self-optimization (e.g. energy optimization, output op-
timization).

Models can be constructed manually by an expert, but this is difficult, costly and
time consuming in today’s complex and evolving production plants [21]. Instead of
only relying on human expertise and additional engineering steps formalizing the
necessary knowledge, the tasks stated above will be taken on in a data-driven way
[14] where models are learned automatically from the data. For anomaly detection,
the live data from the plant is compared to the predictions of the learned model
and deviations from the normal behaviour are classified as anomalous.

The type of model depends on a variety of conditions such as available signals,
the task of the model and the overall nature of the system. Modern cyber-physical
production systems (CPPS) usually are hybrid systems, meaning they comprise
both binary and real-valued signals. In general, these dynamic systems are state
based, for example the system’s state is defined by its current and previous binary
control signals, and the actions taken out are time dependent [13].

One approach to perform anomaly detection in such systems is to use hybrid
timed automata [11] as a normal behaviour model which utilize discrete events to
learn the system’s normal behaviour. These events often cause so called mode or
state changes in industrial plants, e.g. conveyor is running or heater is on, which
result in different behaviour of the system in each mode, as shown in Figure 1.
Changes in the binary control and sensor signal values of the system can be utilized
as discrete events directly. Another way to get discrete events is to set thresholds
on continuous signals but this requires additional expert knowledge.

Hybrid timed automata are well suited to learn the normal behaviour in terms
of the modes/states, transitions and corresponding timings from data in an unsu-
pervised manner by using the aforementioned binary control signals of a system.
The real-valued signals are processed within the states using other types of mod-
els such as regression models or models which reduce the dimensionality of the
real-valued data. An example for this is the nearest-neighbor principal component
analysis (NNPCA) [5] which is used for the experiments in section 4. The NNPCA
was chosen because it is used frequently in a variety of research projects in our
institute.

Fig. 1. An example of a hybrid automaton for a simple heating system with two states.
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Unfortunately, expert knowledge about signal thresholds is almost never avail-
able and binary sensor signals are also not always available or not meaningful.
This occurs for example when data is recorded using internal trace functionalities
from drive controllers, which offer very high sampling rates but lack knowledge of
variables from the programmable logic controller (PLC).

In this paper we present an unsupervised, non parametric approach to learn
hybrid timed automata in absence of discrete events. The approach uses self-
organizing maps (SOM) and watershed transformations to extract modes and gen-
erate discrete events in an unsupervised manner using only real-valued signals. The
generated events can then used to capture the normal behaviour of the system by
learning hybrid timed automata on data where they were not applicable before.
The learned hybrid automaton is then used for anomaly detection in the real-
valued signal values and in the time domain by analysing the transitions between
the automaton’s states.

The contents of this paper are structured as follows: section 2 introduces the
existing modelling formalisms which are then combined in section 3 to generate
discrete events from real-valued signals in an unsupervised manner. Experimental
results from three different data sets, one artificial and two real world ones, are
given in section 4. Finally, the paper is concluded in section 5.

2 Methodologies

2.1 Hybrid Timed Automata

Hybrid timed automata have proven to be a great tool to learn the normal be-
haviour of a system and detect deviations from it. Discrete events are required to
learn an automaton. These events often cause mode changes in the system and
the timing of these events is an important indicator for the health of the system.
Hybrid timed automata are used to separate these modes, learn the transitions and
timing between them and model the behaviour of the real-valued signals for each
of the modes or states in the automaton.

An easy approach to obtain discrete events can be directly extracted from
changes in the binary control and sensor signals of the system. It is also possible to
obtain discrete events through thresholds for real-valued signals such as tempera-
ture <19◦C [7]. However, setting the thresholds and combinations of conditions for
the continuous signals requires expert knowledge which is usually not available for
real world automation systems. For unsupervised learning of these automata only
binary control signals are used to obtain the discrete events, such as HeaterOn =
true. Algorithms such as the online timed automaton learning algorithm (OTALA)
[9] and its hybrid extension can work in an online, unsupervised manner, and do
not require additional expert knowledge.

A hybrid automaton generated by the aforementioned algorithm can be defined
as described in Definition 1.

Definition 1. A hybrid timed, probabilistic automaton is a tuple A = (S, s0, Σ, T ,
δ, P, θ), where
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– S is a finite set of states where s ∈ S.
– s0 is the initial state which can be given by the systems state at the start of the

training.
– Σ is the set of discrete events. Events a ∈ Σ is linked to the transitions of the

automaton.
– T is the set of transitions with t ∈ T and t = (s, a, s′)), s, s′ ∈ S are source

and destination state, a ∈ Σ is the trigger event of the transition.
– The timing constraint δ : T → I assigns a time interval to a transition t ∈ T ,

where I is a set of time intervals. The time here usually refers to the elapsed
time since the last event occurred.

– P is a set of probabilities: for each transition t ∈ T probability p ∈ P is calcu-
lated.

– θs∈S describes a model for each state s ∈ S which captures the behaviour of
the real valued signals. Real valued signals are not captured by the discrete
part of the automaton. These state models θs∈S are learned for each state of
the automaton using other models such as linear regression, decision trees and
others, such as the nearest neighbour principal component analysis (NNPCA)
used in section 4 of this paper.

The learned automaton can then be used to detect a variety of different classes
of anomalies. This can for example be done using the anomaly detection algorithm
(ANODA) [10] which can detect the following types of anomalies:

– Unknown event / Wrong event sequence: an event occurred which was
not observed in the current state.

– Timing error: a transition occurred outside of the learned time bounds.
– State remaining error: when more time passed than for the latest event and

the state is not a final state, then we have a state remaining error.
– Probability error: the probabilities of transitions for the new data are cal-

culated and compared to the previously learned probabilities and an error is
generated when deviations are too large.

– Continuous error: for each state, an additional anomaly detection for the
real-valued signals can be performed using the internal state models.

2.2 Self-Organizing Map

The self-organizing map (SOM), also referred to as self-organizing feature map or
kohonen network, is a neural network that can be associated with vector quantiza-
tion, visualization and clustering but it can be used as an approach for non-linear,
implicit dimensionality reduction [22]. The reduction is performed in a qualitative,
implicit way. SOM’s were chosen over classic clustering techniques due to their
ability to find and visualize clusters in high dimensional data, which is often dif-
ficult with traditional clustering techniques [18]. A SOM consists of a collection
of neurons which are connected in a topological arrangement which is usually a
two dimensional rectangular or hexagonal grid. The input data is mapped to the
neurons forming the SOM. Each neuron is essentially a weight vector of original
dimensionality.
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Definition 2. the self-organizing map SOM = (M,G, d) forms a topological map-
ping of an input space O ⊂ R

m, m ∈ N and consist of

– a set of neurons M .
– each neuron n ∈ M has a weight vector wn ∈ R

m,m ∈ N.
– G is usually a two-dimensional rectangular or hexagonal lattice in which the

neurons n ∈ M are arranged. Toroidal versions of these topologies are also
common.

– d(x,y) is the distance measure to calculate the distance between two vectors
x and y which can for example be weight vectors and/or vectors in the input
space. Usually, the euclidean distance is used but other measures, such as the
mahalanobis distance, can be used.

– an input sample oi ∈ R
m, i ∈ N is mapped to the SOM through its best matching

unit (BMU). The BMU is given by bmu(oi) = argmink∈M d(oi,wk)

One way to learn a SOM from data is a random batch training approach: The
initial values of the neuron’s weight vectors for the training can be randomly ini-
tialized or sampled from the training data. All samples from the training data are
presented to the algorithm within one epoch. A best matching unit (BMU) is calcu-
lated for each input sample from the training data by finding the neuron which has
the smallest distance to the sample. The BMU and all of its neighbouring neurons,
assigned through the topology and neighbourhood radius, are shifted towards the
input sample. Both the neighbourhood radius and strength of the shift decrease
over time. The training stops after a chosen amount of epochs.

Each neuron of the SOM represents a part of the training data. Areas in the
training input space with few examples are represented by few neurons of the SOM
while dense areas in the input space are represented by a larger number of neurons.

The unified distance matrix (u-matrix) [19] allows a three-dimensional visual
identification of clusters contained in the SOM. It calculates the sum of distances
to neighbouring neurons according to the SOM’s topology and visualizes clusters
contained in the, usually high dimensional, training data. The neurons located on
the borders of the non-toroidal SOM have fewer neighbours than the remaining
neurons. Therefore, the summed distance is divided by the number of neighbours
of the corresponding neuron to account for the different amounts of neighbouring
neurons. The X and Y coordinates of the neurons represent the first two dimensions.
The third dimension is given by the average distance to neighbouring neurons as
in definition 3.

It can be visualized directly in 3D or in 2D using a color gradient as shown in
Figure 2.

Definition 3. for each neuron n ∈ M and its associated weight vector wn, the u-
matrix height is given by U(n) = 1

|NN (n,G)|
∑

k∈NN (n,G) d(wn,wk), where NN (n,G)

is the set of neighbouring neurons of n defined by grid G and d(x, y) is the distance
used in the SOM algorithm.

The u-matrix representation illustrates why SOM’s were chosen: SOM’s tend
to keep neurons with similar signal weights closely together. This results in a to-



42 Enable learning of HTA in Absence of Discrete Events through SOMs

(a) Colored 2D (b) 3D

Fig. 2. Different u-matrix visualizations of a 120x120 SOM.

pographic landscape with valleys and ridges. Valleys represent clusters which are
separated by the ridges.

Other works such as [8], [16] and [3] already performed anomaly detection on
different processes by tracking the trajectory of the working point on the SOM:
the observations are mapped to their corresponding BMU’s as soon as they are
recorded. Over time, the path or trajectory of the BMU can be observed and
deviations from the known path indicate anomalous behaviour.

2.3 Watershed Transformation

The u-matrix representation allows visual identification of clusters in high dimen-
sional data sets. This is easy to do for humans, but more difficult for a machine.
Since the u-matrix representation can be plotted as an image, clustering algorithms
from the image processing domain, such as the watershed transformation [12], can
be used on the u-matrix representation of a SOM to identify the clusters in a
mathematical way.

This works analogous to rain falling on top of the u-matrix. The water runs from
higher regions to the lower regions and consequently flooding the basins. When the
water level gets high enough so two basins merge, a ridge forms which separates
them.

The watershed transformation dissects the u-matrix into different clusters, sepa-
rated by the so-called watershed lines. Watershed lines separate the different basins
and do not belong to any of the clusters. The basins can be interpreted as stationary
process phases while the watershed lines represent transient process phases [6].

The implementation used here is the Vincent-Soille watershed algorithm which
performs the watershed transformation in a non-recursive manner [20]. The sen-
sitivity of the algorithm can be adjusted by setting a number of levels which in
turn influences the number of final clusters found. Figure 3 shows examples using
different levels on the same u-matrix.
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(a) 4 level, 16 cluster (b) 6 level, 197 cluster

Fig. 3. Watershed transformations of a u-matrix.

In the end, we receive a mapping for each neuron of the map to its corresponding
cluster (Definition 4).

Definition 4. the watershed transformation maps each neuron n ∈ M to a cluster
c, with C being a set of clusters and c = [0, |C| − 1] ∈ N.

3 Learning hybrid timed automata without discrete events

In order to learn hybrid timed automata, without binary control signals and without
expert knowledge about thresholds for real-valued signals, it is necessary to derive
the discrete events using an alternative way. For complex systems, the events can
also be related to combinations of different real-valued signal values. Here, SOMs
are used as a preprocessing step to extract the different modes of the system in an
unsupervised manner.

As mentioned before, the trajectory of the BMU can be tracked and recorded.
An automaton can be used to learn and track the trajectory of the BMU’s. This
can result in a large number of states in the automaton and many of the states
might not contain enough data to learn a model from the data within the state.
In this paper, we use the modes extracted from the SOM’s u-matrix watershed
transformation to group the data from the different modes and ultimately reduce
the number of states of the automaton.

This section describes the generation of discrete events using SOMs. Figure 4
shows the general steps of the presented approach. A SOM is learned from the input
data and the transitions between emerging clusters or rather system modes are used
to generate discrete events. This is essentially a preprocessing procedure which
allows learning hybrid timed automata in case the input data does not contain
discrete events. After events are generated an automaton can be learned and then
used to detect anomalies within the real-valued signal values and also within the
timing and probabilities of the events.
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Fig. 4. General steps of the presented algorithm.

First, real-valued signals are recorded during normal operation of the plant to
generate dataset O which consists of many obervations o ∈ O and represents the
input space of the model. The data can be seen as multivariate time series and each
observation is equipped with a timestamp which is used when the automaton is
learned. Then, the SOM-Discretization algorithm (Algorithm 1) generates discrete
events for the data to allow learning of hybrid timed automata.

A SOM is trained on the recorded normal behaviour data (step 3). The size of
the SOM is automatically calculated according to [17], where the the number of
neurons |M | ≈ 5

√
N with N being the number of observations. The ratio of the side

lengths is the ratio of the two largest eigenvalues of the data’s covariance matrix. A
normalization should generally be done before the SOM training but this depends
on the input space and is therefore optional (step 2).

The SOM’s u-matrix is calculated (step 4) and then clustered using the water-
shed transformation (step 5). The watershed levels are adjusted so the final cluster
count is close to the shorter side length of the SOM. This approach seemed to
work on all of the tested datasets (section 4 but this can probably be improved in
future works. Each basin represents a stationary process phase and gets a unique
number i = [0, |C| − 1], i ∈ N for identification. The watershed lines are transient
process phase all receive a negative identification number to distinguish them from
the stationary process phases. Observations mapped to transient process phases,
the borders left after the watershed transformation, are assigned to the same clus-
ter as the previous observation and therefore receive the same event vector as the
previous observation (step 12). The event vector for cluster c ∈ C in step 10 is
created such that:

v(c) =

(
v1, v2, ..., vi, ..., v|C|−1

∣∣∣∣vi =
{
1 if i=c
0 else

)

The event vector is then concatenated with the original signal vector in step 14.
The data now contain binary signals which are then interpreted as discrete events
by hybrid automaton learning algorithms such as the hybrid OTALA used in this
paper.

The anomaly detection can be performed either offline or online. Algorithm 2
shows the procedure for an online anomaly detection, where each observation o is
tested as soon as it is received. When normalization was used for the training each
new observation must also be normalized based on the normalization parameters



Enable learning of HTA in Absence of Discrete Events through SOMs 45

Algorithm 1 Generation of discrete events

1: procedure SOM-Discretization(O)
2: O ← Normalise(O)
3: SOM ← TrainSom(O)
4: U ← U-Matrix(SOM)
5: C ← Watershed(U)
6: for all o ∈ O do
7: bmuo ← BMU(SOM, o)
8: co ← C(bmuo)
9: if co ≥ 0 then
10: vo ← CreateV(co)
11: else
12: vo ← vo−1

13: end if
14: p ← {vo, o}
15: end for
16: end procedure

calculated before (step 2). The best matching unit is calculated and linked to its
corresponding cluster (steps 3, 4). When the observation falls onto a transient pro-
cess phase it is assumed to be in the same cluster as the previous observation (step
8). When mapped to a stationary process phase, the discrete event signal vector is
generated and appended to the observation in steps 6 and 10. The observation is
then given to the ANODA algorithm to perform the anomaly detection using the
learned automaton.

Algorithm 2 Preprocessing for online anomaly detection

1: procedure SOM-Discretization-OnlineAD(o)
2: o ← Normalise(o)
3: bmuo ← BMU(SOM, o)
4: co ← C(bmu)
5: if co ≥ 0 then
6: vo ← CreateV(co)
7: else
8: vo ← vo−1

9: end if
10: o ← {vo, o}
11: return o
12: end procedure
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4 Experiments

This section presents experimental results of the presented approach using one
artificial and two real world data sets.

4.1 Artificial test data

We created an artificial dataset through a simple PLC application. The PLC moves
a virtual, linear SoftMotion [2] axis back and forth between two target positions.
The drive uses trapezoid ramps with limited speed and accelerations. The drive
related data from the software PLC are acquired through OPC-UA subscriptions
in a 100ms publishing interval.

The data contains three real-valued signals: target position, actual velocity and
actual speed. The training set contains 15 cycles, while the evaluation set contains
five normal and five anomalous cycles. Maximum acceleration and deceleration are
decreased during the anomalous cycles. An excerpt of the data is shown in Figure
5. The anomalies are labelled, to later evaluate the score for the anomaly detection.
All of the machine learning methods here work unsupervised and have no knowledge
about the labels.

Fig. 5. One normal (827-991) and one anomalous (992-1251) cycle, scaled to range [0,1].

The nearest-neighbor PCA (NNPCA) [4] was first used on the full training data
and then second as state-model for the hybrid automaton.

The data was reduced to two dimensions and then used for the anomaly de-
tection. The training observations provide the reference to calculate the distance
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for each evaluation observation. When the distance to the reduced training space
exceeds a certain threshold, the observation is considered anomalous. The thresh-
old is calculated using a mexican-hat wavelet, converting the distance to an error
probability [5].

Setting the threshold is not trivial and highly depends on the input data. A
100% threshold is good against false positives but also might be not sensitive enough
to find the true positives. Lowering the threshold usually increases the true positive
rate but at the risk of more false positives.

