LNCS 10982

Hana Chockler
Georg Weissenbacher (Eds.)

Computer Aided
Verification

30th International Conference, CAV 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 14-17, 2018, Proceedings, Part I|

@ Springer Open

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10982

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Hana Chockler - Georg Weissenbacher (Eds.)

Computer Aided
Verification

30th International Conference, CAV 2018

Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 14-17, 2018

Proceedings, Part 11

@ Springer Open

Editors

Hana Chockler Georg Weissenbacher
King’s College TU Wien

London Vienna

UK Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96141-5 ISBN 978-3-319-96142-2 (eBook)

https://doi.org/10.1007/978-3-319-96142-2
Library of Congress Control Number: 2018948145
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1219-0713
http://orcid.org/0000-0002-0143-632X
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2018, the 30th International
Conference on Computer-Aided Verification. CAV is an annual conference dedicated
to the advancement of the theory and practice of computer-aided formal analysis
methods for hardware and software systems. CAV 2018 was held in Oxford, UK, July
14-17, 2018, with the tutorials day on July 13.

This year, CAV was held as part of the Federated Logic Conference (FLoC) event
and was collocated with many other conferences in logic. The primary focus of CAV is
to spur advances in hardware and software verification while expanding to new
domains such as learning, autonomous systems, and computer security. CAV is at the
cutting edge of research in formal methods, as reflected in this year’s program.

CAV 2018 covered a wide spectrum of subjects, from theoretical results to concrete
applications, including papers on application of formal methods in large-scale industrial
settings. It has always been one of the primary interests of CAV to include papers that
describe practical verification tools and solutions and techniques that ensure a high
practical appeal of the results. The proceedings of the conference are published in
Springer’s Lecture Notes in Computer Science series. A selection of papers were
invited to a special issue of Formal Methods in System Design and the Journal of the
ACM.

This is the first year that the CAV proceedings are published under an Open Access
license, thus giving access to CAV proceedings to a broad audience. We hope that this
decision will increase the scope of practical applications of formal methods and will
attract even more interest from industry.

CAV received a very high number of submissions this year—215 overall—resulting
in a highly competitive selection process. We accepted 13 tool papers and 52 regular
papers, which amounts to an acceptance rate of roughly 30% (for both regular papers
and tool papers). The high number of excellent submissions in combination with the
scheduling constraints of FLoC forced us to reduce the length of the talks to 15
minutes, giving equal exposure and weight to regular papers and tool papers.

The accepted papers cover a wide range of topics and techniques, from algorithmic
and logical foundations of verification to practical applications in distributed, net-
worked, cyber-physical, and autonomous systems. Other notable topics are synthesis,
learning, security, and concurrency in the context of formal methods. The proceedings
are organized according to the sessions in the conference.

The program featured two invited talks by Eran Yahav (Technion), on using deep
learning for programming, and by Somesh Jha (University of Wisconsin Madison) on
adversarial deep learning. The invited talks this year reflect the growing interest of the
CAV community in deep learning and its connection to formal methods. The tutorial
day of CAV featured two invited tutorials, by Shaz Qadeer on verification of con-
current programs and by Matteo Maffei on static analysis of smart contracts. The
subjects of the tutorials reflect the increasing volume of research on verification of

VI Preface

concurrent software and, as of recently, the question of correctness of smart contracts.
As every year, one of the winners of the CAV award also contributed a presentation.
The tutorial day featured a workshop in memoriam of Mike Gordon, titled “Three
Research Vignettes in Memory of Mike Gordon,” organized by Tom Melham and
jointly supported by CAV and ITP communities.

Moreover, we continued the tradition of organizing a LogicLounge. Initiated by the
late Helmut Veith at the Vienna Summer of Logic 2014, the LogicLounge is a series of
discussions on computer science topics targeting a general audience and has become a
regular highlight at CAV. This year’s LogicLounge took place at the Oxford Union and
was on the topic of “Ethics and Morality of Robotics,” moderated by Judy Wajcman
and featuring a panel of experts on the topic: Luciano Floridi, Ben Kuipers, Francesca
Rossi, Matthias Scheutz, Sandra Wachter, and Jeannette Wing. We thank May Chan,
Katherine Fletcher, and Marta Kwiatkowska for organizing this event, and the Vienna
Center of Logic and Algorithms for their support.

In addition, CAV attendees enjoyed a number of FLoC plenary talks and events
targeting the broad FLoC community.

In addition to the main conference, CAV hosted the Verification Mentoring
Workshop for junior scientists entering the field and a high number of pre- and
post-conference technical workshops: the Workshop on Formal Reasoning in Dis-
tributed Algorithms (FRIDA), the workshop on Runtime Verification for Rigorous
Systems Engineering (RV4RISE), the 5th Workshop on Horn Clauses for Verification
and Synthesis (HCVS), the 7th Workshop on Synthesis (SYNT), the First International
Workshop on Parallel Logical Reasoning (PLR), the 10th Working Conference on
Verified Software: Theories, Tools and Experiments (VSTTE), the Workshop on
Machine Learning for Programming (MLP), the 11th International Workshop on
Numerical Software Verification (NSV), the Workshop on Verification of Engineered
Molecular Devices and Programs (VEMDP), the Third Workshop on Fun With Formal
Methods (FWFM), the Workshop on Robots, Morality, and Trust through the Verifi-
cation Lens, and the IFAC Conference on Analysis and Design of Hybrid Systems
(ADHS).

The Program Committee (PC) for CAV consisted of 80 members; we kept the
number large to ensure each PC member would have a reasonable number of papers to
review and be able to provide thorough reviews. As the review process for CAV is
double-blind, we kept the number of external reviewers to a minimum, to avoid
accidental disclosures and conflicts of interest. Altogether, the reviewers drafted over
860 reviews and made an enormous effort to ensure a high-quality program. Following
the tradition of CAV in recent years, the artifact evaluation was mandatory for tool
submissions and optional but encouraged for regular submissions. We used an Artifact
Evaluation Committee of 25 members. Our goal for artifact evaluation was to provide
friendly “beta-testing” to tool developers; we recognize that developing a stable tool on
a cutting-edge research topic is certainly not easy and we hope the constructive
comments provided by the Artifact Evaluation Committee (AEC) were of help to the
developers. As a result of the evaluation, the AEC accepted 25 of 31 artifacts
accompanying regular papers; moreover, all 13 accepted tool papers passed the eval-
uation. We are grateful to the reviewers for their outstanding efforts in making sure
each paper was fairly assessed. We would like to thank our artifact evaluation chair,

Preface VII

Igor Konnov, and the AEC for evaluating all artifacts submitted with tool papers as
well as optional artifacts submitted with regular papers.

Of course, without the tremendous effort put into the review process by our PC
members this conference would not have been possible. We would like to thank the PC
members for their effort and thorough reviews.

We would like to thank the FLoC chairs, Moshe Vardi, Daniel Kroening, and Marta
Kwiatkowska, for the support provided, Thanh Hai Tran for maintaining the CAV
website, and the always helpful Steering Committee members Orna Grumberg, Aarti
Gupta, Daniel Kroening, and Kenneth McMillan. Finally, we would like to thank the
team at the University of Oxford, who took care of the administration and organization
of FLoC, thus making our jobs as CAV chairs much easier.

July 2018 Hana Chockler
Georg Weissenbacher

Program Committee

Aws Albarghouthi
Christel Baier
Clark Barrett
Ezio Bartocci
Dirk Beyer

Per Bjesse

Jasmin Christian Blanchette

Roderick Bloem
Ahmed Bouajjani
Pavol Cerny
Rohit Chadha
Swarat Chaudhuri
Wei-Ngan Chin
Hana Chockler
Alessandro Cimatti
Loris D’ Antoni
Vijay D’Silva
Cristina David
Jyotirmoy Deshmukh
Isil Dillig

Cezara Dragoi
Kerstin Eder
Michael Emmi
Georgios Fainekos
Dana Fisman
Vijay Ganesh
Sicun Gao
Alberto Griggio
Orna Grumberg
Arie Gurfinkel
William Harrison

Gerard Holzmann
Alan J. Hu
Franjo Ivancic
Alexander Ivrii
Himanshu Jain
Somesh Jha

Organization

University of Wisconsin-Madison, USA

TU Dresden, Germany

Stanford University, USA

TU Wien, Austria

LMU Munich, Germany

Synopsys Inc., USA

Vrije Universiteit Amsterdam, Netherlands

Graz University of Technology, Austria

IRIF, University Paris Diderot, France

University of Colorado Boulder, USA

University of Missouri, USA

Rice University, USA

National University of Singapore, Singapore

King’s College London, UK

Fondazione Bruno Kessler, Italy

University of Wisconsin-Madison, USA

Google, USA

University of Cambridge, UK

University of Southern California, USA

The University of Texas at Austin, USA

Inria Paris, ENS, France

University of Bristol, UK

Nokia Bell Labs, USA

Arizona State University, USA

University of Pennsylvania, USA

University of Waterloo, Canada

University of California San Diego, USA

Fondazione Bruno Kessler, Italy

Technion - Israel Institute of Technology, Israel

University of Waterloo, Canada

Department of CS, University of Missouri, Columbia,
USA

Nimble Research, USA

The University of British Columbia, Canada

Google, USA

IBM, Israel

Synopsys, USA

University of Wisconsin-Madison, USA

X Organization

Susmit Jha

Ranjit Jhala
Barbara Jobstmann
Stefan Kiefer
Zachary Kincaid
Laura Kovacs
Viktor Kuncak

Orna Kupferman
Shuvendu Lahiri
Rupak Majumdar
Ken McMillan
Alexander Nadel
Mayur Naik

Kedar Namjoshi
Dejan Nickovic
Corina Pasareanu
Nir Piterman
Pavithra Prabhakar
Mitra Purandare
Shaz Qadeer

Arjun Radhakrishna
Noam Rinetzky
Philipp Ruemmer
Roopsha Samanta
Sriram Sankaranarayanan
Martina Seidl
Koushik Sen

Sanjit A. Seshia
Natasha Sharygina
Sharon Shoham
Anna Slobodova
Armando Solar-Lezama
Ofer Strichman
Serdar Tasiran
Caterina Urban
Yakir Vizel

Tomas Vojnar
Thomas Wahl
Bow-Yaw Wang
Georg Weissenbacher
Thomas Wies
Karen Yorav
Lenore Zuck
Damien Zufferey
Florian Zuleger

SRI International, USA
University of California San Diego, USA

EPFL and Cadence Design Systems, Switzerland

University of Oxford, UK

Princeton University, USA

TU Wien, Austria

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Hebrew University, Israel

Microsoft, USA

MPI-SWS, Germany

Microsoft, USA

Intel, Israel

Intel, USA

Nokia Bell Labs, USA

Austrian Institute of Technology AIT, Austria

CMU/NASA Ames Research Center, USA

University of Leicester, UK

Kansas State University, USA

IBM Research Laboratory Zurich, Switzerland

Microsoft, USA

Microsoft, USA

Tel Aviv University, Israel

Uppsala University, Sweden

Purdue University, USA

University of Colorado, Boulder, USA

Johannes Kepler University Linz, Austria

University of California, Berkeley, USA

University of California, Berkeley, USA

Universita della Svizzera Italiana, Lugano, Switzerland

Tel Aviv University, Israel

Centaur Technology, USA

MIT, USA

Technion, Israel

Amazon Web Services, USA

ETH Zurich, Switzerland

Technion, Israel

Brno University of Technology, Czechia
Northeastern University, USA
Academia Sinica, Taiwan

TU Wien, Austria

New York University, USA

IBM Research Laboratory Haifa, Israel
University of Illinois in Chicago, USA
MPI-SWS, Germany

TU Wien, Austria

Organization XI

Artifact Evaluation Committee

Thibaut Balabonski
Sergiy Bogomolov
Simon Cruanes
Matthias Dangl

Eva Darulova
Ramiro Demasi
Grigory Fedyukovich
Johannes Holzl
Jochen Hoenicke
Antti Hyvérinen

Swen Jacobs

Saurabh Joshi

Dejan Jovanovic

Ayrat Khalimov

Igor Konnov (Chair)

Jan Kretinsky

Alfons Laarman

Ravichandhran Kandhadai
Madhavan

Andrea Micheli

Sergio Mover

Aina Niemetz

Burcu Kulahcioglu Ozkan

Markus N. Rabe

Andrew Reynolds

Martin Suda

Mitra Tabaei

Additional Reviewers

Alpernas, Kalev
Asadi, Sepideh
Athanasiou, Konstantinos
Bauer, Matthew
Bavishi, Rohan
Bayless, Sam
Berzish, Murphy
Blicha, Martin

Bui, Phi Diep
Cauderlier, Raphaél
Cauli, Claudia
Ceska, Milan

Université Paris-Sud, France

The Australian National University, Australia

Aesthetic Integration, USA

LMU Munich, Germany

Max Planck Institute for Software Systems, Germany

Universidad Nacional de Cérdoba, Argentina

Princeton University, USA

Vrije Universiteit Amsterdam, The Netherlands

University of Freiburg, Germany

Universita della Svizzera Italiana, Lugano,
Switzerland

Saarland University, Germany

IIT Hyderabad, India

SRI International, USA

The Hebrew University, Israel

Inria Nancy (LORIA), France

Technical University of Munich, Germany

Leiden University, The Netherlands

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Fondazione Bruno Kessler, Italy

University of Colorado Boulder, USA

Stanford University, USA

MPI-SWS, Germany

University of California, Berkeley, USA

University of Iowa, USA

TU Wien, Austria

TU Wien, Austria

Cohen, Erie

Costea, Andreea
Dangl, Matthias
Doko, Marko
Drachsler Cohen, Dana
Dreossi, Tommaso
Dutra, Rafael
Ebrahimi, Masoud
Eisner, Cindy
Fedyukovich, Grigory
Fremont, Daniel
Freund, Stephen

Friedberger, Karlheinz
Ghorbani, Soudeh
Ghosh, Shromona
Goel, Shilpi
Gong, Liang
Govind, Hari

Gu, Yijia
Habermehl, Peter
Hamza, Jad

He, Paul

Heo, Kihong
Holik, Lukas

XII Organization

Humenberger, Andreas
Hyvérinen, Antti
Holzl, Johannes
Tusupov, Rinat
Jacobs, Swen

Jain, Mitesh
Jaroschek, Maximilian
Jha, Sumit Kumar
Keidar-Barner, Sharon
Khalimov, Ayrat
Kiesl, Benjamin
Koenighofer, Bettina
Kirstic, Srdjan
Laeufer, Kevin

Lee, Woosuk
Lemberger, Thomas
Lemieux, Caroline
Lewis, Robert

Liang, Jia

Liang, Jimmy

Liu, Peizun

Léng, Magnus

Maffei, Matteo
Marescotti, Matteo
Mathur, Umang
Miné, Antoine

Mora, Federico
Nevo, Ziv

Ochoa, Martin

Orni, Avigail
Ouaknine, Joel
Padhye, Rohan
Padon, Oded
Partush, Nimrod
Pavlinovic, Zvonimir
Pavlogiannis, Andreas
Peled, Doron
Pendharkar, Ishan
Peng, Yan

Petri, Gustavo
Polozov, Oleksandr
Popescu, Andrei
Potomkin, Kostiantyn
Raghothaman, Mukund

Reynolds, Andrew
Reynolds, Thomas
Ritirc, Daniela
Rogalewicz, Adam
Scott, Joe
Shacham, Ohad
Song, Yahui
Sosnovich, Adi
Sousa, Marcelo
Subramanian, Kausik
Sumners, Rob
Swords, Sol

Ta, Quang Trung
Tautschnig, Michael
Traytel, Dmitriy
Trivedi, Ashutosh
Udupa, Abhishek
van Dijk, Tom
Wendler, Philipp
Zdancewic, Steve
Zulkoski, Ed

Contents — Part 11

Tools

Let this Graph Be Your Witness! An Attestor for Verifying Java

Pointer Programs. L
Hannah Arndt, Christina Jansen, Joost-Pieter Katoen,
Christoph Matheja, and Thomas Noll

MaxSMT-Based Type Inference for Python 3.
Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Miiller

The JKIND Model Checker o
Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner,
and Elaheh Ghassabani

The DEEPSEC Prover. i i i i
Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina

SimpleCAR: An Efficient Bug-Finding Tool Based

on Approximate Reachability
Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier,
and Moshe Y. Vardi

StringFuzz: A Fuzzer for String Solvers.
Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng,
Ifaz Kabir, and Vijay Ganesh

Static Analysis

Jérome Dohrau, Alexander J. Summers, Caterina Urban,
Severin Miinger, and Peter Miiller

Program Analysis Is Harder Than Verification:
A Computability Perspective
Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato

Theory and Security

Automata vs Linear-Programming Discounted-Sum Inclusion.
Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi

X1V Contents — Part 11

Model Checking Indistinguishability of Randomized Security Protocols. 117
Matthew S. Bauer, Rohit Chadha, A. Prasad Sistla,
and Mahesh Viswanathan

Lazy Self-composition for Security Verification 136
Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta,
and Sharad Malik

SCINFER: Refinement-Based Verification of Software Countermeasures
Against Side-Channel Attacks. 157
Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang

Symbolic Algorithms for Graphs and Markov Decision Processes

with Fairness Objectives i 178
Krishnendu Chatterjee, Monika Henzinger, Veronika Loitzenbauer,
Simin Oraee, and Viktor Toman

Attracting Tangles to Solve Parity Games 198
Tom van Dijk

SAT, SMT and Decision Procedures

Delta-Decision Procedures for Exists-Forall Problems over the Reals. 219
Soonho Kong, Armando Solar-Lezama, and Sicun Gao

Solving Quantified Bit-Vectors Using Invertibility Conditions. 236
Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett,
and Cesare Tinelli

Understanding and Extending Incremental Determinization for 2QBF 256
Markus N. Rabe, Leander Tentrup, Cameron Rasmussen,
and Sanjit A. Seshia

The Proof Complexity of SMT Solvers 275
Robert Robere, Antonina Kolokolova, and Vijay Ganesh

Model Generation for Quantified Formulas: A Taint-Based Approach 294
Benjamin Farinier, Sébastien Bardin, Richard Bonichon,
and Marie-Laure Potet

Concurrency

Partial Order Aware Concurrency Sampling 317
Xinhao Yuan, Junfeng Yang, and Ronghui Gu

Reasoning About TSO Programs Using Reduction and Abstraction. 336
Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil,
and Serdar Tasiran

Contents — Part II XV

Quasi-Optimal Partial Order Reduction 354
Huyen T. T. Nguyen, César Rodriguez, Marcelo Sousa, Camille Coti,
and Laure Petrucci

On the Completeness of Verifying Message Passing Programs Under
Bounded Asynchrony 372
Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer

Constrained Dynamic Partial Order Reduction 392
Elvira Albert, Miguel Gomez-Zamalloa, Miguel Isabel, and Albert Rubio

CPS, Hardware, Industrial Applications

Formal Verification of a Vehicle-to-Vehicle (V2V) Messaging System 413
Mark Tullsen, Lee Pike, Nathan Collins, and Aaron Tomb

Continuous Formal Verification of Amazon s2n 430
Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds,
Brian Huffman, Colm MacCarthaigh, Stephen Magill, Eric Mertens,
Eric Mullen, Serdar Tasiran, Aaron Tomb, and Eddy Westbrook

Symbolic Liveness Analysis of Real-World Software. 447
Daniel Schemmel, Julian Biining, Oscar Soria Dustmann, Thomas Noll,
and Klaus Wehrle

Model Checking Boot Code from AWS Data Centers 467
Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran,
Michael Tautschnig, and Mark R. Tuttle

Android Stack Machine 487
Taolue Chen, Jinlong He, Fu Song, Guozhen Wang, Zhilin Wu,
and Jun Yan

Formally Verified Montgomery Multiplication 505
Christoph Walther

Inner and Outer Approximating Flowpipes for Delay Differential Equations . . . 523
Eric Goubault, Sylvie Putot, and Lorenz Sahlmann

Author Index 543

Contents — Part 1

Invited Papers

Semantic Adversarial Deep Learning 3
Tommaso Dreossi, Somesh Jha, and Sanjit A. Seshia

From Programs to Interpretable Deep Models and Back. 27
Eran Yahav

Formal Reasoning About the Security of Amazon Web Services. 38
Byron Cook

Tutorials

Foundations and Tools for the Static Analysis of Ethereum Smart Contracts. . . 51

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind
Layered Concurrent Programs. 79

Bernhard Kragl and Shaz Qadeer

Model Checking

Propositional Dynamic Logic for Higher-Order Functional Programs. 105
Yuki Satake and Hiroshi Unno

Syntax-Guided Termination Analysis. o, .. 124
Grigory Fedyukovich, Yueling Zhang, and Aarti Gupta

Model Checking Quantitative Hyperproperties 144
Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah

Exploiting Synchrony and Symmetry in Relational Verification 164
Lauren Pick, Grigory Fedyukovich, and Aarti Gupta

JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode. 183
Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,
and Marek Trtik

Eager Abstraction for Symbolic Model Checking 191
Kenneth L. McMillan

XVIIL Contents — Part 1

Program Analysis Using Polyhedra

Fast Numerical Program Analysis with Reinforcement Learning 211
Gagandeep Singh, Markus Piischel, and Martin Vechev

A Direct Encoding for NNC Polyhedra 230
Anna Becchi and Enea Zaffanella

Synthesis

S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal,
and Shetal Shah

Counterexample Guided Inductive Synthesis Modulo Theories 270
Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening,
and Elizabeth Polgreen

Synthesizing Reactive Systems from Hyperproperties 289
Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger,
and Leander Tentrup

Reactive Control Improvisation. i, 307
Daniel J. Fremont and Sanjit A. Seshia

Constraint-Based Synthesis of Coupling Proofs. 327
Aws Albarghouthi and Justin Hsu

Controller Synthesis Made Real: Reach-Avoid Specifications
and Linear Dynamics. 347
Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan

Synthesis of Asynchronous Reactive Programs
from Temporal Specifications. 367
Suguman Bansal, Kedar S. Namjoshi, and Yaniv Sa’ar

Syntax-Guided Synthesis with Quantitative Syntactic Objectives. 386
Qinheping Hu and Loris D Antoni

Learning

Learning Abstractions for Program Synthesis 407
Xinyu Wang, Greg Anderson, Isil Dillig, and K. L. McMillan

The Learnability of Symbolic Automata. 427
George Argyros and Loris D Antoni

Contents — Part 1 XIX

Runtime Verification, Hybrid and Timed Systems

Reachable Set Over-Approximation for Nonlinear Systems
Using Piecewise Barrier Tubes 449
Hui Kong, Ezio Bartocci, and Thomas A. Henzinger

Space-Time Interpolants. 468
Goran Frehse, Mirco Giacobbe, and Thomas A. Henzinger

Monitoring Weak ConsiStencyt .. 487
Michael Emmi and Constantin Enea

Monitoring CTMCs by Multi-clock Timed Automata. 507
Yijun Feng, Joost-Pieter Katoen, Haokun Li, Bican Xia,
and Naijun Zhan

Start Pruning When Time Gets Urgent: Partial Order Reduction

for Timed Systems 527
Frederik M. Bonneland, Peter Gjol Jensen, Kim Guldstrand Larsen,
Marco Muiiiz, and Jiii Srba

A Counting Semantics for Monitoring LTL Specifications
over Finite Traces. i e 547
Ezio Bartocci, Roderick Bloem, Dejan Nickovic, and Franz Roeck

Tools

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 567
Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert,
and Christopher Ziegler

Strix: Explicit Reactive Synthesis Strikes Back! 578
Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger

Btor2 , BtorMC and Boolector 3.0. 587
Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere

Nagini: A Static Verifier for Python 596
Marco Eilers and Peter Miiller

PEREGRINE: A Tool for the Analysis of Population Protocols 604
Michael Blondin, Javier Esparza, and Stefan Jaax

ADAC: Automated Design of Approximate Circuits 612
Milan Ceska, Jiri Matyds, Vojtech Mrazek, Lukas Sekanina,
Zdenek Vasicek, and Tomds Vojnar

XX Contents — Part 1

Probabilistic Systems

Value Iteration for Simple Stochastic Games: Stopping Criterion

and Learning Algorithm. 623
Edon Kelmendi, Julia Krimer, Jan Kretinsky,
and Maximilian Weininger

Sound Value Iteration 643
Tim Quatmann and Joost-Pieter Katoen

Safety-Aware Apprenticeship Learning 662
Weichao Zhou and Wenchao Li

Deciding Probabilistic Bisimilarity Distance One for Labelled
Markov Chains. 681
Qiyi Tang and Franck van Breugel

Author Index e 701

Tools

®

Check for
updates

Let this Graph Be Your Witness!

An Attestor for Verifying Java Pointer Programs

Hannah Arndt, Christina Jansen, Joost-Pieter Katoen®,
Christoph Matheja®™)@®, and Thomas Noll

Software Modeling and Verification Group,
RWTH Aachen University, Aachen, Germany
matheja@cs.rwth-aachen.de

Abstract. We present a graph-based tool for analysing Java programs
operating on dynamic data structures. It involves the generation of
an abstract state space employing a user-defined graph grammar. LTL
model checking is then applied to this state space, supporting both
structural and functional correctness properties. The analysis is fully
automated, procedure-modular, and provides informative visual feedback
including counterexamples in the case of property violations.

1 Introduction

Pointers constitute an essential concept in modern programming languages, and
are used for implementing dynamic data structures like lists, trees etc. However,
many software bugs can be traced back to the erroneous use of pointers by e.g.
dereferencing null pointers or accidentally pointing to wrong parts of the heap.
Due to the resulting unbounded state spaces, pointer errors are hard to detect.
Automated tool support for validation of pointer programs that provides mean-
ingful debugging information in case of violations is therefore highly desirable.

ATTESTOR is a verification tool that attempts to achieve both of these goals.
To this aim, it first constructs an abstract state space of the input program by
means of symbolic execution. Each state depicts both links between heap objects
and values of program variables using a graph representation. Abstraction is per-
formed on state level by means of graph grammars. They specify the data struc-
tures maintained by the program, and describe how to summarise substructures
of the heap in order to obtain a finite representation. After labelling each state
with propositions that provide information about structural properties such as
reachability or heap shapes, the actual verification task is performed in a second
step. To this aim, the abstract state space is checked against a user-defined LTL
specification. In case of violations, a counterexample is provided.

H. Arndt and C. Matheja—Supported by Deutsche Forschungsgemeinschaft (DFG)
Grant No. 401/2-1.
© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 3-11, 2018.
https://doi.org/10.1007/978-3-319-96142-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_1&domain=pdf
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9151-0441
http://orcid.org/0000-0002-1865-1798

4 H. Arndt et al.

In summary, ATTESTOR’s main features can be characterized as follows:

— It employs context-free graph grammars as a formal underpinning for defining
heap abstractions. These grammars enable local heap concretisation and thus
naturally provide implicit abstract semantics.

— The full instruction set of Java Bytecode is handled. Program actions that are
outside the scope of our analysis, such as arithmetic operations or Boolean
tests on payload data, are handled by (safe) over-approximation.

— Specifications are given by linear-time temporal logic (LTL) formulae which
support a rich set of program properties, ranging from memory safety over
shape, reachability or balancedness to properties such as full traversal or
preservation of the exact heap structure.

— Except for expecting a graph grammar that specifies the data structures han-
dled by a program, the analysis is fully automated. In particular, no program
annotations are required.

— Modular reasoning is supported in the form of contracts that summarise the
effect of executing a (recursive) procedure. These contracts can be automat-
ically derived or manually specified.

— Valuable feedback is provided through a comprehensive report including (min-
imal) non-spurious counterexamples in case of property violations.

— The tool’s functionality is made accessible through the command line as well
as a graphical user and an application programming interface.

Awvailability. ATTESTOR’S source code, benchmarks, and documentation are avail-
able online at https://moves-rwth.github.io/attestor.

2 The Attestor Tool

ATTESTOR is implemented in Java and consists of about 20.000 LOC (excluding
comments and tests). An architectural overview is depicted in Fig. 1. It shows the
tool inputs (left), its outputs (right), the ATTESTOR backend with its processing
phases (middle), the ATTESTOR frontend (below) as well as the API connecting
back- and frontend. These elements are discussed in detail below.

2.1 Input

As shown in Fig. 1 (left), a verification task is given by four inputs. First, the
program to be analysed. Here, Java as well as Java Bytecode programs with
possibly recursive procedures are supported, where the former is translated to
the latter prior to the analysis. Second, the specification has to be given by a
set of LTL formulae enriched with heap-specific propositions. See Sect. 3 for a
representative list of exemplary specifications.

As a third input, ATTESTOR expects the declaration of the graph grammar
that guides the abstraction. In order to obtain a finite abstract state space,
this grammar is supposed to cover the data structures emerging during program

https://moves-rwth.github.io/attestor

Let this Graph Be Your Witness! 5

Attestor Backend |

Parsing Inputs —>»{ Abstract State Space
Program > s
PP— —»{ Procedure Contracts
LTL Specification > Marking Generation

Grammar & Abstraction

Graph Grammar Preprocessing

Yes
State Space Generation non-spurious
. ! P | counterexample
Model Checking R i
Don't Know —| possibly spurious
! counterexample

Counterexample
Generation

Attestor API

Attestor Frontend |

Fig. 1. The ATTESTOR tool

execution. The user may choose from a set of grammar definitions for standard
data structures such as singly- and doubly-linked lists and binary trees, the
manual specification in a JSON-style graph format and combinations thereof.

Fourth, additional options can be given that e.g. define the initial heap config-
uration(s) (in JSON-style graph format), that control the granularity of abstrac-
tion and the garbage collection behaviour, or that allow to re-use results of
previous analyses in the form of procedure contracts [11,13].

2.2 Phases

ATTESTOR proceeds in six main phases, see Fig. 1 (middle). In the first and third
phase, all inputs are parsed and preprocessed. The input program is read and
transformed to Bytecode (if necessary), the input graphs (initial configuration,
procedure contracts, and graph grammar), LTL formulae and further options
are read.

Depending on the provided LTL formulae, additional markings are inserted
into the initial heap (see [8] for details) in the second phase. They are used to
track identities of objects during program execution, which is later required to
validate visit and neighbourhood properties during the fifth phase.

In the next phase the actual program analysis is conducted. To this aim,
ATTESTOR first constructs the abstract state space as described in Sect. 2.3 in
detail. In the fifth phase we check whether the provided LTL specification holds
on the state space resulting from the preceding step. We use an off-the-shelf
tableau-based LTL model checking algorithm [2].

6 H. Arndt et al.

If desired, during all phases results are forwarded to the API to make them
accessible to the frontend or the user directly. We address this output in Sect. 2.4.

2.3 Abstract State Space Generation

The core module of ATTESTOR is the abstract state space generation. It employs
an abstraction approach based on hyperedge replacement grammars, whose the-
oretical underpinnings are described in [9] in detail. It is centred around a graph-
based representation of the heap that contains concrete parts side by side with
placeholders representing a set of heap fragments of a certain shape. The state
space generation loop as implemented in ATTESTOR is shown in Fig. 2.

Initially it is provided with add
the initial program state(s), el states
that is, the program counter Sk state
corresponding to the starting —@7
statement together with the ini- —
tial heap configuration(s). From
these, ATTESTOR picks a state e e
at random and applies the
abstract semantics of the next
statement: First, the heap con-
figuration is locally concretised
ensuring that all heap parts b
required for the statement to
execute are accessible. This is

add to
state space

fixpoint
reached

enabled by applying rules of the
input graph grammar in for-
ward direction, which can entail
branching in the state space.
The resulting configurations are
then manipulated according to
the concrete semantics of the statement. At this stage, ATTESTOR automati-
cally detects possible null pointer dereferencing operations as a byproduct of the
state space generation. In a subsequent rectification step, the heap configuration
is cleared from e.g. dead variables and garbage (if desired). Consequently, mem-
ory leaks are detected immediately. The rectified configuration is then abstracted
with respect to the data structures specified by means of the input graph gram-
mar. Complementary to concretisation, this is realised by applying grammar
rules in backward direction, which involves a check for embeddings of right-
hand sides. A particular strength of our approach is its robustness against local
violations of data structures, as it simply leaves the corresponding heap parts
concrete. Finalising the abstract execution step, the resulting state is labelled
with the atomic propositions it satisfies. This check is efficiently implemented by
means of heap automata (see [12,15] for details). By performing a subsumption
check on the state level, ATTESTOR detects whether the newly generated state
is already covered by a more abstract one that has been visited before. If not, it

by existing
state

Fig. 2. State space generation.

Let this Graph Be Your Witness! 7

Attestor Report Sate Space

Selected State

@en

Fig. 3. Screenshot of ATTESTOR’s frontend for state space exploration. (Color figure
online)

adds the resulting state to the state space and starts over by picking a new state.
Otherwise, it checks whether further states have to be processed or whether a
fixpoint in the state space generation is reached. In the latter case, this phase is
terminated.

2.4 Output

As shown in Fig.1 (right), we obtain three main outputs once the analysis is
completed: the computed abstract state space, the derived procedure contracts,
and the model checking results. For each LTL formula in the specification, results
comprise the possible answers “formula satisfied”, “formula (definitely) not sat-
isfied”, or “formula possibly not satisfied”. In case of the latter two, ATTESTOR
additionally produces a counterexample, i.e. an abstract trace that violates the
formula. If ATTESTOR was able to verify the non-spuriousness of this counterex-
ample (second case), we are additionally given a concrete initial heap that is
accountable for the violation and that can be used as a test case for debugging.

Besides the main outputs, ATTESTOR provides general information about the
current analysis. These include log messages such as warnings and errors, but
also details about settings and runtimes of the analyses. The API provides the
interface to retrieve ATTESTOR’s outputs as JSON-formatted data.

2.5 Frontend

ATTESTOR features a graphical frontend that visualises inputs as well as results
of all benchmark runs. The frontend communicates with ATTESTOR’s backend
via the API only. It especially can be used to display and navigate through the
generated abstract state space and counterexample traces.

A screenshot of the frontend for state space exploration is found in Fig. 3.
The left panel is an excerpt of the state space. The right panel depicts the

8 H. Arndt et al.

currently selected state, where red boxes correspond to variables and constants,
circles correspond to allocated objects/locations, and yellow boxes correspond
to nonterminals of the employed graph grammar, respectively. Arrows between
two circles represent pointers. Further information about the selected state is
provided in the topmost panel. Graphs are rendered using cytoscape. js [6].

3 Evaluation

Tool Comparison. While there exists a plethora of tools for analysing pointer
programs, such as, amongst others, FORESTER [10], GROOVE [7], INFER [5],
Hip/SLEEK [17], KORAT [16], JUGGRNAUT [9], and TVLA [3], these tools differ
in multiple dimensions:

— Input languages range from C code (FORESTER, INFER, HIP/SLEEK) over
Java/Java Bytecode (JUGGRNAUT, KORAT) to assembly code (TvLA) and
graph programs (GROOVE).

— The degree of automation differs heavily: Tools like FORESTER and INFER
only require source code. Others such as Hip/SLEEK and JUGGRNAUT addi-
tionally expect general data structure specifications in the form of e.g. graph
grammars or predicate definitions to guide the abstraction. Moreover, TVLA
requires additional program-dependent instrumentation predicates.

— Verifiable properties typically cover memory safety. KORAT is an exception,
because it applies test case generation instead of verification. The tools
Hip/SLEEK, TvLA, GROOVE, and JUGGRNAUT are additionally capable of
verifying data structure invariants, so-called shape properties. Furthermore,
Hrip/SLEEK is able to reason about shape-numeric properties, e.g. lengths of
lists, if a suitable specification is provided. While these properties are not
supported by TVLA, it is possible to verify reachability properties. Moreover,
JUGGRNAUT can reason about temporal properties such as verifying that
finally every element of an input data structure has been accessed.

Benchmarks. Due to the above mentioned diversity there is no publicly avail-
able and representative set of standardised benchmarks to compare the afore-
mentioned tools [1]. We thus evaluated ATTESTOR on a collection of challenging,
pointer intensive algorithms compiled from the literature [3,4,10,14]. To assess
our counterexample generation, we considered invalid specifications, e.g. that a
reversed list is the same list as the input list. Furthermore, we injected faults
into our examples by swapping and deleting statements.

Properties. During state space generation, memory safety (M) is checked. More-
over, we consider five classes of properties that are verified using the built-in
LTL model checker:

Let this Graph Be Your Witness!

9

Table 1. The experimental results. All runtimes are in seconds. Verification time
includes state space generation. SLL (DLL) means singly-linked (doubly-linked) list.

No. states State space gen. | Verification | Total runtime
Benchmark Properties Min Max Min |Max Min |Max |Min |Max
SLL.traverse M, S, R, V, N, X 13 97 |/0.030/0.074 0.039|0.097|0.757 | 0.848
SLL.reverse M, S, R, V, X 46 268 |0.050|0.109 0.050{0.127|0.793 | 0.950
SLL.reverse (recursive) M, S, V, N, X 40 823 |0.038|0.100 0.044/0.117/0.720|0.933
DLL.reverse M, S, R, V,N, X 70 | 1508 |0.076|0.646 0.097]0.712]0.831|1.763
DLL.findLast M, C, X 44 44 10.0690.069 0.079]0.079|0.938 | 0.938
SLL.findMiddle M, S, R, V, N, X 75 456 |0.060|0.184 0.060|0.210|0.767|0.975
Tree.traverse (Lindstrom) | M, S, V, N 229 |67941 |0.119|8.901 0.119]16.52|0.845|17.36
Tree.traverse (recursive) |M, S 91 |21738 0.075|1.714 0.074|1.765|0.849 | 2.894
AVLTree.binarySearch M, S 192 192 0.117]0.172 0.118]0.192]0.917|1.039
AVLTree.searchAndBack M, S, C 455 455 0.193/0.229 0.205|0.289|1.0811.335
AVLTree.searchAndSwap M, S, C 3855 | 4104 |0.955|1.590 1.004|1.677|1.928|2.521
AVLTree.leftMostInsert M, S 6120 | 6120 |1.879|1.942 1.932|1.943|2.813|2.817
AVLTree.insert M, S 10388 | 10388 |3.378|3.676 3.378|3.802|4.284 |4.720
AVLTree.sl1ToAVLTree M, S, C 7166 | 7166 |2.412|2.728 2.440|2.759 | 3.383 | 3.762

— The shape property (S) establishes that the heap is of a specific shape, e.g. a
doubly-linked list or a balanced tree.
— The reachability property (R) checks whether some variable is reachable from
another one via specific pointer fields.
— The wvisit property (V) verifies whether every element of the input is accessed
by a specific variable.
— The neighbourhood property (N) checks whether the input data structure coin-

cides with the output data structure upon termination.

— Finally, we consider other functional correctness properties (C), e.g. the return

value is not null.

Setup. For performance evaluation, we conducted experiments on an Intel Core
i7-7500U CPU @ 2.70 GHz with the Java virtual machine (OpenJDK version
1.8.0-151) limited to its default setting of 2 GB of RAM. All experiments were run
using the Java benchmarking harness JMH. Our experimental results are shown
in Table 1. Additionally, for comparison purpose we considered Java implemen-
tations of benchmarks that have been previously analysed for memory safety by
FORESTER [10], see Table 2.

10 H. Arndt et al.

Discussion. The results show that
both memory safety (M) and shape

Table 2. FORESTER benchmarks (memory
safety only). Verification times are in sec-

(S) are efficiently processed, with onds.
regard to both state space size and Benchmark No. states|Verification
runtime. This is not surprising as SLL.bubblesort 287 0.134
these properties are directly han- SLL.deleteElement 152 0.096
dled by the state space generation SLLHeadPtr (traverse) | 111 0.095

. . SLL.insertsort 369 0.147
engine. The most challenging tasks - Bt

. . List0fCyclicLists 313 0.153

are the visit (V) and neighbourhood ;5 = 379 0.207
(N) properties as they require to DLL insertsorti 4302 1.467
track objects across program execu- DLL.insertsort2 1332 0.514
tions by means of markings. The lat- DLL.buildAndReverse | 277 0.164
ter have a similar impact as pointer ~CyclicDLL (traverse) | 104 0.108
variables: increasing their number L ree-construct 44 0.062
. . Tree.constructAndDSW|1334 0.365
impedes abstraction as larger parts SkipList.insert 302 0.160
of the heap have to be kept concrete. guiprist.puila 330 0.173

This effect can be observed for the
Lindstrom tree traversal procedure

where adding one marking (V) and three markings (N) both increase the verifi-
cation effort by an order of magnitude.

References

1.

Abdulla, P.A., Gadducci, F., Konig, B., Vafeiadis, V.: Verification of evolving graph
structures (Dagstuhl Seminar 15451). Dagstuhl Rep. 5(11), 1-28 (2016)

Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL. In: LICS 1995, pp. 388-397. IEEE (1995)

Bogudlov, 1., Lev-Ami, T., Reps, T., Sagiv, M.: Revamping TVLA: making para-
metric shape analysis competitive. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 221-225. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3_25

. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree

model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52-70. Springer, Heidelberg (2006). https://doi.org/10.1007/
118232305

Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459-465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5_33

Cytoscape Consortium: Cytoscape: graph theory/network library for analysis and
visualisation. http://js.cytoscape.org/

Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. J. Soft. Tools Technol. Transfer 14, 1540
(2012)

Heinen, J.: Verifying Java programs - a graph grammar approach. Ph.D. thesis,
RWTH Aachen University, Germany (2015)

Heinen, J., Jansen, C., Katoen, J.P., Noll, T.: Verifying pointer programs using
graph grammars. Sci. Comput. Program. 97, 157-162 (2015)

https://doi.org/10.1007/978-3-540-73368-3_25
https://doi.org/10.1007/978-3-540-73368-3_25
https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
http://js.cytoscape.org/

10.

11.

12.

13.

14.

15.

16.

17.

Let this Graph Be Your Witness! 11

Holik, L., Lengél, O., Rogalewicz, A., Simacek, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. CoRR abs/1304.5806 (2013)

Jansen, C.: Static analysis of pointer programs - linking graph grammars and
separation logic. Ph.D. thesis, RWTH Aachen University, Germany (2017)
Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning about
robustness properties of symbolic-heap separation logic. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 611-638. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54434-1_23

Jansen, C., Noll, T.: Generating abstract graph-based procedure summaries for
pointer programs. In: Giese, H., Konig, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp.
49-64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2_4
Loginov, A., Reps, T., Sagiv, M.: Automated verification of the Deutsch-Schorr-
Waite tree-traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
261-279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823230-17
Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. In:
Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 90-108. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26529-2_6

Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: a tool for generating
structurally complex test inputs. In: Proceedings of the 29th International Confer-
ence on Software Engineering, ICSE 2007, pp. 771-774. IEEE Computer Society,
Washington, DC, USA (2007). https://doi.org/10.1109/ICSE.2007.48

Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251-266. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-69738-1_18

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-319-09108-2_4
https://doi.org/10.1007/11823230_17
https://doi.org/10.1007/978-3-319-26529-2_6
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1007/978-3-540-69738-1_18
https://doi.org/10.1007/978-3-540-69738-1_18
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan'2, Caterina Urban?(®) Marco Eilers?®,
and Peter Miiller?

! German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,
Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present TYPPETE, a sound type inferencer that auto-
matically infers Python 3 type annotations. TYPPETE encodes type con-
straints as a MAXSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that TYPPETE scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MYPY [10]. In this paper, we present our tool TYPPETE, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

TYPPETE performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow TYPPETE to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, TYPPETE encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12-19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_2&domain=pdf
http://orcid.org/0000-0003-4891-6950
http://orcid.org/0000-0001-7001-2566

MaxSMT-Based Type Inference for Python 3 13

class Item(metaclass=ABCMeta) : class Even(Item):
@abstractmethod def compete(self, item):
def compete(self , item): return item.evalEven(self)
pass
class Odd(Item):
def evalEven(self , item): def compete(self, item):
return "WIN” return item.evalOdd(self)
def evalOdd(self , item): def match(iteml, item2):
return "LOSE” return iteml.compete(item2)

Fig. 1. A Python implementation of the odds and evens hand game.

TYPPETE accepts programs written in (a large subset of) Python 3. Having a
static type system imposes a number of requirements on Python programs: (a) a
variable can only have a single type through the whole program; (b) generic types
have to be homogeneous (e.g., all elements of a set must have the same type);
and (c¢) dynamic code generation, reflection and dynamic attribute additions and
deletions are not allowed. The supported type system includes generic classes
and functions. Users must supply a file and the number of type variables for any
generic class or function. Typpete then outputs a program with type annotations,
a type error, or an error indicating use of unsupported language features.

Our experimental evaluation demonstrates the practical applicability of our
approach. We show that TYPPETE performs well on a variety of real-world open
source Python programs and outperforms state-of-the-art tools.

2 Constraint Generation

TYPPETE encodes the type inference problem for a Python program into an
SMT constraint resolution problem such that any solution of the SM'T problem
yields a valid type assignment for the program. The process of generating the
SMT problem consists of three phases, which we describe below.

In a first pass over the input program, TYPPETE collects: (1) all globally
defined names (to resolve forward references), (2) all classes and their respective
subclass relations (to define subtyping), and (3) upper bounds on the size of cer-
tain types (e.g., tuples and function parameters). This pre-analysis encompasses
both the input program—including all transitively imported modules—and stub
files, which define the types of built-in classes and functions as well as libraries.
TYPPETE already contains stubs for the most common built-ins; users can add
custom stub files written in the format that is supported by MyYPY.

In the second phase, TYPPETE declares an algebraic datatype Type, whose
members correspond one-to-one to Python types. TYPPETE declares one
datatype constructor for every class in the input program; non-generic classes are
represented as constants, whereas a generic class with n type parameters is rep-
resented by a constructor taking n arguments of type Type. As an example, the
class 0dd in Fig. 1 is represented by the constant classpqq. TYPPETE also declares
constructors for tuples and functions up to the maximum size determined in the
pre-analysis, and for all type variables used in generic functions and classes.

14 M. Hassan et al.

The subtype relation <: is represented by an uninterpreted function subtype
which maps pairs of types to a boolean value. This function is delicate to define
because of the possibility of matching loops (i.e., axioms being endlessly instanti-
ated [7]) in the SMT solver. For each datatype constructor, TYPPETE generates
axioms that explicitly enumerate the possible subtypes and supertypes. As an
example, for the type classpqq, TYPPETE generates the following axioms:

Vt. subtype(classodd, t) = (t = classoqgd V t = classiem V t = classopject)
Vt. subtype(t, classodd) = (t = classpone V t = classpdd)

Note that the second axiom allows None to be a subtype of any other type (as
in Java). As we discuss in the next section, this definition of subtype allows us to
avoid matching loops by specifying specific instantiation patterns for the SMT
solver. A substitution function substitute, which substitutes type arguments for
type variables when interacting with generic types, is defined in a similar way.

In the third step, TYPPETE traverses the program while creating an SMT
variable for each node in its abstract syntax tree, and generating type constraints
over these variables for the constructs in the program. During the traversal, a
context maps all defined names (i.e., program variables, fields, etc.) to the corre-
sponding SMT variables. The context is later used to retrieve the type assigned
by the SMT solver to each name in the program. Constraints are generated for
expressions (e.g., call arguments are subtypes of the corresponding parameter
types), statements (e.g., the right-hand side of an assignment is a subtype of
the left hand-side), and larger constructs such as methods (e.g., covariance and
contravariance constraints for method overrides). For example, the (simplified)
constraint generated for the call to iteml.compete(item2) at line 21 in Fig.1
contains a disjunction of cases depending on the type of the receiver:

(Vitem1 = classodd A competegyq = f-2(classodd, arg, ret) A subtype(vitem2, arg))

V (Vitem1 = classgyen A competeg,.,, = f-2(classgyen, arg, ret) A subtype(Vitemz, arg))

where f_2 is a datatype constructor for a function with two parameter types (and
one return type ret), and Vitem1 and Vitemz2 are the SMT variables corresponding
to iteml and item?2, respectively.

The generated constraints guarantee that any solution yields a correct type
assignment for the input program. However, there are often many different valid
solutions, as the constraints only impose lower or upper bounds on the types rep-
resented by the SMT variables (e.g., subtype(Vitem2, arg) shown above imposes
only an upper bound on the type of vitem2). This has an impact on performance
(cf. Sect. 4) as the search space for a solution remains large. Moreover, some type
assignments could be more desirable than others for a user (e.g., a user would
most likely prefer to assign type int rather than object to a variable initial-
ized with value zero). To avoid these problems, TYPPETE additionally generates
optional type equality constraints in places where the mandatory constraints only
demand subtyping (i.e., local variable assignments, return statements, passed
function arguments), thereby turning the SMT problem into a MAXSMT opti-
mization problem. For instance, in addition to subtype(Vitem2, arg) shown above,

MaxSMT-Based Type Inference for Python 3 15

TYPPETE generates the optional equality constraint viem2 = arg. The optional
constraints guide the solver to try the specified exact type first, which is often
a correct choice and therefore improves performance, and additionally leads to
solutions with more precise variable and parameter types.

3 Constraint Solving

TYPPETE relies on Z3 [7] and the MaxRes [18] algorithm for solving the gener-
ated type constraints. We use e-matching [6] for instantiating the quantifiers used
in the axiomatization of the subtype function (cf. Sect.2), and carefully choose
instantiation patterns that ensure that any choice made during the search imme-
diately triggers the instantiation of the relevant quantifiers. For instance, for the
axioms shown in Sect. 2, we use the instantiation patterns subtype(classpqq, t) and
subtype(t, classpdq), respectively. Our instantiation patterns ensure that as soon
as one argument of an application of the subtype function is known, the quan-
tifier that enumerates the possible values of the other argument is instantiated,
thus ensuring that the consequences of any type choices propagate immediately.
With a naive encoding, the solver would have to guess both arguments before
being able to check whether the subtype relation holds. The resulting constraint
solving process is much faster than it would be when using different quantifier
instantiation techniques such as model-based quantifier instantiation [12], but
still avoids the potential unsoundness that can occur when using e-matching
with insufficient trigger expressions.

When the MAXSMT problem is satisfiable, TYPPETE queries Z3 for a model
satisfying all type constraints, retrieves the types assigned to each name in the
program, and generates type annotated source code for the input program. For
instance, for the program shown in Fig. 1, TYPPETE automatically annotates the
function evalEven with type Even for the parameter item and a str return type.
Note that Item and object would also be correct type annotations for item; the
choice of Even is guided by the optional type equality constraints.

When the MAXSMT problem is unsatisfiable, instead of reporting the unful-
filled constraints in the unsatistiable core returned by Z3 (which is not guaran-
teed to be minimal), TYPPETE creates a new relazed MAXSMT problem where
only the constraints defining the subtype function are enforced, while all other
type constraints are optional. Z3 is then queried for a model satisfying as many
type constraints as possible. The resulting type annotated source code for the
input program is returned along with the remaining minimal set of unfulfilled
type constraints. For instance, if we remove the abstract method compete of class
Item in Fig. 1, TYPPETE annotates the parameters of the function match at line
20 with type object and indicates the call compete at line 21 as problematic. By
observing the mismatch between the type annotations and the method call, the
user has sufficient context to quickly identify and correct the type error.

16 M. Hassan et al.

\ T(SMT) | T(MaxSMT) | Unfulfilled | T(Relaxed) | PYTYPE

adventure 2.99s / 6.30s 3.27s / 6.76s 42 /2| 1.95s / 8.83s 0 [0]
icemu 9.45s / 6.79s 9.51s / 3.63s 4/2|0.08 / 21.76s 18 [2]
imp | 16.88s / 59.95s | 16.91s / 15.87s 67 / 2| 0.82s / 82.56s 3[2]

scion 4.65s / 3.35s 4.72s / 2.97s 28 /2| 0.16s / 3.39s 0 [0]

test suite | 14.66s / 1.63s | 14.66s / 2.17s - -| 55 [34]

Fig. 2. Evaluation of TYPPETE on small programs and larger open source projects.

4 Experimental Evaluation

In order to demonstrate the practical applicability of our approach, we evaluated
our tool TYPPETE on a number of real-world open-source Python programs that
use inheritance, operator overloading, and other features that are challenging for
type inference (but not features that make static typing impossible):

adventure [21]: An implementation of the Colossal Cave Adventure game (2
modules, 399 LOC). The evaluation (and reported LOC) excludes the mod-
ules game.py and prompt.py, which employ dynamic attribute additions.

icemu [8]: A library that emulates integrated circuits at the logic level (8 mod-
ules, 530 LOC). We conducted the evaluation on revision 484828f.

imp [4]: A minimal interpreter for the imp toy language (7 modules, 771 LOC).
The evaluation excludes the modules used for testing the project.

scion [9]: A Python implementation of a new Internet architecture (2 modules,
725 LOC). For the evaluation, we used path_store.py and scion_addr.py
from revision 6f60ccc, and provided stub files for all dependencies.

We additionally ran TYPPETE on our test suite of manually-written programs
and small programs collected from the web (47 modules and 1998 LOC).

In order to make the projects statically typeable, we had to make a num-
ber of small changes that do not impact the functionality of the code, such as
adding abstract superclasses and abstract methods, and (for the imp and scion
projects) introducing explicit downcasts in few places. Additionally, we made a
number of other innocuous changes to overcome the current limitations of our
tool, such as replacing keyword arguments with positional arguments, replacing
generator expressions with list comprehensions, and replacing super calls via
inlining. The complete list of changes for each project is included in our artifact.

The experiments were conducted on an 2.9 GHz Intel Core i5 processor with
8 GB of RAM running Mac OS High Sierra version 10.13.3 with Z3 version
4.5.1. Figure2 summarizes the result of the evaluation. The first two columns
show the average running time (over ten runs, split into constraint generation
and constraint solving) for the type inference in which the use of optional type
equality constraints (cf. Sect.2) is disabled (SMT) and enabled (MAXSMT),
respectively. We can observe that optional type equality constraints (consid-
erably) reduce the search space for a solution as disabling them significantly

https://github.com/hsoft/icemu/tree/484828fe9cf18b7abf548700f4c17b4fb42a6b3d
https://github.com/scionproto/scion/tree/6f60ccc50b25870606810628b3da9e62779d8d11

MaxSMT-Based Type Inference for Python 3 17

increases the running time for larger projects. We can also note that the con-
straint solving time improves significantly when the type inference is run on
the test suite, which consists of many independent modules. This suggests that
splitting the type inference problem into independent sub-problems could fur-
ther improve performance. We plan to investigate this direction as part of our
future work.

The third column of Fig. 2 shows the evaluation of the error reporting feature
of TYPPETE (cf. Sect. 3). For each benchmark, we manually introduced two type
errors that could organically happen during programming and compared the
size of the unsatisfiable core (left of /) and the number of remaining unfulfilled
constraints (right of /) for the original and relaxed MAXSMT problems given
to 73, respectively. We also list the times needed to prove the first problem
unsatisfiable and solve the relaxed problem. As one would expect, the number
of constraints that remain unfulfilled for the relaxed problems is considerably
smaller, which demonstrates that the error reporting feature of TYPPETE greatly
reduces the time that a user needs to identify the source of a type error.

Finally, the last column of Fig. 2 shows the result of the comparison of TyP-
PETE with the state-of-the-art type inferencer PYTYPE [16]. PYTYPE infers
PEP484 [25] gradual type annotations by abstract interpretation [5] of the
bytecode-compiled version of the given Python file. In Fig. 2, for the considered
benchmarks, we report the number of variables and parameters that PYTYPE
leaves untyped or annotated with Any. We excluded any module on which
PYTYPE yields an error; in square brackets we indicate the number of mod-
ules that we could consider. TYPPETE is able to fully type all elements and thus
outperforms PYTYPE for static typing purposes. On the other hand, we note that
PyTyPE additionally supports gradual typing and a larger Python subset.

5 Related and Future Work

In addition to PYTYPE, a number of other type inference approaches and tools
have been developed for Python. The approach of Maia et al. [17] has some
fundamental limitations such as not allowing forward references or overloaded
functions and operators. Fritz and Hage [11] as well as STARKILLER [22] infer sets
of concrete types that can inhabit each program variable to improve execution
performance. The former sacrifices soundness to handle more dynamic features of
Python. Additionally, deriving valid type assignments from sets of concrete types
is non-trivial. MYPY and a project by Cannon [3] can perform (incomplete) type
inference for local variables, but require type annotations for function parameters
and return types. PYANNOTATE [13] dynamically tracks variable types during
execution and optionally annotates Python programs; the resulting annotations
are not guaranteed to be sound. A similar spectrum of solutions exists for other
dynamic programming languages like JavaScript [2,14] and ActionScript [20].
The idea of using SMT solvers for type inference is not new. Both F* [24] and
LiquidHaskell [26] (partly) use SMT-solving in the inference for their dependent
type systems. Pavlinovic et al. [19] present an SMT encoding of the OCaml type

18

M. Hassan et al.

system. TYPPETE’s approach to type error reporting can be seen as a simple
instantiation of their approach.

As part of our future work, we want to explore whether our system can be

adapted to infer gradual types. We also aim to develop heuristics for inferring
which functions and classes should be annotated with generic types based on the
reported unfulfilled constraints. Finally, we plan to explore the idea of splitting
the type inference into multiple separate problems to improve performance.

Acknowledgments. We thank the anonymous reviewers for their feedback. This work
was supported by an ETH Zurich Career Seed Grant (SEED-32 16-2).

References

10.
11.

12.

13.

14.

15.

16.

Ancona, D., Zucca, E.: Principal typings for Java-like languages. In: POPL, pp.
306-317 (2004)

. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for JavaScript.

In: Black, A.P. (ed.) ECOOP. LNCS, vol. 3586, pp. 428-452. Springer, Heidelberg
(2005). https://doi.org/10.1007/11531142_19

Cannon, B.: Localized type inference of atomic types in Python. Master’s thesis,
California Polytechnic State University (2005)

Conrod, J.: IMP Interpreter. https://github.com/jayconrod/imp-interpreter
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238-252 (1977)

de Moura, L., Bjgrner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F.
(ed.) CADE. LNCS (LNAI), vol. 4603, pp. 183-198. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73595-3_13

de Moura, L., Bjgrner, N.: Z3: an efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Dupras, V.: Icemu. https://github.com/hsoft /icemu

ETH Zurich: SCION. https://github.com/scionproto/scion

Fisher, D., Lehtosalo, J., Price, G., van Rossum, G.: MyPy. http://mypy-lang.org/
Fritz, L., Hage, J.: Cost versus precision for approximate typing for Python. In:
PEPM, pp. 89-98 (2017)

Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306-320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

Grue, T., Vorobev, S., Lehtosalo, J., van Rossum, G.: PyAnnotate. https://github.
com/google/pytype

Hackett, B., Guo, S.: Fast and precise hybrid type inference for JavaScript. In:
PLDI, pp. 239-250 (2012)

Jensen, S.H., Mgller, A., Thiemann, P.: Type analysis for JavaScript. In: SAS, pp.
238-255 (2009)

Kramm, M., Chen, R., Sudol, T., Demello, M., Caceres, A., Baum, D., Peters,
A., Ludemann, P., Swartz, P., Batchelder, N., Kaptur, A., Lindzey, L.: Pytype.
https://github.com/google/pytype

https://doi.org/10.1007/11531142_19
https://github.com/jayconrod/imp-interpreter
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/hsoft/icemu
https://github.com/scionproto/scion
http://mypy-lang.org/
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://github.com/google/pytype
https://github.com/google/pytype
https://github.com/google/pytype

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

MaxSMT-Based Type Inference for Python 3 19

Maia, E., Moreira, N., Reis, R.: A static type inference for Python. In: DYLA
(2012)

Narodytska, N. Bacchus, F.: Maximum satisfiability using core-guided maxsat res-
olution. In: AAAI, pp. 2717-2723 (2014)

Pavlinovic, Z., King, T., Wies, T.: Finding minimum type error sources. In: OOP-
SLA, pp. 525-542 (2014)

Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type inference.
In: POPL, pp. 481-494 (2012)

Rhodes, B.: Adventure. https://github.com/brandon-rhodes/python-adventure
Salib, M.: Starkiller : a static type inferencer and compiler for Python. Master’s
thesis, Massachusetts Institute of Technology (2004)

Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2-27. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73589-2_2

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F. In: POPL, pp. 256270
(2016)

van Rossum, G., Lehtosalo, J., Langa, L.: Type hints (2014). https://www.python.
org/dev/peps/pep-0484/

Vazou, N., Seidel, E.L., Jhala, R.: Liquidhaskell: experience with refinement types
in the real world. In: Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell, Gothenburg, Sweden, 4-5 September 2014, pp. 39-51 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://github.com/brandon-rhodes/python-adventure
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

The JKinD Model Checker

Andrew Gacek!®™) | John Backes!, Mike Whalen?, Lucas Wagner!,
and Elaheh Ghassabani?

! Rockwell Collins, Cedar Rapids, USA
andrew.gacek@gmail.com,
john.backes@gmail.com,
lucas.wagner@rockwellcollins.com
2 University of Minnesota, Minneapolis, USA
{mwwhalen, ghass013}0umn.edu

Abstract. JKIND is an open-source industrial model checker developed
by Rockwell Collins and the University of Minnesota. JKIND uses mul-
tiple parallel engines to prove or falsify safety properties of infinite state
models. It is portable, easy to install, performance competitive with other
state-of-the-art model checkers, and has features designed to improve the
results presented to users: inductive validity cores for proofs and coun-
terexample smoothing for test-case generation. It serves as the back-end
for various industrial applications.

1 Introduction

JKIND is an open-source! industrial infinite-state inductive model checker for
safety properties. Models and properties in JKIND are specified in LUSTRE [17],
a synchronous data-flow language, using the theories of linear real and integer
arithmetic. JKIND uses SMT-solvers to prove and falsify multiple properties in
parallel. A distinguishing characteristic of JKIND is its focus on the usability of
results. For a proven property, JKIND provides traceability between the prop-
erty and individual model elements. For a falsified property, JKIND provides
options for simplifying the counterexample in order to highlight the root cause
of the failure. In industrial applications, we have found these additional usability
aspects to be at least as important as the primary results. Another important
characteristic of JKIND is that is it designed to be integrated directly into user-
facing applications. Written in Java, JKIND runs on all major platforms and
is easily compiled into other Java applications. JKIND bundles the Java-based
SMTINTERPOL solver and has no external dependencies. However, it can option-
ally call Z3, YICES 1, YICES 2, CVC4, and MATHSAT if they are available.

2 Functionality and Main Features

JKIND is structured as several parallel engines that coordinate to prove prop-
erties, mimicking the design of PKIND and KIND 2 [8,21]. Some engines are

! https://github.com/agacek/jkind.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 20-27, 2018.
https://doi.org/10.1007/978-3-319-96142-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_3&domain=pdf
https://github.com/agacek/jkind

The JKIND Model Checker 21

valid valid
properties properties
Advice Inv Gen
base ste) . i iant
BMC Pl k-Induction Je—2rene PDR
invalid valid valid & invalid
properties properties properties

Fig. 1. JKIND engine architecture

directly responsible for proving properties, others aid that effort by generating
invariants, and still others are reserved for post-processing of proof or coun-
terexample results. Each engine can be enabled or disabled separately based
on the user’s needs. The architecture of JKIND allows any engine to broadcast
information to the other engines (for example, lemmas, proofs, counterexamples)
allowing straightforward integration of new functionality.

