
Evolutionary 
Genomics

Maria Anisimova Editor

Statistical and Computational 
Methods
Second Edition

Methods in 
Molecular Biology   1910



ME T H O D S I N MO L E C U L A R B I O L O G Y

Series Editor
John M. Walker

School of Life and Medical Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651

http://www.springer.com/series/7651
http://www.springer.com/series/7651


Evolutionary Genomics

Statistical and Computational Methods

Second Edition

Edited by

Maria Anisimova

Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University
of Applied Sciences (ZHAW), W€adenswil, Switzerland

Swiss Institute of Bioinformatics, Lausanne, Switzerland



Editor
Maria Anisimova
Institute of Applied Simulations
School of Life Sciences and Facility Management
Zurich University of Applied Sciences (ZHAW)
W€adenswil, Switzerland

Swiss Institute of Bioinformatics
Lausanne, Switzerland

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-4939-9073-3 ISBN 978-1-4939-9074-0 (eBook)
https://doi.org/10.1007/978-1-4939-9074-0

This book is an open access publication.

© The Editor(s) (if applicable) and The Author(s) 2012, 2019.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer
Nature.
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

https://doi.org/10.1007/978-1-4939-9074-0


Preface

This volume is a thoroughly revised second edition of Evolutionary Genomics: Statistical and
Computational Methods published in 2012. Like the first edition, the new volume includes
comprehensive reviews of the most recent and fundamental developments in bioinformatics
methods for evolutionary genomics and related challenges associated with increasing data
size, heterogeneity, and its inherent complexity.

Throughout the volume, prominent authors address the challenge of analyzing and
understanding the dynamics of complex biological systems, and elaborate on some
promising strategies that would bring us closer to the ultimate “holy grail” of biology—
uncovering of the relationships between genotype and phenotype. Consequently, the pre-
sented collection of peer-reviewed articles also represents a synergy between theoretical and
experimental scientists from a range of disciplines, working together towards a common
goal. Once again, the revised volume reiterates the power of taking an evolutionary
approach to study molecular data.

This book is intended for scientists looking for a compact overview of the cutting-edge
statistical and computational methods in evolutionary genomics. The volume may serve as a
comprehensive guide for both graduate and advanced undergraduate students planning to
specialize in genomics and bioinformatics. Equally, the volume should be helpful for
experienced researchers entering genomics from more fundamental disciplines, such as
statistics, computer science, physics, and biology. In other words, the material presented
here should suit both a novice in biology with strong statistics and computational skills and a
molecular biologist with a good grasp of standard mathematical concepts. To cater to
differences in reader backgrounds, Part I is composed of educational primers to help with
fundamental concepts in genome biology (Chapter 1), probability and statistics (Chapter 2),
and molecular evolution (Chapter 3). As these concepts reappear repeatedly throughout the
book, the first three chapters will help the neophyte to stay “afloat”. The exercises and
questions offered at the end of each chapter serve to deepen the understanding of the
material.

Part II of this volume focuses on sequence homology and alignment—from aligning
whole genomes (Chapter 4) to disentangling orthologs, paralogs, and transposable ele-
ments (Chapters 5 and 6). Part III includes chapters on phylogenetic methods to study
genome evolution. Chapter 7 presents multispecies coalescent methods for reconciling
phylogenetic discord between gene and species trees. However, a mathematically convenient
“binary tree” model does not always live up to scrutiny as numerous evolutionary processes
act in reticulate (network-like) fashion, complicating the statistical description of evolution-
ary models and increasing computational complexity, often to prohibitive levels. One
simplification is to assume that some molecular sequence units (genes, gene segments)
still evolve in a treelike manner. If so, Chapter 8 describes one practical approach to
meaningfully summarize the binary tree distributions for a set of genomes as a “forest of
trees”. Alternatively network-like phylogenetic relationships can be represented by graphs
(Chapter 9). Dating methods for genome-scale data are discussed in Chapter 10, while
Chapter 11 provides more examples of non-treelike processes in a comparative review of
genome evolution in different breeding systems.
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By disentangling different evolutionary forces acting on genomes, we hope to under-
stand the origins of biological innovation, which is often thought to be coupled with natural
selection. After all, how do we explain that, by the words of Darwin, “from so simple a
beginning endless forms most beautiful and most wonderful have been, and are being,
evolved”? This is the main topic of Part IV that discusses the methodology for evaluating
selective pressures on genomic sequences (Chapters 12–14) and genomic evolution in light
of protein domain architecture and transposable elements (Chapters 15 and 16). Part V of
this book is dedicated to population genomics and other omics, with example applications to
disease. Indeed, as evolution starts in populations, there is much interest in generating and
studying population genome data for a wide range of species. Chapter 17 discusses models
for genetic architectures of complex disease and genome-wide association studies for finding
susceptibility variants. Chapter 18 reviews approaches to study ancestral population geno-
mics. Chapters 19, 20 and 21 illustrate first principles of analyzing environmental sequences
and applications to clinical trials and systems genetics. Finally, Part VI concludes the book
by discussing current bottlenecks in handling and analyzing genomic data. Chapter 22
focuses on challenges and approaches for large and complex data representation and simul-
taneous querying of heterogeneous databases. Chapter 23 makes the case for using efficient
high-performance computing strategies for computationally demanding phylogenetic ana-
lyses, in particular in the Bayesian framework. Solutions for scalable workflows and sharing
programming resources are presented in Chapters 24 and 25.

On behalf of all authors, I hope that this book will become a source of inspiration and
new ideas for our readers. Wishing you a pleasant reading!

W€adenswil, Switzerland
Lausanne, Switzerland

Maria Anisimova
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Paris 6, Paris, France
BRITTANY RIFE MAGALIS � Institute for Genomics and Evolutionary Medicine, Temple

University, Philadelphia, PA, USA
THOMAS MAILUND � Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
IZABELA MAKAŁOWSKA � Institute of Anthropology, Adam Mickiewicz University, Poznań,
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STEFFEN MÖLLER � Institute for Biostatistics and Informatics in Medicine and Ageing

Research (IBIMA), Rostock University Medical Center, Rostock, Germany
MEGAN K. MULLIGAN � Department of Genetics, Genomics and Informatics, The University

of Tennessee Health Science Center, Memphis, TN, USA

Contributors xv



AMIT PANDE � Institute of Bioinformatics, University of Muenster, Muenster, Germany
JANANAN S. PATHMANATHAN � Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC
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Part I

Introduction: Bioinformatician’s Primers



Chapter 1

Introduction to Genome Biology and Diversity

Noor Youssef, Aidan Budd, and Joseph P. Bielawski

Abstract

Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and
architecture. In this chapter, we review how the genome can be viewed as both a structural and an
informational unit of biological diversity and explicitly define our intended meaning of genetic information.
A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets
the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We
include a detailed review of genetic elements found outside the primary chromosomal structures, as these
provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we
reassess the definition of the genome in light of recent advancements in our understanding of the diversity
of genomic structures and the mechanisms by which genetic information is expressed within the cell.
Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field
and provide a valuable reference for those developing new statistical or computation methods in genomics.
This review also prepares the reader for anticipated transformations in thinking as the field of genome
biology progresses.

Key words Organism diversity, Viruses, Prokaryotes, Eukaryotes, Organelles, DNA, RNA, Protein,
Regulatory DNA, Epigenetics, Plasmids, Transcription, Translation, DNA replication, Chromatin,
Gene structure

1 Introduction

Following the introduction of the concept of the genome in 1920
[1], the field of genome science has grown to encompass a vast
range of interconnected topics (e.g., nucleic acid chemistry, molec-
ular structure, replication and expression biochemistry, mutational
processes, evolutionary dynamics, and interactions with cellular
processes). Although the notion of the genome as a fundamental
biological unit has been with us for nearly a century, it is only within
the last decade that genomics has emerged as a transformative
discipline within biology and the health sciences [2]. Its rapid
development was in large part due to advances in massively parallel
next-generation sequencing [3], which yielded unprecedented
levels of genomic data. Those data revealed extensive natural
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variation in the way that genomes are structured and processed.
This led modern biologists to reevaluate the fundamental definition
of the genome.

The typical definition of the genome is often dualistic, referen-
cing both structural features and its function to store and transmit
biological information [4]. For example, the USNational Institutes
of Health (NIH) uses the following definition: “A genome is an
organism’s complete set of DNA, including all of its genes. Each
genome contains all of the information needed to build and main-
tain that organism. In humans, a copy of the entire genome—more
than three billion DNA base pairs—is contained in all cells that have
a nucleus.” This conception, as with many others, is structural with
regard to physical features (viz., genes and DNA base pairs) and
informational with regard to its role in carrying out cellular func-
tions (viz., to build and maintain the organism). Through increased
knowledge of genome diversity, the field has come to realize that
both conceptions of the genome are sometimes insufficient [4]. We
now understand that the physical structures of the genome can be
transient and that the expression of information contained within a
genome is often conditioned on non-genomic factors. The science
of genome biology is entering a new era based on a deeper under-
standing of the relationship between genotype and phenotype [5].

The purpose of this review is to provide a condensed overview
of genome biology and to anticipate transformations in thinking
that will occur as the field progresses. The remainder of this article
is structured into four parts, with the next section providing a brief
overview of the diversity of organismal cell types. The two
subsequent sections introduce the structural and informational
aspects of genomes, respectively. In the final section, we reassess
the definition of the genome through selected biological examples
and conclude with an updated perspective on the nature of the
genome as an informational entity.

2 Organism Diversity and Cell Types

Cells are the smallest living unit of an organism. All cells have three
attributes in common: cell membrane, cytoplasm, and genome.
Structurally, cells can be divided into two basic types: prokaryotic
and eukaryotic cells. Eukaryotic cells tend to be more complex.
They possess a nucleus and other membrane-bound organelles,
which are specialized components in the cell that perform unique
functions (e.g., nucleus, mitochondria, plastids). Conversely, pro-
karyotic cells lack membrane-bound organelles. Although similar in
cell structure, prokaryotes include two fundamentally distinct
domains: the eubacteria (true bacteria, often referred to simply as
bacteria) and the archaea.
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Cellular life is detected in almost every environment on Earth.
As life has colonized and adapted to the vast number of niches, cells
have evolved an incredible amount of diversity in regard to size [6],
form [7], lifestyle [8, 9], and complexity [10]. Understanding the
basis of such diversity remains one of the central aims of biology.
Readers interested in the latest understanding of Earth’s biodiver-
sity, the unique characteristics of its organisms, and how both extant
and extinct forms are related to each other are encouraged to explore
the following resources: the University of California Museum
of Paleontology “History of life through time” exhibit [11],
the Tree of Life Web Project [12], the Encyclopedia of Life [13].

2.1 Viruses Viruses are infectious agents of living cells that are unable to repro-
duce in the absence of a host. Viruses are not considered cellular
entities since they lack two of the essential attributes that define a
cell; they possess neither a cell membrane nor cytoplasm. The
discovery of virophages, viruses that parasitize other viruses, resur-
rected the debate on their classification as living organisms
[14]. Some consider viruses to be living entities since they can be
hosts to other viruses, with a virophage infection leading to the
eventual death of the host virus, implying an initial “living” state
[15]. The opposing view asserts that a virus’ inability to reproduce
outside of a cellular host makes them nonliving entities
[16, 17]. Irrespective of their delineation as living or nonliving,
viruses are relevant to this review as they possess genomes and are
the most abundant biological replicators in the biosphere [18].

Outside of their host, viruses exist as viral particles (virions)
consisting of a protein capsule that protects and encloses their
genome. Once a virion has entered a host cell, it “hijacks” the
host’s cellular structures and processes to carry out the metaboli-
cally active phase of the viral life cycle. At this stage, the virus
exhibits physiological properties reminiscent of living cells; they
metabolize, grow, and reproduce. There is a wide range of viral
lifestyles, with corresponding diversity in viral forms, sizes, hosts,
and genomes [16]. The largest known virus, the mimivirus, was
originally identified as an infectious agent of an amoeba [19] and
can itself become a host for virophages [14]. To put this in context,
the virion of a mimivirus can be larger than some prokaryotic cells
[16]. At the other end of the scale are viruses such as the circo-
viruses, some of which have small genomes made up of less than
2000 nucleotides [20]. A more detailed account of viral diversity
can be found at the ViralZone website [21].

2.2 Bacteria The bacterial cell is prokaryotic, and it is relatively simple as com-
pared to eukaryotic cells. It has no membrane-bound organelles,
and the chromosome (usually one) is not separated from the other
components of the cell. While predominantly unicellular, they often
live in biofilms, a community of cells bound together by a secreted
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polymer matrix [22], displaying a range of cooperative behaviors
[23]. They can also exhibit regulated differentiation into different
cell types, where two cells with the same genome have different
morphology and function [22, 24].

Only a very small fraction of bacterial diversity (less than 1%)
can be cultured and grown in the laboratory [25]. The problem of
uncultivable bacteria is a consequence of our limited knowledge of
their physiological diversity and the interactions necessary for their
growth [26]. To this end, efforts are being made to study bacteria
in nature [27–29] but with limited progress given the immense
metabolic diversity of bacteria. Even within the incomplete sam-
pling of cultivable bacteria, there is considerable diversity in cell
shape [30], mode of reproduction [9], and cell cycle
regulation [31].

The bacterial cell cycle involves the coordination of genome
replication and segregation of replicated copies into daughter
cells, followed by cell division. In this way, the transmission of
genetic material is “vertical” from one cell generation to the next.
Under certain conditions, some bacteria, such as E. coli, can initiate
a new round of genome replication prior to completion of cell
division [32, 33], thereby resulting in an increase in the number
of gene copies near the origin of replication as compared to loci
replicated later [31]. Other bacteria, such as Caulobacter, maintain
a tightly regulated cell cycle to ensure a single replication event per
division [34]. Under optimal conditions, some species can com-
plete their cell cycle every 20 min, implying that a single cell could
produce more than a billion descendants in a mere 10 h. In addition
to vertical transfer, genetic information can be transferred “hori-
zontally” between unrelated cells via the processes of transforma-
tion, conjugation, or transduction [35]. An event that transfers
gene(s) between different species (or cells) by any of these three
processes is referred to as a horizontal gene transfer (HGT) event.

2.3 Archaea Archaea are single-celled organisms that appear strikingly similar to
bacteria under light and electron microscopes. Like bacteria they
often have a single circular chromosome and lack a nucleus, and for
a long period of time the archaea were wrongly categorized as
bacteria. The first indication that the archaea might be a separate
domain of life was obtained from phylogenetic analyses of the 16S
rRNA gene [36]. Advancements in genome sequencing and analy-
sis yielded further evidence of the evolutionary distinction between
the bacterial and archaeal domains [37]. Despite their superficial
cellular similarity to bacteria, the archaea have many molecular-level
similarities to eukaryotes, leading researchers to hypothesize that
the ancestor of the eukaryotes arose within the archaea [38].

Previously, archaea were assumed to be a minor group of
organisms inhabiting extreme environments beyond the tolerance
of bacteria (salt brines, hydrothermal vents, acidic and anoxic

6 Noor Youssef et al.



conditions, etc.). Through culture-independent methods, archaea
were discovered to be much more widespread and metabolically
diverse. Archaea are now known to inhabit the human gut, and
through mutualistic community relationships, they play a key role
in human health and metabolism [39–41]. There is increasing
evidence for archaea playing a significant role in global nutrient
cycling [42]. They contribute major mechanisms for anaerobic
methane oxidation [42], ammonia oxidation [43], and other
parts of the nitrogen cycle including nitrogen fixation [44]. The
archaea also appear to be ecologically competitive with bacteria, as
they make significant contributions to the microbial communities
of non-extreme soil, aquatic, and marine environments
[43, 45]. Although they can be highly abundant in such environ-
ments, archaeal diversity is greatest in the more extreme
habitats [45].

Archaea possess an array of bacteria-like, eukaryote-like, and
archaea-specific features. The archaeal cell wall is chemically and
structurally diverse, yet they systematically lack a cell wall peptido-
glycan, murein, that is ubiquitous among the bacteria
[46, 47]. Their membrane lipids are chemically different from
those found in either bacteria or eukaryotes [48], and they possess
many novel enzymes that are required for the biosynthesis of their
unique membranes [49, 50]. Consequently, most archeoviruses are
unique to archaea [51]. Even structural appendages that initially
appeared to be homologous to bacterial appendages are often
structurally distinct and have different genetic basis than the bacte-
rial counterparts [52–54]. At the biochemical level, the archaea use
many sources of energy and are metabolically diverse, probably
more so than either bacteria or eukaryotes [55].

2.4 Eukaryotes All complex multicellular organisms are eukaryotes (animals,
plants, fungi, red algae, and brown algae), as are many unicellular
organisms [56, 57]. Eukaryotic cells are found in a wide diversity of
sizes and shapes [58, 59]. They are generally larger and have a more
complex internal organization than the bacteria and archaea. A key
characteristic of the eukaryotic intracellular organization is the use
of lipid membranes to separate their contents into different com-
partments [60, 61]. The bulk of the eukaryotic genetic material is
surrounded by a nuclear envelope and is thus maintained in a
separate organelle, the nucleus. This provides a fundamental per-
spective on how eukaryotic cells differ from bacterial and archaeal
cells and has important consequences on the expression of eukary-
otic genetic information.

In addition to the nucleus, other organelles (mitochondria and
plastids) contain small genomes that encode additional genes. Both
mitochondria and plastids originated from ancient endosymbiosis
events between ancestral eukaryotic cells and bacterial organisms.
Following these events, the invading bacteria underwent a process
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of genome reduction in which they transitioned from autonomous
organisms to cell-dependent organelles [62].

Despite our familiarity with plants, animals, and fungi, the vast
majority of eukaryotic diversity lies outside of those groups and is
largely microbial [63]. These “other” eukaryotes are collectively
called protists. They do not form a monophyletic group, i.e., pro-
tists do not from a phylogenetic group that is comprised of a shared
common ancestor and all of its descendants [57, 64]. The term
protist is used largely for convenience to classify all eukaryotes that
are not plants, animals, or fungi. Protists embody extensive ecolog-
ical and structural diversity and include several important groups of
unicellular eukaryotes involved in human diseases [65]. For exam-
ple, the unicellular apicomplexan eukaryote Plasmodium is the
causative agent of malaria, which affects around 10% of the world
population [65]. More positively, protist species are important
primary producers and are an essential link in the ocean’s biogeo-
chemical cycles [66].

3 Genome Structure and Organization

The notion of the gene as the physical carrier of hereditary infor-
mation existed years before its physical and chemical structures
were known. In 1902, Sutton provided the first clear support for
the chromosomal theory of inheritance, allocating genes to seg-
ments on chromosomes [67]. The modern view of the gene is more
often focused on a particular chemical sequence of nucleic acids
rather than a chromosomal locus, but the two are not independent.
The genetic instructions encoded within an organism’s nucleic acid
molecules comprise the organism’s genotype. The physical manifes-
tation of such genetic information, which will depend on environ-
mental interactions, comprises the organism’s phenotype.

There are two types of nucleic acids: deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). Both are polymers consisting
of chains of nucleotides. Each nucleotide includes three compo-
nents: a 5-carbon sugar, a phosphate group, and a nitrogenous
base. A nitrogenous base together with the sugar (without the
phosphate group) is called a nucleoside. The sugar component in
RNA, ribose, is a normal sugar with one hydroxyl group
(OH) attached to each carbon atom. Deoxyribose, the sugar pres-
ent in DNA, differs only in the absence of one oxygen atom at the
20 carbon atom (H instead of OH). This chemical difference is
crucial for enabling enzymes to distinguish between RNA and
DNA polymers. The 50 sugar carbon carries a phosphate group
and is referred to as the 50 end of the polynucleotide molecule
(DNA or RNA). The 30 end has a free hydroxyl (OH) group that
is available to form chemical bonds with other atoms. As a result,
synthesis of DNA and RNA in the cell proceed through the
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addition of a nucleotide to a 30 terminal hydroxyl group. The
polynucleotides, therefore, exhibit directionality, and synthesis
occurs in a 50 to 30 direction.

All living cells employ the double helical structure of DNA as a
chemical means to store information. Each of the two longitudinal
strands is an alternating sequence of phosphate and a 5-carbon
sugar. At each sugar, the two strands are bridged by two nitroge-
nous bases, one purine molecule (of type adenine [A] or guanine
[G]) and the other a pyrimidine molecule (of type cytosine [C],
thymine [T], or uracil [U]). The chemical bridges between purine
and pyrimidine molecules (called base pairs) are held together by
hydrogen bonds. Each purine can be complemented by only one
pyrimidine: A forms two hydrogen bonds with T (or U in RNA)
and C forms three hydrogen bonds with G. These are referred to as
the canonical or Watson-Crick pairings. Given this pairing pattern,
the sequences of the double-stranded DNA are said to be comple-
mentary, and the sequence of one strand can be deduced from the
sequence of its complementary strand. The order of the nitroge-
nous bases in DNA (or RNA) is what confers the meaning of the
information encoded in the genome.

A vital feature of genetic information is its ability to be repli-
cated and passed on to daughter cells. The core mechanisms that
copy DNA are conserved in all three domains of cellular life:
bacteria, archaea, and eukaryotes [68]. Accurate DNA replication
is essential to produce viable offspring—too many alterations in the
DNA impede the production of functional proteins, thereby
increasing the chances of nonviable progeny. Therefore, most
DNA replicates with high fidelity. However, mistakes do occur. In
humans, on average one error occurs in 30 million bases copied per
cell division [69]. The cells produced from these altered genes are
called mutants.

Although all living things carry DNA, the processes through
which genetic information is physically transferred from DNA to
RNA (called transcription) and then used to create a polypeptide
molecule with a unique sequence of amino acids (called transla-
tion) differ between domains of life. The lack of membrane-bound
nuclei in prokaryotes permits the simultaneous occurrence of tran-
scription and translation [70]. In eukaryotes, those processes are
separated by the nuclear membrane; DNA is first transcribed to
RNA in the nucleus, and the RNA product is subsequently trans-
lated to an amino acid sequence in the cytoplasm, ultimately lead-
ing to the construction of a protein.

Organisms from all domains of life, and many of the viruses that
parasitize them, have a very large genome compared with the size of
the cell or compartment to which it is confined. For instance, the
human nuclear DNA consists of approximately three billion base
pairs; when stretched out, it amounts to about 2 m of total DNA
per cell. The average human cell size is merely 10 μm. The

Introduction to Genome Biology and Diversity 9



impressive ability to store DNA within the cell is possible through a
process of genome packaging. In eukaryotes and some archaea, the
DNA wraps around histone proteins to form nucleosomes. In
humans, this results in a two-million-fold decrease in size, allowing
the DNA to compact into the nucleus [68]. Prokaryotic DNA
compaction is achieved using a combination of supercoiling, mac-
romolecular crowding, and association with DNA-binding proteins
[71]. The degree of the supercoiling used in prokaryotes varies
considerably between different species.

Prokaryotic cells tend to have efficient genomes, with most of
their genetic material composed of protein-coding regions.
Archaeal genomes are, on average, more compact than bacterial
genomes [72]. An increase in prokaryotic genome size is therefore
often accompanied by an increase in the number of genes encoded.
This trend is not evident in eukaryotes, for which there is little
association between genome size and the number of protein-
coding genes [73]. Consider the E. coli genome, more than 90%
of its DNA encodes proteins. This is in stark contrast with the
modest 2% protein-coding regions present in human DNA
[74]. Most eukaryotic genomes are riddled with non-protein-cod-
ing regions (see Subheading 4.2 for an evolutionary mechanism).
This results in them having larger genome sizes on average than
prokaryotic cells [74].

3.1 Viral Genomes Viruses use any combination of either RNA or DNA, either single-
or double-stranded molecules, in either circular or linear forms, to
encode their genetic instructions [75, 76]. The viral genetic mate-
rial is typically referred to as segments rather than chromosomes.
Viral genomes composed of multiple segments are referred to as
segmented. When different strains of the same segmented viral
species infect a cell, genomes from the different strains can mix to
produce hybrids—a process known as reassortment. Hybrid flus
such as the H1N1 swine influenza A virus originated in this
way [77].

Viral strains package their genomes in various ways. Most DNA
and RNA viruses with small genomes (<20 kb) employ energy-
independent packaging systems where capsid assembly and genome
condensation are coupled. One example is the RNA genome of the
HIV retrovirus that, in the mature virion, forms a RNA-protein
complex with one of the cleavage products of the Gag polyprotein
[78]. Other viruses, such as the lambda bacteriophage, require ATP
to pump their genome directly into a preassembled capsid
[79]. The latter type of machinery is ubiquitous in bacterial viruses.
Alternatively, large viruses package their genome using histone-like
proteins that are critical for eukaryotic genome packaging [80]. For
a review on genome packaging in viruses, see ref. 81.
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3.2 Bacterial

Genomes

Despite not being confined within a membrane-bound compart-
ment, the prokaryotic genome will be unevenly distributed
throughout the cell. It often clusters in an irregularly shaped vis-
cous region known as the nucleoid that makes up about a quarter of
the intracellular volume [82]. The organization and distribution of
the nucleoid are dynamic and dependent on the growth rate and
presence of antibiotics [83].

It was previously thought that all bacterial cells possessed a
single circular chromosome. In 1989, the first linear bacterial chro-
mosome was discovered in the spirochaete Borrelia burgdorferi, the
causative agent of Lyme disease [84, 85]. Additionally, recent
advancements have revealed that many cells retain multiple circular
or linear chromosomes [86]. These often consist of a primary
chromosome, which is larger and harbors a higher density of essential
genes compared to the secondary chromosome(s) [87].

The replication of bacterial DNA initiates at a well-defined
sequence, called the origin of replication. The proteins involved in
replication bind to the origin site and DNA synthesis proceeds in
both directions. Circular chromosomes require a single origin, and
replication is terminated by either a stop signal or when the two
replication forks meet [88]. Linear bacterial chromosomes typically
have a central origin, and replication proceeds bidirectionally much
as in circular chromosomes. However, replication enzymes are
unable to synthesize new DNA at the ends of a linear chromosome,
and this results in the gradual shortening of DNA after each repli-
cation event [89]. Linear chromosomes, therefore, require terminal
structures known as telomeres to protect against DNA degradation.
Telomeres are characterized by the presence of multiple tandem
repeats of short noncoding nucleotide sequences.

Linear prokaryotic chromosomes have evolved two different
types of telomeres [90]. The first, best understood in the strepto-
mycetes, uses a terminal protein complex covalently attached to the
50 end of the DNAmolecules. During replication, DNA polymerase
binds the first synthesized nucleotide directly to the terminal pro-
tein. This replication strategy allows for the complete duplication of
the linear molecule with no loss of genetic information [91]. The
second type, best studied in the spirochetes, involves the formation
of closed hairpin structures at the termini [92]. Replication of the
linear DNA proceeds as expected. Once duplication of each DNA
strand is completed the newly synthesized DNA are temporarily still
attached—forming a structure superficially resembling a circular
chromosome. A specific enzyme is then recruited to separate the
two linear strands and re-form the telomeres [93]. For an overview
of telomeric structures, see ref. 94.

3.3 Archaeal

Genomes

Archaeal genomes share features with both bacteria and eukaryotes.
Archaea typically possess circular chromosomes reminiscent of bac-
teria genomes; some have a single chromosome and a single origin
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of replication, while other species have multiple chromosomes and
multiple origins on each [95, 96]. Given that archaea have the
prokaryote cell type that lacks membrane-bound organelles (and
hence nuclei), they are similar to bacteria in permitting the simul-
taneous occurrence of transcription and translation. Nonetheless,
there are fundamental differences from the bacteria in the proces-
sing of genomic information. The initiation of amino acid synthesis
in archaea more closely resembles that used in the eukaryotic tran-
scription process. Additionally, the core archaeal transcription
machineries are more closely related to eukaryotes [97, 98].
Archaeal and eukaryotic DNA replication and repair systems have
also been shown to have many features in common [99].

Relatively little is known about the structure of archaeal gen-
omes [100], but some are packaged into chromatin via histone
proteins. Chromatin is a compact and organized chromosome
structure that consists of DNA in close association with proteins.
Interestingly, this form of chromatin is present in all eukaryotes and
missing from bacteria [101]. Among the archaea that use histones
(i.e., Thermoproteales and Euryarchaea), the geometry of their
histone-mediated chromatin is the same as in eukaryotes [102].
However, archaeal histones are often shorter than the eukaryotic
histones [101]. Groups of archaea that lack histones (e.g., Cre-
narchaea) encode other DNA-binding proteins associated with
the architecture of bacterial chromatin [100]. Another family of
DNA-binding proteins called Alba (acetylation lowers binding
affinity) is ubiquitous among archaea. They are abundant small
proteins that facilitate genome compaction, play a key role in
determining the architecture of archaeal chromatin, and regulate
gene expression on a genomic scale [101]. Alba proteins have been
detected in both histone-lacking and histone-containing
archaea [103].

3.4 Eukaryotic

Genomes

Eukaryotes sequester their linear chromosomes within a
membrane-bound nucleus. Linear eukaryotic chromosomes have
three essential structural elements: a centromere, a pair of telo-
meres, and origins of replication. The centromere is the attachment
point for spindle microtubules—the filaments responsible for phys-
ically moving chromosomes during cell division. Telomeres are the
protective ends of a linear chromosome. The origins of replication
are the sites where DNA synthesis begins. Eukaryotes typically have
multiple linear chromosomes, each with many origins of replica-
tion. The larger genome size and slower replication machinery in
eukaryotes necessitate the need of multiple origins to speed up the
replication process.

In eukaryotic cells, nuclear DNA compaction involves the asso-
ciation of DNA with the protein products of a family of genes, the
histones, whose sequence variants provide for a variety of different
functions. The eukaryotic chromosome is organized at the lowest
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level by wrapping the DNA around histones, forming nucleosomes.
This structure constitutes the basic unit of the chromatin fiber,
which is further organized into higher-order structures mediated
by other proteins [104, 105]. Sequence variation in histones, in
combination with posttranslational modification of the protein,
affects the structural properties of chromosomal nucleosomes and
gene expression.

Eukaryotic DNA consists of at least three types of sequences:
unique-sequence DNA, moderately repetitive DNA, and highly
repetitive DNA.Unique-sequence DNA are regions that are present
only once or at most a few times in the genome. Most protein-
coding regions fall within this category. Alternatively, more than
half of the total DNA in all eukaryotic genomes is made up of
repeated sequence motifs that are either moderately or highly
repetitive [106]. Moderately repetitive DNA are sequences from
160 to 180 base pairs (bp) in length that are repeated thousands
of times [106]. Some of these sequences perform important func-
tions for the cell, such as coding for types of RNA [107]. Highly
repetitive DNA are short sequences, less than 60 bp that are present
in hundreds of thousands of copies repeated throughout the
genome. Repeats that are 2–10 bp are known as microsatellites,
whereas motifs that are 10–60 bp are termed minisatellites [108].

Most of the repetitive sequences arise through transposition
(see Subheading 4.2). The repeated sequences can be found either
in tandem arrays, i.e., appearing adjacent to each other, or inter-
spersed throughout the genome. The evolution and maintenance
of nonfunctional repeated sequences have spurred the interest of
genome scientists, with some classifying these motifs as selfish-genes
that reproduce to propagate themselves and provide no positive
contribution to the organism’s phenotype or fitness [106]. Repeats
also represent technical challenges for bioinformaticians developing
software for sequence alignment and genome assembly. From a
computational perspective, repeats create ambiguities that are chal-
lenging to resolve. For a review on computational challenges and
solutions, see ref. 108.

3.5 Auxiliary DNA

Structures

Both prokaryotes and eukaryotes have secondary chromosomal
structures. For eukaryotes, this refers to any form of DNA found
outside of a nucleus—although the discovery of microDNA
extends this classification [109]. Eukaryotic auxiliary DNA often
contains essential genes that are necessary for normal cell produc-
tion. For example, the DNA chromosome located within the mito-
chondrial organelle encodes genes that are involved in oxidative
phosphorylation and the creation of different types of RNA
[110]. For prokaryotes, auxiliary DNA refers to any DNA that is
not associated with the primary chromosome, and unlike eukar-
yotes, the genes encoded in such DNA are often dispensable. For
example, small circular chromosomes, called plasmids, often
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contain genes that allow the bacterium to survive various environ-
mental conditions; however they are not usually essential for nor-
mal cell function [110].

3.5.1 Mitochondrial DNA The mitochondrion is a double membrane-bound organelle that is
ubiquitous in eukaryotic cells. There is only one known case of a
eukaryotic cell able to survive without a mitochondrion
[111]. Mitochondria are essential because they are the site of
production for most of the cell’s energy, which is produced as
ATP by the oxidative phosphorylation metabolic pathway. Addi-
tionally, the mitochondrion is the site of iron-sulfur (Fe/S) cluster
assembly. Fe/S clusters are protein cofactors that are essential for
various extramitochondrial pathways [112]. The mitochondria-
lacking eukaryote, a species of Monocercomonoides, is unique in
that it lives only within the intestine of the chinchilla and has
evolved different strategies for Fe/S cluster formation and obtain-
ing energy absorbed from its environment [111].

Mitochondria are the derivatives of prokaryotic cells that were
engulfed by a common ancestor of all eukaryotes. The DNA within
these organelles are the remnants of the DNA genome of the
ancestral prokaryotic endosymbiont. Thus, the mitochondrial
DNA (mtDNA) more closely resembles a prokaryotic genome.
For example, in most animals and fungi, mtDNA consists of a single
circular chromosome. However, small linear mtDNA chromo-
somes with defined telomeres have been identified within various
protists, animals, and fungi [113, 114]. Additionally, the architec-
ture of mtDNA is not determined by histones but instead by a set of
small DNA-binding proteins that induce structures analogous to
the bacterial chromatin. Mitochondrial genomes have been cate-
gorized into six different types depending on shape, size, structure,
and number (see ref. 115).

In humans, the mitochondrial genome encodes 13 of the
80 proteins that are directly involved in oxidative phosphorylation.
The remaining proteins are encoded in the nuclear chromosomes
[110]. The exact contribution from mitochondrial and nuclear
genomes varies across eukaryotes. Nonetheless, in the vast majority
of known eukaryotic species, the mtDNA is essential to produce
important proteins involved in energy production, demanding that
all cells have faithfully inherited the mtDNA.

3.5.2 Plastid DNA Plastids are similarly derived from an endosymbiosis with a bacte-
rium, with the organelle retaining remnants of that ancestral bacte-
rial genome. Like the mitochondrion, the plastid is a double
membrane-bound cytoplasmic organelle. Unlike the mitochon-
drion, plastids often contain pigment used in photosynthesis. Plas-
tids are found in the cytoplasm of protists and all higher plants.
Plastid DNA (ptDNA) is highly reduced relative to the genomes of
extant photosynthetic bacteria. In part, the reduction in genome
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size is due to gene loss with some regions excised and incorporated
into the host nuclear DNA [116]. The ptDNA encodes important
proteins that are essential for cell viability [117]. Almost all plastids
have circular DNA, with the alveolate Chromera velia being the
single known case of linear ptDNA. The linear extrachromosomal
ptDNA has a telomere arrangement resembling those of linear
mtDNA [117, 118].

Genes encoded in ptDNA are involved in the synthesis and
storage of various cellular components, including those necessary
for photosynthesis. Plastids have diverged to carry out different
functions with multiple types identified. For example, chloroplasts
are specialized for carrying out photosynthesis; chromoplasts con-
tain pigments that provide petal colors, whereas amyloplasts are
used for bulk storage of starch [117].

3.5.3 Nucleomorph DNA A nucleomorph is a vestigial eukaryotic nucleus found in crypto-
monads and chlorarachniophytes, which are both plastid-
containing algae. The nucleomorph is located in these organisms
between the inner and outer membranes of the plastid and is
believed to be derived from the nucleus of an endosymbiotic algal
cell engulfed by a larger eukaryotic cell [119]. Thus, the plastid
organelle in this case evolved from two endosymbiotic events: a
prokaryote was engulfed by a eukaryote which thereby became
photoautotrophic and that cell was then engulfed by another
eukaryote. The nucleomorph genomes are extremely small com-
pared to the typical nuclear genome, being comprised of mostly
single-copy housekeeping genes and having no mobile elements.
The nucleomorph genome of the cryptomonads suggests that it
was derived from a red algal ancestor, whereas the nucleomorph
genome of the chlorarachniophytes suggests a green algal
ancestor [119].

3.5.4 Plasmid DNA Plasmids are present in bacteria, archaea, and eukaryotes [120].
Most plasmids are circular, although linear plasmids have been
identified [121]. The genes carried on plasmids tend to be asso-
ciated with functions that enable or enhance survival and growth
under specific conditions. They can be horizontally transferred
between prokaryotic cells and represent an important vehicle for
sharing genetic information [122]. For example, a plasmid that has
evolved an antibiotic resistance gene(s) can be transferred to neigh-
boring bacteria promoting their rapid adaptation to various stresses
associated with an antibiotic environment.

The eubacteria E. coli is estimated to have more than 270 plas-
mids having different distributions among and within cells; some
promote mating, while others contain genes that kill other bacteria.
The number of plasmids known and sequenced is much higher in
bacteria as compared to archaea, with the lowest number having
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been identified in eukaryotes [122]. In recent years, plasmids have
been used extensively in genetic engineering as a means of introdu-
cing and modifying target genes [122, 123].

3.5.5 MicroDNA In 2012, Shibata et al. discovered a new form of extrachromosomal
DNA in eukaryotes, called microDNA [122]. In contrast with
other auxiliary DNA, microDNA is derived from non-repetitive
sequences that are often associated with functional genes. They
are circular DNA between 200 and 400 bp and are found in the
nuclei of mammalian cells [122]. microDNA is thought to be
associated with the repair and maintenance processes of nuclear
DNA. It is not yet clear if microDNA plays a functional role in
these processes or if they are merely an unavoidable by-product. For
the time being, detection of specific microDNA is being proposed
as a screening measure to aid the successful eradication of tumors in
humans and as a potential method for cancer diagnosis and
prognosis [124].

4 Genomic Storage and Processing of Information

It was not possible to understand how hereditary information was
encoded and transmitted across generations without first having
knowledge of the structure of DNA. Knowledge of DNA structure
led to a structure-oriented conception of genomes as linear
sequences of ordered nucleotides. Once protein synthesis was
linked to gene sequences, the structural view of the genome
began to be supplanted by the informational view [125]. Genetic
information was initially viewed as a static property belonging to
the specific sequence of ordered subunits. However, others have
argued that the static view of information is not satisfactory (e.g.,
[4, 125]). Barbieri [125] contends that “it is only when a sequence
provides a guideline to a copymaker that it becomes information for
it. It is only an act of copying, in other words, that brings organic
information into existence.” Based on Barbieri’s viewpoint, infor-
mation is not always a property of a specific structure (e.g., DNA or
RNA); rather his view is that such molecules are information rele-
vant only when they are used to perform a biological function. A
DNA sequence, for example, is said to have information if it is
transcribed or interacts with a protein in a biologically relevant
way. Similarly, an mRNA transcript also encodes information as it
is translated into a protein. Also then, a protein could be viewed as
an informational entity in the sense that it is necessary to carry out a
biological function. Therefore, under this new conception, as well
as the static view, it is clear that biological information can be
manifest in different biological molecules; an observation that has
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complicated the notion of the genome as the fundamental unit of
biological information [4].

We now understand that storage of the genetic information
required to sustain life does not need to be restricted to biological
molecules. This was vividly illustrated in the laboratory when a
bacterial genome was chemically sequenced, its information stored
within a computer (a completely different medium composed of
binary states), then resynthesized in the form of a new DNA
chromosome, and that synthetic DNA ultimately used as the sole
means to maintain a living cell [126]. Although the information
required for life can be stored independently of the chemical struc-
ture of the DNA, it cannot be expressed in a biologically useful
form without various proteins and RNA molecules. Thus, expres-
sion of information encoded within a genome (bringing that infor-
mation into existence) is contingent on its cellular context. In this
section, we examine different ways in which information may be
contained within a genome and mechanisms that result in biologi-
cally useful expression of that information.

4.1 Gene Expression Mere knowledge of the DNA sequence of a genome is often insuf-
ficient to predict phenotype. The amount and timing of gene
expression play a key role. For example, human cells with a nucleus
have copies of almost identical DNA sequences. Yet cells perform
varying functions, and they organize to create the multiple organs
that constitute the human body. Cells achieve this primarily by
differentially regulating the rate of transcription and/or translation
of genes.

DNA transcription and protein translation comprise elemen-
tary levels of information transfer from genotype to phenotype.
Maintaining control of these processes is fundamental for all organ-
isms. Genetic elements involved in regulating gene expression are
referred to as regulatory elements. They often represent sequences
found on the DNA or RNA. In this way, regulatory information can
be encoded directly within the nucleic acid sequence. Direct struc-
tural proximity if often not necessary, as regulatory elements may be
found proximal or distal to the genes they affect. In humans,
approximately 8% of nuclear DNA is composed of elements
involved directly in regulation such as promoters, enhancers, silen-
cers, and insulators (defined in Subheading 4.1.1; [127, 128]).

If all genetic and regulatory information is encoded in the
DNA sequence, why can’t any cell with a complete genome be
used to produce a viable organism? The specificity of cells suggests
that additional regulatory markers also exist outside of the primary
DNA sequence. This type of regulation is epigenetic (above the
genes) and is essential for normal development. Epigenetic infor-
mation is derived from chemical modifications of the chromosome
(e.g., DNA methylation or histone modification) that do not
change the primary sequence of chromosomal DNA and can be
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passed from one generation to the next [129, 130]. It is only
through the collective actions of all cellular processes that gene
products contribute to biochemical pathways and participate in
the network of regulatory interactions to produce a complex organ-
ism or phenotype.

4.1.1 Transcriptional

Regulation

DNA transcription is the chemical process through which informa-
tion is transferred from DNA to RNA. The transcribed RNA may
itself carry out some biological function or may be part of an
intermediate information-carrying class of RNA known as messen-
ger RNA (mRNA). mRNA along with other RNA molecules
(tRNA and rRNA) are part of the machinery used to synthesize
proteins. The flow of genetic information from DNA to RNA to
protein is present in all forms of life. However, it is important to
note that information transfer is not exclusively unidirectional. The
enzyme reverse transcriptase can transfer genetic information from
an RNA template into DNA.

The basic model of transcriptional regulation requires that
regulatory proteins called transcriptional factors (TFs) bind specific
DNA sequences in regulatory modules (RMs). TFs are protein
products that are themselves subjected to regulation of gene
expression. RMs are defined according to both the primary DNA
sequence to which TFs bind and their role in the process of reg-
ulating gene expression. One type of RMs are promoters. They are
specific motifs on DNA that are necessary regulatory elements for
RNA transcription in prokaryotes and eukaryotes. They bind the
basal transcriptional machinery, RNA polymerase and general TFs.
Enhancers are RMs that bind activator proteins and enhance the
affinity of RNA polymerase to the promoter region. They, there-
fore, result in an upregulation of transcription of a gene or set of
genes. Enhancers often act by stabilizing RNA polymerase binding
through structural histone modifications [131]. Silencers are regu-
latory elements that when bound to repressor proteins function to
prevent gene transcription. Silencers and enhancers are often
distance-independent, meaning that they can act on gene(s) that
are proximal or distal to their location [132]. Enhancers can be
thought of as on-switches for gene expression, whereas silencers are
the off-switches.

4.1.2 Translational

Regulation

The fate of all mRNAs, transcribed from protein-coding genes, is
not the same. The mRNA is often subjected to translational regu-
lation depending on cellular and environmental conditions. These
regulatory mechanisms affect the rate of protein synthesis. In pro-
karyotes and eukaryotes, most translational regulation involves
structural changes in the mRNA molecule that impact its accessi-
bility [133, 134]. The mRNAs can be sequestered in stress granules
or localized in specific regions of a cell’s cytoplasm
[135–137]. Another mechanism of translational regulation is
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RNA interference (RNAi). This regulation strategy is common in
eukaryotes and involves short noncoding RNAs—microRNA
(miRNA) or small interfering RNA (siRNA)—that bind with
imperfect complementarity to their target mRNA transcripts. The
binding of miRNA (or siRNA) to mRNA destabilizes (or degrades)
the target mRNA, thereby inhibiting its translation. The imperfect
pairing allows a single RNAi molecule to affect the expression of
multiple genes. In the human genome, almost 50% of mRNA
transcripts are regulated by one or more miRNAs [138].

In prokaryotes, transcription and translation are more tightly
coupled than in eukaryotes, and this allows prokaryotes to regulate
their gene expression primarily by controlling the amount of tran-
scription. Nevertheless, prokaryotes can still conduct translational
regulation. They can employ fundamentally different types of trans-
lational regulatory machinery: the recently discovered CRISPR-Cas
system. Although the CRISPR loci were first identified in prokar-
yotes in 1987 [139], it was only recently described as a bacterial
immune defense system [140]. The CRISP-Cas system is most
commonly known to target external DNA (viral or plasmid) and
degrade it before it can be transcribed or translated. Recent
advancement suggests that some CRISPR-Cas systems are more
general and have the capacity to target RNA molecules. This was
first discovered in Pyrococcus furiosus [141]; similar RNA targeting
was later found in Sufolobus solfataricus [142]. Throughout these
advancements, CRISPR-Cas system was still strictly viewed as an
immune response to target and degrade external nucleic acid mole-
cules. It was only in 2016 that a CRISPR-Cas system was discov-
ered that targets cellular mRNAs and thereby participates in
translational regulation [143].

4.1.3 Epigenetics The term epigenetics was coined in 1942 by Waddington
[144]. He defined it as changes in an organism’s phenotype with-
out an underlying alteration of its genome. It is now understood
that epigenetic effects cause variation in phenotypes not associated
with a change in the primary sequence but by chemical alterations
of the DNA. Consider this analogy: throughout this review, when-
ever a word was being defined it was written in this format. If this
chapter was rewritten with all bolds and italics removed, the infor-
mational content would be unaltered; however, the emphasis
would be different. These “decorative” changes in font are akin to
chemical epigenetic markers appended to the DNA. DNA methyl-
ation is a type of chemical decoration that is analogous to striking
through a phrase. Specifically, it corresponds to the addition of a
methyl group to parts of the DNA that results in gene silencing
[145]. This additional information is not directly encoded within
the primary DNA sequence but is manifested through chemical
changes in nucleotides [145]. Thus, DNA methylation is one
form of epigenetic control of gene expression. Epigenetic factors
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may also have an impact on regulation by changing protein-DNA
binding. In eukaryotes, epigenetic factors may bind to consecutive
histones moving them closer to each other. This results in local
DNA compaction and prevents the expression of the gene(s) in this
location.

Importantly, an organism’s exposure to certain environmental
conditions can impact the epigenetic markers on its genome.
Because epigenetic mechanisms ultimately affect the physiological
form of the chromosome, such environmental exposures can lead
to heritable changes in gene expression with no change to the
underlying DNA sequence. It was initially thought that these
alterations are not heritable and that following fertilization all
epigenetic markers are removed from the zygote genome. Accu-
mulating evidence suggests that such erasure of epigenetic marks
occurs for most but not all genes [129, 130].

4.2 Mobile Genetic

Elements

Also known as transposons or jumping genes, mobile genetic ele-
ments are sequences that can move around within a genome inde-
pendently of the complex networks which otherwise regulate gene
expression [146]. Through their movement, transposons often
cause mutations either by inserting into a gene and disturbing its
function or by promoting DNA rearrangement. If a transposon is
inserted within a protein-coding region, then it will undoubtedly
affect the expression of this gene by altering the final protein
product. Transposons may also be inserted into regulatory regions
resulting in over- or under-expression of certain gene(s). The capa-
bility of these DNA sequences to produce new copies of themselves
elsewhere in a genome is called transposition. The two types of
transposition are:

Copy-and-paste (replicative) transposition: a new copy of the trans-
posable element is inserted into a new site, while the old copy
remains integrated into the original site [147]. This type of
transposition requires transfer of information into an RNA
intermediate (retrotransposons) and subsequent retro-
transcription into DNA. This mechanism results in an increase
in the number transposon copies.

Cut-and-paste (non-replicative or conservative) transposition: the
transposable element is excised from the old site and is inserted
into a new site in the genome. The number of transposons is
not increased in this case [147].

Transposable elements are found in all cell types. The kinds of
transposable elements vary within and between prokaryotes and
eukaryotes. They are often viewed as genetic parasites since they
rely on a host cell for information processing systems (replication,
transcription, and/or translation). In humans, about 44% of the
genome is comprised of sequences that are related to transposable
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elements [148]. These mobile genetic elements had an important
impact on eukaryotic evolution [149, 150]. For example, siRNA
regulation is believed to have evolved to regain control of the
expression of transposable elements [151]. For a review of the
regulatory mechanisms of transposable elements, see ref. 152.

5 The Role of the Genome as an Informational Entity in Biology

Although the information contained within a genome is necessary
to maintain a living cell, it is not sufficient on its own. Expression of
biologically useful information requires a complex network of cel-
lular components for processing and regulation of the genome.
This dependency on external cellular components permits consid-
erable flexibility in how the information is stored. As we have seen,
the information essential for eukaryotic life is partitioned between
chromosomes located in nuclear and organelle compartments, with
some nuclear-encoded proteins being transported to the organelle
for assembly with other proteins synthesized within the organelle
[110]. Thus, as long as the cellular mechanisms for expression and
processing are in place, genomic information can be physically
dispersed within the cell. The Cryptophytes have taken this to an
extreme, having their genomic information distributed across four
cellular compartments: the nucleus, nucleomorph, mitochondria,
and plastids [153]. Clearly, the physical location of the genome is
not a constraint to information storage and processing. Further-
more, the storage of that information need not remain in a particu-
lar physical location. In the case of temperate phages, genomic
information is transferred, for a period of time, to the genome of
its host where it is maintained by its host’s replication processes
[154]. These examples, and others (e.g., [126]), underscore the
importance of viewing the genome foremost as an informational
entity irrespective of its physical location.

In a well-argued critique of conventional notions of the
genome, Goldman and Landweber [4] argue that viewing DNA
as the sole source of information leads to additional difficulties.
Recall that the NIH definition refers to the genome as containing
all of the information needed to build and maintain that organism.
We now understand that even the cell and its associated cytoplasm
are not always sufficient for realization of all functional capabilities
encoded within a genome. In other words, the genome, as conven-
tionally defined, appears to be an incomplete informational entity
[4]. Genome research has identified a variety of extracellular infor-
mational entities that can influence, and in some cases are even
essential to, the creation and maintenance of an organism. Below
we review selected examples of this phenomenon prior to reasses-
sing the definition of the genome in light of modern genome
science.
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Marine cyanobacteria (Prochlorococcus and Synechococcus) are
among the most abundant photosynthetic organisms in the world’s
oceans. The viruses that infect them (cyanophages) were discovered
to possess copies of some of their hosts photosynthesis genes (e.g.,
PsbA and PsbD: [155, 156]). Through the process of HGT, the
cyanophages acquired host genes, which they express after infection
to optimize their own gene expression and broaden their host range
[157]. As novel as this discovery was, it was completely unexpected
that the cyanobacteria and their phages continued to exchange
genetic variation through homologous recombination
[157]. Through such exchanges, the PsbA and PsbD genes partici-
pate in gene pools that extend beyond the photosynthetic species
boundaries [157]. Given that cyanobacteria contribute as much as
30% of carbon fixation worldwide, those findings suggest that viral
gene pool dynamics have influenced the evolution of oceanic pho-
tosynthesis on a global scale. This case demonstrates that to fully
understand the origin and distribution of photosynthetic diversity,
one must be aware that relevant genetic information can reside
outside of the genomes of the photosynthetic organisms.

The bacterial genus Listeria is comprised of ecologically diver-
gent lineages that share gene pools through the process of homol-
ogous recombination [158, 159]. Listeria monocytogenes is a
pathogen closely related to the nonpathogenic species L. innocua.
L. monocytogenes evolved as a pathogen through the process of
HGT [160] and then subsequently evolved into ecologically diver-
gent lineages differing in population structure and ability to
respond to environmental stress [161]. Among Listeria, recombi-
nation is frequent enough to permit natural selection to act inde-
pendently of the variability present at unlinked loci, thereby
promoting or impeding exchangeability of genes among species
and ecotypes residing in different niches [159]. This is just one
example of the “mosaic genome” model of prokaryotic genome
evolution, where the combined effects of recombination, drift, and
selection lead to genomes comprised of a mosaic of differentially
extendible trans-species gene pools. A wide variety of bacterial
species are now thought to have genome dynamics consistent
with the mosaic genome model [159, 162–165]. In some cases,
the process of genomic divergence can even become decoupled
from the process of ecological divergence [159, 163]. Thus, the
physical genomes of some species of prokaryotes are incomplete
informational entities.

The single-celled stichotrichous ciliates Oxytricha and Stylony-
chia have two nuclei that store genomic information in very differ-
ent forms [166]. One nucleus, called the macronucleus, contains
information in the form required for growth and maintenance of a
cell. Hence, the macronuclear DNA is often referred to as “active.”
The second nucleus, called the micronucleus, contains the same
information in a “stored” form, which is used to produce the active
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form of the DNA in the next generation. However, information
storage in the micronucleus is extremely complex. Protein-coding
genes expressed by the macronucleus are partitioned into small
segments, inverted, and scrambled among ~1 GB of other DNA
sequences within the micronucleus. Furthermore, the production
of a working macronucleus in the next generation cannot be
accomplished without information contained within both small
RNA molecules (piRNA) and long RNA templates (lncRNA),
which are passed across generations via the cytoplasm of the mater-
nal macronucleus [167, 168]. The piRNA are crucial to the elimi-
nation of DNA during the development of an active macronucleus,
and the lncRNA mediate (1) unscrambling of the inactive micro-
nuclear DNA, (2) regulation of gene dosage in the macronucleus,
and (3) epigenetic transfer of somatic (macronuclear) alterations
that are not found within the germ-line (micronuclear) DNA
[167]. Thus, without those RNA molecules, the DNA genome of
the stichotrichous ciliates is an incomplete informational entity
[4]. Furthermore, emerging work on both Oxytricha and Stylony-
chia suggests that epigenetic modification of their DNA may play a
role in the production of active macronuclear DNA
[166, 169–171]

Complex microbial communities live in close association with
the human body and have a strong impact on human health and
disease. Host genetic variation is known to influence the composi-
tion of those communities [172], and, conversely, microbial varia-
bility is thought to influence various host disease states [173]. This
association is so intimate that the microbiome has been referred to
as an additional “human organ” [174], and substantial amounts of
missing heritability associated with many complex human diseases
are now being attributed, in part, to a failure to adequately account
for microbial genetic variation [175]. Taking inflammatory bowel
disease (IBD) as an example, host human genetic variation accounts
for less than 50% of its estimated heritability [176]. This result
implies that there exists undiscovered context dependence of
human genetic variation for IBD. We have since come to under-
stand that there is extensive inter-individual variation in the genetic
composition of the gut microbiome and this metagenomic varia-
tion can influence healthy and dysregulated human immune
responses [177] and is predictive of IBD patient outcomes
[178]. Because the development of the IBD phenotype is related
to gut microbiome variability, and because genetically similar
human hosts can have different microbiomes, heritability estimates
for human DNA variation will be impacted [175]. In other words,
the expression of similar IBD phenotypes in humans is a function of
both human and microbial genetics. Regardless of whether such
interactions should be formally included within any future concep-
tion of the genome, this example illustrates how the human
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genome is also an incomplete informational entity with respect to
prediction of healthy and disease states.

Goldman and Landweber [4] suggest that the notion of the
genome should be reconceptualized in light of our modern, and
deeper, understanding of genomic diversity and the mechanisms of
information storage and processing. We agree and follow Goldman
and Landweber [4] when they call for a “more expansive definition
of the genome as an informational entity, often but not always
manifest as DNA, encoding a broad set of functional capabilities
that, together with other sources of information, produce and
maintain the organism.” At first glance, this appears to be consis-
tent with the controversial idea that a collection of functionally
integrated organisms, called a holobiont, is a fundamental unit of
biological organization and their set of genomes, called a hologen-
ome, is itself a unit subject to evolution by natural selection
[179]. However, we cannot go this far. We expect that any holo-
genome composed of informational entities having even a little
independence is analogous to intra-genomic epistasis with just a
little recombination. In the latter case, adaptive coevolution is not
very effective at moving the system on its fitness landscape via
compensatory substitutions [180]. Further, when informational
entities are largely independent, either through high recombina-
tion (as observed in Listeria) or through independent replication
(as within the human gut microbiome), the process of genomic
divergence can become decoupled from ecological dynamics. Thus,
we cannot agree with the notion of the hologenome as a unit of
selection. Rather, we view the genome as a potential mosaic of gene
pools subject to different evolutionary dynamics, and we follow
Goldman and Landweber [4] by considering it foremost as an
informational entity, which may be incomplete and which does
not have to manifest exclusively as the DNA within a species
boundary.
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118. Janouškovec J, Sobotka R, Lai D,
Flegontov P, Konı́k P, Komenda J et al
(2013) Split photosystem protein, linear-
mapping topology, and growth of structural
complexity in the plastid genome of Chro-
mera velia. Mol Biol Evol 30(11):2447–2462

119. Archibald JM (2007) Nucleomorph gen-
omes: structure, function, origin and evolu-
tion. BioEssays 29(4):392–402

120. Funnell BE, Phillips GJ (2004) Plasmid biol-
ogy. ASM Press, Washington, DC

121. Ravin NV (2011) N15: the linear phage–plas-
mid. Plasmid 65(2):102–109

122. Shintani M, Sanchez ZK, Kimbara K (2015)
Genomics of microbial plasmids: classification
and identification based on replication and
transfer systems and host taxonomy. Front
Microbiol 6:242

123. Burgess DJ (2017) Genetic engineering:
CREATE-ing genome-wide designed muta-
tions. Nat Rev Genet 18(2):69

124. Kumar P, Dillon LW, Shibata Y, Jazaeri AA,
Jones DR, Dutta A (2017) Normal and
cancerous tissues release extrachromosomal
circular DNA (eccDNA) into the circulation.
Mol Cancer Res 15(9):1197–1205

125. Barbieri M (2016) What is information?
Philos Trans R Soc A 374(2063):20150060

126. Gibson DG, Glass JI, Lartigue C, Noskov
VN, Chuang RY, Algire MA et al (2010)
Creation of a bacterial cell controlled by a
chemically synthesized genome. Science 329
(5987):52–56

127. ENCODE Project Consortium (2012) An
integrated encyclopedia of DNA elements in

28 Noor Youssef et al.



the human genome. Nature 489
(7414):57–74

128. Rands CM, Meader S, Ponting CP, Lunter G
(2014) 8.2% of the human genome is con-
strained: variation in rates of turnover across
functional element classes in the human line-
age. PLoS Genet 10(7):e1004525

129. Trerotola M, Relli V, Simeone P, Alberti S
(2015) Epigenetic inheritance and the miss-
ing heritability. Hum Genomics 9(1):17

130. Tang WW, Dietmann S, Irie N, Leitch HG,
Floros VI, Bradshaw CR et al (2015) A
unique gene regulatory network resets the
human germline epigenome for development.
Cell 161(6):1453–1467

131. Atkinson TJ, Halfon MS (2014) Regulation
of gene expression in the genomic context.
Comput Struct Biotechnol J 9(13):1–9

132. Narlikar L, Ovcharenko I (2009) Identifying
regulatory elements in eukaryotic genomes.
Brief FunctGenomic Proteomic 8
(4):215–230

133. Hershey JW, Sonenberg N, Mathews MB
(2012) Principles of translational control: an
overview. Cold Spring Harb Perspect Biol 4
(12):a011528

134. Meyer MM (2017) The role of mRNA struc-
ture in bacterial translational regulation.
Wiley Interdiscip Rev RNA 8(1):e1370

135. Chao JA, Yoon YJ, Singer RH (2012) Imag-
ing translation in single cells using fluorescent
microscopy. Cold SpringHarb Perspect Biol 4
(11):a012310

136. Lasko P (2012) mRNA localization and trans-
lational control in Drosophila oogenesis.
Cold Spring Harb Perspect Biol 4(10):
a012294

137. Decker CJ, Parker R (2012) P-bodies and
stress granules: possible roles in the control
of translation and mRNA degradation. Cold
Spring Harb Perspect Biol 4(9):a012286

138. Chekulaeva M, Filipowicz W (2009) Mechan-
isms of miRNA-mediated post-transcriptional
regulation in animal cells. Curr Opin Cell Biol
21(3):452–460

139. Ishino Y, Shinagawa H, Makino K,
Amemura M, Nakata A (1987) Nucleotide
sequence of the iap gene, responsible for alka-
line phosphatase isozyme conversion in
Escherichia coli, and identification of the
gene product. J Bacteriol 169
(12):5429–5433

140. Makarova KS, Grishin NV, Shabalina SA,Wolf
YI, Koonin EV (2006) A putative RNA-

interference-based immune system in prokar-
yotes: computational analysis of the predicted
enzymatic machinery, functional analogies
with eukaryotic RNAi, and hypothetical
mechanisms of action. Biol Direct 1(1):7

141. Hale CR, Zhao P, Olson S, Duff MO, Grav-
eley BR, Wells L et al (2009) RNA-guided
RNA cleavage by a CRISPR RNA-Cas protein
complex. Cell 139(5):945–956

142. Zhang J, Rouillon C, Kerou M, Reeks J,
Brugger K, Graham S et al (2012) Structure
and mechanism of the CMR complex for
CRISPR-mediated antiviral immunity. Mol
cell 45(3):303–313

143. Liu Y, Chen Z, He A, Zhan Y, Li J, Liu L et al
(2016) Targeting cellular mRNAs translation
by CRISPR-Cas9. Sci Rep 6:29652

144. Waddington CH (1942) The epigenotype.
Endeavour 1:18–20

145. Allis CD, Jenuwein T (2016) The molecular
hallmarks of epigenetic control. Nat Rev
Genet 17:487–500

146. Goodier JL, Kazazian HH (2008) Retrotran-
sposons revisited: the restraint and rehabilita-
tion of parasites. Cell 135(1):23–35

147. Ahmed A (2009) Alternative mechanisms for
Tn5 transposition. PLoS Genet 5(8):
e1000619

148. Mills RE, Bennett EA, Iskow RC, Devine SE
(2007) Which transposable elements are
active in the human genome? Trends Genet
23(4):183–191

149. Huda A, Jordan IK (2009) Epigenetic regula-
tion of mammalian genomes by transposable
elements. Ann N Y Acad Sci 1178
(1):276–284
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Chapter 2

Probability, Statistics, and Computational Science

Niko Beerenwinkel and Juliane Siebourg

Abstract

In this chapter, we review basic concepts from probability theory and computational statistics that are
fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and
discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden
Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in
many variations in genomics applications. In particular, we discuss efficient inference algorithms and
methods for learning these models from partially observed data. Several simple examples are given
throughout the text, some of which provide the basis for models that are discussed in more detail in
subsequent chapters.

Key words Bayesian inference, Bayesian networks, Dynamic programming, EM algorithm, Hidden
Markov models, Markov chains, Maximum likelihood, Statistical models

1 Statistical Models

Evolutionary genomics can only be approached with the help of
statistical modeling. Stochastic fluctuations are inherent to many
biological systems. Specifically, the evolutionary process itself is
stochastic, with random mutations and random mating being
major sources of variation. In general, stochastic effects play an
increasingly important role if the number of molecules, or cells,
or individuals of a population is small. Stochastic variation also
arises from measurement errors. Biological data is often noisy due
to experimental limitations, especially for high-throughput tech-
nologies, such as microarrays or next-generation sequencing [1, 2].

Statistical modeling addresses the following questions: What
can be generalized from a finite sample obtained from an experi-
ment to the population? What can be learned about the underlying
biological mechanisms? How certain can we be about our model
predictions?

In the frequentist view of statistics, the observed variability in
the data is the result of a fixed true value being perturbed by
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random variation, such as, for example, measurement noise. Prob-
abilities are thus interpreted as long-run expected relative frequen-
cies. By contrast, from a Bayesian point of view, probabilities
represent our uncertainty about the state of nature. There is no
true value, but only the data is real. Our prior belief about an event
is updated in light of the data.

Statistical models represent the observed variability or uncer-
tainty by probability distributions [3, 4]. The observed data are
regarded as realizations of random variables. The parameters of a
statistical model are usually the quantities of interest because they
describe the amount and nature of systematic variation in the data.
Parameter estimation and model selection are discussed in more
detail in the next section. In this section, we first consider discrete,
and then continuous random variables and univariate
(1-dimensional) before multivariate (n-dimensional) ones. We
start by formulating the well-known Hardy–Weinberg principle
[5, 6] as a statistical model.

Example 1 (Hardy–Weinberg Model): The Hardy–Weinberg model
is a statistical model for the genotypes in a diploid population of
infinite size. Let us assume that there are two alleles, denoted A and
a, and hence three genotypes, denoted AA, Aa ¼ aA, and aa. Let
X be the random variable with state space X ¼ f AA, Aa, aa}
describing the genotype. We parametrize the probability distribu-
tion of X by the allele frequency p of A and the allele frequency
q ¼ 1 � p of a. The Hardy–Weinberg model is defined by:

PðX ¼ AAÞ ¼ p2, ð1Þ

PðX ¼ AaÞ ¼ 2pð1� pÞ, ð2Þ

PðX ¼ aaÞ ¼ ð1� pÞ2: ð3Þ

The parameter space of the model is
Θ ¼ fp∈ j 0 � p � 1g ¼ ½0,1�, the unit interval. We denote the
Hardy–Weinberg model by HWðpÞ and write X � HWðpÞ if
X follows the distribution (Eqs. 1–3). □

TheHardy–Weinberg distribution P(X) is a discrete probability
distribution (or probability mass function) with finite state space:
We have 0 � P(X ¼ x) � 1 for all x∈X and

P
x∈XPðX ¼ xÞ ¼

p2 þ 2pð1� pÞ þ ð1� pÞ2 ¼ ½p þ ð1� pÞ�2 ¼ 1. In general, any
statistical model for a discrete random variable with n states defines
a subset of the (n � 1)-dimensional probability simplex:

Δn�1 ¼ ðp1, . . . ,pnÞ∈ ½0,1�n j p1 þ � � � þ pn ¼ 1
� �

: ð4Þ

The probability simplex is the set of all possible probability distri-
butions of X, and statistical models can be understood as specific
subsets of the simplex [7].
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The Hardy–Weinberg distribution is of interest because it arises
under the assumption of random mating. A population with major
allele frequency p has genotype probabilities given in Eqs. 1–3
after one round of random mating. We find that the new allele
frequency:

p0 ¼ PðAAÞ þ PðAaÞ=2 ¼ p2 þ 2pð1� pÞ=2 ¼ p, ð5Þ

is equal to the one in the previous generation. Thus, genetic varia-
tion is preserved under this simple model of sexual reproduction,
and the population is at equilibrium after one generation. In
other words, Eqs. 1–3 describe the set of all populations at
Hardy–Weinberg equilibrium. The parametric representation:

ðpAA,pAa,paaÞ∈Δ2 j pAA ¼ p2, pAa ¼ 2pð1� pÞ,
�

paa ¼ ð1� pÞ2
o
,

ð6Þ

of this set of distributions is equivalent to the implicit representa-
tion as the intersection of the Hardy–Weinberg curve:

4 pAA paa � p2Aa ¼ 0 ð7Þ

with the probability simplex Δ2 (Fig. 1).
The simplest discrete random variable is a binary (or Bernoulli)

random variable X. The textbook example of a Bernoulli trial is the
flipping of a coin. The state space of this random experiment is the
set that contains all possible outcomes, namely, whether the coin
lands on heads (X ¼ 0) or tails (X ¼ 1). We write X ¼ f0,1g to
denote this state space. The parameter space is the set that contains
all possible values of the model parameters. In the coin tossing
example, the only parameter is the probability of observing tails,
p, and this parameter can take any value between 0 and 1, so we
write Θ ¼ {p j 0 � p � 1} for the parameter space. In general, the
event X ¼ 1 is often called a “success,” and p ¼ P(X ¼ 1) the
probability of success.

AA

Aa

aa

Fig. 1 De Finetti diagram showing the Hardy–Weinberg curve

4 pAA paa � p2Aa ¼ 0 inside the probability simplex Δ2 ¼ {( pAA, pAa, paa)j
pAA + pAa + paa ¼ 1}. Each point in this space represents a population as
described by its genotype frequencies. Points on the curve correspond to
populations in Hardy–Weinberg equilibrium

Probability, Statistics, and Computational Science 35



Example 2 (Binomial Distribution): Consider n independent
Bernoulli trials, each with success probability p. Let X be the
random variable counting the number of successes k among the
n trials. Then, X has state space X ¼ f0, . . . ,ng and

PðX ¼ kÞ ¼ n

k

� �
pkð1� pÞn�k: ð8Þ

This is the binomial distribution, denoted Binomðn, pÞ. Its param-
eter space is Θ ¼ � ½0,1�. Examples of binomially distributed
random variables are the number of “heads” in n successive coin
tosses or the number of mutated genes in a group of species. □

Important characteristics of a probability distribution are its
expectation (or expected value, or mean) and its variance. They
are defined, respectively, as:

EðX Þ ¼
X
x∈X

x PðX ¼ xÞ, ð9Þ

VarðX Þ ¼
X
x∈X

½x � EðX Þ�2 PðX ¼ xÞ: ð10Þ

The standard deviation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX Þ

p
. For the binomial distribution,

X � Binomðn, pÞ, we find E(X) ¼ np and VarðX Þ ¼ npð1� pÞ.
Example 3 (Poisson Distribution): The Poisson distribution PoisðλÞ
with parameter λ � 0 is defined as:

PðX ¼ kÞ ¼ λk e�λ

k!
, k∈: ð11Þ

It describes the number X of independent events occurring in a
fixed period of time (or space) at average rate λ and independently
of the time since (or distance to) the last event. The Poisson
distribution has equal expectation and variance,
EðX Þ ¼ VarðX Þ ¼ λ. □

The Poisson distribution is used frequently as a model for the
number of DNA mutations in a gene after a certain time period,
where λ is the mutation rate. Both the binomial and the Poisson
distribution describe counts of random events. In the limit of large
n and fixed product np, the two distributions coincide,
Binomðn, pÞ ! PoisðnpÞ, for n !1.

Example 4 (Shotgun Sequencing): Let us consider a simplified model
of the shotgun approach to DNA sequencing. Suppose that n reads
of length L have been obtained from a genome of size G. We
assume that all reads have the same probability of being sequenced.
Then, the probability of hitting a specific base with one read
is p ¼ L/G, and the average coverage of the sequencing run is
c ¼ np. Under this model, the number of times X a single base is
sequenced is distributed as Binomðn, pÞ: For large n, we have
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PðX ¼ kÞ ¼ n

k

� �
pkð1� pÞn�k 	 ck e�c

k!
: ð12Þ

For example, using next-generation sequencing technology, one
might obtain n ¼ 108 reads of length L ¼ 100 bases in a single
run. For the human genome of length G ¼ 3 � 109, we obtain a
coverage of c ¼ 3.4. The distribution of the number of reads per
base pair is shown in Fig. 2. In particular, the fraction of unse-
quenced positions is P(X ¼ 0) ¼ e�c ¼ 3.57%. □

A continuous random variable X takes values in X ¼  and is
defined by a nonnegative function f(x) such that:

PðX∈BÞ ¼
Z
B
f ðxÞdx, for all subsets B 
 : ð13Þ

The function f is called the probability density function ofX. For an
interval:

PðX∈½a,b�Þ ¼ Pða � X � bÞ ¼
Z b

a

f ðxÞdx: ð14Þ

The cumulative distribution function is

F ðbÞ ¼ PðX � bÞ ¼
Z b

�1
f ðxÞdx, b ∈: ð15Þ

Thus, the density is the derivative of the cumulative distribution
function, d

dx F ðxÞ ¼ f ðxÞ.
In analogy to the discrete case, expectation and variance of a

continuous random variable are defined, respectively, as:
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Fig. 2 Coverage distribution of a shotgun sequencing experiment with n ¼ 108 reads of length L ¼ 100 of the
human genome of length G ¼ 3 � 109. The average coverage is c ¼ np ¼ 3.4, where p ¼ L/G. Dots show
the binomial coverage distribution Binomðn, pÞ and the solid line its approximation by the Poisson distribution
PoisðnpÞ. Note that the Poisson distribution is also discrete and just shown as a line to distinguish it from the
binomial distribution
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EðX Þ ¼
Z 1

�1
x f ðxÞ dx, ð16Þ

VarðX Þ ¼
Z 1

�1
½x � EðX Þ�2 f ðxÞ dx: ð17Þ

Example 5 (Normal Distribution): The normal (or Gaussian) dis-
tribution has the density function:

f ðxÞ ¼ ð2πσ2Þ�1=2exp �ðx � μÞ2

2σ2

" #
: ð18Þ

The parameter space is Θ ¼ fðμ, σ2Þ j μ∈, σ2∈þg. A normal
random variable X � Normðμ, σ2Þ has mean E(X) ¼ μ and
variance VarðX Þ ¼ σ2. Normð0,1Þ is called the standard normal
distribution. □

The normal distribution is frequently used as a model for
measurement noise. For example,X � Normðμ, σ2Þmight describe
the hybridization intensity of a sample to a probe on a microarray.
Then, μ is the level of expression of the corresponding gene and
σ2 summarizes the experimental noise associated with the micro-
array experiment. The parameters can be estimated from a finite
sample {x(1), . . ., x(N )}, i.e., from N replicate experiments, as the
empirical mean and variance, respectively:

x ¼ 1

N

XN
i¼1

xðiÞ, ð19Þ

s2 ¼ 1

N � 1

XN
i¼1

ðxðiÞ � xÞ2: ð20Þ

The normal distribution plays a special role in statistics due to
the central limit theorem. It asserts that the average
�XN ¼ ðX ð1Þ þ � � � þX ðN ÞÞ=N of N independent (see below) and
identically distributed (i.i.d.) random variables X(i) with equal
mean μ and variance σ2 converges in distribution to the standard
normal distribution:

ffiffiffiffiffi
N

p �XN � μ

σ

� �
!d Normð0,1Þ, ð21Þ

irrespective of the shape of their distribution. As a consequence,
many test statistics and estimators are asymptotically normally
distributed. For example, the Poisson distribution PoisðλÞ is
approximately normal Normðλ, λÞ for large values of λ.

We often measure multiple quantities at the same time, for
example the expression of several genes, and are interested in
correlations among the variables. Let X and Y be two random
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variables with expected values μX and μY and variances σ2X and σ2Y ,
respectively. The covariance between X and Y is

CovðX ,Y Þ ¼ E½ðX � μX ÞðY � μY Þ� ¼ E½XY � � E½X �E½Y �
ð22Þ

and the correlation between X and Y is ρX ,Y ¼
CovðX ,Y Þ=ðσXσY Þ. For observations (x(1), y(1)), . . ., (x(N ), y(N )),
the sample correlation coefficient is

rx, y ¼
PN

i¼1 ðxðiÞ � xÞðyðiÞ � y Þ
ðN � 1ÞsX sY

, ð23Þ

where sX and sY are the sample standard deviations of X and Y ,
respectively, defined in Eq. 20.

So far, we have worked with univariate distributions and we
now turn to multivariate distributions, i.e., we consider random
vectors X ¼ (X1, . . ., Xn) such that each Xi is a random variable.
For the case of discrete random variables Xi, we first generalize the
binomial distribution to random experiments with a finite number
of outcomes.

Example 6 (Multinomial Distribution): Let K be the number of
possible outcomes of a random experiment and θk the probability of
outcome k. We consider the random vector X ¼ (X1, . . ., XK) with
values inX ¼ K , whereXk counts the number of outcomes of type k.
The multinomial distribution Multðn, θ1, . . . , θK Þ is defined as:

PðX ¼ xÞ ¼ n!

x1!� � �xK !
θx11 � � �θxKK ð24Þ

if
PK

k¼1 xk ¼ n, and 0 otherwise. The parameter space of the model
is Θ ¼ � ΔK�1. For K ¼ 2, we recover the binomial distribution
(Eq. 8). Each component Xk of a multinomial vector has expected
value E(Xk) ¼ nθk and VarðXkÞ ¼ nθkð1� θkÞ. The covariance of
two components is CovðXk,XlÞ ¼ �nθkθl , for k 6¼ l. □

In general, the covariance matrix Σ of a random vector X is
defined by:

Σi j ¼ CovðXi,Xj Þ ¼ E½ðXi � μiÞðXj � μj Þ�, ð25Þ

where μi is the expected value of Xi. The matrix Σ is also called the
variance–covariance matrix because the diagonal terms are the var-
iances Σii ¼ CovðXi,XiÞ ¼ VarðXiÞ.

A continuous multivariate random variable X takes values in
X ¼ n. It is defined by its cumulative distribution function:

F ðxÞ ¼ PðX � xÞ, x∈n ð26Þ

or, equivalently, by the probability density function:

f ðxÞ ¼ ∂n

∂x1� � �∂xn
F ðx1, . . . ,xnÞ, x∈n: ð27Þ
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Example 7 (Multivariate Normal Distribution): For n � 1 and
x∈n, the multivariate normal (or Gaussian) distribution has
density:

f ðxÞ ¼ ð2πÞ�n=2detðΣÞ�1=2exp �1

2
ðx � μÞtΣ�1ðx � μÞ

	 

,

ð28Þ
with parameter space Θ ¼ fðμ,ΣÞ j μ ¼ ðμ1, . . . , μnÞ∈n and

Σ ¼ σ2i j

� �
∈n�ng, where Σ is the symmetric, positive-definite

covariance matrix and μ the expectation. We write
X ¼ ðX 1, . . . ,XnÞ � Normðμ,ΣÞ for a random vector with such a
distribution. □

We say that two random variablesX and Y are independent if P
(X, Y ) ¼ P(X)P(Y ) or, equivalently, if the conditional probability
P(X j Y ) ¼ P(X, Y )/P(Y ) is equal to the unconditional proba-
bility P(X). If X and Y are independent, denoted X ⊥ Y , then
E[XY ] ¼ E[X]E[Y ] and VarðX þ Y Þ ¼ VarðX Þ þ VarðY Þ. It
follows that independent random variables have covariance zero.
However, the converse is only true in specific situations, for exam-
ple if (X, Y ) is multivariate normal, but not in general because
correlation captures only linear dependencies.

This limitation can be addressed by using statistical models
which allow for a richer dependency structure. Subheading 7 is
devoted to Bayesian networks, a family of probabilistic graphical
models based on conditional independences. Let X, Y , and Z be
three random vectors. Generalizing the notion of statistical inde-
pendence, we say that X is conditionally independent of Y given
Z and write X ⊥ Y j Z if P(X, Y j Z) ¼ P(X j Z)P(Y j Z). Bayes’
theorem states that

PðY j X Þ ¼ PðX j Y ÞPðY Þ
PðX Þ , ð29Þ

where P(Y ) is called the prior probability and P(Y j X) the poste-
rior probability. Intuitively, the prior P(Y ) encodes our a priori
knowledge about Y (i.e., before observing X), and P(Y j X) is our
updated knowledge about Y a posteriori (i.e., after observing X).

We have P(X) ¼∑YP(X, Y ) if Y is discrete, and similarly
P(X) ¼

R
YP(X, Y )dY if Y is continuous. Here, P(X) is called

the marginal and P(X, Y ) the joint probability. This summation
or integration is known as marginalization (Fig. 3).

Since P(X) ¼∑YP(X, Y ) ¼∑YP(X j Y )P(Y ), Bayes’ theo-
rem can also be rewritten as:

PðY j X Þ ¼ PðX j Y ÞPðY ÞX
y 0∈Y

PðX j y 0ÞPðy 0Þ
, ð30Þ

where P(y0) ¼ P(Y ¼ y0) and Y is the state space of Y .
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Example 8 (Diagnostic Test): We want to evaluate a diagnostic test
for a rare genetic disease. The binary random variables D and
T indicate disease status (D ¼ 1, diseased) and test result (T ¼ 1,
positive), respectively. Let us assume that the prevalence of the
disease is 0.5%, i.e., 0.5% of all people in the population are
known to be affected. The test has a false positive rate (probability
that somebody is tested positive who does not have the disease) of
P(T ¼ 1 j D ¼ 0) ¼ 5% and a true positive rate (probability that
somebody is tested positive who has the disease) of P(T ¼ 1 j D
¼ 1) ¼ 90%. Then, the posterior probability of a person having the
disease given that he or she tested positive is

PðD ¼ 1 j T ¼ 1Þ ¼
PðT ¼ 1 j D ¼ 1ÞPðD ¼ 1Þ

PðT ¼ 1 j D ¼ 0ÞPðD ¼ 0Þ þ PðT ¼ 1 j D ¼ 1ÞPðD ¼ 1Þ ¼ 0:083,

ð31Þ

that is, only 8.3% of the positively tested individuals actually have
the disease. Thus, our prior belief of the disease status, P(D), has
been modified in light of the test result by multiplication with
P(T j D) to obtain the updated belief P(D j T). □

Exercise 9 (Conditional Independence): Let X, Y , and Z be random
variables. Using the laws of probability, show that X and Y are
conditionally independent given Z (i.e., X ⊥ Y j Z) if and only if
P(X j Y, Z) ¼ P(X j Z).

−2 −1 0 1 2

−2
−1

0
1

2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

 0.18 

 0.2 

 0.22 

 0.24 

−2 −1 0 1 2

−2
−1

0
1

2
Fig. 3 Marginalization. Left: two-dimensional histogram of a discrete bivariate distribution with the two
marginal histograms. Right: contour plot of a two-dimensional Gaussian density with the marginal distribu-
tions of each component
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2 Statistical Inference

Statistical models have parameters and a common task is to estimate
the model parameters from observed data. The goal is to find the
set of parameters with the best model fit. There are two major
approaches to parameter estimation: maximum likelihood
(ML) and Bayes.

The maximum likelihood approach is based on the likelihood
function. Let us consider a fixed statistical modelMwith parameter
space Θ and assume that we have observed realizations

D ¼ fxð1Þ, . . . , xðN Þg of the discrete random variable X � Mðθ0Þ
for some unknown parameter θ0 ∈ Θ. For the fixed data set D, the
likelihood function of the model is

LðθÞ ¼ PðD j θÞ, ð32Þ

where we write PðD j θÞ to emphasize that, here, the probability of
the data depends on the model parameter θ. For continuous ran-
dom variables, the likelihood function is defined similarly in terms
of the density function, LðθÞ ¼ f ðD j θÞ. Maximum likelihood
estimation seeks the parameter θ ∈ Θ for which L(θ) is maximal.
Rather than L(θ), it is often more convenient to maximize
ℓðθÞ ¼ logLðθÞ, the log-likelihood function. If the data are i.i.d.,
then:

ℓðθÞ ¼
XN
i¼1

logPðX ¼ xðiÞ j θÞ: ð33Þ

Example 10 (Likelihood Function of the Binomial Model): Suppose
we have observed k ¼ 7 successes in a total of N ¼ 10 Bernoulli
trials. The likelihood function of the binomial model (Eq. 8) is

LðpÞ ¼ pk ð1� pÞN�k, ð34Þ

where p is the success probability (Fig. 4). To maximize L, we
consider the log-likelihood function:

ℓðpÞ ¼ logLðpÞ ¼ klogðpÞ þ ðN � kÞlogð1� pÞ ð35Þ

and the likelihood equation dℓ/dp ¼ 0. TheML estimate (MLE) is
the solution p̂ML ¼ k=N ¼ 7=10. Thus, the MLE of the success
probability is just the relative frequency of successes. □

Example 11 (Likelihood Function of the Hardy–Weinberg Model): If
we genotype a finite random sample of a population of diploid
individuals at a single locus, then the resulting data consists of the
numbers of individuals nAA, nAa, and naa with the respective geno-
types. Assuming Hardy–Weinberg equilibrium (Eqs. 1–3), we want
to estimate the allele frequencies p and q ¼ 1 � p of the
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population. The likelihood function of the Hardy–Weinberg model
is LðpÞ ¼ PðAAÞnAAPðAaÞnAaPðaaÞnaa and the log-likelihood is

ℓðpÞ ¼ nAAlogp
2 þ nAalog2pð1� pÞ þ naalogð1� pÞ2

/ ð2nAA þ nAaÞlogp þ ðnAa þ 2naaÞlogð1� pÞ,
ð36Þ

where we have dropped the constant nAalog2. The MLE of
p ∈ [0, 1] can be found by maximizing ℓ. Solving the likelihood
equation:

∂ℓ
∂p

¼ 2nAA þ nAa

p
� nAa þ 2naa

1� p
¼ 0 ð37Þ

yields the MLE p̂ML ¼ ð2nAA þ nAaÞ=ð2N Þ, where N ¼ nAA +
nAa + naa is the total sample size. For example, if we sample
N ¼ 100 genotypes with nAA ¼ 81, nAa ¼ 18, and naa ¼ 1, then
we find p̂ML ¼ ð2 � ð81þ 18ÞÞ=ð2 � 100Þ ¼ 0:9 for the frequency of
the major allele. □

MLEs have many desirable properties. Asymptotically, as the
sample size N !1, they are normally distributed, unbiased, and
have minimal variance. The uncertainty in parameter estimation
associated with the sampling variance of the finite data set can be
quantified in confidence intervals. There are several ways to
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Fig. 4 Likelihood function of the binomial model. The underlying data set
consists of k ¼ 7 successes out of N ¼ 10 Bernoulli trials. The likelihood L
( p) ¼ pk (1 � p)N�k is plotted as a function of the model parameter p, the
probability of success (solid line). The MLE is the maximum of this function,

p̂ML ¼ k=N ¼ 7=10 (dashed line)
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construct confidence intervals and statistical tests for MLEs based
on the asymptotic behavior of the log-likelihood function
ℓðθÞ ¼ logLðθÞ and its derivatives. For example, the asymptotic
normal distribution of the MLE is

θ̂ML �a Norm θ, J ðθÞ�1
� �

, ð38Þ

where I(θ) ¼ �∂2ℓ/∂θ2 is the Fisher information and J(θ) ¼ E[I
(θ)] the expected Fisher information. This result gives rise to the
Wald confidence intervals:�

θ̂ML � z1�α=2 J ðθÞ�1�, ð39Þ

where z1�α=2 ¼ inffx∈ j 1� α=2 � F ðxÞg is the (1 � α/2)
quantile and F the cumulative distribution function of the standard
normal distribution. Equation 38 still holds after replacing J(θ)
with the standard error seðθ̂MLÞ ¼ ½I ðθ̂MLÞ��

1
2 or ½J ðθ̂MLÞ��

1
2, and it

also generalizes to higher dimensions. Other common construc-
tions of confidence intervals include those based on the asymptotic
distribution of the score function S(θ) ¼ ∂ℓ/∂θ and the
log-likelihood ratio logðLðθ̂MLÞ=LðθÞÞ [8].

We now discuss another more generic approach to quantify
parameter uncertainty, not restricted to ML estimation, which is
applied frequently in practice due to its simple implementation.
Bootstrapping [9] is a resampling method in which independent
observations are resampled from the data with replacement. The
resulting new data set consists of (some of) the original observa-
tions, and under i.i.d. assumptions, the bootstrap replicates have
asymptotically the same distribution as the data. Intuitively, by
sampling with replacement, one is pretending that the collection
of replicates thus obtained is a good proxy for the distribution of
data sets that one would have obtained, had we been able to actually
replicate the experiment. In this way, the variability of an estimator
(or more generally the distribution of any test statistic) can be
approximated by evaluating the estimator (or the statistic) on a
collection of bootstrap replicates. For example, the distribution of
the ML estimator of a model parameter θ can be obtained from the
bootstrap samples.

Example 12 (Bootstrap Confidence Interval for the ML Allele Fre-
quency): We use bootstrapping to estimate the distribution of the
ML estimator p̂ML of the Hardy–Weinberg model for the data set
(nAA, nAa, naa) ¼ (81, 18, 1) of Example 11. For each bootstrap
sample, we draw N ¼ 100 genotypes with replacement from the
original data to obtain random integer vectors of length three
summing to 100. The ML estimate is computed for each of a
total of B bootstrap samples. The resulting distributions of p̂ML

are shown in Fig. 5, for B ¼ 100, 1000, and 10,000. The means of
these empirical distributions are 0.899, 0.9004, and 0.9001,
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respectively, and 95% bootstrap confidence intervals can be derived
from the 2.5 and 97.5% quantiles of the distributions. For
B ¼ 100, 1000, and 10,000, we obtain, respectively, [0.8598,
0.9350], [0.860, 0.940], and [0.855, 0.940]. The basic bootstrap
confidence intervals have several limitations, including bias of the
bootstrap estimator and skewness of the bootstrap distribution.
Other methods exist for constructing confidence intervals from
the bootstrap distribution to address some of them [9]. □

The Bayesian approach takes a different point of view and
regards the model parameters as random variables [10]. Inference
is then concerned with estimating the joint distribution of the
parameters θ given the observed data D. By Bayes’ theorem
(Eq. 30), we have

Pðθ j DÞ ¼ PðD j θÞPðθÞ
PðDÞ ¼ PðD j θÞPðθÞR

θ∈ΘPðD j θÞPðθÞ dθ , ð40Þ

that is, the posterior probability of the parameters is proportional to
the likelihood of the data times the prior probability of the para-
meters. It follows that, for a uniform prior, the mode of the poste-
rior is equal to the MLE.

From the posterior, credible intervals of parameter estimates
can be derived such that the parameter lies in the interval with a
certain probability, say 95%. This is in contrast to a 95% confidence
interval in the frequentist approach because, there, the parameter is
fixed and the interval boundaries are random variables. The mean-
ing of a confidence interval is that 95% of similar intervals would
contain the true parameter, if intervals were constructed indepen-
dently from additional identically distributed data.

The prior P(θ) encodes our a priori belief in θ before observing
the data. It can be used to incorporate domain-specific knowledge
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Fig. 5 Bootstrap analysis of the ML allele frequency. The bootstrap distribution of the maximum likelihood
estimator p̂ML ¼ ð2nAA þ nAaÞ=ð2NÞ of the major allele frequency in the Hardy–Weinberg model is plotted for
B ¼ 100 (left), B ¼ 1000 (center), and B ¼ 10, 000 (right) bootstrap samples, for the data set (nAA, nAa,
naa) ¼ (81, 18, 1)
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into the model, but it may also be uninformative or objective, in
which case all observations are equally likely, or nearly so, a priori.
However, it can sometimes be difficult to find noninformative
priors. In practice, conjugate priors are most often used. A conju-
gate prior is one that is invariant with respect to the distribution
family under multiplication with the likelihood, i.e., the posterior
belongs to the same family as the prior. Conjugate priors are
mathematically convenient and computationally efficient because
the posterior can be calculated analytically for a wide range of
statistical models.

Example 13 (Dirichlet Prior): Let T ¼ (T1, . . ., TK) be a continuous
random variable with state space ΔK�1. The Dirichlet distribution

DirðαÞ with parameters α∈K
þ has probability density function:

f ðθ1, . . . , θK Þ ¼
Γ
XK
i¼1

αi

 !

∏
K

i¼1
ΓðαiÞ

∏
K

i¼1
θαi�1
i , ð41Þ

where Γ is the gamma function. The Dirichlet prior is conjugate to
the multinomial likelihood: If T � DirðαÞ and ðX j T ¼ θÞ �
Multðn, θ1, . . . , θK Þ, then ðθ j X ¼ xÞ � Dirðαþ xÞ. For K ¼ 2,
this distribution is called the beta distribution. Hence, the beta
distribution is the conjugate prior to the binomial likelihood. □

Example 14 (Posterior Probability of Genotype Frequencies): Let us
consider the simple genetic system with two loci and two alleles
each of Example 1, but without assuming the Hardy–Weinberg
model. We regard the observed genotype frequencies (nAA, nAa,
naa) ¼ (81, 18, 1) as the result of a draw from a multinomial
distribution Multðn, θAA, θAa, θaaÞ. Assuming a Dirichlet prior
DirðαAA, αAa, αaa), the posterior genotype probabilities follow the
Dirichlet distribution DirðαAA þ nAA, αAa + nAa, αaa + naa). In
Fig. 6, the prior Dirð10, 10, 10Þ is shown on the left, the multino-
mial likelihood P((nAA, nAa, naa) ¼ (81, 18, 1) j θAA, θAa, θaa) in the
center, and the resulting posterior Dirð10þ 81, 10þ 18, 10þ 1Þ
on the right. Note that the MLE is different from the mode of the
posterior. As compared to the likelihood, the nonuniform prior has
shifted the maximum of the posterior toward the center of the
probability simplex. □

We often have two or more competing models and would like
to assess which one describes best the given data. For example, we
may have observed genotypes from the set {AA, Aa, aa} and want to
test whether the Hardy–Weinberg model (Example 1) is a more
appropriate description of the genotype data than the multinomial
model of the previous Example 14. Intuitively, we might want to
select the model that fits the data best, for example, by comparing
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their likelihoods. However, the Hardy–Weinberg model has only
one parameter, namely the allele frequency p, whereas the multino-
mial model has three parameters subject to the constraint θAA +
θAa + θaa ¼ 1. Hence, the number of free parameters is one and
two, respectively, for the two models. This difference in the com-
plexity of the models makes a comparison based only on the good-
ness of fit invalid, because models with more parameters, i.e.,
higher complexity, can generally provide a better fit. Estimating
model complexity and scoring models based on both model com-
plexity and goodness of fit is therefore essential for model compari-
son and model selection.

The goal of model selection is to find the model that best
generalizes to unseen data, rather than just fits the observed data,
because we seek the model capable of the most accurate predic-
tions. A model that fits well but generalizes poorly is said to overfit
the data. Models that are too complex tend to overfit the data.
Model selection can be regarded as finding the right level model
complexity for the given data, such that the predictive performance
is optimized. This involves defining a criterion of optimality and a
procedure for finding the optimal model.

A common frequentist approach to model selection are likeli-
hood ratios. For a data set D, we compare a null model, M0, to an
alternative model, M1, at given point estimates using the ratio of
their likelihoods:

ΛðDÞ ¼ Lðθ̂0Þ
Lðθ̂1Þ

ð42Þ

If ΛðDÞ < c, for a defined threshold c, we reject the null model and
favor the alternative model. The choice of c should be informed by
the distribution of Λ under the null. If the two models are nested,
i.e., if M0 can be obtained from M1 by specifying a subset of the
parameters, then �2 logΛ is approximately χ2-distributed with
degrees of freedom equal to the difference in the number of free
parameters between M1 and M0.

AA

Aa

aa

×

l

AA

Aa

aa
MLE

=

l

AA

Aa

aa
MLE

Fig. 6 Dirichlet prior for multinomial likelihood. The Dirichlet prior is conjugate to the multinomial likelihood.
Shown are contour lines of the prior Dirð10, 10, 10Þ on the left, the multinomial likelihood P((nAA, nAa,
naa) ¼ (81, 18, 1)jθAA, θAa, θaa) in the center, and the resulting posterior Dirð91, 28, 11Þ on the right. The
posterior is the product of prior and likelihood
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In the Bayesian framework, it is natural to compare the poste-
rior probabilities of the twomodels. By Bayes theorem, we have, for
i ¼ 0, 1:

PðMi j DÞ ¼ PðD j MiÞPðMiÞ
PðDÞ ð43Þ

where:

PðD j MiÞ ¼
R
PðD j θi, MiÞPðθi j MiÞ dθi ð44Þ

is the marginal likelihood. The marginal likelihood accounts for
model complexity and for uncertainty in parameter estimates, but is
usually analytically intractable and costly to compute. Various
approximations of the marginal likelihood exist that give rise to
model selection scores, such as the Bayesian information criterion
(BIC; see Subheading 7) and the Akaike information criterion
(AIC) [11].

For Bayesian model comparison, we consider the posterior
odds:

PðM0 j DÞ
PðM1 j DÞ ¼

PðD j M0Þ
PðD j M1Þ

PðM0Þ
PðM1Þ

ð45Þ

The ratio of the marginal likelihoods, i.e., the first factor on the
right-hand side of Eq. 45, is called the Bayes factor. With equal
priors, a Bayes factor larger than 20 is often considered strong
support for M0 over M1 [12].