Figure 6 shows a plot of two-dimensional NNPCA learned from the normal
behaviour used as training data. The anomalies from the evaluation data are un-
known to the model and are shown here to visualize the separation between normal
and anomalous behaviour. A threshold of 25% was selected, so every observations
which gets a probability greater or equal to 25% of being anomalous is marked
anomalous. Even with this low threshold, not a single anomaly is found by the
NNPCA on the full dataset as the separation between normal and anomalous be-
haviour is not large enough to be found with the given threshold. Furthermore, the
NNPCA model does not include time in an explicit way and therefore detection of
anomalies in the time domain difficult or often not possible.

PCA

Normal Anomalous
-0.6 -0.4 -0.2  0  0.2  0.4  0.6

PC1

-0.4

-0.2

 0

 0.2

 0.4

P
C

2

Fig. 6. Plot of the full dataset in the two-dimensional PCA space. Only normal behaviour
is known to the learned model. Anomalies plotted to show the separation between normal
and anomalous.

Now, algorithm 1 is used to generate discrete events so the data can be separated
by a hybrid automaton. The automatic selection of parameters results in a SOM
with 24x10 neurons and 11 clusters as shown in Figure 7.
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Fig. 7. Clusters on the SOM. Grey areas mark transient process phases.

With this, a hybrid automaton is trained using the hybrid OTALA algorithm
and the NNPCA [5] as a state model with the exact same parameters as before.
The resulting automaton is shown in Figure 8. Behind each state stands the state
model from which two are shown in Figures 9a and 9b showing the separation of
the normal and anomalous behaviour.

1
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6

7

8

9
10

11

12

Fig. 8. The learned automaton with 12 states. State 1 is an initial state. Each cluster is
mapped to one state.

The presented approach for the event generation in preparation for automaton
learning calculates the necessary parameters from the training data as described
in section 3. The settings for the NNPCA within the states were kept identical
and the hybrid automaton achieves F1 measure of 97.53%, compared to the 0% F1
achieved by the NNPCA on the full dataset.
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(a) State 3
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(b) State 7

Fig. 9. Two state models from the automaton in Figure 8 showing the normal and mapped
anomalous behaviour.

Table 1 shows some more details about the scores. The automaton offers another
advantage: deviations in the timing and sequence of the system’s behaviour can now
be detected, which is not possible with the NNPCA alone.

4.2 High Rack Storage System

The High Rack Storage System or HRSS is a demonstrator from the SmartFactory-
OWL which transports wares between its different shelves. The data from the sys-
tem’s drives includes position, power and voltage signals to a total of 17 real-valued
signals, after removal of signals with zero-variance. The training data contains 107
cycles of the same transport operation. Evaluation data contains 113 cycles and
was generated by modifying the training cycles in different ways such as increasing
or decreasing one or multiple signals by different amounts (e.g. 20%), shortening of
cycles and inserting constant sequences. This artificially generated anomalies are
labelled and are used to calculate the scores of the anomaly detection.

The NNPCA reduces the data to 15 dimensions, keeping a variance coverage
of 99.85%. A 60% threshold for the anomaly detection, successfully identifies 35 of
the 7365 labelled anomalies resulting in an atrocious F1 score of 1.32%. The event
generation creates a 34x22 SOM resulting in 23 clusters which are then captured
by the automaton (Figure 10).

The automaton with the 15-dimensional NNPCA inside the states identifies
1794 true positives and reaches an F1 measure of 40.08% which is a drastic increase
to the full-dataset NNPCA. It is to be noted that the anomalies were generated
without respect to the overall dataset, so a 20% increase of a signal might not be
significantly different from the overall training data and therefore it is possible that
some of the anomalies are not significant enough compared to the whole dataset
and might not be detectable.
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Fig. 10. The learned automaton for the storage system.

4.3 Film-Spool Unwinder

The third dataset presented in this paper was recorded from the cutting unit of a
Vega shrink-wrap packer by OCME [15]. The machine groups loose bottles or cans
into set package sizes, wraps them in plastic film and then heat-shrinks the plastic
film to combine them into a package.

The drive controllers within the film cutting unit recorded chunks of data which
each contain 2048 observations using their built-in scope functionality at a 4ms res-
olution. Here, we only consider two signals from the film unwinder drive: actual
speed and lag error. 40 chunks were used for training and another 32 chunks were
used as evaluation data. The film spool depleted during the last cycles, so every
observation in the last 12 cycles was labelled anomalous. A dimensionality reduc-
tion is not necessary for two dimensions, but the NNPCA was still used to keep
the model consistent for the experiments presented here. The NNPCA on the full
dataset detected anomalous with an F1-measure of 18.63%. The automatically cal-
culated size of the SOM is 64x22 neurons resulting in the automaton shown in
Figure 11. The NNPCA on the full data and a selection of the 24 state models is
shown in Figure 12.

The absolute scores for this dataset have to be taken with a grain of salt be-
cause the anomalies are not labelled observation-perfect but a generous range of
observations was marked as anomalous. The F1 score for the anomaly detection
with the automaton reaches 60.00%, resulting in an increase of roughly 41% (Table
1) compared to the NNPCA on the full dataset.

5 Conclusion

This paper presented an unsupervised, non-parametric approach which allows ap-
plication of hybrid timed automata on data which do not allow their use due to a
lack of knowledge about discrete events which are needed to learn and use hybrid
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Fig. 11. Unwinder Automaton
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(a) PCA space of full data set
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(b) State 3
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(c) State 7
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(d) State 18

Fig. 12. PCA of the unwinder data (12a) and examples from the automaton states (12b,
12c, 12d).
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Table 1. Scores for different datasets and methods. Explanations can be found in the
corresponding sections.

Dataset Method TP TN FP FN ACC F1

4.1: Artificial NNPCA 0 991 0 1692 36.94% 0%
Automaton, NNPCA only 1568 990 1 124 95.34% 96.17%
Automaton, all errors 1621 980 11 71 96.94% 97.53%

4.2: HRSS NNPCA 35 15130 0 5239 74.32% 1.32%
Automaton, NNPCA only 1636 13503 1627 3638 74.20% 38.33%
Automaton, all errors 1794 13247 1883 3480 73.72% 40.08%

4.3: Unwinder NNPCA 2528 40926 34 22048 66.31% 18.63%
Automaton, NNPCA only 11340 37931 3029 13236 75.18% 58.24%
Automaton, all errors 11864 37851 3109 12712 75.86% 60.00%

timed automata. Hybrid automata are used for anomaly detection in the real-valued
signal values as well as in the time domain by analysing the transitions between
the states of the automaton.

The presented approach derives the different stationary and transient process
phases based on a system’s real-valued signals through the use of self-organizing
maps and watershed transformations. Also, all necessary parameters for the SOM
and watershed transformation are automatically estimated from data.

The discrete events generated from the transitions between the extracted pro-
cess phases are used to learn a hybrid timed automaton which in turn is used for
anomaly detection. The presented algorithms work offline during the learning phase
and can later be used online with live data from the plant. Further, the presented
algorithms are not linked to a specific automaton learning algorithm and can be
used as a preprocessing step prior to automaton learning.

The experiments in section 4 show results from three different datasets, two of
which come from real-world machines. The anomaly detection for real-valued sig-
nals through a model within the states of the learned hybrid automaton increases
the performance of the anomaly detection in comparison to the same model work-
ing with the same parameters on the full dataset. For all tested datasets, the
separation of modes through the automaton improves the scores for the anomaly
detection of the real-valued signals, without any additional tuning of parameters for
the anomaly detection. Furthermore, models such as the aforementioned NNPCA
or SOM’s do not model time in an explicit manner. The hybrid automaton adds
the explicit modelling of time for transitions between a system’s modes and conse-
quently enables the detection of anomalies which were not detectable before.
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Abstract. Modern Cyber-Physical Production Systems provide large
amounts of data such as sensor and control signals or configuration param-
eters. The available data enables unsupervised, data-driven solutions for
model-based anomaly detection and anomaly localization: models which
represent the normal behavior of the system are learned from data. Then,
live data from the system can be compared to the predictions of the model
to detect anomalies and perform anomaly localization. In this paper we
use self-organizing maps for the aforementioned tasks and evaluate the
presented methods on real-world systems.

1 Introduction

Modern Cyber-Physical Production Systems (CPPS) evolve rapidly, become mod-
ular, can be parameterized and contain increasingly more sensors due to increasing
product variety, product complexity and pressure for efficiency in a distributed
and globalized production chain they become modular, can be parameterized and
contain a growing set of sensors [1]. This also means it becomes more and more
difficult to monitor the systems. Human operators often struggle to diagnose faults
or anomalous behavior in the system in time, leading to system break down, unex-
pected downtime or degradation in product quality.

A common approach to detect the aforementioned scenarios is to construct
models for a given system and compare the predictions of the model to the real
system. Anomalous behavior is detected when the real system’s behavior deviates
from the model’s predictions. Manual construction of system models by experts is
usually time consuming, expensive and also difficult in today’s evolving complex
systems. Experts with the necessary knowledge are usually scarce and often times
some of the necessary knowledge is not available at all. Modern CPPS often provide
large amounts of data such as control signals, sensor signals and configuration
parameters [10]. This allows the use of data-driven methods: models are learned
from data and then used for various tasks such as anomaly detection and anomaly
localization.
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Live data from the system is compared to the predictions of the learned model.
Deviations from the normal behavior are classified as anomalous. Once anomalies
are found, the anomalous samples are presented to a reverse model to localize the
anomalies. This provides a starting point for plant operators and experts to restore
the system to normal working order, ideally before production losses occur.

In this paper we use self-organizing maps (SOM) to learn a systems normal
behavior in an unsupervised manner. The learned SOM’s are then used for both
anomaly detection and anomaly localization. The contents of this paper are struc-
tured as follows: First, section 2 explains the general concept of self-organizing
maps. Second, section 2.1 presents an approach to detect and localize anomalies
within the signal domain of a system. Third, section 2.3 introduces an approach
where timed automata are used to track the working point on top of the self-
organizing map in order to detect anomalies in the time domain. Furthermore, the
aforementioned approaches to anomaly detection and localization are applied and
explained on the Institute Industrial IT’s OPAK demonstrator [11] in section 3.
Section 4 presents the conclusion and future points of research.

2 Self-Organizing Map

The self-organizing map (SOM) [5], also referred to as self-organizing feature map or
Kohonen network, is a neural network that can be associated with vector quantiza-
tion, visualization and clustering but can also be used as an approach for non-linear,
implicit dimensionality reduction [17]. A SOM consists of a collection of neurons
which are connected in a topological arrangement which is usually a two dimen-
sional rectangular or hexagonal grid. The input data is mapped to the neurons
forming the SOM. Each neuron is essentially a weight vector of original dimension-
ality but provides additional information such as its coordinates within the grid. All
experiments in this paper use a two dimensional, non-toroidal rectangular lattice
and the Euclidean distance measure as shown in Definition 1.

Definition 1. The SOM = (M,G, d) forms a topological mapping of an input
space O ⊂ R

m, m ∈ N and consist of

– a set of neurons M .
– each neuron n ∈ M has a weight vector wn ∈ R

m,m ∈ N.
– G is a two-dimensional rectangular lattice in which the neurons n ∈ M are

arranged.
– d(x,y) is the distance measure to calculate the distance between two vectors

x and y which can for example be weight vectors and/or vectors in the input
space. The euclidean distance is used for all models in this paper.

– an input sample oi ∈ R
m, i ∈ N,m ∈ N is mapped to the SOM through its best

matching unit (BMU). The BMU is given by bmu(oi) = argminn∈M d(oi,wn)

One way to learn a SOM from data is a random batch training approach: the
initial values of the neuron’s weight vectors for the training can be randomly initial-
ized or sampled from the training data to provide a diverse starting point for the
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training process. Training takes place over a chosen amount of epochs. All samples
from the training data are presented to the algorithm within one epoch. A best
matching unit (BMU) is calculated for each input sample from the training data by
finding the neuron which has the smallest distance to the sample. The BMU and
all of its neighboring neurons, assigned through the topology and neighborhood
radius, are shifted towards the input sample (Figure 1). Both the size of the neigh-
borhood and strength of the shift decrease over time to help with convergence. In
the end, each neuron of the SOM represents a part of the training data. Areas in
the training input space with few examples are represented by few neurons of the
SOM while dense areas in the input space are represented by a larger number of
neurons. Usually, the number of neurons is chosen much smaller than the number
of samples in the training data, effectively discretizing and reducing the training
data to the most important samples.

Usually, the number of neurons is chosen much smaller than the number of
samples in the training data, effectively discretizing and reducing the training data
to the most important samples. The compact representation of the training data
provided by the SOM is used in section 2.1 to detect anomalies by calculating the
quantization error.

BMU

Neighbourhood

Oi

Fig. 1. Illustration of training procedure for a single sample.

The unified distance matrix (u-matrix) [14] of the SOM is great for visual
identification of clusters in high-dimensional data. The distance to neighboring
neurons according to the SOM’s topology is computed and plotted as an image:
the X and Y coordinates of the neurons represent the first two dimensions. The third
dimension is given by the sum of distances to neighboring neurons as in definition
2. It calculates the sum of distances to neighbouring neurons according to the
SOM’s topology and visualizes clusters contained in the, usually high dimensional,
training data. The neurons located on the borders of the non-toroidal SOM have
fewer neighbours than the remaining neurons. Therefore, the summed distance is
divided by the number of neighbours of the corresponding neuron to account for the
different amounts of neighbouring neurons. A color gradient can be used instead of
a third dimension as shown in Figure 3: valleys are represented by the color yellow,
indicating a low distance between neighboring neurons. Ridges are represented by
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the color red, indicating a high distance between neighboring neurons. The u-matrix
can be defined as follows in Definition 2.

Definition 2. for each neuron n ∈ M and its associated weight vector wn, the
u-matrix height is given by U(n) =

∑
k∈NN (n,G) d(wn,wk), where NN (n,G) is the

set of neighboring neurons of n defined by grid G and d(x, y) is the distance used
in the SOM algorithm.

The u-matrix representation illustrates why SOM’s were chosen: SOM’s tend
to keep neurons with similar signal weights closely together, which results in a
topographic landscape with valleys, where weights of neighbors are similar, and
ridges, where weights of neighbors are not similar. Valleys represent regions where
the contained neurons weight vectors are very similar. These valleys are separated
by ridges which mark transitions between the different feature spaces. In section
2.3 we further explore this matter to detect anomalies within the time domain.

2.1 Anomaly detection with quantization error

The SOM can be used to detect anomalies by calculating the quantization er-
ror: small errors below a threshold are considered normal, while errors above are
considered anomalous. Quantization error based approaches were already used for
tasks such as network monitoring [6] and anomaly detection in industrial processes
[12][3][13]. These works however, did not perform an anomaly localization and only
[13] used the quantization error as a measure for system degradation.

The quantization error (Definition 3) of each sample is calculated by mapping
it to the SOM to get its BMU. The distance of the sample to the BMU’s weight
vector is the quantization error.

Definition 3. Using the notation from definition 1, the quantization error qe of
an input sample oi ∈ R

m, i ∈ N is given by the distance of the input sample to its
BMU of the SOM: qe = d(oi, bmu(oi)).

The quantization errors for data that is not anomalous are usually greater than
0 due to the discretization of the SOM. A threshold for the quantization error above
which an input sample is classified as anomalous is required. Manual selection of
the threshold works but is usually unfeasible for practical applications. It is far
more convenient to estimate the threshold from data: the quantization errors of
the training data can be seen as a probability distribution and quantiles can be
used to retrieve the threshold for the anomaly detection. The quantile can be
adjusted and we will use the parameter τ with τ ∈ R and 0.0 ≤ τ ≤ 1.0 within this
paper. This can be adjusted to optimize the outcome of the anomaly detection:
when labels are present τ can be used to fine tune the anomaly detection score.
When the training data is perfect, meaning it contains only normal behavior, no
sampling errors, no glitches in the sensors and no noise, then a τ of 1.0 is fine as
this results in the maximum error for the threshold. However, training data is never
perfect when working with real systems and data might contain a small portion of
samples affected by noise and/or other effects. The maximum error might be too
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large to effectively find anomalies. Setting τ to a value slightly smaller than 1.0 can
increase the true positive rate of the anomaly detection at the cost of some false
positives, depending on the use case and desired outcome.

2.2 Localization of anomalies

An additional step after the anomaly detection is to calculate the signal or sensor
which is most likely to cause the anomaly. Anomaly localization is performed after
an anomaly is detected: the observation found to be anomalous is fed through a
reverse model to obtain the expected values for the signals. The deviations from
the expected values can then be used to identify the signals related to the anomaly.
The weight vector of each neuron of the SOM has the same dimensions as the input
data and each element of the weight vector contains the value of its corresponding
signal. Once an anomaly is detected, the input sample is again mapped to the SOM
to retrieve the BMU. Now, the distance of each signal to the weight vector is calcu-
lated and the resulting signals and their distances are sorted in a descending order
according to their distance. Since real world systems usually provide a large number
of signals it is necessary to reduce the number of displayed signals. Therefore only
the first n signals are displayed giving plant experts and operators a starting point
to locate the anomaly and possible fault in the system and ultimately restore the
system’s normal working order. For the experiments in this paper we only consider
the signal with the largest deviation (n=1).

2.3 SOM trajectory tracking with timed automata

Another way to utilize self-organizing maps for anomaly detection in industrial
production processes is to track the trajectory of the working point on top of the
SOM. Other works such as [7], [12] and [2] already performed a visual anomaly
detection on different processes by tracking the trajectory of the working point on
the SOM: the observations are mapped to their corresponding best matching units
as soon as they are recorded. Over time, the path or trajectory of the BMU can be
observed and deviations from the known path indicate anomalous behavior.