The solving engines in JKIND are show in Fig.1. The Bounded Model
Checking (BMC) engine performs a standard iterative unrolling of the transi-
tion relation to find counterexamples and to serve as the base case of k-induction.
The BMC engine guarantees that any counterexample it finds is minimal in
length. The k-Induction engine performs the inductive step of k-induction,
possibly using invariants generated by other engines. The Invariant Genera-
tion engine uses a template-based invariant generation technique [22] using its
own k-induction loop. The Property Directed Reachability (PDR) engine
performs property directed reachability [11] using the implicit abstraction tech-
nique [9]. Unlike BMC and k-induction, each property is handled separately by a
different PDR sub-engine. Finally, the Advice engine produces invariants based
on previous runs of JKIND as described in the next section.

Invariant sharing between the solvers (shown in Fig. 1) is an important part
of the architecture. In our internal benchmarking, we have found that implicit
abstraction PDR performs best when operating over a single property at a time
and without use of lemmas generated by other approaches. On the other hand,
the invariants generated by PDR and template lemma generation often allow
k-induction, which operates on all properties in parallel, to substantially reduce
the verification time required for models with large numbers of properties.

2.1 Post Processing and Re-verification

A significant part of the research and development effort for JKIND has focused
on post-processing results for presentation and repeated verification of models
under development.

Inductive Validity Cores (IVC). For a proven property, an inductive valid-
ity core is a subset of LUSTRE equations from the input model for which the

22 A. Gacek et al.

property still holds [13,14]. Inductive validity cores can be used for traceability
from property to model elements and determining coverage of the model by a
set of properties [15]. This facility can be used to automatically generate trace-
ability and adequacy information (such as traceability matrices [12] important
to the certification of safety-critical avionics systems [26]). The IVC engine uses
a heuristic algorithm to efficiently produce minimal or nearly minimal cores. In
a recent experiment over a superset of the benchmark models described in the
experiment in Sect. 3, we found that our heuristic IVC computation added 31%
overhead to model checking time, and yielded cores approximately 8% larger
than the guaranteed minimal core computed by a very expensive “brute force”
algorithm. As a side-effect, the IVC algorithm also minimizes the set of invariants
used to prove a property and emits this reduced set to other engines (notably
the Advice engine, described below).

Smoothing. To aid in counterexample understanding and in creating structural
coverage tests that can be more easily explained, JKIND provides an optional
post-processing step to minimize the number of changes to input variables—
smoothing the counterexample. For example, applied to 129 test cases generated
for a production avionics flight control state machine, smoothing increased run-
time by 40% and removed 4 unnecessary input changes per test case on aver-
age. The smoothing engine uses a MAXSAT query over the original BMC-style
unrolling of the transition relation combined with weighted assertions that each
input variable does not change on each step. The MAXSAT query tries to satisfy
all of these weighted assertions, but will break them if needed. This has the effect
of trying to hold all inputs constant while still falsifying the original property
and only allowing inputs to change when needed. This engine is only available
with SMT-solvers that support MAXSAT such as YICES 1 and Z3.

Advice. The advice engine saves and re-uses the invariants that were used by
JKIND to prove the properties of a model. Prior to analysis, JKIND performs
model slicing and flattening to generate a flat transition-relation model. Inter-
nally, invariants are stored as a set of proven formulas (in the LUSTRE syntax)
over the variables in the flattened model. An advice file is simply the emitted
set of these invariant formulas. When a model is loaded, the formulas are loaded
into memory. Formulas that are no longer syntactically or type correct are dis-
carded, and the remaining set of formulas are submitted as an initial set of
possible invariants to be proved via k-induction. If they are proved, they are
passed along to other engines; if falsified, they are discarded. Names constructed
between multiple runs of JKIND are stable, so if a model is unchanged, it can be
usually be re-proved quickly using the invariants and k-induction. If the model is
slightly changed, it is often the case that most of the invariants can be re-proved,
leading to reduced verification times.

If the IVC engine is also enabled, then advice emits a (close to) minimal
set of lemmas used for proof; this often leads to faster re-verification (but more
expensive initial verification), and can be useful for examining which of the
generated lemmas are useful for proofs.

The JKIND Model Checker 23

700

JKind (671) ——— .
Kind 2 (665) - - - - T
600 — nuUXmv-IC3 (661) —-—-—
73 (657) =wemen
@ Zustre (657) =weeeeeee
g 500 -
c
Il
@
c
- 400 -
w
>
o
w
‘s 300 -
o
a2
5 200 |-
z
100
T 1
0.01 0.1 1 10 100 1000

Total time (seconds)

Fig. 2. Performance benchmarks

3 Experimental Evaluation

We evaluated the performance of JKIND against KIND 2 [8], ZUSTRE [20], Gen-
eralized PDR in Z3 [19], and IC3 in NUXMV [9]. We used the default options
for each tool (using check_invar_ic3 for NUXMV). Our benchmark suite comes
from [9] and contains 688 models over the theory of linear integer arithmetic?.
All experiments were performed on a 64-bit Ubuntu 17.10 Linux machine with
a 12-core Intel Xeon CPU E5-1650 v3 @ 3.50 GHz, with 32 GB of RAM and a
time limit of 60s per model.

Performance comparisons are show in Fig. 2. The key describes the number
of benchmarks solved for each tool, and the graph shows the aggregate time
required for solving, ordered by time required per-problem, ordered indepen-
dently for each tool. JKIND was able to verify or falsify the most properties,
although Z3 was often the fastest tool. Many of the benchmarks in this set
are quickly evaluated: Z3 solves the first 400 benchmarks in just over 12s. Due
to JKIND’s use of Java, the JVM/JKIND startup time for an empty model is
approximately 0.35s, which leads to poor performance on small models®. As
always, such benchmarks should be taken with a large grain of salt. In [8], a
different set of benchmarks slightly favored KIND 2, and in [9], NUXMV was the
most capable tool. We believe that all the solvers are relatively competitive.

4 Integration and Applications

JKIND is the back-end for a variety of user-facing applications. In this section,
we briefly highlight a few of these applications and how they employ the features
discussed previously.

2 https://es.fbk.eu/people/griggio/papers/tacasl4-ic3ia.tar.bz2. Note that we remo-
ved 263 duplicate benchmarks from the original set.
3 Without startup time, the curve for JKIND is close to the curve for ZUSTRE.

https://es.fbk.eu/people/griggio/papers/tacas14-ic3ia.tar.bz2

24

(1)

5

A. Gacek et al.

The Specification and Analysis of Requirements (SPEAR) tool is an open-
source tool for prototyping and analysis of requirements [12]. Starting from
a set of formalized requirements, SPEAR uses JKIND to determine whether
or not the requirements meet certain properties. It uses IVCs to create
a traceability matrix between requirements and properties, highlighting
unused requirements, over-constrained properties, and other common prob-
lems. SPEAR also uses JKIND with smoothing for test-case generation using
the Unique First Cause criteria [28].

The Assume Guarantee Reasoning Environment (AGREE) tool is an
open-source compositional verification tool that proves properties of
hierarchically-composed models in the Architectural Analysis and Design
Language (AADL) language [3,10,23]. AGREE makes use of multiple
JKIND features including smoothing to present clear counterexamples, IVC
to show requirements traceability, and counterexample generation to check
the consistency of an AADL component’s contract. AGREE also uses
JKIND for test-case generation from component contracts.

The Static IMPerative AnaLyzer (SIMPAL) tool is an open-source tool for
compositional reasoning over software [27]. SIMPAL is based on LimP, a
LusTRrE-like imperative language with extensions for control flow elements,
global variables, and a syntax for specifying preconditions, postconditions,
and global variable interactions of preexisting components. SIMPAL trans-
lates LIMP programs to an equivalent LUSTRE representation which is passed
to JKIND to perform assume-guarantee reasoning, reachability, and viability
analyses.

JKIND is also used by two proprietary tools used by product areas within
Rockwell Collins. The first is a Mode Transition Table verification tool used
for the complex state machines which manage flight modes of an aircraft.
JKIND is used to check properties and generate tests for mode and transi-
tion coverage from LUSTRE models generated from the state machines. IVCs
are used to establish traceability, i.e. which transitions are covered by which
properties. The second is a Crew Alerting System MC/DC test-case gener-
ation tool for a proprietary domain-specific language used for messages and
alerts to airplane pilots. Smoothing is very important in this context as test
cases need to be run on the actual hardware where timing is not precisely
controllable. Thus, test cases with a minimum of changes to the inputs are
ideal.

Related Work

JKIND is one of a number of similar infinite-state inductive model checkers
including KIND 2 [8], NUXMV [9], Z3 with generalized PDR [19], and Zus-
TRE [20]. They operate over a transition relation described either as a LUSTRE
program (KIND 2, JKIND, and ZUSTRE), an extension of the SMV language
(NUXMV), or as a set of Horn clauses (Z3). Each tool uses a portfolio-based solver
approach, with NUXMV, JKIND, and KIND 2 all supporting both k-induction

The JKIND Model Checker 25

and a variant of PDR/IC3. NUXMV also supports guided reachability and k-
liveness. Other tools such as ESBMC-DEPTHK [25], VVT [4] CPACHECKER,
[5], CPROVER [7] use similar techniques for reasoning about C programs.

We believe that the JKIND IVC support is similar to proof-core support
provided by commercial hardware model checkers: Cadence Jasper Gold and
Synopsys VC Formal [1,2,18]. The proof-core provided by these tools is used for
internal coverage analysis measurements performed by the tools. Unfortunately,
the algorithms used in the commercial tool support are undocumented and per-
formance comparisons are prohibited by the tool licenses, so it is not possible to
compare performance on this aspect.

Previous work has been done on improving the quality of counterexamples
along various dimensions similar to the JKIND notion of smoothing, e.g. [16,24].
Our work is distinguished by its focus on minimizing the number of deltas in
the input values. This metric has been driven by user needs and by our own
experiences with test-case generation.

There are several tools that support reuse or exchange of verification results,
similar to our advice feature. Recently, there has been progress on standardized
formats [6] of exchange between analysis tools. Our current advice format is
optimized for use and performance with our particular tool and designed for re-
verification rather than exchange of partial verification information. However,
supporting a standardized format for exchanging verification information would
be a useful feature for future use.

6 Conclusion

JKIND is similar to a number of other solvers that each solve infinite state
sequential analysis problems. Nevertheless, it has some important features that
distinguish it. First, a focus on quality of feedback to users for both valid prop-
erties (using IVCs) and invalid properties (using smoothing). Second, it is sup-
ported across all major platforms and is straightforward to port due to its imple-
mentation in Java. Third, it is small, modular, and well-architected, allowing
straightforward extension with new engines. Fourth, it is open-source with a
liberal distribution license (BSD), so it can be adapted for various purposes, as
demonstrated by the number of tools that have incorporated it.

Acknowledgments. The work presented here was sponsored by DARPA as part of
the HACMS program under contract FA8750-12-9-0179.

References

1. Cadence JasperGold Formal Verification Platform. https://www.cadence.com/

2. Synopsys VC Formal Platform. https://www.synopsys.com

3. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 82-96. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-17524-9_7

https://www.cadence.com/
https://www.synopsys.com
https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-319-17524-9_7

26

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Gacek et al.

Beyer, D., Dangl, M.: SMT-based software model checking: an experimental com-
parison of four algorithms. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS,
vol. 9971, pp. 181-198. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48869-1_14

Beyer, D., Dangl, M., Wendler, P.: Boosting k-Induction with continuously-refined
invariants. In: Kroening, D., Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622-640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_42
Beyer, D., et al.: Correctness witnesses: exchanging verification results between
verifiers. In: FSE, pp. 326-337 (2016)

Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS,
vol. 9291, pp. 145-161. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48288-9_9

Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The KIND 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510-517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_29

Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Abrahdm, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46-61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8_4

Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126-140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3_13

Eén, N., et al.: Efficient implementation of property directed reachability. In:
FMCAD (2011)

Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
420-426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_30
Ghassabani, E., et al.: Efficient generation of all minimal inductive validity cores.
In: FMCAD (2017)

Ghassabani, E., et al.: Efficient generation of inductive validity cores for safety
properties. In: FSE (2016)

Ghassabani, E., et al.: Proof-based coverage metrics for formal verification. In:
ASE (2017)

Groce, A., Kroening, D.: Making the most of BMC counterexamples. Proc. BMC
2004 ENTCS 119, 67-81 (2005)

Halbwachs, N., et al.: The synchronous dataflow programming language Lustre.
IEEE (1991)

Hanna, Z., et al.: Formal verification coverage metrics for circuit design properties
(2015). https://www.google.com/patents/US20150135150

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157-171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

Kahsai, T., Bourbouh, H.: Zustre product home page. https://github.com/coco-
team/zustre

Kahsai, T., Tinelli, C.: PKIND: a parallel k-induction based model checker. In:
PDMC (2011)

https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-319-57288-8_30
https://www.google.com/patents/US20150135150
https://doi.org/10.1007/978-3-642-31612-8_13
https://github.com/coco-team/zustre
https://github.com/coco-team/zustre

22.

23.

24.

25.

26.

27.

28.

The JKIND Model Checker 27

Kabhsai, T., Garoche, P.-L., Tinelli, C., Whalen, M.: Incremental verification with
mode variable invariants in state machines. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 388—402. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3_35

Murugesan, A., et al.: Compositional verification of a medical device system. In:
HILT (2013)

Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31-45. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_-3

Rocha, H., et al.: Model checking embedded C software using k-induction and
invariants. In: SBESC (2015)

RTCA DO-178C: Software Considerations in Airborne Systems and Equipment
Certification (2011)

Wagner, L., et al.: SIMPAL: a compositional reasoning framework for imperative
programs. In: SPIN (2017)

Whalen, M.W., et al.: Coverage metrics for requirements-based testing. In: ISSTA
(2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/978-3-540-24730-2_3
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

The DEEPSEC Prover

Vincent Cheval, Steve Kremer,
and Itsaka Rakotonirina(®)

INRIA Nancy - Grand-Est & LORIA,
Villers-les-Nancy, France
{vincent .cheval,steve.kremer,
itsaka.rakotonirina}@inria.fr

Abstract. In this paper we describe the DEEPSEC prover, a tool for
security protocol analysis. It decides equivalence properties modelled as
trace equivalence of two processes in a dialect of the applied pi calculus.

1 Introduction

Cryptographic protocols ensure the security of communications. They are dis-
tributed programs that make use of cryptographic primitives, e.g. encryption,
to ensure security properties, such as confidentiality or anonymity. Their correct
design is quite a challenge as security is to be enforced in the presence of an
arbitrary adversary that controls the communication network and may compro-
mise participants. The use of symbolic verification techniques, in the line of the
seminal work by Dolev and Yao [19], has proven its worth in discovering logical
vulnerabilities or proving their absence.

Nowadays mature tools exist, e.g. [7,10,24] but mostly concentrate on trace
properties, such as authentication and (weak forms of) confidentiality. Unfor-
tunately many properties need to be expressed in terms of indistinguishability,
modelled as behavioral equivalences in dedicated process calculi. Typically, a
strong version of secrecy states that the adversary cannot distinguish the sit-
uation where a value vy, respectively wvo, is used in place of a secret. Privacy
properties, e.g., vote privacy, are also stated similarly [2,4,18].

In this paper we present the DEEPSEC prover (Deciding Equivalence Proper-
ties in Security protocols). The tool decides trace equivalence for cryptographic
protocols that are specified in a dialect of the applied pi calculus [1]. DEEPSEC
offers several advantages over existing tools, in terms of expressiveness, preci-
sion and efficiency: typically we do not restrict the use of private channels, allow
else branches, and decide trace equivalence precisely, i.e., no approximations
are applied. Cryptographic primitives are user specified by a set of subterm-
convergent rewrite rules. The only restriction we make on protocol specifications

This work was supported by the ERC (agreement No. 645865-SPOOC) under the
EU H2020 research and innovation program, and ANR project TECAP (ANR-17-
CE39-0004-01).

© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 28-36, 2018.
https://doi.org/10.1007/978-3-319-96142-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_4&domain=pdf

The DEEPSEC Prover 29

is that we forbid unbounded replication, i.e. we restrict the analysis to a finite
number of protocol sessions. This restriction is similar to that of several other
tools and sufficient for decidability. Note that decidability is nevertheless non-
trivial as the system under study is still infinite-state due to the active, arbitrary
attacker participating to the protocol.

2 Description of the Tool

2.1 Example: The Helios Voting Protocol

An input of DEEPSEC defines the cryptographic primitives, the protocol and
the security properties that are to be verified. Random numbers are abstracted
by names (a,b,...), cryptographic primitives by function symbols with arity
(f/n) and messages by terms viewed as modus operandi to compute bit-
string. For instance, the functions aenc/3, pk/1 model randomized asymmetric
encryption and public-key generation: term aenc(pk(k),r,m) models the plain
text m encrypted with public key pk(k) and randomness r. In DEEPSEC we
write:

fun aenc/3. fun pk/1.

On the other hand, cryptographic destructors are specified by rewrite rules. For
example asymmetric decryption (adec) would be defined by

reduc adec(k,aenc(pk(k),r,m)) -> m.

A plain text m can thus be retrieved from a cipher aenc(pk(k),r,m) and the
corresponding private key k. Such user-defined rewrite rules also allow us to
describe more complex primitives such as a zero-knowledge proof (ZKP) assert-
ing knowledge of the plaintext and randomness of a given ciphertext:

fun zkp/3.
const zpkok.
reduc check(zkp(r,v,aenc(p,r,v)), aenc(p,r,v)) -> zkpok.

Although user-defined, the rewrite system is required by DEEPSEC to be subterm
convergent, i.e., the right hand side is a subterm of the left hand side or a ground
term in normal form. Support for tuples and projection is provided by default.

Protocol Specification. Honest participants in a protocol are modeled as pro-
cesses. For instance, the process Voter (auth,id,v,pkE) describes a voter in
the Helios voting protocol. The process has four arguments: an authenticated
channel auth, the voter’s identifier id, its vote v and the public key of the tally
PkE.

30 V. Cheval et al.

let Voter(auth,id,v,pkE) =
new r;

The voter first generates a ran-
dom number r that will be used
let bal = aenc(pkE,r,v) in for encryption and ZKP. After that,
out (auth,bal) ; she encrypts her vote and assigns
out(c, (id, bal, zkp(r,v,bal))). i {5 the variable bal which is out-
put on the channel auth. Finally,
let VotingSystem(vi,v2) = she outputs the ballot, id and the
new k; new authl; new auth2; corresponding ZKP on the pub-
out (c,pk(k)); (lic channel c. All in all, the pro-
Voter(authl,idl,v1,pk(k)) | cess VotingSystem(v1,v2) repre-
Voter (auth2,1d2,v2,pk(k)) | sents the complete voting scheme:
Tally(k,authl,auth2)). two honest voters idl and id2
respectively vote for v1 and v2; the
process Tally collects the ballots, checks the ZKP and outputs the result of
the election. The instances of the processes Voter and Tally are executed con-
currently, modeled by the parallel operator |. Other operators supported by
DEEPSEC include input on a channel (in(c,x); P), conditional (if u = v then
P else Q) and non-deterministic choice (P + Q).

Security Properties. DEEPSEC focuses on properties modelled as trace equiv-
alence, e.g. vote privacy [18] in the Helios protocol. We express it at indistin-
guishability of two instances of the protocol swapping the votes of two honest
voters:

query trace_equiv(VotingSystem(yes,no),VotingSystem(no,yes)).

DEEPSEC checks whether an attacker, implicitly modelled by the notion of
trace equivalence, cannot distinguish between these two instances. Note that all
actions of dishonest voters can be seen as actions of this single attacker entity;
thus only honest participants need to be specified in the input file.

2.2 The Underlying Theory

We give here a high-level overview of how DEEPSEC decides trace equivalence.
Further intuition and details can be found in [14].

Symbolic Setting. Although finite-depth, even non-replicated protocols have infi-
nite state space. Indeed, a simple input in(c,x) induces infinitely-many poten-
tial transitions in presence of an active attacker. We therefore define a symbolic
calculus that abstracts concrete inputs by symbolic variables, and constraints
that restrict their concrete instances. Constraints typically range over deducibil-
ity contraints (“the attacker is able to craft some term after spying on public
channels”) and equations (“two terms are equal”). A symbolic semantics then
performs symbolic inputs and collects constraints on them. Typically, executing
input in(c,x) generates a deducibility constraint on x to model the attacker

The DEEPSEC Prover 31

being able to craft the message to be input; equations are generated by condi-
tionals, relying on most general unifiers modulo equational theory.

Decision Procedure. DEEPSEC constructs a so-called partition tree to guide deci-
sion of (in)equivalence of processes P and Q. Its nodes are labelled by sets of
symbolic processes and constraints; typically the root contains P and @ with
empty constraints. The tree is constructed similarly to the (finite) tree of all
symbolic executions of P and @, except that some nodes may be merged or
split accordingly to a constraint-solving procedure. DEEPSEC thus enforces that
concrete instances of processes of a same node are indistinguishable (statically).

The final decision criterion is that P and @ are equivalent iff all nodes of the
partition tree contain both a process originated from P and a process originated
from @ by symbolic execution. The DEEPSEC prover thus returns an attack iff
it finds a node violating this property while constructing the partition tree.

2.3 Implementation

DEEPSEC is implemented in Ocaml (16k LOC) and the source code is licensed
under GPL 3.0 and publicly available [17]. Running DEEPSEC yields a terminal
output summarising results, while a more detailed output is displayed graphically
in an HTML interface (using the MathJax APT [20]). When the query is not
satisfied, the interface interactively shows how to mount the attack.

Partial-Order Reductions. Tools verifying equivalences for bounded number of
sessions suffer from a combinatorial explosion as the number of sessions increases.
We therefore implemented state-of-the-art partial-order reductions (POR) [§]
that eliminate redundant interleavings, providing a significant speedup. This
is only possible for a restricted class of processes (determinate processes) but
DEEPSEC automatically checks whether POR, can be activated.

Parallelism. DEEPSEC generates a partition tree (cf Sect.2.2) to decide trace
equivalence. As sibling nodes are independent, the computation on subtrees can
be parallelized. However, the partition tree is not balanced, making it hard to
balance the load. One natural solution would be to systematically add children
nodes into a queue of pending jobs, but this would yield an important commu-
nication overhead. Consequently, we apply this method only until the size of the
queue is larger than a given threshold; next each idle process fetches a node and
computes the complete corresponding subtree. Distributed computation over n
cores is activated by the option -distributed n. By default, the threshold in
the initial generation of the partition tree depends on n but may be overwritten
to m with the option -nb_sets m.

3 Experimental Evaluation

Comparison to Other Work. When the number of sessions is unbounded, equiv-
alence is undecidable. Verification tools in this setting therefore have to sacrifice

32 V. Cheval et al.

termination, and generally only verify the finer diff-equivalence [9,11,23], too
fine-grained on many examples. We therefore focus on tools comparable to
DEEPSEC, i.e. those that bound the number of sessions. SPEC [25,26] verifies a
sound symbolic bisimulation, but is restricted to fixed cryptographic primitives
(pairing, encryption, signatures, hashes) and does not allow for else branches.
APTE [13] covers the same primitives but allows else branches and decides
trace equivalence exactly. On the contrary, AKISs [12] allows for user-defined
primitives and terminates when they form a subterm-convergent rewrite sys-
tem. However AKISS only decides trace equivalence without approximation for
a subclass of processes (determinate processes) and may perform under- and
over-approximations otherwise. SAT-EQ [15] proceeds differently by reducing
the equivalence problem to Graph Planning and SAT Solving: the tool is more
efficient than the others by several orders of magnitude, but is quite restricted in
scope (it currently supports pairing, symmetric encryption, and can only analyse
a subclass of determinate processes). Besides, SAT-EQ may not terminate.

Authentication. Figurel displays a sample of our benchmarks (complete results
can be found in [17]). DEEPSEC clearly outperforms Akiss, APTE, and SPEC,
but SAT-EQ takes the lead as the number of sessions increase. However, the
Otway-Rees protocol already illustrates the scope limit of SAT-EQ.

Besides, as previously mentioned, DEEPSEC includes partial-order reductions
(POR). We performed experiments with and without this optimisation: for exam-
ple, protocols requiring more than 12h of computation time without POR can
be verified in less than a second. Note that Akiss and APTE also implement
the same POR techniques as DEEPSEC.

Protocol (# of roles) Akiss‘ APTE ‘ SPEC ‘Sat-Eq DeepSec|No POR
3 V<Is|v <Is |V 1ls |V <Is |V <Is |/ 1s
6 V<ls |V 1s) v <ls |V <ls |V 13s
Denning- 7 v/ 6s |V 3s vV <lIs |V <lIs |/ 9m 45s
Sacco 10 Gy |V 9m49 v/ <ls |V <lIs
12 v/ <ls |V <lIs
29 v <ls |/ 6s
3 V<Is|v o <ls |V Ts |/ <Is |V <ls |/ <lIs
6 v 28 |V 4ls ey |V <ls |V <Is |/ 16m
Yahalom- 7 v 42s |/ 34m38s /o 1s |V <Is
Lowe 10 O /o 1s |V <Is
17 v 12s |/ 8s
3 vV 28s |V 2s v/ 58m9s Vo <ls |V <ls
6 v/ <ls |/39m 41s
Otway-Rees 7 © © X J/ <ls
14 v 5m28s

v/ equivalence proved X out of scope (@) out of memory/stack overflow timeout (12H)

Fig. 1. Benchmark results on classical authentication protocols

The DEEPSEC Prover 33

Protocol (# roles)| Akiss | APTE |DeepSec| |Helios variant (# roles)|DeepSec
2 |V <1ls |V <lIs |V <lIs Vanilla 6 |7 <ls
4 |V <Is |V 1s |V <ls No revote W 6 |v 1s
Passive 6 |v2m22s|/1m26s|v/ <ls No revote ZKP 6 (v 2s
Authentication 7 |vV/1h42m |/ 1m40s |V 1s Dishonest revote W | 10 |v/30m 24s
9 V/1hbbm |V <l1s Dishonest revote ZKP| 10 |v 9m 26s
15 v/ 4s Honest revote W 117 2s
21 v 8s Honest revote ZKP | 11 |/ 2h 42m

v/ equivalence proved 7/ attack found timeout (12H)

Fig. 2. Benchmark results for verifying privacy type properties

Privacy. We also verified privacy properties on the private authentication pro-
tocol [2], the passive-authentication and basic-access-control protocols from the
e-passport [21], AKA of the 3G telephony networks [6] and the voting protocols
Helios [3] and Prét-a-Voter [22]. DEEPSEC is the only tool that can prove vote
privacy on the two voting protocols, and private authentication is out of the
scope of SAT-EQ and SPEC. Besides, we analysed variants of the Helios vot-
ing protocol, based on the work of Arapinis et al. [5] (see Fig.2). The vanilla
version is known vulnerable to a ballot-copy attack [16], which is patched by a
ballot weeding (W) or a zero-knowledge proof (ZKP). DEEPSEC proved that,
(¢) when no revote is allowed, or (i) when each honest voter only votes once
and a dishonest voter is allowed to revote, then both patches are secure. How-
ever, only the ZKP variant remains secure when honest voters are allowed to
revote.

Parallelism. Experiments have been carried out on a server with 40 Intel Xeon
E5-2687TW v3 CPUs 3.10 GHz, with 50 GB RAM and 25 MB L3 Cache, using
35 cores (Server 1). However the performances of parallelisation had some unex-
pected behavior. For example, on the Yahalom-Lowe protocol, the use of too
many cores on a same server negatively impacts performances: e.g. on Server 1,
optimal results are achieved using only 20 to 25 cores. In comparison, opti-
mal results required 40-45 cores on a server with 112 Intel Xeon vE7-4850
v3 CPUs 2.20 GHz, with 1.5TB RAM and 35 MB L3 Cache (Server 2). This
difference may be explained by cache capacity: overloading servers with pro-
cesses (sharing cache) beyond a certain threshold should indeed make the hit-
miss ratio drop. This is consistent with the Server 2 having a larger cache and
exploiting efficiently more cores than Server 1. Using the perf profiling tool, we
confirmed that the number of cache-references per second (CRPS) stayed rela-
tively stable up to the optimal number of cores and quickly decreased beyond
(Fig. 3).

DEEPSEC can also distribute on multiple servers, using SSH connections.
Despite a communication overhead, multi-server computation may be a way
to partially avoid the server-overload issue discussed above. For example, the

34 V. Cheval et al.

2004 CRPS Time
—g—serv. 1 [|—o—serv. 1 [{20
» = 150 g —x—serv. 2
~
2 E
&) g 100
10
=
50
0 0
5 10 20 30 40 50 60 70 80

Number of cores

Fig. 3. Performance analysis on Yahalom-Lowe protocol with 23 roles

verification of the Helios protocol (Dishonest revote W) on 3 servers (using
resp. 10, 20 and 40 cores) resulted in a running time of 18 m 14s, while the
same verification took 51 m 49s on a 70-core server (also launched remotely via
SSH).

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1-41 (2017)

2. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3), 427—
476 (2004)

3. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of 17th USENIX
Security Symposium, USENIX 2008, pp. 335-348. USENIX Association (2008)

4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.D.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of 23rd Computer Security
Foundations Symposium, CSF 2010, pp. 107-121. IEEE Computer Society Press
(2010)

5. Arapinis, M., Cortier, V., Kremer, S.: When are three voters enough for privacy
properties? In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 241-260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45741-3_13

6. Arapinis, M., Mancini, L., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar,
R.: New privacy issues in mobile telephony: fix and verification. In: Proceedings
of 19th Conference on Computer and Communications Security, CCS 2012, pp.
205-216. ACM Press (2012)

7. Armando, A., et al.: The AVISPA tool for the automated validation of Internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281-285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988_27

https://doi.org/10.1007/978-3-319-45741-3_13
https://doi.org/10.1007/978-3-319-45741-3_13
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

The DEEPSEC Prover 35

Baelde, D., Delaune, S., Hirschi, L.: Partial order reduction for security protocols.
In: Proceedings of 26th International Conference on Concurrency Theory, CON-
CUR 2015. Leibniz International Proceedings in Informatics, vol. 42, pp. 497-510.
Leibniz-Zentrum fiir Informatik, September 2015

Basin, D.A., Dreier, J., Sasse, R.: Automated symbolic proofs of observational
equivalence. In: Proceedings of 22nd Conference on Computer and Communica-
tions Security, CCS 2015, pp. 1144-1155. ACM Press (2015)

Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur. 1(1-2), 1-135 (2016)

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: Proceedings of Symposium on Logic in Computer
Science, LICS 2005, pp. 331-340. IEEE Computer Society Press (2005)

Chadha, R., Cheval, V., Ciobaca, S., Kremer, S.: Automated verification of equiva-
lence properties of cryptographic protocol. ACM Trans. Comput. Log. 23(4), 1-32
(2016)

Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Abrahém, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587-592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_50

Cheval, V., Kremer, S., Rakotonirina, I.. DEEPSEC: deciding equivalence prop-
erties in security protocols - theory and practice. In: Proceedings of 39th IEEE
Symposium on Security and Privacy, S&P 2018, pp. 525-542. IEEE Computer
Society Press (2018)

Cortier, V., Delaune, S., Dallon, A.: Sat-equiv: an efficient tool for equivalence
properties. In: Proceedings of 30th IEEE Computer Security Foundations Sympo-
sium, CSF 2017, pp. 481-494. IEEE Computer Society Press (2017)

Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89-148 (2013)

The DeepSec Prover, January 2018. https://deepsec-prover.github.io

Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435-487 (2009)

Dolev, D., Yao, A.: On the security of public key protocols. In: Proceedings of 22nd
Symposium on Foundations of Computer Science, FOCS 1981, pp. 350-357. IEEE
Computer Society Press (1981)

MathJax: Beautiful Math in All Browsers. https://www.mathjax.org

PKI Task Force: PKI for machine readable travel documents offering ICC read-only
access. Technical report, International Civil Aviation Organization (2004)

Ryan, P.Y.A., Schneider, S.A.: Prét a voter with re-encryption mixes. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp- 313-326. Springer, Heidelberg (2006). https://doi.org/10.1007/11863908_20
Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: A formal definition of pro-
tocol indistinguishability and its verification using Maude-NPA. In: Mauw, S.,
Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 162-177. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11851-2_11

Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696-701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

https://doi.org/10.1007/978-3-642-54862-8_50
https://deepsec-prover.github.io
https://www.mathjax.org
https://doi.org/10.1007/11863908_20
https://doi.org/10.1007/978-3-319-11851-2_11
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

36 V. Cheval et al.

25. Tiu, A., Dawson, J.: Automating open bisimulation checking for the spi-calculus.
In: Proceedings of 23rd Computer Security Foundations Symposium, CSF 2010,
pp. 307-321. IEEE Computer Society Press (2010)

26. Tiu, A., Nguyen, N., Horne, R.: SPEC: an equivalence checker for security proto-
cols. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 87-95. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47958-3_5

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-47958-3_5
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

SimpleCAR: An Efficient Bug-Finding Tool
Based on Approximate Reachability

Jianwen Li'®™) Rohit Dureja’, Geguang Pu?,

Kristin Yvonne Rozier!', and Moshe Y. Vardi?

! Towa State University, Ames, IA, USA
lijwen27480Qgmail.com
2 Bast China Normal University, Shanghai, China
3 Rice University, Houston, TX, USA

Abstract. We present a new safety hardware model checker SimpleCAR
that serves as a reference implementation for evaluating Complemen-
tary Approximate Reachability (CAR), a new SAT-based model check-
ing framework inspired by classical reachability analysis. The tool gives
a “bottom-line” performance measure for comparing future extensions
to the framework. We demonstrate the performance of SimpleCAR on
challenging benchmarks from the Hardware Model Checking Competi-
tion. Our experiments indicate that SimpleCAR is particularly suited for
unsafety checking, or bug-finding; it is able to solve 7 unsafe instances
within 1 h that are not solvable by any other state-of-the-art techniques,
including BMC and IC3/PDR, within 8 h. We also identify a bug (reports
safe instead of unsafe) and 48 counterexample generation errors in the
tools compared in our analysis.

1 Introduction

Model checking techniques are widely used in proving design correctness, and
have received unprecedented attention in the hardware design community [9,16].
Given a system model M and a property P, model checking proves whether or
not P holds for M. A model checking algorithm exhaustively checks all behav-
iors of M, and returns a counterexample as evidence if any behavior violates the
property P. The counterexample gives the execution of the system that leads to
property failure, i.e., a bug. Particularly, if P is a safety property, model checking
reduces to reachability analysis, and the provided counterexample has a finite
length. Popular safety checking techniques include Bounded Model Checking
(BMC) [10], Interpolation Model Checking (IMC) [21], and IC3/PDR [12,14]. It
is well known that there is no “universal” algorithm in model checking; different
algorithms perform differently on different problem instances [7]. BMC outper-
forms IMC on checking unsafe instances, while IC3/PDR can solve instances that
BMC cannot and vice-versa. [19]. Therefore, BMC and IC3/PDR are the most
popular algorithms in the portfolio for unsafety checking, or bug-finding.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 37-44, 2018.
https://doi.org/10.1007/978-3-319-96142-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_5&domain=pdf

38 J. Li et al.

Complementary Approximate Reachability (CAR) [19] is a SAT-based model
checking framework for reachability analysis. Contrary to reachability analysis
via IC3/PDR, CAR maintains two sequences of over- and under- approximate
reachable state-sets. The over-approximate sequence is used for safety check-
ing, and the under-approximate sequence for unsafety checking. CAR does not
require the over-approximate sequence to be monotone, unlike IC3/PDR. Both
forward (Forward-CAR) and backward (Backward-CAR) reachability analysis are
permissible in the CAR framework. Preliminary results show that Forward-CAR
complements IC3/PDR on safe instances [19].

We present, SimpleCAR, a tool specifically developed for evaluating and
extending the CAR framework. The new tool is a complete rewrite of CARChecker
[19] with several improvements and added capabilities. SimpleCAR has a lighter
and cleaner implementation than CARChecker. Several heuristics that aid
Forward-CAR to complement IC3/PDR are integrated in CARChecker. Although
useful, these heuristics make it difficult to understand and extend the core func-
tionalities of CAR. Like IC3/PDR, the performance of CAR varies significantly
by using heuristics [17]. Therefore, it is necessary to provide a basic implemen-
tation of CAR (without code-bloating heuristics) that serves as a “bottom-line”
performance measure for all extensions in the future. To that end, SimpleCAR
differs from CARChecker in the following aspects:

— Eliminates all heuristics integrated in CARChecker except a configuration
option to enable a IC3/PDR-like clause “propagation” heuristic.

— Uses UNSAT cores from the SAT solver directly instead of the expensive
minimal UNSAT core (MUC) computation in CARChecker.

— Poses incremental queries to the SAT solver using assumptions;

— While CARChecker contributes to safety checking [19], SimpleCAR shows a
clear advantage on unsafety checking.

We apply SimpleCAR to 748 benchmarks from the Hardware Model Checking
Competition (HWMCC) 2015 [2] and 2017 [3], and compare its performance to
reachability analysis algorithms (BMC, IMC, 4 x IC3/PDR, Avy [22], Quip [18]) in
state-of-the-art model checking tools (ABC, nuXmv, [IMC, IC3Ref). Our extensive
experiments reveal that Backward-CAR is particularly suited for unsafety check-
ing: it can solve 8 instances within a 1-h time limit, and 7 instances within a
8-h time limit not solvable by BMC and IC3/PDR. We conclude that, along with
BMC and IC3/PDR, CAR is an important candidate in the portfolio of unsafety
checking algorithms, and SimpleCAR provides an easy and efficient way to evalu-
ate, experiment with, and add enhancements to the CAR framework. We identify
1 major bug and 48 errors in counterexample generation in our evaluated tool
set; all have been reported to the tool developers.

2 Algorithms and Implementation

We present a very high-level overview of the CAR framework (refer [19] for
details). CAR is a SAT-based framework for reachability analysis. It maintains

SimpleCAR: An Efficient Bug-Finding Tool 39

two over- and under- approximate reachable state sequences for safety and
unsafety checking, respectively. CAR can be symmetrically implemented either in
the forward (Forward-CAR) or backward (Backward-CAR) mode. In the forward
mode, the F-sequence (Fy, F1, ..., F;) is the over-approximated sequence, while
the B-sequence (By, By, ..., B;) is under-approximated. The roles of the F- and
B- sequence are reversed in the backward mode. We focus here on the backward
mode of CAR, or Backward-CAR (refer [19] for Forward-CAR)

2.1 High-Level Description of Backward-CAR

A frame F; in the F-sequence Table 1. Sequences in Backward-CAR.
denotes the set of states that F_sequence B-sequence
are reachable from the initial . gmde;) g"er) =
. . .. nit 0= 0= —
states (I) in g steps. Similarly, Fo——0mo- Fos CR(F) [Bia D R-1(B)
a frame B; in the B-sequence Tafety check |- Ji Bit1 C Up<;<; Bs

denotes the set of states that Unsafety check[3i-Fi 0P # 0]
can reach the bad states (—=P) in i steps. Let R(F;) represent the set of successor
states of F;, and R™1(B;) represent the set of predecessor states of B;. Table 1
shows the constraints on the sequences and their usage in Backward-CAR for
safety and unsafety checking.

Let S(F) = UF
and S(B) = |JB;. Algo- Alg. 1. High-level description of Backward CAR

rithm 1 gives a descrip- 1 Fo =1, Bo=—=P, k= 0;
tion of Backward-CAR. 2 while true do

The B-sequence is exten- 5 While S(B) A R(S(F)) # 0 do
ded exactly once in ever 4: update F- and B- sequences.
. . Y .y 5: if Ji- F; N =P # () then return unsafe;
iteration of the loop in 6 ; G B tional):
s 25, b e B0 oo roprion on e (option)
sequence may be extended = Yosisi '

8: k=k+ 1 and By = —P;

multiple times in each
loop iteration in lines 3-5.
As a result, CAR normally returns counterexamples with longer depth compared
to the length of the B-sequence. Due to this inherent feature of the framework,
CAR is able to complement BMC and IC3/PDR on unsafety checking.

2.2 Tool Implementation

SimpleCAR is publicly available [5,6] under the GNU GPLv3 license. The tool
implementation is as follows:

— Language: C++11 compilable under gcc 4.4.7 or above.

— Input: Hardware circuit models expressed as and-inverter graphs in the aiger
1.9 format [11] containing a single safety property.

— Output: “1” (unsafe) to report the system violates the property, or “0” (safe)
to confirm that the system satisfies the property. A counterexample in the
aiger format is generated if run with the -e configuration flag.

40 J. Li et al.

— Algorithms: Forward-CAR and Backward-CAR with and without the propa-
gation heuristic (enabled using the -p configuration flag).

— External Tools: Glucose 3.0 [8] (based on MiniSAT [15]) is used as the
underlying SAT solver. Aiger tools [1] are used for parsing the input aiger
files to extract the model and property information, and error checking.

— Differences with CARChecker [19]: The Minimal Unsat Core (MUC) and
Partial Assignment (PA) techniques are not utilized in SimpleCAR, which
allows the implementation to harness the power of incremental SAT solving.

3 Experimental Analysis

3.1 Strategies

Tools. We consider five model checking tools in our evaluation: ABC 1.01 [13],
[IMC 2.0%, Simplic3 [17] (1C3 algorithms used by nuXmv for finite-state systems?),
IC3Ref [4], CARChecker [19], and SimpleCAR. For ABC, we evaluate BMC (bmc2),
IMC (int), and PDR (pdr). There are three different versions of BMC in ABC:
bmc, bmc2, and bmc3. We choose bmc2 based on our preliminary analysis since
it outperforms other versions. Simplic3 proposes different configuration options
for 1C3. We use the three best candidate configurations for 1C3 reported in [17],
and the Avy algorithm [22] in Simplic3. We consider CARChecker as the original
implementation of the CAR framework and use it as a reference implementation
for SimpleCAR. A summary of the tools and their arguments used for exper-
iments is shown in Table2. Overall, we consider four categories of algorithms
implemented in the tools: BMC, IMC, IC3/PDR, and CAR.

Benchmarks. We evaluate all tools against 748 benchmarks in the aiger format
[11] from the SINGLE safety property track of the HWMCC in 2015 and 2017.

Error Checking. We check correctness of results from the tools in two ways:

1. We use the aigsim [1] tool to check whether the counterexample generated
for unsafe instances is a real counterexample by simulation.

2. For inconsistent results (safe and unsafe for the same benchmark by at least
two different tools) we attempt to simulate the unsafe counterexample, and
if successful, report an error for the tool that returns safe (surprisingly, we
do not encounter cases when the simulation check fails).

Platform. Experiments were performed on Rice University’s DavinCI cluster,
which comprises of 192 nodes running at 2.83 GHz, 48 GB of memory and running
RedHat 6.0. We set the memory limit to 8 GB with a wall-time limit of an hour.
Each model checking run has exclusive access to a node. A time penalty of one
hour is set for benchmarks that cannot be solved within the time/memory limits.

! We use version 2.0 available at https://ryanmb.bitbucket.io/truss/ — similar to the
version available at https://github.com/mgudemann /iimc with addition of Quip [18].
2 Personal communication with Alberto Griggio.

https://ryanmb.bitbucket.io/truss/
https://github.com/mgudemann/iimc

SimpleCAR: An Efficient Bug-Finding Tool

41

Table 2. Tools and algorithms (with category) evaluated in the experiments.

Tool Algorithm Configuration Flags
BMC (abc-bmc) -c ‘bmc2’
ABC IMC (abc-int) -c ‘int’
PDR (abc-pdr) -c ‘pdr’
1IMC IC3 (iimc-ic3) -t ic3 --ic3_stats --print_cex --cex_aiger
Quip [18] (iimc-quip) -t quip --quip_stats --print_cex --cex_aiger
IC3Ref IC3 (ic3-ref) -b

1C3/ L -s minisat -m 1 -u4 -I0-01-c1-p1-d2
PDR IC3 (simplic3-bestl) G 1P 1-A 100
IC3 (simplic3-best2 -s minisat -m1 -u4-I1-D0-g1-X0-01
o (simplic3-best2) -c0-p1-d2-G1-P1-A 100
Simplic3 ini 1-ud-I 1 1-d2
IC3 (simplic3-best3) s minisat -m we T 00 c0-p
-G 1 -P 1 -A 100 -a aic3
Avy [22] (simplic3-avy) -a avy
bl - -
CARChecker Forward CAR* (carchk-f) £
Backward CAR* (carchk-b) -b
Forward CAR' (simpcar-£) -f -e
CAR

SimpleCAR Backward CAR' (simpcar-b) -b -e

Forward CAR? (simpcar-fp) -f -p -e

Backward CAR? (simpcar-bp) -b -p -e

* with heuristics for minimal unsat core (MUC) [20], partial assignment [23], and propagation.

™ no heuristics
¥ with heuristic for PDR-like clause propagation

3.2 Results

Error Report. We identify one bug in simplic3-best3: reports safe instead of
unsafe, and 48 errors with respect to counterexample generation in iimc-quip
algorithm (26) and all algorithms in the Simplic3 tool (22). At the time of writing,
the bug report sent to the developers of Simplic3 has been confirmed. In our
analysis, we assume the results from these tools to be correct.

Coarse Analysis. We focus our analysis
to unsafety checking. Figurel shows the
total number of unsafe benchmarks solved
by each category (assuming portfolio-run
of all algorithms in a category). CAR
complements BMC and IC3/PDR by
solving 128 benchmarks of which 8
are not solved by any other category.
Although CAR solves the least amount
of total benchmarks, the count of the
uniquely solved benchmarks is compara-
ble to other categories. When the wall-
time limit (memory limit does not change)
is increased to 8h, BMC and IC3/PDR can
only solve one of the 8 uniquely solved

solved

[uniquely solved

%
T 9

EISO _ 0
g 22; 8
21001 |
< vy v
= i £ MK Y
S
5 50 ‘
Qo
£
5]
z

0 BMC IMC IC3/PDR CAR

Algorithm Category

Fig. 1. Number of benchmarks solved
by each algorithm category (run as a
portfolio). Uniquely solved benchmarks
are not solved by any other category.

42 J. Li et al.

solved distinctly solved solved XY distinctly solved

B 5 N 8
_____ | l l

Ix)

G
™)
S

=)

3
=
3

w
S

w
g 3
(o —

Number of Unsafe Benchmarks
AN
106——
A\

Number of Unsafe Benchmarks
[=
G G

=)

(a) Algorithms in IC3/PDR category (b) Algorithms in CAR category

Fig. 2. Number of benchmarks solved by every algorithm in a category. Distinctly
solved benchmarks by an algorithm are not solved by any algorithm in other categories.
The set union of distinctly solved benchmarks for all algorithms in a category equals
the count of uniquely solved for that category in Fig. 1.

benchmarks by CAR. The analysis supports our claim that CAR complements
BMC/IC3/PDR on unsafety checking.

Granular Analysis. Figure2 shows how each algorithm in the 1C3/PDR
(Fig.2a) and CAR (Fig. 2b) categories performs on the benchmarks. simpcar-bp
distinctly solves all 8 benchmarks uniquely solved by the CAR cate-
gory (Fig. 1), while no single IC3/PDR algorithm distinctly solves all
uniquely solved benchmarks in the IC3/PDR category. In fact, a portfo-
lio including at least abc-pdr, simplic3-bestl, and simplic3-best2 solves all
8 instances uniquely solved by the IC3/PDR category. It is important to note
that SimpleCAR is a very basic implementation of the CAR framework compared
to the highly optimized implementations of IC3/PDR in other tools. Even then
simpcar-b outperforms four IC3/PDR implementations. Our results show
that Backward-CAR is a favorable algorithm for unsafety checking.

Analysis Conclusions. Backward-CAR presents a more promising research
direction than Forward-CAR for unsafety checking. We conjecture that the per-
formance of Forward- and Backward- CAR varies with the structure of the aiger
model. Heuristics and performance-gain present a trade-off. simpcar-bp has a
better performance compared to the heuristic-heavy carchk-b. On the other
hand, simpcar-bp solves the most unsafe benchmarks in the CAR category,
however, adding the “propagation” heuristic effects its performance: there are
several benchmarks solved by simpcar-b but not by simpcar-bp.

4 Summary

We present SimpleCAR, a safety model checker based on the CAR framework for
reachability analysis. Our tool is a lightweight and extensible implementation

SimpleCAR: An Efficient Bug-Finding Tool 43

of CAR with comparable performance to other state-of-the-art tool implementa-
tions of highly-optimized unsafety checking algorithms, and complements exist-
ing algorithm portfolios. Our empirical evaluation reveals that adding heuristics
does not always improve performance. We conclude that Backward-CAR is a more
promising research direction than Forward-CAR for unsafety checking, and our
tool serves as the “bottom-line” for all future extensions to the CAR framework.

Acknowledgments. This work is supported by NSF CAREER Award CNS-
1552934, NASA ECF NNX16AR57G, NSF CCF-1319459, and NSFC 61572197 and
61632005 grants. Geguang Pu is also partially supported by MOST NKTSP Project
2015BAG19B02 and STCSM Project No. 16DZ1100600.

References

AIGER Tools. http://fmv.jku.at/aiger/aiger-1.9.9.tar.gz

HWMCC 2015. http://fmv.jku.at/hwmecl5/

HWMCC 2017. http://fmv.jku.at/hwmecl7/

IC3Ref. https://github.com/arbrad/IC3ref

SimpleCAR Source. https://github.com/lijwen2748 /simplecar/releases/tag/v0.1

SimpleCAR Website. http://temporallogic.org/research/CAV18/

Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of

SAT-based model checking techniques in an industrial environment. In: Borrione,

D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254-268. Springer, Hei-

delberg (2005). https://doi.org/10.1007/11560548_20

8. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: IJCAI (2009)

9. Bernardini, A., Ecker, W., Schlichtmann, U.: Where formal verification can help
in functional safety analysis. In: ICCAD (2016)

10. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs (1999)

11. Biere, A.: AIGER Format. http://fmv.jku.at/aiger/FORMAT

12. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

13. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24-40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

14. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD (2011)

15. Eén, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

16. Golnari, A., Vizel, Y., Malik, S.: Error-tolerant processors: formal specification and
verification. In: ICCAD (2015)

17. Griggio, A., Roveri, M.: Comparing different variants of the IC3 algorithm for
hardware model checking. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst.
35(6), 1026-1039 (2016)

18. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: FMCAD (2015)

N T W=

http://fmv.jku.at/aiger/aiger-1.9.9.tar.gz
http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc17/
https://github.com/arbrad/IC3ref
https://github.com/lijwen2748/simplecar/releases/tag/v0.1
http://temporallogic.org/research/CAV18/
https://doi.org/10.1007/11560548_20
http://fmv.jku.at/aiger/FORMAT
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-540-24605-3_37

44

19.

20.

21.

22.

23.

J. Li et al.

Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety model checking with com-
plementary approximations. In: ICCAD (2017)

Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159-173. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0-14

McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1-13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260-276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9-17

Yu, Y., Subramanyan, P., Tsiskaridze, N., Malik, S.: All-SAT using minimal block-
ing clauses. In: VLSID (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-08867-9_17
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

StringFuzz: A Fuzzer for String Solvers

Dmitry Blotsky'®, Federico Mora?, Murphy Berzish!, Yunhui Zheng?,
Ifaz Kabir!, and Vijay Ganesh'

! University of Waterloo, Waterloo, Canada
{dblotsky,vganesh}@uwaterloo.ca
2 University of Toronto, Toronto, Canada
fmora@cs.toronto.edu
3 IBM T.J. Watson Research Center,
Yorktown Heights, USA

Abstract. In this paper, we introduce StringFuzz: a modular SMT-
LIB problem instance transformer and generator for string solvers. We
supply a repository of instances generated by StringFuzz in SMT-LIB
2.0/2.5 format. We systematically compare Z3str3, CVC4, Z3str2, and
Norn on groups of such instances, and identify those that are particularly
challenging for some solvers. We briefly explain our observations and
show how StringFuzz helped discover causes of performance degradations
in Z3str3.

1 Introduction

In recent years, many algorithms for solving string constraints have been devel-
oped and implemented in SMT solvers such as Norn [6], CVC4 [12], and Z3
(e.g., Z3str2 [13] and Z3str3 [7]). To validate and benchmark these solvers, their
developers have relied on hand-crafted input suites [1,4, 5] or real-world examples
from a limited set of industrial applications [2,11]. These test suites have helped
developers identify implementation defects and develop more sophisticated solv-
ing heuristics. Unfortunately, as more features are added to solvers, these bench-
marks often remain stagnant, leaving increasing functionality untested. As such,
there is an acute need for a more robust, inexpensive, and automatic way of
generating benchmarks to test the correctness and performance of SMT solvers.

Fuzzing has been used to test all kinds of software including SAT solvers
[10]. Inspired by the utility of fuzzers, we introduce StringFuzz and describe its
value as an exploratory testing tool. We demonstrate its efficacy by present-
ing limitations it helped discover in leading string solvers. To the best of our
knowledge, StringFuzz is the only tool aimed at automatic generation of string
constraints. StringFuzz can be used to mutate or transform existing benchmarks,
as well as randomly generate structured instances. These instances can be scaled
with respect to a variety of parameters, e.g., length of string constants, depth of
concatenations (concats) and regular expressions (regexes), number of variables,
number of length constraints, and many more.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 45-51, 2018.
https://doi.org/10.1007/978-3-319-96142-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_6&domain=pdf

46 D. Blotsky et al.

Contributions

1. ! The StringFuzz tool: In Sect.2, we describe a modular fuzzer that can
transform and generate SMT-LIB 2.0/2.5 string and regex instances. Scaling
inputs (e.g., long string constants, deep concatenations) are particularly use-
ful in identifying asymptotic behaviors in solvers, and StringFuzz has many
options to generate them. We briefly document StringFuzz’s components and
modular architecture. We provide example use cases to demonstrate its utility
as an exploratory solver testing tool.

2. A repository of SMT-LIB 2.0/2.5 instances: We present a reposi-
tory of SMT-LIB 2.0/2.5 string and regex instance suites that we generated
using StringFuzz in Sect. 3. This repository consists of two categories: one
with new instances generated by StringFuzz (generated); and another with
transformed instances generated from a small suite of industrial benchmarks
(transformed).

3. Experimental Results and Analysis: We compare the performance of
Z3str3, CVC4, Z3str2, and Norn on the StringFuzz suites Concats-Balanced,
Concats-Big, Concats-Extracts-Small, and Different-Prefiz in Sect.4. We
highlight these suites because they make some solvers perform poorly, but
not others. We analyze our experimental results, and pinpoint algorithmic
limitations in Z3str3 that cause poor performance.

2 StringFuzz

Implementation and Architecture. StringFuzz is implemented as a Python
package, and comes with several executables to generate, transform, and analyze
SMT-LIB 2.0/2.5 string and regex instances. Its components are implemented as
UNIX “filters” to enable easy integration with other tools (including themselves).
For example, the outputs of generators can be piped into transformers, and
transformers can be chained to produce a stream of tuned inputs to a solver.
StringFuzz is composed of the following tools:

stringfuzzg
This tool generates SMT-LIB instances. It supports several generators and
options that specify its output. Details can be found in Table 1a.

stringfuzzx
This tool transforms SMT-LIB instances. It supports several transform-
ers and options that specify its output and input, which are explained in
Table 1b. Note that transformers Translate and Reverse also preserve satis-
fiability under certain conditions.

stringstats
This tool takes an SMT-LIB instance as input and outputs its properties: the
number of variables/literals, the max/median syntactic depth of expressions,
the max/median literal length, etc.

1 All source code, problem suites, and supplementary material referenced in this paper
are available at the StringFuzz website [3].

StringFuzz: A Fuzzer for String Solvers 47
Table 1. StringFuzz built-in (a) generators and (b) transformers.

(a) stringfuzzg built-in generators.

Name Generates instances that have ...

Concats Long concats and optional random extracts.

Lengths Many variables (and their concats) with length constraints.
Owerlaps An expression of the form A.X = X.B.

FEquality An equality among concats, each with variables or constants.
Regex Regexes of varying complexity.

Random-Text Totally random ASCII text.
Random-AST Random string and regex constraints.

(b) stringfuzzx built-in transformers.

Name The transformer ...

Fuzz Replaces literals and operators with similar ones.

Graft Randomly swaps non-leaf nodes with leaf nodes.
Multiply* Multiplies integers and repeats strings by N.

Nop Does nothing (can translate between SMT-LIB 2.0/2.5).
Reverse® Reverses all string literals and concat arguments.
Rotate Rotates compatible nodes in syntax tree.

Translate® Permutes the alphabet.
Unprintable Replaces characters in literals with unprintable ones.

#Can guarantee satisfiable output instances from satisfiable input instances [3].
PCan guarantee input and output instances will be equisatisfiable [3].

We organized StringFuzz to be easily extended. To show this, we note that
while the whole project contains 3,183 lines of code, it takes an average of 45
lines of code to create a transformer. StringFuzz can be installed from source,
or from the Python PIP package repository.

Regex Generating Capabilities. StringFuzz can generate and transform
instances with regex constraints. For example, the command “stringfuzzg
regex -r 2 -d 1 -t 1 -M 3 -X 10” produces this instance:

(set-logic QF_S)

(declare-fun varO () String)

(assert (str.in.re varO (re.+ (str.to.re "R5"))))
(assert (str.in.re var0O (re.+ (str.to.re "!PC"))))
(assert (<= 3 (str.len var0)))

(assert (<= (str.lemn varO) 10))

(check-sat)

Each instance is a set of one or more regex constraints on a single variable,
with optional maximum and minimum length constraints. Each regex constraint
is a concatenation (re.++ in SMT-LIB string syntax) of regex terms:

(re.++ T1 (re.++ T2 ... (re.++ Tn-1 Tn)))

48 D. Blotsky et al.

and each term Ti is recursively defined as any one of: repetition (re.*), Kleene
star (re.+), union (re.union), or a character literal. Nested operators are nested
up to a specified (using the --depth flag) depth of recursion. Terms at depth
0 are regex constants. Below are 3 example regexes (in regex, not SMT-LIB,
syntax) of depth 2 that can be produced this way:

((afp)[(ce)+) ((ddd)*) + ((ee) + |(£££)%)

Equisatisfiable String Transformations. StringFuzz can also transform
problem instances. This is done by manipulating parsed syntax trees. By default
most of the built-in transformers only guarantee well-formedness, however, some
can even guarantee equisatisfiability. Table 1b lists the built-in transformers and
notes these guarantees.

Example Use Case. In Sect. 3 we use StringFuzz to generate benchmark suites
in a batch mode. We can also use StringFuzz for on-line exploratory debugging.
For example, the script below repeatedly feeds random StringFuzz instances to
CVC4 until the solver produces an error:

while stringfuzzg -r random-ast -m \
| tee instance.smt25 | cvc4 --lang smt2.5 --tlimit=5000 --strings-exp; do
sleep O

done

3 Instance Suites

In this section, we describe the benchmark suites we generated with String-
Fuzz, and on which we conducted our experimental evaluation. Table 2a lists
instances that were generated by stringfuzzg. Table 2b lists instances derived
from existing seed instances by iteratively applying stringfuzzx. Every trans-
formed instance is named according to its seed and the transformations it under-
took. For example, z3-regex-1-fuzz-graft.smt2 was transformed by applying
Fuzz and then Graft to z3-regex-1.smt2.

The Amazon category contains 472 instances derived from two seeds supplied
by our industrial collaborators. The Regex category is seeded by the Z3str2 regex
test suite [4], which contains 42 instances. Through cumulative transformations
we expanded the 42 seeds to 7,551 unique instances. Finally, the Sanitizer cat-
egory is obtained from five industrial e-mail address and IPv4 sanitizers.

4 Experimental Results and Analysis

We generated several problem instance suites with StringFuzz that made one
solver perform poorly, but not others.? They are Concats-Balanced, Concats-
Big, Concats-Extracts-Small, and Different-Prefix. Figure 1 shows the suites that

2 Only the results that made one solver perform poorly and not others are presented,
but results for all StringFuzz suites are available on the StringFuzz website [3].

StringFuzz: A Fuzzer for String Solvers 49
Table 2. Repository of 10,258 SMT-LIB 2.0/2.5 instances.
(a) stringfuzzg-generated instances.
Name Instances have a ... Quantity
Concats-{Small, Big} Right-heavy, deep tree of concats. 120
Concats-Balanced Balanced, deep tree of concats. 100
Concats-Extracts-{ Small,Big} Single concat tree, with character extractions. 120
Lengths-{ Long,Short} Single, large length constraint on a variable. 200
Lengths-Concats Tree of fixed-length concats of variables. 100
Overlaps-{Small, Big} Formula of the form A.X = X.B. 80
Regez-{ Small, Big} Complex regex membership test. 120
Many-Regezes Multiple random regex membership tests. 40
Regez-Deep Regex membership test with many nested operators. 45
Regex-Pair Test for membership in one regex, but not another. 40
Regex-Lengths Regex membership test, and a length constraint. 40
Different- Prefix Equality of two deep concats with different prefixes. 60

(b) stringfuzzx-generated instances.

Name Seed Quantity
Amazon Two industrial regex membership instances. 472
Regex Z3str2 regular expression test suite. 7,551
Sanitizer Five e-mail and IPv4 sanitiser examples. 1,170
a Cvcd-latest-release cvcd-latest-release A A AN AR
14 23str2 14 » norn
v z3str3-master-release z3str2
12 12 v z3str3-master-release
10 10
T T -
P P
£ E “
Y6 Y6
4 4
a
2 F 3
a
o -
0 TxxxECO 0
0 10 20 30 40 50 60 0 lb 20 30 40 50 60
problems solved problems solved

(a) Performance on Concats-FExtracts-Small ~ (b) Performance on Different-Prefix

Fig. 1. Instances hard for CVC4

were uniquely difficult for CVC4. Figure 2 shows the suites that were uniquely
difficult for Z3str3. All experiments were conducted in series, each with a timeout
of 15s, on an Ubuntu Linux 16.04 computer with 32 GB of RAM and an Intel®)
Core™ i7-6700 CPU (3.40 GHz).

Usefulness to Z3str3: A Case Study. StringFuzz’s ability to produce scaling
instances helped uncover several implementation issues and performance limita-
tions in Z3str3. Scaling inputs can reveal issues that would normally be out of
scope for unit tests or industrial benchmarks. Three different performance and

50 D. Blotsky et al.

a Cvc4-latest-release R s d A Cvcd-latest-release NuIIIIINNNNNNN

14 » norn 144 » norn
z3str2 23str2
12 v z3str3-master-release 121 VY 23str3-master-release
10 10
— — w
an
£ £ -
6 6 an
» e aa
w M“
4 4
[t “A“
— AL

o 21 st

o W
U eemsseesseessesssol 04

0 20 40 60 80 100 0 10 20 30 40 50 60

problems solved problems solved
(a) Performance on Concats-Balanced (b) Performance on Concats-Big

Fig. 2. Instances hard for Z3str3

implementation bugs were identified and fixed in Z3str3 as a result of testing
with the StringFuzz scaling suites Lengths-Long and Concats-Big.