Exercise 15 (Poisson Distribution): We wish to model the number of
bacterial colonies in a Petri dish and assume that the count data of
this experiment follows a Poisson distribution PoisðλÞ (Example 3).
Derive the log-likelihood function of this model and calculate the
MLE of the model parameter λ. Suppose now that the number of
bacterial colonies on a Petri dish follows the Poisson distribution
with mean λ ¼ 5. What is the probability of finding exactly three
colonies?

3 Hidden Data and the EM Algorithm

We often cannot observe all relevant random variables due to, for
example, experimental limitations or study designs. In this case, a
statistical model P(X, Z j θ ∈ Θ) consists of the observed random
variable X and the hidden (or latent) random variable Z, both of
which can be multivariate. In this section, we write X ¼ (X(1), . . .,
X(N )) for the random variables describing the N observations and
refer toX also as the observed data. The hidden data for this model
is Z ¼ (Z(1), . . ., Z(N )) and the complete data is (X, Z). For
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convenience, we assume the parameter space Θ to be continuous
and the state spaces X of X and Z of Z to be discrete.

In the Bayesian framework, one does not distinguish between
unknown parameters and hidden data, and it is natural to assess the
joint posterior P(θ, Z j X) / P(X j θ, Z)P(θ, Z), which is P(X,
Z j θ)P(θ) if priors are independent, i.e., if P(θ, Z) ¼ P(θ)P(Z).
Alternatively, if the distribution of the hidden dataZ is not of interest,
it can be marginalized out. Then, the posterior (Eq. 40) becomes

Pðθ j X Þ ¼
P

ZPðX ,Z j θÞPðθÞR
θ∈Θ
P

ZPðX ,Z j θÞPðθÞ dθ : ð46Þ

In the likelihood framework, it can bemore efficient to estimate
the hidden data, rather than marginalizing over it. The hidden
(or complete-data) log-likelihood is

ℓhidðθÞ ¼ logPðX , Z j θÞ ¼
XN
i¼1

logPðX ðiÞ, Z ðiÞ j θÞ: ð47Þ

For ML parameter estimation, we need to consider the observed
log-likelihood:

ℓobsðθÞ ¼ logPðX j θÞ ¼ log
X
Z

PðX ,Z j θÞ

¼ log
X
Z ð1Þ∈Z

. . .
X

Z ðN Þ∈Z

∏
N

i¼1
PðX ðiÞ, Z ðiÞ j θÞ:

ð48Þ

This likelihood function is usually very difficult to maximize and one
has to resort to numerical optimization techniques. Generic local
methods, such as gradient descent or Newton’s method, can be
used, but there is also a more specific local optimization procedure,
which avoids computing any derivatives of the likelihood function,
called the expectation maximization (EM) algorithm [13].

In order to maximize the likelihood function (Eq. 48), we
consider any distribution q(Z) of the hidden data Z and write

ℓobsðθÞ ¼ log
X
Z

qðZ ÞPðX ,Z j θÞ
qðZ Þ ¼ logE PðX ,Z j θÞ=qðZ Þ½ �,

ð49Þ

where the expected value is with respect to q(Z). Jensen’s inequality
applied to the concave log function asserts that logE½Y � � E½logY �.
Hence, the observed log-likelihood is bounded from below by
E logðPðX ,Z j θÞ=qðZ ÞÞ½ �, or

ℓobsðθÞ � E ℓhidðθÞ½ � þH ðqÞ, ð50Þ
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where H ðqÞ ¼ �E logqðZ Þ½ � is the entropy. The idea of the EM
algorithm is to maximize this lower bound instead of ℓobs(θ) itself.
Intuitively, this task is easier because the big sum over the hidden
data in Eq. 48 disappears on the right-hand side of Eq. 50 upon
taking expectations.

The EM algorithm is an iterative procedure alternating
between an E step and an M step. In the E step, the lower bound
(Eq. 50) is maximized with respect to the distribution q by setting
q(Z) ¼ P(Z j X, θ(t)), where θ(t) is the current estimate of θ, and
computing the expected value of the hidden log-likelihood:

Q ðθ j θðtÞÞ ¼ EZ jX ,θðtÞ ½ℓhidðθÞ�: ð51Þ

In the M step, Q is maximized with respect to θ to obtain an
improved estimate:

θðtþ1Þ ¼ argmax
θ

Q ðθ j θðtÞÞ: ð52Þ

The sequence θ(1), θ(2), θ(3), . . . converges to a local maximum of
the likelihood surface (Eq. 48). The global maximum and, hence,
the MLE is generally not guaranteed to be found with this local
optimization method. In practice, the EM algorithm is often run
repeatedly with many different starting solutions θ(1), or with few
very reasonable starting solutions obtained from other heuristics or
educated guesses.

Example 16 (Naive Bayes): Let us assume that we observe realiza-
tions of a discrete random variable (X1, . . ., XL) and we want to
cluster observations into K distinct groups. For this purpose, we
introduce a hidden random variable Z with state space
Z ¼ ½K � ¼ f1, . . . ,Kg indicating class membership. The joint
probability of (X1, . . ., XL) and Z is

PðX 1, . . . ,XL ,Z Þ ¼ PðZ ÞPðX 1, . . . ,XL j Z Þ

¼ PðZ Þ∏
L

n¼1
PðXn j Z Þ:

ð53Þ

The marginalization of this model with respect to the hidden data
Z is the unsupervised naive Bayes model. The observed variablesXn

are often called features and Z the latent class variable (Fig. 7).
The model parameters are the class prior P(Z), which we

assume to be constant and will ignore, and the conditional prob-
abilities θn,kx ¼ P(Xn ¼ x j Z ¼ k). The complete-data likelihood
of observed data X ¼ (X(1), . . ., X(N )) and hidden data Z ¼ (Z(1),
. . ., Z(N )) is

PðX ,Z j θÞ ¼ ∏
N

i¼1
PðX ðiÞ,Z ðiÞ j θÞ ¼ ∏

N

i¼1
PðZ ðiÞÞ∏

L

n¼1
PðX ðiÞ

n j Z ðiÞÞ

ð54Þ
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/ ∏
N

i¼1
∏
L

n¼1
θ
n,Z ðiÞX

ðiÞ
n
¼ ∏

N

i¼1
∏
L

n¼1
∏

k∈½K �
∏
x∈X

θ
I n,kxðZ ðiÞÞ
n,kx , ð55Þ

where In,kx(Z
(i)) is equal to one if and only if Z(i) ¼ k andX ðiÞ

n ¼ x,
and zero otherwise.

To apply the EM algorithm for estimating θ without observing
Z, we consider the hidden log-likelihood:

ℓhidðθÞ ¼ logPðX ,Z j θÞ ¼
XN
i¼1

XL
n¼1

X
k∈½K �

X
x∈X

I n,kxðZ ðiÞÞlogθn,kx :

ð56Þ

In the E step, we compute the expected values of Z(i):

γðiÞn,kx ¼ EZ jXn¼x,θ0 Z
ðiÞ� �

¼ PðX ðiÞ
n ¼ x j Z ðiÞ ¼ kÞP

k0∈KPðX ðiÞ
n ¼ x j Z ðiÞ ¼ k0Þ

¼
θ0n,kxP

k0∈Kθ
0
n,k0x

,

ð57Þ

where θ0 is the current estimate of θ. The expected value γðiÞn,kx is
sometimes referred to as the responsibility of class k for observation

X ðiÞ
n ¼ x. The expected hidden log-likelihood can be written in

terms of the expected counts Nn,kx ¼
PN

i¼1 γ
ðiÞ
n,kx as:

EZ jX ,θ0 ½ℓhidðθÞ� ¼
XL
n¼1

X
k∈½K �

X
x∈X

Nn,kx logθn,kx : ð58Þ

In the M step, maximization of this sum yields

θ̂n,kx ¼ Nn,kx=
P

x 0Nn,kx0 . □

4 Markov Chains

A stochastic process fXt , t∈T g is a collection of random variables
with common state spaceX . The index setT is usually interpreted as
time and Xt is the state of the process at time t. A discrete-time
stochastic process X ¼ (X1, X2, X3, . . . ) is called a Markov chain

Z

X2X1 ... XL

Fig. 7 Graphical representation of the naive Bayes model. Observed features Xn
are conditionally independent given the latent class variable Z
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[14], if Xn+1 ⊥ Xn�1 j Xn for all n � 2 or, equivalently, if each
state depends only on its immediate predecessor:

PðXn j Xn�1, . . . ,X 1Þ ¼ PðXn j Xn�1Þ, for all n � 2:

ð59Þ

We consider here Markov chains with finite state space
X ¼ ½K � ¼ f1, . . . ,Kg that are homogeneous, i.e., with transition
probabilities independent of time:

T kl ¼ PðXnþ1 ¼ l j Xn ¼ kÞ, for all k,l∈½K �, n � 2: ð60Þ

The finite-state homogeneous Markov chain is a statistical model
denotedMCðΠ,T Þ and defined by the initial state distribution Π ∈
ΔK�1, where Πk ¼ P(X1 ¼ k), and the stochastic K � K transition
matrix T ¼ (Tkl).

We can generalize the one-step transition probabilities Tkl to:

T n
kl ¼ PðXnþj ¼ l j Xj ¼ kÞ, ð61Þ

the probability of jumping from state k to state l in n time steps. Any
(n + m)-step transition can be regarded as an n-step transition
followed by an m-step transition. Because the intermediate state
i is unknown, summing over all possible values yields the
decomposition:

T nþm
kl ¼

XK
i¼1

T n
kiT

m
il , for all n,m � 1, k, l∈ ½K �, ð62Þ

known as the Chapman–Kolmogorov equations. In matrix nota-
tion, they can be written as T(n+m) ¼ T(n)T(m). It follows that the
n-step transition matrix is the n-th matrix power of the one-step
transition matrix, T(n) ¼ Tn.

A state l of a Markov chain is accessible from state k if T n
kl > 0.

We say that k and l communicate with each other and write k � l if
they are accessible from one another. State communication is reflex-
ive (k � k), symmetric (k � l ) l � k), and, by the Chapman–Kol-
mogorov equations, transitive ( j � k � l ) j � l). Hence, it
defines an equivalence relation on the state space. The Markov
chain is irreducible if it has a single communication class, i.e., if
any state is accessible from any other state.

A state is recurrent if the Markov chain will reenter it with
probability one. Otherwise, the state is transient. In finite-state
Markov chains, recurrent states are also positive recurrent, i.e.,
the expected time to return to the state is finite. A state is aperiodic
if the process can return to it after any time n � 1. Recurrence,
positive recurrence, and aperiodicity are class properties: if they
hold for a state k, then they also hold for all states communicating
with k.

52 Niko Beerenwinkel and Juliane Siebourg



A Markov chain is ergodic if it is irreducible, aperiodic, and
positive recurrent. An ergodicMarkov chain has a unique stationary
distribution π given by:

πl ¼ lim
n!1

T n
kl ¼

XK
k¼1

πkT kl , l∈½K �,
XK
l¼1

πl ¼ 1 ð63Þ

independent of the initial distribution Π. In matrix notation, π is
the solution of πt ¼ πtT.

Example 17 (Two-State Markov Chain): Consider theMarkov chain
with state space {1, 2} and transition probabilities T12 ¼ α > 0 and
T21 ¼ β > 0. Clearly, the chain is ergodic and its stationary distri-
bution π is given by:

π1 π2ð Þ ¼ π1 π2ð Þ 1� α α
β 1� β

� �
ð64Þ

or, equivalently, απ1 ¼ βπ2. With π1 + π2 ¼ 1, we obtain πt ¼ (α +
β)�1(α, β). □

In Example 17, if α ¼ 0, then state 1 is called an absorbing state
because once entered it is never left. In evolutionary biology and
population genetics, Markov chains are often used to model evol-
ving populations, and the fixation probability of an allele can be
computed as the absorption probability in such models.

Example 18 (Wright–Fisher Process): We consider two alleles, A and
a, in a diploid population of sizeN. The total number of A alleles in
generation n is described by a Markov chain Xn with state space
{0, 1, 2, . . ., 2N}. We assume that individuals mate randomly and
that maternal and paternal alleles are chosen randomly such that
ðXnþ1 j XnÞ � Binomð2N , k=ð2N ÞÞ, where k is the number of A
alleles in generation n. The Markov chain has transition
probabilities:

T kl ¼
2N

l

� �
k

2N

� �l 2N � k

2N

� �2N�l

: ð65Þ

If the initial number of A alleles is X1 ¼ k, then E(X1) ¼ k. After
binomial sampling, E(X2) ¼ 2N(k/(2N)) ¼ k and hence E(Xn) ¼
k for all n � 0. The Markov chain has the two absorbing states
0 and 2N, which correspond, respectively, to extinction and fixa-
tion of the A allele. To compute the fixation probability hk of A
given k initial copies of it:

hk ¼ lim
n!1

PðXn ¼ 2N j X 1 ¼ kÞ, ð66Þ

we consider the expected value, which is equal to k, in the limit as
n !1 to obtain
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k ¼ lim
n!1

EðXnÞ ¼ 0 � ð1� hkÞ þ 2N � hk: ð67Þ

Thus, the fixation probability is just hk ¼ k/(2N), the initial rela-
tive frequency of the allele. The Wright–Fisher process [15, 16] is a
basic stochastic model for random genetic drift, i.e., for the varia-
tion in allele frequencies only due to random sampling. □

If we observe data X ¼ (X(1), . . ., X(N )) from a finite Markov
chain MCðΠ,T Þ of length L, then the likelihood is

LðΠ,T Þ ¼ ∏
N

i¼1
PðX ðiÞÞ ¼ ∏

N

i¼1
PðX ðiÞ

1 Þ∏
L�1

n¼1
PðX ðiÞ

nþ1 j X ðiÞ
n Þ

¼ ∏
N

i¼1
Π

X
ðiÞ
1

∏
L�1

n¼1
T

X
ðiÞ
n ,X ðiÞ

nþ1

,

ð68Þ

which can be rewritten as:

LðΠ,T Þ ¼ ∏
N

i¼1
∏

k∈½K �
ΠNkðX ðiÞÞ

k ∏
k∈½K �

∏
l∈½K �

T
Nkl ðX ðiÞÞ
kl

¼ ∏
k∈½K �

ΠNk

k ∏
k∈½K �

∏
l∈½K �

TNkl

kl :

ð69Þ

withNkl(X
(i)) the number of observed transitions from state k into

state l in observation X(i), and Nkl ¼
PN

i¼1 NklðX ðiÞÞ the total
number of k-to-l transitions in the data, and similarly Nk(X

(i))
and Nk the number of times the i-th chain, respectively all chains,
started in state k.

Exercise 19 (Markov Chains): Let us consider a simple infectious
disease model, where each individual is either healthy (H) or dis-
eased (D). We assume the following two-state Markov chain to
describe infection-related disease and recovery via clearance of the
pathogen:

H D

α

β

1 − β1 − α

The probability of a healthy individual becoming sick due to
infection is α ¼ 0.6, and the probability of a diseased individual to
clear the infection and recover is β ¼ 0.9. The initial probabilities
for health and disease are P(H) ¼ 0.7 and P(D) ¼ 0.3. Write down
the transition matrix Tof this Markov chain. What is the probability
of observing the disease trajectories DDHHD and HDHDH? Cal-
culate the stationary distribution of the Markov chain.
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5 Continuous-Time Markov Chains

A continuous-time stochastic process {X(t), t � 0} with finite state
space [K] is a continuous-time Markov chain if

P ½X ðt þ sÞ ¼ l j X ðsÞ ¼ k, X ðuÞ ¼ xðuÞ, 0 � u < s �
¼ P ½X ðt þ sÞ ¼ l j X ðsÞ ¼ k�

ð70Þ

for all s, t � 1, k, l, x(u) ∈ [K], 0 � u < s. The chain is homoge-
neous if Eq. 70 is independent of s. The transition probabilities are
then denoted:

T klðtÞ ¼ P ½X ðt þ sÞ ¼ l j X ðsÞ ¼ k�: ð71Þ

It can be shown that the transition matrix T(t) is the matrix expo-
nential of a constant rate matrix R times t:

T ðtÞ ¼ expðRtÞ ¼
X1
j¼0

1

j !
ðRtÞj : ð72Þ

Example 20 (Jukes–Cantor Model): Consider a fixed position in a
DNA sequence, and let Tkl(t) be the probability that, due to muta-
tion, nucleotide k changes to nucleotide l after time t at this
position (Fig. 8). The Jukes–Cantor model [17] is the simplest
DNA substitution model. It assumes that the transition rates from
any nucleotide to any other are equal:

R ¼

�3α α α α
α �3α α α
α α �3α α
α α α �3α

0
BBBB@

1
CCCCA: ð73Þ

A T

C G

Fig. 8 Nucleotide substitution model. The state space and transitions of a
general nucleotide substitution model are shown. For the Jukes–Cantor model
(Example 20), all transitions from any nucleotide to any other nucleotide have the
same probability 1

4 ð1� e�4αt Þ
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The resulting transition matrix T ðtÞ ¼ expðRtÞ is

T ðtÞ ¼ 1

4

1þ 3e�4αt 1� e�4αt 1� e�4αt 1� e�4αt

1� e�4αt 1þ 3e�4αt 1� e�4αt 1� e�4αt

1� e�4αt 1� e�4αt 1þ 3e�4αt 1� e�4αt

1� e�4αt 1� e�4αt 1� e�4αt 1þ 3e�4αt

0
BBBB@

1
CCCCA
ð74Þ

and the stationary distribution as t !1 is uniform, π ¼ (1/4, 1/4,
1/4, 1/4)t. □

Example 21 (The Poisson Process): A continuous-time Markov chain
X(t) is a counting process, if X(t) represents the total number of
events that occur by time t. It is a Poisson process, if in addition
X(0) ¼ 0, the increments are independent, and in any interval of
length t the number of events is Poisson distributed with rate λt:

P ½X ðt þ sÞ �X ðsÞ ¼ k� ¼ P ½X ðtÞ ¼ k� ¼ e�λt ðλtÞ
k

k!
: ð75Þ

The Poisson process is used, for example, to count mutations in a
gene. □

Example 22 (Exponential Distribution): The exponential distribu-
tion ExpðλÞ with parameter λ > 0 is a common distribution for
waiting times. It is defined by the density function:

f ðxÞ ¼ λe�λx , for x � 0: ð76Þ

If X � ExpðλÞ, then X has expectation E(X) ¼ λ�1 and variance

VarðX Þ ¼ λ�2. The exponential distribution is memoryless, which
means that P(X > s + t j X > t) ¼ P(X > s), for all s, t > 0. An
important consequence of the memoryless property is that the
waiting times between successive events are i.i.d. For example, the
waiting times τn (n � 1) between the events of a Poisson process,
the sequence of interarrival times, are exponentially distributed,
τn � ExpðλÞ, for all n � 1. □

Exercise 23 (Kimura Model): The Kimura two-parameter model is a
DNA substitution model that distinguishes between transitions,
i.e., purine-to-purine and pyrimidine-to-pyrimidine substitutions,
from transversions, i.e., purine-to-pyrimidine and pyrimidine-to-
purine substitutions [18]. It is defined by the rate matrix:

R ¼

�2β � α β α β
β �2β � α β α
α β �2β � α β
β α β �2β � α

0
BB@

1
CCA,

where α, β∈þ are the two substitution rates. Assuming that the
Markov chain is ergodic, derive its stationary distribution.
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6 Hidden Markov Models

A hidden Markov model (HMM) is a statistical model for hidden
random variables Z ¼ (Z1, . . ., ZL), which form a homogeneous
Markov chain, and observed random variables X ¼ (X1, . . ., XL).
Each observed symbol Xn depends on the hidden state Zn. The
HMM is illustrated in Fig. 9. It encodes the following conditional
independence statements:

Znþ1⊥Zn�1 j Zn, 2 � n � L � 1 ðMarkovpropertyÞ
ð77Þ

Xn⊥Xm j Zn, 1 � m,n � L, m 6¼ n ð78Þ

The parameters of the HMM consist of the initial state
probabilities Π ¼ P(Z1), the transition probabilities Tkl ¼ P(Zn ¼
l j Zn�1 ¼ k) of the Markov chain, and the emission probabilities
Ekx ¼ P(Xn ¼ x j Zn ¼ k) of symbols x∈X . The HMM is denoted
HMMðΠ,T ,EÞ. For simplicity, we restrict ourselves here to finite
state spacesZ ¼ ½K �of Z andX ofX. The joint probability of (Z,X)
factorizes as:

PðX ,Z Þ ¼ PðZ 1Þ∏
L�1

n¼1
PðXn j ZnÞPðZnþ1 j ZnÞ

¼ ΠZ 1
∏
L�1

n¼1
EZn,XnT Zn,Znþ1

:

ð79Þ

TheHMM is typically used to model sequence data x ¼ (x1, x2,
. . ., xL) generated by different mechanisms zn which cannot be
observed. Each observation x can be a time series or any other
object with a linear dependency structure [19]. In computational
biology, the HMM is frequently applied to DNA and protein
sequence data, where it accounts for first-order spatial dependen-
cies of nucleotides or amino acids [20].

Z1 ... Zn−1

...

Zn Zn+1

X1 Xn−1 Xn Xn+1

...

...

ZL

XL

Fig. 9 Hidden Markov model. Shaded nodes represent observed random variables (or symbols) Xn, and clear
nodes represent hidden states (or the annotation). Directed edges indicate statistical dependencies which are
given, respectively, by transition and emission probabilities among hidden states and between hidden states
and observed symbols
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Example 24 (CpG Islands): CpG islands are CG-enriched regions in
a DNA sequence. They are typically a few hundreds to thousands of
base pairs long. We want to use a simple HMM to detect CpG
islands in genomic DNA. The hidden states Zn∈Z ¼ f�,þg indi-
cate whether sequence position n belongs to a CpG island (+ ) or
not (�). The observed sequence is given by the nucleotide at each
position, Xn∈X ¼ fA,C,G,Tg.

Suppose we observe the sequence x¼ (C, A, C, G). Then, we can
calculate the joint probability of x and any state path z by Eq. 79.
For example, if z ¼ (+, �, �, +), then P(X ¼ x, Z ¼ z) ¼ Π+ E+,

CT+,� E�,AT�,� E�,CT�,+ E+,G. □

Typically, one is interested in the hidden state path z ¼ (z1, z2,
. . ., zL) that gave rise to the observation x. For biological sequences,
z is often called the annotation of x. In Example 24, the genomic
sequence is annotated with CpG islands. For generic parameters,
any state path can give rise to a given observed sequence, but with
different probabilities. The decoding problem is to find the anno-
tation z∗ that maximizes the joint probability:

z∗ ¼ argmax
z∈Z

PðX ¼ x, Z ¼ zÞ: ð80Þ

There are KL possible state paths such that already for sequences of
moderate length, the optimization problem (Eq. 80) cannot be
solved by enumerating all paths.

However, there is an efficient algorithm solving (Eq. 80) based
on the following factorization along the Markov chain:

max
Z

PðX ,Z Þ ¼ max
Z 1, ...,ZL

PðZ 1Þ∏
L�1

n¼1
PðXn j ZnÞPðZnþ1 j ZnÞ

¼ max
ZL

PðZL j ZL�1ÞPðXL j ZLÞ

½ . . . ½max
Z 2

PðZ 3 j Z 2ÞPðX 2 j Z 2Þ

½max
Z 1

PðZ 2 j Z 1ÞPðX 1 j Z 1Þ � PðZ 1Þ�� . . . �:
ð81Þ

Thus, the maximum over state paths (Z1, . . ., ZL) can be obtained
by recursively computing maxima over each Zn. Each of the L terms
in parenthesis defines a probability distribution over K states by
maximizing over K values. Hence, the time complexity of the
algorithm is O(LK2), despite the fact that the maximum is over
KL paths. This procedure is known as dynamic programming and it
is the workhorse of biological sequence analysis. For HMMs, it is
known as the Viterbi algorithm [21].
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In order to compute the marginal likelihood P(X ¼ x) of an
observed sequence x, we need to sum the joint probability P(Z ¼ z,
X ¼ x) over all hidden statesz∈Z. The length of this sum isKL, but
it can be computed efficiently by the same dynamic programming
principle used for the Viterbi algorithm:X

Z

PðX ,Z Þ ¼
X

Z 1, ...,ZL

PðZ 1Þ∏
L�1

n¼1
PðXn j ZnÞPðZnþ1 j ZnÞ

¼
X
ZL

PðZL j ZL�1ÞPðXL j ZLÞ

½ . . . ½X
Z 2

PðZ 3 j Z 2ÞPðX 2 j Z 2Þ

½X
Z 1

PðZ 2 j Z 1ÞPðX 1 j Z 1Þ � PðZ 1Þ�� . . . �:
ð82Þ

Indeed, this factorization is the same as in Eq. 81 with maxima
replaced by sums. The recursive algorithm implementing (Eq. 82)
is known as the forward algorithm. In each step, it computes the
partial solution f(n, Zn) ¼ P(X1, . . ., Xn, Zn).

The factorization along the Markov chain can also be done in
the other direction starting the recursion from ZL down to Z1. The
resulting backward algorithm generates the partial solutions b(n,
Zn) ¼ P(Xn+1, . . .,XL j Zn). From the forward and backward quan-
tities, one can also compute the position-wise posterior state
probabilities:

PðZn j X Þ ¼ PðX ,ZnÞ
PðX Þ ¼ PðX 1, . . . ,Xn,ZnÞPðXnþ1, . . . ,XL j ZnÞ

PðX Þ

¼ f ðn,ZnÞbðn,ZnÞ
PðX Þ :

ð83Þ

For example, in the CpG island HMM (Example 24), we can
compute, for each nucleotide, the probability that it belongs to a
CpG island given the entire observed DNA sequence. Selecting the
state that maximizes this probability independently at each
sequence position is known as posterior decoding. In general, the
result will be different from Viterbi decoding.

Example 25 (Pairwise Sequence Alignment): The pair HMM is a
statistical model for pairwise alignment of two observed sequences
over a fixed alphabet A. For protein sequences, A is the set of
20 natural amino acids and for DNA sequences, A consists of the
four nucleotides, plus the gap symbol (“-”). At each position of the
alignment, a hidden variable Zn∈Z ¼ fM, X, Y} indicates whether
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there is a (mis-)match (M), an insertion (X), or a deletion (Y) in
sequence y relative to sequence x. For example:

z ¼ MMMMMMMMMMMMMXXMMMMMMMMMMMMYMMMMYMMMMM
x ¼ CTRPNNNTRKSIRPQIGPGQAFYATGD�IGDI�RQAHC
y ¼ CGRPNNHRIKGLR��IGPGRAFFAMGAIRGGEIRQAHC

The emitted symbols are pairs (Xn, Yn) of aligned sequence char-
acters with state space ðA � AÞ∖fð�,�Þg. Thus, a pairwise align-
ment is a probabilistically generated sequence of pairs of symbols.

The choice of transition and emission probabilities corresponds
to fixing a scoring scheme in nonprobabilistic formulations of
sequence alignment. For example, the emission probabilities
P[(a, b) j M] from a match state encode pairwise amino acid pre-
ferences and can be modeled by substitution matrices, such as PAM
and BLOSUM [20].

In the pair HMM, computing an optimal alignment between
x and y means to find the most probable state path
z∗ ¼ argmaxzPðX ¼ x, Y ¼ y, Z ¼ z), which can be solved using
the Viterbi algorithm. Using the forward algorithm, we can also
compute efficiently the marginal probability of two sequences
being related independent of their alignment, P(X, Y ) ¼∑ZP
(X, Y, Z). In general, this probability is more informative than the
posterior P(Z jX, Y ) of an optimal alignment z∗ because many
alignments tend to have the same or nearly the same probability
such that P(Z ¼ z∗ j X, Y ) can be very small. Finally, we can also
compute the probability of two characters xn and ym being aligned
by means of posterior decoding. □

Example 26 (Profile HMM): Profile hidden Markov models repre-
sent groups of related sequences, such as protein families. They are
used for searching homologous sequences and for building multi-
ple sequence alignments. They can be regarded as unrolled versions
of the pair HMM. A profile HMM is a statistical model for observed
sequences, which are regarded as i.i.d. realizations. It has site-
specific emission probabilities En(a) ¼ P(Xn ¼ a). In its simplest
form allowing only gap-free alignments, the probability of an
observation x is just

PðX ¼ xÞ ¼ ∏
L

n¼1
EnðxiÞ: ð84Þ

The matrix EnðaÞð Þ1�n�L, a∈A is called a position-specific scoring
matrix (PSSM).

Profile HMMs can also model indels. Figure 10 shows the
hidden state space of such a model. It has match states Mn, which
can emit symbols according to the probability tables En, insert
states In, which usually emit symbols in an unspecific manner, and
delete states Dn, which do not emit any symbols. The possible
transitions between those states allow for modeling alignment
gaps of any length.
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A given profile HMM for a protein family can be used to detect
new sequences that belong to the same family. For a query sequence
x, we can either consider the most probable alignment of the
sequence to the HMM, P(X ¼ x, Z ¼ z∗), or the marginal proba-
bility independent of the alignment, P(X ¼ x) ¼∑ZP(X ¼ x, Z),
to decide about family membership. □

Parameter estimation in HMMs is complicated by the presence
of hidden variables. In Subheading 2, the EM algorithm has been
introduced for finding a local maximum of the likelihood surface.
For HMMs, the EM algorithm is known as the Baum–Welch
algorithm [22]. For simplicity, let us ignore the initial state prob-
abilities Π and summarize the parameters of the HMM by
θ ¼ (T, E). For ML estimation, we need to maximize the observed
log-likelihood:

ℓobsðθÞ ¼ logPðX j θÞ ¼ log
X
Z

PðX ,Z j θÞ

¼ log
X

Z ð1Þ, ...,Z ðN Þ

∏
N

i¼1
PðX ðiÞ,Z ðiÞ j θÞ,

ð85Þ

where X(1), . . ., X(N ) are the i.i.d. observations. For each observa-
tion, we can rewrite the joint probability as:

PðX ðiÞ,Z ðiÞ j θÞ ¼ ∏
k∈½K �

∏
x∈X

E
NkxðZ ðiÞÞ
kx � ∏

k∈½K �
∏

l∈½K �
T

Nkl ðZ ðiÞÞ
kl ,

ð86Þ

where Nkx(Z
(i)) is the number of x emissions when in state k and

Nkl(Z
(i)) the number of k-to-l transitions in state path Z(i)

(cf. Eq. 68).

B Mn E

In

Dn

Fig. 10 Profile hidden Markov model. The hidden state space and its transitions
are shown for the profile HMM of length L ¼ 3. Match states are denoted Mn,
insert states In, and delete states Dn. B and E denote silent begin and end states,
respectively. With match and insert states, probability tables for the emissions of
symbols (amino acids or nucleotides, and gaps) are associated
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In the E step, the expectation of Eq. 85 is computed with
respect to P(Z j X, θ0), where θ0 is the current best estimate of θ.
We use Eq. 86 and denote by Nkx and Nkl the expected value of
∑iNkx(Z

(i)) and ∑iNkl(Z
(i)), respectively, to obtain

E½ℓhidðθÞ� ¼
X
Z

PðZ j X , θ0ÞlogPðX ,Z j θÞ

¼
X

Z ð1Þ, ...,Z ðN Þ

PðZ j X , θ0Þ

X
k, x

N kxðZ ðiÞÞlogEkx þ
X
k, l

N klðZ ðiÞÞlogT kl

2
4

3
5

¼
X
k, x

N kx logEkx þ
X
k, l

N kl logT kl :

ð87Þ

The expected countsNkx andNkl are the sufficient statistics [11] of
the HMM, i.e., with respect to the model, they contain all infor-
mation about the parameters available from the data. The expected
counts can be computed using the forward and backward algo-
rithms. In the M step, this expression is maximized with respect to
θ ¼ (T, E). We find the MLEs T̂ kl ¼ Nkl=

P
mNkm and

Ê kx ¼ Nkx=
P

yN ky .

7 Bayesian Networks

Bayesian networks are a class of probabilistic graphical models
which generalize Markov chains and HMMs. The basic idea is to
use a graph for encoding conditional independences among ran-
dom variables (Fig. 11). The graph representation provides not
only an intuitive and simple visualization of the model structure,
but it is also the basis for designing efficient algorithms for infer-
ence and learning in graphical models [23–25].

A Bayesian network (BN) for a set of random variables
X ¼ (X1, . . ., XL) consists of a directed acyclic graph (DAG) and
local probability distributions (LPDs). The DAG G ¼ (V, E) has
vertex set V ¼ [L] and edge set E 
 V � V . Each vertex n ∈ V is
identified with the random variable Xn. If there is an edge Xm !
Xn in G, then Xm is a parent of Xn and Xn is a child of Xm. For each
vertex n ∈ V , there is an LPD PðXn j X paðnÞÞ, where paðnÞ is the
set of parents of Xn in G. The Bayesian network model is defined as
the family of distributions for which the joint probability of
X factors into conditional probabilities as:

PðX 1, . . . ,XLÞ ¼ ∏
L

n¼1
PðXn j X paðnÞÞ: ð88Þ
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In this case, we write X � BNðG, θÞ, where θ ¼ (θ1, . . ., θL)
denotes the parameters of the LPDs.

For the Bayesian network shown in Fig. 11, we find P(U, V,W,
X, Y ) ¼ P(U)P(Y )P(V j U, Y )P(W j V )P(X j U). The graph
encodes several conditional independence statements about (U,
V, W, X, Y ), including, for example, W ⊥{U, X} j V .

Example 27 (Markov Chain): A finite Markov chain is a Bayesian
network with the DAG X1 ! X2 !� � � ! XL, denoted C, and
joint distribution:

PðX 1, . . . ,XnÞ ¼ PðX 1ÞPðX 2 j X 1ÞPðX 3 j X 2Þ� � �PðXL j XL�1Þ:
ð89Þ

If X � MCðΠ,T Þ is homogeneous, then the LPDs are θ1 ¼ P
(X1) ¼ Π and θn+1 ¼ P(Xn+1 j Xn) ¼ T for all n ∈ [L � 1] such
that MCðΠ,T Þ ¼ BNðC , θÞ. Similarly, HMMs are Bayesian net-
works with hidden variables Z and factorized joint distribution
given in Eq. 79. □

The meaning of the parameters θ of a Bayesian network
depends on the family of distributions that has been chosen for
the LPDs. In the general case of a discrete random variable with
finite state space, θn is a conditional probability table. If each vertex
Xn has K possible states, then:

θn ¼ PðXn ¼ a j X paðnÞ ¼ bÞ

 �

b∈ K½ �paðnÞ,a∈ K½ � ð90Þ

has K paðnÞ � ðK � 1Þ free parameters. If Xn depends on all other
variables, then θn has the maximal number of KL � 1 parameters,
which is exponential in the number of vertices. If, on the other
hand, Xn is independent of all other variables, paðnÞ ¼ ;, then θn
has (K � 1) parameters, which is independent of L. For the chain
(Example 27) where each vertex has exactly one outgoing and one
incoming edge, we find a total of (K � 1) + (L � 1)K(K � 1) free
parameters which is of order O(LK2).

B

AE

C

D

Fig. 11 Example of a Bayesian network. Vertices correspond to random variables
and edges represent conditional probabilities. The graph encodes conditional
independence statements about the random variables U, V , W, X, Y , and Z.
Their joint probability factors according to the graph as P(U, V, W, X, Y ) ¼ P(U )
P(Y )P(V j U, Y )P(W j V )P(X j U )
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A popular model for continuous random variables Xn is the
linear Gaussian model. Here, the LPDs are Gaussian distributions
with mean a linear function of the parents:

PðXn j X paðnÞÞ ¼ Normðvn þ wt
n �X paðnÞ, σ

2
nÞ, ð91Þ

with parameters vn∈ and wi∈paðnÞ specifying the mean and
variance σ2n. The number of parameters increases linearly with the
number of parents, but only linear relationships can be modeled.
All marginal and conditional probabilities of (X1, . . ., XL) are also
Gaussians.

Learning a Bayesian networkBNðG, θÞ from dataD can be done
in different ways following either the Bayesian or the maximum
likelihood approach as introduced in Subheading 2. In general, it
involves first finding the optimal network structure:

G∗ ¼ argmax
G

PðG j DÞ, ð92Þ

and then estimating the parameters:

θ∗ ¼ argmax
θ

Pðθ j G∗, DÞ ð93Þ

for the given optimal structure G∗. The first step is a model selec-
tion problem as introduced in Subheading 2.

Model selection for Bayesian networks is a particularly hard
problem because the number of DAGs increases super-
exponentially with the number of vertices rendering exhaustive
searches impractical, and the objective function in Eq. 92 is difficult
to compute. Recall that the posterior PðG j DÞ is proportional to
the product PðD j GÞPðGÞ of marginal likelihood and network
prior, and the marginal likelihood:

PðD j GÞ ¼
R
PðD j θ, GÞPðθ j GÞ dθ ð94Þ

is usually analytically intractable. Here, P(θ j G) is the prior distri-
bution of parameters given the network topology.

To address this limitation, the marginal likelihood (Eq. 94) can
be approximated by a function that is easier to evaluate. A popular
choice is the Bayesian information criterion (BIC) [26]:

logPðD j GÞ 	 logPðD j θ̂ML,GÞ � 1

2
νlogN , ð95Þ

where ν is the number of free parameters of the model and N the
size of the data. The BIC approximation can be derived under
certain assumptions, including a unimodal likelihood. It replaces
computation of the integral (Eq. 94) by evaluating the integrand at
the MLE and adding the correction term �ðνlogN Þ=2, which
penalizes models of high complexity.

The model selection problem remains hard even with a tracta-
ble scoring function, such as BIC, because of the enormous search
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space. Local search methods, such as greedy hill climbing or
simulated annealing, are often used in practice. They return a
local maximum as a point estimate for the best network structure.
Results can be improved by running several local searches from
different starting topologies.

Often, data are sparse and we will find diffuse posterior distri-
butions of network structures, which might not be represented very
well by a single point estimate. In the fully Bayesian approach, we
aim at estimating the full posteriorPðG j DÞ / PðD j GÞPðGÞ. One
way to approximate this distribution is to draw a finite number of
samples from it. Markov chain Monte Carlo (MCMC) methods
generate such a sample by constructing a Markov chain that con-
verges to the target distribution [27].

In the Metropolis–Hastings algorithm [28], we start with a
random DAG G(0) and then iteratively generate a new DAG G(n)

from the previous one G(n�1) by drawing it from a proposal distri-
bution Q:

GðnÞ � Q ðGðnÞ j Gðn�1ÞÞ: ð96Þ

The new DAG is accepted with acceptance probability:

min
PðD j GðnÞÞPðGðnÞÞQ ðGðn�1Þ j GðnÞÞ

PðD j Gðn�1ÞÞPðGðn�1ÞÞQ ðGðnÞ j Gðn�1ÞÞ
, 1

( )
ð97Þ

Otherwise, the model is left unchanged and the next sample is
drawn. With this acceptance probability, it is guaranteed that the
Markov chain is ergodic and converges to the desired distribution.
After an initial burn-in phase, samples from the stationary phase of
the chain are collected, say G(m), . . ., G(N ). Any feature f of the
network (e.g., the presence of an edge or a subgraph) can be
estimated as the expected value:

Eðf Þ ¼
X
G

f ðGÞPðG j DÞ 	 1

N

XN
n¼m

f ðGðnÞÞ: ð98Þ

A critical point of the Metropolis–Hastings algorithm is the choice
of the proposal distribution Q, which encodes the way the network
space is explored. Because not all graphs, but only DAGs, are
allowed, computing the transition probabilities Q(G(n) j G(n�1)) is
usually the main computational bottleneck.

Parameter estimation, i.e., solving (Eq. 93), can be done along
the lines described in Subheading 2 following either the ML or the
Bayesian approach. If the model contains hidden random variables,
then the EM algorithm (Subheading 3) can be used. However, this
approach is feasible only if efficient inference algorithms are avail-
able. For hidden Markov models (Subheading 6), the forward and
backward algorithms provided an efficient way to compute mar-
ginal probabilities and the expected hidden log-likelihood. These
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algorithms can be generalized to the sum–product algorithm for
tree-like graphs and the junction tree algorithm for general DAGs.
The computational complexity of the junction tree algorithm is
exponential in the size of the largest clique of the so-called mor-
alized graph, which is obtained by dropping edge directions and
adding edges between any two vertices that have a common child in
the original DAG [11].

Alternatively, if exact inference is computationally too expen-
sive, then approximate inference can be used. For example, Gibbs
sampling [29] is anMCMC technique for generating a sample from
the joint distribution P(X1, . . ., XL). The idea is to iteratively
sample from the conditional probabilities of P(X1, . . .,XL), starting
with X

ðnþ1Þ
1 � PðX 1 j X ðnÞ

2 , . . . ,X
ðnÞ
L Þ and cycling through all vari-

ables in turns:

X
ðnþ1Þ
j � PðXj jX ðnþ1Þ

1 , . . . ,X
ðnþ1Þ
j�1 ,X

ðnÞ
jþ1, . . . ,X

ðnÞ
L Þ

for all j ¼ 2, . . . ,L:
ð99Þ

Gibbs sampling can be regarded as a special case of the Metropo-
lis–Hastings algorithm. It is particularly useful, if it is much easier to
sample from the conditionals P(Xk j X∖k) than from the joint dis-
tribution P(X1, . . ., XL), where X∖k denotes all variables Xn except
Xk. For graphical models, the conditional probability of each vertex
Xk depends only on its Markov blanketXMB(k), defined as the set of
its parents, children, and co-parents (vertices with the same chil-
dren), P(Xk j X∖k) ¼ P(Xk j XMB(k)).

Example 28 (Phylogenetic Tree Models): A phylogenetic tree model
[30] for a set of aligned DNA sequences from different species is a
Bayesian network model, where the graph is a tree in which the
leaves represent the observed contemporary species and the interior
vertices correspond to common extinct ancestors (Fig. 12). The
topology (graph structure) S defines the branching order and the
branch lengths correspond to (phylogenetic) time. The LPDs are
defined by a nucleotide substitution model (Subheading 5).

Let X(i) ∈ {A, C, G, T}L denote the i-th column of a multiple
sequence alignment of L observed species. We regard the alignment
columns as independent observations of the evolutionary process.
The character states of the hidden (extinct) ancestors are denoted
Z(i). The likelihood of the observed sequence data X ¼ (X(1), . . .,
X(N )) given the tree topology S and the branch lengths t is

PðX j S, tÞ ¼
X
Z

∏
N

i¼1
PðX ðiÞ,Z ðiÞ j S, tÞ, ð100Þ

where P(X(i), Z(i) j S, t) factors into conditional probabilities
according to the tree structure. This marginal probability can be
computed efficiently with an instance of the sum–product algorithm
known as the peeling algorithm (or Felsenstein algorithm) [31].
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For example, in the tree displayed in Fig. 12, each observation
X has probability:

PðX Þ ¼
X
Z

PðX ,Z Þ ð101Þ

¼
X
Z

PðX 1 j Z 4ÞPðX 2 j Z 1ÞPðX 3 j Z 1ÞPðX 4 j Z 2Þ�

� PðX 5 j Z 2ÞPðZ 1 j Z 3ÞPðZ 2 j Z 3ÞPðZ 3 j Z 4ÞPðZ 4Þ
ð102Þ

¼
X
Z 4

PðZ 4ÞPðX 1 j Z 4Þ
X
Z 3

PðZ 3 j Z 4Þ

2
4

X
Z 2

PðZ 2 j Z 3ÞPðX 4 j Z 2ÞPðX 5 j Z 2Þ

2
4

3
5

�
X
Z 1

PðZ 1 j Z 3ÞPðX 2 j Z 1ÞPðX 3 j Z 1Þ

2
4

3
5
3
5,

ð103Þ

where we have omitted the dependency on the branch length t.
Several software packages implement ML or Bayesian learning of
phylogenetic tree models. □

In the simplest case, we suppose that the observed alignment
columns are independent. However, it is more realistic to assume
that nucleotide substitution rates vary across sites because of vary-
ing selective pressures. For example, there could be differences
between coding and noncoding regions, among different regions
of a protein (loops, and catalytic sites), or among the three bases
of a triplet coding for an amino acid. More sophisticated models
can account for this rate heterogeneity. Let us assume site-specific
substitution rates ri such that the local probabilities become

Z4

X1

Z3

Z1

X2 X3

Z2

X4 X5

Fig. 12 Phylogenetic tree model. The observed random variables Xi represent
contemporary species and the hidden random variables Zi their unknown
common ancestors
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P(X(i) j ri, t, S). To model the distribution of the rates, often a
gamma distribution is used.

Example 29 (Gamma Distribution): The gamma distribution
Gammaðα, βÞ is parametrized by a shape parameter α and a rate
parameter β. It is defined by the density function:

f ðxÞ ¼ βα

ΓðαÞ x
α�1e�βx , for x � 0: ð104Þ

Its expectation is E(X) ¼ α/β and its variance VarðX Þ ¼ α=β2. The
gamma distribution generalizes several other distributions, for
example Gammað1, λÞ ¼ ExpðλÞ (Example 22). □

Another approach to account for varying mutation rates are
phylogenetic hidden Markov models (phylo-HMMs).

Example 30 (Phylo-HMM): Phylo-HMMs [32] combine HMMs
and phylogenetic trees into a single Bayesian network model. The
idea is to use an HMM along the linear chain of the genomic
sequence and, at each position, to condition a phylogenetic tree
model on the hidden state (Fig. 13). This architecture allows for
modeling different evolutionary histories at different sites of the
genome. In particular, the model can account for heterogeneity in
the rate of evolution, for example, due to functionally conserved
elements, but it also allows for a change in tree topology along the
sequence, a situation that can result from recombination [23].
Phylo-HMMs are also used for gene finding. □

Exercise 31 (Inference in Bayesian Networks): Consider the gene
network on five genes denoted A, B, C, D, E, with the graph
structure displayed below. Gene expression profiles under different
conditions C1–C9 have been observed and are summarized in the
table below, where a zero indicates that the gene is not expressed
and a one that it is expressed.

...

X1,1 X1,2 X1,3 X2,1 X2,2 X2,3 X3,1 X3,2 X3,3 X4,1 X4,2 X4,3

Y1,1

Y1,2 Y1,3

Y2,1

Y2,2 Y2,3

Y3,1

Y3,2 Y3,3

Y4,1

Z1 Z2 Z3 Z4

Y4,2 Y4,3

Fig. 13 Phylo-HMM. Shown are the first four positions of a Phylo-HMM. The hidden Markov chain has random
variables Z. In the trees, Y denote the hidden common ancestors and X the observed species. Note that the
tree topology changes between position 2 and 3
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A B C D E

C1 0 0 0 0 0

C2 0 0 0 0 1

C3 0 0 0 0 1

C4 1 1 1 1 0

C5 1 0 1 1 0

C6 0 0 0 1 1

C7 1 1 1 1 0

C8 1 0 0 0 1

C9 1 0 0 1 1

B

AE

C

D

(a) Specify the adjacency matrix of the directed graph.

(b) Determine the local probability distributions for each vertex of
the graph. Use conditional counting to determine the condi-
tional probabilities as:

PðXi j X paðiÞÞ 	
N ðXi,X paðiÞÞP

kN ðXi ¼ k, X paðiÞ
,

whereN ðXi, X paðiÞÞ is the number of joint observations ofXi

and its parents.

(c) What is the joined probability of (XA,XB,XC,XD,XE) for this
network?

(d) We now want to determine the most probable explanation for
observing a gene C to be active as a result of the influences of its
upstream genes A and E. For this, one has to infer the posterior
probabilities P(A j C ¼ 1) and P(E j C ¼ 1) using Bayes the-
orem.Here, assume that the probabilitiesP(A) andP(E) derived
from the expression data are suitable prior probabilities. Which
constellation is most likely to trigger the expression of C?
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Chapter 3

A Not-So-Long Introduction to Computational Molecular
Evolution

Stéphane Aris-Brosou and Nicolas Rodrigue

Abstract

In this chapter, we give a not-so-long and self-contained introduction to computational molecular evolu-
tion. In particular, we present the emergence of the use of likelihood-based methods, review the standard
DNA substitution models, and introduce howmodel choice operates. We also present recent developments
in inferring absolute divergence times and rates on a phylogeny, before showing how state-of-the-art
models take inspiration from diffusion theory to link population genetics, which traditionally focuses at a
taxonomic level below that of the species, and molecular evolution. Although this is not a cookbook
chapter, we try and point to popular programs and implementations along the way.

Key words Likelihood, Bayes, Model choice, Phylogenetics, Divergence times

1 Introduction

Many books [1–7] and review papers [8–10] have been published
in recent years on the topic of computational molecular evolution,
so that updating our previous primer on the very same topic [11]
may seem redundant. However, the field is continuously under-
going changes, as both models and algorithms become even more
sophisticated, efficient, robust, and accurate. This increase in refine-
ment has not been motivated by a desire to complicate existing
models, but rather to make an old wish come true: that of having
integrated methods that can take unaligned sequences as an input,
and simultaneously output the alignment, the tree, and other esti-
mates of interest, in a sound statistical framework justified by sound
principles: those of population genetics.

The aim of this chapter is still to provide readers with the
essentials of computational molecular evolution, offering a brief
overview of recent progress, both in terms of modeling and algo-
rithm development. Some of the details will be left out as they are
dealt with by others in this volume. Likewise, the analysis of

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_3, © The Author(s) 2019
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genomic-scale data is briefly touched upon, but the details are left
to other chapters.

2 Parsimony and Likelihood

2.1 A Brief Overview

of Parsimony

The simplest phylogenetic question pertains to the reconstruction
of a rooted tree with three sequences (Fig. 1). The sequences can be
made of DNA, RNA, amino acids, or codons, but for the sake of
simplicity we focus on DNA throughout this chapter. In the basic
example below, based on [12], DNA sequences are assumed to have
been sampled from three different species that diverged a “long
time ago.” In this context, we assume that the data or gene
sequences have been aligned (see Subheading 6), and that the
DNA alignment is:

s1 ATGACCCCAATACGCAAAACTAACCCCCTAATAAAATTAATTAACCACTCCTTC

s2 ATGACCCCAATACGGAAAACTAACCCCCAAATAAAATTAATTAACCACTCATTC

s3 ATGACGCCAATACGCAAAACTAACCGCCTAATAAAATTAATTTACCACTCATTC

The objective is to estimate which of the three fully resolved
topologies in Fig. 1 is supported by the data. In order to go further,
we recode the data in terms of site patterns, which correspond to
the patterns observed in each column of our alignment. This recod-
ing implies that columns, or sites, in our alignment evolve accord-
ing to an identically and independently distributed (iid) process.
With this in mind, our alignment can be recoded in the following
manner. When all the characters (nucleotides) in a column are
identical, the same letter is assigned to each character, for example,
x, irrespective of the actual character state. When a substitution
occurs in one of the three sequences, we have three corresponding
site patterns: xxy, xyx, and yxx, where the order within each site
pattern respects the order of the sequences in the alignment, s1s2s3.

T0 T1 T2 T3

s1 s2 s3 s1 s2 s3 s2 s1 s3 s1 s2 s3

Fig. 1 The simplest phylogenetic problem. With three species, s1 s2, and s3, four
rooted trees are possible: T0, the star tree, and the three resolved topologies
T1–T3
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The first informative site pattern, xxy, implies that at this
particular site, sequences s1 and s2 are more similar than any of
these to s3, so that this site pattern supports topology T1, which
groups sequences s1 and s2 together (Fig. 1). The most intuitive
idea, called the winning-site strategy, is that the topology supported
by the data corresponds to the fully resolved topology that has the
largest number of site patterns in its favor. In the example shown
above, topology T1 is supported by three columns (with site pattern
xxy), topology T2 by two columns (xyx), and T3 by one column
(yxx; see Table 1). This is the intuition behind parsimony, which
minimizes the amount of change along a topology. Strictly
speaking, unordered parsimony cannot distinguish these three
trees as they all require at least one single change. Yet, it can be
argued that if tree T1 is the true tree, site pattern xxy is more likely
than any other patterns as xxy requires at least one change along a
long branch (the one leading to sequence s3) while both xyx and
yxx require a change along a short branch (see p. 28 sqq. in [13];
[12]).

A number of methodological variations exist. A very condensed
overview can be found in the books by Durbin [14] or, with more
details, Felsenstein [15]. Most computer programs that implement
substitution models where sites are iid condense the alignment as
an array of site patterns; some, like PAML [16], even output these
site patterns.

Note that in obtaining this topology estimate, most of the site
columns were discarded from our alignment (all the xxx site pat-
terns, representing 89% of the site in our example above). Most of

s1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyxxx

s2 xxxxxxxxxxxxxxyxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxxxxxx

s3 xxxxxyxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxyxxxxxxxxxxx

Table 1
The winning-site strategy

Site pattern Supported Ti Count

xxx T0 48

xxy T1 3

xyx T2 2

yxx T3 1

The data alignment is reduced to a frequency table of site patterns. In the case of three

sequences, only the last three site patterns are informative

A Not-So-Long Introduction to Computational Molecular Evolution 73



our data were phylogenetically uninformative (for parsimony). We
also failed to take evolutionary time into account, or any process of
basic molecular biology, such as the observation that transitions
(substitution of a purine [A or G] by a purine, or a pyrimidine by a
pyrimidine) are more frequent than transversions (substitution
between a purine and a pyrimidine).

2.2 Assessing the

Reliability of an

Estimate: The

Bootstrap

As with any statistical exercise estimating a quantity of interest, we
would like to have a confidence interval, taken at a particular level,
so that we can gauge the reliability of our estimate. A standard
approach to derive confidence intervals is the bootstrap [17], a
computational technique that resamples data points with replace-
ment to simulate the distribution of any test statistic under the null
hypothesis that is tested. The bootstrap, particularly useful in com-
plicated nonparametric problems where no asymptotic results can
be obtained [18], was adapted by Felsenstein to the nonstandard
phylogenetic problem [19]. Indeed, the problem is nonstandard in
that the object for which we wish to assess accuracy is not a real-
valued parameter, but a graph.

The basic idea, clearly explained in [20], consists in resampling
columns of the alignment, with replacement, to construct a “syn-
thetic” alignment of the same size as the original alignment. This
synthetic or bootstrap replicate is then subjected to the same tree-
reconstruction algorithm used on the original data (Fig. 2). This
exercise is repeated a large number of times (e.g., � 106), and the
proportion of each original bipartition (internal node) in the set of
bootstrapped trees is recorded. In Fig. 2, for instance, the bipar-
tition s1s2|s3 is found in two bootstrap trees out of three, so the
bootstrap support for this node is 66.7%. In this simple case with
three sequences, the bootstrap support for topology T1 is also
66.7%. This bootstrap proportion for topologies (or for trees
when branch lengths are taken into account, in a maximum likeli-
hood context, for instance—see below) can be computed very
quickly by bootstrapping the sitewise log-likelihood values, instead
of the columns of the alignment; this bootstrap is called RELL, for
“resampling estimated log-likelihood” [21].

However, this approach is no longer used or cited extensively
since 2008 (source: ISI Thompson). One alternative that has
gained momentum is the one based on the approximated likelihood
ratio test (aLRT) [22], implemented, for instance, in phyml
[23, 24]. Instead of resampling any quantity (sites or sitewise
log-likelihood values), the aLRT tests the null hypothesis that an
interior branch length is zero. In spite of being slightly conservative
in simulations, the approach is extremely fast and hence highly
practical [22].

The meaning of the bootstrap has been a matter of debate for
years. As noted before [8] (see also [22]), the bootstrap proportion
P can be seen as assessing the correctness of an internal node, and

74 Stéphane Aris-Brosou and Nicolas Rodrigue



failing to do so [25], or 1 � P can be interpreted as a conservative
probability of falsely supporting monophyly [26]. Since bootstrap
proportions are either too liberal or too conservative depending on
the actual interpretation of P [27], it is difficult to adjust the
threshold below which monophyly can be confidently ruled out
[28]. Alternatively, an intuitive geometric argument was proposed
to explain the conservativeness of bootstrap probabilities [18] and
was further developed into the approximately unbiased or AU test,
implemented in CONSEL [29]. In spite of these difficulties, the
bootstrap is still widely used—and mandatory in all publications
featuring a phylogeny—to assess the confidence one can have in the
tree estimated from the data under a particular scheme or model
(see Subheading 2.9.3 below). Lastly, note that bootstrap support
has often been abused [30], as a high value does not necessarily
indicate high phylogenetic signal, and can be the result of system-
atic biases [31] due to the use of the wrong model of evolution, for
instance, as detailed below.

T1

s1 s2 s3

Original sequence alignment

Bootstrap replicate #1
T1

s1 s2 s3Bootstrap replicate #2
T2

s2 s1 s3Bootstrap replicate #3
T1

s1 s2 s3

T1

s1 s2 s3

2/3

Fig. 2 The (nonparametric) bootstrap. See text for details
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2.3 Parsimony and

LBA

Now that we have a means of evaluating the support for the
different topologies, we can test some of the conditions under
which parsimony estimates the correct tree topology. Ideally, a
good method should return the correct answer with a probability
of one when the number of sites increases to infinity. This desirable
statistical property is called consistency. One serious criticism of
parsimony is its sensitivity to long branch attraction, or LBA, even
in the presence of an infinite amount of data (infinite alignment
length) [31]. In other words, parsimony is not statistically
consistent.

Different types of model misspecification can lead to LBA, and
new ones are continually identified. The topology originally used to
demonstrate the artifact is represented in Fig. 3, where two long
branches are separated by a shorter one. Felsenstein demonstrated
that, under a simple evolutionary process, the artifact or LBA tree is
reconstructed. Note that parsimony is not the only phylogenetic
method affected by LBA, but because it posits a very simple model
of evolution [32–34], parsimony is particularly sensitive to the
artifact. In spite of this, one particular journal chose to enforce
the use of parsimony, stating that authors should estimate their
phylogenies by parsimony but also that, if estimated by some
other method, they would need to defend their position “on phil-
osophical grounds” [35]; there is of course no valid scientific
justification for taking such a step—derided in the “Twittersphere”
as “#parsimonygate.”

The LBA artifact has been shown to plague the analysis of
numerous data sets, and a number of empirical approaches have
been used to detect the artifact [36, 37]. Most recent papers based
on multigene analyses (e.g., [38, 39]) now examine carefully the
effect of across-site and across-lineage rate variation (in addition to
the use of heterogeneous models). For both sites and lineages, the

True tree topology

Tree topology
   (in absence of LBA)

Attract tree topology

(a)
(b)

s1

s4 s3

s2

s1 s2

s4 s3

s1
s2

s4 s3

Fig. 3 The long branch attraction artifact. The true tree topology has two long branches separated by a short
one. The tree reconstructed under a simple model of evolution (a) is the artifact or LBA tree on the left. The tree
reconstructed under the correct model of evolution (b) is the correct tree, on the right
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procedure is the same and consists in successively removing either
the sites that evolve the fastest or the taxa that show the longest
root-to-tip branch lengths.

2.4 Origin of the

Problem

By definition, parsimony minimizes the number of changes along
each branch of the tree. When there is only a small number of
changes per branch, the method is expected to be accurate. How-
ever, when sequences are quite divergent, the parsimony assump-
tion leads to underestimating the actual number of changes (Fig. 4;
see also [40]).

Consequently, we would like a tree-reconstructionmethod that
accounts for multiple substitutions. We would also like a method
that (1) takes into account less parsimonious as well as most parsi-
monious state reconstructions (intervals, tests), (2) weights changes
differently if they occur on branches of different length (evolution-
ary time), and (3) weights different kinds of events (transitions,
transversions) differently (biological realism). Likelihood methods
include such considerations explicitly, as they require modeling the
substitution process itself.

2.5 Modeling

Molecular Evolution

The basic model of DNA substitution (Fig. 5) is defined on the
DNA state space, made of the four nucleotides thymine (T), cyto-
sine (C), adenine (A), and guanine (G). Note that T and C are
pyrimidines (biochemically, six-membered rings), while A and
G are purines (fused five- and six-membered heterocyclic com-
pounds). Depending on these two biochemical categories, two
different types of substitutions can happen: transitions within a
category, and transversions between categories. Their respective
rates are denoted α and β in Fig. 5.

The process we want to model should describe the substitution
process of the different nucleotides of a DNA sequence. Again, we

Geological time (and actual number of substitution)

O
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er
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d 
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m
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r o
f s

ub
st

itu
tio

ns

present past

ideal distance: linear with time

sites begin to saturate with 
    multiple substitutions

Fig. 4 Saturation of DNA sequences. As time increases, the observed number of differences between pairs of
sequences reaches a plateau, whereas the actual number of substitutions keeps increasing
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will make the simplifying assumption that sites evolve under a time-
homogeneous Markov process and are iid, as above. We can there-
fore concentrate on one single site for now (e.g., [41]).

At a particular site, we want to describe the change in nucleo-
tide frequency after a short amount of time dt, during which the
nucleotide frequency of A, for instance, after dt will change from
fA(t) to fA(t + dt). According to Fig. 5, fA(t + dt) will be equal to
what we had at time t, fA(t), minus the quantity of A that “dis-
appeared” by mutation during dt, plus the quantity of A that
“appeared” by mutation during dt. Denoting the mutation rate as
μ, the quantity of A that “disappeared” by mutation during dt is
simply fA(t)μAdt. These mutations away from A generated quanti-
ties of T, C, and G, in which we are not interested at the moment
since we only want to know what happens to A. There are three
different ways to generate A: from either T, C, or G (Fig. 5).
Coming from T, mutation will generate fT(t)μT!Adt of A during
dt. Similar expressions exist for C and for G, so that in total, over
the three non-A nucleotides, mutation will generate
∑i6¼A fi(t)μi!Adt. Mathematically, we can express these ideas as:

f Aðt þ dtÞ ¼ f AðtÞ � f AðtÞμAdt þ
X
i 6¼A

f iðtÞμiAdt ð1Þ

Equation 1 describes the change of frequency of A during a
short time interval dt. Similar equations can be written for T,C, and
G, so that we actually have a system of four equations describing the
change in nucleotide frequencies over a short time interval dt:

f T ðt þ dtÞ ¼ f T ðtÞ � f T ðtÞμT dt þ
X

i 6¼T
f iðtÞμiT dt

f Cðt þ dtÞ ¼ f CðtÞ � f CðtÞμCdt þ
X

i 6¼C
f iðtÞμiCdt

f Aðt þ dtÞ ¼ f AðtÞ � f AðtÞμAdt þ
X

i 6¼A
f iðtÞμiAdt

f Gðt þ dtÞ ¼ f GðtÞ � f GðtÞμGdt þ
X

i 6¼G
f iðtÞμiGdt

8>>>>>>><
>>>>>>>:

ð2Þ
which, in matrix notation, can simply be rewritten as:

T             C

A             G

pyrimidines (Y)

purines (R)
α: transitions
β: transversionsα

β

α

β

Fig. 5 Molecular evolution 101. Specification of the basic model of DNA
substitution
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F ðt þ dtÞ ¼ F ðtÞ þQ F ðtÞdt ð3Þ
with an obvious notation for F, while the instantaneous rate matrix
Q is

Q ¼
�μT μTC μTA μTG

μCT �μC μCA μCG

μAT μAC �μA μAG

μGT μGC μGA �μG

0
BB@

1
CCA ð4Þ

In all the following matrices, we will use the same order for nucle-
otide: T, C, A, and G, which follows the order in which codon
tables are usually written. Recall that μij is the mutation rate from
nucleotide i to nucleotide j. Note also that the sum of each row is 0.

Let us rearrange the matrix notation from Eq. 3 as:

F ðt þ dtÞ � F ðtÞ ¼ Q F ðtÞdt ð5Þ
and take the variation limit when dt ! 0:

dF ðtÞ
dt

¼ Q F ðtÞ ð6Þ

which is a first-order differential equation that can be integrated as:

F ðtÞ ¼ eQ tF ð0Þ ð7Þ
Very often, this last equation 7 is written as F(t) ¼ P(t)F(0), where
F(0) is conveniently taken to be the identity matrix and P(t) ¼ {Pi,

j(t)} ¼ eQt is the matrix of probabilities of going from state i to
j during a finite time duration t. Note that the right-hand side of
this equation is a matrix exponentiation, which is not the same as
the exponential of all the elements (row and columns) of that
matrix. The computation of the term eQt demands that a spectral
decomposition of the matrix Q be realized. This means finding a
diagonal matrix D of eigenvalues and a matrix M of (right) eigen-
vectors so that:

PðtÞ ¼ MeDtM�1 ð8Þ
The exponential of the diagonal matrix D is simply the exponential
of the diagonal terms.

Except in the simplest models of evolution, finding analytical
solutions for the eigenvalues and associated eigenvectors can be
tedious. As a result, numerical procedures are employed to solve
Eq. 8. Alternatively, a Taylor expansion can be used to approximate
P(t).

If all entries in Q are positive, any state or nucleotide can be
reached from any other in a finite number of steps (all states
“communicate”) and the base frequencies have a stationary distri-
bution π ¼ (πT, πC, πA, πG). This is the steady state reached after an
“infinite” amount of time, or long enough for the Markov process
to forget its initial state, starting from “random” base frequencies.

A Not-So-Long Introduction to Computational Molecular Evolution 79



2.6 Computation on

a Tree

Now that we know how to determine the rate of change of nucleo-
tide frequencies during a time interval dt, we can compute the
probability of a particular nucleotide change on a tree. The simplest
case, though somewhat artificial with only two sequences, is
depicted in Fig. 6.

We are looking at a particular nucleotide position, denoted j,
for two aligned sequences. The observed nucleotides at this posi-
tion are T in sequence 1, and C in sequence 2. The branch separat-
ing T from C has a total length of t0 + t1. For the sake of
convenience, we set an arbitrary root along this path. The likeli-
hood at site j is then given by the probability of going from the
fictive root i to T in t0, and from i to C in t1. Any of the four
nucleotides can be present at the fictive root. As we do not know
which one was there, we sum these probabilities over all possible
state, weighted by their prior probabilities, the equilibrium fre-
quencies πi. In all, we have the likelihood ℓj at site j:

ℓj ¼
X

i¼ T ,C,A,Gf g
πiPi,T ðt0ÞPi,Cðt1Þ ð9Þ

which is equivalent to the Chapman–Kolmogorov equation
[42]. As all the sites are assumed to be iid, the likelihood of an
alignment is the product of the site likelihoods in Eq. 9. Because all
these sitewise probabilities can be small, and that the product of
small numbers can become smaller than what a computer can
represent in memory (underflow), all computations are done on a
logarithmic scale and may include some form of rescaling [43].

Note that this example is somewhat artificial: with only
two sequences, we can compute the likelihood directly with πTPT,

C(t0 + t1) ¼ πCPC,T(t0 + t1); the full summation over unknown
states as in Eq. 9 is required with three sequences or more. When
analyzing a multiple-sequence alignment of S sequences, there will
be many nodes in the tree for which the character state is unknown,
which means that the summation required will involve many terms.
Specifically, the sum will be over 4S�3 terms. Fortunately, terms can
be factored out of the summation, and a dynamic programing
algorithm with a complexity of the order of Oð42SÞ, called the
pruning algorithm [44], can be used (see [15] for details).

T                           C

i (fictive root)

t0 t1

Fig. 6 Likelihood computation on a small tree. See text for details
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2.7 Substitution

Models and

Instantaneous Rate

Matrices Q

Now that we have almost all the elements to compute the likeli-
hood of a set of parameters, including the tree (i.e., the set of
branch lengths and the tree topology; see Subheading 2.10), the
only missing element required to compute the likelihood at each
site, as in Eq. 9, for instance, is the specification of the instanta-
neous rate matrix Q as in Eq. 4. Remember that the μi,j represent
mutation rates from state (nucleotide) i to j. This matrix is generally
rewritten as:

Q ¼ μ

� rTC rTA rTG

rCT � rCA rCG

rAT rAC � rAG

rGT rGC rGA �

0
BBBBB@

1
CCCCCA

ð10Þ

so that each entry rij is a rate of change from nucleotide i to
nucleotide j. The diagonal entries are left out, indicated by a “�,”
and are in fact calculated as the negative sum of the off-diagonal
entries (as rows sum to 0).

The simplest specification ofQ would be that all rates of change
are identical, so that Q becomes (leaving out the mutation rate μ
and indexing the matrix to indicate the difference):

Q JC ¼

� 1 1 1

1 � 1 1

1 1 � 1

1 1 1 �

0
BBBBB@

1
CCCCCA

ð11Þ

which is the model proposed by Jukes and Cantor [45] and often
noted “JC” or “JC69”. Under the specification of Eq. 11, this
model has no free parameter. The process is generally scaled such
that the unit of branch lengths can be interpreted as an expected
number of substitutions per site.

Of course, this model is extremely simplistic and neglects a fair
amount of basic molecular biology. In particular, it overlooks two
observations. First, base frequencies are not all equal in actual DNA
sequences, but are rather skewed, and second, transitions are more
frequent than transversions (see Subheading 2.5).

The way to account for this first “biological realism” is as
follows. If DNA sequences were made exclusively of As, for
instance, that would mean that all mutations are towards the
observed base, in this case A, whose equilibrium or stationary
frequency is πA. The same reasoning can be used for arbitrary
equilibrium frequencies π, so that all relative rates of change in
Q become proportional to the vector of equilibrium frequency π
of the target nucleotide. In other words, the instantaneous rate
matrix Q becomes:

A Not-So-Long Introduction to Computational Molecular Evolution 81



Q F81 ¼

� πC πA πG

πT � πA πG

πT πC � πG

πT πC πA �

0
BBBBB@

1
CCCCCA

ð12Þ

again with the requirement that rows sum to 0. This matrix repre-
sents the Felsenstein or F81 model [44]. This model has four
parameters (the four base frequencies), but since base frequencies
sum to 1, we only have three free parameters.

The second “biological realism,” accounting for the different
rates of transversions and transitions, can be described by saying
that transitions occur κ times faster than transversions. From Fig. 5,
recall that transitions are mutations from T toC (and vice versa) and
from A to G (and vice versa). This translates into:

Q K80 ¼

� κ 1 1

κ � 1 1

1 1 � κ

1 1 κ �

0
BBBBB@

1
CCCCCA

ð13Þ

This model is called the Kimura two-parameter model or K80
(or K2P) [46]. The model is alternatively described with the two
rates α and β (see Fig. 5). In the “κ version” of the model as in
Eq. 13, there is only one free parameter.

Of course it is possible to account for both kinds of “biological
realism,” unequal equilibrium base frequencies and transition bias,
all in the same model, whose generator Q becomes:

Q HKY ¼

� πCκ πA πG

πT κ � πA πG

πT πC � πGκ

πT πC πAκ �

0
BBBB@

1
CCCCA ð14Þ

which corresponds to the Hasegawa–Kishino–Yano or HKY
(or HKY85) model [47]. This model has four free parameters: κ
and three base frequencies.

The level of “sophistication” goes “up to” the general time-
reversible model [48], denoted GTR or REV, which has for
generator:

Q GTR ¼

� aπC bπA cπG

aπT � dπA eπG

bπT dπC � πG

cπT eπC πA �

0
BBBB@

1
CCCCA ð15Þ
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The number of free parameters is now eight (three base frequencies
plus five nucleotide propensities). The name is derived from the
time-reversibility constraint, which implies that the likelihood is
independent of the actual orientation of time.

In fact, there exist only a few “named” additional substitution
models [15], most of which are time-reversible models, while a
total of 203 models can be derived from GTR [49]. We have
focused solely on DNA models in this chapter, but the problem is
similar with amino acid or codon models, except that the number
of parameters increases quickly. We have also limited ourselves to
time-reversible time-homogeneous models, but irreversible
non-homogeneous models were developed some time ago [50]
and are used, for instance, to root phylogenies [51] or to help
alleviate the effects of LBA [39].

2.8 Some

Computational

Aspects

2.8.1 Optimization of the

Likelihood Function

For a given substitution model, how should parameters be esti-
mated, given the (potentially) high dimensionality of the model?
Analytical solutions consist in determining when the first derivative
of the likelihood function is equal to zero (with a change of sign in
the second derivative). However, finding the root of the likelihood
function analytically is only possible in the simple case of three
sequences of binary characters under the assumption of the molec-
ular clock (see Subheading 3.1) [12]. As a result, numerical solu-
tions must be found to maximize the likelihood function.

A number of ideas have been combined to search efficiently for
the parameter values that maximize the likelihood function. Most
programs will start from a random starting point, for example,

ðθð0Þ1 , θð0Þ2 Þ, denoted by an x in Fig. 7, where we limit ourselves to
a two-parameter example. The optimization procedure can follow

parameter θ1

pa
ra

m
et

er
 θ

2

(A)

+

parameter θ1

pa
ra

m
et

er
 θ

2

(B)

+

x x

Fig. 7 Two optimization strategies. The likelihood surface of a function with two parameters θ1 and θ2 (e.g.,
two branch lengths) is depicted as a contour plot, whose highest peak is at the + sign. (a) Optimization one
parameter at a time. (b) Optimization of all parameters simultaneously. See text for details
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one of the two strategies. In the first one, parameters are optimized
one at a time. In Fig. 7a, parameter θ1 is first optimized to maximize
the likelihood function with a line search, which defines a direction
along which the other parameter (θ2) or parameters in the multidi-
mensional case are kept constant. Once θð1Þ1 is found, a new
direction is defined to optimize θ2, and so on so forth until conver-
gence to the maximum of the likelihood function. As shown in
Fig. 7a, many iterations can be required, in particular when the
parameters θ1 and θ2 are correlated. The alternative to optimizing
one parameter at a time is to optimize all parameters simulta-
neously. In this case (Fig. 7b), an initial direction is defined at

ðθð0Þ1 , θð0Þ2 Þ such that the slope at this point is maximized. The
process is repeated until convergence. More technical details can
be found in [52]. The simultaneous optimization procedure gener-
ally requires fewer steps than optimizing parameters one at a time,
but not always. Since the computation of the likelihood function is
the most expensive computation of these algorithms, the simulta-
neous optimization is much more efficient, at least in our toy
example.

How general is this result? Simultaneously optimizing para-
meters of the substitution model, while optimizing branch lengths
one at a time, was shown to be more effective on large data sets
[43], potentially because of the correlation that exists between
some of the parameters entering theQmatrix (see Subheading 2.7).

2.8.2 Convergence Convergence is usually reached either when the increment in the
log-likelihood score becomes smaller than an ε value, usually set to
a small number such as 10�6 (but yet a number larger than the
machine ε: the smallest number that a given computer can repre-
sent), or when the log-likelihood score has not changed after a
predetermined number of iterations. However, none of these stop-
ping rules guarantees that the global maximum of the likelihood
function has been found. Therefore, it is generally recommended to
run the optimization procedure at least twice, starting from differ-
ent initial values of the model parameters, and to check that the
likelihood score after optimization is the same across the different
runs (Fig. 8). If this is not the case, additional runs may be required,
and the one with the largest likelihood is chosen for inference (e.g.,
[53]).

In many instances though, different substitution models will
give different tree topologies, and therefore different biological
conclusions. One difficulty is therefore to know which model
should be used to analyze a particular data set.

2.9 Selection of the

Appropriate

Substitution Model

One important issue in model selection is about the trade-off
between bias and variance [55]: a simple model will fail to capture
all the sophistication of the actual substitution process, and will
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therefore be highly biased even if all the parameters can be esti-
mated with tight precision (little variance). Alternatively, a highly
parameterized model will “spread” the information available from
the data over a large number of parameters, hereby making their
estimation difficult (flat likelihood surface; see Subheading 2.8.1),
with a large variance, in spite of perhaps being a more realistic
model with less bias. The objective of most model selection proce-
dure is therefore to find not the best model in terms of likelihood
score, but themost appropriatemodel, the one that strikes the right
balance between bias and variance in terms of number of para-
meters. However, we argue that optimizing for this bias–variance
trade-off works only for statistical procedures, be they, for instance,
frequentist (LRT, likelihood ratio test) or Bayesian (BF, Bayes
factor). On the other hand, information-theoretic criteria (e.g.,
AIC, Akaike information criterion) aim at selecting the model
that is approximately closest to the “true” biological process.

The bias–variance trade-off mainly concerns the comparison of
models that are based on the same underlying rationale, for
instance, choosing among the 203 models that can be derived
from GTR. We may also be interested in comparing models that
are based on very different rationales. The likelihood ratio test is
suited for assessing the bias–variance trade-off, while Bayesian and
information-theoretic approaches, as well as cross-validation (CV),
can be used for more general model comparisons. Here we review
four approaches to model selection: LRT, BF, AIC, and CV.

2.9.1 The Likelihood

Ratio Test

The substitution models presented above have one key property: it
is possible to reduce the most sophisticated time-reversible named
model (GTR+Γ+I) to any simpler model by imposing some con-
straints on parameters. As a result, the models are said to be nested,
and statistical theory (the Neyman–Pearson lemma) tells us that
there is an optimal (most powerful) way of comparing two nested
models (a simple null vs. a simple alternative hypothesis) based on
the likelihood ratio test or LRT.

p(
X

 | 
θ)

θ

no CVCV

Fig. 8 Likelihood surfaces behaving badly. Schematic of the probability surface
of the function p(X|θ) is plotted as a function of θ. Most line search strategies will
converge (CV) to the MLE when the initial value is in the “CV” interval, and fail
when it is in the “no CV” interval. Adapted with permission from [54]

A Not-So-Long Introduction to Computational Molecular Evolution 85



The test statistic of the LRT is twice the log-likelihood differ-
ence between the most sophisticated model (which by definition is
always the one with the highest likelihood—if this is not the case,
there is a convergence issue; see Subheading 2.8.1) and the simpler
model. This test statistic follows asymptotically a χ2 distribution
(under certain regularity conditions), and the degree of freedom of
the test is equal to the difference in the number of free parameters
between the two models.

The null hypothesis is that the two competing models explain
the data equally well. The alternative is that the most sophisticated
model explains the data better than the simpler model. If the null
hypothesis cannot be rejected at a certain level (type-I error rate),
then, based on the argument developed above, the simpler model
should be used to analyze the data. Otherwise, if the null hypothe-
sis can be rejected, the more sophisticated model should be used to
analyze the data. Note that a test never leads to accepting a null
hypothesis; the only outcomes of a test are either reject or fail to
reject a null hypothesis.

Intuitively, we can see the null hypothesis H0 as stating that a
certain parameter θ is equal to θ0. The maximum likelihood
estimate (MLE) is at θ̂, which is our alternative hypothesis H1,
left unspecified. We note the log-likelihood as ln pðX jθÞ ¼ ℓðθÞ,
where X represents the data. Under H0, we have θ ¼ θ0, while
under H1 we have θ ¼ θ̂. The log-likelihood ratio is therefore

lnLR ¼ ℓðθ̂Þ � ℓðθ0Þ. Under the null H0, ℓðθ̂Þ ¼ 0 (by definition).
The log-likelihood ratio then reduces to lnLR ¼ �ℓðθ0Þ. We can
then take the Taylor expansion of the log-likelihood function ℓ

around θ̂, which gives us ℓ � 1
2 ðθ̂ � θ0Þ2 d2ℓ

dθ2
(recall that ℓðθ̂Þ ¼ 0,

so that the first terms of the series “disappear”). Therefore,

log-likelihood ratio can be approximated by� 1
2 ðθ̂ � θ0Þ2 d2ℓ

dθ2
. Recall

that Fisher’s information is negative reciprocal of the second deriv-
ative of the likelihood function, so that:

lnLR � 1

2

ðθ̂ � θ0Þ2
varðθÞ ð16Þ

which follows asymptotically half a χ2 distribution. Hence the usual
approximation:

2 lnLR ¼ 2� ðℓ1 � ℓ0Þ � χ2k ð17Þ
with k being the difference in the number of free parameters
between the two models 0 and 1. The important points in this
intuitive outline of the proof are that (1) the two hypotheses need
to be nested and (2) taking the Taylor expansion around θ̂ requires
that the likelihood function be continuous at that point, which
implies that ℓ is differentiable left and right of θ̂. Therefore, testing
points at the boundary of the parameter space cannot be done by
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approximating the distribution of the test statistic of the LRT by a
regular χ2 distribution, as noted many times in molecular evolution
[56–64]. A solution still involves the LRT, but the asymptotic
distribution becomes a mixture of χ2 distributions [65].

An approach that has become popular under the widespread
adoption of computer programs such as ModelTest [66] and
jModelTest [67] is the hierarchical LRT (hLRT). This hierarchy
goes from the simplest model (JC) to the set of most complex
models (+Γ+I), traversing a tree of models. The issue is that there
is more than one way to traverse this tree of models, and that
depending on which way is adopted, the procedure may end up
selecting different models [68, 69].

2.9.2 Information-

Theoretic Approaches

Information theory provides us with a number of solutions to
circumvent the three limitations of the LRT (nestedness, continu-
ity, and dependency on the order in which models are compared).

The core of the information-based approach is the
Kullback–Leibler (KL) distance, or information [70], which mea-
sures the distance between an approximating model g and a “true”
model f [55]. This distance is computed as:

dKLð f , gÞ ¼
Ð
f ðxÞ ln f ðxÞ

gðxjθÞ dx ð18Þ

where θ is a vector of parameters entering the approximating
model g and x represents the data. Note that this distance is not
symmetric, as typically dKL( f, g) 6¼ dKL( g, f ), and that the “true”
model f is unknown. The idea is to rewrite dKL( f, g) in a slightly
different form, to make it clear that Eq. 18 is actually a difference
between two expectations, both taken with respect to the unknown
“truth” f:

dKLð f , gÞ ¼ Ef ½f ðxÞ ln f ðxÞ� � Ef ½ f ðxÞ ln gðxjθÞ� ð19Þ
Equation 19 therefore measures the loss of information incurred by
fitting g when the data x actually come from f. As f is unknown,
dKL( f, g) cannot be computed as such.

Two points are key to deriving the criterion proposed by Akaike
(see [55]). First, we usually want to compare at least two approx-
imating models, g0 and g1. We can then measure which one is
closest to the “true” process f by taking the difference between
their respective Kullback–Leibler distances. In the process, the
direct reference to the “true” process cancels out. As a result, the
“best” model among g0 and g1 is the one that is closest to the
“true” process f: it is the model thatminimizes the distance to f. By
setting model parameters to their MLEs, we now deal with esti-
mated distances, but these are still with respect to the unknown f.

Second, in the context of a frequentist approach, we would
repeat the experiment of sampling data an infinite number of times.
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We would then compute the expected estimated KL distance, so that
model selection can be done on the sole estimated log-likelihood
value. Akaike, however, showed that this latter approximation is
biased, and must be adjusted by a term that is approximately equal
to the number of parameters K entering model g (see [55]). For
“historical reasons” (similarity with asymptotic theory with the
normal distribution), the selection criterion is multiplied by 2 to
give the well-known definition of the Akaike information criterion
or AIC:

AIC ¼ �2 ln ℓðθ̂Þ þ 2K ð20Þ
Unlike the case of the hLRT, where we were selecting the “most
appropriate model” (with respect to the bias–variance trade-off), in
the case of AIC we can select the best model. This best model is the
one that is closest to the “true” unknown model ( f ), with the
smallest relative estimated expected KL distance. The best AIC
model therefore minimizes the criterion in Eq. 20.

A small-sample second-order version of AIC exists, where the
penalty for extra parameters (2K in Eq. 20) is slightly modified to
account for the trade-off between information content in the data
and K (see [55]). In our experience, we find it advisable to use this
small-sample correction irrespective of the actual size of the data,
since this correction vanishes in large and informative samples, but
corrects for proper model ranking when K becomes very large
compared to the amount of information (e.g., in phylogenomics
where models are partitioned with respect to hundreds of genes).

The AIC has been shown to tend to favor parameter-rich
models [71–75], which has motivated the use and development
of alternative approaches in computational molecular evolution.
These include, the Bayesian information criterion [76], and the
decision theory or DT approach, which is based on ΔAIC weighted
by squared branch length differences [71]. Most of these
approaches, including the hLRT, have recently been compared in
a simulation study that suggests, in agreement with empirical stud-
ies [72, 77], that both BIC and DT have the highest accuracy and
precision [75].

One particular drawback of these information-theoretic
approaches is that they require that every single model of evolution,
or at least the most “popular” models (the few named ones), be
evaluated. This step can be time-consuming, especially if a full
maximum likelihood optimization is performed under each
model. A first set of heuristics consists in fixing the tree topology
to a tree estimated with a quick distance-based method such as
BioNJ [78], and then estimating just the branch lengths and the
parameters of the substitution model, as implemented in
jModelTest [67]. As the optimizations are independent of each
other under each substitution model, these computations are
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typically forked to multiple cores or processors [79]. Further heur-
istics exist to avoid all these independent optimizations [79], as
implemented in SMS (Smart Model Selection in PhyML), which is
reported to be cutting runtimes in half without forfeiting
accuracy [80].

Note finally that all these approaches are not limited to select-
ing the most appropriate or the best model of evolution. Disregard-
ing the hLRT, which requires that models be nested (to be able to
use the χ2 approximation; otherwise, see [65]), AIC, BIC, etc. allow
us to compare non-nested models and, in particular, phylogenetic
trees (branch lengths plus topology).

2.9.3 The Bayesian

Approach

The Bayesian framework has permitted the development of two
main approaches, which are actually two sides of the same coin: one
based on finding the model that is the most probable a posteriori,
and one based on ranking models and estimating a quantity called
the Bayes factor.

In a nutshell, the frequentist approaches developed in the
previous sections are based on the likelihood, which is the proba-
bility of the data, given the parameters: p(X|θ). However, this
approach may not be the most intuitive, since most practitioners
are not interested in knowing the conditional probability of their
data, as the data were collected to learn more about the processes
that generated them. It can therefore be argued that the Bayesian
approach, which considers the probability of the parameters given
the data or p(θ|X), is more intuitive than the frequentist approach.
Unlike likelihood, which relies on the function p(X|θ) and permits
point estimation, Bayesian inference is based on the posterior dis-
tribution p(θ|X). This distribution is often summarized by a cen-
trality measure such as its mode, mean, or median. Measures of
uncertainty are based on credibility intervals, the Bayesian equiva-
lent of confidence intervals. Typically, credibility intervals are taken
at the 95% cutoff and are called highest posterior densities (HPDs).

The connection between posterior probability and likelihood is
made with Bayes’ inversion formula, also called Bayes’ theorem, by
means of a quantity called the prior distribution p(θ):

pðθjX Þ ¼ pðX jθÞ pðθÞ
pðX Þ ð21Þ

The prior represents what we think about the process that gener-
ated the data, before analyzing the data, and is at the origin of all
controversies surrounding Bayesian inference. In practice, priors
are more typically chosen based on statistical convenience, and
often have nothing to do with our genuine state of knowledge
about parameters before observing the available data. We will see
in Subheading 3.1 that priors can be used to distinguish between
parameters that are confounded in a maximum likelihood analysis

A Not-So-Long Introduction to Computational Molecular Evolution 89



(model), so that we argue that the frequentist vs. Bayesian contro-
versy is sterile, and we advocate a more pragmatic approach, that
often results in the mixing of both approaches (in their concepts
and techniques) [81, 82].

All models have parameters. Subheading 2.7 treats substitution
models, which can have eight free parameters in the case of GTR
+ Γ. Most people are not really interested in these parameters θ or
in their estimates θ̂, but have to use them in order to estimate a
phylogenetic tree τ. These parameters θ are called nuisance para-
meters because they enter the model but are not the focus of
inference. The likelihood solution consists in setting these para-
meters to their MLE, ignoring the uncertainty with which they can
be estimated, while the Bayesian approach will integrate them out,
directly accounting for their uncertainty:

pðX jτÞ ¼
ð
Θ
pðX jτ, θÞpðθÞ dθ ð22Þ

One difficulty in Bayesian inference is about the denominator
in Eq. 21, as this denominator often has no analytical solution. In
spite of being a normalizing constant, p(X) requires integrating out
nuisance parameters by means of prior distributions as in Eq. 22.
Thus, it is easy to see from Eq. 21 that the posterior distribution of
the variable of interest (e.g., τ) can quickly become complicated:

pðτjX Þ ¼
ð
Θ

pðX jτ, θÞ pðτÞ pðθÞP
T pðX jτ, θÞ pðτÞ pðθÞ dθ ð23Þ

where τ and θ are assumed to be independent and the discrete sum
is taken over the set T of all possible topologies (see Subheading
2.10.1). However, the ratio of posteriors evaluated at two different
points will simplify: as the denominator in Eq. 23 is a constant, it
will cancel out from the ratio. This simple observation is at the
origin of an integration technique for approximating the posterior
distribution in Eq. 23: Markov chain Monte Carlo (MCMC) sam-
plers. A very clear introduction can be found in [83].

Building on this, two approaches can be formulated to compare
models in a Bayesian framework. The first is to treat the model as a
“random variable,” and compute its posterior probability. The best
model is then the one that has the highest posterior probability.
This approach is typically implemented in a reversible-jump
MCMC (or rjMCMC) sampler (e.g., see [49]).

The alternative is to use the Bayesian equivalent of the LRT, the
Bayes factor. Rather than comparing two likelihoods, the Bayes
factor compares the probability of the data under two models, M0

and M1:

BF0,1 ¼ pðX jM 0Þ
pðX jM 1Þ ð24Þ
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More specifically, BF0,1 evaluates the weight of evidence in favor of
model M0 against model M1, with BF0,1 > 1 considered as evi-
dence in favor of M0. Just as in a frequentist context, where a null
hypothesis is significantly rejected at a certain threshold, 5%, 1%, or
less depending on different costs or error types, Bayes factors can be
evaluated on a specific scale [84]. However, because this scale is just
as ad hoc as in a frequentist setting, it might be preferable to use the
probability of the data under a particular model p(X|Mi) as a means
of ranking models Mi.

The quantity p(X|M0), which is the denominator in Eq. 23
(where we did not include the dependence on the model in the
notation), is called the marginal likelihood. Note that it is also an
expectation with respect to a prior probability distribution:

pðX jM 0Þ ¼
ð
Θ

pðX jθ,M 0Þ pðθjM 0Þ dθ ð25Þ

A number of approximations to evaluate Eq. 25 exist and are
reviewed in [85] (see also [86, 87]). The simplest one is based on
the harmonic mean of the likelihood sampled from the posterior
distribution [88], also known as the harmonic mean estimator
(HME). The way this estimator is derived demands to understand
how integrals can be approximated. Briefly, to compute
I ¼ Ð

gðθÞ pðθÞ dθ, generate a sample from a distribution p⋆(θ)
and calculate the simulation-consistent estimator
I ¼ P

wi gðθÞ=
P

wi where wi is the importance function p(θ)/
p⋆(θ). Take g ¼ p(X|θ) and p⋆(θ) ¼ p(X|θ) p(θ)/p(X), then

Î ¼ p̂ðX jM 0Þ ¼ limN!1ð 1
N

P
1

pðX jθiÞ Þ
�1

with θ � p(θ|X) (see sup-

plementary information in [89]). As a result, a very simple way to
estimate the marginal likelihood and Bayes factors is to take the
output of an MCMC sampler and compute the harmonic mean of
the likelihood values (not the log-likelihood values) sampled from
the posterior distribution.

Because of its simplicity, this estimator is now implemented in
most popular programs such as MrBayes [90] or BEAST [91].
However, it might be considered as the worst estimator possible,
because its results are unstable [88, 92] and biased towards the
selection of parameter-rich models [86]. An alternative and reliable
estimator, based on thermodynamic integration (TI; [86]—also
known as path sampling; [93, 94]), is much more demanding in
terms of computation. Indeed, it requires running MCMC sam-
plers morphing one model into the other (and vice versa), which
can increase computation time by up to an order of magnitude
[86]. Improvements of the TI estimator are however available. The
stepping-stone (SS) approach builds on importance sampling and
TI to speed up the computation while maintaining the accuracy of
the standard TI estimator [87, 95].
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Moving away from the estimation of marginal likelihoods, an
analogue of AIC that can be obtained through the output of an
MCMC sampler (AICM) was proposed [96]. In essence, it relies on
the asymptotic convergence of the posterior distribution of the
log-likelihood on a gamma distribution [97]. As such, it becomes
possible to estimate the effective number of parameters as twice the
sample variance of posterior distribution of the log-likelihood,
which itself can be estimated by a resampling procedure
[96]. This gives a very elegant means of estimating AIC, from the
posterior simulations. However, although AICM seems to be a
more stable measure of model ranking than HME, both TI and
SS still seem to outperform this estimator, at least in the case of the
comparison of demographic and relaxed molecular clock models
[96] (see Subheading 3).

2.9.4 Cross-Validation Cross-validation is another model selection approach, which is
extremely versatile in that it can be used to compare any set of
models of interest. Besides, the approach is very intuitive. In its
simplest form, cross-validation consists in dividing the available
data into two sets, one used for “training” and the other one used
for “validating.” In the training step (TS), the model of interest is
fitted to the training data in order to obtain a set of MLEs. These
MLEs are then used to compute the likelihood using the validation
data (validation step, VS). Because the validation data were not part
of the training data, the likelihood values computed during VS can
be directly used to compare models, without requiring any explicit
correction for model dimensionality.

The robustness of the cross-validation scores can be explored in
various ways, such as repeating the above procedure with a switched
labeling of training and validation data (hence the expression cross-
validation). Of course, this simple 2-fold cross-validation could be
extended to n-fold cross-validation, where the data are subdivided
into n subsets, with n � 1 subsets serving for training, and one for
validation. Ideally, the procedure is repeated n � 1 additional
times.

We know of only two examples of its use in phylogenetics, one
in the ML framework [98] and one with a Bayesian approach [99].
Given the increasing size of modern data sets, putting aside some of
the data for validation is probably not going to dramatically affect
the information content of the whole data set. As a result, model
selection via cross-validation, which is statistically sound, could
become a very popular approach.
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2.10 Finding the Best

Tree Topology

2.10.1 Counting Trees

Now that we can select a model of evolution (Subheading 2.9) and
estimate model parameters (Subheading 2.8) under a particular
model (Subheading 2.5), how do we find the optimal tree? The
basic example in Subheading 2.1 suggested that we score all possi-
ble tree topologies and choose for inference the one that has the
highest score. However, a simple counting exercise shows that an
exhaustive examination of all possible topologies is not realistic.

Figure 9 shows how to count tree topologies. Starting from the
simplest possible unrooted tree, with three taxa, there are three
positions where a fourth branch (leading to a fourth taxon) can be
added. As a result, there are three possible topologies with four
taxa. For each of these, there are four places on the tree where a fifth
branch can be added, which leads to a total of 3 � 5 ¼ 15 topol-
ogies with five taxa. A recursion appears immediately, and it can be
shown that the total number of unrooted topologies with n taxa is
equal to 1 � 3 �� � � � 2n � 5 [100] (see [15] for the deeper his-
tory), which, as given in [101], is equal to:

N
T ðnÞ
unrooted ¼ ð2n � 5Þ!

2n�3ðn � 3Þ! ¼
2n�2Γðn � 3

2
Þffiffiffi

π
p ð26Þ

where the Γ function for any real number x is defined as

ΓðxÞ ¼ Ð1
0 tx�1 e�t dt . An approximation based on Stirling num-

ber is also given in [101].
The same exercise can be done for rooted trees (Fig. 10), where

the number of possible rooted topologies with n taxa becomes
1 � 3 �� � � � 2n � 3, which is

A C

B

3 taxa                                  4 taxa                                                5 taxa

1 topology       3 topologies                              5 topologies                                 7 topologies

A C

B

D

A C

B

DE

Fig. 9 Procedure to count the number of unrooted topologies. The top line shows the current number of taxa
included in the tree below. Gray arrows indicate locations where an additional branch can be grafted to add
one taxon. Black arrows show the resulting number of topologies after addition of a branch (taxon). Only one
such possible topology is represented at the next step. The bottom line indicates the number of possibilities.
These numbers multiply to obtain the total number of trees
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N
T ðnÞ
rooted ¼ ð2n � 3Þ!

2n�2ðn � 2Þ! ¼
2n�1Γ n � 1

2

� �
ffiffiffi
π

p ð27Þ

Note that N
T ðnÞ
unrooted ¼ N

T ðn�1Þ
rooted , as Table 2 clearly suggests.

As a result, the number of possible topologies quickly becomes
very large when the number n of sequences increases, even with a
very modest n, so that heuristics become necessary to find the best-
scoring tree.