However, these works do not attempt to track the trajectory through the use
of a mathematical model and only pursue a visual anomaly detection by plotting
the trajectory on top of the SOM’s u-matrix. In this section we use discrete timed
automata to learn the trajectory during normal production and detect deviations
from it afterwards. This provides explicit modeling of time which the SOM is unable
to do alone.

Timed automata have proven to be a great tool to learn the normal behavior
of a system and detect deviations from it. Discrete events are required to learn an
automaton. They often cause mode changes within the system and the timing of
these events is an important indicator for the health of the system. Timed automata
are used to separate the system’s modes and model the transitions and timing
between the identified modes.

Discrete events can be directly extracted from changes in the binary control and
sensor signals of the system. It is also possible to obtain discrete events through
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thresholds for real-valued signals such as temperature <19◦C [4]. However, setting
the thresholds and combinations of conditions for the continuous signals requires
expert knowledge which is usually not available for real world automation systems.
For unsupervised learning of these automata only binary control signals are used
to obtain the discrete events, such as HeaterOn = true. Algorithms such as the
bottom-up timed learning algorithm (BUTLA) [8] work in an unsupervised manner,
and do not require additional expert knowledge.

A timed automaton generated by the aforementioned algorithm can be defined
as described in Definition 4.

Definition 4. a timed, probabilistic automaton is a tuple A = (S, s0, Σ, T, δ, P ),
where

– S is a finite set of states where s ∈ S.
– s0 is the initial state which can be given by the systems state at the start of the

training.
– Σ is the set of discrete events. Events a ∈ Σ is linked to the transitions of the

automaton.
– T is the set of transitions with t ∈ T and t = (s, a, s′)), s, s′ ∈ S are source

and destination state, a ∈ Σ is the trigger event of the transition.
– The timing constraint δ : T → I assigns a time interval to a transition t ∈ T ,

where I is a set of time intervals. The time here usually refers to the elapsed
time since the last event occurred.

– P is a set of probabilities: for each transition t ∈ T probability p ∈ P is calcu-
lated.

The learned automaton can then be used to detect a variety of different classes
of anomalies. This can for example be done using the anomaly detection algorithm
(ANODA) [8] which can detect the following types of anomalies:

– Unknown event / Wrong event sequence: an event occurred which was
not observed in the current state.

– Timing error: a transition occurred outside of the learned time bounds.
– State remaining error: when more time passed than for the latest event and

the state is not a final state, then we have a state remaining error.
– Probability error: the probabilities of transitions for the new data are cal-

culated and compared to the previously learned probabilities and an error is
generated when deviations are too large.

As mentioned before, discrete events are needed to learn an automaton. One way
to obtain these from the SOM is to interpret each neuron of the SOM as a binary
signal: a neuron is active (or true) when the observation is mapped to it and false
otherwise. This mapping can result in a large number of signals, depending on the
size of the SOM. This usually leads to a large number of states in the automaton.
Also, some neurons might never be activated by the training data leading to an
unknown state detection in the automaton. Again, this can lead to a large number
of false positives when new data is mapped to neurons which were previously not
active but are direct neighbors to neurons previously activated by the training data.
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To counteract these effects and ultimately reduce the number of states we group
the neurons into a smaller number of clusters. The transitions between the clusters
are then learned using a timed automaton.

SOM’s tend to keep neurons with similar signal weights closely together, which
results in a topographic landscape with valleys, where weights of neighbors are sim-
ilar, and ridges, where weights of neighbors are not similar. This landscape can be
visualized through the aforementioned u-matrix representation. Valleys represent
regions where the contained neurons weight vectors are very similar. These val-
leys are separated by ridges which mark transitions between the different feature
spaces. The valleys can be interpreted as stationary process phases while the ridges
represent transient process phases [3].

Clustering algorithms from the image processing domain, such as the watershed
transformation [9], can be used on the u-matrix representation of a SOM to identify
the clusters in a mathematical way. This works analogous to rain falling on top
of the u-matrix. The water runs from higher regions to the lower regions and
consequently flooding the basins. When the water level gets high enough so two
basins merge, a ridge forms which separates them. The watershed transformation
dissects the u-matrix into different clusters, separated by the so-called watershed
lines. Watershed lines separate the different basins and do not belong to any of the
clusters. The implementation used here is the Vincent-Soille watershed algorithm
which performs the watershed transformation in a non-recursive manner [15].

Subsequently, the samples of the training data are mapped to the SOM to
get the corresponding cluster. The clusters are encoded using a one-hot encoding
resulting in a binary vector with one element for each cluster. The value of the
active cluster is set to true, while all other values are set to false. The time-stamps
of the original samples and the binary vectors are then used to learn an automaton
with the aforementioned BUTLA.

3 Experiments

In this section we apply the aforementioned approaches for anomaly detection
and anomaly localization to one of our demonstrators. The Genesis demonstrator
of the Institute Industrial IT sorts two different materials (conductive and non-
conductive) from a magazine into their corresponding target locations (Figure 2).
It is portable and uses an air tank to supply all the gripping and storage units. The
4 different modules can switch places and the program for the programmable logic
controller (PLC) automatically adjusts for the change in location. A linear drive
with a pneumatic gripper transports the materials between the different stations.
Five real-valued signals are available from the demonstrator: current, position,
speed, acceleration and force. Data samples were taken through an OPC connection
with a resolution of 50 milliseconds for a total of 42 production cycles. The first
38 production cycles contain only normal behavior and were used to train the self-
organizing map for both experiments shown in this section. Two of the 4 remaining
cycles contain anomalous behavior and are used for the anomaly detection.
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Fig. 2. The Genesis Demonstrator

3.1 Quantization error anomaly detection and anomaly localization

A self-organizing map is trained over 100 Epochs using a 60x60 square, non toroidal
topology on the training data using the Eulidean distance measure. Its unified dis-
tance matrix representation can be seen in Figure 3. The training data only contains
only normal behavior. The anomaly detection is performed in an unsupervised way.

To estimate the threshold for the anomaly detection, tau was set to 1.0 which
gives a value of ∼0.274 as threshold for the anomaly detection as shown in Figure
4. The observations of the evaluation data are then mapped to the SOM and the
distance is calculated as seen in Figure 5. The observation is marked as an anomaly
when the distance is larger than the previously estimated threshold.

The final result of the anomaly detection is shown in Figure 6. Anomalies in this
data set are labeled which allows to calculate the quality of the anomaly detection:
in this example anomalies were detected with an accuracy of 99.63% and F1 score
of 94.34%. Sensitivity was 100% which means all anomalies were identified correctly
as true positive. Detailed results are shown in Table 1. Figure 7 shows an excerpt
of the anomaly localization of the anomalies detected above. Only the two most
likely signals estimated to be the cause of the anomaly are shown. The localization
results match the predictions made by the experts on the related signals of the
system perfectly. The two anomalous cycles shown in Figure 6 contain the same
anomalies: the first part of each anomaly, labeled ’1’ in the data set, is a jam in
the linear drive resulting in a standstill and a higher than usual motor current.
The second phase of the anomaly, labeled ’2’ in the data set, is the linear drive
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Fig. 3. U-matrix of self-organizing map
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overcoming the jam, trying to correct its lag error. This results in a much higher
than usual speed of the linear drive which is also correctly identified by the anomaly
localization.

Table 1. Anomaly detection score

TP TN FP FN Accuracy Balanced Accuracy F1

50 1565 6 0 99.63% 99.81% 94.34%

3.2 Trajectory tracking with automata

Again, a SOM is trained on 38 production cycles containing only normal behavior.
The SOM has a size of 60x60 neurons. The resulting u-matrix shown in Figure 8
is then dissected into 6 clusters by the watershed transformation in Figure 9.

Subsequently, the samples of the training data are mapped to the SOM to get
the corresponding cluster. The automaton which represents the trajectory across
the different clusters during normal operation of the system is learned and shown
in Figure 10. The one-hot encoding is easy to read the cluster transitions from the
automatons transitions: C0 = 1;C5 = 0; (5.25−10.36)(7.11s) describes a transition
from cluster 5 to cluster 0 with a timing of 5.25-10.36 seconds after entering the
state. The mean time for the transition was 7.11 seconds.

Other encodings than the one-hot can be used so less binary signals are needed
for the amount of clusters to describe but they might be harder to read and follow
when looking at the automaton.

An example mapping for a single production cycle from the evaluation data is
shown in Table 2. Not all states from the state machine can be found in the SOM, as
the SOM uses only real-valued signals. Binary signals, such as the storage ejecting
material and the gripper closing are not known. The linear drive which provides
the real-valued signals does not move during these operations and therefore, these
internal states appear in the same cluster of the SOM.

Table 2. Mapping of states to internal state machine and clusters

Automaton state State machine State machine description Cluster

S4 SM0 Idle (standstill) C0

S5 SM4 Move to storage C4

S6 SM4 Move to storage (stopping) C0

S7 SM5 Close gripper (standstill) C3

S8 SM6 Move to sensor C2

S9 SM7 Move to target container C1
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[...]

20.04.16 12:47:21.438:

MotorData.ActSpeed (0.27)

MotorData.ActCurrent (0.18)

[...]

20.04.16 12:47:22.095:

MotorData.ActCurrent (0.22)

MotorData.ActSpeed (0.21)

[...]

20.04.16 12:47:22.562:

MotorData.ActSpeed (1.50)

MotorData.ActCurrent (0.17)

[...]

20.04.16 12:47:22.703:

MotorData.ActSpeed (1.50)

MotorData.IsForce (0.17)

[...]

[...]

20.04.16 12:47:38.828:

MotorData.IsForce (0.33)

MotorData.ActCurrent (0.14)

[...]

20.04.16 12:47:39.479:

MotorData.ActCurrent (0.21)

MotorData.ActSpeed (0.21)

[...]

20.04.16 12:47:39.998:

MotorData.ActSpeed (1.49)

MotorData.ActCurrent (0.08)

[...]

20.04.16 12:47:40.096:

MotorData.ActSpeed (0.78)

MotorData.IsAcceleration (0.45)

[...]

Fig. 7. Excerpt of the anomaly localization algorithm
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Fig. 8. U-matrix of the SOM

Fig. 9. Clustering after applying watershed transformation



68 Anomaly Detection and Localization for CPPS with SOM

1

2

C5 = 1;(0 - 0) (0s)

3

C0 = 1;C5 = 0; (5,25 - 10,36) (7,11s)

5

C0 = 0; C4 = 1;(1,6 - 3,23) (2,94s)

7

C0 = 0; C3 = 1;(1,45 - 3,05) (2,29s)

6

C0 = 1;C4 = 0; (3,09 - 6,94) (5,51s)

8

C2 = 1;C3 = 0; (1,13 - 1,31) (1,25s)

9

4

C0 = 1;C1 = 0; (1,08 - 1,26) (1,18s)

10

C0 = 1;C1 = 0; (1,08 - 1,26) (1,18s)

C0 = 0; C4 = 1;(1,6 - 3,23) (2,94s)

C0 = 0; C3 = 1;(1,45 - 3,05) (2,29s)

C1 = 1;C2 = 0; (4,5 - 4,69) (4,62s)

Fig. 10. Automaton tracking the transitions between clusters
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Figure 11 shows examples from the output of the ANODA: first, on observation
482 a state remaining error occurs. During the production cycle it took more time
to move the gripper to the storage position. This triggers a timing error when the
transition finally occurs and normal operation continues. Second, at the end of the
data set it was detected that the demonstrator remains in its idle state longer than
in the training cycles. Both of these errors are not detectable using the quantization
error method presented in the previous section because the SOM itself does not
model time in an explicit manner. The automaton adds explicit modeling of time
by modeling and tracking the trajectory of the SOM’s working point.

O481|S5[Normal;]

O482|S5[StateRemainingError;Time is 6.98s but max time in state 5 is 6.94s.]

[...]

O519|S5[StateRemainingError;Time is 8.72s but max time in state 5 is 6.94s.]

O520|S5->S6[TimingError;[8.76s;3.094s to 6.94s with mean 5.50s ]]

O521|S6[Normal;]

[...]

[...]

O1600|S4[Normal;]

O1601|S4[StateRemainingError;Time is 3.23s but max time in state 4 is 3.22s.]

[...]

O1620|S4[StateRemainingError;Time is 4.12s but max time in state 4 is 3.22s.]

Fig. 11. Anomaly detection with the automaton and ANODA

4 Conclusion

This paper presented approaches to data-driven anomaly detection and localization
in Cyber-Physical Production Systems. Data provided by the system is used train
a self-organizing map to represent the systems normal behavior.

The first option shown in this paper uses the quantization error to detect anoma-
lies in the systems signal domain. Manual adjustment of a threshold above which
an anomaly detected is not easy so we estimate the threshold from the data. When
an anomaly is found, the SOM is used as a reverse model to compute the differ-
ences between expected and actual value of each signal. The signals are sorted from
largest to smallest deviation and the first n signals are provided as a starting point
for experts to restore the system to a normal working order.

This anomaly detection and localization can be applied to a wide variety of
systems and produces good results across the board. However, time is not modeled
and deviations in the timing can not be found.

The second option shown in this paper adds modeling of time: discrete timed
automata are used to learn the trajectory of the SOM’s working point. The automa-
ton keeps track of the timing between the different process phases. This approach
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detects anomalies in the systems timing and observed sequence, both of which can
not be detected by the SOM alone.

The second approach can be extended to use hybrid timed automata instead of
discrete timed automata: a separate model is learned for each state of the automa-
ton to model the different stationary process phases and detect anomalies within
them [16]. Yet another approach could replace the discrete timed automata with
variable order Markov models. The automaton only uses its current state and long
term deviations from the trajectory might not be detectable, especially when the
automaton contains cycles. In general, higher order Markov models also use a num-
ber of previous states to predict the following state and might be able to better
deal with cycles and deviations which happen over a long period of time.
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Abstract. In the present work, fault detection in industrial automation
processes is investigated. A fault detection method for observable process
variables is extended for application cases, where the observations of pro-
cess variables are noisy. The principle of this method consists in building
a probability distribution model and evaluating the likelihood of observa-
tions under that model. The probability distribution model is based on
a hybrid automaton which takes into account several system modes, i.e.
phases with continuous system behaviour. Transitions between the modes
are attributed to discrete control events such as on/off signals. The discrete
event system composed of system modes and transitions is modeled as a
finite state machine. Continuous process behaviour in the particular system
modes is modeled with stochastic state space models, which incorporate
neural networks. Fault detection is accomplished by evaluation of the un-
derlying probability distribution model with a particle filter. In doing so
both the hybrid system model and a linear observation model for noisy ob-
servations are taken into account. Experimental results show superior fault
detection performance compared to the baseline method for observable pro-
cess variables. The runtime of the proposed fault detection method has been
significantly reduced by parallel implementation on a GPU.

Keywords: fault detection, hybrid systems, filtering

1 Introduction

Reliable fault detection in industrial automation processes allows costs and risks
to be reduced by the early detection of faults and problems in the process and
by preventing component failures and, in extreme cases, a production stop of the
entire plant. Typical goals of fault detection methods for complex and distributed
automation systems are the detection of faults, suboptimal energy consumption, or
wear (see e.g. [1], [12]). The purpose is the detection of deviations in system behav-
ior from the normal state (for example too high or too low energy consumption of a
conveying system). Generally speaking, fault detection methods for industrial au-
tomation processes can be divided in model-based methods, signal-based methods
and knowledge-based methods (see [4] for an overview). This paper is focused on
model-based fault detection. In model-based approaches, the consistency between
the measured output of the system and the model-predicted output is checked. In
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doing so, significant outliers are detected and can be displayed in a human machine
interface. Model-based fault detection methods can be divided in four categories
[4]: Deterministic methods, stochastic methods, methods for discrete-events and
hybrid systems, and methods for networked and distributed systems.

Complex industrial systems such as complex mechatronic systems, embedded
control systems and manufacturing systems are hybrid systems, which are both
driven by time-based continuous dynamics and event-driven discrete dynamics.
Faults in the underlying discrete event system are straightforwardly detected by
comparison of the observed discrete events with events that are predicted with
a finite state machine (see e.g. [15]). A lot of research has been conducted with
respect to fault detection in continuous system parts. Clustering-based fault de-
tection methods create groups of strongly related objects and objects which do
not strongly belong to any cluster [3]. Neural networks and regression-based meth-
ods have been used to approximate the functional dependency between continuous
process variables and time [15]. Sensor signals are predicted according to this func-
tional dependency and significant deviations of predicted signal values from the
observations are reported as faults. Stochastic approaches to fault detection are
predominantly based on building a probability distribution model and considering
how likely objects are under that model [14]. Statistical tests are used to assess
the likelihood of faults (see e.g. [17], [18]). In most of the stochastic approaches,
state variables are employed for modeling the temporal transitions of hidden pro-
cess variables which are related to the observations with an observation model.
Common approaches are Kalman filters (e.g. [23], [11]) and particle filters [16].
Hybrid systems require appropriate models, which consider mutual dependencies
and interactions between continuous dynamics and discrete-event changes. Hybrid
automata are the most common models to represent hybrid systems, which can
be utilized to detect and isolate faults (see e.g. [5], [7], [22]). An efficient fault de-
tection method for hybrid industrial automation processes with observable process
variables has been proposed in [18].

This paper is an extended version of [21]. The main contribution of the present
work is the enhancement of the method proposed in [18] for the case of noisy
observations by integration of a particle filter. To increase the efficiency of the
particle filter, a parallel implementation has been realized on a graphics processing
unit (GPU).