StringFuzz also helped identify a number of performance-related issues and
opportunities for new heuristics in Z3str3. For example, by examining Z3str3’s
execution traces on the instances in the Concats-Big suite we discovered a poten-
tial new heuristic. In particular, Z3str3 does not make full use of the solving con-
text (e.g. some terms are empty strings) to simplify the concatenations of a long
list of string terms before trying to reason about the equivalences among sub-
terms. Z3str3 therefore introduces a large number of unnecessary intermediate
variables and propagations.

5 Related Work

Many solver developers create their own test suites to validate their solvers [1,
4,5]. Several popular instance suites are also publicly available for solver testing
and benchmarking, such as the Kaluza [2] and Kausler [11] suites. There are
likewise several fuzzers and instance generators currently available, but none of
them can generate or transform string and regex instances. For example, the
FuzzSMT [9] tool generates SMT-LIB instances with bit-vectors and arrays,
but does not support strings or regexes. The SMTpp [8] tool pre-processes and
simplifies instances, but does not generate new ones or fuzz existing ones.

References

1. CVC4 regression test suite. https://github.com/CVC4/CVC4/tree/master/test/
regress

2. Kaluza benchmark suite. http://webblaze.cs.berkeley.edu/2010/kaluza/

3. Stringfuzz source code, benchmark suites, and supplemental material. http://
stringfuzz.dmitryblotsky.com

https://github.com/CVC4/CVC4/tree/master/test/regress
https://github.com/CVC4/CVC4/tree/master/test/regress
http://webblaze.cs.berkeley.edu/2010/kaluza/
http://stringfuzz.dmitryblotsky.com
http://stringfuzz.dmitryblotsky.com

o

10.

11.

12.

13.

StringFuzz: A Fuzzer for String Solvers 51

Z3str2 test suite. https://github.com/z3str/Z3-str/tree/master/tests

Z3str3 test scripts. https://github.com/Z3Prover/z3/tree/master/src/test
Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462-469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_29

Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: Stewart, D., Weissenbacher, G., (eds.), 2017 Formal Methods in
Computer Aided Design, FMCAD 2017, Vienna, Austria, 2-6 October 2017, pp.
55-59. IEEE (2017)

Bonichon, R., Déharbe, D., Dobal, P., Tavares, C.: SMTpp: preprocessors and
analyzers for SMT-LIB. In: Proceedings of the 13th International Workshop on
Satisfiability Modulo Theories, SMT 2015 (2015)

Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories, SMT
2009, pp. 1-5. ACM, New York, NY, USA (2009)

Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44-57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
76

Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the context of
symbolic execution. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2014, pp. 259-270. ACM, New
York, NY, USA (2014)

Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646-662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9-43

Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: Meyer, B., Baresi, L., Mezini, M., (eds.) Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE 2013, Saint Petersburg,
Russian Federation, 18-26 August 2013, pp. 114-124. ACM (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://github.com/z3str/Z3-str/tree/master/tests
https://github.com/Z3Prover/z3/tree/master/src/test
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
http://creativecommons.org/licenses/by/4.0/

Static Analysis

®

Check for
updates

Permission Inference for Array Programs

Jérome Dohrau®™) | Alexander J. Summers, Caterina Urban,
Severin Miinger, and Peter Miiller

Department of Computer Science, ETH Zurich,
Zurich, Switzerland
{jerome.dohrau,alexander.summers,
caterina.urban,peter.mueller}@inf.ethz.ch,
severin.muenger@alumni.ethz.ch

Abstract. Information about the memory locations accessed by a pro-
gram is, for instance, required for program parallelisation and program
verification. Existing inference techniques for this information provide
only partial solutions for the important class of array-manipulating pro-
grams. In this paper, we present a static analysis that infers the memory
footprint of an array program in terms of permission pre- and postcon-
ditions as used, for example, in separation logic. This formulation allows
our analysis to handle concurrent programs and produces specifications
that can be used by verification tools. Our analysis expresses the permis-
sions required by a loop via maximum expressions over the individual
loop iterations. These maximum expressions are then solved by a novel
maximum elimination algorithm, in the spirit of quantifier elimination.
Our approach is sound and is implemented; an evaluation on existing
benchmarks for memory safety of array programs demonstrates accurate
results, even for programs with complex access patterns and nested loops.

1 Introduction

Information about the memory locations accessed by a program is crucial for
many applications such as static data race detection [45], code optimisation
[16,26,33], program parallelisation [5,17], and program verification [23,30,38,39].
The problem of inferring this information statically has been addressed by a
variety of static analyses, e.g., [9,42]. However, prior works provide only partial
solutions for the important class of array-manipulating programs for at least
one of the following reasons. (1) They approximate the entire array as one single
memory location [4] which leads to imprecise results; (2) they do not produce
specifications, which are useful for several important applications such as human
inspection, test case generation, and especially deductive program verification;
(3) they are limited to sequential programs.

In this paper, we present a novel analysis for array programs that addresses
these shortcomings. Our analysis employs the notion of access permission from
separation logic and similar program logics [40,43]. These logics associate a per-
mission with each memory location and enforce that a program part accesses a
© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 55-74, 2018.
https://doi.org/10.1007/978-3-319-96142-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_7&domain=pdf
http://orcid.org/0000-0001-7001-2566

56 J. Dohrau et al.

location only if it holds the associated permission. In this setting, determining
the accessed locations means to infer a sufficient precondition that specifies the
permissions required by a program part.

Phrasing the problem as one of permission inference allows us to address
the three problems mentioned above. (1) We distinguish different array elements
by tracking the permission for each element separately. (2) Our analysis infers
pre- and postconditions for both methods and loops and emits them in a form
that can be used by verification tools. The inferred specifications can easily be
complemented with permission specifications for non-array data structures and
with functional specifications. (3) We support concurrency in three important
ways. First, our analysis is sound for concurrent program executions because
permissions guarantee that program executions are data race free and reduce
thread interactions to specific points in the program such as forking or joining
a thread, or acquiring or releasing a lock. Second, we develop our analysis for a
programming language with primitives that represent the ownership transfer that
happens at these thread interaction points. These primitives, inhale and exhale
[31,38], express that a thread obtains permissions (for instance, by acquiring a
lock) or loses permissions (for instance, by passing them to another thread along
with a message) and can thereby represent a wide range of thread interactions
in a uniform way [32,44]. Third, our analysis distinguishes read and write access
and, thus, ensures exclusive writes while permitting concurrent read accesses.
As is standard, we employ fractional permissions [6] for this purpose; a full
permission is required to write to a location, but any positive fraction permits
read access.

Approach. Our analysis reduces the problem of reasoning about permissions for
array elements to reasoning about numerical values for permission fractions. To
achieve this, we represent permission fractions for all array elements ¢, [¢;]1 using
a single numerical expression t(q,, ¢;) parameterised by ¢, and ¢;. For instance,
the conditional term (g,=a A g;=j ? 1:0) represents full permission (denoted by
1) for array element a[j] and no permission for all other array elements.

Our analysis employs a precise backwards analysis for loop-free code: a varia-
tion on the standard notion of weakest preconditions. We apply this analysis to
loop bodies to obtain a permission precondition for a single loop iteration. Per
array element, the whole loop requires the mazimum fraction over all loop iter-
ations, adjusted by permissions gained and lost during loop execution. Rather
than computing permissions via a fixpoint iteration (for which a precise widen-
ing operator is difficult to design), we express them as a maximum over the
variables changed by the loop execution. We then use inferred numerical invari-
ants on these variables and a novel mazimum elimination algorithm to infer a
specification for the entire loop. Permission postconditions are obtained analo-
gously.

For the method copyEven in Fig. 1, the analysis determines that the permission
amount required by a single loop iteration is (j%2=07(g,=a A ¢;=3j?rd:0):(¢gs=a A
¢;=i71:0)). The symbol rd represents a fractional read permission. Using a suit-
able integer invariant for the loop counter j, we obtain the loop precondition

Permission Inference for Array Programs 57

method copyEven(a: Int[]) { method parCopyEven(a: Int[]) {
var j, v: Int :=0; var j: Int :=0;
while(j < length(a)) { while(j < length(a)/2) {
if (j $2==0) { v :=aljl} exhale(a, 2xj, 1/2);
else { alj] :=v }; exhale(a, 2x*j+1, 1);
ji=3j+1 ji=j+1
}
} }
Fig. 1. Program copyEven. Fig. 2. Program parCopyEven.
ex=n|z|nz|e+ex|er —ea|ale]|len(a)| (b?er:e2)

bu=eropes | enwn=0|enxn#0|bi Aba|biVby|-b
op € {=#<5,>2}
pu=q|rd|pi+p2|p1—p2 | min(p1,p2) | max(pr,pz2) | (b7 p1:p2)
s = skip | x:=e | a1:=a2 | z:=ale] | a[e1]:=e2 | exhale(a,e,p) | inhale(a,e,p)
| (s1582) | 1£(b) { s1 } else { s } | while (b) { s }

Fig. 3. Programming Language. n ranges over integer constants, x over integer vari-
ables, a over array variables, ¢ over non-negative fractional (permission-typed) con-
stants. e stands for integer expressions, and b for boolean. Permission expressions p are
a separate syntactic category.

max;|o<j<ien(a) ((1%2=07 (ga=a A q;=j 7rd: 0) : (ga=a A q;=j 7 1:0))). Our
maximum elimination algorithm obtains (g,=a A 0<¢;<1en(a)? (¢;%2=07rd:1):
0). By ranging over all ¢, and g;, this can be read as read permission for even
indices and write permission for odd indices within the array a’s bounds.

Contributions. The contributions of our paper are:

1. A novel permission inference that uses maximum expressions over parame-
terised arithmetic expressions to summarise loops (Sects. 3 and 4)

2. An algorithm for eliminating maximum (and minimum) expressions over an

unbounded number of cases (Sect. 5)

An implementation of our analysis, which will be made available as an artifact

4. An evaluation on benchmark examples from existing papers and competitions,
demonstrating that we obtain sound, precise, and compact specifications, even
for challenging array access patterns and parallel loops (Sect. 6)

5. Proof sketches for the soundness of our permission inference and correctness
of our maximum elimination algorithm (in the technical report (TR) [15])

@

2 Programming Language

We define our inference technique over the programming language in Fig. 3. Pro-
grams operate on integers (expressions e), booleans (expressions b), and one-
dimensional integer arrays (variables a); a generalisation to other forms of arrays

58 J. Dohrau et al.

is straightforward and supported by our implementation. Arrays are read and
updated via the statements = :=ale] and ale] := x; array lookups in expressions
are not part of the surface syntax, but are used internally by our analysis. Per-
mission expressions p evaluate to rational numbers; rd, min, and max are for
internal use.

A full-fledged programming language contains many statements that affect
the ownership of memory locations, expressed via permissions [32,44]. For exam-
ple in a concurrent setting, a fork operation may transfer permissions to the new
thread, acquiring a lock obtains permission to access certain memory locations,
and messages may transfer permissions between sender and receiver. Even in
a sequential setting, the concept is useful: in procedure-modular reasoning, a
method call transfers permissions from the caller to the callee, and back when
the callee terminates. Allocation can be represented as obtaining a fresh object
and then obtaining permission to its locations.

For the purpose of our permission inference, we can reduce all of these oper-
ations to two basic statements that directly manipulate the permissions cur-
rently held [31,38]. An inhale(a,e,p) statement adds the amount p of per-
mission for the array location ale] to the currently held permissions. Dually,
an exhale(a,e,p) statement requires that this amount of permission is already
held, and then removes it. We assume that for any inhale or exhale statements,
the permission expression p denotes a non-negative fraction. For simplicity, we
restrict inhale and exhale statements to a single array location, but the exten-
sion to unboundedly-many locations from the same array is straightforward [37].

Semantics. The operational semantics of our language is mostly standard, but
is instrumented with additional state to track how much permission is held to
each heap location; a program state therefore consists of a triple of heap H
(mapping pairs of array identifier and integer index to integer values), a permis-
ston map P, mapping such pairs to permission amounts, and an environment o
mapping variables to values (integers or array identifiers).

The execution of inhale or exhale statements causes modifications to the
permission map, and all array accesses are guarded with checks that at least
some permission is held when reading and that full (1) permission is held when
writing [6]. If these checks (or an exhale statement) fail, the execution terminates
with a permission failure. Permission amounts greater than 1 indicate invalid
states that cannot be reached by a program execution. We model run-time errors
other than permission failures (in particular, out-of-bounds accesses) as stuck
configurations.

3 Permission Inference for Loop-Free Code

Our analysis infers a sufficient permission precondition and a guaranteed permis-
sion postcondition for each method of a program. Both conditions are mappings
from array elements to permission amounts. Executing a statement s in a state

Permission Inference for Array Programs 59

pre(skip,p) = pre((s1; s2),p) = pre(s1, pre(s2,p))
pre(zime.p) = ple/z] pre(zimale]. p) = max(plale)/a], au.(rd)
pre(ale]:=z,p) = max(p[a’'[e'] = (e =€ ANa=d' 7z :d[e])],qa,(1))
pre(exhale(a,e,p’),p) = p+ aa.(p’) pre(inhale(a,e,p’),p) = max(0,p — aq,e(p))
pre(if(b) { s1 } else { s2 },p) = (b7 pre(s1,p) : pre(sz,p))

A(Sklp,) A((SU 32)7p) = A(Sh A(Sz,p))
A(z:=e,p) = P[e/ff] A(z:=ale],p) = plale] /]
A(alel:=z,p) = pla’[e'] = (e =¢ /\Cb*a“? ca'[e'])]

A(exhale(a,e,p’),p) = p— qae(p’) A(inhale(a,e,p’),p) = p+ Qae(p)
A(if(b) { s1 } else { s2 },p) = (b7 A(s1,p) : A(s2,p))

Fig. 4. The backwards analysis rules for permission preconditions and relative permis-
sion differences. The notation aq,e(p) is a shorthand for (¢ga=a A ¢;=e ? p:0) and
denotes p permission for the array location a[e]. Moreover, pla’[e'] — e] matches all
array accesses in p and replaces them with the expression obtained from e by substi-
tuting all occurrences of @’ and e’ with the matched array and index, respectively. The
cases for inhale statements are slightly simplified; the full rules are given in Fig.6 of
the TR [15].

whose permission map P contains at least the permissions required by a suffi-
cient permission precondition for s is guaranteed to not result in a permission
failure. A guaranteed permission postcondition expresses the permissions that
will at least be held when s terminates (see Sect. A of the TR [15] for formal
definitions).

In this section, we define inference rules to compute sufficient permission
preconditions for loop-free code. For programs which do not add or remove per-
missions via inhale and exhale statements, the same permissions will still be
held after executing the code; however, to infer guaranteed permission postcon-
ditions in the general case, we also infer the difference in permissions between
the state before and after the execution. We will discuss loops in the next section.
Non-recursive method calls can be handled by applying our analysis bottom-up
in the call graph and using inhale and exhale statements to model the permis-
sion effect of calls. Recursion can be handled similarly to loops, but is omitted
here.

We define our permission analysis to track and generate permission expres-
sions parameterised by two distinguished variables g, and ¢;; by parameterising
our expressions in this way, we can use a single expression to represent a permis-
sion amount for each pair of ¢, and ¢; values.

Preconditions. The permission precondition of a loop-free statement s and a
postcondition permission p (in which ¢, and ¢; potentially occur) is denoted by
pre(s,p), and is defined in Fig. 4. Most rules are straightforward adaptations of a
classical weakest-precondition computation. Array lookups require some permis-
sion to the accessed array location; we use the internal expression rd to denote
a non-zero permission amount; a post-processing step can later replace rd by

60 J. Dohrau et al.

a concrete rational. Since downstream code may require further permission for
this location, represented by the permission expression p, we take the maximum
of both amounts. Array updates require full permission and need to take alias-
ing into account. The case for inhale subtracts the inhaled permission amount
from the permissions required by downstream code; the case for exhale adds the
permissions to be exhaled. Note that this addition may lead to a required per-
mission amount exceeding the full permission. This indicates that the statement
is not feasible, that is, all executions will lead to a permission failure.

To illustrate our pre definition, let s be the body of the loop in the parCopyEven
method in Fig. 2. The precondition pre(s,0) = (go=a A ¢;=2%j 71/2:0) + (¢,=a
A ¢;=2%j+171:0) expresses that a loop iteration requires a half permission for
the even elements of array a and full permission for the odd elements.

Postconditions. The final state of a method execution includes the permissions
held in the method pre-state, adjusted by the permissions that are inhaled or
exhaled during the method execution. To perform this adjustment, we compute
the difference in permissions before and after executing a statement. The rela-
tive permission difference for a loop-free statement s and a permission expression
p (in which ¢, and ¢; potentially occur) is denoted by A(s,p), and is defined
backward, analogously to pre in Fig. 4. The second parameter p acts as an accu-
mulator; the difference in permission is represented by evaluating A(s, 0).

For a statement s with precondition pre(s,0), we obtain the postcondition
pre(s,0)+A(s,0). Let s again be the loop body from parCopyEven. Since s contains
exhale statements, we obtain A(s,0) =0 — (ga=a A ¢;=2%j 71/2:0) — (go=a A
¢;i=2%j+171:0). Thus, the postcondition pre(s,0)+ A(s,0) can be simplified to
0. This reflects the fact that all required permissions for a single loop iteration
are lost by the end of its execution.

Since our A operator performs a backward analysis, our permission post-
conditions are expressed in terms of the pre-state of the execution of s. To
obtain classical postconditions, any heap accesses need to refer to the pre-state
heap, which can be achieved in program logics by using old expressions or log-
ical variables. Formalizing the postcondition inference as a backward analysis
simplifies our treatment of loops and has technical advantages over classical
strongest-postconditions, which introduce existential quantifiers for assignment
statements. A limitation of our approach is that our postconditions cannot cap-
ture situations in which a statement obtains permissions to locations for which
no pre-state expression exists, e.g. allocation of new arrays. Our postconditions
are sound; to make them precise for such cases, our inference needs to be com-
bined with an additional forward analysis, which we leave as future work.

4 Handling Loops via Maximum Expressions

In this section, we first focus on obtaining a sufficient permission precondition
for the execution of a loop in isolation (independently of the code after it) and
then combine the inference for loops with the one for loop-free code described
above.

Permission Inference for Array Programs 61

4.1 Sufficient Permission Preconditions for Loops

A sufficient permission precondition for a loop guarantees the absence of permis-
sion failures for a potentially unbounded number of executions of the loop body.
This concept is different from a loop invariant: we require a precondition for
all executions of a particular loop, but it need not be inductive. Our technique
obtains such a loop precondition by projecting a permission precondition for a
single loop iteration over all possible initial states for the loop executions.

Exhale-Free Loop Bodies. We consider first the simpler (but common) case
of a loop that does not contain exhale statements, e.g., does not transfer permis-
sions to a forked thread. The solution for this case is also sound for loop bodies
where each exhale is followed by an inhale for the same array location and at
least the same permission amount, as in the encoding of most method calls.

Consider a sufficient permission precondition p for the body of a loop
while (b) { s }. By definition, p will denote sufficient permissions to execute
s once; the precise locations to which p requires permission depend on the initial
state of the loop iteration. For example, the sufficient permission precondition for
the body of the copyEven method in Fig. 1, (%2=07(g,=a A ¢;=3j 7rd:0):(ga=a A
¢i=3 71:0)), requires permissions to different array locations, depending on the
value of j. To obtain a sufficient permission precondition for the entire loop, we
leverage an over-approzimating loop invariant Z© from an off-the-shelf numeri-
cal analysis (e.g., [13]) to over-approximate all possible values of the numerical
variables that get assigned in the loop body, here, j. We can then express the
loop precondition using the pointwise marimum max;z+,p (p), over the values
of j that satisfy the condition Z* A b. (The maximum over an empty range is
defined to be 0.) For the copyEven method, given the invariant 0 < j < len(a),
the loop precondition is max;jo<;j<ien(a) (P)-

In general, a permission precondition for a loop body may also depend on
array values, e.g., if those values are used in branch conditions. To avoid the
need for an expensive array value analysis, we define both an over- and an under-
approximation of permission expressions, denoted p' and p* (cf. Sect. A.1 of the
TR [15]), with the guarantees that p < p' and p* < p. These approximations
abstract away array-dependent conditions, and have an impact on precision only
when array values are used to determine a location to be accessed. For exam-
ple, a linear array search for a particular value accesses the array only up to
the (a-priori unknown) point at which the value is found, but our permission
precondition conservatively requires access to the full array.

Theorem 1. Let while (b) { s } be an exhale-free loop, let T be the integer
variables modified by s, and let T+ be a sound over-approwimating numerical
loop invariant (over the integer variables in s). Then maxzjz+p (pre(s, 0)" is a
sufficient permission precondition for while (b) { s }.

Loops with Exhale Statements. For loops that contain exhale statements,
the approach described above does not always guarantee a sufficient permission

62 J. Dohrau et al.

precondition. For example, if a loop gives away full permission to the same
array location in every iteration, our pointwise maximum construction yields a
precondition requiring the full permission once, as opposed to the unsatisfiable
precondition (since the loop is guaranteed to cause a permission failure).

As explained above, our inference is sound if each exhale statement is fol-
lowed by a corresponding inhale, which can often be checked syntactically. In
the following, we present another decidable condition that guarantees soundness
and that can be checked efficiently by an SMT solver. If neither condition holds,
we preserve soundness by inferring an unsatisfiable precondition; we did not
encounter any such examples in our evaluation.

Our soundness condition checks that the maximum of the permissions
required by two loop iterations is not less than the permissions required by exe-
cuting the two iterations in sequence. Intuitively, that is the case when neither
iteration removes permissions that are required by the other iteration.

Theorem 2 (Soundness Condition for Loop Preconditions). Given a
loop while (b) { s }, let T be the integer variables modified in s and let v and v’
be two fresh sets of variables, one for each of T. Then maxz z+p (pre(s, 0N isa
sufficient permission precondition for while (b) { s } if the following implication
is valid in all states:

(ZTAb)v/z] A (ZT A /2] A (Vv #0) =

max(pre(s, 0)"[v/z], pre(s, 0)"[v" /x]) = pre(s, pre(s, 0)T[v'/z])T[v/2]

The additional variables ¥ and v’ are used to model two arbitrary valuations of Z;
we constrain these to represent two initial states allowed by Zt A b and different
from each other for at least one program variable. We then require that the effect
of analysing each loop iteration independently and taking the maximum is not
smaller than the effect of sequentially composing the two loop iterations.

The theorem requires implicitly that no two different iterations of a loop
observe exactly the same values for all integer variables. If that could be the
case, the condition \/ v # v/ would cause us to ignore a potential pair of initial
states for two different loop iterations. To avoid this problem, we assume that all
loops satisfy this requirement; it can easily be enforced by adding an additional
variable as loop iteration counter [21].

For the parCopyEven method (Fig.2), the soundness condition holds since,
due to the v # v’ condition, the two terms on the right of the implication
are equal for all values of ¢;. We can thus infer a sufficient precondition as
mMax;jo<j<ien(a)/2 ((¢da=a A ¢;=2%3 71/2:0) + (ga=a A ¢;=2%j+171:0)).

4.2 Permission Inference for Loops

We can now extend the pre- and postcondition inference from Sect. 3 with loops.
pre(while (b) { s },p) must require permissions such that (1) the loop executes
without permission failure and (2) at least the permissions described by p are held
when the loop terminates. While the former is provided by the loop precondition

Permission Inference for Array Programs 63

as defined in the previous subsection, the latter also depends on the permissions
gained or lost during the execution of the loop. To characterise these permissions,
we extend the A operator from Sect. 3 to handle loops.

Under the soundness condition from Theorem 2, we can mimic the approach
from the previous subsection and use over-approximating invariants to project
out the permissions lost in a single loop iteration (where A(s,0) is negative)
to those lost by the entire loop, using a maximum expression. This projection
conservatively assumes that the permissions lost in a single iteration are lost
by all iterations whose initial state is allowed by the loop invariant and loop
condition. This approach is a sound over-approximation of the permissions lost.

However, for the permissions gained by a loop iteration (where A(s, 0) is pos-
itive), this approach would be unsound because the over-approximation includes
iterations that may not actually happen and, thus, permissions that are not
actually gained. For this reason, our technique handles gained permissions via
an under-approzimate! numerical loop invariant Z~ (e.g., [35]) and thus projects
the gained permissions only over iterations that will surely happen.

This approach is reflected in the definition of our A operator below via d,
which represents the permissions possibly lost or definitely gained over all iter-
ations of the loop. In the former case, we have A(s,0) < 0 and, thus, the first
summand is 0 and the computation based on the over-approximate invariant
applies (note that the negated maximum of negated values is the minimum; we
take the minimum over negative values). In the latter case (A(s,0) > 0), the
second summand is 0 and the computation based on the under-approximate
invariant applies (we take the maximum over positive values).

A(while (b) { s },p) = (b?d+p :p), where:
d = max max(0,A(s,0))* — max max(0, — A(s,0))"
T|Z—Ab Z|ZtAb

F3
p’ = max max(0,p)¥ — max max(0,—p)"
T[T Amb T+ A—b

T denotes again the integer variables modified in s. The role of p’ is to carry over
the permissions p that are gained or lost by the code following the loop, taking
into account any state changes performed by the loop. Intuitively, the maximum
expressions replace the variables = in p with expressions that do not depend
on these variables but nonetheless reflect properties of their values right after
the execution of the loop. For permissions gained, these properties are based
on the under-approximate loop invariant to ensure that they hold for any possi-
ble loop execution. For permissions lost, we use the over-approximate invariant.
For the loop in parCopyEven we use the invariant 0 < j < len(a)/2 to obtain
d = —maxjjo<j<ien(a)/2 ((Ga=a A ¢;=2%j 71/2:0) 4 (ga=a A ¢;=2%j+171:0)).
Since there are no statements following the loop, p and therefore p’ are 0.
Using the same d term, we can now define the general case of pre for loops,
combining (1) the loop precondition and (2) the permissions required by the code
after the loop, adjusted by the permissions gained or lost during loop execution:

1 An under-approximate loop invariant must be true only for states that will actually
be encountered when executing the loop.

64 J. Dohrau et al.

hil =(b? T) —d):
pre(while (b) { s },p) = (b max(irlrzlafbpre(s,()) ,Elrzqra/zib (p") —d):p)

Similarly to p’ in the rule for A, the expression maxzjz+a-p (p") conservatively
over-approximates the permissions required to execute the code after the loop.
For method parCopyEven, we obtain a sufficient precondition that is the negation
of the A. Consequently, the postcondition is 0.

Soundness. Our pre and A definitions yield a sound method for computing
sufficient permission preconditions and guaranteed postconditions:

Theorem 3 (Soundness of Permission Inference). For any statement s, if
every while loop in s either is exzhale-free or satisfies the condition of Theorem 2
then pre(s,0) is a sufficient permission precondition for s, and pre(s,0)+ A(s,0)
s a corresponding guaranteed permission postcondition.

Our inference expresses pre and postconditions using a maximum operator
over an unbounded set of values. However, this operator is not supported by SMT
solvers. To be able to use the inferred conditions for SMT-based verification, we
provide an algorithm for eliminating these operators, as we discuss next.

5 A Maximum Elimination Algorithm

We now present a new algorithm for replacing maximum expressions over an
unbounded set of values (called pointwise maximum expressions in the follow-
ing) with equivalent expressions containing no pointwise maximum expressions.
Note that, technically our algorithm computes solutions to max,,sp>0(p) since
some optimisations exploit the fact that the permission expressions our analysis
generates always denote non-negative values.

5.1 Background: Quantifier Elimination

Our algorithm builds upon ideas from Cooper’s classic quantifier elimination
algorithm [11] which, given a formula 3x.b (where b is a quantifier-free Presburger
formula), computes an equivalent quantifier-free formula b'. Below, we give a brief
summary of Cooper’s approach.

The problem is first reduced via boolean and arithmetic manipulations to a
formula Jz.b in which x occurs at most once per literal and with no coefficient.
The key idea is then to reduce Jz.b to a disjunction of two cases: (1) there
is a smallest value of x making b true, or (2) b is true for arbitrarily small
values of x.

In case (1), one computes a finite set of expressions S (the b; in [11]) guar-
anteed to include the smallest value of z. For each (in/dis-)equality literal con-
taining x in b, one collects a boundary expression e which denotes a value for x

Permission Inference for Array Programs 65

making the literal true, while the value e — 1 would make it false. For example,
for the literal y < x one generates the expression y + 1. If there are no (non-)
divisibility constraints in b, by definition, S will include the smallest value of x
making b true. To account for (non-)divisibility constraints such as x%2=0, the
lowest-common-multiple ¢ of the divisors (and 1) is returned along with S; the
guarantee is then that the smallest value of x making b true will be e + d for
some e € S and d € [0,0 — 1]. We use (b)) to denote the function handling

this computation. Then, 3z.b can be reduced to V cg je(0,5-1) ble + d/x], where
(Sa 5) = <>small(a:)'

In case (2), one can observe that the (in/dis-)equality literals in b will flip
value at finitely many values of x, and so for sufficiently small values of x, each
(in/dis-)equality literal in b will have a constant value (e.g., y > x will be true). By
replacing these literals with these constant values, one obtains a new expression b’
equal to b for small enough z, and which depends on z only via (non-)divisibility
constraints. The value of b’ will therefore actually be determined by x mod 9,
where ¢ is the lowest-common-multiple of the (non-)divisibility constraints. We
use (b)_ ., to denote the function handling this computation. Then, Jz.b can
be reduced to \/ (g 5_1) b'[d/], where (b',6) = (b)_ o (4)-

In principle, the maximum of a function y = max, f(x) can be defined using
two first-order quantifiers Vz.f(z) < y and Jz.f(z) = y. One might therefore
be tempted to tackle our maximum elimination problem using quantifier elim-
ination directly. We explored this possibility and found two serious drawbacks.
First, the resulting formula does not yield a permission-typed expression that
we can plug back into our analysis. Second, the resulting formulas are extremely
large (e.g., for the copyEven example it yields several pages of specifications), and
hard to simplify since relevant information is often spread across many terms due
to the two separate quantifiers. Our maximum elimination algorithm addresses
these drawbacks by natively working with arithmetic expression, while mim-
icking the basic ideas of Cooper’s algorithm and incorporating domain-specific
optimisations.

5.2 Maximum Elimination

The first step is to reduce the problem of eliminating general max,; (p) terms to
those in which b and p come from a simpler restricted grammar. These simple per-
mission expressions p do not contain general conditional expressions (' ? py : pa),
but instead only those of the form (b'?r:0) (where r is a constant or rd). Further-
more, simple permission expressions only contain subtractions of the form p —
(' 77:0). This is achieved in a precursory rewriting of the input expression by, for
instance, distributing pointwise maxima over conditional expressions and binary
maxima. For example, the pointwise maximum term (part of the copyEven exam-
ple): max;jo<j<ien(a) ((i%2=07 (ga=a A q;=j ?rd:0): (ga=a A q;=j ?1:0))) will
be reduced to:

max(maxjjo<j<ien(a)Aj%2=0 ((Qa:a A qi=] 7rd: 0))7
Max;|0<j<len(a)rj%2£0 ((Ga=a A ;=i 71:0)))

66 J. Dohrau et al.

{2p: 0)>>5ma”maz(z) = (T,6), where (S,0) = <>sma”(m = {(e,true) | e € S}
<<p1 + p2>>smallma’b(t) = (T1 U T27 lcm((;lv 52))
where (T17 61) = <<p >>9mallmaz(z)’ (T27 62) = <<p2>>smallmaz(z)
<<max(p1’p2)>>3mallm(u(z) = <<I1'11 p17p2 >>5mallmaz(z) = <<p1 +p2 smallmaz(z) as above
{pr—(7p: 0)>>mmum(n(,c) = (T1 U Ty, lem(61,62))
where T17 61 << 1>>smallmaz(z)7 (S27 52) = <<_‘b>>small(z)7
={(e,p1 > 0)| e S2}

<<(p7 b)>>smallma:c(z) (T U Tb’ &') where (6) << >>smallmaz(z)7 (Sb7 (Sb) = <>small(z)7
8 = lem(By,6), (B',60) = (b) oays ('305) = (P)a)s
Ty ={(es, (\/ (<0 AP >0)d/a])) v\ (bAB)[(ey+dy)/a]) | es € Sb}

def0,6” —1] (ep,bp)ETp
dp€[0,6p—1]

Fig. 5. Filtered boundary expression computation.

Arbitrarily-Small Values. We exploit a high-level case-split in our algorithm
design analogous to Cooper’s: given a pointwise maximum expression max,; (p),
either a smallest value of x exists such that p has its maximal value (and b is
true), or there are arbitrarily small values of x defining this maximal value. To
handle the latter case, we define a completely analogous (p)_ oo (x) function, which
recursively replaces all boolean expressions b’ in p with (b")__ (x) B8 computed by
Cooper; we relegate the definition to Sect.B.3 of the TR [15]. We then use (b’ ?
p':0), where (0, 01) = (b)_ () and (p', 02) = (P)_ (), as our expression in this
case. Note that this expression still depends on z if it contains (non-)divisibility
constraints; Theorem 4 shows how x can be eliminated using §; and Js.

Selecting Boundary Expressions for Maximum Elimination. Next, we
consider the case of selecting an appropriate set of boundary expressions, given a
max,; (p) term. We define this first for p in isolation, and then give an extended
definition accounting for the b. Just as for Cooper’s algorithm, the boundary
expressions must be a set guaranteed to include the smallest value of = defining
the maximum value in question. The set must be finite, and be as small as
possible for efficiency of our overall algorithm. We refine the notion of boundary
expression, and compute a set of pairs (e,b’) of integer expression e and its
filter condition b': the filter condition represents an additional condition under
which e must be included as a boundary expression. In particular, in contexts
where b’ is false, e can be ignored; this gives us a way to symbolically define
an ultimately-smaller set of boundary expressions, particularly in the absence of
contextual information which might later show b’ to be false. We call these pairs
filtered boundary expressions.

Definition 1 (Filtered Boundary Expressions). The filtered boundary

expression computation for x in p, written <<p>>sma”max(w), returns a pair of a set

T of pairs (e,b"), and an integer constant §, as defined in Fig. 5. This definition

Permission Inference for Array Programs 67

1s also overloaded with a definition of filtered boundary expression computation
for (x| b) in p, written {(p, b))

smallmaz(x)*

Just as for Cooper’s (b, 1y, computation, our function (p),,,1mas(a)
putes the set T of (e,d’) pairs along with a single integer constant §, which is
the least common multiple of the divisors occurring in p; the desired smallest
value of x may actually be some e 4+ d where d € [0, — 1]. There are three key
points to Definition 1 which ultimately make our algorithm efficient:

First, the case for (b7 p:0)),,010mas(z) Only includes boundary expressions
for making b true. The case of b being false (from the structure of the permission
expression) is not relevant for trying to maximise the permission expression’s
value (note that this case will never apply under a subtraction operator, due
to our simplified grammar, and the case for subtraction not recursing into the
right-hand operand).

Second, the case for (p1 — (b7 p:0)),.0iimas
ary expressions for making b false (along with the boundary expressions for max-
imising p1). The filter condition p; > 0 is used to drop the boundary expressions
for making b false; in case p; is not strictly positive we know that the evaluation
of the whole permission expression will not yield a strictly-positive value, and
hence is not an interesting boundary value for a non-negative maximum.

Third, in the overloaded definition of ((p, b)),,411maz(): We combine boundary
expressions for p with those for b. The boundary expressions for b are, however,
superfluous if, in analysing p we have already determined a value for x which
maximises p and happens to satisfy b. If all boundary expressions for p (whose
filter conditions are true) make b true, and all non-trivial (i.e. strictly positive)
evaluations of (p)_ so(z) used for potentially defining p’s maximum value also
satisfy b, then we can safely discard the boundary expressions for b.

We are now ready to reduce pointwise maximum expressions to equivalent

maximum expressions over finitely-many cases:

com-

(x) dually only considers bound-

Theorem 4 (Simple Maximum Expression Elimination). For any pair
(p,b), if Ep >0, then we have:

= mz‘mbxp = Inax((ma)x (0" Able +d/xz] ?ple +d/x] : 0)),
x e,b’)eT
def0,6—1]

/ 9.)
de[o,zfﬁ%’f,&)_l] (b'[d/x] ? p'ld/x] : 0))

where (T7 6) = <<(p7 b)>>smallmaz(z)’ (bl761) = <>7oo(z) and (p/’ 52) = <<p>>700(:r)

To see how our filter conditions help to keep the set T (and therefore, the
first iterated maximum on the right of the equality in the above theorem) small,
consider the example: max, ,>o ((z=i?1:0)) (so p is (r=i 7 1:0), while b is
x > 0). In this case, evaluating {(p,b))) vields the set T =

smallmaz(z

{(i,true), (0,¢ < 0)} with the meaning that the boundary expression i is con-
sidered in all cases, while the boundary expression 0 is only of interest if 7 < 0.
The first iterated maximum term would be max((true Ai>07 (i=:71:0):0), (i<0
A0>07(0=:71:0):0)). We observe that the term corresponding to the boundary

68 J. Dohrau et al.

Table 1. Experimental results. For each program, we list the lines of code and the num-
ber of loops (in brackets the nesting depth). We report the relative size of the inferred
specifications compared to hand-written specifications, and whether the inferred spec-
ifications are precise (a star next to the tick indicates slightly more precise than hand-
written specifications). Inference times are given in ms.

Program LOC Loops Size Prec. Time Program LOC Loops Size Prec. Time

addLast 12 1(1) 1.9 v 21 initPartBug 19 2 (1) 1.5 v 31
append 13 1(1) 1.9 v 32 insertSort 21 2(2) 25 /* 35
arrayl 17 2(2) 09 X 28 javaBubble 24 2(2) 2.3 V/* 32
array2 23 3(2) 09 X 35 knapsack 21 2(2) 1.3 Xx 45
array3 23 2(2) 1.1 v 24 lis 37 4(2) 42 v 73
arrayRev 18 1(1) 3.2 v* 28 matrixmult 33 3(3) 1.5 v 78
bubbleSort 23 2 (2) 1.8 v* 34 mergeinter 23 2(1) 34 X 56
copy 16 2(1) 1.6 v 27 mergeintbug 23 2 (1) 2.6 X 59
copyEven 17 1(1) 1.6 v 27 memcopy 16 2(1) 1.6 v 28
copyEven2 14 1(1) 1.4 X 20 multarray 26 2(2) 21 v 40
copyEven3 14 1(1) 2.2 /* 23 parcopy 20 2(1) 1.2 v 30
copy0dd 21 2(1) 24 v 55 pararray 20 2(1) 1.2 v 31
copy0ddBug 19 2(1) 71 « 57 parCopyEven 22 2 (1) 50 v/* 79
copyPart 17 2(1) 1.7 v 30 parMatrix 3 4(2) 1.1 v 80
countDown 21 3(2) 1.1 v 32 parNested 31 4(2) 05 Xx 57
diff 31 2(2) 20 Xx 70 relax 33 1(1) 14 v* 55
find 19 1(1) 3.0 v 43 reverse 21 2(1) 39 v 42
findNonNull 19 1 (1) 3.0 v 40 reverseBug 21 2(1) 1.7 v 42
init 18 2(1) 1.1 « 28 sanfoundry 27 2 (1) 2.1 « 37
init2d 23 2(2) 21 v 52 selectSort 26 2(2) 1.0 Xx 38
initEven 18 2(1) 09 X 26 strCopy 16 2(1) 09 Xx 21
initEvenbug 18 2 (1) 1.5 X 28 strlLen 10 1(1) 0.8 X 15
initNonCnst 18 2 (1) 1.1 v 27 swap 15 1(1) 15 v 19
initPart 19 2(1) 1.1 v 30 swapBug 15 1(1) 15 v 19

value 0 can be simplified to 0 since it contains the two contradictory conditions
i < 0 and 0 = 4. Thus, the entire maximum can be simplified to (:>071:0).
Without the filter conditions the result would instead be max((:>0 7 1 : 0),
(0=i 71:0)). In the context of our permission analysis, the filter conditions
allow us to avoid generating boundary expressions corresponding e.g. to the
integer loop invariants, provided that the expressions generated by analysing
the permission expression in question already suffice. We employ aggressive syn-
tactic simplification of the resulting expressions, in order to exploit these filter
conditions to produce succinct final answers.

6 Implementation and Experimental Evaluation

We have developed a prototype implementation of our permission inference. The
tool is written in Scala and accepts programs written in the Viper language [38],
which provides all the features needed for our purposes.

Permission Inference for Array Programs 69

Given a Viper program, the tool first performs a forward numerical anal-
ysis to infer the over-approximate loop invariants needed for our handling of
loops. The implementation is parametric in the numerical abstract domain used
for the analysis; we currently support the abstract domains provided by the
APRON library [24]. As we have yet to integrate the implementation of under-
approximate invariants (e.g., [35]), we rely on user-provided invariants, or assume
them to be false if none are provided. In a second step, our tool performs the
inference and maximum elimination. Finally, it annotates the input program
with the inferred specification.

We evaluated our implementation on 43 programs taken from various sources;
included are all programs that do not contain strings from the array memory
safety category of SV-COMP 2017, all programs from Dillig et al. [14] (except
three examples involving arrays of arrays), loop parallelisation examples from
VerCors [5], and a few programs that we crafted ourselves. We manually checked
that our soundness condition holds for all considered programs. The parallel loop
examples were encoded as two consecutive loops where the first one models the
forking of one thread per loop iteration (by iteratively exhaling the permissions
required for all loop iterations), and the second one models the joining of all
these threads (by inhaling the permissions that are left after each loop iteration).
For the numerical analysis we used the polyhedra abstract domain provided by
APRON. The experiments were performed on a dual core machine with a 2.60 GHz
Intel Core i7-6600U CPU, running Ubuntu 16.04.

An overview of the results is given in Table 1. For each program, we compared
the size and precision of the inferred specification with respect to hand-written
ones. The running times were measured by first running the analysis 50 times
to warm up the JVM and then computing the average time needed over the
next 100 runs. The results show that the inference is very efficient. The inferred
specifications are concise for the vast majority of the examples. In 35 out of 48
cases, our inference inferred precise specifications. Most of the imprecisions are
due to the inferred numerical loop invariants. In all cases, manually strengthen-
ing the invariants yields a precise specification. In one example, the source of
imprecision is our abstraction of array-dependent conditions (see Sect.4).

7 Related Work

Much work is dedicated to the analysis of array programs, but most of it focuses
on array content, whereas we infer permission specifications. The simplest app-
roach consists of “smashing” all array elements into a single memory location [4].
This is generally quite imprecise, as only weak updates can be performed on the
smashed array. A simple alternative is to consider array elements as distinct vari-
ables [4], which is feasible only when the length of the array is statically-known.
More-advanced approaches perform syntax-based [18,22,25] or semantics-based
[12,34] partitions of an array into symbolic segments. These require segments
to be contiguous (with the exception of [34]), and do not easily generalise to

70 J. Dohrau et al.

multidimensional arrays, unlike our approach. Gulwani et al. [20] propose an
approach for inferring quantified invariants for arrays by lifting quantifier-free
abstract domains. Their technique requires templates for the invariants.

Dillig et al. [14] avoid an explicit array partitioning by maintaining con-
straints that over- and under-approximate the array elements being updated by
a program statement. Their work employs a technique for directly generalising
the analysis of a single loop iteration (based on quantifier elimination), which
works well when different loop iterations write to disjoint array locations. Gedell
and Héhnle [17] provide an analysis which uses a similar criterion to determine
that it is safe to parallelise a loop, and treat its heap updates as one bulk effect.
The condition for our projection over loop iterations is weaker, since it allows
the same array location to be updated in multiple loop iterations (like for exam-
ple in sorting algorithms). Blom et al. [5] provide a specification technique for
a variety of parallel loop constructs; our work can infer the specifications which
their technique requires to be provided.

Another alternative for generalising the effect of a loop iteration is to use a
first order theorem prover as proposed by Kovédcs and Voronkov [28]. In their
work, however, they did not consider nested loops or multidimensional arrays.
Other works rely on loop acceleration techniques [1,7]. In particular, like ours,
the work of Bozga et al. [7] does not synthesise loop invariants; they directly
infer post-conditions of loops with respect to given preconditions, while we addi-
tionally infer the preconditions. The acceleration technique proposed in [1] is
used for the verification of array programs in the tool BOOSTER [2].

Monniaux and Gonnord [36] describe an approach for the verification of array
programs via a transformation to array-free Horn clauses. Chakraborty et al. [10]
use heuristics to determine the array accesses performed by a loop iteration and
split the verification of an array invariant accordingly. Their non-interference
condition between loop iterations is similar to, but stronger than our soundness
condition (cf. Sect.4). Neither work is concerned with specification inference.

A wide range of static/shape analyses employ tailored separation logics as
abstract domain (e.g., [3,9,19,29,41]); these works handle recursively-defined
data structures such as linked lists and trees, but not random-access data struc-
tures such as arrays and matrices. Of these, Gulavani et al. [19] is perhaps
closest to our work: they employ an integer-indexed domain for describing recur-
sive data structures. It would be interesting to combine our work with such
separation logic shape analyses. The problems of automating biabduction and
entailment checking for array-based separation logics have been recently studied
by Brotherston et al. [8] and Kimura and Tatsuta [27], but have not yet been
extended to handle loop-based or recursive programs.

8 Conclusion and Future Work

We presented a precise and efficient permission inference for array programs.
Although our inferred specifications contain redundancies in some cases, they are

Permission Inference for Array Programs 71

human readable. Our approach integrates well with permission-based inference
for other data structures and with permission-based program verification.

As future work, we plan to use SMT solving to further simplify our inferred

specifications, to support arrays of arrays, and to extend our work to an inter-
procedural analysis and explore its combination with biabduction techniques.

Acknowledgements. We thank Seraiah Walter for his earlier work on this topic, and
Malte Schwerhoff and the anonymous reviewers for their comments and suggestions.
This work was supported by the Swiss National Science Foundation.

References

10.

Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in
a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS (LNATI), vol. 8152, pp. 23-39. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40885-4 3

Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification
framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 18-23. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6_2

Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115-137. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11804192_6

Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation. In:
ATAA (2010)

Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 202-217. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46675-9 14

Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5_ 4

Bozga, M., Habermehl, P., Tosif, R., Kone¢ny, F., Vojnar, T.: Automatic verification
of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 157-172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_15

Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI),
vol. 10395, pp. 472-490. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63046-5_29

Calcagno, C., Distefano, D., O’'Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1-26:66 (2011)

Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs
by tiling. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 428-449. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_ 21

https://doi.org/10.1007/978-3-642-40885-4_3
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-66706-5_21

72

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Dohrau et al.

Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91-99), 300 (1972)

Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105-118 (2011)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84-96 (1978)

Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246-266. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6_ 14

Dohrau, J., Summers, A.J., Urban, C., Miinger, S., Miiller, P.: Permission inference
for array programs (extended version) (2018). arXiv:1804.04091

Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. In: Paul, M., Robinet, B. (eds.) Programming 1984. LNCS,
vol. 167, pp. 125-132. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
12925-1_ 33

Gedell, T., Hahnle, R.: Automating verification of loops by parallelization. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 332-346.
Springer, Heidelberg (2006). https://doi.org/10.1007/11916277_ 23

Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338-350 (2005)

Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188-204.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03237-0_14
Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235-246 (2008)

Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A, Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634—640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_ 48

Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339-348 (2008)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41-55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

Jeannet, B., Miné, A.: APRON: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661—
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52
Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193-206. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3__ 23

Johnson, N.P.; Fix, J., Beard, S.R., Oh, T., Jablin, T.B., August, D.I.: A collabo-
rative dependence analysis framework. In: CGO, pp. 148-159 (2017)

Kimura, D., Tatsuta, M.: Decision procedure for entailment of symbolic heaps
with arrays. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 169
189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71237-6_ 9
Kovécs, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 470-485. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0_33

https://doi.org/10.1007/978-3-642-11957-6_14
http://arxiv.org/abs/1804.04091
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/11916277_23
https://doi.org/10.1007/978-3-642-03237-0_14
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-73368-3_23
https://doi.org/10.1007/978-3-319-71237-6_9
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Permission Inference for Array Programs 73

Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52-68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 4

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348—
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_ 20
Leino, K.R.M., Miiller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378-393. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9_ 27

Leino, K.R.M., Miiller, P., Smans, J.: Deadlock-free channels and locks. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407-426. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11957-6_ 22

Lerner, S., Grove, D., Chambers, C.: Composing dataflow analyses and transfor-
mations. In: POPL, pp. 270-282 (2002)

Liu, J., Rival, X.: An array content static analysis based on non-contiguous parti-
tions. Comput. Lang. Syst. Struct. 47, 104-129 (2017)

Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electron. Not. Theor. Comput. Sci. 287, 89-100 (2012)
Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free
horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361-382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_ 18

Miiller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 405-425. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4_ 22

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41-62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_ 2

Piskac, R., Wies, T., Zufferey, D.: GRASShopper — complete heap verification with
mixed specifications. In: Abrahdm, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124-139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8_ 9

Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
2002, Washington, D.C., USA, pp. 55-74. IEEE Computer Society (2002)

Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Proceedings of the 6th ACM SIGPLAN Con-
ference on Certified Programs and Proofs, CPP 2017, New York, NY, USA, pp.
53-65. ACM (2017)

Salcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199-215. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8_ 14

Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148-172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0_8

https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-11957-6_22
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8

74 J. Dohrau et al.

44. Summers, A.J., Miller, P.: Automating deductive verification for weak-memory
programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
190-209. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_ 11

45. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: European Software Engineering Conference and Foundations of
Software Engineering (ESEC-FSE), pp. 205-214. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-89960-2_11
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Program Analysis Is Harder Than
Verification: A Computability Perspective

Patrick Cousot!®, Roberto Giacobazzi®*®, and Francesco Ranzato*(®)
! New York University, New York City, USA
2 University of Verona, Verona, Italy
3 IMDEA Software Institute, Madrid, Spain
4 University of Padova, Padova, Italy
ranzato@math.unipd.it

Abstract. We study from a computability perspective static program
analysis, namely detecting sound program assertions, and verification,
namely sound checking of program assertions. We first design a general
computability model for domains of program assertions and correspond-
ing program analysers and verifiers. Next, we formalize and prove an
instantiation of Rice’s theorem for static program analysis and verifica-
tion. Then, within this general model, we provide and show a precise
statement of the popular belief that program analysis is a harder prob-
lem than program verification: we prove that for finite domains of pro-
gram assertions, program analysis and verification are equivalent prob-
lems, while for infinite domains, program analysis is strictly harder than
verification.

1 Introduction

It is common to assume that program analysis is harder than program verifi-
cation (e.g. [1,17,22]). The intuition is that this happens because in program
analysis we need to synthesize a correct program invariant while in program ver-
ification we have just to check whether a given program invariant is correct. The
distinction between checking a proof and computing a witness for that proof can
be traced back to Leibniz [18] in his ars iudicandi and ars inveniendi, respec-
tively representing the analytic and synthetic method. In Leibniz’s ars combina-
toria, the ars inveniendi is defined as the art of discovering “correct” questions
while ars iudicandi is defined as the art of discovering “correct” answers. These
foundational aspects of mathematical reasoning have a peculiar meaning when
dealing with questions and answers concerning the behaviour of computer pro-
grams as objects of our investigation.

Our main goal is to define a general and precise model for reasoning on the
computability aspects of the notions of (sound or complete) static analyser and
verifier for generic programs (viz. Turing machines). Both static analysers and
verifiers assume a given domain A of abstract program assertions, that may range
from synctatic program properties (e.g., program sizes or LOCs) to complexity
© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 75-95, 2018.
https://doi.org/10.1007/978-3-319-96142-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_8&domain=pdf
http://orcid.org/0000-0003-0101-9953
http://orcid.org/0000-0002-9582-3960
http://orcid.org/0000-0003-0159-0068

76 P. Cousot et al.

properties (e.g., number of execution steps in some abstract machine) and all the
semantic properties of the program behaviour (e.g., value range of program vari-
ables or shape of program memories). A program analyser is defined to be any
total computable (i.e., total recursive) function that for any program P returns
an assertion ap in A, which is sound when the concrete meaning of the assertion
ap includes P. Instead, a program verifier is a (total) decision procedure which
is capable of checking whether a given program P satisfies a given assertion a
ranging in A, answering “true” or “don’t know”, which is sound when a positive
check of a for P means that the concrete meaning of the assertion a includes
P. Completeness, which coupled with soundness is here called precision, for a
program analyser holds when, for any program P, it returns the strongest asser-
tion in A for P, while a program verifier is called precise if it is able to prove
any true assertion in A for a program P. This general and minimal model allows
us to extend to static program analysis and verification some standard results
and methods of computability theory. We provide an instance of the well-known
Rice’s Theorem [29] for generic analysers and verifiers, by proving that sound
and precise analysers (resp. verifiers) exist only for trivial domains of assertions.
This allows us to generalise known results about undecidability of program anal-
ysis, such as the undecidability of the meet over all paths (MOP) solution for
monotone dataflow analysis frameworks [15], making them independent from the
structure of the domain of assertions. Then, we define a model for comparing the
relative “verification power” of program analysers and verifiers. In this model,
a verifier V on a domain A of assertions is more precise than an analyser A on
the same domain A when any assertion a in A which can be proved by A for a
program P—this means that the output of the analyser A(P) is stronger than
the assertion a—can be also proved by V. Conversely, A is more precise than
VY when any assertion a proved by V can be also proved by A. We prove that
while it is always possible to constructively transform a program analyser into
an equivalent verifier (i.e., with the same verification power), the converse does
not hold in general. In fact, we first show that for finite domains of assertions,
any “reasonable” verifier can be constructively transformed into an equivalent
analyser, where reasonable means that the verifier V is: (i) nontrivial: for any
program, V is capable to prove some assertion, possibly a trivially true asser-
tion; (ii) monotone: if V proves an assertion a and a is stronger than a’ then
V is also capable of proving «’; (iii) logically meet-closed: if V proves both a;
and ae and the logical conjunction a; A as is a representable assertion then V
is also capable of proving it. Next, we prove the following impossibility result:
for any infinite abstract domain of assertions A, no constructive reduction from
reasonable verifiers on A to equivalent analysers on A is possible. This provides,
to the best of our knowledge, the first formalization of the common folklore that
program analysis is harder than program verification.

2 Background

We follow the standard terminology and notation for sets and computable func-
tions in recursion theory (e.g., [12,26,30]). If X and Y are sets then X — Y

Program Analysis Is Harder Than Verification: A Computability Perspective 7

and X -+ Y denote, respectively, the set of all total and partial functions from
XtoY.If f: X +Y then f(x)| and f(z)T mean that f is defined/undefined
on z € X. Hence dom(f) = {z € X | f(z)l }. If S CY then f(x) € S denotes
the implification f(z)] = f(z) € S. If f,g : X + Y then f = ¢g means that
dom(f) = dom(g) and for any x € dom(f) = dom(g), f(z) = g(z). The set of
all partial (total) recursive functions on natural numbers is denoted by N + N
(N 5 N). Recall that A C N is a recursively enumerable (r.e., or semidecidable)
set if A = dom(f) for some f € N - N, while A C N is a recursive (or decidable)
set if both A and its complement A = N~ A are recursively enumerable, and
this happens when there exists f € N = N such that f = .ne€ A7 1:0.

Let Prog denote some deterministic programming language which is Turing
complete. More precisely, this means that for any partial recursive function f :
N - N there exists a program P € Prog such that [P] & f, where [P] : D + D
is a denotational input/output semantics of P on a domain D of input/output
values for Prog, where: undefinedness encodes nontermination and = means
equality up to some recursive encoding enc : D - N and decoding dec : N = D
functions, i.e., f = enc o[P]odec. We also assume a small-step transition relation
= C (Prog xD) x ((Prog xD) U D) for Prog defining an operational semantics
which is functionally equivalent to the denotational semantics: (P,i) =* o iff
[P]i = o. By an abuse of notation, we will identify the input/output semantics
of a program P with the partial recursive function computed by P, i.e., we will
consider programs P € Prog whose input/output semantics is a partial recursive
function [P] : N + N, so that, by Turing completeness, {[P] : N -+ N | P €
Prog} =N+ N.

3 Abstract Domains

Static program analysis and verification are always defined with respect to a
given (denumerable) domain of program assertions, that we call here abstract
domain [7], where the meaning of assertions is formalized by a function which
induces a logical implication relation between assertions.

Definition 3.1 (Abstract Domain). An abstract domain is a tuple (4, v, <,)
such that:

(1) A is any denumerable set;
(2) v: A— p(Prog) is any function;
(3) <, & {(a1,a2) € Ax A | v(a1) € 7y(az)} is a decidable relation.

An abstract element a € A such that vy(a) = Prog is called an abstract top, while
a is called an abstract bottom when y(a) = @. O

The elements of A are called assertions or abstract values, v is called con-
cretization function (this may also be a nonrecursive function, which is typical
of abstract domains representing semantic program properties), and <., is called
the implication or approximation relation of A. Thus, in this general model,

78 P. Cousot et al.

a program assertion a € A plays the role of some abstract representation of any
program property y(a) € p(Prog), while the comparison relation a; <. as holds
when a; is a stronger (or more precise) property than as. Let us also observe
that, as a limit case, Definition 3.1 allows an abstract domain to be empty, that
is, the tuple (&, @, &) satisfies the definition of abstract domain, where & denotes
both the empty set, the empty function (i.e., the unique subset of @ x &) and
the empty relation.

Example 3.2. Let us give some simple examples of abstract domains.

(1) Consider A = N with y(n) £ {P € Prog | size(P) < n}, where
size : Prog — N is some computable program size function. Here, <, is
clearly decidable and coincides with the partial order <x on numbers.

(2) Consider A = N with y(n) £ {P € Prog | Vi.30,k.((P,i) =" o) & k < n},
i.e., n represents all the programs which, given any input, terminate in at
most n steps. Here again, n <, m iff n <y m, so that <, is decidable.

(3) Consider A = N with y(n) £ {P € Prog | Vi € [0,n].30. (P,i) =* o}, that
is, n represents all the programs which terminate for any input ¢ < n. Once
again, n <, m iff n <y m.

(4) Consider A = N with v(n) £ {P € Prog | Vi € N.[P](i) = 0 = o < n},
that is, n represents those programs which, in case of termination, give an
output o bounded by n. Again, n <, m iff n <y m.

(5) Consider A =N > N with y(g) £ {P € Prog | Vi.(g(i)] = (3o,k.(P,i) =F
0, k < g(i))) A ((Jo, k.(P,i) =% 0) = g(i)| , k < g(i))}, that is, g represents
those programs whose time complexity is bounded by the function g. Here,
9 <49 I Vi.g())l = (¢'())] A g(i) < g'(4)). 0

Definition 3.1 does not require injectivity of the concretization function -,
thus multiple assertions could have the same meaning. Two abstract values
ay,as € A are called equivalent when v(a1) = y(az). Let us observe that since
<, is required to be decidable, the equivalence y(a1) = y(az2) is decidable as well.
For example, for the well-known numerical abstract domain of convex polyhe-
dra [11] represented through linear constraints between program variables, we
may well have multiple representations P, and P, for the same polyhedron,
eg, P ={z = 2,z <y} and P, = {z = z,2 < y} both represent the
same polyhedron. Thus, in general, an abstract domain A is not required to
be partially ordered by <,. On the other hand, the relation <, is clearly a
preorder on A. The only basic requirement is that for any pair of abstract val-
ues aj,as € A, one can decide if a; is a more precise program assertion than
as, i.e., if y(a1) C ~y(az) holds. In this sense we do not require that a partial
order < is defined a priori on A and that - is monotone w.r.t. <, since for our
purposes it is enough to consider the preorder <, induced by ~. If instead A is
endowed with a partial order <4 and A is defined in abstract interpretation [7,8]
through a Galois insertion based on the concretization map -y, then it turns out
that v(a1) C y(a2) < a; <4 ag holds, so that the decidability of the relation
<,={(a1,a2) € AxA|~(a1) C y(az)} boils down to the decidability of the par-
tial order relation <4. As an example, it is well known that the abstract domain

Program Analysis Is Harder Than Verification: A Computability Perspective 79

of polyhedra does not admit a Galois insertion [11], nevertheless its induced pre-
order relation <, is decidable: for example, for polyhedra represented by linear
constraints, there exist algorithms for deciding if v(Py) C «(P,) for any pair of
convex polyhedra representations P; and P (see e.g. [23, Sect.5.3]).

3.1 Abstract Domains in Abstract Interpretation

An abstract domain in standard abstract interpretation [7-9] is usually defined
by a poset (A, <4) containing a top element T € A and a concretization map y4 :
A — p(Dom), where Dom denotes some concrete semantic domain (e.g., program
stores or program traces), such that: (a) A is machine representable, namely the
abstract elements of A are encoded by some data structures (e.g., tuples, vectors,
lists, matrices, etc.), and some algorithms are available for deciding if a1 <4 as
holds; (b) a1 <4 as < va(a1) C va(az) holds (this equivalence always holds
for Galois insertions); (¢) v4(T) = Dom. Let us point out that Definition 3.1 is
very general since the concretization of an abstract value can be any program
property, possibly a purely syntactic property or some space or time complexity
property, as in the simple cases of Example 3.2 (1)-(2)-(5).

Let 74 : A — p(Dom) and assume that Dom is defined by program stores,
namely Dom £ Var — Val, where Var is a finite set of program variables and Val
is a corresponding denumerable set of values. Since Var — Val has a finite domain
and a denumerable range, we can assume a recursive encoding of finite tuples of
values into natural numbers N, i.e. Var — Val = N, and define v4 : A — p(N).
This is equivalent assuming that programs have one single variable, say =, which
may assume tuples of values in Val. A set of numbers v4(a) € p(N) is meant to
represent a property of the values stored in the program variable x at the end
of the program execution, that is, if the program terminates its execution then
the variable z stores a value in y4(a). Hence, as usual, the property @ € p(N)
means that the program does not correctly terminate its execution either by true
nontermination or by some run-time error, namely, that the exit program point
is not reachable. For simplicity, we do not consider intermediate program points
and assertions in our semantics.