2.10.2 Some Heuristics

to Find the Best Tree

The simplest approach builds upon the idea presented in Figs. 9
and 10. Stepwise addition, for instance, starts with three sequences
drawn at random among the n sequences to be analyzed, and adds
sequences one at a time, keeping only the tree that has the highest
score at each step (e.g., [52]). However, there is no guarantee that
the final tree is the optimal tree [44]. The idea behind branch-and-

Table 2
Counting tree topologies

Number of taxa Unrooted tree Rooted trees

3 1 3

4 3 15

5 15 105

6 105 945

10 2,027,025 34,459,425

20 221,643,095,476,699,771,875 8,200,794,532,637,891,559,375

Number of tree topologies are given for the unrooted and rooted cases

A CB

3 taxa                                     4 taxa                                                5 taxa

3 topology       5 topologies                              7 topologies                                 9 topologies

A CB D
A CB D E

Fig. 10 Procedure to count the number of rooted topologies. See Fig. 9 for legend and text for details
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bound [102], refined in [103], is to have a look-ahead routine that
prevents entrapment in suboptimal trees. This routine sets a bound
on the trees selected at each round of additions, such that only the
trees that have a score at least as good as that of the trees obtained in
the next round are kept in the search algorithm. Solutions found by
the branch-and-bound algorithm are optimal, but computing time
becomes quickly prohibitive with more than 20 sequences.

As a result, most tree-search algorithms will start with a quickly
obtained tree, often reconstructed with an algorithm based on
pairwise distances such as neighbor-joining [104] or a related
approach [78, 105], and then alter the tree randomly until no
further improvement is obtained or after a certain number of
unsuccessful attempts are reached. Examples of such algorithms
include nearest neighbor interchange (NNI), subtree pruning and
regrafting (SPR), or tree bisection and reconnection (TBR), see,
for instance, [6] for a full description. While the details are of little
importance here, the critical point is the extent of topological
rearrangement in each case. With, e.g., NNI, each rearrangement
can give rise to two topologies. The result is that exploring the
topology space is slow, especially in problems with large n. On the
other hand, TBR has, among the three methods cited above, the
largest number of neighbors. As a result, the topology space is
explored quickly, but the optimal tree can be “missed” simply
because a dramatic change is attempted, so that the computational
cost increases. Alternatively, the chance of finding the optimal tree τ̂
when τ̂ is very different from the current tree is higher when the
algorithm can create some dramatic rearrangements. Some pro-
grams, such as PhyML ver. 3.0, now use a combination of NNI
and SPR to address this issue [24]. MCMC samplers that search the
tree space implement somewhat similar tree-perturbation algo-
rithms that are either “global,” and modify the topology dramati-
cally, or “local” [106] (see also [107] for a correction of the original
local moves). As a result, MCMC samplers are affected by the same
issues as traditional likelihood methods. Much of the difficulty
therefore comes from this kind of trade-off between larger rearran-
gements that are expected to improve accuracy and the computa-
tional burden associated with these extra computations [108].

2.10.3 Cutting Corners

with ABC and AI

As some of the above computations can become quite costly (high
runtimes, heavy memory footprints, poor scalability with large data
sets, etc.), computational workarounds have been and are being
explored. One of these resorts to approximate Bayes computing
(ABC), which is essentially a likelihood-free approach. First devel-
oped in the context of population genetics [109, 110], the driving
idea is to bypass the optimization procedures and replace them with
simulations in the context of a rejection sampler. In population
genetics, the problem could be about a gene tree, which is usually
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appropriately described by a coalescence tree [111, 112], for which
we want to estimate some model parameters. As we are able to
simulate trees from such a process, it is possible to place prior
distributions on these model parameters, and simulate trees by
drawing parameters until the simulated trees “look like” the
observed tree. The set of parameters thus drawn approximates the
posterior distribution of the corresponding variables. This forms
the basis of a naı̈ve rejection sampler, that is quite flexible as it does
not even require that a probabilistic model be formulated, but one
that can be inefficient, especially if the posterior distribution is far
from the prior distribution—which is usually the case. As a result, a
number of variations have been described, trying either to correlate
sample draws as in MCMC samplers [113] or to resample sequen-
tially from the past [114, 115]. In spite of recent reviews of the
computational promises and deliveries of ABC samplers
[116–118], the few applications in molecular evolution have
been, to date, mostly limited to molecular epidemiology
[119–122]. One of the major challenges to estimate a phylogenetic
tree from a sequence alignment with ABC is the lack of a proper and
efficient simulation strategy: it is possible to simulate trees under
various processes (we saw the coalescent above), it is also possible to
simulate an alignment from a given (possibly simulated tree), so
that in theory one could imagine an ABC algorithm that would use
this backward process to estimate phylogenetic trees by comparing
a simulated alignment to an “actual” alignment. This, however,
would most likely be a very inefficient sampler.

A second area that holds promises is the use of artificial intelli-
gence (AI), and more specifically of machine learning (ML), in
molecular evolution. Here again, attempts have been made to
using standard ML approaches such as support vector machines
[123] to guide the comparison of tree shapes, for instance, [124],
which can then be used in epidemiology [121], but estimating a
phylogenetic tree has proved more challenging. In one notable
exception, an alignment-free distance-based tree-reconstruction
method was proposed [125], but its main legacy seems to be in
the development of k-mers, or unaligned sequences chopped into
words of length k, to reconstruct phylogenetic trees—in particular
in the context of phylogenomics (phylogenetics at a genomics
scale) [126, 127]. To the best of our knowledge, nobody has ever
tried, yet, to train a neural network or even a deep learning algo-
rithm [128–130] on a database of phylogenetic trees with
corresponding alignments such as TreeBASE [131] or PANDIT
[132]. As applications of deep learning start emerging in genomics
[133] and proteomics [134], it is likely that phylogenetics will
come next.
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3 Uncovering Processes and Times

3.1 Dating the Tree

of Life: Always

Deeper?

Similar to the problem of estimating the tree of life, dating the tree
of life poses many challenges [135]. Since it was first proposed in
1965 [40], the idea of estimating divergence times has since under-
gone a dramatic change, and new approaches are regularly pro-
posed. Population geneticists have their own approaches, which are
either fully Bayesian [136] or based on approximate Bayesian com-
putation in the coalescent framework [137]. All these approaches
make it possible to infer divergence times between recently
diverged species, as in the case of humans and chimpanzees, or to
date demographic events such as the migrations “out of Africa” of
early human populations [138].

In the context of molecular evolution, we are usually interested
in estimating deeper divergence times, such as those between spe-
cies, which are available online, for instance, at www.timetree.org
[139], recently revamped and extended to cover close to 100k
species [140]. While early “molecular dates” were systematically
biased towards ages that are too old [135], we argue here that
recent developments in the field have led to more accurate methods
and also to a better understanding of methodological limitations.

3.1.1 The Strict

Molecular Clock

One quantity that we can estimate when comparing pairs of
sequences is the number of differences that exist. This number,
estimated as a branch length b, can be corrected for multiple sub-
stitutions (see Subheading 2.7), but basically remains an expected
number of substitutions per site. With “dating” (defined here as the
activity of estimating divergence times [141]), we are interested in
estimating time t, which relates to the expected numbers of sub-
stitutions b according to the following equation:

b ¼ Δt � r ð28Þ
where Δt is a period of time and r the rate of evolution. In technical
terms, times and rates are said to be confounded, because we
cannot estimate one without making an assumption about the
other.

The molecular clock hypothesis does just this by assuming that
rates of evolution are constant in time [40] (see also [142], p. 65).
Under this assumption, the estimated tree is ultrametric as in the
basic example represented in Fig. 11, which implies that all the tips
are level, or equivalently that the distance from root to tip is the
same for all branches.

In this example (Fig. 11), the branch length from the fossil-
dated node is 0.1 substitutions/site (sub/site), and the fossil was
estimated to be present 10 million years ago (MYA). Under the
strict molecular clock assumption (equal rates over the whole tree),
we can (1) estimate the rate of evolution (0.1/10 ¼ 0.01
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sub/site/my) and (2) date all the other nodes on the tree. For
instance, the most recent common ancestor of S2 and S5 is sepa-
rated from the tips by a branch length of 0.02 sub/site. Its diver-
gence time is therefore 0.02/0.01 ¼ 2 MYA.

As with any hypothesis, the strict clock can be tested. Tests
based on relative rates assess whether two species evolve at the same
rate as a third one, used as an outgroup. Originally formulated in a
distance-based context [143], likelihood versions have been
described [44, 144]. However, because of their low power [145]
their use is on the wane. The most powerful test is again the LRT
(see Subheading 2.9.1). The test proceeds as usual, first calculating
the test statistic 2Δℓ (twice the difference of log-likelihood values).
The null hypothesis (strict clock) is nested within the alternative
hypothesis (clock not enforced), so that 2Δℓ follows a χ2 distribu-
tion. The degree of freedom is calculated following Fig. 12. With
an alignment of n sequences, we can estimate n � 1 divergence
times under the null model (disregarding parameters of the substi-
tution model) and we have 2n � 3 branch lengths under the
alternative model. The difference in number of free parameters is
therefore n � 2, which is our degree of freedom. This version of
the test actually assesses whether all tips are at the same distance
from the root of the tree [44]. For time-stamped data, serially
sampled in time as in the case of viruses, the alternative model
incorporates information on tip dates [146].

This linear regression model suggested by the molecular clock
hypothesis has often been portrayed as a recipe [147], which gave
rise in the late twentieth to early twenty-first century to a veritable
cottage industry [148–151], culminating with a paper suggesting
that the age of the tree of life might be older than the age of planet
Earth [152]. This recipe was put down by two factors: (1) the

S7S2 S4S6 S3 S1S5

fossil dated at 10 MYA

0.1

0.02

Fig. 11 The strict molecular clock. The tree is ultrametric. The node marked with a star indicates the presence
of a fossil, dated in this example to 10 million years ago (MYA). This is the point that we will use to calibrate the
clock, that is, to estimate the global rate of evolution. The number of substitutions that accumulated from the
marked node to the tips (present) is indicated on the right weights in at 0.1 substitutions/site. The node that is
the most recent common ancestor of S2 and S5 is the node of interest. The number of substitutions from this
node to the tips is 0.02 substitutions/site
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publication of a piece written in a rather unusual style for a scientific
paper [153], and (2) new methodological developments. The main
points made in [153] are that (1) most of the early dating studies
relied on one analysis [149] that used a fossil-based calibration
point for the divergence of birds at 310 MYA to estimate a number
of molecular dates for vertebrates, and that (2) these molecular
dates were then used in subsequent studies as a proxy for calibration
points, disregarding their uncertainty. As a result, estimation errors
were passed on and amplified from study to study, leading to the
nonsensical results in [152].

3.1.2 Local Molecular

Clocks

This “debacle” has motivated further theoretical developments in
the dating field. The simplest idea is that, if a global clock does not
hold for the entire tree, then perhaps groups of related species share
the same rate. That is, if a global clock does not hold, perhaps the
tree can be subdivided into local molecular clocks. An initial idea
was proposed in the context of quartets of sequences [154] and was
later generalized to a tree of any size with any number of local
clocks on the tree [155] (constrained by the number of branches on
the tree and calibration points). Because of the arbitrariness of such
local clocks, methods have been devised to place the clocks on the
tree [156] and to estimate the appropriate number of clocks that
should be used [157]. A Bayesian approach now estimates all these
parameters and their placement in an integrated statistical
framework [158].

3.1.3 Correlated Relaxed

Clocks

The idea of a correlated relaxed molecular clock goes back to
Sanderson [159] (see also [160]), who considered that rates of
evolution can change from branch to branch on a tree. By con-
straining rates of evolution to vary in an autocorrelated manner on
a tree, it is possible to devise a method that minimizes the amount
of rate change.

S7S2 S4S6 S3 S1S5

b1

b3

b2

b5
b4

b10b9b8

b6

b7t1

t2

t4

t5

t6

t3

b11

Fig. 12 Testing the strict molecular clock. The divergence times that can be estimated under the strict clock
assumption are denoted ti. The branch lengths that can be estimated without the clock are denoted bi. In the
case depicted, with n ¼ 7 sequences, we have n � 1 ¼ 6 divergence times and 2n � 3 ¼ 11 branch
lengths
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The idea of an autocorrelated process governing the evolution
of the rates of evolution is attributed to [161] in [159], but could
all the same be attributed to Darwin. Thorne et al. developed this
idea further in a Bayesian framework [162]. Building upon the
basic theory covered in Subheading 2.9.3, the idea is to place
prior distributions on the quantities in the right-hand side of
Eq. 28. The target distribution is p(t|X). It is proportional to
p(X|t) p(t) according to Bayes’ theorem, but all that we can esti-
mate is

pðbjX Þ ¼ pðX jbÞ pðbÞ
pðX Þ ¼ pðX jr, tÞ pðr, tÞ

pðX Þ ð29Þ

One of the possible ways to expand the joint distribution of rates
and times is p(r, t) is p(r|t) p(t), which posits a process where rate
change depends on the length of time separating two divergences.
The “art” is now in choosing prior distributions, conditional on the
obvious constraint that rates and times should take positive values.
A number of such prior distributions for rates have been proposed
and assessed [163] and one of the best-performing model for rates
is, in our experience, the log-normal model [162, 164]. The prior
on times is either a pure-birth (Yule) model or a birth-and-death
process possibly incorporating species sampling effects [165]. If
sequences are sampled at the population level, a coalescent process
is more appropriate (see [112] for an introduction). In this case, the
past demography of the sampled sequences can be traced back
taking inspiration from spline regression techniques [166, 167] or
multiple change-point models [168].

Once these priors are specified, an MCMC sampler will draw
from the target distribution in Eq. 29, and marginal distributions
for times and rates can easily be obtained. The rationale behind the
sampler is represented in Fig. 13. As per Eq. 28, the relationship

0.5 1.0 1.5 2.0 2.5 3.0
time

1

2

3

4

rate

Prior distribution
on rates

Prior distribution
on times

time

min
max

min v

Prior on
calibration

Fig. 13 The relaxed molecular clock. See text for details
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between rates and times is the branch of a hyperbolic curve, where
the priors on rates and on times define a region of higher posterior
probability, symbolized here by a contour plot superimposed on the
hyperbolic curve. On top of this, fossil information is incorporated
into the analysis as constraints on times. A very influential piece
stimulated a discussion about the shape of these prior distributions
[153], which was taken up [169], and further developed in [170].
Briefly, fossil information is usually imprecise, as paleontologists can
only provide minimum and maximum ages (Fig. 13). Of these two
ages, the minimum age is often the most reliable. Under the
assumption that the placement of the fossil on the tree is correct,
the idea is to place on fossil dates a prior distribution that will be
highly skewed towards older (maximum) ages. A “hard bound” can
be placed on the minimum age, possibly by shifting this prior
distribution by an offset equal to the minimum age, while the
tails of the prior distribution will act as “soft bounds,” because
they do not impose on the tree a strict (or hard) constraint. Empir-
ical studies agree, however, that both reliability and precision of
fossil calibrations are critical to estimating divergence times
[136, 171].

3.1.4 Uncorrelated

Relaxed Clocks

Because of the autocorrelation between the rate of each branch and
that of its ancestral branch (except for the root, which obviously
requires a special treatment), the tree topology is fixed under the
autocorrelated models described above. By relaxing this assump-
tion about rate autocorrelation, [172] were able to implement a
model that also integrates over topological uncertainty. In spite of
the somewhat counter-intuitive nature of the relaxation of the
autocorrelated process, as implemented in BEAST [91, 173], empir-
ical studies have found this approach to be one of the best-
performing (e.g., [157]).

When first published, it was proposed that making use of an
uncorrelated relaxed molecular clock could improve phylogenetic
inference [172]. The idea was that calibration points and their
placement on the tree could act as additional information. How-
ever, a simulation study suggests that relaxed molecular clocks
might not improve phylogenetic accuracy [174], a result that
might be due to the lack of calibration constraints in this particular
simulation study.

3.1.5 Some Applications

of Relaxed Clock Models

Since the advent of relaxed molecular clocks, two very exciting
developments have seen the light of day. The first concerns the
inclusion of spatial statistics into dating models [175, 176]. Spatial
statistics are not new in population genetics [177] and have been
used with success in combination with analyses in computational
molecular evolution (e.g., [178]). However, the originality in
[176], for instance, is to combine in a single statistical framework
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molecular data with geographical and environmental information
to infer the diffusion of sequences through both space and time.
While these preliminary models seem to deal appropriately with
natural barriers to gene flow such as coastlines, a more detailed set
of constraints on gene flow may further enhance their current
predictive power.

The second development coming from relaxed molecular
clocks concerns the mapping of ancestral characters onto uncertain
phylogenies. This is not a novel topic, as a Bayesian approach was
first described in 2004 [179, 180]. The novelty is that we now have
the tools to correlate morphological and molecular evolution in
terms of their absolute rates and to allow both molecular and
morphological rates of evolution to vary in time [181]. Further
development will certainly integrate over topological uncertainty.
While there has been a heated controversy about the existence of
such a correlation in the past [182], all previous studies were using
branch length as a proxy for rate of molecular evolution, which is
clearly incorrect. We can therefore expect some more accurate
results on this topic very soon. More details and examples can be
found in recent and extensive reviews [183–185] that further dis-
cuss applications to biogeographic studies [186], or extensions to
viral [187, 188], as well as other types of genomic [189] and
morphological [190] data.

4 Molecular Population Phylogenomics

Population genetics is rich in theory regarding the relative roles of
mutation, drift, and selection. Much research in population geno-
mics is now focusing on using this theory to develop statistical
procedures to infer past processes based on population-level data,
such as those of the 1000-genome project [191], the UK’s 10,000
genome project [192], and always more ambitious projects [193].
One limitation of these inference procedures is that they all focus
on a thin slice of evolutionary time by studying evolution at the
level of populations. If we wish to study longer evolutionary time
scales, for example, tens or hundreds of millions of years, we must
resort to interspecific data. In such a context, which is becoming
intrinsically phylogenetic, the most important event is a substitution,
that is, a mutation that has been fixed. Yet substitution rates can be
defined from several features. In particular, from a population
genetics perspective, it is of interest to model both mutational
features and selective effects, combining them multiplicatively to
specify substitution rates. We review briefly how substitution mod-
els that invoke codons as the state space lend themselves naturally to
these objectives in a first section below (Subheading 4.1), before
explaining the origin (and a shortcoming) of all the approaches
developed so far (Subheading 4.2).

102 Stéphane Aris-Brosou and Nicolas Rodrigue



4.1 Bridging the Gap

Between Population

Genetics and

Phylogenetics

Assuming a point-mutation process, such that events only change
one nucleotide of a codon during a small time interval, Muse and
Gaut proposed a codon substitution model with rates specified
from the QGTR nucleotide-level matrix (see Subheading 2.7),
along with one parameter that modulates synonymous events and
another one that modulates nonsynonymous events [194]. In most
subsequent formulations, the parameter associated with synony-
mous events is assumed to be fixed, such that the model only
modulates nonsynonymous rates by means of a parameter denoted
ω. This parameter has traditionally been interpreted as the nonsy-
nonymous to synonymous rate ratio, and is generally associated
with a different formulation of the codon model proposed by
Goldman and Yang [195]. More details on codon models can be
found in Chapter 4.1 [196]. There continues to be a debate
regarding the interpretation of theω parameter [197, 198]. Regard-
less of how this issue is settled, it is clear that ω is aimed at capturing
the net overall effects of selection, irrespective of the exact nature of
these effects.

With the intention to model selective effects themselves, Hal-
pern and Bruno proposed a codon substitution model that com-
bines a nucleotide-level layer, as described above, for controlling
mutational features, along with a fixation factor that is proportional
to the fixation probability of the mutational event [199]. The
fixation factor is in turn specified from an account of amino acid
or codon preferences. One objective of the model, then, consists in
teasing apart mutation and selection. While [199] proposed their
model with site-specific fixation factors, later work has explored
simpler specifications, where all sites have the same fixation factor
[200]. Other models that aimed at capturing across-site heteroge-
neities in fixation factors were proposed using nonparametric
devices and empirical mixtures [201]. Another core idea behind
these approaches is to construct a more appropriate null model
against which to test for features of the evolutionary process. This
idea has been put into practice for the detection of adaptive evolu-
tion in protein-coding genes [202, 203]. Recent developments
include sequence-wide fixation factors [9, 197, 204, 205], and we
predict that these models will play a role in bridging the gap
between molecular evolution at the population and at the species
levels.

4.2 Origin of

Mutation–Selection

Models: The Genic

Selection Model

In order to understand a shortcoming of these models, we need to
go back to the development of fixation probabilities that took place
in the second half of the twentieth century. The basic unit or
quantum of evolution is a change in allele frequency p. Allele
frequencies can be affected by four processes: migration, mutation,
selection, and drift. Because of the symmetry between migration
and mutation [206], which only differ in their magnitude, these
two processes can be treated as one. We are left with three forces:
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mutation, selection, and drift. The question is then, what is the fate
of an allele under the combined action of these processes? Our
development here follows [207] (but see [208] for a very clear
account).

4.2.1 Fixation

Probabilities

Of the three processes affecting allele frequencies, mutation and
selection can be seen as directional forces in that their action will
shift the distribution of allele frequencies towards a particular point,
be it an internal equilibrium, or fixation/loss of an allele. On the
other hand, drift is a non-directional process that will increase the
variance in allele frequencies across populations, and will therefore
spread out the distribution of allele frequencies. This distribution is
denoted Ψ ( p, t). We also must assume that the magnitude of all
three processes, mutation, selection, and drift, is small and of the
order of 1

2Ne
, whereNe is the effective population size. To derive the

fate of an allele after a certain number of generations, we also need
to define g(p, ε;dt), the probability that allele frequency changes
from p to p + ε during a time interval dt.

In phylogenetics (and population genetics) we are generally
interested in predicting the past. The tool making this possible is
called the Kolmogorov backward equation, which predicts the
frequency of an allele at some time t, given its frequency p0 at
time t0:

Ψðp, t þ dt jp0Þ ¼
Ð
Ψðp, t jp0 þ εÞ gðp0, ε;dtÞ dε ð30Þ

We can take the Taylor expansion of Eq. 30 around p0, neglect all
terms whose order is larger than two (oðp20Þ) and since Ψ is not a
function of ε, we obtain:

Ψðp, t þ dt jp0Þ ¼ Ψ
Ð
g dεþ ∂Ψ

∂p0

ð
εgdεþ ∂2Ψ

∂p20

ð
ε2

2
gdε

ð31Þ
This formulation leads to the definition of two terms that represent
the directional processes affecting allele frequencies (M) and the
non-directional process, or drift (V ):

M ðpÞ dt ¼
ð
g ε dε

V ðpÞ dt ¼
ð
g ε2dε

8><
>: ð32Þ

that we can substitute into Eq. 31. At equilibrium, ∂Ψ∂t ¼ 0and, after
a bit of calculus, we obtain:

∂Ψ̂
∂p0

¼ C e�
Ð
2M
V dp ð33Þ
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for which we need to specify boundary conditions and a model of
selection. The boundary conditions are the two absorbing states of
the system: (1) once fixed, an allele remains fixed (Ψ (1,1; 1) ¼ 1)
and (2) once lost, an allele remains lost (Ψ (1, 1; 0) ¼ 0). With
these two requirements, the probability that the allele frequency is
1 given that it was p0 in the distant past is the fixation probability:

Ψð1,1;p0Þ ¼
Ð p0
0 e�

Ð
2M
V dpdpÐ 1

0 e�
Ð
2M
V dpdp

ð34Þ

We therefore only need to compute M and V under a particular
model of selection to fully specify the fixation probability of an allele
in a mutation–selection-drift system. All that is required now to go
further is a selection model.

4.2.2 The Case of Genic

Selection

We are now ready to derive an explicit form to Ψ (1, 1; p0) in
Eq. 34 in the case of the genic selection model (Table 3; [209]).
We obtain:

w ¼ 1þ sp2 þ 2pqhs ¼ 1þ 2phs þ sp2ð1� 2hÞ ð35Þ
which can be approximated by 1 + 2phs (the result is exact only
when h ¼ 1/2). Therefore, dw=dp ¼ 2hs, and we can calculate the
M and V terms to obtain the popular result:

Ψð1,1;p0Þ ¼
Ð p0
0 e�

Ð
2M
V dpdpÐ 1

0 e�
Ð
2M
V dpdp

¼ e�4Nehsp0 � 1

e�4Nehs � 1
ð36Þ

Now, the initial frequency of a mutation in a diploid population
of (census) size N is p0 ¼ 1/2N (following [208]; [207] consid-
ered that p0 ¼ 1/2Ne; this debate is beyond the scope of this
chapter), which leads to:

Ψ 1,1;
1

2N

� �
¼ e�2Nehs=N � 1

e�4Nehs � 1
ð37Þ

Table 3
The standard selection models

Selection coefficients A1A1 A1A2 A2A2

Genic (positive) selection w1 ¼ 1 + s w2 ¼ 1 + hs w3 ¼ 1

Overdominance w1 ¼ 1 w2 ¼ 1 + s w3 ¼ 1

Models are represented for one locus with two alleles, A1 and A2, which define three

genotypes A1A1, A1A2, and A2A2 of fitness w1, w2, and w3. The selection coefficient is

s (positive in this table, but not necessarily so) and the dominance is governed by
h (h ∈ [0, 1])
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If Ne is of the order of N, the numerator of the right-hand side of
Eq. 37 becomes approximately e�2hs � 1, whose Taylor approxima-
tion around hs ¼ 0 is simply � 2hs. We then obtain the result used
in [199], and in all the papers that implementedmutation–selection
(-drift) models (e.g., [197, 199–201, 204]):

Ψ 1,1;
1

2N

� �
¼ 2hs

1� e�4Nehs
ð38Þ

Two critical points should be noted here. First, none of the
recent codon models [197, 199–202, 204, 210, 211] ever investi-
gated the role of dominance h, as they all consider that the allele
under (positive) selection is fully dominant. Second, Table 3 shows
that another class of selection models, those based on balancing
selection, has never been considered so far. The impact of the
selection model on the predictions made by the mutation–selection
(-drift) models is currently unknown.

5 High-Performance Computing for Phylogenetics

5.1 Parallelization Because of the dependency of the likelihood computations on the
shape of a particular tree (see Subheading 2.6), most phylogenetic
computations cannot be parallelized to take advantage of a multi-
processor (or multicore) environment. Nevertheless, two main
directions have been explored to speed up computations: first, in
computing the likelihood of substitution models that incorporate
among-site rate variation and second, in distributing bootstrap
replicates to several processors, as both types of computations
can be done independently. A third route is explored in
Chapter 7.4 [212].

In the first case, among-site rate variation is usually modeled
with a Γ distribution [213] that is discretized over a finite (and
small) number of categories [214]. The likelihood then takes the
form of a weighted sum of likelihood functions, one for each
discrete rate category, so that each of these functions can be eval-
uated independently. The route most commonly used is the plain
“embarrassingly parallel” solution, where completely independent
computations are farmed out to different processors. Such is the
case for bootstrap replicates, for which a version of PhyML [24]
exists, or in a Bayesian context for independent MCMC samplers
[215] (see Subheading 2.9.3). The PhyloBayes-MPI package imple-
ments distributed likelihood calculations across sites over several
compute-cores, allowing for a genuinely parallelized MCMC run
[216, 217].

5.2 HPC and Cloud

Computing

More recent work has focused on the development of heuristics
that make large-scale phylogenetics amenable to high-performance
computing (HPC) that are performed on computer clusters.
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Because of the algorithmic complexity of resolving phylogenetic
trees, an approach based on “algorithmic engineering” was devel-
oped [218]. The underlying idea is akin to the training phase in
supervised machine learning [123], except that here the target is
not the performance of a classifier but that of search heuristics. All
of these heuristics reuse parameter estimates, avoid the computa-
tion of the full likelihood function for all the bootstrap replicates, or
seed the search algorithm for every n replicate on the results of
previous replicates [218]. For instance, in the “lazy subtree rear-
rangement” [219], topologies are modified by SPR (see Subhead-
ing 2.10.2), but instead of recomputing the likelihood on the
whole tree, only the branch lengths around the perturbation are
re-optimized. This approximation is used to rank candidate topol-
ogies, and the actual likelihood is evaluated on the complete tree
only for the best candidates. These heuristics now permit the
analysis of thousands of sequences in a probabilistic framework
[220], but the actual convergence of these algorithms remains
difficult to evaluate, especially on very large data sets (e.g., >104

sequences).
In addition to the reduction of the memory footprint for sparse

data matrices [221], an alternative direction to “tweaking likeli-
hood algorithms” has been to take direct advantage of the comput-
ing architecture available. One particular effort aims at tapping
directly into the computing power of graphics processing units or
GPUs, taking advantage of their shared common memory, their
highly parallelized architecture, and the comparatively negligible
cost of spawning and destroying threads on them. As a result, it is
possible to distribute some of the summation entering the pruning
algorithm (see Subheading 2.6) to different GPUs [222]. The num-
ber of programs taking advantage of these developments is widen-
ing and includes popular options such as BEAST [91] and
MrBayes [223].

All these fast algorithms can be installed on a local computer
cluster, a solution adopted by many research groups since the late
1990s. However, installing a cluster can be demanding and costly
because a dedicated room is required with appropriate cooling and
power supply (not to mention securing the room, physically).
Besides, redundancy requirements, both in terms of power supply
and data storage, as well as basic software maintenance and user
management, may demand hiring a system administrator. An alter-
native is to run analyses on a remote HPC server, in the “cloud.”
Canada, for instance, has a number of such facilities, thanks to
national funding bodies (CAC at cac.queensu.ca, SHARCNET at
www.sharcnet.ca, or Calcul Quebec at www.calculquebec.ca, just to
name a few), and commercial solutions are just a few clicks away
(e.g., Amazon Elastic Compute Cloud or EC2). Researchers can
obtain access to these HPC solutions according to a number of
business models (free, on demand, yearly subscription, etc.) that are
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associated with a wide spectrum of costs [224]. But in spite of the
technical support offered in the price, users usually still have to
install their preferred phylogenetic software manually or put a
formal request to the team of system administrators managing the
HPC facility, all of which is not always convenient.

To make the algorithmic and technological developments
described above more accessible, the recent past has seen the emer-
gence of cloud computing [225] dedicated to the phylogenetics
community. Examples include the CIPRES Science Gateway (www.
phylo.org), or Phylogeny.fr (www.phylogeny.fr, [226]). Many
include web portals that do not require that users be well versed
in Unix commands, while others may include an application pro-
gramming interface to cater to the most computer-savvy users. One
potential limitation of these services is the bandwidth necessary to
transfer large files, and storage requirements—especially in the
context of next generation sequencing data. The management of
relatively large files will remain a potential issue, unless phyloge-
netics practitioners are ready to discard these files after analysis, the
end product of which is a single tree file a few kilobytes in size, in
the same way that people involved in genome projects delete the
original image files produced by massively parallel sequencers. Data
security or privacy might not be a problem in most applications,
except in projects dealing with human subjects or viruses such as
HIV that expose the sexual practices of subjects. However, once
these various hurdles are out of the way, users could very well
imagine running their phylogenetic analyses with millions of
sequences from their smartphone while commuting.

6 Conclusions

Although most of the initial applications of likelihood-based meth-
ods were motivated by the shortcomings of parsimony, they have
now become well accepted as they constitute principled inference
approaches that rely on probabilistic logic. Moreover, they allow
biologists to evaluate more rigorously the relative importance of
different aspects of evolution. The models presented in this chapter
have the ability to disentangle rates from times (Subheading 3), or
mutation from selection (Subheading 4), while in most cases
accounting for the uncertainty about nuisance parameters. But
the latest developments described above still make a number of
restrictive assumptions (Subheading 4.2), and while many varia-
tions in model formulations can be envisaged, they still remain to
be explored in practice.

Although some progress has been made in developing integra-
tive approaches (e.g., [176, 181]), throughout this chapter we have
assumed that a reliable alignment was available as a starting point. A
number of methods exist to co-estimate an alignment and a
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phylogenetic tree (see Part I of this book), but the computational
requirements and convergence of some of these approaches can be
daunting, even on the smallest data sets by today’s standards.

This brings us, finally, to the issue of tractability of most of
these models in the face of very large data sets. The field of phylo-
genomics is developing quickly (see Part III), at a pace that is ever
increasing given the output rate of whole genome sequencing
projects. Environmental questions are drawing more and more
attention, and metagenomes (see Part VI) will be analyzed in the
context of what will soon be called metaphylogenomics. Exploring
the numerous available and foreseeable substitution models in such
contexts will require continued work in computational methodol-
ogies. As such, modeling efforts will continue to go hand-in-hand
with, and maybe dependent on, algorithmic developments [227]. It
is also not impossible that in the near future, the use of likelihood-
free approach such as ABC or machine learning algorithms in
computational molecular evolution be more thoroughly explored.
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48. Tavaré S (1986) Some probabilistic and statis-
tical problems in the analysis of DNA
sequences. Lect Math Life Sci 17:57–86

49. Huelsenbeck JP, Larget B, Alfaro ME (2004)
Bayesian phylogenetic model selection using
reversible jump Markov chain Monte Carlo.
Mol Biol Evol 21:1123–1133

50. Yang Z, Roberts D (1995) On the use of
nucleic acid sequences to infer early branch-
ings in the tree of life. Mol Biol Evol
12:451–458

51. Huelsenbeck JP, Bollback JP, Levine AM
(2002) Inferring the root of a phylogenetic
tree. Syst Biol 51:32–43

52. Yang Z (2006) Computational molecular evo-
lution. Oxford University Press, Oxford

53. Aris-Brosou S (2005) Determinants of adap-
tive evolution at the molecular level: the
extended complexity hypothesis. Mol Biol
Evol 22:200–209

54. Anisimova M, Yang Z (2004) Molecular evo-
lution of the hepatitis delta virus antigen gene:
recombination or positive selection? J Mol
Evol 59:815–826

55. Burnham KP, Anderson DR (1998) Model
selection and inference: a practical
information-theoretic approach. Springer,
Berlin

56. Anisimova M, Bielawski JP, Yang Z (2001)
Accuracy and power of the likelihood ratio
test in detecting adaptive molecular evolution.
Mol Biol Evol 18:1585–1592

57. Whelan S, Goldman N (2004) Estimating the
frequency of events that cause multiple-
nucleotide changes. Genetics
167:2027–2043

58. Wong WS, Yang Z, Goldman N, Nielsen R
(2004) Accuracy and power of statistical

methods for detecting adaptive evolution in
protein coding sequences and for identifying
positively selected sites. Genetics
168:1041–1051

59. Massingham T, GoldmanN (2005) Detecting
amino acid sites under positive selection and
purifying selection. Genetics 169:1753–1762

60. Zhang J, Nielsen R, Yang Z (2005) Evalua-
tion of an improved branch-site likelihood
method for detecting positive selection at the
molecular level. Mol Biol Evol 22:2472–2479

61. Anisimova M, Yang Z (2007) Multiple
hypothesis testing to detect lineages under
positive selection that affects only a few sites.
Mol Biol Evol 24:1219–1228

62. Yang Z (2010) A likelihood ratio test of spe-
ciation with gene flow using genomic
sequence data. Genome Biol Evol 2:200–211

63. Fletcher W, Yang Z (2010) The effect of inser-
tions, deletions, and alignment errors on the
branch-site test of positive selection. Mol Biol
Evol 27:2257–2267

64. Yang Z, dos Reis M (2011) Statistical proper-
ties of the branch-site test of positive selec-
tion. Mol Biol Evol 28:1217–1228

65. Self SG, Liang K-Y (1987) Asymptotic prop-
erties of maximum likelihood estimators and
likelihood ratio tests under nonstandard con-
ditions. J Am Stat Assoc 82:605–610

66. Posada D, Crandall KA (1998) MODELT-
EST: testing the model of DNA substitution.
Bioinformatics 14:817–818

67. Posada D (2008) jModelTest: phylogenetic
model averaging. Mol Biol Evol
25:1253–1256

68. Cunningham CW, Zhu H, Hillis DM (1998)
Best-fit maximum-likelihood models for phy-
logenetic inference: empirical tests with
known phylogenies. Evolution 52:978–987

69. Pol D (2004) Empirical problems of the hier-
archical likelihood ratio test for model selec-
tion. Syst Biol 53:949–962

70. Kullback S, Leibler RA (1951) On informa-
tion and sufficiency. Ann Math Stat 22:79–86

71. Minin V, Abdo Z, Joyce P, Sullivan J (2003)
Performance-based selection of likelihood
models for phylogeny estimation. Syst Biol
52:674–683

72. Ripplinger J, Sullivan J (2008) Does choice in
model selection affect maximum likelihood
analysis? Syst Biol 57:76–85

73. Posada D, Crandall KA (2001) Selecting the
best-fit model of nucleotide substitution. Syst
Biol 50:580–601

74. Abdo Z, Minin VN, Joyce P, Sullivan J (2005)
Accounting for uncertainty in the tree

A Not-So-Long Introduction to Computational Molecular Evolution 111



topology has little effect on the decision-
theoretic approach to model selection in phy-
logeny estimation. Mol Biol Evol 22:691–703

75. Luo A, Qiao H, Zhang Y, Shi W, Ho SY,
Xu W, Zhang A, Zhu C (2010) Performance
of criteria for selecting evolutionary models in
phylogenetics: a comprehensive study based
on simulated datasets. BMC Evol Biol 10:242

76. Schwarz G (1978) Estimating the dimension
of a model. Ann Stat 6:461–464

77. Evans J, Sullivan J (2011) Approximating
model probabilities in Bayesian information
criterion and decision-theoretic approaches
to model selection in phylogenetics. Mol
Biol Evol 28:343–349

78. Gascuel O (1997) BIONJ: an improved ver-
sion of the NJ algorithm based on a simple
model of sequence data. Mol Biol Evol
14:685–695

79. Darriba D, Taboada GL, Doallo R, Posada D
(2012) jModelTest 2: more models, new
heuristics and parallel computing. Nat Meth-
ods 9:772–772

80. Lefort V, Longueville J-E, Gascuel O (2017)
SMS: smart model selection in PhyML. Mol
Biol Evol 34:2422–2424

81. Kleinman CL, Rodrigue N, Bonnard C,
Philippe H, Lartillot N (2006) A maximum
likelihood framework for protein design.
BMC Bioinformatics 7:326

82. Rodrigue N, Philippe H, Lartillot N (2007)
Exploring fast computational strategies for
probabilistic phylogenetic analysis. Syst Biol
56:711–726

83. Yang Z (2005) Bayesian inference in molecu-
lar phylogenetics. In: Gascuel O
(ed)Mathematics of evolution and phylogeny.
Oxford University Press, Oxford, pp 63–90

84. Jeffreys H (1939) Theory of probability. The
International series of monographs on phys-
ics. The Clarendon Press, Oxford

85. Kass RE, Raftery AE (1995) Bayes factors. J
Am Stat Assoc 90:773–795

86. Lartillot N, Philippe H (2006) Computing
Bayes factors using thermodynamic integra-
tion. Syst Biol 55:195–207

87. Fan Y, Wu R, Chen MH, Kuo L, Lewis PO
(2011) Choosing among partition models in
Bayesian phylogenetics. Mol Biol Evol
28:523–32

88. NewtonMA, Raftery AE (1994) Approximat-
ing Bayesian inference with the weighted like-
lihood bootstrap. J R Stat Soc B 56:3–48

89. Aris-Brosou S (2003) How Bayes tests of
molecular phylogenies compare with frequen-
tist approaches. Bioinformatics 19:618–624

90. Ronquist F, Huelsenbeck JP (2003) MrBayes
3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19:1572–1574

91. Drummond AJ, Rambaut A (2007) BEAST:
Bayesian evolutionary analysis by sampling
trees. BMC Evol Biol 7:214

92. Raftery AE (1996) Hypothesis testing and
model selection. In: Gilks WR, Richardson S,
Spiegelhalter DJ (eds) Markov chain Monte
Carlo in practice. Chapman & Hall, Boca
Raton, pp 163–187

93. Ogata Y (1989) A Monte Carlo method for
high dimensional integration. Numer Math
55:137–157

94. Gelman A, Meng X-L (1998) Simulating nor-
malizing constants: from importance sam-
pling to bridge sampling to path sampling.
Stat Sci 13:163–185

95. Xie W, Lewis PO, Fan Y, Kuo L, Chen MH
(2011) Improving marginal likelihood esti-
mation for Bayesian phylogenetic model
selection. Syst Biol 60:150–60

96. Baele G, Lemey P, Bedford T, Rambaut A,
Suchard MA, Alekseyenko AV (2012)
Improving the accuracy of demographic and
molecular clock model comparison while
accommodating phylogenetic uncertainty.
Mol Biol Evol 29:2157–2167

97. Raftery AE, Newton MA, Satagopan JM, Kri-
vitsky PN (2007) Estimating the integrated
likelihood via posterior simulation using the
harmonic mean identity. Bayesian Stat 8:1–45

98. Smyth P (2000) Model selection for probabi-
listic clustering using cross-validated likeli-
hood. Stat Comput 10:63–72

99. Lartillot N, Brinkmann H, Philippe H (2007)
Suppression of long-branch attraction arte-
facts in the animal phylogeny using a site-
heterogeneous model. BMC Evol Biol 7
(Suppl 1):S4

100. Cavalli-Sforza LL, Edwards AW (1967) Phy-
logenetic analysis. Models and estimation
procedures. Am J Hum Genet 19:233–257

101. Aris-Brosou S (2003) Least and most power-
ful phylogenetic tests to elucidate the origin
of the seed plants in the presence of
conflicting signals under misspecified models.
Syst Biol 52:781–793

102. Foulds LR, Penny D, Hendy MD (1979) A
general approach to proving the minimality of
phylogenetic trees illustrated by an example
with a set of 23 vertebrates. J Mol Evol
13:151–166

103. Hendy MD, Penny D (1982) Branch and
bound algorithms to determine minimal evo-
lutionary trees. Math Biosci 59:277–290
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Part II

Genomic Alignment and Homology Inference



Chapter 4

Whole-Genome Alignment

Colin N. Dewey

Abstract

Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level
between two or more genomes. It combines aspects of both colinear sequence alignment and gene
orthology prediction and is typically more challenging to address than either of these tasks due to the
size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been
developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic
inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and
significance of WGA and present an overview of the methods that address it. We also examine the problem
of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in
order to make most effective use of our rapidly growing databases of whole genomes.

Key words Sequence alignment, Whole-genome alignment, Homology map, Toporthology,
Genome evolution, Comparative genomics

1 Introduction

When the problem of biological sequence alignment was first
described and addressed in the 1970s, sequencing technology was
limited to obtaining the sequences of individual proteins or
mRNAs or short genomic intervals. As such, classical sequence
alignment (as described in Chapter 7 [1]) is typically focused on
predicting homologous positions within two or more relatively
short and colinear sequences, allowing for the edit events of substi-
tution, insertion, and deletion. Although limited in its scope, this
type of alignment remains extremely important today, with gene-
sized alignments forming the basis of most evolutionary studies.

Starting in 1995 with the sequencing of the 1.8 Mb-sized
genome of the bacterium H. influenzae [2], biologists have had
access to a different scale of biological sequences, those of whole
genomes. DNA sequencing technology has rapidly improved since
that time, and as a result, we have seen an explosion in the availabil-
ity of whole-genome sequences. As of the writing of this chapter,
there are 9071 published complete genome sequences (8380
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bacterial, 281 archaeal, and 410 eukaryotic), according to the
GOLD database [3]. Whole-genome sequencing remains popular,
with over 140,000 sequencing projects that are either ongoing or
completed.

Along with the ascertainment of these sequences, the problem
of whole-genome alignment (WGA) has arisen. As each genome is
sequenced, there is interest in aligning it against other available
genomes in order to better understand its evolutionary history and,
ultimately, the biology of its species. Like classical sequence align-
ment, WGA is about predicting evolutionarily related sequence
positions. However, aligning whole genomes is made more com-
plicated by the fact that genomes undergo large-scale structural
changes, such as duplications and rearrangements. In addition, a
set of genomes may contain pairs of sequence positions whose
evolutionary relationships can be described by any of the three
major subclasses of homology: orthology, paralogy, and xenology.
As orthologous positions are typically of primary interest, WGA
also involves the classification of homologous relationships.

In this chapter, we describe the problem of WGA and the
methods that address it. We begin with a thorough definition of
the problem and discuss the important downstream applications of
WGAs. We then categorize the WGA methods that have been
developed and describe the key computational techniques that are
used within each category. In addition to describing whole-genome
aligners, we also discuss the various approaches that have been used
for evaluating the alignments they produce. Lastly, we lay out a
number of current methodological challenges for WGA.

2 The Definition and Significance of WGA

2.1 WGA as a

Correspondence

Between Genomes

In imprecise terms, a WGA is a “correspondence” between gen-
omes. For each segment of a given genome, a WGA tells us where
its “corresponding” segments are in other genomes. A segment
may be one or more contiguous nucleotide positions within a
genome. What does it mean for two genomic segments to “corre-
spond” to each other? In most situations, we consider two seg-
ments to be “corresponding” if they are orthologous. Orthologous
sequences are those that are evolutionarily related (homologous)
and that diverged from their most recent common ancestor
(MRCA) due to a speciation event [4]. In contrast, paralogous
sequences are homologs that diverged from the MRCA due to a
duplication event. Thus, by definition, orthologous sequences are
the most closely related pieces of two genomes and, as is more
thoroughly discussed later and in Chapter 9 [5], are of primary
interest because they are useful for applications such as function
prediction and species tree inference. As such, WGA is most com-
monly taken to be the prediction of orthology between the
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components of entire genome sequences. When a WGA also pre-
dicts paralogy, typically only paralogs whose MRCA is at least as
recent as the MRCA of entire set of genomes are considered, as
there is extensive ancient homology within extant genomes.

It is important to note that the orthologous relationships
between two genomes do not create a one-to-one correspondence.
Duplication events that have occurred since the time of the MRCA
of the species can result in a genomic segment in one species having
multiple orthologous segments in another. This is a particularly
important issue when the genome of one lineage has undergone a
whole-genome duplication event since the time of the MRCA. In
this situation, few segments of the genome of the nonduplicated
lineage have a single ortholog in the other genome.

2.2 Toporthology In many cases, WGAs do not aim to predict all orthologous
sequences. Instead, they only predict toporthology (positional
orthology), a distinguished subset of orthology [6, 7]. The concept
of toporthology captures the notion that not all orthologous rela-
tionships are equivalent in terms of the evolutionary history of the
genomic context of the orthologs. Figure 1 gives an example
scenario in which toporthology helps to distinguish between two
orthologous relationships.

The definition of toporthology relies on a classification of
duplication events. A duplication event is considered to be “sym-
metric” if the removal of either copy of the duplicated genomic
material (immediately after the event) reverts the genome to its
original (preduplication) state. Examples of symmetric duplications
are tandem and whole-genome duplications. If only one specific
copy can be removed to undo a duplication event, then the event is
considered “asymmetric.” In the asymmetric case, the removable
copy is referred to as the “target,” with the other copy referred to as
the “source.” Retrotransposition and segmental duplication both
belong to the asymmetric class.

With this classification of duplication events in hand, we can
now define toporthology. Two genomic segments are toportholo-
gous if they are orthologous and neither segment is derived from
the target of an asymmetric duplication event since the time of the
MRCA of the segments. Thus, two orthologous segments are
toporthologous if their evolutionary history (since the MRCA)
only involves symmetric duplication events or asymmetric duplica-
tions in which their ancestral segment was part of the source copy.

The important property of toporthologs is that, in the absence
of rearrangement events, they share the same ancestral genomic
context. As the context of a gene or genomic segment has func-
tional consequences, toporthologous sequences are generally
expected to be more similar in their function than orthologous
sequences that are not toporthologous (atoporthologs) [6]. How-
ever, there is no guarantee that toporthologs share a common
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function or that two genomic intervals that have the same function
are toporthologs. Thus, a rigorous functional analysis of genomes
should consider all classes of homology. Nevertheless, WGAs that
focus on toporthology produce a good first approximation to a
functional correspondence between genomes.

2.3 Definition and

Representation

To be more precise, a WGA is, in general, the prediction of homol-
ogous pairs of positions between two or more genome sequences.
Often, as we have previously discussed, only orthologous or
toporthologous relations are predicted in WGAs. And while align-
ment is typically focused on homologous relationships between
sequences, whole-genome comparisons can also include alignments
within genomes, which represent paralogous sequences.

Note that we define WGA as homology prediction at the level
of nucleotides. Although the concept of homology is more com-
monly used with respect to entire genes or proteins, it is easily used
and, in fact, more naturally defined at the level of single nucleotides.
Homology of nucleotide positions is established through template-
driven nucleotide synthesis, and the definitions of orthology, paral-
ogy, and xenology for nucleotides follow those for genes [7].

While a WGA can be defined as a prediction of homology
statements, it is usually represented as a set of nucleotide-level
alignment matrices or “blocks,” each block made up by segments
of the genomes that are both homologous and colinear. Homolo-
gous genomic segments are colinear if they have not been broken
by a rearrangement event since the time of their MRCA. Since
rearrangement events, such as inversions, are common at the scale
of entire genomes, WGAs are typically made up of many blocks. In
general, a block contains two or more genomic segments, and
multiple segments in the same block may belong to the same
genome (indicating paralogous sequence). One specific WGA rep-
resentation, the “threaded blockset” [8], requires that every

Species A

Species B

XB ZBYB1 YB2

XA YA ZA

X Y Z

XB YB ZB
speciation

asymmetric 
duplication

Ancestor

Fig. 1 A hypothetical evolutionary scenario in which the relation of toporthology distinguishes between two
ortholog pairs. The bullet-like shapes indicate genomic segments. Both YB1 and YB2 are orthologous to
YA. However, only YB1 is toporthologous to YA because YB2 was derived from the target of an asymmetric
duplication since the time of the most recent common ancestor, Y, of YB2 and YA

124 Colin N. Dewey



position belongs to a block and thus additionally allows a block to
contain just a single segment, which would represent a unique
genomic sequence. Figure 2 depicts a hypothetical example of a
WGA, with some blocks containing both orthologous and para-
logous sequences.

As more genomes are added to an alignment or the total
evolutionary divergence between them is increased, the blocks in
a WGA decrease in size and increase in number. One might imagine
that in the limit of an infinite number of genomes or an infinite
amount of time, all blocks might have length one (a single column),
which makes the concept of an “alignment matrix” irrelevant.
However, rearrangements in certain segments of the genome are
likely to be highly deleterious to an organism and will thus never be
observed. Such segments are referred to as genomic “atoms” [9]
and prevent all blocks from becoming single alignment columns.

2.4 Comparison to

Other Homology

Prediction Tasks

WGA is closely related to classical sequence alignment (the align-
ment of two or more relatively short and colinear sequences), and
most whole-genome aligners rely on classical alignment techniques
(e.g., the Needleman–Wunsch [10] and Smith–Waterman [11]
pairwise alignment algorithms and heuristics used for multiple
alignments) as subroutines. However, there are three key differ-
ences between these two classes of alignment. First, and most
importantly, classical alignment requires sequences to be colinear,
which is often not the case for genome sequences due to rearrange-
ment events. Second, even when restricted to toporthologous rela-
tionships, the correspondences between genomes are not one to

WA XA1 YAXA2 Species A

Species B

Species C

ZA

WB XBYBZB

WC XCZC2ZC1

A
B
C

W X Y Z
A1
A2
B
C

A
B

A
B

C2

C1

A   TT-CTAAGTG
B   CTACTAAG-G
C1  CTACT--GTG
C2  CTACC--GTG

(A)

(B) (C)

Fig. 2 An example WGA of three genomes represented as a set of alignment blocks. (a) The positions of the
genomic segments that are in the alignment blocks are shown as shaded bullet-like shapes (the direction of
the bullet indicates the orientation of the segment). In this example, not all genomic segments belong to a
block (note the unshaded intervals). (b) The alignment blocks of the WGA. Note that blocks do not need to
contain a segment from all genomes (e.g., block Y) and that some blocks can contain multiple segments from
the same genome (e.g., blocks X and Z). (c) A slice of alignment block Z, which is a nucleotide-level alignment
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one, which is also a requirement of classical alignment. Due, in part,
to the complications of these first two issues, it is difficult to
formulate a useful objective function (such as the sum-of-pairs
score for classical alignment) for WGA. Thus, most genome align-
ment methods are heuristic procedures that lack an explicit objec-
tive. A last difference between classical alignment and WGA is the
scale of the problem. Classical alignment typically focuses on the
alignment of single genes, which are usually on the order of
thousands of nucleotides long. Whole genomes, in contrast, are
millions to billions of nucleotides in length. The facts that genomes
are large and are often neither colinear nor in one-to-one corre-
spondence with other genomes are what make WGA challenging.

Since WGA is often focused on orthologous relationships, it is
also related to the “orthology prediction” problem (see Chapter 9
[5]). The key difference between the two problems is that orthol-
ogy prediction is traditionally cast at the level of genes, whereas
WGA operates at the level of nucleotides. For most orthology
prediction methods, a genome is treated as an unordered set of
genes. Whole-genome aligners, on the other hand, consider a
genome to be a set of DNA sequences (chromosomes) within
which genes are embedded. Thus, a WGA provides orthology
predictions for both genes and intergenic regions. Due in part to
their treatment of genomes as long nucleotide sequences, current
WGA methods rely exclusively on sequence similarity and the
ordering of nucleotides in a genome to predict orthology. In con-
trast, orthology prediction methods often use phylogenetic ana-
lyses, which can be more powerful than genome order and
sequence similarity information alone. Thus, while the problem of
WGA is broader in scope than that of orthology prediction, it is
restricted to the analysis of relatively closely related genomes, for
which homology of nongenic nucleotides is detectable and gene
order is at least partially conserved. Gene-level orthology predic-
tion is more appropriate for distantly related genomes, which may
only have detectable homology at the amino acid level and little
colinearity.

2.5 Significance WGAs are powerful because they allow for the analysis of molecular
evolution at both large and small scales. At the large scale, one can
use such alignments to estimate the frequency and location of
rearrangement and duplication events. For example, one might
use a WGA between human and mouse to identify colinear ortho-
logous blocks, which are then given to a rearrangement analysis
method (e.g., [12]) to determine a most parsimonious set of rear-
rangement events explaining the current structures of the two
genomes. At the small scale, WGAs can be used to examine the
rates of substitutions and indels across the entire genome. For
example, one might look at alignments of ancestral repeats to
estimate the neutral rates of nucleotide evolution. Both small-
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and large-scale mutational events identified from WGAs can be
used as data for species tree inference. In combination with carefully
constructed models of genome evolution at both scales, WGAs also
enable the task of ancestral genome reconstruction [13, 14].

Beyond purely evolutionary studies, WGAs are valuable for
identifying functional elements within genomes. Each class of func-
tional element within the genome tends to have a unique “evolu-
tionary signature,” which can be searched for within WGAs
[15]. For example, coding sequences tend to have mutational
patterns with a predominance of substitutions at the third positions
of codons, which are unlikely to affect the amino acid sequence.
This characteristic evolutionary signature of coding sequence has
led to the development of comparative gene-finding methods,
which often use WGAs (Chapter 6 [16]). Noncoding RNA
sequences can also be identified from WGAs but have more com-
plex signatures involving compensatory mutations that maintain
base pairing within RNA secondary structures [17]. More gener-
ally, one can search for evolutionarily constrained regions within
WGAs, which can contain functional elements from a variety of
classes [18]. When combined with the knowledge of transcription
factor-binding motifs, this approach can be used to identify tran-
scription factor-binding sites with a technique called “phylogenetic
footprinting” [19]. The easiest evolutionarily constrained regions
to pick out are those of “ultraconserved elements,” which maintain
high levels of sequence identity across large evolutionary distances
and are primarily noncoding components of the genome [20].

WGAs also allow for the transfer of functional information
about specific elements from one species to another. As WGAs
typically predict orthology and orthologous sequences are likely
to have similar functions, WGAs are valuable for function predic-
tion. By aligning at the nucleotide level across the genome, they can
aid in function prediction for both genes and nongenic regions,
such as those that contain regulatory elements. For example, if we
are interested in a specific disease-associated interval in the human
genome, we might use an alignment to identify where its mouse
orthologs are located. Knowledge of the mouse orthologs would
enable us to have a better understanding of the evolutionary history
of this genomic region and could lead to genetic manipulation
experiments that can only be performed in mice.

3 Methods for WGA

3.1 A Simplistic

Approach

It is easier to understand the existing methods for performing
WGA by first appreciating the shortcomings of a simplistic
approach for comparing whole-genome sequences. One simple
approach would be to run BLAST [21], or another similar local
alignment tool, between all pairs of genomes. The WGA would
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then be defined as the union of all significant pairwise local align-
ments discovered by BLAST. By using a local alignment tool, we
avoid the issues of rearrangements and duplications, as sets of local
alignments are not constrained to be colinear or in one-to-one
correspondence.

While this approach would certainly yield a large set of homol-
ogy predictions between all pairs of genomes, it has a number of
shortcomings. First, by only using a BLAST significance threshold,
it makes no distinction between orthology, paralogy, and other
refinements of homology. Second, the pairwise alignments that it
produces are not guaranteed to be consistent with each other, even
though homology, by definition, is a transitive relation. Third,
BLAST may miss some homologous sequences that have low simi-
larity but are strongly supported in their relatedness by flanking
homologous sequences. BLAST’s significance statistics are proven
for ungapped sequences and good in practice for sequences with
short indels [22], but are not designed for whole-genome compar-
isons, which often feature large-scale insertions and deletions and
heterogeneous substitution rates. Lastly, this approach is overly
computationally intensive. For example, it does not take advantage
of the fact that homology is a transitive relation, that relationships
between sequences are reasonably modeled by a tree, and that
homologous sequences between genomes are often found in long
colinear segments.

3.2 The Two Major

Approaches to WGA

Existing WGA methods attempt to address one or more of the
weaknesses of this simple approach. These methods can be loosely
classified into two major strategies which we refer to as the “hierar-
chical” and “local” approaches. The main idea behind the hierar-
chical approach is to split the WGA problem into a set of global
multiple alignment problems. To do this, it first identifies the
colinear and homologous (typically orthologous) segments of the
genomes. Each set of colinear segments is then given to a
specialized genomic global alignment method to produce a
nucleotide-level alignment. In contrast, the first step of the
“local” approach is to produce a large set of nucleotide-level align-
ments. Later steps involve the filtering and merging of these align-
ments to produce sets of pairwise or multiple alignments of
homologous (typically orthologous) sequences. Despite their dif-
ferences, both strategies typically begin with a local alignment step
that is similar to the simplistic all-vs.-all alignment of the BLAST
approach. A summary of all of the WGA methods described in this
chapter and the role they play within one or both approaches is
given in Table 1.

Both approaches have advantages and disadvantages. The pri-
mary advantage of the hierarchical approach is that it can often be
faster and breaks a WGA into a number of independent subpro-
blems that can be solved in parallel. It is faster because the
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Table 1
A list of the WGA methods cited in this chapter

Method Category
Relationships
predicted

Pairwise or
multiple References

BLAST Local alignment Homology Pairwise [21]

BLAT Local alignment Homology Pairwise [32]

STELLAR Local alignment Homology Pairwise [33]

LASTZ Local alignment Homology Pairwise [34]

LAST Local alignment Homology Pairwise [28]

MUMmer Local alignment Orthology Pairwise [35]

CHAOS Local alignment Homology Pairwise [36]

GRIMM-Synteny Homology mapping Toporthology Multiple [40]

DRIMM-Synteny Homology mapping Homology Multiple [45]

Mercator Homology mapping Toporthology Multiple [46]

Enredo Homology mapping Homology Multiple [47]

OSfinder Homology mapping Toporthology Multiple [48]

SuperMap Homology mapping Homology Multiple [49]

Sibelia Homology mapping Homology Multiple [50]

M-GCAT Hierarchical WGA Toporthology Multiple [51]

progressiveMauve Hierarchical WGA Toporthology Multiple [52]

MUGSY Hierarchical WGA Toporthology Multiple [53]

Cactus Hierarchical WGA Homology Multiple [54]

MAVID Global genomic
alignment

Colinear homology Multiple [60]

LAGAN/Multi-
LAGAN

Global genomic
alignment

Colinear homology Pairwise/
multiple

[37]

DIALIGN Global genomic
alignment

Colinear homology Multiple [36]

SeqAn::T-Coffee Global genomic
alignment

Colinear homology Multiple [61]

Pecan Global genomic
alignment

Colinear homology Multiple [47]

FSA Global genomic
alignment

Colinear homology Multiple [62]

NUCmer/PROmer Local WGA Orthology Pairwise [35]

MULTIZ/TBA Local WGA Homology Multiple [8]

AXTCHAIN/
CHAINNET

Alignment chaining
and filtering

Orthology Pairwise [67]

(continued)

Whole-Genome Alignment 129



identification of long colinear and orthologous segments in the
genomes can be accurately computed without the need for sensitive
nucleotide-level alignments. However, because hierarchical meth-
ods do not often use the most sensitive aligners for this step, they
tend to miss small rearranged or diverged segments. Thus, the
primary advantage of the local method is in its sensitivity to these
regions, although “glocal” alignment methods [23], which allow
for small rearrangements, can partially ameliorate this weakness of
hierarchical methods. Hierarchical methods also run the risk of
being overconfident of the colinearity of genomic segments and
can thus produce more false-positive aligned positions within
sequences predicted to be colinear.

3.3 Local Pairwise

Genomic Alignment

Methods for both WGA strategies generally start by finding local
alignments between, and perhaps within, the genomes. The
Smith–Waterman algorithm is the classical solution to the pairwise
local alignment problem, but is generally not used for WGA
because it runs in time quadratic in the size of the genomes,
which can be large. Instead, most methods adopt a “seed-and-
extend” approach for discovering high-scoring local alignments,

Table 1
(continued)

Method Category
Relationships
predicted

Pairwise or
multiple References

PicoInversionMiner Alignment refinement Orthology Pairwise [68]

Cassis Alignment refinement Orthology Pairwise [69, 70]

GenAlignRefine Alignment refinement Colinear homology Multiple [71]

PSAR-Align Alignment refinement Colinear homology Multiple [73]

Phylo Alignment refinement Colinear homology Multiple [76, 77]

SLAM Alignment refinement Colinear homology Pairwise [78]

DOUBLESCAN Alignment refinement Colinear homology Pairwise [79]

CESAR Alignment refinement Colinear homology Pairwise [81]

MORPH Alignment refinement Colinear homology Pairwise [82]

EMMA Alignment refinement Colinear homology Pairwise [83]

MAFIA Alignment refinement Colinear homology Multiple [84]

SAPF Alignment refinement Colinear homology Multiple [85]

REAPR Alignment refinement Colinear homology Multiple [86]

For each method, the approach it uses or the role it plays within a larger WGA system is given in the “category” column.

Each method is labeled as either “pairwise” or “multiple” depending on whether it can be applied to generate multiple

alignments. In addition, the primary type of evolutionary relationship predicted by each method is given in the “relation-
ships predicted” column
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much like BLAST. This approach first identifies short ungapped
matches between the sequences using one of a variety of data
structures. It then extends the short matches from both ends
using a variant of the Smith–Waterman algorithm, stopping the
extension when the score of the alignment drops below a specified
threshold. In some cases, nearby and consistent (in terms of order
and orientation) local alignments are “chained” together to form
larger alignments.

There are a number of techniques used for discovering seeds at
the genomic scale for the “seed-and-extend” approach to local
alignment. A first distinction between the techniques is whether
they find exact or inexact matching seeds. Exact seed discovery is
often faster and easier to implement, whereas inexact seeds offer
better sensitivity. Seed techniques also vary in whether they use
“consecutive” or “spaced” seeds [24]. Consecutive seeds consider
matches and mismatches at all positions within a sequence interval,
whereas spaced seeds only check for matches at a subset of positions
within an interval. The specific subset of positions checked is known
as the “seed pattern,” and there has been significant work on
determining optimal sets of multiple seed patterns (e.g.,
[25, 26]). It has been shown that carefully chosen spaced seed
patterns are superior to consecutive seeds in terms of sensitivity
[27]. Lastly, seeds differ in whether their lengths are fixed or
adaptive (variable). For WGA, adaptive seeds have been shown to
allow for faster local alignment at the same level of sensitivity as
fixed seeds [28].

Seed-finding techniques can often be improved by taking
advantage of DNA evolutionary models. A generalization of spaced
seeds is “subset seeds” [29], which allow subsets of bases to be
considered equivalent when determining if there is a match at a
given position. Subset seeds are particularly useful for taking into
account that transitions are often more common than transversions
in genome comparisons. Further taking into account biologically
informed substitution patterns is the “translated” seed, which is a
match at the amino acid level after translating genomic sequences in
all six possible reading frames. Translated seeds enable increased
sensitivity in comparisons of more diverged genomes. Lastly, when
aligning a genome to a set of genomes for which a multiple WGA
has already been constructed, one can take into account the substi-
tution patterns and ancestral sequences inferred from the WGA to
devise more sensitive seeds [30, 31].

The choice of seed type is the major determinant of the data
structures used for seed discovery. For example, BLAT [32] uses a
simple index of all possible k-mers for exact and translated seeds but
uses a heuristic of indexing only nonoverlapping k-mers for mem-
ory efficiency. STELLAR [33] also uses an index of k-mers but
implements an exact algorithm based on filtration for finding all
local alignments with an error rate below a given threshold. LASTZ

Whole-Genome Alignment 131



(the successor to BLASTZ [34]), which uses a carefully chosen
spaced seed pattern introduced by [24], instead uses a hash table
to find both exact and inexact matches. Not to be confused with
LASTZ is the more recently developed LAST aligner [28], which
uses adaptive seeds with highly configurable patterns that are iden-
tified via a suffix array data structure. MUMmer uses a suffix tree to
rapidly find all exact consecutive seeds with some minimum length
[35]. CHAOS [36], which is a component of the LAGAN-suite of
genome alignment tools [37], uses a related structure, a “threaded
trie,” to find exact and inexact consecutive seeds.

For computational efficiency reasons, the extension step of the
seed-and-extend approach typically only allows for ungapped align-
ments or alignments with short indels. However, genome align-
ments often feature large indels that are not discovered by
extension from a seed. Thus, many local genomic alignment tools
use a “chaining” step to link nearby and consistent local alignments
discovered by the seed-and-extend strategy. For example, MUM-
mer includes a module for chaining together nearby exact matches
using a variation of the longest increasing subsequence (LIS) prob-
lem [38]. CHAOS also uses an LIS-derived algorithm for chaining
the inexact consecutive seeds it discovers. Chaining is often fol-
lowed by more sensitive alignment between chained local align-
ments. For example, MUMmer runs a variant of Smith–Waterman
alignment in between chained matches and LASTZ recursively
searches for alignments with more sensitive seeds in between nearby
alignments discovered in previous steps.

3.4 The Hierarchical

Approach

The hierarchical approach to WGA consists of two steps. First, a
high-level homology map between the genomes is constructed.
Second, a nucleotide-level alignment is obtained by running a
genomic global alignment tool on each homologous and colinear
set of genomic segments identified by the homology map. Hierar-
chical WGA methods vary in the exact techniques used for
each step.

The idea behind the hierarchical approach is to separate the
problem of identifying rearrangements and duplications from that
of obtaining a nucleotide-level alignment. In the absence of rear-
rangements and duplications, WGA simply reduces to classical
sequence alignment although at a much larger scale. Thus, if a
WGA problem can be broken into a set of subproblems that do
not contain these large-scale events, the numerous methods that
have been developed for classical global alignment can be utilized.

The first step of the hierarchical strategy is to construct a
homology map between the genomes of interest. A homology
map is a collection of sets of genomic intervals, where each set of
intervals is required to be homologous and colinear (i.e., free of
rearrangements and duplications). Each set represents the
sequences that will ultimately form a block within a WGA.
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Homology maps generally have the property that each genomic
position belongs to at most one set and has all of its homologs
contained within that set. For WGA, homology maps are often
restricted in the evolutionary relationships that are captured, as
only a subset of homologous relationships may be of interest.
Typically, only orthologous relationships are captured, forming an
“orthology map.” When orthology maps are restricted to predict-
ing one-to-one relationships, they are more likely to be representa-
tive of toporthology.

The concept of a homology map is closely related to the con-
cepts of “conserved segments” and “syntenic blocks,” which gen-
erally refer to sets of genomic intervals containing multiple
homologous markers (e.g., genes) and featuring conserved orien-
tations and adjacencies of these markers [39, 40]. Unfortunately,
these concepts have long been poorly defined, and, as a result,
methods for syntenic block identification differ markedly in their
output [41]. In addition, methods for identifying syntenic blocks
(or closely related concepts) are often focused on identifying sets of
genomic intervals that exhibit levels of conservation of marker
content or colinearity that exceed what one would expect if markers
were randomly shuffled between genomes (e.g., [42–44]). This is
in contrast to homology maps, which are concerned with colinear
homology, regardless of biological significance. And, in practice,
homology maps are intermediate objects in the process of WGA,
whereas syntenic block predictions are often of direct interest.

Homology maps are most commonly constructed from local
alignments, such as those computed by methods discussed in the
previous section. As only a high-level correspondence is desired,
these methods are often run in faster but less sensitive configura-
tions. For example, local alignments between just the coding inter-
vals of the genomes can be computed quickly and used for the
construction of homology maps that are at least accurate with
respect to protein-coding genes.

Although numerous pairwise homology mapping methods
exist, in this chapter, we restrict our attention to methods that
scale to more than two genomes, as the problem is significantly
more challenging in the multiple genome case. Examples of multi-
ple genome homology map methods include GRIMM-Synteny
[40], its successor DRIMM-Synteny [45], Mercator [46], Enredo
[47], OSfinder [48], SuperMap [49], and Sibelia [50]. The WGA
programs M-GCAT [51], progressiveMauve [52], MUGSY [53],
and Cactus [54] are integrated hierarchical methods that contain a
homology mapping stage.

Many of these methods use graph-based data structures to find
a mapping between multiple genomes simultaneously. Kehr et al.
[55] characterized the relationships between four commonly used
types of graphs: alignment graphs [56], A-Bruijn graphs [57, 58],
Enredo graphs [47], and Cactus graphs [59]. The most
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straightforward graph is the alignment graph, which is a mixed
graph with vertices representing genomic segments, directed
edges representing adjacent segments, and undirected edges repre-
senting homologous segments. In an A-Bruijn graph, vertices
instead represent sets of homologous segments, and directed
edges represent adjacencies between pairs of segments (one from
each set represented by the connected vertices). Relative to align-
ment graphs, A-Bruijn graphs are more compact and readily reveal
the content of each genome. An Enredo graph is very similar to an
A-Bruijn graph, but has a pair of vertices instead of a single vertex
for each set of homologous segments, which captures information
regarding the directionality of each segment within a homologous
set. Lastly, cactus graphs flip the representation of adjacencies, with
vertices corresponding to sets of adjacencies and edges
corresponding to sets of homologous segments. Cactus graphs
have a natural decomposition that provides advantages for analysis
and visualization of WGAs.

Graph-based homology mapping methods generally produce
an initial WGA graph using one of the four representations we have
discussed and then refine the graph via modifications. Of the
homology mapping methods we have listed, GRIMM-Synteny,
Mercator, and MUGSY use alignment graphs. DRIMM-Synteny
and OSfinder use A-Bruijn graphs and Sibelia uses de Bruijn
graphs, of which A-Bruijn graphs are a generalization. And, as
their names suggest, Enredo and Cactus use Enredo and cactus
graphs, respectively. These methods use a variety of techniques for
graph refinement. For example, MUGSY is unique in its use of flow
network algorithms to identify breaks in colinearity. OSfinder uses a
novel probabilistic model to determine a maximum likelihood
multiple genome orthology map. And Cactus uses a simulated
annealing-style algorithm, the Cactus alignment filter, to refine an
initial cactus graph representing a homology map.

Unlike the graph-based methods that build a map between all
genomes simultaneously, the SuperMap and progressiveMauve
methods build a multiple genome map by progressively building
pairwise maps up a guide tree. The pairwise SuperMap algorithm is
essentially a symmetric version of the chaining method used by
Shuffle-LAGAN [23], which allows for rearrangements and dupli-
cations in its chains of orthologous segments. The progressive-
Mauve mapping method instead uses a “breakpoint elimination”
algorithm to find colinear segments and does not allow for duplica-
tions, thus producing output indicative of one-to-one toporthol-
ogy. This algorithm greedily removes local alignments one by one
with the goal of maximizing an objective function that takes into
account both the number of breakpoints implied by an alignment
and substitution scores.

Once a homology map has been created, any one of a number
of genomic global alignment methods can be used to align the
orthologous and colinear segments identified by the map. As for
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our discussion of homology mapping methods, we restrict our
attention to global aligners that can handle multiple genomes.
Examples of such methods are MAVID [60], MLAGAN [37],
DIALIGN [36], SeqAn::T-Coffee [61], PECAN [47], FSA [62],
and the base-level alignment refinement (BAR) algorithm of Cactus
[54]. For colinear sequences, the genomic alignment problem is
the same as that of classical global alignment but is made more
difficult by the fact that the sequences are long (possibly millions of
nucleotides in length). Thus, global genomic aligners employ heur-
istics to speed up the process. By far, the most common heuristic
used is to first identify short local alignments, or anchors, between
the sequences, identify a chain of these anchors, and then perform
global alignment between the adjacent chained anchors. This tech-
nique is similar to the strategy for hierarchical WGA, but is simpler,
due to the fact that rearrangements and duplications do not need to
be taken into account. MLAGAN and DIALIGN use the CHAOS
local aligner, PECAN and FSA use Exonerate [63], and MAVID
and SeqAn::T-Coffee use suffix trees or arrays to find anchors.

In addition to the specific local alignment technique used to
speed up the alignment process, global genomic aligners also vary
with respect to how they combine local pairwise alignments to
build a multiple global alignment. First, MAVID, MLAGAN,
SeqAn::T-Coffee, and Pecan all belong to the class of progressive
alignment methods, which use a phylogenetic tree to guide their
algorithms (see Chapter 7 [1]). For the alignment of non-leaf
sequences during progressive alignment, MAVID uses maximum
likelihood ancestral sequence inference, while MLAGAN, SeqAn::
T-Coffee, and Pecan use a sum-of-pairs objective function. Both
SeqAn::T-Coffee and Pecan use a “consistency” technique, which
adjusts the score between pairs of positions (or segments) based on
the consistency of triplets of pairwise alignments. The nonprogres-
sive methods, DIALIGN, FSA, and BAR, instead put together a
multiple alignment by greedily merging consistent local pairwise
alignments. While differing in their use of a tree, the FSA, Pecan,
and BAR methods take advantage of probabilistic models of
sequence alignment and attempt to maximize statistically grounded
objective functions, as opposed to the heuristic score-based func-
tions used by the other methods. BAR is unique in its ability to
predict breakpoints when aligning groups of sequences that may
contain the boundaries of rearrangement events.

Although the hierarchical approach breaks the WGA problem
into a large number of subproblems (one per colinear segment set)
that can be computed in parallel, it is still a significant computa-
tional effort to produce a WGA with this approach, particularly for
large eukaryotic genomes. Thus, a number of Web sites host pre-
computed hierarchical WGAs. Alignments produced by the combi-
nation of Pecan with either Enredo or Mercator are hosted at the
Ensembl Web site [64]. Similarly, the VISTA Web site [65] hosts
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WGAs generated by SuperMap and the LAGAN-suite of genomic
aligners. Both sites offer visualizations of the WGAs, which are
useful for looking at levels of conservation across genomes.

3.5 The Local

Approach

The local approach to WGA bypasses the high-level homology map
construction phase of the hierarchical approach and instead begins
by identifying a comprehensive set of nucleotide-level pairwise local
alignments. The second step of this approach is to combine the
pairwise local alignments into a cohesive WGA by filtering out
nonorthologous relationships and merging pairwise alignments
into multiple alignments. Because there is typically no additional
pairwise nucleotide-level alignment performed in the second step,
the local alignments generated by the first step are obtained with a
more sensitive aligner than that used by hierarchical methods for
homology map building. The two primary examples of local WGA
methods are MUMmer, a pairwise genome aligner, andMULTIZ/
TBA, a multiple genome aligner [8].

MUMmer was one of the first pairwise WGA methods to be
developed and was initially targeted at the alignment of
prokaryotic-sized genomes. The WGA ability of MUMmer is
achieved through a combination of smaller modules that is orche-
strated by the NUCmer or PROmer scripts. The first module
identifies maximum unique matches (MUMs) between a pair of
genomes with a suffix tree data structure. Nearby matches are
clustered together, and a high-scoring colinear chain of matches is
identified within each cluster. Finally, the matches within the chains
are extended with a variant of the Smith–Waterman algorithm, and
the resulting extended chains are output as a WGA. The raw WGA
output by MUMmer can, in general, include all classes of homolo-
gous relationships. However, the chains are typically filtered to
leave only those that are highest scoring or that result in a reference
position being overlapped by only a single chain. Thus, a filtered
WGA from MUMmer is usually representative of orthology.

MULTIZ/TBA, which was instead designed for large eukary-
otic genomes, starts by using LASTZ to generate sensitive local
pairwise alignments between all pairs of genomes or between a
reference genome and all others. MULTIZ is then used to identify
local alignment blocks of subsets of genomes that should be com-
bined and to merge these blocks using a banded variant of the
Smith–Waterman algorithm. TBA is the program that is used to
coordinate this entire process when all pairs of genomes are com-
pared. Thus far, it does not appear that TBA has been used at the
whole-genome scale, although MULTIZ is regularly used for
reference-based WGAs hosted by the UCSC Genome Browser
[66]. For these reference-based WGAs, the ungapped segments of
LASTZ alignments are first processed with a chaining program
(AXTCHAIN) to establish large colinear alignments between the
reference and another genome. In contrast to the output of
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chaining methods discussed in Subheading 3.3, a chain produced
by AXTCHAIN is an ordered set of pairwise local alignments rather
than a single long alignment that explicitly aligns between the short
local alignments that form the chain. AXTCHAIN chains are typi-
cally filtered by the CHAINNET program to retain only the
highest-scoring alignment at each position within the reference
genome [67]. The remaining alignments, which most likely reflect
orthologous relationships, are then combined into multiple align-
ments with MULTIZ.

3.6 Refining WGAs Because of the computational complexity of multiple alignment,
particularly at the whole-genome scale, methods of both
approaches to WGA use heuristics and simplified models to make
WGA feasible. For example, most of the methods described in this
chapter do not distinguish between different classes of genomic
sequence (e.g., genic and intergenic) while constructing
nucleotide-level alignments. And many methods disregard small,
marginally significant, local alignments for the sake of speed. As a
result, at a local level, the results of current WGA methods often
leave room for improvement.

To remedy this situation, a number of methods have been
developed that may be used to refine WGAs. These methods take
as input either a WGA, a single WGA block, or the set of homolo-
gous and colinear sequences that make up a WGA block. They can
be generally grouped into one of three categories. The first is
composed of methods that refine the local structure of a WGA.
That is, they redefine the boundaries, or “breakpoints,” of the
homologous and colinear blocks in the WGA. A secondary cate-
gory of methods focuses on optimizing individual WGA blocks
with respect to an objective function. The last category includes
methods that perform alignment while taking into account the
structure and evolutionary dynamics of certain classes of genomic
elements.

PicoInversionMiner [68] and Cassis [69, 70] are two methods
for refining the local structure of a WGA. PicoInversionMiner
identifies very small “inplace” inversions between two genomes
that are left undetected by an initial WGA. Such inversions are
represented by alignments that would typically not have statistically
significant scores at the genome level but can be detected via
probabilistic models of local sequence evolution. In contrast to
PicoInversionMiner, which identifies novel rearrangement events,
Cassis refines the coordinates of breakpoints. The refinements pro-
duced by Cassis are the result of identifying weak similarities
between sequences adjacent to segments of an initial orthology
map and extending the boundaries of segments based on these
similarities. The BAR algorithm of Cactus, which we have previ-
ously discussed in the context of hierarchical WGA, is also an
alignment refinement method that identifies breakpoints.
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Other methods for refining WGAs focus on improving local
colinear multiple alignments with respect to a given objective func-
tion. For example, GenAlignRefine [71] attempts to optimize
WGA blocks according to the COFFEE objective function [72]
using a genetic algorithm. The PSAR-Align method [73] instead
realigns blocks to optimize an expected accuracy objective function
[74] using pairwise alignment probabilities estimated by the PSAR
tool [75] and the sequencing annealing algorithm of the FSA
multiple alignment method [62]. Lastly, the Phylo project
[76, 77] refines WGAs by “crowd sourcing” the task of optimizing
colinear alignment blocks, according to one of a number of objec-
tive functions. Phylo casts the multiple alignment problem as a
casual game that may be played by “citizen scientists” at the pro-
ject’s website (http://phylo.cs.mcgill.ca/).

Lastly, a number of methods have been developed that can
improve the alignments of specific classes of genomic elements,
such as gene structures. The primary goal of these methods is
generally to improve prediction of genomic elements, but a more
accurate alignment often results as a side product. Among the
oldest of such methods are comparative gene finders that perform
protein-coding gene prediction and pairwise alignment simulta-
neously. These include SLAM [78] and DOUBLESCAN [79],
both of which use pair hidden Markov models [80]. A related
method, CESAR [81], was specifically designed for realignment
and targets individual coding exons rather than full gene structures.
Other methods focus on improving the alignment of noncoding
regulatory regions by modeling the evolution of sets of transcrip-
tion factor-binding sites with known motifs (e.g., MORPH [82],
EMMA [83], andMAFIA [84]). Like the comparative gene finders,
these methods also use statistical alignment techniques but with
models extended to take into the account the conservation of
binding sites instead of gene structures. SAPF [85] is also a method
aimed at alignment of noncoding regulatory regions but more
generally models sequences that are mixtures of “slow” and “fast”
evolving elements without knowledge of binding motifs. Lastly,
REAPR [86] focuses on the realignment and detection of noncod-
ing RNAs by using alignment models that take into account the
conserved secondary structures of such RNAs.

4 Evaluation of WGAs

Just as for small-scale alignment (Chapter 7, [1]), assessing the
accuracy of WGAs is hard because we rarely know the true evolu-
tionary history of a set of genome sequences. In fact, the evaluation
of WGAs is even harder than that of protein alignments. While
protein aligners can be evaluated with “gold standard” benchmark-
ing databases where the truth is established through protein
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structural information, genome aligners have no benchmarks of
real data. In addition, WGAs must be assessed not only for whether
they align truly homologous sequences but also for whether they
correctly predict orthologous (or toporthologous) relationships.
Thus, the evaluation of WGAs is related to that of gene orthology
prediction, which is discussed in Chapter 9 [5]. Despite these
challenges, a number of creative approaches have been used for
determining the accuracy of WGA methods. The approaches gen-
erally fall into four categories: (1) simulation, (2) analysis of align-
ments to annotated regions, (3) comparison with predictions from
other methods, and (4) alignment statistics.

Simulated data are appealing for evaluation as we know the
entire evolutionary history of the simulated sequences and can
thus thoroughly evaluate the accuracy of an alignment. Many of
the WGA methods described in this chapter have used simulations
for assessing their accuracies [8, 47, 52, 54, 62]. The Alignathon
[87], one of the most comprehensive evaluations of WGAmethods
to date, relied heavily on simulated data sets. This study called
attention to one potential pitfall of simulation-based evaluation,
which is that the performance of a WGA method may be over-
estimated when that method was developed or trained with respect
to the same simulator used for the assessment.

Simulating the evolution of whole genomes is a challenging
task, and it is unclear if the current models used for simulation are
close to reality. Such models are highly complex, as they have to
account for many different types of evolutionary events, at both the
small and large scales. For example, they need to model the random
mutations of both single-nucleotide substitutions and megabase-
sized inversions. In addition, they also need to model natural
selection, which alters the probability of these random mutations
becoming fixed within a population. For example, an inversion that
cuts an essential gene in half might have a much lower probability of
becoming fixed than an inversion with both end points in inter-
genic regions. Despite these challenging model details, a number of
genomic evolution simulators have been developed. Currently, only
three simulators model both small-scale events (e.g., substitutions
and indels) and large-scale rearrangements and duplications
[88–90]. Other simulators focus only on nonrearranging events
[8, 91–98] and are thus good for evaluating colinear genomic
aligners but not homology mapping methods.

A second class of approaches to evaluating WGAs leverages our
knowledge of various classes of elements within the genome. For
example, with our understanding that most coding regions are
conserved across closely related genomes, the fraction of exons in
a genome “covered” by an alignment is an indirect measure of the
sensitivity of a WGA [37, 49, 60, 99]. Specificity can also be
roughly assessed with coding regions, either by counting the num-
ber of coding bases that are aligned to noncoding bases in other
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genomes [36, 100] or by checking that alignments in coding
regions exhibit periodicities in their substitution patterns [99]. A
related approach that instead assesses the accuracy of eukaryotic
orthology maps is to check if exons from the same gene are mapped
in the same order and orientation to other genomes [47]. For the
subset of protein-coding and noncoding RNA genes that have
curated “gold standard” alignments, the accuracy of a WGA with
respect to those genes may be assessed [101]. However, the fact
that genic regions are often highly conserved is also a disadvantage
of using them for evaluation; the most conserved regions are the
easiest to align, and some aligners use exon annotation information
or translated matches. Because of these issues, repeat sequences,
which are believed to evolve more neutrally, have been used for
alignment evaluation [47, 99]. For example, in [99], sensitivity was
assessed by alignments of ancestral repetitive elements, and speci-
ficity was inferred from the number of alignments to lineage-
specific repeat elements (in this study, primate-specificAlu repeats).

Another common evaluation technique is to compare whole-
genome aligners against other related methods. For example, a
WGA produced by one method can be used as the “truth” with
which to evaluate the sensitivity and specificity of other WGAs
[53]. This technique is useful for judging the similarity of different
WGAs but, unfortunately, does not provide much information
about accuracy. Another technique is to compare with the results
from gene orthology prediction programs [48, 49]. The advantage
of this approach is that it provides a more independent test of
accuracy, since gene orthology prediction programs generally use
different algorithms and information sources to infer orthology.
The disadvantages of this approach are that it only provides a gene-
level measure of accuracy and does not evaluate alignments of
noncoding regions. In addition, since WGA and gene orthology
prediction share similar goals, we might expect that future methods
will blend techniques from both and thus that this evaluation
approach will decrease in usefulness.

A last class of evaluation techniques involves the computation
of statistics for WGAs. These statistics can be subdivided into
simple descriptive statistics and measures computed via statistical
or sampling techniques. One of the most straightforward descrip-
tive statistics of a WGA is the “coverage” or the fraction of the
genomes included in an alignment or orthology map block [45, 47,
49, 53, 87]. Generally, the higher the coverage, the more sensitive
the WGA is believed to be, although one can easily create high-
coverage WGAs with poor sensitivity. As a check of large-scale
specificity in mammalian WGAs, the authors of [47] checked the
fraction of the X chromosome that was covered by alignments to
autosomal chromosomes in other genomes (the assumption being
that translocations into and out of the X chromosome are rare in
mammals). Some more detailed nucleotide-level statistics of WGAs
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include the total number of “core” positions [53], which are
gap-free alignment columns containing all genomes, and the aver-
age level of sequence identity in aligned columns [61].

More sophisticated statistics related to WGA accuracy are com-
puted through the use of statistical or sampling techniques. Just as
they are used for BLAST, Karlin and Altschul statistics [102] may
be used to assess the significance of local pairwise alignments
between genomes. StatSigMA extends these statistics to multiple
alignments [103], and StatSigMA-w further extends this technique
to detect dubiously aligned regions in WGAs of multiple genomes
[104]. Whereas a given local pairwise alignment may be highly
significant, the flanks of that alignment may be spurious, and a
p-value may be computed assessing the possible “over-alignment”
of a flank [105]. Within a multiple alignment, a number of techni-
ques have been developed for estimating the accuracy of the align-
ment of pairs of residues or entire columns, including simply
computing an alignment of reversed sequences [106], computing
alignments with bootstrapped guide trees [107], sampling subop-
timal multiple alignments [75], and evaluating consistency within a
library of alternative alignments [108].

5 Future Challenges

Despite the substantial progress made in WGAmethodology devel-
opment, there are a number of challenges that remain unsolved.
First, we are in need of WGAmethods that can scale to hundreds or
thousands of genomes. Along with ever-improving sequencing
technology, we are accumulating whole-genome sequences at an
increasing rate. Projects such as the Genome 10K Community of
Scientists [109], which aims to collect and sequence the genomes
of 10,000 vertebrate species, will further push theWGA problem to
new scales. While most WGA algorithms have been made efficient
for long genomes, very few are practical for large numbers of
genomes. Encouragingly, we are beginning to see methods capable
of scaling to thousands of genomes for the simpler task of “core-
genome alignment” of highly similar microbial-sized genomes
[110]. However, methods scaling to thousands of genomes for
the full WGA task or for mammalian-sized genomes do not cur-
rently exist. In addition to algorithmic advances, we will also be in
need of novel approaches for storing and representing WGAs of
thousands of genomes.

Second, advances are needed in the parameterization of WGA
methods. Current methods are littered with large numbers of
parameters that are often heuristic in nature and not easily deter-
mined. In some cases, the default parameters for a WGA method
may be markedly suboptimal [111]. One solution to this problem is
to adopt probabilistic models, which offer principled approaches to
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parameter estimation, such as maximum likelihood. In fact, proba-
bilistic models of sequence evolution have already been adopted for
the alignment of colinear genomic segments and have been shown
to offer improved accuracy [47, 62]. However, we have yet to see a
method that integrates probabilistic models of both small- and
large-scale changes that is capable of constructing an entire WGA,
although the recently introduced “split-alignment” pairwise WGA
method is a promising step in this direction [112]. In addition,
most WGA alignments use models or scoring schemes that assume
homogenous rates of evolution across the genome. This assump-
tion is obviously violated in real data, and newmethods will need to
be developed that take this into account. Simulated noncoding
genomic alignments that represent a heterogeneous mix of evolu-
tionary rates have been developed and should be useful for the
development of new WGA methodology [97].

Lastly, more attention must be paid to the fact that a WGA is
typically just a single estimate of the evolutionary history of a set of
genomes and portions of this estimate may be highly uncertain.
Encouragingly, methods for colinear genomic alignment have
brought light to this issue at the nucleotide level [62, 113]. How-
ever, the issue of uncertainty at the large-scale orthology map level
has not been sufficiently studied, perhaps due to the lack of proba-
bilistic models for that level of the WGA problem. In addition,
most efforts to address uncertainty in alignments simply assign
levels of confidence to the components of a single alignment. It
may be more useful to be presented with a set of near-optimal
alignments so that alternative evolutionary histories can be exam-
ined by downstream analyses [114]. The determination and repre-
sentation of uncertainty for all scales of a WGA will likely remain a
challenging problem as the number of genomes included in align-
ments increases.

6 Exercises

1. Download the whole-genome aligner MUMmer (http://mum
mer.sourceforge.net) and FASTA-formatted genome sequences for
the species Helicobacter pylori J99 and Helicobacter pylori B38 from
GenBank (http://www.ncbi.nlm.nih.gov/genbank/, accessions
NC000921 and NC012973, respectively). Run the NUCmer or
PROmer programs on the two genome sequences. Visualize the
resulting alignment with the mummerplot program. How many
colinear blocks are there in the alignment? How many inversion
events are implied by the alignment?

2. Visit the UCSC Genome Browser (http://genome.ucsc.
edu) and browse the human genome version GRCh38/hg38.
Search for and view the CFTR gene, mutations in which cause the
disease cystic fibrosis. Turn on the Net tracks for alignments to
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genomes of non-primate placental mammals by clicking on the
“Placental Chain/Net” link (in the “Comparative Genomics” sec-
tion) and choosing the appropriate configuration. Examine the
Mouse Net track in the visualization and note the color of the
mouse net alignments. Using the “Chromosome Color Key”
(located in between the browser visualization and the track config-
uration section), identify the chromosome on which the mouse
ortholog of CFTR is located. Looking at the net alignments for
all of the placental mammals, does it appear that CFTR has been
conserved across this clade?

3. Consider the evolutionary scenario giving rise to the gen-
omes of three species shown in Fig. 3. For each of the relations
listed below, give the pairs of genomic segments with that relation.

(a) Orthology

(b) Paralogy

(c) Toporthology
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Chapter 5

Inferring Orthology and Paralogy

Adrian M. Altenhoff, Natasha M. Glover, and Christophe Dessimoz

Abstract

The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplica-
tion, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function
annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy.
We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches,
which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differ-
ences among the various orthology inference methods and databases and examine the difficult issue of
verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous
genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.

Key words Orthology, Paralogy, Tree reconciliation, Orthology benchmarking

1 Introduction

The study of genetic material almost always starts with identifying,
within or across species, homologous regions—regions of common
ancestry. As we have seen in previous chapters, this can be done at
the level of genome segments [1], genes [2], or even down to single
residues, in sequence alignments [3]. Here, we focus on genes as
evolutionary and functional units. The central premise of this chap-
ter is that it is useful to distinguish between two classes of homolo-
gous genes: orthologs, which are pairs of genes that started diverging
via evolutionary speciation, and paralogs, which are pairs of genes
that started diverging via gene duplication [4] (Fig. 1, Box 1).
Originally, the terms and their definition were proposed by Walter
M. Fitch in the context of species phylogeny inference, i.e., the
reconstruction of the tree of life. He stated “Phylogenies require
orthologous, not paralogous, genes” [4]. Indeed, since orthologs
arise by speciation, any set of genes in which every pair is ortholo-
gous has by definition the same evolutionary history as the
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underlying species. These days, however, the most frequent moti-
vation for the orthology/paralogy distinction is to study and pre-
dict gene function: it is generally believed that orthologs—because
they were the same gene in the last common ancestor of the species
involved—are likely to have similar biological function. By contrast,
paralogs—because they result from duplicated genes that have been
retained, at least partly, over the course of evolution—are believed
to often differ in function. Consequently, orthologs are of interest
to infer function computationally, while paralogs are commonly
used to study function innovation.

Box 1: Terminology
Homology is a relation between a pair of genes that share a
common ancestor. All pairs of genes in the below figure are
homologous to each other.

S1

x1 y1 x2 y2 z1

S2

D1

S2

(continued)

S1

S2 S2

a) b)

Fig. 1 (a) Simple evolutionary scenario of a gene family with two speciation
events (S1 and S2) and one duplication event (star). The type of events completely
and unambiguously define all pairs of orthologs and paralogs: The frog gene is
orthologous to all other genes (they coalesce at S1). The red and blue genes are
orthologs between themselves (they coalesce at S2), but paralogs between each
other (they coalesce at star). (b) The corresponding orthology graph. The genes
are represented here by vertices and orthology relationships by edges. The frog
gene forms one-to-many orthology with both the human and dog genes, because
it is orthologous to more than one sequence in each of these organisms. In such
cases, the bi-directional best-hit approach only recovers one of the relations
(the highest scoring one). Note that in contrary to BBH, the nonsymmetric BeTs
approach—simply taking the best genome-wide hit for each gene regardless of
reciprocity—would in the situation of a lost blue human gene infer an incorrect
orthologous relation between the blue dog and red human gene
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Box 1: (continued)
Orthology is a relation defined over a pair of homologous

genes, where the two genes have emerged through a specia-
tion event [4]. Example pairs of orthologs are (x1, y1) or (x2,
z1). Orthologs can be further subclassified into one-to-one,
one-to-many, many-to-one, and many-to-many orthologs.
The qualifiers one and many indicate for each of the two
involved genes whether they underwent an additional dupli-
cation after the speciation between the two genomes. Hence,
the gene pair (x1, y1) is an example of a one-to-one ortholo-
gous pair, whereas (x2, z1) is a many-to-one ortholog relation.

Paralogy is a relation defined over a pair of homologous
genes that have emerged through a gene duplication, e.g., (x1,
x2) or (x1, y2).

In-Paralogy is a relation defined over a triplet. It involves a
pair of genes and a speciation event of reference. A gene pair is
an in-paralog if they are paralogs and duplicated after the
speciation event of reference [5]. The pair (x1, y2) are
in-paralogs with respect to the speciation event S1.