The remaining part of the paper is structured as follows: Section 2 outlines the
probabilistic framework for fault detection in hybrid industrial processes. The GPU-
based fault detection method is introduced in Section 3. The proposed method is
evaluated in a given application scenario (see Section 4). Section 5 gives a conclusion
and an outlook to future work.

2 Fault detection with stochastic process models

In this section, the prior work on fault detection with stochastic process models
is described. Particularly, the probabilistic framework according to [17] and the
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underlying hybrid process model adopted from [21] are outlined. The principle of
fault detection with stochastic process models is depicted in Fig. 1.

Fig. 1. Probabilistic framework for model-based fault detection.

Measurements y(k) at discrete time k are predicted according to a stochas-
tic process model with input u(k). A common approach to fault detection is the
evaluation of the residuals r(k) = y(k) − ŷ(k) between measurements y(k) and
predictions ŷ(k). Methods such as log-likelihood ratios, generalized log-likelihood
ratios, sequential probability ratio tests, or cumulative sum test statistics are used
in literature to detect changes in the residuals (see [8] for an overview). A related
approach is the evaluation of y(k) with respect to the conditional probability den-
sity p(y(k)|y(0) . . . y(k − 1)) (see e.g. [17], [18]). Observations are assumed to be
improbable once measurement y(k) at discrete time k drops out of a given con-
fidence interval of the probability density function p(y(k)|y(0) . . . y(k − 1)). It is
shown in [17] that this condition is met once the distribution function F (y(k)) of
p(y(k)|y(0) . . . y(k − 1)), i.e. the function

F (y(k)) =

∫ y(k)

ỹ=−∞
p(ỹ|y(0) . . . y(k − 1))dỹ

with integration variable ỹ, is beyond given thresholds, which depend on the width
C of the confidence interval (C ∈ [0, 1]):

F (y(k)) <
1

2
− C

2
or F (y(k)) >

1

2
+

C

2
. (1)

Measurements beyond a confidence interval of width C are detected as potential
faults. In this case, anomaly f1(k) is reported for time instance k. Furthermore,
anomalies with a duration of more than one time instance have to be taken into
account as suggested in [18]. Measurements beyond a smaller confidence interval of
width C2 are considered as candidates for such anomalies. If at least a given portion
pd of the last nd measurements is beyond the confidence interval of C2, anomaly
f2(k) is reported to indicate small anomalies, which are persistent for more than one
time instance. For Gaussian distributions p(y(k)), the following relation between
the error function erf (y(k)) and the distribution function F (y(k)) is exploited to
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determine whether an observation y(k) is located in the allowed confidence interval
[17]:

F (y(k)) =
1

2

(
1 + erf

(
y(k)− μ√

2σ

))
. (2)

Evaluation of (1) and (2) requires an adequate model of the process behavior,
which determines the probability density p(y(k)|y(0) . . . y(k − 1)). A large part of
stochastic fault detection methods (see e.g. [17], [23], [11], [16]) is based on the
following discrete time nonlinear state space model:

y(k) = h(x(k), u(k)) + v(k) (3)
x(k) = fΘ(x(k − 1), u(k)) +w(k) (4)

where fΘ and h are the state and measurement dynamic functions, respectively. The
two equations consider uncertainties in the form of additive terms for measurement
noise v(k) and state transition noise w(k).

The continuous system behavior is modeled with a time-variant state vector
x(k). Estimation of p(y(k)|y(0) . . . y(k− 1)) with the underlying state-space model
(3) and (4) requires a recursion with the following steps [13]:

1. p(x(k)|y(0) . . . y(k − 1))

=

∫
{pΘ(x(k)|x(k − 1))

· p(x(k − 1)|y(0) . . . y(k − 1))} dx(k − 1)

2. p(y(k)|y(0) . . . y(k − 1))

=

∫
{p(y(k)|x(k))p(x(k)|y(0) . . . y(k − 1))} dx(k)

3. p(x(k)|y(0) . . . y(k))
∝ p(y(k)|x(k))p(x(k)|(y(0) . . . y(k − 1)) (5)

where p(x(k)|y(0) . . . y(k̃)) denotes the conditional probability density of state vec-
tor x(k) given the measurements y(k) for time instances k = 0 . . . k̃. Note, that the
probability densities

p(y(k)|x(k)) and pΘ(x(k)|x(k − 1)) (6)

are given by (3) and (4). Hence, measurement model (3) and state model (4) form
the basis of the proposed fault detection method.

An appropriate measurement model for application cases with noisy observa-
tions is introduced in Section 3, while the state model for hybrid processes has been
adopted from [21]. The underlying state model is based on a timed automaton with
discrete events a assigned to the transitions between system modes S0, S1 . . . (see
Fig. 1). The time-dependent continuous process behavior in each mode is incorpo-
rated by models ΘS0

, ΘS1
, . . .. In this work, the following formalism of timed hybrid

automata is adopted from [9]:
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Definition 1. A Timed Hybrid Automaton is a 5-tuple A = (S,Σ, T, δ,Θ),
where

– S is a finite set of states. Each state s ∈ S is a bijective function s = fc(d) of
vector d = (d1, d2, ..., d|Σ|)T , which indicates for each IO value, whether it is
active (di = 1) or inactive (di = 0).

– Σ is the alphabet, the set of events a.
– T ⊆ S × Σ × S gives the set of transitions. E.g. for a transition 〈s, a, s′〉,

s, s′ ∈ S are the source and destination state and, a ∈ Σ is the trigger event.
– A transition timing constraint δ : T → I, where I is a set of intervals. δ refers

to the time spent since the last event occurred and is expressed as a time range.
– Θ = {Θs} denotes continuous process behavior, which is assigned to the par-

ticular states s ∈ S of the timed automaton.

Discrete state s, i.e. the system mode, is defined over the active/inactive IO values.
The starting point is the system mode corresponding to the actual system’s config-
uration. Model learning for the discrete system part, i.e. the underlying automaton,
is accomplished using the OTALA algorithm [9].

A Markov model of order l is assumed for the continuous process behavior Θs

in the particular system states s. This means, process variables x(k) are assumed
to depend on the previous process variables x(k− l) . . . x(k− 1). This is taken into
account by extending the state vector x(k) with the respective process variables:

x(k) = [x(k − l) . . . x(k)]T . (7)

The initial probability density

p0(x(0)) = N (μ0, σ0)
l (8)

of state vector x(0) at time instance k = 0 is obtained from n samples of noise-free
training data x(k), which are acquired in the initial system state s0:

μ0 =
1

n

n−1∑
k=0

x(k), (9)

σ0 =

√√√√ 1

n− 1

n−1∑
k=0

(x(k)− μ0)2. (10)

State equation (4) is assumed to depend on system state s:

x(k) = fΘs(x(k − 1), u(k)) +w(k). (11)

It is worth noting that the dependency on s has no impact on recursion (5) unless
Θs has to be updated before each recursion step with respect to the current system
mode s. The underlying Markov model of order l is taken into account by the state
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space model

fΘs(x(k − 1), u(k)) =

⎡
⎢⎢⎣

x(k − l + 1)
. . .
x(k − 1)

fΘs(x(k − 1), u(k))

⎤
⎥⎥⎦ (12)

w(k) = [0 . . . 0, w(k)]T . (13)

The process noise sequence w(k), k = 0 . . . n− 1, is assumed to be independent
and identically distributed (i.i.d) with standard deviation σs. Model parameters
Θs and standard deviation

σs =
1

n− 1

√√√√n−1∑
k=0

(x(k)− fΘs(x(k − 1), u(k)))2 (14)

are estimated from n samples of noise-free training data with observable state
variables x(k).

In this work, dependency fΘs(x(k−1), u(k)) is modeled as a feed-forward neural
network (multi-layer perceptron). For the evaluated application case, this approach
has shown to be superior compared to linear regression models with respect to
modeling accuracy (see [20]). A back propagation algorithm is employed to train
the neural network [2], which is shown in Fig. 2. The neural network consists of
three layers.

Fig. 2. Neural network with one hidden layer.

The input layer passes the input vector

u(k) = [x(k − l) . . . x(k − 1), u(k), 1] (15)

to the particular nodes of the hidden layer. The output xh,i of node i of the hidden
layer is given by the following equation [2]:

xh,i = sig(ch,iu(k)) (16)
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where sig(x) denotes the sigmoid activation function

sig(x) =
1

1 + exp(−x)
(17)

for the hidden nodes.
The overall output of the neural network is calculated as linear combination of

the components of xh = [xh,i]:

fΘ(x(k − l) . . . x(k − 1), u(k)) = co,1xh. (18)

In the hidden layer, a neuron with no input is used to take account for constant
offsets. Model parameters Θ = (ch,i, co,1), i.e. the coefficients of hidden layer and
output layer, are obtained by back-propagation.

3 Fault detection for application cases with noisy
measurements

The proposed fault detection method for application cases with noisy measurements
is introduced in this section.

Fault detection with stochastic process models is based on the probability den-
sity p(y(k)|y(0) . . . y(k − 1)) as described in the previous section. The evaluation
of p(y(k)|y(0) . . . y(k − 1)) is straightforward for observable process variables [21].
However, in the application cases of this paper, state variables x(k) are not di-
rectly observable due to additive noise. This is taken into account by the following
measurement model, which is a special case of (3):

y(k) = x(k) + v(k) with v(k) ∝ N (0, σy). (19)

Noise level σy is obtained at the beginning of the observation phase from observa-
tions y(k) in an initial time slot k = 0 . . . kinit, where x(k) = 0 is assumed.

Fault detection for application cases with noisy measurements involves the eval-
uation of (5), which in turn requires approximations of the probability densities

p(x(k)|y(0) . . . y(k − 1)) (20)

and
p(x(k)|y(0) . . . y(k)) (21)

as stated above. In the present work, particles are employed for this purpose. This
approximation is known to be more precise but computationally more intensive
compared to the use of the second order statistics that are applied in Kalman
Filters. Approximations of the respective probability densities by means of parti-
cles are outlined in Section 3.1. The particle filter based fault detection method
is introduced in Section 3.2. Computational efficiency is increased by a parallel
implementation on a graphics processing unit, which is detailed in Section 3.3.
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3.1 Probability density models

The probability densities p(x(k)|y(0) . . . y(κ)), κ ∈ {k− 1, k}, are approximated by
the weighted sums [13]

p(x(k)|y(0) . . . y(κ)) ≈
np−1∑
i=0

wi(k)δ(x(k)− xi(k)) (22)

where the np particles xi(k), i = 0 . . . np − 1, are sampled from an approximation
q(x(k)|xi(k − 1), y(k)) of the optimal importance density [13]

qopt(x(k)|xi(k − 1), y(k)) = p(x(k)|xi(k − 1), y(k)). (23)

In (23), xi(k−1) denotes the ith particle at time instance k−1. Weights wi(k) are
obtained by the following equation [13]:

wi(k) ∝ wi(k − 1)
p(y(k)|xi(k))p(xi(k)|xi(k − 1))

qopt(xi(k)|xi(k − 1), y(k))
(24)

with
np−1∑
i=0

wi(k)) = 1. (25)

Sampling from the optimal importance density is not straightforward because
qopt(x(k)|xi(k − 1), y(k)) is in the general case not a Gaussian distribution. The
most popular suboptimal choice is the transitional prior

q(x(k)|xi(k − 1), y(k)) = p(x(k)|xi(k − 1)). (26)

However, in system modes with high standard deviation σs of the state transition
noise, many particles may be generated that are unlikely with respect to the mea-
surement model. Therefore, the following approximation for the optimal importance
density is employed in this work:

q(x(k)|xi(k − 1), y(k)) = p(x(k)|xi(k − 1)), for σs < σy

q(x(k)|xi(k − 1), y(k)) = p(y(k)|xi(k − 1)), else. (27)

Substitution of (27) in (24) yields the respective equations for weight update:

wi(k) ∝ wi(k − 1)p(y(k)|xi(k)), for σs < σy

wi(k) ∝ wi(k − 1)p(xi(k)|xi(k − 1)), else. (28)

3.2 Particle filter based fault detection

The proposed fault detection method (Algorithm 1) is shown in Fig. 3. The ap-
proach is based on a fault detection method for observable process variables, which
is described in Appendix A [19]. A particle filter, which uses the approximations
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Given:
(1) Hybrid Automaton A = (S,Σ, T, δ,Θ)
(2) Standard deviation σs of the process noise
(3) Standard deviation σy of the measurement noise
(4) Number of observations n
(5) Observations o(k) = (t(k),d(k), u(k), y(k)), k = 0 . . . n− 1
(6) Number of particles np

(7) Confidence interval C
Results: Detected faults (if there exists one), otherwise "OK"
(01) s(0) = s0 = fc(d(0))
(02) for i = 0 . . . np − 1 do wi = 1/np, draw xi(0) ∝ p0(x(0))
(03) for k = 1 . . . n− 1 do
(04) a(k) = generateEvent(d(k − 1),d(k))
(05) T ′ = {e = (s(k − 1), a(k), ∗) ∈ T}
(06) if T ′ = φ then return fault: unknown event
(07) while isNotEmpty(T ′) do
(08) if t(k) ∈ δ(e = (s(k − 1), a(k), snew)) then
(09) s(k) := snew

(10) else if t < min(δ(e)) then return fault: event too early
(11) else if t > max(δ(e)) then return fault: event too late
(12) for i = 0 to np − 1 do
(13) if σs < σy

(14) Draw xi(k) ∝ pΘs(k)
(x(k)|xi(k − 1))

(15) wi(k) = wi(k − 1)p(yk|xi(k))
(16) else
(17) Draw xi(k) ∝ p(y(k)|x(k))
(18) wi(k) = wi(k − 1)p(xi(k)|xi(k − 1))
(19) end if
(20) end for
(21) for i = 0 to np − 1 do
(22) wi(k) = wi(k)/

∑np−1
i=0 wi(k) //Normalization

(23) end for
(24) Metropolis Resampling (Algorithm 4 in Appendix B)
(25) μ(k) =

∑np−1
i=0 wi(k − 1)fΘs(k)

(xi(k − 1), u(k))

(26) σ2(k) = σ2
y + σ2

s

+
∑np−1

i=0 wi(k − 1)(fΘs(k)
(xi(k − 1), u(k))− μ(k))2

(27) F (y(k)) = 1
2

(
1 + erf

(
y(k)−μ(k)√

2σ(k)

))
(28) if F (y(k)) < 1/2− C/2 then return fault: signal drop
(29) if F (y(k)) > 1/2 + C/2 then return fault: signal jump
(30) end while
(31) end for

Fig. 3. Algorithm 1 Particle filter based fault detection

introduced in the previous Section 3.1, has been incorporated in the underlying
fault detection method.
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The fault detection method evaluates at each time instance k = 0 . . . n− 1 the
measurement vector

o(k) = (t(k),d(k), u(k), y(k)), (29)

which comprises a time stamp t(k), discrete measurements d(k), a continuous input
value u(k) and a continuous measurement y(k) (input (5) of Algorithm 1). In doing
so, the hybrid system model A introduced in Section 2 (input (1)) is used to evaluate
the likelihood of possible faults. The standard deviations σs and σy of process
noise and measurement noise are given as input (2) and input (3), respectively.
The number n of processed observations is given as input (4). Further parameters
of Algorithm 1 are the number np of particles used to approximate the respective
probability densities (input (6)), and the width of the confidence interval C, which
is introduced in (1) (input (7)).

The initial state s0 = fc(d(0)) of the discrete event system is given by the
active/inactive IO values d(0) at the beginning of operation. Furthermore, the
distribution of the continous state variable x(0) has to be represented by particles
at the beginning of operation. Therefore, particles xi(0) are drawn from p0(x(0)).

At each time instance, observation o(k) is processed. Fault detection in the
discrete event system is conducted according to [15]. Events a(k) are determined
from the difference between discrete IO signals d(k) and d(k−1). Time t(k) denotes
the continuous time stamp of the kth sample, d(k) the discrete IO values and y(k)
a value-continuous measurement at discrete time k. Transitions between system
modes s(k − 1) and s(k) at time instances k − 1 and k are triggered by discrete
events a(k). Unknown events and timing errors of events are detected in lines (10)
and (11) of Algorithm 1, respectively.

Fault detection in the continuous system part is accomplished in lines (12)-(29).
The distribution of the state vector is updated in lines (13)-(23) according to the
particle filter equations (26)-(28). Condition (25) is asserted by the normalization
in line (21)-(23). A well-known challenge of particle filters is the degeneracy phe-
nomenon, i.e. the effect that all but one particle i have negligible weights wi(k) after
some iterations [13]. This problem is solved by an additional resampling step as
proposed in [13]. The resampling step in line (24) of the proposed fault detection
method is accomplished using Metropolis resampling, which has been suggested
by the authors of [10] for parallel resampling (see Algorithm 4 in Appendix B).
Fault detection in lines (25)-(29) is conducted according to eqs. (1) and (2) with
parameters

μ(k) = E[y(k)|y(0) . . . y(k − 1)]

= E[fΘs(k)
(x(k − 1), u(k)) + w(k) + v(k)|y(0) . . . y(k − 1)]

= E[fΘs(k)
(x(k − 1), u(k))|y(0) . . . y(k − 1)]

=

np−1∑
i=0

wi(k − 1)fΘs(k)
(xi(k − 1), u(k)) (30)
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and

σ2(k) = V ar[y(k)|y(0) . . . y(k − 1)]

= V ar[fΘs(k)
(x(k − 1), u(k))|y(0) . . . y(k − 1)] + σ2

y + σ2
s ,

with

V ar[fΘs(k)
(x(k − 1), u(k))|y(0) . . . y(k − 1)]

=E[(fΘs(k)
(x(k − 1), u(k))− μ(k))2|y(0) . . . y(k − 1)]

=

np∑
i=0

wi(k − 1)(fΘs(k)
(xi(k − 1), u(k))− μ(k))2. (31)

3.3 Parallel implementation

The time consuming operations of the proposed fault detection method are lines
(14), (15), (17), (18), (22), (24), (25) and (26) in Algorithm 1. Hence, lines (12) -
(26) of Algorithm 1 have been parallelized on a GPU using a CUDA C implemen-
tation. Parallelization of the respective steps is accomplished as follows:

1. Particles are drawn in parallel from pΘs(k)
(x(k)|xi(k− 1) and pΘs(k)

(y(k)|x(k))
in lines (14) and (17), respectively.