For an abstract domain (A4, v4,<4) in standard abstract interpretation, the
corresponding concretization function v : A — p(Prog) of Definition3.1 is
defined as:

+(a) 2 {P € Prog | ¥i € N. [P](i) € ya(a)}

where we recall that [P](i) € ya(a) means [P](i) = 0 = o € ya(a). Hence, if
A contains top T 4 and bottom L4 such that y4(T4) = N and y4(L4) = @
then (T 4) = Prog and (L a) = {P € Prog | P never terminates}. Moreover,
since y4 is monotonic, we have that v is monotonic as well. The fact that all
the elements in A are machine representable boils down to the requirement that
A is a recursive set, while the binary preorder relation <, is decidable because
a1 <4 az < y(a1) C y(az) holds and <4 is decidable. This therefore defines an
abstract domain according to Definition 3.1.

80 P. Cousot et al.

In this simple view of the abstract domain A, there is no input property for
the variable z, meaning that at the beginning = may store any value. It is easy
to generalize the above definition by requiring an input abstract property in A
for z, so that the abstract domain is a Cartesian product A x A together with
a concretization 7/ : A x A — p(Prog) defined as follows:

P ((as,a,)) & {P € Prog | Vi € N.i € ya(a;) = [P](i) € va(ao)}.
This is a generalization since, for any a € A, we have that y(a) = 7 ((T 4, a)).

Example 3.3 (Interval Abstract Domain). Let Int be the standard interval
domain [7] restricted to natural numbers in N, endowed with the standard subset
ordering:

Int 2 {[a,b] | a,b €N, a < b} U{Lin} U{[a,+00) | a € N}

with concretization iyt : Int — (N), where Yt (Lint) = &, Yt ([a, b]) = [a, b]
and ymt([0,+00)) = N, so that [0,+00) is also denoted by Trin. Thus, here,
for the concretization function v : Int — p(Prog) we have that: y(T) =
Prog, v(Llmt) = {P € Prog | Vi. [P](i)1}, v([a,+<)) = {P € Prog | Vi €
N.[P](i)| = [P](i) > a}. We also have the input/output concretization % :
Int x Int — p(Prog), where

AP ((I,J)) & {P € Prog | Vi € N.i €yt (I) = [P](i) € yme(J)}- 0

4 Program Analysers and Verifiers

In our model, the notions of program analyser and verifier are as general as
possible.

Definition 4.1 (Program Analyser). Given an abstract domain (4,7, <),
a program analyser on A is any total recursive function A : Prog — A.

The set of analysers on a given abstract domain A will be denoted by A 4.

An analyser A € A 4 is sound if for any P € Prog and a € A,

A(P) <ya = Pe~(a)
while A is precise if it is also complete, i.e., if the reverse implication also holds:
Pe~v(a) = AP) <, a. 0

Notice that this definition of soundness is equivalent to the standard notion
of sound static analysis, namely, for any program P, A(P) always outputs a
program assertion which is satisfied by P, i.e., P € v(A(P)). Let us also note
that on the empty abstract domain &, no analyser can be defined simply because
there exists no function in Prog — &. Instead, for a singleton abstract domain
A, & {e}, if A € Ay, is sound then (o) = Prog, so that e is necessarily
an abstract top. Also, if the abstract domain A contains a top abstract value

Program Analysis Is Harder Than Verification: A Computability Perspective 81

T A € A then, as expected, AP.T 4 is a trivially sound analyser on A. Finally, we
observe that if A; and As are both precise on the same abstract domain then
we have A; =, Aj, meaning that 4, and Ay coincide up to equivalent abstract
values, i.e., yoA; = yoA,. In fact, for any P € Prog, we have that P € y(A2(P))
implies 7(A1(P)) € 7(A2(P)) and P € v(A;(P)) implies v(A2(P)) € v(A1(P)),
so that A; =, As.

Example 4.2. Software metrics static analysers [35] deal with nonsemantic pro-
gram properties, such as the domain in Example 3.2 (1). Bounded model check-
ing [4,34] handles program properties such as those encoded by the domains
of Example3.2 (2)-(3). Complexity bound analysers such as [32,36] cope with
domains of properties such as those in Example 3.2 (4)-(5). Numerical abstract
domains used in program analysis (see [23]) include the interval abstraction
described in Example 3.3. O

Definition 4.3 (Program Verifier). Given an abstract domain (4,v,<,), a
program verifier on A is any total recursive function V : Prog xA — {t, 7}.
The set of verifiers on a given abstract domain A will be denoted by V4.

A verifier V € Vy, is sound if for any P € Prog and a € A,

V(P,a) =t = P € v(a)
while V is precise if it is also complete, i.e., if the reverse implication also holds:
Pevy(a) = V(P,a)=t.

A verifier V € V, is nontrivial if for any program there exists at least one
assertion which V is able to prove, i.e., for any P € Prog there exists some a € A
such that V(P,a) = t. Also, a verifier is defined to be trivial when it is not
nontrivial.

A verifier V € V4 is monotone when the verification algorithm is monotone w.r.t.
< ie, V(Pa)=t AN a<yd) = V(Pd)=t. 0

Remark 4.4. Let us observe some straight consequences of Definition 4.3.

(1) Notice that for all nonempty abstract domains A, A(P,a).? is a legal and
vacuously sound verifier. Also, if A = & is the empty abstract domain then the
empty verifier V : Prog x@ — {t,?} (namely, the function with empty graph) is
trivially precise.

(2) Let us observe that if V is nontrivial and monotone then V is able to prove
any abstract top: in fact, if T € A and v(T) = Prog then, for any P € Prog,
since there exists some a € A such that V(P,a) = t and a <, T, then, by
monotonicity, V(P, T) = t.

(3) Note that if a verifier V is precise then V(P,a) = ? < P ¢ v(a), so that
in this case an output V(P,a) = 7 always means that P does not satisfy the
property a.

(4) Finally, if V; and V5 are precise on the same abstract domain then V1 (P, a) =
t & P eq(a) & Vao(P,a) =t, so that V1 = V. O

82 P. Cousot et al.

Example 4.5. Program verifiers abund in literature, e.g., [3,21,27]. For exam-
ple, [13] aims at complexity verification on domains like that in Example 3.2 (5)
while reachability verifiers like [33] can check numerical properties of program
variables such as those of Example 3.3. O

5 Rice’s Theorem for Static Program Analysis and
Verification

Classical Rice’s Theorem in computability theory [26,29,30] states that an exten-
sional property I C N of an effective numbering {¢, | n € N} = N -5 N of
partial recursive functions is a recursive set if and only if Il = @ or II = N,
i.e., IT is trivial. Let us recall that IT C N is extensional when ¢,, = ¢,, implies
n € II < m € II. When dealing with program properties rather than indices of
partial recursive functions, i.e., when I C Prog, Rice’s Theorem states that any
nontrivial semantic program property is undecidable (see [28] for a statement
of Rice’s Theorem tailored for program properties). It is worth recalling that
Rice’s Theorem has been extended by Asperti [2] through an interesting gen-
eralization to so-called “complexity cliques”, namely nonextensional program
properties which may take into account the space or time complexity of pro-
grams: for example, the abstract domain of Example 3.2 (5) is not extensional
but when logically “intersected” with an extensional domain (i.e., it is a prod-
uct domain A; x A, where the concretization function is the set intersection
Mai, az).71(a1) Ny2(az)) falls into this generalized version of Rice’s Theorem.

In the following, we provide an instantiation of Rice’s Theorem to sound
static program analysis and verification by introducing a notion of extension-
ality for abstract domains. Abstract domains commonly used in abstract inter-
pretation turn out to be extensional, when they are used for approximating the
input/output behaviour of programs. For example, if a sound abstract interpreta-
tion of a program P in the interval abstract domain computes as abstract output
a program assertion such as z € [1,5] and y € [2,+00) then this assertion is a
sound abstract output for any other program) having the same input/output
behaviour of P.

Definition 5.1 (Extensional Abstract Domain). An abstract domain
(A,v,<4) is extensional when for any a € A, y(a) C Prog is an extensional
program property, namely, if [P] = [Q] then P € vy(a) < Q € v(a). O

As usual, the intuition is that an extensional program property depends
exclusively on the input/output program semantics [-]. As a simple example,
the domains of Example 3.2 (3)-(4) are extensional while the domains of Exam-
ple3.2 (1)-(2)-(5) are not.

Definition 5.2 (Trivial Abstract Domain). An abstract domain (4, v, <,)
is trivial when A contains abstract bottom or top elements only, i.e., for any
a € A, v(a) € {@,Prog}. O

Program Analysis Is Harder Than Verification: A Computability Perspective 83

Definition 5.2 allows 4 possible types for a trivial abstract domain A: (1)
A = g; (2) A is nonempty and consists of bottom elements only, i.e., A # & and
for all @ € A, v(a) = @; (3) A is nonempty and consists of top elements only,
ie, A# @ and for all a € A, y(a) = Prog; (4) A satisfies (2) and (3), i.e., A
contains both bottom and top elements.

Theorem 5.3 (Rice’s Theorem for Program Analysis). Let (A,v,<,) be
an extensional abstract domain and let A € A4 be a sound analyser. Then, A is
precise iff A is trivial.

Proof. Since we assume the existence of a sound analyser A € A4 on the exten-
sional abstract domain A, observe that necessarily A # &.

Assume that A is trivial. We have to show that for any a € A and P € Prog,
A(P) <, a < P € vy(a). Assume that P € y(a) for some a € A. Then, we have
that v(a) # @, so that, since A is trivial, it must necessarily be that v(a) = Prog.
By soundness of A, P € v(A(P)), so that, since A is trivial, v(A(P)) = Prog.
Hence, we have that v(A(P)) = 7(a), thus implying A(P) <, a. On the other
hand, if A(P) <, a then v(A(P)) C v(a), so that, since, by soundness of A,
P € y(A(P)), we also have that P € v(a).

Conversely, assume now that A is precise, namely, P € v(a) iff A(P) <, a.
Thus, since A is a total recursive function and <, is decidable, we have that, for
any a € A, P €’ y(a) is decidable. Since y(a) is an extensional program property,
by Rice’s Theorem, y(a) must necessarily be trivial, i.e., y(a) € {&, Prog}. This
means that the abstract domain A is trivial. O

Rice’s Theorem for program analysis can be applied to several abstract
domains. Due to lack of space, we just mention that the well-known undecid-
ability of computing the meet over all paths (MOP) solution for a monotone
dataflow analysis problem, proved by Kam and Ullman [15, Sect. 6] by resorting
to undecidability of Post’s Correspondence Problem, can be derived as a simple
consequence of Theorem 5.3.

Along the same lines of Theorem 5.3, Rice’s Theorem can be instantiated to
program verification as follows.

Theorem 5.4 (Rice’s Theorem for Program Verification). Let (4,7, <,)
be an extensional abstract domain and let V € V4 be a sound, nontrivial and
monotone verifier. Then, V is precise iff A is trivial.

Proof. Let A be an extensional abstract domain and V € V4 be sound and non-
trivial. If A = @ then A is trivial while the only possible verifier V : Prog x@ —
{t,?} is the empty verifier, which is vacuously precise but it is not nontrivial.
Thus, A # @ holds.

Assume that V is precise, that is, P € y(a) iff V(P, a) = t. Hence, since V is a
total recursive function, V(P,a) =" t is decidable, so that P €7 y(a) is decidable
as well. As in the proof of Theorem 5.3, since «y(a) is an extensional program
property, by Rice’s Theorem, v(a) € {&, Prog}. Thus, the abstract domain A is
trivial.

84 P. Cousot et al.

Conversely, let A # @ be a trivial abstract domain. We have to prove that
for any a € A and P € Prog, V(P,a) =t & P € 7(a). Consider any a € A.
Since A is trivial, v(a) € {@, Prog}. If v(a) = @ then, by soundness of V, for
any P € Prog, V(P,a) = 7, so that V(P,a) =t & P € v(a) holds. If, instead,
v(a) = Prog, i.e. a is an abstract top, then, since V is assumed to be nontrivial
and monotone, by Remark 4.4 (2), V is able to prove the abstract top a for any
program, namely, for any P € Prog, V(P,a) = t, so that V(P,a) =t < P € v(a)
holds. ad

Let us remark a noteworthy difference of Theorem 5.4 w.r.t. Rice’s theorem
for static analysis. Let us consider a trivial abstract domain A £ {T} with
~v(T) = Prog. Here, the trivially sound analyser AP.T is also precise, in accor-
dance with Theorem 5.3. Instead, the trivially sound verifier V» = \(P,a).? is
not precise, because P € y(T) < V2(P, T) = t does not hold. The point here is
that V» lacks the property of being nontrivial, and therefore Theorem 5.4 cannot
be applied. On the other hand, V¢ £ A\(P,a).t is nontrivial and precise, because,
in this case, P € v(T) < V¢(P, T) = t holds. Similarly, if we consider the trivial
abstract domain A’ £ {T, T}, with 4(T) = Prog = v(T’), then the verifier

t ifa=T
V'(P,a) &
(P.a) {? ifa=T

is sound and mnontrivial, but still V' is not precise, because P € (T') <
V'(P, T') = t does not hold. The point here is that V' is not monotone, because
VI(P,T) =tand T <, T’ but V(P,T') # t, so that Theorem 5.4 cannot be
applied.

6 Comparing Analysers and Verifiers

Let us now focus on a model for comparing the relative precision of program
analysers and verifiers w.r.t. a common abstract domain (A4,~, <,).

Definition 6.1 (Comparison Relations). Let V,V' € V4, A, A" € Ay, and
X, Y eVaUA4.

(1) VEV' iff VP € Prog Va € A. V'(P,a) =t = V(P,a) =t

(2) AC A" iff VP € Prog. A(P) <, A'(P)

(3) VCAiff YPeProgVaec A AP)<,a = V(P,a)=t

(4) ACV iff YPeProgVa€c A V(Pa)=t = A(P)<,a

(5) X =2Y when XCT)Y and YC X O
Let us comment on the previous definitions, which intuitively take into
account the relative “verification powers” of verifiers and analysers. The rela-
tion ¥V C V' holds when every assertion proved by V' can be also proved by V,
while A C A" means that the output assertion provided by A is more precise
than that produced by A’. Also, a verifier V is more precise than an analyser

Program Analysis Is Harder Than Verification: A Computability Perspective 85

A when the verification power of V is not less than the verification power of
A, namely, any assertion a which can be proved by A for a program P, i.e.
A(P) <, a holds, can be also proved by V. Likewise, A is more precise than
V when any assertion a proved by V can be also proved by A, i.e,, V(P,a) =t
implies A(P) <, a.

Let us observe that (V4,C) turns out to be a poset, while (A4, C) is just a
preordered set (cf. the lattice of abstract interpretations in [8]). We have that
(V4,C) has a greatest element V7 = A(P,a).?, which, in particular, is always
sound although it is trivial. On the other hand, if A includes a top element T
then A+ £ AP.T is a sound analyser which is a maximal element in (A4, C).
Also, V =2 V' means that ¥ = V' as total functions, while A =2 4" means that
~vo A =~ o A'. Moreover, the comparison relation C is transitive even when
considering analysers and verifiers together: if V C A and A C V' then V C V',
and if AC V and V T A’ then A T A’. Also, the relation C shifts soundness
from verifiers to analysers, and from analysers to verifiers as follows (due to lack
of space the proof is omitted).

Lemma 6.2. Let V € V4 and A € Ay. If V is sound and V T A then A is
sound; if A is sound and ATV then V is sound.

As expected, any sound analyser can be used to refine a given sound verifier
(cf. [19,20,24,25]) and this can be formalized and proved in our framework as
follows.

Lemma 6.3. Given A€ Ay and V € V4 which are both sound, let

N t if A(P) <5 a
TA(V)(P,a) = {V(R a) if A(P)¥%4,a

Then, T4(V) € V4 is sound, TA(V) CV and T4(V) =V < VLT A.

Proof. 74(V) € V4 is sound because both A and V are sound. If V(P,a) =t
then 74(V)(P,a) = t, i.e., 74(V) C V. Moreover, 74(V) = V iff A(P) <, a =
V(P,a) =t iff YV C A O

6.1 Optimal and Best Analysers and Verifiers

It makes sense to define optimality by restricting to sound analysers and verifiers
only. Optimality is defined as minimality w.r.t. the precision relation T, while
being the best analyser/verifier means to be the most precise.

Definition 6.4 (Optimal and Best Analysers and Verifiers). A sound
analyser A € A4 is optimal if for any sound A’ € Ay, A'C A= A = A, while
A is a best analyser if for any sound A’ € Ay, AC A'.

A sound verifier V € V4 is optimal if for any V' € V4, V CV =V =Y,
while V is the best verifier if for any V' € V4, VC V. O

86 P. Cousot et al.

Let us first observe that if a best analyser or verifier exists then this is unique,
while for analysers if 4; and Ay are two best analysers on A then A; = A5 holds.
Of course, the possibility of defining an optimal/best analyser or verifier depends
on the abstract domain A. For example, for a variable sign domain such as
{Z<o,Z>0,Z} just optimal analysers and verifiers could be defined, because for
approximating the set {0} two optimal sound abstract values are available rather
than a best sound abstract value. Here, the expected but interesting property
to remark is that the notion of precise (i.e., sound and complete) analyser turns
out to coincide with the notion of being the best analyser.

Lemma 6.5. Let A € Ay be sound. Then, A is precise iff A is a best analyser.

Proof. (=) Consider any sound A" € A,. Assume, by contradiction, that
A IZ A’, namely, there exists some P € Prog such that v(A(P)) € v(A'(P)).
By soundness of A', [P] € v(A'(P)), so that, by precision of A, v(A(P)) C
v(A'(P)), which is a contradiction. Thus, A C A’ holds. This means that A is a
best analyser on A.

(<) We have to prove that for any P € Prog and a € A, [P] € v(a) =
Y(A(P)) C v(a). Assume, by contradiction, that there exist @ € Prog and b € A
such that [Q] € ~v(b) and v(A(Q)) Z ~(b). Then, we define A’ : Prog — A as
follows:

A(P) 2 {A(P) if P#Q

b iftP=qQ

It turns out that A’ is a total recursive function because P = @Q is decidable.
Moreover, A’ is sound: assume that y(A'(P)) C y(a); if P # Q then A'(P) =
A(P) so that v(A(P)) C v(a), and, by soundness of A, [P] € v(a); if P = Q
then A'(Q) = b %o that 7(b) = 7(A'(Q)) = 1(A'(P)) € +(a), hence, [Q] € (D)
implies [Q] € 7y(a). Since A is a best analyser on A, we have that A C A’, so
that v(A(Q)) € v(A'(Q)) = v(b), which is a contradiction. 0

We therefore derive the following consequence of Rice’s Theorem 5.3 for static
analysis: the best analyser on an extensional abstract domain A exists if and only
if A is trivial. This fact formalizes in our model the common intuition that, given
any abstract domain, the best static analyser (where best means for any input
program) cannot be defined due to Rice’s Theorem. An analogous result can be
given for verifiers.

Lemma 6.6. Let V € Vy be sound. Then V is precise iff V is the best verifier
on A.

Proof. Assume that V is precise and V' € V4 be sound. If V'(P,a) = t then, by
soundness of V', [P] € «(a), and in turn, by completeness of V, V(P,a) = t,
thus proving that ¥V £ V. On the other hand, assume that V is the best verifier
on A. Assume, by contradiction, that V is not complete, namely that there exist
some @ € Prog and b € A such that [Q] € v(b) and V(Q,b) = ?. We then define
V' : Prog x A — {t,?} as follows:

Program Analysis Is Harder Than Verification: A Computability Perspective 87

V’(P,a)é{t ifPEQ/\a:b

V(P,a) otherwise

Then, V' is a total recursive function because P = @Q and a = b are decidable.
Also, V' is sound because [Q] € v(b) and V is sound. Since V is the best verifier,
we have that V C V', so that V'(Q,b) = t implies V(Q,b) = t, which is a
contradiction. O

Thus, similarly to static analysis, as a consequence of Rice’s Theorem 5.4 for
verification, the best nontrivial and monotone verifier on an extensional abstract
domain A exists if and only if A is trivial, which is a common belief in program
verification. Let us also remark that best abstract program semantics, rather
than program analysers, do exist for nontrivial domains (see e.g. [6]). Clearly, this
is not in contradiction with Theorem 5.3 since these abstract program semantics
are not total recursive functions, i.e., they are not program analysers.

7 Reducing Verification to Analysis and Back

As usual in computability and complexity, our comparison between verification
and analysis is made through a many-one reduction, namely by reducing a ver-
ification problem into an analysis problem and vice versa. The minimal require-
ment is that these reduction functions are total recursive. Moreover, we require
that the reduction function does not depend upon a fixed abstract domain. This
allows us to be problem agnostic and to prove a reduction for all possible ver-
ifiers and analysers. Program verification and analysis are therefore equivalent
problems whenever we can reduce one to the other. In the following, we prove
that while it is always possible to transform a program analyser into an equiv-
alent program verifier, the converse does not hold in general, but it can always
be done for finite abstract domains.

7.1 Reducing Verification to Analysis

Theorem 7.1. Let (A,v,<y) be any given abstract domain. There exists a
transform o : Ag — V4 such that:

(1) o is a total recursive function such that for all A € Ay, o(A) 2 A;

(2) if A€ Ay is sound then o(A) is sound;

(3) o is monotonic;
)

(4) o(A)_U(A')iAEA'.
Proof. Given A € A4, we define o(A) : Prog xA — {t, 7} as follows:

At if AP)<,a
o(A)(Pra) = {? it A(P) £, a

(1) Since A is a total recursive function and <, is decidable, we have that
a(A) is a total recursive function, namely o(A) € V4, and o is a total recursive

88 P. Cousot et al.

function as well. Since, by definition, 0(A)(P,a) = t & A(P) <, a, we have
that o(A) = A. (2) By Lemma6.2, if A is sound then the equivalent verifier
o(A) is sound as well. (3) It turns out that o is monotonic: if A C A’ then
o(A)(Pa) =t & A(P) <, a= AP) <, A(P) <, a & d(A)(P,a) =t, so
that o(A) C o(A’) holds. (4) Assume that o(A) = o(A), hence, for any P €
Prog, o(A)(P, A(P)) = o(A")(P, A(P)), namely, A(P) <, A(P) & A'(P) <,
A(P), so that A'(P) <, A(P) holds. On the other hand, A(P) <, A'(P) can
be dually obtained, therefore y(A(P)) = v(A'(P)) holds, namely A~ A. O

Intuitively, Theorem 7.1 shows that program verification on a given abstract
domain A can always and unconditionally be reduced to program analysis on
A. This means that a solution to the program analysis problem on A, i.e. the
definition of an analyser A, can constructively be transformed into a solution
to the program verification problem on the same domain A, i.e. the design of a
verifier o(A) which is equivalent to .A. The proof of Theorem 7.1 provides this
constructive transform o, which is defined as expected: an analyser A on any
(possibly infinite) abstract domain A can be used as a verifier for any assertion
a € A simply by checking whether A(P) <, a holds or not.

7.2 Reducing Analysis to Verification

It turns out that the converse of Theorem 7.1 does not hold, namely a program
analysis problem in general cannot be reduced to a verification problem. Instead,
this reduction can be always done for finite abstract domains. Given a verifier
V € Vg, for any program P € Prog, let us define V¢ (P) £ {a € A | V(P,a) = t},
namely, Vi (P) is the set of assertions proved by V for P. Also, given an assertion
a € A, we define Ta = {a’ € A | a <, a'} as the set of assertions weaker than a.
The following result provides a useful characterization of the equivalence between
verifiers and analysers.

Lemma 7.2. Let (A,v,<,) be an abstract domain, A € Ay andV € V4. Then,
A2V if and only if for any P € Prog, V¢(P) = TA(P).

Proof. By Definition 6.1, it turns out that A4 C V iff for any P, V¢(P) C TA(P),
while we have that V C A iff for any P, TA(P) C V¢(P). Thus, A =V if and
only if for any P € Prog, V¢(P) = 1A(P). O

A consequence of Lemma 7.2 is that, given V € V4, V can be transformed
into an equivalent analyser 7(V) € A4 if and only if for any program P, an
assertion ap € A exists such that V¢(P) = lap. In this case, one can then define
T(V)(P) £ ap.

Lemma 7.3. Let (A,v,<,) be an abstract domain and V € V. If A € Ay is
such that A2V then: (1) A+# @; (2) V is not trivial; (3) V is monotone.

Proof. (1) We observed just after Definition 4.1 that no analyser can be defined
on the empty abstract domain. (2) If V is trivial then there exists a program

Program Analysis Is Harder Than Verification: A Computability Perspective 89

Q@ € Prog such that for any a € A, V(Q,a) = ?,so that if V = A for some A € A4
then, from V C A we would derive V(Q, . A(Q)) = t, which is a contradiction.
(3) Assume that V is not monotone. Then, there exist @) € Prog and a,a’ € A
such that a € V¢(Q), a <, o but ' & V¢(Q). If V = A, for some A € Ay,
then, by Lemma 7.2, V¢(Q) = TA(Q), so that we would have that a € T.A(Q) but
a’ € 1A(Q), which is a contradiction. O

We also observe that even for a nontrivial and monotone verifier V € V4 on a
finite abstract domain A, it is not guaranteed that an equivalent analyser exists.
In fact, if an equivalent analyser A exists then, by Lemma 7.2, for any program
P, V¢(P) must contain the least element, namely for any program P it must be
the case that there exists a strongest assertion proved by V for P.

Example 7.4. Consider a sign domain such as S £ {Z<o,Z>0,Z} where
Z<o <y Z and Z>¢ <, Z. For a program such as () = z := 0, a sound veri-
fier V € Vg could be able to prove all the assertions in S, namely V¢(Q) = S.
However, there exists no assertion ag € S such that V¢(Q) = Tag. Hence, by
Lemma 7.2, there exists no analyser in Ag which is equivalent to V. Also, if
S" & {Z_y,7<0,Z>0,Z}, so that S’ is a meet-semilattice, and V' € Vg is a
sound verifier such that Vi(Q) = S’ \ {Z—o}, still, by Lemma 7.2, there exists
no analyser in Ag which is equivalent to V'. a

Definition 7.5. A verifier V € Vj is finitely meet-closed when for any P € Prog
and a,a1,a2 € A, if V(P,a1) =t = V(P,az2) and v(a) = v(a1) N y(az) then
V(P, a) = t. The following notation will be used: for any domain A,

Vi £ {V €Vy4 | V is nontrivial, monotone and finitely meet-closed}. ¢

Thus, finitely meet-closed verifiers can prove logical conjunctions of provable
assertions.

Theorem 7.6 (Reduction for Finite Domains). Let (A4,v,<,) be a
nonempty finite abstract domain. There exists a transform T : VX — Ay such
that:

(1) 7 is a total recursive function such that for all V € Vi, 7(V) = V;
(2) if V € VI is sound then 7(V) is sound;

(3) T is monotonic;

(4) (V) = (V):>V%V'.

Proof. (1) Let A = {a1,...,a,} be any enumeration of A, with n > 1. Given
V € Vi, we define 7(V) : Prog — A as follows:

r := undef;
forall i € 1..n do
if (ai €Ve(P) A (r =undef V a; <, T)) then r := a;;

output r

T(V)(P) =

90 P. Cousot et al.

Then, it turns out that 7 is a total recursive function. Since V is a total recursive
function, A is finite and <, is decidable, we have that 7(V) is a total recursive
function, so that 7(V) € A 4. Since V is not trivial, for any P € Prog, Vi(P) # &.
Also, since A is finite and V is finitely meet-closed there exists some aj € Vi(P)
such that V¢(P) C Tak, so that 7(V)(P) outputs some value in A. Moreover,
since V is monotone, Tar C V¢(P), so that Tay = V¢(P). Thus, the above pro-
cedure defining 7(V)(P) finds and outputs ax. Hence, for any P € Prog and
a€ A V(Pa) =t acVi(P)eacla & ar <yas 7V)(P) <, a, that
is, 7(V) = V holds.

(2) By Lemma6.2, if V is sound then the equivalent analyser 7(V) is sound as
well.

(3) It turns out that 7 is monotonic: if V C V' then, by definition, Vi(P) C
Vi(P), so that, since Vi(P) = 17(V)(P) and Vi(P) = 17(V")(P), we obtain
T(V)(P) <, 7(V")(P), namely 7(V) C 7(V') holds.

(4) Assume that 7(V) = 7(V'). Hence, for any P € Prog, v(r(V)(P)) =
Y(r(V')(P)), so that, since V¢(P) = T7(V)(P) and Vi(P) = 17(V')(P), w
obtain V¢(P) = Vi (P), namely V = V'. D

An example of this reduction of verification to static analysis for finite
domains is dataflow analysis as model checking shown in [31] (excluding Kil-
dall’s constant propagation domain [16]). Let us now focus on infinite domains
of assertions.

Lemma 7.7. There exists a denumerable infinite abstract domain (A,~,<,)
and a verifier V € Vj such that for any analyser A € Ax, AZV.

Proof. Let us consider the infinite domain T = N U {T} together with the fol-
lowing concretization function: v(T) £ Prog and, for any n € N,

v(n) £ {P € Prog | P on input 0 converges in n or fewer steps}

where the number of steps is determined by a small-step operational semantics
=, as recalled in Sect. 2. Thus, we have that if n,m € Nthen n <, miff n <y m,
while n <, T. We define a function V : Prog x T — {t, 7} as follows:

t ifa=T
V(P,a) £ {t if a=mnand P on input 0 converges in n or fewer steps

? if a=mn and P on input 0 does not converge in n or fewer steps

Clearly, for any number n € N, the predicate “P on input 0 converges in n or
fewer steps” is decidable, where the input 0 could be replaced by any other (finite
set of) input value(s). Hence, V turns out to be a total recursive function, that is,
a verifier on the abstract domain T. In particular, let us remark that) is a sound
verifier. Moreover, V is nontrivial, since, for any P € Prog, V(P,T) = t, and
monotone because if V(P,n) =t and n <, a then either a =T and V(P,T) =t
or a = m, so that n <y m and therefore V(P, m) = t. Clearly, V is also finitely
meet-closed, because if V(P,a1) =t = V(P,a2) and y(a) = vy(a1) Ny(az) then

Program Analysis Is Harder Than Verification: A Computability Perspective 91

either a = a1 or a = as, so that V(P,a) = t. Summing up, it turns out that
V € Vi. Assume now, by contradiction, that there exists an analyser A € Ar
such that A = V. By Lemma 7.2, for any P € Prog, we have that V¢(P) = 1A(P).
Hence, if P on input 0 diverges then V¢ (P) = {T} so that A(P) = T, while if P
on input 0 converges in exactly n steps then V¢(P) = {m € N | m >n} U{T},
so A(P) = n, namely A goes as follows:

A(P) = T if P on input 0 diverges
"~ |n if P on input 0 converges in exactly n steps

Since A is a total recursive function, we would have defined an algorithm A for
deciding if a program P € Prog on input 0 terminates or not. Since Prog is
assumed to be Turing complete with respect to the operational semantics =,
this leads to a contradiction. O

As a straight consequence of Lemma 7.7, the following theorem proves that
for any infinite abstract domain A, no reduction from verifiers in V}; to equivalent
analysers in A 4 is possible.

Theorem 7.8 (Impossibility of the Reduction for Infinite Domains).
For any denumerable infinite abstract domain (A,~, <), there exists no function

7 : Vi — Aa such that T is a total recursive function and for all V € V7,
(V)= V.

Proof. Assume, by contradiction, that 7 : V1 — A 4 is a total recursive function
such that for all V € V}, 7(V) € A4 and 7(V) = V. Then, for the infinite domain
A and verifier V € Vj provided by Lemma 7.7, we would be able to construct an
analyser 7(V) € A4 such that 7(V) = V, which would be in contradiction with
Lemma 7.7. O

Intuitively, this result states that given any infinite abstract domain A, no
general algorithm exists for constructively designing out of a reasonable (i.e.,
nontrivial, monotone and finitely meet-closed) verifier V on A an equivalent
analyser on the same domain A. This can be read as a precise statement proving
the folklore belief that “program analysis is harder than verification”, at least
for infinite domains of program assertions. It is important to remark that the
verifier V € VX on the infinite domain A defined by the proof of Lemma 7.7 is
sound. Thus, even if we restrict the reduction transform 7 : Vi=ommd — pgspund
of Theorem 7.8 to be applied to sound verifiers—so that by Lemma 6.2 the range
would be the sound analysers in A 4—the same proof of Lemma 7.7 could still
be used for proving that such transform 7 cannot exist.

A further consequence of Theorem7.8 is the fact proved in [10] that
abstract interpretation-based program analysis with infinite domains and widen-
ing/narrowing operators is strictly more powerful than with finite domains.

92 P. Cousot et al.

8 Conclusion and Future Work

We put forward a general model for studying static program analysers and veri-
fiers from a computability perspective. This allowed us to state and prove, with
simple arguments borrowed from standard computability theory, that for infi-
nite abstract domains of program assertions, program analysis is a harder prob-
lem than program verification. This is, to the best of our knowledge, the first
formalization and proof of this popular belief, which also includes the relation-
ship between type inference and type checking. We think that this foundational
model can be extended to study further properties of program analysers and
verifiers. In particular, this opens interesting perspectives in reasoning about
program analysis and verification in a more abstract way towards a theory of
computation that may include approximate methods, such as program analysers
and verifiers, as objects of investigation, as suggested in [5,14]. For instance, the
precision of program analysis and program verification, as well as their computa-
tional complexity, are intensional program properties. Intensionally different but
extensionally equivalent programs may exhibit completely different behaviours
when analysed or verified. In this perspective, new intensional versions of Rice’s
Theorem can be stated for program analysis, similarly to what is known for
Blum’s complexity in [2]. Also, new models for reasoning about the space and
time complexities of program analysis and verification algorithms can be stud-
ied, especially for defining a notion of complexity class of program analysers and
verifiers.

References

1. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software veri-
fication tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28-42. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24372-1_3

2. Asperti, A.: The intensional content of Rice’s theorem. In: Proceedings of 35th
ACM Symposium on Principles of Programming Languages (POPL 2008), pp.
113-119. ACM (2008)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S.,; Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364-387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

5. Cadar, C., Donaldson, A.F.: Analysing the program analyser. In: Proceedings of
38th International Conference on Software Engineering (ICSE 2016), pp. 765-768.
ACM (2016)

6. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47-103 (2002)

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/3-540-49059-0_14

Program Analysis Is Harder Than Verification: A Computability Perspective 93

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of 4th ACM Symposium on Principles of Programming Languages (POPL 1977),
pp- 238-252. ACM Press (1977)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of 6th ACM Symposium on Principles of Programming Languages
(POPL 1979), pp. 269-282. ACM Press (1979)

Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comp. 2(4),
511-547 (1992)

Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269-295. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55844-6_142

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of 5th ACM Symposium on Principles of Program-
ming Languages (POPL 1978), pp. 84-96. ACM Press (1978)

Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, Cambridge (1980)

Flajolet, P., Salvy, B., Zimmermann, P.: Lambda-Upsilon-Omega: an assistant
algorithms analyzer. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 201-212.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4_60
Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Proceed-
ings of 42nd ACM Symposium on Principles of Programming Languages (POPL
2015), pp. 261-273. ACM Press (2015)

Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7, 305-317 (1977)

Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of 1st ACM Symposium on Principles of Programming Languages (POPL 1973),
pp. 194-206 (1973)

Laski, J., Stanley, W.: Software Verification and Analysis: An Integrated, Hands-
on Approach. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84882-
240-5

Leibniz, G.: Dissertatio de arte combinatoria, Habilitation Thesis in Philosophy at
Leipzig University (1666). https://en.wikipedia.org/wiki/De_Arte_Combinatoria
Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119-134. Springer, Heidelberg (2005). https://doi.org/
10.1007/11575467_9

Leino, K., Logozzo, F.: Using widenings to infer loop invariants inside an SMT
solver, or: a theorem prover as abstract domain. In: Proceedings of International
Workshop on Invariant Generation (WING 2007) (2007)

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
420

Merz, F., Sinz, C., Falke, S.: Challenges in comparing software verification tools
for C. In: Proceedings of 1st International Workshop on Comparative Empirical
Evaluation of Reasoning Systems (COMPARE 2012), Manchester, UK, pp. 60—65
(2012)

Miné, A.: Tutorial on static inference of numeric invariants by abstract interpre-
tation. Found. Trends Program. Lang. 4(3-4), 120-372 (2017)

https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-51083-4_60
https://doi.org/10.1007/978-1-84882-240-5
https://doi.org/10.1007/978-1-84882-240-5
https://en.wikipedia.org/wiki/De_Arte_Combinatoria
https://doi.org/10.1007/11575467_9
https://doi.org/10.1007/11575467_9
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

94

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

P. Cousot et al.

Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188-202.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-9_18

Moy, Y., Marché, C.: Modular inference of subprogram contracts for safety check-
ing. J. Symb. Comput. 45(11), 1184-1211 (2010)

Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier, New York City (1999)

O’Halloran, C.: Where is the value in a program verifier? In: Shankar, N., Wood-
cock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 255-262. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87873-5_21

Reus, B.: Limits of Computation from a Programming Perspective. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-319-27889-6

Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74(2), 358-366 (1953)

Rogers, H.: Theory of Recursive Functions and Effective Computability. The MIT
press, Cambridge (1992)

Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations. In:
Proceedings of 25th ACM Symposium on Principles of Programming Languages
(POPL 1998), pp. 38-48. ACM (1998)

Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of impera-
tive programs using difference constraints. J. Autom. Reasoning 59(1), 3-45 (2017)
Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program
verifiers for all languages. In: Proceedings of ACM International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2016), pp. 74-91. ACM (2016)

Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480—494. Springer, Hei-
delberg (2000). https://doi.org/10.1007/10722167_36

Vogelsang, A., Fehnker, A., Huuck, R., Reif, W.: Software metrics in static program
analysis. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 485-500.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16901-4_32
Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstrém, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.
7(3), 361-3653 (2008)

https://doi.org/10.1007/978-3-540-78163-9_18
https://doi.org/10.1007/978-3-540-87873-5_21
https://doi.org/10.1007/978-3-319-27889-6
https://doi.org/10.1007/10722167_36
https://doi.org/10.1007/978-3-642-16901-4_32

Program Analysis Is Harder Than Verification: A Computability Perspective 95

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Theory and Security

®

Check for
updates

Automata vs Linear-Programming
Discounted-Sum Inclusion

Suguman Bansal®) | Swarat Chaudhuri®, and Moshe Y. Vardi®™)

Rice University, Houston, TX 77005, USA

suguman@rice.edu

Abstract. The problem of quantitative inclusion formalizes the goal of
comparing quantitative dimensions between systems such as worst-case
execution time, resource consumption, and the like. Such systems are
typically represented by formalisms such as weighted logics or weighted
automata. Despite its significance in analyzing the quality of computing
systems, the study of quantitative inclusion has mostly been conducted
from a theoretical standpoint. In this work, we conduct the first empiri-
cal study of quantitative inclusion for discounted-sum weighted automata
(DS-inclusion, in short).

Currently, two contrasting approaches for DS-inclusion exist: the
linear-programming based DetLP and the purely automata-theoretic
BCV. Theoretical complexity of DetLP is exponential in time and space
while of BCV is PSPACE-complete. All practical implementations of BCV,
however, are also exponential in time and space. Hence, it is not clear
which of the two algorithms renders a superior implementation.

In this work we present the first implementations of these algorithms,
and perform extensive experimentation to compare between the two
approaches. Our empirical analysis shows how the two approaches com-
plement each other. This is a nuanced picture that is much richer than
the one obtained from the theoretical study alone.

1 Introduction

The analysis of quantitative dimensions of systems, such as worst-case execution
time, energy consumption, and the like, has been studied thoroughly in recent
times. By and large, these investigations have tended to be purely theoretical.
While some efforts in this space [12,13] do deliver prototype tools, the area
lacks a thorough empirical understanding of the relative performance of different
but related algorithmic solutions. In this paper, we further such an empirical
understanding for quantitative inclusion for discounted-sum weighted automata.

Weighted automata [17] are a popular choice for system models in quantita-
tive analysis. The problem of quantitative language inclusion [15] formalizes the
goal of determining which of any two given systems is more efficient under such
a system model. In a discounted-sum weighted automata the value of quanti-
tative dimensions are computed by aggregating the costs incurred during each
step of a system execution with discounted-sum aggregation. The discounted-
sum (DS) function relies on the intuition that costs incurred in the near future

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 99-116, 2018.
https://doi.org/10.1007/978-3-319-96142-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_9&domain=pdf

100 S. Bansal et al.

are more “expensive” than costs incurred later on. Naturally, it is the choice for
aggregation for applications in economics and game-theory [20], Markov Decision
Processes with discounted rewards [16], quantitative safety [13], and more.

The hardness of quantitative inclusion for nondeterministic DS-automata,
or DS-inclusion, is evident from PSPACE-hardness of language-inclusion (LI)
problem for nondeterministic Biichi automata [23]. Decision procedures for
DS-inclusion were first investigated in [15], and subsequently through target
discounted-sum [11], DS-determinization [10]. A comparator-based argument [9]
finally established its PSPACE-completeness. However, these theoretical advances
in DS-inclusion have not been accompanied with the development of efficient
and scalable tools and algorithms. This is the focus of this paper; our goal is to
develop practical algorithms and tools for DS-inclusion.

Theoretical advances have lead to two algorithmic approaches for DS-
inclusion. The first approach, referred to as DetLP, combines automata-theoretic
reasoning with linear-programming (LP). This method first determinizes the
DS-automata [10], and reduces the problem of DS-inclusion for determinis-
tic DS-automata to LP [7,8]. Since determinization of DS-automata causes an
exponential blow-up, DetLP yields an exponential time algorithm. An essen-
tial feature of this approach is the separation of automata-theoretic reasoning—
determinization—and numerical reasoning, performed by an LP-solver. Because of
this separation, it does not seem easy to apply on-the-fly techniques to this app-
roach and perform it using polynomial space, so this approach uses exponential
time and space.

In contrast, the second algorithm for DS-inclusion, referred to as BCV (after
name of authors) is purely automata-theoretic [9]. The component of numerical
reasoning between costs of executions is handled by a special Biichi automaton,
called the comparator, that enables an on-line comparison of the discounted-
sum of a pair of weight-sequences. Aided by the comparator, BCV reduces
DS-inclusion to language-equivalence between Biichi automata. Since language-
equivalence is in PSPACE, BCV is a polynomial-space algorithm.

While the complexity-theoretic argument may seem to suggest a clear advan-
tage for the pure automata-theoretic approach of BCV, the perspective from an
implementation point of view is more nuanced. BCV relies on Ll-solvers as its
key algorithmic component. The polynomial-space approach for LI relies on Sav-
itch’s Theorem, which proves the equivalence between deterministic and non-
deterministic space complexity [21]. This theorem, however, does not yield a
practical algorithm. Existing efficient Ll-solvers [3,4] are based on Ramsey-based
inclusion testing [6] or rank-based approaches [18]. These tools actually use expo-
nential time and space. In fact, the exponential blow-up of Ramsey-based app-
roach seems to be worse than that of DS-determinization. Thus, the theoretical
advantage BCV seems to evaporate upon close examination. Thus, it is far from
clear which algorithmic approach is superior. To resolve this issue, we provide in
this paper the first implementations for both algorithms and perform exhaustive
empirical analysis to compare their performance.

Automata vs Linear-Programming Discounted-Sum Inclusion 101

Our first tool, also called DetLP, implements its namesake algorithm as it is.
We rely on existing LP-solver GLPSOL to perform numerical reasoning. Our sec-
ond tool, called QulP, starts from BCV, but improves on it. The key improvement
arises from the construction of an improved comparator with fewer states. We
revisit the reduction to language inclusion in [9] accordingly. The new reduction
reduces the transition-density of the inputs to the Ll-solver (Transition density
is the ratio of transitions to states), improving the overall performance of QulP
since LI-solvers are known to scale better at lower transition-density inputs [19].

Our empirical analysis reveals that theoretical complexity does not provide a
full picture. Despite its poorer complexity, QulP scales significantly better than
DetLP, although DetLP solves more benchmarks. Based on these observations, we
propose a method for DS-inclusion that leverages the complementary strengths of
these tools to offer a scalable tool for DS-inclusion. Our evaluation also highlights
the limitations of both approaches, and opens directions for further research in
improving tools for DS-inclusion.

2 Preliminaries

Biichi Automata. A Biichi automaton [23] is a tuple A = (S, X, 6, Init, F),
where S is a finite set of states, X is a finite input alphabet, 6 C (S x X x S)
is the transition relation, Init C S is the set of initial states, and F C § is the
set of accepting states. A Biichi automaton is deterministic if for all states s and
inputs a, |{s'|(s,a,s") € 6}| < 1. Otherwise, it is nondeterministic. For a word
w = wowy ... € X¥ a run p of w is a sequence of states sgsi ... satisfying:
(1) sp € Init, and (2) 7; = (8;,w;, s;+1) € 0 for all i. Let inf(p) denote the
set of states that occur infinitely often in run p. A run p is an accepting run if
inf(p) NF # 0. A word w is an accepting word if it has an accepting run.

The language £(.A) of Biichi automaton A is the set of all words accepted by
it. Biichi automata are known to be closed under set-theoretic union, intersection,
and complementation. For Biichi automata A and B, the language-equivalence
and language-inclusion are whether £(A) = £(B) and L(A) C L(B), resp.

Let A = A[0], A[1],... be a natural-number sequence, d > 1 be a rational
number. The discounted-sum of A with discount-factor d is DS(A4,d) = X2, ’Z[J] .

For number sequences A and B, (A, B) and (A — B) denote the sequences where
the i-th element is (A[i], B[i]) and A[i] — BJi], respectively.

Discounted-Sum Automata. A discounted-sum automaton with discount-
factor d > 1, DS-automaton in short, is a tuple A = (M,), where M =
(S, X, 6, Init, S) is a Biichi automaton, and v : § — N is the weight function that
assigns a weight to each transition of automaton M. Words and runs in weighted
w-automata are defined as they are in Biichi automata. Note that all states are
accepting states in this definition. The weight sequence of run p = sgs1... of
word w = wow; ... is given by wt, = noniny ... where n; = ~v(8i,w;, 8i41) for
all i. The weight of a run p is given by DS(wt,,d). For simplicity, we denote
this by DS(p, d). The weight of a word in DS-automata is defined as wt_4(w) =
sup{DS(p,d)|p is a run of w in A}. By convention, if a word w ¢ L(A), then

102 S. Bansal et al.

on,2

on, slow, 10

start *>

off, slow, 10

Fig. 1. System S Fig. 2. Specification P

wt4(w) = 0 [15]. A DS-automata is said to be complete if from every state there
is at least one transition on every alphabet. Formally, for all p € § and for all
a € X, there exists ¢ € S s.t (p,a,q) € 6. Arun p € P of word w € L(P) is a
diminished run if there exists a run o € @ over the same word w s.t. DS(p,d) <
DS(o,d). We abuse notation, and use w € A to mean w € L(A) for Biichi
automaton or DS-automaton A. We limit ourselves to integer discount-factors
only. Given DS-automata P and @ and discount-factor d > 1, the discounted-
sum inclusion problem, denoted by P C; @, determines whether for all words
we XY, wtp(w) < wtg(w).

Comparator Automata. For natural number p, integer discount-factor d > 1
and inequality relation <, the discounted-sum comparator .A’i’d, comparator, in
short, is a Biichi automaton that accepts (infinite) words over the alphabet
{0,1...,0—1} x {0,1...,u — 1} such that a pair (A4, B) of sequences is in
L(AY) iff DS(A,d) < DS(B,d). Closure properties of Biichi automata ensure
that comparator exists for all inequality relations [9].

Motivating Example. As an example of such a problem formulation, con-
sider the system and specification in Figs. 1 and 2, respectively [15]. Here, the
specification P depicts the worst-case energy-consumption model for a motor,
and the system S is a candidate implementation of the motor. Transitions in S
and P are labeled by transition-action and transition-cost. The cost of an exe-
cution (a sequence of actions) is given by an aggregate of the costs of transitions
along its run (a sequence of automaton states). In non-deterministic automata,
where each execution may have multiple runs, cost of the execution is the cost of
the run with maximum cost. A critical question here is to check whether imple-
mentation S is more energy-efficient than specification P. This problem can be
framed as a problem of quantitative inclusion between S and P.

3 Prior Work

We discuss existing algorithms for DS-inclusion i.e. DetLP and BCV in detail.

3.1 DetLP: DS-determinization and LP-based

Boker and Henzinger studied complexity and decision-procedures for deter-
minization of DS-automata in detail [10]. They proved that a DS-automata can

Automata vs Linear-Programming Discounted-Sum Inclusion 103

be determinized if it is complete, all its states are accepting states and the
discount-factor is an integer. Under all other circumstances, DS-determinization
may not be guaranteed. DS-determinization extends subset-construction for
automata over finite words. Every state of the determinized DS-automata is
represented by an |S|-tuple of numbers, where S = {q1,...qs} denotes the set
of states of the original DS-automaton. The value stored in the i-th place in the
|S|-tuple represents the “gap” or extra-cost of reaching state ¢; over a finite-word
w compared to its best value so far. The crux of the argument lies in proving
that when the DS-automata is complete and the discount-factor is an integer, the
“gap” can take only finitely-many values, yielding finiteness of the determinized
DS-automata, albeit exponentially larger than the original.

Theorem 1 [10] [DS-determinization analysis]. Let A be a complete DS-
automata with mazximum weight i over transitions and s number of states. DS-
determinization of A generates a DS-automaton with at most u° states.

Chatterjee et al. reduced P C; @ between non-deterministic DS-automata P and
deterministic DS-automata @) to linear-programming [7,8,15]. First, the product
DS-automata P x @ is constructed so that (sp,sg) — (tp,tg) is a transition
with weight wp —wq if transition sys 2, ¢ty with weight wy is present in M, for
M e {P,Q}. P C, Q is False iff the weight of any word in P x @ is greater than
0. Since @ is deterministic, it is sufficient to check if the maximum weight of all
infinite paths from the initial state in P x @ is greater than 0. For discounted-
sum, the maximum weight of paths from a given state can be determined by
a linear-program: Each variable (one for each state) corresponds to the weight
of paths originating in this state, and transitions decide the constraints which
relate the values of variables (or states) on them. The objective is to maximize
weight of variable corresponding to the initial state.

Therefore, the DetLP method for P C4 @ is as follows: Determinize @ to
Qp via DS-determinization method from [10], and reduce P C4; @p to linear
programming following [15]. Note that since determinization is possible only if
the DS-automaton is complete, DetLP can be applied only if) is complete.

Lemma 1. Let P and Q be non-deterministic DS-automata with sp and sq
number of states respectively, Tp states in P. Let the alphabet be X and mazimum
weight on transitions be . Then P Cyq Q is reduced to linear programming with
O(sp - u°?) variables and O(1p - p*@ - | X)) constraints.

Anderson and Conitzer [7] proved that this system of linear equations can be
solved in O(m - n?) for m constraints and n variables. Therefore,

Theorem 2 [7,15] [Complexity of DetLP]. Let P and Q be DS-automata with sp
and sg number of states respectively, Tp states in P. Let the alphabet be X~ and
mazimum weight on transitions be u. Complezity of DetLP is O(s%-1p-p@-|X]).

104 S. Bansal et al.

1: Input: Weighted automata P, @, and discount-factor d
2: Output: True if P C,4 @, False otherwise

3: P — AugmentWtAndLabel(P)

4: Q — AugmentWtAndLabel(Q)

5: PxQ — MakeProductSameAIpha(I:’,Q)

6: p — MaxWeight(P, Q)

7: A% — MakeComparator(y, d)

8: DimWithWitness — Intersect(P x Q, A*%)

9: Dim « FirstProject(Dim With Witness)

10: return P = Dim

Algorithm 1. BCV(P,Q,d), Is P C4 Q7

3.2 BCV: Comparator-based approach

The key idea behind BCV is that P C; @ holds iff every run of P is a diminished
run. As a result, BCV constructs an intermediate Biichi automaton Dim that
consists of all diminished runs of P. It then checks whether Dim consists of all
runs of P, by determining language-equivalence between Dzm and an automa-
ton P that consists of all runs of P. The comparator .A” % is utilized in the
construction of Dim to compare weight of runs in P and Q.

Strictly speaking, BCV as presented in [9], is a generic algorithm for inclu-
sion under a general class of aggregate functions, called w-regular aggregate
functions. Here, BCV (Algorithm 1) refers to its adaptation to DS. Procedure
AugmentWtAndLabel separates between runs of the same word in DS-automata
by assigning a unique transition-identity to each transition. It also appends the
transition weight, to enable weight comparison afterwards. Specifically, it trans-
forms DS-automaton A into Biichi automaton A, with all states as accepting, by
converting transition 7 = s — ¢ with weight wt and unique transition-identity

(a,t,0) ¢t in A. Procedure MakeProductSameAIpha(P, Q)

(a,na,la)
—

[to transition 7 = s

takes the product of P and Q over the same word i.e., transitions s 4 ta
A np,lp,ng,l
in A, for A € {P,Q}, generates transition (sp,sq) it TN (tp,tg)

in P x Q The comparator A‘é’d is constructed with upper-bound g that
equals the maximum weight of transitions in P and @, and discount-factor d.
Intersect matches the alphabet of P x Q with .A , and intersects them. The
resulting automaton Dim WithWitness accepts Word (w,wtp,idp,wtg, idg) iff
DS(wtp,d) < DS(wtg,d). The projection of Dim With Witness on the first three
components of P returns Dim which contains the word (w,wtp,idp) iff it is a
diminished run in P. Finally, language-equivalence between Dim and P returns
the answer.

Unlike DetLP, BCV operates on incomplete DS-automata as well, and can be
extended to DS-automata in which not all states are accepting.

Automata vs Linear-Programming Discounted-Sum Inclusion 105

4 QulP: BCV-based Solver for DS-inclusion

We investigate more closely why BCV does not lend itself to a practical imple-
mentation for DS-inclusion (Sect.4.1). We identify its drawbacks, and propose
an improved algorithm QulP as is described in Sect.4.3. QulP improves upon
BCV by means of a new optimized comparator that we describe in Sect. 4.2.

4.1 Analysis of BCV

The proof for PSPACE-complexity of BCV relies on LI to be PSPACE. In practice,
though, implementations of LI apply Ramsey-based inclusion testing [6], rank-
based methods [18] etc. All of these algorithms are exponential in time and space
in the worst case. Any implementation of BCV will have to rely on an Ll-solver.
Therefore, in practice BCV is also exponential in time and space. In fact, we
show that its worst-case complexity (in practice) is poorer than DetLP.

Another reason that prevents BCV from practical implementations is that
it does not optimize the size of intermediate automata. Specifically, we show
that the size and transition-density of Dim, which is one of the inputs to LI-
solver, is very high (Transition density is the ratio of transitions to states). Both
of these parameters are known to be deterrents to the performance of existing
Ll-solvers [5], subsequently to BCV as well:

Lemma 2. Let sp, sqQ, sq and Tp, 7, Tq denote the number of states and
transitions in P, Q, and Ai’d, respectively. Number of states and transitions in
Dim are O(spsgsaq) and O(T%TéTCAED, respectively.

Proof. 1t is easy to see that the number of states and transitions of P Q are
the same as those of P and @, respectively. Therefore, the number of states and
transitions in Px Q are O(spsq) and O(7p7q), respectively. The alphabet of P x
Q is of the form (a, wty, idy, wta, ids) for a € X' wty, wis are non-negative weights
bounded by p and id; are unique transition-ids in P and @ respectively. The
alphabet of comparator A’i’d is of the form (wty, wty). To perform intersection
of these two, the alphabet of comparator needs to be matched to that of the
product, causing a blow-up in number of transitions in the comparator by a factor
of | X|-7p-7q. Therefore, the number of states and transitions in Dim With Witness
and Dim is given by O(spsqsa) and O(157574|2]).

The comparator is a non-deterministic Biichi automata with O(u?) states
over an alphabet of size p? [9]. Since transition-density § = |S| - |¥| for non-
deterministic Biichi automata, the transition-density of the comparator is O(u*).
Therefore,

Corollary 1. Let sp, sg, sq denote the number of states in P, Q, Ai’d, respec-
tively, and dp, 6g and dq be their transition-densities. Number of states and
transition-density of Dim are O(spsgu?®) and O(5pdgTpTg - u* - |X|), respec-
tively.

106 S. Bansal et al.

The corollary illustrates that the transition-density of Dim is very high even for
small inputs. The blow-up in number of transitions of Dim WithWitness (hence
Dim) occurs during alphabet-matching for Biichi automata intersection (Algo-

rithm 1, Line 8). However, the blow-up can be avoided by performing intersection
((I,TLP 7idp nQ ,’idQ)

over a substring of the alphabet of P x Q Specifically, if s; S
and 1 Lwhwha), ty are transitions in P x @ and comparator A’i’d respectively,

(a,np ,idp nQ 7idQ)

then (s1,t1,1%) (s2,t2,7) is a transition in the intersection iff
np = wty and ng = wte, where j = (i1+1) mod 2 if either s; or ¢; is an accept-
ing state, and j = ¢ otherwise. We call intersection over substring of alphabet
IntersectSelectAlpha. The following is easy to prove:

Lemma 3. Let A = Intersect(f? X Q,A’é’d), and Ay = IntersectSeIectAIpha(p X
Q, Aé’d). Intersect extends alphabet of A‘é’d to match the alphabet of P x Q and

IntersectSelectAlpha selects a substring of the alphabet ofp X Q as defined above.
Then, L(A1) = L(Ag).

IntersectSelectAlpha prevents the blow-up by |X| - 7p - 7, resulting in only
O(7tpTgTa) transitions in Dim Therefore,

Lemma 4 [Trans. Den. in BCV]. Let §p, dg denote transition-densities of P
and @, resp., and p be the upper bound for comparator Ai’d. Number of states
and transition-density of Dim are O(spsqu?) and O(6pdg - u*), respectively.

Language-equivalence is performed via tools for language-inclusion. The most
effective tool for language-inclusion RABIT [1] is based on Ramsay-based inclu-
sion testing [6]. The worst-case complexity for A C B via Ramsay-based inclusion
testing is known to be 20("2), when B has n states. Therefore,

Theorem 3 [Practical complexity of BCV]. Let P and Q be DS-automata with
sp, s number of states respectively, and mazimum weight on transitions be p.
Worst-case complexity for BCV for integer discount-factor d > 1 when language-
equivalence is performed via Ramsay-based inclusion testing is 90(sh-sgn")

Recall that language-inclusion queries are P C Dim and Dim C P. Since Dim
has many more states than P, the complexity of P C Dim dominates.

Theorems 2 and 3 demonstrate that the complexity of BCV (in practice) is
worse than DetLP.

4.2 Baseline Automata: An Optimized Comparator

The 200" dependence of BCV on the number of states s of the comparator
motivates us to construct a more compact comparator. Currently a comparator
consists of O(u?) number of states for upper bound g [9]. In this section, we
introduce the related concept of baseline automata which consists of only O(u)-
many states and has transition density of O(u?).

Automata vs Linear-Programming Discounted-Sum Inclusion 107

Definition 1 (Baseline automata). For natural number u, integer discount-
factor d > 1 and relation R, for R € {<,>,<,>,=}, the DSbaseline automata
B%’d, baseline in short, is a Bichi automaton that accepts (infinite) words over
the alphabet {—(p—1),..., 0 —1} s.t. sequences V € E(Bj‘%’d) iff DS(V,d) R 0.

Semantically, a baseline automata with upper bound pu, discount-factor d and
inequality relation R is the language of all integer sequences bounded by p for
which their discounted-sum is related to 0 by the relation R. Baseline automata
can also be said to be related to cut-point languages [14].

Since DS(A,d) < DS(B,d) = DS(A — B,d) < 0, A% accepts (A, B) iff B4
accepts (A — B), regularity of baseline automata follows straight-away from the
regularity of comparator. In fact, the automaton for B’é’d can be derived from

A’Qd by transforming the alphabet from (a,b) to (a — b) along every transition.
The first benefit of the modified alphabet is that its size is reduced from u? to
2 - p — 1. In addition, it coalesces all transitions between any two states over
alphabet (a,a 4 v), for all a, into one single transition over v, thereby also
reducing transitions. However, this direct transformation results in a baseline
with O(u?) states. We provide a construction of baseline with O(u) states only.

The key idea behind the construction of the baseline is that the discounted-
sum of sequence V can be treated as a number in base d i.e. DS(V,d) =
220 Vd[f] = (V[0].V[1]V[2]...)q. So, there exists a non-negative value C' in base
d s.t. V 4+ C =0 for arithmetic operations in base d. This value C can be repre-
sented by a non-negative sequence C s.t. DS(C,d) + DS(V,d) = 0. Arithmetic
in base d over sequences C' and V result in a sequence of carry-on X such that:

Lemma 5. Let V,C, X be the number sequences, d > 1 be a positive integer
such that following equations holds true:

1. When i =0, V[0] + C[0] + X[0] = 0
2. Wheni>1, Vi + Cli] + X[i] = d - X[i — 1]

Then DS(V,d) + DS(C,d) = 0.

In the construction of the comparator, it has been proven that when A and
B are bounded non-negative integer sequences s.t. DS(A,d) < DS(B,d), the
corresponding sequences C' and X are also bounded integer-sequences [9]. The
same argument transcends here: When V is a bounded integer sequence s.t.
DS(V,d) <0, there exists a corresponding pair of bounded integer sequence C'
and X. In fact, the bounds used for the comparator carry over to this case as
well. Sequence C' is non-negative and is bounded by pc = - ﬁ since — ¢ is
the minimum value of discounted-sum of V', and integer-sequence X is bounded
by ppx = 14 z%5. On combining Lemma 5 with the bounds on X and C we get:

Lemma 6. Let V and be an integer-sequence bounded by p s.t. DS(V,d) < 0,
and X be an integer sequence bounded by (1 + 57), then there exists an X s.t.

108 S. Bansal et al.

1. Wheni=0,0< —(X[0]+ V[0]) < pr- 7%=
2. Wheni>1,0<(d-X[i—1]—-V[i]— X[i]) <p- 7%

Equations 1-2 from Lemma 6 have been obtained by expressing C|[¢] in terms of
XTi], X[i—1], V[i] and d, and imposing the non-negative bound of pc = p- 7% on
the resulting expression. Therefore, Lemma 6 implicitly captures the conditions
on C by expressing it only in terms of V', X and d for DS(V,d) < 0 to hold.

In construction of the baseline automata, the values of V[i] is part of the
alphabet, upper bound p and discount-factor d are the input parameters. The
only unknowns are the value of X|[i]. However, we know that it can take only
finitely many values i.e. integer values | X [i]| < px. So, we store all possible values
of X[i] in the states. Hence, the state-space S comprises of {(x)||z| < px} and a
start state s. Transitions between these states are possible iff the corresponding
z-values and alphabet v satisfy the conditions of Eqs. 1-2 from Lemma 6. There is
a transition from start state s to state (z) on alphabet v if 0 < —(z4v) < p- 5%,
and from state (x) to state (') on alphabet vif 0 < (d-x —v—2') < pu- %. All
(z)-states are accepting. This completes the construction for baseline automaton
B’Qd. Clearly Bi’d has only O(u) states.