Out-Paralogy is also a relation defined over a pair of genes
and a speciation event of reference. This pair is out-paralogs if
the duplication event through which they are related to each
other predates the speciation event of reference. Hence, the
pair (x1, y2) are out-paralogs with respect to the speciation
event S2.

Co-orthology is a relation defined over three genes, where
two of them are in-paralogs with respect to the speciation
event associated to the third gene. The two in-paralogous
genes are said to be co-orthologous to the third (out-group)
gene. Thus, x1 and y2 are co-orthologs with respect to z1.

Homoeology is a specific type of homologous relation in a
polyploid species, which thus contain multiple “sub-gen-
omes.” This relation describes pairs of genes that originated
by speciation and were brought back together in the same
genome by allopolyploidization (hybridization) [6]. Thus, in
the absence of rearrangement, homoeologs can be thought of
as orthologs between sub-genomes.

In this chapter, we first review the main methods used to infer
orthology and paralogy, including recent techniques for scaling up
algorithms to big data. We then discuss the problem of benchmark-
ing orthology inference. In the last main section, we focus on
various applications of orthology and paralogy.
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2 Inferring Orthology

Most orthology inference methods can be classified into two major
types: graph-based methods and tree-based methods [7]. Methods
of the first type rely on graphs with genes (or proteins) as nodes and
evolutionary relationships as edges. They infer whether these edges
represent orthology or paralogy and build clusters of genes on the
basis of the graph. Methods of the second type are based on gene/
species tree reconciliation, which is the process of annotating all
splits of a given gene tree as duplication or speciation, given the
phylogeny of the relevant species. From the reconciled tree, it is
trivial to derive all pairs of orthologous and paralogous genes. All
pairs of genes which coalesce in a speciation node are orthologs and
paralogs if they split at a duplication node. In this section, we
present the concepts and methods associated with the two types
and discuss the advantages, limitations, and challenges associated
with them.

2.1 Graph-Based

Methods

Graph-based approaches were originally motivated by the availabil-
ity of complete genome sequences and the need for efficient meth-
ods to detect orthology. They typically run in two phases: a graph
construction phase, in which pairs of orthologous genes are
inferred (implicitly or explicitly) and connected by edges, and a
clustering phase, in which groups of orthologous genes are con-
structed based on the structure of the graph.

2.1.1 Graph Construction

Phase: Orthology Inference

In its most basic form, the graph construction phase identifies
orthologous genes by considering pairs of genomes at a time. The
main idea is that between any given two genomes, the orthologs
tend to be the homologs that diverged least. Why? Because assum-
ing that speciation and duplication are the only types of branching
events, the orthologs branched by definition at the latest possible
time point—the speciation between the two genomes in question.
Therefore, using sequence similarity score as surrogate measure of
closeness, the basic approach identifies the corresponding ortholog
of each gene through its genome-wide best hit (BeT)—the highest
scoring match in the other genome [8]. To make the inference
symmetric (as orthology is a symmetric relation), it is usually
required that BeTs be reciprocal, i.e., that orthology be inferred
for a pair of genes g1 and g2 if and only if g2 is the BeTof g1 and g1 is
the BeT of g2 [9]. This symmetric variant, referred to as bi-direc-
tional best hit (BBH), has also the merit of being more robust
against a possible gene loss in one of the two lineages (Fig. 1).

Inferring orthology from BBH is computationally efficient,
because each genome pair can be processed independently and
high-scoring alignments can be computed efficiently using dynamic
programming [10] or heuristics such as BLAST [11]. Overall, the
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time complexity scales quadratically in terms of the total number of
genes (Box 2). Furthermore, the implementation of this kind of
algorithm is simple.

Box 2: Computational Considerations for Scaling to Many
Genomes
Time complexity—the amount of time for an algorithm to
run as a function of the input—is an important consideration
when dealing with big data. This is relevant for inferring
orthologs and paralogs due to the massive amounts of
sequence data. Thus, it is necessary to consider the time
complexity of the inference algorithms, especially when scal-
ing for large and multiple genomes. In computer science, this
is commonly denoted in terms of “Big O” notation, which
expresses the scaling behavior of the algorithm, up to a con-
stant factor. Below are listed the common time complexities
for aspects of some orthology inference algorithms, in order
of most efficient to least efficient.

Linear time

l O(n): Optimal algorithm to reconcile rooted, fully
resolved gene tree and species tree [12]; Hieranoid algo-
rithm, which recursively merges genomes along the spe-
cies tree to avoid all-against-all computation [13].

Quadratic time

l O(n2): The all-against-all stage central to many orthol-
ogy algorithms scales quadratically, where n is total
number of genes.

Cubic time

l O(n3): The COG database’s graph-based clustering
merge triplets of homologs which share a common face
until no more can be added.

NP-complete
l “Nondeterministic polynomial time,” a large class of

algorithms for which no solution in polynomial time is
known, (e.g. scaling exponentially with respect to the
input size), and thus are impractical. NP-complete pro-
blems are typically solved approximately, using heuris-
tics. For instance, maximum likelihood gene tree
estimation is NP-complete [14].

However, orthology inference by BBH has several limitations,
which motivated the development of various improvements
(Table 1).
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Allowing for More Than One

Ortholog

Some genes can have more than one orthologous counterpart in a
given genome. This happens whenever a gene undergoes duplica-
tion after the speciation of the two genomes in question. Since
BBH only picks the best hit, it only captures part of the ortholo-
gous relations (Fig. 1). The existence of multiple orthologous
counterparts is often referred to as one-to-many or many-to-many
orthology, depending whether duplication took place in one or
both lineages. To designate the copies resulting from such duplica-
tions occurring after a speciation of reference, Remm et al. coined
the term in-paralogs and introduced a method called InParanoid
that improves upon BBH by potentially identifying all pairs of
many-to-many orthologs [5]. In brief, their algorithm identifies
all paralogs within a species that are evolutionarily closer (more
similar) to each other than to the BBH gene in the other genome.
This results in two sets of in-paralogs—one for each species—where
all pairwise combinations between the two sets are orthologous
relations. Alternatively, it is possible to identify many-to-many
orthology by relaxing the notion of “best hit” to “group of best
hits.” This can be implemented using a score tolerance threshold or
a confidence interval around the BBH [23, 34].

Evolutionary Distances Instead of using sequence similarity as a surrogate for evolutionary
distance to identify the closest gene(s), Wall et al. proposed to use
direct and proper maximum likelihood estimates of the evolution-
ary distance between pairs of sequences [31]. This estimate of
evolutionary distance is based on the number and type of amino
acid substitutions between the two sequences. Indeed, previous
studies have shown that the highest scoring alignment is often
not the nearest phylogenetic neighbor [35]. Building upon this
work, Roth et al. showed how statistical uncertainties in the dis-
tance estimation can be incorporated into the inference
strategy [36].

Differential Gene Losses As discussed above, one of the advantages of BBH over BeT is that
by virtue of the bi-directional requirement, the former is more
robust to gene losses in one of the two lineages. But if gene losses
occurred along both lineages, it can happen that a pair of genes
mutually closest to one another is in fact paralogs, simply because
both their corresponding orthologs were lost—a situation referred
to as “differential gene losses.” Dessimoz et al. [37] presented a
way to detect some of these cases by looking for a third species in
which the corresponding orthologs have not been lost and thus can
act as witnesses of non-orthology.

2.1.2 Clustering Phase:

From Pairs to Groups

The graph construction phase yields orthologous relationships
between pairs of genes. But this is often not sufficient. Concep-
tually, information obtained from multiple genes or organisms is
often more powerful than that obtained from pairwise comparisons
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only. In particular, as the use of a third genome as potential witness
of non-orthology suggests, a more global view can allow identifica-
tion and correction of inconsistent/spurious predictions. Practi-
cally, it is more intuitive and convenient to work with groups of
genes than with a list of gene pairs. Therefore, it is often desirable to
cluster orthologous genes into groups.

Tatusov et al. [8] introduced the concept of clusters of ortho-
logous groups (COGs). COGs are computed by using triangles
(triplets of genes connected to each other) as seeds and then
merging triangles which share a common face, until no more
triangle can be added. This clustering can be computed relatively
efficient in time O(n3), where n is the number of genomes analyzed
[38]. The stated objective of this clustering procedure is to group
genes that have diverged from a single gene in the last common
ancestor of the species represented [8]. Practically, they have been
found to be useful by many, most notably to categorize prokaryotic
genes into broad functional categories.

A different clustering approach was adopted by OrthoMCL,
another well-established graph-based orthology inference method
[29]. There, groups of orthologs are identified by Markov Cluster-
ing [39]. In essence, the method consists in simulating a random
walk on the orthology graph, where the edges are weighted accord-
ing to similarity scores. The Markov Clustering process gives rise to
probabilities that two genes belong to the same cluster. The graph
is then partitioned according to these probabilities and members of
each partition form an orthologous group. These groups contain
orthologs and “recent” paralogous genes, where the recency of the
paralogs can be somewhat controlled through the parameters of the
clustering process.

A third grouping strategy consists in building groups by iden-
tifying fully connected subgraphs (called “cliques” in graph theory)
[23]. This approach has the merits of straightforward interpreta-
tion (groups of genes which are all orthologous to one another)
and high confidence in terms of orthology within the resulting
groups, due to the high consistency required to form a fully
connected subgraph. But it has the drawbacks of being hard to
compute (clique finding belongs to the NP-complete class of pro-
blems, for which no polynomial time algorithm is known; see Box
2) and being excessively conservative for many applications.

As emerges from these various strategies, there is more than
one way orthologous groups can be defined, each with different
implications in terms of group properties and applications [40]. In
fact, there is an inherent trade-off in partitioning the orthology
graph into clusters of genes, because orthology is a non-transitive
relation: if genes A and B are orthologs and genes B and C are
orthologs, genes A and C are not necessarily orthologs, e.g., con-
sider in Fig. 1 the blue human gene, the frog gene, and the red dog
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gene. Therefore, if groups are defined as sets of genes in which all
pairs of genes are orthologs (as with OMA groups), it is not
possible to partition A, B, and C into groups capturing all ortho-
logous relations while leaving out all paralogous relations.

2.1.3 Hierarchical

Clustering

More inclusive grouping strategies necessarily lead to orthologs
and paralogs within the same group. Nevertheless, it can be possi-
ble to control the nature of the paralogs included. For instance, as
seen above, OrthoMCL attempts at including only “recent” para-
logs in its groups. This idea can be specified more precisely by
defining groups with respect to a particular speciation event of
interest, e.g., the base of the mammals. Such hierarchical groups
are expected to include orthologs and in-paralogs with respect to
the reference speciation—in our example all copies that have des-
cended from a single common ancestor gene in the last mammalian
common ancestor. Conceptually, hierarchical orthologous groups
can be defined as groups of genes that have descended from a single
common ancestral gene within a taxonomic range of interest.

Several resources provide hierarchical clustering of orthologous
groups. EggNOG [15] and OrthoDB [25], for example, both
implement this concept by applying a COG-like clustering method
for various taxonomic ranges. Another example, Hieranoid, pro-
duces hierarchical groups by using a guide tree to perform pairwise
orthology inferences at each node from the leaves to the root—
inferring ancestral genomes at each node in the tree [13, 18]. Simi-
larly, OMAGETHOGs is an approach based on an orthology graph
of pairwise orthologous gene relations, where hierarchical ortho-
logous groups are formed starting with the most specific taxonomy
and incrementally merges them toward the root [21, 22]. Another
method, COCO-CL, identifies hierarchical orthologous groups
recursively, using correlations of similarity scores among homolo-
gous genes [41] and, interestingly, without relying on a species
tree. By capturing part of the gene tree structure in the group
hierarchies, these methods try in some way to bridge the gap
between graph-based and tree-based orthology inference
approaches. We now turn our attention to the latter.

2.2 Tree-Based

Methods

At their core, tree-based methods infer orthologs on the basis of
gene family trees whose internal nodes are labeled as speciation or
duplication nodes. Indeed, once all nodes of the gene tree have
been inferred as a speciation or duplication event, it is trivial to
establish whether a pair of genes is orthologous or paralogous,
based on the type of the branching where they coalesce. Such
labeling is traditionally obtained by reconciling gene and species
trees. In most cases, gene and species trees have different topolo-
gies, due to evolutionary events acting specifically on genes such as
duplications, losses, lateral transfers, or incomplete lineage sorting
[42]. Goodman et al. [43] pioneered research to resolve these
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incongruences. They showed how the incongruences can be
explained in terms of speciation, duplication, and loss events on
the gene tree (Fig. 2) and provided an algorithm to infer such
events.

Most tree reconciliation methods rely on a parsimony criterion:
the most likely reconciliation is the one which requires the least
number of gene duplications and losses. This makes it possible to
compute reconciliation efficiently and is tenable as long as duplica-
tion and loss events are rare compared to speciation events. In their
seminal article, Goodman et al. [43] had already devised their
reconciliation algorithm under a parsimony strategy. In the
subsequent years, the problem was formalized in terms of a map
function between the gene and species trees [44], whose computa-
tional cost was conjectured [45], and later proved [12, 46] to
coincide with the number of gene duplication and losses. These
results yielded highly efficient algorithms, either in terms of asymp-
totic time complexity [12] or in terms of runtimes on typical
problem sizes [47]. With these near-optimal solutions, one might
think that the tree reconciliation problem has long been solved. As
we shall see in the rest of this section, however, the original formu-
lation of the tree reconciliation problem has several limitations in
practice, which have stimulated the development of various refine-
ments to overcome them (Table 2).

Species Tree

Reconciled Tree
(Simple Representation)

Reconciled Tree
(Full Representation)

Gene Tree

Duplication

Gene loss

Speciation

Fig. 2 Schematic example of the gene/species tree reconciliation. The gene tree
and species tree are not compatible. Reconciliation methods resolve the
incongruence between the two by inferring speciation, duplication, and losses
events on the gene tree. The reconciled tree indicates the most parsimonious
history of this gene, constrained to the species tree. The simple representation
(bottom right) suggests that the human and frog genes are orthologs and that
they are both paralogous to the dog gene
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2.2.1 Unresolved

Species Tree

A first problem ignored by most early reconciliation algorithms lies
in the uncertainty often associated with the species tree, which
these methods assume as correct and heavily rely upon.

One way of dealing with the uncertainties is to treat unresolved
parts of the species tree as multifurcating nodes (also known as soft
polytomies). By doing so, the reconciliation algorithm is not forced
to choose for a specific type of evolutionary event in ambiguous
regions of the tree. This approach is, for instance, implemented in
TreeBeST [52] and used in the Ensembl Compara project [53].

Alternatively, Heijden et al. [57] demonstrated that it is often
possible to infer speciation and duplication events on a gene tree
without knowledge of the species tree. Their approach, which they
call species overlap, identifies for a given split the species represented
in the two subtrees induced by the split. If at least one species has
genes in both subtrees, a duplication event is inferred; else a specia-
tion event is inferred. In fact, this approach is a special case of soft
polytomies where all internal nodes have been collapsed. Thus, the
only information needed for this approach is a rooted gene tree.
Since then, this approach has been adopted in other projects, such
as PhylomeDB [59].

2.2.2 Rooting The classical reconciliation formulation requires both gene and
species trees to be rooted. But most models of sequence evolution
are time reversible and thus do not allow to infer the rooting of the
reconstructed gene tree. One sensible solution is to root a gene tree
so that it minimizes the number of duplication events [62]. Thus,
this method uses the parsimony principle for both rooting and
reconciliation. For cases of multiple optimal rootings, ties can be
broken by selecting the tree that minimizes the tree height [63] or
by picking the rooting which minimizes the number of gene
losses [61].

Another approach is to place the root at the “center of the
tree”—also known as “midpoint rooting” [58]. The idea of this
method goes back to Farris [64] and is motivated by the concept of
a molecular clock. But for most gene families, assuming a constant
rate of evolution is inappropriate [65, 66], and thus this approach is
not used widely. A newly introduced refinement based on minimiz-
ing average deviations among children nodes holds promise of
being more robust [67] but still relies on a molecular clock
assumption.

For the species tree, the most common and reliable way of
rooting trees is by identifying an outgroup species. PhylomeDB
uses genes from outgroup species to root gene trees [59]. One
main potential problem with this approach is that in many situa-
tions, it can be difficult to identify a suitable outgroup. For exam-
ple, in analysis covering all kingdoms of life, an outgroup species
may not be available, or the relevant genes might have been lost
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[68]. A suitable out-group needs to be close enough to allow for
reliable sequence alignment, yet it must have speciated clearly
before any other species separated. Furthermore, ancient duplica-
tions can cause outgroup species to carry in-group genes. These
difficulties make this approach more challenging for automated,
large-scale analysis [69].

2.2.3 Gene Tree

Uncertainty

Another assumption made in the original tree reconciliation prob-
lem is the (topological) correctness of the gene tree. But it has been
shown that this assumption is commonly violated, often due to
finite sequence lengths, taxon sampling [70, 71], or gene evolution
model violations [72]. On the other hand, techniques of expressing
uncertainties in gene tree reconstruction via support measures, e.g.,
bootstrap values, have become well established. Storm and Sonn-
hammer [58] as well as Zmasek and Eddy [63] independently
suggested to extend the bootstrap procedure to reconciliation,
thereby reducing the dependency of the reconciliation procedure
on any one gene tree while providing a measure of support of the
inferred speciation/duplication events. The downsides of using the
bootstrap are the high computational costs and interpretation dif-
ficulties associated with it [73].

Similarly to how unresolved species tree can be handled, unre-
solved parts of the gene tree can also be collapsed into multifurcat-
ing nodes. For instance, HOGENOM [55] and Softparsmap [61]
collapse branches with low bootstrap support values.

A third way of tackling this problem consists in simultaneously
solving both the gene tree reconstruction and reconciliation pro-
blems [74]. They use the parsimony criterion of minimizing the
number of duplication events to improve on the gene tree itself.
This is achieved by rearranging the local gene tree topology of
regions with low bootstrap support such that the number of dupli-
cations and losses is further reduced.

2.2.4 Parsimony

vs. Likelihood

All the approaches mentioned so far try to minimize the number of
gene duplication events. This is generally justified by a parsimony
argument, which assumes that gene duplications and losses are rare
events. But what if this assumption is frequently violated? Little is
known about duplication and loss rates in general [75], but there is
strong evidence for historical periods with high gene duplication
occurrence rates [76] or gene families specifically prone to massive
duplications (e.g., olfactory receptor, opsins, serine/threonine
kinases, etc.)

Motivated by this reasoning, Arvestad et al. introduced the idea
of a probabilistic model for tree reconciliation [49]. They used a
Bayesian approach to estimate the posterior probabilities of a rec-
onciliation between a given gene and species tree using Markov
chain Monte Carlo (MCMC) techniques. Arvestad et al. [49]
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modeled gene duplication and loss events through a birth-death
process [77]. In the subsequent years, they refined their method to
also model sequence evolution and substitution rates in a unified
framework called gene sequence evolution model with iid rates (GSR)
[49, 50].

Perhaps the biggest problem with the probabilistic approach is
that it is not clear how well the assumptions of their model (the
birth-death process with fixed parameters) relate to the true process
of gene duplication and gene loss. Doyon et al. [78] compared the
maximum parsimony reconciliation trees from 1278 fungi gene
families to the probabilistically reconciled trees using gene birth/
death rates fitted from the data. They found that in all but two
cases, the maximum parsimony scenario corresponds to the most
probable one. This remarkably high level of consistency indicates
that in terms of the accuracy of the “best” reconciliation, there is
little to gain from using a likelihood approach over the parsimony
criterion of minimizing the number of duplication events. But how
this result generalizes to other datasets has yet to be investigated.

2.3 Graph-Based

vs. Tree-Based: Which

Is Better?

Given the two fundamentally different paradigms in orthology
inference that we reviewed in this section, one can wonder which
is better. Conceptually, tree reconciliation methods have several
advantages. In terms of inference, by considering all sequences
from all species at the same time, it can also be expected that they
can extract more information from the sequences. This in turn
should translate into higher statistical power. In terms of their
output, reconciled gene trees provide the user more information
than pairs or groups of orthologs. For example, the trees display the
order of duplication and speciation events, as well as evolutionary
distances between these events. In practice, however, these meth-
ods have the disadvantage of having much higher computational
complexity than their graph-based counterparts. Furthermore, the
two approaches are in practice often not that strictly separated.
Tree-based methods often start with a graph-based clustering step
to identify families of homologous genes. Conversely, several hier-
archical grouping algorithms also rely on species trees in their
inference.

Thus, it is difficult to make general statements about the rela-
tive performance of the two classes of inference methods. One
solution that can leverage the unique abilities of both tree-based
and graph-based methods is to combine several independent
orthology inference methods into one. We discuss this technique
in the next section.
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3 Meta-methods

In recent years a new class of orthology inference tools has emerged
which attempts to make the most out of multiple orthology predic-
tion algorithms—meta-methods. These are approaches which com-
bine several individual and distinct methods in order to produce
more robust orthology predictions. These meta-methods are able
to take advantage of the standardized formats of output which has
been a goal of the orthology community [79], as well as the many
new and well-established methods out there.

Generally, meta-methods assign a confidence score to a given
predicted orthologous relation. In its most basic form, more weight
is given to orthologs predicted by the most methods. Some exam-
ples include methods which simply take the intersection of several
methods, such as GET_HOMOLOGUES [80], COMPARE [81],
HCOP [82], and DIOPT [83]. These methods maintain a high
level of precision, but since they are based on intersections, they
necessarily have a lower recall.

Additionally, post-processing techniques can be used to build
upon the base of orthologs found by several methods—thus assign-
ing more sequences as orthologs and improving performance. For
example, MOSAIC (Multiple Orthologous Sequence Analysis and
Integration by Cluster optimization) [84] uses an iterative graph-
based optimization approach that works on ortholog sets predicted
by several independent methods. MOSAIC captures orthologs
which are missed by some individual methods, producing a 1.6-
fold increase in the number of orthologs detected. Another exam-
ple is the MARIO software, which looks for the intersection of
several different orthology methods as seed groups and then pro-
gressively adds unassigned proteins to the groups based on HMM
profiles [85]. MetaPhOrs’ approach integrates phylogenetic and
homology information derived from different databases
[86]. They demonstrate that the number of independent sources
from which an orthology prediction is made, as well as the level of
consistency across predictions, can be used as confidence scores.

So far the previously mentioned meta-methods combine inde-
pendent orthology prediction algorithms and give a higher score
based on the more algorithms which predict a given orthologous
relation. However, another emerging approach is to use machine
learning techniques to recognize patterns among several different
orthology inference methods. With this, one can predict previously
unknown high-confidence orthologs. WORMHOLE is a tool
which uses the information from 17 different orthology prediction
methods to train support vector machine classifiers for predicting
least diverged orthologs [87]. WORMHOLE was able to strongly
re-predict least diverged orthologs in the reference set and also
predict previously unclassified orthologous genes.
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The type of meta-approach and its associated stringency
depends on what the user is going after. For example, if the goal
is to get very-high-confidence groups, methods which only com-
bine for the intersection without trying to add more orthologs may
be preferable. Studies requiring both high precision and recall may
be better suited to use the meta-methods which use post-
processing or machine learning to predict orthologs. And as with
all methods, it is important to understand which clades the method
has been benchmarked in and which orthology tools have been
combined. For example, if several methods have the same bias, one
will just propagate the bias and end up with a false sense of security
because the methods are not independent.

4 Scaling to Many Genomes

In terms of orthology inference, the abundance of genomes now
available has resulted in an emphasis on driving down computa-
tional processing time via efficient algorithms. When inferring
orthology for many genomes, the bottleneck is generally the all-
against-all computations—aligning the proteins in every genome
against the proteins in every other genome. This is the first step of
nearly all graph-basedmethods. The all-against-all computation has
an O(n2) runtime, meaning it scales quadratically with the number
of genomes analyzed (Box 2).

So far, two main techniques for scaling orthology prediction to
many genomes have emerged. The first approach is by making the
all-against-all comparisons faster. Because comparisons are inde-
pendent of each other, the most obvious way of doing this is by
taking advantage of a high-performance computing cluster, as this
is an embarrassingly parallel computing problem. Many methods
have implemented this, such as Hieranoid [13], PorthoMCL [88],
or OMA [22]. Another way to save time on the all-against-all
comparisons is by using very fast algorithms for the homology
search. For example, preliminary results of SonicParanoid showed
160–750� speedup of orthology inference compared to InPara-
noid [89]. Innovations in alignment algorithms with methods such
as DIAMOND [90] or MMSeq2 [91] have the potential to greatly
reduce the time to do the all-against-all comparisons.

A second approach to efficiently scale up orthology inference to
many genomes is by simply avoiding doing the entire all-against-all
comparisons. This makes sense, since a significant amount of time is
spent comparing unrelated gene pairs. For example, it is possible to
avoid aligning many unrelated pairs by exploiting the transitive
property of homology. Wittwer et al. [92] did this by first building
clusters of homologous sequences with one representative
sequence per cluster and subsequently performing the all-against-
all within each cluster. Hieranoid avoids unnecessary all-against-all
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comparisons by using a species tree as a guide, reducing the number
of comparisons toN� 1 forN genomes, scaling linearly rather than
quadratically [18]. Another way to avoid all-by-all comparison is by
using a mapping strategy, whereby new proteomes are mapped
onto precomputed orthologous groups. This strategy has been
successfully implemented with the eggNOG database—each
sequence in a new proteome is mapped to a precomputed ortholo-
gous cluster based on hidden Markov models. Then, orthology
relations and function are transferred to the new sequence from
the best matching sequence in the database [93].

5 Benchmarking Orthology

Assessing the quality of orthology predictions is important but
difficult. The main challenge is that the precise evolutionary history
of entire genomes is largely unknown and thus, predictions can
only be validated indirectly, using surrogate measures. To be infor-
mative, such measures need to strongly correlate with orthology/
paralogy. At the same time, they should be independent from the
methods used in the orthology inference process. Concretely, this
means that the orthology inference is not based on the surrogate
measure and the surrogate measure is not derived from orthology/
paralogy.

5.1 Benchmarking

Approaches

Several ways of benchmarking orthology inference have been devel-
oped in the past years. In the next sections, we go over the main
approaches, bringing attention to the advantages and limitations
to each.

5.1.1 Functional

Conservation

The first surrogate measures proposed revolved around conserva-
tion of function [94]. This was motivated by the common belief
that orthologs tend to have conserved function, while paralogs
tend to have different functions. Indeed, orthologs tend to be
more conserved than paralogs in terms of GO annotation similarity
[95]. Thus, “for a given evolutionary distance, more accurate
orthology inference is likely to be correlated with more functionally
similar gene pairs.” Hulsen et al. [94] assessed the quality of ortho-
log predictions in terms of conservation of co-expression levels,
domain annotation, and protein-protein interaction partners.
Additionally, Altenhoff et al. [96] used similarity of experimentally
validated GO annotations as well as Enzyme Commission
(EC) numbers as a functional benchmark. Functional benchmarks
have an advantage in that many researchers are interested in orthol-
ogy because they want to find functionally conserved genes, thus
making functional tests important for assessing different inference
methods. The main limitation of these measures is that it is not so
clear how much they correlate with orthology/paralogy. Indeed, it
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has been argued that the difference in function conservation trends
between orthologs and paralogs might be much smaller than com-
monly assumed and indeed many examples are known of orthologs
that have dramatically different functions [97].

5.1.2 Gene

Neighborhood

Conservation

The fraction of orthologs that have neighboring genes being ortho-
logs themselves is an indicator of consistency and therefore to some
extent also of quality of orthology predictions [94]. Although
synteny has been used as part of the orthology inference for several
algorithms, to date it has not been used as part of large-scale
benchmarking efforts. One possible problem is that gene neighbor-
hood can be conserved among paralogs, such as those resulting
fromwhole-genome duplications. Furthermore, somemethods use
gene neighborhood conservation to help in their inference process,
which can bias the assessment done on such measures (principle of
independence stated above).

5.1.3 Species Tree

Discordance Test

The quality of ortholog predictions can also be assessed based on
phylogeny. By definition, the tree relating a set of genes all ortho-
logous to one another only contains speciation splits and has the
same topology as the underlying species. We introduced a bench-
marking protocol that quantifies how well the predictions from
various orthology inference methods agree with undisputed species
tree topologies [96, 98]. Thus, the species tree discordance test
judges the accuracy of ortholog predictions based on the correct-
ness of the species tree which can be constructed from them.
The advantage of this measure is that by virtue of directly ensuing
from the definition of orthology, it correlates strongly with it and
thus satisfies the first principle. However, the second principle,
independence from the inference process, is not satisfied with
methods relying on the species tree—typically all reconciliation
methods but also most graph-based methods producing hierarchi-
cal groups. In such cases, interpretation of the results must be done
carefully.

5.1.4 Gold Standard

Gene Tree Test

High-quality reference gene trees can also be used to assess
orthology inferences. For this, one compares the pairs of ortho-
logs from a given method to pairs of orthologs derived from these
expertly curated gene trees [40, 99]. One drawback of this bench-
mark is that it is limited by the ability to curate the phylogeny—if
the evolutionary history of the gene family is ambiguous, the
resulting reference tree will unavoidably have mistakes. Another
limitation is the small size of most benchmarks of this type. This
casts doubts on their generalizability and makes them prone to
overfitting.
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5.1.5 Subtree

Consistency Test

For inference methods based on reconciliation between gene and
species trees, Vilella et al. [53] proposed a different phylogeny-
based assessment scheme. For any duplication node of the labeled
gene tree, a consistency score is computed, which captures the
balance of the species found in the two subtrees. Unbalanced
nodes correspond to an evolutionary scenario involving extensive
gene losses and therefore, under the principle of parsimony, are less
likely to be correct. Given that studies to date tend to support the
adequacy of the parsimony criterion in the context of gene family
dynamics (Subheading 2.2.4), it can be expected that this metric
correlates highly with correct orthology/paralogy assignments.
However, since virtually all tree-based methods themselves incor-
porate this very criterion in their objective function (i.e., minimiz-
ing the number of gene duplications and losses), the principle of
independence is violated, and thus the adequacy of this measure is
questionable.

5.1.6 Latent Class

Analysis

Chen et al. [100] proposed a purely statistical benchmark based on
latent class analysis (LCA). Given the absence of a definitive answer
on whether two given genes are orthologs, the authors argue that
by looking at the agreement and disagreement of predictions made
by several inference methods on a common dataset, one can esti-
mate the reliability of individual predictors. More precisely, LCA is
a statistical technique that computes maximum likelihood estimates
of sensitivity and specificity rates for each orthology inference
methods, given their predictions and given an error model. This is
attractive, because it does not depend on any surrogate measure.
However, the results depend on the error model assumed. Thus, we
are of the opinion that LCA merely shifts the problem of assessing
orthology to the problem of assessing an error model of various
orthology inference methods.

5.1.7 Simulated

Genomes

Finally, simulated data can be used in benchmarking. By this, the
precise evolutionary history of a genome can be validated, in terms
of gene duplication, insertion, deletion, and lateral gene transfer
[101]. Knowing for certain all aspects of the simulated genomes
gives an advantage over assessments based on empirical data, where
the true evolutionary history is unknown. On the other hand, how
well the simulated data reflect “real” data is debatable.

5.2 Orthology

Benchmarking Service

The orthology benchmarking service is a web-based platform for
which users can upload their ortholog predictions and run them
through a variety of benchmarks. The user must use quest for
orthologs (QFO) reference proteome set, which is a set of 66 gen-
omes that covers a diverse set of species across all domains [79], to
infer pairwise or groups of orthologs. Several phylogenetic and
function-based benchmarks are automatically run on the uploaded
data, and then summary statistics of the results of each benchmark
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are reported. The user can compare their method’s performance
with that of other well-known orthology inference algorithms and
choose to make theirs public as well. For each benchmark, a
precision-recall curve is reported, allowing for ease of comparison
and evaluation of individual inference techniques. Because of the
range of benchmarking tests and publicly available methods for
comparison, the benchmarking service is useful for both users,
who can check which methods work well for their particular prob-
lem and for method developers. The orthology benchmarking
service can be accessed at http://orthology.benchmarkservice.org.

5.3 Conclusions on

Benchmarking

Overall, it becomes apparent that there is no “magic bullet” strat-
egy for orthology benchmarking, as each approach discussed here
has its limitations (though some limitations are more serious than
others). Nevertheless, comparative studies based on these various
benchmarking measures have reported surprisingly consistent find-
ings [40, 94, 96, 98, 100]: these assessments generally observe that
there is a trade-off between accuracy and coverage and most com-
mon databases are situated on a Pareto frontier. The various assess-
ments concur that the “best” orthology approach is highly
dependent on the various possible applications of orthology.

6 Applications

As we have seen so far, there is a large diversity in the methods for
orthology inference. The main reason is that, although the meth-
ods discussed here all infer orthology as part of their process, many
of them have been developed for different reasons and have differ-
ent ultimate goals. Unfortunately, this is often not mentioned
explicitly and tends to be a source of confusion. In this section,
we review some of these ultimate goals and discuss which methods
and representation of orthology are better suited to address them
and why.

As mentioned in the introduction, most interest for orthology
is in the context of function prediction and is largely based on the
belief that orthologs tend to have conserved function. A conserva-
tive approach consists in propagating function between one-to-one
orthologs, i.e., pairs of orthologous genes that have not undergone
gene duplication since they diverged from one another. Several
orthology databases directly provide one-to-one orthology predic-
tions. But even with those that do not, it might still be possible to
obtain such predictions, for instance, by selecting hierarchical
groups containing at most one sequence in each species or by
extracting from reconciled trees’ subtrees with no duplication. A
more sophisticated approach consists in propagating gene function
annotations across genomes on the basis of the full reconciled gene
tree. Thomas et al. [102], for instance, proposed a way to assign
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gene function to uncharacterized proteins using a gene tree and a
hidden Markov model (HMM) among gene families. Engelhardt
et al.. [103] developed a Bayesian model of function change along
reconciled gene trees and showed that their approach significantly
improves upon several methods based on pairwise gene function
propagation. Ensembl Compara [53] and Panther [102] are two
major databases providing reconciled gene trees.

Since Darwin, one traditional question in biology has always
been how species are related to each other. As we recall in the
introduction of this chapter, Fitch’s original motivation for defin-
ing orthology was phylogenetic inference. Indeed, the gene tree
reconstructed from a set of genes which are all orthologous to each
other should by definition be congruent to the species tree. OMA
Groups (OMA) have this characteristic and, crucially, are con-
structed without help of a species tree.

Yet another application associated with orthology are general
alignments between genomes, e.g., protein-protein interaction
(PPI) network alignments or whole-genome alignments. Finding
an optimal PPI network alignment between two genomes on the
basis of the network topology alone is a computationally hard
problem (i.e., it is an instance of the subgraph isomorphism prob-
lem which is NP-complete [104]). Orthology is often used as
heuristic to constrain the mapping of the corresponding genes
between the two networks and thus to reduce the problem com-
plexity of aligning networks [105]. For whole-genome alignments,
people most often use homologous regions and use orthologs as
anchor points [106]. These types of application typically rely on
ortholog predictions between pairs of genomes, as provided, e.g.,
by InParanoid [5] or OMA [23].

7 Conclusions and Outlook

The distinction between orthologs and paralogs is at the heart of
many comparative genomic studies and applications. The original
and generally accepted definition of orthology is based on the
evolutionary history of pairs of genes. By contrast, there is a con-
siderable diversity in how groups of orthologs are defined. These
differences largely stem from the fact that orthology is a
non-transitive relation and therefore, dividing genes into ortholo-
gous groups will either miss or wrongly include orthologous rela-
tions. This makes it important and worthwhile to identify the type
of orthologous group best suited for a given application.

Regarding inference methods, while most approaches can be
ordered into two fundamental paradigms—graph-based and tree-
based—the difference between the two is shrinking, with graph-
based methods increasingly striving to capture more of the evolu-
tionary history. On the other hand, the rapid pace at which new
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genomes are sequenced limits the applicability of tree-based meth-
ods, computationally more demanding.

Benchmarking this large variety of methods remains a hard
problem—from a conceptual point as described above but also
because of very practical challenges such as heterogeneous data
formats, genome versions, or gene identifiers. This has been recog-
nized by the research community and has led to the development of
the QFO consortium benchmarking service [96].

Looking forward, we see potential in extending the current
model of gene evolution, which is limited to speciation, duplica-
tion, and loss events. Indeed, nature is often much more compli-
cated. For instance, lateral gene transfer (LGT) is believed to be a
major mode of evolution in prokaryotes. While there has been
several attempts at extending tree reconciliation algorithms to
detecting LGT [107, 108], the problem is largely unaddressed in
typical orthology resources [109]. Another relevant evolutionary
process omitted by most methods is whole-genome duplications
(WGD). Even though WGD events act jointly on all gene families,
with few exceptions [110, 111], most methods consider each gene
family independently.

Overall, the orthology/paralogy dichotomy has proved to be
useful but also inherently limited. Reducing the whole evolutionary
history of homologous genes into binary pairwise relations is
bound to be a simplification—and at times an oversimplification.
The shift toward hierarchical orthologous groups is thus a
promising step toward capturing more features of the evolutionary
history of genes. Yet further development will still be needed, as we
are nowhere close to grasp the formidable complexity of gene
evolution across the full diversity of life.

8 Exercises

Assume the following evolutionary scenario

A B C D E F

where duplications are depicted as star and all other splits are
speciations.

Problem #1: Draw the corresponding orthology graph, where the
vertices correspond to the observed genes and the edges indi-
cate orthologous relations between them.

Problem #2: Apply the following two clustering methods on your
orthology graph. First, reconstruct all the maximal fully
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connected subgraphs (cliques) that can be found. Second,
reconstruct the COGs. COGs are built by merging triangles
of orthologs whenever they share a common face. Remember
that in both methods, a gene can only belong to a one cluster.
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Chapter 6

Transposable Elements: Classification, Identification,
and Their Use As a Tool For Comparative Genomics

Wojciech Makałowski, Valer Gotea, Amit Pande, and Izabela Makałowska

Abstract

Most genomes are populated by hundreds of thousands of sequences originated from mobile elements. On
the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On
the other hand, they are very interesting biological subjects involved in many cellular processes. Here we
present an overview of transposable elements biodiversity, and we discuss different approaches to transpo-
sable elements detection and analyses.

Key words Transposable elements, Transposons, Mobile elements, Repetitive elements, Genome
analysis, Genome evolution

1 Introduction

Most eukaryotic genomes contain large numbers of repetitive
sequences. This phenomenon was described by Waring and Britten
a half century ago using reassociation studies [1, 2]. It turned out
that most of these repetitive sequences originated in transposable
elements (TEs) [3], though the repetitive fraction of a genome
varies significantly between different organisms, from 12% in Cae-
norhabditis elegans [4] to 50% in mammals [3], and more than 80%
in some plants [5]. With such large contributions to genome
sequences, it is not surprising that TEs have a significant influence
on the genome organization and evolution. Although much prog-
ress has been achieved in understanding the role TEs play in a host
genome, we are still far from the comprehensive picture of the
delicate evolutionary interplay between a host genome and the
invaders. They also pose various challenges to the genomic com-
munity, including aspects related to their detection and classifica-
tion, genome assembly and annotation, genome comparisons, and
mapping of genomic variants. They also pose various challenges to
the genomic community, including aspects related to their detec-
tion and classification, genome assembly and annotation, genome
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comparisons, and mapping of genomic variants. Here we present an
overview of TE diversity and discuss major techniques used in their
analyses.

2 Discovery of Mobile Elements

Transposable elements were discovered by Barbara McClintock
during experiments conducted in 1944 on maize. Since they
appeared to influence phenotypic traits, she named them
controlling elements. However, her discovery was met with less
than enthusiastic reception by the genetic community. Her presen-
tation at the 1951 Cold Spring Harbor Symposium was not under-
stood and at least not very well received [6]. She had no better luck
with her follow-up publications [7–9] and after several years of
frustration decided not to publish on the subject for the next two
decades. Not for the first time in the history of science, an unap-
preciated discovery was brought back to life after some other
discovery has been made. In this case it was the discovery of
insertion sequences (IS) in bacteria by Szybalski group in the early
1970s [10]. In the original paper they wrote: “Genetic elements
were found in higher organisms which appear to be readily trans-
posed from one to another site in the genome. Such elements,
identifiable by their controlling functions, were described by
McClintock in maize. It is possible that they might be somehow
analogous to the presently studied IS insertions” [10]. The impor-
tance of McClintock’s original work was eventually appreciated by
the genetic community with numerous awards, including 14 hon-
orary doctoral degrees and a Nobel Prize in 1983 “for her discovery
of mobile genetic elements” (http://nobelprize.org/nobel_
prizes/medicine/laureates/1983/).

Coincidently, at the same time as Szybalski “rediscovered” TEs,
Susumu Ohno popularized the term junk DNA that influenced
genomic field for decades [11], although the term itself was used
already before [12, 13].1 Ohno referred to the so-called noncoding
sequences or, to be more precise, to any piece of DNA that do not
code for a protein, which included all genomic pieces originated in
transposons. The unfavorable picture of transposable and trans-
posed elements started to change in early 1990s when some
researchers noticed evolutionary value of these elements
[14, 15]. With the wheel of fortune turning full circle and advances
of genome sciences, TE research is again focused on the role of
mobile elements played in the evolution of gene regulation
[16–23].

1The historical background of the “junk DNA” term was recently discussed by Dan Graur in his excellent blog
http://judgestarling.tumblr.com/post/64504735261/the-origin-of-the-term-junk-dna-a-historical
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3 Transposons Classification

3.1 Insertion

Sequences and Other

Bacterial Transposons

The bacterial genome is composed of a core genomic backbone
decorated with a variety of multifarious functional elements. These
include mobile genetic elements (MGEs) such as bacteriophages,
conjugative transposons, integrons, unit transposons, composite trans-
posons, and insertion sequences (IS). Here we elaborate upon the last
class of these elements as they are most widely found and
described [24].

The ISs were identified during studies of model genetic systems
by virtue of their capacity to generate mutations as a result of their
translocation [10]. In-depth studies in antibiotic resistance and
transmissible plasmids revealed an important role for these mobile
elements in formation of resistance genes and promoting gene
capture. In particular, it was observed that several different ele-
ments were often clustered in “islands” within plasmid genomes
and served to promote plasmid integration and excision.

Although these elements sometimes generate beneficial muta-
tions, they may be considered genomic parasites as ISs code only for
the enzyme required for their own transposition [24]. While an IS
element occupies a chromosomal location, it is inherited along with
its host’s native genes, so its fitness is closely tied to that of its host.
Consequently, ISs causing deleterious mutations that disrupt a
genomic mode or function are quickly eliminated from the popula-
tion. However, intergenically placed ISs have a higher chance to be
fixed in the population as they are likely neutral regarding popula-
tion’s fitness [25].

ISs are generally compact (Fig. 1). They usually carry no other
functions than those involved in their mobility. These elements
contain recombinationally active sequences which define the
boundary of the element, together with Tpase, an enzyme, which
processes these ends and whose gene usually encompasses the
entire length of the element [26]. Majority of ISs exhibit short
terminal inverted-repeat sequences (IR) of length 10–40 bp. Sev-
eral notable exceptions do exist, for example, the IS91, IS110, and
IS200/605 families.

The IRs contain two functional domains [27]. One is involved
in Tpase binding; the other cleaves and transfers strand-specific
reactions resulting in transposition. IS promoters are often posi-
tioned partially within the IR sequence upstream of the Tpase gene.
Binding sites for host-specific proteins are often located within
proximity to the terminal IRs and play a role in modulating trans-
position activity or Tpase expression [28]. A general pattern for the
functional organization of Tpases has emerged from the limited
numbers analyzed. The N-terminal region contains sequence-
specific DNA binding activities of the proteins while the catalytic
domain is often localized toward the C-terminal end [28].
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Another common feature of ISs is duplication of a target site
that results in short direct repeats (DRs) flanking the IS [29]. The
length of the direct repeat varies from 2 to 14 base pairs and is a
hallmark of a given element. Homologous recombination between
two IS elements can result in each having two different DRs [30].

ISs have been classified on the basis of (1) similarities in genetic
organization (arrangement of open reading frames); (2) marked
identities or similarities in their Tpases (common domains or
motifs); (3) similar features of their ends (terminal IRs); and
(4) fate of the nucleotide sequence of their target sites (generation
of a direct target duplication of determined length). Based on the
above rules, ISs are currently classified in 30 families (Table 1) [31].

3.2 Eukaryotic

Transposable

Elements

The first TE classification system was proposed by Finnegan in
1989 [32] and distinguished two classes of TEs characterized by
their transposition intermediate: RNA (class I or retrotransposons)
or DNA (class II or DNA transposons). The transposition mecha-
nism of class I is commonly called “copy and paste” and that of class
II, “cut and paste.” In 2007 Wicker et al. [33] proposed hierarchi-
cal classification based on TEs structural characteristics andmode of
replication (see Table 2 and Fig. 2). Below we present a brief
overview of eukaryotic mobile elements that in general follows
this classification.

3.2.1 Class I: Mobile

Elements

As mentioned above, class I TEs transpose through an RNA inter-
mediary. The RNA intermediate is transcribed from genomic DNA
and then reverse-transcribed into DNA by a TE-encoded reverse
transcriptase (RT), followed by reintegration into a genome. Each
replication cycle produces one new copy, and as a result, class I
elements are the major contributors to the repetitive fraction in
large genomes. Retrotransposons are divided into five orders: LTR
retrotransposons, DIRS-like elements, Penelope-like elements
(PLEs), LINEs (long interspersed elements), and SINEs (short
interspersed elements). This scheme is based on the mechanistic
features, organization, and reverse transcriptase phylogeny of these
retroelements. Accidentally, the retrotranscriptase coded by an
autonomous TE can reverse-transcribe another RNA present in
the cell, e.g., mRNA, and produce a retrocopy of it, which in
most cases results in a pseudogene.

The LTR retrotransposons are characterized by the presence of
long terminal repeats (LTRs) ranging from several hundred to
several thousand base pairs. Both exogenous retroviruses and
LTR retrotransposons contain a gag gene that encodes a viral

ORF(s)IR IR drdr ORF(s)

Fig. 1 Schematic representation of insertion sequences (IS). dr direct repeats, IR
inverted repeats, ORF open reading frame
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Table 1
Prokaryotic transposable elements as presented in the IS Finder database [31]

Family Typical size range in bp Direct repeat size in bp IRsa Number of ORFs

IS1 740–4600 0–10 Y 1 or 2

IS110 1200–1550 0 Y 1

IS1182 1330–1950 0–60 Y 1

IS1380 1550–2000 4–5 Y 1

IS1595 700–7900 8 Y 1

IS1634 1500–2000 5–6 Y 1

IS200/IS605 600–2000 0 Y/N 1 or 2

IS21 1750–2600 4–8 Y 2

IS256 1200–1500 8–9 Y 1

IS3 1150–1750 5 Y 2

IS30 1000–1700 2–3 Y 1

IS4 1150–5400 8–13 Y 1 or more

IS481 950–1300 4–15 Y 1

IS5 800–1500 2–9 Y 1 or 2

IS6 700–900 8 Y 1

IS607 1700–2500 0 N 2

IS630 1000–1400 2 Y 1 or 2

IS66 1350–3000 8–9 Y 1 or more

IS701 1400–1550 4 Y 1

IS91 1500–2000 0 N 1

IS982 1000 3–9 Y 1

ISAs1 1200–1500 8–10 Y 1

ISAzo13 1250–2200 0–4 Y 1

ISH3 1225–1500 4–5 Y 1

ISH6 1450 8 Y ISL

ISKra4 1400–2900 0–9 Y 1 or more

ISL3 1300–2300 8 Y ISKra4

ISLre2 1500–2000 9 Y 1

Tn3 Over 3000 0 Y More than 1

ISNCY 1300–2400 0–12 Y/N 1 or 2

aPresence (Y) or absence (N) of terminal inverted repeats
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particle coat and a pol gene that encodes a reverse transcriptase,
ribonuclease H, and an integrase, which provide the enzymatic
machinery for reverse transcription and integration into the host
genome. Reverse transcription occurs within the viral or viral-like
particle (GAG) in the cytoplasm, and it is a multistep process
[34]. Unlike LTR retrotransposons, exogenous retroviruses con-
tain an env gene, which encodes an envelope that facilitates their
migration to other cells. Some LTR retrotransposons may contain
remnants of an env gene, but their insertion capabilities are limited
to the originating genome [35]. This would rather suggest that
they originated in exogenous retroviruses by losing the env gene.
However, there is evidence that suggests the contrary, given that

Table 2
Classification of eukaryotic transposable elements as proposed by Wicker et al. [33]

Class Order Superfamily Phylogenetic distribution

Class I (retrotransposons) LTR Copia Plants, metazoans, fungi
Gypsy Plants, metazoans, fungi
Bel-Pao Metazoans
Retrovirus Metazoans
ERV Metazoans

DIRS DIRS Plants, metazoans, fungi
Ngaro Metazoans, fungi
VIPER Trypanosomes

PLE Penelope Plants, metazoans, fungi
LINE R2 Metazoans

RTE Metazoans
Jockey Metazoans
L1 Plants, metazoans, fungi

SINE tRNA Plants, metazoans, fungi
7SL Plants, metazoans, fungi
5S Metazoans
SVAa Primates
Retrogenesa Plants, metazoans, fungi

Class II (DNA transposons)
Subclass 1

TIR Tc1-Mariner Plants, metazoans, fungi
hAT Plants, metazoans, fungi
Mutator Plants, metazoans, fungi
Merlin Metazoans
Transib Metazoans, fungi
P Plants, metazoans
PiggyBac Metazoans
PIF-harbinger Plants, metazoans, fungi
CACTA Plants, metazoans, fungi

Crypton Crypton Fungi

Class II (DNA transposons)
Subclass 2

Helitron Helitron Plants, metazoans, fungi
Maverick Maverick Metazoans, fungi

Please note that SVAs and retrogenes are not included in that classification
aNot included in the original Wicker classification
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LTR retrotransposons can acquire the env gene and become infec-
tious entities [36]. Presently, most of the LTR sequences (85%) in
the human genome are found only as isolated LTRs, with the
internal sequence being lost most likely due to homologous

TRANSPOSASE
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Class II - subclass 1

ORF polyA

HELICASE, (rpal)TC CTRR

int ORFs polBOORFs

Class II - subclass 2

TSDTSD

LTR

TTTTTRRAANSPOSAASEEEEE

LTR gag pol enveeeeeeeeeeenvvvvvvvvvv

ORF

HHHEELICASE, (rppaaall)))

iiiiiiinnniii tttttt ppppppppppppppolBBBBBBBBB
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TDS TDS

TIR
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Retroviruses

ORF1 ORF2 polyA TSDTSD
LINEs

LTRLTR gag polTSD
LTR elements

TSD
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Fig. 2 Structures of eukaryotic mobile elements. See text for detailed discussion
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recombination between flanking LTRs [37]. Interestingly, LTR
retrotransposons target their reinsertion to specific genomic sites,
often around genes, with putative important functional implica-
tions for a host gene [35]. Lander et al. estimated that 450,000
LTR copies make up about 8% of our genome [38]. LTR retro-
transposons inhabiting large genomes, such as maize, wheat, or
barley, can contain thousands of families. However, despite the
diversity, very few families comprise most of the repetitive fraction
in these large genomes. Notable examples are Angela (wheat) [39],
BARE1 (barley) [40], Opie (maize) [41], and Retrosor6
(sorghum) [42].

The DIRS order clusters structurally diverged group of trans-
posons that possess a tyrosine recombinase (YR) gene instead of an
integrase (INT) and do not form target site duplications (TSDs).
Their termini resemble either split direct repeats (SDR) or inverted
repeats. Such features indicate a different integration mechanism
than that of other class I mobile elements. DIRS were discovered in
the slime mold (Dictyostelium discoideum) genome in the early
1980s [43], and they are present in all major phylogenetic lineages
including vertebrates [44]. It has been showed that they are also
common in hydrothermal vent organisms [45].

Another order, termed Penelope-like elements (PLE), has wide,
though patchy distribution from amoebae and fungi to vertebrates
with copy number up to thousands per genome [46]. Interestingly,
no PLE sequences have been found in mammalian genomes, and
apparently they were lost from the genome of C. elegans
[47]. Although PLEs with an intact ORF have been found in
several genomes, including Ciona and Danio, the only transcrip-
tionally active representative, Penelope, is known from Drosophila
virilis. It causes the hybrid dysgenesis syndrome characterized by
simultaneous mobilization of several unrelated TE families in the
progeny of dysgenic crosses. It seems that Penelope invaded
D. virilis quite recently, and its invasive potential was demonstrated
inD. melanogaster [46]. PLEs harbor a single ORF that codes for a
protein containing reverse transcriptase (RT) and endonuclease
(EN) domains. The PLE RT domain more closely resembles telo-
merase than the RT from LTRs or LINEs. The EN domain is
related to GIY-YIG intron-encoded endonucleases. Some PLE
members also have LTR-like sequences, which can be in a direct
or an inverse orientation, and have a functional intron [46].

LINEs [48, 49] do not have LTRs; however, they have a poly-A
tail at the 30 end and are flanked by the TSDs. They comprise about
21% of the human genome and among them L1 with about
850,000 copies is the most abundant and best described LINE
family. L1 is the only LINE retroposon still active in the human
genome [50]. In the human genome, there are two other LINE-
like repeats, L2 and L3, distantly related to L1. A contrasting
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situation has been noticed in the malaria mosquito Anopheles gam-
biae, where around 100 divergent LINE families compose only 3%
of its genome [51]. LINEs in plants, e.g., Cin4 in maize and Ta11
in Arabidopsis thaliana, seem rare as compared with LTR retro-
transposons. A full copy of mammalian L1 is about 6 kb long and
contains a PolII promoter and two ORFs. The ORF1 codes for a
non-sequence-specific RNA binding protein that contains zinc fin-
ger, leucine zipper, and coiled-coil motifs. The ORF1p functions as
chaperone for the L1 mRNA [52, 53]. The second ORF encodes
an endonuclease, which makes a single-stranded nick in the geno-
mic DNA, and a reverse transcriptase, which uses the nicked DNA
to prime reverse transcription of LINE RNA from the 30 end.
Reverse transcription is often unfinished, leaving behind fragmen-
ted copies of LINE elements; hence most of the L1-derived repeats
are short, with an average size of 900 bp. LINEs are part of the CR1
clade, which has members in various metazoan species, including
fruit fly, mosquito, zebrafish, pufferfish, turtle, and chicken
[54]. Because they encode their own retrotransposition machinery,
LINE elements are regarded as autonomous retrotransposons.

SINEs [48, 49] evolved from RNA genes, such as 7SL and
tRNA genes. By definition, they are short, up to 1000 base pair
long. They do not encode their own retrotranscription machinery
and are considered as nonautonomous elements and in most cases
are mobilized by the L1 machinery [55]. The outstanding member
of this class from the human genome is the Alu repeat, which
contains a cleavage site for the AluI restriction enzyme that gave
its name [56]. With over a million copies in the human genome,
Alu is probably the most successful transposon in the history of life.
Primate-specific Alu and its rodent relative B1 have limited phylo-
genetic distribution suggesting their relatively recent origins. The
mammalian-wide interspersed repeats (MIRs), by contrast, spread
before eutherian radiation, and their copies can be found in differ-
ent mammalian groups including marsupials and monotremes
[57]. SVA elements are unique primate elements due to their
composite structure. They are named after their main components:
SINE, VNTR (a variable number of tandem repeats), and Alu
[58]. Usually, they contain the hallmarks of the retroposition, i.e.,
they are flanked by TSDs and terminated by a poly(A) tail. It seems
that SVA elements are nonautonomous retrotransposons mobilized
by L1 machinery, and they are thought to be transcribed by RNA
polymerase II. SVAs are transpositionally active and are responsible
for some human diseases [59]. They originated less than 25 million
years ago, and they form the youngest retrotransposon family with
about 3000 copies in the human genome [58].

Retro(pseudo)genes are a special group of retroposed
sequences, which are products of reverse transcription of a spliced
(mature) mRNA. Hence, their characteristic features are an absence
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of promoter sequence and introns, the presence of flanking direct
repeats, and a 30-end polyadenosine tract [60]. Processed pseudo-
genes, as sometimes retropseudogenes are called, have been gener-
ated in vitro at a low frequency in the human HeLa cells via mRNA
from a reporter gene [60]. The source of the reverse transcription
machinery in humans and other vertebrates seems to be active L1
elements [61]. However, not all retroposed messages have to end
up as pseudogenes. About 20% of mammalian protein-encoding
genes lack introns in their ORFs [62]. It is conceivable that many
genes lacking introns arose by retroposition. Some genes are known
to be retroposed more often than others. For instance, in the
human genome there are over 2000 retropseudogenes of ribosomal
proteins [63]. A genome-wide study showed that the human
genome harbors about 20,000 pseudogenes, 72% of which most
likely arose through retroposition [64]. Interestingly, the vast
majority (92%) of them are quite recent transpositions that
occurred after primate/rodent divergence [64]. Some of the retro-
posed genes may undergo quite complicated evolutionary paths.
An example could be the RNF13B retrogene, which replaced its
own parental gene in the mammalian genomes. This retrocopy was
duplicated in primates, and the evolution of this primate-specific
copy was accompanied by the exaptation of two TEs, Alu and L1,
and intron gain via changing a part of coding sequence into an
intron leading to the origin of a functional, primate-specific retro-
gene with two splicing variants [65].

3.2.2 Class II: Mobile

Elements

Class II elements move by a conservative cut-and-paste mechanism;
the excision of the donor element is followed by its reinsertion
elsewhere in the genome. DNA transposons are abundant in bacte-
ria, where they are called insertion sequences (see Subheading 3.1),
but are present in all phyla. Wicker et al. distinguished two sub-
classes of DNA transposons based on the number of DNA strands
that are cut during transposition [33].

Classical “cut-and-paste” transposons belong to the subclass I,
and they are classified as the TIR order. They are characterized by
terminal inverted repeats (TIR) and encode a transposase that binds
near the inverted repeats and mediates mobility. This process is not
usually a replicative one, unless the gap caused by excision is
repaired using the sister chromatid. When inserted at a new loca-
tion, the transposon is flanked by small gaps, which, when filled by
host enzymes, cause duplication of the sequence at the target site.
The length of these TSDs is characteristic for particular transpo-
sons. Nine superfamilies belong to the TIR order, including Tc1-
Mariner, Merlin, Mutator, and PiggyBac. The second order Cryp-
ton consists of a single superfamily of the same name. Originally
thought to be limited to fungi [66], now it is clear that they have a
wide distribution, including animals and heterokonts [67]. A
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heterogeneous, small, nonautonomous group of elements MITEs
also belong to the TIR order [68], which in some genomes ampli-
fied to thousands of copies, e.g., Stowaway in the rice genome [69],
Tourist in most bamboo genomes [70], or Galluhop in the chicken
genome [71].

Subclass II includes two orders of TEs that, just as those from
subclass I, do not form RNA intermediates. However, unlike “clas-
sical” DNA transposons, they replicate without double-strand
cleavage. Helitrons replicate using a rolling-circle mechanism, and
their insertion does not result in the target site duplication
[72]. They encode tyrosine recombinase along with some other
proteins. Helitrons were first described in plants, but they are also
present in other phyla, including fungi and mammals
[73, 74]. Mavericks are large transposons that have been found in
different eukaryotic lineages excluding plants [75]. They encode
various numbers of proteins that include DNA polymerase B and an
integrase. Kapitonov and Jurka suggested that their life cycle
includes a single-strand excision, followed by extrachromosomal
replication and reintegration to a new location [76].

4 Identification of Transposable Elements

With the ever-growing number of sequenced genomes from differ-
ent branches of the tree of life, there are increasing TE research
opportunities. There are several reasons why one would like to
analyze TEs and their “offsprings” left in a genome. First of all,
they are very interesting biological subjects to study genome struc-
ture, gene regulation, or genome evolution. In some cases, they
also make genome assembly and annotation quite challenging,
especially with the current NGS technology that generates reads
shorter than TEs. Nevertheless, TEs should be and are worthy to
study. However, it is not a simple task and requires different
approaches depending on the level of analysis. We will walk through
these different levels starting with raw genome sequences without
any annotation and discuss different methods and software used for
TE analyses. In principle, we can imagine two scenarios: in the first
one, genomic or transcriptome sequences are coming from a spe-
cies for which there is already some information about the transpo-
son repertoire, for instance, a related genome has been previously
characterized or TEs have been studied before. In the second
scenario, we have to deal with a completely unknown genome or
a genome for which little information exists with regard to TEs. In
the former case, one can apply a range of techniques used in
comparative genomics or try to search specific libraries of transpo-
sons using the “homology search” approach. In the latter, which is
basically an approach to identify TEs de novo, first we need to find
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any repeats in a genome and then attempt characterization and
classification of newly identified repetitive sequences. In this
approach, we will find any repeats, not necessarily transposons.
There are many algorithms, and even more software, that can be
applied in both approaches.

4.1 De Novo

Approaches to Finding

Repetitive Elements

There are several steps involved in the de novo characterization of
transposons. First, we need to find all the repeats in a genome, then
build a consensus of each family of related sequences, and finally
classify detected sequences. For the first step, three groups of
algorithms exist: the k-mer approach, sequence self-comparison,
and periodicity analysis.

In the k-mer approach, sequences are scanned for overrepre-
sentation of strings of certain length. The idea is that repeats that
belong to the same family are compositionally similar and share
some oligomers. If the repeats occur many times in a genome, then
those oligomers should be overrepresented. However, since repeats
and transposons in particular are not perfect copies of a certain
sequence, some mismatches must be allowed when oligo frequen-
cies are calculated. The challenge is to determine optimal size of an
oligo (k-mer) and number of mismatches allowed. Most likely,
these parameters should be different for different types of transpo-
sons, i.e., low versus high copy number, old versus young transpo-
sons, and those from different classes and families. Several programs
have been developed based on the k-mer idea using a suffix tree data
structure including REPuter [77, 78], Vmatch (Kurtz, unpub-
lished; http://www.vmatch.de/), and Repeat-match
[79, 80]. Another approach is to use fixed length k-mers as seeds
and extend those seeds to define repeat’s family as it was imple-
mented in ReAS [81], RepeatScout [82], and Tallymer
[83]. Another interesting algorithm can be found in the FORRe-
peats software [84], which uses factor oracle data structure [85]. It
starts with detection of exact oligomers in the analyzed sequences,
followed by finding approximate repeats and their alignment.

The second group of programs developed for de novo detec-
tion of repeated sequences is using self-comparison approach.
Repeat Pattern Toolkit [86], RECON [87], PILER [88, 89], and
BLASTER [90] belong to this group. The idea is to use one of the
fast sequence similarity tools, e.g., BLAST [91], followed by clus-
tering search results. The programs differ in the search engine for
the initial step, though most are using some of the BLAST algo-
rithms, the clustering method, and heuristics of merging initial hits
into a prototype element. For instance, RECON [87], which was
developed for the repeat finding in unassembled sequence reads,
starts with an all-to-all comparison using WU-BLAST engine.
Then, single-linkage clustering is applied to alignment results that
is followed by construction of an undirected graph with overlap-
ping. The shortest sequence that contains connected images
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(aligned subsequences) creates a prototype element. However, this
procedure might result in composite elements. To avoid this, all the
images are aligned to the prototype element to detect potential
illegitimate mergers and split those at every point with a significant
number of image ends.

PILER [88, 89] is using a different approach to find initial
clusters. Instead of BLAST, it uses PALS (pairwise alignment of
long sequences) for the initial alignment. PALS records only hit
points and uses banded search of the defined maximum distance to
optimize its performance. To further improve performance of the
system, PILER uses different heuristics for different types of
repeats, i.e., satellites, pseudosatellites, terminal repeats, and inter-
spersed repeats. Finally, a consensus sequence is generated from a
multiple sequence alignment of the defined family members.

Dot matrix is a simple method to compare two biological
sequences. The graphical output of such an analysis is called a dot-
plot. Dotplots can be used to detect conserved domains, sequence
rearrangements, RNA secondary structure, or repeated sequences. It
compares every residue in one sequence to every residue in the other
sequence or to every residue of the same sequence in the self-
comparison mode. In the latter case, there will be a main diagonal
line representing a perfect match and a number of short diagonal
lines representing similar regions (red circles in Fig. 3). Interestingly,
simple repeats appear as diamond shapes on a main diagonal line or
short vertical and horizontal lines outside themain diagonal line (red
squares in Fig. 3). Themethod was introduced to biological analyses
almost a half century ago [92, 93]. However, the first easy-to-use
software with a graphical interface, DOTTER, was developed much
later [94]. The major problem of this approach is the time required
for the dotplot calculation, which is of quadratic complexity. This
proved to be prohibitive for comparison of the genome-size
sequences. One of the solutions to this problem is using a word
index for the fast identification of substrings. Gepard implements
the suffix array data structure to improve the execution time [95]. It
is written in Java, which makes it platform-independent. Gepard
enables analyses of sequences at the mega-base level in the matter
of seconds, and it takes about an hour to analyze the whole human
chromosome I [95]. The example of the dotplot produced by the
Gepard is presented in Fig. 3.

4.2 Transposable

Elements

Determination in

NGS Data

With constant improvement of sequencing technology associated
with decreasing sequencing cost, the number of new sequenced
genomes is exploding. As of January 2019, there are more than
7000 eukaryotic and almost 180,000 prokaryotic genomes publicly
available (information retrieved on January 16, 2019, from https://
www.ncbi.nlm.nih.gov/genome/browse/). However, this comes
with a price; most of the recently sequenced genomes, due to the
short read sequencing technology, are available at various levels of
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“completeness” or assembly. For most non-model organisms, we
are presented with draft assemblies of rather short contigs. More-
over, these genomes usually are not very well annotated, with TEs
not being on the annotation priority list. Unfortunately, genome
annotation pipelines do not include TE annotation, focusing on
protein-coding and RNA-coding genes. To fill the gap, a number of
methods have been developed to detect repeats from short reads.
Two algorithms dominate in attempts to determine repeats in NGS
raw reads: clustering and k-mer. Transposome [96] and RepeatEx-
plorer [97] employ the former approach, while RepARK [98],
REPdenovo [99], and dnaPipeTE [100] utilize the latter one.
Since NGS results in the relatively short reads, assembly of selected
sequences into longer contigs representing TEs is required after
initial clustering of the raw reads.

4.3 Population-Level

Analyses of

Transposable

Elements

Recent advances in sequencing technology and the sharp decrease
in sequencing costs allow genomic studies at population level.
Although initially focused on human populations [101–103],
recent population studies of other species have been initiated as
well [104, 105]. One of the common questions in such studies is

Fig. 3 Graphical output of the Gepard. A 30 kb fragment of mouse chromosome
12 was compared to itself. Similar sequences are represented by diagonal lines
if both fragments are located on the same strains or by reverse diagonal lines if
the fragments with significant similarity are located on opposite strands. Some
of the examples are marked with the red circles. Simple repeats are represented
by either diamond shapes on the main diagonal or horizontal and vertical lines.
Some of the examples are marked with the red squares
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how much structural variation (SV) exists in different populations.
TE insertions are responsible for about 25% of structural variants in
human genomes [106]. In general, any tool designed for detection
of SV should work for TE insertion analysis, but specialized soft-
ware can take advantage of specific expectations related to inser-
tions of TEs. Most of the SV-detection algorithms rely on paired-
end reads and are based on discordant read pair mapping and/or
split reads mapping (Fig. 4). A discordant pair read is defined as one
that is inconsistent with the expected insert size in the library used
for sequencing. For example, if the insert size of the library used for
sequencing is 300 nt but the reads map to a reference genome
within much larger distance or to two different chromosomes,
such a pair is considered to be discordant. If, additionally, one of
the reads maps to a TE, it might be an indication of a polymorphic
TE. Usually some filtering is used to reduce a chance of false
positives. These include minimum read number in the cluster
mapped to a unique position, quality score of the reads, or consis-
tency in reads orientation. However, the discordant read mapping
cannot detect exact insertion position. Therefore another step is
required that may include local assembly and split-read mapping.
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Fig. 4 Detection of a TE insertion (polymorphic TE) from the NGS data. The upper panel shows real genomic
sequence with a TE, which is not present in the reference genome (lower panel). Hypothetical discordant pair-
reads (a, b, d, f, g, i, j, k, l, o, q, s, and t) have only one the pairs mapped to the reference genome, while the
other would map to a consensus sequence of a TE. The hypothetical split reads (c, e, h, m, p, and r) will have
part of the sequence mapped to the reference genome and the other to a TE consensus sequence
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A split read is defined as a read for which part of it maps
uniquely to one position in the genome and the other part to
another position. This is, for example, a very common feature of
the mapping of RNA-seq data to eukaryotic genomes when reads
span two exons. Split reads are being also observed if structural
variants exist. In a case of a TE insertion, a part of the read will be
mapped to a unique location and the rest to a TE in some other
location or may not be mapped at all (Fig. 4).

Different methods for structure variant detection return differ-
ent results on the same data. Recently published benchmarking
demonstrates that TE detection is not an exception
[107, 108]. Ewing [107] compared TranspoSeq [109] with two
other tools, Tea [110] and TraFIC [111], on the same data sets.
Results were not very encouraging as in both comparisons there
was a high fraction of insertions detected only by a single program
[107]. Similar conclusion was drawn by Rishishwar et al. [108] in a
benchmark of larger number of tools including MELT [106],
Mobster [112], and RetroSeq [113]. It is clear that different soft-
ware have different biases, and each one can produce a high number
of false positives. It is recommended then to employ several pro-
grams for high confidence results. Exhaustive tests run on real and
simulated human genome data showed superior performance of
MELT [106, 108]. TIPseqHunter is another tool developed to
identify transposon insertion sites based on the transpose insertion
profiling using next-generation sequencing [114]. It employs
machine learning algorithm to ensure high precision and reliability.
It is worth to note that all these tools were designed for short read
sequencing methods. However, with current development of
single-molecule long reads, sequencing technologies such as Pac-
Bio and Oxford Nanopore may make these methods irrelevant and
obsolete. Long reads should be of superior performance and make
TE insertion detection relatively easy with more traditional
aligners, such as MegaBLAST [115], BLAT [116], or LAST [117].

4.4 Comparative

Genomics of TE

Insertions

To understand the general pattern of TE insertions in different
genomes and evolutionary dynamics of TE families, a comparative
approach is necessary. Although precomputed alignments of differ-
ent genomes are publicly available, for example, the UCSC
Genome Browser includes Multiz alignments of 100 vertebrate
genomes [118], not many tools are available for such analyses.
One of them is GPAC (genome presence/absence compiler) that
creates a table of presence and absence of certain elements based on
the precomputed multiple genomes alignment [119] (http://bioin
formatics.uni-muenster.de/tools/gpac/index.hbi). The tool is
quite generic, but is well suited for the TE comparative analysis
(see Fig. 5 for an example).
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4.5 Classification of

Transposable

Elements

Once the consensus of a repetitive element has been constructed, it
can be subjected to further analyses. There are twomajor categories
of programs dealing with the issue of TE classification: library or
similarity-based and signature-based. The latter approach is very
often used in specialized software, i.e., tailored for specific type of
TEs. However, some general tools also exist, e.g., TEclass [120].

The library approach is probably the most common approach
for TE classification. It is also very efficient and quite reliable as long
as good libraries of prototype sequences exist. In practice, it is the
recommended approach when we analyze sequences from well-
characterized genomes or from a genome relatively closely related
to a well-studied one. For instance, since the human genome is one
of the best studied, any primate sequences can be confidently
analyzed using the library approach. Most likely, the first software
using the similarity-based approach for repeat classification was
Censor developed by Jerzy Jurka in the early 1990s [121]. It uses
RepBase [122] as a reference collection and BLAST as a search
engine [91]. However, the most popular TE detection software is
RepeatMasker (RM) (http://www.repeatmasker.org). Interest-
ingly, RM is also using RepBase as a reference collection and
AB-BLAST, RM-BLAST, or cross-match as a search engine. In
both cases, original search hits are processed by a series of Perl
scripts to determine the structure of elements and classify them to
one of known TE families. Both Censor and RM also employ user-
provided libraries, including “third-party” lineage-specific libraries,
e.g., TREP [123]. Over the years, RepeatMasker has become a
standard tool for TE analyses, and often its output is used for
more biologically oriented studies (see below). The aforemen-
tioned programs have one important drawback: since they are
completely based on sequence similarity, they can detect only TEs
that had been previously described. Nevertheless, similarity
searches, like in many other bioinformatics tasks, should be the
first approach for the analysis of repetitive elements.

Signature-based programs are searching for certain features
that characterize specific TEs, for example, long terminal repeats
(LTRs), target site duplications (TSDs), or primer-binding sites
(PBSs). Since different types (families) of elements are structurally
different, they require specific rules for their detection. Hence,
many of the programs that use signature-based algorithms are
specific for certain type of transposons. There are a number of
programs specialized in detection of LTR transposons, which are
based on a similar methodology. They take into account several
structural features of LTR retroposons including size, distance
between paired LTRs and their similarity, the presence of TSDs,
and the presence of replication signals, i.e., the primer-binding site
and the polypurine tract (PPTs). Some of the programs check also
for ORFs coding for the gag, pol, and env proteins. LTR_STRUC
[124] was one of the first programs based on this principle. It uses

194 Wojciech Makałowski et al.

http://www.repeatmasker.org


seed-and-extend strategy to find repeats located within user-
defined distance. The candidate regions are extended based on
the pairwise alignment to determine cognate LTRs’ boundaries.
Putative full-length elements are scored based on the presence of
TSD, PBS, PPT, and reverse transcriptase ORF. However, because
of the heuristics described above, LTR_STRUC is unable to find
incomplete LTR transposons and in particular solo LTRs. Another
limitation of this program is its Windows-only implementation that
significantly prohibits automated large-scale analysis. Several other
programs have been developed based on similar principles, e.g.,
LTR_par [125], find_LTR [126], LTR_FINDER [127], and
LTRharvest [128]. Lerat tested performance of these programs
[129], and although sensitivity of the methods was acceptable
(between 40% and 98%), it was at the expense of specificity, which
was very poor. In several cases, the number of falsely assigned
transposons exceeded the number of correctly detected ones.

Another group of transposons that have a relatively conserved
structure are MITEs and Helitrons. Several specialized programs
were developed that take advantage of their specific structure.
FINDMITE [130] and MUST [131] are tailored for MITEs,
while HelitronFinder [132] and HelSearch [133] were developed
for Helitron detection.

A further interesting approach to transposon classification was
implemented by Abrusan et al. [120] in the software package called
TEclass, which classifies unknown TE consensus sequences into
four categories, according to their mechanism of transposition:
DNA transposons, LTRs, LINEs, and SINEs. The classification
uses support vector machines, random forests, learning vector
quantization, and predicts ORFs. Two complete sets of classifiers
are built using tetramers and pentamers, which are used in two
separate rounds of the classification. The software assumes that the
analyzed sequence represents a TE and the classification process is
binary, with the following steps: forward versus reverse sequence
orientation > DNA versus retrotransposon > LTRs versus
nonLTRs (for retroelements) > LINEs versus SINEs (for nonLTR
repeats). If the different methods of classification lead to conflicting
results, TEclass reports the repeat either as unknown or as the last
category where the classification methods agree (http://bioinfor
matics.uni-muenster.de/tools/teclass/index.hbi).

4.6 Pipelines Recent years witnessed some attempt to create more complex,
global analyses systems. One such a system is REPCLASS
[134]. It consists of three classification modules: homology
(HOM), structure (STR), and target site duplication (TSD). Each
module can be run separately or in the pairwise manner, whereas
the final step of the analysis involves integration of the results
delivered by each module. There is one interesting novelty in the
STR module, namely, implementation of tRNAscan-SE [135] to
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detect tRNA-like secondary structure within the query sequence,
one of the signatures of many SINE families. The REPPET is
another pipeline for TE sequence analyses. It uses “classical”
three-step approach for de novo TE identification: self-alignment,
clustering, and consensus sequences generation. However, the
pipeline is using a spectrum of different methods at each step,
followed by a rigorous TE classification step based on recently
proposed classification of TEs [136]. Unfortunately, a complex
implementation that makes installation and running the system
rather difficult limits usage of the pipeline. The classification step
seems to be unreliable as it may annotate lineage-specific TEs in
wrong taxonomical lineages (Kouzel and Makalowski,
unpublished data).

There are other attempts to create comprehensive systems for
“repeatome” analysis. One of them is dnaPipeTE developed for
mosquito genomes’ analyses [100]. Interestingly, dnaPipeTE
works on the raw NGS data, which makes the pipeline well suited
for genomes with lower sequencing depth. The raw reads are first
subjected to k-mer count on the sampled data. The sampling of the
data to size less than 0.25� of the genome is required to avoid
clustering reads representing unique sequences. The determined
repetitive reads are assembled into contigs using Trinity
[137]. Although Trinity was originally developed for transcriptome
assembly from RNA-seq data, it proves to be very useful for TEs
assembly from short reads as it can efficiently determine consensus
sequences of closely related transposons. In the next step, dnaPi-
peTE annotates repeats using RepeatMasker with either built-in or
user-defined libraries. This is probably the weakest point of the
pipeline as it will not annotate any novel TEs, which have no similar
sequences present in the provided libraries. It would be useful to
complement this step with model-based or machine learning
approaches (see Subheading 4.5). After contigs’ annotation, copy
number of the TEs are estimated using BLAST algorithm
[91]. Finally, sequence identity between an individual TE and its
consensus sequence is used to determine the relative age of the TEs.
The pipeline produces a number of output files including several
graphs, i.e., pie chart with the relative proportion of the main
repeat classes and graph with the number of base pairs aligned on
each TE contig and TE age distribution. Overall, the dnaPipeTE is
very efficient, outperforming, according to the authors, RepeatEx-
plorer by severalfold [100].

4.7 Meta-analyses Most of the software developed are focused on the TE discovery
and rarely offer more biological oriented analyses. Consequently,
researchers interested in TE biology or using TE insertions as tools
for another biological investigations need to utilize other resources.
One of them is TinT (transposition in transposition), tool that
applies maximum likelihood model of TE insertion probability to
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estimate relative age of TE families [138] (http://bioinformatics.
uni-muenster.de/tools/tint/index.hbi). In the first steps, it takes
RepeatMasker output to detect nested retroposons. Then, it gen-
erates a data matrix that is used by a probabilistic model to estimate
chronology and activity period of analyzed families. The method
was applied to resolve the evolutionary history of galliformes [139],
marsupials [140], lagomorphs [141], squirrel monkey [142], or
elephant shark [143].

Another interesting application that takes advantage of TEs is
their use for detecting signatures of positive selection [144], a
central goal in the field of evolutionary biology. A typical research
scenario for this application would be investigating whether a spe-
cific TE fragment exapted into resident genomic features, such as
proximal and distal enhancers or exons of spliced transcripts, has
undergone accelerated evolution that could be indicative of gain of
function events. In short, the test first requires the identification of
all genomically interspersed TE fragments that are homolog to the
TE segment of interest, which can be done through alignments
with a family consensus sequence. Based on multi-species genome
alignments, a second step involves identification of lineage-specific
substitutions in every single homolog fragment, which are then
consolidated into a distribution of lineage-specific substitutions
that provides the expectation (null distribution) for a segment
evolving largely without specific constraints (neutrally). A signifi-
cantly higher number of lineage-specific substitutions observed in
the TE fragment of interest compared to the null distribution could
then be interpreted as a molecular signature of adaptive evolution.
However, the possibility of confounding molecular mechanisms,
such as GC-biased gene conversion [145–147], needs to be eval-
uated. We note that building the null distribution based only on
data from intergenic regions, where transcription-coupled repair is
absent, results in a more liberal estimate of the expected substitu-
tions, which in turn leads to a more conservative estimate of the
adaptive evolution. Additionally, building the null distribution
requires the detection of many homolog fragments, which limits
the applicability of the test to TE families with numerous members
in a given genome. Prime examples would be human Alu or murine
B1 SINEs. In theory, this test could also be used for detecting
signatures of purifying selection by searching for fragments
depleted of lineage-specific substitutions. However, the low level
or complete lack of lineage-specific substitution is characteristic to
many TE fragments, obscuring the effect of potential purifying
forces.
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5 Concluding Remarks

Annoying junk for some, hidden treasure for others, TEs can hardly
be ignored [148]. With their diversity and high copy number in
most of the genomes, they are not the easiest biological entities to
analyze. Nevertheless, recent years witnessed increased interest in
TEs. On the one hand, we observe improvement in computational
tools specialized in TE analyses. Table 3 lists some of such tools and

Table 3
Selected resources for transposable elements discovery and analyses

Software Address

AB-BLAST http://www.advbiocomp.com/blast.html

ACLAME http://aclame.ulb.ac.be/

BLASTER suite http://urgi.versailles.inra.fr/index.php/urgi/Tools/BLASTER

Censor http://www.girinst.org/censor/download.php

DOTTER http://sonnhammer.sbc.su.se/Dotter.html

DROPOSON ftp://biom3.univ-lyon1.fr//pub/drosoposon/

find_ltr http://darwin.informatics.indiana.edu/cgi-bin/evolution/ltr.pl

FINDMITE http://jaketu.biochem.vt.edu/dl_software.htm

FORRepeats http://al.jalix.org/FORRepeats/

Gepard http://cube.univie.ac.at/gepard

HelitronFinder http://limei.montclair.edu/HT.html

HelSearch http://sourceforge.net/project/showfiles.php?group_id¼260708

HERVd http://herv.img.cas.cz/

IRF http://tandem.bu.edu/irf/irf.download.html

LTR_FINDER http://tlife.fudan.edu.cn/ltr_finder/

LTR_MINER http://genomebiology.com/2004/5/10/R79/suppl/s7

LTR_par http://www.eecs.wsu.edu/~ananth/software.htm

MGEScan-LTR http://darwin.informatics.indiana.edu/cgi-bin/evolution/daphnia_ltr.pl

MGEScan-nonLTR http://darwin.informatics.indiana.edu/cgi-bin/evolution/nonltr/nonltr.pl

microTranspoGene http://transpogene.tau.ac.il/microTranspoGene.html

MITE-Hunter http://target.iplantcollaborative.org/mite_hunter.html

PILER http://www.drive5.com/piler/

REannotate http://www.bioinformatics.org/reannotate/index.html

ReAS ftp://ftp.genomics.org.cn/pub/ReAS/software/

RECON http://eddylab.org/software/recon/

(continued)
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Table 3
(continued)

Software Address

RepSeek http://wwwabi.snv.jussieu.fr/public/RepSeek/

RepeatFinder http://cbcb.umd.edu/software/RepeatFinder/

RepeatMasker http://www.repeatmasker.org/

RepeatModeler http://www.repeatmasker.org/RepeatModeler/

RepeatRunner http://www.yandell-lab.org/software/repeatrunner.html

Repeat-match http://mummer.sourceforge.net/

REPET http://urgi.versailles.inra.fr/index.php/urgi/Tools/REPET

RepMiner http://repminer.sourceforge.net/index.htm

REPuter http://bibiserv.techfak.uni-bielefeld.de/reputer/

RetroMap http://www.burchsite.com/bioi/RetroMapHome.html

SMaRTFinder http://services.appliedgenomics.org/software/smartfinder/

SoyTEdb http://www.soytedb.org

Spectral Repeat Finder http://www.imtech.res.in/raghava/srf/

T-lex http://petrov.stanford.edu/cgi-bin/Tlex.html

Tallymer http://www.zbh.uni-hamburg.de/Tallymer/

TARGeT http://target.iplantcollaborative.org/

TEclass http://www.bioinformatics.uni-muenster.de/tools/teclass/

TE Displayer http://labs.csb.utoronto.ca/yang/TE_Displayer/

TE nest http://www.plantgdb.org/prj/TE_nest/TE_nest.html

TESD http://pbil.univ-lyon1.fr/software/TESD/

TinT http://www.bioinformatics.uni-muenster.de/tools/tint/

TIPseqHunter https://github.com/fenyolab/TIPseqHunter

TRANSPO http://alggen.lsi.upc.es/recerca/search/transpo/transpo.html

TranspoGene http://transpogene.tau.ac.il/

Transposon-PSI http://transposonpsi.sourceforge.net/

TRAP http://www.coccidia.icb.usp.br/trap/tutorials/

TRF http://tandem.bu.edu/trf/trf.html

TROLL http://finder.sourceforge.net/

TSDfinder http://www.ncbi.nlm.nih.gov/CBBresearch/Landsman/TSDfinder/

WikiPoson http://www.bioinformatics.org/wikiposon/doku.php

VariationHunter http://compbio.cs.sfu.ca/software-variation-hunter

Vmatch http://www.vmatch.de/
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the up-to-date list can be found at our web site: http://www.
bioinformatics.uni-muenster.de/ScrapYard/. On the other hand,
improved tools and new technologies enable biologists to explore
new research avenues that might lead to novel, fascinating insights
into the biology of mobile elements.
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Chapter 7

Modern Phylogenomics: Building Phylogenetic Trees
Using the Multispecies Coalescent Model

Liang Liu, Christian Anderson, Dennis Pearl, and Scott V. Edwards

Abstract

The multispecies coalescent (MSC) model provides a compelling framework for building phylogenetic trees
from multilocus DNA sequence data. The pure MSC is best thought of as a special case of so-called
“multispecies network coalescent” models, in which gene flow is allowed among branches of the tree,
whereas MSC methods assume there is no gene flow between diverging species. Early implementations of
the MSC, such as “parsimony” or “democratic vote” approaches to combining information from multiple
gene trees, as well as concatenation, in which DNA sequences from multiple gene trees are combined into a
single “supergene,” were quickly shown to be inconsistent in some regions of tree space, in so far as they
converged on the incorrect species tree as more gene trees and sequence data were accumulated. The
anomaly zone, a region of tree space in which the most frequent gene tree is different from the species tree,
is one such region where many so-called “coalescent” methods are inconsistent. Second-generation
implementations of the MSC employed Bayesian or likelihood models; these are consistent in all regions
of gene tree space, but Bayesian methods in particular are incapable of handling the large phylogenomic
data sets currently available. Two-step methods, such as MP-EST and ASTRAL, in which gene trees are first
estimated and then combined to estimate an overarching species tree, are currently popular in part because
they can handle large phylogenomic data sets. These methods are consistent in the anomaly zone but can
sometimes provide inappropriate measures of tree support or apportion error and signal in the data
inappropriately. MP-EST in particular employs a likelihood model which can be conveniently manipulated
to perform statistical tests of competing species trees, incorporating the likelihood of the collected gene
trees on each species tree in a likelihood ratio test. Such tests provide a useful alternative to the multilocus
bootstrap, which only indirectly tests the appropriateness of competing species trees. We illustrate these
tests and implementations of the MSC with examples and suggest that MSC methods are a useful class of
models effectively using information from multiple loci to build phylogenetic trees.

Key words Introgression, Hybridization, Coalescent, Recombination, Neutrality, Molecular
evolution

1 Introduction

The concept of a phylogeny or “species tree,” a bifurcating den-
drogram graphically depicting the relationships among a group
species, is one of the oldest and most powerful icons in all of
biology. After Charles Darwin sketched the first species tree
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(in Transmutation of Species, Notebook B, 1837), he remained
fascinated by the image for 22 years, eventually including a species
tree as the only figure in On the Origin of Species [1]. Though
species trees reached their aesthetic apogee with Ernst Haeckel’s
Tree of Life in 1886, the pursuit of ever-more scientifically accurate
trees has kept phylogenetics a vibrant discipline for the 150 years
since.

Because the direct evolution of species in the past is not observ-
able (not even in the fossil record), relationships among species are
often inferred by shared characteristics among extant taxa. Until the
1970s, this effort took place almost exclusively by using morpho-
logical characters. Although this approach had many successes, the
paucity of characters and the challenges of comparing species with
no obvious morphological homologies were persistent problems
[2, 3]. When molecular techniques were developed in the late
1960s, it soon became clear that the sheer volume of molecular
data that could be collected would represent a vast improvement.
When DNA sequences became widely available for a range of
species [4], molecular comparisons quickly became de rigueur
[5–8]. Nonetheless, it was recognized early on that molecular
phylogenies had their own suite of problems; the concept that not
all gene tree topologies would match the true species tree topology
(i.e., would not be speciodendric sensu Rosenberg [9]) was implicit
in early empirical allozyme and mitochondrial DNA studies
[10, 11]. However, it was generally assumed that the idiosyncratic
genealogical history of any one gene, as reconstructed from extant
mutations, was an acceptable approximation for the true history of
the species given the potentially overwhelming quantity and seduc-
tive utility of molecular data [12–15]. Indeed, this assumption is
still prevalent in the thinking of those who favor concatenation or
supermatrix approaches as a means of combining information from
multiple genes that may still differ in their genealogy from each
other and from the species tree [16, 17]. In the meantime, the term
“phylogeny” frequently became conflated with “gene tree,” the
entity produced by many of the leading phylogenetic packages of
the day. The term “species tree,” in use since the late 1970s to
emphasize the distinction between lineage histories and gene his-
tories (reviewed in [11, 18]), was only gradually acknowledged,
despite the fact that species trees are the rightful heirs to the term
“phylogeny” and better encapsulate the true goals of molecular and
morphological systematics [19].

1.1 Stopgap

Approaches to Gene

Tree Heterogeneity

By and large, the ensuing decades of molecular phylogenetics has
fulfilled much of its potential, revolutionizing taxonomies and
resolving conundrums previously considered intractable. However,
as the amount of genetic data per species becomes ever-more
voluminous, it has become clear that the conflicts between individ-
ual genes with each other and with the overarching species tree,
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both in topology and branch lengths, can have practical conse-
quences for phylogenetic analysis if not dealt with properly
[18–23]. At first, some researchers treated this phenomenon as
though it were an information problem: when working with only
a few mutations, you were bound to occasionally get unlucky and
sequence a gene whose random signal of evolution did not match
that of the taxa being studied. The reasoning was surely more
and/or longer sequences would fix that problem and cause gene
trees to converge [16]. However, as more genes were sequenced,
and as the properties of gene lineages within populations were
studied in detail [24, 25], the twin realities of gene tree heteroge-
neity and “incomplete lineage sorting” [11] (ILS) became clear
(Figs. 1 and 2). The probability of an event such as incomplete
lineage sorting, which if considered alone would lead to inferring
the wrong species tree, was worked out theoretically for the four
allele/two species case first [26], followed by the three allele/three
species case [7, 13] and more general cases [12, 27]. Pamilo and
Nei [12] were among those that proposed that the solution was to
simply acquire more gene sequences, after which the central ten-
dency of this gene set would point to the correct relationships, a
“democratic vote” method, where each gene was allowed to pro-
pose its own tree, and the topology with the most “votes” was
declared the winner and therefore the true phylogeny. Though
generally true for three-species case, it can sometimes produce the
wrong topology with four or more species [28]. In fact, we now
know that with four or more species, there is an “anomaly zone” for
species trees with short branch lengths as measured in coalescence
units, in which the addition of more genes for sampled taxa is
guaranteed to lead to the wrong species tree topology for the
democratic vote method [29, 30]. (Coalescent time units, equiva-
lent to t/Ne where t is the number of generations since divergence
and Ne is the effective population size of the lineage, are a conve-
nient unit for discussions of gene tree/species tree heterogeneity.
For a clear explanation, see Box 2 of Degnan and Rosenberg [28].)
Such anomaly zones may be rare empirically [31], but empirical
examples are emerging [32, 33], and even the theoretical possibility
remains disconcerting. In addition, because the number of possible
tree topologies increases as the double factorial of the number of
tips, for species trees with more than four tips, a very large number
of genes are required to determine which gene tree is in fact the
most frequent. Advanced consensus methods [34] can circumvent
some of the problems of the democratic vote by using novel assem-
bly methods, such as rooted triple consensus [35], greedy consen-
sus [36], or supertree methods [37]. However, although such
methods suffer from lack of a biological model motivating the
method of consensus, approaches such as that proposed by Steel
and Rodrigo [38] might help approximate the dynamics of
biological models while allowing for faster and more flexible exten-
sions and should be further developed.

Building Phylogenetic Trees Using the Multispecies Coalesent Model 213



The second empirical approach to the problem of conflicting
gene trees was to bypass it altogether. Concatenation methods
appended the sequence of one gene to that of the next, to create
long alignments or supermatrices [39], a technique that in some
situations was superior to standard consensus methods in resolving
discordance or achieving statistical consistency [40]. But some
researchers, including those who questioned the “total-evidence”

Set of 9 Gene Trees
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Fig. 1 An example showing the utility of multiple gene trees in producing species tree topologies. (a) Nine
unlinked loci are simulated (or inferred without error) from a species group with substantial amounts of
incomplete lineage sorting. Note that no single gene recovers the correct relationship between clades.
Furthermore, despite identical conditions for all nine simulations, no two genes agree on the correct topology,
let alone the correct divergence times. (b) Superimposing the nine gene trees on top of each other clarifies the
relationships. It can be (correctly) inferred that the true tree is perfectly ordered, with (ABC) diverging from D
about 1500 generations ago, the (AB)-C split occurring at 800, and A diverging from B about 600 generations
ago. Also, the amount of crossbreeding within the recently diverged taxa implies (correctly) that C has the
effective smallest population size
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approach to systematics (e.g., [41]), advocated against concatena-
tion when, for whatever reason, gene trees appeared to conflict with
one another. One problem with the concatenation approach was
that it assumed full linkage across the supermatrix, a situation that
would obviously not be the case if genes were on different chromo-
somes. Even when the lineage lengths in a species tree are long in
coalescent units, such that gene tree topologies are congruent, the
branch lengths of trees of genes on different chromosomes will
differ subtly from one another due to the stochasticity of the
coalescent process. The early implementations of this method also
assumed the same distribution of mutation rates across the
sequence, which was clearly not the case if the matrix included
coding and noncoding regions. Like democratic vote methods,
concatenation of many genes was sometimes defended as sufficient
to override the conflicting signal across genes [42, 43], despite
widespread acknowledgment that gene tree heterogeneity is ubiq-
uitous and that concatenation can sometimes give the wrong
answer, especially although not exclusively in the anomaly zone
[44, 45].

Concatenation as a method of combining phylogenomic data
still remains popular by default [16, 46], particularly among phylo-
genetic studies of higher taxa where incomplete lineage sorting is
assumed to be rare. However, this logic suffers from two flaws
frequently seen in the literature. First, “deep” phylogenetic studies
among higher taxa are no more immune to the problems of ILS

A B C D A B C D 

A B C D A B C D A B C D A B C D A B C D A B C D 

Deep coalescence Branch length heterogeneity 

species tree 

gene trees 

Fig. 2 The relationship between gene trees and species trees. Lines within the
species trees indicate gene lineages. Simplified gene trees are shown below
each species tree. Whereas gene trees on the left vary due to deep coalescence,
gene trees on the right are topologically concordant but vary slightly in branch
lengths due to the coalescent. Modified with permission from [19]
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than are studies among closely related species, because it is the
length of a given branch, not its depth in the tree, that is relevant
to probability of gene tree discordance [28]. Detecting such ILS
and ruling out gene tree congruence will indeed be more challeng-
ing in deep phylogenomic studies, but it should not be assumed
that ILS will be less prevalent at deep scales than at shallow scales.
Second, current implementations of concatenation represent only
one way of species tree construction in which each gene is forced to
have the same topology. The real distinction between concatena-
tion and coalescent models is not the presence or absence of ILS
but rather the possibility of conditional independence of gene trees
as mediated by recombination between genes [47]. Even if all gene
trees in an analysis are topologically identical, physically connecting
different genes in a single supermatrix does not capture variation in
branch lengths that recombination will allow in nature. More effort
should be devoted to “supermatrix-like” methods that constrain
gene trees to the same topology but allow recombination between
genes and conditional independence of branch lengths, since these
qualities will influence how signal is accumulated as more genes are
added [47]. A final problem with concatenation is that, in a strict
sense, concatenation also does not generate species trees, in so far as
the method treats all nucleotides as if they were part of a single
non-recombining gene, and thus does not distinguish between
gene and species trees [19]. In the end, concatenation is best
thought of as a special case of more general models of phylogenetic
inference that acknowledge gene tree heterogeneity and condi-
tional independence of genes. One such model is the multispecies
coalescent model [23, 28, 48]. It is this model that provides the
basis for a recent flurry of promising methods that permit efficient
and consistent estimation of species trees under a variety of
conditions.