2. Weights are multiplied in parallel with the likelihoods p(y(k)|xi(k)) and
p(xi(k)|xi(k − 1)) in lines (15) and (18), respectively.

3. The sum of weights in line (22) and the sums in lines (25) and (26) are obtained
by application of the parallel reduction algorithm [6], respectively. The parallel
reduction algorithm is a bottom up approach, which computes the sum of some
given values, e.g. of the particle weights, in several iterations. The given values
are divided in each iteration into pairs and the sum of each pair is computed
in parallel, so that the number of values is approximately halved after each
iteration. Hence, the sum of np values is computed in asymptotic time O(log np)
using parallel reduction.

4. For resampling in line (24), parallel Metropolis Resampling [10] is used (Algo-
rithm 4 in Appendix B).

The parallel implementation of the proposed fault detection method needs a syn-
chronization point before the application of the parallel reduction algorithms, i.e.
after the drawing of particles and the weight updates. After this synchronisation
point, the values of all particles have to be updated to compute sums. Further
synchronization points are required after each iteration of the parallel reduction
algorithms.

4 Evaluation and Discussion

The proposed fault detection method has been evaluated in the research conveying
system depicted in Fig. 4. The system comprises five conveyor belts and seven
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drives, which are used to move objects between four storage positions on two levels
(five drives for horizontal movements and two drives for vertical movements). A
power meter captures continuously the overall power consumption. Further sensor
information is collected in the programmable logic control (PLC) of the storage
system.

Fig. 4. The research conveying system.

For evaluation, process cycles have been recorded, in which an object has been
moved between two positions A and B (see Fig. 4). Fault detetection results for
these process cycles are given in Section 4.1. Computational capabilities of the
proposed fault detection method have been evaluated in Section 4.2.

4.1 Fault detection results

Fault detection has been accomplished using the particle filter based method intro-
duced in Section 3 (algorithm 1 in Fig. 3) with np = 128 particles and parameter
nb = 50 of the resampling method described in [10]. In the first step, hybrid system
models according to Section 2 have been learnt from 40 cycles of training data.
Fault detection has been conducted on 10 distinct test cycles with different noise
levels. Characteristic faults for increased or decreased motor torques were injected
at randomly selected positions into the measurements of the power consumption
for the 10 test cyles. The offset of an injected fault (i.e. the injected signal jump
or signal drop) was fixed at a value of 1

3 ŷ, which depends on the peak power ŷ in
a particular test cycle. Noise with different noise levels has been artificially added
to the test cycles after fault injection.

In order to evaluate the results, ratios of the numbers of correctly and incorrectly
predicted samples were computed. Based on the counts of true positive (TP), false
positive (FP), false negative (FN) and true negative (TN) samples, the F-measure
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Fig. 5. F-measure for the proposed fault detection method and the baseline method as
function of the noise level σy.

was calculated as performance metric:

F-measure = 2 · Sensitivity · Precision
Sensitivity + Precision

(32)

with

Sensitivity =
TP

TP + FN
and Precision =

TP
TP + FP

.

The results for five different noise levels (σy = 0, 0.015ŷ, . . . , 0.06ŷ) have been
averaged over the 10 test cycles and 25 randomly selected positions for each test
cycle. The resulting F-measure for the proposed fault detection method with pa-
rameter C = 0.999 of the confidence interval is shown in Fig. 5 (solid line). Results
of the baseline method [19] (see Fig. 8 in appendix A), which has been developed
for automation processes with observable process variables are shown for compar-
ison (dashed line). Both methods are observed to produce the same results for
process data without artificial noise. However, the proposed particle filter yields
significantly higher F measures for increased noise levels compared to the base-
line method. For np = 128 particles and noise levels between σy = 0.015ŷ and
σy = 0.06ŷ, an average F-measure of 0.83 is achieved, while the baseline method
yields an average F-measure of 0.75. The results confirm the assumption that the
influence of additive noise has to be considered in the process model. The proposed
fault detection method, which incorporates an appropriate model for additive noise,
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Fig. 6. Impact of the number of particles np on the F-measure at noise level σy = 100W .

is shown to be more stable under the condition of increasing noise levels compared
to the baseline method.

Fault detection results depend on the number np of particles used in the pro-
posed fault detection method. The impact of parameter np on the F-measure is
shown in Fig. 6 for the first test cycle and noise level σy = 100W . Fig. 6 shows that
the F-measure increases with np. Particularly, a significant improvement between
parameter values np = 1 (log2(np) = 0) and np = 2 (log2(np) = 1) occurs. In
informal experiments, the influence of np has been observed to be less significant
for lower noise levels. However, np = 128 has turned out to be a good choice to
obtain stable results for all investigated noise levels.

4.2 Runtime analysis

The runtime trun of the proposed fault detection method has been evaluated on
the 10 test cycles introduced in Section 4.1 with 65000 observations in total. The
GPU-based fault detection method has been implemented in CUDA C and has
been evaluated on a NVIDIA Quadro K2200 with 640 cores, 4GB GDDR5 memory
and a storage band width of 80 GB/s. For comparison, a C implementation of the
fault detection method has been evaluated on a single core of an Intel Xeon CPU
E3-1271 with a clock rate of 3.6GHz, which employes a RAM with a capacity of
16GB.

Fig. 7 shows the runtime trun of the proposed fault detection method on the
GPU (solid line) and on the CPU (dashed line). For more than 16 particles, the
GPU-based fault detection method has been observed to outperform the CPU-
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Fig. 7. Runtime trun on GPU and CPU as function of the number of particles np.

based implementation. Nevertheless, it should be noted that there is a signifi-
cant increase in runtime, once the number of particles is changed from np = 512
(log2(np) = 9) to np = 1024 (log2(np) = 10). This is due to the limited number of
cores in the GPU, which is not able to process more than 640 particles in parallel.
On average, the runtime of the particle filter has been reduced from a value of
trun = 84.19s on the CPU to a value of trun = 6.25s on the GPU.

5 Conclusion

In this paper, fault detection for strictly continuous processes has been investi-
gated for applications, in which process variables are not directly observable due to
additive noise. The proposed method incorporates a particle filter with switching
neural networks in a fault detection method, which has originally been developed
for industrial processes with observable process variables. For noise-free test cy-
cles of the considered conveying application, equal results were observed for the
proposed fault detection method and the baseline method, which is based on the
assumption of noise-free observations. For noise levels between 1.5% and 6% of the
energy peak in the respective test cycles, the overall F-measure could be improved
from 0.75 to 0.83 by application of the proposed fault detection method compared
to the baseline method. The runtime of the proposed fault detection method has
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been reduced by parallel implementation on a GPU. In doing so, the average run-
time of the proposed fault detection method has been decreased for the considered
test cycles with 65000 observations from 84.19s on a core of an Intel Xeon CPU
with 3.6GHz to 6.25s on a NVIDIA Quadro K2200 GPU with 640 cores.

In the present work, application cases with linear measurement models have
been investigated. However, extension of the proposed method for application
cases with non-linear measurement models is straightforward due to the particle-
based approach. Furthermore, the focus has been set on the detection of short-time
anomalies, which are typical for blockades or similar error types. An open research
question is the application of the proposed fault detection method for processes
with gradual degradations by analyzing the probability of the observations for an
extended time frame.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No.
678867.

Appendix A: Fault detection for observable process variables

In the following section, fault detection for observable continuous process variables
is considered. The described approach [20] is used as baseline for the fault detection
method that has been proposed in this paper.

Fault detection in the discrete event system is essentially the same for both
the proposed fault detection method (lines (1) and (3)-(11) of algorithm 1) and
the baseline method (lines (1)-(10) of algorithm 3). In [20], fault detection in the
continuous system part (lines (12)-(16) of algorithm 3) is accomplished with the
simplified observation model

y(k) = x(k), (33)

i.e. the assumption of observable continuous state variables x(k). Under this as-
sumption, the stochastic process model (6) is simplified to the single probability
density

p(y(k)|y(k(0) . . . y(k − 1)). (34)

Therefore, fault detection is essentially reduced to the evaluation of the distri-
bution function F (y(k)) in (1), i.e. the integral of (34), for given measurements
y(0) . . . y(k).

Appendix B: Metropolis Resampling

The proposed fault detection method (Algorithm 1) uses a parallel resampling
method [10], which is detailed in Algorithm 4.
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Given:
(1) Hybrid Automaton A = (S,Σ, T, δ,Θ)
(2) Observations o(k) = (t(k),d(k), u(k), y(k)), k = 0 . . . n− 1
Results: Detected faults (if there exists one), otherwise "OK"
(01) s(0) = s0 = fc(d(0))
(02) for k = 0 . . . n− 1 do
(03) a(k) = generateEvent(d(k − 1),d(k))
(04) T ′ = {e = (s(k − 1), a(k), ∗) ∈ T}
(05) if T ′ = φ then return fault: unknown event
(06) while isNotEmpty(T ′) do
(07) if t(k) ∈ δ(e = (s(k − 1), a(k), snew)) then
(08) s(k) := snew

(09) else if t < min(δ(e)) then return fault: event too early
(10) else if t > max(δ(e)) then return fault: event too late
(12) μ(k) = fΘs(k)

(y(k − l + 1) . . . y(k − 1))

(13) σ2(k) =

∑n−1
k=0

(
y(k)−fΘs(k)

(y(k−l+1)...y(k−1)

)2

n−1

(14) F (y(k)) = 1
2

(
1 + erf

(
y(k)−μ(k)√

2σ(k)

))
(15) if F (y(k)) < 1/2− C/2 then return fault: signal drop
(16) if F (y(k)) > 1/2 + C/2 then return fault: signal jump
(17) end while
(18) end for

Fig. 8. Algorithm 3 Fault detection for observable continuous process variables [20]

Inputs: An array of samples {xi(k), k = 0, 1, . . . , np − 1} with weights wi(k).
Outputs: A new array of samples xi(k) and their corresponding weights wi(k).
(01) for each i ∈ {0, . . . , np − 1}:
(02) z ← i
(03) for b = 0, . . . , nb − 1:
(04) u ∼ U [0, 1], j ∼ U{0, . . . , np − 1}
(05) if u ≤ wj(k)/wz(k): z ← j
(06) ai ← z
(07) for each i ∈ {0, . . . , np − 1}: xi(k) ← xai(k), wi(k) ← 1/np

Fig. 9. Algorithm 4 Metropolis Resampling [10]
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Abstract. The aim of industrial alarm flood analysis is to assist plant oper-
ators who face large amounts of alarms, referred to as alarm floods, in their
daily work. Many methods used to this end involve some sort of a similar-
ity measure to detect similar alarm sequences. However, multiple similarity
measures exist and it is not clear which one is best suited for alarm analysis.
In this paper, we perform an analysis of the behaviour of the similarity mea-
sures and attempt to validate the results in a semi-formalised way. To do
that, we employ synthetically generated floods, based on assumption that
synthetic floods that are generated as ’similar’ to the original floods should
receive similarity scores close to the original floods. Consequently, synthetic
floods generated as ’not-similar’ to the original floods are expected to receive
different similarity scores. Validation of similarity measures is performed by
comparing the result of clustering the original and synthetic alarm floods.
This comparison is performed with standard clustering validation measures
and application-specific measures.

1 Introduction

The phenomenon of alarm flooding is a recurring problem in industrial plant op-
eration [19]. It occurs when the frequency of alarm annunciations is so high that
it exceeds the operators capability of understanding the situation. This creates a
dangerous situation where the operator might overlook critical alarms that could
lead to significant downtime, irreversible damage or even loss of life [10].

The main reason for alarm flooding is imperfect alarm system design. Fig-
ure 1 presents a typical alarm generation system consisting of several modules.
The alarms are triggered based on sensor values, thresholds or more complex rules.
Basic signal and alarm filtering can be used to remove alarms that are known
to be noise before they are displayed to the operator. Operators themselves have
the opportunity to shelve alarms that they consider irrelevant or redundant. How-
ever, the real potential lies in the ”contextual preclassification” block, where expert
knowledge can be combined with intelligent computational methods to assist the
operator.
� This paper is an extended version of [7] and involves a more detailed analysis of the

behaviour of similarity measures.
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Fig. 1: Typical alarm filtering and shelving system extended by contextual preclas-
sification step (from: [16]).

Diagnosis of a failure of an industrial plant is a non-trivial task that requires
extensive knowledge of causalities between symptoms produced by the system [15].
Model-based methods often require explicit representation of expert knowledge
about the system and about possible failures, which is rarely available to the ex-
tent that is necessary for the method to provide reliable results. In these cases
shallow data-driven approaches are more applicable. Data-driven approaches are
based purely on the data obtained from the system, possibly with rudimentary ex-
pert knowledge inserted when available to improve the results. Data-driven methods
directly analyse, manage and reduce the alarm annunciation and therefore flooding
[2], without a semantic representation of the system. Multiple approaches exist to
this end, drawing from the data mining fields such as sequence identification and
pattern recognition [18, 4], correlation analysis [21] or visualisation [13]. Many of
these approaches utilise flood similarity measure of some kind, e.g., [20, 3].

Alarm flood detection and clustering is a data-driven approach to handle alarm
flooding. An operator assistance system can detect a newly annunciated alarm
flood, compare it to the previously seen floods and identify the most similar cluster.
If the history of flood of the plant has annotations, such as a log of repairs done
to remedy the reason of an original flood, the system can make a suggestion to the
operator regarding the fault diagnosis and repair procedure.

A major challenge in creating such a system is determining how similarity be-
tween alarm floods should be defined. A multitude of similarity measures (and,
analogously, distance measures) exists in the field of data mining and clustering [5].
Another challenge is, that real industrial alarm data is difficult to work with, e.g.
because of a high volume of alarms, or because of poor alarm system design. While
a certain similarity measure might work for a certain application, there is no guar-
antee it will work in other application scenarios, as there is not systematic method
for quantifying the usefulness of a given similarity measure in the industrial setting.
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We here propose a semi-formal approach to answering that issue by defining an
experimental design to validate the behaviour of a distance measure in regard to
alarm flood clustering. Analysis of the behaviour of the distance measure can then
help choose the most suitable distance measure. We also reproduce and extend the
alarm flood detection and clustering approach by Ahmed et al. [1] with additional
similarity measures based on Term frequency-inverse document frequency (TF-
IDF) representation [12] and Levenshtein distance [14], apply these measures to a
large real industrial alarm log and evaluate them using our validation method.

Our study shows that the flood distance measure in [1] behaves significantly dif-
ferent from the other analysed distance measures; in particular, the other measures
produce a more stable clustering in the presence of noise in the data.

Methodology for detecting floods and computing distance measures is given
in Section 2, as well as our proposed approach for validating the behaviour of
clustering results using alarm floods synthetically generated from real alarm flood
data. Section 4 presents and discusses results of empirical validation on a real
industrial dataset. We summarize the results and conclude in Section 5.

2 Clustering methodology

The approach for alarm flood similarity measure analysis is illustrated in Figure 2.
Alarm flood similarity measure analysis consists of seven steps divided into two
stages: (1) clustering performed once on alarm floods detected in the alarm log
and (2) repeatable generation of synthetic alarm floods and clustering. Analysis
is preceded by the acquisition of alarm log A from the Cyber—Physical Produc-
tion System (CPPS) performed by component C1, as described in Section 2.1.
Component C2 is responsible for detecting the alarm floods which as described in
Section 2.2. Stage 1 clustering (component C4) is performed only once on the set
of alarm floods detected in the alarm log FO and yields a clustering solution SO.
Clustering methodology is described in Section 2.3. Stage 2 is performed multiple
times and begins with synthetic flood generation (component C3) which yields a
set of synthetic floods FS . Synthetic floods are clustered alone by component C6
which yields solution SS , as well as merged with the original floods forming FOS

and clustered together by component C5, yielding solution SOS . The procedure for
generating synthetic floods is described in Section 3.1. The process is repeated an
arbitrary number of times and each round is evaluated according to the metrics
described in Section 3.

2.1 Alarm log acquisition

Alarms triggered within a CPPS are processed by an alarm logging system (compo-
nent C1) within its data acquisition and management system. Alarms are displayed
to the operator and saved into a historical database referred to as a historical alarm
log A. Recorded alarms are characterised by, at the very least, alarm ID, alarm trig-
ger time and alarm acknowledgement time. Alarm log can also contain additional
information such as a description, location and other details of the alarm.
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Fig. 2: Approach for validating alarm flood similarity measures.