Since Biichi automata are closed under set-theoretic operations, baseline
automata is w-regular for all other inequalities too. Moreover, baseline automata
for all other inequalities also have O(u) states. Therefore for sake of completion,
we extend B%? to construct B For DS(V,d) < 0, DS(C,d) > 0 (implic-
itly generated C). Since C is a non-negative sequence it is sufficient if at least
one value of C is non-zero. Therefore, all runs are diverted to non-accepting
states (z, L) using the same transitions until the value of ¢ is zero, and moves
to accepting states (z) only if it witnesses a non-zero value for ¢. Formally,

Construction. Let puc = u - d%‘ll < 2-pand px = 1+ 4. B’é’d _
(S, X, 04, Init, F)

- S =InituFUS,; where
Init = {s}, F ={z||z| < px}, and
S1 ={(z, L)||z] < px} where L is a special character, and x € Z.
- X ={v:|v| < p} where v is an integer.
— 04 C S x X xS is defined as follows:
1. Transitions from start state s:
i. (s,v,z) forallz € Fst. 0<—(xz+v)<puc
ii. (s,v,(x, L)) forall (z,L)€ S, st.z+v=0
2. Transitions within S, : ((z, 1),v,(2’, L)) for all (x, 1), («/,1) € S, if
d-z=v+a
3. Transitions within F: (z,v,2) for all z,2’ e Fif0<d-z—v—2' <d
4. Transition between S, and F: ((x,1),v,2’) for (x, 1) € Sy, ' € F if
O<d-z—v—12'<d

Theorem 4 [Baseline]. The Biichi automaton constructed above is the baseline
B’é’d with upper bound p, integer discount-factor d > 1 and relation <.

The baseline automata for all inequality relations will have O(u) states, alphabet
size of 2+ u — 1, and transition-density of O(u?).

Automata vs Linear-Programming Discounted-Sum Inclusion 109

1: Input: Weighted automata P, @, and discount-factor d
2: Output: True if P C,4 @, False otherwise

3: P — AugmentWtAndLabel(P)

4: Q — AugmentWt(Q)

5: PxQ — MakeProductSameAIpha(I:’, Q)

6: A — MakeBaseline(u, d, <)

7: DimWithWitness «— IntersectSelectAlpha(P x Q, A)

8: Dim « ProjectOutWt(Dim With Witness)

9: Py — PrOJectOutWt(P)

10: return P,wt C Dim

Algorithm 2. QuIP(P,Q,d), Is P C4 Q?

4.3 QulP: Algorithm Description

The construction of the universal leads to an implementation-friendly QulP from
BCV. The core focus of QulP is to ensure that the size of intermediate automata is
small and they have fewer transitions to assist the Ll-solvers. Technically, QulP
differs from BCV by incorporating the baseline automata and an appropriate
IntersectSelectAlpha function, rendering QulP theoretical improvement over BCV.
Like BCV, QulIP also determines all diminished runs of P. So, it disambiguates
P by appending weight and a unique label to each of its transitions. Since,
the identity of runs of @ is not important, we do not disambiguate between
runs of @, we only append the weight to each transition (Algorithm 2, Line 4).
The baseline automaton is constructed for discount-factor d, maximum weight
w1 along transitions in P and), and the inequality <. Since the alphabet of the
baseline automata are integers between —pu to p, the alphabet of the product
P x Q is adjusted accordingly. Specifically, the weight recorded along transitions
in the product is taken to be the difference of weight in P to that in Q ie if 7p:

ay,wty,l ag,wto .. . 7~ A .
51 —— sy and 7g : t; ——— t9 are transitions in P and) respectively, then

T = (s1,t1) (s2,t2) is a transition in P x Q iff a; = ay (Algorithm 2,
Line 5). In this case, IntersectSelectAlpha intersects baseline automata .4 and

product Px Q only on the weight-component of alphabet in P x Q Specifically,

. (a,wtq,l) wis .. . A A d
if s ——% s5 and t; — to are transitions in P x) and comparator A’Q

ay,wty —wto,l
e e

. . s N N
respectively, then (s1,¢1,1%) LILIZIN (s2,t2,7) is a transition in the intersection

iff wt; = wty, where j = (¢ +1) mod 2 if either s or ¢; is an accepting state,
and j = i otherwise. Automaton Dim and P_,,; are obtained by project out the
weight-component from the alphabet of PxQand P respectively. The alphabet
of P x Q and P are converted from (a,wt,l) to only (a,l). It is necessary to
project out the weight component since in P x Q they represent the difference
of weights and in P they represent the absolute value of weight.

Finally, the language of Dim is equated with that of P_,; which is the
automaton generated from P after discarding weights from transitions. However,
it is easy to prove that Dim C P_ . Therefore, instead of language-equivalence

110 S. Bansal et al.

between Dim and P_wt and, it is sufficient to check whether P_wt C Dim. As a
result, QulP utilizes Ll-solvers as a black-box to perform this final step.

Lemma 7 [Trans. Den. in QulP]. Let dp, dg denote transition-densities of P
and @, resp., and p be the upper bound for baseline B%’d. Number of states and
transition-density of Dim are O(spsqu) and O(6pdg - u?), respectively.

Theorem 5 [Practical complexity of QulP|. Let P and Q) be DS-automata with
sp, sq number of states, respectively, and maximum weight on transitions be p.
Worst-case complexity for QulP for integer discount-factor d > 1 when language-
equivalence is performed via Ramsay-based inclusion testing is 90(sh-s41%)

Theorem 5 demonstrates that while complexity of QuIP (in practice) improves
upon BCV (in practice), it is still worse than DetLP.

5 Experimental Evaluation

We provide implementations of our tools QulP and DetLP and conduct experi-
ments on a large number of synthetically-generated benchmarks to compare their
performance. We seek to find answers to the following questions: (1). Which tool
has better performance, as measured by runtime, and number of benchmarks
solved? (2). How does change in transition-density affect performance of the
tools? (3). How dependent are our tools on their underlying solvers?

5.1 Implementation Details

We implement our tools QulP and DetLP in C4++, with compiler optimization
03 enabled. We implement our own library for all Biichi-automata and DS-
automata operations, except for language-inclusion for which we use the state-
of-the-art LI-solver RABIT [4] as a black-box. We enable the -fast flag in RABIT,
and tune its JAVA-threads with Xss, Xms, Xmx set to 1 GB, 1GB and 8 GB
respectively. We use the large-scale LP-solver GLPSOL provided by GLPK (GNU
Linear Programming Kit) [2] inside DetLP. We did not tune GLPSOL since it
consumes a very small percentage of total time in DetLP, as we see later in Fig. 4.

We also employ some implementation-level optimizations. Various steps of
QulP and DetLP such as product, DS-determinization, baseline construction,
involve the creation of new automaton states and transitions. We reduce their
size by adding a new state only if it is reachable from the initial state, and a
new transition only if it originates from such a state.

The universal automata is constructed on the restricted alphabet of only
those weights that appear in the product P x Q to include only necessary tran-
sitions. We also reduce its size with Biichi minimization tool Reduce [4].

Since all states of P x Q are accepting, we conduct the intersection so that
it avoids doubling the number of product states. This can be done, since it is
sufficient to keep track of whether words visit accepting states in the universal.

Automata vs Linear-Programming Discounted-Sum Inclusion 111

5.2 Benchmarks

To the best of our knowledge, there are no standardized benchmarks for DS-
automata. We attempted to experimented with examples that appear in research
papers. However, these examples are too few and too small, and do not render
an informative view of performance of the tools. Following a standard approach
to performance evaluation of automata-theoretic tools [5,19,22], we experiment
with our tools on randomly generated benchmarks.

Random Weighted-Automata Generation. The parameters for our ran-
dom weighted-automata generation procedure are the number of states NN,
transition-density J and upper-bound p for weight on transitions. The states are
represented by the set {0,1,..., N —1}. All states of the weighted-automata are
accepting, and they have a unique initial state 0. The alphabet for all weighted-
automata is fixed to X' = {a, b}. Weight on transitions ranges from 0 to u—1. For
our experiments we only generate complete weighted-automata. These weighted
automata are generated only if the number of transitions |V - §] is greater than
N -|X|, since there must be at least one transition on each alphabet from every
state. We first complete the weighted-automata by creating a transition from
each state on every alphabet. In this case the destination state and weight are
chosen randomly. The remaining (N-|X|—|N-J§])-many transitions are generated
by selecting all parameters randomly i.e. the source and destination states from
{0,... N — 1}, the alphabet from X, and weight on transition from {0, ux — 1}.

5.3 Design and Setup for Experimental Evaluation

Our experiments were designed with the objective to compare DetLP and QulP.
Due to the lack of standardized benchmarks, we conduct our experiments on
randomly-generated benchmarks. Therefore, the parameters for P C; @ are the
number of states sp and sg, transition density J, and maximum weight wt. We
seek to find answers to the questions described at the beginning of Sect. 5.

Each instantiation of the parameter-tuple (sp, sg,d, wt) and a choice of tool
between QulP and DetLP corresponds to one experiment. In each experiment,
the weighted-automata P and () are randomly-generated with the parameters
(sp,d,wt) and (sq, d, wt), respectively, and language-inclusion is performed by
the chosen tool. Since all inputs are randomly-generated, each experiment is
repeated for 50 times to obtain statistically significant data. Fach experiment is
run for a total of 1000 sec on for a single node of a high-performance cluster.
Each node of the cluster consists of two quad-core Intel-Xeon processor running
at 2.83 GHz, with 8 GB of memory per node. The runtime of experiments that do
not terminate within the given time limit is assigned a runtime of co. We report
the median of the runtime-data collected from all iterations of the experiment.

These experiments are scaled-up by increasing the size of inputs. The worst-
case analysis of QuIP demonstrates that it is symmetric in sp and sg, making
the algorithm impartial to which of the two inputs is scaled (Theorem 5). On the
other hand, complexity of DetLP is dominated by sg (Theorem 2). Therefore,
we scale-up our experiments by increasing s¢g only.

112 S. Bansal et al.

Since DetLP is restricted to complete automata, these experiments are con-
ducted on complete weighted automata only. We collect data on total runtime
of each tool, the time consumed by the underlying solver, and the number of
times each experiment terminates with the given resources. We experiment with
sp = 10, § ranges between 2.5—4 in increments of 0.5 (we take lower-bound of
2.5 since | X| = 2), wt € {4,5}, and s¢g ranges from 0-1500 in increments of 25,
d = 3. These sets of experiments also suffice for testing scalability of both tools.

5.4 Observations

We first compare the tools based on the number of benchmarks each can solve.
We also attempt to unravel the main cause of failure of each tool. Out of
the 50 experiments for each parameter-value, DetLP consistently solves more
benchmarks than QulP for the same parameter-values (Fig. 3a-b)!. The figures
also reveal that both tools solve more benchmarks at lower transition-density.
The most common, in fact almost always, reason for QulP to fail before its
timeout was reported to be memory-overflow inside RABIT during language-
inclusion between I:’_wt and Dim. On the other hand, the main cause of fail-
ure of DetLP was reported to be memory overflow during DS-determinization
and preprocessing of the determinized DS-automata before GLPSOL is invoked.
This occurs due to the sheer size of the determinized DS-automata, which
can very quickly become very large. These empirical observations indicate that
the bottleneck in QulP and DetLP may be language-inclusion and explicit DS-
determinization, respectively.

We investigate the above intuition by analyzing the runtime trends for both
tools. Figure 4a plots the runtime for both tools. The plot shows that QulP fares
significantly better than DetLP in runtime at § = 2.5. The plots for both the tools
on logscale seem curved (Fig. 4a), suggesting a sub-exponential runtime complex-
ity. These were observed at higher § as well. However, at higher § we observe very
few outliers on the runtime-trend graphs of QulP at larger inputs when just a few
more than 50% of the runs are successful. This is expected since effectively, the
median reports the runtime of the slower runs in these cases. Figure 4b records
the ratio of total time spent inside RABIT and GLPSOL. The plot reveals that
QulP spends most of its time inside RABIT. We also observe that most memory
consumptions in QulP occurs inside RABIT. In contrast, GLPSOL consumes a
negligible amount of time and memory in DetLP. Clearly, performance of QulP
and DetLP is dominated by RABIT and explicit DS-determinization, respectively.
We also determined how runtime performance of tools changes with increasing
discount-factor d. Both tools consume lesser time as d increases.

Finally, we test for scalability of both tools. In Fig. 5a, we plot the median of
total runtime as s increases at 6 = 2.5,3 (sp = 10, o = 4) for QuIP. We attempt
to best-fit the data-points for each 0 with functions that are linear, quadratic
and cubic in sg using squares of residuals method. Figure 5b does the same for

! Figures are best viewed online and in color.

Automata vs Linear-Programming Discounted-Sum Inclusion

Number of problems solved

T T T T T

T
QP+
DetlP X DetlP X
5 60 1 s 6of
b 3
I ” | I |
3 % 0056, s X 5 SO RS XXX
] +X X, X S
£ H Ry = X X XX
40 | e X 40 | +# X 4
T + F ? PP X7 x
E + E X %
S 30f g S 30 x g
2 w + + ><><>°<
5 20f B 5 2f + B
) o + X
° g %
< 10} 4 < 10} + P eal X 4
PR b5 J:ﬁ&xxxx>Sz<
L L L L L L L 0 L L et T e & PR 8

200 400 600 800

#States

(a)

1000 1200 1400

1600

Number of problems solved

113

70

T T T T T

T
Quip +

0

800
#States

(b)

200 400 600 1000 1200

1400

1600

Fig. 3. Number of benchmarks solved out of 50 as sq increases with sp = 10, pu = 4.
0 =2.5 and 6 =4 in Fig. 3a and b, respectively.

1000

Time plot comparison

T T T T T T T

Total time ratio spent inside solver

T T T T T

%WWW 1 Que’——
PX DetlP —%— 1
@ 100 | M E
s
? 522 0.8 1
g 3 + WE SRR
8 10 %)X(T i
g X EEENENC o 06 d
3 Y RS 1 2
< AT &
@ S 0.4 1
£ 0.1 X E
=
© o001} 4 0.2 k 4
0.001 L L L L L L L 0
200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600
#States #States
(a) (b)

Fig. 4. Time trends: Fig. 4a plots total runtime as s increases sp = 10, = 4, § = 2.5.
Figure shows median-time for each parameter-value. Figure 4b plots the ratio of time
spent by tool inside its solver at the same parameter values.

DetLP. We observe that QulP and DetLP are best fit by functions that are linear
and quadratic in sq, respectively.

Inferences and Discussion. Our empirical analysis arrives at conclusions
that a purely theoretical exploration would not have. First of all, we observe that
despite having a the worse theoretical complexity, the median-time complexity of
QuIP is better than DetLP by an order of n. In theory, QulP scales exponentially
in sg, but only linearly in sg in runtime. Similarly, runtime of DetLP scales
quadratically in sg. The huge margin of complexity difference emphasizes why
solely theoretical analysis of algorithms is not sufficient.

Earlier empirical analysis of Ll-solvers had made us aware of their dependence
on transition-density J. As a result, we were able to design QuIP cognizant of
parameter §. Therefore, its runtime dependence on § is not surprising. How-
ever, our empirical analysis reveals runtime dependence of DetLP on §. This
is unexpected since § does not appear in any complexity-theoretic analysis of
DetLP (Theorem 1). We suspect this behavior occurs because the creation of
each transition, say on alphabet a, during DS-determinization requires the pro-
cedure to analyze every transition on alphabet a in the original DS-automata.

114

Total Time (in sec)

S. Bansal et al.

Median runtime for QuIP

+ i

200 400 600 800 1000 1200 1400

#States

(a)

1600

Total Time (in sec)

800

700

600

500

400

300

200

100 |

Median runtime for DetLP

i n n n
200 400 600 800 1000

#States

(b)

n
1200

n
1400 1600

Fig. 5. Scalability of QuIP (Fig.5a) and DetLP (Fig.5b) at § = 2.5, 3. Figures show
median-time for each parameter-value.

Higher the transition-density, more the transitions in the original DS-automata,
hence more expensive is the creation of transitions during DS-determinization.

We have already noted that the performance of QulP is dominated by
RABIT in space and time. Currently, RABIT is implemented in Java. Although
RABIT surpasses all other Ll-solvers in overall performance, we believe it can
be improved significantly via a more space-efficient implementation in a more
performance-oriented language like C++. This would, in-turn, enhance QulP.

The current implementation of DetLP utilizes the vanilla algorithm for DS-
determinization. Since DS-determinization dominates DetLP, there is certainly
merit in designing efficient algorithms for DS-determinization. However, we sus-
pect this will be of limited advantage to DetLP since it will persist to incur the
complete cost of explicit DS-determinization due to the separation of automata-
theoretic and numeric reasoning.

Based on our observations, we propose to extract the complementary
strengths of both tools: First, apply QulP with a small timeout; Since
DetLP solves more benchmarks, apply DetLP only if QulP fails.

6 Concluding Remarks and Future Directions

This paper presents the first empirical evaluation of algorithms and tools for DS-
inclusion. We present two tools DetLP and QulP. Our first tool DetLP is based
on explicit DS-determinization and linear programming, and renders an expo-
nential time and space algorithm. Our second tool QulP improves upon a pre-
viously known comparator-based automata-theoretic algorithm BCV by means
of an optimized comparator construction, called universal automata. Despite its
PSPACE-complete theoretical complexity, we note that all practical implemen-
tations of QulP are also exponential in time and space.

The focus of this work is to investigate these tools in practice. In theory,
the exponential complexity of QulP is worse than DetLP. Our empirical evalu-
ation reveals the opposite: The median-time complexity of QulP is better than
DetLP by an order of n. Specifically, QulP scales linearly while DetLP scales
quadratically in the size of inputs. This re-asserts the gap between theory and

Automata vs Linear-Programming Discounted-Sum Inclusion 115

practice, and aserts the need of better metrics for practical algorithms. Further
emprirical analysis by scaling the right-hand side automaton will be beneficial.

Nevertheless, DetLP consistently solves more benchmarks than QulP. Most
of QulP’s experiments fail due to memory-overflow within the Ll-solver, indicat-
ing that more space-efficient implementations of Ll-solvers would boost QulP’s
performance. We are less optimistic about DetLP though. Our evaluation high-
lights the impediment of explicit DS-determinization, a cost that is unavoidable
in DetLP’s separation-of-concerns approach. This motivates future research that
integrates automata-theoretic and numerical reasoning by perhaps combining
implicit DS-determinzation with baseline automata-like reasoning to design an
on-the-fly algorithm for DS-inclusion.

Last but not the least, our empirical evaluations lead to discovering depen-
dence of runtime of algorithms on parameters that had not featured in their
worst-case theoretical analysis, such as the dependence of DetLP on transition-
density. Such evaluations build deeper understanding of algorithms, and will
hopefully serve a guiding light for theoretical and empirical investigation in-
tandem of algorithms for quantitative analysis

Acknowledgements. We thank anonymous reviewers for their comments. We thank
K. S. Meel, A. A. Shrotri, L. M. Tabajara, and S. Zhu for helpful discussions. This work
was partially supported by NSF Grant No. 1704883, “Formal Analysis and Synthesis
of Multiagent Systems with Incentives”.

References

RABIT: Ramsey-based Biichi automata inclusion testing
GLPK. https://www.gnu.org/software/glpk/
GOAL. http://goal.im.ntu.edu.tw/wiki/
Rabit-Reduce. http://www.languageinclusion.org/
Abdulla, P.A., et al.: Simulation subsumption in Ramsey-based Biichi automata
universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 132-147. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6_14

6. Abdulla, P.A.| et al.: Advanced Ramsey-based Biichi automata inclusion testing.
In: Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187-202.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_13

7. Andersen, G., Conitzer, V.: Fast equilibrium computation for infinitely repeated
games. In: Proceedings of AAAI pp. 53-59 (2013)

8. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session, pp. 91-98 (2006)

9. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative ver-
ification. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp.
420-437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_23

10. Boker, U., Henzinger, T. A.: Exact and approximate determinization of discounted-
sum automata. LMCS, 10(1) (2014)

11. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In Pro-

ceedings of LICS, pp. 750-761 (2015)

Crs W=

https://www.gnu.org/software/glpk/
http://goal.im.ntu.edu.tw/wiki/
http://www.languageinclusion.org/
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-319-89366-2_23

116 S. Bansal et al.

12. Cerny, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243-259. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1_20

13. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Quantitative abstraction refinement.
ACM SIGPLAN Not. 48(1), 115-128 (2013)

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: Proceedings of LICS, pp. 199-208. IEEE (2009)

15. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
put. Log. 11(4), 23 (2010)

16. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325-336. Springer, Heidelberg (2006). https://doi.org/10.1007/
1167214226

17. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

18. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Trans.
Comput. Log. 2(3), 408—429 (2001)

19. Mayr, R., Clemente, L.: Advanced automata minimization. ACM SIGPLAN Not.
48(1), 63-74 (2013)

20. Rubinstein, A.: Finite automata play the repeated prisoner’s dilemma. J. Econ.
Theory 39(1), 83-96 (1986)

21. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177-192 (1970)

22. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp- 396-411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_28

23. Mazala, R.: Infinite games. In: Gradel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23-38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4_2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/11591191_28
https://doi.org/10.1007/3-540-36387-4_2
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Model Checking Indistinguishability
of Randomized Security Protocols

Matthew S. Bauer’* (™) Rohit Chadha2, A. Prasad Sistla,
and Mahesh Viswanathan'

! University of Illinois at Urbana-Champaign, Champaign, USA
msbauer2@illinois.edu
2 University of Missouri, Columbia, USA
3 University of Illinois at Chicago, Chicago, USA
4 Qalois Inc., Arlington, USA

Abstract. The design of security protocols is extremely subtle and vul-
nerable to potentially devastating flaws. As a result, many tools and
techniques for the automated verification of protocol designs have been
developed. Unfortunately, these tools don’t have the ability to model and
reason about protocols with randomization, which are becoming increas-
ingly prevalent in systems providing privacy and anonymity guarantees.
The security guarantees of these systems are often formulated by means
of the indistinguishability of two protocols. In this paper, we give the
first practical algorithms for model checking indistinguishability proper-
ties of randomized security protocols against the powerful threat model of
a bounded Dolev-Yao adversary. Our techniques are implemented in the
Stochastic Protocol ANalayzer (SPAN) and evaluated on several exam-
ples. As part of our evaluation, we conduct the first automated analysis
of an electronic voting protocol based on the 3-ballot design.

1 Introduction

Security protocols are highly intricate and vulnerable to design flaws. This
has led to a significant effort in the construction of tools for the auto-
mated verification of protocol designs. In order to make automation feasi-
ble [8,12,15,23,34,48,55], the analysis is often carried out in the Dolev-Yao
threat model [30], where the assumption of perfect cryptography is made. In the
Dolev-Yao model, the omnipotent adversary has the ability to read, intercept,
modify and replay all messages on public channels, remember the communication
history as well as non-deterministically inject its own messages into the network
while remaining anonymous. In this model, messages are symbolic terms modulo

M. S. Bauer and M. Viswanathan—Partially supported by grant NSF CNS 1314485.
R. Chadha—Partially supported by grants NSF CNS 1314338 and NSF CNS
1553548.
A. Prasad Sistla—Partially supported by grants NSF CNS 1314485 and CCF
1564296.

© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 117-135, 2018.
https://doi.org/10.1007/978-3-319-96142-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_10&domain=pdf

118 M. S. Bauer et al.

an equational theory (as opposed to bit-strings) and cryptographic operations
are modeled via equations in the theory.

A growing number of security protocols employ randomization to achieve pri-
vacy and anonymity guarantees. Randomization is essential in protocols/systems
for anonymous communication and web browsing such as Crowds [49], mix-
networks [21], onion routers [37] and Tor [29]. It is also used in fair exchange [11,
35], vote privacy in electronic voting [6,20,52,54] and denial of service preven-
tion [40]. In the example below, we demonstrate how randomization is used to
achieve privacy in electronic voting systems.

Example 1. Consider a simple electronic voting protocol for 2 voters Alice and
Bob, two candidates and an election authority. The protocol is as follows. Ini-
tially, the election authority will generate two private tokens t4 and tp and
send them to Alice and Bob encrypted under their respective public keys. These
tokens will be used by the voters as proofs of their eligibility. After receiving
a token, each voter sends his/her choice to the election authority along with
the proof of eligibility encrypted under the public key of the election authority.
Once all votes have been collected, the election authority tosses a fair private
coin. The order in which Alice and Bob’s votes are published depends on the
result of this coin toss. Vote privacy demands that an adversary not be able to
deduce how each voter voted.

All the existing Dolev-Yao analysis tools are fundamentally limited to proto-
cols that are purely non-deterministic, where non-determinism models concur-
rency as well as the interaction between protocol participants and their envi-
ronment. There are currently no analysis tools that can faithfully reason about
protocols like those in Example 1, a limitation that has long been identified by
the verification community. In the context of electronic voting protocols, [28]
identifies three main classes of techniques for achieving vote privacy; blind sig-
nature schemes, homomorphic encryption and randomization. There the authors
concede that protocols based on the latter technique are “hard to address with
our methods that are purely non-deterministic.” Catherine Meadows, in her
summary of the over 30 year history of formal techniques in cryptographic pro-
tocol analysis [46,47], identified the development of formal analysis techniques
for anonymous communication systems, almost exclusively built using primitives
with randomization, as a fundamental and still largely unsolved challenge. She
writes, “it turned out to be difficult to develop formal models and analyses of
large-scale anonymous communication. The main stumbling block is the threat
model”.

In this work, we take a major step towards overcoming this long-standing
challenge and introduce the first techniques for automated Dolev-Yao anal-
ysis of randomized security protocols. In particular, we propose two algo-
rithms for determining indistinguishability of randomized security protocols and
implemented them in the Stochastic Protocol ANalyzer (SPAN). Several works
[7,9,28,32,41] have identified indistinguishability as the natural mechanism to
model security guarantees such as anonymity, unlinkability, and privacy. Con-
sider the protocol from Example 1, designed to preserve vote privacy. Such a

Model Checking Indistinguishability of Randomized Security Protocols 119

property holds if the executions of the protocol in which Alice votes for candidate
1 and Bob votes for candidate 2 cannot be distinguished from the executions of
the protocol in which Alice votes for candidate 2 and Bob votes for candidate 1.

Observe that in Example 1, it is crucial that the result of the election author-
ity’s coin toss is not visible to the adversary. Indeed if the adversary is allowed to
“observe” the results of private coin tosses, then the analysis may reveal “secu-
rity flaws” in correct security protocols (see examples in [13,17,19,22,36]). Thus,
many authors [10,13,17-19,22,26,36] have proposed that randomized protocols
be analyzed with respect to adversaries that are forced to schedule the same
action in any two protocol executions that are indistinguishable to them.

For randomized security protocols, [10,18,53] have proposed that trace equiv-
alence from the applied 7-calculus [5] serve as the indistinguishability relation
on traces. In this framework, the protocol semantics are described by partially
observable Markov decision processes (POMDPs) where the adversary’s actions
are modeled non-deterministically. The adversary is required to choose its next
action based on the partial information that it can observe about the execution
thus far. This allows us to model the privacy of coin tosses. Two security pro-
tocols are said to be indistinguishable [18,53] if their semantic descriptions as
POMDPs are indistinguishable. Two POMDPs M and M’ are said to be indis-
tinguishable if for any adversary A and trace 0, the probability of the executions
that generate the trace o with respect to A are the same for both M and M’.

Our algorithms for indistinguishability in randomized security protocols are
built on top of techniques for solving indistinguishability in finite POMDPs.
Our first result shows that indistinguishability of finite POMDPs is P-complete.
Membership in P is established by a reduction of POMDP indistinguishability
to equivalence in probabilistic finite automata (PFAs), which is known to be P-
complete [31,45,57]. Further, we show that the hardness result continues to hold
for acyclic POMDPs. An acyclic POMDP is a POMDP that has a set of “final”
absorbing states and the only cycles in the underlying graph are self-loops on
these states.

For acyclic finite POMDPs, we present another algorithm for checking indis-
tinguishability based on the technique of translating a POMDP M into a fully
observable Markov decision process (MDP), known as the belief MDP B(M) of
M. It was shown in [14] that two POMDPs are indistinguishable if and only if
the belief MDPs they induce are bisimilar as labeled Markov decision processes.
When M is acylic and finite then its belief MDP B(M) is finite and acyclic and
its bisimulation relation can be checked recursively.

Protocols in SPAN are described by a finite set of roles (agents) that interact
asynchronously by passing messages. Each role models an agent in a protocol
session and hence we only consider bounded number of sessions. An action in
a role performs either a message input, or a message output or a test on mes-
sages. The adversary schedules the order in which these actions are executed and
generates input recipes comprised of public information and messages previously
output by the agents. In general, there are an unbounded number of input recipes
available at each input step, resulting in POMDPs that are infinitely branching.

120 M. S. Bauer et al.

SPAN, however, searches for bounded attacks by bounding the size of attacker
messages. Under this assumption, protocols give rise to finite acyclic POMDPs.
Even with this assumption, protocols specified in SPAN describe POMDPs that
are exponentially larger than their description. Nevertheless, we show that when
considering protocols defined over subterm convergent equational theories, indis-
tinguishability of randomized security protocols is in PSPACE for bounded
Dolev-Yao adversaries. We further show that the problem is harder than #SATp
and hence it is both NP-hard and coNP-hard.

The main engine of SPAN translates a randomized security protocol into
an acyclic finite POMDP by recursively unrolling all protocol executions and
grouping states according to those that are indistinguishable. We implemented
two algorithms for checking indistinguishability in SPAN. The first algorithm,
called the PFA algorithm, checks indistinguishability of P and P’ by converting
them to corresponding PFAs A and A’ as in the proof of decidability of indis-
tinguishability of finite POMDPs. PFA equivalence can then be solved through
a reduction to linear programming [31]. The second algorithm, called the on-
the-fly (OTF) algorithm, is based on the technique of checking bisimulation of
belief MDPs. Although asymptotically less efficient than the PFA algorithm,
the recursive procedure for checking bisimulation in belief MDPs can be embed-
ded into the main engine of SPAN with little overhead, allowing one to analyze
indistinguishability on-the-fly as the POMDP models are constructed.

In our evaluation of the indistinguishability algorithms in SPAN, we conduct
the first automated Dolev-Yao analysis for several new classes of security pro-
tocols including dinning cryptographers networks [38], mix networks [21] and a
3-ballot electronic voting protocol [54]. The analysis of the 3-ballot protocol, in
particular, demonstrates that our techniques can push symbolic protocol verifi-
cation to new frontiers. The protocol is a full scale, real world example, which to
the best of our knowledge, hasn’t been analyzed using any existing probabilistic
model checker or protocol analysis tool.

Summary of Contributions. We showed that the problem of checking indis-
tinguishability of POMDPs is P-complete. The indistinguishability problem for
bounded instances of randomized security protocols over subterm convergent
equational theories (bounded number of sessions and bounded adversarial non-
determinism) is shown to be in PSPACE and #SATp-hard. We proposed and
implemented two algorithms in the SPAN protocol analysis tool for deciding
indistinguishability in bounded instances of randomized security protocols and
compare their performance on several examples. Using SPAN, we conducted the
first automated verification of a 3-ballot electronic voting protocol.

Related Work. As alluded to above, techniques for analyzing security protocols
have remained largely disjoint from techniques for analyzing systems with ran-
domization. Using probabilistic model checkers such as PRISM [44], STORM
[27] and APEX [42] some have attempted to verify protocols that explicitly
employ randomization [56]. These ad-hoc techniques fail to capture powerful
threat models, such as a Dolev-Yao adversary, and don’t provide a general ver-
ification framework. Other works in the Dolev-Yao framework [28,43] simply

Model Checking Indistinguishability of Randomized Security Protocols 121

abstract away essential protocol components that utilize randomization, such as
anonymous channels. The first formal framework combining Dolev-Yao analysis
with randomization appeared in [10], where the authors studied the conditions
under which security properties of randomized protocols are preserved by pro-
tocol composition. In [53], the results were extended to indistinguishability.

Complexity-theoretic results on verifying secrecy and indistinguishabil-
ity properties of bounded sessions of randomized security protocols against
unbounded Dolev-Yao adverasries were studied in [18]. There the authors con-
sidered protocols with a fixed equational theory! and no negative tests (else
branches). Both secrecy and indistinguishability were shown to be in coNEXP-
TIME, with secrecy being coNEXPTIME-hard. The analogous problems for
purely non-deterministic protocols are known to be coNP-complete [25,33,51].
When one fixes, a priori, the number of coin tosses, secrecy and indistinguisha-
bility in randomized protocols again become coNP-complete. In our asymptotic
complexity results and in the SPAN tool, we consider a general class of equational
theories and protocols that allow negative tests.

2 Preliminaries

We assume that the reader is familiar with probability distributions. For a set
X, Dist(X) shall denote the set of all discrete distributions p on X such that
u(z) is a rational number for each x € X. For x € X, ¢, will denote the Dirac
distribution, i.e., the measure p such that p(z) = 1. The support of a discrete
distribution u, denoted support(i), is the set of all elements x such that p(z) # 0.

Markov Decision Processes (MDPs). MDPs are used to model processes
that exhibit both probabilistic and non-deterministic behavior. An MDP M
is a tuple (Z,zs,Act,A) where Z is a countable set of states, z; € Z is the
initial state, Act is a countable set of actions and A : Z x Act — Dist(Z) is the
probabilistic transition function. M is said to be finite if the sets Z and Act are
finite. An execution of an MDP is a sequence p = zg R
such that zp = zs and z; 1 € support(A(z;,a;+1)) for all i € {0,...,m—1}. The
measure of p, denoted prob,(p), is Hi"!ol A(zi, ajy1)(zi41). For the execution
p, we write last(p) = z,, and say that the length of p, denoted |p|, is m. The set
of all executions of M is denoted as Exec(M).

Partially Observable Markov Decision Processes (POMDPs). A
POMDP M is a tuple (Z, z;, Act, A, O, obs) where My = (Z, z, Act, A) is an
MDP, O is a countable set of observations and obs : Z — O is a labeling of states
with observations. M is said to be finite if My is finite. The set of executions of
M, is taken to be the set of executions of M, i.e., we define Exec(M) as the set
Exec(My). Given an execution p = z L 22 2 o of M, the trace of

! The operations considered are pairing, hashing, encryption and decryption.

122 M. S. Bauer et al.

pistr(p) = obs(zg)aiobs(z1)as - - - amobs(zy,). For a POMDP M and a sequence
o€ O-(Act-O)*, the probability of in M, written prob (), is the sum of the
measures of executions in Exec(M) with trace 3. Given two POMDPs M, and
M with the same set of actions Act and the same set of observations O, we say
that Mo and M, are distinguishable if there exists o € O - (Act - O)* such that
prob \,(0) # prob,, (0). If Mg and M; cannot be distinguished, they are said
to be indistinguishable. We write My =~ M if My and M; are indistinguish-
able. As is the case in [18,53], indistinguishability can also be defined through a
notion of an adversary. Our formulation is equivalent, even when the adversary
is allowed to toss coins [18].

Probabilistic Finite Automata (PFAs). A PFA is like a finite-state deter-
ministic automaton except that the transition function from a state on a given
input is described as a probability distribution. Formally, a PFA A is a tuple
(@, X, qs,A, F) where @ is a finite set of states, X' is a finite input alphabet,
gs € @ is the initial state, A : Q x ¥ — Dist(Q) is the transition relation
and F C @ is the set of accepting states. A run p of A on an input word
u € X* = ajas---an, 18 a sequence ¢oqr - ¢n € QF such that ¢ = ¢, and
q; € support(A(gi—1,a;)) for each 1 < i < m. For the run p on word u, its
measure, denoted proby ,(p), is [];~; A(gi—1,a;:)(¢:). The run p is called accept-
ing if ¢, € F. The probability of accepting a word u € X, written probs(u),
is the sum of the measures of the accepting runs on u. Two PFAs Ag and A;
with the same input alphabet X are said to be equivalent, denoted Ay = Ay, if
proba, (u) = proby, (u) for all input words u € X*.

3 POMDP Indistinguishability

In this section, we study the underlying semantic objects of randomized security
protocols, POMDPs. The techniques we develop for analyzing POMDPs provide
the foundation for the indistinguishability algorithms we implement in the SPAN
protocol analysis tool. Our first result shows that indistinguishability of finite
POMDPs is decidable in polynomial time by a reduction to PFA equivalence,
which is known to be decidable in polynomial time [31,57].

Proposition 1. Indistinguishability of finite POMDPs is in P.
Proof (sketch). Consider two POMDPs M; = (Z;, 2%, Act, A;, O, 0bs;) for i €

{0,1} with the same set of actions Act and the setll)fb(’)bservations O. We shall
construct PFAs Ay and A; such that My =~ M iff Ag = A; as follpws. For
i € {0,1}, let “bad;” be a new state and define the PFA A; = (Qi, X, 42, AL F)
where Q; = Z; U {bad;}, ¥ = Act x O, ¢}, = z%, F; = Z; and A} is defined as
follows.

Ai(q,)(¢) if q,¢' € Z; and obs(q) =0

1 if g€ Z;, obs(q) # o and ¢’ = bad;

1 if ¢,¢ = bad; '

0 otherwise

Ai(g, (@, 0)(d) =

Model Checking Indistinguishability of Randomized Security Protocols 123

Let v = (aq,00) ... (o, 0r—1) be a non-empty word on X. For the word u,
let 0, be the trace opay0o12- - -a_105—1. The proposition follows immediately
from the observation that prob,. (u) = prob,,, (04). O

An MDP M = (Z, z5, Act, A) is said to be acyclic if there is a set of absorbing
states Zaps C Z such that for all a € Act and z € Z,ps, A(2, @)(z) = 1 and for all
p=20 -5 ... 2 2 € Exec(M) if z; = z; for i # j then z; € Z,ps. Intuitively,
acyclic MDPs are MDPs that have a set of “final” absorbing states and the
only cycles in the underlying graph are self-loops on these states. A POMDP
M = (Z, zs,Act, A, O, obs) is acyclic if the MDP Mg = (Z, z,, Act, A) is acyclic.
We have the following result, which can be shown from the P-hardness of the
PFA equivalence problem [45].

Proposition 2. Indistinguishability of finite acyclic POMDPs is P-hard. Hence
Indistinguishability of finite POMDPs is P-complete.

Thanks to Proposition 1, we can check indistinguishability for finite POMDPs
by reducing it to PFA equivalence. We now present a new algorithm for indis-
tinguishability of finite acyclic POMDPs. A well-known POMDP analysis tech-
nique is to translate a POMDP M into a fully observable belief MDP B(M)
that emulates it. One can then analyze B(M) to infer properties of M. The
states of B(M) are probability distributions over the states of M. Further,
given a state b € B(M), if states z1,22 of M are such that b(z1),b(z2) are
non-zero then z; and z; must have the same observation. Hence, by abuse of
notation, we can define obs(b) to be obs(z) if b(z) # 0. Intuitively, an execution
p="by =5 b 2 ... 2 b, of B(M) corresponds to the set of all executions
P of M such that tr(p’) = obs(bg)aiobs(bi)ag - - - apmobs(by,). The measure of
execution p in B(M) is exactly prob ,(obs(bg)aiobs(by)ag - - - amobs(by,)).

The initial state of B(M) is the distribution that assigns 1 to the initial
state of M. Intuitively, on a given state b € Dist(M) and an action «, there
is at most one successor state b*° for each observation o. The probability of
transitioning from b to b*° is the probability that o is observed given that the
distribution on the states of M is b and action « is performed; b*°(z) is the
conditional probability that the actual state of the POMDP is z. The formal
definition follows.

Definition 1. Let M = (Z, z5, Act, A,O,0bs) be a POMDP. The belief MDP
of M, denoted B(M), is the tuple (Dist(Z), .., Act, AB) where AB is defined as
follows. For b € Dist(Z), action a € Act and o € O, let

pb,a,oZb(Z)'(> A(z,a)(z’)).
z€Z z'€Z Nobs(z")=o0

AB(b,«) is the unique distribution such that for each o € O, if Db,a,0 7 0 then
AB(b,)(b*°) = pp.a,o where for all 2’ € Z,

{ZZEZ b(z)~A(z,(x)(z/) 'Lf ObS(Z/) =0

ba,o(zl) —

Pb,a,0
0 otherwise

124 M. S. Bauer et al.

Let M; = (Z;, 2%, Act, A;, O, 0bs;) for i € {0,1} be POMDPs with the same
set of actions and observations. In [14] the authors show that My and M;
are indistinguishable if and only if the beliefs J.0 and 6.1 are strongly belief
bisimilar. Strong belief bisimilarity coincides with the notion of bisimilarity of
labeled MDPs: a pair of states (b, b1) € Dist(Zy) x Dist(Z;) is said to be strongly
belief bisimilar if (i) obs(by) = obs(b1), (ii) for all @ € Act,0 € O, Ppy.a.0 = Pby,a.0
and (iii) the pair (by’?,b7"°) is strongly belief bisimilar if py, o0 = Pby,a.0 > 0.
Observe that, in general, belief MDPs are defined over an infinite state space. It
is easy to see that, for a finite acyclic POMDP M, B(M) is acyclic and has a
finite number of reachable belief states. Let Mg and M be as above and assume
further that M, M1 are finite and acyclic with absorbing states Z,ps C ZoU Z;.
As a consequence of the result from [14] and the observations above, we can
determine if two states (bg, b1) € Dist(Zp) x Dist(Z1) are strongly belief bisimilar
using the on-the-fly procedure from Algorithm 1.

Algorithm 1. On-the-fly bisimulation for finite acyclic POMDPs

function BisiMILAR(beliefState b, beliefState b1)
if obs(bg) # obs(b;) then return false

1:

2

3 if support(bo) U support(b1) C Zaps then return true

4 for a € Act do

5: for o € O do

6 if Pyy,a,0 7 Pby,a,0 then return false

7 if Pyg,a,0 > 0 and !BISIMILAR(b5?, b]"°) then return false
8

return true

4 Randomized Security Protocols

We now present our core process calculus for modeling security protocols with
coin tosses. The calculus closely resembles the ones from [10,53]. First proposed
in [39], it extends the applied m-calculus [5] by the inclusion of a new opera-
tor for probabilistic choice. As in the applied m-calculus, the calculus assumes
that messages are terms in a first-order signature identified up-to an equational
theory.

4.1 Terms, Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume F contains two special disjoint sets, Npyp and Ny, of 0-ary
symbols.? The elements of Noub are called public names and represent public
nonces that can be used by the Dolev-Yao adversary. The elements of Ny, are

2 As we assume F is finite, we allow only a fixed number of public nonces are available
to the adversary.

Model Checking Indistinguishability of Randomized Security Protocols 125

called names and represent secret nonces and secret keys. We also assume a set
of variables that are partitioned into two disjoint sets & and X),. The variables
in X are called protocol variables and are used as placeholders for messages input
by protocol participants. The variables in X, are called frame variables and are
used to point to messages received by the Dolev-Yao adversary. Terms are built
by the application of function symbols to variables and terms in the standard
way. Given a signature F and Y C X U X, we use 7 (F,)) to denote the set of
terms built over F and). The set of variables occurring in a term u is denoted
by vars(u). A ground term is a term that contains no free variables.

A substitution o is a partial function with a finite domain that maps vari-
ables to terms. dom(o) will denote the domain and ran(o) will denote the
range. For a substitution o with dom(c) = {xi1,...,2zx}, we denote o as
{z1 — o(x1),...,2 — o(zk)}. A substitution o is said to be ground if every
term in ran(o) is ground and a substitution with an empty domain will be
denoted as (). Substitutions can be applied to terms in the usual way and we
write uo for the term obtained by applying the substitution o to the term w.

Our process algebra is parameterized by an equational theory (F, E), where
FE is a set of F-Equations. By an F-Equation, we mean a pair u = v where
u,v € T(F \ Npriv, X) are terms that do not contain private names. We will
assume that the equations of (F, E) can be oriented to produce a convergent
rewrite system. Two terms u and v are said to be equal with respect to an
equational theory (F,E), denoted v = v, if E F v = v in the first order
theory of equality. We often identify an equational theory (F, E) by E when the
signature is clear from the context.

In the calculus, all communication is mediated through an adversary: all
outputs first go to an adversary and all inputs are provided by the adver-
sary. Hence, processes are executed in an environment that consists of a frame
¢ : Xy — T(F,D) and a ground substitution o : X — 7(F,0). Intuitively,
o represents the sequence of messages an adversary has received from protocol
participants and ¢ records the binding of the protocol variables to actual input
messages. An adversary is limited to sending only those messages that it can
deduce from the messages it has received thus far. Formally, a term u € 7 (F,)
is deducible from a frame ¢ with recipe r € 7 (F \ Nyriv,dom(yp)) in equational
theory F, denoted ¢ %, u, if ro =g u. We will often omit r and E and write
o F u if they are clear from the context.

We now recall an equivalence on frames, called static equivalence [5]. Intu-
itively, two frames are statically equivalent if the adversary cannot distinguish
them by performing tests. The tests consists of checking whether two recipes
deduce the same term. Formally, two frames ¢; and ¢y are said to be statically
equivalent in equational theory E, denoted p1 =g ¢a, if dom(p1) = dom(ps2)
and for all r1,ry € T(F \ Npriv, X)) we have r1p1 =g 1o iff 1199 =g raps.

4.2 Process Syntax

Processes in our calculus are the parallel composition of roles. Intuitively, a role
models a single actor in a single session of the protocol. Syntactically, a role is
derived from the grammar:

126 M. S. Bauer et al.

R = 0]in(2)" |out(ug - R+pu1 - R)" |ite(fcr A... Acr], R, R)*| (R R)

where p is a rational number in the unit interval [0,1], £ € N, z € X, up,uy €
T(F,X) and ¢; is u; = v; with u;,v; € T(F,X) for all ¢ € {1,...,k}. The
constructs in(z)?, out(ug - R +, u1 - R)* and ite([c1 A ... A ci], R, R)* are said
to be labeled operations and ¢ € N is said to be their label. The role 0 does
nothing. The role in(x)’ reads a term u from the public channel and binds it to
x. The role out(ug - R +p uy - R')Z outputs the term ug on the public channel
and becomes R with probability p and it outputs the term u; and becomes R’
with probability 1 — p. A test [ex A ... A ¢l is said to pass if for all 1 <4 < k,
the equality ¢; holds. The conditional role ite([c; A. .. Acg], R, R")* becomes R if
[e1 A .. Ack] passes and otherwise it becomes R'. The role R- R’ is the sequential
composition of role R followed by role R’. The set of variables of a role R is the
set of variables occurring in R. The construct in(z)- R binds variable z in R.
The set of free and bound variables in a role can be defined in the standard way.
We will assume that the set of free variables and bound variables of a role are
disjoint and that a bound variable is bound only once in a role. A role R is said
to be well-formed if every labeled operation occurring in R has the same label
Z; the label £ is said to be the label of the well-formed role R.

A process is the parallel composition of a finite set of roles Ry,...,R,,
denoted Ry | ... | R,. We will use P and @ to denote processes. A process
Ry | ... | Ry is said to be well-formed if each role is well-formed, the sets of
variables of R; and R; are disjoint for ¢ # j, and the labels of roles R; and R;
are different for ¢ # j. For the remainder of this paper, processes are assumed to
be well-formed. The set of free (resp. bound) variables of P is the union of the
sets of free (resp. bound) variables of its roles. P is said to be ground if the set
of its free variables is empty. We shall omit labels when they are not relevant in
a particular context.

Ezample 2. We model the electronic voting protocol from Examplel in our
formalism. The protocol is built over the equational theory with signature
F = {sk/1, pk/1, aenc/3, adec/2, pair/2, fst/1,snd/1} and the equations

E = {adec(aenc(m, r, pk(k)), sk(k)) = m,

fst(pair(mi,m2)) = my, snd(pair(my,ms)) = ma}.

The function sk (resp. pk) is used to generate a secret (resp. public) key from
a nonce. For generation of their pubic key pairs, Alice, Bob and the election
authority hold private names k4, kp and kg4, respectively. The candidates will
be modeled using public names ¢y and ¢; and the tokens will be modeled using
private names t 4 and tg. Additionally, we will write y; and r; for i € N to denote
fresh input variables and private names, respectively. The roles of Alice, Bob and
the election authority are as follows.

Model Checking Indistinguishability of Randomized Security Protocols 127

A(ca) = in(yo) - out(aenc(pair(adec(yo,sk(ka)),ca), o, pk(kga)))

B(cB) := in(y) - out(aenc(pair(adec(y1,sk(kp)),cr), 1, pk(kga)))

EA :=out(aenc(ta,re,pk(ka))) - out(aenc(tp,rs, pk(kp))) - in(ys) - in(ys) -
ite([fst(adec(ys, sk(kgpa))) = ta A fst(adec(ya, sk(kga))) = tB]
out(pair(snd(adec(ys, sk(kga))),snd(adec(ys, sk(kga)))) +

pair(snd(adec(y4,sk(kEA))),snd(adec(yg,sk(kEA))))),O)
(

In roles above, we write out(ug) as shorthand for out(ug - 0 +1 ug - 0). The
entire protocol is evote(cA,cB) A(ca) | B(cg) | EA.

4.3 Process Semantics

An extended process is a 3-tuple (P, ,0) where P is a process, ¢ is a frame
and o is a ground substitution whose domain contains the free variables of P.
We will write £ to denote the set of all extended processes. Semantically, a
ground process P with n roles is a POMDP [P] = (Z, z5, Act, A, O, obs), where
Z = EU{error}, zs is (P,0,0), Act = (T(F \ Noriv,s X)) U {7, } x {1,...,n}),
A is a function that maps an extended process and an action to a distribution
on &, O is the set of equivalence classes on frames over the static equivalence
relation =g and obs is as follows. Let [¢] denote the equivalence class of ¢ with
respect to =g. Define obs to be the function such that for any extended process
n = (P,p,0), obs(n) = [¢]. We now give some additional notation needed for
the definition of A. Given a measure p on £ and role R we define u - R to be
the distribution pq on & such that uy (P, p,0) = u(P,¢,0) if u(P,p,0) > 0
and P’ is P- R and 0 otherwise. Given a measure p on £ and a process @, we
define 1 | @ to be the distribution p; on & such that ui (P’ p,0) = u(P,p,0)
if w(P,p,0) > 0 and P’ is P | Q and 0 otherwise. The distribution @ | u
is defined analogously. For distributions pu1,ue over £ and a rational number
p € [0,1], the convex combination —|—1§ o is the distribution p on &€ such that
w(n) =p-pu1(n) + (1 —p) - p2(n) for all n € €. The definition of A is given in
Fig. 1, where we write (P, p,0) 2 p if A(P,¢,0),a) = p. If A(P,p,0),a) is
undefined in Fig. 1 then A((P,p,0), @) = Jerror- Note that A is well-defined, as

roles are deterministic.

4.4 Indistinguishability in Randomized Cryptographic Protocols

Protocols P and P’ are said to indistinguishable if [P] ~ [P’]. Many interesting
properties of randomized security protocols can be specified using indistinguisha-
bility. For example, consider the simple electronic voting protocol from Exam-
ple 2. We say that the protocol satisfies the vote privacy property if evote(cg, ¢1)
and evote(cy, ¢g) are indistinguishable.

In the remainder of this section, we study the problem of deciding when
two protocols are indistinguishable by a bounded Dolev-Yao adversary. We
restrict our attention to indistinguishability of protocols over subterm conver-
gent equational theories [4]. Before presenting our results, we give some rele-
vant definitions. (F, E) is said to be subterm convergent if for every equation

128 M. S. Bauer et al.

re T(]:\priw X’Lu) %2 Flu oz Q dom(a)

IN
. (r,0)
(111(:8)47@, U) 6(0,LP<,CTU{:E>—>1J‘})

i=|dom(p)| +1 ¢; =@ U{wqye — ujo} for j € {0,1}

(7,0)
(out(uo - Ro +p u1 - Rl)év Ps U) - 6(1?'0,@070) +Ig) 6(R1,¢1,0)

ouT

Vie{l,...,k}, ¢ is u; = v; and u;0 =g v;0

CONDJr
(ite([C1 ARRRA Ck}v R: R,)Zv @, 0—) M) 6(R,<p7cr)

Fie{l,...,k}, ¢ isu; = v; and w0 #g vio

(ite([C1 ARERWAN Ck}v R: R,)Zv ®, 0—) M) 6(R’$<p,a)

CONDELSE

R#0 (R,p,0) 5 p (R, p,0) = 1
> SEQ D ——— NULL
(R-R',p,0) = pu-R (0-R,p,0) =

« ’ «
b 70- — b 70— —
(@Q,p,0) = p AR, Q' p,0) — ARG

@QQ,¢p.0) = pn|Q QIQp,0) =Qlpu

Fig. 1. Process semantics

u = v € E oriented as a rewrite rule u — v, either v is a proper subterm of u
or v is a public name. A term u can be represented as a directed acyclic graph
(dag), denoted dag(u) [4,51]. Every node in dag(u) is a function symbol, name
or a variable. Nodes labeled by names and variables have out-degree 0. A node
labeled with a function symbol f has out-degree equal to the arity of f where
outgoing edges of the node are labeled from 1 to the arity of f. Every node
of dag(u) represents a unique sub-term of u. The depth of a term wu, denoted
depth(u), is the length of the longest simple path from the root in dag(u). Given
an action «a, depth(a) = 0 if @ = (7,5) and depth(a) = m if & = (r,j) and
depth(r) = m.

Let P be a protocol such that [P] = (Z, zs, Act, A, O, obs). Define [P]4 to be
the POMDP (Z, z,, Actgq, A, O, obs) where Acty C Act is such that every o € Act
has depth(a) < d. For a constant d € N, we define InDist(d) to be the decision
problem that, given a subterm convergent theory (F, E') and protocols P and P’
over (F, E), determines if [P]; and [P’]4 are indistinguishable. We assume that
the arity of the function symbols in F is given in unary. We have the following.

Theorem 1. For any constant d € N, InDist(d) is in PSPACE.

We now show InDist(d) is both NP-hard and coNP-hard by showing a reduc-
tion from #SATp to InDist(d). #SATp is the decision problem that, given a 3CNF
formula ¢ and a constant k € N, checks if the number of satisfying assignments
of ¢ is equal to k.

Model Checking Indistinguishability of Randomized Security Protocols 129

Theorem 2. Thereis a dy € N such that #SATp reduces to InDist(d) in logspace
for every d > dg. Thus, InDist(d) is NP-hard and coNP-hard for every d > dy.

5 Implementation and Evaluation

Using (the proof of) Proposition 1, we can solve the indistinguishability prob-
lem for randomized security protocols as follows. For protocols P, P’, translate
[P],[P'] into PFAs A, A’ and determine if A = A’ using the linear program-
ming algorithm from [31]. We will henceforth refer to this approach as the PFA
algorithm and the approach from Algorithm 1 as the OTF algorithm. We have
implemented both the PFA and OTF algorithms as part of Stochastic Protocol
ANalayzer (SPAN), which is a Java based tool for analyzing randomized security
protocols. The tool is available for download at [1]. The main engine of SPAN
translates a protocol into a POMDP, belief MDP or PFA by exploring all proto-
col executions and grouping equivalent states using an engine, Kiss [4] or AKISS
[16], for static equivalence. KIss is guaranteed to terminate for subterm conver-
gent theories and AKISS provides support for XOR while considering a slighly
larger class of equational theories called optimally reducing. Operations from
rewriting logic are provided by queries to Maude [24] and support for arbitrary
precision numbers is given by Apfloat [2]. Our experiments were conducted on
an Intel core i7 dual quad core processor at 2.67 GHz with 12Gb of RAM. The
host operating system was 64 bit Ubuntu 16.04.3 LTS.

Our comparison of the PFA and OTF algorithms began by examining how
each approach scaled on a variety of examples (detailed at the end of this section).
The results of the analysis are given in Fig. 2. For each example, we consider a
fixed recipe depth and report the running times for 2 parties as well as the
maximum number of parties for which one of the algorithms terminates within
the timeout bound of 60 min. On small examples for which the protocols were
indistinguishable, we found that the OTF and PFA algorithms were roughly
equivalent. On large examples where the protocols were indistinguishable, such
as the 3 ballot protocol, the PFA algorithm did not scale as well as the OTF
algorithm. In particular, an out-of-memory exception often occurred during con-
struction of the automata or the linear programming constraints. On examples
for which the protocols were distinguishable, the OTF algorithm demonstrated a
significant advantage. This was a result of the fact that the OTF approach ana-
lyzed the model as it was constructed. If at any point during model construction
the bisimulation relation was determined not to hold, model construction was
halted. By contrast, the PFA algorithm required the entire model to be con-
structed and stored before any analysis could take place.

In addition to stress-testing the tool, we also examined how each algorithm
performed under various parameters of the mix-network example. The results are
given in Fig. 3, where we examine how running times are affected by scaling the
number of protocol participants and the recipe depth. Our results coincided with
the observations from above. One interesting observation is that the number of
beliefs explored on the 5 party example was identical for recipe depth 4 and recipe
depth 10. The reason is that, for a given protocol input step, SPAN generates a

130 M. S. Bauer et al.

1 2 3 4 5 ‘ 6 ‘ 7 ‘ 8 9 10
ProTOCOL|PARTIES| DEPTH|EQUIV TIME (S) STATES| BELIEFS
PFA OTF
Kiss |AKiSs| Kiss [AKISS
DC-net 2 10 true | n/s | 5.5 | n/s 4 58 24
DC-net 3 10 true | n/s |OOM | n/s | 3013 | n/a 286
mix-net 2 10 false | TO | TO .3 A4 n/a 7
mix-net 5 10 false |OOM|OOM | 582 | 1586 | n/a | 79654
Evote 2 10 true 1 1) 1 34 33
Evote 8 10 true | 105 | 105 | 131 | 124 94 93
3 Ballot 2 10 true | n/s |OOM | n/s | 1444 | n/a 408

Fig. 2. Experimental Results: Columns 1 and 2 describe the example being analyzed.
Column 3 gives the maximum recipe depth and column 4 indicates when the example
protocols were indistinguishable. Columns 5-8 give the running time (in seconds) for
the respective algorithms and static equivalence engines. We report OOM for an out
of memory exception and TO for a timeout - which occurs if no solution is generated
in 60 min. Column 9 gives the number of states in the protocol’s POMDP and Column
10 gives the number of belief states explored in the OTF algorithm. When information
could not be determined due to a failure of the tool to terminate, we report n/a. For
protocols using equational theories that were not subterm convergent, we write n/s
(not supported) for the Kiss engine.

minimal set of recipes. This is in the sense that if recipes rg, 71 are generated at
an input step with frame ¢, then rop #g r1¢. For the given number of public
names available to the protocol, changing the recipe depth from 4 to 10 did not
alter the number of unique terms that could be constructed by the attacker. We
conclude this section by describing our benchmark examples, which are available
at [3]. Evote is the simple electronic voting protocol derived from Example 2 and
the DC-net, mix-net and 3 ballot protocols are described below.

Dinning Cryptographers Networks. In a simple DC-net protocol [38], two parties
Alice and Bob want to anonymously publish two confidential bits m 4 and mp,
respectively. To achieve this, Alice and Bob agree on three private random bits
bo, b1 and by and output a pair of messages according to the following scheme.
In our modeling the protocol, the private bits are generated by a trusted third
party who communicates them with Alice and Bob using symmetric encryption.

Ifbg=0 Alice: Maog=0b @ma, May = by
Bob: Mpo =01, Mp1=0by®&mp
Ifby =1 Alice: Mo =0b1, Ma1 =by ®my
Bob: Mpo=b ®@mp, Mp1 = by

Model Checking Indistinguishability of Randomized Security Protocols 131

From the protocol output, the messages m4 and mp can be retrieved as
Mg o®Mpoand My 1@ Mp 1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.

1 2 3 4 ‘ 5 ‘ 6 ‘ 7 8 9
PARTIES| DEPTH|EQUIV TIME (S) STATES| BELIEFS
PFA OTF
Kiss Akiss | Kiss |AKiss

2 1 true 3 3 2 3 15 12
3 1 true 1 1.2 4 9 81 50
4 1 true 47 47 2 6 2075 656
5 1 true | OOM | OOM | 34 79 n/a 4032
5 2 false | OOM | OOM | 13 | 33 | n/a 1382
5 3 false | OOM | OOM | 124 | 354 | n/a 6934
5 4 false | OOM | OOM | 580 | 1578 | n/a 79654

Fig. 3. Detailed Experimental Results for Mix Networks: The columns have an identical
meaning to the ones from Fig. 2. We report OOM for an out of memory exception and
when information could not be determined due to a failure of the tool to terminate,
we report n/a.

Mix Networks. A mix-network [21], is a routing protocol used to break the link
between a message’s sender and the message. This is achieved by routing mes-
sages through a series of proxy servers, called mixes. Each mix collects a batch of
encrypted messages, privately decrypts each message and forwards the resulting
messages in random order. More formally, consider a sender Alice (A) who wishes
to send a message m to Bob (B) through Mix (M). Alice prepares a cipher-text of
the form aenc(aenc(m, ny, pk(B)), no, pk(M)) where aenc is asymmetric encryp-
tion, ng, ny are nonces and pk(M), pk(B) are the public keys of the Mix and Bob,
respectively. Upon receiving a batch of N such cipher-texts, the Mix unwraps
the outer layer of encryption on each message using its secret key, randomly
permutes and forwards the messages. A passive attacker, who observes all the
traffic but does not otherwise modify the network, cannot (with high probabil-
ity) correlate messages entering and exiting the Mix. Unfortunately, this simple
design, known as a threshold mix, is vulnerable to a very simple active attack.
To expose Alice as the sender of the message aenc(m,nq, pk(B)), an attacker
simply forwards Alice’s message along with N—1 dummy messages to the Mix.
In this way, the attacker can distinguish which of the Mix’s N output messages
is not a dummy message and hence must have originated from Alice.

3-Ballot Electronic Voting. We have modeled and analyzed the 3-ballot voting
system from [54]. To simplify the presentation of this model, we first describe

132 M. S. Bauer et al.

the major concepts behind 3-ballot voting schemes, as originally introduced by
[50]. At the polling station, each voter is given 3 ballots at random. A ballot is
comprised of a list of candidates and a ballot ID. When casting a vote, a voter
begins by placing exactly one mark next to each candidate on one of the three
ballots chosen a random. An additional mark is then placed next to the desired
candidate on one of the ballots, again chosen at random. At the completion of
the procedure, at least one mark should have been placed on each ballot and two
ballots should have marks corresponding to the desired candidate. Once all of
the votes have been cast, ballots are collected and released to a public bulletin
board. Each voter retains a copy of one of the three ballots as a receipt, which
can be used to verify his/her vote was counted.