2 The Multispecies Coalescent Model

A plausible probabilistic model for analyzing multilocus sequences
should involve not only the phylogenetic relationship of species
(species tree) but also the genealogical history of each gene (gene
tree) and allow different genes to have different histories. Unlike
concatenation, such a multispecies coalescent model (MSC)
explains the evolutionary history of multilocus sequences through
two levels of biological hierarchy, the gene tree and the species tree,
rather than just one [23, 49]. Models acknowledging these two
levels require an explicit description of how sequences evolve on
gene trees, the traditional likelihood equation of Felsenstein [50]
and others, as well as how gene trees evolve in the species tree, the
likelihood for which was first described by Rannala and Yang
[48]. With a few exceptions (described below), the genealogical
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relationship (gene tree) of neutral alleles can be simply depicted by a
coalescence process in which lineages randomly coalesce with each
other backward in time. The MSC is a simple application of the
single population coalescent model to each branch in a species tree
[28]. It holds the standard assumptions found in many neutral
coalescent models: no natural selection or gene flow among popu-
lations, no recombination within loci but free recombination
between loci, random mating and a Wright-Fisher model of inheri-
tance down each branch of the species tree. Despite these seemingly
oversimplified assumptions, the pure coalescent model is funda-
mental in explaining the gene tree-species tree relationship because
it forms a baseline for incorporating additional evolutionary forces
on top of random drift [28, 49]. More importantly, the pure
coalescent model provides an analytic tool to detect the evolution-
ary forces responsible for the deviation of the observed data
(molecular sequences) from those expected from the model.

The coalescent process works, in effect, by randomly choosing
ancestors with replacement from the population backward through
time for each sequence in the original sample. Eventually, two of
these lineages will share a common ancestor, and the lineages are
said to “coalesce.” The process continues until all lineages coalesce
at the most recent common ancestor (MRCA). Multispecies coa-
lescence works the same way but places constraints on how recently
the coalescences occur, corresponding to the species’ divergence
times. Translating this model into computer algorithms for infer-
ring species trees has led to a plethora of models [51–55], some of
which first build gene trees by traditional methods and then com-
bine them into a species tree with the highest likelihood or other
criteria (“two-step” methods, e.g., [56] or [57]), others of which,
particularly Bayesian methods [58–60], simultaneously estimate
gene trees and species tree. In general for likelihood or Bayesian
approaches, a species tree has been proposed, and the likelihood of
each gene tree is evaluated using the MSC, with or without various
priors, to evaluate the likelihood of the data (DNA sequences in the
case of Bayesian methods or gene trees in the case of likelihood
methods like MP-EST [56]) given the species tree or the posterior
probability of the species tree. In this way, traditional multispecies
coalescent methods are the converse of consensus methods; rather
than each locus proposing a potentially divergent species tree, a
common species tree is assumed and evaluated, given the some-
times divergent patterns observed among multiple loci.

A number of implementations of this idea have been developed
(reviewed by Edwards [19, 54]). Several “two-step” packages are
available for moving from independently built gene trees to species
trees, including minimization of deep coalescence [61], STEM
[62], JIST [63], GLASS [64], STAR, STEAC [65], NJst [66],
and ASTRAL [57, 67]. Three methods to date utilize “one-step”
Bayesian methods to infer gene trees and the species tree, with the
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input data being DNA sequences: BEST [58, 68, 69], *BEAST2
[59], and a new model (A00) in the Bayesian Phylogenetics and
Phylogeography (bpp) package [70–72]. An additional “one-step”
method, SVD Quartets [73], derives species trees directly from
aligned, unlinked single-nucleotide polymorphisms using the
method of invariants in a coalescent framework. Species tree meth-
ods exhibit a number of attractive advantages over concatenation
methods in terms of performance. These advantages are not
restricted to the anomaly zone, occur across broad regions of tree
space, and include less susceptibility to long-branch attraction [74]
and missing data [75]. Another attractive aspect of species tree
methods and multispecies coalescent models is that they deliver
more appropriate estimated levels of confidence that are more
evenly spread across genes and appear to be less susceptible to the
inflation of posterior probabilities that was early on attributed to
Bayesian analyses (e.g., [76, 77]) but may also be due to model
misspecification due to concatenation [53]. Bayesian methods are
generally agreed to be the most efficient and accurate, capturing all
details of the MSC model seamlessly [52]. However, one drawback
is that the estimation of larger numbers of parameters (population
sizes and divergence times in addition to topologies) can slow
computation, may not be relevant in some situations [78], and is
generally not possible with the large data sets that are routinely seen
today in phylogenomics [59]. Thus far, two-step methods such as
ASTRAL, STAR, NJst, and MP-EST have proven the most widely
used for large-scale phylogenomic studies, such as the Avian Phy-
logenomics Project [79] and large-scale phylogenomics of fish [80]
and plants [81].

2.1 Sources of Gene

Tree/Species Tree

Discordance and

Violations of the

Multispecies

Coalescent Model

2.1.1 Population

Processes

The “standard” and most common reason why gene trees are not
speciodendritic is incomplete lineage sorting, i.e., lineages have not
yet been reproductively isolated for long enough for drift to cause
complete genetic divergence in the form of reciprocal monophyly
of gene trees ([82]; Figs. 1 and 2). This source of gene tree
heterogeneity is guaranteed to be ubiquitous, if only because it
arises from the finite size populations of all species that have ever
come into existence. Almost all the techniques and software
packages discussed above are designed to approximate uncertainties
in species tree topology arising from this phenomenon.

Delimitation of Species and

Diverging Lineages

For recent divergences, the definition of “species” can become
problematic for species tree methods [63], and the challenge of
delimiting species has, if anything, increased now that the overly
conservative strictures of gene tree monophyly as a delimiter of
species have been mostly abandoned [82]. This fundamental issue
in a phylogenetic study—whether the extent of divergence among
lineages warrants species status—has not gone away in the genomic
era. However, traditional species tree methods using the MSC need
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not use “good” species as OTUs; they will work perfectly well on
lineages that have recently diverged, so long as they have ceased
exchanging genes. The key issue is not whether the OTUs in
species tree analyses are in fact species but rather whether they
have ceased exchanging genes, which has been shown to compro-
mise traditional MSC methods [83, 84] (see below).

The problem of species delimitation may ultimately be solved
by data other than genetics, and today few species concepts use
strictly genetic criteria [85]. Some have suggested that the line
between a population-level difference and a species-level difference
can be drawn empirically and with consistency in well-studied taxa
such as birds, using morphological, environmental, and behavioral
data simultaneously [86]. Thus, there is some hope that species
delimitation can be performed rigorously a priori in many cases.
Researchers who opt for delimiting species primarily with molecu-
lar data have a wide array of techniques and prior examples available
to them, although not all without controversy [71, 87–93]. Recent
progress in species delimitation is motivated by the conceptual
transition from “biological/reproductive isolation species” to the
“lineage species concept,” which defines species not in terms of
monophyly of gene lineages but as population lineage segments in
the species tree [93]. Under that expanded concept, boundaries of
species (i.e., lineages in the species tree) can be facilitated by
collection and analysis of gene trees in the framework of the
multispecies coalescent model [72]. The recent suggestion that
coalescent species delimitation methods define only structure but
not species [90] was, in our view, already well-established, with
confusion stemming largely from the term “species delimitation,”
as opposed to “delimitation of populations between which gene
flow has ceased.”

Gene Flow There are a number of other situations in which the assumptions
of the coalescent are violated. MSC models involve a series of
isolation events unaccompanied by gene flow. In this regard,
they are like the isolation-migration models of phylogeography
[94, 95] but without the migration. The assumption of no gene
flow naturally restricts their utility, but gene flow of course com-
promises other methods of phylogenetic inference, including con-
catenation methods, as well. Additionally, situations in which gene
flow yields a prominent molecular signal often are detectable
primarily among very closely related species in the realm of phy-
logeography [96]. If some substantial gene flow continues
between species after divergence, then the multispecies coalescent
can quickly destabilize, especially for a small number of loci and as
the rate of genetic introgression increases (Fig. 6 in [87, 97–99]).
We recommend model comparison algorithms like PHRAPL [87]
for determining whether a given data set conforms to the assump-
tions of the MSC.
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2.1.2 Molecular

Processes

In addition to species delimitation and gene flow, there are at least
three mechanisms that generate discordance on the molecular level
(Fig. 3). These include horizontal gene transfer (HGT), which can
pose a serious risk to phylogenetic analysis; gene duplication, whose
risks can be avoided by certain models; and natural selection, which
generally poses no direct threat but, depending on its mode of
action and consequences for DNA and protein sequences, can be
the most challenging of all.

Horizontal Gene Transfer

A B C D

A A B A BB

A B C D A B C D

A B C D

Gene Duplication

Copy 2
Copy 1

Convergent Evolution
Mutation

TRUE HISTORY INFERRED
HISTORY

Fig. 3 Three examples of gene histories that depart from the standard
multispecies coalescent model. (a) A duplication event that precedes a
speciation event can lead to incorrect inference of divergence times in the
species tree if copy 1 is compared to copy 2. This can be particularly difficult
if one of the gene copies has been lost or not sequenced by the researcher. (b)
Convergent evolution can occur at the molecular level, for example, in certain
genes under strong natural selection or highly biased mutational processes.
These processes will tend to bring together distantly related taxa in the
phylogenetic tree and are likely to be given additional false support by
morphological data. (c) Horizontal gene transfer causes difficulties in some
current species tree methods, because it establishes a spurious lower bound
to divergence times. Though rare in eukaryotes, it is by no means unknown and
is likely to become a more difficult problem in the future when species trees are
based on tens of thousands of loci
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Horizontal Gene Transfer HGT is now known to be so widespread across the Tree of Life,
especially in prokaryotes, that some have suggested a web of life
may be a more appropriate paradigm for phylogenetic change
[100–102]. Growing evidence shows that even eukaryotic gen-
omes contain substantial amounts of “uploaded” genetic material
from bacteria, archaea, viruses, and even fellow eukaryotes
[103–105]. Even though effective techniques are not yet widely
available for detecting HGT in eukaryotes, enough individual cases
have been “accidentally” discovered that researchers have given up
trying to list them all [103].

The implications of HGT for species tree construction vary
depending on the method used. For example, following the stan-
dard assumption in coalescent theory that allelic divergences must
occur earlier in time than the divergences of species harboring those
alleles, some species tree techniques [48, 58], as well as classical
approaches (e.g., [13]), assume that the gene tree exhibiting the
most recent divergence between taxon A and taxon B establishes a
hard upper limit on the divergence time of those species in the
species tree. For small sets of genes in taxa where HGT is rare, a
researcher would need to be quite unlucky to choose a horizontally
transferred gene for analysis. However, as the genomic era
advances, it becomes more likely that at least one of the thousands
of genes studied will have been transferred horizontally and thus
establish a spurious upper bound for clade divergence at the species
level. When selective introgression of genes from one species to
another is considered, this number of genes coalescing recently
between species will increase [106]. Although HGT is clearly a
problem for some current methodologies, if transferred genes can
first be identified, then they could be extremely useful as genomic
markers for monophyletic groups that have inherited such genes
and would otherwise be difficult to resolve [107]. However, for
other species tree methods that calculate averages of coalescence
times, such as STAR [65], HGT events will have less of an impact.
Liu et al. [56] examined the effect of HGT on the pseudo-
likelihood method MP-EST and predicted that, mathematically,
species tree branch lengths may be biased by HGT but that topol-
ogies were fairly robust. Davidson et al. [108] found that quartet-
based methods, such as ASTRAL-II, were fairly robust to HGT in
the presence of ILS. Removal of genes suspected to be transferred
via HGT prior to species tree analysis would be warranted; how-
ever, some methods to detect such events rely both on having the
true species tree already in hand and also on the absence of other
mechanisms causing gene tree discordance [109–112]. Recent
work aims to incorporate HGT into other mechanisms of gene
tree incongruence (reviewed in [113]); how much we need to
invest in such synthetic methods will likely depend on the preva-
lence of HGT in particular taxonomic groups.
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Gene Duplication Gene duplication presents another violation of the basic MSC
model (Fig. 3); like HGT, its potential problems are worst when
they go unrecognized [49]. Imagine a taxon where a gene of
interest duplicated 10 Mya into copy α and copy β; the taxon then
split 5 Mya into species 1 and 2. A researcher investigating the
daughter species would therefore sequence four orthologous
genes, with the potential to compare α1 to β2 and β1 to α2 and
thus generate two gene trees where the estimated split time was
10 Mya, rather than 5 Mya. Such a situation will be easily recog-
nized if copy α and β have diverged sufficiently by the time of their
duplication, and a number of methods of coalescent analysis have
incorporated gene duplication (e.g., [114, 115]; reviewed in
[116]). Additionally, failure to recognize the situation may not
have drastic consequences for phylogenetic analysis if the paralogs
have coalesced very recently or are species-specific, in which case the
estimated gene coalescence would be approximately correct no
matter which comparison was made. However, if one of the copies
has been lost and only one of the remaining copies is sequenced,
then the chances of inferring an inappropriately long period of
genetic isolation are larger and will increase as the size of the family
of paralogs increases. Assessing paralogs in phylogenomic data is a
major challenge, particularly in groups like plants and fish, and a
growing number of dedicated methods ([117]; assessed in [118])
or filtering protocols [119] for doing so exist. This problem will
tend to overestimate gene coalescence times, and some species tree
methods depend on minimum isolation times among a large set of
genes. These deep coalescences might spuriously increase inferred
ancestral population sizes. A systematic search for biases incurred by
species tree methods due to gene duplication is needed.

Natural Selection Natural selection causes yet another violation of the multispecies
coalescent model. Selection can cause serious problems in some
cases, although in other circumstances it is predicted not to cause
problems of phylogenetic analysis [47, 120]. The usual stabilizing
selection can be helpful to taxonomists working at high levels
because it slows the substitution rate; likewise selective sweeps,
directional selection, and genetic surfing [121] tend to clarify
phylogenetic relationships by accelerating reciprocal monophyly
for genes in rapidly diverging clades. However, challenges to phy-
logenetic inference are posed by any evolutionary force that may
bias the reconstruction of gene trees, including convergent neutral
mutations (homoplasy), balancing selection, and selection-driven
convergent evolution (e.g., [122]). Balancing selection tends to
preserve beneficial alleles at a gene for long periods of time and is
probably the most insidious form of selection with respect to
accurately reconstructing gene trees and species trees.
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2.2 More About

Violations and Model

Fit of the Multispecies

Coalescent Model

Many of the instances of violations of the coalescent model will
occur at individual genes and usually will not dominate the signal
of the entire suite of genes sampled for phylogenetic analysis. Reid
et al. [123] conducted one of the few tests of the fit of the MSC to
multilocus phylogenetic data. Although the title of their article
suggests that the MSC overall provides a “poor fit” to empirical
data, we suggest that their results provide a more hopeful picture.
The most important thing is that they investigated the fit of the
MSC to individual loci in phylogenetic data sets and were able to
identify loci that failed to fit the MSC. They were less successful at
identifying the causes of departure from theMSC for individual loci.

More common but still rare are efforts to determine which
models of phylogenetic inference, the MSC or concatenation, pro-
vide a better fit to empirical phylogenomic data. Edwards et al.
[124] and Liu and Pearl [58] both used the Bayesian species tree
method BEST [68] to ask using Bayes factors whether the MSC or
concatenation fits empirical data sets better. Uniformly, they found
that the MSC fit empirical data sets better than concatenation,
often by a large margin. However, further work in this area is still
needed. Most discussions in the literature have focused on the
perceived failings or violations of the MSC by empirical data
sets—such as evidence for recombination within loci—even when
such failings or assumptions also apply to concatenation [47].
Given that all models are approximations of reality, a better focus
would be to ask which model better fits empirical data sets better.
The limited research that has been done suggests overwhelmingly
that the MSC provides a better fit to empirical data sets than
concatenation.

Are there better models for phylogenomics than the MSC?
Depending on the data set, almost surely there are (Fig. 4). Several
authors working with phylogenomic data sets have suggested that
gene flow is detectable, even among lineages that diverged a long
time ago (e.g., [129, 130]). The increasing number of reports of
hybridization and introgression among phenotypically distinct spe-
cies suggests that hybridization may be a typical component of
speciation and that even phylogenetic models can be improved by
incorporating such reticulation (e.g., [47, 106, 131]). The pure
MSC is best thought of as a special case of so-called “multispecies
network coalescent” models, or MSNC [127, 132–134] (Fig. 4), in
which gene flow connects some branches of the species tree. In the
end, empiricists will need to decide what level of model fit they are
willing to tolerate and which software packages can accommodate
the large data sets that are now routine in phylogenomics.

2.2.1 Phylogenetic

Outlier Loci

Genes whose phylogenetic signal differs significantly from that of
the remainder of data set can be thought of as phylogenetic outliers.
These loci are conceptually similar to outliers in population genet-
ics, which have been the focus of many studies (reviewed in
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[135–137]). However, there has been little work in detecting
phylogenomic outliers. Much attention has been paid to particular
sites in a data set that differ from the majority and therefore exhibit
homoplasy or incongruence with the rest of the data set
[76, 138]. The sources of such incongruence are many and can
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Fig. 4 Diversity of phylogeographic models. Species trees estimated by the
multispecies coalescent are naturally related to previous phylogeographic mod-
els by their shared demographic parameters, usually measured in units of
mutation rate or substitutions per site (μ), including genetic diversity or effective
population size (4Nμ, where N¼ effective population size; gene flowM/μ, where
M ¼ the scaled migration rate; 4Nm, where m is the number of migrants per
generation; and divergence time τ ¼ μt, where t is the divergence time in
generations). (a) Equilibrium migration models as envisioned by early versions of
the software MIGRATE [125]. (b) Isolation-migration models envisioned by Hey
and coworkers [48, 95, 126]. Subscript A indicates ancestral population size. (c)
Species tree models estimated by the multispecies coalescent [28]. (d) Multi-
species network coalescent models or phylogenetic network models including
divergence and gene flow [127, 128]

224 Liang Liu et al.



include mutational processes (e.g., gene duplication), HGT, as well
homoplasy (e.g., [139, 140]). Incongruence of particular sites, or
entire loci, may also be due to technical issues such as contamina-
tion, misassembly, mistaken paralogy, annotation mistakes, and
alignment errors (e.g., [119]). Here, in an analogy with work in
population genetics, we will focus primarily on entire loci that
deviate from the expected distribution governed by neutral pro-
cesses due to natural selection. Understanding the distribution of
gene tree topologies expected under the neutral multispecies coa-
lescent [25] is a good starting point for identifying loci that may be
targets of natural selection.

2.2.2 Genomic Signals of

Phylogenetic Outliers

When faced with a surprising or nonconvergent species tree, one
possibility is that an unusual gene tree is to blame. Though techni-
ques for dealing with violations of the coalescent model are in their
infancy, researchers do have a few options. Below we list several
ideas, some borrowed from classical phylogenetics or from meth-
ods used in bioinformatics. It is likely that the several tests con-
structed to detect phylogenetic outliers in classical phylogenetics
can be extended slightly to incorporate the additional variation
among genes expected due to the coalescent process. Of course,
with larger data sets, at least with some coalescent methods, single
anomalous genes may have little effect on the resulting species tree,
particularly in species tree methods utilizing summary statistics
[65]. However, as pointed out above, species tree methods such
as BEST that relies on “hard” boundaries for the species tree by
individual genes could be derailed due to the anomalous behavior
of even a single gene.

Jackknifing: A straightforward approach to detecting phyloge-
netic outliers under the multispecies coalescent model is to rerun
the analysis n times, where n is the number of loci in the study,
leaving one locus out each time. An outlier can then be identified if
the analysis that does not include that gene differs from the remain-
ing analyses in which that gene is included. This approach has been
applied successfully in fruit flies by Wong et al. [21], who consid-
ered their problem resolved when the elimination of one of the ten
genes unambiguously resolved a polytomy. There may be other
metrics of success that are more robust or sensitive or do not
depend as strongly on a priori beliefs about the relationships
among taxa. Because some duplications or horizontal transfers
may affect only one taxon, whole-tree topology summary statistics
are unlikely to be sensitive enough to detect recent events. How-
ever, the cophenetic distance of each taxon to its nearest neighbor
in the complete species tree could be compared across jackknife
results. This procedure will produce a distribution of “typical”
distances, and significance can therefore be assigned to highly
divergent results. The drawback to such an approach is the
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computational demand. Species tree analyses on their own can be
extremely time consuming to run even once, so jackknifing
may prove intractable for studies involving many species and loci
(see ref. 141).

2.2.3 Simulation

Approaches to Detecting

Phylogenetic Outliers

Simulating gene trees from a species tree is another method for
identifying gene trees that differ from the majority of loci in the
data set. Several species tree methods yield estimate of the phylog-
eny that include branch lengths in coalescent units [56, 57, 70],
which are required to simulate gene trees from a species tree.
Branch lengths in the estimated species tree can be decomposed
into a number of substitutions per site and an estimate of θ ¼ 4Nμ
that are compatible with the original branch length in coalescent
units. For example, using any number of algorithms, including
maximum likelihood or Bayesian methods, the length of species
tree branch lengths in substitutions per site can be approximated by
fitting the concatenated alignment of genes to the estimated species
tree topology, yielding a tree with the same topology but branch
lengths in substitutions per site (μt, where t is the time span of the
branch in either generations or years). With these branch lengths in
hand, estimates of θ can then be applied to each branch so that the
original coalescent units t/2N � μt/θ from the species tree are
retained. Care needs to be taken to preserve the appropriate ploidy
units when simulating gene trees from an estimated species tree.
Packages such as MP-EST yield estimates of species tree branch
lengths in coalescent units of 4N generations, appropriate for
diploids, whereas packages such as Phybase [142] simulate gene
trees from a species tree in estimates of 2N units, appropriate for
haploids. Another issue that is important to be aware of is the
distinction between gene coalescence times and species tree branch
lengths [143, 144]. Whereas species tree branch lengths are esti-
mates of lineage or population branch lengths in the species tree,
the DNA sequence alignment that is fitted to the species tree will
yield branch lengths reflecting the coalescence time of genes in
ancestral species. This discrepancy occurs because gene coalescence
times by necessity predate and record a more ancient event than do
species divergence times. The discrepancy may represent a small
fraction of the branch length if species divergence times are large,
but Angelis and dos Reis [143] have suggested that the discrepancy
can be quite large even in comparisons of distantly related species,
such as exemplars of mammalian orders. There is a great need for
methods of molecular dating and combining fossils and DNA data
that distinguish between gene coalescence times and speciation
times, the latter of which is usually of primary interest.

Once the branch lengths of the species tree are prepared for
simulation, gene trees can be simulated using a number of packages
(Phybase, [142]; TreeSim, [145]; CoMus, [146]). Even packages
traditionally used in phylogeography can be used to simulated gene
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trees on species trees, given the close relationship between species
trees and phylogeographic models like isolation migration
[147, 148]. One can then compare the distribution of gene tree
topologies and branch lengths observed in one’s data set with those
simulated under the neutral coalescent model. A common
approach is to calculate the distribution of Robinson-Foulds
[149] distances among simulated gene trees and compare these to
those observed in the original data set. Such approaches have been
used to determine if a data set is consistent with the MSC or the
percent of the observed gene tree variation that is explained by the
MSC. Other statistics, such as the similarity in number of minority
gene tree triplets produced by a given species tree at each node, can
also be compared to the observed distribution. Song et al. [150]
used coalescent simulations using Phybase to propose that theMSC
could explain a large (>75%) fraction of the observed gene tree
variation in a mammalian data set. Such simulations assume that the
gene tree variation observed is biological in origin and not due to
errors in reconstruction. They also noted that the near equivalence
in frequency of minority triplets in gene trees at various nodes in the
mammal tree suggested broad applicability of the neutral coalescent
without gene flow or other complicating factors. Still, many papers
observe some level of departure of the patterns in the observed data
set from those expected under simulation. Usually the source of
this departure is unknown. Natural selection or any other force
such as HGT or anomalous mutation might be culprits in these
cases. Heled et al. [151] proposed a simulation regime that incor-
porates gene flow between species and thus can be used to test for
the effects of migration on gene trees and species tree estimation.

To detect possible phylogenetic outliers, Edwards et al. [152]
applied a recently proposed method of detecting gene tree outliers,
KDEtrees [153], to a series of phylogenomic data sets. KDEtrees
uses the kernel density distribution of gene tree distances to esti-
mate the 95% confidence limits on gene tree topologies in a given
data set. Surprisingly, using default parameters, Edwards et al.
[152] could not detect a higher-than-expected number of gene
tree outliers in any data set, despite the fact that the data sets in
several cases contained hundreds of loci. No data set possessed
more than the expected 5% of outliers given the test implemented
in KDEtrees. Clearly further work is needed to understand the pros
and cons of various tests of phylogenetic outliers. For the time
being, we can note the robustness of various species tree methods
to phylogenetic outliers. One attractive prospect of algorithms for
species tree construction that use summary statistics, such as STAR
and STEAC, is that these methods are powerful and fast, yet they
appear less susceptible to error due to deviations of single genes
from neutral expectations. These methods do not utilize all the
information in the data and hence can be less efficient than Bayesian
or likelihood methods [52], yet they perform well with moderate
amounts of gene tree outliers due to processes like HGT.
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3 Hypothesis Testing Using the Multispecies Coalescent Model

Hypothesis testing is a cornerstone of phylogenetic analysis but has
received little attention in the context of the MSC (see ref. 154).
Bayesian species tree inference [58, 59, 68–70] provides perhaps
the most seamless approach to hypothesis testing. One can rela-
tively easily assess the fit of the collected data to alternative tree
topologies and compare the fit using Bayes factors or other
approaches. One can also assess the fit of various models of analysis
to the collected data [155]. Liu and Pearl [58] and Edwards et al.
[124] used Bayes factors to determine whether concatenation or
the MSC was a more appropriate model for several data sets; in all
cases tested thus far, the MSC provides a far better fit to multilocus
data (BF > 10) than does concatenation, in which all gene trees
among loci are identical. Further work is needed to apply Bayes
factors and likelihood ratio tests to multilocus data.

The bootstrap, introduced to phylogenetics by Felsenstein
[156], is the most common statistic applied to phylogenetic trees
[157]. In the era of multilocus phylogenetics, the “multilocus
bootstrap” of Seo [158] has been recommended as a more suitable
approach to assessing confidence limits than the traditional boot-
strap. In the traditional bootstrap, sites within a locus, or a series of
concatenated loci, are resampled with replacement to create pseu-
domatrices, which are then subjected to phylogenetic analysis, after
which a majority rule consensus tree is usually made. By contrast, in
the multilocus bootstrap, sites within loci and the loci themselves
are resampled with replacement. In the context of the MSC,
resampled pseudomatrices of the same number of loci as the origi-
nal data set, which may contain duplicates of specific loci due to the
random nature of the bootstrap, are then made into gene trees,
from which a species tree can be made. The bootstrap and various
other measures of branch-specific support [159] have been pro-
posed as a means of assessing confidence in species trees made using
the multilocus coalescent. Care should be taken in the comparison
of different studies using different measures of support, since not all
measures can be directly compared to one another. For example, as
pointed out by Liu et al. [160], the measure of posterior support
for ASTRAL trees proposed by Sayyari andMirarab [159] is not the
same as traditional bootstrap supports, and we do not yet know
how they will scale under different conditions compared to the
bootstrap. Edwards [161] summarized knowledge about the use
of phylogenomic subsampling, in which data sets of increasing size
or signal are analyzed so as to understand the stability and speed of
approach to certainty of phylogenetic estimates under theMSC and
under concatenation. He found that MSC methods tended to
approach phylogenomic certainty more smoothly and monotoni-
cally than do concatenation methods, which jump around errati-
cally in their certainty for sometimes conflicting topologies,
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especially when sampling smaller numbers of genes. Although we
cannot simply translate many conclusions from the gene tree era of
phylogenetics to the MSC era—for example, contrary to gene tree
conclusions, it is not clear for MSC models that more taxa are
always better than more loci [74]—many of these discussions
about hypothesis testing echo early comparisons of posterior prob-
abilities and bootstrap proportions used in the gene tree era of
phylogenetics.

The bootstrap has always provided a means of hypothesis test-
ing that is very indirect with respect to comparing alternative
phylogenetic hypotheses. Aside from the tests allowed by Bayesian
approaches, there have been few discussions of testing of alternative
phylogenetic trees in the era of the multispecies coalescent. In this
regard, the pseudo-likelihood model provided by MP-EST [56]
provides a convenient framework for hypothesis testing using spe-
cies trees. This framework is not available in most other species tree
methods, including ASTRAL, STAR, and STEAC, since these
methods do not employ a likelihood model. MP-EST takes advan-
tage of the likelihood model of Rannala and Yang [48] to assess the
fit of a species tree to a collection of gene trees and can thus be used
to compare alternative species tree topologies and branch lengths
directly.

To conduct a direct comparison of species trees using the
likelihood ratio test, we first compare the likelihoods of two trees
to find the most probable species tree that can explain the empirical
set of gene trees. The likelihood of a set of gene trees given a species
tree with branch lengths can be ascertained using functions in
Phybase [142]. Let Tree 1 be the null tree and Tree 2 be the
alternative tree. The likelihood ratio test statistic is t ¼ 2
(LTree2 � LTree1), in which LTree1 and LTree2 are the
log-likelihoods of the null and alternative hypotheses. The
log-likelihood of the null hypothesis can be obtained from the
output of the program MP-EST by fitting the branch lengths and
topology of Tree 1 to the set of empirical gene trees. Similarly, we
can find the log-likelihood of the alternative tree Tree 2 using
MP-EST. The null distribution of the test statistic t is approximated
by a parametric bootstrap. Specifically, we generate 100 or more
bootstrap samples of gene trees under the null tree Tree 1. For each
sample of these bootstrapped trees, we calculate the log-likelihoods
of the null and alternative trees using the procedure described
above. The null distribution of the test statistic t is approximated
by the test statistics of the bootstrap samples. If t for the null and
alternative species trees is outside the expected distribution of the
bootstrap sample statistics, then the result can be considered
significant.

We applied this approach to assessing alternative phylogenetic
hypotheses to an example from birds (fairy wrens; [162]; Fig. 5).
This data set consists of 18 genes and 26 taxa, with loci coming
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Fig. 5 Example of hypothesis testing of alternative phylogenetic trees under the multispecies coalescent
model. Top: alternative phylogenetic hypotheses involving the rearrangement of major groups of Australo-
Papuan fairy wrens based on Lee et al. [162]. The three alternative phylogenetic trees are colored to indicate
the three major groups whose relationships are being tested. Bottom: results of the likelihood ratio test (LRT)
and estimates of confidence limits on the test statistic t using parametric bootstrapping. The plots show the
distributions of the test statistic t resulting from gene trees built from resampled, bootstrapped sequence data.
Despite the use of sequence data to generate the bootstrap gene tree distributions, the LRT is only an indirect
test of the signal in the sequence data and instead is best thought of as a test of the fit of the estimated gene
tree distribution on alternative phylogenies. See main text for further details
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from a variety of marker types (exons, introns, anonymous loci).
Lee et al. [162] applied a number ofMSC approaches to this data set
but did not compare alternative trees directly, having only used
bootstrap approaches. Here, we consider three-species trees gener-
ated from the rearrangement of the three major clades of wrens: the
core fairy wrens (Malurus), emu-wrens (Stipitirus), and grasswrens
(Amytornis; Fig. 5). Rearranging these major clades results in three
alternative rooted species trees. Based on traditional taxonomy and
because the gene trees in this data set were highly variable, even
among the three major clades, we consider these three alternative
hypotheses true alternatives and not “straw men.” Rooted maxi-
mum likelihood gene trees were built from the alignments of each
locus using RaxML [163] and then used as input data for the
likelihood ratio test described above. The LRT was applied first to
Tree 1 (null) versus Tree 2 andwas also applied to Tree 1 versus Tree
3 and Tree 2 versus Tree 3. The results indicate that Tree 1 fits to the
empirical gene trees significantly better than does Tree 2 or Tree
3 does (p < 0.01), and there is no significant difference between
Trees 2 and 3 in their fit to the empirical gene trees (p ¼ 0.52).
Thus, the LRTs strongly favor Tree 1 over both Tree 2 and Tree 3.

It is important to note that the LRT described above is not a
direct test of the phylogenetic signal in the DNA sequence data.
Rather, it is a test of the distribution of gene trees inferred from the
sequence data and assumes that the gene trees provided as data are
without error. It does indirectly test the signal in the sequence data,
because if the DNA sequences provide strong and consistent sup-
port of the gene trees, then the bootstrapped set of gene trees will
be highly similar to one another, and the confidence limits on t will
be very tight. By contrast, if the DNA sequence data does not have
a strong signal, then the confidence limits on t will be very wide,
and it will be difficult to reject alternative species trees. The LRT
described here does not involve nested models. If the gene trees are
known without error, then the value of t itself can be used to assess
significance, assuming a chi-square distribution with 2 degrees of
freedom. Further research is needed on methods for comparing
and testing alternative species trees in the context of the MSC.

4 Future Directions

Species tree methods are likely to continue to gain ascendancy as
the strongest evidence of taxonomic relationship in phylogenetic
research. As with any form of evidence, the conclusions of a species
tree analysis are fallible, with each method susceptible to biases in
the input data. For example, Xi et al. [164] showed that Phyml
[165] yields biased gene trees when there is little information in the
DNA sequences and can therefore result in biased species trees.
This issue is particularly problematic when using MP-EST v. 1.5,
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which, unlike ASTRAL or MP-EST v. 2.0, does not randomly
resolve or appropriately accommodate gene trees with polytomies
or 0 or near 0-length branches. This bias may have affected the
performance of MP-EST in previous side-by-side comparisons with
ASTRAL. In the future, further work should be devoted to discov-
ering and quantifying additional biases in inference of species trees.
With the size of phylogenomic data sets increasing, even small
biases can be amplified and result in poorly estimated species trees.

Many in the field agree that the most appealing statistical
models for species tree inference using the MSC include Bayesian
and full-likelihood models [52]. But it is still clear, at least to
empiricists, not only that “two-step” methods of species tree infer-
ence work quite well in general but also that the large phyloge-
nomic data sets available today prohibit the use of full-likelihood
methods. Regardless, we now know that both types of models
clearly outperform concatenation across wide swaths of parameter
space, especially if one also evaluates the reliability of the confidence
limits on the estimate of phylogeny and not only the point estimate
of the topology. The major directions for future research in the field
of species tree inference therefore include increasing the scalability
of computational inference of species trees, further development of
frameworks for hypothesis testing using the MSC, developing
additional models of divergence with gene flow and network coa-
lescent models (Fig. 4), and improvement in the estimation of gene
trees and species trees from SNP data [166]. Linking mutations in
species trees and heterogeneous gene trees to diverse phenotypic
and ecological data will be another important avenue for the future
[167, 168]. We view the MSC, with its application of population
genetic models to higher-level systematics, as a key component of
the long-term goal of uniting microevolution and macroevolution.
Even if it proves incomplete in the long term, the neutral MSC
provides a powerful null model for the understanding of genetic
diversity across time and space.

5 Practice Problems

1. Consider the following discordant set of gene trees. {Gene
1 ¼ (A:10,(B:8,C:8):2); Gene 2 ¼ (B:9,(A:6,C:6):3); Gene
3 ¼ ((A:4,B:4):4,C:8)}. Assuming that these genes perfectly
reflect the time of genetic divergence, and the only cause of
discordance is incomplete lineage sorting or deep coalescence,
what is the most likely species tree? Answer: ((A:4,B:4):2,C:6)

2. Find the data set for 30 noncoding loci from 4 species of
Australian grass finches (3 Poephila, plus out-group Taeniopy-
gia) from Jennings and Edwards [169]. It can be found in the
web page for Liang Liu’s BEST program: http://faculty.frank
lin.uga.edu/lliu/content/BEST. Use the Bayesian program
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BEST [68] or BPP [70] and the nonparametric method in
STAR [65] to estimate the species tree for the four species,
using Taeniopygia as the out-group. Do you estimate the same
topology with both methods? What about the support for the
single internal branch? If the support is not the same, what
could be causing the difference? Answer: The BEST or BPP tree
should have higher support than the STAR tree, but they both
should have the same topology. The STAR tree might have lower
support because in the data set about half of the gene trees have a
topology differing from the species tree; whereas the full Bayesian
model accommodates this variation accurately, nonparametric
“two-step” methods interpret this type of gene tree variation as
discordance, in conflict with the majority of the gene trees and
with the species tree.

3. For the above data set, make individual gene trees using RaXml
[170], and use the likelihood functions and bootstrap capabil-
ities of Phybase [142] to conduct a likelihood ratio test of the
two alternative species tree topologies for the four grass
finches. Alternatively, you could use the posterior distribution
of gene trees generated in BEST to estimate the confidence
limits on the test statistic t. Is the tree estimated in question
2 significantly better than alternative trees? Answer: The LRT
indicates that the tree estimated in question 2 is significantly
better than alternative trees.
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Chapter 8

Genome-Wide Comparative Analysis of Phylogenetic Trees:
The Prokaryotic Forest of Life

Pere Puigbò, Yuri I. Wolf, and Eugene V. Koonin

Abstract

Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolu-
tionary genomics, and a variety of approaches for such comparison have been developed. In this article we
present several methods for comparative analysis of large numbers of phylogenetic trees. To compare
phylogenetic trees taking into account the bootstrap support for each internal branch, the boot-split
distance (BSD) method is introduced as an extension of the previously developed split distance
(SD) method for tree comparison. The BSD method implements the straightforward idea that comparison
of phylogenetic trees can be made more robust by treating tree splits differentially depending on the
bootstrap support. Approaches are also introduced for detecting treelike and netlike evolutionary trends in
the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of
prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto
trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to
the distances between species. We describe the applications methods used to analyze the FOL and the
results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a
central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a “species tree.”

Key words Forest of Life, Tree of Life, Phylogenomic methods, Tree comparison, Map of quartets

Abbreviations

BSD Boot-split distance
CMDS Classical multidimensional scaling
COG Clusters of orthologous genes
FOL Forest of Life
HGT Horizontal gene transfer
ND Nodal distance
NUTs Nearly universal trees
QT Quartet topology
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SD Split distance
TNT Tree-Net trend
TOL Tree of Life

1 Introduction

With the advances of genomics, phylogenetics entered a new era
that is noted by the availability of extensive collections of phyloge-
netic trees for thousands of individual genes. Examples of such tree
collections are the phylomes that encompass trees for all sufficiently
widespread genes in a given genome [1–4] or the “Forest of Life”
(FOL) that consists of all trees for widespread genes in a represen-
tative set of organisms [5]. It has been known since the early days of
phylogenetics that trees built on the same set of species often have
different topologies, especially when the set includes distant spe-
cies, most notably, in prokaryotes [6, 7]. The availability of “for-
ests” consisting of numerous phylogenetic trees exacerbated the
problem as an enormous diversity of tree topologies has been
revealed. The inconsistency between trees has several major
sources: (1) problems with ortholog identification caused primarily
by cryptic paralogy; (2) various artifacts of phylogenetic analysis,
such as long branch attraction (LBA); (3) horizontal gene transfer
(HGT); and (4) other evolutionary processes distorting the verti-
cal, treelike pattern such as incomplete lineage sorting and hybri-
dization [1, 8–10]. In order to obtain robust results in genome-
level phylogenetic analysis, for instance, to classify phylogenetic
trees into clusters with (partially) congruent topologies or to iden-
tify common trends among multiple trees, reliable methods for
comparing trees are indispensable.

The number and diversity of tree comparison methods and
software have substantially increased in the last few years. The tree
comparison methods variously use tree bipartitions, such as parti-
tion or symmetric difference metrics [11] and split distance [12];
distance between nodes such as the path length metrics [13], nodal
distance [12, 14], and nodal distance for rooted trees [15]; com-
parison of evolutionary units such as triplets and quartets [16];
subtransfer operations such as subtree transfer distance [17],
nearest-neighbor interchanging [18], subtree prune and regraft
(SPR) using a rooted reference tree [19], SPR for unrooted trees
[20] and tree bisection and reconnection (TBR) [17], and match-
ing pair (MP) distance [21]; (dis)agreement methods such as agree-
ment subtrees [22], disagree [12], corresponding mapping [23],
and congruence index [24]; tree reconciliation [25]; and topologi-
cal and branch lengths methods such as K-tree score [26]. Several
algorithms have been proposed to analyze with multi-family trees.
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For example, the From Multiple to Single (FMTS) algorithm sys-
tematically prunes each gene copy from a multi-family tree to
obtain all possible single-gene trees [12] and an algorithm imple-
mented in TreeKO prunes nodes from the input rooted trees in
which duplication and speciation events are labeled [27]. Another
algorithm employs a variant of the classical Robinson-Foulds
method to compare phylogenetic networks [28]. However, to the
best of our knowledge, none of the available metrics for tree
comparison takes into account the robustness of the branches, a
feature that appears important to minimize the impact of artifacts
(unreliable parts of a tree) on the outcome of comparative tree
analysis. Here, we present the boot-split distance (BSD) method
that calculates distances between phylogenetic trees with weighting
based on bootstrap values. This method is implemented in the
program TOPD/FMTS [12]. In our recent research, we used the
BSD method combined with classical multidimensional scaling
(CMDS) analysis to explore the main trends in the phylogenetic
FOL and to explore the “Tree of Life” (TOL) concept in light of
comparative genomics [5, 29].

Since the time (ca 1838) when Darwin drew the famous sketch
of an evolutionary tree in his notebook on transmutation of species,
with the legend “I think. . .,” the thinking on the “Tree of Life”
(TOL) has evolved substantially. The first phylogenetic revolution,
brought about by the pioneering work of Zuckerkandl and Pauling
[30] and later Woese and coworkers [31], was the establishment of
molecular sequences as the principal material for phylogenetic tree
construction. The second revolution has been triggered by the
advent of comparative genomics when it has been realized that
HGT, at least among prokaryotes, was much more common than
previously suspected. The first revolution was a triumph of the tree
thinking, when a well-resolved TOL started to appear within reach.
The second revolution undermines the very foundation of the TOL
concept and threatens to destroy it altogether [32–34].

The current views of evolutionary biologists on the TOL span
the entire range from acceptance to complete rejection, with a host
of moderate positions. The following rough classification may be
used to summarize these positions (a) acceptance of the TOL as the
dominant trend in evolution: HGT is considered to be rare and
overhyped, and most of the observed “transfers” are deemed to be
artifacts [35–38]; (b) the TOL is the common history of the
(nearly) nontransferable core of genes, surrounded by “vines” of
HGT [39–50]; (c) each gene has its own evolutionary history
blending HGT and vertical inheritance; a statistical trend might
exist in the maze of gene histories, and it could even be treelike
[5, 29, 51, 52]; and (d) ubiquity of HGT renders the TOL concept
totally obsolete (prokaryotic species and higher taxa do not exist,
and microbial “taxonomy” is created by a pattern of biased HGT)
[32, 34, 53–58].
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We found that, although different trends and patterns have to
be invoked to describe the FOL in its entirety, the main, most
robust trend is the “statistical TOL,” i.e., the signal of coherent
topology that is discernible in a large fraction of the trees in the
FOL, in particular, among the nearly universal trees (NUTs)
[59, 60].

We further explored the FOL by analysis of species quartets
[61]. A quartet is a group of four species which is the minimum
evolutionary unit in unrooted phylogenetic trees; each quartet can
assume three unrooted tree topologies [16]. We described a quan-
titative measure of the tree and net signals in evolution that is
derived from an analysis of all quartets of species in all trees of the
FOL. The results of this analysis indicate that, although diverse
routes of netlike evolution jointly dominate the FOL, the pattern of
treelike evolution that recapitulates the consensus topology of the
NUTs is the single most prominent, coherent trend. Here, we
report an extended version of these methodologies introduced to
analyze the FOL and its trends, as well as new concepts of prokary-
otic evolution under the FOL perspective (Fig. 1).

2 Materials

2.1 The Forest of Life

(FOL) and Nearly

Universal Trees (NUTs)

We analyzed the set of 6901 phylogenetic trees from [5] that were
obtained as follows. Clusters of orthologous genes were obtained
from the COG [62] and EggNOG [63] databases from 100 pro-
karyotic species (59 bacteria and 41 archaea). The species were
selected to represent the taxonomic diversity of Archaea and Bacte-
ria (for the complete list of species, see Additional File 1). The BeTs
algorithm [62] was used to identify the orthologs with the highest
mean similarity to other members of the same cluster (“index
orthologs”), so the final clusters contained 100 or fewer genes,
with no more than one representative of each species. The
sequences in each cluster were aligned using the Muscle program
[64] with default parameters and refined using Gblocks [65]. The
program Multiphyl [66], which selects the best of 88 amino acid

FOL NUTs
Trees >90% species

Boot split distance (BSD)
Inconsistency Score (IS)

Classical mul�dimensional scaling 
analysis( CMDS)

Map of quartet species
The Tree-Net Trend (TNT)

METHODS CONCEPTS
Forest of life (FOL)
Nearly universal trees (NUTs)
Central trend tree of life (TOL)
Pa�erns in the FOL
Tree and net components of evolu�on

Fig. 1 A schematic of the methods and concepts involved in the FOL analysis
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substitution models, was used to reconstruct the maximum likeli-
hood tree of each cluster. The nearly universal trees (NUTs) are
defined as trees from COGs that are represented in more than 90%
of the species included in the study.

3 Methods

3.1 Boot-Split

Distance: A Method to

Compare Phylogenetic

Trees Taking into

Account Bootstrap

Support

3.1.1 Boot-Split Distance

(BSD)

The BSD method compares trees based on the original split dis-
tance (SD) [12] method. Both methods work by collecting all
possible binary splits of the two compared trees and calculating
the fraction of equal splits, i.e., those splits that are present in both
trees (different splits refer to splits that are present in only one of
the two trees). Instead of considering all branches as being equal as
is the case in SD, the BSD method takes into account the bootstrap
values to increase or decrease the SD value proportionally to the
robustness of individual internal branches. The BSD value is the
average of the BSD in the equal splits (eBSD) and the BSD in the
different splits (Eq. 1). Equations 2 and 3 give the formulas to
calculate the eBSD and dBSD values, respectively.

BSD ¼ eBSDþ dBSD

2
ð1Þ

eBSD ¼ 1� e

a
∙Me

h i
ð2Þ

dBSD ¼ d

a
∙Md ð3Þ

Here e is the sum of bootstrap values of equal splits, d is the sum
of bootstrap value of different splits, a is the sum of all bootstrap
values,Me is the mean bootstrap value of equal splits, andMd is the
mean bootstrap value of different splits.

The BSD algorithm proceeds in four basic steps to compare
pairs of trees (Fig. 2). The first step is to obtain all possible splits
from both trees. This procedure implies a binary split of the tree at
each internal branch, so that the tree is partitioned into two parts
each of which contains at least two species. Then, the common set
of leaves between the two trees is obtained, that is, the set of shared
species. Only trees with a common leaf set of at least four species
can be compared. The third step consists in pruning all splits to the
common leaf set of species; at this step, species that are present in
only one of the two compared trees are removed from the split list.
After this procedure, in partially overlapping trees, the algorithm
checks whether each of the splits remains a valid partition, that is, a
partition that separates at least two species from the rest of the tree.
If a split is not a valid partition, it is removed. Finally, the algorithm
calculates the BSD using Eqs. 1–3.
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3.1.2 The BSD Algorithm There are three possible types of comparisons for trees that do not
include paralogs, that is, include one and only one sequence from
each of the constituent species (Fig. 3). In the first case, the two
trees completely overlap, that is, consist of the same set of species
(Fig. 3a). In this case, step 2, the pruning procedure, is not neces-
sary, and the comparison involves only obtaining all possible splits
and the calculation of the BSD. In the second case, one of the
compared trees is a subset of the other tree (Fig. 3b). In this case,
the splits are only pruned and occasionally removed from the bigger
tree. In the third case, when the two trees partially overlap or when
a tree is a subset of another tree, a pruning procedure is required. In
the example shown in Fig. 4, after the pruning procedure (step 3),
there is only one remaining split (split: AB|CD) that is repeated
several times in both trees. The remaining AB|CD split in Tree 1 is
separated by four nodes that have different bootstrap values. In this
case, the bootstrap of the remaining split is calculated using Eq. 4,
where n is the total number of nodes between the two sides of the
split and BSi is the bootstrap value (adjusted to the 0–1 range) of
the node i.

Bootstrap ¼ 1� ∏n
i¼1 1� BSið Þ ð4Þ

The bootstrap value associated with a particular branch of a
binary tree is taken as a measure of the probability that the four

Tree 1 Tree 2

Set of species in 
common

All splits from
tree 1

All splits from
tree 2

All splits from 
tree 1 pruned to 
common species

All splits from 
tree 2 pruned to 
common species

BSD

2 21

3

4

3

Fig. 2 The main algorithm of the BSD method. The algorithm to calculate the
BSD between two trees includes four basic steps: (1) split both trees in all
possible partitions, (2) read the common set of species of both trees, (3) prune
the splits according with the common leaf set, and (4) calculate the BSD
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subtrees on the opposite ends of this branch are partitioned cor-
rectly. To estimate the probability of the correct partitioning of an
arbitrary set of four subtrees, the internal branch of the quartet tree
is mapped onto each of the internal branches of the original tree.
The quartet is considered to be resolved correctly if it is resolved
correctly relative to any of these branches. Under the assumption
that bootstrap probabilities on individual branches are indepen-
dent, Eq. 4 is obtained as the estimate of the bootstrap probability
for the internal branch of the quartet tree.

3.1.3 Using a Bootstrap

Threshold: Pros and Cons

The key question regarding the BSD method is as follows: what is
the best approach to phylogenetic tree comparison—using all
branches, reliable or not, with the appropriate weighting, or using
only branches supported by high bootstrap values? The first option
is illustrated in Fig. 3, whereas Fig. 5 shows an example of a tree
comparison that employs a bootstrap threshold of 70, i.e., only
branches supported by a higher bootstrap are taken into account in
the comparison. The second procedure appears reasonable and can
be recommended in some cases. However, it is not advisable as a
general approach because, when two large trees with varying

2
5
1
4
3

33

59

[33]  43 | 152
[59]  51 | 432

72 | 54163    [5]
724 | 5163  [15]
7254 | 163  [38]
72543 | 16  [18]

SD = 1.000 BSD = 0.681

b

5
4
7
2
1
6
3

5
15

18
38

a

2
6
1
3
4
5

58

79
8

4
5
6
2
3
1

96

47

26

[96]  45 | 6231
[47]  62 | 4531
[26]  31 | 4562

16|2345  [58]
162|345    [8]
2613|45  [79]

SD = 0.667 BSD = 0.333

SD  
0.667

BSD
0.333
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Fig. 3 Examples of the BSD algorithm in single family trees. (a) Two trees of the
same size. (b) Tree 1 is a subtree of the Tree 2. Two trees that partially overlap.
SD split distance, BSD boot-split distance, eBSD BSD of equal splits, dBSD BSD
of different splits, p number of equal splits, q number of different splits, m total
number of splits, a sum of bootstraps in all splits, e sum of bootstraps in equal
splits, d sum of bootstraps in different splits, Ma mean bootstrap value, Me mean
bootstrap value in equal splits, Md mean bootstrap value in different splits
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Fig. 5 Example of the BSD algorithm using a bootstrap cutoff. The figure shows
the comparison of two phylogenetic trees that takes into account only those
branches with bootstrap support greater than 70. SD split distance, BSD boot-
split distance, eBSD BSD of equal splits, dBSD BSD of different splits, p number
of equal splits, q number of different splits, m total number of splits, a sum of
bootstraps in all splits, e sum of bootstraps in equal splits, d sum of bootstraps in
different splits, Ma mean bootstrap value, Me mean bootstrap value in equal
splits, Md mean bootstrap value in different splits
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bootstrap values are compared, using a strict threshold restricts the
comparison to a small subset of robust branches, resulting in an
artificially low BSD value. In other words, this procedure artificially
inflates the similarity between the two trees by depreciating a large
fraction of the branches. In addition, before considering the use of
only most supported branches, one should take into account that
the BSD method already uses bootstrap values to adjust the dis-
tance between trees, so if two trees are topologically similar (low
SD) but supported by low bootstrap, the distance value increases
(higher BSD), which is one of the advantages of the BSD method
(see Eqs. 2 and 3).

3.1.4 Testing the BSD

Method

The performance of the BSD method was compared with that of
the original SD method implemented in the TOPD/FMTS pro-
gram [12]. Figure 6 shows the correlation of SD and BSD for trees
with a number of species from 4 to 15 (a) and from 16 to
100 (b) from a recent large-scale analysis of the FOL [5]. The
three-way comparison of SD, BSD, and tree size (number of spe-
cies) shows a positive correlation between SD and BSD for all tree
sizes (R2¼ 0.8613 for trees with 4–16 species andR2¼ 0.7055 for
trees with 16–100 species) (Fig. 6c). However, the SD follows a
discrete distribution, which obviously is most conspicuous in the
comparisons of small trees (Fig. 6a), whereas, thanks to the use of
the bootstrap values, the BSD distribution is continuous (Fig. 7).

Figure 7 shows an example of the comparison (all-against-all)
of three trees with six species each that differ in one, two, and three
splits, resulting in SD values of 0.33, 0.66, and 1, respectively
(Fig. 7a). Also, each tree was compared to itself resulting in a SD
of 0. Then, bootstrap values were assigned randomly to the trees in
order to compare the trees using the BSD method, and this proce-
dure was repeated 1000 times. The resulting plot (Fig. 7b) shows
that, for the comparison of trees with SD of 0 and 1, the BSD values
ranged from 0 to 0.5 and from 0.5 to 1, respectively, and in
principle, could assume all intermediate values. In the case of the
comparisons that differed in one split (SD ¼ 0.33), the BSD value
was greater than 0.33 in 75% of the comparison, whereas for the
comparisons that differed in two splits (SD ¼ 0.67), 25% of the
BSD values were greater than 0.67. Thus, the BSD method for tree
comparison offers a better resolution than the SD method, espe-
cially, for trees with a small number of species.

Figure 8a shows the results of analysis of six simulated align-
ments with an increasing level of noise (divergence respect to the
initial alignment) in each alignment, i.e., from the alignment
0 (without noise and producing trees with bootstrap values of
100) to alignment 5 with the maximum level of noise. For each
alignment, a tree was constructed using the UPGMAmethod from
the web server DendroUPGMA (http://genomes.urv.cat/
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UPGMA). Distances were calculated using the Jaccard coefficient,
and bootstraps were generated from 100 replicates. The results of
the tree comparison (Fig. 8b) using three different methods,
namely, nodal distance (ND), SD, and BSD, show that the BSD
method presents a continuous distribution resulting in a better
resolution of the distances than the other two methods. Indeed,
the SD and NDmethods fail to discern the similarity between trees
after six changes, whereas the BSD method still reports discernible
similarity (Fig. 8b). In order to compare the three tree comparison
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Trees containing 4–15 species. (b) Trees containing 16–100 species. (c) SD, BSD, and tree size for trees
containing between 16 and 100 species
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methods, the distance reported by each method was normalized to
the maximum value in each case, i.e., after 46 changes (maximum
number of changes in the simulation), the distance to the initial tree
is 1.41, 0.30, and 0.42 for ND, SD, and BSD, respectively. All three
distance values indicate that the trees are similar far above the
random expectation, supporting the robustness of all methods,
but the BSD method presents a better resolution in the tree
comparison.

3.1.5 Analysis of

Random Trees and the

Significance of BSD Results

To assess the significance of the tree comparison by the BSD
method, we performed several tree comparisons using random
trees containing between 4 and 100 species (Fig. 9). Each test is
an all-against-all comparison of 1000 random trees (for complete
results see Additional File 2). The results from random tree
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comparison have to be used to determine whether the detected
similarities or differences between trees are significantly different
from chance [12]. Figure 9 shows that the distance between ran-
dom trees monotonically increases with the tree size up to a value of
approximately 0.75 for BSD and approximately 0.999 for SD. In
other words, although BSD is an extension of the SD method, the
results obtained by the two methods are not directly comparable.
Therefore, to assess whether the similarity between two trees is
better than chance, one must consider the method used for the
tree comparison (e.g. SD or BSD) and the size of the tree. For
example, consider two trees with 15 species each for which the SD
method reports a distance of 0.75. This value is far below random-
ness (Fig. 9), so the conclusion would be that the two trees are
nonrandomly similar. However, if the same distance value (0.75) is
reported by the BSD method, the conclusion would be the

�

Fig. 8 (continued) server DendroUPGMA (http://genomes.urv.cat/UPGMA) using the Jaccard coefficient as the
measure of distance and generating 100 bootstraps replicates. Alignment 0 corresponds to the initial
alignment without noise that perfectly separates all branches, resulting in a tree with bootstrap values of
100 for all internal nodes. Alignments 1 to 5 correspond to the derivatives of the initial alignment with
increasing noise levels at each step. (b) Results of the comparison of each tree [1 to 5] with the initial tree (0).
The trees were compared using three methods: split distance (SD), nodal distance (ND), and boot-split
distance (BSD). For the purpose of comparison, the results obtained with each of the three methods were
normalized to the maximum value in each case
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opposite, namely, that the two trees are no more similar than two
random trees of 15 species.

Another and probably the most important problem of the
comparison of phylogenetic trees is how to interpret the results
from a biological perspective. To address this issue, we generated
random trees containing from 4 to 100 species and performed 1 to
100 permutations (swap of a pair of branches) in each tree. The
resulting tree was then compared with the source tree (Fig. 10a, b).
The results show the number of permutations required to obtain a
particular BSD value for different tree sizes (number of species).
For instance, BSD ¼ 0.3 in the comparison of two trees with
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Fig. 10 The number of permutations and the BSD. (a) BSD depending on the
number of permutations and tree size. (b) Mean and standard deviation of the
BSD for up to 100 permutations for trees with 20 species
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20 species indicates that the two trees are separated by one permu-
tation whereas BSD ¼ 0.6 indicates that the trees are separated by
approximately 9 permutations (for the complete listing of equiva-
lences between BSD, SD and the number of permutations, see
Additional File 3). Considering that each permutation corresponds
to an HGT event, the BSD may be construed as the measure of the
extent of HGT contributing to the topological difference between
the compared trees. Given the discrete distribution of SD values,
this measure cannot be used to infer the number of permutations
with the same precision as BSD.

3.2 Analysis of

Topological Trends in

a Set of Phylogenetic

Trees

3.2.1 Calculation of the

Tree Inconsistency

A key characteristic of the FOL is the degree of the topological (in)
consistency between the constituent trees. To quantify this trend,
we introduced the inconsistency score (IS), which is the fraction of
the times that the splits from a given tree are found in all N trees
that comprise the FOL. Thus, the IS may be naturally taken as a
measure of how representative of the entire FOL is the topology of
the given tree. The IS is calculated using Eqs. 5–7, where N is the
total number of trees, X is the number of splits in the given tree,
andY is the number of times the splits from the given tree are found
in all trees of the FOL.

IS ¼
1
Y � ISmin

ISmax
ð5Þ

ISmin ¼ 1

X �N ð6Þ

ISmax ¼ 1

X
� ISmin ð7Þ

In addition to the calculation of a single value of IS for a given
tree by comparing its topology to the topologies of rest of trees in
the FOL, IS can be calculated along the depth of the trees, namely,
split depth and phylogenetic depth. The split depth was calculated
for each unrooted tree according to the number of splits from the
tips to the center of the tree. The value of split depth ranged from
1 to 49 ([100 species/2] � 1). The phylogenetic depth was
obtained from the branch lengths of a rescaled ultrametric tree,
rooted between archaeal and bacterial species, and ranged from 0 to
1. The topology of the ultrametric tree was obtained from the
supertree of the 102 NUTs using the CLANN program
[67]. The branch lengths from each of the 6901 trees were used
to calculate the average distance between each pair of species. The
obtained matrix was used to calculate the branch lengths of the
supertree of the NUTs. This supertree with branch lengths was
then used to construct an ultrametric tree using the program
KITSCH from the Phylip package [68] and rescaled to the depth
range from 0 to 1. The resulting ultrametric tree was used for the
analysis of the dependence of tree inconsistency on phylogenetic
depth.
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3.2.2 Classical

Multidimensional Scaling

Analysis

The classical multidimensional scaling (CMDS), also known as
principal coordinate analysis, is the multifactorial method best
suited to analyze matrices obtained from tree comparison methods
like BSD and identify the main trends in a large set of phylogenetic
trees. The CMDS embeds n data points implied by a [n � n]
distance matrix into an m-dimensional space (m < n) such that,
for any k ∈ [1,m], the embedding into the first k dimensions is the
best in terms of preserving the original distances between the points
[69, 70]. In our analysis, the data points are distances between trees
obtained using the BSD method. The choice of the optimal num-
ber of clusters is made using the gap statistics algorithm [71]. The
number of clusters for which the value of the gap function for
cluster k + 1 is not significantly higher than that for cluster k (z-score
below 1.96, corresponding to 0.05 significance level) is considered
optimal. The CMDS analysis was performed using the K-means
function of the R package that implements the K-means algorithm.
The CMDS approach has been previously employed by Hillis et al.
for phylogenetic tree comparison, with the distances between trees
calculated using the Robinson-Foulds distance [72].

3.3 Analysis of

Quartets of Species

3.3.1 Definition of

Quartets and Mapping

Quartets onto Trees

The minimum evolutionary unit in unrooted phylogenetic trees is
defined by groups of four species (or quartets), and each quartet
may be best represented by the three possible unrooted tree topol-
ogies (Fig. 11a). A quartet defined by the set of species A, B, C, and
D has three possible unrooted topologies: (1) AB|CD, (2) AC|BD,
and (3) AD|BC. To analyze which quartet topology (QT) best
represents the relationships among the four species in a quartet,
each quartet was compared against the entire set of phylogenetic
trees from 100 species (the FOL).

For 100 species, there are 3,921,225 quartets and, accordingly,
11,763,675 topologies (Fig. 11b). A mapping of quartets onto
trees is produced using the SD method [12]. A binary version of
this method was employed to compare quartets and trees (a quartet
is represented in a tree when SD ¼ 0 and not represented when
SD > 0). Figure 12a shows an example of quartet mapping onto a
set of ten trees. Here q1 is a resolved quartet, with the topology q1t1
supported by eight of the ten trees. By contrast, for q2, three
quartet topologies are equally supported, i.e., the topology of this
quartet remains unresolved.

To analyze which of the three possible topologies best repre-
sents the almost four million quartets in the FOL, each quartet
topology was compared with the entire set of 6901 trees, resulting
in a total number of 8.12 � 1010 tree comparisons (Fig. 11b), and
the number of trees that support each quartet topology was
counted for the entire FOL or for the set of 102 NUTs (Fig. 11b).
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3.3.2 Distance Matrices

and Heat Maps

Using the quartet support values for each quartet, a 100 � 100
between-species distance matrix was calculated as dij ¼ 1 � Sij/Qij

where dij is the distance between two species, Sij is the number of
trees containing quartets in which the two species are neighbors,
and Qij is the total number of quartets containing the given two
species. Then, this distance matrix was used to construct different
heat maps using the matrix2png web server ([73], Fig. 12b). In
contrast to the BSD method, which is best suited for the analysis of
the evolution of individual genes, the distance matrices derived
from maps of quartets are used to analyze the evolution of species
and to disambiguate treelike evolutionary relationships and “high-
ways” (preferential routes) of HGT.

3.3.3 The Tree-Net Trend

(TNT)

The quartet-based between-species distances were used to calculate
the Tree-Net Trend (TNT) score. The TNT score is calculated by
rescaling each matrix of quartet distances to a 0–1 scale between the

Quartets (Q)

3,921,225 · 3 = 11,763,675

C4
100 = 3, 921, 225

(a,b,(c,d)); (a,c,(b,d)); (a,d,(b,c));

Quartet Topologies (QT)

abcd, abce, abcf, abcg, …

(a,b,(c,e)); (a,c,(b,e)); (a,e,(b,c));
(a,b,(c,e)); (a,c,(b,e)); (a,e,(b,c));

…

Species

100

QT vs. FOL

8.12·1010 comparisons

a) q t qii t21 qit3qi

b)

Fig. 11 Quartets and quartet topologies. (a) Each quartet (qi) is defined by a set of
four species (different colors denote species) and may be represented by three
possible unrooted tree topologies (qiti). (b) Quartet topologies (QT). In
100 species, the total number of quartets (Q) is 3,921,225. Each quartet may
be represented by three distinct QTs, resulting in a total of 11,763,735 QTs. Each
QT was mapped onto the FOL, i.e., for each QT, it was determined which of the
three topologies is represented in each phylogenetic tree in the FOL
(8.12 � 1010 comparisons). Modified from ref. 61
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supertree-derived matrix (which is taken to represent solely the
treelike evolution signal, hence the distance of 0) and the matrix
obtained from permuted trees, with distance values around the
random expectation of 0.67 (Fig. 13). Two situations may occur
in the calculation of the TNT score depending on the relationship
between the distance in the supertree matrix (Ds) and the distance
in the random matrix (Dr ¼ 0.67). When Ds > Dr (e.g., in
comparisons of archaea versus bacteria), STNT ¼ (d � Dr)/
(Ds � Dr), where STNT is the TNT score and d is the distance
between the two compared species in the matrix. When Ds < Dr
(in comparisons between closely related species),
STNT ¼ 1 � ((d � Ds)/(Dr � Ds)).

4 Phylogenetic Concepts in Light of Pervasive Horizontal Gene Transfer

4.1 Patterns in the

Phylogenetic Forest of

Life

The reconstruction of the evolutionary trends in the FOL is based
on the idea that prokaryotes, effectively, share a common gene
pool. This gene pool consists of genes with widely different ranges
of phyletic spread, from universal to rare ones only present in a few
species [74]. Thus, genes, as the elements of this gene pool, have
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Fig. 12 Mapping quartets. (a) Mapping quartets onto a set of ten trees. (b) A
schematic of the procedure used to reconstruct a species matrix from the map of
quartets
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their distinct evolutionary histories blending HGT and vertical
inheritance (Fig. 14). In principle, the Forest of Life (FOL) encom-
passes the complete set of phylogenetic trees for all genes from all
genomes. However, a comprehensive analysis of the entire FOL is
computationally prohibitive (with over 1000 archaeal and bacterial
genomes now available and the computational resources accessible
to the authors, estimation of the phylogenetic tree for each gene
represented in all these genomes would take weeks of computer
time) so a representative subset of the trees needs to be selected and
analyzed. Previously [5], we defined such a subset by selecting
100 archaeal and bacterial genomes, which are representative of
all major prokaryote groups, and building 6901 maximum likeli-
hood (ML) trees for all genes with a sufficient number of homologs
and sufficient level of sequence conservation in this set of genomes;
for brevity, we refer to this set of trees as the FOL. In this set of
almost 7000 trees, only a very small portion of the forest is repre-
sented by nearly universal trees (Fig. 14). Furthermore, bacterial
and archaeal universal trees are rare as well, as reflected in Fig. 14 by
the small peaks around 41 and 59 species, i.e., all archaea and all
bacteria, respectively. The dominant pattern in the major part of the
FOL is completely different: the FOL is best represented by

Dr Ds
Dr = 0.67 Ds > Dr

STNT =0 STNT =1STNT = (d-Dr) / (Ds-Dr)

Ds Dr
Ds < Dr Dr = 0.67

STNT =1 STNT =0STNT = 1 – ((d-Ds) / (Dr-Ds))

Fig. 13 The Tree-Net Trend (TNT). The figure shows a schematic of the TNT
calculation and the rescaling procedure. Modified from ref. 61
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numerous small trees, with about 2/3 of the trees including <20
species (Fig. 14).

4.2 The Nearly

Universal Trees (NUTs)

We define the nearly universal trees (NUTs) as trees for those
COGs that were represented in more than 90% of the included
prokaryotes. This definition yielded 102 NUTs. Not surprisingly,
the great majority of the NUTs are genes encoding proteins
involved in translation and the core aspects of transcription
(Fig. 15). Among the NUTs, only 14 corresponded to COGs
that consist of strict 1:1 orthologs (all of them ribosomal proteins),
whereas the rest of NUTs included paralogs in some organisms
(only the most conserved paralogs were used for tree construction
[5]). The 1:1 NUTs were similar to the rest of the NUTs in terms of
the connectivity in tree similarity (1-BSD) networks and their
positions in the single cluster of NUTs obtained using CMDS.

The 102 NUTs were compared to trees produced by analysis of
concatenations of universal proteins [49]. The results showed that
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Fig. 14 The Forest of Life (FOL). The distribution of the trees in the FOL by the
number of species. Modified from ref. 5
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Fig. 15 Distribution of the gene functions among the NUTs. The functional
classification of genes was from the COG database [62]
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most of the NUTs were topologically similar to a tree obtained by
the concatenation of 31 universal orthologous genes [5]—in other
words, the “Universal Tree of Life” constructed by Ciccarelli et al.
[49] was statistically indistinguishable from the NUTs and showed
properties of a consensus topology. Not surprisingly, the 1:1 ribo-
somal protein NUTs were even more similar to the universal tree
than the rest of the NUTs, in part because these proteins were used
for the construction of the universal tree and, in part, presumably
because of the low level of HGT among ribosomal proteins.

4.3 The Tree of Life

(TOL) as a Central

Trend in the FOL

We analyzed the matrix of all-against-all tree comparisons of the
NUTs by embedding them into a 30-dimensional tree space using
the CMDS procedure [69, 70]. The gap statistics analysis [71]
reveals a lack of significant clustering among the NUTs in the tree
space. Thus, all the NUTs seem to belong to one unstructured
cloud of points scattered around a single centroid. This organiza-
tion of the tree space is best compatible with individual trees
randomly deviating from a single, dominant topology (which may
be denoted the TOL), apparently as a result of random HGT (but
in part possibly due to random errors in the tree-construction
procedure). Therefore, there is an unequivocal general trend
among the NUTs. Although the topologies of the NUTs were,
for the most part, not identical, so that the NUTs could be sepa-
rated by their degree of inconsistency (a proxy for the amount of
HGT), the overall high consistency level indicated that the NUTs
are scattered in the close vicinity of a consensus tree, with HGT
events distributed randomly [5].

Thus, the NUTs present a unique and strong signal of unity
that seems to reflect the TOL pattern of evolution. The inconsis-
tency score (IS) among the NUTs ranged from 1.4% to 4.3%,
whereas the mean IS value for an equivalent set (102) of randomly
generated trees with the same number of species was approximately
80%, indicating that the topologies of the NUTs are highly consis-
tent and nonrandom [5].

To further assess the potential contribution of phylogenetic
analysis artifacts to observed inconsistencies between the NUTs,
we analyzed these trees with different bootstrap support thresholds
(i.e., only splits supported by bootstrap values above the respective
threshold value were compared). Particularly low IS levels were
detected for splits with high bootstrap support, but the inconsis-
tency was never eliminated completely, suggesting that HGT is a
significant contributor to the observed inconsistency among the
NUTs (IS ranges from 0.3% to 2.1% and 0.3% to 1.8% for splits with
a bootstrap value higher than 70 and 90, respectively) [5].

Analysis of the supernetwork built from the 102 NUTs [5]
showed that the incongruence among these trees is mainly con-
centrated at the deepest levels, with a much greater congruence
at shallow phylogenetic depths. The major exception is the
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unambiguous archaeal-bacterial split that is observed despite the
apparent substantial interdomain HGT. Evidence of probable HGT
between archaea and bacteria was obtained for approximately 44%
of the NUTs (13% from archaea to bacteria, 23% from bacteria to
archaea, and 8% in both directions), with the implication that HGT
is likely to be even more common between the major branches
within the archaeal and bacterial domains [5]. These results are
compatible with previous reports on the apparently random distri-
bution of HGT events in the history of highly conserved genes, in
particular those encoding proteins involved in translation [75, 76],
and on the difficulty of resolving the phylogenetic relationships
between the major branches of bacteria [77–79] and archaea
[5, 80, 81]. More specifically, archaeal-bacterial HGT has been
inferred for 83% of the genes encoding aminoacyl-tRNA synthe-
tases (compared with the overall 44%), essential components of the
translation machinery that are known for their horizontal mobility
[42, 82]. In contrast, no HGT has been predicted for any of the
ribosomal proteins, which belong to an elaborate molecular com-
plex, the ribosome, and hence appear to be non-exchangeable
between the two prokaryotic domains [42, 76]. In addition to the
aminoacyl-tRNA synthetases, and in agreement with many previous
observations ([83] and references therein), evidence of HGT
between archaea and bacteria was seen also for the few metabolic
enzymes that belonged to the NUTs, including undecaprenyl pyro-
phosphate synthase, glyceraldehyde-3-phosphate dehydrogenase,
nucleoside diphosphate kinase, thymidylate kinase, and others.

4.4 The NUTs

Topologies as the

Central Trend and

Detection Distinct

Evolutionary Patterns

in the FOL

Using the BSD method, we compared the topologies of the NUTs
to those of the rest of the trees in the FOL. Notably, 2615 trees
(~38% of the FOL) showed a greater than 50% similarity (P-value
<0.05) to at least one of the NUTs, being the mean similarity of the
trees to the NUTs approximately 50% (Fig. 16). For a set of
102 randomized trees of the same size as the NUTs, only about
10% of the trees in the FOL showed the same or greater similarity,
indicating that the NUTs were strongly and nonrandomly
connected to the rest of the FOL.

We then analyzed the structure of the FOL by embedding the
3789 COG trees into a 669-dimensional space using the CMDS
procedure [69, 70]. A CMDS clustering of the entire set of 6901
trees in the FOL was beyond the capacity of the R software package
used for this analysis; however, the set of COG trees included most
of the trees with a large number of species for which the topology
comparison is most informative. A gap statistics analysis [69, 70] of
K-means clustering of these trees in the tree space revealed distinct
clusters of trees in the forest. The FOL is optimally partitioned into
seven clusters of trees (the smallest number of clusters for which the
gap function did not significantly increase with the increase of the
number of clusters) (Fig. 17). Clusters 1, 4, 5, and 6 were enriched
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for bacterial-only trees, all archaeal-only trees belonged to clusters
2 and 3, and cluster 7 consisted entirely of mixed archaeal-bacterial
clusters; notably, all the NUTs form a compact group inside cluster 6.

The results of the CMDS clustering (Fig. 17) support the
existence of several distinct “attractors” in the FOL. However, we
have to emphasize caution in the interpretation of this clustering
because trivial separation of the trees by size could be an important
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Fig. 16 Topological similarity between the NUTs and the rest of the FOL.
Percentage of trees connected to the NUTs at a different percentage of similarity.
Modified from ref. 5
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Fig. 17 Clusters and patterns in the FOL. The seven clusters identified in the FOL
using the CMDS method and the mean similarity values between the 102 NUTs
and all trees from each of the seven clusters are shown. Modified from ref. 5
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contribution. The approaches to the delineation of distinct
“groves” within the forest merit further investigation. The most
salient observation for the purpose of the present study is that all
the NUTs occupy a compact and contiguous region of the tree
space and, unlike the complete set of the trees, are not partitioned
into distinct clusters by the CMDS procedure. Taken together with
the high mean topological similarity between the NUTs and the
rest of the FOL, these findings indicate that the NUTs represent a
valid central trend in the FOL.

4.5 The Tree and Net

Components of

Prokaryote Evolution

The TNT map of the NUTs was dominated by the treelike signal
(green in Fig. 18a): the mean TNT score for the NUTs was 0.63
(Fig. 19b), so the evolution of the nearly universal genes of
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supertree topology, an indication of treelike evolution). The species are ordered
according to the topology of the supertree of the 102 NUTs. In (a), the major
groups of archaea and bacteria are denoted. Modified from ref. 61
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prokaryotes appears to be almost “two-third treelike” (i.e., reflects
the topology of the supertree). The rest of the FOL stood in a stark
contrast to the NUTs, being dominated by the netlike evolution,
with the mean TNT value of 0.39 (Fig. 19c) (about “60% netlike”).
Remarkably, areas of treelike evolution were interspersed with areas
of netlike evolution across different parts of the FOL (Fig. 18b).
The major netlike areas observed among the NUTs were retained,
but additional ones became apparent including Crenarchaeota that
showed a pronounced signal of a non-treelike relationship with
diverse bacteria as well as some Euryarchaeota (Fig. 18b). The
distribution of the tree and net evolutionary signals among differ-
ent groups of prokaryotes showed a striking split among the NUTs:
among the archaea, the tree signal was heavily dominant (mean
TNTNUTs_Archaea ¼ 0.80 � 0.20), whereas among bacteria the
contributions of the tree and net signals were nearly equal (mean
TNTNUTs_Bacteria¼ 0.51� 0.38). Among the rest of the trees in the
FOL, archaea also showed a stronger tree signal than bacteria, but
the difference was much less pronounced than it was among the
NUTs (mean TNTFOL_Archaea ¼ 0.47 � 0.11 and mean TNTFOL_-

Bacteria ¼ 0.34 � 0.08). The conclusions on the treelike and netlike
components of evolution made here are based on the assumption
that the supertree of the NUTs represents the treelike (vertical)
signal. We did not perform direct tests of the robustness of these
conclusions to the supertree topology. However, observations pre-
sented previously [5] suggest that the results are likely to be robust

NUTs

FOL

NET TREE

0 1a)

b)

c)

0.63

0.39

Fig. 19 The Tree-Net Trend in the FOL and in the NUTs. (a) A hypothetical
equilibrium between the tree and net trends. (b) A schematic representation of
the tree tendency in the NUTs. (c) A schematic representation of the net
tendency in the FOL
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given the coherence of the NUTs topologies as well as the similarity
of the supertree topology and the topologies of the individual
NUTs to the “Tree of Life” obtained from concatenated sequences
of universally conserved ribosomal proteins [49].

5 Conclusions

The analysis of the phylogenetic FOL is a logical strategy for
studying the evolution of prokaryotes because each set of ortholo-
gous genes presents its own evolutionary history and no single
topology may represent the entire forest. Thus, the methods intro-
duced in this article that compare trees without the use of a pre-
conceived representative topology for the entire FOL may be of
wide utility in phylogenomics.

We have shown that, although no single topology may repre-
sent the entire FOL and several distinct evolutionary trends are
detectable, the NUTs contain a strong treelike signal. Although the
treelike signal is quantitatively weaker than the sum total of the
signals from HGT, it is the most pronounced single pattern in the
entire FOL.

Under the FOL perspective, the traditional TOL concept
(a single “true” tree topology) is invalidated and should be replaced
by a statistical definition. In other words, the TOL only makes
sense as a central trend in the phylogenetic forest.

6 Exercises

1. Calculate the split distance (SD) and boot-split distance (BSD)
of the following two trees:
(((A,B)61,C)53,D,E);(((A,C)76,B)38,D,E)

2. Calculate the inconsistency score of the tree X in the “forest of
trees” Y.
X ¼ (((A,B),C),D,E)

Y ¼ (((A,B),C),D,E); (A,B,(E,D); (((A,C),B),D,E); (A,C,(B,
D); (A,B,(C,D); (A,B,(C,E); (A,E,(B,D); (((A,C),D),E,F);
(((A,B),D),E,C); (((E,F),A),B,C)

Acknowledgment

The authors’ research is supported by the Department of Health
and Human Services intramural program (NIH, National Library
of Medicine).

266 Pere Puigbò et al.
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64. Edgar RC (2004) MUSCLE: multiple
sequence alignment with high accuracy and
high throughput. Nucleic Acids Res
32:1792–1797

65. Castresana J (2000) Selection of conserved
blocks from multiple alignments for their use
in phylogenetic analysis. Mol Biol Evol
17:540–552

66. Keane TM, Naughton TJ, McInerney JO
(2007) MultiPhyl: a high-throughput phyloge-
nomics webserver using distributed comput-
ing. Nucleic Acids Res 35:W33–W37

67. Creevey CJ, McInerney JO (2005) Clann:
investigating phylogenetic information
through supertree analyses. Bioinformatics
21:390–392

68. Felsenstein J (1996) Inferring phylogenies
from protein sequences by parsimony, distance,
and likelihood methods. Methods Enzymol
266:418–427

69. Torgerson WS (1958) Theory and methods of
scaling. Wiley, New York

70. Gower JC (1966) Some distance properties of
latent root and vector methods used in multi-
variate analysis. Biometrika 53:325–328

71. Tibshirani R, Walther G, Hastie T (2001) Esti-
mating the number of clusters in a data set via
the gap statistic. J R Stat Soc B Stat Methodol
63:411–423

72. Hillis DM, Heath TA, St John K (2005) Anal-
ysis and visualization of tree space. Syst Biol
54:471–482

73. Pavlidis P, Noble WS (2003) Matrix2png: a
utility for visualizing matrix data. Bioinformat-
ics 19:295–296

74. Koonin EV, Wolf YI (2008) Genomics of bac-
teria and archaea: the emerging dynamic view
of the prokaryotic world. Nucleic Acids Res
36:6688–6719

75. Ge F, Wang LS, Kim J (2005) The cobweb of
life revealed by genome-scale estimates of hori-
zontal gene transfer. PLoS Biol 3:e316

76. Brochier C, Bapteste E, Moreira D, Philippe H
(2002) Eubacterial phylogeny based on trans-
lational apparatus proteins. Trends Genet
18:1–5

77. Wolf YI, Rogozin IB, Grishin NV, Koonin EV
(2002) Genome trees and the tree of life.
Trends Genet 18:472–479

78. Wolf YI, Rogozin IB, Grishin NV, Tatusov RL,
Koonin EV (2001) Genome trees constructed
using five different approaches suggest new
major bacterial clades. BMC Evol Biol 1:8

79. Creevey CJ, Fitzpatrick DA, Philip GK, Kin-
sella RJ, O’Connell MJ, Pentony MM et al
(2004) Does a tree-like phylogeny only exist
at the tips in the prokaryotes? Proc Biol Sci
271:2551–2558

80. Brochier-Armanet C, Boussau B, Gribaldo S,
Forterre P (2008) Mesophilic Crenarchaeota:
proposal for a third archaeal phylum, the Thau-
marchaeota. Nat Rev Microbiol 6:245–252

81. Elkins JG, Podar M, Graham DE, Makarova
KS, Wolf Y, Randau L et al (2008) A korarch-
aeal genome reveals new insights into the evo-
lution of the Archaea. Proc Natl Acad Sci U S A
105:8102–8107

82. Wolf YI, Aravind L, Grishin NV, Koonin EV
(1999) Evolution of aminoacyl-tRNA synthe-
tases--analysis of unique domain architectures
and phylogenetic trees reveals a complex his-
tory of horizontal gene transfer events.
Genome Res 9:689–710

83. Koonin EV (2003) Comparative genomics,
minimal gene-sets and the last universal com-
mon ancestor. Nat Rev Microbiol 1:127–136

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

Genome-Wide Comparative Analysis of Phylogenetic Trees. . . 269

http://creativecommons.org/licenses/by/4.0/


Chapter 9

The Methodology Behind Network Thinking: Graphs
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Abstract

In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing
projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are
increasingly used to complement phylogenetic analysis in studies in molecular evolution, including com-
parative genomics, classification, and ecological studies. Using network methods, the vertical and horizon-
tal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile
genetic elements, can be explored in a single expandable graph. In recent years, development of new
methods for the construction and analysis of networks has helped to broaden the availability of these
approaches from programmers to a diversity of users. This chapter introduces the different kinds of
networks based on sequence similarity that are already available to tackle a wide range of biological
questions, including sequence similarity networks, gene-sharing networks and bipartite graphs, and a
guide for their construction and analyses.

Key words Sequence similarity network, Evolution, Lateral gene transfer (LGT), Metagenomics,
Gene remodeling, Ecology

1 Introduction

An evolutionary biologist is interested in how processes governing
evolution have produced the diversity of genes, genomes, organ-
isms, species, and communities that are observed today. For exam-
ple, a biologist interested in the eukaryotes may wonder what
symbiotic partners have contributed to their origins and evolution.
Eukaryotic nuclear genomes are chimeric in nature, encoding many
genes acquired from their alphaproteobacterial endosymbiont
[1–3]. However, in recent years, it has been proposed that the
ongoing gain of genes by both microbial [4–6] and multicellular
eukaryotes [7, 8] via lateral gene transfer (LGT) has continued to
contribute to eukaryotic evolution, though to a lesser extent than
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prokaryotes [9]. A biologist interested in prokaryotes may wish to
investigate lateral gene transfer to explore the numbers and kinds of
genes transferred between bacteria, archaea, and their mobile
genetic elements [10–14]. These transfers are important for under-
standing the accessory genomes of prokaryotes [15–17]. Further,
studying gene transfers in real bacterial communities from different
environments can help to test the effect of LGT on ecology and
evolution of communities [18]. Given the prevalence of introgres-
sion [9–11, 19], one interesting question is whether gene transfer
has led to the formation of novel fusion genes that combine parts of
genes originating from separate domains of life [20]. An ecologist
may wish to analyze the distribution of genes and species in the
environment [21]. A metagenome analyst may need to overcome
an additional challenge exploring the nature of the large proportion
of sequences in metagenome datasets that have little or no detect-
able similarity to characterize sequences and to study the “microbial
dark matter” [22].

High-throughput sequencing technologies present new oppor-
tunities to investigate these diverse kinds of questions with molec-
ular data; however, they also present challenges in terms of the scale
of the analyses. Consequently, a number of network-based methods
have recently been developed to expand the toolkit available to
molecular biologists [23], and these have already made major con-
tributions to our understanding of molecular evolution. Networks
have been used to shed light on the nature of the “microbial dark
matter” [24] and used in ecological studies to explore the geo-
graphical distribution of organisms or genes [25, 26] or the evolu-
tion of different lifestyles [27]. Their suitability for investigating
introgressive events has been used to enhance our understanding of
the chimeric origin of genes in the eukaryotic proteome [28, 29],
the flow of genes between prokaryotes and their mobile genetic
elements [30–35], and gene sharing across mobile elements to
study the transfer of resistance factors [14, 36]. Networks have
also been used to classify highly mosaic viral genomes [37, 38]
and identify gene families [39, 40]. These approaches are highly
complementary to traditional phylogenetic approaches, high-
lighted by the development of hybrid approaches and phylogenetic
and phylogenomic networks [34, 41–43]. These hybrid networks
are beyond the scope of discussion in this chapter but are covered in
Chapters 7 and 8.

While the generation and analysis of networks were previously
limited to biologists with programming experience, tools have
recently been developed to simplify the process and broaden the
availability of network analyses of molecular sequence data. This
chapter introduces the different kinds of networks that are already
available to biologists and a guide to how these networks can be
constructed and analyzed for a large range of applications in molec-
ular evolution. More precisely, this chapter will focus on three kinds
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of network and the types of analyses that are possible using these
networks: sequence similarity networks, gene-sharing networks,
and multipartite graphs [23].

2 Sequence Similarity Networks (SSNs)

Sequence similarity networks are the bread and butter of network-
based molecular sequence analyses, with a huge range of applica-
tions in molecular biology. The use of SSNs for molecular sequence
analysis first came to the fore in the late 1990s and early 2000s,
when SSNs were suggested as a way to analyze the rapid influx of
new molecular sequence data due to advances in sequencing tech-
nology and reduced cost, as well as to predict gene functions and
protein-protein interactions [39, 44–46]. One of the earliest formal
and heuristic uses of SSNs was to define the COG groups of
homologous families and facilitate prediction of the functions of
large numbers of genes based on homology [39, 40]. The need for
efficient computation and analyses for large biological databases
still pervades; however, more recently SSNs have been increasingly
appreciated as useful approaches to describe complex biological
systems, including inferring the “social networks” of biological
life forms [30], producing maps of genetic diversity [27], detecting
distant homologues [47–49], and exploring gene and genome
rearrangements [50, 51].

A SSN is a graph in which each node is a sequence and edges
connect any two nodes that are similar at the sequence level above a
certain threshold (e.g., coverage, percent identity, and E-value) as
determined by their pairwise alignment (Box 1) (Fig. 1). While the
principle behind SSN construction is simple, the expression of
similarity data in this structure can enable the use of powerful

Fig. 1 Constructing a simple sequence similarity network. A set of sequences (protein or DNA) in fasta format
(a) are aligned in pairs using alignment tools (such as BLAST). These alignments (b) are scored with metrics
such as the percentage identity between two sequences (the number of identical nucleotides/amino acids
displayed above) or the E-value of the alignment. In the resulting network (c), sequences are represented as
nodes. Two sequence nodes are joined with an edge if they can be aligned above a define threshold, with the
weight of the edge often based on percentage identity or E-value
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algorithms for graph analyses to study complex biological phenom-
ena. Construction of a SSN is also frequently the starting point in a
diversity of further graph analyses. A SSN can be constructed
directly from fasta formatted sequence files using pipelines, such
as EGN [52], the updated and faster performing EGN2 (forth-
coming), or PANADA [53]. Visualization of networks can be
performed with programs such as Cytoscape [54] or Gephi [55],
both of which also have a range of internal tools and external plug-
ins for network analysis. While these programs are useful for the
visualization and analysis of relatively small networks, it can be
difficult to load large and complex networks with a lot of edges
(e.g., �50,000 edges). In these cases the iGraph library offers an
extremely powerful and well-supported implementation of a broad
range of commonly used methods for both complex graph genera-
tion and analysis in R, Python, and C++ [56]. However, using
iGraph requires knowledge of programming in at least one of
these languages. An additional package for network analysis in
Python is NetworkX [57]. It is our goal here to further generalize
network approaches by explaining how evolutionary biologists with
less programming knowledge could analyze their data. A list includ-
ing many of the tools and programs available for SSN generation is
available at https://omictools.com.

Box 1: How to Build Your Own Sequence Similarity
Network
1. Dataset assembly: The first and most important step of SSN

construction is the assembly of a dataset of sequences rele-
vant to your biological question, usually in fasta format. This
can be used as the initial input for wizards such as EGN or
EGN2 [52], which can fully automate the process. The
nature of the dataset is highly dependent on the research
question, so here we focus on the practicalities of database
assembly. To construct the similarity network, all sequences
in the dataset are aligned against one another in a similarity
search. This similarity search is often the time-limiting step
in an analysis, and the total number of searches required is
quadratic to the number of sequences in the dataset. For
large datasets, it is useful to benchmark the alignment using
a subset of the data to estimate the timescale for the align-
ment. Large datasets can generate huge outputs, not only
due to the number of sequences but also the length of their
identifier. One way to reduce the output size is to replace
each sequence name in the fasta file with a unique integer.
The use of integers will reduce disk space use and the mem-
ory consumption for any software used to analyze the
sequence data.

(continued)
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Box 1: (continued)
2. Similarity search: To generate a sequence similarity network,

all sequences must be aligned against one another in an all-
versus-all search, in which the dataset of sequences is
searched against a database including the same sequences.
For gene networks, the alignment is usually done with a fast
pairwise aligner such as BLAST [58, 59] as implemented in
EGN [52]. Filters are often used to remove low-complexity
sequences from the search, as these can cause artefactual hits
(BLAST options --seg yes, -soft-masking true). The BLAST
method of alignment will be the focus of future discussion in
this chapter; however, alternatives are available including
BLAT [60] (also implemented in EGN), SWORD [61],
USEARCH [62], and DIAMOND [63]. These alternatives
generally include an option to produce a “BLAST” style
tabulated output, making them compatible with programs
commonly used in network analyses.

Within alignment tools like BLAST, it is possible to
assign thresholds, such as the maximum E-value of the
alignment. It is not recommended to set minimal thresh-
olds for some parameters (such as % sequence identity)
unless required due to memory constraints so that you
can generate networks from a single sequence alignment
with different thresholds for comparison (e.g., compari-
son of a 30% similarity threshold to a 90% threshold,
where edges will only be drawn between highly similar
genes).

Note: It may be intuitive to use additional CPUs to
speed up the alignment process; however, in BLAST it can
be more efficient to split the query file and launch multi-
ple searches on separate cores instead of using the BLAST
multithreading option. The pairwise alignment step is
generally the most time-limiting part of generating a
SSN, so benchmarking should be used to establish the
optimal settings for the pairwise and/or determine the
feasibility of a project given the size of the dataset and the
available computational resources.

3. Filtering similarity search results: In an all-versus-all similar-
ity search, any given query sequence will have a self-hit in the
corresponding database. For example, with sequences A
and B, a self-hit is query sequence A matching to sequence
A in the database, cases of which must be removed prior to
network construction (Fig. 2). When query sequence A in a
similarity search is aligned with sequence B in the database,
often the reciprocal result is also identified (an alignment
between query sequence B and sequence A in the database).
These are called reciprocal hits; while the sequences involved

(continued)
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Box 1: (continued)
are identical, the alignments and scores are not. Retaining
both hits would generate two different edges between the
same two nodes in a SSN, so generally only the best results
from reciprocal hits are retained, based on a score such as the
E-value (Fig. 2). Finally, a single query sequence may be
significantly aligned multiple times in different positions of
the same sequence in the database; however, for SSN con-
struction only the best BLAST hit is generally retained
(Fig. 2). The selection of the best BLAST hit is again gener-
ally often based on the E-value. Removing multiple hits
against the same sequence allows the generation of an undi-
rected network where a single edge connects two nodes,
representing the best possible alignment between these
nodes.

4. Thresholding and network construction: Constructing a SSN
from a BLAST output is conceptually simple; an edge is
created between two sequences (nodes) that have been
aligned in the sequence similarity search. It is common to
apply thresholding criteria such as minimal % ID and/or
coverage and/or maximal E-value to determine whether an
edge is drawn between two sequences in the network
(Fig. 1). There are different ways to calculate the % coverage
of an alignment. This could be based on the coverage of a
single sequence in the alignment, selecting either the query
or the database sequence in each alignment or the longest or
shortest sequence in each alignment. Alternatively both
(mutual coverage) can be used, retaining an alignment

(continued)

Fig. 2 Filtering sequence similarity results for network construction. In the output of an all-against-all
sequence similarity search, there are a number of features that are often filtered out prior to network
construction. Self-hits (1/ and 2/), where like sequences are paired in a sequence alignment, are not
informative to network construction and are removed (highlighted by the red box surrounding the alignments).
In cases where there are reciprocal hits (3/ and 4/) between two sequences, then only the alignment with the
highest E-value is retained (highlighted with a green box around the retained alignment) to ensure only one
edge representing the best possible alignment connects any two nodes in the network. The same is true for
cases where a sequence has multiple hits against another sequence, such as when it aligns to another
sequence in multiple positions (5/ and 6/)

276 Andrew K. Watson et al.



Box 1: (continued)
when both values are above a given threshold. Edges above
the thresholding criteria can be assigned a weight based on
these criteria, producing a weighted sequence similarity net-
work that retains information of the properties of the align-
ment between two sequences (Fig. 1). It is often useful to
construct and compare several SSNs with variable stringen-
cies defining the edges between sequences, for example, to
optimize gene family detection within the SSN (discussed
below).

2.1 Scalability of

Sequence Similarity

Network Analysis

As with other computational approaches, the scale of network
analysis is limited by the available computational resources. The
limiting factor in terms of the size of network it is possible to
construct is predominantly governed by the pairwise alignment.
All sequences in the dataset need to be aligned against one another
in a pairwise manner, meaning the number of alignments is qua-
dratic to the size of the dataset. For example, computing an all-
against-all comparison of 1,000,000 sequences requires computa-
tion of 1012 alignments. BLAST [64] is the standard tool for this
step, with a relatively good speed and accuracy for sequence simi-
larity searches; however, the use of BLAST can be a bottleneck for
the analysis of large datasets. This is an especially important consid-
eration given the growth in the number of gene and genome
sequences available in public databases. Several rapid alignment
tools such as BLAT [60], USEARCH [62], Rapsearch [65], and
Diamond [63] have been proposed to overcome this issue. For
example, Diamond benchmarks suggest that it is almost as accurate
as BLAST but is at least three orders of magnitude faster.