2.2 Flood detection and preprocessing

First step of the analysis is performed once for a historical alarm log.
Flood detector (component C2) detects the floods based on the alarm flood

definition. According to the industry standard for Management of Alarm Systems
for Process Industries, an alarm flood begins when the alarm annunciation rate
exceeds 10 alarms per 10 minutes and ends when the alarm annunciation rate
drops under 5 alarms per 10 minutes [9], see Figure 3c.

However, the specific methodology for flood detection is up to interpretation.
Firstly, the alarm logs should be preprocessed to account for the lingering and

chattering alarms (see Figure 3a). Ambiguity arises in the case of lingering alarms
that are active for a long time before the flood is considered to begin. Since they
might be relevant to the root cause of the flood, we include such alarms in the flood
if they were triggered no longer than a lingering threshold tl before the flood start
(see Figure 3b). Moreover, chattering alarms falsely increase the number of alarms
within a time period so they are merged before flood detection.

Redundant alarms convey the same information, see Figure 3a, while unnec-
essarily cluttering the operator display. As a most simple example, two alarms
triggered based on the same condition are redundant. In more complex situations,
a redundant alarm is triggered based on a condition which is directly caused by
an event that triggers another alarm, and is not influenced by any other factors.
Redundant alarms are more difficult to deal with, requiring an analysis and re-
finement of the alarm system or using an advanced reasoning to detect causalities
between alarms.

Floods are detected using a sliding window and the outcome is a set of original
floods FO.
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Fig. 3: (a) Undesirable alarms caused by imperfections in alarm system design: A, B
- redundant alarms, C - chattering alarm, D - lingering alarm. (b) Flood detection
from a more detailed point of view, where a dilemma arises which alarms exactly
should be included. Alarms A, B, C are included in the flood, while alarm D is not.
ts - alarm flood start, te - alarm flood end, tl - lingering alarm inclusion margin. (c)
Flood detection: ar - alarm rate (alarms active in 10 minute period), t - 10-minute
time periods, ts - alarm flood start, te - alarm flood end.

2.3 Alarm flood clustering

Original flood set FO is clustered to obtain the original clustering solution SO

(see Figure 2 component C4). Density-based spatial clustering of applications with
noise (DBSCAN) [6] is a clustering algorithm that intrinsically deduces the most-
fitting number of clusters. It is based on the concept of density, where points within
a specified distance threshold ε to each other are considered to belong to a dense
area—a cluster. Points that are distant from dense areas are considered outliers
and are gathered in a separate group. Preliminary experiments showed, that it is
a disadvantage to predefine the number of clusters, because the number of nat-
ural clusters in the data is expected to change with different distance measures.
Therefore, to perform an unbiased comparison of distance measures, we use the
DBSCAN algorithm which is not biased to a fixed number of clusters and exclude
the outliers in our analysis.

Choice of a distance measure is the second, after the clustering algorithm itself,
most critical aspect when performing clustering, and the focus of this paper. Each
distance measure requires a specific data representation and four distance measures
are analysed: Jaccard distance [11] on a bag of words representation, distance based
on the frequency of consecutive alarms [1], Euclidean distance on TF-IDF repre-
sentation [12] and Levenshtein distance [14]. Chosen measures are focused either
on the appearance of alarms (Jaccard distance and TF-IDF representation) or on
the order of alarms (frequency of consecutive alarms and Levenshtein distance); in
the latter, the absolute time distance is not considered.
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Jaccard distance (J) Jaccard distance is the ratio between alarm types occurring
only in one of the two floods, and the number of alarm types in both floods. Each
flood fi is represented as a binary vector fi = (a1, a2, . . . , am), where m is the
number of unique alarm identifiers in the complete alarm log and aj is a binary
value representing whether an alarm appeared in the flood, regardless of its count.
The Jaccard distance between floods fi and fj is given by

Jij =
|fi xor fj |
|fi or fj | , (1)

where |x| returns the number of true values in vector x. Alarm types that are
absent from both floods are irrelevant for Jaccard distance. This measure was used
as preprocessing in [1].

Frequency of consecutive alarms (F) This measure was proposed in [1] based
on a simplification of first-order Markov chains. Each flood is represented as a
matrix of counts of each pair of alarms appearing consecutively,

P =

⎡
⎢⎢⎣
f11 f12 . . . f1m
...

...
. . .

...
fm1 fm2 . . . fmm

⎤
⎥⎥⎦ , (2)

where fij is the frequency of alarm aj being annunciated directly after alarm ai in
a given alarm flood. Then, the distance between two floods can be calculated as a
distance between their P matrices, e.g. using Frobenius distance.

Term frequency-inverse document frequency (T) TF-IDF is a measure often
used in natural language processing to weight terms in a document according to
how frequent and discriminative they are with respect to a document collection.
We apply TF-IDF to weight alarms in alarm floods with respect to the collection
of all floods. TF-IDF is calculated for each alarm a and flood f as

tf-idf(a, f) = tf(a, f) ∗ idf(a). (3)

Term frequency is calculated as

tf(a, f) =
fa,f
|f | , (4)

where fa,f is the number of annunciations of alarm a in flood f and |f | is the total
number of alarm annunciations in f .

Inverse document frequency is calculated as

idf(a) = loge
|F |

|{f ∈ F | a ∈ f}| , (5)
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where |F | is the total number of floods. TF-IDF score is calculated for every alarm
type and every flood in the log and yields a flood representation in the form of a
vector of length m, the total number of unique alarm signatures.

Two floods fi and fj can then be compared using a distance measure such as
Euclidean distance between two vectors:

d(fi, fj) =

√√√√ m∑
k=1

(tf-idf(ak, fi)− tf-idf(ak, fj))2. (6)

Levenshtein distance (L) This metric counts the amount of “edits” that are
needed to transform one sequence into another one, where an edit is a symbol
insertion, symbol deletion, or a symbol substitution. To apply this metric, alarm
floods are represented as sequences of symbols, which in turn represent unique
alarm types. The Levenshtein distance d(|fi|, |fj |) between floods fi and fj is cal-
culated recursively, where the distance for the first x and y symbols of fi and fj ,
respectively, is calculated as follows:

d(x, y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max(x, y) if min(x, y)= 0

min

⎧⎪⎨
⎪⎩
d(x - 1, y)+ 1

d(x, y - 1)+ 1 otherwise,
d(x - 1, y - 1)+1fi(x) �= fj(y)

(7)

where 1condition is the indicator function. The distance score is normalised over the
length of floods.

2.4 Distance matrix postprocessing

Distance matrix is optionally postprocessed using a Jaccard similarity measure
threshold t. The rationale for postprocessing is that only floods that have a sig-
nificant number of alarms in common can be assigned a low distance value [1]. To
ensure that, distance values for each pair of floods are filtered based on the value
of the Jaccard distance for this pair. For any distance measure d, distance value dij
remains unchanged if the Jaccard distance between the corresponding floods dJij is
lower than the threshold t; otherwise, the distance is replaced with the maximum
value dij = 1:

d̂ij =

{
dij if dJij < t,

1 otherwise.
(8)

Postprocessed distance matrix d̂ yields clustering solution Ŝ.

3 Evaluation methodology

At the core of the proposed approach, the original flood set FO is concatenated
with the synthetic flood set FS to create a joint set FOS . Procedure to generate
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synthetic floods is described in section 3.1. The clustering result of the join set,
SOS is used to evaluate the behaviour of the distance measures. Clustering (see
Figure 2 components 5 and 6) is performed analogously to the original floods, as
described in 2.3. We propose to evaluate the clustering solutions in regard to the
distance measure behaviour using two measures: cluster membership of synthetic
floods m1 (see section 3.2) and cluster stability, based on adjusted Rand index [17],
in five variants: R1, R2, R3, R4 and R5 (se section 3.3).

3.1 Synthetic flood generation

Second step of the analysis is focused on generating synthetic alarm floods that
can be included in clustering to evaluate the distance measures. Synthetic floods
are generated based on the existing set of original floods FO. Each original flood
fO is used to create one synthetic flood fS . The original alarm flood is modified in
three ways to create the synthetic flood, as illustrated in Figure 4: (i) by addition
of randomly chosen alarms, (ii) by removal of randomly chosen alarms and (iii) by
transposing randomly chosen pairs of alarms.

Those three modifications correspond to the expected possible variations in an
industrial alarm log, which stem e.g. from delays on the bus or data acquisition
sampling rate. For simplicity, we always apply an equal amount, at least one, of all
three modifications to each flood. The number of modifications is varied throughout
the experiments to obtain different synthetic flood sets, ranging from very similar
to dissimilar to the original floods. We represent the degree of modification as a
percentage of the number of alarms in a flood that has been modified.

This way of modification of floods from real datasets is chosen according to our
domain knowledge and experience with floods and their variation in the industrial
setting.

3.2 Cluster Membership of Synthetic Floods

The first validation approach is the fraction of synthetic floods that is assigned to
the same cluster as their original flood. It is calculated as

m1 =
|fS

i : c(fS
i ) = c(fO

i )|
|FS | , (9)

where fS
i is a synthetic flood generated from original flood fO

i , c(f) is the cluster
flood f was assigned to and FS is the set of all synthetic floods. This measure
is calculated for each synthetic flood with respect to its mother flood, without
considering (potentially random) similarities to other original floods. Therefore, if
a synthetic flood by chance becomes more similar to a different original flood than
its mother flood, it will not affect the results.

3.3 Cluster Stability

We can consider the original flood clustering results to be the ground truth, or the
"target", as in the supervised machine learning validation methods. This assump-
tion is made only for the purpose of validation of the similarity measure behaviour.
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Each synthetic flood has a known mother flood, and is expected to be treated
similarly by the clustering algorithm if it was generated with a low degree of modi-
fication; i.e., the synthetic flood is expected to have similar distance scores to other
floods as its mother flood, and therefore to be clustered alike. Hence, the synthetic
floods are given the same target as their mother floods. On the other hand, if the
synthetic flood was generated using a high degree of modification it is expected to
be treated differently by the clustering algorithm than its original flood.

Results of clustering original and synthetic floods together can be compared to
that target solution. Adjusted RAND index is a well-known measure for quantifying
partition agreement between clustering solutions, while disregarding the actual
cluster number. Adjusted RAND index for two partitions C1 = {c0, c1, ..., cn} and
C2 = {c0, c1, ..., cn} of items is calculated as

R =
a+ b

a+ b+ c+ d
, (10)

where a is the number of pairs of items that are in the same cluster in C1 and in
C2, b is the number of pairs of items that are in different clusters in C1 and in C2,
c is the number of pairs of items that are in the same cluster in C1 but in different
clusters in C2, and d is the number of pairs of items that are in different clusters
in C1 but in the same cluster in C2.

We specify the following five different variants of cluster stability to perform the
analysis. Cluster stability R1 compares the cluster membership of original floods
and synthetic floods when clustered together. Cluster stability R2 is used to quan-
tify the change in original flood partitioning when clustered with and without the
synthetic floods. Cluster stability R3 quantifies the difference between the expected
outcome, which is the result of the original flood clustering, and the obtained solu-
tion. Cluster stability R4 compares the cluster memberships of the original and the
synthetic floods when clustered separately. Finally, cluster stability R5 compares
the solutions for the original floods obtained with and without the postprocessing
step described in section 2.4.

R1 = R(SOS(0, n), SOS(n+ 1, n+m)), (11)

R2 = R(SO, SOS(0, n)), (12)

R3 = R(SOS , SO · SO), (13)

R4 = R(SO, SS), (14)

R5 = R(S, Ŝ), (15)

where SO = sO0 , ..., s
O
n is the clustering solution for the set of original floods

FO = fO
0 , ..., fO

n , SS = sS0 , ..., s
S
m is the clustering solution for the set of synthetic

floods FS = fS
0 , ..., f

S
m, sOS = sOS

0 , ..., sOS
n , sOS

n+1, ..., s
OS
n+m is the clustering solution

for the joint set of original and synthetic floods FOS = fOS
0 , ..., fOS

n , fOS
n+1, ..., f

OS
n+m,

SOS(0, n) and SOS(n + 1, n +m) denote the joint solution subsets corresponding
to the original and synthetic floods respectively and Ŝ denotes a solution obtained
from a postprocessed distance matrix.
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A B C E F G

A B C E G F

D

H

a d t

Fig. 4: Creation of a synthetic flood
fs from an original flood fo composed
of alarms A,B,C,D,E, F,G through
three edits: a - addition, d - deletion,
t - transposition.

Table 1: Specification of performed
experiments.

Exp. Dist. measure Postproc.
1 Jaccard No
2 Jaccard Yes
3 Frequency No
4 Frequency Yes
5 TF-IDF No
6 TF-IDF Yes
7 Levenshtein No
8 Levenshtein Yes

4 Empirical evaluation results

The following results extend those already published in [7]. The experimental data
set is a 25-day alarm log from a production plant from the manufacturing industry,
consisting of 15 k annunciations of 96 alarm types. The flood detection algorithm
has been modified to account for the lingering alarm problem (cf. Section 2.2)
and yielded 166 alarm floods with an average length of 61 alarms. We perform
similarity measure analysis as described in the methodology section and analyse
the behaviour of the distance measure as it changes with adding synthetic floods
to the dataset and influences the structure of the clusters. DBSCAN clustering is
used in the experiments and since it does not require specification of the number
of target clusters, it is possible to observe how do the synthetic floods change the
structure of the data, for example by creating new inherent clusters.

4.1 Visualization on a demonstrative set of 25 floods

Fig. 5 visually demonstrates clustering and validation methodology on a reduced
dataset of 25 floods. Floods are arranged on X- and Y-axis in the same order, and
pixels indicate degree of similarity, where white means highest distance, and strong
colour means equality (which occurs mostly on the diagonal).

Row (a) presents original distance matrices of distance measures J, F, T, L.
Jaccard distance identified four floods as exactly the same (solid square in the
image), while all other distance metrics show that they are in fact not identical:
albeit they are composed of the same alarms, they differ in the number and order
of their annunciations.

Row (b) shows distance matrices postprocessed according to 2.4. Clearly this
filters out many values in the matrices, in particular in the case of TF-IDF many
low distance values are reset to highest distance. This property of TF-IDF can be
explained, because the principle of TF-IDF is to put more weight on terms that
occur more often in one flood and that occur less often in other floods. Therefore, to
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J F T L

(a)

(b)

(c)

(d)

Fig. 5: Distance matrices obtained at every stage of the experiments for measures
J, F, T, and L for a reduced dataset of 25 floods. Pixels indicate pairwise similarity
between floods which are arranged on X- and Y-axis in the same order: stronger
colours show lower distance. Rows show (a) original flood distance matrices; (b)
distance matrices postprocessed using Jaccard distance threshold; (c) clustering
solutions using distances from (b), coloured according to the cluster number, with
outliers in the top left cluster highlighted by a black border; and (d) clustering
solutions after adding a 10% modified synthetic flood for each flood.

obtain high distance, a pair of floods needs to contain a distinct set of alarms that
has low frequency in other floods. In our dataset this rarely happens, concretely it
mainly happens in short floods, where the term frequency of rare alarms contributes
a large value to the distance measure.

Row (c) presents the DBSCAN clustering results on distance matrices of
row (b), where floods have been rearranged and coloured according to the cluster
number. The top left cluster represents outliers: their distance to other floods was
under the ε threshold and therefore they were not assigned to any cluster.
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Fig. 6: Measure m1 - cluster mem-
bership of synthetic floods calculated
with and without outliers for fre-
quency of consecutive alarms dis-
tance measure.

Fig. 7: Measure R5 - cluster stability
between clustering solutions with and
without postprocessing calculated for
the original flood set.

Row (d) presents clustering results after introducing synthetic floods with 10%
modification. Synthetic floods cause changes in the cluster structure, although the
structure of original clusters is mostly retained. As in this case, synthetic floods
are quite similar to their respective mother floods, many of the outlier floods are
clustered together with their synthetic counterpart and form two-flood clusters.

4.2 Clustering with synthetic floods on the full dataset

Further experiments were performed on the whole alarm flood dataset. Each dis-
tance measure is evaluated with and without the postprocessing step, as listed in
table 1. For validation experiments we generate experimental sets of synthetic floods
with a degree of modification (the amount of edits) ranging between none and 50%.
Each experiment is repeated 10 times and the measure values are averaged.

Figure 6 shows cluster membership of synthetic floods measure m1 calculated
for the frequency of consecutive alarms distance measure under two conditions:
including and excluding the outliers. Since the amount of outliers is high in a real
industrial dataset, including them in the analysis distorts the results. The number
of classifications that are correct from the perspective of m1 measure (so number
of synthetic floods assigned to the same cluster as the corresponding original flood)
is very high because the outliers constitute such a large cluster and the synthetic
floods based on the outliers also are assigned to the outlier cluster. Therefore, in
further analysis we focus on the floods that were not outliers.

Figure 7 presents the cluster stability between solutions obtained from un-
changed distance matrices and postprocessed distance matrices for the original
flood set. Low values of R5 indicate that the solutions obtained with and with-
out postprocessing are not consistent. Results imply that postprocessing heavily
influences the results.

Figures 8a to 8d present the evaluation measures m1, R1, R2, R3 and R4 for
experiments with varying degrees of modification used to generate the synthetic
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(a) Experiment 1 - Jaccard distance mea-
sure without postprocessing.

(b) Experiment 3 - Frequency of consecu-
tive alarms distance measure without post-
processing.

(c) Experiment 5 - TF-IDF distance mea-
sure without postprocessing.

(d) Experiment 7- Levenshtein distance
measure without postprocessing.