In the full protocol, a registration agent is responsible for authenticating
voters and receiving ballots and ballot ids generated by a vote manager. Once a
voter marks his/her set of three ballots, they are returned to the vote manager
who forwards them to one of three vote repositories. The vote repositories store
the ballots they receive in a random position. After all votes have been collected
in the repositories, they are released to a bulletin board by a vote collector.
Communication between the registration agent, vote manager, vote repositories
and vote collector is encrypted using asymmetric encryption and authenticated
using digital signatures. In our modeling, we assume all parties behave honestly.

6 Conclusion

In this paper, we have considered the problem of model checking indistinguisha-
bility in randomized security protocols that are executed with respect to a Dolev-
Yao adversary. We have presented two different algorithms for the indistinguisha-
bility problem assuming bounded recipe sizes. The algorithms have been imple-
mented in the SPAN protocol analysis tool, which has been used to verify some
well known randomized security protocols. We propose the following as part of
future work: (i) extension of the current algorithms as well the tool to the case of
unbounded recipe sizes; (ii) application of the tool for checking other randomized
protocols; (iil) giving tight upper and lower bounds for the indistinguishability
problem for the randomized protocols.

References

1. https://github.com/bauer-matthews/SPAN

http://www.apfloat.org/

3. https://github.com/bauer-matthews/SPAN /tree/master/src/test /resources/exam
ples/indistinguishability

4. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1-2), 2-32 (2006)

5. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
ACM SIGPLAN Notices, vol. 36, pp. 104-115. ACM (2001)

6. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335-348 (2008)

N

https://github.com/bauer-matthews/SPAN
http://www.apfloat.org/
https://github.com/bauer-matthews/SPAN/tree/master/src/test/resources/examples/indistinguishability
https://github.com/bauer-matthews/SPAN/tree/master/src/test/resources/examples/indistinguishability

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Model Checking Indistinguishability of Randomized Security Protocols 133

Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Computer Security Foundations, pp.
107-121 (2010)

Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. Int. J. Inf. Secur. 7(1), 3-32 (2008)

Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equiv-
alence. In: Computer and Communications Security, pp. 1144-1155 (2015)

Bauer, M.S., Chadha, R., Viswanathan, M.: Composing protocols with randomized
actions. In: Piessens, F., Vigano, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 189—
210. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0_10
Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Trans. Inf. Theory 36(1), 4046 (1990)

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebraic Program. 75(1), 3-51 (2008)
Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Task-structured probabilistic I/O automata. In: Discrete Event Systems (2006)
Castro, P.S., Panangaden, P., Precup, D.: Equivalence relations in fully and par-
tially observable Markov decision processes. In: International Joint Conference on
Artificial Intelligence, vol. 9, pp. 1653-1658 (2009)

Chadha, R., Cheval, V., Ciobaca, S., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocol. ACM Trans. Comput. Log. 17(4), 23
(2016)

Chadha, R., Ciobaca, S., Kremer, S.: Automated verification of equivalence proper-
ties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
108-127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-
2.6

Chadha, R., Sistla, A.P., Viswanathan, M.: Model checking concurrent programs
with nondeterminism and randomization. In: Foundations of Software Technology
and Theoretical Computer Science, pp. 364-375 (2010)

Chadha, R., Sistla, A.P., Viswanathan, M.: Verification of randomized security
protocols. In: Logic in Computer Science, pp. 1-12. IEEE (2017)

Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
42-58. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_4
Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118-139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827_8

Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84-90 (1981)

Cheung, L.: Reconciling nondeterministic and probabilistic choices. Ph.D. thesis,
Radboud University of Nijmegen (2006)

Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Abmhéurn7 E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587-592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_50

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti1-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci.
285(2), 187-243 (2002)

Cortier, V., Delaune, S.: A method for proving observational equivalence. In: Com-
puter Security Foundations, pp. 266—276. IEEE (2009)

https://doi.org/10.1007/978-3-662-49635-0_10
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-540-74407-8_4
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-642-54862-8_50

134

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

M. S. Bauer et al.

de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report (1999)

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunéak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435-487 (2009)

Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198-208 (1983)

Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of labeled Markov chains.
Found. Comput. Sci. 19(03), 549-563 (2008)

Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117-140. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6_6

Durgin, N., Lincoln, P.; Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. Comput. Secur. 12(2), 247-311 (2004)
Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1-50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7_1

Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637647 (1985)

Garcia, F.D.,; Van Rossum, P., Sokolova, A.: Probabilistic anonymity and admis-
sible schedulers. arXiv preprint arXiv:0706.1019 (2007)

Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137-150. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61996-8_37

Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456-473. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3_27

Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi—
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175-190. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7_12

Gunter, C.A., Khanna, S., Tan, K., Venkatesh, S.S.: DoS protection for reliably
authenticated broadcast. In: Network and Distributed System Security (2004)
Hirschi, L., Baelde, D., Delaune, S.: A method for verifying privacy-type properties:
the unbounded case. In: Security and Privacy, pp. 564-581 (2016)

Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: APEX: an ana-
lyzer for open probabilistic programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 693—-698. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7_51

Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186-200. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0-14

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1.47

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-662-54455-6_6
https://doi.org/10.1007/978-3-642-03829-7_1
http://arxiv.org/abs/0706.1019
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-540-76637-7_12
https://doi.org/10.1007/978-3-642-31424-7_51
https://doi.org/10.1007/978-3-642-31424-7_51
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

45.
46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

Model Checking Indistinguishability of Randomized Security Protocols 135

Lenhardt, R.: Probabilistic automata with parameters. Master’s thesis (2009)
Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues
and trends. IEEE J. Sel. Areas Commun. 21(1), 44-54 (2003)

Meadows, C.: Emerging issues and trends in formal methods in cryptographic
protocol analysis: twelve years later. In: Marti-Oliet, N., C“)lveczky7 P.C., Talcott, C.
(eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 475-492. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_22

Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696-701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66-92 (1998)

Rivest, R.L.: The threeballot voting system (2006)

Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. Ph.D. thesis, INRIA (2001)

Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prét a voter: a
voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662—673
(2009)

Bauer, M.S., Chadha, R., Viswanathan, M.: Modular verification of protocol equiv-
alence in the presence of randomness. In: Foley, S.N., Gollmann, D., Snekkenes,
E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 187-205. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66402-6_12

Santin, A.O., Costa, R.G., Maziero, C.A.: A three-ballot-based secure electronic
voting system. Secur. Priv. 6(3), 14-21 (2008)

Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Computer Security Foun-
dations, pp. 78-94 (2012)

Shmatikov, V.: Probabilistic analysis of anonymity. In: Computer Security Foun-
dations, pp. 119-128. IEEE (2002)

Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216-227 (1992)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-23165-5_22
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-66402-6_12
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Lazy Self-composition for Security
Verification

Weikun Yang!, Yakir Vizel'*®) Pramod Subramanyan?, Aarti Gupta!,
and Sharad Malik!

! Princeton University, Princeton, USA
2 University of California, Berkeley, Berkeley, USA
3 The Technion, Haifa, Israel

yvizel@cs.technion.ac.il

Abstract. The secure information flow problem, which checks whether
low-security outputs of a program are influenced by high-security inputs,
has many applications in verifying security properties in programs. In
this paper we present lazy self-composition, an approach for verifying
secure information flow. It is based on self-composition, where two copies
of a program are created on which a safety property is checked. However,
rather than an eager duplication of the given program, it uses duplication
lazily to reduce the cost of verification. This lazy self-composition is
guided by an interplay between symbolic taint analysis on an abstract
(single copy) model and safety verification on a refined (two copy) model.
We propose two verification methods based on lazy self-composition. The
first is a CEGAR-style procedure, where the abstract model associated
with taint analysis is refined, on demand, by using a model generated
by lazy self-composition. The second is a method based on bounded
model checking, where taint queries are generated dynamically during
program unrolling to guide lazy self-composition and to conclude an
adequate bound for correctness. We have implemented these methods on
top of the SEAHORN verification platform and our evaluations show the
effectiveness of lazy self-composition.

1 Introduction

Many security properties can be cast as the problem of verifying secure informa-
tion flow. A standard approach to verifying secure information flow is to reduce it
to a safety verification problem on a “self-composition” of the program, i.e., two
“copies” of the program are created [5] and analyzed. For example, to check for
information leaks or non-interference [17], low-security (public) inputs are ini-
tialized to identical values in the two copies of the program, while high-security
(confidential) inputs are unconstrained and can take different values. The safety
check ensures that in all executions of the two-copy program, the values of the
low-security (public) outputs are identical, i.e., there is no information leak from
confidential inputs to public outputs. The self-composition approach is useful for

This work was supported in part by NSF Grant 1525936.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 136-156, 2018.
https://doi.org/10.1007/978-3-319-96142-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_11&domain=pdf

Lazy Self-composition for Security Verification 137

checking general hyper-properties [11], and has been used in other applications,
such as verifying constant-time code for security [1] and k-safety properties of
functions like injectivity and monotonicity [32].

Although the self-composition reduction is sound and complete, it is chal-
lenging in practice to check safety properties on two copies of a program. There
have been many efforts to reduce the cost of verification on self-composed pro-
grams, e.g., by use of type-based analysis [33], constructing product programs
with aligned fragments [4], lockstep execution of loops [32], transforming Horn
clause rules [14,24], etc. The underlying theme in these efforts is to make it
easier to derive relational invariants between the two copies, e.g., by keeping
corresponding variables in the two copies near each other.

In this paper, we aim to improve the self-composition approach by making it
lazier in contrast to eager duplication into two copies of a program. Specifically,
we use symbolic taint analysis to track flow of information from high-security
inputs to other program variables. (This is similar to dynamic taint analysis [30],
but covers all possible inputs due to static verification.) This analysis works
on an abstract model of a single copy of the program and employs standard
model checking techniques for achieving precision and path sensitivity. When this
abstraction shows a counterexample, we refine it using on-demand duplication
of relevant parts of the program. Thus, our lazy self-composition' approach is
guided by an interplay between symbolic taint analysis on an abstract (single
copy) model and safety verification on a refined (two copy) model.

We describe two distinct verification methods based on lazy self-composition.
The first is an iterative procedure for unbounded verification based on coun-
terexample guided abstraction refinement (CEGAR) [9]. Here, the taint analysis
provides a sound over-approximation for secure information flow, i.e., if a low-
security output is proved to be untainted, then it is guaranteed to not leak any
information. However, even a path-sensitive taint analysis can sometimes lead to
“false alarms”, i.e., a low-security output is tainted, but its value is unaffected
by high-security inputs. For example, this can occur when a branch depends on
a tainted variable, but the same (semantic, and not necessarily syntactic) value
is assigned to a low-security output on both branches. Such false alarms for secu-
rity due to taint analysis are then refined by lazily duplicating relevant parts of
a program, and performing a safety check on the composed two-copy program.
Furthermore, we use relational invariants derived on the latter to strengthen the
abstraction within the iterative procedure.

Our second method also takes a similar abstraction-refinement view, but in
the framework of bounded model checking (BMC) [6]. Here, we dynamically gen-
erate taint queries (in the abstract single copy model) during program unrolling,
and use their result to simplify the duplication for self-composition (in the two
copy model). Specifically, the second copy duplicates the statements (update
logic) only if the taint query shows that the updated variable is possibly tainted.
Furthermore, we propose a specialized early termination check for the BMC-

! This name is inspired by the lazy abstraction approach [20] for software model check-
ing.

138 W. Yang et al.

based method. In many secure programs, sensitive information is propagated in
a localized context, but conditions exist that squash its propagation any further.
We formulate the early termination check as a taint check on all live variables
at the end of a loop body, i.e., if no live variable is tainted, then we can con-
clude that the program is secure without further loop unrolling. (This is under
the standard assumption that inputs are tainted in the initial state. The early
termination check can be suitably modified if tainted inputs are allowed to occur
later.) Since our taint analysis is precise and path-sensitive, this approach can
be beneficial in practice by unrolling the loops past the point where all taint has
been squashed.

We have implemented these methods in the SEAHORN verification plat-
form [18], which represents programs as CHC (Constrained Horn Clause) rules.
Our prototype for taint analysis is flexible, with a fully symbolic encoding of the
taint policy (i.e., rules for taint generation, propagation, and removal). It fully
leverages SMT-based model checking techniques for precise taint analysis. Our
prototypes allow rich security specifications in terms of annotations on low/high-
security variables and locations in arrays, and predicates that allow information
downgrading in specified contexts.

We present an experimental evaluation on benchmark examples. Our results
clearly show the benefits of lazy self-composition vs. eager self-composition,
where the former is much faster and allows verification to complete in larger
examples. Our initial motivation in proposing the two verification methods was
that we would find examples where one or the other method is better. We expect
that easier proofs are likely to be found by the CEGAR-based method, and eas-
ier bugs by the BMC-based method. As it turns out, most of our benchmark
examples are easy to handle by both methods so far. We believe that our gen-
eral approach of lazy self-composition would be beneficial in other verification
methods, and both our methods show its effectiveness in practice.

To summarize, this paper makes the following contributions.

— We present lazy self-composition, an approach to verifying secure informa-
tion flow that reduces verification cost by exploiting the interplay between a
path-sensitive symbolic taint analysis and safety checking on a self-composed
program.

— We present IFC-CEGAR, a procedure for unbounded verification of secure
information flow based on lazy self-composition using the CEGAR paradigm.
Irc-CEGAR starts with a taint analysis abstraction of information flow and
iteratively refines this abstraction using self-composition. It is tailored toward
proving that programs have secure information flow.

— We present Irc-BMC, a procedure for bounded verification of secure informa-
tion flow. As the program is being unrolled, IFCc-BMC uses dynamic symbolic
taint checks to determine which parts of the program need to be duplicated.
This method is tailored toward bug-finding.

— We develop prototype implementations of IFc-CEGAR and Irc-BMC and
present an experimental evaluation of these methods on a set of benchmark-
s/microbenchmarks. Our results demonstrate that IFC-CEGAR and IrFc-

Lazy Self-composition for Security Verification 139

int steps = 0;
for (i = 0; i < N; i++) { zero[i] = product[i] = 0; }
for (i = 0; i < N#*W; i++) {

int bi = bigint_extract_bit(a, i);

if (bi == 1) {

bigint_shiftleft (b, i, shifted_b, &steps);
bigint_add (product, shifted_b, product, &steps);
else {

bigint_shiftleft (zero, i, shifted_zero, &steps);
bigint_add(product, shifted_zero, product, &steps);

=
N—OOOTO U WN —
[

Listing 1. “BigInt” Multiplication

BMC easily outperform an eager self-composition that uses the same backend
verification engines.

2 DMotivating Example

Listing 1 shows a snippet from a function that performs multiword multiplica-
tion. The code snippet is instrumented to count the number of iterations of the
inner loop that are executed in bigint_shiftleft and bigint_add (not shown
for brevity). These iterations are counted in the variable steps. The security
requirement is that steps must not depend on the secret values in the array a;
array b is assumed to be public.

Static analyses, including those based on security types, will conclude that
the variable steps is “high-security.” This is because steps is assigned in a
conditional branch that depends on the high-security variable bi. However, this
code is in fact safe because steps is incremented by the same value in both
branches of the conditional statement.

Our lazy self-composition will handle this example by first using a symbolic
taint analysis to conclude that the variable steps is tainted. It will then self-
compose only those parts of the program related to computation of steps, and
discover that it is set to identical values in both copies, thus proving the program
is secure.

Now consider the case when the code in Listing 1 is used to multiply two “big-
ints” of differing widths, e.g., a 512b integer is multiplied with 2048b integer.
If this occurs, the upper 1536 bits of a will all be zeros, and bi will not be a
high-security variable for these iterations of the loop. Such a scenario can benefit
from early-termination in our BMC-based method: our analysis will determine
that no tainted value flows to the low security variable steps after iteration 512
and will immediately terminate the analysis.

3 Preliminaries

We consider First Order Logic modulo a theory 7 and denote it by FOL(T).
Given a program P, we define a safety verification problem w.r.t. P as a tran-
sition system M = (X, Init(X), Tr(X,X’), Bad(X)) where X denotes a set of

140 W. Yang et al.

(uninterpreted) constants, representing program variables; Init, Tr and Bad are
(quantifier-free) formulas in FOL(T) representing the initial states, transition
relation and bad states, respectively. The states of a transition system correspond
to structures over a signature ¥ = X7 U X. We write Tr(X, X') to denote that
Tr is defined over the signature X7 U X U X', where X is used to represent the
pre-state of a transition, and X’ = {a’|a € X} is used to represent the post-state.

A safety verification problem is to decide whether a transition system M is
SAFE or UNSAFE. We say that M is UNSAFE iff there exists a number N such
that the following formula is satisfiable:

N-1

Init(Xo) A (/\ Tr(Xl-,XHl)) A Bad(Xy) (1)
i=0

where X; = {a;la € X} is a copy of the program variables (uninterpreted con-
stants) used to represent the state of the system after the execution of ¢ steps.

When M is UNSAFE and sy € Bad is reachable, the path from sg € Init to
sy is called a counterexample (CEX).

A transition system M is SAFE iff the transition system has no counterex-
ample, of any length. Equivalently, M is SAFE iff there exists a formula Inv,
called a safe inductive invariant, that satisfies: (1) Init(X) — Inv(X), (i)
Inv(X) A Tr(X, X’) — Inv(X’), and (iii) Inv(X) — —Bad(X).

In SAT-based model checking (e.g., based on IC3 [7] or interpolants [23,
34]), the verification procedure maintains an inductive trace of formulas
[Fo(X),..., Fn(X)] that satisty: (i) Init(X) — Fo(X), (i) F;(X)ATr(X, X') —
Fi11(X') for every 0 < i < N, and (iii) F;(X) — —Bad(X) for every 0 <i < N.
A trace [Fy,...,Fn]is closed if 31 < i < N - F; = (\/;;E Fj). There is an
obvious relationship between existence of closed traces and safety of a transition
system: A transition system T is SAFE iff it admits a safe closed trace. Thus,
safety verification is reduced to searching for a safe closed trace or finding a
CEX.

4 Information Flow Analysis

Let P be a program over a set of program variables X. Recall that Init(X) is
a formula describing the initial states and Tr(X, X’) a transition relation. We
assume a “stuttering” transition relation, namely, Tr is reflexive and therefore it
can non-deterministically either move to the next state or stay in the same state.
Let us assume that H C X is a set of high-security variables and L := X\ H is
a set of low-security variables.

For each = € L, let Obs,(X) be a predicate over program variables X that
determines when variable z is adversary-observable. The precise definition of
Obs,(X) depends on the threat model being considered. A simple model would
be that for each low variable = € L, Obs, (X) holds only at program completion
— this corresponds to a threat model where the adversary can run a program that
operates on some confidential data and observe its public (low-security) outputs
after completion. A more sophisticated definition of Obs, (X) could consider, for

Lazy Self-composition for Security Verification 141

example, a concurrently executing adversary. Appropriate definitions of Obs, (X)
can also model declassification [29], by setting Obs,(X) to be false in program
states where the declassification of x is allowed.

The information flow problem checks whether there exists an execution of
P such that the value of variables in H affects a variable in z € L in some state
where the predicate Obs, (X) holds. Intuitively, information flow analysis checks
if low-security variables “leak” information about high-security variables.

We now describe our formulations of two standard techniques that have been
used to perform information flow analysis. The first is based on taint analy-
sis [30], but we use a symbolic (rather than a dynamic) analysis that tracks
taint in a path-sensitive manner over the program. The second is based on self-
composition [5], where two copies of the program are created and a safety prop-
erty is checked over the composed program.

4.1 Symbolic Taint Analysis

When using taint analysis for checking information flow, we mark high-security
variables with a “taint” and check if this taint can propagate to low-security
variables. The propagation of taint through program variables of P is determined
by both assignments and the control structure of P. In order to perform precise
taint analysis, we formulate it as a safety verification problem. For this purpose,
for each program variable x € X, we introduce a new “taint” variable z;. Let
X; := {x|x € X} be the set of taint variables where x; € X is of sort Boolean.
Let us define a transition system M := (Y, Inity, Try, Bad;) where Y := X U X,
and

Init,(Y) == Init(X) A (A xt> A (A m) (2)

Tri(Y,Y') := Tr(X, X') A Tr(Y, X}) (3)
Bad,(Y) := (\/ Obs,(X) A zt> (4)
zeLl

Since taint analysis tracks information flow from high-security to low-security
variables, variables in H; are initialized to true while variables in L; are initialized
to false. W.l.o.g., let us denote the state update for a program variable x € X
as: ' = cond(X) 7 p1(X) : p2(X). Let ¢ be a formula over X'. We capture the
taint of ¢ by:

false ifpNX =10
O(p) = V otherwise

TEP

Thus, Tr(X;, X}) is defined as: A\ 2} = O(cond)V (cond ? O(p1) : Ops))
T €Xy
Intuitively, taint may propagate from x; to xo either when x; is assigned
an expression that involves xs or when an assignment to x; is controlled by xs.
The bad states (Bad;) are all states where a low-security variable is tainted and
observable.

142 W. Yang et al.

4.2 Self-composition

When using self-composition, information flow is tracked over an execution of
two copies of the program, P and P;. Let us denote Xy := {z4lxz € X} as
the set of program variables of Py. Similarly, let Inity(Xq) and Trq(Xg, X))
denote the initial states and transition relation of P;. Note that Inity and Try
are computed from Init and Tr by means of substitutions. Namely, substituting
every occurrence of x € X or &’ € X' with z4 € X4 and 2/, € X/}, respectively.
Similarly to taint analysis, we formulate information flow over a self-composed
program as a safety verification problem: My := (Z, Inity, Trq, Bad,) where
Z =X UXy and

Inity(Z) := Init(X) A Init(Xq) A (/\ x = :vd) (5)

z€L
Tra(Z,2") .= Tr(X, X") A Tr(Xq, X)) (6)

Bady(Z) := < \/ Obs,(X) A Obsy(Xa) A= (z = a:d)) (7)

xeL

In order to track information flow, variables in L, are initialized to be equal
to their counterpart in L, while variables in Hy remain unconstrained. A leak
is captured by the bad states (i.e. Badg). More precisely, there exists a leak iff
there exists an execution of My that results in a state where Obs; (X), Obsz(Xq)
hold and x # z4 for a low-security variable z € L.

5 Lazy Self-composition for Information Flow Analysis

In this section, we introduce lazy self-composition for information flow analysis.
It is based on an interplay between symbolic taint analysis on a single copy
and safety verification on a self-composition, which were both described in the
previous section.

Recall that taint analysis is imprecise for determining secure information
flow in the sense that it may report spurious counterexamples, namely, spurious
leaks. In contrast, self-composition is precise, but less efficient. The fact that self
composition requires a duplication of the program often hinders its performance.
The main motivation for lazy self-composition is to target both efficiency and
precision.

Intuitively, the model for symbolic taint analysis M; can be viewed as an
abstraction of the self-composed model My, where the Boolean variables in M,
are predicates tracking the states where x # x4 for some x € X. This intuition
is captured by the following statement: M; over-approximatesM.

Lazy Self-composition for Security Verification 143

Corollary 1. If there exists a path in My from Inity to Badg then there exists
a path in My from Init; to Bady.

Corollary 2. If there exists no path in My from Init; to Bad; then there exists
no path in My from Inity to Badg.

This abstraction-based view relating symbolic taint analysis and self-
composition can be exploited in different verification methods for checking secure
information flow. In this paper, we focus on two — a CEGAR-based method
(IFc-CEGAR) and a BMC-based method (IFC-BMC). These methods using
lazy self-composition are now described in detail.

5.1 IFc-CEGAR

We make use of the fact that M; can be viewed as an abstraction w.r.t. to My, and
propose an abstraction-refinement paradigm for secure information flow analysis.
In this setting, M; is used to find a possible counterexample, i.e., a path that
leaks information. Then, M, is used to check if this counterexample is spurious
or real. In case the counterexample is found to be spurious, IFC-CEGAR uses
the proof that shows why the counterexample is not possible in My to refine M;.

A sketch of IFc-CEGAR appears in Algorithm 1. Recall that we assume that
solving a safety verification problem is done by maintaining an inductive trace.
We denote the traces for M; and M, by G = [Go, ..., Gi| and H = [Hy, ..., Hg],
respectively. IFC-CEGAR starts by initializing M, My and their respective
traces G and H (lines 1-4). The main loop of IFc-CEGAR (lines 5-18) starts
by looking for a counterexample over M; (line 6). In case no counterexample is
found, IFC-CEGAR declares there are no leaks and returns SAFE.

If a counterexample 7 is found in M;, Irc-CEGAR first updates the trace
of My, i.e. H, by rewriting G (line 10). In order to check if 7 is spurious,
Irc-CEGAR creates a new safety verification problem M., a version of My
constrained by 7 (line 11) and solves it (line 12). If M, has a counterexample,
Irc-CEGAR returns UNSAFE. Otherwise, G is updated by H (line 16) and
M is refined such that 7 is ruled out (line 17).

The above gives a high-level overview of how IFc-CEGAR operates. We
now go into more detail. More specifically, we describe the functions ReWrite,
Constraint and Refine. We note that these functions can be designed and
implemented in several different ways. In what follows we describe some possible
choices.

Proof-Based Abstraction. Let us assume that when solving M; a counterex-
ample 7 of length £ is found and an inductive trace G is computed. Following a
proof-based abstraction approach, Constraint() uses the length of 7 to bound
the length of possible executions in My by k. Intuitively, this is similar to bound-
ing the length of the computed inductive trace over M.

In case M, has a counterexample, a real leak (of length k) is found. Other-
wise, since M, considers all possible executions of My of length k, Irc-CEGAR

144 W. Yang et al.

Algorithm 1. IFc-CEGAR (P,H)
Input: A program P and a set of high-security variables H
Output: SAFE, UNSAFE or UNKNOWN.
1 M; < ConstructTaintModel(P, H)
2 Mg < ConstructSCModel(P, H)
3 G — [Go = Inity]
4 H — [Ho = [TL’L‘td}
5 repeat
6
7
8
9

(G, Ritaint, ™) < MC.Solve(M:, G)
if Riwint = SAFE then
‘ return SAFE
else
10 H — ReWrite(G, H)
11 M. « Constraint(Mqg,)
12 (H,Rs,m) < MC.Solve(M., H)
13 if Rs = UNSAFE then
14 ‘ return UNSAFE
15 else
16 G — Relirite(H,G)
17 M; < Refine(M;, G)

18 until oo
19 return UNKNOWN

deduces that there are no counterexamples of length k. In particular, the coun-
terexample 7 is ruled out. IFC-CEGAR therefore uses this fact to refine M,
and G.

Inductive Trace Rewriting. Consider the set of program variables X, taint
variables Xy, and self compositions variables X;. As noted above, M; over-
approximates M. Intuitively, it may mark a variable x as tainted when x does
not leak information. Equivalently, if a variable x is found to be untainted in M,
then it is known to also not leak information in M. More formally, the following
relation holds: —z; — (z = xy4).

This gives us a procedure for rewriting a trace over M; to a trace over M. Let
G = |Gy, ...,Gg] be an inductive trace over M;. Considering the definition of
M;, G can be decomposed and rewritten as: G;(Y) := G;(X)AGEH(X¢)Ap(X, X3).
Namely, G;(X) and G%(X;) are sub-formulas of G; over only X and X; variables,
respectively, and (X, X;) is the part connecting X and X;.

Since G is an inductive trace G;(Y)A Try(Y,Y’) — Gi4+1(Y”) holds. Following
the definition of Tr; and the above decomposition of G;, the following holds:

Gi(X)AN Tr(X,X') — Gip1 (X))

Lazy Self-composition for Security Verification 145

Let H = [Hy,..., Hy] be a trace w.r.t. My. We define the update of H by
G as the trace H* = [H{, ..., H}], which is defined as follows:

Hj := Initg (8)
H; (Z) = Hi(Z) A Gi(X) A GilXa) A (Ao = 2alGi (V) = —ai}) (9)

Intuitively, if a variable x € X is known to be untainted in M;, using Corol-
lary 2 we conclude that x = x4 in My.

A similar update can be defined when updating a trace G w.r.t. M; by a trace
H w.r.t. My. In this case, we use the following relation: —(z = z4) — x;. Let
H = [Hy(Z),...,Hi(Z)] be the inductive trace w.r.t. My. H can be decomposed
and written as H;(Z) := H;(X) N H{(X4) A 6(X, Xg).

Due to the definition of My and an inductive trace, the following holds:

Hi(X) A Tr(X, X') — Hy(X)
H{(Xa) A Tr(Xa, Xg) — H{(X7)

We can therefore update a trace G = [Gy, ..., G| w.r.t. M; by defining the
trace G* = (G, . .., G}, where:

G = Inity (10)
G1(V) i= Gi(Y) A HL(X) A FEX) A (Nl Hi(2) = ~(e =za)}) (1)

Updating G by H, and vice-versa, as described above is based on the fact
that M, over-approximates My w.r.t. tainted variables (namely, Corollaries 1 and
2). Tt is therefore important to note that G in particular, does not “gain” more
precision due to this process.

Lemma 1. Let G be an inductive trace w.r.t. M; and H an inductive trace
w.r.t. My. Then, the updated H* and G* are inductive traces w.r.t. My and
My, respectively.

Refinement. Recall that in the current scenario, a counterexample was found
in My, and was shown to be spurious in My. This fact can be used to refine both
M; and G.

As a first step, we observe that if x = z4 in My, then —x; should hold in
M;. However, since M; is an over-approximation it may allow = to be tainted,
namely, allow z; to be evaluated to true.

In order to refine M; and G, we define a strengthening procedure for G,
which resembles the updating procedure that appears in the previous section.
Let H = [Hy,...,Hy] be a trace w.r.t. My and G = [Gy,...,Gg] be a trace
w.r.t. M, then the strengthening of G is denoted as G" = [G,...,G}] such
that:

146 W. Yang et al.

Gy =Inity (12)
GI (V) =Go(Y) A HL(X) A (X) A (Nl Hil Z) = (@ = 2a)}) &

(AwdlHi(2) = (« = 2a)}) (13)

The above gives us a procedure for strengthening G by using H. Note that
since M; is an over-approximation of My, it may allow a variable x € X to be
tainted, while in My (and therefore in H), x = 4. As a result, after strengthen-
ing G" is not necessarily an inductive trace w.r.t. My, namely, G} A Try — G’
does not necessarily hold. In order to make G" an inductive trace, M; must be
refined.

Let us assume that G} A Try — G7,,’ does not hold. By that, G} A Try A
—~G7 ' is satisfiable. Considering the way G is strengthened, three exists x € X
such that G} A Try A xj is satisfiable and G}, = —;. The refinement step is
defined by:

z; = G} ? false : (O(cond) V (cond ? O(p1) : Op2)))

This refinement step changes the next state function of x; such that whenever
G; holds, x; is forced to be false at the next time frame.

Lemma 2. Let G" be a strengthened trace, and let M] be the result of refine-
ment as defined above. Then, G" is an inductive trace w.r.t M.

Theorem 1. Let A be a sound and complete model checking algorithm w.r.t.
FOL(T) for some T, such that 2 maintains an inductive trace. Assuming Irc-
CEGAR uses 2, then IrFc-CEGAR 1is both sound and complete.

Proof (Sketch). Soundness follows directly from the soundness of taint analysis.
For completeness, assume My is SAFE. Due to our assumption that 2 is sound
and complete, /A emits a closed inductive trace H. Intuitively, assuming H is of
size k, then the next state function of every taint variable in M; can be refined to
be a constant false after a specific number of steps. Then, H can be translated to
a closed inductive trace G over M; by following the above presented formalism.
Using Lemma 2 we can show that a closed inductive trace exists for the refined
taint model.

5.2 Irc-BMC

In this section we introduce a different method based on Bounded Model Check-
ing (BMC) [6] that uses lazy self-composition for solving the information flow
security problem. This approach is described in Algorithm 2. In addition to the
program P, and the specification of high-security variables H, it uses an extra
parameter BN D that limits the maximum number of loop unrolls performed on
the program P. (Alternatively, one can fall back to an unbounded verification
method after BN D is reached in BMC).

Lazy Self-composition for Security Verification 147

Algorithm 2. Irc-BMC (P,H,BND)
Input: A program P, a set of high-security variables H, max unroll bound
BND
Output: SAFE, UNSAFE or UNKNOWN.

11+0

2 repeat

3 M (i) < LoopUnroll(P, i)

4 M (i) < EncodeTaint(M (7))

5 TR of M,(i) < LazySC(M (3), M. (%))
6 Bad of M,(i) «— \ —(y=1")

yeL
7 result «— SolveSMT(M, (7))
8 if result = counterexample then
9 ‘ return UNSAFE
10 live_taint < CheckLiveTaint(M;(i))
11 if live_taint = false then
12 ‘ return SAFE

13 t— 1+ 1
14 until : = BND
15 return UNKNOWN

Algorithm 3. LazySC(M;, M)

Input: A program model M and the corresponding taint program model M,
Output: Transition relation of the self-composed program T'rg

1 for each state update x < ¢ in transition relation of M do

2 add state update z < ¢ to T'rs

3 tainted < SolveSMT(query on x: in M)

4 if tainted = false then

5 ‘ add state update =’ <+ x to T'r,

6

7

8

else
‘ add state update z’ < duplicate(y) to Trs

return Trg

In each iteration of the algorithm (line 2), loops in the program P are unrolled
(line 3) to produce a loop-free program, encoded as a transition system M (7). A
new transition system M, (i) is created (line 4) following the method described
in Sect. 4.1, to capture precise taint propagation in the unrolled program M (7).
Then lazy self-composition is applied (line 5), as shown in detail in Algorithm 3,
based on the interplay between the taint model M;(i) and the transition system
M (i). In detail, for each variable z updated in M (i), where the state update is
denoted z := ¢, we use z; in My(#) to encode whether x is possibly tainted. We
generate an SMT query to determine if x; is satisfiable. If it is unsatisfiable, i.e.,
x; evaluates to False, we can conclude that high security variables cannot affect
the value of z. In this case, its duplicate variable 2’ in the self-composed program
M (1) is set equal to z, eliminating the need to duplicate the computation that

148 W. Yang et al.

will produce z’. Otherwise if x; is satisfiable (or unknown), we duplicate ¢ and
update z’ accordingly.

The self-composed program M,(i) created by LazySC (Algorithm 3) is then
checked by a bounded model checker, where a bad state is a state where any
low-security output y (y € L, where L denotes the set of low-security vari-
ables) has a different value than its duplicate variable ¢’ (line 6). (For ease of
exposition, a simple definition of bad states is shown here. This can be suit-
ably modified to account for Obs,(X) predicates described in Sect.4.) A coun-
terexample produced by the solver indicates a leak in the original program P.
We also use an early termination check for BMC encoded as an SMT-based
query CheckLiveTaint, which essentially checks whether any live variable is
tainted (line 10). If none of the live variables is tainted, i.e., any initial taint
from high-security inputs has been squashed, then IFCc-BMC can stop unrolling
the program any further. If no conclusive result is obtained, Irc-BMC will return
UNKNOWN.

6 Implementation and Experiments

We have implemented prototypes of IFC-CEGAR and Irc-BMC for informa-
tion flow checking. Both are implemented on top of SEAHORN [18], a software
verification platform that encodes programs as CHC (Constrained Horn Clause)
rules. It has a frontend based on LLVM [22] and backends to Z3 [15] and other
solvers. Our prototype has a few limitations. First, it does not support bit-
precise reasoning and does not support complex data structures such as lists.
Our implementation of symbolic taint analysis is flexible in supporting any given
taint policy (i.e., rules for taint generation, propagation, and removal). It uses
an encoding that fully leverages SMT-based model checking techniques for pre-
cise taint analysis. We believe this module can be independently used in other
applications for security verification.

6.1 Implementation Details

Irc-CEGAR Implementation. As discussed in Sect. 5.1, the IFCc-CEGAR imple-
mentation uses taint analysis and self-composition synergistically and is tai-
lored toward proving that programs are secure. Both taint analysis and self-
composition are implemented as LLVM-passes that instrument the program.
Our prototype implementation executes these two passes interchangeably as the
problem is being solved. The IFc-CEGAR implementation uses Z3’s CHC solver
engine called SPACER. SPACER, and therefore our IrFC-CEGAR implementation,
does not handle the bitvector theory, limiting the set of programs that can be
verified using this prototype. Extending the prototype to support this theory
will be the subject of future work.

Irc-BMC Implementation. In the Irc-BMC implementation, the loop unroller,
taint analysis, and lazy self-composition are implemented as passes that work on
CHC, to generate SMT queries that are passed to the backend Z3 solver. Since

Lazy Self-composition for Security Verification 149

the Irc-BMC implementation uses Z3, and not SPACER, it can handle all the
programs in our evaluation, unlike the IFC-CEGAR implementation.

Input Format. The input to our tools is a C-program with annotations indicating
which variables are secret and the locations at which leaks should be checked.
In addition, variables can be marked as untainted at specific locations.

6.2 Evaluation Benchmarks

For experiments we used a machine running Intel Core i7-4578U with 8 GB of
RAM. We tested our prototypes on several micro-benchmarks? in addition to
benchmarks inspired by real-world programs. For comparison against eager self-
composition, we used the SEAHORN backend solvers on a 2-copy version of the
benchmark. fibonacci is a micro-benchmark that computes the N-th Fibonacci
number. There are no secrets in the micro-benchmark, and this is a sanity check
taken from [33]. 1ist_4/8/16 are programs working with linked lists, the trailing
number indicates the maximum number of nodes being used. Some linked list
nodes contain secrets while others have public data, and the verification problem
is to ensure that a particular function that operates on the linked list does not
leak the secret data. modadd_safe is program that performs multi-word addition;
modexp_safe/unsafe are variants of a program performing modular exponen-
tiation; and pwdcheck_safe/unsafe are variants of program that compares an
input string with a secret password. The verification problem in these examples
is to ensure that an iterator in a loop does not leak secret information, which
could allow a timing attack. Among these benchmarks, the 1ist_4/8/16 use
structs while modexp_safe/unsafe involve bitvector operations, both of which
are not supported by SPACER, and thus not by our Irc-CEGAR prototype.

6.3 IFC-CEGAR Results

Table 1 shows the IFC-CEGAR results on benchmark examples with varying
parameter values. The columns show the time taken by eager self-composition
(Eager SC) and Irc-CEGAR, and the number of refinements in IFc-CEGAR.
“TO” denotes a timeout of 300s.

We note that all examples are secure and do not leak information. Since
our path-sensitive symbolic taint analysis is more precise than a type-based
taint analysis, there are few counterexamples and refinements. In particular,
for our first example pwdcheck_safe, self-composition is not required as our
path-sensitive taint analysis is able to prove that no taint propagates to the
variables of interest. It is important to note that type-based taint analysis cannot
prove that this example is secure. For our second example, pwdcheck2_safe, our
path-sensitive taint analysis is not enough. Namely, it finds a counterexample,
due to an implicit flow where a for-loop is conditioned on a tainted value, but
there is no real leak because the loop executes a constant number of times.

2 http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip.

http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip

150 W. Yang et al.

Table 1. Irc-CEGAR results (time in seconds)

Benchmark Parameter | Eager SC | IFc-CEGAR
Time (s) | Time (s) | #Refinements

pwdcheck_safe |4 8.8 0.2 0

8 TO 0.2 0

16 TO 0.2 0

32 TO 0.2 0
pwdcheck2_safe | N > 8 TO 61 1
modadd_safe 2048b 180 0.2 0

4096b TO 0.3 0

Our refinement-based approach can easily handle this case, where IrFC-CEGAR
uses self-composition to find that the counterexample is spurious. It then refines
the taint analysis model, and after one refinement step, it is able to prove that
pwdcheck2_safe is secure. While these examples are fairly small, they clearly
show that Irc-CEGAR is superior to eager self-composition.

6.4 Irc-BMC Results

The experimental results for IFc-BMC are shown in Table 2, where we use some
unsafe versions of benchmark examples as well. Results are shown for total time
taken by eager self-composition (Eager SC) and the IFc-BMC algorithm. (As
before, “TO” denotes a timeout of 300s.) IFc-BMC is able to produce an answer
significantly faster than eager self-composition for all examples. The last two
columns show the time spent in taint checks in Irc-BMC, and the number of
taint checks performed.

Table 2. Irc-BMC results (time in seconds)

Benchmark Result Eager SC | IFc-BMC | Taint checks | #Taint checks
Time (s) | Time (s) | Time (s)
fibonacci SAFE 0.55 0.1 0.07 85
list 4 SAFE 2.9 0.15 0.007 72
list_8 SAFE 3.1 0.6 0.02 144
list_16 SAFE 3.2 1.83 0.08 288
modexp_safe SAFE TO 0.05 0.01 342
modexp_unsafe | UNSAFE | TO 1.63 1.5 364
pwdcheck _safe |SAFE TO 0.05 0.01 1222
pwdcheck unsafe | UNSAFE | TO 1.63 1.5 809

Lazy Self-composition for Security Verification 151

To study the scalability of our prototype, we tested IFC-BMC on the modular
exponentiation program with different values for the maximum size of the integer
array in the program. These results are shown in Table 3. Although the Irc-BMC
runtime grows exponentially, it is reasonably fast — less than 2 min for an array
of size 64.

7 Related Work

A rich body of literature has studied the verification of secure information flow
in programs. Initial work dates back to Denning and Denning [16], who intro-
duced a program analysis to ensure that confidential data does not flow to
non-confidential outputs. This notion of confidentiality relates closely to: (i)
non-interference introduced by Goguen and Meseguer [17], and (ii) separability
introduced by Rushby [27]. Each of these study a notion of secure information
flow where confidential data is strictly not allowed to flow to any non-confidential
output. These definitions are often too restrictive for practical programs, where
secret data might sometimes be allowed to flow to some non-secret output (e.g.,
if the data is encrypted before output), i.e. they require declassification [29]. Our
approach allows easy and fine-grained de-classification.

A large body of work has also studied the use of type systems that ensure
secure information flow. Due to a lack of space, we review a few exemplars and
refer the reader to Sabelfeld and Myers [28] for a detailed survey. Early work in
this area dates back to Volpano et al. [35] who introduced a type system that
maintains secure information based on the work of Denning and Denning [16].
Myers introduced the JFlow programming language (later known as Jif: Java
information flow) [25] which extended Java with security types. Jif has been
used to build clean slate, secure implementations of complex end-to-end sys-
tems, e.g. the Civitas [10] electronic voting system. More recently, Patrigiani et
al. [26] introduced the Java Jr. language which extends Java with a security type
system, automatically partitions the program into secure and non-secure parts
and executes the secure parts inside so-called protected module architectures. In

Table 3. Irc-BMC results on modexp (time in seconds)

Benchmark | Parameter | Time (s) | #Taint checks
modexp 8 0.19 180

16 1.6 364

24 3.11 548

32 8.35 732

40 11.5 916

48 21.6 1123

56 35.6 1284

64 85.44 1468

152 W. Yang et al.

contrast to these approaches, our work can be applied to existing security-critical
code in languages like C with the addition of only a few annotations.

A different approach to verifying secure information flow is the use of dynamic
taint analysis (DTA) [3,12,13,21,30,31] which instruments a program with taint
variables and taint tracking code. Advantages of DTA are that it is scalable to
very large applications [21], can be accelerated using hardware support [13],
and tracks information flow across processes, applications and even over the
network [12]. However, taint analysis necessarily involves imprecision and in
practice leads to both false positives and false negatives. False positives arise
because taint analysis is an overapproximation. Somewhat surprisingly, false
negatives are also introduced because tracking implicit flows using taint analysis
leads to a deluge of false-positives [30], thus causing practical taint tracking
systems to ignore implicit flows. Our approach does not have this imprecision.

Our formulation of secure information flow is based on the self-composition
construction proposed by Barthe et al. [5]. A specific type of self-composition
called product programs was considered by Barthe et al. [4], which does not allow
control flow divergence between the two programs. In general this might miss
certain bugs as it ignores implicit flows. However, it is useful in verifying crypto-
graphic code which typically has very structured control flow. Almeida et al. [1]
used the product construction to verify that certain functions in cryptographic
libraries execute in constant-time.

Terauchi and Aiken [33] generalized self-composition to consider k-safety,
which uses & — 1 compositions of a program with itself. Note that self-
composition is a 2-safety property. An automated verifier for k-safety properties
of Java programs based on Cartesian Hoare Logic was proposed by Sousa and
Dillig [32]. A generalization of Cartesian Hoare Logic, called Quantitative Carte-
sian Hoare Logic was introduced by Chen et al. [8]; the latter can also be used to
reason about the execution time of cryptographic implementations. Among these
efforts, our work is mostly closely related to that of Terauchi and Aiken [33], who
used a type-based analysis as a preprocessing step to self-composition. We use a
similar idea, but our taint analysis is more precise due to being path-sensitive,
and it is used within an iterative CEGAR loop. Our path-sensitive taint analysis
leads to fewer counterexamples and thereby cheaper self-composition, and our
refinement approach can easily handle examples with benign branches. In con-
trast to the other efforts, our work uses lazy instead of eager self-composition,
and is thus more scalable, as demonstrated in our evaluation. A recent work [2]
also employs trace-based refinement in security verification, but it does not use
self-composition.

Our approach has some similarities to other problems related to tainting [19].
In particular, Change-Impact Analysis is the problem of determining what parts
of a program are affected due to a change. Intuitively, it can be seen as a form
of taint analysis, where the change is treated as taint. To solve this, Gyori et
al. [19] propose a combination of an imprecise type-based approach with a pre-
cise semantics-preserving approach. The latter considers the program before
and after the change and finds relational equivalences between the two ver-

Lazy Self-composition for Security Verification 153

sions. These are then used to strengthen the type-based approach. While our
work has some similarities, there are crucial differences as well. First, our taint
analysis is not type-based, but is path-sensitive and preserves the correctness
of the defined abstraction. Second, our lazy self-composition is a form of an
abstraction-refinement framework, and allows a tighter integration between the
imprecise (taint) and precise (self-composition) models.

8 Conclusions and Future Work

A well-known approach for verifying secure information flow is based on the
notion of self-composition. In this paper, we have introduced a new approach
for this verification problem based on lazy self-composition. Instead of eagerly
duplicating the program, lazy self-composition uses a synergistic combination
of symbolic taint analysis (on a single copy program) and self-composition by
duplicating relevant parts of the program, depending on the result of the taint
analysis. We presented two instances of lazy self-composition: the first uses taint
analysis and self-composition in a CEGAR loop; the second uses bounded model
checking to dynamically query taint checks and self-composition based on the
results of these dynamic checks. Our algorithms have been implemented in the
SEAHORN verification platform and results show that lazy self-composition is
able to verify many instances not verified by eager self-composition.

In future work, we are interested in extending lazy self-composition to sup-
port learning of quantified relational invariants. These invariants are often
required when reasoning about information flow in shared data structures of
unbounded size (e.g., unbounded arrays, linked lists) that contain both high-
and low-security data. We are also interested in generalizing lazy self-composition
beyond information-flow to handle other k-safety properties like injectivity, asso-
ciativity and monotonicity.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security, pp. 5370 (2016)

2. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI, pp. 362-375 (2017)

3. Babil, G.S., Mehani, O., Boreli, R., Kaafar, M.: On the effectiveness of dynamic
taint analysis for protecting against private information leaks on Android-based
devices. In: Proceedings of Security and Cryptography (2013)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200-214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0-17

5. Barthe, G., D’Argenio, P.R., Rezk,T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, pp. 100-114
(2004)

https://doi.org/10.1007/978-3-642-21437-0_17

154

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

W. Yang et al.

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative Cartesian Hoare logic. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 875-890.
ACM, New York (2017)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154-169. Springer, Heidelberg (2000). https://doi.org/10.1007/
1072216715

Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP 2008,
pp. 354-368. IEEE Computer Society, Washington, DC (2008)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157
1210 (2010)

Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of Internet worms. In: Proceedings of the
Symposium on Operating Systems Principles (2005)

Crandall, J.R., Chong, F.T.: Minos: control data attack prevention orthogonal to
memory model. In: Proceedings of the 37th IEEE/ACM International Symposium
on Microarchitecture (2004)

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification
through horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol.
9837, pp. 147-169. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7_8

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504-513 (1977)

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26-28 April 1982, pp.
11-20 (1982)

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Pasireanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343-361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
420

Gyori, A., Lahiri, S.K., Partush, N.: Refining interprocedural change-impact anal-
ysis using equivalence relations. In: Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, Santa Barbara, CA, USA,
10-14 July 2017, pp. 318-328 (2017)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: The
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 58—
70 (2002)

Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: Proceedings of the Network
and Distributed System Security Symposium (2011)

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Lazy Self-composition for Security Verification 155

Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization, CGO, pp. 75-88 (2004)

McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1-13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

Mordvinov, D., Fedyukovich, G.: Synchronizing constrained horn clauses. In: EPiC
Series in Computing, LPAR, vol. 46, pp. 338-355. EasyChair (2017)

Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM (1999)

Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37(2), 6:1-6:50 (2015)

Rushby, J.M.: Proof of separability a verification technique for a class of secu-
rity kernels. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 352-367. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7_23

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5-19 (2006)

Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517-548 (2009)

Schwartz, E., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy
(2010)

Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1-25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7_1

Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, pp. 57-69. ACM, New York (2016)
Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352-367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662_24

Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260-276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9_17

Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2-3), 167-187 (1996)

https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-11494-7_23
https://doi.org/10.1007/3-540-11494-7_23
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-319-08867-9_17

156 W. Yang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

SCINFER: Refinement-Based Verification
of Software Countermeasures Against
Side-Channel Attacks

Jun Zhang', Pengfei Gao', Fu Song'®9,

and Chao Wang?

! ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn
2 University of Southern California,
Los Angeles, CA, USA

Abstract. Power side-channel attacks, capable of deducing secret using statisti-
cal analysis techniques, have become a serious threat to devices in cyber-physical
systems and the Internet of things. Random masking is a widely used counter-
measure for removing the statistical dependence between secret data and side-
channel leaks. Although there are techniques for verifying whether software code
has been perfectly masked, they are limited in accuracy and scalability. To bridge
this gap, we propose a refinement-based method for verifying masking counter-
measures. Our method is more accurate than prior syntactic type inference based
approaches and more scalable than prior model-counting based approaches using
SAT or SMT solvers. Indeed, it can be viewed as a gradual refinement of a set
of semantic type inference rules for reasoning about distribution types. These
rules are kept abstract initially to allow fast deduction, and then made concrete
when the abstract version is not able to resolve the verification problem. We have
implemented our method in a tool and evaluated it on cryptographic benchmarks
including AES and MAC-Keccak. The results show that our method significantly
outperforms state-of-the-art techniques in terms of both accuracy and scalability.

1 Introduction

Cryptographic algorithms are widely used in embedded computing devices, including
SmartCards, to form the backbone of their security mechanisms. In general, security is
established by assuming that the adversary has access to the input and output, but not
internals, of the implementation. Unfortunately, in practice, attackers may recover cryp-
tographic keys by analyzing physical information leaked through side channels. These
so-called side-channel attacks exploit the statistical dependence between secret data
and non-functional properties of a computing device such as the execution time [38],
power consumption [39] and electromagnetic radiation [49]. Among them, differential
power analysis (DPA) is an extremely popular and effective class of attacks [30,42].

This work was supported primarily by the National Natural Science Foundation of China
(NSFC) grants 61532019 and 61761136011. Chao Wang was supported by the U.S. National
Science Foundation (NSF) grant CNS-1617203.

© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 157-177, 2018.
https://doi.org/10.1007/978-3-319-96142-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_12&domain=pdf

158 J. Zhang et al.

SCInFer
N _ next Type failed formula
— input ICR) SMT-based sMT
f— DDG inference h Solver
— approach approac SAT/UNSAT

I proved securel /Unknown
proved (not) secure

Fig. 1. Overview of SCInrEr, where “ICR” denotes the intermediate computation result.

To thwart DPA attacks, masking has been proposed to break the statistical depen-
dence between secret data and side-channel leaks through randomization. Although
various masked implementations have been proposed, e.g., for AES or its non-linear
components (S-boxes) [15,37,51,52], checking if they are correct is always tedious
and error-prone. Indeed, there are published implementations [51,52] later shown to be
incorrect [21,22]. Therefore, formally verifying these countermeasures is important.

Previously, there are two types of verification methods for masking countermea-
sures [54]: one is type inference based [10,44] and the other is model counting
based [26,27]. Type inference based methods [10,44] are fast and sound, meaning they
can quickly prove the computation is leakage free, e.g., if the result is syntactically inde-
pendent of the secret data or has been masked by random variables not used elsewhere.
However, syntactic type inference is not complete in that it may report false positives.
In contrast, model counting based methods [26,27] are sound and complete: they check
if the computation is statistically independent of the secret [15]. However, due to the
inherent complexity of model counting, they can be extremely slow in practice.

The aforementioned gap, in terms of both accuracy and scalability, has not been
bridged by more recent approaches [6, 13,47]. For example, Barthe et al. [6] proposed
some inference rules to prove masking countermeasures based on the observation that
certain operators (e.g., XOR) are invertible: in the absence of such operators, purely
algebraic laws can be used to normalize expressions of computation results to apply the
rules of invertible functions. This normalization is applied to each expression once, as it
is costly. Ouahma et al. [47] introduced a linear-time algorithm based on finer-grained
syntactical inference rules. A similar idea was explored by Bisi et al. [13] for analyzing
higher-order masking: like in [6,47], however, the method is not complete, and does not
consider non-linear operators which are common in cryptographic software.

Our Contribution. We propose a refinement based approach, named SCINFERr, to bridge
the gap between prior techniques which are either fast but inaccurate or accurate but
slow. Figure 1 depicts the overall flow, where the input consists of the program and a
set of variables marked as public, private, or random. We first transform the program
to an intermediate representation: the data dependency graph (DDG). Then, we tra-
verse the DDG in a topological order to infer a distribution type for each intermediate
computation result. Next, we check if all intermediate computation results are perfectly
masked according to their types. If any of them cannot be resolved in this way, we
invoke an SMT solver based refinement procedure, which leverages either satisfiabil-
ity (SAT) solving or model counting (SAT#) to prove leakage freedom. In both cases,

SCInrer: Refinement-Based Verification of Software Countermeasures 159

the result is fed back to improve the type system. Finally, based on the refined type
inference rules, we continue to analyze other intermediate computation results.

Thus, SCINFeR can be viewed as a synergistic integration of a semantic rule based
approach for inferring distribution types and an SMT solver based approach for refining
these inference rules. Our type inference rules (Sect. 3) are inspired by Barthe et al. [6]
and Ouahma et al. [47] in that they are designed to infer distribution types of interme-
diate computation results. However, there is a crucial difference: their inference rules
are syntactic with fixed accuracy, i.e., relying solely on structural information of the
program, whereas ours are semantic and the accuracy can be gradually improved with
the aid of our SMT solver based analysis. At a high level, our semantic type inference
rules subsume their syntactic type inference rules.

The main advantage of using type inference is the ability to quickly obtain sound
proofs: when there is no leak in the computation, often times, the type system can pro-
duce a proof quickly; furthermore, the result is always conclusive. However, if type
inference fails to produce a proof, the verification problem remains unresolved. Thus,
to be complete, we propose to leverage SMT solvers to resolve these left-over verifica-
tion problems. Here, solvers are used to check either the satisfiability (SAT) of a logical
formula or counting its satisfying solutions (SAT#), the later of which, although expen-
sive, is powerful enough to completely decide if the computation is perfectly masked.
Finally, by feeding solver results back to the type inference system, we can gradually
improve its accuracy. Thus, overall, the method is both sound and complete.

We have implemented our method in a software tool named SCINFER and evaluated
it on publicly available benchmarks [26,27], which implement various cryptographic
algorithms such as AES and MAC-Keccak. Our experiments show SCINFER is both
effective in obtaining proofs quickly and scalable for handling realistic applications.
Specifically, it can resolve most of the verification subproblems using type inference
and, as a result, satisfiability (SAT) based analysis needs to be applied to few left-over
cases. Only in rare cases, the most heavyweight analysis (SAT#) needs to be invoked.

To sum up, the main contributions of this work are as follows:

— We propose a new semantic type inference approach for verifying masking counter-
measures. It is sound and efficient for obtaining proofs.

— We propose a method for gradually refining the type inference system using SMT
solver based analysis, to ensure the overall method is complete.

— We implement the proposed techniques in a tool named SCINFErR and demonstrate
its efficiency and effectiveness on cryptographic benchmarks.

The remainder of this paper is organized as follows. After reviewing the basics in
Sect. 2, we present our semantic type inference system in Sect.3 and our refinement
method in Sect. 4. Then, we present our experimental results in Sect. 5 and comparison
with related work in Sect. 6. We give our conclusions in Sect. 7.

2 Preliminaries

In this section, we define the type of programs considered in this work and then review
the basics of side-channel attacks and masking countermeasures.

160 J. Zhang et al.

2.1 Probabilistic Boolean Programs

Following the notation used in [15,26,27], we assume that the program P implements
a cryptographic function, e.g., ¢ « P(p, k) where p is the plaintext, k is the secret key
and c is the ciphertext. Inside P, random variable r may be used to mask the secret
key while maintaining the input-output behavior of P. Therefore, P may be viewed
as a probabilistic program. Since loops, function calls, and branches may be removed
via automated rewriting [26,27] and integer variables may be converted to bits, for
verification purposes, we assume that P is a straight-line probabilistic Boolean program,
where each instruction has a unique label and at most two operands.

Let k (resp. r) be the set
of secret (resp. random) bits,
p the public bits, and ¢ the
variables storing intermediate
results. Thus, the set of vari-
ablesis V. = kUruUpuUec.
In addition, the program uses
a set op of operators including 1, ,
negation (—), and (A), or (V),
and exclusive-or (®). A compu-
tation of P is a sequence ¢] < Fig. 2. An example for masking countermeasure.
il(p’k’r);"' sCn in(P’k,r)
where, for each 1 < i < n, the value of i; is expressed in terms of p, k and r. Each
random bit in r is uniformly distributed in {0, 1}; the sole purpose of using them in P is
to ensure that ¢y, - - - ¢, are statistically independent of the secret k.

bool compute(bool ry,bool ra,
bool r3,bool k)
34

1

2

3

4 bool ci,c2,¢3,¢4,¢5,¢6;
5 c1 =k@®ry;

6 ca=11Dr2;

7 c3=caBers
8

9

10

11

cg =c3dez;
s =ca D1
cg =c5 NT3;
return cg;

FRNPN

T2 k

Sae
we
<

-

Data Dependency Graph (DDG). Our internal representation of P is a graph Gp =
(N, E, 1), where N is the set of nodes, E is the set of edges, and A is a labeling function.

— N = LW Ly, where L is the set of instructions in P and Ly is the set of terminal
nodes: /, € Ly corresponds to a variable or constant v € kU r U p U {0, 1}.

— E € N X N contains edge (,/) if and only if / : ¢ = x oy, where either x or y is
defined by I'; or [: ¢ = —x, where x is defined by /’;

— A maps each [€ N to a pair (val,op): A(l) = (c,o) forl: c = xoy; A) = (c,—) for
[: ¢ = —=x;and A(l) = (v, L) for each terminal node /,.

We may use 4;(I) = c and A(I) = o to denote the first and second elements of the pair
A(l) = (c, o), respectively. We may also use [.1ft to denote the left child of /, and l.rgt
to denote the right child if it exists. A subtree rooted at node / corresponds to an inter-
mediate computation result. When the context is clear, we may use the following terms
exchangeably: a node /, the subtree T rooted at /, and the intermediate computation
result ¢ = A;(l). Let |P| denote the total number of nodes in the DDG.

Figure 2 shows an example where k = {k}, r = {r, 2,13}, ¢ = {c1, 2,3, ¢4, 5, Co}
and p = 0. On the left is a program written in a C-like language except that @ denotes
XOR and A denotes AND. On the right is the DDG, where

SCInrer: Refinement-Based Verification of Software Countermeasures 161

c3=0®c=roendkdn)=kdnr

=0 =((neneken)ed(r &rn)=kdnr

;=@ =((non)oken)®(r &n)dr =ke&r én
c6=csAR=((((nen)ekon)er ®n)er)Arn=>(erén)An

Let supp : N — k U r U p be a function mapping each node [to its support variables.
That is, supp(/) = 0 if ;()) € {0, 1}; supp(l) = {x}if 21(/) = x € kU r U p; and
supp(/) = supp(l.1ft) U supp(l.rgt) otherwise. Thus, the function returns a set of
variables that A (/) depends upon structurally.

Given a node / whose corresponding expression e is defined in terms of variables
in V, we say that e is semantically dependent on a variable » € V if and only if there
exist two assignments, 71y and 7y, such that m;(r) # m(r) and m(x) = m(x) for every
x € V '\ {r}, and the values of e differ under | and 7,.

Let semd : N — r be a function such that semd(l) denotes the set of random vari-
ables upon which the expression e of / semantically depends. Thus, semd(l) € supp(J);
and for each r € supp(l) \ semd(/), we know A;(/) is semantically independent of
r. More importantly, there is often a gap between supp(/) N r and semd(/), namely
semd(/) C supp(l) N r, which is why our gradual refinement of semantic type inference
rules can outperform methods based solely on syntactic type inference.

Consider the node /., in Fig. 2: we have supp(l;,) = {r1, r2, k}, semd(l.,) = {r2}, and
supp(l,,) N r = {ry, r2}. Furthermore, if the random bits are uniformly distributed in
{0, 1}, then ¢4 is both uniformly distributed and secret independent (Sect.2.2).

2.2 Side-Channel Attacks and Masking

We assume the adversary has access to the public input p and output ¢, but not the
secret k and random variable r, of the program ¢ « P(p, k). However, the adversary
may have access to side-channel leaks that reveal the joint distribution of at most d
intermediate computation results ¢y, - ¢4 (e.g., via differential power analysis [39]).
Under these assumptions, the goal of the adversary is to deduce information of k. To
model the leakage of each instruction, we consider a widely-used, value-based model,
called the Hamming Weight (HW) model; other power leakage models such as the
transition-based model [5] can be used similarly [6].

Let [n] denote the set {1, - - - , n} of natural numbers where n > 1. We call a set with
d elements a d-set. Given values (p, k) for (p, k) and a d-set {c,, - - - , ¢4} of intermediate
computation results, we use D, x(c1, - - - ¢4) to denote their joint distribution induced by
instantiating p and k with p and k, respectively. Formally, for each vector of values
vy, -+, Vg in the probability space {0, 1}, we have Dpi(ct, - ca)vi, - ,vg) =

irefo, " [vi=ii(p=pk=kr=r),--,vai=isp=p,k=kr=r)

Irl
Definition 1. We say a d-set {cy,- - , c4} of intermediate computation results is
— uniformly distributed if D, x(c1, - - , cq) is a uniform distribution for any p and k.

— secret independent if D, x(c1,- -+ ,cq) = Dy (c1,- -+, cq) for any (p, k) and (p, k').

162 J. Zhang et al.

Note that there is a difference between them: an uniformly distributed d-set is always
secret independent, but a secret independent d-set is not always uniformly distributed.

Definition 2. A program P is order-d perfectly masked if every k-set {cy,--- ,c} of P
such that k < d is secret independent. When P is (order-1) perfectly masked, we may
simply say it is perfectly masked.