A second point to consider from the perspective of scalability is
the complexity and size of the graph and the complexity of the
algorithms used in their analysis. Algorithms where the number of
calculations is linear to the size of the graph can generally be run on
huge graphs with sufficient computational resources, for example,
finding connected components using the “deep search first” algo-
rithm. Algorithms for community detection (e.g., PageRank [66],
Louvain) are also linear and particularly suited for detecting groups
of closely related sequences in huge graphs (discussed in Subhead-
ing 4). In contrast, computing graph statistics such as the between-
ness centrality are not linear to the size of the graph, even using the
relatively efficient Brande algorithm for calculation [67], and are
therefore more difficult to calculate for huge graphs. This has led to
the development of toolkits specifically designed for the analysis of
huge graphs (e.g., NetworKit) [68]. A recent book summarizes the
challenges of the analysis of huge networks and some of the algo-
rithms that have been developed to face these challenges [69].
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2.2 Exploiting

Sequence Similarity

Networks for

Identification of Gene

Families

A gene family is usually defined as a group of sequences that are
similar at the sequence level, indicative of homology and potentially
of shared functions; however, there is no uniform way to define this
similarity [70, 71]. One of the early contributions of SSNs in
molecular sequence analysis was the construction of the COG
database of homologous protein sequences [39, 40]. This study
attempted to define gene families based on similarity at the
sequence level using the results of sequence similarity searches.
Within the results of an all-versus-all BLAST search, groups of at
least three proteins encoded by different genomes that were more
similar to each other than they were to other proteins found in the
same genomes were defined as a likely orthologous gene family.
Orthologous gene families are group of genes in different genomes
that show sequence similarity, likely as a result of their shared
evolutionary history.

The idea of using graphs to identify gene families is now a core
part of many graph-based analyses. Members of a gene family
aggregate in a sub-network in a SSN. These sub-networks are called
connected components (CCs) at these defined thresholds, i.e.,
clusters of nodes connected by edges either directly or indirectly
(via intermediate nodes) (Fig. 3). The size (number of nodes and
edges in a CC) and density (the proportion of potential connec-
tions between all nodes in a CC that are actually connected by edges
in the graph) of CCs will depend on the thresholds used for

Fig. 3 Louvain community detection in a sequence similarity network. The network is assembled from the
results of an all-versus-all alignment, as previously described. Edges can be weighted by E-value, percentage
of identity, or bitscore. For the purpose of simplification, we consider strong or weak weights rather than
actual values. (a) A giant connected component at relaxed threshold. (b) Three connected components at a
more stringent threshold. (c) Three communities with Louvain clustering algorithm, taking into account edge
weights
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constructing the SSN as well as the relationships between sequences
in the network. For example, for a given dataset at a given mutual
coverage threshold, a threshold of 90% sequence identity will iden-
tify a large number of small connected components that only
include highly similar genes, while at a threshold of 30% sequence
identity, there will be fewer but larger connected components
including genes with more variation in sequence similarity. Com-
monly used thresholds for detecting homologous gene families are
an E-value �e�5, mutual coverage �80%, and a percentage of
identity �30% [23].

CCs are often detected in a SSN using the Depth-First Search
(DFS) algorithm; however, there are also other approaches for the
detection of gene families based on the idea of detecting “commu-
nities” [72]. In some cases, a CC can be further separated into
communities of sequences that share more similarity to one another
than to other sequences in the CC and thus are more highly linked
in the SSN (Fig. 3). Communities are commonly identified by
using graph clustering algorithms such as Louvain [73], MCL
[74], or OMA [75]; however, different clustering algorithms will
result in different outputs. The Louvain weighted method is widely
used because it is simple to implement and scales very well to large
graphs (Figs. 3 and 4) [73]. MCL is a strong deterministic algo-
rithm that has been implemented, for example, in tribeMCL [74]
and orthoMCL [76]. A potential drawback of MCL is that it
requires user specification of the “inflation index,” a parameter
which controls cluster granularity (or “tightness”). A high inflation

Fig. 4 Giant connected component before and after community detection. (a) A single giant connected
component from a sequence similarity network. (b) The same giant connected component after application
of a community detection algorithm. Node colors correspond to the newly assigned communities
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index increases the tightness of clustering, producing a larger num-
ber of clusters that are smaller on average than those that would be
obtained clustering the same dataset using a low inflation index.
Selecting an appropriate inflation index is not trivial and requires
optimization [74].

A number of the above approaches have been used to compile
additional databases of orthology that can act as useful reference
datasets. OMA is a program that uses graph-based algorithms and
exact Smith-Waterman alignments to identify orthology between
genes [77–80]. OMA is also available as a web browser [81] includ-
ing a database of orthologues that, in 2015, included more than
2000 genomes and more than seven million proteins [75]. SILIX is
a software package [82] that aims at building families of homolo-
gous sequences by using a transitive linkage algorithm, and
HOGENOM [83] is a database that contains families inferred by
SILIX for seven million proteins.

In addition to clustering genes into families, valuable informa-
tion can be extracted from the connected components using net-
work metrics. Highly conserved sequences tend to form CCs where
most of the nodes are connected to each other by edges, while
sequences from more divergent families will tend to form more
sparsely interconnected CCs. This information can be easily
assessed for each component using the clustering coefficient. Con-
served families will have a clustering coefficient close to 1, even for
stringent thresholds. Identifying such conserved families can be
useful to produce multiple sequence alignments (MSA) needed
for phylogenetic reconstruction, but SSNs have also been demon-
strated to unravel relationships between distant homologues by
linking distantly related sequences together [24, 29, 48]. In a
SSN, two distant sequences A and C which do not share similarity
according to BLAST can be linked together due to sequence B
which shows similarity to both A and C.

The idea of distant homology has been particularly illuminating
regarding chimeric organisms such as eukaryotes which carry
homologous genes inherited from a bacterial ancestor and from
an archaeal ancestor [29]. A common way to analyze sequence
similarity networks is to identify certain “paths” of interest, for
example, the shortest possible paths between two nodes. This
notion describes the path between two nodes in a connected com-
ponent that minimizes the sum of the edge weights. Alvarez-Ponce
et al. used this approach to explore the topology of connected
components in a SSN including the complete proteomes of
14 eukaryotes, 104 prokaryotes (including archaea and bacteria),
2389 viruses, and 1044 plasmids. Eight hundred and ninety-nine
CCs contained sequences from all three domains, and of these
208 contained eukaryotic sequences that were not directly similar
to one another but only linked to one another via a “eukaryote-
archaea-bacteria-eukaryote” shortest path. These are putatively
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distant homologues in eukaryotes that were present in both the
archaeal host of the mitochondrial endosymbiont and in the alpha-
proteobacterial endosymbiont, with both copies subsequently
retained in eukaryotes and as such strong evidence for the chimeric
origin of eukaryotes [29]. This demonstrates the utility of networks
in the study of ancient evolutionary relationships including the
origin of eukaryotes [28] or rooting the tree of life [84]. Simple
path analysis for a network is possible using existing plug-ins within
visualization tools such as Cytoscape [54] and Gephi [55].

2.3 Exploiting SSNs

to Identify Signatures

of “Tinkering” and

Gene Fusion

When discussing identification of gene families, we have focused on
networks where edges are drawn between protein sequences that
show a high enough similarity across their entire length, defined by
a high mutual coverage threshold (e.g., 80%). Sequence similarity
can also be partial, for example, following gene remodeling or
“tinkering” [85] producing new combinations of gene domains
via gene fusion and fission events, or through the de novo sequence
synthesis of gene extensions, adding to existing sequences. The
term “Rosetta Stone sequence” was coined to define the formation
of a new fusion protein in a species as the result of the fusion of two
proteins that are found separate in another species, with authors
originally predicting that these fusions could occur between pro-
teins that physically interact in a common structural complex
[86]. One of the earliest applications of sequence similarity searches
to identify fusion proteins was an attempt to predict pairs of pro-
teins that may physically interact in an organism based on whether
they could be identified as a single “composite” fusion protein in
another organism [44]. Beyond predicting protein-protein interac-
tions, this kind of gene remodeling and recycling of existing gene
parts has the potential to contribute to the expansion of functional
diversity in genomes, creating new and unique combinations of
domains and functions [51, 85, 87–91]. Similarity search-based
screens have been implemented to identify composite genes and
genome rearrangements in a range of prokaryotes [92–94], eukar-
yotes [87, 95–97], and viruses [98].

Early attempts to identify composite genes were based on the
output of sequence similarity searches, but without formalizing the
results of search methods into a graph structure. The first attempt
to formalize the problem of identifying “composite” genes in net-
works was the “Neighborhood Correlation” approach, aiming to
distinguish genuine multi-domain proteins sharing common ances-
try (homologues) from novel multi-domain proteins that share
domains due to insertions [99]. The later development of the
FusedTriplets and MosaicFinder tools attempted to unify existing
graph-based methods for detection of “composite” gene detection
[50]. FusedTriplets is a graph-based implementation of the tradi-
tional gene-centered method for composite gene identification,
originally introduced by Enright et al. [44], with additional cross-
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checks on the absence of similarity between the two component
genes contributing to a composite gene based on varying thresh-
olds [50, 100]. MosaicFinder is a gene family-centered approach
which will only identify highly conserved composite gene families
that form “minimal clique separators” (Fig. 5) [50]. This graph
topology implies that MosaicFinder may fail to detect divergent
(e.g., ancient or fast evolving) composite gene families which will
tend to form “quasi-cliques” without perfect separation. Compo-
siteSearch [101] (available at http://www.evol-net.fr/index.php/
en/downloads) is a new program designed to overcome this limi-
tation by identifying both conserved and divergent composite gene
families (Box 2).

Box 2: How to Identify Composite Genes Using
CompositeSearch
1. BLAST search and filtering: An all-versus-all BLAST search is

carried out as described in Box 1. Filters can be applied on
the E-value and sequence similarity but should not include a
mutual query coverage threshold.

2. CompositeSearch: CompositeSearch takes a filtered BLAST
output and a list of genes as the initial input. Two search
algorithms are implemented: “fastcomposites” detects a list
of potential composite genes and “composites” additionally
detects potential composite gene families and component
gene families. Additional options are included to filter the
network based on a number of standard metrics (e.g., E-
value, sequence similarity, mutual coverage) and set the
maximum overlap allowed between different components
aligned on the same potential composite gene. The defini-
tion of a maximum overlap allows adjustment for the

(continued)

Fig. 5 Composite gene identification using “minimal clique separators.” (a) A multiple sequence alignment of
composite genes (yellow) with two components (blue and magenta). (b) The sequence similarity network
corresponding to the multiple sequence alignment. The composite genes (yellow) are a minimal clique
separator for the network. Their removal (shown in c) decomposes the network to the two separate
component families
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Box 2: (continued)
tendency of BLAST to produce overhanging alignments
[100]. The output includes a node, edge, and information
file including information on number of nodes, edges, and
family connectivity from family detection. Two outputs are
included for composite gene detection, a “composites” file
with detailed information on each predicted composite gene
in fasta format and a “compositesinfo” file, summarizing the
data. Similarly, two files provide detailed information on
composite gene families and a summary of composite gene
families.

3. Filtering results: By default, CompositeSearch outputs all
possible composite genes in “fast” mode or composite
gene families in the full mode. These are given alongside a
number of different metrics designed to help to filter families
for more confident predictions, including the gene family
size, number of composites directly predicted within the
gene family, the number of domains, the number of compo-
nent families, the number of singleton component families
(families including only one sequence), the connectivity of
the family, and a score based on the overlap between differ-
ent components mapped to the composite gene.

Recent studies have explored composite gene formation as a
source of innovation by “tinkering” [85] during major evolution-
ary transitions. These can be especially interesting when exploring
genome evolution following introgression, raising the possibility of
formation of new composite genes using components with differ-
ent evolutionary origins [20, 51, 102]. For example, the gain of a
cyanobacterial endosymbiont at the origin of photosynthetic eukar-
yotes was accompanied by the transfer of whole cyanobacterial
genes to its new host genome, with gene functions related to the
role of the plastid [103–105]. Identification of composite genes
related to the origin of photosynthetic eukaryotes unraveled novel
symbiogenetic composite genes, and unique fusions of genes
encoded in the nucleus of photosynthetic eukaryotes that included
components derived from the plastid endosymbiont. As with whole
genes transferred to the nucleus, several of these components had
predicted functions related to the role of the plastid, including
redox regulations and light response [51].

2.4 Exploiting SSNs

for Ecological Studies

Ecological studies increasingly involve the assembly, analysis, and
comparison of large metagenome datasets. In addition to identifi-
cation of functions and organisms associated with a particular
environment, these studies enable the investigation of important
hypotheses in microbial ecology at the level of organism or
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function, such as the often quoted hypothesis that “everything is
everywhere, but the environment selects” from Bass Becking: the
idea that microbial lineages are limitlessly dispersible in the envi-
ronment, but the environmental conditions will select for certain
lineages and control their distribution rather than any specific
geographical separation [21].

Networks are useful for these kinds of ecological studies because
existing graph algorithms can be used to investigate the structure of
the network. When investigating gene (or gene-sharing networks),
it is possible to distinguish nodes by labeling them based on their
properties, such as categories for taxonomic or environmental ori-
gins (Fig. 6). A simple way to represent this visually is to color nodes
based on these properties in Cytoscape or Gephi. A formal way to
explore the relationships between node properties is to use network
metrics such as conductance [106], modularity [73], and assorta-
tivity coefficient (normalized modularity) [107]. Assortativity and
conductance are different metrics that attempt to answer the same
type of question: do nodes labeled as belonging to a particular
category, such as environmental origin, tend to be connected with
other nodes labeled as belonging to the same category? More pre-
cisely, conductance quantifies whether a given category of nodes
shares more edges between themselves than with nodes from differ-
ent categories. A low conductance approaching zero indicates that
nodes of a given category are highly connected to one another, with
few connections to nodes from different categories. A higher con-
ductance is indicative that nodes of this category tend to be more
sparsely interconnected and share more connections with nodes
from different categories. Assortativity is a measure of the prefer-
ence for a category of nodes in a network to attach to other nodes

Fig. 6 Exploring distribution of annotations in sequence similarity networks. In this example, nodes within a
single connected component are assigned two colors, blue and yellow, corresponding to their having a
different categorical annotation (e.g., originating from a different environmental source). Using the example of
environmental source, genes in cluster A would all have the same environmental source (blue), indicating an
environment-specific cluster of genes. Genes in cluster B are found in two different environmental sources
(blue and yellow); however, nodes of the same type are preferentially linked to each other in the network than
to genes from different environmental sources. This would result in a positive assortativity coefficient
approaching 1 for environment and a low conductance score, suggesting a strong environmental community
structure. Genes in cluster C are also found in two different environmental sources; however, there is no clear
pattern for the distribution of genes with regard to environment. This network would have an assortativity
approaching 0 and a high conductance score
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from the same category. Normalized assortativity values range
between �1 and 1, where 0 indicates random distribution of cate-
gories within the network, 1 indicates that nodes from the same
categories tend to be connected to one another in the network, and
�1 indicates that nodes from different categories tend to be
connected in the network. A detailed description of the algorithms
used in these calculations can be found in [108].

2.4.1 Assortativity as a

Tool to Study Geographical

and Habitat Distributions of

Microbes and Genes

Forster et al. used assortativity (among other network statistics,
including the previously discussed shortest path analysis) to explore
the geographical dispersion patterns of marine ciliates in a network
generated from ciliate SSU-rDNA sequences [25]. Sequences were
clustered into two different levels of gene family—CCs and Louvain
communities (LCs) as previously described. Sequences were
assigned categorical labels based on their geographical point of
origin (eight locations) or habitat of origin (three habitats), and
assortativity was calculated. If sequences, and thus species, are
broadly distributed across geographical categories, then assortativ-
ity of SSU-rDNA sequences labeled with these geographical cate-
gories would be low because similar sequences would be found in
different environments. Contrarily, if similar sequences tend to be
from the same geographical category, indicative of endemism, then
assortativity of sequence geographical origin will be high (Fig. 6).
The majority of CCs and LCs showed a positive assortativity for
geographical origin, higher than expected by chance, indicative of
geographical community structure as opposed to global dispersal of
ciliates. Similar approaches were used by Fondi et al. and applied to
a collection of environmental metagenome samples to test the
“everything is everywhere” hypothesis at the gene pool and func-
tional level. Gene pools were more strongly associated with a
particular ecological niche than with specific geographical location,
supporting the idea that microbial genes are found everywhere but
the environment selects for them [26].

2.4.2 Conductance in the

Comparison of Lifestyles

and Evolutionary Histories

Conductance is used to explore the clustering of pairs of different
node categories in a connected component. In a study by Cheng
et al., the proteomes of 84 prokaryote genomes were categorized
into four broad redox groups based on their lifestyle, methanogens,
obligate anaerobes, facultative anaerobes, and obligate aerobes
[27]. For each CC in a pan-proteome sequence similarity network
including all 84 genomes, the conductance was calculated for pairs
of redox categories and compared to values obtained following
random relabelling of the components. The distributions of con-
ductance values for methanogens and for obligate anaerobes
groups indicated that the sequences in these groups have features
distinct from those in other groups, that anaerobes and aerobes
tend to be dissimilar, and that their sequences are more isolated
from one another in the SSN than expected by chance.
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An additional example of the use of conductance is in exploring
the propensity of a gene family to lateral gene transfer. Within a
network of archaeal and bacterial genes, CCs showing a low con-
ductance for both archaeal and bacterial sequences indicate that the
bacterial and archaeal genes within the corresponding families are
structured in two separate and conserved groups (Fig. 6). Structur-
ing gene families into two groups would indicate that there was
little or no evidence for lateral gene transfer between archaea and
bacteria within this particular gene family. This kind of gene family
is rare, with only 86 gene families from 40,584 (0.2%) meeting this
criteria [24].

2.5 SSNs in Remote

Homologue

Identification:

Shedding Light on the

Microbial Dark Matter

Up to 99% of microbial species are not cultivable and thus have not
been studied in isolated culture. Analysis of high-throughput
sequencing and metagenomics datasets has shed light on these
uncultivable organisms, often referred to as the “microbial dark
matter” [109], and in some cases enabled the reconstruction of
draft genomes [110–114]. A considerable portion of most meta-
genome studies have predicted ORFs showing no detectable simi-
larity to any known proteins, termed metaORFans [115]. These
can represent 25–85% of the total ORFs identified in metagenomes
[22]. Identifying distant homologues of ORFans may help to pre-
dict their functions and begin to unravel the microbial dark matter.
Recent work by Lopez et al. in 2015 probed the microbial diversity
of metagenome datasets from a range of environments including
the human gut microbiome, identifying homologues of genes from
86 ancient gene families that are distributed across archaea and
bacteria. The majority of these gene families included environmen-
tal homologues that were highly divergent from any of their
cultured homologues, and many branched deeply with the phylo-
genetic tree of life, highlighting our limited understanding of
diverse elements of the microbial world and hinting at the existence
of yet unknown major divisions of life [24] (Fig. 7).

2.6 Exploiting SSNs

to Analyze

Classifications

Metagenomic and genomic data are providing scientists with a
tantalizing amount of sequence data, casting the analysis of the
extent of biodiversity as a major research theme in biology
[116–120]. In theory, existing organismal and viral classifications
are invaluable tools to structure and analyze this biodiversity. How-
ever, the way taxonomical classifications are constructed raises
questions about their naturalness and their actual application
scope [38, 120–128], in particular regarding genetic diversity
surveys. There are three major reasons for this. First, organismal
and viral diversity is still largely undersampled, which means that
existing classifications are incomplete [119, 120]. Therefore, taxo-
nomically unassigned sequences cannot be readily used in class-
based genetic diversity surveys, since this dark matter remains
outside existing classes. Second, classifications are constructed
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using different features (i.e., for viruses, a mix of phylogenetic,
morphological, and structural criteria, such as replication proper-
ties in cell culture, virion morphology, serology, nucleic acid
sequence, host range, pathogenicity, epidemiology, or epizootiol-
ogy); therefore their classes do not necessarily offer immediate
proxies for quantifying genetic diversity per se. Third, evolutionary
processes responsible for both genetic and organismal diversity are
diverse, and they operate at different tempos and modes in different
lineages [49, 123, 129–141]. As a result, genetic diversity within
classes and between classes can be heterogeneous, meaning that
existing classifications may lack efficiency to discriminate, predict,
or compare taxa on genetic bases, potentially hampering diversity
studies, a profound practical issue at a time where the analysis of
metagenomic sequences is becoming a priority in biology.

Addressing these challenges is notably crucial for viral studies.
Recently, the executive committee of the ICTV [142] proposed
that network analyses methods that create similarity metrics based
on the detection of homologous genes and their genetic divergence
constitute a valuable strategy to assist classification of viruses. Con-
sistently, basic network properties and metrics (Table 1) can quan-
tify (1) whether genetic diversity is consistent within and between
the classes of existing classifications and (2) describe what classes are
the most homogeneous and distinctive in terms of genetic diversity.
Three criteria can be used to estimate intra-class genetic heteroge-
neity (Fig. 8a–c). First, the average edge weights (measured as % of
identity, PID) between pairs of sequences from genomes of the

60%

Max % identity to homologues in databases ≥  60%

Max % identity to homologues in databases < 60%

Fig. 7 Remote homologue detection to help characterize the microbial dark
matter. (a) A hypothetical highly conserved cluster of genes from genomes
present in sequence databases, where the average % of identity is high
(�60%). (b) The same cluster after addition of divergent environmental
sequences to the network. Environmental sequences in gray are more similar
to those already identified from genome surveys (�60% max identity) so are
connected directly to the conserved gene cluster in the network. More divergent
sequences in pink have <60% maximum identity to their homologues in the
database. Many of these are only identified as linked to the sequences from the
conserved database via intermediate gray nodes. This is the notion of “transitive
homology”
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same class provide a trivial measure of intra-class genetic diversity.
Second, the average proportion of Conserved Canonical Connec-
tions between sequences from the same connected component and
from the same taxonomic class can be exploited (CCC, i.e., in each
connected component of the SSN, the total number of edges
connecting sequences of a given class i (intra-group edges, denoted
Eii) divided by the theoretical maximal number of possible edges
between sequences of that class in the connected component (CCC
(i)¼ 2*Eii/(Ni� (Ni � 1)) whereNi is the number of sequences of
class i present in the connected component). CCC ranges between
0 and 1. Within a connected component, if all pairs of sequences
from the same class are directly connected, CCC equals 1, since all
these sequences are more conserved than a given %ID threshold. By
contrast, low CCC are observed when sequences from genomes
from the same class lack cohesive evolution, for example, when
some related sequences evolved so fast that they show less than
the minimal similarity required to be directly connected to their
homologues in the graph. Third, the genetic consistency of a class
can be estimated by (1) identifying what cluster of sequences was
present in the largest number of genomes of the class and then
(2) by quantifying the proportion (in %) of the class members
harboring that most ubiquitous cluster (maxCore%). When max-
Core% of a class is<100%, it means that, for this dataset, there is no
gene family shared by all members of that class (i.e., no core genes).
The SSN structure can also serve to estimate the genetic distinc-
tiveness of each class, i.e., whether sequences from a given class are

Table 1
Schematic properties of two extreme kinds of taxonomic classes with respect to their genetic
diversity

“Ideal” classes Not ideal classes

Low intra-class genetic diversity (high average PID) High intra-class genetic diversity (low average
PID)

High genetic cohesion (high average CCC) Low genetic cohesion (low average CCC)

Core components (high maxCore%) No core components (low maxCore%)

Obvious genetic distinctiveness (high conductance
difference with random groups)

Limited genetic distinctiveness (conductance
similar to random groups)

Exclusive pangenome (high % of exclusive CC) No exclusive pangenome (low % of exclusive
CC)

The three top properties inform about genetic diversity within classes (intra-class genetic diversity). The last two

properties inform about the genetic distinctiveness (core and signature genes) of the classes. Interclass genetic heteroge-

neity identifies when genetic diversity of a class is not comparable with genetic diversity of another class in the

classification. CCC, average proportion of genetic conservation between sequences from the same cluster and from the
same taxonomic class; PID, average edge weights (% identity) between two sequences from genomes of the same class
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more similar to one another than they are to sequences from other
classes (Fig. 8d, e). Such sequences could be used as classificatory
features to assign members to the class. In a SSN, this property
translates to a low ratio of interclass edges over intra-class edges and
is measured by conductance (Fig. 8d). Likewise, the proportion of
clusters comprised exclusively of sequences from one class, a diag-
nostic feature of the class, provides an estimate of the class genetic
distinctiveness. Genetically highly distinct classes have a high % of
such exclusive clusters. Based on these network measures, interclass
genetic heterogeneity can simply be diagnosed by contrasting esti-
mates of genetic consistency for all the above measures for each
class. There is interclass heterogeneity within a classification when
the mean PID, mean CCC, maxCore%, DRC, and % of exclusive
components differ between classes.

Such network analyses show that virus classifications face a
pragmatic issue: overall genetic distinctiveness allows relatively
safe assignments of viral sequences to existing classes; however,
genetic diversity of viral taxa of similar ranks differs among the
tested classifications. Therefore, virus classifications (especially
ICTV classification at the family level) should be used carefully to
avoid inaccurate estimates in metagenomic diversity surveys. Clas-
ses with broader genetic diversity will tend to be more easily
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PID

A.

Sequences are represented by nodes. Each node is colored 
to represent the class to which the host of its corresponding 
sequence belongs. Nodes with the same color belong to the 
same class. Edge weight is represented by edge size 
proportional to the weight.

3/3

2/3
PCS

B.
Member 1 Member 2

Member 3 Member 4

Out of 6 class members
X%-core

(4/6)

C.

High assortativity Low assortativity

D.

Fig. 8 Intra- and interclasses heterogeneity measurements in weighted similarity networks. Sequences are
represented by nodes. Each node is colored to represent the taxonomic class to which its host belongs. Nodes
with the same color belong to the same class. Edge weight is represented by edge size proportional to the
weight. Subgraphs correspond to clusters of sequences. Direct neighbors have a greater similarity than the
threshold set to allow such connections. PID, average edge weights (% identity) between two sequences from
genomes of the same class; CCC, average proportion of genetic conservation between sequences from the
same cluster and from the same taxonomic class; maxCore%, conductance; and %-exclusive components
correspond to the estimates used to assess genetic consistency of classes
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detected in the environment than classes with reduced genetic
diversity, since the former will necessarily be associated with more
OTUs than the latter. Some alpha- and beta-diversity analyses of
environmental data, which rely on counts and on contrasts of the
abundance of taxonomic classes in different samples, will thus also
be biased. A similar approach could be applied on different types of
classified lineages, i.e., to identify what groups of bacteria, archaea,
or eukaryotes with comparable taxonomical ranks are the most
genetically heterogeneous and what ranks of their classification
are the least genetically consistent.

3 Gene-Sharing Networks

Gene-sharing networks are often called “genome networks” as they
are best suited for summarizing what genes are shared between
different genomes, highlighting routes of gene sharing. The ability
to explore gene sharing between all genomes in a network in a
simple graph can have useful properties for reflecting microbial
social life, inherently inclusive of gene sharing both as a conse-
quence of vertical inheritance and lateral gene transfer (LGT).
Bacteriophage and plasmid genomes are typically highly mosaic in
nature due to a high level of horizontal gene transfer, making it
difficult to classify their genomes [37, 143]. Lima-Mendez et al.
proposed the use of gene-sharing networks as a new classification
method that tackles this problem of mosaicism by classifying viruses
based on their genome’s content [37]. Constructing gene-sharing
networks using subsets of genes from different functional cate-
gories of genes can also be useful in exploring what kinds of genes
are being shared by different genomes.

In a gene-sharing network, each genome is represented by a
node, and two nodes are connected by an edge when the two
corresponding genomes share homologous genes or gene families
(Fig. 9). These gene families can be identified from SSNs (of as CCs
of LCs) or by alternative methods. In gene-sharing networks, edges
can be weighted by the number of genes or gene families shared
between the genomes. In this way, gene-sharing networks enable
the study of microbial social life, quantitatively displaying the gene
families shared between genomes both as a result of vertical trans-
mission and lateral gene transfer.

Gene-sharing networks are useful tools for exploring overall
patterns of gene sharing between genomes. Recently, Lord et al.
developed BRIDES, a software package that specifically identifies
different kinds of patterns in evolving gene-sharing networks after
the addition of new genome nodes [144]. However, in gene-
sharing networks the kind of gene families that are being shared is
often overlooked. To explore how functions are shared between
different genomes, gene-sharing networks can be built from genes
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using different subsets of functions (Fig. 10) [29]. An alternative
form of the gene-sharing network is the multiplex network. In this
network nodes can be linked by edges of different types, for exam-
ple, each edge representing a different gene family or different
functional groups of gene families, thus retaining additional infor-
mation compared to a simpler gene-sharing network (Fig. 9)
[23]. Multiplex networks can be useful for small-scale analyses;
however, with large datasets they can rapidly become difficult to
interpret and analyze. Importantly, multiplex networks are unim-
odal projections of bipartite graphs (discussed in the Subheading
14) which can provide greater clarity and have a number of attrac-
tive properties for the analysis of larger datasets.

3.1 Classification of

Entities Using Gene-

Sharing Networks

The possibility of summarizing gene sharing between sets of enti-
ties with complex evolutionary histories means that gene-sharing
networks can be useful for classifying organisms based on their gene
content. Lima-Mendez et al. analyzed bacteriophage genomes to
generate two different phage gene-sharing networks that reflect
their reticulate evolutionary history [37]. In the first gene-sharing
network, phage genomes (nodes) were connected by edges when
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Fig. 9 Translating gene networks to gene-sharing networks. (a) Gene network
for three gene families. Gene nodes are colored based on their genome of origin.
The background color corresponds to the gene family color in part c. (b) The
gene-sharing network corresponding to the gene network in a. Edges are
weighted on the number of gene families shared by the genomes. (c)
Multiplex gene-sharing network corresponding to the gene network in a.
Genomes are connected by multiple edges with colors corresponding to
different gene families. These edges are weighted based on the number of
genes shared between two genomes for each family
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they shared significant similarity at the sequence level. This gene-
sharing network was clustered using the previously discussed MCL
algorithm [145], identifying distinct groups of phages with
sequence similarity. Following clustering, membership to a partic-
ular cluster was reassessed based on shared similarity with viruses in
other clusters, reflecting their reticulate evolutionary history, allow-
ing the generation of a matrix assigning a score describing the
relative membership of any given viral genome to a particular
classification group. In the second approach, Lima-Mendez et al.
generated a “module”-based gene-sharing network, where edges
are drawn between two phage genomes if they share a “module,” in
this case defined as a group of genes with similar phylogenetic
profiles, enabling the exploration of what kinds of genes are shared
between different groups of phages or are “signatures” for a partic-
ular group of phage genomes [37].

3.2 Exploring Routes

of Gene Sharing in

Gene-Sharing

Networks

Two network metrics, also useful in the analysis of gene networks,
can be used to attempt to identify “hubs” of gene sharing in the
context of gene-sharing networks: node “degree” and “between-
ness.” Both metrics aim to determine the centrality of a node in a
network. The degree of a node is simply the number of edges that it
is connected to. The betweenness of a node is the frequency at

Fig. 10 Functional gene-sharing network reflecting the chimeric nature of eukaryotes. These gene-sharing
networks describing how genes in different functional categories are shared between bacteria (green),
archaea (yellow), eukaryotes (gray), plasmids (purple), and viruses (red) from a published dataset [29]. In
both cases, a giant connected component is shown alongside examples of smaller connected components (a)
Gene-sharing network for COG category D: cell division control. In this network, sequences of eukaryote origin
(gray) cluster with bacterial sequences, reflecting their origin in the alphaproteobacterial endosymbiont that
would become the mitochondrion. (b) Gene-sharing network for COG category K: transcription machinery. In
this network, eukaryote sequence (gray) cluster with archaeal sequences, reflecting the origin of these genes
in the archaeal host for the eukaryotic endosymbiont
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which it is found in all the possible shortest paths between any two
nodes in the network. Halary et al. used gene-sharing networks
based on DNA sequence similarity to explore gene sharing between
prokaryotes and mobile genetic elements [30]. Plasmids were iden-
tified as hubs of gene sharing within this pool of genomes, suggest-
ing that they are key vectors for genetic exchange between cellular
genomes and a potential DNA reservoir shared by genomes. Phages
were more peripheral in the network and mostly linked prokaryotes
from the same lineage. Thus, gene-sharing networks provided
insights on the evolutionary processes that shape the gene content
of prokaryote genomes.

The importance of plasmids in genetic worlds was further high-
lighted by exploring plasmid gene-sharing networks without inclu-
sion of prokaryote genomes [14, 36]. Connecting 2343 plasmid
genomes based on shared gene content in a single graph demon-
strated that plasmids tended to cluster based on the phylogenetic
class of their corresponding host prokaryote rather than habitat but
thatmoremobile plasmids tended to bemore “central” in the graph,
indicating that thesewere hubs of gene sharing. Specifically, routes of
gene sharing for gene families including antibiotic resistancemarkers
were identified between actinobacterial plasmids and gammaproteo-
bacterial plasmids, suggesting that Actinobacteria may act as a reser-
voir for antibiotic resistance genes for Gammaproteobacteria [14].

The finding that plasmids are hubs of gene sharing for prokary-
ote genomes was supported by analysis of gene sharing in a pro-
teobacterial phylogenomic network including 329 proteobacterial
genomes [32]. A phylogenomic network is a type of phylogenetic
network that has been constructed from fully sequenced genomes.
In this example the phylogenomic network is an alternative to a
gene-sharing network, in which genome nodes within a phylogeny
are linked by edges if they share genes [34]. This study identified
extensive evidence for lateral gene transfer among Proteobacteria,
with at least one LGT event inferred in 75% of all gene families. Of
these putative LGTs, more were related to plasmid-related genes
than phage-related genes, suggesting plasmid conjugation was a
more frequent source of gene transfer [32]. Directed graphs explor-
ing directionality of LGT events between 657 prokaryote genomes
allowed the polarization of 32,028 putative LGT events finding
that frequency of recent events correlates with genome sequence
similarity and most LGTs occurring between donor-recipient pairs
with <5% difference in GC content, suggesting that there are some
barriers to lateral gene transfer between prokaryotes but that these
are not insurmountable [31]. Later reconstruction of transduction
events linking phage donors and recipients in a phylogenomic
network demonstrated that LGT by transduction was generally
highest in similar genomes and between clusters of closely related
species but that this constraint was occasionally broken, resulting in
LGTs over long evolutionary distances [35].
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4 Bipartite Graphs

Bipartite graphs are excellent at summarizing what genes are shared
between sets of genomes, and as such are ideal for comparative
genomics, including for the comparison of genomes reconstructed
in metagenomic analyses. The potential to extend this approach to
multilevel graphs, adding additional layers of information such as
the environment in ecological studies, could provide a powerful
summary of gene sharing in relatively complex datasets.

A multilevel network is a network in which edges exclusively
connect nodes of different types, i.e., representing different levels
of biological organization. Thus, a bipartite graph is a graph with
two types of nodes (top and bottom nodes), where edges exclu-
sively connect nodes of different types (Fig. 11) [146]. The types of
nodes used can vary widely depending on the biological question,
from linking diseases (top nodes) to their associated genes (bottom
nodes) in order to explore the association between related disease
phenotypes and their genetic causes [147, 148], to exploring the
concept of flavor pairings in food based on a graph of ingredients
(top nodes) and the flavor compounds they contain (bottom
nodes) [149]. For applications in molecular biology, a typical exam-
ple of a bipartite graph may describe the relationships between
genomes (top nodes) and gene families (bottom nodes), with
edges between nodes indicating that a genome encodes at least
one member of the corresponding gene family (Fig. 11) [23, 33,
38, 150]. This kind of genome to gene family graph is particularly
suited for the comparative analysis of the gene content of genomes
in microbial communities and for exploring patterns of gene shar-
ing, for example, between distantly related cellular genomes [33] or
between cellular genomes and their mobile genetic elements (Corel
et al. forthcoming). It is possible to represent all genes shared
between a given set of genomes, as a result of both vertical inheri-
tance and horizontal gene transfer, in a single bipartite graph [23].

Fig. 11 A bipartite graph and its reduction to a quotient graph: (a) An example of a bipartite graph displaying
how five gene families are shared between three genomes. (b) A reduced form of the bipartite graph in which
gene families are combined to “twin” nodes if they share identical taxonomic distributions. A single
“articulation point” connects all three genomes
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This feature was utilized by Iranzo et al. to explore gene sharing
among the entire dsDNA virosphere, a group of entities typified by
high rates of molecular evolution and gene transfer [38]. In this
case, bipartite modularity was identified in the graph to identify
groups of related viral genomes and their shared genes, with the
modularity of the graph optimized to Barber’s bipartite modularity
[151]. A number of additional methods have been developed for
detection of module structures within a bipartite graph including
for weighted graphs [152]. Two recently developed tools,
AcCNET [150] and MultiTwin (forthcoming), have simplified
the process of constructing and analyzingmultilevel graphs without
the need for custom programming (Boxes 3 and 4).

Box 3: Generating Gene-Sharing Networks and Bipartite
Graphs
1. Dataset assembly: The same rules for dataset assembly as

described in SSN generation apply to assembling the dataset
for bipartite and gene-sharing graphs. It is especially impor-
tant to maintain an annotation file that maps gene IDs to
their genome of origin.

2. Definition of gene families: Gene family identification can be
carried out following the construction of sequence similarity
networks, as described in Subheading 2. There are a broad
range of alternative approaches for construction of gene
families that are beyond the scope of discussion in this chap-
ter; however, all of these can also be applied to the genera-
tion of gene-sharing and bipartite graphs.

3. Network construction: From the definition of gene families, it
is possible to construct both gene-sharing networks and
bipartite graphs.
(a) In a gene-sharing network, two genomes are connected

by an edge when they encode genes belonging to the
same gene family. Generating this kind of network can
be automated from BLASTor fasta sequence data using
EGN [52].

(b) In a bipartite graph, there are two types of node,
genome nodes and gene family nodes. An edge is
drawn between a genome node and a gene family
node if that genome encodes a member of the gene
family. AcCNET [150] and MultiTwin (forthcoming)
tools both include pipelines for generating bipartite
graphs from sequence data. MultiTwin can also gener-
ate a bipartite graph from two files: a tab-delimited file
mapping gene identifiers to their corresponding
genome identifier and a tab-delimited file mapping
gene identifiers to their corresponding gene family.
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Two topological features of bipartite graphs can be used to
facilitate studies of gene sharing by an exact decomposition of the
bipartite graph: twins and articulation points [23, 153]. A bipartite
graph can be reduced to a quotient graph, a reduced variant of the
bipartite graph where nodes from the bipartite graph have been
combined based on sharing similar properties without the loss of
information. For twin nodes (“twins”), this reduction is based on
the combination of bottom nodes that have identical neighbors
into a single “twin” supernode in the quotient graph (Fig. 11). This
is a useful way of reducing the size of large graphs without losing
information, but twin nodes also have useful properties for graph
interpretation. The genomes supporting a twin node (its neigh-
bors) define a club of genomes that share genes, through common
ancestry and/or horizontal transfer, and the number of gene
families making up the twin gives a simple description of how
many gene families are shared between this club. For example, in
any given dataset, any “core” set of gene families encoded by all
species in the analysis will be represented by a single twin node. The
gene families combined in twin supernodes can be viewed as gene
families that are likely to be transmitted together [23]. An articula-
tion point is a node that, when removed, will split the graph into
two or more connected components. Within a gene family-genome
bipartite graph, articulation points are expected to help to identify
“public genetic goods,” gene families that are shared by distantly
related entities that may confer an advantage independent of gene-
alogy [23, 154], as well as selfish genetic elements such as transpo-
sases that also spread across multiple genomes.

Box 4: Considerations for the Construction and Analysis of
Bipartite Graphs Using AcCNET and MultiTwin
The default workflow for both ACcNet and MultiTwin takes
protein sequence data in fasta format as input and generates a
bipartite graph alongside a number of graph summary statis-
tics and outputs for visualization in standard tools (such as
Gephi and Cytoscape) but with a number of important differ-
ences, including:

l Graph levels: Both AcCNET and MultiTwin can generate a
bipartite graph using their default workflow; however, Multi-
Twin can also be used to explore additional graph levels by
adding additional node types (e.g., a tripartite graph). Multi-
partite graphs mean that gene family level annotations can be
associated with additional levels of biological information.
This may be particularly useful for the comparison of samples
in metagenomics studies or time course experiments, allow-
ing gene families to be associated directly with features such as
environmental origin or time point.

(continued)

296 Andrew K. Watson et al.



Box 4: (continued)
l Gene family identification: AcCNET uses kClust [155] to

assemble gene families, a kmer-based method for rapid assem-
bly of clusters of homologous proteins from sequence data.
By default, MultiTwin identifies gene families using an all-
versus-all BLAST search, followed by identification of
connected components at a given threshold, as previously
discussed for gene family detection from SSNs. MultiTwin
can also be used in a modular way allowing for additional
customization, including the use of any custom gene family
input in the form of a “community file”: a tab-delimited file
linking every gene/protein ID to a community identifier,
with gene families defined using a clustering method of
choice.

l Edge weighting: In AcCNET the edge weight is proportional
to the inverse of the phylogenetic distance between proteins
in a cluster from a given genome to other proteins within the
same cluster. In MultiTwin, the default edge weight is based
on the number of genes present in a gene family from any
given genome.

l Graph compression: While both methods can be used to iden-
tify “twin” nodes, only MultiTwin generates a quotient graph
from these twin nodes and identifies articulation points.

AcCNET is available at: https://sourceforge.net/pro
jects/accnet

MultiTwin is available at: http://www.evol-net.fr/index.
php/en/downloads

4.1 Using Bipartite

Graphs to Explore

Patterns of Gene

Sharing Between

Diverse Entities

The simplest application of a bipartite graph is the summary of all
genes shared between genomes in a single parsable graph, and this
feature has been used to explore gene sharing in the dsDNA virome
[38], a range of Escherichia coli genomes to investigate the E. coli
pangenome [150] and between a broad range of prokaryotes that
include newly discovered organisms [33]. In their analysis of pro-
karyote genomes, Jaffe et al. used the notion of “twins” to explore
patterns of gene sharing between prokaryotes, including Archaea
and the recently discovered ultrasmall “Candidate Phyla Radiation”
and TM6 bacteria with extremely unusual and reduced genomes.
The group found evidence for lateral gene transfer between ultra-
small bacteria and other prokaryotes, consistent with the sugges-
tion that the ultrasmall bacteria may be symbionts [33]. In their
exploration of the dsDNA virome, Iranzo et al. used graph module
detection, algorithms designed to identify groups of densely
connected nodes in a graph, to identify sets of densely connected
viral genes and genomes that included viruses with broad host
ranges, as well as 14 hallmark viral genes that account for most of
the gene sharing between all different viral modules [38].
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5 Conclusions

This chapter has offered a brief introduction to the generation of
commonly used sequence similarity networks in molecular biology
and a guide to how they can be generated and applied to a broad
range of studies (Fig. 12). Networks provide a highly scalable
framework for the study of an increasingly broad range of applica-
tions in molecular biology and evolution and have already contrib-
uted to a number of important discoveries in the field. These
include exploring patterns of introgression and horizontal transfer
across all domains of life and mobile elements, the origin of eukar-
yotes, the contribution of new genes including novel fusion genes
to major evolutionary transitions, shedding light on the “microbial
dark matter” in metagenome sequencing datasets and in testing
ecological hypotheses about organism and gene distribution and
environmental selection. New methods and tools for network anal-
ysis are becoming increasingly user-friendly and accessible to biol-
ogists without extensive programming experience and enabling
network analysis to become a more common part of a biologist
toolkit in the analysis of molecular sequence data.

Fig. 12 A workflow highlighting some of the available routes for generation and analysis of SSNs, gene-
sharing networks, and bipartite graphs. This workflow highlights just some of the many tools and routes for
network construction and analysis
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6 Exercises

The exercises use EGN [52] and require access to a local installation
of BLAST+ [58] and Perl. The fasta sequence file “example.faa”
provided with EGN includes a dataset of protein sequences from
Archaea, Bacteria, Eukaryota, and mobile genetic elements, avail-
able at http://www.evol-net.fr/index.php/fr/downloads:

1. Perform a manual all-versus-all BLAST using search for a given
protein sequence file from the unix terminal (requires local
installation of BLAST). The output can be filtered to generate
a network:

(a) Make the blast database using the “makeblastdb.”

l Command: “makeblastdb -dbtype prot -in example.faa
–out example”

(b) Performing the BLAST search using “blastp,” remember-
ing to output data in a tabular format for easy processing.

l Command: “blastp -query example.faa -db example
-evalue 1e-5 -seg yes -soft_masking true - max_target_-
seqs 5000 -outfmt “6 qseqid sseqid evalue pident bitscore
qstart qend qlen sstart send slen” -out protein.blastpout”

2. Generate a SSN using EGN from example.faa (requires local
installation of BLAST and download of EGN from http://
www.evol-net.fr/index.php/fr/downloads):
(a) Run EGN from the terminal using “perl egn.1.0.plus.pl”

from the programs home directory.

(b) Follow on-screen prompts sequentially to generate an
alignment, filter the output, and generate a gene network
with outputs compatible with both Cytoscape and Gephii.

3. Visualize SSN networks:

(a) In Cytoscape: Import files named “cc.*.txt” as a network
to visualize that set of connected components.

l To associate nodes with their annotations, import “cc*.
atr” as a table.

(b) In Gephi: Open “cc*.gxf” files to import individual
connected components from the network into Gephi.
Use the “layout” menu to explore different kinds of lay-
outs for the network.

Glossary

Articulation point A node in a graph whose removal increases
the number of connected components of
the resulting graph.
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Adjacency matrix A numerical square matrix with row and
columns labeled by network nodes, with
1 or 0 in the matrix indicating whether
they are connected by an edge in the
network.

Assortativity A measure of the preference for labeled
nodes in a network to attach to other
nodes with identical labels. This is the Pear-
son correlation coefficient of the degrees of
pairs of linked nodes.

Assortativity ¼ modularity
modularitymax

with modularity

defined below and modularity max as the
modularity of a perfectly mixed network.

modularitymax ¼ 1
2m 2m �P

ij
kik j

2m δ ci � c j
� �� �

.

Betweenness A centrality measure for a node in a graph.
Precisely, this is the proportion of shortest
paths between all possible pairs of nodes in a
connected component that pass through
this node. A betweenness close to 1 is indic-
ative of a highly central gene, whereas close
to 0 is more peripheral.

Bipartite graph A graph with two types of nodes (top and
bottom nodes), in which an edge only con-
nects nodes of different types.

Club of genomes A group of entities that replicated separately
but exploit common genetic material that
may not trace back to the last common
ancestor.

Communities
(also called modules)

In graph terminology, a community is
defined as a group of nodes that are more
connected between themselves than to
nodes in the rest of the graph.

Composite gene A gene that is made up of at least two com-
ponent parts.

Component genes Genetic fragments sharing partial similarity
to a composite gene.

Conductance A measure that quantifies whether a given
category of nodes shares more edges
between themselves than with the rest of
the nodes in the graph. A low conductance
approaching zero implies that there are few
edges shared between this category of
nodes and the rest of the graph, while a
higher conductance implies more connec-
tivity between that category of nodes and
other nodes outside of the category. G a
graph, G ¼ {V, E}. With U & G a set of
nodes that is assumed to not have more
than half the total node. �U ¼ G\U. d(U)
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sum of degree of vertices in U.

Conductance ¼
P

i∈U , j∈ �Uai, j

min d Uð Þ; d� �U
�� �

Connected component A subgraph in which any pair of nodes is
connected, either directly or indirectly, and
that is not connected to the rest of the
graph.

Degree The number of edges connected to a
given node.

Endosymbiont An organism that lives inside another to the
mutual benefit of both organisms.

Edge The link between two nodes in a network.
E-value The number of alignments in a sequence

similarity search expected to be seen by
chance searching against a database of a
certain size.

Introgression Descent process through which the genetic
material of an entity propagates into differ-
ent host structures and is replicated within
these new host structures.

Lateral gene transfer
(LGT; or horizontal
gene transfer, HGT)

Movement of genetic material between
entities not mediated by vertical descent.

Louvain community A graph community identified using the
Louvain algorithm. Louvain algorithm is
based on optimizing modularity.

Network (or graph) A system of objects (nodes), some pairs of
which are linked (edge).

Multipartite graph Similar to a bipartite graph, but with any
number of types of nodes exclusively
connected to nodes of other types.

Multiplex graph A graph where nodes can be connected by
edges of different types.

Modularity The fraction of edges falling within given
groups (e.g., communities or functional
categories) in a network, minus the fraction
of edges that would be expected with a
random distribution of edges. With m the
total number of vertices, ci the community
of node i, δ() the Kronecker delta, and ki the
degree of modularity

¼ 1
2m

P
ij Aij � kik j

2m

� �
δ ci � c j
� �

.

Phylogenomic network A phylogenetic network constructed from
whole genome sequences where genomes
are connected based on pairwise relation-
ships including vertical and lateral gene
transfer (LGT) events.
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Public genetic goods Common genetic materials shared by clubs
of phylogenetically distinct genomes.

Quotient graph A simplified graph whose nodes represent
disjoint subsets of nodes of the original
graph; an edge in this new graph connects
two such new nodes whenever an edge in
the original graph connects at least one ele-
ment of a new node with at least one from
the other.

Supporting genomes The common set of neighbors that support
a “twin” class in a multipartite graph.

Twins Nodes in a multipartite graph that share
identical sets of neighbors.
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Chapter 10

Bayesian Molecular Clock Dating Using Genome-Scale
Datasets

Mario dos Reis and Ziheng Yang

Abstract

Bayesian methods for molecular clock dating of species divergences have been greatly developed during the
past decade. Advantages of the methods include the use of relaxed-clock models to describe evolutionary
rate variation in the branches of a phylogenetic tree and the use of flexible fossil calibration densities to
describe the uncertainty in node ages. The advent of next-generation sequencing technologies has led to a
flood of genome-scale datasets for organisms belonging to all domains in the tree of life. Thus, a new era has
begun where dating the tree of life using genome-scale data is now within reach. In this protocol, we explain
how to use the computer program MCMCTree to perform Bayesian inference of divergence times using
genome-scale datasets. We use a ten-species primate phylogeny, with a molecular alignment of over three
million base pairs, as an exemplar on how to carry out the analysis. We pay particular attention to how to set
up the analysis and the priors and how to diagnose the MCMC algorithm used to obtain the posterior
estimates of divergence times and evolutionary rates.

Key words Molecular clock, Bayesian analysis, MCMC, Fossil, Phylogeny, Primates, Genome

1 Introduction

Themolecular clock hypothesis, which states that the rate of molec-
ular evolution is approximately constant with time, provides a
powerful way to estimate the times of divergence of species in a
phylogeny. Since its proposal over 50 years ago [1], the molecular
clock hypothesis has been used countless times to calibrate molec-
ular phylogenies to geological time, with the ultimate aim of dating
the tree of life [2, 3]. Several statistical inference methodologies
have been developed for molecular clock dating analyses; however,
during the past decade, the Bayesian method has emerged as the
method of choice [4, 5], and several Bayesian inference software
packages now exist to carry out this type of analysis [6–10].

In this protocol, we will explain how to use the computer
program MCMCTree to estimate times of species divergences
using genome-scale datasets within the Bayesian inference
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framework. Bayesian inference is well suited for divergence time
estimation because it allows the natural integration of information
from the fossil record (in the form of prior statistical distributions
describing the ages of nodes in a phylogeny) with information from
molecular sequences to estimate node ages, or geological times of
divergence, of a species phylogeny [6, 11]. Another advantage of
the Bayesian clock dating method is that relaxed-clock models,
which allow for violations of the molecular clock, can be easily
implemented as the prior on the evolutionary rates for the branches
in the phylogeny [6]. MCMCTree allows analyses to be carried out
using two popular relaxed-clock models (the autocorrelated and
independent log-normally distributed rates models [12, 13]), as
well as under the strict molecular clock. Furthermore, MCMCTree
allows the user to build flexible fossil calibrations based on various
statistical distributions (such as the uniform, truncated-Cauchy,
and skew-t, and skew-normal distributions [12, 14, 15]). But
perhaps the main advantage of MCMCTree is the implementation
of an approximate algorithm to calculate the likelihood [6, 16],
which allows the computer analysis of genome-scale datasets to be
completed in reasonable amounts of time. The disadvantage of the
algorithm is that it only works on fixed tree topologies. Several
software packages that perform co-estimation of times and tree
topology, but which do not use the approximation, are available
[8, 9, 17, 18].

In this protocol, we focus on how to carry out a clock dating
analysis with MCMCTree, paying particular attention to diagnos-
ing the MCMC algorithm (the workhorse algorithm within the
Bayesian method). Theoretical details of the Bayesian clock dating
methods implemented in the programMCMCTree are described in
[12–16, 19]. For general introductions to Bayesian statistics and
Bayesian molecular clock dating, the reader may consult [20, 21].

2 Software and Data Files

To run the protocol, you will need the MCMCTree and BASEML
programs, which are part of the PAML software package for phylo-
genetic analysis [22]. The source code and compiled versions of the
code are freely available from bit.ly/ziheng-paml. All the data files
necessary to run the protocol can be obtained from github.com/
mariodosreis/divtime. Please create a directory called divtime in
your computer and download all the data files from the GitHub
repository. This protocol was tested with PAML version 4.9e.

You are assumed to have basic knowledge of the command line
in Unix or Windows (also known as command prompt, shell, or
terminal). Simple tutorials for users of Windows, Mac OS, and
Linux are posted at bit.ly/ziheng-software. Install MCMCTree
and BASEML in your computer system, and make sure you have
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the mcmctree and baseml executables in your system’s path (see
bit.ly/ziheng-paml for details on how to do this). Finally, it is
helpful (but not indispensable) to have knowledge of the R statisti-
cal environment (www.r-project.org). R is quite useful to analyze
the output of the program, perform convergence diagnostics, and
create nice-looking plots. File R/analysis.R contains some
examples for this tutorial.

In this protocol, we will estimate the divergence times of nine
primates and one scandentian (an out-group), using a very long
alignment (over three million nucleotides long). This dataset was
chosen because it can be analyzed very quickly with MCMCTree
and it is thus suitable to illustrate the method. We also provide a
dataset of 330 species (276 primates and 4 out-groups) with a
shorter alignment, to illustrate time estimation in a taxon-rich
dataset (see Sect. 5.5 for details).

2.1 Tree and Fossil

Calibrations

The phylogenetic tree of the ten species is shown in Fig. 1. The tree
encompasses members of all the main primate lineages. The ten
species were chosen because they have had their complete genomes
sequenced. They are a subset of the 36 mammal species analyzed in
[23]. File data/10s.tree contains the tree with fossil calibrations
in Newick format, which is the format required by MCMCTree.
The eight fossil calibrations are shown in Table 1. The calibrations
are the same used to estimate primate divergence times in [24]. We
discuss fossil calibrations in detail in the “Sampling from the Prior”
section. The time unit in the analysis is 100 million years (My).
Thus, the calibration B(0.075, 0.10) means the node age is con-
strained to be between 7.5 and 10 million years ago (Ma).

2.2 Molecular

Sequence Data

The molecular data are an alignment of 5614 protein-coding genes
from the ten species. All ambiguous codon sites were removed, and
thus the alignment contains no missing data. The alignment was
separated into two partitions: A partition consisting of all the first
and second codon positions (2,253,316 nucleotides long) and a
partition of third codon positions (1,126,658 nucleotides long).
The alignment is a subset of the larger 36-mammal-species align-
ment in [23]. See also ref. 24. File 10s.phys in the data directory
contains the alignment. The alignment is compressed into site
patterns (a site pattern is a unique combination of character states
in an alignment column) to save disk space.

3 Tutorial

We seek to obtain the posterior distribution (i.e., the estimates) of
the divergence times (t) and the molecular evolutionary rates (r, μ,
σ2) for the species in the phylogeny of Fig. 1. Here t¼ (t11, . . ., t19)
are the nine species divergence times; r ¼ (r1,12, . . ., r1,19, r2,12, . . .,
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r2,19) are the 2 � 8 ¼ 16 molecular rates, one per branch and
partition (i.e., there are eight branches in the tree and two parti-
tions in the molecular data); and μ ¼ (μ1, μ2) and σ2 ¼ (σ21, σ

2
2) are

the mean rates and the log-variance of the rates, for each partition.
The posterior distribution is

f t; r; μ; σ2jD� � / f tð Þf rjt; μ; σ2� �
f μð Þf σ2

� �
f Djr; tð Þ,

Human

Chimp

Gorilla

Orangutang

Rhesus

Marmoset

Tarsier

Mouse lemur

Bushbaby

Threeshrew

11

12

13

14

15

16

17
18

19

Fig. 1 The tree of ten species. Nodes with fossil calibrations are indicated with
black dots (see Table 1 for calibration densities). Internal nodes are numbered
from 11 to 19 according to the nomenclature used by MCMCTree

Table 1
List of fossil calibrations used in this tutorial

Nodea Crown group MCMCTree calibrationb

19 Chimp-human B(0.075, 0.10, 0.01, 0.20)

18 Gorilla-human B(0.10, 0.132, 0.01, 0.20)

17 Hominidae B(0.112, 0.28, 0.01, 0.10)

16 Catarrhini B(0.25, 0.29, 0.01, 0.10)

15 Anthropoidea ST(0.4754, 0.0632, 0.98, 22.85)

13 Strepsirrhini B(0.38, 0.58, 0.01, 0.10)

12 Primates S2N(0.698, 0.65, 0.0365, �3400, 0.650, 0.138, 11409)

11 Euarchonta G(36, 36.9)

aNode numbers as in Fig. 1
bB(a, b, pL, pU) means the calibration is a uniform distribution between a and b, with probabilities pL and pU that the true

node age is outside the calibration bounds. ST(location, scale, shape, df ) means the calibration is a skew-t distribution.
S2N( p, location1, scale1, shape1, location2, scale2, shape2) means the calibration is a p:1 � p mixture of two skew-

normal distributions. G(α, β) means the calibration is a gamma distribution with shape α and rate β. See MCMCTree’s

manual for the full details on fossil calibration formats. The calibrations are from the primate analysis in [24]
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where f(t) is the prior on times; f(r|t, μ, σ2)f(μ)f(σ2) is the prior on
the branch rates, mean rates, and variances of the log-rates; and
f(D|t, r) is the molecular sequence likelihood. The prior on the
times is constructed by combining the birth-death process with the
fossil calibration densities (see ref. 13 for details). The prior on the
rates is constructed under amodel of rate evolution, assuming, in this
tutorial, that the branch rates are independent draws from a
log-normal distribution with mean μi and log-variance σ2i [13].

Bayesian phylogenetic inference using MCMC is computation-
ally expensive because of the repeated calculation of the likelihood
on a sequence alignment. The time it takes to compute the likeli-
hood is proportional to the number of site patterns in the align-
ment. Thus, longer alignments take longer to compute. For
genome-scale alignments, the computation time is prohibitive.

MCMCTree implements an approximation to the likelihood
that speeds computation time substantially, making analysis of
genome-scale data feasible. The approximate likelihood method
for clock dating was proposed by Thorne et al. [6] and extended
within MCMCTree [16]. The method relies on approximating the
log-likelihood surface on the branch lengths by its Taylor expan-
sion. Write ℓ(bj) ¼ log f(D| bj) for the log-likelihood as a function
of the branch lengths bj¼ (bj,i ¼ rj,iti) for the alignment partition j.
The Taylor approximation is

ℓ b j

� � � ℓ
�
b̂j

�þ �
b j � b̂j

�T
g j þ

1

2

�
b j � b̂j

�T
H j

�
b j � b̂j

�
,

where b̂j are the maximum likelihood estimates (MLEs) of the
branch lengths and gj and Hj are the gradient (vector of first
derivatives) and Hessian (matrix of second derivatives) of the
log-likelihood surface evaluated at the MLEs for the partition.
The approximation can be improved by applying transformations
to the branch lengths (see ref. 16 for details).

To use the approximation, one first fixes the topology of the
phylogeny, and then estimates the branch lengths for each align-
ment partition on the fixed tree by maximum likelihood. The
gradient and Hessian of the log-likelihood are obtained for each
partition at the same time as the MLEs of the branch lengths. Note
that parameters of the substitution model—such as the transition/
transversion ratio, κ, in the HKY model or the α parameter in the
discrete gamma model of rate variation among sites—are estimated
at this step. Thus, different substitution models will generate dif-
ferent approximations, because they will have different MLEs for
the branch lengths, gradient, and Hessian. Note that the time it
takes to compute the approximate likelihood depends only on the
number of species (which determines the size of b and H) and not
on the alignment length, that is, once g and H have been calcu-
lated, MCMC sampling on the approximation takes the same time
regardless of the length of the original alignment.
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3.1 Overview We will use the approximate likelihood method to speed up the
computation of the likelihood on the large genome alignment. The
general strategy for the analysis is as follows:

1. Approximate likelihood calculation: First, we will calculate the
gradient (g) and Hessian (H) matrix of the branch lengths on
the unrooted tree. For this step, we will need to use the
MCMCTree and BASEML programs (BASEML will carry
out the actual computation of g and H). The substitution
model is chosen at this step.

2. MCMC sampling from the posterior: Once g and H have been
calculated and we have decided on our priors, we can use
MCMCTree to perform MCMC sampling from the posterior
distribution of times and rates. We will then look at the sum-
maries of the posterior (such as posterior mean times and rates
and 95% credibility intervals).

3. Convergence diagnostics: The MCMC algorithm is a stochastic
algorithm that visits regions of the parameter space in propor-
tion to the posterior distribution. Due to its very nature, it is
possible that sometimes the MCMC chain is terminated before
it has had a chance to explore the parameter space appropri-
ately. The way to guard against this is to run the analysis two or
more times and compare the summary statistics from the two
(or more) MCMC chains. If the results from different runs are
very similar, then convergence to the posterior distribution can
be reasonably assumed.

4. MCMC sampling from the prior: Finally, we will sample directly
from the prior of times and rates. This is particularly important
in Bayesian molecular clock dating because in most cases the
prior on times may look quite different from the fossil calibra-
tion densities specified by the user. Thus, sampling from the
prior allows the user to check the soundness of the prior
actually used.

Note that in this protocol we assume the user has chosen a
suitable sequence alignment and a phylogenetic tree to carry out
the analysis. For genome-scale alignments, it is important that the
genes chosen among the various species are orthologous and that
the alignment has been checked for accuracy. Several chapters in
this volume can guide the user in this purpose.

3.2 Calculation of the

Gradient and Hessian

to Approximate the

Likelihood

Go into the gH directory, and open the mcmctree-outBV.ctl file
using your favorite text editor. This control file contains the set of
parameters necessary for MCMCTree to carry out the calculations
of the gradient and Hessian needed for the approximate likelihood
method. Figure 2 shows the contents of the mcmctree-outBV.
ctl file.
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The first two items, seqfile and treefile, indicate the
alignment and tree files to be used. The third item, ndata, indi-
cates the number of partitions in the sequence file, in this case, two
partitions. The fifth item, usedata, is very important, as it tells
MCMCTree the type of analysis being carried out. The options are

seqfile = ../data/10s.phys 
treefile = ../data/10s.tree

ndata = 2
seqtype = 0    * 0: nucleotides; 1:codons; 2:AAs
usedata = 3    * 0: no data (prior); 1:exact likelihood; 

* 2: approximate likelihood; 3:out.BV (in.BV)
clock = 2    * 1: global clock; 2: independent rates; 3: correlated rates

model = 4    * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5   * alpha for gamma rates at sites
ncatG = 5    * No. categories in discrete gamma

cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)?

Fig. 2 The gH/mcmctree-outBV.ctl file, with appropriate options to set up calculation of the gradient
and Hessian matrix for the approximate likelihood method

10

((Bushbaby: 0.029523, Mouse_lemur: 0.019653): 0.006547, (Tarsier: 0.030897, (Marmoset: 0.0

0.006547  0.029523  0.019653  0.002123  0.030897  0.011754  0.015183  0.003426  0.008716

-2.114230 -2.618861 21.299836 31.765175 20.801006 -3.019251 -14.909946  8.188538 -3.70464

Hessian

-2.033e+08  -2.59e+06 -9.717e+06 -4.363e+07  1.799e+06 -5.457e+06  2.055e+06  -1.29e+04  
-2.59e+06  -5.71e+07  2.235e+06  1.475e+06  3.315e+06  1.651e+06  3.436e+06  2.134e+06  
-9.717e+06  2.235e+06 -8.733e+07 -2.954e+06   2.79e+06  7.275e+05  3.371e+06  1.512e+06  
-4.363e+07  1.475e+06 -2.954e+06 -4.622e+08 -5.059e+06 -2.658e+07  3.701e+06 -5.157e+06 -
1.799e+06  3.315e+06   2.79e+06 -5.059e+06 -5.473e+07  7.951e+05  3.437e+06   2.28e+06  
-5.457e+06  1.651e+06  7.275e+05 -2.658e+07  7.951e+05 -1.403e+08  3.724e+06 -1.163e+07  
2.055e+06  3.436e+06  3.371e+06  3.701e+06  3.437e+06  3.724e+06  -1.25e+08  -1.69e+07  
-1.29e+04  2.134e+06  1.512e+06 -5.157e+06   2.28e+06 -1.163e+07  -1.69e+07 -4.756e+08  
3.483e+06  4.548e+06  4.413e+06 -1.406e+05  4.463e+06  2.246e+06  1.979e+06  1.698e+06  
8.344e+05  2.861e+06  2.023e+06  1.605e+06  2.021e+06 -5.676e+05 -8.424e+05 -1.722e+07 -
3.625e+06  4.671e+06  4.894e+06  8.939e+05  4.775e+06  2.595e+06  1.699e+06  5.407e+05  
2.701e+06  3.036e+06  2.394e+06  1.777e+06  3.175e+06  6.217e+05 -5.952e+05 -4.592e+06 –

Fig. 3 The gH/out.BV file produced by BASEML. The first line has the number of species (10), the second
line has the tree topology with MLEs of branch lengths, and the MLEs of branch lengths are given again in the
third line. The fourth line contains the gradient, g, followed by the Hessian, H, for partition 1. This file will be
renamed in.BV and placed into the mcmc/ directory to carry out MCMC sampling using the approximate
likelihood method

Molecular Clock Dating 315



0, to sample from the prior; 1, to sample from the posterior using
exact likelihood; 2, to sample from the posterior using approximate
likelihood; and 3, to prepare the data for calculation of g and H.
The last is the option we will be using in this step. The next three
items, model, alpha, and ncatG, set up the nucleotide substitu-
tion model, in this case the HKY + Gamma model [25]. Finally, the
cleandata option tells MCMCTree whether to remove ambigu-
ous data. Our alignment has no ambiguous sites, so this option has
no effect in this case.

Using a terminal, go to the gH directory and type

$ mcmctree mcmctree-outBV.ctl

(Don’t type in the $ as this represents the command prompt!)
This will start the MCMCTree program. MCMCTree will prepare
several tmp????.* files and will then call the BASEML program to
estimate g and H. For this step to work correctly, the baseml
executable must be in your system’s path. Once BASEML and
MCMCTree have finished, you will notice a file called out.BV
has been created. Figure 3 shows part of the contents of this file.
The first line indicates the number of species (10), followed by the
tree with branch lengths estimated under maximum likelihood for
the first partition (first and second codon sites). Next, we have the
MLEs of the 17 branch lengths (these are the same as in the tree but
printed in a different order). Then we have the gradient, g1, the
vector of 17 first derivatives of the likelihood at the branch length
MLEs for partition 1. For small datasets, the gradient is usually
zero. For large datasets, the likelihood surface is too sharp (i.e.,
bends downward sharply and it is very narrow at the MLEs), and
the gradient is not zero for numerical issues. But this is fine. Next,
we have the 17 � 17 Hessian matrix, H1, the matrix of second
derivatives of the likelihood at the branch length MLEs for parti-
tion 1. If you scroll down the file, you will find the second block,
with the tree, branch length MLEs, g2, and H2 for partition
2 (third codon positions).

3.3 Calculation of the

Posterior of Times and

Rates

3.3.1 Control File and

Priors

Now that we have calculated g and H, we can proceed to MCMC
sampling of the posterior distribution using the approximate likeli-
hood method. Copy the gH/out.BV file into the mcmc directory,
and rename it as in.BV. Now go into the mcmc directory. There
you will find mcmctree.ctl, the necessary MCMCTree control
file to carry out MCMC sampling from the posterior. Figure 4
shows the contents of the file. The first item, seed, is the seed for
the random number generator used by the MCMC algorithm.
Here it is set to �1, which tells MCMCTree to use the system’s
clock time as the seed. This is useful, as running the program
multiple times will generate different outputs.
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The mcmcfile option tells MCMCTree where to save the
parameters sampled (divergence times and rates) during the
MCMC iterations. Here we will save them to a file named mcmc.
txt. Once the MCMC sampling has completed, MCMCTree will
read the sample from the mcmc.txt file and generate a summary of
the MCMC output. This summary will be saved to a file called
out.txt (outfile option).

The option usedata is set to 2 here, which tells MCMCTree
to calculate the likelihood approximately by using the g and
H values saved in the in.BV file. Option clock sets the clock
model. Here we use clock ¼ 2, which assumes rates are identical,
independent realizations from a log-normal distribution
[7, 26]. Option RootAge sets the calibration on the root node of
the phylogeny, if none are present in the tree file. In our case, we
already have a calibration on the root, so this option has no effect.
The next three options, model, alpha, and ncatG, have no effect
as the substitution model was chosen during estimation of g andH.

The following options are very important as they determine the
prior used in the analysis. BDparams sets the prior on node ages for
those nodes without fossil calibrations by using the birth-death
process [12]. Here we use 1 1 0, which means node ages are

seed = -1
seqfile = ../data/10s.phys 

treefile = ../data/10s.tree
mcmcfile = mcmc.txt
outfile = out.txt

ndata = 2
seqtype = 0    * 0: nucleotides; 1:codons; 2:AAs
usedata = 2    * 0: no data (prior); 1:exact likelihood; 

* 2:approximate likelihood; 3:out.BV (in.BV)
clock = 2    * 1: global clock; 2: independent rates; 3: correlated rates

RootAge = '<1.0'  * safe constraint on root age, used if no fossil for root.

model = 4    * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5  * alpha for gamma rates at sites
ncatG = 5    * No. categories in discrete gamma

cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)?

BDparas = 1 1 0   * birth, death, sampling
kappa_gamma = 6 2     * gamma prior for kappa
alpha_gamma = 1 1     * gamma prior for alpha

rgene_gamma = 2 40 1   * gammaDir prior for rate for genes
sigma2_gamma = 1 10 1   * gammaDir prior for sigma^2     (for clock=2 or 3)

print = 1   * 0: no mcmc sample; 1: everything except branch rates 2: everything
burnin = 20000

sampfreq = 100
nsample = 20000

Fig. 4 The mcmc/mcmctree.ctl file necessary to sample from the posterior distribution using the
approximate likelihood method
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uniformly distributed between present time and the age of the root.
Options kappa_gamma and alpha_gamma set gamma priors for
the κ and α parameters in the substitution model. These have no
effect as we are using the likelihood approximation. Options rge-
ne_gamma and sigma2_gamma set the gamma-Dirichlet prior on
the mean substitution rate for partitions and for the rate variance
parameter, σ2 [19]. The prior on the mean rate is Gamma(2, 40),
which has mean 0.05 substitutions per time 100 My. A symmetric
Dirichlet distribution with concentration parameter equal to 1 is
used to spread the rate prior across partitions (thus rgene_gamma
¼ 2 40 1). See ref. 19 for details. The prior on σ2 is Gamma(1, 10)
which has mean 0.1. A Dirichlet is also used to spread the prior
across partitions.

The final block of options, print, burnin, sampfreq, and
nsample, control the length and sampling frequency of the
MCMC. We will discard the first 20,000 iterations as the burn-in
and then print parameter values to the mcmc.txt file every
100 iterations, to a maximum of 20,000 + 1 samples. Thus, our
MCMC chain will run for a total of 20,000 + 20,000 � 100 ¼
2,020,000 iterations.

3.3.2 Running and

Summarizing the MCMC

Go into the mcmc directory and type

$ mcmctree mcmctree.ctl

This will start the MCMC sampling. First, MCMCTree will
iterate the chain for a set number of iterations, known as the burn-
in. During this period, the program will fine-tune the step sizes for
proposing parameters in the chain. Once the burn-in is finished,
sampling from the posterior will start. Figure 5 shows a screenshot
of MCMCTree in action. The leftmost column indicates the prog-
ress of the sampling as a percentage of the total (5%, 10% of total
iterations, and so on). The next numbers represent the acceptance
proportions, which are close to 30% (this is the result of fine-tuning
by the program). After the five acceptance proportions, the pro-
grams prints a few parameters to the screen and in the last columns
the log-likelihood and the time taken.

The above analysis takes about 2 min and 30 s to complete on a
2.2 GHz Intel Core i7 Processor. Once the analysis has finished,
you will see that MCMCTree has created several new files in the
mcmc directory. Rename mcmc.txt to mcmc1.txt and out.txt
to out1.txt. Now, on the command line, type again

$ mcmctree mcmctree.ctl

This will run the analysis a second time. The results should be
slightly different to the previous run due to the stochastic nature of
the algorithm. Once the second run has finished, rename mcmc.
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txt to mcmc2.txt and out.txt to out2.txt. If you want to
conduct two runs simultaneously, you can create two directories
(say r1/ and r2/) and copy the necessary files into them. Then
open two terminal windows to start the runs from within each
directory.

Using your favorite text editor, open file out1.txt, which
contains the summary of the first MCMC run. Scroll to the end
of the file (see screenshot, Fig. 6). You will see the time used by the
program (in my case 2:32), the posterior means of the parameters
sampled, and three phylogenetic trees in Newick format. The first
tree simply has internal nodes labelled with a number. This is useful
to compare the tree with the posterior means of times at the end of
the file. The second tree is the tree with branch lengths in absolute
time units. The third tree is like the second by including the 95%
credibility intervals (CIs) of the node ages. At the bottom of the
file, you have a table with all the divergence times (from t_n11 to
t_n19), the mean substitution rates for the two partitions (mu1
and mu2), the rate variation coefficients (sigma2_1 and
sigma2_2), and finally the log-likelihood (lnL). The table gives
the posterior means, equal-tail CIs, and high-posterior-density CIs.
For example, the posterior age of the root (node 11, Fig. 1) is
116.8 Ma (95% CI, 144.2–92.4 Ma) while for the divergence

0% 0.26 0.39 0.23 0.39 0.28  1.285 1.243 0.588 1.158 0.541 0.321 - 0.192 0.197 -16.9  0:02

(nsteps = 50)
Current Pjump:      0.26200  0.39475  0.23175  0.38650  0.28000  0.27550  0.39200  0.43750 
0.40100  0.29725  0.33725  0.27525  0.32275  0.23475  0.23150  0.29875  0.31600  0.27800  
0.25300  0.29975  0.29650  0.32575  0.27500  0.61150  0.29850  0.31225  0.35400  0.23200  
0.30800  0.28250  0.33050  0.21325  0.22700  0.25900  0.26725  0.26900  0.33150  0.23725  
0.31000  0.20700  0.24225  0.61625  0.30675  0.30150  0.32000  0.21975  0.27650  0.22500  
0.36650  0.00000
Current finetune:   0.00365  0.00166  0.00586  0.00182  0.00503  0.00697  0.00486  0.00500  
0.00835  0.24230  0.21346  0.71942  0.65595  0.01093  0.01230  0.01256  0.00960  0.01492  
0.02008  0.02466  0.03547  0.03942  0.04624  0.17077  0.02425  0.04971  0.01513  0.03626  
0.03661  0.04475  0.08082  0.00867  0.00949  0.01146  0.00861  0.01133  0.01263  0.02252  
0.02728  0.03996  0.03790  0.14736  0.02025  0.04584  0.01209  0.02975  0.02776  0.03389  
0.05173  0.00000
New     finetune:   0.00313  0.00232  0.00438  0.00248  0.00465  0.00632  0.00675  0.00806  
0.01194  0.23972  0.24532  0.65158  0.71499  0.00829  0.00918  0.01250  0.01020  0.01367  
0.01654  0.02463  0.03499  0.04345  0.04183  0.47928  0.02411  0.05210  0.01846  0.02714  
0.03776  0.04175  0.09064  0.00592  0.00694  0.00969  0.00755  0.01000  0.01422  0.01728  
0.02835  0.02644  0.02976  0.42023  0.02079  0.04611  0.01305  0.02100  0.02527  0.02454  
0.06589  0.00000

5% 0.34 0.30 0.31 0.32 0.28  1.163 0.981 0.622 0.893 0.464 0.295 - 0.129 0.154 -17.0  0:08
10% 0.35 0.30 0.31 0.32 0.27  1.189 0.943 0.607 0.859 0.457 0.293 - 0.128 0.153 -17.0  0:15
15% 0.36 0.30 0.30 0.31 0.27  1.156 0.920 0.604 0.837 0.457 0.290 - 0.133 0.160 -17.0  0:22
20% 0.35 0.30 0.30 0.32 0.26  1.126 0.908 0.600 0.825 0.453 0.290 - 0.137 0.165 -17.0  0:29
25% 0.36 0.30 0.30 0.31 0.26  1.139 0.912 0.605 0.829 0.458 0.293 - 0.138 0.165 -17.0  0:37
30% 0.36 0.30 0.30 0.31 0.26  1.153 0.918 0.609 0.834 0.460 0.293 - 0.136 0.163 -17.0  0:43

Fig. 5 Screenshot of MCMCTree’s output during MCMC sampling of the posterior. Different runs of the
program will give slightly different output values
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between human and chimp (node 19, Fig. 1) is 8.52 Ma (95% CI,
7.58–9.81 Ma).

You will also notice that MCMCTree created a file called Fig-
Tree.tre. This contains the posterior tree in Nexus format, suit-
able for plotting in the program FigTree (tree.bio.ed.ac.uk/
software/figtree/). Figure 7 shows the posterior tree plotted in
FigTree, with the time unit set to 1 My.

3.4 Convergence

Diagnostics of

the MCMC

Diagnosing convergence of the MCMC chains is extremely impor-
tant. Several software tools have been written for this purpose. For
example, the user-friendly Tracer program (beast.bio.ed.ac.uk/
tracer) can be used to read in the mcmc1.txt and mcmc2.txt
files and calculate several convergence statistics. Here we will
use R to perform basic convergence tests (check out file R/analy-
sis.R).

The first step to assess convergence is to compare the posterior
means among the different runs. You can visually inspect the pos-
terior means reported in the out1.txt and out2.txt files
(Fig. 8), although this may be cumbersome. Figure 8a shows a
plot, made with R, of posterior times for run 1 vs. those from run
2. You can see that the points fall almost perfectly on the y ¼ x line,
indicating that both runs have converged to the same distribution
(hopefully the posterior!).

ln Lmax (unconstrained) = -4636133.236961

Time used:  2:26

mean of parameters using all iterations
1.16785   0.91766   0.60797   0.83447   0.46464   0.29132   0.17725   0.10441   0.08519   0.

Species tree for FigTree.  Branch lengths = posterior mean times; 95% CIs = labels
(1_Tree_shrew, ((2_Bushbaby, 3_Mouse_lemur) 13 , (4_Tarsier, (5_Marmoset, (6_Rhesus, (7_Orangut

(Tree_shrew: 1.167850, ((Bushbaby: 0.607966, Mouse_lemur: 0.607966): 0.309693, (Tarsier: 0.8344

(Tree_shrew: 1.167850, ((Bushbaby: 0.607966, Mouse_lemur: 0.607966) [&95%={0.50317, 0.735468}]:

Posterior mean (95% Equal-tail CI) (95% HPD CI) HPD-CI-width

t_n11          1.1679 (0.9235, 1.4423) (0.9021, 1.4056) 0.5035 (Jnode 18)
t_n12          0.9176 (0.8015, 1.0484) (0.7965, 1.0423) 0.2458 (Jnode 17)
t_n13          0.6080 (0.5032, 0.7355) (0.5019, 0.7337) 0.2318 (Jnode 16)
t_n14          0.8345 (0.7236, 0.9602) (0.7192, 0.9538) 0.2346 (Jnode 15)
t_n15          0.4646 (0.3966, 0.5340) (0.3964, 0.5335) 0.1371 (Jnode 14)
t_n16          0.2913 (0.2526, 0.3380) (0.2499, 0.3333) 0.0833 (Jnode 13)
t_n17          0.1773 (0.1466, 0.2174) (0.1439, 0.2132) 0.0692 (Jnode 12)
t_n18          0.1044 (0.0995, 0.1164) (0.0988, 0.1139) 0.0152 (Jnode 11)
t_n19          0.0852 (0.0758, 0.0981) (0.0746, 0.0958) 0.0212 (Jnode 10)
mu1            0.0269 (0.0221, 0.0334) (0.0217, 0.0328) 0.0111
mu2            0.1110 (0.0898, 0.1396) (0.0877, 0.1364) 0.0488
sigma2_1       0.1370 (0.0607, 0.2833) (0.0484, 0.2511) 0.2027
sigma2_2       0.1634 (0.0755, 0.3201) (0.0625, 0.2883) 0.2258
lnL          -17.0026 (-25.9750, -9.8710) (-24.9110, -9.1170) 15.7940

Fig. 6 The end of the mcmc/out.txt file produced by MCMCTree at the end of the MCMC sampling of the
posterior
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Another useful statistic to be calculated is the effective sample
size (ESS). This gives the user an idea about whether an MCMC
chain has been run long enough. Tracer calculates ESS automati-
cally for all parameters. Function coda::effectiveSize in R
will do the same. Figure 9 shows the posterior mean, ESS, posterior
variance, and standard error of posterior means calculated with R
for run 1 of theMCMC. The longer the ESS, the better. As a rule of
thumb, one should seek ESS larger than 1000, although this may
not always be practical in phylogenetic analysis. Note in Fig. 9 that
some estimates have very low ESSs, while others have substantially
higher ESSs. For example, t_n11 has ESS¼ 76.1, while t_n19 has
ESS ¼ 1261. Running the analysis again and increasing the total
number of iterations (e.g., by increasing samplefreq or nsam-
ple) will lead to higher ESS values for all parameters.

Let v be the posterior variance of a parameter. The standard
error of the posterior mean of the parameter is S.E. ¼ √(v/ESS).
This is why having large ESS is important: Large ESS leads to small
S.E. and better estimates of the posterior mean. For example, for
t_n11, the posterior mean is 116.8 Ma, with standard error

Fig. 7 The dated primate phylogeny with error bars (representing 95% CIs of node ages), drawn with FigTree.
The time unit is 1 My
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Fig. 8 Convergence diagnostic plots of the MCMC drawn with R (see R/analysis.R)

mean.mcmc    ess.mcmc     var.mcmc      se.mcmc
t_n11      1.16785568    76.14030 1.779905e-02 0.0152894256
t_n12      0.91763459    66.38219 4.085525e-03 0.0078450940
t_n13      0.60801488   151.00623 3.123330e-03 0.0045479066
t_n14      0.83448247    71.93763 3.708967e-03 0.0071803969
t_n15      0.46464686   231.92350 1.211178e-03 0.0022852393
t_n16      0.29131271   353.25425 5.294412e-04 0.0012242361
t_n17      0.17726011   347.03816 3.245757e-04 0.0009670955
t_n18      0.10441651  1035.75332 2.080275e-05 0.0001417203
t_n19      0.08518922  1261.15128 3.363295e-05 0.0001633048
mu1        0.02691074   530.31981 8.464981e-06 0.0001263409
mu2        0.11103179   637.44606 1.577065e-04 0.0004973969
sigma2_1   0.13698819   710.07293 3.298175e-03 0.0021551891
sigma2_2   0.16337732   893.70775 4.046102e-03 0.0021277504
lnL      -17.00256482 20001.00000 1.696800e+01 0.0291265757

Fig. 9 Calculations of posterior mean, ESS, posterior variance, and standard error of the posterior mean in R
(see R/analysis.R)
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1.53My (Fig. 9). That is, we have estimated the mean accurately to
within 2 � 1.53 My ¼ 3.06 My. To reduce the S.E. by half, you
need to increase the ESS four times. Note that independent
MCMC runs can be combined into a single run. Thus, you may
save time by running several MCMC chains in parallel for compu-
tationally expensive analyses, although care must be taken to ensure
each chain has run long enough to exit the burn-in phase and
explore the posterior appropriately.

Trace plots and histograms are useful to spot problems and
check convergence. Figure 8b, c shows trace plots for t_n19 and
t_n11, respectively. The trace of t_n19, which has high ESS, looks
like a “hairy caterpillar.” Compare it to the trace of t_n11, which
has low ESS. Visual inspection of a trace plot usually gives a sense of
whether the parameter has an adequate ESS without calculating
it. Note that both traces are trendless, that is, the traces oscillate
around a mean value (the posterior mean). If you see a persistent
trend in the trace (such as an increase or a decrease), that most likely
means the MCMC did not converge to the posterior and needs a
longer burn-in period.

Figure 8d shows the smoothed histograms (calculated using
density in R) for t_n11 for the two runs. Notice that the two
histograms are slightly different. As the ESS becomes larger, histo-
grams for different runs will converge in shape until becoming
indistinguishable. If you see large discrepancies between histo-
grams, that may indicate serious problems with the MCMC, such
as lack of convergence due to short burn-in or the MCMC getting
stuck in different modes of a multimodal posterior.

3.5 MCMC Sampling

from the Prior

Note that fossil calibrations (such as those of Table 1) are repre-
sented as statistical distributions of node ages. MCMCTree uses
these distributions to construct the prior on times. However, the
resulting time prior used by the program may be substantially
different from the original fossil calibrations, because the program
applies a truncation so that daughter nodes are younger than their
ancestors [14, 27]. Thus, it is advisable to calculate the time prior
explicitly by running the MCMC with no data so that it can be
examined and compared with the fossil calibrations and the
posterior.

Go to the prior directory and type

$ mcmctree mcmctree-pr.ctl

This will start the MCMC sampling from the prior. File
mcmctree-pr.ctl is identical to mcmc/mcmctree.ctl except
that option usedata has been set to 0. Sampling from the prior is
much quicker because the likelihood does not need to be calcu-
lated. It takes about 1 min on the Intel Core i7 for MCMCTree to
complete the analysis. Rename files mcmc.txt and out.txt to
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mcmc1.txt and out1.txt, and run the analysis again. Rename
the new files as appropriate. Check for convergence by calculating
the ESS and plotting the traces and histograms.

Figure 10 shows the prior densities of node ages obtained by
MCMC sampling (shown in gray) vs. the posterior densities
(shown in black). Notice that for four nodes t_n19, t_n18,
t_n17, and t_n16, the posterior times “agree” with the prior,
that is, the posterior density is contained within the prior density.
For nodes t_n15, t_n13, and t_n11, there is some conflict
between the prior and posterior densities. However, for nodes
t_n14 and t_n12, there is substantial conflict between the prior
and the posterior. In both cases the molecular data (together with
the clock model) suggest the node age is much older than that
implied by the calibrations. This highlights the problems in con-
struction of fossil calibrations.

Each fossil calibration represents the paleontologist’s best guess
about the age of a node. For example, the calibration for the
human-chimp ancestor is B(0.075, 0.10, 0.01, 0.20); thus, the
calibration is a uniform distribution between 7.5 and 10 million
years ago (Ma). The bounds of the calibration are soft, that is, there

Fig. 10 Prior (gray) and posterior (black) density plots of node ages plotted with R (see R/analysis.R)
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is a set probability that the bound is violated. In this case the
probabilities are 1% for the minimum bound and 20% for the
maximum bound. The bound probabilities are asymmetrical
because they reflect the nature of the fossil information. Minimum
bounds are usually set with confidence because they are based on
the age of the oldest fossil member of a clade. For example, the
minimum of 7.5 Ma is based on the age of {Sahelanthropus tcha-
densis, recognized as the oldest fossil within the human lineage
[28]. On the other hand, establishing maximum bounds is difficult,
as absence of fossils for certain clades cannot be interpreted as
evidence that the clade in question did not exist during a particular
geological time [29]. Our maximum here of 10 Ma represents the
paleontologist’s informed guess about the likely oldest age of the
clade; however, a large probability of 20% is given to allow for the
fact that the node age could be older. The conflict between the
prior and posterior seen in Fig. 10 evidences this.

Note that when constructing the time prior, the Bayesian dat-
ing software must respect the constraints whereby daughter nodes
must be younger than their parents. This means that calibration
densities are truncated to accommodate the constraint, with the
result that the actual prior used on node ages can be substantially
different to the calibration density used (see Sect. 5.4). Detailed
analyses of the interactions between fossil calibrations and the time
prior and the effect of truncation are given in [14, 27].

4 General Recommendations for Bayesian Clock Dating

Extensive reviews of best practice in Bayesian clock dating are given
elsewhere [4, 20, 21, 30, 31]. Here we give a few brief
recommendations.

4.1 Taxon Sampling,

Data Partitioning, and

Estimation of Tree

Topology

In this tutorial we used a small phylogeny to illustrate Bayesian time
estimation using approximate likelihood calculation. In practical
data analysis, it may be desirable to analyze much larger phylogenies
(see Sect. 5.5). In large phylogenies, there may be uncertainties in
the relationships of some groups. The approximate method dis-
cussed here can only be applied to a fixed (known) tree topology. If
the uncertainties in the tree are few so that just a handful of tree
topologies appear reasonable, the approximate method can be used
by analyzing each topology separately [23, 32]. This involves esti-
mating g and H for each topology and then running separate
MCMC chains on each topology to estimate the times. Several
methods to co-estimate divergence times and tree topology are
available [8, 9, 17, 18], although they do not implement the
approximate likelihood method and are thus unsuitable for the
analysis of genome-scale datasets.
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We note that partitioning of sites in genomic datasets may have
important effects on divergence time estimation. The infinite-sites
theory [13, 33] studies the asymptotic behavior of the posterior
distribution of times when the amount of molecular data (measured
by the number of partitions and the number of sites per partition)
increases in a relaxed-clock dating analysis. This theory shows that
increasing the number of sites per partition will have minimal
effects on time estimation when the sequences per partition are
moderately long (>1000 sites, say), but the precision improves
when the number of partitions increases, eventually approximating
a limit when the number of partitions is infinite. The theory also
predicts that very different time estimates may be obtained if the
same genomic sequence alignment is analyzed as one partition or as
multiple partitions [34]. Furthermore, while more partitions tend
to produce more precise time estimates, with narrow CIs, they may
not necessarily be more reliable, depending on the correctness of
the fossil calibrations and the appropriateness of the partitioning
strategies. Unfortunately it is hard to decide on a good partitioning
strategy given the genome-scale sequence data, despite efforts to
design automatic partitioning strategies for phylogenetic analysis
and divergence time estimation [34–36]. Commonly used
approaches partition sites in the alignment by codon position or
by protein-coding genes of different relative rates [23]. We recom-
mend the use of the infinite-sites plot [14], in which uncertainty in
divergence time estimates (measured as the CI width) is plotted
against the posterior mean of times. If the scatter points fall on a
straight line, information due to the molecular sequence data has
reached saturation, and uncertainty in time estimate is predomi-
nantly due to uncertainties in fossil calibrations.

4.2 Selection of

Fossil Calibrations

Fossil calibrations are one of the most important pieces of informa-
tion needed to perform divergence time estimation and thus should
be chosen after careful consideration of the fossil record, although
this may involve some subjectivity [29]. Parham et al. [30] discuss
best practice for construction of fossil calibrations. For example,
minimum bounds on node ages are normally set to be the age of the
oldest fossil member of the crown group. A small probability (say
2.5%) should be set for the probability that the node age violates
the minimum bound (e.g., to guard against misidentified or incor-
rectly dated fossils). Specifying maximum bounds is more difficult,
as absence of fossils for a given geological period is not evidence
that the clade in question was absent during the period [31]. Cur-
rent practice is to set the maximum bound to a reasonable value
according to the expertise of the paleontologist (see ref. 29 for
examples), although a large probability (say 10% or even 20%)
may be required to guard against badly specified maximum bounds.
Calibration densities based on statistical modeling of species diver-
sification, fossil preservation, and discovery are also possible
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[15]. In so-called tip-dating approaches, fossil species are included
as taxa in the analysis (which may or may not include morphological
information for the fossil and extant taxa) [37–39]. Thus, in
tip-dating, explicit specification of a fossil calibration density for a
node age is not necessary.

4.3 Construction of

the Time Prior

The birth-death process with species sampling was used here to
construct the time prior for nodes in the phylogeny for which fossil
calibrations are not available. Varying the birth (μ), death (λ), and
sampling (ρ), parameters can result in substantially different time
priors. For example, using μ ¼ λ ¼ 1 and ρ ¼ 0 leads to a uniform
distribution prior on node ages. This diffuse prior appears appro-
priate for most analyses. Varying the values of μ, λ, and ρ is useful to
assess whether the time estimates are robust to the time prior.
Parameter configurations can be set up to generate time densities
that result in young node ages or in very old node ages (see p. 381 in
[20] for examples).

4.4 Selection of the

Clock Model

In analysis of closely related species (such as the apes), the clock
assumption appears to be appropriate for time estimation. A likeli-
hood ratio test can be used to determine whether the strict clock is
appropriate for a given dataset [40]. If the clock is rejected, then
Bayesian molecular clock dating should proceed using one of the
various relaxed-clock models available [7, 13]. In this case, Bayesian
model selection may be used to choose the most appropriate
relaxed-clock model [41], although the method is computationally
expensive and thus only applicable to small datasets. The use of
different relaxed-clock models (such as the autocorrelated vs. the
independent log-normally distributed rates) may result in substan-
tially different time estimates (see ref. 32 for an example). In such
cases, repeating the analysis under the different clock models may
be desirable.

5 Exercises

5.1 Autocorrelated

Rate Model

Modify file mcmc/mcmctree.ctl and set clock¼3. This activates
the autocorrelated log-normal rates model, also known as the
geometric Brownian motion rates model [6, 13]. Run the
MCMC twice and check for convergence. Compare the posterior
times obtained with those obtained under the independent
log-normal model (clock¼2). Are there any systematic differences
in node age estimates between the two analyses? Which clock model
produces the most precise (i.e., narrower CIs) divergence time
estimates?
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5.2 MCMC Sampling

with Exact Likelihood

Calculation

Modify file mcmc/mcmctree.ctl and set clock¼2 (independent
rates), usedata¼1 (exact likelihood), burnin¼200, sampfreq¼
2, and nsample¼500. These last three options will lead to a much
shorter MCMC chain, with a total of 1200 iterations. Run the
MCMC sampling twice, and check for convergence using the
ESS, histograms, and trace plots. How long does it take for the
sampling to complete? Can you estimate how long it would take to
run the analysis using 2,020,000 iterations, as long as for the
approximate method of Sect. 3.3.2? Did the two chains converge
despite the low number of iterations?

5.3 Change of Fossil

Calibrations

There is some controversy over whether {Sahelanthropus, used to
set the minimum bound for the human-chimp divergence, is
indeed part of the human lineage. The next (younger) fossil in
the human lineage is {Orrorin which dates to around 6Ma. Modify
file data/10s.tree and change the calibration in the human-
chimp node to B(0.057, 0.10, 0.01, 0.2). Also change the calibra-
tion on the root node to B(0.615, 1.315, 0.01, 0.05). Run the
MCMC analysis with the approximate method and again sampling
from the prior. Are there any substantial differences in the posterior
distributions of times under the new fossil calibrations? Which
nodes are affected? How bad is the truncation effect among the
calibration densities and the prior?

5.4 Comparing

Calibration Densities

and Prior Densities

This is a difficult exercise. Use R to plot the prior densities of times
sampled using MCMC (the same as in Fig. 10). Now try to work
out how to overlay the calibration densities onto the plots. For
example, see Fig. 3 in [23] for an idea. First, write functions that
calculate the calibration densities. The dunif function in R is useful
to plot uniform calibrations. Functions sn::dsn and sn::dst
(in the SN package) are useful to plot the skew-t (ST) and skew-
normal (SN) distributions. Calibration type S2N (Table 1) is a
mixture of two skew-normal distributions [15]. How do the sam-
pled priors compare to the calibration densities? Are there any
substantial truncation effects?