Fig. 8: Experimental results.

flood sets. Intuitively, identical floods will be clustered together, and indeed for
every distance measure the m1 and R1 measures for synthetic floods with no mod-
ifications are maximal. As the degree of modification is raised, m1 and R1 both
decrease. The decrease is most abrupt for frequency of consecutive alarms distance
measure, which implies that this measure is most sensitive to even small variation
in the data.

On the other hand, measures R2 and R3 increase with the degree of modifi-
cation. As the synthetic floods become more and more different from the original
floods, the clustering solution of the original floods resembles more the solution
obtained in step 1 in the process. That means the synthetic floods no longer suffi-
ciently resemble the original floods. Measure R3 does not reach the upper limit of
1.0 like measure R2 does. That is due to the parameter of the clustering algorithm
which specifies the minimum number of samples to form a valid cluster. The set
of original floods is smaller and therefore the minimum number of samples to form
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3. (d) Experiment 4.

Fig. 9: Comparison of distance value histograms before (left) and after (right) post-
processing for distance measure: a,b - Jaccard, c,d - Frequency of consecutive
alarms. Postprocessed histograms (right) ignore the distance values of 1.

a cluster might not be reached for some subsets of floods, while after adding the
synthetic floods, the minimum is reached and clusters are formed.

The effect of postprocessing is analysed further by comparison of histograms
of distance matrices before and after postprocessing (Figures 9 and 10). During
postprocessing we replace with 1 all the values that have the Jaccard distance
value higher than the threshold t = 0.6. This means above a certain distance we
assume it is maximum distance. The resulting histograms are dominated by these
"1" values so we do not show them. We apply this postprocessing to the other
distance matrices as well. We always use Jaccard distance as the criterion whether
to reset a distance value to 1 (this is the methodology described in [1]) and therefore
histograms for the other distance measures show values above 0.6.

In the case of Jaccard distance measure (Figure 9b), postprocessing simply
removes all the values in range of (0.6, 1.0). While the postprocessed Levenshtein
distance matrix (Figure 10d) is consistent with the Jaccard measure (in the sense
that very few distance values remain in the range of (0.6, 1.0)), the two other
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(a) Experiment 5. (b) Experiment 6.

(c) Experiment 7. (d) Experiment 8.

Fig. 10: Comparison of distance value histograms before (left) and after (right)
postprocessing for each distance measure: a,b - TF—IDF, c,d - Levenshtein. Post-
processed histograms (right) ignore the distance values of 1.

measures show that alarm floods that have many IDs in common may in fact be
quite distant in the terms of (i) how frequently alarms appear in order (Figure 9d)
and (ii) the most discriminative alarms (Figure 10b).

5 Conclusion

In this paper, we continue the analysis of similarity measures that can be used in
alarm flood clustering [7].

The paper presents a methodology for validating similarity measures to help
choose a measure which is best suited for similarity-based approaches used in alarm
flood analysis. An example of a similarity-based approach is case-based reasoning,
where a new alarm flood is compared to a database of known cases to suggest a
course of action to the operator [8]. Choice of a similarity measure is a difficult
problem, which is normally solved arbitrarily by an expert. Synthetically gener-
ated alarm floods create a controlled environment for observing the behaviour and
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sensitivity of the similarity measure to expected variations in the data, which is not
possible using industrial data sets which are generated under unknown conditions
and limited in size. The validation process has been shown using a real industrial
dataset.

We have previously shown that the measure introduced in [1] produces very
different results than our newly introduced measures and results suggest that the
measure of [1] is less favourable. TF-IDF representation with Euclidean distance
has shown the most balanced results.

Since the alarm logging systems are flawed we can assume the alarm log data to
exhibit some degree of variability. For example, there may be delays on the bus or
sampling may be too slow so that many alarms are logged with the same timestamp
but not necessarily the correct order. Two of the analysed measures (frequency of
consecutive alarms and Levenshtein distance) rely heavily on the order of alarms
in the data. Results show that frequency of consecutive alarms distance measure
is most sensitive to variations in data, while Levenshtein distance is not because it
allows transpositions of adjacent alarms within a flood.

Results show that postprocessing heavily influences the results. It has been
shown that floods containing many of the same alarm IDs may in fact be very
distant when considering other characteristics, such as the order of the alarms or
the discriminating value of alarm IDs.

Moreover, DBSCAN clustering appears to produce more meaningful results
because of its adaptive choice of the number of clusters.

In the future work, using an annotated dataset (e.g. data generated in a con-
trolled simulation environment) could help further analyse these effect and establish
whether postprocessing is viable. Furthermore, additional similarity measures can
be analysed, including measures that take absolute time distance into account.
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Abstract. In view of the increasing amount of information in the form
of alarms, messages or also acoustic signals, the operators of systems are
exposed to more workload and stress than ever before. We develop a concept
for the reduction of alarm floods in industrial plants, in order to prevent
the operators from being overwhelmed by this flood of information. The
concept is based on two phases. On the one hand, a learning phase in
which a causal model is learned and on the other hand an operating phase
in which, with the help of the causal model, the root cause of the alarm
sequence is diagnosed. For the causal model, a Bayesian network is used
which maps the interrelations between the alarms. Based on this causal
model the root cause of an alarm flood can be determined using inference.
This not only helps the operator at work, but also increases the safety and
speed of the repair. Additionally it saves money and reduces outage time.
We implement, describe and evaluate the approach using a demonstrator
of a manufacturing plant in the SmartFactoryOWL.

1 Introduction

The next industrial revolution (digital transformation) not only affects society but
also the working world. In the future, a few plant operators will have to operate
highly automated and complex plants. Especially, the vision of complete networking
of all components and parts of a plant (IoT) leads to overloaded operators due
to the enormous load of information. This is particularly critical in the area of
the alarm management of plants and machines, since none, too late or incorrect
intervention can result in high material damage or even personal injury. As a result
of the increasing automation, additional sensors are increasingly installed because
of their allegedly very good ratio of security per cost. However, this results in an
enormous number of warnings and alarms, which overexert the operator [15]. Such
situations are called alarm floods. As an effect of this, the operator is only able
to acknowledge most of the alarms, but cannot process the information that they
provide. This may cause dramatic effects especially at high hazard facilities like in
the process industry and reduces the overall value of an alarm system (see Example:
Refinery Explosion).
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An alarm flood corresponds to a time interval in which the number of alarms is
higher than the reactivity of an operator. There exist different reasons for an alarm
flood. Most common is a badly designed alarm management system. Based on [21,
24, 28] typical distinctive features of an inefficiently designed alarm management
are: missing alarm philosophy, irrelevant alarms, chattering or nuisance alarms,
incorrectly configured alarm variables, alarm design isolated from related variables,
permanent alarms in normal state, alarms and warnings at the same time, missing
option to remove remedied alarms and too many priorities.

Therefore an effective alarm management for factories is of huge interest and
current research topic. Regardless of very good alarm management, the weaknesses
of humans are that they are not able to perform 100 percent consistently well
all the time. For example, if operators are tired, sick, distracted or stressed, their
performance might be degraded. Therefore, even with well managed alarm systems,
it is recommended to limit the credit given to alarms [13]. However, despite an
effective alarm system design and configuration efforts, the occurrence of alarm
flooding cannot be eliminated completely [5]. The spread of alarms has become
one of the biggest problems for plant operators in modern times. Therefore, it is
essential to protect the operator from unnecessary information and to help him
focus on his task. One way to accomplish it, is to reduce the amount of alarms in
an alarm flood. In particular, sequences of alarms, which are connected in a causal
context, are very suitable because they cannot be excluded despite a good alarm
management. This alarm sequence is reduced so that only the alarm which points
to the cause is displayed. For this purpose the root cause of the alarm flood must
be identified. The root cause is an initiating cause of a causal chain which leads to
an alarm flood. To achieve this, we developed a concept based on a causal model of
the interrelations of the alarms. This is discussed in more detail in Section 4. We
use Bayesian networks, which where developed by J. Pearl et al. [22] as a causal
model. With the causal model we determine the potential root causes followed by
an inference of the root cause of the current alarm flood. After the inference of
the root cause, the alarm flood can be reduced to one alarm that caused the other
alarms. This alarm is also the closest to the actual cause of the fault. However, this
applies to a single alarm sequence. If multiple alarm sequences occur, there are also
several root causes that are displayed, minimum one per alarm sequence.

In the following, a meaningful example is depicted to illustrate the effects of
alarm floods. It also shows the importance to address this aspect in the field of
research.

Example: Refinery Explosion

On the 24th July in 1994 an incident of the Pemproke Cracking Company Plant at
the Texaco Refinery in Milford Haven happened. An explosion was followed by a
number of fires caused by failures in management, equipment and control systems.
These failures led to the release of 20 tonnes of flammable hydrocarbons from the
outlet pipe of the flare knock-out drum of the fluidised catalytic cracking unit.
These hydrocarbons caused subsequently the explosion. The failures started after
plant disturbances appeared caused by a severe electrical storm.



Concept for Alarm Flood Reduction with Bayesian Networks 113

The incident was investigated and analysed by the Health and Safety Executive
(HSE) [11]. In total, there appeared 2040 alarms for the whole incident. 87% of
these alarms were categorized in high priority. In the last 10.7 minutes before the
explosion two operators had to handle 275 alarms. The alarm for the flare drum was
activated approximately 25 minutes before the explosion but was not recognized
by the operators. As a result, 26 persons were heavily wounded and the total cost
of the economical damage was ca. e70 million. In a perfect scenario, where they
would have found the crucial alarm immediately, the operators would have had 25
minutes to shut down the plant or at least minimize the possible damage caused by
an explosion. This was impossible because of the flood of alarms so the operators
could not handle the situation in an appropriate way.

Based on incidents like this, especially the chemical and oil industry expedited
the topic of alarm management in industrial plants. One result is the guideline
EEMUA 191 ”Alarm Systems- A Guide to Design, Management and Procure-
ment” by the non-profit organization Engineering Equipment & Materials Users’
Association (EEMUA) [8]. The quasi-standard EEMUA 191 for alarm management
recommends to have only one alarm per 10 minutes. The huge difference between
this number and the 275 alarms from the example demonstrates the high potential
for improvement. This is supported by the study of Bransby and Jenkinson [4].
They investigated 15 plants including oil refineries, chemical plants, pharmaceuti-
cal plants, gas terminal, and power stations. The average alarm rate per 10 minutes
under normal operation ranged from 2 to 33 and the peak alarm rate per 10 minutes
in plant upsets varied from 72 to 625.

Based on the guideline EEMUA 191, the International Society of Automa-
tion (ISA) developed a new standard called ANSI/ISA-18.2-2009 ”Management of
Alarm Systems for the Process Industries” in 2009 [17]. In 2014, another standard
based on ISA 18.2 was developed by the International Electrotechnical Commission
(IEC) the IEC62682:2014 [16]. The increasing focus of organizations and industry
on the topic of alarm management shows the importance of reducing the amount
of alarms in the future. In this challenge, the alarm flood reduction is one of the
main tasks.

This is not only a beneficial effect for the safety of people, especially the em-
ployees, but also the plant itself. Moreover, the company can save a lot of money
due to increased production and improved quality because the operator is able to
focus better on the failures. This will also reduce the time to correct the failures
and prevent unnecessary shut downs of parts of the plant.

In this work, we present an entire novel concept for alarm flood reduction in
industrial plants. We depict the current status of alarm management in industrial
plants and the state of the art in the field of alarm flood reduction (Section 2). For
our approach a causal model, which represents the relations between the alarms
in the plant is fundamental. Therefore, we discuss in Section 3 what knowledge
is required for an accurate representation in the causal model. In our approach a
Bayesian network is used as a causal model. In case of an alarm flood we are able to
apply inference to identify the root cause and reduce the alarm flood to only the root
cause. The whole approach is described in detail in Section 4. For the evaluation
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we applied our approach to a manufacturing plant in the SmartFactoryOWL. In
the conclusion we give an outlook for further research which needs to be done to
utilize the concept in real industrial plants.

2 State of the Art of Alarm Management

The basic intention of alarm management is to assist the operator in detecting, diag-
nosing and correcting the fault. Due to the advancing technology and automation,
an increasingly number of alarms occur in plants, which requires a great amount
of effort in the detection of faults. In addition, the risk of committing mistakes and
unnecessarily exchanging parts increases. In the next paragraphs the current status
of treating alarm floods in industrial plants is depicted and subsequently, relevant
work in the field of alarm flood reduction is presented.

Current Status

The traditional practice for operators is using a chronologically sorted list-based
alarm summary display [3]. During an alarm flood this alarm list reveals multiple
weak points. In many cases the alarms occur faster than the human being is able to
read them. The most common ways to handle alarm floods can be roughly grouped
in one of the following approaches [5, 7, 26]:

– alarm shelving,

– alarm hiding/suppressing,

– alarm grouping,

– usage of priorities.

With alarm shelving the operator is able to postpone alarm problems till he has
time to focus on the problem. This creates the opportunity to solve the problems
subsequently. Alarm hiding means that some alarms are suppressed completely
for special occasions like the starting procedure. Consequently, alarms that are
expected, but irrelevant for this special situation, do not disturb the operator.
Alarm grouping is used to create an alarm list which is clearer for the operator.
Instead of many alarms, there will be only one alarm for one group. The technique
of prioritizing enables the operator to identify immediately the most important
alarms to prevent critical effects.

Most of these techniques just disguise the real problem. To reduce the amount
of alarms in an alarm flood it is necessary to identify the real root cause or the
alarm, which points out the real root cause. So that the operator is still provided
with the required information to correct the faulty behaviour of the plant. In the
next subsection some approaches for reducing the amount of alarms in an alarm
flood are presented.
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Related Work

There exist several concepts addressing the topic of alarm flood reduction. Wang
et al. [28] give a comprehensive overview over the diverse ideas. For an overview
of methodologies with probabilistic graphical models please refer to our previous
work [29]. In this paragraph we will only focus on the most recent approaches
in science. Most of them are related to the topic of pattern matching. Folmer et
al. [9] developed an automatic alarm data analyzer (AADA) in order to identify the
most frequent alarms and those causal alarms which allow to consolidate the alarm
sequence. Ahmed et al. [2] use similarity analysis to investigate similar alarm floods
in historical dataset. Based on the results they group patterns of alarms. A similar
strategy is pursued by Fullen et al. [10]. They developed a case-based reasoning
method on similar alarm floods. Cheng et al. [6] use a modified Smith-Waterman
algorithm to calculate a similarity index of alarm floods by considering the time
stamp information. Karoly and Abonyi [19] propose a multi-temporal sequence
mining concept to extract patterns and formulate rules for alarm suppression. Xu
et al. [30] introduce a data driven method for alarm flood pattern matching. With
a modified BLAST algorithm using the Levenshtein distance they discover similar
alarm floods. Rodrigo et al. [23] do a multiple steps causal analysis of alarm floods
to reduce them. After removing chattering alarms and identifying alarm floods, they
cluster similar alarm floods. Following this they try to isolate the causal alarm of
an alarm flood. We want to focus on reducing alarm floods by identifying the root
cause of it. Therefore we need a causal model which represents the dependencies
of the alarms. Probabilistic graphical models, such as Bayesian nets, fault trees,
or Petri nets are particularly suitable for this purpose. They have been already
used in the field of alarm flood reduction. Especially Bayesian networks show great
potential for this task.

Abele et al. [1] propose to combine modelling knowledge and machine learning
knowledge to identify alarm root causes. They use a constrained-based method
to learn the causal model of a plant represented by a Bayesian network. This
enables faster modelling and accurate parametrization of alarm dependencies but
expert knowledge is still required. Wang et al. [27] apply an online root-cause
analysis of alarms in discrete Bayesian networks. They restrict the Bayesian network
to have only one child node. The method is evaluated on a numerical example
of a tank-level system. Wunderlich and Niggemann [29] investigate and evaluate
different structure learning algorithms for Bayesian network in the field of alarm
flood reduction. It turned out, that Bayesian networks are feasible and the state of
the art structure learning algorithms are able to learn the causal relationships of
alarms from industrial plants.

Based on the findings in our previous work, we developed a concept for the
reduction of alarms. The foundation for this concept is the Bayesian network as a
causal model. It is essential to learn a very accurate causal model in order to identify
the causal chain and to determine the root cause. Therefore, it is important to know
how a causal model can be learned in an unsupervised way and what information
about the plant or process is necessary to be included.
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3 Knowledge Representation

The research on alarm floods is still in an early stage and has a high potential of
improvement. Therefore we want to find out, which knowledge is necessary and
required to improve the situation. In general, once the amount of alarms is too
high to be handled, the new arriving alarms will be ignored by the operator. This
means the amount of alarms is randomly reduced which has a high potential of
causing a disaster. Therefore, to improve the handling it is necessary to use all
available knowledge to reduce the alarm flood in an intelligent way. Best case sce-
nario would be if only the alarms which hint to the real causes, would be displayed.
Therefore, it is a demanding task to identify all required causal relations between
alarms [14]. To be able to achieve this, it is necessary to construct a causal model.
Probabilistic graphical models are suitable for this use case. They represent in an
easy-to-understand way the relationships and their probabilities. All these models
are composed of nodes n and edges e. In our use case a node is equal to one alarm.
The relations of two alarms (nodes) are represented by edges. For the causal model
it is beneficial to include as much knowledge about the system as possible to be
close to the reality. There are two extreme ways to achieve a representation of the
real world such as phenomenological and first principle representation. The first
approach is to learn the statistical relations of the alarms based on the alarm logs.
However, it does not include every aspect of the plant. For example, as shown in
Fig. 1, only the symptoms (alarms) are presented. But the alarms themselves may

Alarm 1

Alarm 4

Alarm 2 Alarm 3

Alarm 5

Alarm 7 Alarm 6

Fig. 1. Phenomenological representation

not be depended directly on each other. It’s more viable to believe, that based on
location or process flow the alarms are propagating and have effect on each other.
The representation only depicts correlations and not causal relationships.
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This leads to the second approach. Here, a first principle model of the system is
built to create an exact image of the system. Not only the symptoms (alarms) are
included, but also all aspects such as sensor values see Fig. 2. This has an advantage

Alarm 1

Alarm 2 Alarm 3

Sensor 1

Sensor 3

Sensor 4

Sensor 2

Sensor 5

Fig. 2. First principle representation

of representing a deeper knowledge about the relations between the alarms and how
the dependencies are. However, in most cases this is not possible due to missing
information about some parts of the plant such as process flow. Also the creation
of a model needs an expert and is very time-consuming. Hence, a combination of
both is the most favourable solution. The model should include as much knowledge
about the plant (process flow, environment etc.) as possible without being too time
consuming. Finding a good balance is one of the challenges for researchers. In a
best case scenario, the advantages of fast learning from historical data approach
can be combined with the valuable expert knowledge about the plant and process.