To decide if P is order-d perfectly masked, it suffices to check if there exist a d-set and
two pairs (p, k) and (p, k') such that D, x(c1,- -+ ,cq) # Dy (c1,- -+, cq). In this context,
the main challenge is computing D, x(cy, - - - , c¢q) which is essentially a model-counting
(SAT#) problem. In the remainder of this paper, we focus on developing an efficient
method for verifying (order-1) perfect masking, although our method can be extended
to higher-order masking as well.

Gap in Current State of Knowledge. Existing methods for verifying masking coun-
termeasures are either fast but inaccurate, e.g., when they rely solely on syntactic type
inference (structural information provided by supp in Sect.2.1) or accurate but slow,
e.g., when they rely solely on model-counting. In contrast, our method gradually refines
a set of semantic type-inference rules (i.e., using semd instead of supp as defined in
Sect.2.1) where constraint solvers (SAT and SAT#) are used on demand to resolve
ambiguity and improve the accuracy of type inference. As a result, it can achieve the
best of both worlds.

3 The Semantic Type Inference System

We first introduce our distribution types, which are inspired by prior work in [6, 13,47],
together with some auxiliary data structures; then, we present our inference rules.

3.1 The Type System

Let T = {CST, RUD, SID, NPM, UKD} be the set of distribution types for intermediate com-
putation results, where [c] denotes the type of ¢ « i(p, k, r). Specifically,

— [[c] = CST means c is a constant, which implies that it is side-channel leak-free;
— [[c]l = RUD means c is randomized to uniform distribution, and hence leak-free;
— [[c] = SID means c is secret independent, i.e., perfectly masked;

— [[c]] = NPM means c is not perfectly masked and thus has leaks; and

— [[c]l = UKD means ¢ has an unknown distribution.

Definition 3. Let unq : N — r and dom : N — r be two functions such that (i)
for each terminal node | € Ly, if 41(l) € r, then unq(l) = dom(l) = A;(l); otherwise
unq(l) = dom(l) = supp(l) = O; and (ii) for each internal node | € L, we have

— unq(l) = (unq(l.1ft) U unq(l.rgt)) \ (supp(l.1£t) N supp(l.rgt));
— dom(l) = (dom(l.1£t) U dom(l.rgt)) N unqg(l) if (1) = &; but dom(l) = O otherwise.

SCInrer: Refinement-Based Verification of Software Countermeasures 163

/ (L k
LEAF, L er LEAR, 1hepu LEAFs (D) €{0, 1}
[[{] = RUD [[] = UKD [/l = CST
L= [l.1ft] = RUD L()=e [lrgt] = RUD
Xor-Rup, dom(/.1ft) \ semd(l.rgt) # 0 Xor-RUD, dom(l.rgt) \ semd(l.1ft) # 0
[T = RUD [/ = RUD
(1) € {A, V) [l.rgt] ¢ {UKD, NPM} (1) € (A, V) [/.1£t] ¢ {UKD, NPM}
AO-Rup, [/.1ft] =RUD semd(l.1ft) N semd(l.rgt) =0 AO-Rup, [Lrgt] =RUD semd(l/.rgt) N semd(l.1ft) = 0
[7] = SID [1] = SID
AO-Rup; L) e (A, V) [L1ft] = [Lrgt] =RUD (dom(L1ft)\ semd(/.rgt)) U (dom(l.rgt)\ semd(L1ft)) # 0
[[Z] = SID
Sip L) e{® AV} [lrgt] =[l1£ft] = SID semd(l.1ft) N semd(l.rgt) =0
[/] = SID
L) =~ No-Kgy supp() Nk =0 Uxop no-rule is applicable at /
[= [2.1£t] [[1] = SID [[/] = UKD

Fig. 3. Our semantic type-inference rules. The NPM type is not yet used here; its inference rules
will be added in Fig. 4 since they rely on the SMT solver based analyses.

Both unq(/) and dom(/) are computable in time that is linear in |P| [47]. Following the
proofs in [6,47], it is easy to reach this observation: Given an intermediate computation
result ¢ « i(p, k, r) labeled by /, the following statements hold:

if |dom(/)| # O, then [c]] = RUD;

if [[c] = RUD, then [—c]] = RUD; if [c]] = SID, then [—c]] = SID.

if r ¢ semd(/) for a random bit r € r, then [[r & c]] = RUD;

for every ¢’ « i'(p, k,r) labeled by 7, if semd(l) N semd(') = 0 and [c] = [¢'] =
SID, then [[c o ¢'] = SID.

NS

Figure 3 shows our type inference rules that concretize these observations. When mul-
tiple rules could be applied to a node [€ N, we always choose the rules that can lead
to [/] = RUD. If no rule is applicable at /, we set [/]] = UKD. When the context is clear,
we may use [/]] and [c] exchangeably for 1;(/) = c. The correctness of these inference
rules is obvious by definition.

Theorem 1. For every intermediate computation result ¢ «— i(p, k, r) labeled by I,

— if [[c]l = RUD, then c is uniformly distributed, and hence perfectly masked;
— if [c]l = SID, then c is guaranteed to be perfectly masked.

To improve efficiency, our inference rules may be applied twice, first using the supp
function, which extracts structural information from the program (cf. Sect. 2.1) and then
using the semd function, which is slower to compute but also significantly more accu-
rate. Since semd(/) € supp(/) for all [€ N, this is always sound. Moreover, type infer-
ence is invoked for the second time only if, after the first time, [/]] remains UKD.

Example 1. When using type inference with supp on the running example, we have
(1]l = [r201 = [r3] = [e1]l = [e2ll = [les]l = RUD, [kl = [call = [les] = [[co]l = UKD

When using type inference with semd (for the second time), we have

[r11 = [r21 = [r31 = [c1] = [e2] = (3] = [call = [es] = RUD, [k] = UKD, [ce] = SID

164 J. Zhang et al.

3.2 Checking Semantic Independence

Unlike supp(/), which only extracts structural information from the program and hence
may be computed syntactically, semd(/) is more expensive to compute. In this subsec-
tion, we present a method that leverages the SMT solver to check, for any intermediate
computation result ¢ « i(p, k, r) and any random bit r € r, whether c is semantically
dependent of r. Specifically, we formulate it as a satisfiability (SAT) problem (formula
@,) defined as follows:

O (co, p. k. 7\ (1) A O (1, p K T\ (1)) A O (o, 1),

where @g:o (resp. @gzl) encodes the relation i(p, k, r) with r replaced by O (resp. 1), co
and ¢, are copies of ¢ and @7 asserts that the outputs differ even under the same inputs.

In logic synthesis and optimization, when r ¢ semd(l), » will be called the don’t
care variable [36]. Therefore, it is easy to see why the following theorem holds.

Theorem 2. @; is unsatisfiable iff the value of r does not affect the value of ¢, i.e., c is
semantically independent of r. Moreover; the formula size of @ is linear in |P).

Cp-Rup ller,--- ekl =RUD [lcgs1]l =RUD semd(cy, - -, ¢x) N semd(cgs1) = 0

e, s cke1] = RUD
Cr-Sp e, -+, cll, [ek+1 11 € {SID,RUD} [lcxs1]l # ey, -+ sl semd(cy, -+, cx) N semd(cx+1) = 0
! et cxa] = SID
Cr-Sm er,-++,cxl =RUD [lege1] =RUD (dom(cy, -+ ,cx) \ semd(cr+1)) N (dom(cy1) \ semd(cy, -« ,cx)) # 0
2 ler, -+]l = SID
Cp-Ukp no-rule is appliable at {cy,- -, c+1}

ler, -+, keI = UKD

Fig. 4. Our composition rules for handling sets of intermediate computation results.

3.3 Verifying Higher-Order Masking

The type system so far targets first-order masking. We now outline how it extends
to verify higher-order masking. Generally speaking, we have to check, for any k-set
{c1,-- -, cx} of intermediate computation results such that k < d, the joint distribution is
either randomized to uniform distribution (RUD) or secret independent (SID).

To tackle this problem, we lift supp, semd, unq, and dom to sets of computation
results as follows: for each k-set {cy,- - , ¢},

supp(ct, -+ 5 cx) = Uiepg SUpp(ci);

— semd(cy, -+, ¢x) = Uiepg semd(c;);
— unq(cr, -+ 5) = (Uiepg unalen)) \ U jepr (supp(c;) N supp(c;)); and
— dom(cy, -+, cx) = (Ujer dom(c;)) Nuna(ey, -+, ¢x).

Our inference rules are extended by adding the composition rules shown in Fig. 4.

SCInrer: Refinement-Based Verification of Software Countermeasures 165

Theorem 3. For every k-set {ci, - , ci} of intermediate computations results,

— if [c1,- -+ ,ck]l = RUD, then {cy,--- ,ci} is guaranteed to be uniformly distributed,
and hence perfectly masked;

— ifllct, -+ ,ckll = SID, then {ci,- -+ ,ci} is guaranteed to be perfectly masked.

We remark that the semd function in these composition rules could also be safely
replaced by the supp function, just as before. Furthermore, to more efficiently verify
that program P is perfect masked against order-d attacks, we can incrementally apply
the type inference for each k-set, where k = 1,2, ...,d.

4 The Gradual Refinement Approach

In this section, we present our method for gradually refining the type inference system
by leveraging SMT solver based techniques. Adding solvers to the sound type system
makes it complete as well, thus allowing it to detect side-channel leaks whenever they
exist, in addition to proving the absence of such leaks.

4.1 SMT-Based Approach

For a given computation ¢ « i(p, k, r), the verification of perfect masking (Definition 2)
can be reduced to the satisfiability of the logical formula (¥) defined as follows:

Ap.3k.3K (ZWE[ON i(p,k,v,) # Zmow i(p, K\ v)).

Intuitively, given values (v,,v¢) of (p, k), count = 3, c(0.1y# (v}, vk, v,) denotes the
number of assignments of the random variable r under which i(v,, v, r) is evaluated to
logical 1. When random bits in r are uniformly distributed in the domain {0, 1}, C;’,ﬁf” is
the probability of i(v,, vk, r) being logical 1 for the given pair (v, v). Therefore, ¥ is
unsatisfiable if and only if ¢ is perfectly masked.

Following Eldib et al. [26,27], we encode the formula ¥ as a quantifier-free first-
order logic formula to be solved by an off-the-shelf SMT solver (e.g., Z3):

2\r\7l 2|r\7l
N\, O AN, O) A O 7 6.

— O} (resp. ©),) foreach r € {0, - -, 2IM=1}: encodes a copy of the input-output relation
of i(p, k, r) (resp. i(p, k', r)) by replacing r with concrete values r. There are 2"
distinct copies, but share the same plaintext p.

— Opy;: converts Boolean outputs of these copies to integers (true becomes 1 and false
becomes 0) so that the number of assignments can be counted.

— O.: asserts the two summations, for k and k’, differ.

Example 2. In the running example, for instance, verifying whether node c4 is perfectly
masked requires the SMT-based analysis. For brevity, we omit the detailed logical for-
mula while pointing out that, by invoking the SMT solver six times, one can get the
following result: [[c;] = [c2] = [c3] = [eall = [es] = [esll = SID.

166 J. Zhang et al.

L) e{A vy [lLrgt] =NPM [L1ft] = RUD L) €{A,v} [L1ft] =NPM [lLrgt] = RUD
AO-Npw, semd(/.1ft) N semd(l.rgt) = 0 AO-Npm, semd(l.rgt) N semd(l.1ft) = 0
[7] = NPM [1] = NPM
A €AV} [lLrgt]=NPM [L1ft] = RUD L) e{Av) [L1ft] =NPM [Lrgt] = RUD
AO—NPM3 dom(/.1ft) \ semd(l.rgt) # 0 AO—NPM4 dom(l.rgt) \ semd(l.1ft) # 0
[7] = NPM [1] = NPM
Cp-NpMm ek] = NP
ler,- -+, crs1]l = NPM

Fig. 5. Complementary rules used during refinement of the type inference (Fig. 3).

Although the SMT formula size is linear in | P|, the number of distinct copies is expo-
nential of the number of random bits used in the computation. Thus, the approach cannot
be applied to large programs. To overcome the problem, incremental algorithms [26,27]
were proposed to reduce the formula size using partitioning and heuristic reduction.

Incremental SMT-Based Algorithm. Given a computation ¢ « i(p, k, r) that corre-
sponds to a subtree T rooted at / in the DDG, we search for an internal node /; in T (a
cut-point) such that dom(ls/)\ Nung(l) # 0. A cut-point is maximal if there is no other
cut-point from [to /5. Let T be the simplified tree obtained from T by replacing every
subtree rooted by a maximal cut-point with a random variable from dom(l;) N unq(/).
Then, T is SID iff T is SID.

The main observation is that: if /; is a cut-point, there is a random variable r €
dom(ly) N ung(/), which implies A;(l;) is RUD. Here, r € unq(/) implies 1,(/;) can be
seen as a fresh random variable when we evaluate /. Consider the node c¢3 in our running
example: it is easy to see r; € dom(cp) Nung(c3). Therefore, for the purpose of verifying
c3, the entire subtree rooted at ¢, can be replaced by the random variable r;.

In addition to partitioning, heuristics rules [26,27] can be used to simplify SMT
solving. (1) When constructing formula @ of c, all random variables in supp(/)\ semd(J),
which are don’t cares, can be replaced by constant 1 or 0. (2) The No-Key and Sip rules
in Fig. 3 with the supp function are used to skip some checks by SMT.

Example 3. When applying incremental SMT-based approach to our running example,
¢ has to be decided by SMT, but ¢, is skipped due to No-KEy rule.

As for c3, since r; € dom(c;) Nung(c3), ¢; is a cut-point and the subtree rooted at ¢
can be replaced by ry, leading to the simplified computation r| & (r, ® k) — subsequently
it is skipped by the S rule with supp. Note that the above Sib rule is not applicable to
the original subtree, because r, occurs in the support of both children of c3.

There is no cut-point for cy4, so it is checked using the SMT solver. But since ¢4 is
semantically independent of r| (a don’t care variable), to reduce the SMT formula size,
we replace r; by 1 (or 0) when constructing the formula @.

SCInrer: Refinement-Based Verification of Software Countermeasures 167

4.2 Feeding SMT-Based Analysis Results Back to Type System

Consider a scenario where initially the type system
(cf. Sect. 3) failed to resolve a node /, i.e., [/] = UKD,
but the SMT-based approach resolved it as either NPM
or SID. Such results should be fed back to improve
the type system, which may lead to the following two
favorable outcomes: (1) marking more nodes as per-
fectly masked (RUD or SID) and (2) marking more
nodes as leaky (NPM), which means we can avoid
expensive SMT calls for these nodes. More specifi-
cally, if SMT-based analysis shows that [is perfectly
masked, the type of [can be refined to [/]] = SID; feeding it back to the type system
allows us to infer more types for nodes that structurally depend on /.

On the other hand, if SMT-based analysis shows [is not perfectly masked, the type
of I can be refined to [/] = NPM; feeding it back allows the type system to infer that
other nodes may be NPM as well. To achieve what is outlined in the second case above,
we add the NPM-related type inference rules shown in Fig.5. When they are added to
the type system outlined in Fig. 3, more NPM type nodes will be deduced, which allows
our method to skip the (more expensive) checking of NPM using SMT.

Fig. 6. Example for feeding back.

Example 4. Consider the example DDG in Fig. 6. By applying the original type infer-
ence approach with either supp or semd, we have

[c1] = [call = RUD, [[c2]l = [c3]] = [cs]l = SID, [[cs]l = [c7]] = UKD.

In contrast, by applying SMT-based analysis to cs5, we can deduce [[c¢s]] = SID. Feeding
[cs] = SID back to the original type system, and then applying the Sip rule to ¢; =
cs ® cg, we are able to deduce [[c7]] = SID. Without refinement, this was not possible.

4.3 The Overall Algorithm

Having presented all the components, we now present the overall procedure, which
integrates the semantic type system and SMT-based method for gradual refinement.
Algorithm 1 shows the pseudo code. Given the program P, the sets of public (p), secret
(k), random (r) variables and an empty map x, it invokes SCINFer(P, p, k, r, 1) to tra-
verse the DDG in a topological order and annotate every node / with a distribution
type from T. The subroutine TyPEINFER implements the type inference rules outlined in
Figs. 3 and 5, where the parameter f can be either supp or semd.

SCInrer first deduces the type of each node I € N by invoking TyPeINFER with
f = supp. Once a node [is annotated as UKD, a simplified subtree P of the subtree
rooted at / is constructed. Next, TypEINFER with f = semd is invoked to resolve the UKD
node in P. If n(l) becomes non-UKD afterward, TypeINrer with f = supp is invoked
again to quickly deduce the types of the fan-out nodes in P. But if m(/) remains UKD,
SCInrer invokes the incremental SMT-based approach to decide whether / is either SID
or NPM. This is sound and complete, unless the SMT solver runs out of time/memory, in
which case UKD is assigned to /.

168 J. Zhang et al.

Algorithm 1. Function SCINrer(P, p, k, r,)

1 Function SCINrer(P, p, k, r, 1)

2 foreach [€ N in a topological order do

3 if [is a leaf then n(]) := [{];

4 else

5 TyeeIneer(l, P, p, k, r, T, supp);

6 if 7(/) = UKD then

7 let P be the simplified tree of the subtree rooted by / in P;
8 TyPEINFER(/, P, p,k,r,n, semd);

9 if 7(/) = UKD then
10 res:=CheckBySMT(P, p, k, r);
11 if res=Not-Perfectly-Masked then n(/) := NPM;
12 else if res=Perfectly-Masked then 7(/) := SID;
13 else (/) := UKD;

Theorem 4. For every intermediate computation result ¢ «— i(p, k, r) labeled by [, our
method in SCINFER guarantees to return sound and complete results:

— n(l) = RUD iff ¢ is uniformly distributed, and hence perfectly masked;
— n(l) = SIDiff ¢ is secret independent, i.e., perfectly masked;
— n(l) = NPM iff c is not perfectly masked (leaky);

If timeout or memory out is used to bound the execution of the SMT solver, it is also
possible that () = UKD, meaning ¢ has an unknown distribution (it may or may not be
perfectly masked). It is interesting to note that, if we regard UKD as potential leak and at
the same time. bound (or even disable) SMT-based analysis, Algorithm 1 degenerates
to a sound type system that is both fast and potentially accurate.

5 Experiments

We have implemented our method in a verification tool named SCINFER, which uses
73 [23] as the underlying SMT solver. We also implemented the syntactic type infer-
ence approach [47] and the incremental SMT-based approach [26,27] in the same tool
for experimental comparison purposes. We conducted experiments on publicly avail-
able cryptographic software implementations, including fragments of AES and MAC-
Keccak [26,27]. Our experiments were conducted on a machine with 64-bit Ubuntu
12.04 LTS, Intel Xeon(R) CPU E5-2603 v4, and 32 GB RAM.

Overall, results of our experiments show that (1) SCINFER is significantly more accu-
rate than prior syntactic type inference method [47]; indeed, it solved tens of thousand
of UKD cases reported by the prior technique; (2) SCINFER is at least twice faster than
prior SMT-based verification method [26,27] on the large programs while maintaining
the same accuracy; for example, SCINFER verified the benchmark named P12 in a few
seconds whereas the prior SMT-based method took more than an hour.

SCInrer: Refinement-Based Verification of Software Countermeasures 169

Algorithm 2. Procedure TyeeIneer(l, P, p, k, r, 7, f)

1 Procedure TypeINeer(l, P, p, k, r, 7, f)

2 if () = = then n(l) := n(l.1ft) ;

3 else if 1,(/) = @ then

4 if 7(l.1ft) = RUD A dom(l.1£t) \ f(l.rgt) # 0 then n(l) := RUD;

5 else if 7(l.rgt) = RUD A dom(l.rgt) \ f(l.1ft) # (then (/) := RUD;
6 else if 7(l.rgt) = n(l.1ft) = SID A f(l.1ft) N f(l.rgt) N r = O then
7 | () :=SID

8 else if supp(l) N k = 0 then 7([) := SID;

9 else 7(/) := UKD;

10 else

((x(1.1t) = RUD A n(l.rgt) ¢ (UKD, NPH})V

1 if | (n(l.rgt) = RUD A n(l.1£t) ¢ {UKD, NPM})) then n(l) := SID;
Af(L1ft)yn f(l.rgt)Nr=10

.o [(dom(l.rgt)\ f(L.1£ft)) U (dom(l.1£t) \ f(lL.rgt)) # 0
2 else if (An(L.1£t) = RUD A n(L.rgt) = RUD) then
13 ‘ n(l) := SID

((r(1.1£t) = RUD A n(l.rgt) = NPH)V
14 elseif | (7(l.rgt) = RUD A n(l.1£t) = NPM)) then n(l) := NPM;
Af(l.1ft)yn fl.rgt)Nr=10

... [(x(L.1£t) = RUD A n(L.rgt) = NPM A dom(l.1£t) \ f(l.rgt) # 0)V
® else 'f((n(l.rgt) = RUD A x(l.1£t) = NPH A dom(l.rgt) \ f(1£t) # 0)) th
16 | (1) := NPM
17 else if (7(l.1ft) = n(l.rgt) = SID) A f(l.1ft) N f(l.rgt) N r = O then
18 ‘ n(l) := SID
19 else if supp(l) N k = 0 then 7([) := SID;
20 else 7(/) := UKD;

5.1 Benchmarks

Table 1 shows the detailed statistics of the benchmarks, including seventeen examples
(P1-P17), all of which have nonlinear operations. Columns 1 and 2 show the name of
the program and a short description. Column 3 shows the number of instructions in the
probabilistic Boolean program. Column 4 shows the number of DDG nodes denoting
intermediate computation results. The remaining columns show the number of bits in
the secret, public, and random variables, respectively. Remark that the number of ran-
dom variables in each computation is far less than the one of the program. All these
programs are transformed into Boolean programs where each instruction has at most
two operands. Since the statistics were collected from the transformed code, they may
have minor differences from statistics reported in prior work [26,27].

In particular, P1-P5 are masking examples originated from [10], P6-P7 are orig-
inated from [15], P8—P9 are the MAC-Keccak computation reordered examples orig-
inated from [11], P10-P11 are two experimental masking schemes for the Chi func-
tion in MAC-Keccak. Among the larger programs, P12-P17 are the regenerations of

170 J. Zhang et al.

Table 1. Benchmark statistics.

Name | Description #Loc |#iNodes ||k| ||p| ||r|
P1 |CHES13 Masked Key Whitening 79 |32 16 | 16 16
P2 |CHES13 De-mask and then Mask 67 |38 8 0 16
P3 |CHESI13 AES Shift Rows 21 |6 2 0 2
P4 | CHES13 Messerges Boolean to Arithmetic (bit0) 23 |6 2 0 2
P5 |CHESI13 Goubin Boolean to Arithmetic (bit0) 27 |8 1 0 2
P6 |Logic Design for AES S-Box (1st implementation) 32 |9 2 0 2
P7 |Logic Design for AES S-Box (2nd implementation) 40 |11 2 0 3
P8 |Masked Chi function MAC-Keccak (1st implementation) 59 18 3 0 4
P9 |Masked Chi function MAC-Keccak (2nd implementation) 60 |18 3 0 4
P10 |Syn. Masked Chi func MAC-Keccak (1st implementation) 66 |28 3 0 4
P11 |Syn. Masked Chi func MAC-Keccak (2nd implementation) |66 |28 3 0 4
P12 |MAC-Keccak 512b Perfect masked 426k | 197k 288 |288 |3205
P13 |MAC-Keccak 512b De-mask and then mask (compiler error) |426k | 197k |288 |288 |3205
P14 |MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 426k | 197k |288 |288 |3205
P15 |MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 429k 198k 288 |288 |3205
P16 |MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 426k 197k 288 288 |3205
P17 |MAC-Keccak 512b Unmasking of Pi function 442k | 205k | 288 |288 |3205

MAC-Keccak reference code submitted to the SHA-3 competition held by NIST, where
P13-P16 implement the masking of Chi functions using different masking schemes and
P17 implements the de-masking of Pi function.

5.2 Experimental Results

We compared the performance of SCINFER, the purely syntactic type inference method
(denoted Syn. Infer) and the incremental SMT-based method (denoted by SMT App).
Table 2 shows the results. Column 1 shows the name of each benchmark. Column 2
shows whether it is perfectly masked (ground truth). Columns 3—4 show the results
of the purely syntactic type inference method, including the number of nodes inferred
as UKD type and the time in seconds. Columns 5-7 (resp. Columns 8—10) show the
results of the incremental SMT-based method (resp. our method SCINFER), including
the number of leaky nodes (NPM type), the number of nodes actually checked by SMT,
and the time.

Compared with syntactic type inference method, our approach is significantly more
accurate (e.g., see P4, PS and P15). Furthermore, the time taken by both methods are
comparable on small programs. On the large programs that are not perfectly masked
(i.e., P13-P17), our method is slower since SCINFER has to resolve the UKD nodes
reported by syntactic inference by SMT. However, it is interesting to note that, on the
perfectly masked large program (P12), our method is faster.

Moreover, the UKD type nodes in P4, reported by the purely syntactic type inference
method, are all proved to be perfectly masked by our semantic type inference system,

SCInrer: Refinement-Based Verification of Software Countermeasures 171

Table 2. Experimental results: comparison of three approaches.

Name | Masked | Syn. Infer [47] SMT App [26,27] SCINFER
UKD Time NPM By SMT | Time NPM By SMT | Time

Pl |No 16 |=0s 16 16 10.39s 16 16 10.39s

P2 |No 8 |=0s 8 8 10.28s 8 8 10.57s

P3 | Yes 0 |=0s 0 0 | ~0s 0 0 ~0s

P4 | Yes 3 |~0s 0 3 |0.16s 0 0 |0.06s

P5 | Yes 3 |=0s 0 3 0.15s 0 2 10.25s

P6 | No 2 |~0s 2 2 |0.11s 2 2 |0.16s

P7 |No 2 10.01s 1 2 |0.11s 1 1 10.26s

P8 |No 3 |~0s 3 3 |0.15s 3 3 10.29s

P9 |No 2 |~0s 2 2 |0.11s 2 2 10.23s
P10 |No 3 |~0s 1 2 |0.15s 1 2 10.34s
P11 |No 4 |=~0s 1 3]102s 1 3 105s
P12 | Yes 0 [1min5s 0 0 |92min8s 0 0 |3.8s
P13 | No 4800 | 1min 11s| 4800 | 4800 |95min30s 4800 4800 |47min 8s
P14 |No 3200 |1min I1s| 3200 | 3200 |118minls 3200 3200 |53min40s
P15 |No 3200 | Imin21s| 1600 | 3200 |127min45s| 1600 3200 69min6s
P16 |No 4800 | 1min 13s| 4800 | 4800 |123minS54s| 4800 4800 |61min 155
P17 |No 17600 | I min 14s| 17600 | 16000 |336minS51s| 17600 | 12800 | 121 min28s

without calling the SMT solver at all. As for the three UKD type nodes in P5, our method
proves them all by invoking the SMT solver only twice; it means that the feedback of
the new SID types (discovered by SMT) allows our type system to improve its accuracy,
which turns the third UKD node to SID.

Finally, compared with the original SMT-based approach, our method is at least
twice faster on the large programs (e.g., P12-P17). Furthermore, the number of nodes
actually checked by invoking the SMT solver is also lower than in the original SMT-
based approach (e.g., P4-P5, and P17). In particular, there are 3200 UKD type nodes in
P17, which are refined into NPM type by our new inference rules (cf. Fig. 5), and thus
avoid the more expensive SMT calls.

To sum up, results of our experiments show that: SCINFER is fast in obtaining proofs
in perfectly-masked programs, while retaining the ability to detect real leaks in not-
perfectly-masked programs, and is scalable for handling realistic applications.

5.3 Detailed Statistics

Table 3 shows the more detailed statistics of our approach. Specifically, Columns 2-5
show the number of nodes in each distribution type deduced by our method. Column
6 shows the number of nodes actually checked by SMT, together with the time shown
in Column 9. Column 7 shows the time spent on computing the semd function, which
solves the SAT problem. Column 8 shows the time spent on computing the don’t care
variables. The last column shows the total time taken by SCINFER.

172 J. Zhang et al.

Table 3. Detailed statistics of our new method.

Name | SCINFER
Nodes Time
RUD SID |CST | NPM SMT | semd Don’t care | SMT Total

P1 16 00 16 16 | =0s ~0s 0.39s 0.39s

P2 16 010 8 8 10.27s 0.14s 0.16s 0.57s

P3 6 00 0 0 | ~0s ~0s ~0s ~0s

P4 6 00 0 0 | ~0s ~0s ~0s 0.06s

P5 6 210 0 2 10.08s 0.05s 0.05s 0.25s

P6 4 310 2 2 10.05s 0.07s 0.04s 0.16s

P7 5 510 1 1]0.14s 0.09s 0.03s 0.26s

P8 11 410 3 3 10.14s 0.09s 0.06s 0.29s

P9 12 410 2 2 10.13s 0.07s 0.03s 0.23s
P10 20 6|1 1 2 10.15s 0.14s 0.05s 0.345s
P11 19 701 1 3 10.23s 02s 0.07s 0.5s
P12 | 190400 | 6400 | O 0 0 |~0s ~0s ~0s 3.8s
P13 | 185600 | 6400 | O 4800 | 4800 |29min33s|16min5s | 1min25s |47 min8s
P14 | 187200 | 6400 | O 3200 | 3200 |26 min 58s | 25min26s | 11 min53s | 53 min40s
P15 | 188800 | 8000 | O 1600 | 3200 |33min30s|33min55s | 1min35s | 69min6s
P16 | 185600 | 6400 | O 4800 | 4800 |26min4ls|32min55s|1min32s |61 min15s
P17 | 185600 | 1600 | O 17600 | 12800 |33 min 25s |83 min59s |3min57s | 121 min 28s

Results in Table 3 indicate that most of the DDG nodes in these benchmark pro-
grams are either RUD or SID, and almost all of them can be quickly deduced by our type
system. It explains why our new method is more efficient than the original SMT-based
approach. Indeed, the original SMT-based approach spent a large amount of time on
the static analysis part, which does code partitioning and applies the heuristic rules (cf.
Sect. 4.1), whereas our method spent more time on computing the semd function.

Column 4 shows that, at least in these benchmark programs, Boolean constants are
rare. Columns 5-6 show that, if our refined type system fails to prove perfect masking,
it is usually not perfectly masked. Columns 7-9 show that, in our integrated method,
most of the time is actually used to compute semd and don’t care variables (SAT), while
the time taken by the SMT solver to conduct model counting (SAT#) is relatively small.

6 Related Work

Many masking countermeasures [15,17,34,37,41,43,46,48,50-52] have been pub-
lished over the years: although they differ in adversary models, cryptographic algo-
rithms and compactness, a common problem is the lack of efficient tools to formally
prove their correctness [21,22]. Our work aims to bridge the gap. It differs from
simulation-based techniques [3,33,53] which aim to detect leaks only as opposed to
prove their absence. It also differs from techniques designed for other types of side

SCInrer: Refinement-Based Verification of Software Countermeasures 173

channels such as timing [2,38], fault [12,29] and cache [24,35,40], or computing secu-
rity bounds for probabilistic countermeasures against remote attacks [45].

Although some verification tools have been developed for this application [6,7, 10,
13,14,20,26,27,47], they are either fast but inaccurate (e.g., type-inference techniques)
or accurate but slow (e.g., model-counting techniques). For example, Bayrak et al. [10]
developed a leak detector that checks if a computation result is logically dependent of
the secret and, at the same time, logically independent of any random variable. It is
fast but not accurate in that many leaky nodes could be incorrectly proved [26,27]. In
contrast, the model-counting based method proposed by Eldib et al. [26-28] is accurate,
but also significantly less scalable because the size of logical formulas they need to
build are exponential in the number of random variables. Moreover, for higher-order
masking, their method is still not complete.

Our gradual refinement of a set of semantic type inference rules were inspired by
recent work on proving probabilistic non-interference [6,47], which exploit the unique
characteristics of invertible operations. Similar ideas were explored in [7,14,20] as
well. However, these prior techniques differ significantly from our method because
their type-inference rules are syntactic and fixed, whereas ours are semantic and refined
based on SMT solver based analysis (SAT and SAT#). In terms of accuracy, numerous
unknowns occurred in the experimental results of [47] and two obviously perfect mask-
ing cases were not proved in [6]. Finally, although higher-order masking were addressed
by prior techniques [13], they were limited to linear operations, whereas our method can
handle both first-order and higher-order masking with non-linear operations.

An alternative way to address the model-counting problem [4,18,19,32] is to use
satisfiability modulo counting, which is a generalization of the satisfiability problem of
SMT extended with counting constraints [31]. Toward this end, Fredrikson and Jha [31]
have developed an efficient decision procedure for linear integer arithmetic (LIA) based
on Barvinok’s algorithm [8] and also applied their approach to differential privacy.

Another related line of research is automatically synthesizing countermeasures [1,
7,9,16,25,44,54] as opposed to verifying them. While methods in [1,7,9,44] rely on
compiler-like pattern matching, the ones in [16,25,54] use inductive program synthesis
based on the SMT approach. These emerging techniques, however, are orthogonal to our
work reported in this paper. It would be interesting to investigate whether our approach
could aid in the synthesis of masking countermeasures.

7 Conclusions and Future Work

We have presented a refinement based method for proving that a piece of crypto-
graphic software code is free of power side-channel leaks. Our method relies on a set of
semantic inference rules to reason about distribution types of intermediate computation
results, coupled with an SMT solver based procedure for gradually refining these types
to increase accuracy. We have implemented our method and demonstrated its efficiency
and effectiveness on cryptographic benchmarks. Our results show that it outperforms
state-of-the-art techniques in terms of both efficiency and accuracy.

For future work, we plan to evaluate our type inference systems for higher-order
masking, extend it to handle integer programs as opposed to bit-blasting them to

174 J. Zhang et al.

Boolean programs, e.g., using satisfiability modulo counting [31], and investigate the
synthesis of masking countermeasures based on our new verification method.

References

1. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate power
analysis countermeasures. In: ACM/IEEE Design Automation Conference, pp. 77-82 (2012)

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying constant-time
implementations. In: USENIX Security Symposium, pp. 53-70 (2016)

3. Arribas, V., Nikova, S., Rijmen, V.: VerMI: verification tool for masked implementations.
TIACR Cryptology ePrint Archive, p. 1227 (2017)

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string constraints. In:
Kroening, D., Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 255-272. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_15

5. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy
engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS
2014. LNCS, vol. 8968, pp. 64-81. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-16763-3_5

6. Barthe, G., et al.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 457-485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5_18

7. Barthe, G., Belaid, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P--Y., Zucchini, R.:
Strong non-interference and type-directed higher-order masking. In: ACM Conference on
Computer and Communications Security, pp. 116-129 (2016)

8. Barvinok, A.L: A polynomial time algorithm for counting integral points in polyhedra when
the dimension is fixed. Math. Oper. Res. 19(4), 769-779 (1994)

9. Bayrak, A.G., Regazzoni, E, Brisk, P., Standaert, F.-X., Ienne, P.: A first step towards auto-
matic application of power analysis countermeasures. In: ACM/IEEE Design Automation
Conference, pp. 230-235 (2011)

10. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software
power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 293-310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-
1_17

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak implementation
overview (2013). https://keccak.team/files/Keccak-implementation-3.2.pdf

12. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052259

13. Bisi, E., Melzani, E., Zaccaria, V.: Symbolic analysis of higher-order side channel counter-
measures. IEEE Trans. Comput. 66(6), 1099-1105 (2017)

14. Bloem, R., Gross, H., Iusupov, R., Konighofer, B., Mangard, S., Winter, J.: Formal verifi-
cation of masked hardware implementations in the presence of glitches. IACR Cryptology
ePrint Archive, p. 897 (2017)

15. Blomer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69-83. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30564-4_5

16. Blot, A., Yamamoto, M., Terauchi, T.: Compositional synthesis of leakage resilient programs.
In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 277-297. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_13

https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-662-54455-6_13

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

SCInrer: Refinement-Based Verification of Software Countermeasures 175

. Canright, D., Batina, L.: A very compact “Perfectly Masked” S-box for AES. In: Bellovin,

S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446—
459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_27
Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware
sampling and weighted model counting for SAT. In: AAAI Conference on Artificial Intelli-
gence, pp. 1722-1730 (2014)

Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200-216. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40627-0_18

Coron, J.-S.: Formal verification of side-channel countermeasures via elementary circuit
transformations. IACR Cryptology ePrint Archive, p. 879 (2017)

Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order masking
scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 28-44.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_3

Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask
refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410-424. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_24

Doycheyv, G., Feld, D., Kopf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the static
analysis of cache side channels. In: USENIX Security Symposium, pp. 431-446 (2013)
Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel attacks.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114-130. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_8

Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against
side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11 (2014)

Eldib, H., Wang, C., Schaumont, P.: SMT-based verification of software countermeasures
against side-channel attacks. In: Abrahém, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 62-77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8.5

Eldib, H., Wang, C., Taha, M., Schaumont, P.: QMS: evaluating the side-channel resistance
of masked software from source code. In: ACM/IEEE Design Automation Conference, vol.
209, pp. 1-6 (2014)

Eldib, H., Wu, M., Wang, C.: Synthesis of fault-attack countermeasures for cryptographic
circuits. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 343-363.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_19

Clavier, C., et al.: Practical improvements of side-channel attacks on AES: feedback from
the 2nd DPA contest. J. Cryptogr. Eng. 4(4), 259-274 (2014)

Fredrikson, M., Jha, S.: Satisfiability modulo counting: a new approach for analyzing pri-
vacy properties. In: ACM/IEEE Symposium on Logic in Computer Science, pp. 42:1-42:10
(2014)

Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum model counting. In: AAAI Conference
on Artificial Intelligence, pp. 3885-3892 (2017)

Goodwill, G., Jun, B, Jaffe, J., Rohatgi, P.: A testing methodology for side channel resistance
validation. In: NIST Non-invasive Attack Testing Workshop (2011)

Goubin, L.: A sound method for switching between boolean and arithmetic masking. In:
Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3—15. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_2

https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-319-41540-6_19
https://doi.org/10.1007/3-540-44709-1_2

176

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

J. Zhang et al.

Grabher, P., GroB3schédl, J., Page, D.: Cryptographic side-channels from low-power cache
memory. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp.
170-184. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77272-9_11
Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer (1996)
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463—481. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_27

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104-113. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-68697-5_9

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_25

Kopf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-channels. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 564-580. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_40

Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G.,
Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 150-
164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_11

Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA bitstream
encryption against power analysis attacks: extracting keys from xilinx Virtex-II FPGAs. In:
ACM Conference on Computer and Communications Security, pp. 111-124 (2011)

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very com-
pact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 69-88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4_6

Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58-75. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8_4

Ochoa, M., Banescu, S., Disenfeld, C., Barthe, G., Ganesh, V.: Reasoning about probabilistic
defense mechanisms against remote attacks. In: IEEE European Symposium on Security and
Privacy, EuroS&P, pp. 499-513 (2017)

Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant
description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol.
3557, pp. 413-423. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_28

El Ouahma, I.B., Meunier, Q., Heydemann, K., Encrenaz, E.: Symbolic approach for side-
channel resistance analysis of masked assembly codes. In: Security Proofs for Embedded
Systems (2017)

Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142-159.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_9

Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-
measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140,
pp- 200-210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking
schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764—
783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37

Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Stan-
daert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413-427. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9_28

https://doi.org/10.1007/978-3-540-77272-9_11
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28

SCInrer: Refinement-Based Verification of Software Countermeasures 177

52. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA
2006. LNCS, vol. 3860, pp. 208-225. Springer, Heidelberg (2006). https://doi.org/10.1007/
11605805_14

53. Standaert, F.-X.: How (not) to use welch’s t-test in side-channel security evaluations. IACR
Cryptology ePrint Archive 2017:138 (2017)

54. Wang, C., Schaumont, P.: Security by compilation: an automated approach to comprehensive
side-channel resistance. SIGLOG News 4(2), 76-89 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Symbolic Algorithms for Graphs
and Markov Decision Processes
with Fairness Objectives

Krishnendu Chatterjee’ ™) Monika Henzinger?, Veronika Loitzenbauer?,
Simin Oraee*, and Viktor Toman'!

L IST Austria, Klosterneuburg, Austria
krish.chat@gmail.com
2 University of Vienna, Vienna, Austria
3 Johannes Kepler University Linz, Linz, Austria
4 Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. Given a model and a specification, the fundamental model-
checking problem asks for algorithmic verification of whether the model
satisfies the specification. We consider graphs and Markov decision pro-
cesses (MDPs), which are fundamental models for reactive systems. One
of the very basic specifications that arise in verification of reactive sys-
tems is the strong fairness (aka Streett) objective. Given different types
of requests and corresponding grants, the objective requires that for each
type, if the request event happens infinitely often, then the corresponding
grant event must also happen infinitely often. All w-regular objectives
can be expressed as Streett objectives and hence they are canonical in
verification. To handle the state-space explosion, symbolic algorithms are
required that operate on a succinct implicit representation of the system
rather than explicitly accessing the system. While explicit algorithms for
graphs and MDPs with Streett objectives have been widely studied, there
has been no improvement of the basic symbolic algorithms. The worst-
case numbers of symbolic steps required for the basic symbolic algorithms
are as follows: quadratic for graphs and cubic for MDPs. In this work
we present the first sub-quadratic symbolic algorithm for graphs with
Streett objectives, and our algorithm is sub-quadratic even for MDPs.
Based on our algorithmic insights we present an implementation of the
new symbolic approach and show that it improves the existing approach
on several academic benchmark examples.

1 Introduction

In this work we present faster symbolic algorithms for graphs and Markov deci-
sion processes (MDPs) with strong fairness objectives. For the fundamental
model-checking problem, the input consists of a model and a specification, and
the algorithmic verification problem is to check whether the model satisfies the
specification. We first describe the specific model-checking problem we consider
and then our contributions.

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 178-197, 2018.
https://doi.org/10.1007/978-3-319-96142-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_13&domain=pdf

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 179

Models: Graphs and MDPs. Two standard models for reactive systems are graphs
and Markov decision processes (MDPs). Vertices of a graph represent states
of a reactive system, edges represent transitions of the system, and infinite
paths of the graph represent non-terminating trajectories of the reactive sys-
tem. MDPs extend graphs with probabilistic transitions that represent reactive
systems with uncertainty. Thus graphs and MDPs are the de-facto model of reac-
tive systems with nondeterminism, and nondeterminism with stochastic aspects,
respectively [3,19].

Specification: Strong Fairness (aka Streett) Objectives. A basic and fundamental
property in the analysis of reactive systems is the strong fairness condition,
which informally requires that if events are enabled infinitely often, then they
must be executed infinitely often. More precisely, the strong fairness conditions
(aka Streett objectives) consist of k types of requests and corresponding grants,
and the objective requires that for each type if the request happens infinitely
often, then the corresponding grant must also happen infinitely often. After
safety, reachability, and liveness, the strong fairness condition is one of the most
standard properties that arise in the analysis of reactive systems, and chapters
of standard textbooks in verification are devoted to it (e.g., [19, Chap. 3.3], [32,
Chap. 3], [2, Chaps. 8,10]). Moreover, all w-regular objectives can be described
by Streett objectives, e.g., LTL formulas and non-deterministic w-automata can
be translated to deterministic Streett automata [34] and efficient translation has
been an active research area [16,23,28]. Thus Streett objectives are a canonical
class of objectives that arise in verification.

Satisfaction. The basic notions of satisfaction for graphs and MDPs are as follows:
For graphs the notion of satisfaction requires that there is a trajectory (infinite
path) that belongs to the set of paths described by the Streett objective. For
MDPs the satisfaction requires that there is a policy to resolve the nondetermin-
ism such that the Streett objective is ensured almost-surely (with probability 1).
Thus the algorithmic model-checking problem of graphs and MDPs with Streett
objectives is a core problem in verification.

Explicit vs Symbolic Algorithms. The traditional algorithmic studies consider
ezxplicit algorithms that operate on the explicit representation of the system. In
contrast, implicit or symbolic algorithms only use a set of predefined operations
and do not explicitly access the system [20]. The significance of symbolic algo-
rithms in verification is as follows: to combat the state-space explosion, large
systems must be succinctly represented implicitly and then symbolic algorithms
are scalable, whereas explicit algorithms do not scale as it is computationally
too expensive to even explicitly construct the system.

Relevance. In this work we study symbolic algorithms for graphs and MDPs
with Streett objectives. Symbolic algorithms for the analysis of graphs and
MDPs are at the heart of many state-of-the-art tools such as SPIN, NuSMV
for graphs [18,27] and PRISM, LiQuor, Storm for MDPs [17,22,29]. Our con-
tributions are related to the algorithmic complexity of graphs and MDPs with
Streett objectives for symbolic algorithms. We first present previous results and
then our contributions.

180 K. Chatterjee et al.

Previous Results. The most basic algorithm for the problem for graphs is based
on repeated SCC (strongly connected component) computation, and informally
can be described as follows: for a given SCC, (a) if for every request type that
is present in the SCC the corresponding grant type is also present in the SCC,
then the SCC is identified as “good”, (b) else vertices of each request type that
has no corresponding grant type in the SCC are removed, and the algorithm
recursively proceeds on the remaining graph. Finally, reachability to good SCCs
is computed. The current best-known symbolic algorithm for SCC computation
requires O(n) symbolic steps, for graphs with n vertices [25], and moreover, the
algorithm is optimal [15]. For MDPs, the SCC computation has to be replaced
by MEC (maximal end-component) computation, and the current best-known
symbolic algorithm for MEC computation requires O(n?) symbolic steps. While
there have been several explicit algorithms for graphs with Streett objectives [12,
26], MEC computation [8-10], and MDPs with Streett objectives [7], as well
as symbolic algorithms for MDPs with Biichi objectives [11], the current best-
known bounds for symbolic algorithms with Streett objectives are obtained from
the basic algorithms, which are O(n - min(n, k)) for graphs and O(n? - min(n, k))
for MDPs, where k is the number of types of request-grant pairs.

Our Contributions. In this work our main contributions are as follows:

— We present a symbolic algorithm that requires O(n-+/mlogn) symbolic steps,
both for graphs and MDPs, where m is the number of edges. In the case
k = O(n), the previous worst-case bounds are quadratic (O(n?)) for graphs
and cubic (O(n?)) for MDPs. In contrast, we present the first sub-quadratic
symbolic algorithm both for graphs as well as MDPs. Moreover, in practice,
since most graphs are sparse (with m = O(n)), the worst-case bounds of our
symbolic algorithm in these cases are O(n - v/nlogn). Another interesting
contribution of our work is that we also present an O(n - 1/m) symbolic steps
algorithm for MEC decomposition, which is relevant for our results as well
as of independent interest, as MEC decomposition is used in many other
algorithmic problems related to MDPs. Our results are summarized in Table 1.

— While our main contribution is theoretical, based on the algorithmic insights
we also present a new symbolic algorithm implementation for graphs and
MDPs with Streett objectives. We show that the new algorithm improves (by
around 30%) the basic algorithm on several academic benchmark examples
from the VLTS benchmark suite [21].

Technical Contributions. The two key technical contributions of our work are as
follows:

— Symbolic Lock Step Search: We search for newly emerged SCCs by a local
graph exploration around vertices that lost adjacent edges. In order to find
small new SCCs first, all searches are conducted “in parallel”, i.e., in lock-
step, and the searches stop as soon as the first one finishes successfully. This
approach has successfully been used to improve explicit algorithms [7,9,14,26].
Our contribution is a non-trivial symbolic variant (Sect.3) which lies at the
core of the theoretical improvements.

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 181

Table 1. Symbolic algorithms for Streett objectives and MEC decomposition.

Problem Symbolic operations

Basic algorithm | Improved algorithm | Reference
Graphs with Streett | O(n - min(n, k)) | O(ny/mlogn) Theorem 2
MDPs with Streett | O(n? - min(n, k)) | O(ny/mlogn) Theorem 4
MEC decomposition | O(n?) O(ny/m) Theorem 3

— Symbolic Interleaved MEC Computation: For MDPs the identification of ver-
tices that have to be removed can be interleaved with the computation of
MECs such that in each iteration the computation of SCCs instead of MECs
is sufficient to make progress [7]. We present a symbolic variant of this inter-
leaved computation. This interleaved MEC computation is the basis for apply-
ing the lock-step search to MDPs.

2 Definitions

2.1 Basic Problem Definitions

Markov Decision Processes (MDPs) and Graphs. An MDP P = ((V, E), (V1, Vg),
d) consists of a finite directed graph G = (V, E') with a set of n vertices V and a
set of m edges E, a partition of the vertices into player 1 vertices V; and random
vertices Vg, and a probabilistic transition function 6. We call an edge (u, v) with
u € V4 a player 1 edge and an edge (v, w) with v € Vg a random edge. For v € V
we define In(v) = {w € V' | (w,v) € E} and Out(v) = {w € V| (v,w) € E}. The
probabilistic transition function is a function from Vg to D(V'), where D(V) is
the set of probability distributions over V' and a random edge (v, w) € F if and
only if §(v)[w] > 0. Graphs are a special case of MDPs with Vi = 0.

Plays and Strategies. A play or infinite path in P is an infinite sequence w =
(vo,v1,v2,...) such that (v;,v;41) € E for all i € N; we denote by (2 the set
of all plays. A player 1 strategy o : V* - V3 — V is a function that assigns
to every finite prefix w € V* - V] of a play that ends in a player 1 vertex v a
successor vertex o(w) € V such that (v,0(w)) € E; we denote by X' the set of
all player 1 strategies. A strategy is memoryless if we have o(w) = o(w’) for any
w,w’ € V*.V; that end in the same vertex v € V7.

Objectives. An objective ¢ is a subset of (2 said to be winning for player 1. We
say that a play w € 2 satisfies the objective if w € ¢. For a vertex set T C V
the reachability objective is the set of infinite paths that contain a vertex of T,
i.e., Reach(T) = {(vo,v1,v2,...) € 2]35 > 0:v; € T}. Let Inf(w) for w € 2
denote the set of vertices that occur infinitely often in w. Given a set TP of k
pairs (L;,U;) of vertex sets L;,U; C V with 1 < i < k, the Streett objective is
the set of infinite paths for which it holds for each 1 < i < k that whenever a
vertex of L; occurs infinitely often, then a vertex of U; occurs infinitely often, i.e.,
Streett(TP) = {w € 2| L; NInf(w) = 0 or U; NInf(w) # 0 for all 1 <4 < k}.

182 K. Chatterjee et al.

Almost-Sure Winning Sets. For any measurable set of plays A C {2 we denote
by Pr{ (A) the probability that a play starting at v € V belongs to A when
player 1 plays strategy o. A strategy o is almost-sure (a.s.) winning from a
vertex v € V for an objective ¢ if Prj (¢) = 1. The almost-sure winning set
(1) . (P, @) of player 1 is the set of vertices for which player 1 has an almost-
sure winning strategy. In graphs the existence of an almost-sure winning strategy
corresponds to the existence of a play in the objective, and the set of vertices
for which player 1 has an (almost-sure) winning strategy is called the winning
set (1) (P, ¢) of player 1.

Symbolic Encoding of MDPs. Symbolic algorithms operate on sets of vertices,
which are usually described by Binary Decision Diagrams (BDDs) [1,30]. In par-
ticular Ordered Binary Decision Diagrams [6] (OBDDs) provide a canonical sym-
bolic representation of Boolean functions. For the computation of almost-sure
winning sets of MDPs it is sufficient to encode MDPs with OBDDs and one
additional bit that denotes whether a vertex is in V; or V.

Symbolic Steps. One symbolic step corresponds to one primitive operation as
supported by standard symbolic packages like CuUDD [35]. In this paper we only
allow the same basic set-based symbolic operations as in [5,11,24,33], namely set
operations and the following one-step symbolic operations for a set of vertices Z:
(a) the one-step predecessor operator Pre(Z) = {v € V | Out(v)NZ # 0}; (b) the
one-step successor operator Post(Z) = {v € V | In(v) N Z # (}; and (c) the
one-step controllable predecessor operator CPrer(Z) = {v € V1 | Out(v) C Z} U
{v e Vg | Out(v)NZ #0}; ie., the CPreg operator computes all vertices such
that the successor belongs to Z with positive probability. This operator can be
defined using the Pre operator and basic set operations as follows: CPreg(Z) =
Pre(Z)\(V1 N Pre(V\Z)). We additionally allow cardinality computation and
picking an arbitrary vertex from a set as in [11].

Symbolic Model. Informally, a symbolic algorithm does not operate on explicit
representation of the transition function of a graph, but instead accesses it
through Pre and Post operations. For explicit algorithms, a Pre/Post operation
on a set of vertices (resp., a single vertex) requires O(m) (resp., the order of inde-
gree/outdegree of the vertex) time. In contrast, for symbolic algorithms Pre/Post
operations are considered unit-cost. Thus an interesting algorithmic question is
whether better algorithmic bounds can be obtained considering Pre/Post as unit
operations. Moreover, the basic set operations are computationally less expen-
sive (as they encode the relationship between the state variables) compared to
the Pre/Post symbolic operations (as they encode the transitions and thus the
relationship between the present and the next-state variables). In all presented
algorithms, the number of set operations is asymptotically at most the number
of Pre/Post operations. Hence in the sequel we focus on the number of Pre/Post
operations of algorithms.

Algorithmic Problem. Given an MDP P (resp. a graph G) and a set of
Streett pairs TP, the problem we consider asks for a symbolic algorithm to

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 183

compute the almost-sure winning set (1) . (P, Streett(TP)) (resp. the winning
set (1) (G, Streett(TP))), which is also called the qualitative analysis of MDPs

(resp. graphs).

2.2 Basic Concepts Related to Algorithmic Solution

Reachability. For a graph G = (V,E) and a set of vertices S C V the set
GRAPHREACH(G, S) is the set of vertices of V' that can reach a vertex of S
within G, and it can be identified with at most |GRAPHREACH(G, S)\S| + 1
many Pre operations.

Strongly Connected Components. For a set of vertices S C V we denote by
G[S] = (S, EN(S x 9)) the subgraph of the graph G induced by the vertices of S.
An induced subgraph G[S] is strongly connected if there exists a path in G[S]
between every pair of vertices of S. A strongly connected component (SCC) of G
is a set of vertices C C V such that the induced subgraph G[C] is strongly
connected and C' is a maximal set in V with this property. We call an SCC
trivial if it only contains a single vertex and no edges; and non-trivial otherwise.
The SCCs of G partition its vertices and can be found in O(n) symbolic steps [25].
A bottom SCC C in a directed graph G is an SCC with no edges from vertices
of C to vertices of V\C, i.e., an SCC without outgoing edges. Analogously, a
top SCC C is an SCC with no incoming edges from V\C. For more intuition for
bottom and top SCCs, consider the graph in which each SCC is contracted into
a single vertex (ignoring edges within an SCC). In the resulting directed acyclic
graph the sinks represent the bottom SCCs and the sources represent the top
SCCs. Note that every graph has at least one bottom and at least one top SCC.
If the graph is not strongly connected, then there exist at least one top and at
least one bottom SCC that are disjoint and thus one of them contains at most
half of the vertices of G.

Random Attractors. In an MDP P the random attractor Attrp(P,W) of a set
of vertices W is defined as Attrg(P,W) = Uj>0 Zj where Zg =W and Zj ;1 =
Z; U CPrer(Z;) for all j > 0. The attractor can be computed with at most
|Attrr(P, W)\W| + 1 many CPreg operations.

Mazimal End-Components. Let X be a vertex set without outgoing random
edges, i.e., with Out(v) C X for all v € X N Vg. A sub-MDP of an MDP P
induced by a vertex set X C V without outgoing random edges is defined as
PX]=((X,EN(XxX),(VinX,VgrNX),0). Note that the requirement that X
has no outgoing random edges is necessary in order to use the same probabilistic
transition function §. An end-component (EC) of an MDP P is a set of vertices
X C V such that (a) X has no outgoing random edges, i.e., P[X] is a valid sub-
MDP, (b) the induced sub-MDP P[X] is strongly connected, and (¢) P[X] con-
tains at least one edge. Intuitively, an end-component is a set of vertices for which
player 1 can ensure that the play stays within the set and almost-surely reaches
all the vertices in the set (infinitely often). An end-component is a mazimal
end-component (MEC) if it is maximal under set inclusion. An end-component
is trivial if it consists of a single vertex (with a self-loop), otherwise it is non-
trivial. The MEC' decomposition of an MDP consists of all MECs of the MDP.

184 K. Chatterjee et al.

Good End-Components. All algorithms for MDPs with Streett objectives are
based on finding good end-components, defined below. Given the union of all
good end-components, the almost-sure winning set is obtained by computing the
almost-sure winning set for the reachability objective with the union of all good
end-components as the target set. The correctness of this approach is shown in
[7,31] (see also [3, Chap. 10.6.3]). For Streett objectives a good end-component is
defined as follows. In the special case of graphs they are called good components.

Definition 1 (Good end-component). Given an MDP P and a set TP =
{(L;,U;) | 1 < 5 < k} of target pairs, a good end-component is an end-
component X of P such that for each 1 < j < k either LyNX =0 or U;NX # 0.
A mazximal good end-component is a good end-component that is mazimal with
respect to set inclusion.

Lemma 1 (Correctness of Computing Good End-Components [31,
Corollary 2.6.5, Proposition 2.6.9]). For an MDP P and a set TP of
target pairs, let X be the set of all mazimal good end-components. Then
(1) s (P, Reach(Uxcx X)) is equal to (1), (P, Streett(TP)).

Iterative Vertex Removal. All the algorithms for Streett objectives maintain ver-
tex sets that are candidates for good end-components. For such a vertex set .S
we (a) refine the maintained sets according to the SCC decomposition of P[S]
and (b) for a set of vertices W for which we know that it cannot be contained in
a good end-component, we remove its random attractor from S. The following
lemma shows the correctness of these operations.

Lemma 2 (Correctness of Vertex Removal [31, Lemma 2.6.10]). Given
an MDP P = ((V, E),(V1,VR),d), let X be an end-component with X C S for
some S C V. Then

(a) X CC for one SCC C of P[S] and
(b) X C S\Attrg(P', W) for each W C V\X and each sub-MDP P’ contain-
g X.

Let X be a good end-component. Then X is an end-component and for each
index j, X NU; = 0 implies X N L; = (). Hence we obtain the following corollary.

Corollary 1 ([31, Corollary 4.2.2]). Given an MDP P, let X be a good end-
component with X C S for some S C V. For each i with SNU; = 0 it holds that
X C S\AttTR(P[SL L;N S)

For an index j with SN U; = 0 we call the vertices of SN L; bad vertices.
The set of all bad vertices BAD(S) = J;c;«,{v € LiN S | U; NS = 0} can be
computed with 2k set operations. o

3 Symbolic Divide-and-Conquer with Lock-Step Search

In this section we present a symbolic version of the lock-step search for strongly
connected subgraphs [26]. This symbolic version is used in all subsequent results,

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 185

i.e., the sub-quadratic symbolic algorithms for graphs and MDPs with Streett
objectives, and for MEC decomposition.

Divide-and-Conguer. The common property of the algorithmic problems we con-
sider in this work is that the goal is to identify subgraphs of the input graph
G = (V,E) that are strongly connected and satisfy some additional proper-
ties. The difference between the problems lies in the required additional proper-
ties. We describe and analyze the Procedure LOCK-STEP-SEARCH that we use
in all our improved algorithms to efficiently implement a divide-and-conquer
approach based on the requirement of strong connectivity, that is, we divide
a subgraph G[S], induced by a set of vertices S, into two parts that are not
strongly connected within G[S] or detect that G[S] is strongly connected.

Start Vertices of Searches. The input to Procedure LOCK-STEP-SEARCH is a
set of vertices S C V and two subsets of S denoted by Hg and Ts. In the
algorithms that call the procedure as a subroutine, vertices contained in Hg
have lost incoming edges (i.e., they were a “head” of a lost edge) and vertices
contained in Ts have lost outgoing edges (i.e., they were a “tail” of a lost edge)
since the last time a superset of S was identified as being strongly connected. For
each vertex h of Hg the procedure conducts a backward search (i.e., a sequence
of Pre operations) within G[S] to find the vertices of S that can reach h; and
analogously a forward search (i.e., a sequence of Post operations) from each
vertex ¢t of Tg is conducted.

Intuition for the Choice of Start Vertices. If the subgraph G[S] is not strongly
connected, then it contains at least one top SCC and at least one bottom SCC
that are disjoint. Further, if for a superset S’ O S the subgraph G[S'] was
strongly connected, then each top SCC of G[S] contains a vertex that had an
additional incoming edge in G[S’] compared to G[S], and analogously each bot-
tom SCC of G[S] contains a vertex that had an additional outgoing edge. Thus by
keeping track of the vertices that lost incoming or outgoing edges, the following
invariant will be maintained by all our improved algorithms.

Invariant 1 (Start Vertices Sufficient). We have Hg,Ts C S. Either (a)
Hs UTs =0 and G[S] is strongly connected or (b) at least one vertex of each
top SCC of G[S] is contained in Hg and at least one vertex of each bottom SCC
of G[S] is contained in Tg.

Lock-Step Search. The searches from the vertices of Hg U Ts are performed in
lock-step, that is, (a) one step is performed in each of the searches before the
next step of any search is done and (b) all searches stop as soon as the first of
the searches finishes. This is implemented in Procedure LOCK-STEP-SEARCH as
follows. A step in the search from a vertex ¢t € T (and analogously for h € Hg)
corresponds to the execution of the iteration of the for-each loop for t € Tg. In
an iteration of a for-each loop we might discover that we do not need to consider
this search further (see the paragraph on ensuring strong connectivity below)
and update the set Ts (via T¢) for future iterations accordingly. Otherwise the
set Cy is either strictly increasing in this step of the search or the search for ¢

186 K. Chatterjee et al.

Procedure. LOCK-STEP-SEARCH(G, S, Hg, Ts)
/* Pre and Post defined w.r.t. to G */

1 foreach v € Hs UTs do C, < {v}

2 while true do

3 Hé — HS, Té — Ts

4 foreach h € Hg do /* search for top SCC x/
5 C;L — (Ch U Pre(Ch)) ns

6 if |C;, N Hg| > 1 then Hg «— Hg\{h}

7 else

8 if C}, = C}, then return (Ch, Hg, T%)

9 L Ch — C;L
10 foreach t € Ts do /* search for bottom SCC */
11 C; “— (Ct U POSt(Ct)) ns
12 if |[C;NTs| > 1then Tg <« Te\{t}
13 else
14 if C}{ = C, then return (C;, Hg, T%)
15 L Cy «— C
16 Hs<—Hg7Ts<—Té

terminates and we return the set of vertices in G[S] that are reachable from t.
So the two for-each loops over the vertices of Ts and Hg that are executed in
an iteration of the while-loop perform one step of each of the searches and the
while-loop stops as soon as a search stops, i.e., a return statement is executed
and hence this implements properties (a) and (b) of lock-step search. Note that
the while-loop terminates, i.e., a return statement is executed eventually because
for all t € Ts (and resp. for all h € Hg) the sets C; are monotonically increasing
over the iterations of the while-loop, we have C; C S, and if some set C; does
not increase in an iteration, then it is either removed from Ts and thus not
considered further or a return statement is executed. Note that when a search
from a vertex t € T stops, it has discovered a maximal set of vertices C' that can
be reached from t¢; and analogously for h € Hg. Figure 1 shows a small intuitive
example of a call to the procedure.