5.5 Time Estimation

in a Supermatrix of

330 Species

Good taxon sampling is critical to obtaining robust estimates of
divergence times for clades. In the data/ directory, an alignment
of the first and second codon positions from mitochondrial
protein-coding genes from 330 species (326 primate and
4 out-group species) is provided, 330s.phys, with corresponding
tree topology, 330s.tree. First, place the fossil calibrations of
Table 1 on the appropriate nodes of the species tree. Then obtain
the gradient and Hessian matrix for the 330-species alignment
using the HKY + G model. Finally, estimate the divergence times
on the 330-species phylogeny by using the approximate likelihood
method. How does taxon sampling affect node age estimates when
comparing the 10-species and 330-species trees? How does
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uncertainty in node ages in the large tree, which was estimated on a
short alignment, compare with the estimates on the small tree, but
with a large alignment?
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18. Höhna S, Landis MJ, Heath TA et al (2016)
RevBayes: Bayesian phylogenetic inference
using graphical models and an interactive
model-specification language. Syst Biol
65:726–736

19. Dos Reis M, Zhu T, Yang Z (2014) The impact
of the rate prior on Bayesian estimation of
divergence times with multiple loci. Syst Biol
63:555–565

20. Yang Z (2014) Molecular Evolution: A Statis-
tical Approach. Oxford University Press,
Oxford

21. Heath TA, Moore BR (2014) Bayesian infer-
ence of species divergence times. In: Chen
M-H, Kuo L, Lewis PO (eds) Bayesian Phylo-
genetics: Methods, Algorithms, and Applica-
tions. CRC Press, Boca Raton, pp 277–318

22. Yang Z (2007) PAML 4: phylogenetic analysis
by maximum likelihood. Mol Biol Evol
24:1586–1591

23. dos Reis M, Inoue J, Hasegawa M et al (2012)
Phylogenomic datasets provide both precision
and accuracy in estimating the timescale of pla-
cental mammal phylogeny. Proc Biol Sci
279:3491–3500

24. dos Reis M, Gunnell G, Barba-Montoya J et al
(2018) Using phylogenomic data to explore
the effects of relaxed clocks and calibration
strategies on divergence time estimation: pri-
mates as a test case. Syst Biol 67(4):594–615

25. Yang Z (1996) Among-site rate variation and
its impact on phylogenetic analyses. Trends
Ecol Evol 11(9):367–372

26. Gillespie JH (1984) The molecular clock may
be an episodic clock. Proc Natl Acad Sci U S A
81:8009–8013

Molecular Clock Dating 329



27. Warnock RCM, Yang Z, Donoghue PCJ
(2012) Exploring uncertainty in the calibration
of the molecular clock. Biol Lett 8:156–159

28. Zollikofer CPE, Ponce de León MS, Lieber-
man DE et al (2005) Virtual cranial reconstruc-
tion of Sahelanthropus tchadensis. Nature
434:755–759

29. Benton MJ, Donoghue PCJ (2007) Paleonto-
logical evidence to date the tree of life. Mol
Biol Evol 24(1):26–53

30. Parham JF, Donoghue PCJ, Bell CJ et al
(2012) Best practices for justifying fossil cali-
brations. Syst Biol 61(2):346–359

31. Ho SYW, Phillips MJ (2009) Accounting for
calibration uncertainty in phylogenetic estima-
tion of evolutionary divergence times. Syst Biol
58:367–380

32. Dos Reis M, Thawornwattana Y, Angelis K et al
(2015) Uncertainty in the timing of origin of
animals and the limits of precision in molecular
timescales. Curr Biol 25:2939–2950

33. Zhu T, Reis MD, Yang Z (2014) Characteriza-
tion of the uncertainty of divergence time esti-
mation under relaxed molecular clock models
using multiple loci. Syst Biol 64(2):267–280

34. Angelis K, Alvarez-Carretero S, dos Reis M
et al (2018) An evaluation of different parti-
tioning strategies for Bayesian estimation of

species divergence times. Syst Biol 67
(1):61–77

35. Lanfear R, Calcott B, Ho SYW et al (2012)
PartitionFinder: combined selection of parti-
tioning schemes and substitution models for
phylogenetic analyses. Mol Biol Evol
29:1695–1701
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Chapter 11

Genome Evolution in Outcrossing vs. Selfing vs. Asexual
Species

Sylvain Glémin, Clémentine M. François, and Nicolas Galtier

Abstract

A major current molecular evolution challenge is to link comparative genomic patterns to species’ biology
and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus
genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary
processes under three distinct breeding systems—outcrossing, selfing, and asexuality. Breeding systems may
have a profound impact on genome evolution, including molecular evolutionary rates, base composition,
genomic conflict, and possibly genome size. We present and discuss the similarities and differences between
the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches
help revisiting old questions on the long-term evolution of breeding systems.

Key words Breeding systems, GC-biased gene conversion, Genome evolution, Genomic conflicts,
Selection, Transposable elements

1 Introduction

In-depth investigations on genome organization and evolution are
increasing and have revealed marked contrasts between species,
e.g., evolutionary rates, nucleotide composition, and gene reper-
toires. However, little is still known on how to link this “genomic
diversity” to the diversity of life history traits or ecological forms.
Synthesizing previous works in a provocative and exciting book,
M. Lynch asserts that variations in fundamental population genetic
processes are essential for explaining the diversity of genome archi-
tectures while emphasizing the role of the effective population size
(Ne) and nonadaptive processes [1]. Life history and ecological
traits may influence population genetic parameters, including Ne,
making it possible to link species’ biology and their genomic orga-
nization and evolution (e.g., [2–7])

Among life history traits affecting population genetic pro-
cesses, breeding systems are pivotal as they determine the way
genes are transmitted to the next generation (Fig. 1). Outcrossing,
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sexual species (outcrossers) reproduce through the alternation of
syngamy (from haploid to diploid) and meiosis (from diploid to
haploid), with random mating of gametes from distinct individuals
at each generation. Outcrossing is a common breeding system that
is predominant in vertebrates, arthropods, and many plants, espe-
cially perennials, etc. [8, 9]. Selfing species (selfers) also undergo
meiosis, but fertilization only occurs between gametes produced by
the same hermaphrodite individual. Consequently, diploid indivi-
duals from selfing species are highly homozygous (FIS ~ 1; see, for
instance, ref. 10)—heterozygosity is divided by two at each genera-
tion, and the two gene copies carried by an individual have a high
probability of being identical by descent. Selfing is common in
various plant families (e.g., Arabidopsis thaliana), mollusks,

outcrossing

selfing

asexuality

meiosis syngamy meiosis

Fig. 1 Reproduction and genotype transmission in outcrossing, selfing, and
asexual species. In outcrossers, parental and recombinant (dotted lines)
gametes from distinct zygotes are shuffled at generation n + 1. In selfers, only
gametes produced by a given zygote can mate, which quickly increases homo-
zygosity and reduces the recombination efficacy. Asexuals do not undergo
meiosis or syngamy. They reproduce clonally
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nematodes (e.g., Caenorhabditis elegans), and platyhelminthes,
among others [8, 9]. Note that many sexual species have interme-
diate systems in which inbreeding and outbreeding coexist. In
organisms with a prolonged haploid phase (such as mosses, ferns,
or many algae and fungi), a more extreme form of selfing can occur
by taking place during the haploid phase (haploid selfing or intra-
gametophytic selfing), leading instantaneously to genome-wide
homozygosity [11]. Clonal asexual species, finally, only reproduce
via mitosis, so that daughters are genetically identical to mothers
unless a mutation occurs. In diploid asexuals, homologous chro-
mosomes associated in a given zygote do not segregate in distinct
gametes—they are co-transmitted to the next generation in the
absence of any haploid phase. In contrast to selfing species, indivi-
duals from asexual diploid species tend to be highly heterozygous
(FIS ~ �1, [12]), since any new mutation will remain at the
heterozygote stage forever, unless the same mutation occurs in
the homologous chromosome. Clonality is documented in insects
(e.g., aphids), crustaceans (e.g., daphnia), mollusks, vertebrates,
and angiosperms, among others [13–16]. As for selfing, clonality
can also be partial, with sexual reproduction occurring in addition
or in alternation with asexual reproduction. In addition to this
common form of asexuality, other forms such as automixis imply
a modified meiosis in females where unfertilized diploid eggs pro-
duce offspring potentially diverse and distinct from their mother,
leading to different levels of heterozygosity [13]. This diversity of
reproductive systems should be kept in mind, but for clarity we will
mainly compare outcrossing, diploid selfing, and clonality.

Through the occurrence, or not, of syngamy, recombination,
and segregation, breeding systems affect population genetic para-
meters (effective population size, recombination rate, efficacy of
natural selection; Fig. 2) and thus, potentially, genomic patterns. A
large corpus of population genetic theory has been developed to
study the causes and consequences of the evolution of breeding
systems (Table 1). Thanks to the exponentially growing amount of
genomic data, and especially data from closely related species with
contrasted breeding systems, it is now possible to test these theo-
retical predictions. Conversely, genomic data may help in under-
standing the evolution of breeding systems. Genomes should
record the footprints of transitions in breeding systems and help
in testing the theory of breeding system evolution in the long run,
e.g., the “dead-end hypothesis,” which posits that selfers and asex-
uals are doomed to extinction because of their inefficient selection
and low adaptive potential [17, 18]. Since the first edition of this
book, several theoretical developments have clarified the popula-
tion genetics consequences of the different breeding systems, and
empirical evidences have been accumulating, partly changing our
view of breeding system evolution and consequences, especially for
asexual organisms. We first review and update the consequences of
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breeding systems on genome evolution and then discuss and
re-evaluate how evolutionary genomics shed new light on the old
question of breeding system evolution.

2 Contrasted Genomic Consequences of Breeding Systems

2.1 Consequences of

Breeding Systems on

Population Genetics

Parameters

Sex involves an alternation of syngamy and meiosis. In outcrossing
sexual species, random mating allows alleles to spread across popu-
lations, while segregation and recombination (here in the sense of
crossing-over) associated with meiosis generate new genotypic and
haplotypic combinations. This strongly contrasts with the case of
selfing and asexual species. In such species, alleles cannot spread
beyond the lineage they originated from because mating occurs
within the same lineage (selfers) or because syngamy is suppressed
(asexuals). Recombination, secondly, is not effective in
non-outcrossers. In selfers, while physical recombination does
occur (r0), effective recombination (re) is reduced because it mainly
occurs between homozygous sites, and it completely vanishes
under complete selfing: for tight linkage, re ¼ r0(1 � FIS), where
FIS is the Wright’s fixation index [19], whereas for looser linkage,

Recombination

Segregation

Asexuality

Selfing

Outcrossing

Effective

population size 

Fig. 2 A schematic representation of the effect of breeding systems on population genetic parameters

Table 1
Summary of the major theoretical predictions regarding breeding systems and evolutionary genomic
variables, with outcrossing being taken as reference

FIS πS dN/dS Codon usage TE LD GC-content

Outcrossing ~0 + + + + + +

Selfing ~1 � ++ � Unclear ++ �
Asexuality ~�1 � +++ � Unclear +++ �

TE transposable element abundance, LD linkage disequilibrium
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effective recombination is more reduced than predicted by this
simple expression [20–22]. In asexuals, physical recombination is
suppressed (r0 ¼ re ¼ 0). High levels of linkage disequilibrium
(nonrandom association of alleles between loci) could therefore
be expected in selfers and asexuals. The observed data are mainly
consistent with these predictions. In the selfing model species
Arabidopsis thaliana, LD extends over a few hundreds of kb,
while in maize, an outcrosser, LD quickly vanishes beyond a few
kb [23]. In a meta-analysis, Glémin et al. [24] also found higher LD
levels in selfers than in outcrossers. Beyond pairwise LD, selfing
also generates higher-order associations, such as identity disequili-
bria (the excess probability of being homozygote at several loci,
[25]) that alter population genetics functioning compared to out-
crossing populations (e.g., [26]).

Theory also predicts that the effective population size, Ne,
depends on the breeding system (Fig. 2). First, compared to out-
crossers, selfing is expected to directly lower Ne by a factor 1 + FIS
by reducing the number of independent gametes sampled for
reproduction [27]. From a coalescent point of view, selfing reduces
coalescent time (again by the same factor 1 + FIS). Under out-
crossing, two gene copies gathered in a same individual either
directly coalesce or move apart at the preceding generation. Selfing
prolongs the time spent within an individual, hence the probability
of coalescing [19, 28]. In diploid asexuals, the picture is less obvi-
ous. Since genotypes, not alleles, are sampled, Balloux et al. [12]
distinguished between the genotypic and allelic effective size. The
genotypic effective size equalsN, not 2N, i.e., the actual population
size, similarly to the expectation under complete selfing. On the
contrary, the allelic effective size tends toward infinity under com-
plete clonality because genetic diversity within individuals cannot
be lost [12]. This corresponds to preventing coalescence as long as
gene copies are transmitted clonally [29, 30]. However, very low
level of sex (higher than 1/2N) is sufficient to retrieve standard
outcrossing coalescent behavior [29, 30], and as far as natural
selection is concerned (see below), the genotypic effective size is
what matters [31]. The ecology of selfers and asexuals may also
contribute to decreasing Ne as they supposedly experience more
severe bottlenecks than outcrossers [32, 33]. On the contrary,
higher population subdivision in selfers could contribute to increas-
ing Ne at the species scale. However, Ingvarsson [34] showed that,
under most conditions, the extinction/recolonization dynamics is
predicted to decrease Ne in selfers, at both the local and metapo-
pulation scale. Finally, because of low or null effective recombina-
tion, hitchhiking effects—the indirect effects of selection at a locus
on other linked loci—reduce Ne further [35]. Under complete
selfing or clonality, because of full genetic linkage, selection at a
given locus affects the whole genome. Most forms of selection, and
especially directional selection, reduce the number of gene copies
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contributing to the next generation by removing deleterious alleles
to the benefit of advantageous ones. Because of linkage, such a
reduction spreads over the rest of the genome, globally reducing
the effective population size (sensu lato) in non-outcrossing spe-
cies. Background selection, the reduction in Ne due to the removal
of deleterious mutations at linked loci, can be particularly severe in
highly selfing and clonal population, potentially reducingNe by one
order of magnitude or more [22, 36]. And this effect is expected to
be stronger in asexuals than in selfers [36]. In the predominantly
selfing nematodeC. elegans, nucleotide diversity has been shown to
be reduced genome wide by both background selection [37] and
selective sweeps [38], and in a comparative analysis, the effect of
linked selection has shown to be more pronounced in selfing than
in outcrossing species [39].

As genetic diversity scales positively with Neμ, where μ is the
mutation rate, selfers are expected to be less polymorphic than
outcrossers. Asexuals should also exhibit lower genotypic diversity,
but the prediction is not clear for allelic diversity (see above).
However, because of the lack of recombination, haplotype diversity
should be lower for both breeding systems. The effect of selfing on
the polymorphism level is well documented, and empirical data
mainly agree with the theoretical predictions. Selfing species tend
to be more structured, less diverse, and straightforwardly more
homozygotes than outcrossers [6, 24, 40, 41]. Much fewer data
exist regarding diversity levels in asexuals, but the available datasets
confirm that genotypic diversity, at least, is usually low in such
species (see discussion in ref. 12). At the population level, a recent
comparative analysis of sexual and asexual Aptinothrips rufus grass
thrips confirmed the expected lower nuclear genetic diversity of
asexual populations while also evidencing that some asexuals with
extensive migration can feature very high mitochondrial genetic
diversity [42].

These predictions concerning polymorphism patterns implic-
itly assumed that mutation rates are the same among species with
contrasted breeding systems. However, modifications in breeding
systems can also affect various aspects of the species life cycle
potentially related to the mutation rate. In asexuals, for instance,
loss of spermatogenesis can reduce mutation rates, while loss of the
dormant sexual phase can increase them (reviewed in [43]). Muta-
tion rates can also be decreased in non-outcrossers due to the loss of
recombination, which can be mutagenic [44, 45]. In selfers, meio-
sis and physical recombination do occur. However, the specific
mutagenic process during meiosis depends on the level of hetero-
zygosity, such as indel-associated mutations (IDAM): heterozygote
indels could increase the point mutation rate at nearby nucleotides
because of errors during meiosis [46, 47]. Consistent with this
prediction, the IDAMprocess more strongly affects the outcrossing
wild rice, Oryza rufipogon, than the very recent selfer and weakly

336 Sylvain Glémin et al.



heterozygous domesticated rice, O. sativa. A. thaliana, a more
ancient and mostly homozygous selfer, is very weakly affected by
IDAM [48]. Overall, these processes should globally contribute to
lowering mutation rates, and thus polymorphism, in selfing and
asexual species.

2.2 Breeding

Systems and Selection

Efficacy

2.2.1 Drift and

Recombination: Parallel

Reduction in Selection

Efficacy in Selfers and

Asexuals?

The effective population size strongly affects the outcome of natu-
ral selection. The probability of fixation of a new mutation is a
function of the Nes product, where s is the selection coefficient
([49] and see Fig. 3). As Ne is reduced, a higher proportion of
mutations behave almost neutrally. Weakly deleterious alleles can
thus be fixed, while weakly advantageous ones can be lost. Genetic
associations among loci generated by selfing and clonality also
induce selective interferences [26, 50]. Because of their reduced
effective population size and recombination rate, selection is thus
expected to be globally less effective in selfers and asexuals than in
outcrossers, which should result in various footprints at the molec-
ular level (Table 1). Assuming that most mutations are deleterious
(with possible back compensatory mutations), both the ratio of
non-synonymous to synonymous polymorphism, πN/ πS, and the
ratio of non-synonymous to synonymous substitutions, dN/dS, are
predicted to be higher in selfers and asexuals than in outcrossers.
Codon usage should also be less optimized in selfers and asexuals
than in outcrossers.

Contrary to polymorphism surveys, few studies have tested
these predictions empirically (Table 2). In the few available

Clonality: h = 0.7

Clonality: h = 0.5

Clonality: h = 0.3

Outcrossing: h = 0.7

Outcrossing: h = 0.3

Outcrossing: h = 0.5

Selfing: any h

–0.0002 –0.0001 0.0000 0.0001

5

4

3

2

1

dN/dS

0.0002
S

Fig. 3 Substitution rates relative to the neutral case (dN/dS) in outcrossers (thin lines), selfers (bold line), and
asexuals (dotted lines) for different mutation dominance levels. The fitness of the resident, heterozygote, and
homozygote mutant genotypes are 1, 1� hs, and 1� s, respectively. For asexuals, it is necessary to consider
two substitution rates corresponding to the initial fixation of heterozygotes and the ultimate fixation of
complete homozygote mutants from an initially heterozygote population [31]. Population size: N ¼ 10,000.
To highlight the difference between selfers and asexuals due to segregation, demographic and hitchhiking
effects reducing Ne in asexuals and selfers are not taken into account
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comparative studies, contrasted patterns were observed between
selfers and asexuals. Compared to sexual ancestors, recent asexual
lineages show a marked increase in the dN/dS ratio in Daphnia
([51] but see below), Timema stick insects [52], gastropods Cam-
peloma [53] and Potamopyrgus [54], and the plant Boechera [55], in
agreement with theoretical predictions (Table 2). However, no
significant effect of asexuality on dN/dS was found in four aphid
species [56] and in the plant Ranunculus auricomus [57]. Bdelloid
rotifers, long considered as ancient asexuals (see below), exhibit a
higher πN/πS ratio but not a higher dN/dS ratio than comparable
sexual groups, suggesting that mildly deleterious mutations can
segregate at a higher frequency in asexuals but are eventually
removed. A higher πN/πS ratio in asexual lineages than in sexual
relatives was reported from transcriptome data in Oenothera prim-
roses [58] and Lineus nemerteans [59]. Note however that in the
latter case, the increased πN/πS is primarily explained by the hybrid
nature of the asexual Lineus pseudolacteus (Table 2). The recent
origin of asexuality through introgression also challenges the inter-
pretation of elevated dN/dS ratio in the mitochondrial genome of
asexual lineages ofDaphnia pulex [51], as less than 1% of mutations
on the branches leading to asexual lineages would have arisen after
the transition to asexuality [60]. Here, rather than being the direct
cause of genomic degradation, asexuality may have evolved in
already-degraded lineages.

All predictions are not equally supported by data in selfers.
Polymorphism-based measures mostly support reduction in selec-
tion efficiency in selfers in various plant species, and this was
recently confirmed by a meta-analysis of genome-wide polymor-
phism data ([6] and see Table 2). On the contrary, as far as dN/dS
or base composition are compared, most studies, in plants, fungi,
and animals, did not find evidence of relaxed selection in selfers
(Table 2). A recent origin of selfing is often invoked to explain that
effect of selfing is rarely observed in species divergence (e.g.,
[61, 62–64]), whereas a recent transition to selfing can leave a
clear signature of relaxed selection at the polymorphism level
[65]. In contrast, in the freshwater snail Galba truncatula where
selfing is supposed to be old and ancestral to a clade of several
species, relaxed selection in the selfing lineage was also observed
at the divergence level [66]. The same rationale should apply to
asexual species. However, in Campeloma, Potamopyrgus, Timema,
and Boechera, clonality is also recent, yet the expected patterns are
observed at the divergence level. The reduction in Ne could simply
be less severe in selfers than in asexuals as predicted by background
selection models [36]. Furthermore, complete selfing is hardly ever
noted in natural populations; residual outcrossing typically occurs.
Among hitchhiking effects, some are very sensitive to the recombi-
nation level, such as Muller’s ratchet [67], weak Hill-Robertson
interferences [50], or hitchhiking of deleterious mutations during
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selective sweeps [68, 69]. If such mechanisms are the main cause of
reduction ofNe in selfers, then even a low recombination rate could
be enough to maintain the selection efficacy. This is suggested by
genomic patterns across recombination gradients in outcrossing
species. In primates, no effect of recombination on the selection
efficacy has been detected [70]. In Drosophila, Haddrill et al. [71]
found little evidence of reduced selection in low recombining
regions, except when recombination was fully suppressed, as in Y
chromosomes. Differences between selfers and asexuals could thus
simply result from different degrees of residual outcrossing. How-
ever, as stated above, selfers and asexuals also fundamentally differ
as far as segregation is concerned, as we now discuss in more detail.

2.2.2 Segregation:

Dealing with Heterozygotes

Selfing affects the selection efficacy by increasing homozygosity and
thus exposing recessive alleles to selection. This effect can counter-
act the effect of reducing Ne. Considering the sole reduction in Ne

due to non-independent gamete sampling, selection is less efficient
under partial selfing for dominant mutations but more efficient for
recessive ones (Fig. 3, and see ref. 72). More precisely, Glémin [73]
determined the additional reduction in Ne (due to hitchhiking and
demographic effects) necessary to overcome the increased selection
efficacy due to homozygosity. This additional reduction can be high
for recessive mutations. On the contrary, the lack of segregation in
asexuals reduces selection efficacy and increases the drift load, as
heterozygotes can fix [31]. The effects of selfing and clonality on
the fixation probability of codominant, recessive, or dominant
mutations are summarized in Fig. 3. Note that segregation may
also have indirect effects. When recombination is suppressed, Mul-
ler’s ratchet is supposed to reduceNe and contribute to the fixation
of weakly deleterious alleles [74]. In selfers, the purging of partially
recessive deleterious alleles slows down the ratchet [67], which
suggests that the fixation of deleterious alleles at linked loci would
be lower in selfers than in asexuals. The same mechanism also
contributes to weaker background selection in selfers than in asex-
uals (see above, [36]). In the extreme case of intra-gametophytic
selfing, purging could be even more efficient at removing deleteri-
ous alleles [11], as it has been suggested for moss species [75]. Seg-
regation at meiosis could thus partly explain the differences
between selfers and asexuals, but more data are clearly needed to
confirm this hypothesis.

The two opposite effects of drift and segregation in selfers
should also affect adaptive evolution. In outcrossers, new beneficial
mutations are more likely to be rapidly lost if recessive, as they are
initially present in heterozygotes and masked to selection—a pro-
cess known as Haldane’s sieve [76]. By unmasking these mutations
in homozygotes, selfing could help adaptive evolution from reces-
sive mutations [72, 73]. However, this advantage of selfing disap-
pears when adaptation proceeds from pre-existing variation because
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homozygotes can also be present in outcrossers [77]. Selective
interference in selfers also reduces their advantage of not experien-
cing Haldane’s sieve, especially for weakly beneficial mutations
[21], and the effect of background should globally reduce the
rate of adaptation [73, 77, 78]. Conversely, the lack of segregation
in asexuals delays the complete fixation of an advantageous muta-
tion. Once a new advantageous mutation gets fixed in the hetero-
zygotic state, additional lag time until occurrence and fixation of a
second mutation is necessary to ensure fixation [79]. Little is
known about the dominance levels of new adaptive mutations,
but a survey of QTL fixed during the domestication process in
several plant species confirmed the absence of Haldane’s sieve in
selfers compared to outcrossers [80]. This mostly corresponds to
strong selection on new mutations or mutations in low initial
frequencies in the wild populations. More generally, the effect of
selfing on adaptive evolution will depend on the distribution of
dominance and selective effects of mutations and the magnitude of
genetic drift and linkage.

Few studies have tested for difference in positive selection
between selfers and outcrossers. In their survey of sequence poly-
morphism data in flowering plants, Glémin et al. [24] found, on
average, more genes with a signature of positive selection in out-
crossers than in selfers assessed by the McDonald-Kreitman test
[81]. An extension of this method—where
non-synonymous vs. synonymous polymorphism data are used to
calibrate the distribution of the deleterious effects of mutations and
then attribute the excess non-synonymous divergence observed to
positive selection [82]—was applied to one plant [83] and one
freshwater snail dataset. In both studies, a large fraction of
non-synonymous substitutions was estimated to be adaptive in
the outcrossing species (~40% in the plant Capsella grandiflora
and ~55% in the snail Physa acuta), whereas this proportion was
not significantly different from zero in the selfer (Arabidopsis thali-
ana and Galba truncatula, respectively). Based on methods where
the dN/dS ratio is allowed to vary both among branches and sites, a
comparative analysis of two outcrossing and two selfing Triticeae
species [84] suggested that adaptive substitutions may have specifi-
cally occurred in the outcrossing lineages. This would contribute to
explaining why selfing lineages did not show a higher dN/dS ratio
than outcrossing ones (see above and Table 2). So the data available
so far support an increased rate of adaptation in outcrossing species,
suggesting that the effects of drift and linkage overwhelm the
advantage of avoiding Haldane’s sieve. A similar approach was
used in Oenothera species suggesting also reduced adaptive evolu-
tion in clonal compared to sexual lineages [85].

Finally, the classical assumption of a lack of segregation in
asexuals must be modulated. First, in some form of asexuality,
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such as automixis, female meiosis is retained, and diploidy restora-
tion occurs by fusion or duplication of female gametes. Depending
on how meiosis is altered, automixis generates a mix of highly
heterozygous and highly homozygous regions along chromo-
somes. The genomes of such species could thus exhibit a gradient
of signatures of selfing and diploid clonal evolution [86]. Secondly,
mitotic recombination and gene conversion in the germline of
asexual lineages can also reduce heterozygosity at a local genomic
scale. Mitotic recombination has been well documented in yeast (see
review in ref. 87) and also occurs in the asexual trypanosome T. b.
gambiense [88] and in asexual Daphnia lineages [60, 89, 90]. If its
frequency is of the order or higher than mutation rates, as reported
in yeast andDaphnia, asexuals would not suffer much from the lack
of segregation at meiosis. Especially, during adaptation, the lag time
between the appearance of a first beneficial mutation and the final
fixation of a mutant homozygote could be strongly reduced
[87]. However, such mechanisms of loss of heterozygosity also
rapidly expose recessive deleterious alleles in heterozygotes and
generate inbreeding-depression-like effects [60].

2.2.3 Selection on

Genetic Systems

So far, we have only considered the immediate, mechanistic effects
of breeding systems on population genetic parameters. Breeding
systems, however, can also affect the evolution of genetic systems
themselves, which modulates previous predictions. Theoretical
arguments suggested that selfing, even at small rates, greatly
increases the parameter range under which recombination is
selected for [91–93]. These predictions have been confirmed in a
meta-analysis in angiosperms in which outcrossers exhibited lower
chiasmata counts per bivalent than species with mixed or selfing
mating systems [94]. Higher levels of physical recombination (r0)
could thus help break down LD and reduce hitchhiking effects.
This could contribute to explaining why little evidence of long-
term genomic degradation has been observed in selfers, compared
to asexuals.

Breeding systems may also affect selection on mutation rates.
Since the vast majority of mutations are deleterious, mutation rates
should tend toward zero, up to physiological costs of further
reducing mutation rates being too high (e.g., [95, 96]). Under
complete linkage, a modifier remains associated with its “own”
mutated genome. Selection should thus favor lower mutation
rates in asexuals and selfers (e.g., [95, 96]). However, Lynch
recently challenged this view and suggested a lower limit to DNA
repair may be set by random drift, not physiological cost [97]. Such
a limit should thus be higher in asexuals and selfers. Asexuality is
often associated with very efficient DNA repair systems (reviewed in
[43]), supporting the view that selection for efficient repair may
overwhelm drift in asexual lineages. Alternatively, only groups
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having high-fidelity repair mechanisms could maintain asexuality in
the long run. More formal tests of mutation rate differences
between breeding systems are still scarce. The phylogenetic
approach revealed no difference in dS, as a proxy of the neutral
mutation rate, between A. thaliana and A. lyrata [61], nor did a
mutation accumulation experiment that compared the deleterious
genomic mutation rate between Amsinckia species with contrasted
mating systems [98]. A similar experiment in Caenorhabditis
showed that the rate of mutational decay was, on average, fourfold
greater in gonochoristic outcrossing taxa than in the selfer
C. elegans [99]. Recent mutation accumulation experiments on
Daphnia pulex suggested a slightly lower mutation rate in obligate
than in facultative asexual genotypes, except for one mutator phe-
notype which evolved in an asexual subline [90]. Overall, these
results do not support Lynch’s hypothesis of mutation rates being
limited by drift in asexual and selfing species. However, such experi-
ments are still too scarce, and quantifying how mutation rates vary
or not with breeding systems is a challenging issue that requires
more genomic data.

2.3 Breeding

Systems and Genomic

Conflicts

Outcrossing species undergo various sorts of genetic conflict. Sex-
ual reproduction directly leads to conflicts within (e.g., for access to
mating) and between sexes (e.g., for resource allocations between
male and female functions or between offspring). In selfers and
asexuals, such conflicts occur because mates are akin or because
mating is absent [100, 101]. Outcrossers are also sensitive to
epidemic selfish element proliferation and to meiotic drive, because
alleles can easily spread over the population through random mat-
ing. In contrast, selfers and asexuals should be immune to such
genomic conflicts because selection only occurs between selfing or
asexual lineages so that selfish elements should be either lost or
evolve into commensalists or mutualists [102].

2.3.1 Relaxation of

Sexual Conflicts in Selfers

and Asexuals

Some genes involved in sexual reproduction are known to evolve
rapidly because of recurrent positive selection [103]. Arm races for
mating or for resource allocation to offspring are the most likely
causes of this accelerated evolution. In selfers and asexuals, selec-
tion should be specifically relaxed on these genes, not only because
of low recombination and effective size but mainly because the
selection pressure per se should be suppressed. According to this
prediction, in the outcrosser C. grandiflora, 6 out of the 20 genes
that show the strongest departure from neutrality are reproductive
genes and under positive selection. This contrasts with the selfer
A. thaliana, for which no reproductive genes are under positive
selection [83].
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More specifically, two detailed analyses provided direct evi-
dence of relaxed selection associated with sexual conflict reduction.
In the predominantly selfer C. elegans, some males deposit a copu-
latory plug that prevents multiple matings. However, other males
do not deposit this plug. A single gene (plg-1), which encodes a
major structural component of this plug, is responsible for this
dimorphic reproductive trait [104]. Loss of the copulatory plug is
caused by the insertion of a retrotransposon into an exon of plg-1.
This same allele is present in many populations worldwide, suggest-
ing a single origin. The strong reduction in male-male competition
following hermaphroditism and selfing evolution explains that no
selective force opposes the spread of this loss-of-function allele
[104, 105]. In A. thaliana, similar relaxed selection has been
documented in the MEDEA gene, an imprinted gene directly
involved in the male vs. female conflict. MEDEA is expressed
before fertilization in the embryo sac and after fertilization in the
embryo and the endosperm, a tissue involved in nutrient transfer to
the embryo. In A. lyrata, an outcrossing relative to A. thaliana,
MEDEA could be under positive [106] or balancing selection
[107], in agreement with permanent conflicting pressures for
resource acquisition into embryos between males and females.
Conversely, this gene evolved under purifying selection in
A. thaliana, where the level of conflict is reduced.

Male vs. female diverging interests are also reflected by cyto-
nuclear conflicts. When cytoplasmic inheritance is uniparental, as in
most species, cytoplasmic male sterility (CMS) alleles favoring
transmission via females at the expense of males can spread in
hermaphroditic outbreeding species, leaving room for coevolution
with nuclear restorers. Maintenance of CMS/non-CMS polymor-
phism leads to stable gynodioecy [108]. In selfers, CMS mutants
also reduce female fitness—because ovules cannot be fertilized—
and are thus selected against. In the genus Silene, the mitochondrial
genome of gynodioecious species exhibits molecular signatures of
adaptive and/or balancing selection. This is likely due to cyto-
nuclear conflicts as this is not, or is less, observed in hermaphrodites
and dioecious [109–111]. Although less studied, cyto-nuclear con-
flicts are also expected in purely hermaphroditic species. In a recent
study in A. lyrata, Foxe and Wright [112] found evidence of
diversifying selection on members of a nuclear gene family encod-
ing transcriptional regulators of cytoplasmic genes. Some of them
show sequence similarity with CMS restorers in rice. Given the
putative function of these genes, such selection could be due to
ongoing cyto-nuclear coevolution. Interestingly, in A. thaliana,
these genes do not seem to evolve under similar diversifying selec-
tion, as expected in a selfing species where conflicts are reduced.
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2.3.2 Biased Gene

Conversion as a Meiotic

Drive Process:

Consequences for

Nucleotide Landscape and

Protein Evolution

GC-biased gene conversion (gBGC) is a kind of meiotic drive at the
base pair scale that can also be strongly influenced by breeding
systems. In many species, gene conversion occurring during
double-strand break recombination repair is biased toward G and
C alleles (reviewed in [113]). This process mimics selection and can
rapidly increase the GC content, especially around recombination
hotspots [114, 115], and, more broadly, can affect genome-wide
nucleotide landscapes. For instance, it is thought to be the main
force that shaped the isochore structure of mammals and birds
[116]. gBGC has been mostly studied by comparing genomic
regions with different rates of (crossing-over) recombination
(reviewed in [116]). However, comparing species with contrasted
breeding systems offers a broader and unique opportunity to study
gBGC. gBGC cannot occur in asexuals because recombination is
lacking. Selfing is also expected to reduce the gBGC efficacy
because meiotic drive does not occur in homozygotes [117]. To
our knowledge, GC content has never been compared between
sexual and asexual taxa, but there have been comparisons between
outcrossers and selfers.

As expected, no relationship was found between local recombi-
nation rates and GC-content in the highly selfing Arabidopsis thali-
ana [117], and Wright et al. [118] suggested that the (weak)
differences observed with the outcrossing A. lyrata and Brassica
oleracea could be due to gBGC. Much stronger evidence has been
obtained in grasses. Grasses are known to exhibit unusual genomic
base composition compared to other plants, being richer and more
heterogeneous in GC-content [119], and direct and indirect evi-
dences of gBGC have been accumulating [119, 120–122]. Accord-
ingly, GC-content or equilibrium GC values were found to be
higher in outcrossing than in selfing species [24, 84, 120]. Differ-
ence in gBGC between outcrossing and selfing lineages has also
been found in the plant genus Collinsia [123] and in freshwater
snails [66], although difference in selection on codon usage cannot
be completely ruled out.

gBGC can also affect functional sequence evolution, leaving a
spurious signature of positive selection and increasing the mutation
load through the fixation of weakly deleterious AT!GC muta-
tions: gBGC would represent a genomic Achilles’ heel
[124]. Once again, comparing outcrossing and selfing species is
useful for detecting interference between gBGC and selection.
gBGC is expected to counteract selection in outcrossing species
only. The Achilles’ heel hypothesis could explain why relaxed selec-
tion was not detected in four grass species belonging to the Triti-
ceae tribe [84]. In outcrossing species, but not in selfing ones,
dN/dS was found to be significantly higher for genes exhibiting
high than low equilibrium GC-content, suggesting that selection
efficacy could be reduced because of high substitution rates in favor
of GC alleles in these outcrossing grasses. In outcrossing species,
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gBGC can maintain recessive deleterious mutations for a long time
at intermediate frequency, in a similar way to overdominance
[125]. This could generate high inbreeding depression in outcross-
ing species, preventing the transition to selfing. In reverse, recur-
rent selfing would reduce the load through both purging and the
avoidance of gBGC, thus reducing the deleterious effects of
inbreeding. Under this scenario, gBGC would reinforce disruptive
selection on mating systems. In the long term, gBGC could be a
new cost of outcrossing: because of gBGC, not drift, outcrossing
species could also accumulate weakly deleterious mutations, to an
extent which could be substantial given current estimates of gBGC
and deleterious mutation parameters [125]. Whether this gBGC-
induced load could be higher than the drift load experienced by
selfing species remains highly speculative. Both theoretical works,
to refine predictions, and empirical data, to quantify the strength of
gBGC and its impact on functional genomic regions, are needed in
the future. Grasses are clearly an ideal model for investigating these
issues, but comparisons with groups having lower levels of gBGC
would also be helpful.

2.3.3 Transposable

Elements in Selfers and

Asexuals: Purging or

Accumulation?

Considering the role of sex in the spread of selfish elements, TEs
should be less frequent in selfers and asexuals than in outcrossers
because they cannot spread from one genomic background to
another through syngamy. However, highly selfing and asexual
species derive from sexual outcrossing ancestors, from which they
inherit their load of TEs. TE distribution eventually depends on the
balance between additional transposition within selfing/clonal
lineages on one hand and selection or excision on the other. Fol-
lowing the abandonment of sex, large asexual populations are
expected to purge their load of TEs, provided excision occurs,
even at very low rates. However, purging can take a very long
time, and, without excision, TEs should slowly accumulate, not
decline [126]. In small populations, even with excision, a Muller’s
ratchet-like process drives TE accumulation throughout the
genome [126]. Transition from outcrossing to selfing should also
rapidly purge TEs, but as for asexuals, in small fully selfing popula-
tions, TEs can be retained [127]. Using yeast populations, it was
experimentally confirmed that sex increases the spread of TEs
[128, 129]. TE numbers were also found to be higher in cyclically
sexual than in fully asexual populations of Daphnia pulex
[130–132] (Table 3), contrary to what was described in the para-
sitoid wasp Leptopilina clavipes and in root knot nematode species
(Table 3). It should be noted that several comparative studies on
asexual arthropods, nematodes, primroses, and green algae did not
evidence any significant effect of breeding system on TE content or
evolution (Table 3). At larger evolutionary scales, the putatively
ancient asexual bdelloid rotifers strikingly exemplify the fact that

Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species 347



Ta
bl
e
3

S
um

m
ar
y
of

st
ud
ie
s
co
m
pa
ri
ng

tr
an
sp
os
ab
le

el
em

en
t
di
st
ri
bu
ti
on

an
d
dy
na
m
ic
s
be
tw
ee
n
di
ff
er
en
t
br
ee
di
ng

sy
st
em

s

Ta
xo
no
m
ic

gr
ou
p

G
ro
up
s
co
m
pa
re
d

A
ge

of
se
lfi
ng
/

as
ex
ua
lit
y

TE
ty
pe
s

Ef
fe
ct

of
br
ee
di
ng

sy
st
em

R
ef
er
en
ce
s

O
u
tc
ro
ss
in
g
/

se
lfi
n
g

A
ra
bi
d
op
si
s

A
.
th
a
li
a
n
a
(s
el
fe
r)
/

A
.
ly
ra
ta

(o
u
tc
ro
ss
er
)

R
ec
en

t
(0
.5
–1

M
ye
ar
s)

A
c-
li
ke

D
N
A
T
E

A
ra
bi
d
op
si
s

A
.
th
a
li
a
n
a
(s
el
fe
r)
/

A
.
ly
ra
ta

(o
u
tc
ro
ss
er
)

R
ec
en

t
(0
.5
–1

M
ye
ar
s)

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

(n
o
fu
ll
g
en

o
m
e

re
fe
re
n
ce
)

N
o
d
if
fe
re
n
ce

in
in
se
rt
io
n

n
u
m
b
er
,
p
u
ri
fy
in
g

se
le
ct
io
n
lo
w
er

in
th
e

se
lfi
n
g
sp
ec
ie
s

L
o
ck
to
n
an
d
G
au
t

[1
4
0
]

A
ra
bi
d
op
si
s

A
.
th
a
li
a
n
a
(s
el
fe
r)
/

A
.
ly
ra
ta

(o
u
tc
ro
ss
er
)

R
ec
en

t
(0
.5
–1

M
ye
ar
s)

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

(f
u
ll
g
en

o
m
e

re
fe
re
n
ce
)

T
h
re
e
ti
m
es

m
o
re

co
p
ie
s
an
d

te
n
ti
m
es

m
o
re

sp
ec
ifi
c

fa
m
il
ie
s
in

th
e
o
u
tc
ro
ss
er
.

R
ec
en

t
d
ec
re
as
e
in

T
E
in

n
u
m
b
er

in
th
e
se
lf
er

d
e
la
C
h
au
x
et

al
.

[1
4
1
]

C
a
ps
el
la

C
.
or
ie
n
ta
li
s
an
d

C
.
ru
be
ll
a
(s
el
fe
rs
)/

C
.
gr
a
n
d
ifl
or
a

(o
u
tc
ro
ss
er
)

R
ec
en

t
(~
<
1
M

ye
ar
s)

fo
r
C
.
or
ie
n
ta
li
s,
ve
ry

re
ce
n
t

(~
2
0
,0
0
0
ye
ar
s)

fo
r

C
.
ru
be
ll
a

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

S
li
g
h
t
in
se
rt
io
n
in
cr
ea
se

in
th
e
re
ce
n
t
se
lf
er
,
st
ro
n
g

d
ec
re
as
e
in

th
e
o
ld
er

se
lf
er

A
g
re
n
et

al
.
[1
4
2
]

So
la
n
u
m

S
I
an
d
S
C

sp
ec
ie
s
o
f
th
e

S.
ly
co
pe
rs
ic
u
m

se
ct
io
n

R
ec
en

t
(~
<
1
M

ye
ar
s)

co
pi
a
-t
yp
e
R
N
A
T
E

(T
o
R
T
L
1
,
T
1
3
5
,

T
n
t1
)

N
o
ef
fe
ct

o
f
M
S
o
n
T
E

in
se
rt
io
n
s.
R
ed

u
ce
d
T
E

se
q
u
en

ce
d
iv
er
si
ty

in
S
C

li
n
ea
g
es
.
C
o
m
p
at
ib
le
w
it
h

a
n
ea
rl
y
n
eu

tr
al
m
o
d
el

T
am

et
al
.
[1
3
8
]

C
a
en
or
ha

bd
it
is

C
.
el
eg
a
n
s
(s
el
fe
r)
/

C
.
re
m
a
n
ei

(o
u
tc
ro
ss
er
)

R
at
h
er

re
ce
n
t
(<

~
4
M

ye
ar
s)

T
c1

D
N
A
T
E

P
u
ri
fy
in
g
se
le
ct
io
n
ag
ai
n
st

T
E
s
le
ss

ef
fi
ci
en

t
in

th
e

se
lfi
n
g
sp
ec
ie
s

D
o
lg
in

et
al
.

[2
2
9
]

348 Sylvain Glémin et al.



S
ex
u
al
s/

as
ex
u
al
s

F
o
u
r
as
ex
u
al

an
g
io
sp
er
m

sp
ec
ie
s

C
o
m
p
ar
is
o
n
w
it
h
se
xu

al
p
la
n
ts

U
n
ce
rt
ai
n
,
m
ay
b
e

b
et
w
ee
n
1
an
d
1
0
M

ye
ar
s

T
y1

/
co
pi
a
,T

y3
/
gy
ps
y,

an
d
L
IN

E
-l
ik
e

R
N
A
T
E

P
re
se
n
ce

o
f
co
n
se
rv
ed

T
E
in

as
ex
u
al
s

D
o
ck
in
g
et

al
.

[2
2
8
]

O
en
ot
he
ra

1
7
as
ex
u
al
/
1
3
se
xu

al
li
n
ea
g
es

U
n
kn

o
w
n

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

N
o
si
g
n
ifi
ca
n
t
ef
fe
ct

A
g
re
n
et

al
.
[1
6
0
]

C
hl
a
m
yd
om

on
a
s

re
in
ha

rd
ti
i

A
se
xu

al
ex
p
er
im

en
ta
l

li
n
es

8
0
0
as
ex
u
al

g
en

er
at
io
n
s/
1
0
0

as
ex
u
al
g
en

er
at
io
n
s

vs
.
1
1
se
x
ev
en

ts

T
w
o
D
N
A
T
E

(T
O
C
1
,
G
u
ll
iv
er
)

N
o
si
g
n
ifi
ca
n
t
ef
fe
ct

Z
ey
l
et

al
.
[2
3
5
]

Sa
cc
ha

ro
m
yc
es

ce
re
vi
si
a
e

S
ex
u
al
an
d
as
ex
u
al

ex
p
er
im

en
ta
l
li
n
es

w
it
h
T
E
at

in
it
ia
l

fr
eq

u
en

cy
1
%

2
0
0
–3

0
0
as
ex
u
al

g
en

er
at
io
n
s/
8
se
x

ev
en

ts

T
y3

R
N
A
T
E

H
ig
h
er

in
cr
ea
se

in
T
E

fr
eq

u
en

cy
in

se
xu

al
li
n
es

Z
ey
l
et

al
.
[1
2
8
]

C
a
n
d
id
a

a
lb
ic
a
n
s

A
se
xu

al
sp
ec
ie
s,

co
m
p
ar
ed

w
it
h

S.
ce
re
vi
si
a
e

U
n
kn

o
w
n
.
R
ar
e
se
x

ev
en

ts
L
T
R
R
N
A
T
E

M
o
re

T
E
fa
m
il
ie
s
b
u
t
m
o
st

o
f
th
em

in
ac
ti
ve

an
d
lo
w
er

co
p
y
n
u
m
b
er

th
an

in
S.

ce
re
vi
si
a
e

G
o
o
d
w
in

an
d

P
o
u
lt
er

[2
3
0
]

A
rt
h
ro
p
o
d
s

F
iv
e
p
ai
rs

o
f
as
ex
u
al
/

se
xu

al
li
n
ea
g
es

F
ro
m

ve
ry

re
ce
n
t

(~
2
2
yr
s.
,

1
0
,0
0
0
–4

0
,0
0
0

g
en

er
at
io
n
s)

to
o
ld

(~
1
0
M
yr
s)

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

N
o
d
if
fe
re
n
ce

in
an
y
o
f
th
e

fi
ve

p
ai
rs

B
as
t
et

al
.
[2
2
6
]

B
d
el
lo
id

ro
ti
fe
rs

C
o
m
p
ar
is
o
n
w
it
h
m
an
y

o
th
er

se
xu

al
m
et
az
o
an

O
ld

L
IN

E
-l
ik
e
an
d
gy
ps
y-

li
ke

R
N
A
T
E
,

M
a
ri
n
er
/
T
C
1
-l
ik
e

D
N
A
T
E

A
b
se
n
ce

o
f
R
N
A
T
E
in

as
ex
u
al
s

A
rk
h
ip
o
va

an
d

M
es
el
so
n
[1
3
3
]

D
a
ph
n
ia

pu
le
x

D
if
fe
re
n
t
is
o
la
te
s
o
f
th
e

sa
m
e
sp
ec
ie
s

R
ec
en

t
(<

2
0
0
,0
0
0
ye
ar
s)

O
n
e
D
N
A
T
E
(P
ok
ey
)

L
o
w
er

T
E
in
se
rt
io
n
in

as
ex
u
al
s

S
u
ll
en

d
er

an
d

C
re
as
e
[1
3
0
],

V
al
iz
ad
eh

an
d

C
re
as
e
[1
3
1
]

D
a
ph
n
ia

pu
le
x

2
0
as
ex
u
al
s/
2
0
se
xu

al
s

is
o
la
te
s

R
ec
en

t
(<

2
0
0
,0
0
0
ye
ar
s)

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

L
o
w
er

T
E
in
se
rt
io
n
b
u
t

m
o
re

fi
xe
d
o
n
es

in
as
ex
u
al
s.
S
u
b
st
an
ti
al

fr
ac
ti
o
n
o
f
T
E
in

as
ex
u
al
s

in
h
er
it
ed

d
ir
ec
tl
y
fr
o
m

se
xu

al
s

Ji
an
g
et

al
.
[2
3
1
]

(c
o
n
ti
n
u
ed

)

Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species 349



Ta
bl
e
3

(c
on
ti
nu
ed
)

Ta
xo
no
m
ic

gr
ou
p

G
ro
up
s
co
m
pa
re
d

A
ge

of
se
lfi
ng
/

as
ex
ua
lit
y

TE
ty
pe
s

Ef
fe
ct

of
br
ee
di
ng

sy
st
em

R
ef
er
en
ce
s

D
a
ph
n
ia

pu
le
x

A
se
xu

al
/
se
xu

al
m
u
ta
ti
o
n
-

ac
cu
m
u
la
ti
o
n

ex
p
er
im

en
ta
l
li
n
es

4
0
as
ex
u
al

g
en

er
at
io
n
s/
at

le
as
t

o
n
e
se
x
ev
en

t

6
D
N
A
T
E
fa
m
il
ie
s

H
ig
h
er

ra
te

o
f
D
N
A
T
E
lo
ss

in
cy
cl
ic
al
th
an

in
o
b
li
g
at
e

p
ar
th
en

o
g
en

o
u
s
li
n
ea
g
es

S
ch
aa
ck

et
al
.

[2
3
3
]

R
o
o
t-
kn

o
t

n
em

at
o
d
es

3
o
b
li
g
at
e
as
ex
u
al
s/
1

fa
cu
lt
at
iv
e
as
ex
u
al

U
n
ce
rt
ai
n
,
m
ay
b
e

b
et
w
ee
n
1
7
an
d

4
0
M
yr
s

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

H
ig
h
er

T
E
co
n
te
n
t
in

as
ex
u
al
s

B
la
n
c-
M
at
h
ie
u

et
al
.
[1
5
7
]

N
em

at
o
d
es

4
2
sp
ec
ie
s
(d
io
ec
y,

an
d
ro
d
io
ec
y,

fa
cu
lt
at
iv
e

p
ar
th
en

o
g
en

es
is
,
st
ri
ct

ap
o
m
ix
is
)

U
n
ce
rt
ai
n
,
m
ay
b
e

b
et
w
ee
n
1
7
an
d

4
0
M

ye
ar
s

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

N
o
si
g
n
ifi
ca
n
t
ef
fe
ct

o
f

b
re
ed

in
g
sy
st
em

S
zi
te
n
b
er
g
et

al
.

[2
3
4
]

L
ep
to
pi
li
n
a

cl
a
vi
pe
s

1
se
xu

al
/
1
as
ex
u
al

(W
ol
ba
ch
ia
-i
n
d
u
ce
d
)

li
n
ea
g
es

R
ec
en

t
(<

1
2
,0
0
0
–4

3
,0
0
0

g
en

er
at
io
n
s)

D
N
A
T
E
,
L
T
R
an
d

n
o
n
-L
T
R
R
N
A
T
E

P
ro
li
fe
ra
ti
o
n
o
f
D
N
A
T
E

an
d
gy
ps
y-
li
ke

R
N
A
T
E
in

as
ex
u
al
li
n
ea
g
es

K
ra
ai
je
ve
ld

et
al
.

[2
3
2
]

350 Sylvain Glémin et al.



asexuals can purge their load of TEs. Unlike all sexual eukaryotes,
they appear to be free of vertically transmitted retrotransposon,
while their genome contains DNA transposons, probably acquired
via horizontal transfers [133, 134]. Examples of TE accumulation
in asexuals are less common, maybe because species are doomed to
extinction under this evolutionary scenario [135]. However, the
increase in genome size in some apomictic lineages of Hypericum
species may result from this process [136].

In selfers, the distribution of TEs depends not only on the
population size but also on the mode of selection against TEs
[127, 137]. Under the “deleterious” model, TE insertions are
selected against because they disrupt gene functions. According
to the “ectopic exchange” model, TEs are selected against because
they generate chromosomal rearrangements through unequal
crossing-over between TE at nonhomologous insertion sites.
Under the first of these two models, homozygosity resulting from
selfing increases the selection efficacy against TEs, while under the
second one, under-dominant chromosomal rearrangements are less
selected against in selfing than in outcrossing populations
[127, 137]. A survey of Ty1-copia-like elements in plants suggests
that they are less abundant in self-fertilizing than in outcrossing
plants, thus supporting the “deleterious” rather than the “ectopic”
exchange model [127]. The distribution of retrotransposons in
self-incompatible and self-compatible Solanum species also sup-
ports the “deleterious” model, even though most insertions are
probably neutral [138] (Table 3). In the selfer Arabidopsis thali-
ana, selection efficacy against TEs seems to be reduced compared
to its outcrossing sister species A. lyrata [139, 140], but compari-
son of the two complete genomes revealed a higher load of TE in
A. lyrata and a recent decrease in TE in number in A. thaliana, in
agreement with the date of transition to selfing [141]. In the
Capsella genus, while the very recent selfer C. rubella possesses a
slightly higher number of TEs than the outcrossing C. grandiflora,
the oldest selfer C. orientalis exhibits a significantly reduced load of
TE [142] (Table 3). Other selfish elements, such as B chromo-
somes, are also less frequent in selfers, in support of the view that
inbreeding generally prevents selfish element transmission [102].

2.4 Breeding

Systems, Ploidy, and

Hybridization

Atypical breeding systems are often associated with polyploidy
[143], and the reasons for this association are not entirely clear.
Polyploid mutants might be more likely to establish as new lineages
in selfers and asexuals than in obligate outcrossers if crosses
between polyploids and diploids are unfertile or counterselected.
This is because at low population frequency a polyploid mutant will
experience the disadvantage of mostly mating with diploids—the
minority cytotype exclusion principle [144, 145]—unless it repro-
duces asexually or via selfing. In addition, by doubling gene copy
number, polyploidy might alleviate the fitness cost of recessive
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deleterious mutations being exposed at homozygous state in selfers
[146]. Kreiner et al. [147] reported that in Brassicaceae the rate of
production of unreduced gametes is higher in asexuals than in
outcrossers, suggesting that mating systems can influence not
only the establishment rate but also the mutation rate to polyploidy.

Recent genome-wide data analyses have revealed that a number
of polyploid selfers or asexuals actually correspond to allopolyploids
(e.g., [59, 148–151]), highlighting the possibility that hybridiza-
tion plays a role in breeding system and ploidy evolution. Hybridi-
zation between facultative asexuals might cause immediate
transition to obligate asexuality if the two progenitor genomes are
so divergent that meiosis is impaired—e.g., due to chromosomal
rearrangements, or in case of genetic incompatibilities affecting
genes involved in sexual reproduction [16]. Numerous selfing or
asexual lineages, either diploid or polyploid, are known to be of
hybrid origin (e.g., [13, 152–157]). Hybridization would therefore
appear as a potential cause, and polyploidy a potential consequence,
of atypical breeding systems [16], but more genome-wide data are
obviously needed to draw firm conclusions on these complex
relationships.

2.5 Breeding

Systems and Genome

Size Evolution

As argued above, breeding systems can affect many aspects of
genome content and organization. They should also affect the
whole genome size. Following Lynch’s theory [1], genome size
should be higher in selfers and asexuals because of their reduced
effective population size, hence reduced ability to get rid of useless,
slightly costly sequences. However, the picture is probably more
complex. First, because of the recent origin of many selfing and
(at least some) asexual lineages, relaxed selection may not have
operated longly enough to impact genome size. Second, because
of their immunity to selfish element transmission, selfers and asex-
uals should exhibit lower genome size, especially in groups where
TEs are major determinants of genome size. Hence, it is not clear
whether genetic drift or resistance to selfish elements (or other
processes) is the most important in governing genome size evolu-
tion in various breeding systems.

Meta-analyses performed in plants provided equivocal answers.
Analysis of the distribution of B chromosomes showed a strong and
significant positive association between outcrossing, the occurrence
of B chromosomes, and genome size [102, 158]. However, after
phylogenetic control, only the association between breeding sys-
tems and B chromosomes remains. Whitney et al. [159] simulta-
neously tested the effect of breeding systems (using outcrossing
rate estimates) and genetic drift (using polymorphism data) on
genome size in seed plants. Raw data showed a significant effect
of both breeding systems and genetic drift, according to theoretical
predictions. However, no effect was observed after phylogenetic
control, leading the authors to reconsider the hypothesis of a role
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of nonadaptive processes in genome size evolution. Similarly, phy-
logenetic comparative analysis of 30 primrose species (Oenothera)
covering several transitions to asexuality showed no significant
relationship between reproductive mode and genome size [160].

Because breeding systems can evolve quickly, more detailed
analyses at a short phylogenetic scale are needed to get a clearer
picture of their effects on genome size evolution. Moreover, breed-
ing systems are often correlated with other life history traits, such as
lifespan, which can make it hard to clarify the causes and conse-
quences of the observed correlations. A detailed analysis of genome
size in the Veronica genus suggests that selfing, not annuality, is
associated with genome size reduction [161]. A comparison of
14 pairs of plant congeneric species with contrasted mating systems
also suggested a genome size reduction in selfers [162]. However,
this could partly have been due to the four polyploid selfing species
of the dataset—polyploidy can lead to haploid genome size reduc-
tion because of the loss of redundant DNA following polyploidiza-
tion. A better understanding can be gained from the comparative
analysis of genome composition and organization, not only
genome size. InCaenorhabditis nematodes, the observed reduction
in genome size is not driven by reduction in TEs but by a global loss
of all genomic compartments [163]. This pattern contradicts the
hypothesis of relaxed selection in selfers against the accumulation of
deleterious genomic elements. Alternatively, it could be explained
by deletion bias and high genetic drift in selfers. However, in
mutation accumulation lines, insertions predominate over deletion
in the selfing C. elegans, and deletions occurred at the whole gene
level instead of being at random among genomic compartments, as
predicted under a general deletion bias (see discussion in ref. 163).
In this genus, Lynch’s hypothesis that evolution of genome size
should be driven by changes inNe does not apply. Alternatively, the
authors suggested that it is a more direct consequence or even an
adaptation to the selfing lifestyle, although the underlying mechan-
isms still remain unclear.

3 A Genomic View of Breeding System Evolution

Because breeding systems can strongly affect genome structure and
evolution, conversely, genomic approaches offer new powerful
tools to reconstruct breeding system evolution and to test evolu-
tionary hypotheses, especially concerning long-term evolution.
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3.1 Genomic

Approaches to Infer

Breeding System

Evolution

3.1.1 Genomic

Characterization of

Breeding Systems

Genetic markers have long been used to determine breeding sys-
tems and quantify selfing rates or degrees of asexuality. For
instance, current selfing rates can be inferred using molecular mar-
kers through FIS estimates or preferably—although more time
consuming—through progeny analyses [164–166]. Multilocus-
based estimates that take identity disequilibrium into account
greatly improve the simple FIS-based method that is sensitive to
several artifacts such as null alleles ([167], see also refs. 168, 169).
This method, implemented in the RMES software [167], has
proven to give results very similar to progeny-based methods
[170]. To take advantage of the information potentially available
in sequence data, coalescence-based estimators have also been pro-
posed to infer long-term selfing rates, and they have been imple-
mented more recently in a Bayesian clustering approach in the
INSTRUCT software package [171]. However, this approach
mostly captures information from recent coalescence events so
that such approaches still estimate recent selfing rates [28]. Much
more information about long-term selfing rates can be derived
from LD patterns [19], but this has not been fully exploited for
selfing rate estimators (for instance, LD is not taken into account in
INSTRUCT). Similarly, recombination can be inferred using
genetic markers or sequence data, and more generally, various
methods have been proposed to characterize the degree of clonality
in natural populations (for review see ref. 172) and recently imple-
mented in the R package RClone [173].

Initially, such methods were applied with few markers, from
which only global descriptions of breeding systems were deducible.
Thanks to the considerable increase in sequencing facilities, it has
become possible to finely characterize temporal and spatial varia-
tions in breeding systems. In A. thaliana, an analysis of more than
1000 individuals in 77 local stands using more than 400 SNP
markers revealed spatial heterogeneity in outcrossing rates. Local
“hotspots” of recent outcrossing (up to 15%) were identified, while
other stands exhibited complete homozygosity with no detectable
outcrossing [174]. Interestingly, at this local scale (from 30 m to
40 km), outcrossing rates have been found to be twofold higher on
average in rural than in urban stands; hence, selfing could be
associated with higher disturbance in urban stands.

Genomic data may also help characterize breeding systems in
species with unknown or ill-characterized life cycles. In yeasts Sac-
charomyces cerevisiae and S. paradoxus, the analyses of linkage dis-
equilibrium patterns allowed to quantify the frequency of (rare)
sexual reproduction events and the proportion of inbreeding and
outcrossing during these events [175, 176]. For instance, in the
pico-algaeOstreococcus, no sexual form or process has been detected
in the lab. However, the occurrence of infrequent recombination
(about 1 meiosis for 10 mitoses) inferred from a population geno-
mics approach and the presence of meiosis genes in the genome
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support the existence of a sexual life cycle [177]. Moreover, a
strong negative correlation between chromosome size and
GC-content has been observed [178]. In mammals and birds
(among others), such a pattern has been interpreted as a long-
term effect of gBGC acting on chromosomes with different average
recombination rates [116]—small chromosomes having higher
recombination rates because of the constraint of at least one chias-
mata per chromosome arm. A similar interpretation forOstreococcus
is thus appealing. Genomic data also allow to test whether the
theoretical signatures of long-term asexuality are observed in puta-
tive asexuals. As an example, whole-genome analyses of the try-
panosome T. b. gambiense demonstrated an independent evolution
and divergence of alleles on each homologous chromosome (the
“Meselson effect” [179, 180]), which is indicative of strict asexual
evolution [88]. In contrast, genomic studies of the putatively
ancient asexual bdelloids recently uncovered the occurrence of
inter-individual genetic exchanges ([181, 182] see below Subhead-
ing 3.2.2).

3.1.2 Inferring and

Dating Breeding System

Transitions

Genomic approaches are also useful for analyzing the dynamics of
breeding system evolution. A simple way is to map breeding system
evolution on phylogenies, which could provide a raw picture of the
frequency and relative timing of breeding system transitions (e.g.,
[183]). However, these approaches, based on ancestral character
reconstruction, are hampered by numerous uncertainties. For
instance, in the case of two sister species with contrasting breeding
systems, such as A. thaliana and A. lyrata, it is impossible to know
whether A. thaliana evolved toward selfing just after divergence
(about five million years ago) or only very recently. At a larger
phylogenetic scale, inferring rates of transition between characters
and ancestral states can be biased if diversification rates differ
between characters—this is typically expected with breeding sys-
tems for which asexuals and selfers should exhibit higher extinction
rates than outcrossers [184].

Thanks to the genomic signatures left by contrasted breeding
systems, it is possible to trace back transitions in the past and to date
them more precisely. In diploid asexual species, because of the
arrest of recombination, the two copies of each gene have diverged
independently since the origin of asexuality. After having calibrated
the molecular clock, it is thus possible to date this origin from the
level of sequence divergence between the two copies. This so-called
Meselson effect was observed and quantified in the trypanosome T.
b. gambiense, suggesting that this species evolved asexually about
10,000 years ago [88]. However, no Meselson effect has been
observed in other presumably ancient asexual species such as oriba-
tid mites [185] or darwinulid ostracods [186], while data refute the
possibility of cryptic sex. In such cases, it is thus not possible to infer
when recombination actually stopped, presumably because of
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homogenizing processes such as very efficient DNA repair or auto-
mixis. Mitotic recombination could also obscure the pattern pre-
dicted under this Meselson effect. Of note, when asexuality
originates by hybridization (see above Subheading 2.4), the last
common ancestor of the two copies of a gene dates back to the
ancestor of the two parental lineages, which can be much older than
the hybridization date, faulting the above-described rationale.

Past transitions from outcrossing to selfing have also been
investigated, through either population genomics approaches or
the evolutionary analysis of self-incompatibility (SI) genes, which
are directly involved in the transition to selfing. Since the evolution
of selfing requires the breakdown of SI systems, initially constrained
S-locus genes are expected to evolve neutrally after a shift to selfing.
In A. thaliana, Bechsgaard et al. [187] reasoned that the dN/dS
ratio in the selfing lineage should be the average of the neutral
dN/dS (i.e., 1) and the outcrossing dN/dS—inferred from sister
lineages—weighted by the time spent in the selfing vs. the out-
crossing state. They deduced that SRK, one of the major SI genes,
became a pseudogene less than 400,000 years ago. SRK, however,
is not the only gene involved in SI. Mutations in other genes may
have previously disrupted the SI system, thus confusing SRK-based
dating. Indeed, coalescence simulations showed that the observed
genome-wide pattern of linkage disequilibrium is compatible with
the transition to selfing one million years ago [188], suggesting a
possible but debated two-step scenario in the evolution of selfing
[189, 190]. The persistence of three distinct divergent SRK haplo-
types among extant A. thaliana individuals also suggests multiple
loss of SI [191], but the recent discovery of the co-occurrence of
the three haplotypes in Moroccan populations makes possible the
evolution of selfing in a single geographic region [192]. In another
Brassicaceae, i.e., Capsella rubella, analyses of both S-locus and
genome-wide genes coupled with coalescence simulations sug-
gested that selfing evolved very recently from the outcrosser
C. grandiflora, around 50,000 years ago [193, 194] from a poten-
tially large number of founding individuals followed by a strong
reduction in Ne [195]. In the tetraploid selfer Arabidopsis suecica,
which originated as a hybrid between A. thaliana and the out-
crossing A. arenosa, the genomic analysis of the S-locus also
revealed the origin of selfing, suggesting an instantaneous loss of
SI due to the fixation of nonfunctional alleles from both parents
around 16,000 years ago [150].
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3.2 Matching

Breeding System

Evolution Theories

with Genomic Data

3.2.1 Testing the Dead-

End Hypothesis:

Comparison Between

Selfing and Asexuality

The expected reduction in Ne in selfers and asexuals may increase
the drift load (accumulation of slightly deleterious mutations) and
preclude adaptation. Selfing and clonality are thus supposed to be
evolutionary dead ends [17, 18]. The twiggy phylogenetic distri-
butions of asexuals [196] and selfers [183] or self-compatible
species [197] suggest they are mostly derived recently from out-
crossing ancestors (but see ref. 198). However, this observationmay
not be sufficient to support the dead-end hypothesis, and neutral
models can also explain this pattern [199–201]. In a comprehensive
and epochal phylogenetic study of several Solanaceae genera, Gold-
berg et al. [202] went further by testing the irreversibility of
transitions. Using a phylogenetic method developed for estimating
the character effect on speciation and extinction [203, 204], they
showed that self-compatible species have both higher speciation
and extinction rates—with the resulting net diversification rates
being lower—than self-incompatible species. This was the first
direct demonstration of the dead-end hypothesis, and additional
results have been obtained in Primula species [205]. On the con-
trary, in the Oenothera genus, asexuality has been found associated
with increased diversification but frequent reversion toward the
sexual system, suggesting that the form of asexuality in this group
is not an evolutionary dead end [206].

Genomic data also provide an opportunity to investigate the
genetic causes of such long-term evolutionary failures. The
increased dN/dS ratios reported in asexuals (see above) suggest
that deleterious point mutations contribute to the load. However,
in Daphnia rapid exposure of recessive deleterious alleles through
mitotic recombination or gene conversion likely has a much stron-
ger effect on clone persistence than their long-term accumulation
under Muller’s ratchet [60]. TE could also contribute to the load
and to the extinction of asexuals [135], though more data are still
needed to unambiguously support this hypothesis (but see ref.
136). The pattern in selfers is less clear. While theory globally
predicts a reduction in selection efficacy in selfers, models also
highlight conditions under which selection can be little affected
or even enhanced in selfers [72, 73, 207], especially regarding TE
accumulation [127, 137]. Empirical data on both protein and TE
evolution have not revealed any strong evidence of long-term
accumulation of deleterious mutation in selfers, as compared to
outcrossers, whereas polymorphism data mainly support relaxation
of selection in selfers (Table 2). This is in agreement with the recent
origin of selfing but makes difficult further inference of the under-
lying causes of higher extinction in selfers as trait-dependent diver-
sification processes alter the relationship between life history traits
and rate of molecular evolution [208]. A reduced ability to respond
to environmental changes through adaptive evolution could also
contribute to long-term extinction in asexuals (but see ref. 209) and
selfers, especially if standing variation is needed to rescue
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populations experiencing environmental challenges [77, 210]. Few
studies, however, have compared the rate of adaptation in selfers
and outcrossers (see Table 2). Theoretical predictions regarding this
effect, moreover, critically depend on the dominance level of new
favorable mutations [72, 73, 77, 210], which are poorly known
(but see ref. 80).

While several issues remain open, current knowledge suggests
that selfers are less prone to extinction than asexuals. The wider
distribution of selfing than clonality in plants supports this view
[211, 212]. Selfers could go toward extinction more slowly than
asexuals, and the causes of their extinction could differ. Since
deleterious mutations should accumulate at a slower rate in selfers
than in asexuals, as suggested by theory and current data, this
process would likely not be sufficient to drive them to extinction.
The reduced adaptive potential could be the very cause of their
ultimate extinction as initially proposed by Stebbins [18], which
could generally occur before sufficient deleterious mutations have
accumulated to be detected via molecular measures of divergence.
On the contrary, in asexuals, the accumulation of deleterious muta-
tions could be fast enough to leave a molecular signature and
contribute to extinction. Alternatively, demographic characteristics
associated with uniparental reproduction, such as recurrent bottle-
necks, fragmented populations, and extinction/recolonization
dynamics, could be sufficient to drive population extension simply
because of higher sensitivity to demographic stochasticity (see also
ref. 213). Genomic degradation would only be the witness of the
evolution toward selfing and clonality without being the ultimate
cause of their extinctions. These hypotheses need to be further
investigated by building more realistic demo-genetic model and
by better integrating genomic and ecological approaches.

The literature reviewed above focuses on intrinsic factors that
may affect the extinction rate of selfing and asexual species, taken as
established lineages, compared to their sexual relatives. Alterna-
tively, Janko et al. [199] suggested that if asexual mutants are
produced at a relatively high rate and compete with each other,
this would imply a rapid turnover between clonal lineages and a
young expected age for extant asexuals, without the need to invoke
any fitness effect (see also refs. 200, 201). Of note, this model
invokes competitive exclusion among clonal lineages, but not
between clonal and sexual ones—the ancestral sexual gene pool is
assumed to be immune from extinction.

3.2.2 Evading the “Dead

End”

The few putatively ancient asexuals known so far seem to escape the
mutational load predicted by the dead-end hypothesis and avoid
extinction over long evolutionary time scales. For example, fossil
evidence and decades of microscopic observations indicate that
bdelloid rotifers have apparently persisted for over 40 million
years without meiosis, males, or conventional sexual reproduction
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[15, 214]. As a matter of fact, the first genome assembly published
for these organisms confirmed that their genome structure is
incompatible with conventional meiosis [215]. However, two inde-
pendent studies recently demonstrated that bdelloids could experi-
ence genetic exchanges between individuals.

A first article by Debortoli et al. [182] evidenced frequent
horizontal exchanges of genetic fragments between individuals of
the species Adineta vaga (Adinetidae). Such horizontal transfers
could be promoted by the peculiar ecology of these rotifers, which
experience frequent desiccations damaging their cell and nucleus
membranes and thus allowing for the entry of foreign DNA in the
cells. In addition, desiccation induces multiple DNA double-strand
breaks, facilitating the integration of foreign DNA during repair
processes.

Another study by Signorovitch et al. [181] identified a pattern
of allele sharing between individuals of the species Macrotrachela
quadricornifera (Philodinidae) that was incompatible with strict
asexual evolution. The authors suggested that bdelloids had
evolved an atypical meiotic mechanism similar to what has been
described in some species of primroses (Oenothera), in which chro-
mosomes organize into a ring during meiosis without requiring
homologous chromosome pairing [216]. They advocated that even
rare events of such unconventional sex could be enough to generate
the observed pattern of allele sharing.

In the absence of conventional meiosis and syngamy, bdelloid
rotifers might thus have escaped extinction by maintaining some
level of genetic exchanges between individuals, either through
horizontal gene transfers or unconventional Oenothera-like meio-
sis. Regardless of the underlying molecular mechanisms, bdelloids
should not be considered as “ancient asexual scandals” anymore.
These recent results call for a reassessment of the reproductive
mode of all supposedly ancient asexuals (see Subheading 3.1.1
above). The rise of genomic studies in recent years will greatly
contribute to decipher whether putative asexuals evolve as strict
asexuals or have developed new alternatives to sex.

4 Conclusion and Prospects

There is a large body of theory on the effects of breeding systems on
molecular evolution. However, some of them have not been clearly
verified by empirical data, and numerous questions remain. Geno-
mic data have also partly unveiled the complexity of breeding
systems, especially in asexual or presumably asexual species.
Promising prospects include (1) analysis of the rate and pattern of
transition to selfing/asexuality using densely sampled phylogenies
with appropriate breeding system distributions combined with
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genome-wide molecular data, (2) distinguishing between the dif-
ferent forms of selection with a better characterization of the fitness
effect of mutations, (3) explicitly accounting for the possible asso-
ciation between breeding system shifts and non-equilibrium demo-
graphic dynamics (e.g., bottlenecks in selfers, clone turnover in
asexuals). A large theoretical corpus has already been developed,
and thanks to the increasing availability of genomic data, qualitative
patterns are now rather well described and partly understood.
Another challenge in the future is also to make our predictions
and tests more quantitative.

5 Questions

1. What population genetic parameters are affected, and how, by
selfing and asexuality?

2. What are the potential problems when comparing the dN/dS
ratio between selfers and outcrossers or sexuals and asexuals?

3. What is the evolutionary “dead-end hypothesis,” and how can
we test it using phylogenetic and evolutionary genomic tools?
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73. Glémin S (2007) Mating systems and the effi-
cacy of selection at the molecular level. Genet-
ics 177(2):905–916

74. Charlesworth B, Charlesworth D (1997)
Rapid fixation of deleterious alleles can be
caused by Muller’s ratchet. Genet Res 70
(1):63–73

75. Szovenyi P, Devos N, Weston DJ, Yang X,
Hock Z, Shaw JA, Shimizu KK, McDaniel
SF, Wagner A (2014) Efficient purging of
deleterious mutations in plants with haploid
selfing. Genome Biol Evol 6(5):1238–1252

76. Haldane JBS (1937) The effect of variation on
fitness. Am Nat 71:337–349
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Part IV

Natural Selection and Innovation in Genomic Sequences



Chapter 12

Selection Acting on Genomes

Carolin Kosiol and Maria Anisimova

Abstract

Populations evolve as mutations arise in individual organisms and, through hereditary transmission, may
become “fixed” (shared by all individuals) in the population. Most mutations are lethal or have negative
fitness consequences for the organism. Others have essentially no effect on organismal fitness and can
become fixed through the neutral stochastic process known as random drift. However, mutations may also
produce a selective advantage that boosts their chances of reaching fixation. Regions of genomes where new
mutations are beneficial, rather than neutral or deleterious, tend to evolve more rapidly due to positive
selection. Genes involved in immunity and defense are a well-known example; rapid evolution in these
genes presumably occurs because new mutations help organisms to prevail in evolutionary “arms races”
with pathogens. In recent years genome-wide scans for selection have enlarged our understanding of the
genome evolution of various species. In this chapter, we will focus on methods to detect selection on the
genome. In particular, we will discuss probabilistic models and how they have changed with the advent of
new genome-wide data now available.

Key words Conserved and accelerated regions, Positive selection scans, Codon models, Selection-
mutation models, Polymorphism-aware phylogenetic models

1 Introduction

In the past selection studies mainly focused on the analysis of
particular loci such as genes, proteins, or regular elements of inter-
est. With the availability of comparative genomic data, the emphasis
has shifted from the study of individual proteins to genome-wide
scans for selection.

The search for selection can be performed on different levels
comparing homologous nucleotide sequences or protein-coding
genes in one or multiple genomes. The evolutionary processes in
all these levels can be described by probabilistic models, which set
the basis for evaluating selective pressures and selection tests. This
book chapter will give an introduction into fundamental properties
of the probabilistic models used to detect selection in the Subhead-
ing 3 as well as examples of genome-wide scans.
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In Fig. 1, we summarize the different data levels and time scales
of modeling selection on genomes.

2 Comparative Genome Data

Several whole genome sequence data sets are now available for
selection scans. Mammalian genomes are well represented
(in particular primates), and insect genomes are becoming more
numerous (in particular Drosophila). These data can be down-
loaded as orthologous alignments from the Ensembl [1] and
UCSC [2] browsers.

In light of recent advances in DNA sequencing, with so-called
next generation sequencing (NGS) technologies that have dramat-
ically reduced the cost and time needed to sequence an organism’s
entire genome, large-scale (involving many organisms) sequencing
projects have been and are currently being undertaken. Just to
name a few, genome projects re-sequencing 1000 D. melanogaster
[3] and 1001 Arabidopsis [4] were accomplished, and the 100,000
human genome project [5] is ongoing. These polymorphism data
from multiple individuals from several species enable us to detect
very recent selection.

Together with the progress in sequencing technologies, algo-
rithmic advances now allow the de novo assembly of genomes from
NGS data, including complex mammalian genomes (e.g., giant
panda genome [6]). Therefore, not only international consortia
but also small groups and individual labs can now envisage to
sequence the organisms of their interest. As a consequence plat-
forms for sharing this data have been established. For example, the
Genome 10K project aims to assemble a genomic zoo—a collection

Fig. 1 A diagram illustrating the different data and levels to analyze genomic
sequences and the relationship of the various approaches modeling selection
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of DNA sequences representing the genomes of 10,000 vertebrate
species, approximately one for every vertebrate genus. All these
genomes can be subject to scans for selection, for which we outline
methods below.

3 Methods

3.1 Probabilistic

Models for Genome

Evolution

The statistical modeling of the evolutionary process is of great
importance when performing selection studies. When comparing
reasonably divergent sequences, counting the raw sequence iden-
tity (percentage of sites with observed changes) underestimates the
amount of evolution that has occurred because, by chance alone,
some sites will have incurred multiple substitutions. In this chapter
we discuss maximum likelihood (ML) and Bayesian methods to
detect selection based on probabilistic models of character evolu-
tion. Such substitution models provide more accurate evolutionary
distance estimates by accounting for these unobserved changes and
often explicitly model the selection pressures.

One of the primary assumptions made in defining probabilistic
substitution models is that future evolution is only dependent on its
current state and not on previous (ancestral) states. Statistical pro-
cesses with this lack of memory are called Markov processes. The
assumption itself is reasonable, because during the evolution muta-
tion and natural selection can only act upon the molecules present
in an organism and have no knowledge of what came previously.
However, some large-scale mutational events, such as recombina-
tion [7], gene conversion (e.g., see [8, 9]), or horizontal transfer
[10] might not satisfy this “memoryless” condition.

To reduce the complexity of evolutionary models, it is often
further assumed that each site in a sequence evolves independently
from all other sites. There is evidence that the independence of sites
assumption is violated. In real proteins, chemical interactions
between neighboring sites or the protein structure affects how
other sites in the sequence change. Steps have been made toward
context-dependent models, where the specific characters at neigh-
boring sites affect the sites evolution (e.g., see [11, 12]).

The Markov model asserts that one sequence is derived from
another by a series of independent substitutions, each changing one
character in the first sequence to another character in the second
during the evolution. Thereby we assume independence of evolu-
tion at different sites. A continuous-time Markov process is fully
defined by its instantaneous rate matrix Q ¼ {qij}i,j¼1 . . . N.

The diagonal elements of Q are defined by a mathematical
requirement that the rows sum up to zero. For multiple sequence
alignments, the substitution process runs in continuous time over a
tree representing phylogenetic relations between the sequences.
The transition probability matrix P(t) ¼ {pij(t)} ¼ eQt consists of
transition probabilities from residue i to residue j over time t and is
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found as a solution of the differential equation dP(t)/dt ¼ P(t)Q
with P(0) being the identity matrix. In order for tree branches to be
measured by the expected number of substitutions per site, the Q-
matrix is scaled so that the average substitution rate at equilibrium
equals 1.

As a matter of mathematical and computational convenience
rather than biological reality, several simplifying assumptions are
usually made. Standard substitution models allow any state to
change into any other. Such Markov process is called irreducible
and has a unique stationary distribution corresponding to the
equilibrium codon frequencies π ¼ {πi}. Time reversibility implies
that the direction of the change between two states i and j is
indistinguishable, so that πipij(t) ¼ πjpji(t). This assumption helps
to reduce the number of model parameters and is convenient when
calculating the matrix exponential (Q-matrix of a reversible process
has only real eigenvectors and eigenvalues [13]). Fully unrestrained
Q-matrix for N characters defines an irreversible model with N
(N � 1) � 1 free parameters, while for a reversible process this
number is N(N + 1)/2 � 2.

By comparing how well substitution models explain sequence
evolution, and by examining the parameters estimated from data,
ML and Bayesian inference can be used to address many biologi-
cally important questions. In this section we focus on probabilistic
models that are used to detect selection.

3.2 Detecting

Regions of Accelerated

Genome Evolution

Understanding the forces shaping the evolution of specific lineages
is one of the most exciting areas in evolutionary genomics. In
particular, regions of accelerated evolution in mammalian and
insect species have been studied (e.g., see [14]). To eliminate non-
functional regions, one strategy is to begin with a search for regions
that are conserved through the mammalian history or longer. A
likelihood ratio test (LRT) may be used to detect acceleration of
rates in a lineage of interest, for example, the human lineage. Such
LRT compares the likelihood of the alignment data under two
probabilistic models. The null model has a single scale parameter
representing shortening (more conserved) and lengthening (less
conserved) of all branches of the tree. The alternative model has an
additional parameter for the human lineage, which is constraint to
be �1. This extra parameter allows the human branch to be rela-
tively longer (accelerated) than the branches in the rest of the tree.

For example, this approach was used to identify genomic
regions that are conserved in most vertebrates but have evolved
rapidly in humans. Interestingly, the majority of the human accel-
erated regions (HARs) were noncoding, and many were located
near protein-coding genes with protein functions related to the
nervous system [14].

In contrast, the majority ofDrosophila melanogaster accelerated
regions (DMARs) are found in protein-coding regions and
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primarily result from rapid adaptive change at synonymous sites
[15]. This could be because flies have much more compact gen-
omes compared to humans; however, even after considering the
genomic content, in Drosophila a significant excess of DMARs
occur in protein-coding regions. Furthermore, Holloway and col-
leagues observed a mutational bias from G|C to A|T, and therefore
the accelerated divergence in DMARs might be attributed to a shift
in codon usage and a fixation of many suboptimal codons.

In a similar manner, amino acid based models search for site- or
lineage-specific rate accelerations and residues subject to altered
functional constraints. Such sites are likely to be contributing to
the change in protein function over time. The advantage of amino
acid-based models is that they might be suitable for the analysis of
deep divergences of fast-evolving genes, where sequences rapidly
saturate over time. Also amino acid methods are not influenced by
the effects of codon bias, a topic that is discussed at the end of this
chapter. The idea is that adaptive change on the level of amino acid
sequences may not necessarily correspond to an adaptive change in
protein function but rather to peaks in the protein adaptive land-
scape reflecting the optimization of the protein function in a par-
ticular species to long-term environmental changes. One class of
methods for detecting functional divergence searches for a lineage-
specific change in the shape parameter of the gamma distribution
that is used to model rate heterogeneity (see [16–19]). Other
methods search for evidence of clade-specific rate shifts at individual
sites (see [20–26]). For example, Gu [21] proposed a simple sto-
chastic model for estimating the degree of divergence between two
pre-specified clusters. The statistical significance was tested using
site-specific profiles based on a hidden Markov model, which was
used to identify amino acids responsible for these functional differ-
ences between two gene clusters. More flexible evolutionary mod-
els were incorporated in the maximum likelihood approach
applicable to the simultaneous analysis of several gene clusters
[27]. This was extended [28] to evaluate site-specific shifts in
amino acid properties, in comparison with site-specific rate shifts.
Pupko and Galtier [24] used the LRT to compare ML estimates of
the replacement rate at an amino acid site in distinct subtrees.

3.3 Codon Models:

Site, Branch, and

Branch-Site Specificity

3.3.1 Basic Codon

Models

In protein-coding sequences, nucleotide sites at different codon
positions usually evolve with highly heterogeneous patterns (e.g.,
[29]). Thus DNA substitution models fail to account for this
heterogeneity unless the sequences are partitioned by codon posi-
tions for the analysis. But even then, DNA models do not model
the structure of genetic code or selection at the protein level.
Indeed, one advantage of studying protein-coding sequences at
the codon level is the ability to distinguish between nonsynon-
ymous (AA replacing) and synonymous (silent) codon changes.
Based on this distinction, the selective pressure on the protein-
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coding level can be measured by the ratio ω ¼ dN/dS of the
nonsynonymous to synonymous substitution rates. The nonsynon-
ymous substitution rate may be higher than the synonymous rate,
and thus ω > 1 due to fitness advantages associated with recurrent
AA changes in the protein, i.e., positive selection on the protein. In
contrast, purifying selection acts to preserve the protein sequence,
so that the nonsynonymous substitution rate is lower than the
synonymous rate, with ω < 1. Neutrally evolving sequences exhibit
similar nonsynonymous and synonymous rates, with ω � 1.

First methods that used the ω ratio as a criterion to detect
positive selection were based on pairwise estimation of dN and dS
rates with “counting” methods (e.g., see [30]). However, ML
estimates of pairwise dN and dS based on a codon model were
shown to outperform all other approaches [31]. Moreover, a Mar-
kov codon model is naturally extended to multiple sequence align-
ments, unlike the counting methods. This, together with the
benefits of the probabilistic framework within which codon models
are defined, made codon models very popular in studies of positive
selection in protein-coding genes.

The first two codon models were proposed simultaneously in
the same issue of Molecular Biology and Evolution [32, 33]. The
model of Goldman and Yang [32] included the transition/trans-
version rate ratio κ, and modeled the selective effect indirectly using
a multiplicative factor based on Grantham [34] distances, but was
later simplified to estimate the selective pressure explicitly using the
ω parameter [35]. The main distinction between the first codon
models concerns the way to describe the instantaneous rates with
respect to equilibrium frequencies: (1) proportional to the equilib-
rium frequency of a target codon (as in Goldman and Yang [32]) or
(2) proportional to the frequency of a target nucleotide (as in Muse
and Gaut [33]).

In 2006, empirical codon models have been estimated (see
[36, 37]) that summarize substitution patterns from large quanti-
ties of protein-coding gene families. In contrast to the parametric
codon models that estimate gene-specific parameters (e.g.,
transition-transversion κ, selective pressure ω, etc.), the empirical
codon models do not explicitly consider distinct factors that shape
protein evolution. Standard parametric models assume that protein
evolution proceeds only by successive single-nucleotide substitu-
tions. However, empirical codon models indicate that model accu-
racy is significantly improved by incorporating instantaneous
doublet and triplet changes. Kosiol et al. [37] also found that the
affiliations between codon, the amino acid it encodes, and the
physicochemical properties of the amino acid are main driving
factors of the process of codon evolution. Neither multiple nucleo-
tide changes nor the strong influence of the genetic code nor amino
acid properties form a part of the standard parametric models.
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On the other hand, parametric models have been very success-
ful in applications studying biological forces shaping protein evolu-
tion of individual genes. Thus combining the advantages of
parametric and empirical approaches offers a promising direction.
Kosiol, Holmes, and Goldman [37] explored a number of com-
bined codon models that incorporated empirical AA exchangeabil-
ities from ECM while using parameters to study selective pressure,
transition/transversion biases, and codon frequencies. Similarly,
AA exchangeabilities from (suitable) empirical AA matrices may
be used to alter probabilities of nonsynonymous changes, together
with traditional parameters ω, κ, and codon frequencies πj [38]. In
2013, De Maio et al. [39] extended the ECM approach to accom-
modate site-specific variation of selective pressure and lineage-
specific variation. Simulations showed that ECMs allowing for
double and triple mutations is more conservative: they reduce the
number of false positives and have less power to detect positive
selection [39].

3.3.2 Accounting for

Variability of Selective

Pressures

First codon models assumed constant nonsynonymous and synon-
ymous rates among sites and over time. Although most proteins
evolve under purifying selection most of the time, positive selection
may drive the evolution in some lineages. During episodes of
adaptive evolution, only a small fraction of sites in the protein
have the capacity to increase the fitness of the protein via AA
replacements. Thus approaches assuming constant selective pres-
sure over time and over sites lack power in detecting genes affected
by positive selection. Consequently, various scenarios of variation in
selective pressure were incorporated in codon models, making
them more powerful at detecting positive selection, and short
episodes of adaptive evolution in particular. Evidence of positive
selection on a gene can be obtained by a LRT comparing two
nested models: a model that does not allow positive selection
(constraining ω � 1 to represent the null hypothesis) and a model
that allows positive selection (ω > 1 is allowed in the alternative
hypothesis). Positive selection is detected if a model ω > 1 fits data
significantly better compared to the model restricting ω � 1 at all
sites and lineages. However, the asymptotic null distribution may
vary from the standard χ2 due to boundary problems or if some
parameters become not estimable (e.g., see [40, 41]).

3.3.3 Case Study:

Application of a Genome-

Wide Scan of Positive

Selection on Six

Mammalian Genomes

In 2006, six high-coverage genome assemblies became available for
eutherian mammals. The increased phylogenetic depth of this data
set permitted Kosiol and colleagues [42] to perform several new
lineage- and clade-specific tests using branch-site codonmodels. Of
~16,500 human genes with high-confidence orthologs in at least
two other species, 544 genes showed significant evidence of posi-
tive selection using branch-site codon models and standard LRTs.
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Interestingly, several pathways were found to be strongly
enriched in genes with positive selection, suggesting possible
coevolution of interacting genes. A striking example is the comple-
ment immunity system, a biochemical cascade responsible for the
elimination of pathogens. This system consists of several small
proteins found in the blood that cooperate to kill target cells by
disrupting their plasma membranes. Of 78 genes associated with
this pathway in KEGG (see http://www.genome.jp/kegg-bin/
show_pathway?map04610 for the complement cascades), nine
were under positive selection (FDR < 0.05), and five others had
nominal P < 0.05. Most of genes under positive selection are
inhibitors (DAF, CFH, CFI) and receptors (C5AR1, CR2), but
some are part of the membrane attack complex (C7, C9, C8B),
which punctures cell membranes to initiate cell lysis. Here we focus
on the analysis of these proteins of the membrane attack complex.

First we calculate gene averaged ω value using the basic M0
model [32]. TheML estimates of ω< 1 (ω¼ 0.31 for C7,ω¼ 0.25
for C8B, and ω ¼ 0.44 for C9) indicate that most sites in these
genes are under purifying selection. However, selection pressure
could be variable at different locations of the membrane proteins,
and we therefore continue our analysis by applying models that
allow for variation in selective pressure across sites.

3.3.4 Selective Variability

Among Codons: Site

Models

The simplest site models use the general discrete distribution with a
pre-specified number of site classes. Each site class i has an inde-
pendent parameter ωi estimated by ML together with proportions
of sites pi in each class. Since a large number of site categories
require many parameters, three categories are usually used (requir-
ing five independent parameters). To test for positive selection,
several pairs of nested site models were defined to represent the
null and alternative hypotheses in LRTs. For example, model M1a
includes two site classes, one with ω0 < 1 and another with ω1 ¼ 1,
representing the neutral model of evolution (the null hypothesis).
The alternative model M2a extends M1a by adding an extra site
class with ω2 � 1 to accommodate sites evolving under positive
selection. Significance of the LRT is tested using the χ22-distribution
for the M1 vs. M2 comparison. We test the C7 gene for positive
selection by the LRT comparing nested models M1a and M2a
(Table 1).

Model M2a has two additional parameters compared to model
M1a. The resulting LRT statistic is 2(log L2 � log L1) ¼ 2
(�6377.35 � (�6369.67)) ¼ 2 � 7.68 ¼ 15.36. This is much
greater than the critical value of the chi-square distribution
χ2 (df ¼ 2, at 5%) ¼ 5.99, and we calculate a p-value of
P ¼ 5.0e�04. However, the M1a vs. M2a comparison for genes
C8B and C9 is not significant.
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Another LRT can be performed on the basis of the modified
model M8 with two site classes: one with sites where the ω ratio is
drawn from the beta distribution (with 0 � ω � 1 describing the
neutral scenario) and the second, discrete class, with ω � 1. Con-
straining ω ¼ 1 for this second class provides a sufficiently flexible
null hypothesis, whereby all evolution can be explained by sites with
ω from the beta distribution or from a discrete site class with ω¼ 1.
Significance of the LRT is tested the mixture

1

2
χ20 þ

1

2
χ21 for the M8

(ω ¼ 1) vs. M8 comparison. If the LRT for positive selection is
found to be significant, specific sites under positive selection may be
predicted based on the values of posterior probabilities (PP) to
belong to the site class under positive selection (usually
PP > 0.95, but see [43, 44]). Such posterior probabilities are
estimated using the naı̈ve empirical Bayesian approach (NEB,
[45]), full hierarchical Bayesian approach ([46]; BEB [44]), or a
mid-way approach � the Bayes empirical Bayes (BEB [44]). For a
discussion on these approaches, see Scheffler and Seoighe [47] and
Aris-Brosou [48]. Alternatively, Massingham and Goldman [49]
proposed a site-wise likelihood ratio estimation to detect sites
under purifying or positive selection.

For the C7 gene, using BEB we identified several amino acids
sites to be putatively under selection: residue R at position
223 (PP¼ 0.94), H at position 239 (PP¼ 0.93), and N at position
331 (PP ¼ 0.93). Unfortunately, the crystal structures of C7
(as well as C8B and C9) are not known, and we cannot relate the
location of amino acids in the protein sequence to relevant 3D data,
such as sites of protein-protein interaction or binding sites of the

Table 1
Parameter estimates and log-likelihoods for a LRT of positive selection for the complement immunity
component C7

M1a (neutral)

Site class 0 1

Proportion p0 ¼ 0.69 ( p1 ¼ 1 � p0 ¼ 0.31)

ω ratio ω0 ¼ 0.07 (ω1 ¼ 1)

Log-likelihood L1 ¼ �6377.35

M2a (selection)

Site class 0 1 2

Proportion p0 ¼ 0.70 p1 ¼ 0.29 ( p2 ¼ 1 � p0 � p1 ¼ 0.01)

ω ratio ω0 ¼ 0.08 (ω1 ¼ 1) ω2 ¼ 10.89

Log-likelihood L2 ¼ �6369.67

The model M2a is the alternative model with a class of sites with ω2 � 1. The null hypothesis M1a is the same model but

with ω2 ¼ 1 fixed
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protein. If such structural information were known, it would also
be possible to use this biological knowledge in a model that is aware
of the position of the different structural elements.

Site models that do not use a priori partitioning of codons
(as those described above) are known as random-effect
(RE) models. In contrast, fixed-effect (FE) models categorize
sites based on a prior knowledge, e.g., according to tertiary struc-
ture for single genes, or by gene category for multigene data. Site
partitions for FE models can be defined also based on inferred
recombination breakpoints, useful for inferences of positive selec-
tion from recombining sequences (see [50, 51]); although the
uncertainty of breakpoint inference is ignored in this way. FE
models with each site being a partition should be avoided, as they
lead to the “infinitely many parameter trap” (e.g., see [52]). Given a
biologically meaningful a priori partitioning, FE models are useful
to study heterogeneity among partitions. However, a priori infor-
mation is not always available.