We use a Bayesian network as a data-driven approach and try to fill it with as
much information about the plant as possible.

4 Concept for Alarm Flood Reduction

Based on the findings, we design a concept for reducing alarm floods. To represent
the causal relationships, we use Bayesian networks. An overview of the overall
concept is shown in Fig. 3.

The concept consists of two different phases. First, the learning phase which is
outlined in red and second, the operating phase which is outlined in green. In the
learning phase, all historical data about the machine or system are used to learn a
causal model of the alarms and their probabilities. This is done offline and usually
takes several minutes to hours to calculate. The causal model contains information
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Fig. 3. Overview Concept Alarm Flood Reduction

about relations and dependencies of all alarms. However, the learning of the causal
model is necessary only in the case of major changes of the system (for example,
the production of a new product).

Once the learning of the causal model has been completed, the second phase,
the so-called operating phase, can begin. The current alarms are used together
with the causal model. With the aid of the causal model, it is possible to conclude
the root cause of the current alarm sequence. This inference allows the number of
alarms to be reduced to these root causes and thus to only display these root causes
to the operator. Thus, the operator can correct the fault quickly and purposefully.

Demonstrator For the evaluation of this alarm flood reduction concept, we im-
plemented two simple scenarios of alarm floods in the Versatile Production System
(VPS), which is located in the SmartFactoryOWL 1. This scenarios serve as use
cases to identify the root cause. The VPS is a manufacturing plant in a laboratory
scale where sensors, actuators, bus systems, automation components, and software
from different manufacturers are considered. The VPS is a hybrid technical pro-
cess considering both continuous and discrete process elements with a focus on the
information processes and communication technologies from the plant level down
to the sensor level. It thus provides an ideal multi vendor platform for testing and
validation of innovative technologies and products.

1 https://www.smartfactory-owl.de



Concept for Alarm Flood Reduction with Bayesian Networks 119

The use cases are implemented in the ”bottle filling module” of the VPS. The
bottles can be filled either with water or with grain. The two use cases represent
two possible root causes for an alarm flood. We want to identify these root causes
with correctly learnt dependencies of alarms. In Fig. 4 an overview of the ”bottle
filling module” is depicted. The module consists of a conveyor belt and a rotary

Camera

Rotary table

Conveyor belt

Conveyor belt

Start area / collection area of bottles

Caps

Claw

Claw

Water filling

2

1

3

4

56

= Stations

Grain 
filling

Put the 
cap on

Screw the cap

Fig. 4. Overview bottle filling module

table with six stations. At the first station the bottle is handed over by the conveyor
belt to the rotary table. It’s possible to fill the bottle either with water at station
two or to fill it with grain at station three. The next two stations are there for
putting the cap on. At the first step, the cap is placed on top of the bottle and in
the second step, the cap is fastened. In the last station the bottle is handed over
back to the conveyor belt passing a camera check, whether the bottle is filled.

In total the following alarms are implemented: bottle rotary table entrance
(BRE), timer water tank (TW), drive filling (DF), timer filling (TF), timer cap 1
(TC1), timer cap 2 (TC2), bottle not filled (BNF). The real dependencies between
the alarms are depicted in Fig. 5. This structure shows the real causality within
the plant. The two root causes for an alarm flood are bottle rotary table entrance
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Bottle rotary 
table entrance 

(BRE)
Drive filling (DF)

Timer water 
tank (TW) Timer filling (TF)

Timer cap 1 
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Timer cap 2 
(TC2)

Bottle not filled 
(BNF)

Fig. 5. Real causality structure

(BRE) and drive filling (DF). If a bottle is missing the alarm BRE triggers. This
alarm causes the subsequent alarms TW, TF, TC1, TC2, and BNF. In the other
root cause of a blocked drive the alarm DF causes the subsequent alarms TF, TC1,
TC2, and BNF.

4.1 Learning Phase

Bayesian networks are a class of graphical models which allow an intuitive rep-
resentation of multivariate data. A Bayesian network is a directed acyclic graph,
denoted as B = (N,E), with a set of variables XXX = {X1, X2, . . . , Xp}. Each node
n ∈ N is associated with one variable Xi. The edges e ∈ E, which connect the
nodes, represent direct probabilistic dependencies.

Abele et al. [1] and Wang et al. [27] have already tried to use Bayesian networks
for detection of a root-cause in an alarm flood. Abele et al. learned a Bayesian net-
work, which is consequently the basis for root-cause analysis of a pressure tank
system. The structure of the Bayesian network was learned with a constrained-
based method and needed some expert knowledge to achieve the correct model of
the pressure tank system. Therefore, they concluded that expert knowledge and
machine learning should be combined for better results. Wang et al. applied a spe-
cial kind of Bayesian networks. They restrict themselves to only one-child nodes.
This is a huge restriction and it cuts off many possible failure cases, because in a
modern and complex industrial plant the interconnectivity is increasing dramati-
cally. This means that the alarms are also more connected and dependent on each
other.
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Structure Learning

Therefore, we want to pursue the idea of Abele et al. and use the Bayesian network
as a model to represent the causality of the alarms. But other than Abele et al. we
do not limit ourselves to constraint-based learning methods. All in all these learning
algorithms can be differentiated into the following three groups of methods:

– constrained-based,
– score-based,
– hybrid.

In a constrained-based method the Bayesian network is a representation of inde-
pendencies. The data is tested for conditional dependencies and independencies to
identify a structure, which explains the dependencies and independencies of the
data the best. Constrained-based methods are susceptible to failures in individ-
ual independence tests. Just one wrong answered independence test misleads to a
wrong structure.

Score-based methods view Bayesian network as specifying a statistical model.
Therefore, it is more like a model selection problem. In the first step, a hypothesis
space of potential network structures is defined. In the second step, the poten-
tial structures are measured with a scoring function. The scoring function shows
how good a potential structure fits the observed data. Following this, the compu-
tational task is to identify the highest-scoring structure. This task consists of a
superexponential number of potential structures 2O(n2). Therefore, it is unsure if
the highest-scoring structure can be found, so the algorithms use heuristic search
techniques. Because the score-based methods consider the whole structure at once,
they are less susceptible to individual failures and better at making compromises
between the extent to which variables are dependent in the data and the cost of
adding the edge [20].

Hybrid methods combine aspects of both constraint-based and score-based
methods. They use conditional independence tests to reduce the search space and
network scores to find the optimal network in the reduced space at the same time.
In a previous work [29], we have already investigated different structural algorithms
for reducing alarm flood. It turned out that a hybrid approach is the most promising
due to the greater accuracy.

Algorithm

In the following, an hybrid method algorithm is presented and evaluated on the
use cases. The Max-Min Hill-Climbing (MMHC) from Tsamardinos et al. [25] per-
formed the best in previous tests and is chosen for the evaluation of the con-
cept. MMHC is a hybrid of a constrained-based and score-based approach. In the
first step, the search space for children and parents nodes is reduced by using a
constrained-based approach, namely Max-Min Parents and Children (MMPC) al-
gorithm. In the second step, the Hill-Climbing algorithm is applied to find the best
fitting structure from the reduced search space.
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For a better understanding of the associated pseudo code, we need a few def-
initions. The dataset D consists of a set of variables ϑ. In the variable PCx the
candidates of parents and children for the node X are stored. This set of candidates
is calculated with MMPC algorithm. The variable Y is a node of the set PCx. The
pseudo code of MMHC looks as follows:

Algorithm 1 MMHC Algorithm

1: procedure MMHC(D)
2: Input: data D
3: Output: a DAG on the variables in D
4: % Restrict
5: for every variable X ∈ ϑ do
6: PCX = MMPC(X,D)
7: end for
8: % Search
9: Starting from an empty graph perform Greedy Hill-Climbing with operators add-

edge, delete-edge, reverse-edge. Y → X if Y ∈ PCX

10: Return the highest scoring DAG found
11: end procedure

The algorithm first identifies the parents and children set of each variable, then
performs a greedy Hill-Climbing search in the reduced space of Bayesian network.
The search begins with an empty graph. The edge addition, removal, or reversing
which leads to the largest increase in the score is taken and the search continues
in a similar way recursively. The difference from standard Hill-Climbing is that
the search is constrained to only consider edges which where discovered by MMPC
in the first phase. The MMPC algorithm calculates the correlation between the
nodes. Based on a training dataset the MMHC algorithm gives the structure which
is depicted in Fig. 6. The training data set was recorded at the VPS and consists
of 525 observations of the seven alarms. The states of the alarms are binary coded
with 0 for inactive and 1 for active.

The result is very close to the true causal model in Fig. 5. Both, the use-case
with the missing bottle (BRE → TW → TF → TC1 → TC2 → FNB) and the
use-case with the blocked drive (DF → TF → TC1 → TC2 → FNB) are shown
correctly. Only the connection between DF and BRE is not present in reality.

In a graph with n nodes, there exist n · (n − 1) possible connections. For the
evaluation we define the following terms. A true positive connection (TP) is an
edge which is in the original and in the learned Bayesian network. A false positive
connection (FP) is an edge which is not in the original but in the learned Bayesian
network. A false negative connection (FN) is an edge which is in the original but
not in the learned Bayesian network. A true negative (TN) connection is an edge
which is not in the original and not in the learned Bayesian network. The results
of the evaluation for the MMHC algorithm is depicted in detail in Table 1.
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Fig. 6. BN Max-Min Hill-Climbing

Table 1. Results of evaluation

MMHC

True Positive (TP) 6

False Positive (FP) 1

False Negative (FN) 0

True Negative (TN) 35

Accuracy [%] 97.62

F1-Score 0.92

Mean runtime [ms] 9.82

The MMHC learned all six edges from the original Bayesian network with the
correct orientation. With only one misaligned edge (FP) and zero unwanted edges
(FN) MMHC shows its strength. The accuracy is with 97.62% very good and un-
derlined with an F1-score of 0.92. One slight disadvantage is the runtime. Based
on the mean of 1000 runs the MMHC algorithm needs 9.82 ms which is quite
long compared to other methods. However, it has to be considered, that in today’s
world the bottleneck is not the calculation power. The accuracy of the structure is
more important. All in all, the hybrid method with the MMHC algorithm is best
suited for learning a causal model from alarms. This was proven by Wunderlich
and Niggemann [29], who evaluated different structure learning algorithms.

Parameter Learning

Once the structure of the causal model has been learned, it is still necessary to
calculate or estimate the probabilities for the dependencies. Only in the combi-
nation of structure and parameters (probabilities) the inference of the root cause
can be done in the operation phase. To learn the parameters, the classical method

DF

TF

TC1 TC2

BNF

BRE

TW
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maximum likelihood estimation (MLE), which was developed by R.A. Fischer, is
used. Here, a parameter p is estimated to maximize the probability of obtaining
the observation under the condition of the parameter p. In other words, the MLE
provides the most plausible parameter p as an estimate with respect to the observa-
tion. If the parameter p is a probability in the Bayesian network and the historical
data D represents the observations, the likelihood function is composed as follows:

L(D|p) =
n∏

i=1

f(D|p) (1)

The probability density function of D under the condition p is f(D|p). In Figure 7
the causal model with the learned probabilities is shown. It is noteworthy that the
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Inactive Active
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Active 0.33 0.67
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Active Active 0.5 0.5

Fig. 7. Bayesian net with Probabilities

variant with active alarms TW and DF never occurs so there are no probabilities
in this regard. With the learned structure and the probabilities, the inference can
begin.

4.2 Operation Phase

There are two different variants for the inference, namely the exact inference and
the approximate inference. For the exact inference, the probabilities are calculated
specifically for the query. One famous method of exact inference is the variable
elimination (VE). In doing so, variables irrelevant to the query are eliminated from
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the probability distribution. This is computationally very complex and expensive.
Therefore, such a method is only feasible for very small Bayesian networks.
An alternative and more frequently used are the approximate inference methods.
Here the model, which is represented by the Bayesian network, is randomly simu-
lated. This process is called sampling. This makes it possible to approximate the
probability of the query. For example, it can be determined how high the proba-
bility is that a particular node assumes a specific state. The cases in which this is
occurred are counted and set in proportion to the total sample size. A disadvantage
of this method is that under certain circumstances, a large number of samples are
required in order to provide a reliable result and thus significantly increase the
calculation time.
To evaluate our concept, we opted for the simple and fast logic sampling (LS) algo-
rithm. The LS algorithm is a very simple procedure developed by Max Henrion in
1986 [12]. In this case, a state is arbitrarily assumed per sample for the root nodes
according to their probability table. Thus, a certain number of samples, which
are determined, are carried out. Subsequently, the probability that e.g. a node X
assumes the state True as follows:

P (X = True) =
No. of cases with X=True

No. of all samples
(2)

This process always converges to the correct solution, but in very rare cases the
number of samples required can become exorbitant [18].

Inference

In this subsection we apply and evaluate the inference with the LS algorithm on the
VPS demonstrator. In the previous subsection it was shown, that a decent structure
could be learned. Combined with time-limited expert knowledge we achieved an
accurate causal model. Based on this causal model and the learned probabilities
the inference of the root causes is enabled. For the inference of an alarm flood in
the demonstrator we use as possible root causes the two alarms BRE and DF. This
is given by the learned structure of the Bayesian network. For the evaluation we
investigate the use case of a missing bottle. Therefore we have as evidence E the
alarms (TW, TF, TC1, TC2, BNF) and formulate the following two queries.

P (BRE = active|E = active) =
No. of cases with BRE=active given E=active

No. of all samples
(3)

P (DF = active|E = active) =
No. of cases with DF=active given E=active

No. of all samples
(4)



126 Concept for Alarm Flood Reduction with Bayesian Networks

The two queries calculate the probability of BRE or DF to be active given that all
alarms of evidence are active. In our use case, the estimation shows a probability
of 97 % for BRE to be active and a probability of 40 % for DF to be active. This
results in the conclusion, that the alarm BRE is the root cause for the current
alarm flood.

A comparison of the concept for the use case of a missing bottle in the VPS is
shown in Table 2.

Table 2. Alarm Flood Reduction

Without With

Timer Filing Bottle Rotary Table Entrance

Timer Cap 1

Timer Cap 2

Bottle Not Filled

Bottle Rotary Table Entrance

Timer Water Tank

If a bottle is missing, the six alarms (Timer Filing, Timer Cap 1, Timer Cap
2, Bottle Not Filled, Bottle Rotary Table Entrance and Timer Water Tank) will
appear. The operator is not immediately able to identify the cause of this alarm
sequence. It changes when our concept is applied in this scenario. The amount of
alarms can be reduced from six to only one alarm. This one alarm BRE is also the
cause of the alarm flood. This result allows the operator to quickly and efficiently
identify the cause and take the necessary steps to remedy the problem. A similar
result is also obtained for the other use case of a blocked drive for grain filling.

5 Conclusion

We presented the increasing problem of overwhelming alarm floods in industrial
plants. One way to solve this problem is to reduce the alarm floods, especially
sequences of alarms caused by one alarm. Therefore, we propose a concept to
identify the real root cause of an alarm flood using Bayesian networks. The Bayesian
network serves as a causal model and enables inference about the root cause. Instead
of all alarms, only the root cause is depicted to the operator. This supports the
operator to take better care of the plant. The concept is evaluated on real use cases
of a demonstrator in the SmartFactoryOWL. For the use cases the concept shows
a promising result identifying the real root cause. Obviously, the demonstrator is
still quite small and not complex compared to real industrial plants. Therefore, it is
necessary to evaluate how this approach scales on real industrial plants, where also
additional challenges appear. This not only means the increasing complexity, but
also the occurrence of disturbances or missing or incorrect historical data records.
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Nevertheless, we think that Bayesian networks are a good foundation to learn
a causal model of the dependencies of alarms in a plant. Bayesian networks are
robust against uncertainty such as incomplete or defective data. Because it’s a
data-driven approach it reduces the amount of time in which an expert is needed
for constructing the causal model. The expert knowledge is still necessary, but the
approach with Bayesian network can be improved by including time behaviour or
dynamic process like a product change in the plant. Also the algorithms for learning
the structure can be improved by using methods like Transfer Entropy for a better
edge orientation.
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