Comparison to Explicit Algorithm. In the explicit version of the algorithm [7,26]
the search from vertex t € Tg performs a depth-first search that terminates
exactly when every edge reachable from ¢ is explored. Since any search that
starts outside of a bottom SCC but reaches the bottom SCC has to explore
more edges than the search started inside of the bottom SCC, the first search
from a vertex of Ts that terminates has exactly explored (one of) the smallest
(in the number of edges) bottom SCC(s) of G[S]. Thus on explicit graphs the
explicit lock-step search from the vertices of Hg UTys finds (one of) the smallest
(in the number of edges) top or bottom SCC(s) of G[S] in time proportional
to the number of searches times the number of edges in the identified SCC. In
symbolically represented graphs it can happen (1) that a search started outside
of a bottom (resp. top) SCC terminates earlier than the search started within

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 187

GZe=e=nze
AN

PN
o=

Fig.1. An example of symbolic lock-step search showing the first three iterations of
the main while-loop. Note that during the second iteration, the search started from t;
is disregarded since it collides with t2. In the subsequent fourth iteration, the search
started from ts is returned by the procedure.

the bottom (resp. top) SCC and (2) that a search started in a larger (in the
number of vertices) top or bottom SCC terminates before one in a smaller top
or bottom SCC. We discuss next how we address these two challenges.

Ensuring Strong Connectivity. First, we would like the set returned by Procedure
LOCK-STEP-SEARCH to indeed be a top or bottom SCC of G[S]. For this we use
the following observation for bottom SCCs that can be applied to top SCCs
analogously. If a search starting from a vertex of t; € Ts encounters another
vertex to € T, t1 # to, there are two possibilities: either (1) both vertices are in
the same SSC or (2) t; can reach t2 but not vice versa. In Case (1) the searches
from both vertices can explore all vertices in the SCC and thus it is sufficient
to only search from one of them. In Case (2) the SCC of ¢; has an outgoing
edge and thus cannot be a bottom SCC. Hence in both cases we can remove the
vertex ¢1 from the set Ts while still maintaining Invariant 1. By Invariant 1 we
further have that each search from a vertex of T that is not in a bottom SCC
encounters another vertex of Ts in its search and therefore is removed from the
set T's during Procedure LOCK-STEP-SEARCH (if no top or bottom SCC is found
earlier). This ensures that the returned set is either a top or a bottom SCC.!

Bound on Symbolic Steps. Second, observe that we can still bound the number
of symbolic steps needed for the search that terminates first by the number
of wvertices in the smallest top or bottom SCC of G[S], since this is an upper
bound on the symbolic steps needed for the search started in this SCC. Thus
provided Invariant 1, we can bound the number of symbolic steps in Procedure
LOCK-STEP-SEARCH to identify a vertex set C C S such that C and S\C are
not strongly connected in G[S] by O((|Hs| + |Ts|) - min(|C|, [S\C|)). In the
algorithms that call Procedure LOCK-STEP-SEARCH we charge the number of
symbolic steps in the procedure to the vertices in the smaller set of C' and S\C;
this ensures that each vertex is charged at most O(logn) times over the whole
algorithm. We obtain the following result (proof in [13, Appendix A]).

! To improve the practical performance, we return the updated sets Hs and Ts. By
the above argument this preserves Invariant 1.

188 K. Chatterjee et al.

Theorem 1 (Lock-Step Search). Provided Invariantl holds, Procedure
LOCK-STEP-SEARCH (G, S, Hg, Ts) returns a top or bottom SCC C of
G[S]. It uses O((|Hs| + |Ts|) - min(|C|,|S\C|)) symbolic steps if C # S and
O((|Hs| + |Tsl|) - |C|) otherwise.

4 Graphs with Streett Objectives

Basic Symbolic Algorithm. Recall that for a given graph (with n vertices)
and a Streett objective (with k target pairs) each non-trivial strongly connected
subgraph without bad vertices is a good component. The basic symbolic algo-
rithm for graphs with Streett objectives repeatedly removes bad vertices from
each SCC and then recomputes the SCCs until all good components are found.
The winning set then consists of the vertices that can reach a good component.
We refer to this algorithm as STREETTGRAPHBASIC. For the pseudocode and
more details see [13, Appendix B].

Proposition 1. Algorithm STREETTGRAPHBASIC correctly computes the win-
ning set in graphs with Streett objectives and requires O(n - min(n, k)) symbolic
steps.

Improved Symbolic Algorithm. In our improved symbolic algorithm we
replace the recomputation of all SCCs with the search for a new top or bottom
SCC with Procedure LOCK-STEP-SEARCH from vertices that have lost adjacent
edges whenever there are not too many such vertices. We present the improved
symbolic algorithm for graphs with Streett objectives in more detail as it also
conveys important intuition for the MDP case. The pseudocode is given in Algo-
rithm STREETTGRAPHIMPR.

Iterative Refinement of Candidate Sets. The improved algorithm maintains a
set goodC of already identified good components that is initially empty and a
set X of candidates for good components that is initialized with the SCCs of the
input graph G. The difference to the basic algorithm lies in the properties of the
vertex sets maintained in X and the way we identify sets that can be separated
from each other without destroying a good component. In each iteration one
vertex set S is removed from X and, after the removal of bad vertices from the
set, either identified as a good component or split into several candidate sets. By
Lemma 2 and Corollary 1 the following invariant is maintained throughout the
algorithm for the sets in goodC and X

Invariant 2 (Maintained Sets). The sets in X UgoodC are pairwise disjoint
and for every good component C' of G there exists a set’ Y 2 C' such that either
Y € X orY € goodC.

Lost Adjacent Edges. In contrast to the basic algorithm, the subgraph induced
by a set S contained in X is not necessarily strongly connected. Instead, we
remember vertices of S that have lost adjacent edges since the last time a superset
of S was determined to induce a strongly connected subgraph; vertices that lost

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 189

Algorithm. STREETTGRAPHIMPR. Improved Alg. for Graphs with Streett
Obj.

Input :graph G = (V, E) and Streett pairs TP = {(L;,U;) | 1 <1 < k}
Output: (1) (G, Streett(TP))

1 X « ALLSCCs(G); goodC — 0
2 foreach C € X do H¢ « 0; Toc +— 0
3 while X # () do
4 remove some S € X from X
5 B — U1g¢gk:U7‘nS:@(Li ns)
6 while B # () do
7 S «— S\B
8 Hg «— (HsUPOSt(B))ﬂS
9 Ts — (Ts UPre(B))N S
10 | B Ui<i<rv;ns=o(LiNS)
11 if Post(S) N S # 0 then /* G[S] contains at least one edge */
12 if |[Hs|+ |Ts| = 0 then goodC « goodCU {S}
13 else if |Hg| + |Ts| > /m/logn then
14 delete Hs and Ts
15 C — ALLSCCs(G[S])
16 if |C| =1 then goodC « goodCU {S}
17 else
18 foreach C € Cdo Hg + 0; Tc + 0
19 L X —XUcC
20 else
21 (C, Hs, Ts) < LOCK-STEP-SEARCH (G, S, Hs, Ts)
22 if C = S then goodC < goodCU {S}
23 else /* separate C and S\C */
24 S — S\C
25 He « 0; Te + 0
26 Hs%(HsUPOSt(C))ﬂS
27 Tg «— (TS U Pre(C)) ns
28 X —xu{situ{c}

29 return GRAPHREACH(G, U o cgooac ©)

incoming edges are contained in Hg and vertices that lost outgoing edges are
contained in Tg. In this way we maintain Invariant 1 throughout the algorithm,
which enables us to use Procedure LOCK-STEP-SEARCH with the running time
guarantee provided by Theorem 1.

Identifying SCCs. Let S be the vertex set removed from X in a fixed iteration of
Algorithm STREETTGRAPHIMPR after the removal of bad vertices in the inner
while-loop. First note that if S is strongly connected and contains at least one
edge, then it is a good component. If the set S was already identified as strongly
connected in a previous iteration, i.e., Hg and T are empty, then S is identified

190 K. Chatterjee et al.

as a good component in line 12. If many vertices of S have lost adjacent edges
since the last time a super-set of S was identified as a strongly connected sub-
graph, then the SCCs of G[S] are determined as in the basic algorithm. To
achieve the optimal asymptotic upper bound, we say that many vertices of §
have lost adjacent edges when we have |Hg| + |Ts| > /m/logn, while lower
thresholds are used in our experimental results. Otherwise, if not too many ver-
tices of S lost adjacent edges, then we start a symbolic lock-step search for top
SCCs from the vertices of Hg and for bottom SCCs from the vertices of T's using
Procedure LOCK-STEP-SEARCH. The set returned by the procedure is either a
top or a bottom SCC C of G[S] (Theorem 1). Therefore we can from now on
consider C' and S\C' separately, maintaining Invariants 1 and 2.

Algorithm STREETTGRAPHIMPR. A succinct description of the pseudocode is as
follows: Lines 1-2 initialize the set of candidates for good components with the
SCCs of the input graph. In each iteration of the main while-loop one candidate is
considered and the following operations are performed: (a) lines 5-10 iteratively
remove all bad vertices; if afterwards the candidate is still strongly connected
(and contains at least one edge), it is identified as a good component in the next
step; otherwise it is partitioned into new candidates in one of the following ways:
(b) if many vertices lost adjacent edges, lines 13—17 partition the candidate into
its SCCs (this corresponds to an iteration of the basic algorithm); (c¢) otherwise,
lines 20-28 use symbolic lock-step search to partition the candidate into one of its
SCCs and the remaining vertices. The while-loop terminates when no candidates
are left. Finally, vertices that can reach some good component are returned. We
have the following result (proof in [13, Appendix B]).

Theorem 2 (Improved Algorithm for Graphs). Algorithm STREETT-
GRAPHIMPR correctly computes the winning set in graphs with Streett objectives
and requires O(n - /mlogn) symbolic steps.

5 Symbolic MEC Decomposition

In this section we present a succinct description of the basic symbolic algo-
rithm for MEC decomposition and then present the main ideas for the improved
algorithm.

Basic symbolic algorithm for MEC decomposition. The basic symbolic algorithm
for MEC decomposition maintains a set of identified MECs and a set of candi-
dates for MECs, initialized with the SCCs of the MDP. Whenever a candidate
is considered, either (a) it is identified as a MEC or (b) it contains vertices
with outgoing random edges, which are then removed together with their ran-
dom attractor from the candidate, and the SCCs of the remaining sub-MDP are
added to the set of candidates. We refer to the algorithm as MECBASIC.

Proposition 2. Algorithm MECBASIC correctly computes the MEC decomposi-
tion of MDPs and requires O(n?) symbolic steps.

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 191

Improved Symbolic Algorithm for MEC Decomposition. The improved symbolic
algorithm for MEC decomposition uses the ideas of symbolic lock-step search
presented in Sect. 3. Informally, when considering a candidate that lost a few
edges from the remaining graph, we use the symbolic lock-step search to identify
some bottom SCC. We refer to the algorithm as MECIMPR. Since all the impor-
tant conceptual ideas regarding the symbolic lock-step search are described in
Sect. 3, we relegate the technical details to [13, Appendix C]. We summarize the
main result (proof in [13, Appendix C]).

Theorem 3 (Improved Algorithm for MEC). Algorithm MECIMPR cor-
rectly computes the MEC decomposition of MDPs and requires O(n - /m) sym-
bolic steps.

6 MDPs with Streett Objectives

Basic Symbolic Algorithm. We refer to the basic symbolic algorithm for
MDPs with Streett objectives as STREETTMDPBASIC, which is similar to the
algorithm for graphs, with SCC computation replaced by MEC computation.
The pseudocode of Algorithm STREETTMDPBASIC together with its detailed
description is presented in [13, Appendix D].

Proposition 3. Algorithm STREETTMDPBASIC correctly computes the almost-
sure winning set in MDPs with Streett objectives and requires O(n? - min(n, k))
symbolic steps.

Remark. The above bound uses the basic symbolic MEC decomposition algo-
rithm. Using our improved symbolic MEC decomposition algorithm, the above
bound could be improved to O(n - v/m - min(n, k)).

Improved Symbolic Algorithm. We refer to the improved symbolic algorithm
for MDPs with Streett objectives as STREETTMDPIMPR. First we present the
main ideas for the improved symbolic algorithm. Then we explain the key dif-
ferences compared to the improved symbolic algorithm for graphs. A thorough
description with the technical details and proofs is presented in [13, Appendix D].

— First, we improve the algorithm by interleaving the symbolic MEC compu-
tation with the detection of bad vertices [7,31]. This allows to replace the
computation of MECs in each iteration of the while-loop with the computa-
tion of SCCs and an additional random attractor computation.

e Intuition of interleaved computation. Consider a candidate for a good end-
component S after a random attractor to some bad vertices is removed
from it. After the removal of the random attractor, the set S does not have
random vertices with outgoing edges. Consider that further BAD(S) =
holds. If S is strongly connected and contains an edge, then it is a good
end-component. If S is not strongly connected, then P[S] contains at least
two SCCs and some of them might have random vertices with outgoing
edges. Since end-components are strongly connected and do not have

192 K. Chatterjee et al.

random vertices with outgoing edges, we have that (1) every good end-
component is completely contained in one of the SCCs of P[S] and (2)
the random vertices of an SCC with outgoing edges and their random
attractor do not intersect with any good end-component (see Lemma 2).
e Modification from basic to improved algorithm. We use these observations
to modify the basic algorithm as follows: First, for the sets that are can-
didates for good end-components, we do not maintain the property that
they are end-components, but only that they do not have random ver-
tices with outgoing edges (it still holds that every maximal good end-
component is either already identified or contained in one of the candi-
date sets). Second, for a candidate set S, we repeat the removal of bad
vertices until BAD(S) = 0 holds before we continue with the next step of
the algorithm. This allows us to make progress after the removal of bad
vertices by computing all SCCs (instead of MECs) of the remaining sub-
MDP. If there is only one SCC, then this is a good end-component (if it
contains at least one edge). Otherwise (a) we remove from each SCC the
set of random vertices with outgoing edges and their random attractor
and (b) add the remaining vertices of each SCC as a new candidate set.
— Second, as for the improved symbolic algorithm for graphs, we use the sym-
bolic lock-step search to quickly identify a top or bottom SCC every time a
candidate has lost a small number of edges since the last time its superset
was identified as being strongly connected. The symbolic lock-step search is
described in detail in Sect. 3.

Using interleaved MEC computation and lock-step search leads to a simi-
lar algorithmic structure for Algorithm STREETTMDPIMPR as for our improved
symbolic algorithm for graphs (Algorithm STREETTGRAPHIMPR). The key dif-
ferences are as follows: First, the set of candidates for good end-components
is initialized with the MECs of the input graph instead of the SCCs. Second,
whenever bad vertices are removed from a candidate, also their random attrac-
tor is removed. Further, whenever a candidate is partitioned into its SCCs, for
each SCC, the random attractor of the vertices with outgoing random edges
is removed. Finally, whenever a candidate S is separated into C and S\C' via
symbolic lock-step search, the random attractor of the vertices with outgoing
random edges is removed from C, and the random attractor of C is removed
from S.

Theorem 4 (Improved Algorithm for MDPs). Algorithm STREETT
MDPIMPR correctly computes the almost-sure winning set in MDPs with Streett
objectives and requires O(n - v/mlogn) symbolic steps.

7 Experiments

We present a basic prototype implementation of our algorithm and com-
pare against the basic symbolic algorithm for graphs and MDPs with Streett
objectives.

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 193

Models. We consider the academic benchmarks from the VLTS benchmark
suite [21], which gives representative examples of systems with nondeterminism,
and has been used in previous experimental evaluation (such as [4,11]).

Specifications. We consider random LTL formulae and use the tool Rabinizer [28]
to obtain deterministic Rabin automata. Then the negations of the formulae give
us Streett automata, which we consider as the specifications.

Graphs. For the models of the academic benchmarks, we first compute SCCs,
as all algorithms for Streett objectives compute SCCs as a preprocessing step.
For SCCs of the model benchmarks we consider products with the specification
Streett automata, to obtain graphs with Streett objectives, which are the bench-
mark examples for our experimental evaluation. The number of transitions in
the benchmarks ranges from 300K to 5Million.

MDPs. For MDPs, we consider the graphs obtained as above and consider a
fraction of the vertices of the graph as random vertices, which is chosen uniformly
at random. We consider 10%, 20%, and 50% of the vertices as random vertices
for different experimental evaluation.

Basic better: 36
Improved better: 913
I/B arit. mean: ~59.6%
/B geo. mean: ~35.3%

100000

80000

60000 ¢ .

40000

Improved PrePost

20000

0
0 20000 40000 60000 80000 100000

Basic PrePost

Fig. 2. Results for graphs with Streett objectives.

FExperimental Fvaluation. In the experimental evaluation we compare the num-
ber of symbolic steps (i.e., the number of Pre/Post operations?) executed by
the algorithms, the comparison of running time yields similar results and is pro-
vided in [13, Appendix E]. As the initial preprocessing step is the same for all the
algorithms (computing all SCCs for graphs and all MECs for MDPs), the com-
parison presents the number of symbolic steps executed after the preprocessing.
The experimental results for graphs are shown in Fig.2 and the experimental
results for MDPs are shown in Fig.3 (in each figure the two lines represent
equality and an order-of-magnitude improvement, respectively).

Discussion. Note that the lock-step search is the key reason for theoretical
improvement, however, the improvement relies on a large number of Streett pairs.

2 Recall that the basic set operations are cheaper to compute, and asymptotically at
most the number of Pre/Post operations in all the presented algorithms.

194 K. Chatterjee et al.

120000] 0
Basic better: 95 . N Basic better: 86 .o
% 1000001 Improved better: 680 . 13 19000071 mproved better: 671 -
L I/B arit. mean: ~63.2% Lot g I/B arit. mean: ~64.0% L
@ 80000 . o, . Q@ 80000 L N .
fut I/B geo. mean: ~47.9% s 1/B geo. mean: ~50.1%
o " o -
T 60000 o T 60000 °
7} PalR @ N .
> o > & .
8 40000 . . . O 40000 . °
. oo = o* o
o g’ o0y o o e A
. o
E 20000 :.ﬁ:ﬂ" * £ 20000 W
o ' 7
0 S 0 *
0 40000 80000 120000 160000 0 40000 80000 120000 160000
Basic PrePost Basic PrePost
(a) 10% random vertices (b) 20% random vertices
100000 R
Basic better: 235 .o

i Improved better: 512

O 80000 . .

a I/B arit. mean: ~71.5% N

g I/B geo. mean: ~56.2% .

O 60000 et

B o Y.

> T ® .

g 4oooo P

_

s .

£ 20000

0

0 20000 40000 60000 80000 100000 120000
Basic PrePost

(c) 50% random vertices

Fig. 3. Results for MDPs with Streett objectives.

In the experimental evaluation, the LTL formulae generate Streett automata
with small number of pairs, which after the product with the model accounts for
an even smaller fraction of pairs as compared to the size of the state space. This
has two effects:

— In the experiments the lock-step search is performed for a much smaller param-
eter value (O(logn) instead of the theoretically optimal bound of \/m/logn),
and leads to a small improvement.

— For large graphs, since the number of pairs is small as compared to the number
of states, the improvement over the basic algorithm is minimal.

In contrast to graphs, in MDPs even with small number of pairs as compared
to the state-space, the interleaved MEC computation has a notable effect on

practical performance, and we observe performance improvement even in large
MDPs.

8 Conclusion

In this work we consider symbolic algorithms for graphs and MDPs with Streett
objectives, as well as for MEC decomposition. Our algorithmic bounds match
for both graphs and MDPs. In contrast, while SCCs can be computed in linearly

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 195

many symbolic steps no such algorithm is known for MEC decomposition. An
interesting direction of future work would be to explore further improved sym-
bolic algorithms for MEC decomposition. Moreover, further improved symbolic
algorithms for graphs and MDPs with Streett objectives is also an interesting
direction of future work.

Acknowledgements. K. C. and M. H. are partially supported by the Vienna Sci-
ence and Technology Fund (WWTF) grant ICT15-003. K. C. is partially supported
by the Austrian Science Fund (FWF): S11407-N23 (RiSE/SHINE), and an ERC Start
Grant (279307: Graph Games). V. T. is partially supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
Grant Agreement No. 665385. V. L. is partially supported by the Austrian Science
Fund (FWF): S11408-N23 (RiSE/SHINE), the ISF grant #1278/16, and an ERC Con-
solidator Grant (project MPM). For M. H. and V. L. the research leading to these
results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no.
340506.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C—-27(6), 509-516
(1978)

2. Alur, R., Henzinger, T.A.: Computer-aided verification (2004). http://www.cis.
upenn.edu/group/cis673/

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Barnat, J., Chaloupka, J., van de Pol, J.: Distributed algorithms for SCC decom-
position. J. Log. Comput. 21(1), 23-44 (2011)

5. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Form. Methods Syst. Des. 28(1), 37-56
(2006)

6. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In: Conference on Design Automation, DAC, pp. 688-694 (1985)

7. Chatterjee, K., Dvordk, W., Henzinger, M., Loitzenbauer, V.: Model and objective
separation with conditional lower bounds: disjunction is harder than conjunction.
In: LICS, pp. 197-206 (2016)

8. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: SODA, pp. 1318-1336 (2011)

9. Chatterjee, K., Henzinger, M.: An O(n?) time algorithm for alternating Biichi
games. In: SODA, pp. 1386-1399 (2012)

10. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating
Biichi games and maximal end-component decomposition. J. ACM 61(3), 15 (2014)

11. Chatterjee, K., Henzinger, M., Joglekar, M., Shah, N.: Symbolic algorithms for qual-
itative analysis of Markov decision processes with Biichi objectives. Form. Methods
Syst. Des. 42(3), 301-327 (2013)

12. Chatterjee, K., Henzinger, M., Loitzenbauer, V.: Improved algorithms for one-pair
and k-pair Streett objectives. In: LICS, pp. 269-280 (2015)

http://www.cis.upenn.edu/group/cis673/
http://www.cis.upenn.edu/group/cis673/

196

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

K. Chatterjee et al.

Chatterjee, K., Henzinger, M., Loitzenbauer, V., Oraee, S., Toman, V.. Sym-
bolic algorithms for graphs and Markov decision processes with fairness objectives.
arXiv:1804.00206 (2018)

Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Simple stochastic parity games.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100-113.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45220-1_11
Chatterjee, K., Dvotak, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: strongly connected components, liveness, safety,
and diameter. In: SODA, pp. 2341-2356 (2018)

Chatterjee, K., Gaiser, A., Kietinsky, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559-575. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8_37

Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST, pp. 131-132 (2006)

Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Int. J. Softw. Tools Technol. Transf. (STTT) 2(4), 410-425 (2000)
Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

Clarke, E., Grumberg, O., Peled, D.: Symbolic model checking. In: Model Checking.
MIT Press (1999)

CWI/SEN2 and INRIA /VASY: The VLTS Benchmark Suite. http://cadp.inria.fr/
resources/vlts

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a modern
probabilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Esparza, J., Kfetinsky, J.: From LTL to deterministic automata: a safraless compo-
sitional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
192-208. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_13
Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: SODA, pp. 573-582 (2003)

Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connec-
tivity related problems. Algorithmica 50(1), 120-158 (2008)

Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In: Karlsson, R., Lingas, A.
(eds.) SWAT 1996. LNCS, vol. 1097, pp. 16-27. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61422-2_117

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279-295
(1997)

Komadrkova, Z., Ktetinsky, J.: Rabinizer 3: safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235-241. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6-17

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-147

Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38(4), 985-999 (1959)

http://arxiv.org/abs/1804.00206
https://doi.org/10.1007/978-3-540-45220-1_11
https://doi.org/10.1007/978-3-642-39799-8_37
http://cadp.inria.fr/resources/vlts
http://cadp.inria.fr/resources/vlts
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-08867-9_13
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

31.

32.

33.

34.
35.

Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 197

Loitzenbauer, V.: Improved algorithms and conditional lower bounds for problems
in formal verification and reactive synthesis. Ph.D. thesis. University of Vienna
(2016)

Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Progress (Draft)
(1996)

Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms
for the computation of fair cycles. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD
2000. LNCS, vol. 1954, pp. 162-179. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-40922-X_10

Safra, S.: On the complexity of w-automata. In: FOCS, pp. 319-327 (1988)
Somenzi, F.: CUDD: CU decision diagram package release 3.0.0 (2015). http://vlsi.
colorado.edu/~fabio/CUDD/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-40922-X_10
https://doi.org/10.1007/3-540-40922-X_10
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Attracting Tangles to Solve Parity Games

Tom van Dijk®)

Formal Models and Verification,
Johannes Kepler University, Linz, Austria
tom.vandijk@jku.at

Abstract. Parity games have important practical applications in formal
verification and synthesis, especially to solve the model-checking problem
of the modal mu-calculus. They are also interesting from the theory
perspective, because they are widely believed to admit a polynomial
solution, but so far no such algorithm is known.

We propose a new algorithm to solve parity games based on learning
tangles, which are strongly connected subgraphs for which one player has
a strategy to win all cycles in the subgraph. We argue that tangles play
a fundamental role in the prominent parity game solving algorithms. We
show that tangle learning is competitive in practice and the fastest solver
for large random games.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Ewven play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the
game is determined by the parity of the highest priority that is encountered
infinitely often. Player Odd wins if this parity is odd; otherwise, player Even
wins.

Parity games are interesting both for their practical applications and for
complexity theoretic reasons. Their study has been motivated by their relation
to many problems in formal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture the expressive power
of nested least and greatest fixpoint operators [11]. In particular, deciding the
winner of a parity game is polynomial-time equivalent to checking non-emptiness
of non-deterministic parity tree automata [21], and to the explicit model-checking
problem of the modal p-calculus [9,15,20].

Parity games are interesting in complexity theory, as the problem of deter-
mining the winner of a parity game is known to lie in UP N co-UP [16], which
is contained in NP N co-NP [9]. This problem is therefore unlikely to be NP-
complete and it is widely believed that a polynomial solution exists. Despite
much effort, such an algorithm has not been found yet.

T. van Dijk—The author is supported by the FWF, NFN Grant S11408-N23 (RiSE).

© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 198-215, 2018.
https://doi.org/10.1007/978-3-319-96142-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_14&domain=pdf

Attracting Tangles to Solve Parity Games 199

The main contribution of this paper is based on the notion of a tangle.
A tangle is a strongly connected subgraph of a parity game for which one of
the players has a strategy to win all cycles in the subgraph. We propose this
notion and its relation to dominions and cycles in a parity game. Tangles are
related to snares [10] and quasi-dominions [3], with the critical difference that
tangles are strongly connected, whereas snares and quasi-dominions may be
unconnected as well as contain vertices that are not in any cycles. We argue
that tangles play a fundamental role in various parity game algorithms, in par-
ticular in priority promotion [3,5], Zielonka’s recursive algorithm [25], strategy
improvement [10,11,24], small progress measures [17], and in the recently pro-
posed quasi-polynomial time progress measures [6,12].

The core insight of this paper is that tangles can be used to attract sets
of vertices at once, since the losing player is forced to escape a tangle. This
leads to a novel algorithm to solve parity games called tangle learning, which
is based on searching for tangles along a top-down a-maximal decomposition of
the parity game. New tangles are then attracted in the next decomposition. This
naturally leads to learning nested tangles and, eventually, finding dominions. We
prove that tangle learning solves parity games and present several extensions to
the core algorithm, including alternating tangle learning, where the two players
take turns maximally searching for tangles in their regions, and on-the-fly tangle
learning, where newly learned tangles immediately refine the decomposition.

We relate the complexity of tangle learning to the number of learned tangles
before finding a dominion, which is related to how often the solver is distracted
by paths to higher winning priorities that are not suitable strategies.

We evaluate tangle learning in a comparison based on the parity game solver
Oink [7], using the benchmarks of Keiren [19] as well as random parity games
of various sizes. We compare tangle learning to priority promotion [3,5] and to
Zielonka’s recursive algorithm [25] as implemented in Oink.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V, E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity
of the highest priority that occurs infinitely often along the play.

More formally, a parity game O is a tuple (Vo, Vi, E, pr) where V = Vo, U 1
is a set of vertices partitioned into the sets Vi, controlled by player Fven and Vg
controlled by player Odd, and E C V xV is a left-total binary relation describing
all moves, i.e., every vertex has at least one successor. We also write E(u) for
all successors of v and v — v for v € E(u). The function pr: V. — {0,1,...,d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V') for the highest priority
of vertices V' and pr(9) for the highest priority in the game ©. Furthermore, we

200 T. van Dijk

write pr=1(i) for all vertices with the priority 7. A path ™ = vovy ... is a sequence
of vertices consistent with F, i.e., v; — v;y1 for all successive vertices. A play
is an infinite path. We denote with inf(7) the vertices in 7 that occur infinitely
many times in 7. Player Even wins a play 7 if pr(inf()) is even; player Odd wins
if pr(inf(7)) is odd. We write Plays(v) to denote all plays starting at vertex v.

A strategy o: V. — V is a partial function that assigns to each vertex in its
domain a single successor in E, i.e., 0 C E. We refer to a strategy of player
« to restrict the domain of o to V. In the remainder, all strategies o are of a
player ov. We write Plays(v, o) for the set of plays from v consistent with o, and
Plays(V, o) for {r € Plays(v,0) |v e V}.

A fundamental result for parity games is that they are memoryless deter-
mined [8], i.e., each vertex is either winning for player Even or for player Odd,
and both players have a strategy for their winning vertices. Player o wins vertex
v if they have a strategy o such that all plays in Plays(v, o) are winning for
player .

Several algorithms for solving parity games employ attractor computation.
Given a set of vertices A, the attractor of A for a player « represents those
vertices from which player a can force a play to visit A. We write Attr(A) to
attract vertices in © to A as player «, i.e.,

pZ AU{veVy | Ev)yNZ #0yu{ve V| E(v) C Z}

Informally, we compute the a-attractor of A with a backward search from A,
initially setting Z := A and iteratively adding a-vertices with a successor in Z
and a-vertices with no successors outside Z. We also obtain a strategy o for
player «, starting with an empty strategy, by selecting a successor in Z when we
attract vertices of player « and when the backward search finds a successor in Z
for the a-vertices in A. We call a set of vertices A a-maximal if A = Attr2(A).
A dominion D is a set of vertices for which player « has a strategy o such that
all plays consistent with ¢ stay in D and are winning for player a. We also write a
p-dominion for a dominion where p is the highest priority encountered infinitely
often in plays consistent with o, i.e., p := max{pr(inf(7)) | = € Plays(D,o)}.

3 Tangles

Definition 1. A p-tangle is a nonempty set of vertices U C V with p = pr(U),
for which player o = p has a strategy o: U, — U, such that the graph (U, E'),
with E' := EN (UU (Uz % U)), is strongly connected and player o wins all cycles
in (U, E").

Informally, a tangle is a set of vertices for which player o has a strategy to
win all cycles inside the tangle. Thus, player @ loses all plays that stay in U and
is therefore forced to escape the tangle. The highest priority by which player «
wins a play in (U, E') is p. We make several basic observations related to tangles.

Attracting Tangles to Solve Parity Games 201

1. A p-tangle from which player @ cannot leave is a p-dominion.
2. Every p-dominion contains one or more p-tangles.
3. Tangles may contain tangles of a lower priority.

Observation 1 follows by definition. Observation 2 follows from the fact that
dominions won by player a with some strategy ¢ must contain strongly connected
subgraphs where all cycles are won by player a and the highest winning priority
is p. For observation 3, consider a p-tangle for which player @ has a strategy
that avoids priority p while staying in the tangle. Then there is a p’-tangle with
p’ < p in which player @ also loses.

We can in fact find a hierarchy of tan-

gles in any dominion D with winning strategy b c
o by computing the set of winning priorities
{pr(inf(m)) | # € Plays(D,o)}. There is a p- a 6 0
tangle in D for every p in this set. Tangles are o‘ ‘
thus a natural substructure of dominions.

See for example Fig. 1. Player Odd wins 6
this dominion with highest priority 5 and strat-
egy {d — e}. Player Even can also avoid pri- d e

ority 5 and then loses with priority 3. The
5-dominion {a,b,c,d, e} contains the 5-tangle
{b,c,d, e} and the 3-tangle {c,e}.

Fig.1. A 5-dominion with a
5-tangle and a 3-tangle

4 Solving by Learning Tangles

Since player @ must escape tangles won by player «, we can treat a tangle as an
abstract vertex controlled by player @ that can be attracted by player «, thus
attracting all vertices of the tangle. This section proposes the tangle learning
algorithm, which searches for tangles along a top-down a-maximal decomposi-
tion of the game. We extend the attractor to attract all vertices in a tangle when
player @ is forced to play from the tangle to the attracting set. After extracting
new tangles from regions in the decomposition, we iteratively repeat the pro-
cedure until a dominion is found. We show that tangle learning solves parity
games.

4.1 Attracting Tangles

Given a tangle t, we denote its vertices simply by ¢ and its witness strategy by
or(t). We write Ep(t) for the edges from @-vertices in the tangle to the rest of
the game: Ep(t) :=={v |u - vAuctnNnVgAv e V\t} We write 1y for all
tangles where pr(t) is odd (won by player Odd) and T, for all tangles where pr(t)
is even. We write TAtroT (A) to attract vertices in © and vertices of tangles in
T to A as player «, i.e.,

pwZ AU{veVy | Ev)yNZ #0yu{ve Vg | E(v) C Z}
Uf{vet|teT, NEr(t)Z0NEr(t) C Z}

202 T. van Dijk

def solve(D):
Wo — 0, Wo— 0,00 — 0,000, T —0
while © # 0 :
T,d < search(o, T)
a — pr(d) mod 2
D,o — Attrd(d)
Wo — WoUD, 04 «— 0o Uor(d)Uc
O« o\D, T<—Tn®\D)
return We, Wo, o6, on

© 0N O A WN -

Algorithm 1. The solve algorithm which computes the winning regions and
winning strategies for both players of a given parity game.

This approach is not the same as the subset construction. Indeed, we do not
add the tangle itself but rather add all its vertices together. Notice that this
attractor does not guarantee arrival in A, as player @ can stay in the added
tangle, but then player @ loses.

To compute a witness strategy o for player «, as with Attrg, we select a
successor in Z when attracting single vertices of player o and when we find a
successor in Z for the a-vertices in A. When we attract vertices of a tangle, we
update o for each tangle ¢ sequentially, by updating o with the strategy in or(t)
of those a-vertices in the tangle for which we do not yet have a strategy in o,
ie., {(u,v) € op(t) | u ¢ dom(o)}. This is important since tangles can overlap.

In the following, we call a set of vertices A a-maximal if A = TAttro T (A).
Given a game o and a set of vertices U, we write ©NU for the subgame o’ where
V':=VNU and E' := EN(V'xV’). Given a set of tangles T' and a set of vertices
U, we write TNU for all tangles with all vertices in U, i.e.,, {t € T |t C U}, and
we extend this notation to TN O’ for the tangles in the game o', i.e., TNV,

4.2 The solve Algorithm

We solve parity games by iteratively searching and removing a dominion of the
game, as in [3,18,22]. See Algorithm 1. The search algorithm (described below)
is given a game and a set of tangles and returns an updated set of tangles and a
tangle d that is a dominion. Since the dominion d is a tangle, we derive the winner
« from the highest priority (line 5) and use standard attractor computation to
compute a dominion D (line 6). We add the dominion to the winning region
of player a (line 7). We also update the winning strategy of player « using the
witness strategy of the tangle d plus the strategy o obtained during attractor
computation. To solve the remainder, we remove all solved vertices from the
game and we remove all tangles that contain solved vertices (line 8). When the
entire game is solved, we return the winning regions and winning strategies of
both players (lines 9). Reusing the (pruned) set of tangles for the next search
call is optional; if search is always called with an empty set of tangles, the
“forgotten” tangles would be found again.

Attracting Tangles to Solve Parity Games 203

1 def search(o, T):

2 while true :

3 r—=0,Y <0

4 while O\ r#0 :

5 O —O\r, T —TnNn(@®\r)

6 p — pr(9), a « pr(®’) mod 2

7 Z,0 — TAttr2 ™ ({v € ' | pr(v) = p})
8 A «— extract-tangles(Z, o)

9 if 3te A:Epr(t)=0: return TUY, ¢
10 r<—rU(Z»—>p),Y<—YUA
11 T—TUY

Algorithm 2. The search algorithm which, given a game and a set of tangles,
returns the updated set of tangles and a tangle that is a dominion.

4.3 The search Algorithm

The search algorithm is given in Algorithm 2. The algorithm iteratively com-
putes a top-down decomposition of O into sets of vertices called regions such
that each region is a-maximal for the player o who wins the highest priority
in the region. Each next region in the remaining subgame o’ is obtained by
taking all vertices with the highest priority p in ©’ and computing the tangle
attractor set of these vertices for the player that wins that priority, i.e., player
« =5 p. As every next region has a lower priority, each region is associated with
a unique priority p. We record the current region of each vertex in an auxiliary
partial function r: V' — {0,1,...,d} called the region function. We record the
new tangles found during each decomposition in the set Y.

In each iteration of the decomposition, we first obtain the current subgame
O’ (line 5) and the top priority p in O’ (line 6). We compute the next region by
attracting (with tangles) to the vertices of priority p in ©’ (line 7). We use the
procedure extract-tangles (described below) to obtain new tangles from the
computed region (line 8). For each new tangle, we check if the set of outgoing
edges to the full game Ep(t) is empty. If Ep(¢) is empty, then we have a dominion
and we terminate the procedure (line 9). If no dominions are found, then we add
the new tangles to Y and update r (line 10). After fully decomposing the game
into regions, we add all new tangles to T (line 11) and restart the procedure.

4.4 Extracting Tangles from a Region

To search for tangles in a given region A of player o with strategy o, we first
remove all vertices where player @ can play to lower regions (in ©’) while player
« is constrained to o, i.e.,

vZ . AN({veVz | E'(v) C Z}U{v e Vy|o(v) € Z})

This procedure can be implemented efficiently with a backward search, start-
ing from all vertices of priority p that escape to lower regions. Since there can

204 T. van Dijk

be multiple vertices of priority p, the reduced region may consist of multiple
unconnected tangles. We compute all nontrivial bottom SCCs of the reduced
region, restricted by the strategy o. Every such SCC is a unique p-tangle.

4.5 Tangle Learning Solves Parity Games
We now prove properties of the proposed algorithm.

Lemma 1. All regions recorded in r in Algorithm 2 are a-mazimal in their
subgame.

Proof. This is vacuously true at the beginning of the search. Every region Z is
a-maximal as Z is computed with TAttr (line 7). Therefore the lemma remains
true when r is updated at line 10. New tangles are only added to T at line 11,
after which r is reset to (. 0

Lemma 2. All plays consistent with o that stay in a region are won by player
a.

Proof. Based on how the attractor computes the region, we show that all cycles
(consistent with o) in the region are won by player «. Initially, Z only contains
vertices with priority p; therefore, any cycles in Z are won by player . We
consider two cases: (a) When attracting a single vertex v, any new cycles must
involve vertices with priority p from the initial set A, since all other a-vertices in
Z already have a strategy in Z and all other @-vertices in Z have only successors
in Z, otherwise they would not be attracted to Z. Since p is the highest priority
in the region, every new cycle is won by player «. (b) When attracting vertices of
a tangle, we set the strategy for all attracted vertices of player « to the witness
strategy of the tangle. Any new cycles either involve vertices with priority p (as
above) or are cycles inside the tangle that are won by player «. O

Lemma 3. Player @ can reach a vertex with the highest priority p from every
vertex in the region, via a path in the region that is consistent with strategy o.

Proof. The proof is based on how the attractor computes the region. This prop-
erty is trivially true for the initial set of vertices with priority p. We consider
again two cases: (a) When attracting a single vertex v, v is either an a-vertex
with a strategy to play to Z, or an a-vertex whose successors are all in Z.
Therefore, the property holds for v. (b) Tangles are strongly connected w.r.t.
their witness strategy. Therefore player @ can reach every vertex of the tangle
and since the tangle is attracted to Z, at least one @-vertex can play to Z.
Therefore, the property holds for all attracted vertices of a tangle. O

Lemma 4. For each new tangle t, all successors of t are in higher a-regions.

Proof. For every bottom SCC B (computed in extract-tangles), E'(v) C B
for all @-vertices v € B, otherwise player @& could leave B and B would not be a
bottom SCC. Recall that E’(v) is restricted to edges in the subgame 0’ =0\ r.

Attracting Tangles to Solve Parity Games 205

Therefore F(v) C dom(r) U B in the full game for all a-vertices v € B. Recall
that Er(t) for a tangle ¢ refers to all successors for player @ that leave the tangle.
Hence, Er(t) C dom(r) for every tangle ¢t := B. Due to Lemma 1, no @-vertex
in B can escape to a higher a-region. Thus Er(t) only contains vertices from
higher a-regions when the new tangle is found by extract-tangles. O

Lemma 5. Every nontrivial bottom SCC B of the reduced region restricted by
witness strategy o is a unique p-tangle.

Proof. All a-vertices v in B have a strategy o(v) € B, since B is a bottom SCC
when restricted by o. B is strongly connected by definition. Per Lemma 2, player
« wins all plays consistent with ¢ in the region and therefore also in B. Thus,
B is a tangle. Per Lemma 3, player @ can always reach a vertex of priority p,
therefore any bottom SCC must include a vertex of priority p. Since p is the
highest priority in the subgame, B is a p-tangle. Furthermore, the tangle must
be unique. If the tangle was found before, then per Lemmas 1 and 4, it would
have been attracted to a higher a-region. O

Lemma 6. The lowest region in the decomposition always contains a tangle.

Proof. The lowest region is always nonempty after reduction in extract-
tangles, as there are no lower regions. Furthermore, this region contains non-
trivial bottom SCCs, since every vertex must have a successor in the region due
to Lemma 1. a

Lemma 7. A tangle t is a dominion if and only if E7(t) =0

Proof. If the tangle is a dominion, then player @ cannot leave it, therefore
Er(t) = 0. If Ex(t) = 0, then player @ cannot leave the tangle and since
all plays consistent with ¢ in the tangle are won by player «, the tangle is a
dominion. O

Lemma 8. Er(t) = 0 for every tangle t found in the highest region of player a.

Proof. Per Lemma 4, E7(t) C {v € dom(r) | r(v) =2 p} when the tangle is found.
There are no higher regions of player «, therefore Er(t) = 0. O

Lemma 9. The search algorithm terminates by finding a dominion.

Proof. There is always a highest region of one of the players that is not empty.
If a tangle is found in this region, then it is a dominion (Lemmas 7 and 8) and
Algorithm 2 terminates (line 9). If no tangle is found in this region, then the
opponent can escape to a lower region. Thus, if no dominion is found in a highest
region, then there is a lower region that contains a tangle (Lemma 6) that must
be unique (Lemma 5). As there are only finitely many unique tangles, eventually
a dominion must be found. O

Lemma 10. The solve algorithm solves parity games.

206 T. van Dijk

Proof. Every invocation of search returns a dominion of the game (Lemma 9).
The a-attractor of a dominion won by player « is also a dominion of player a.
Thus all vertices in D are won by player a. The winning strategy is derived as
the witness strategy of d with the strategy obtained by the attractor at line 6.
At the end of solve every vertex of the game is either in W, or Wh. O

4.6 Variations of Tangle Learning

We propose three different variations of tangle learning that can be combined.

The first variation is alternating tangle learning, where players take turns to
maximally learn tangles, i.e., in a turn of player Even, we only search for tangles
in regions of player Even, until no more tangles are found. Then we search only
for tangles in regions of player Odd, until no more tangles are found. When
changing players, the last decomposition can be reused.

The second variation is on-the-fly tangle learning, where new tangles immedi-
ately refine the decomposition. When new tangles are found, the decomposition
procedure is reset to the highest region that attracts one of the new tangles,
such that all regions in the top-down decomposition remain a-maximal. This is
the region with priority p := max{min{r(v) |v € Ep(t)} |t € A}.

A third variation skips the reduction step in extract-tangles and only
extracts tangles from regions where none of the vertices of priority p can escape
to lower regions. This still terminates finding a dominion, as Lemma 6 still
applies, i.e., we always extract tangles from the lowest region. Similar variations
are also conceivable, such as only learning tangles from the lowest region.

5 Complexity

We establish a relation between the time complexity of tangle learning and the
number of learned tangles.

Lemma 11. Computing the top-down a-mazimal decomposition of a parity
game runs in time O(dm + dn|T|) given a parity game with d priorities, n
vertices and m edges, and a set of tangles T'.

Proof. The attractor Attri runs in time O(n + m), if we record the number of
remaining outgoing edges for each vertex [23]. The attractor TAttrZ’T runs in
time O(n + m + |T| + n|T|), if implemented in a similar style. As m > n, we
simplify to O(m + n|T|). Since the decomposition computes at most d regions,
the decomposition runs in time O(dm + dn|T). O

Lemma 12. Searching for tangles in the decomposition runs in time O(dm).

Proof. The extract-tangles procedure consists of a backward search, which
runs in O(n + m), and an SCC search based on Tarjan’s algorithm, which also
runs in O(n+m). This procedure is performed at most d times (for each region).
As m > n, we simplify to O(dm). O

Attracting Tangles to Solve Parity Games 207

Lemma 13. Tangle learning runs in time O(dnm|T| + dn?|T|?) for a parity
game with d priorities, n vertices, m edges, and |T| learned tangles.

Proof. Given Lemmas 11 and 12, each iteration in search runs in time O(dm +
dn|T). The number of iterations is at most |T'|, since we learn at least 1 tangle
per iteration. Then search runs in time O(dm|T| + dn|T|?). Since each found
dominion is then removed from the game, there are at most n calls to search.
Thus tangle learning runs in time O(dnm/|T| + dn?|T|?). O

Fig. 2. A parity game that requires several turns to find a dominion.

The complexity of tangle learning follows from the number of tangles that
are learned before each dominion is found. Often not all tangles in a game need
to be learned to solve the game, only certain tangles. Whether this number can
be exponential in the worst case is an open question. These tangles often serve
to remove distractions that prevent the other player from finding better tangles.
This concept is illustrated by the example in Fig. 2, which requires multiple turns
before a dominion is found. The game contains 4 tangles: {c}, {g} (a dominion),
{a,b,c,d} and {a,e}. The vertices {e,f,g, h} do not form a tangle, since the
opponent wins the loop of vertex g. The tangle {a, b, c,d} is a dominion in the
remaining game after AttrS({g}) has been removed.

The tangle {g} is not found at first, as player Odd is distracted by h, i.e.,
prefers to play from g to h. Thus vertex h must first be attracted by the oppo-
nent. This occurs when player Even learns the tangle {a,e}, which is then
attracted to f, which then attracts h. However, the tangle {a,e} is blocked,
as player Even is distracted by b. Vertex b is attracted by player Odd when
they learn the tangle {c}, which is attracted to d, which then attracts b. So
player Odd must learn tangle {c} so player Even can learn tangle {a, e}, which
player Even must learn so player Odd can learn tangle {g} and win the dominion
{e,f,g, h}, after which player Odd also learns {a,b,c,d} and wins the entire
game.

One can also understand the algorithm as the players learning that their
opponent can now play from some vertex v via the learned tangle to a higher
vertex w that is won by the opponent. In the example, we first learn that b
actually leads to d via the learned tangle {c}. Now b is no longer safe for player

208 T. van Dijk

Even. However, player Even can now play from both d and h via the learned
O-tangle {a,e} to f, so d and h are no longer interesting for player Odd and
vertex b is again safe for player Even.

6 Implementation

We implement four variations of tangle learning in the parity game solver
Oink [7]. Oink is a modern implementation of parity game algorithms writ-
ten in C++. Oink implements priority promotion [3], Zielonka’s recursive algo-
rithm [25], strategy improvement [11], small progress measures [17], and quasi-
polynomial time progress measures [12]. Oink also implements self-loop solving
and winner-controlled winning cycle detection, as proposed in [23]. The imple-
mentation is publicly available via https://www.github.com/trolando/oink.

We implement the following variations of tangle learning: standard tan-
gle learning (t1), alternating tangle learning (atl), on-the-fly tangle learning
(otftl) and on-the-fly alternating tangle learning (otfatl). The implementa-
tion mainly differs from the presented algorithm in the following ways. We com-
bine the solve and search algorithms in one loop. We remember the highest
region that attracts a new tangle and reset the decomposition to that region
instead of recomputing the full decomposition. In extract-tangles, we do not
compute bottom SCCs for the highest region of a player, instead we return the
entire reduced region as a single dominion (see also Lemma 8).

7 Empirical Evaluation

The goal of the empirical evaluation is to study tangle learning and its variations
on real-world examples and random games. Due to space limitations, we do not
report in detail on crafted benchmark families (generated by PGSolver [13]),
except that none of these games is difficult in runtime or number of tangles.
We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [19] that are publicly available online. These are 313
model checking and 216 equivalence checking games. We also consider random
games, in part because the literature on parity games tends to favor studying the
behavior of algorithms on random games. We include two classes of self-loop-free
random games generated by PGSolver [13] with a fixed number of vertices:

— fully random games (randomgame N N 1 N x)
N € {1000, 2000, 4000, 7000}
— large low out-degree random games (randomgame N N 1 2 x)
N € {10000, 20000, 40000, 70000, 100000, 200000, 400000, 700000, 1000000}

We generate 20 games for each parameter IV, in total 80 fully random games
and 180 low out-degree games. All random games have N vertices and up to
N distinct priorities. We include low out-degree games, since algorithms may
behave differently on games where all vertices have few available moves, as also

https://www.github.com/trolando/oink

Attracting Tangles to Solve Parity Games 209

suggested in [3]. In fact, as we see in the evaluation, fully random games appear
trivial to solve, whereas games with few moves per vertex are more challenging.
Furthermore, the fully random games have fewer vertices but require more disk
space (40 MB per compressed file for N = 7000) than large low out-degree games
(11 MB per compressed file for N = 1000000).

We compare four variations of tangle learning to the implementations of
Zielonka’s recursive algorithm (optimized version of Oink) and of priority pro-
motion (implemented in Oink by the authors of [3]). The motivation for this
choice is that [7] shows that these are the fastest parity game solving algorithms.

In the following, we also use cactus plots to compare the algorithms. Cac-
tus plots show that an algorithm solved X input games within Y seconds
individually.

Table 1. Runtimes in sec. and number of timeouts (20min) of the solvers Zielonka
(z1k), priority promotion (pp), and tangle learning (t1, atl, otftl, otfatl).

Solver MC&EC | Random | Random (large)
Time Time Time | Timeouts
pp 503 21 12770 6
zlk 576 21 2311913
otfatl | 808 21 2281 | 0
atl 817 21 2404 0
otftl | 825 21 2238 | 0
tl 825 21 2312 0

All experimental scripts and log files are available online via https://www.
github.com/trolando/tl-experiments. The experiments were performed on a clus-
ter of Dell PowerEdge M610 servers with two Xeon E5520 processors and 24 GB
internal memory each. The tools were compiled with gcc 5.4.0.

7.1 Overall Results

Table 1 shows the cumulative runtimes of the six algorithms. For the runs that
timed out, we simply used the timeout value of 1200s, but this underestimates
the actual runtime.

7.2 Model Checking and Equivalence Checking Games

See Fig. 3 for the cactus plot of the six solvers on model checking and equivalence
checking games. This graph suggests that for most games, tangle learning is only
slightly slower than the other algorithms. The tangle learning algorithms require
at most 2x as much time for 12 of the 529 games. There is no significant difference
between the four variations of tangle learning.

https://www.github.com/trolando/tl-experiments
https://www.github.com/trolando/tl-experiments

210 T. van Dijk

80 7
25
60 %
O
[0}
=2
o 401
=
= 20 1
0 Solver
: : : :
500 510 520 530 atl
Number of MC&EC games = pp
— otfatl
12507 —< otftl
1000 1 [p <l
. / 7 7k
O
[0}
2z
[}
=
=

| | | |
150 160 170 180
Number of large random games

Fig. 3. Cactus plots of the solvers Zielonka (zlk), priority promotion (pp) and tangle
learning (t1, atl, otftl, otfatl). The plot shows how many MC&EC games (top) or
large random games (bottom) are (individually) solved within the given time.

The 529 games have on average 1.86 million vertices and 5.85 million edges,
and at most 40.6 million vertices and 167.5 million edges. All equivalence check-
ing games have 2 priorities, so every tangle is a dominion. The model checking
games have 2 to 4 priorities. Tangle learning learns non-dominion tangles for
only 30 games, and more than 1 tangle only for the 22 games that check the
infinitely often_read write property. The most extreme case is 1,572,864
tangles for a game with 19,550,209 vertices. These are all O-tangles that are then
attracted to become part of 2-dominions.

That priority promotion and Zielonka’s algorithm perform well is no surprise.
See also Sect. 8.4. Solving these parity games requires few iterations for all algo-
rithms, but tangle learning spends more time learning and attracting individual
tangles, which the other algorithms do not do. Zielonka requires at most 27
iterations, priority promotion at most 28 queries and 9 promotions. Alternating
tangle learning requires at most 2 turns. We conclude that these games are not
complex and that their difficulty is related to their sheer size.

7.3 Random Games

Table 1 shows no differences between the algorithms for the fully random games.
Tangle learning learns no tangles except dominions for any of these games. This

Attracting Tangles to Solve Parity Games 211

agrees with the intuition that the vast number of edges in these games lets
attractor-based algorithms quickly attract large portions of the game.

See Fig. 3 for a cactus plot of the solvers on the larger random games. Only
167 games were solved within 20 min each by Zielonka’s algorithm and only 174
games by priority promotion. See Table 2 for details of the slowest 10 random
games for alternating tangle learning. There is a clear correlation between the
runtime, the number of tangles and the number of turns. One game is particularly
interesting, as it requires significantly more time than the other games.

The presence of one game that is much more difficult is a feature of using
random games. It is likely that if we generated a new set of random games, we
would obtain different results. This could be ameliorated by experimenting on
thousands of random games and even then it is still a game of chance whether
some of these random games are significantly more difficult than the others.

Table 2. The 10 hardest random games for the atl algorithm, with time in seconds
and size in number of vertices.

Time |543 |148 |121 |118|110 |83 |81 |73 |68 |52
Tangles | 4,018 | 1,219 | 737 | 560|939 |337 493|309 | 229 384
Turns |91 56 23 25 130 12 |18 |10 |10 |18
Size IM |1IM |700K | 1M |700K | 1M | 1M 1M | 1M 1M

8 Tangles in Other Algorithms

We argue that tangles play a fundamental role in various other parity game
solving algorithms. We refer to [7] for descriptions of these algorithms.

8.1 Small Progress Measures

The small progress measures algorithm [17] iteratively performs local updates
to vertices until a fixed point is reached. Each vertex is equipped with some
measure that records a statistic of the best game either player knows that they
can play from that vertex so far. By updating measures based on the successors,
they essentially play the game backwards. When they can no longer perform
updates, the final measures indicate the winning player of each vertex.

The measures in small progress measures record how often each even priority
is encountered along the most optimal play (so far) until a higher priority is
encountered. As argued in [7,14], player Even tries to visit vertices with even
priorities as often as possible, while prioritizing plays with more higher even
priorities. This often resets progress for lower priorities. Player Odd has the
opposite goal, i.e., player Odd prefers to play to a lower even priority to avoid
a higher even priority, even if the lower priority is visited infinitely often. When
the measures record a play from some vertex that visits more vertices with some

212 T. van Dijk

even priority than exist in the game, this indicates that player Even can force
player Odd into a cycle, unless they concede and play to a higher even priority. A
mechanism called cap-and-carryover [7] ensures via slowly rising measures that
the opponent is forced to play to a higher even priority.

We argue that when small progress measures finds cycles of some priority p,
this is due to the presence of a p-tangle, namely precisely those vertices whose
measures increase beyond the number of vertices with priority p, since these
measures can only increase so far in the presence of cycles out of which the
opponent cannot escape except by playing to vertices with a higher even priority.

One can now understand small progress measures as follows. The algorithm
indirectly searches for tangles of player Even, and then searches for the best
escape for player Odd by playing to the lowest higher even priority. If no such
escape exists for a tangle, then the measures eventually rise to T, indicating that
player Even has a dominion. Whereas tangle learning is affected by distractions,
small progress measures is driven by the dual notion of aversions, i.e., high even
vertices that player Odd initially tries to avoid. The small progress measures
algorithm tends to find tangles repeatedly, especially when they are nested.

8.2 Quasi-polynomial Time Progress Measures

The quasi-polynomial time progress measures algorithm [12] is similar to small
progress measures. This algorithm records the number of dominating even ver-
tices along a play, i.e., such that every two such vertices are higher than all
intermediate vertices. For example, in the path 1213142321563212, all vertices
are dominated by each pair of underlined vertices of even priority. Higher even
vertices are preferred, even if this (partially) resets progress on lower priorities.

Tangles play a similar role as with small progress measures. The presence of
a tangle lets the value iteration procedure increase the measure up to the point
where the other player “escapes” the tangle via a vertex outside of the tangle.
This algorithm has a similar weakness to nested tangles, but it is less severe
as progress on lower priorities is often retained. In fact, the lower bound game
n [12], for which the quasi-polynomial time algorithm is slow, is precisely based
on nested tangles and is easily solved by tangle learning.

8.3 Strategy Improvement

As argued by Fearnley [10], tangles play a fundamental role in the behavior of
strategy improvement. Fearnley writes that instead of viewing strategy improve-
ment as a process that tries to increase valuations, one can view it as a process
that tries to force “consistency with snares” [10, Sect. 6], i.e., as a process that
searches for escapes from tangles.

8.4 Priority Promotion

Priority promotion [3,5] computes a top-down a-maximal decomposition and
identifies “closed a-regions”, i.e., regions where the losing player cannot escape to

Attracting Tangles to Solve Parity Games 213

lower regions. A closed a-region is essentially a collection of possibly unconnected
tangles and vertices that are attracted to these tangles. Priority promotion then
promotes the closed region to the lowest higher region that the losing player can
play to, i.e., the lowest region that would attract one of the tangles in the region.
Promoting is different from attracting, as tangles in a region can be promoted
to a priority that they are not attracted to. Furthermore, priority promotion has
no mechanism to remember tangles, so the same tangle can be discovered many
times. This is somewhat ameliorated in extensions such as region recovery [2] and
delayed promotion [1], which aim to decrease how often regions are recomputed.

Priority promotion has a good practical performance for games where com-
puting and attracting individual tangles is not necessary, e.g., when tangles are
only attracted once and all tangles in a closed region are attracted to the same
higher region, as is the case with the benchmark games of [19].

8.5 Zielonka’s Recursive Algorithm

Zielonka’s recursive algorithm [25] also computes a top-down a-maximal decom-
position, but instead of attracting from lower regions to higher regions, the algo-
rithm attracts from higher regions to tangles in the subgame. Essentially, the
algorithm starts with the tangles in the lowest region and attracts from higher
regions to these tangles. When vertices from a higher a-region are attracted to
tangles of player @, progress for player « is reset. Zielonka’s algorithm also has
no mechanism to store tangles and games that are exponential for Zielonka’s
algorithm, such as in [4], are trivially solved by tangle learning.

9 Conclusions

We introduced the notion of a tangle as a subgraph of the game where one
player knows how to win all cycles. We showed how tangles and nested tangles
play a fundamental role in various parity game algorithms. These algorithms
are not explicitly aware of tangles and can thus repeatedly explore the same
tangles. We proposed a novel algorithm called tangle learning, which identifies
tangles in a parity game and then uses these tangles to attract sets of vertices
at once. The key insight is that tangles can be used with the attractor to form
bigger (nested) tangles and, eventually, dominions. We evaluated tangle learning
in a comparison with priority promotion and Zielonka’s recursive algorithm and
showed that tangle learning is competitive for model checking and equivalence
checking games, and outperforms other solvers for large random games.

We repeat Fearnley’s assertion [10] that “a thorough and complete under-
standing of how snares arise in a game is a necessary condition for devising a
polynomial time algorithm for these games”. Fearnley also formulated the chal-
lenge to give a clear formulation of how the structure of tangles in a given game
affects the difficulty of solving it. We propose that a difficult game for tangle
learning must be one that causes alternating tangle learning to have many turns
before a dominion is found.

214 T. van Dijk

Acknowledgements. We thank the anonymous referees for their helpful comments,
Jaco van de Pol for the use of the computer cluster, and Armin Biere for generously
supporting this research.

References

1. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. In: GandALF 2016, EPTCS, vol. 226, pp. 30-45 (2016)

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for
parity games. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp.
117-133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6_8

3. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
270-290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_15

4. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Robust exponential worst cases for
divide-et-impera algorithms for parity games. In: GandALF, EPTCS, vol. 256, pp.
121-135 (2017)

5. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. Formal Methods Syst. Des. 52, 193-226 (2018)

6. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252-263. ACM (2017)

7. van Dijk, T.: Oink: an implementation and evaluation of modern parity game
solvers. In: TACAS (2018). https://arxiv.org/pdf/1801.03859

8. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: FOCS, pp. 368-377. IEEE Computer Society (1991)

9. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the mu-calculus
and its fragments. Theor. Comput. Sci. 258(1-2), 491-522 (2001)

10. Fearnley, J.: Non-oblivious strategy improvement. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 212-230. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17511-4_13

11. Fearnley, J.: Efficient parallel strategy improvement for parity games. In: Majum-
dar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 137-154. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_8

12. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: SPIN,
pp. 112-121. ACM (2017)

13. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182-196. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04761-9_15

14. Gazda, M., Willemse, T.A.C.: Improvement in small progress measures. In: Gan-
dALF, EPTCS, vol. 193, pp. 158-171 (2015)

15. Mazala, R.: Infinite games. In: Gradel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23-38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4_2

16. Jurdzinski, M.: Deciding the winner in parity games is in UP N co-UP. Inf. Process.
Lett. 68(3), 119-124 (1998)

17. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290-301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3_24

https://doi.org/10.1007/978-3-319-49052-6_8
https://doi.org/10.1007/978-3-319-41540-6_15
https://arxiv.org/pdf/1801.03859
https://doi.org/10.1007/978-3-642-17511-4_13
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/3-540-46541-3_24

18.

19.

20.

21.

22.

23.

24.

25.

Attracting Tangles to Solve Parity Games 215

Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519-1532 (2008)

Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.)
FSEN 2015. LNCS, vol. 9392