3.3.5 Selective Variability

over Time: Branch Models

A simple way to include the variation of the selective pressure over
time is by using separate parameters ω for each branch of a phylog-
eny (known as free-ratio model; [35]). Compared with the one-
ratiomodel (which assumes constant selection over time), the free-
ratio model requires additional 2T � 4 ω parameters for T species.
Figure 2 shows the estimates of the free-ratio model for the C8B
gene. Although theML estimates ofω values on the rodent lineages
are visibly higher than on the primate lineages, none of the
branches has ω > 1.

Other branch models can be defined by constraining different
sets of branches of a tree to have an individual ω. LRTs are used to
decide (1) whether selective pressure is significantly different on a
pre-specified set of branches and (2) whether these branches are
under positive selection.

However, branch models have relatively poor power to detect
selection [53] in comparison to branch-site models that are dis-
cussed in the next section. Also note that testing of multiple
hypotheses on the same data requires a correction, so the overall
false-positive rate is kept at the required level (most often 5%).
Correction for multiple testing further reduces the power of the
method, especially when many hypotheses are tested simulta-
neously (see Subheading 4 later).

3.3.6 Temporal and

Spatial Variation of

Selective Pressure

Several solutions were proposed to simultaneously account for
differences in selective constraints among codons and the episodic
nature of molecular evolution at individual sites. One of the first
models—model MA [45]—assumes four site classes. Two classes
contain sites evolving constantly over time: one under purifying
selection with ω0 < 1; another with ω1 ¼ 1. The other two site
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classes allow selective pressure at a site to change over time on a
pre-specified set of branches, known as the foreground. The two
variable classes are derived from the constant classes so that sites
typically evolving with ω0 < 1 or ω1 ¼ 1 are allowed to be under
positive selection with ω2 � 1 on the foreground. Testing for
positive selection on the rodent clade involves a LRT comparing a
constrained version of MA (with ω2 ¼ 1) vs. an unconstrained MA
model. Compared to branch models, the branch-site formulation
improves the chance of detecting short spills of adaptive pressure in
the past even if these occurred at a small fraction of sites.

Returning to our example of gene C8B of the complement
pathway, we perform a branch-site LRT for positive selection using
the M1a vs. M2a comparison. Thereby we take mouse and the rat
lineage, respectively, as foreground branches and all other branches
as background branches. Significance of the LRT is tested the
mixture

1

2
χ20 þ

1

2
χ21 with critical values to be 2.71 at 5%. For the

C8B gene, we calculate 2(log L2 � log L1) ¼ 2 � 2.23 ¼ 4.46 for
the mouse lineage and 11.2 for the rate lineage, respectively.

A major drawback of described branch-site models is their
reliance on a biologically viable a priori hypothesis. In context of
detecting sites and lineages affected by positive selection, one pos-
sible solution is to perform multiple branch-site LRTs, each setting
a different branch at the foreground [54]. In the example of six
species (Fig. 2), a total of nine tests (for an unrooted tree) are
necessary in the absence of an a priori hypothesis. Multiple test
correction has to be applied to control excessive false inferences.
This strategy tends to be conservative but can be sufficiently pow-
erful in detecting episodic instances of adaptation. As with all

Fig. 2 An estimate of ω for each branch of a six-species phylogeny. Shown is the
maximum likelihood estimate for the gene 8B. Each branch is labeled with the
corresponding estimate of ω
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model-based techniques, precautions are necessary for data with
unusual heterogeneity patterns, which may cause deviations from
the asymptotic null distribution and thus result in an elevated false-
positive rate.

In the case of episodic selection where any combination of
branches of a phylogeny can be affected, a Bayesian approach in
lieu of the standard LRTs andmultiple testing have been suggested.
The multiple LRT approach is most concerned with controlling the
false-positive rate of selection inference and is less suited to infer the
best-fitting selection history. In the hypothetical example (Fig. 2), a
total of 29 � 1 ¼ 511 selection histories (excluding the history
without selection on any branch) need to be considered. The
Bayesian analysis allows a probability distribution over possible
selection histories to be computed and therefore permits estimates
of prevalence of positive selection on individual branches and
clades. Such approach evaluates uncertainty in selection histories
using their posterior probabilities and allows robust inference of
interesting parameters such as the switching probabilities for gains
and losses of positive selection [42].

Other models (e.g., with dS variation among sites [55]) may be
extended to allow changes of selective regimes on different
branches. This is achieved by adding further parameters, one per
branch, describing the deviation of selective pressure on a branch
from the average level on the whole tree under the site model. Such
model is parameter-rich and can be used for exploratory purposes
on data with long sequences but does not provide a robust way of
testing whether ω > 1 on a branch is due to positive selection on a
lineage or due to inaccuracy of the ML estimation.

Kosakovsky Pond and Frost [55] suggested detecting lineage-
specific variation in selective pressure using the genetic algorithm
(GA)—a computational analogue of evolution by natural selection.
The GA approach was successfully applied to phylogenetic recon-
struction. In the context of detecting lineage-specific positive selec-
tion, GA does not require an a priori hypothesis. Instead the
algorithm samples regions of the whole hypotheses space according
to their “fitness” measured by AICC. The branch-model selection
with GA may also be adapted to incorporate dN and dS among site
variation, although this imposes a much heavier computational
burden.

In branch and branch-site models, change in selection regime is
always associated with nodes of a tree, but the selective pressure
remains constant over the length of each branch. Guindon et al.
[56] proposed aMarkov-modulated model where switches of selec-
tion regimes may occur at any site and any time on the phylogeny.
In a covarion-like manner, this codon model combines twoMarkov
processes: one governs the codon substitution, while the other
specifies rates of switches between selective regimes. These models
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can be used to study the patterns of the changes in selective pres-
sures over time and across sites, by estimating the relative rates of
changes between different selective regimes (purifying, neutral, and
positive).

3.3.7 Polymorphism-

Aware Phylogenetic

Models

Polymorphism-aware phylogenetic models (POMOs, [57, 58]) use
polymorphism and divergence data simultaneously to estimate rel-
ative mutation rates and scaled selection coefficients. Similar to
DNA substitution models, the PoMo approach is based on a
continuous-time Markov process to model evolution of hereditary
sequences along a species tree. However, not only evolution of a
single reference site but rather evolution of a population is
considered.

PoMo includes polymorphisms as states of theMarkov chain, in
addition to the four nucleotide states of classical nucleotide models.
Sequence evolution is modeled as a gradual process made by small
allele frequency changes. PoMo accounts for ancestral polymorph-
isms and in particular for ancestral shared polymorphisms and
incomplete lineage sorting (when two speciation events are sepa-
rated by a lapse of time not sufficient for polymorphisms to reach
fixation, seeMaddison and Knowles [59]). The parameters in PoMo
do not merely describe substitution rate but are also informative of
mutation rates, fixation biases, root nucleotide frequencies, and
branch lengths. All these parameters are estimated within a ML
framework. De Maio et al. [57] performed a comprehensive study
of evolutionary patterns of fourfold-degenerate sites in great apes
populations. They show evidence in favor of variation in mutation
and fixation rates between genomic regions with different base
composition, contributing to the long-standing debate regarding
the origin and maintenance of GC content variation (e.g., see Eyre-
Walker and Hurst [60]). They found that both mutation rates and
biased gene conversion vary with GC content. They also found
lineage-specific differences, with weaker fixation biases in orangu-
tan species, suggesting a reduced historical effective population
size. As PoMo can distinguish between the contributions of muta-
tion and fixation biases, it might also contribute to addressing the
problem of disentangling signatures of selection and biased gene
conversion (see Subheading 4.2).

3.4 Software The software PHAST (PHylogenetic Analysis with Space/Time
models) includes several phylo-HMM-based programs. Two pro-
grams in PHAST are particularly interesting in the context of
selection studies: PhastCons is a program for conservation scoring
and identification of conserved elements (Siepel et al. [61]). PhyloP
is designed to compute p-values for conservation or acceleration,
either lineage-specific or across all branches (Pollard et al. [62]).
Recently, the software can also be run through a webportal at
http://compgen.cshl.edu/phastweb/.
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A variety of codon models to detect selection, including
branch-site models and the recent selection-mutation model, are
implemented in the CODEML program of PAML [63]. HYPHY is
another implementation that includes a large variety of codon
models [64]. PoMo has been implemented as part of the
IQ-TREE software package (http://www.iqtree.org/) by
Schrempf et al. [65].

These programs are primarily developed for maximum likeli-
hood inference on a fixed tree. ML inference of phylogeny under
codon models is possible with CodonPhyML, which allows to
explicitly account for selection on the protein level [66].

4 Notes/Discussion

With the wider use of codon models to detect selection, some
questioned the statistical basis of testing based on branch-site mod-
els. In 2004, Zhang found that the original branch-site test [67]
produced excessive false positives when its assumptions were not
met. The modified branch-site test was shown to be more robust to
model violations (see [43, 68]) and is now commonly used in
genome-wide selection scans (e.g., see [69]). Recently, however,
another simulation study by Nozawa et al. [70] suggested that
this modification also showed an excess of false positives. Yang
and Dos Reis [52] defended the branch-site test by examining the
null distribution and showing that Nozawa and colleagues [70]
misinterpreted their simulation results. However, it is clear that
even tests with good statistical properties will be affected by data
quality and the extent of models violations. Below we list factors
that can affect the test and so should be taken into account when
analyzing genome-wide data.

4.1 Quality of

Multiple Alignments

The impact of the quality of sequence and the alignment is a major
concern when performing positive selection scans. For example, in
their analysis of 12 genomes Markova-Raina and Petrov [71] found
that the results were highly sensitive to the choice of an alignment
method. Furthermore, visual analysis indicated that most sites
inferred as positively selected are in fact misaligned at the codon
level. The rate of false positives ranged ~50% and more depending
on the aligner used. Some of these results can be ascribed to the
high divergence level of the 12 Drosophila species and could be
addressed by better filtering of the data. Nevertheless, even in
mammals where alignment is easier, problems have been observed.

Bakewell et al. [72] used the branch-site test to analyze
~14,000 genes from the human, chimpanzee, and macaque and
detected more genes to be under positive selection on the chim-
panzee lineage than on the human lineage (233 vs. 154). The same
pattern was also observed by Arbiza et al. [73] and Gibbs et al.
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[74]. Mallick et al. [75] re-examined 59 genes detected to be under
positive selection on the chimpanzee lineage by Bakewell et al.
[72], using more stringent filters to remove less reliable nucleotides
and using synteny information to remove misassembled and mis-
aligned regions. They found that with improved data quality, the
signal of positive selection disappeared in most of the cases when
the branch-site test was applied. It now appears that, as suggested
by Mallick et al. [75], the earlier discovery of more frequent posi-
tive selection on the chimpanzee lineage than on the human lineage
is an artifact of the poorer quality of the chimpanzee genomic
sequence. This interpretation is also consistent with a few recent
studies analyzing both real and simulated data, which suggest that
sequence and alignment errors may cause excessive false positives
(see [76, 77]). Indeed, most commonly used alignment programs
tend to place nonhomologous codons or amino acids into the same
column (see [78, 79]), generating the wrong impression that mul-
tiple nonsynonymous substitutions occurred at the same site and
misleading the codon models into detecting positive selection
[77]. In 2012, Jordan and Goldman [80] investigated the effect
of various multiple alignment and filtering programs on the identi-
fication of positive selection. They found that alignment software
PRANK [79] and the filter Guidance [81] performed best in simu-
lations. However, it remains very challenging to develop a pipeline
to detect positive selection that is robust to errors in the sequences
or alignments. Instead we advise to carefully check the alignments
of genes that are putatively under selection by any method
described here.

4.2 Biased Gene

Conversion and

Recombination

Mutation rate variation can also cause genomic regions to have
different substitution rates without any change in fixation rate.
Recent studies of guanine and cytosine (GC)-isochores in the
mammalian genome have suggested the importance of another
selectively neutral evolutionary process that affects nucleotide evo-
lution. As described in the work of Laurent Duret and others (see
[82, 83]), biased gene conversion (BGC) is a mechanism caused by
the mutagenic effects of recombination combined with the prefer-
ence in recombination-associated DNA repair toward strong
(GC) versus weak (adenine and thymine [AT]) nucleotide pairs at
non-Watson-Crick heterozygous sites in heteroduplex DNA during
crossover in meiosis. Thus, beginning with random mutations,
BGC results in an increased probability of fixation of G and C
alleles. In particular, methods looking for accelerated regions in
coding DNA but also codon models cannot distinguish positive
selection from BGC (see [84, 85]). Therefore, the putatively
selected genes should be checked for GC content and closeness to
recombination hotspots and telomeres.

Most codon models assume a single phylogeny and a constant
synonymous rate among sites, implying that rate variation among
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codons is solely due to the variation of the nonsynonymous rate.
Recent studies question whether such assumptions are generally
realistic (e.g., see [86]) suggesting that failure to account for synon-
ymous rate variation may be one of the reasons why LRTs for
positive selection are vulnerable on data with high recombination
rates. Some selection scans try to control this problem by checking
putatively selected genes for recombination either manually or
automated with traditional detection software (e.g., RDP [87]).
Also Drummond and Suchard [88] have recently developed a
Bayesian approach to detect recombination within a gene.

Another approach is to explicitly consider recombination. For
example, Scheffler, Martin, and Seoighe [89] extended codon
models with both dN and dS site variation and allowed changes of
topology at the detected recombination breakpoints. Certainly,
fast-evolving pathogens (such as viruses) undergo frequent recom-
bination which often changes either the whole shape of the under-
lying tree, or only the apparent branch lengths. While the efficiency
of the approach depends on the success of inferring recombination
breakpoints, the study demonstrated that taking into account alter-
native topologies achieves a substantial decrease of false-positive
inferences of selection while maintaining reasonable power. In
principle the correlation structure of a collection of orthologous
sequences can be fully described by a network known as an ancestral
recombination graph (ARG). However, methods for ARG infer-
ences have not been fast enough for practical use, and for applica-
tions on large-scale genomic data, approximations are necessary
(Rassmussen et al. [90]).

4.3 Selection on

Synonymous Sites

Most selection studies to date focused on detecting selection on the
protein, since synonymous changes are often presumed neutral and
so unaffected by selective pressures. However, selection on synony-
mous sites has been documented more than a decade ago. Codon
usage bias is known to affect the majority of genes and species. In
his seminal work, Akashi [91] demonstrated purifying selection on
genes ofDrosophila melanogaster, where strong codon bias favoring
certain (optimal) codons serves to increase the translational accu-
racy. Pressure to optimize for translational efficiency, robustness,
and kinetics leads to synonymous codon bias, which was shown to
widely affect mammalian genes [92], as well as genes of fast-
evolving pathogens like viruses [93]. The standard approach to
study selection on codon usage computes various codon adaptation
indexes on full-length protein-coding genes (see [94] for review).
More recently, methods to study selection on synonymous changes
adopted more sophisticated approaches, mainly the following stra-
tegies: (1) account for synonymous rate variation within sequences;
(2) include codon fitness parameters within a modeling framework
that connects population and intraspecific parameters; and
(3) allow for selection on synonymous substitutions by introducing
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the dependency on the rate of protein production and nonsense
error rates. Below we elaborate on these approaches.

In the past decade, evidence has accumulated to suggest that
codon bias may vary not only between genomes and genes of the
same genome but also within genes. Rather than just measuring
codon biases in single sequences, a more powerful approach is to
model evolution and selection across a set of homologous
sequences. Taking the evolutionary perspective into account,
Resch et al. [95] conducted a large-scale study of selection on
synonymous sites in mammalian genes. They measured selection
by comparing the average rate of synonymous substitutions (dS) to
the average substitution rate in the corresponding introns (dI).
While purifying selection was found to affect 28% of genes (dS/
dI < 1), 12% of genes were found to have been affected by positive
selection on synonymous sites (dS/dI > 1). The signal of positive
selection correlated with lower predicted mRNA stability compared
to genes with negative selection on synonymous sites, suggesting
that mRNA destabilization (affecting mRNA levels and translation)
could be driving positive selection on synonymous sites.

An increasing number of experimental studies exemplify differ-
ent scenarios explaining how synonymous mutation may be
affected by positive or negative selection. Codon bias to match
skews of tRNA abundances may influence translation [96]. Changes
at silent sites can disrupt splicing control elements and create new
“cryptic” splice sites, as well as mRNA and transcript stability can be
affected through preference or avoidance of certain sequence
motifs (see [92, 97]). Silent changes may affect gene regulation
via constraints for efficient binding of miRNA to sense mRNA
(e.g., [92, 98]). Selection may act on the choice of synonymous
codons near miRNA targets, improving the binding site accessibil-
ity, binding efficiency and consequently the function of miRNA
itself [99]. Programmed ribosomal frameshifting may be another
reason for selection to act on specific codon positions [100]. Speed-
dependent protein folding also has been proposed to be a result of
selective pressure [101]. According to the co-translational protein
folding hypothesis, slower production could cause the protein to
take an altered final form (as has been shown in multidrug
resistance-1, [102]). Finally, synonymous changes may act to mod-
ulate expression by altering mRNA secondary structure, affecting
protein abundance [103].

Models of codon evolution currently provide the most power-
ful approach for studying selection on silent sites. Models with
variable synonymous rates (see [64, 104]) have been used to evalu-
ate the extent of variability of synonymous rates in a gene and to
predict specific sites with most extreme—low or high—synony-
mous rates (for example see [93]). A large-scale study of synony-
mous rate variation [105] described some intriguing general
patterns and showed that the phenomenon is widespread in
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protein-coding genes. Genes displaying significantly varying synon-
ymous rates increased association with several genetic diseases
(especially cancers and diabetes) and were enriched for metabolic
pathways. Other studies specifically focusing on human oncogenes
revealed that a significant proportion of all cancer driver mutations
were synonymous [106]. This suggests that synonymous rates
cannot be automatically assumed fitness-neutral. Note that
ω ¼ dN/dS, an accepted measure of selection on the protein, is
not designed to detect selection on synonymous codons, particu-
larly when dS is assumed constant. Yet, some cautioned that low
synonymous rates preserved by purifying selection might errone-
ously lead to the detection of positive selection on the protein (e.g.,
Rubinstein et al. [107]). However, the usage of the ω ratio does not
rely on the assumption that synonymous sites are neutral (pages
58–59 of Yang [108]; and Section 6.3 of Anisimova and Liberles
[109]); rather, it is defined as a ratio of two ratios, comparing the
proportions of nonsynonymous and synonymous sites after and
before selection has operated on the protein (ω ¼ 1). In general
we can assume that the evolutionary forces apply equally to synon-
ymous and nonsynonymous sites. Forces that act differentially on
synonymous and nonsynonymous sites should be rare in real data,
but they can affect the validity of the ω measure. The only known
example of such a natural force is probably synonymous phasing,
considered by Xing and Lee [110]. But even in this case, and with a
worst case scenario, the estimated effect is very weak. More cru-
cially, an adequate description of mutational processes at the DNA
level allows to circumvent biases in the estimation of the ω
ratio [106].

Further testing, however, is necessary to decide whether any
specific site has been affected by selection on synonymous codon
usage. For example, Zhou, Gu, and Wilke [111] suggested distin-
guishing two types of synonymous substitution rates: the rate of
conserving synonymous changes dSC (between “preferred” codons
or between “rare” codons) and the rate of non-conserving synony-
mous changes dSN (between codons from the two different groups
“rare” and “preferred”). Silent sites with dSN/dSC > 1 may be
considered to be under positive selection, and significance can be
tested based on a likelihood ratio test. Alternatively, synonymous
rates at sites may be compared to the mean substitution rate in the
corresponding intron, which can be implemented in a joint codon
and DNA model, similar to the approach proposed by Wong and
Nielsen [112].

Mutation-selection models include selective and mutational
effects separately and allow estimating the fitness of various codon
changes (see [113–115]). The relative rate of substitution for
selected mutations to neutral mutations is given by ω ¼ 2γ/
(1 � e�2γ), where γ ¼ 2Ns is the scaled selection coefficient (see
Exercise 3 for a derivation). Nielsen et al. [114] assumed that all
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changes between preferred and rare codons have the same fitness
(and so the same selection coefficient). They used one selection
coefficient for optimal codon usage for each branch of a phylogeny
and estimated these jointly with the ω ratio by ML. Using this
approach to study ancestral codon usage bias, Nielsen et al. [114]
confirmed the reduction in selection for optimal codon usage in
D. melanogaster. In contrast, Yang and Nielsen [115] estimated
individual codon fitness parameters and used them to estimate
optimal codon frequencies for a gene across multiple species. LRT
is used to test whether the codon bias is due to the mutational bias
alone. Nevertheless, one remarkable contribution of the mutation-
selection models is the connection they make between the interspe-
cific and population parameters. Exploiting this further should
provide insights to how changing demographic factors influence
observed intraspecific patterns. Mutation-selection models also
allow a new perspective on understanding codon models in the
context of fitness landscapes with statistical implications as
discussed in Subheading 4.2 of Chapter 13 by Jones, Susko, and
Bielawski.

Finally, it is also possible to study selection on synonymous
changes by introducing a parametric relationship between fitness
and protein production cost. The idea was first described by Gilchr-
ist [116], who assumed that, in addition to mutation and drift, the
codon bias evolved under selection to reduce the cost of nonsense
errors. Protein production cost can be computed as a ratio of the
expected cost to the expected benefit [117]. Kubatko and collea-
gues [118] have extended a standard codon model to include the
difference in protein production due to the usage of different
codons (and therefore different elongation probabilities). How-
ever, such a model requires position-specific instantaneous rate
matrices, and consequently also the probability transition matrices,
making the approach computationally very intensive. To circum-
vent this, a GPU-based implementation was developed and used for
phylogeny inference from 104 gene data set from Saccharomyces
cerevisiae. Based on the standard model selection measure AIC, the
new model outperformed the simplest model M0 as well as the
mutation-selection model FMutSel of Yang and Nielsen.

5 Exercises

Q1. Amino Acid and Codon Substitution Models

How many parameters need to be estimated in the instantaneous
rate matrix Q defining a reversible empirical AA model? How many
such parameters are necessary to estimate for a reversible empirical
codon model? How many parameters are to be estimated in both
cases if a model is nonreversible?
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Q2. Positive Selection Scans

1. Go to the UCSC genome browser (http://genome.ucsc.edu).
Search for the HAVCR1 (hepatitis A virus cellular receptor 1)
in the human genome (assembly GRCh38/hg38) belonging
to the mammalian clade. The USCS genome browser tracks
provide the summary of previous analysis of coding regions.
Switch the “Cons_30_Primates” under “Comparative Geno-
mics” to full and “refresh.” Why are only a few bases in the
HAVCR1 gene conserved according to the PhastCons track?
Click on the “Cons_30_Primates” track to learn more about
the conservation scores used.

2. To retrieve the multiple sequence alignments for the HAVCR1
gene, go to “Tools” and “Table Browser” at the top bar of the
webpage. This will open a new page. Choose the table
“ccdsGene” under the “Genes and Gene Predictions” group
and “CCDS” track. Select “CDS FASTA alignment from mul-
tiple alignment” option in the output format and “Show
nucleotides” to download the aligned coding sequences of
the HAVCR1 gene. Alternatively you can retrieve the multiple
alignments from Ensembl using BioMart. Here, you have
options for more file formats including PHYLIP that is needed
for the PAML software.

3. Use the PAML software (http://abacus.gene.ucl.ac.uk/soft
ware/paml.html) to test the models for positive selection on
any lineage of the mammalian trees by comparing models M1a
and M2a with a likelihood ratio test.

4. Use PAML to identify sites under positive selection by using
the Bayes Empirical Bayes approach. Do you find the same sites
to be under selection as in Fig. 2 of Kosiol et al. [43]?

Q3. Selection-Mutation Models

Selection-mutation rely on a theoretical relationship between
the nonsynonymous-synonymous rate ratio ω and the scaled selec-
tion coefficient γ ¼ 2Ns. The probability that a new mutation
eventually becomes fixed is

Pr fixationð Þ ¼ 1� e�2s
� �

= 1� e�4Ns
� � ¼ 2s= 1� e�4Ns

� �

if we assume that the selection coefficient s is small and N is large
and represents the effective population size, which is constant in
time (Kimura and Ohta [119]). Furthermore, assume that synony-
mous substitutions are neutral and nonsynonymous have equal
(and small) selection coefficients. Derive the relationship:

ω ¼ 4s= 1� e�4Ns
� � ¼ 2γ= 1� e�2γ

� �

that combines phylogenetic with population genetic quantities and
is crucial for mutation-selection models.

392 Carolin Kosiol and Maria Anisimova

http://genome.ucsc.edu/
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html


Acknowledgments

C. K. is supported by a grant of the Vienna Science and Technology
Fund (WWTF—MA016-061). M. A. receives funding from the
Swiss National Science Foundation (grant 31003A_176316).

References

1. Zerbino DR, Achuthan P, Akanni W, Amode
MR, Barrell D, Bhai J, Billis K, Cummins C,
Gall A, Girón CG, Gil L, Gordon L,
Haggerty L, Haskell E, Hourlier T, Izuogu
OG, Janacek SH, Juettemann T, To JK, Laird
MR, Lavidas I, Liu Z, Loveland JE, Maurel T,
McLaren W, Moore B, Mudge J, Murphy
DN, Newman V, Nuhn M, Ogeh D, Ong
CK, Parker A, Patricio M, Riat HS,
Schuilenburg H, Sheppard D, Sparrow H,
Taylor K, Thormann A, Vullo A, Walts B,
Zadissa A, Frankish A, Hunt SE,
Kostadima M, Langridge N, Martin FJ,
Muffato M, Perry E, Ruffier M, Staines DM,
Trevanion SJ, Aken BL, Cunningham F,
Yates A, Flicek P (2018) Ensembl 2018.
Nucleic Acids Res 46:D754–D761

2. Casper J, Zweig AS, Villarreal C, Tyner C,
Speir ML, Rosenbloom KR, Raney BJ, Lee
CM, Lee BT, Karolchik D, Hinrichs AS,
Haeussler M, Guruvadoo L, Navarro
Gonzalez J, Gibson D, Fiddes IT,
Eisenhart C, Diekhans M, Clawson H, Barber
GP, Armstrong J, Haussler D, Kuhn RM,
KentWJ (2018) TheUCSCGenome Browser
database: update 2018. Nucleic Acids Res 46:
D762–D769

3. Lack JB, Lange JD, Tang AD, Corbett-Detig
RB, Pool JE (2016) A thousand fly genomes:
an expanded drosophila genome nexus. Mol
Biol Evol 33:3308–3313

4. Weigel D, Mott R (2009) The 1001 Genomes
Project for Arabidopsis thaliana. Genome Biol
10:107

5. Turnbull C, Scott RH, Thomas E, Jones L,
Murugaesu N, Pretty FB, Halai D, Baple E,
Craig C, Hamblin A, Henderson S, Patch C,
O’Neill A, Devereaux A, Smith K, Martin AR,
Sosinsky A, McDonagh EM, Sultana R,
Mueller M, Smedley D, Toms A, Dinh L,
Fowler T, Bale M, Hubbard T, Rendon A,
Hill S, Caulfield MJ, 100,000 Genomes Proj-
ect (2018) The 100 000 Genomes Project:
bringing whole genome sequencing to the
NHS. BMJ 361:k1687

6. Li R, Fan W, Tian G, Zhu H, He L, Cai J,
Huang Q, Cai Q, Li B, Bai Y, Zhang Z,
Zhang Y, Xuan Z, Wang W, Li J et al (2010)

The sequence and de novo assembly of the
giant panda genome. Nature 463:311–317

7. Posada D, Crandall KA (2002) The effect of
recombination on the accuracy of phyloge-
netic estimation. J Mol Evol 54:396–402

8. Sawyer S (1989) Statistical tests for detecting
gene conversion. Mol Biol Evol 6:526–538

9. Semple C Wolfe KH (1999) Gene duplication
and gene conversion in the Caenorhabditis
elegans genome. J Mol Evol 48:555–564

10. Doolittle WF (1999) Phylogenetic classifica-
tion and the universal tree. Science
284:2124–2129

11. Robinson DM, Jones DT, Kishino H,
Goldman N, Thorne JL (2003) Protein evo-
lution with dependence among codons due to
tertiary structure. Mol Biol Evol
20:1692–1704

12. Choi SC, Holboth A, Robinson DM,
Kishino H, Thorne JL (2007) Quantifying
the impact of protein tertiary structure on
molecular evolution. Mol Biol Evol
24:1769–1782

13. Keilson J (1979) Markov Chain models-rarity
and exponentiality. Springer, New York, NY

14. Pollard KS, Salama SR, King B, Kern AD,
Dreszer T, Katzman S, Siepel A, Perdersen
JS, Berjerano G, Baertsch R, Rosenblum KR,
Kent J, Haussler D (2006) Forces shaping the
fastest evolving regions in the human
genome. PLoS Genet 2(10):e168

15. Holloway AK, Begun DJ, Siepel A, Pollard K
(2008) Accelerated sequence divergence of
conserved genomic elements in Drosophila
melanogaster. Genome Res 18:1592–1601

16. Miyamoto MM, Fitch WM (1995) Testing
the covarion hypothesis of molecular evolu-
tion. Mol Biol Evol 12:503–513

17. Lockhart PJ, Steel MA, Barbrook AC, Huson
DH, Charleston MA, Howe CJ (1998) A
covariotide model explains apparent phyloge-
netic structure of oxygenic photosynthetic
lineages. Mol Biol Evol 15:1183–1188

18. Penny D, McComish BJ, Charleston MA,
Hendy MD (2001) Mathematical elegance
with biochemical realism: the covarion

Selection Acting on Genomes 393



model of molecular evolution. J Mol Evol
53:711–753

19. Siltberg J, Liberles DA (2002) A simple
covarion-based approach to analyse nucleo-
tide substitution rates. J Evol Biol
15:588–594

20. Lichtarge O, Bourne HR, Cohen FE (1996)
An evolutionary trace method defines binding
surfaces common to protein families. J Mol
Evol 257:342–358

21. Gu X (1999) Statistical methods for testing
functional divergence after gene duplication.
Mol Biol Evol 16:1664–1674

22. Armon A, Graur D, Ben-Tal N (2001) Con-
Surf: an algorithmic tool for the identification
of functional regions in proteins by surface
mapping of phylogenetic information. J Mol
Biol 307:447–463

23. Gaucher EA, Gu X, Miyamoto MM, Benner
SA (2002) Predicting functional divergence in
protein evolution by site-specific rate shifts.
Trends Biochem Sci 27:315–321

24. Pupko T, Galtier N (2002) A covarion-based
method for detecting molecular adaptation:
application to the evolution of primate mito-
chondrial genomes. Proc Biol Sci
269:1313–1316

25. Blouin C, Boucher Y, Roger AJ (2003) Infer-
ring functional constraints and divergence in
protein families using 3D mapping of phylo-
genetic information. Nucleic Acids Res
31:790–797

26. Landau M, Mayrose I, Rosenberg Y, Glaser F,
Martz E, Pupko T, Ben-Tal N (2005) Con-
Surf 2005: the projection of evolutionary
conservation scores of residues on protein
structures. Nucleic Acids Res 33:
W299–W302

27. Gu X (2001) Maximum-likelihood approach
for gene family evolution under functional
divergence. Mol Biol Evol 18:453–464

28. Gu X (2006) A simple statistical method for
estimating type-II (cluster-specific) functional
divergence of protein sequences. Mol Biol
Evol 23:1937–1945

29. Bofkin L, Goldman N (2007) Variation in
evolutionary processes at different codon
positions. Mol Biol Evol 24:513–521

30. Hughes AL, Nei M (1988) Pattern of nucleo-
tide substitution at major histocompatibility
complex class I loci reveals overdominant
selection. Nature 335:167–170

31. Yang Z, Nielsen R (2000) Estimating synon-
ymous and nonsynonymous substitution rates
under realistic evolutionary models. Mol Biol
Evol 17:32–43

32. Goldman N, Yang Z (1994) A codon-based
model of nucleotide substitution for protein-
coding DNA sequences. Mol Biol Evol
11:725–736

33. Muse SV, Gaut BS (1994) A likelihood
approach for comparing synonymous and
nonsynonymous nucleotide substitution
rates, with application to the chloroplast
genome. Mol Biol Evol 11:715–724

34. Grantham R (1974) Amino acid difference
formula to help explain protein evolution.
Science 185:862–864

35. Yang Z (1998) Likelihood ratio tests for
detecting positive selection and application
to primate lysozyme evolution. Mol Biol
Evol 15:568–573

36. Schneider A, Cannarozzi GM, Gonnet GH
(2005) Empirical codon substitution matrix.
BMC Bioinformatics 6:134

37. Kosiol C, Holmes I, Goldman N (2007) An
empirical codon model for protein sequence
evolution. Mol Biol Evol 24:1464–1479

38. Doron-Faigenboim A, Pupko T (2007) A
combined empirical and mechanistic codon
model. Mol Biol Evol 24:388–397

39. De Maio N, Holmes I, Schlötterer C, Kosiol
C (2013) Estimating empirical hidden Mar-
kov models. Mol Biol Evol 30:725–736

40. Whelan S, Goldman N (1999) Distributions
of statistics used for the comparison of models
of sequence evolution in phylogenetics. Mol
Biol Evol 16:1292–1299

41. Anisimova M, Bielawski JP, Yang Z (2001)
Accuracy and power of the likelihood ratio
test in detecting adaptive molecular evolution.
Mol Biol Evol 18:1585–1592

42. Kosiol C, Vinar T, Da Fonseca RR, Hubisz
MJ, Bustamante CD, Nielsen R, Siepel A
(2008) Patterns of positive selection in six
mammalian genomes. PLoS Genet 4:
e10000144

43. Anisimova M, Bielawski JP, Yang Z (2002)
Accuracy and power of bayes prediction of
amino acid sites under positive selection.
Mol Biol Evol 19:950–958

44. Yang Z, Wong WS, Nielsen R (2005) Bayes
empirical bayes inference of amino acid sites
under positive selection. Mol Biol Evol
22:1107–1118

45. Yang Z, Nielsen R, Goldman N, Pedersen
AMK (2000) Codon-substitution models for
heterogeneous selection pressure at amino
acid sites. Genetics 155:431–449

46. Huelsenbeck JP, Dyer KA (2004) Bayesian
estimation of positively selected sites. J Mol
Evol 58:661–672

394 Carolin Kosiol and Maria Anisimova



47. Scheffler K, Seoighe C (2005) A Bayesian
model comparison approach to inferring pos-
itive selection. Mol Biol Evol 22:2531–2540

48. Aris-Brosou S, Bielawski JP (2006) Large-
scale analyses of synonymous substitution
rates can be sensitive to assumptions about
the process of mutation. Gene 378:58–64

49. Massingham T, GoldmanN (2005) Detecting
amino acid sites under positive selection and
purifying selection. Genetics 169:1753–1762

50. Kosakovsky Pond SL, Posada D, Gravenor
MB, Woelk CH, Frost SD (2006) GARD: a
genetic algorithm for recombination detec-
tion. Bioinformatics 22:3096–3098

51. Kosakovsky PSL, Posada D, Gravenor MB,
Woelk CH, Frost SD (2006) Automated phy-
logenetic detection of recombination using a
genetic algorithm. Mol Biol Evol
23:1891–1901

52. Felsenstein J (2004) Inferring phylogenies.
Sinauer Associates, Sunderland, MA

53. Yang Z, Dos Reis M (2011) Statistical proper-
ties of the branch-site test of positive selec-
tion. Mol Biol Evol 28:1217–1228

54. Anisimova M, Yang Z (2007) Multiple
hypothesis testing to detect lineages under
positive selection that affects only a few sites.
Mol Biol Evol 24:1219–1228

55. Kosakovsky Pond SL, Frost SD (2005) A
genetic algorithm approach to detecting
lineage-specific variation in selection pressure.
Mol Biol Evol 22:478–485

56. Guindon SA, Rodrigo G, Dyer KA, Huelsen-
beck JP (2004) Modeling the site-specific var-
iation of selection patterns along lineages.
Proc Natl Acad Sci U S A 101:12957–12962

57. De Maio N, Schlötterer C, Kosiol C (2013)
Linking great apes genome evolution across
time scales using polymorphism-aware phylo-
genetic models. Mol Biol Evol 30:2249–2262

58. De Maio N, D Schrempf D, Kosiol C (2016)
PoMo: an allele frequency-based approach for
species tree estimation. Syst Biol
64:1018–1031

59. Maddison W, Knowles L (2006) Inferring
phylogeny despite incomplete lineage sorting.
Syst Biol 55:21–30

60. Eyre-Walker A, Hurst L (2001) The evolution
of isochores. Nat Rev Genet 2:549–555

61. Siepel A, Bejerano G, Pedersen JS,
Hinrichs A, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LW, Richards S,
Weinstock GM, Wilson RK, Gibbs RA, Kent
WJ, Miller W, Haussler D (2005) Evolution-
arily conserved elements in vertebrate, insect,
worm, and yeast genomes. Genome Res
20:1034–1050

62. Pollard KS, Hubisz MJ, Rosenbloom KR, Sie-
pel A (2010) Detection of non-neutral substi-
tution rates on mammalian phylogenies.
Genome Res 20:110–121

63. Yang Z (2007) PAML 4: phylogenetic analysis
by maximum likelihood. Mol Biol Evol
24:1586–1591

64. Kosakovsky Pond SL, Muse SV (2005) Site-
to-site variation of synonymous substitution
rates. Mol Biol Evol 22:2375–2385

65. Schrempf D, Minh BQ, De Maio N, von
Haeseler A, Kosiol C (2016) Reversible
polymorphism-aware phylogenetic models
and their application to tree inference. J
Theor Biol 407:362–370

66. Gil M, Zanetti MS, Zoller S, Anisimova M
(2013) CodonPhyML: fast maximum likeli-
hood phylogeny estimation under codon sub-
stitution models. Mol Biol Evol
30:1270–1280

67. Zhang J, Nielsen R, Yang Z (2005) Evalua-
tion of an improved branch-site likelihood
method for detecting positive selection at the
molecular level. Mol Biol Evol 22:2472–2479

68. Yang Z, Nielsen R (2002) Codon-
substitution models for detecting molecular
adaptation at individual sites along specific
lineages. Mol Biol Evol 19:908–917

69. Vamathevan JJ, Hasan S, Emes RD, Amrine-
Madsen H, Rajagopalan D, Topp SD,
Kumar V, Word M, Simmons MD, Foord
SM, Sanseau P, Yang Z, Holbrook JD
(2008) The role of positive selection in deter-
mining the molecular cause of species differ-
ences in disease. BMC Evol Biol 8:273

70. Nozawa M, Suzuki Y, Nei M (2009) Reliabil-
ities of identifying positive selection by the
branch-site and site-prediction methods.
Proc Natl Acad Sci U S A 106:6700–6705

71. Markova-Raina P, Petrov D (2011) High sen-
sitivity to aligner and high rate of false posi-
tives in the estimates of positive selection in
12 Drosophila genomes. Genome Res
21:863. https://doi.org/10.1101/gr.
115949.110

72. Bakewell MA, Shi P, Zhang J (2007) More
genes underwent positive selection in chim-
panzee than in human evolution. Proc Natl
Acad Sci U S A 104:E97

73. Arbiza L, Dopazo J, Dopazo H (2006) Posi-
tive selection, relaxation, and acceleration in
the evolution of the human and chimp
genome. PLoS Comput Biol 2:e38

74. Gibbs RA, Rogers J, Katze MG,
Bumgarner R, Weinstock GM, Mardis ER,
Remington KA, Strausberg RL, Venter JC,
Wilson RK et al (2007) Evolutionary and

Selection Acting on Genomes 395

https://doi.org/10.1101/gr.115949.110
https://doi.org/10.1101/gr.115949.110


biomedical insights from the macaque
genome. Science 316:222–234

75. Mallik S, Gnerre S, Muller P, Reich D (2010)
The difficulty of avoiding false positives in
genome scans for natural selection. Genome
Res 19:922–933

76. Schneider A, Souvorov A, Sabath N,
Landan G, Gonnet GH (2009) Estimates of
positive Darwinian selection are inflated by
errors in sequencing, annotation, and align-
ment. Genome Biol Evol 1:114–118

77. Fletcher W, Yang Z (2010) The effect of inser-
tions, deletions and alignment errors on the
branch-site test of positive selection. Mol Biol
Evol 27:2257–2267
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Chapter 13

Looking for Darwin in Genomic Sequences: Validity
and Success Depends on the Relationship Between
Model and Data

Christopher T. Jones, Edward Susko, and Joseph P. Bielawski

Abstract

Codon substitution models (CSMs) are commonly used to infer the history of natural section for a set of
protein-coding sequences, often with the explicit goal of detecting the signature of positive Darwinian
selection. However, the validity and success of CSMs used in conjunction with the maximum likelihood
(ML) framework is sometimes challenged with claims that the approach might too often support false
conclusions. In this chapter, we use a case study approach to identify four legitimate statistical difficulties
associated with inference of evolutionary events using CSMs. These include: (1) model misspecification,
(2) low information content, (3) the confounding of processes, and (4) phenomenological load, or
PL. While past criticisms of CSMs can be connected to these issues, the historical critiques were often
misdirected, or overstated, because they failed to recognize that the success of any model-based approach
depends on the relationship between model and data. Here, we explore this relationship and provide a
candid assessment of the limitations of CSMs to extract historical information from extant sequences. To
aid in this assessment, we provide a brief overview of: (1) a more realistic way of thinking about the process
of codon evolution framed in terms of population genetic parameters, and (2) a novel presentation of the
ML statistical framework. We then divide the development of CSMs into two broad phases of scientific
activity and show that the latter phase is characterized by increases in model complexity that can sometimes
negatively impact inference of evolutionary mechanisms. Such problems are not yet widely appreciated by
the users of CSMs. These problems can be avoided by using a model that is appropriate for the data; but,
understanding the relationship between the data and a fitted model is a difficult task. We argue that the only
way to properly understand that relationship is to perform in silico experiments using a generating process
that can mimic the data as closely as possible. The mutation-selection modeling framework (MutSel) is
presented as the basis of such a generating process. We contend that if complex CSMs continue to be
developed for testing explicit mechanistic hypotheses, then additional analyses such as those described in
here (e.g., penalized LRTs and estimation of PL) will need to be applied alongside the more traditional
inferential methods.

Key words Codon substitution model, dN/dS, False positives, Maximum likelihood, Mechanistic
model, Model misspecification, Mutation-selection model, Parameter confounding, Phenomenologi-
cal load, Phenomenological model, Positive selection, Reliability, Statistical inference, Site-specific
fitness landscape
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1 Introduction

Codon substitution models (CSMs) fitted to an alignment of
homologous protein-coding genes are commonly used to make
inferences about evolutionary processes at the molecular level (see
Chapter 10 for examples of different applications of CSMs). Such
processes (e.g., mutation and selection) are represented by a vector
of parameters θ that can be estimated using maximum likelihood
(ML) or Bayesian statistical methods. Here, we focus on ML and
for convenience use CSM to indicate a model that is used in
conjunction with the ML approach (see [21], for an example of
the Bayesian approach). Considerable apprehension was expressed
about the statistical validity of CSMs during their initial phase of
development. In particular were concerns over the risk of falsely
inferring that a sequence or codon site evolved by adaptive evolu-
tion [11, 22, 23, 46, 60–63, 85]. Many of the studies employed in
the critique of CSMs were later shown to be flawed due to statistical
errors or incorrect interpretation of results [70, 72, 77, 84]. In
their reanalysis of the iconic MHC dataset [24], for example,
Suzuki and Nei [61] based their criticism of the ML approach on
results that were incorrect due to computational issues [70]. And in
simulation studies by Suzuki [60] and Nozawa et al. [46], the
branch-site model of Yang and Nielsen [79] was criticized as
being too liberal because it falsely inferred positive selection at
32 out of 14,000 simulated sites, despite that this rate (0.0023)
was well below the level of significance of the test (α ¼ 0.05)
[77]. Concerns about the ML approach were eventually mollified
by numerous simulation studies showing that the false positive rate
is no greater than the specified level of significance of the LRT
under a wide range of evolutionary scenarios [2, 3, 29, 31, 37, 70,
77, 82, 85, 86]. The validity and success of the approach is now well
established [84], and this has led to the formulation of CSMs of
ever-increasing sophistication [31, 41, 48–50, 55, 64, 65].

The most common use of a CSM is to infer whether a given
process, such as adaptive evolution somewhere in the gene, the
fixation of double and triple mutations, or variations in the synon-
ymous substitution rate, actually occurred when the alignment was
generated. Several factors can potentially undermine the reliability
of such inferences. These include:

1. Model misspecification, which can result in biased parameter
estimates;

2. Low information content, which can cause parameter esti-
mates to have large sampling errors and can lead to excessive
false positive rates;
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3. Confounding, which can cause patterns in the data generated
by one evolutionary process to be attributed to a different
process;

4. Phenomenological load, which can cause a model parameter
to be statistically significant even if the process it represents did
not actually occur when the data was generated.

These same factors can impact any model-based effort to make
inferences from data generated by complex biological processes,
not only to the CSMs described here. The possibility of false
inference due to any combination of these factors does not imply
that the CSM approach is unreliable in principle. As has been
demonstrated by numerous successful applications, CSMs generally
extract accurate and useful information provided that the model is
well suited for the data at hand [1, 71, 76]. We maintain that the
validity of inferences is not a function of the model in and of itself,
but is a consequence of the relationship between the model and
the data.

Here, we explore this relationship via case studies taken from
the historical development of CSMs. Our objective is to be candid
about the limitations of CSMs to reliably extract information from
an alignment. But, we emphasize that the impact of these limita-
tions (i.e., false positives and confounding) is a consequence of a
mismatch between the parameters included in the model and the
often limited information contained in the alignment. The case
studies are divided into two parts, each corresponding to a distinct
phase in the development of CSMs. Phase I is characterized by
pioneering efforts to formulate CSMs to account for the most
prominent components of variation in an alignment
[16, 42]. These include the M-series models that were among the
first CSMs to account for variations in selection effects across sites
[81], and the branch-site model of Yang and Nielsen [79] (hereaf-
ter, YN-BSM) formulated to account for variations in selection
effects across both sites and branches. The first pair of case studies
exemplifies concerns about the impact of low information content
(Case Study A) and model misspecification (Case Study B) on the
probability of falsely detecting positive selection in a gene or at a
particular codon site. We also include a description of methods
recently developed to mitigate the problem of false inference.

Phase II in the historical development is characterized by the
general increase in the complexity of CSMs aimed to account for
more subtle components of variation in an alignment.1 Models
used to detect temporal changes in site-specific selection effects

1The original CSM proposed by Goldman and Yang [16] was in fact quite complex in that it adjusted substitution
rates between nonsynonymous codons to account for differences in physicochemical properties using the
Grantham matrix [17]. This approach was later abandoned in favor of the simpler formulation now known as
M0 [44], e.g., the first M-series model [81].
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(e.g., [18, 31, 55]) or “heterotachy” [36] are representative. The
movement toward complex parameter-rich models has resulted in a
new set of concerns that are not yet widely appreciated. Principal
among these is an increase in the possibility of confounding. Two
components of the alignment-generating process are confounded if
they can produce the same or similar patterns in the data. Such
components can be impossible to disentangle without the input of
further biological information, and their existence can lead to a
statistical pathology that we call phenomenological load (PL). The
second pair of case studies illustrates the possibility of false infer-
ence due to confounding (Case Study C) and PL (Case Study D).
An essential feature of these studies is the use of a much more
realistic generating model to produce alignments for the purpose
of model evaluation.

Recent discoveries made using the mutation-selection (MutSel;
[80]) framework of Halpern and Bruno [19], which is based on a
realistic approximation of population dynamics at individual codon
sites, have challenged the way we think about the relationship
between parameters of traditional CSMs and components of the
process of molecular evolution they are meant to summarize (e.g.,
[25, 26, 56, 57]). Previously, there has been a tendency to think
about alignment-generating processes as if they occur in the same
way they are modeled by a CSM. This way of thinking can be
misleading because mechanisms of protein evolution can differ in
important and substantial ways from traditional CSMs. To redress
this issue, we begin this chapter with a brief overview of the
conceptual foundations of MutSel as a more realistic way of think-
ing about the actual process of molecular evolution. This material is
followed by a novel presentation of the ML statistical framework
intended to illustrate potential limitations in what can reasonably
be inferred when a CSM is fitted to data.

2 Conceptual Foundations

2.1 How Should We

Think About the

Alignment-Generating

Process?

A codon substitution model represents an attempt to explain the
way a target protein-coding gene changed over time by a combina-
tion of mutation, selection (purifying as well as adaptive), and drift.
Adaptive evolution occurs at each site within a protein in response
to a hierarchy of effects, including, but not limited to, changes in
the network of the protein’s interactions, changes in the functional
properties of that network, and changes in both the cellular and
organismal environment over time. The result of the complex
interplay between these effects is typically viewed through the
narrow lens of an alignment of homologous sequences X obtained
from extant species, possibly accompanied by a tree topology τ (for
our purposes, it is always assumed that τ is known). The informa-
tion contained in X is evidently insufficient to resolve all of the
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effects of the true generating process, which would in any case be
difficult or even impossible to parameterize with any accuracy. It is
therefore necessary to base the formulation of a CSM on a number
of simplifying assumptions. The usual assumptions include that:

1. Sites evolved independently;

2. Each site evolved via a homogenous substitution process over
the tree (formally, by a Markov process governed by a substitu-
tion rate matrix Q);

3. The selection regime at a site is determined by Qj drawn from a
small set of possible substitution rate matrices {Q1, . . ., Qk};

4. All sites share a common vector of stationary frequencies and
evolved via a common mutation process.

The elements qij of a substitution rate matrixQ are typically defined
for codons i 6¼ j as follows [44]:

qi j ¼

0 if i and j differ by more than one nucleotide

πj for synonymous transversions

κπj for synonymous transitions

ωπj for nonsynonymous transversions

ωκπj for nonsynonymous transitions

8>>>>>><
>>>>>>:

ð1Þ
where κ is the transition bias and πi is the stationary frequency of
the ith codon, both assumed to be the same for all codon sites. The
ratio ω ¼ dN/dS of the nonsynonymous substitution rate dN to
the synonymous substitution rate dS (both adjusted for “opportu-
nity”2) quantifies the stringency of selection at the site, with values
closer to zero corresponding to sites that are more strongly con-
served. We follow standard notation and use ω̂ to represent the
maximum likelihood estimate (MLE) of ω obtained by fitting Eq. 1
to an alignment.

Equation 1 provides the building block for most CSMs, yet it is
unsuitable as a means to think about the substitution process at a
site. For instance, the rate ratio in Eq. 1 is assumed to be the same
for all nonsynonymous pairs of codons. If interpreted mechanisti-
cally, this is tantamount to the assumption that the amino acid
occupying a site has fitness f and all other amino acids have fitness
f + df, and that, with each substitution, the newly fixed amino acid
changes its fitness to f and the previous occupant changes it fitness

2 Single-nucleotide (SN) mutations that are nonsynonymous occur more frequently than those that are synony-
mous due to idiosyncrasies in the genetic code. This is accounted for in the formulation of dN and dS, so that dN
can be interpreted as the proportion of nonsynonymous SN mutations that are fixed. Likewise, dS is the
proportion of synonymous SN mutations that are fixed. See Jones et al. [25] for a discussion of various
interpretations of dN/dS.
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to f + df. Such a narrow view of the substitution process, akin to
frequency-dependent selection [6, 25], is conceptually misleading
for the majority of proteins. To be clear, CSMs are undoubtedly a
valuable tool to make inferences about the evolution of a protein
(e.g., [8, 52, 71, 76]); our point is that they do not necessarily
provide the best way to think about the process.

The way we think about the substitution process should not be
limited to unrealistic assumptions used to formulate a tractable
CSM. It is more informative to conceptualize evolution at a
codon site using the traditional metaphor of a fitness landscape
upon which greater height represents greater fitness as depicted in
Fig. 1. If sites are assumed to evolve independently, a site-specific
fitness landscape can be defined for the hth site by a vector of
fitness coefficients fh and its implied vector of equilibrium codon
frequencies πh. Combined with a model for the mutation process,
πh determines the evolutionary dynamics at the site, or the way it
“moves” over its landscape (more formally, the way mutation and
fixation events occur at a codon site in a population over time). This
provides a way to think about evolution at a codon site in terms of
three possible dynamic regimes: shifting balance, under which the
site moves episodically away from the peak of its fitness landscape
(i.e., the fittest amino acid) via drift and back again by positive
selection (Fig. 1a); adaptive evolution, under which a change in
the landscape is followed by movement of the site toward its new
fitness peak (Fig. 1b); and neutral or nearly neutral evolution,
under which drift dominates and the site is free to move over a
relatively flat landscape limited primarily by biases in the mutation
process. This way of thinking about the alignment-generating pro-
cess is encapsulated by the MutSel framework [6, 7, 25]. The
precise relationship between the MutSel framework and the three
dynamic regimes will be presented in Case Study C.

2.2 What Is the

Objective of Model

Building?

CSMs have become increasingly complex with the addition of more
free parameters since the introduction of the M-series models in
Yang et al. [81]. The prima facie objective of this trend is to
produce models that provide better mechanistic explanations of
the data. The assumption is that this will lead to more accurate
inferences about evolutionary processes, particularly as the volume
of genetic data increases [35]. However, the significance of a new
model parameter is assessed by a comparison of site-pattern distri-
butions without reference to mechanism. Combined with the pos-
sibility of confounding, this feature of the ML framework means
that the objective of improving model fit does not necessarily
coincide with the objective of providing a better representation of
the mechanisms of the true generating process.

Given any CSM with parameters θM, it is possible to compute a
vector P that assigns a probability to each of the 61N possible site
patterns for an N-taxon alignment (i.e., a multinomial distribution
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for 61N categories). We refer to P ¼ PM(θM) as the site-pattern
distribution for that model. Figure 2 depicts the space of all possi-
ble site-pattern distributions for anN-taxon alignment. Each ellipse
represents the family of distributions {PM(θM)jθM ∈ ΩM}, where
ΩM is the vector space of all possible values of θM. For example,
{PM0(θM0)jθM0 ∈ ΩM0} is the family of distributions that can be

Fig. 1 It can be useful to think of the substitution process at a site as movement
on a site-specific fitness landscape. The horizontal axis in each figure shows the
amino acids at a hypothetical site in order of their stationary frequencies
indicated by the height of the bars. Frequency is a function of mutation and
selection, but can be construed as a proxy for fitness. The site-specific dN/dS
ratio [25] is a function of the amino acid that occupies the site, and can be <1
(left of the red dashed line) or >1 (right of the dashed red line). (a) Suppose
phenylalanine (F, TTT) is the fittest amino acid. The site-specific dN/dS ratio is
much less than one when occupied by F because any nonsynonymous mutation
will always be to an amino acid that is less fit. Nevertheless, it is possible for an
amino acid such as valine (V, GTT) to be fixed on occasion, provided that
selection is not too stringent. When this happens, dN/dS at the site is
temporarily elevated to a value greater than one as positive selection moves
the site back to F by a series of replacement substitutions, e.g., V (GTT) ! G
(GGT) ! C (TGT) ! F (TTT). We call the episodic recurrence of this process
shifting balance on a static fitness landscape. Shifting balance on a landscape
for which all frequencies are approximately equal corresponds to nearly neutral
evolution (not depicted), when dN/dS is always �1. (b) Now, consider what
happens following a change in one or more external factors that impact the
functional significance of the site. The relative fitnesses of the amino acids might
change from that depicted in a to that in b for instance, where glutamine (Q) is
fittest. If at the time of the change the site is occupied by F (as is most likely),
then dN/dS would be temporarily elevated as positive selection moves the site
toward its new peak at Q, e.g., F (TTT) ! Y (TAT) ! H (CAT) ! Q (CAA). This
process of adaptive evolution is followed by a return to shifting balance once
the site is occupied by Q
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specified using M0, the simplest CSM that assumes a common
substitution rate matrix Q for all sites and branches. This is nested
inside {PM1(θM1)jθM1 ∈ ΩM1}, where M1 is a hypothetical model
that is the same as M0 but for a few extra parameters. Likewise, M1
is nested in M2. The location of the site-pattern distribution for the
true generating process is represented by PPG. Its location is fixed
but unknown. It is therefore not possible to assess the distance
between it and any other distribution. Instead, comparisons are
made using the site-pattern distribution inferred under the
saturated model.

Whereas a CSM {PM(θM)jθM ∈ ΩM} can be thought of as a
family of multinomial distributions for the 61N possible site pat-
terns, the fitted saturated model PSðθ̂SÞ is the unique distribution
defined by the MLE θ̂S ¼ ðy1=n, . . . , ym=nÞT , where yi > 0 is the
observed frequency of the ith site pattern, m is the number of
unique site patterns, and n is the number of codon sites. In other

Fig. 2 The (61N � 1)-dimensional simplex containing all possible site-pattern
distributions for an N-taxon alignment is depicted. The innermost ellipse repre-
sents the subspace {PM0(θM0)jθM0 ∈ ΩM0} that is the family of distributions that
can be specified using M0, the simplest of CSMs. This is nested in the family of
distributions that can be specified using M1 (blue ellipse), a hypothetical model
that has the same parameters as M0 plus some extra parameters. Similarly, M1
is nested in M2 (red ellipse). Whereas models are represented by subspaces
of distributions, the true generating process is represented by a single point
PGP, the location of which is unknown. The empirical site-pattern distribution

P Sðθ̂SÞ corresponds to the saturated model fitted to the alignment; with
large samples, P Sðθ̂SÞ � P GP. For any other model M, the member

PMðθ̂MÞ∈fPMðθMÞ j θM∈ΩMg most consistent with X is the one that mini-
mizes deviance, which is twice the difference between the maximum
log-likelihood of the data under the saturated model and the maximum
log-likelihood of the data under M
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words, the fitted saturated model is the empirical site-pattern dis-
tribution for a given alignment. Because it takes none of the
mechanisms of mutation or selection into account, ignores the
phylogenetic relationships between sequences, and excludes the
possibility of site patterns that were not actually observed (i.e.,
yi/n ¼ 0 for site patterns i not observed in X), PSðθ̂SÞ can be
construed as the maximally phenomenological explanation of the
observed alignment. An alignment is always more likely under the
saturated model than it is under any other CSM. PSðθ̂SÞ therefore
provides a natural benchmark for model improvement.

For any alignment, the MLE over the family of distributions
{PM(θM)jθM ∈ ΩM} is represented by a fixed point PMðθ̂MÞ in
Fig. 2. PMðθ̂MÞ is the distribution that minimizes the statistical
deviance between PM(θM) and PSðθ̂SÞ. Deviance is defined as twice
the difference between the maximum log-likelihood (LL) of the
data under the saturated model and the maximum log-likelihood of
the data under M:

Dðθ̂M,θ̂SÞ ¼ 2fℓðθ̂S j X Þ � ℓðθ̂M j X Þg ð2Þ
A key feature of deviance is that it always decreases as more para-
meters are added to the model, corresponding to an increase in the
probability of the data under that model. For example, suppose
{PM2(θM2)jθM2 ∈ ΩM2} is the same family of distributions as
{PM1(θM1)jθM1 ∈ ΩM1} but for the inclusion of one additional
parameter ψ, so that θM2 ¼ (θM1, ψ). The improvement in the
probability of the data under PM2ðθ̂M2Þ over its probability under

PM1ðθ̂M1Þ is assessed by the size of the reduction in deviance
induced by ψ :

ΔDðθ̂M1 , θ̂M2Þ ¼ Dðθ̂M1, θ̂SÞ �Dðθ̂M2, θ̂SÞ
¼ 2fℓðθ̂M2 j X Þ � ℓðθ̂M1 j X Þg ð3Þ

Equation 3 is just the familiar log-likelihood ratio (LLR) used to
compare nested models under the maximum likelihood framework.

Given this measure of model improvement, the de facto objec-
tive of model building is not to provide a mechanistic explanation
of the data that more accurately represents the true generating
process, but only to move closer to the site-pattern distribution of
the fitted saturated model. Real alignments are limited in size, so
there will always be some distance between PSðθ̂SÞ and PGP due to
sampling error (as represented in Fig. 2). But even with an infinite
number of codon sites, whenPSðθ̂SÞ converges to PGP, the criterion
of minimizing deviance does not inevitably lead to a better expla-
nation of the data because of the possibility of confounding. Two
processes are said to be confounded if they can produce similar
patterns in the data. Hence, if ψ represents a process E that did not
actually occur when the data was generated, and if E is confounded
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with another process that did occur, the LLR in Eq. 3 can still be
significant. Under this scenario, the addition of ψ to M1 would
engender movement toward PSðθ̂SÞ and PGP, but the new model
M2 would also provide a worse mechanistic explanation of the data
because it would falsely indicate that E occurred. The possibility of
confounding and its impact on inference is demonstrated in Case
Study D.

3 Phase I: Pioneering CSMs

The first effort to detect positive selection at the molecular level
[24] relied on heuristic counting methods [43]. Phase I of CSM
development followed with the introduction of formal statistical
approaches based on ML [16, 42]. The first CSMs were used to
infer whether the estimate ω̂ of a single nonsynonymous to synon-
ymous substitution rate ratio averaged over all sites and branches
was significantly greater than one. Such CSMs were found to have
low power due to the pervasiveness of synonymous substitutions at
most sites within a typical gene [76]. An early attempt to increase
the statistical power to infer positive selection was the CSM
designed to detect ω̂ > 1 on specific branches [78]. Models
accounting for variations in ω across sites were subsequently devel-
oped, the most prominent of which are the M-series models
[78, 81]. These were accompanied by methods to identify individ-
ual sites under positive selection. The quest for power culminated
in the development of models that account for variations in the rate
ratio across both sites and branches. The appearance of various
branch-site models (e.g., [4, 10, 79, 86]) marks the end of Phase
I of CSM development.

Two case studies are employed in this section to illustrate some
of the inferential challenges associated with Phase I models. We use
Case Study A to examine the impact of low information content on
the inference of positive selection at individual codon sites. The
subject of this study is the M1a vs M2a model contrast applied
to the tax gene of the human T-cell lymphotropic virus type I
(HTLV-I; [63, 82]). We use Case Study B to illustrate how
model misspecification (i.e., differences between the fitted model
and the generating process) can lead to false inferences. The subject
of this study is the Yang–Nielsen branch-site model (YN-BSM;
[79]) applied to simulated data.

3.1 Case Study A:

Low Information

Content

To study the impact of low information content on inference, we
use a pair of nested M-series models known as M1a and M2a
[70, 82]. Under M1a, sites are partitioned into two rate-ratio
categories, 0 < ω0 < 1 and ω1 ¼ 1 in proportions p0 and p1 ¼ 1
� p0. M2a includes an additional category for the proportion of
sites p2 ¼ 1 � p0 � p2 that evolved under positive selection with
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ω2 > 1. The use of multiple categories permits two levels of infer-
ence. The first is an omnibus likelihood ratio test (LRT) for evi-
dence of positive selection somewhere in the gene, which is
conducted by contrasting a pair of nested models. For example,
the contrast of M1a vs M2a is made by computing the distance

LLR ¼ ΔDðθ̂M1a, θ̂M2aÞ between the two models and comparing
the result to the limiting distribution of the LLR under the null
model. In this case, the limiting distribution of LLR is often taken
to be χ22 [75], which would be correct under regular likelihood
theory because the models differ by two parameters. The second
level of inference is used to identify individual sites that underwent
positive selection. This is conducted only if positive selection is
inferred by the omnibus test (e.g., if LLR > 5.99 for the M1a vs
M2a contrast at the 5% level of significance). Let c0, c1, and c2
represent the event that a given site pattern x falls into the stringent
( 0 < ω̂0 < 1 ), neutral ( ω̂1 ¼ 1 ), or positive ( ω̂2 > 1 ) selection
category, respectively. Applying Bayes’ rule:

Prðc2 j x, θ̂M2aÞ ¼ Prðx j c2, θ̂M2aÞp̂2P2
k¼0 Prðx j ck, θ̂M2aÞp̂k

ð4Þ

Sites with a sufficiently high posterior probability (e.g.,

Prðc2 j x,θ̂M2aÞ > 0:95 ) are inferred to have undergone positive
selection. Equation 4 is representative of the naive empirical Bayes
(NEB) approach under which MLEs (θ̂M2a) are used to compute
posterior probabilities.

The NEB approach ignores potential errors in parameter esti-
mates that can lead to false inference of positive selection at a site
(i.e., a false positive). The resulting false positive rate can be espe-
cially high for alignments with low information content. An exam-
ple setting with low information content arises when there are a
substantial number of invariant sites, since these provide little
information about the substitution process. The issue of low infor-
mation content is well illustrated by the extreme case of the tax
gene, HTLV-I [63]. The alignment consists of 20 sequences with
181 codon sites, 158 of which are invariant. The 23 variable sites
have only one substitution each: 2 are synonymous and 21 are
nonsynonymous. The high ratio of nonsynonymous-to-synony-
mous substitutions suggests that the gene underwent positive
selection. This hypothesis was supported by analytic results: the
LLR for the M1a vs M2a contrast was 6.96 corresponding to a p-
value of approximately 0.03 [82]. The omnibus test therefore
supported the conclusion that the gene underwent positive selec-
tion. However, the MLE for p2 under M2a was p̂2 ¼ 1. Using this
value in Eq. 4 gives Prðc2 j x,θ̂M2aÞ ¼ 1 for all sites, including the
158 invariable sites. Such an unreasonable result can occur under
NEB because, despite the possibility of large sampling errors in
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MLEs due to low information, θ̂M2a is treated as a known value in
Eq. 4.

Bayes empirical Bayes (BEB; [82]), a partial Bayesian approach
under which rate ratios and their corresponding proportions are
assigned discrete prior distributions (cf. [21]), was proposed as an
alternative to NEB. Numerical integration over the assumed priors
tends to provide better estimates of posterior probabilities, partic-
ularly in cases where information content is low. Using BEB in the
analysis of the tax gene, for example, the posterior probability was

0:91 < Prðc2 j x,θ̂M2aÞ < 0:93 for the 21 sites with a single non-
synonymous change and 0:55 < Prðc2 j x,θ̂M2aÞ < 0:61 for the
remaining sites [82]. Hence, the BEB approach mitigated the
problem of low information content, as the posterior probability
of positive selection at invariant sites was reduced. An alternative to
BEB is called smoothed bootstrap aggregation (SBA) [38]. SBA
entails drawing site patterns from X with replacement (i.e., boot-
strap) to generate a set of alignments {X1, . . ., Xm} with similar
information content as X. The MLEs fθ̂ igmi¼1 for the vector of
model parameters θ are then estimated by fitting the CSM to each
Xi ∈{X1, . . ., Xm}. A kernel smoother is applied to these values to
reduce sampling errors. The mean value of the resulting smoothed

fθ̂ igmi¼1 is then used in Eq. 4 in place of the MLE for θ obtained
from the original alignment to estimate posterior probabilities. This
approach was shown to balance power and accuracy at least as well
as BEB. But, SBA has the advantage that it can accommodate the
uncertainty of all parameter estimates (not just those of the ω
distribution, as in BEB) and is much easier to implement. When
SBAwas applied to the tax gene, the posterior probabilities for positive
selection were further reduced: 0:87 < Prðc2 j x,θ̂M2aÞ < 0:89
for the 21 sites with a single nonsynonymous change, and 0:55 <

Prðc2 j x,θ̂M2aÞ < 0:60 for the remaining sites [38].
The problem of low information content was fairly obvious in

the case of the tax gene, as 158 of the 181 codon sites within that
dataset were invariant. However, it can sometimes be unclear
whether there is enough variation in an alignment to ensure reliable
inferences. It would be useful to have a method to determine
whether a given data set might be problematic. An MLE θ̂ will
always converge to a normal distribution centered at the true
parameter value θ with variance proportional to 1/n as the sample
size n (a proxy for information content) gets larger, provided that
the CSM satisfies certain “regularity” conditions (a set of technical
conditions that must hold to guarantee that MLEs will converge in
distribution to a normal, and that the LLR for any pair of nested
models will converge to its expected chi-squared distribution). This
expectation makes it possible to assess whether an alignment is
sufficiently informative to obtain the benefits of regularity. The
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first step is to generate a set of bootstrap alignments {X1, . . ., Xm}.
The CSM can then be fitted to these to produce a sample distribu-
tion fθ̂ igmi¼1 for the MLE of any model parameter θ. If the align-
ment is sufficiently informative with respect θ, then a histogram of

fθ̂ igmi¼1 should be approximately normal in distribution. Serious
departures from normality (e.g., a bimodal distribution) indicate
unstable MLEs, which are a sign of insufficient information or an
irregular modeling scenario. Mingrone et al. [38] recommend
using this technique with real data as a means of gaining insight
into potential difficulties of parameter estimation using a
given CSM.

3.1.1 Irregularity and

Penalized Likelihood

Issues associated with low information content can be made worse
by violations of certain regularity conditions. For example, M2a is
the same as M1a but for two extra parameters, p2 and ω2. Usual
likelihood theory would therefore predict that the limiting distri-
bution of the LLR is χ22. However, this result is valid only if the
regularity conditions hold. Among these conditions is that the null
model is not obtained by placing parameters of the alternate model
on the boundary of parameter space. Since M1a is the same as M2a
but with p2 ¼ 0, this condition is violated. The same can be said for
many nested pairs of Phase I CSMs, such as M7 vs M8 [81] or M1
vs branch-site Model A [79]. Although the theoretical limiting
distribution of the LLR under some irregular conditions has been
determined by Self and Liang [54], those results do not include
cases where one of the model parameters is unidentifiable under the
null [2]. Since M1a is M2a with p2 ¼ 0, the likelihood under M1a
is the same for any value of ω2. This makes ω2 unidentifiable under
the null. The limiting distribution for the M1a vs M2a contrast is
therefore unknown [74].

A penalized likelihood ratio test (PLRT; [39]) has been pro-
posed to mitigate problems associated with unidentifiable para-
meters. Under this method, the likelihood function for the
alternate model (e.g., M2a) is modified so that values of p2 closer
to zero are penalized. This has the effect of drawing the MLE for p2
away from the boundary, and can interpreted as a way to “regular-
ize” the model. PLRT seems to be more useful in cases where
the analysis of a real alignment produces a small value of p̂2 accom-
panied by an unrealistically large value of ω̂2. This can happen
because ω̂2 is influenced by fewer and fewer site patterns as p̂2
approaches zero, and is therefore subject to larger and larger sam-
pling errors. In addition, ω̂2 and p̂2 tend to be negatively correlated,
which further contributes to the large sampling errors. For exam-
ple, Mingrone et al. [39] found that M2a fitted to a 5-taxon
alignment with 198 codon sites without penalization gave
ðp̂2,ω̂2Þ ¼ ð0:01,34:70Þ. These MLEs, if taken at face value, sug-
gest that a small number of sites in the gene underwent positive
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selection. However, such a large rate ratio is difficult to believe
given that its estimate is consistent with only approximately
2 codon sites (e.g., an estimated 1% of the 198 sites or �2 sites).
Using the PLRT, the MLEs were ðp̂2,ω̂2Þ ¼ ð0:09,1:00Þ. These
suggest that selection pressure was nearly neutral at a significant
proportion of sites in the gene. In this case, the rate ratio is
consistent with 9% of the 198 sites or �18 sites and is therefore
less likely to be an artifact of sampling error. We expect this
approach to be useful in a wide variety of evolutionary applications
that rely on mixture models to make inferences (e.g., [13, 34,
47, 66]).

Other approaches for dealing with low information content in
the data for an individual gene include the empirical Bayes approach
of Kosiol et al. [33] and the parametric bootstrapping methods of
Gibbs [14]. Both methods exploit the additional information con-
tent available from other genes. Kosiol et al. [33] adopted an
empirical Bayes approach, where ω values varied over edges and
genes according to a distribution. Because empirical posterior dis-
tributions are used, the approach is more akin to detecting sites
under positive selection (e.g., using NEB) than formal testing. By
contrast, Gibbs [14] adopted a test-based approach and utilized
parametric bootstrapping [15] to approximate the distribution of
the likelihood ratio statistic using data from other genes to obtain
parameter sets to use in the bootstrap. Whereas this approach can
attenuate issues associated with low information content, it can also
be computationally expensive, especially when applied to large
alignments.

3.2 Case Study B:

Model

Misspecification

The mechanisms that give rise to the diversity of site patterns in a
set of homologous genes are highly complex and not fully under-
stood. CSMs are therefore necessarily simplified representations of
the true generating process, and are in this sense misspecified. The
extent to which misspecification might cause an omnibus LRT to
falsely detect positive selection was of primary concern during
Phase I of model development. We use a particular form of the
YN-BSM called Model A [79] to illustrate this issue. In its original
form, the omnibus LRT assumes a null under which a proportion
p0 of sites evolved under stringent selection with ω0 ¼ 0 and the
remaining sites evolved under a neutral regime with ω1 ¼ 1 on all
branches of the tree (i.e., model M1 in [44]). This is contrasted
with Model A, which is the same as M1 except that it assumes that
some stringent sites and some neutral sites evolved under positive
selection with ω2 > 1 on a prespecified branch called the fore-
ground branch. The omnibus test contrasting M1 with Model A
was therefore designed to detect a subset of sites that evolved
adaptively on the same branch of the tree.

During this period of model development, the standard
method to test the impact of misspecification on the reliability of
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an omnibus LRT was to generate alignments in silico using a more
complex version of the CSM to be tested as the generating model.
This usually involved adding more variability in ω across sites
and/or branches than assumed by the fitted CSM while leaving
all other aspects of the generating model the same. In Zhang [85],
for example, alignments were generated using site-specific rate
matrices, as in Eq. 1, with rate ratios ω specified by predetermined
selection regimes, two of which are shown in Table 1. In one
simulation, 200 alignments were generated using regime Z on a
single foreground branch and regime X on all of the remaining
branches of a 10 or 16 taxon tree. The gene therefore underwent a
mixture of stringent selection and neutral evolution over most of
the tree (regime X), but with complete relaxation of selection
pressure on the foreground branch (regime Z). Positive selection
did not occur at any of the sites. Nevertheless, the M1 vs Model A
contrast inferred positive selection in 20–55% of the alignments,
depending on the location of the foreground branch. Such a high
rate of false positives was attributed to the mismatch between the
process used to generate the data compared to the process assumed
by the null model M1 [85].

The branch-site model was subsequently modified to allow
0 < ω0 < 1 instead of ω0 ¼ 0 (Modified Model A in [86]). Fur-
thermore, the new null model is specified under the assumption
that some proportion p0 of sites (the stringent sites) evolved under
stringent selection with 0 < ω0 < 1 everywhere in the tree except
on the foreground branch, where those same sites evolved neutrally
with ω2 ¼ 1. All other sites in the alignment (the neutral sites) are
assumed to have evolved neutrally with ω1 ¼ 1 everywhere in the
tree. This is contrasted with the Modified Model A, which assumes
that some of the stringent sites and some of the neutral sites evolved
under positive selection with ω2 > 1 on the foreground. Hence,
unlike the original omnibus test that contrasts M1 with Model A,
the new test contrasts Modified Model A with ω2 ¼ 1 against
Modified Model A with ω2 > 1. These changes to the YN-BSM
were shown to mitigate the problem of false inference. For exam-
ple, using the same generating model with regimes X and Z, the
modified omnibus test falsely inferred positive selection in only
1–7.5% of the alignments, consistent with the 5% level of signifi-
cance of the test [86].

Table 1
Rate ratios (ω) for regimes X and Z taken from Zhang [85]

Sites 1–20 21–40 41–60 61–80 81–100 101–120 121–140 141–160 161–180 181–200

ω regime X 1.00 1.00 0.80 0.80 0.50 0.50 0.20 0.20 0.00 0.00

ω regime Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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This case study demonstrates how problems associated with
model misspecification were traditionally identified, and how they
could be completely corrected through relatively minor changes to
the model. However, the generating methods employed by studies
such as Zhang [85] and Zhang et al. [86], although sophisticated
for their time, produced alignments that were highly unrealistic
compared to real data. For example, it was recently shown that a
substantial proportion of variation in many real alignments might
be due to selection effects associated with shifting balance over
static site-specific fitness landscapes [25, 26]. This process results
in random changes in site-specific rate ratios, or heterotachy, that
cannot be replicated using traditional CSMs as the generating
model. While the mitigation of statistical pathologies due to low
information content (e.g., using BEB or SBA) or model misspeci-
fication (e.g., by altering the null and alternative hypotheses or the
use of penalized likelihood) were critical advancements during
Phase I of CSM development, other statistical pathologies went
unrecognized due to reliance on unrealistic simulation methods.
This issue is taken up in the next section.

4 Phase II: Advanced CSMs

A typical protein-coding gene evolves adaptively only episodically
[59]. The evidence of adaptive evolution of this type can be very
difficult to detect. For example, it is assumed under the YN-BSM
that a random subset of sites switched from a stringent or neutral
selection regime to positive selection together on the same set of
foreground branches. The power to detect a signal of this kind can
be very low when the proportion of sites that switched together is
small [77]. Perhaps encouraged by the reliability of Phase I models
demonstrated by extensive simulation studies [2, 3, 29, 31, 37, 70,
77, 82, 85, 86], combined with experimental validation of results
obtained from their application to real data [1, 71, 76], investiga-
tors began to formulate increasingly complex and parameter-rich
CSMs [31, 41, 48, 50, 55, 64, 65]. The hope was that carefully
selected increases in model complexity would yield greater power
to detect subtle signatures of positive selection overlooked by Phase
I models. The introduction of such CSMs marks the beginning of
Phase II of their historical development.

Phase II models fall into three broad categories:

1. The first consists of Phase I CSMs modified to account for
more variability in selection effects across sites and branches
than previously assumed, with the aim of increasing the power
to detect subtle signatures of positive selection (e.g., the
branch-site random effects likelihood model, BSREL; [31]).
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2. The second category includes Phase I CSMs modified to con-
tain parameters for mechanistic processes not directly asso-
ciated with selection effects. Many such models have been
motivated by a particular interest in the added mechanism
(e.g., the fixation of double and triple mutations; [26, 40,
83]), or by the notion that increasing the mechanistic content
of a CSM can only improve inferences about selection effects
(e.g., by accounting for variations in the synonymous substitu-
tion rate; [30, 51]).

3. The third category of models abandons the traditional formu-
lation of Eq. 1 in favor of a substitution process expressed in
terms of explicit population genetic parameters, such as popu-
lation size and selection coefficients [45, 48–50, 64, 65].

An example of the first category of models is BSREL, which
accounts for variations in selection effects across sites and over
branches by assuming a different rate-ratio distribution

fðωb
i ,p

b
i Þ : i ¼ 1, . . . , kbÞg for each branch b of a tree [31]. BSREL

was later found to be more complex than necessary, so an adaptive
version was formulated to allow the number of components kb on a
given branch to adjust to the apparent complexity of selection
effects on that branch (aBSREL; [55]). A further reduction in
model complexity led to the formulation of the test known as
BUSTED (for branch-site unrestricted statistical test for episodic
diversification; [41]), which we use to illustrate the problem of
confounding in Case Study C. An example of the second category
of models is the addition of parameters for the rate of double and
triple mutations to traditional CSMs, the most sophisticated ver-
sion of which is RaMoSSwDT (for Random Mixture of Static and
Switching sites with fixation of Double and Triple mutations; [26]).
This model is used in Case Study D to illustrate the problem of
phenomenological load.

Models in the third category are the most ambitious CSMs
currently in use, and are far more challenging to fit to real align-
ments than traditional models. One of the most impressive exam-
ples of their application is the site-wise mutation-selection model
(swMutSel; [64, 65]) fitted to a concatenated alignment of 12mito-
chondrial genes (3598 codon sites) from 244 mammalian species.
Based on the mutation-selection framework of Halpern and Bruno
[19], swMutSel estimates a vector of selection coefficients for each
site in an alignment. This and similar models (e.g., [48–50]) appear
to be reliable [58], but require a very large number of taxa (e.g.,
hundreds). Phase II models of this category are therefore impracti-
cal for the majority of empirical datasets. Here, we utilize MutSel as
an effective means to generate realistic alignments with plausible
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levels of variation in selection effects across sites and over time
rather than as a tool of inference.

4.1 Case Study C:

Confounding

By expressing the codon substitution process in terms of explicit
population genetic parameters, the MutSel framework facilitates
the investigation of complex evolutionary dynamics, such as shift-
ing balance on a fixed fitness landscape or adaptation to a change in
selective constraints (i.e., a peak shift; [6, 25]) that are missing from
alignments generated using traditional methods. Specifically, by
assigning a different vector of fitness coefficients for the 20 amino
acids to each site, MutSel can generate more variation in rate ratio
across sites and over time than has been realized in the past simula-
tion studies (e.g., Table 1). In this way, MutSel provides the basis of
a generating model that can be adjusted to produce alignments that
closely mimic real data [26]. MutSel therefore serves to connect
demonstrably plausible evolutionary dynamics to the pathology we
refer to as confounding.

Under MutSel, the dynamic regime at the hth codon site (e.g.,
shifting balance, neutral, nearly neutral, or adaptive evolution) is
uniquely specified by a vector of fitness coefficients

f h ¼ f h
1, . . . , f

h
m. It is generally assumed that mutation to any of

the three stop codons is lethal, so m ¼ 61 for nuclear genes and
m ¼ 60 for mitochondrial genes. And, although it is not a require-
ment, it is typical to assume that the f h

j are constant across synony-
mous codons [25, 57]. Given fh, the elements of a site-specific
instantaneous rate matrix Ah can be defined as follows for all i 6¼ j
(cf. Eq. 1):

Ah
ij /

μij if shij ¼ 0

μij
shij

1� exp �shij

� � otherwise

8>><
>>:

ð5Þ

where μij is the rate at which codon i mutates to codon j and

shij ¼ 2Neðf h
j � f h

i Þ is the scaled selection coefficient for a popula-

tion of haploids with effective population size Ne. The probability
that the new mutant j is fixed is approximated by

shij=f1� expð�shij Þg [9, 28].

The rate matrix Ah defines the dynamic regime for the site as
illustrated in Fig. 3. The bar plot shows codon frequencies

πh ¼ πh1, . . . , π
h
m sorted in descending order. A site spends most of

its time occupied by codons to the left or near the “peak” of its
landscape. The codon-specific rate ratio for the site (dNh

i =dS
h
i for

codon i) is low near the peak (red line plot in Fig. 3) since muta-
tions away from the peak are seldom fixed. However, if selection is
not too stringent, the site will occasionally drift to the right into the
“tail” of its landscape. When this occurs, the codon-specific rate
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ratio will be elevated for a time until a combination of drift and
positive selection moves the site back to its peak. This dynamic
between selection and drift is reminiscent of Wright’s shifting
balance. It implies that, when a population is evolving on a fixed
fitness landscape (i.e., with no adaptive evolution), its gene
sequences can nevertheless contain signatures of temporal changes
in site-specific rate ratios (heterotachy), and that these might
include evidence of transient elevation to values greater than one
(i.e., positive selection). Such signatures of positive selection due to
shifting balance can be detected by Phase II CSMs [25].

For example, BUSTED [41] was developed as an omnibus test
for episodic adaptive evolution. The underlying CSM was formu-
lated to account for variations in the intensity of selection over both
sites and time modeled as a random effect. This is in contrast to the
YN-BSM, which treats temporal changes in rate ratio as a fixed
effect that occurs on a prespecified foreground branch (although
the sites under positive selection are still a random effect). We
therefore refer to the CSM underlying BUSTED as the random
effects branch-site model (RE-BSM) to serve as a reminder of this
important distinction. Under RE-BSM, the rate ratio at each site
and branch combination is assumed to be an independent draw
from the distribution ðω0, p0Þ, ðω1, p1Þ, ðω2, p2Þ

� �
. In this way,

the model accounts for variations in selection effects both across
sites and over time. BUSTED contrasts the null hypothesis that
ω0 � ω1 � ω2 ¼ 1 with the alternative that ω0 � ω1 � 1 � ω2.

Fig. 3 Fitness coefficients for the 20 amino acids were drawn from a normal
distribution centered at zero and with standard deviation σ ¼ 0.001. Bars show
the resulting stationary frequencies (a proxy for fitness) sorted from largest to
smallest. They compose a metaphorical site-specific landscape over which the
site is imagined to move. The solid red line shows the codon-specific rate ratio

dNh
i =dS

h
i for the sorted codons. This varies depending on the codon currently

occupying the site, and can be greater than one following a chance substitution
into the tail (to the right) of the landscape. In this case, the codon-specific rate
ratio for the site ranged from 0.21 to 4.94 with a temporally averaged site-
specific rate ratio of dNh/dSh ¼ 0.52
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When applied to real data, rejection of the null is interpreted as
evidence of episodic adaptive evolution.

Unlike the YN-BSM that aims to detect a subset of sites that
underwent adaptive evolution together on the same foreground
branches (i.e., coherently), BUSTED was designed to detect het-
erotachy similar to the type predicted by the mutation-selection
framework: shifting balance on a static fitness landscape. Jones et al.
[25] recently demonstrated that plausible levels of shifting balance
can produce signatures of episodic positive selection that can be
detected. BUSTED inferred episodic positive selection in as many
as 40% of alignments generated using the MutSel framework. Sig-
nificantly, BUSTED was correct to identify episodic positive selec-
tion in these trials. Even though the generating process assumed
fixed site-specific landscapes (so there was no episodic adaptive
evolution), and the long-run average rate ratio at each site was
necessarily less than one [57], positive selection nevertheless did
sometimes occur by shifting balance. This illustrates the general
problem of confounding. Two processes are said to be confounded
if they can produce the same or similar patterns in the data. In this
case, episodic adaptive evolution (i.e., the evolutionary response to
changes in site-specific landscapes) and shifting balance (i.e., evolu-
tion on a static fitness landscape) are confounded because they can
both produce rate-ratio distributions that indicate episodic positive
selection. The possibility of confounding underlines the fact that
there are limitations in what can be inferred about evolutionary
processes based on an alignment alone.

4.2 Case Study D:

Phenomenological

Load

Phenomenological load (PL) is a statistical pathology related to
both model misspecification (Case Study B) and confounding
(Case Study C) that was not recognized during Phase I of CSM
development. When a model parameter that represents a process
that played no role in the generation of an alignment (i.e., a mis-
specified process) nevertheless absorbs a significant amount of vari-
ation, its MLE is said to carry PL [26]. This is more likely to occur
when the misspecified process is confounded with one or more
other processes that did play a role in the generation of the data,
and when a substantial proportion of the total variation in the data
is unaccommodated by the null model [26]. PL increases the
probability that a hypothesis test designed to detect the misspeci-
fied process will be statistically significant (as indicated by a large
LLR) and can therefore lead to the incorrect conclusion that the
misspecified process occurred. Critically, Jones et al. [26] showed
that PL was only detected when model contrasts were fitted to data
generated with realistic evolutionary dynamics using the MutSel
model framework.

To illustrate the impact of PL, we consider the case of CSMs
modified to detect the fixation of codons following simultaneous
double and triple (DT) nucleotide mutations. The majority of
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CSMs currently in use assume that codons evolve by a series of
single-nucleotide substitutions, with the probability for DT
changes set to zero. However, recent model-based analyses have
uncovered evidence for DT mutations [32, 68, 83]. Early estimates
of the percentage of fixed mutations that are DT were perhaps
unrealistically high. Kosiol et al. [32], for example, estimated a
value close to 25% in an analysis of over 7000 protein families
from the Pandit database [69]. Alternatively, when estimates were
derived from a more realistic site-wise mutation-selection model,
DT changes comprised less than 1% of all fixed mutations
[64]. More recent studies suggest modest rates of between 1%
and 3% [5, 20, 27, 53]. Whatever the true rate, several authors
have argued that it would be beneficial to introduce a few extra
parameters into a standard CSM to account for DTmutations (e.g.,
[40, 83]). The problemwith this suggestion is that episodic fixation
of DT mutations can produce signatures of heterotachy consistent
with shifting balance.

Recall the comparison of M1, a CSM containing parameters
represented by the vector θ1, and M2, the same model but for the
inclusion of one additional parameter ψ, so that θ2 ¼ (θ1, ψ). The
parameter ψ will reduce the deviance of M2 compared to M1 by
some proportion of the baseline deviance between the simplest
CSM (M0) and the saturated modelPSðθ̂SÞ. We call this the percent
reduction in deviance (PRD) attributed to ψ̂ :

PRDðψ̂ Þ ¼ ΔDðθ̂M1, θ̂M2Þ
ΔDðθ̂M0, θ̂SÞ

ð6Þ

Suppose M1 and M2 were fitted to an alignment and that the

LLR ¼ ΔDðθ̂M1, θ̂M2Þ was found to be statistically significant.
This would lead an analyst to attribute the PRDðψ̂ Þ to real signal
for the process ψ was meant to represent, possibly combined with
some PL and noise. Now, consider the case in which the process
represented by ψ did not actually occur (i.e., it was not a compo-
nent of the true generating process). Under this scenario, PRDðψ̂ Þ
would contain no signal, but would be entirely due to PL plus
noise. When this is known to be the case, we set
PRDðψ̂ Þ ¼ PLðψ̂ Þ. As illustrated below, PLðψ̂ Þ can be large enough
to result in rejection of the null, and therefore lead to a false
conclusion about the data generating process.

We illustrate PL by contrasting the model RaMoSS with a
companion model RaMoSSwDT that accounts for the fixation of
DTmutations via two rate parameters, α (the double mutation rate)
and β (the triple mutation rate) [26]. RaMoSS combines the stan-
dard M-series model M3 with the covarion-like model CLM3
(cf., [12, 18]). Specifically, RaMoSS mixes (with proportion pM3)
one model with two rate-ratio categories ω0 < ω1 that are
constant over the entire tree with a second model (with proportion
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pCLM3 ¼ 1 � pM3) under which sites switch randomly in time
between ω0

0 < ω0
1 at an average rate of δ switches per unit branch

length. Fifty alignments were simulated to mimic a real alignment
of 12 concatenated H-strand mitochondrial DNA sequences (3331
codon sites) from 20 mammalian species as distributed in the
PAML package [73]. The generating model, MutSel-mmtDNA
[26], was based on the mutation-selection framework and pro-
duced alignments with single-nucleotide mutations only. Since
DT mutations are not fixed under MutSel-mmtDNA, the PRD
carried by ðα̂, β̂Þ in each trial can be equated to PL (plus noise).
The resulting distribution of PLðα̂, β̂Þ is shown as a boxplot in
Fig. 4.

Although DT mutations were not fixed when the data was
generated, shifting balance on a static landscape can produce similar
site patterns as a process that includes rare fixation of DTmutations
(site patterns exhibiting both synonymous and nonsynonymous
substitutions; [26]).3 DT and shifting balance are therefore con-
founded. And since shifting balance tends to occur at a substantial
proportion (approximately 20%) of sites when an alignment is
generated under MutSel-mmtDNA, DT mutations were falsely
inferred by the LRT in 48 of 50 trials at the 5% level of significance
(assuming LLR � χ22 for the two extra parameters α and β in
RaMoSSwDT compared to RaMoSS). The PRD ðα̂, β̂Þ when
RaMoSS vs RaMoSSwDT was fitted to the real mmtDNA is

Fig. 4 The box plot depicts the distribution of the phenomenological load
(PL) carried by ðα̂ , β̂ Þ produced by fitting the RaMoSS vs RaMoSSwDT
contrast to 50 alignments generated under MutSel-mmtDNA: the circles
represent outliers of this distribution. The diamond is the percent reduction in
deviance for the same parameters estimated by fitting RaMoSS vs RaMoSSwDT
to the real mtDNA alignment

3 It has previously been noted that the rapid fixation of compensatory mutations following substitution to an
unstable base pair (e.g., AT!GT!GC) can also produce site patterns that suggest fixation of DT mutations [74,
p. 46].
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shown as a diamond in the same plot. Although ðα̂, β̂Þ estimated
from the real mmtDNAwere found to be highly significant (LLR¼
84, p-value << 0.001), the PRDðα̂, β̂Þ was found to be just under
the 95th percentile of PLðα̂, β̂Þ (PRD ¼ 0.060% compared to the
95th percentile of PL ¼ 0.061). The evidence for DT mutations in
the real data is therefore only marginal, and it is reasonable to
suspect that its PRDðα̂, β̂Þ, if not entirely the result of PL, is at
least partially caused by PL.

5 Discussion

CSMs have been subjected to a certain degree of censure, particu-
larly during Phase I of their development [11, 22, 23, 46, 60–63,
85]. We maintain that it is not the model in and of itself, or the
maximum likelihood framework it is based on, that gives rise to
statistical pathologies, but the relationship between model and
data. This principle was illustrated by our analysis of the history of
CSM development, which we divided into two phases. Phase I was
characterized by the formulation of models to account for differ-
ences in selection effects across sites and over time that comprise
the major component of variation in an alignment. Starting with
M0, such models represent large steps toward the fitted saturated
model in Fig. 2, and also provide a better representation of the true
generating process. The main criticism of Phase I models was the
possibility of falsely inferring positive selection in a gene or at an
individual codon site [62, 63, 85]. But, the most compelling
empirical case of false positives was shown to be the result of
inappropriate application of a complex model to a sparse alignment
[63]. Methods for identifying (bootstrap) and dealing with (BEB,
SBA, and PLRT) low information content were illustrated in Case
Study A.

The other big concern that arose during Phase I development
was the possibility of pathologies associated with model misspecifi-
cation. The method used to identify such problems was to fit a
model to alignments generated under a scenario contrived to be
challenging, as illustrated in Case Study B. There, the omnibus test
based on Model A of the YN-BSM was shown to result in an excess
of false positives when fitted to alignments simulated using the
implausible but difficult “XZ” generating scenario (e.g., with com-
plete relaxation of selection pressure at all sites on one branch of the
tree; Table 1). Subsequent modifications to the test reduced the
false positive rate to acceptable values. Hence, Case Study B under-
lines the importance of the model–data relationship. However, it is
not clear whether a model adjusted to suit an unrealistic data-
generating process is necessarily more reliable when fitted to a real
alignment. This difficulty highlights the need to find ways, for the
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purpose of model testing and adjustment, to generate alignments
that mimic real data as closely as possible.

Confidence in the CSM approach, combined with the expo-
nential increase in the volume of genetic data and the growth of
computational power, spurred the formulation CSMs of ever-
increasing complexity during Phase II. The main issue with these
models, which has not been widely appreciated, is confounding.
Two processes are confounded if they can produce the same or
similar patterns in the data. It is not possible to identify such
processes when viewed through the narrow lens of an alignment
(i.e., site patterns) alone. This was illustrated by Case Study C,
where shifting balance on a static landscape was shown to be
confounded with episodic adaptive evolution [7, 25]. Confounding
can lead to what we call phenomenological load, as demonstrated in
Case Study D. In that analysis, the parameters (α, β) were assigned a
specific mechanistic interpretation, the rate at which double and
triple mutations arise. It was shown that (α, β) can absorb variations
in the data caused by shifting balance; hence, the MLEs ðα̂, β̂Þ
resulted in a significant reduction in deviance in 48/50 trials
(Fig. 4), and therefore improved the fit of the model to the data.
However, the absence of DT mutations in the generating process
invalidated the intended interpretation of ðα̂, β̂Þ. This result under-
lines that a better fit does not imply a better mechanistic represen-
tation of the true generating process.

It is natural to assume that a better mechanistic representation
of the true generating process can be achieved by adding para-
meters to our models to account for more of the processes believed
to occur. The problem with this assumption is that the metric of
model improvement under ML (reduction in deviance) is indepen-
dent of mechanism. A parameter assigned a specific mechanistic
interpretation is consequently vulnerable to confounding with
other processes that can produce the same distribution of site
patterns. As CSMs become more complex, it seems likely that the
opportunity for confounding will only increase. It would therefore
be desirable to assess each new model parameter for this possibility
using something like the method shown in Fig. 4 whenever possi-
ble. The idea is to generate alignments using MutSel or some other
plausible generating process in such a way as to mimic the real data
as closely as possible, but with the new parameter set to its null
value. To provide a second example, consider the test for changes in
selection intensity in one clade compared to the remainder of the
tree known as RELAX [67]. Under this model, it is assumed that
each site evolved under a rate ratio randomly drawn from ωR ¼ {
ω1, . . ., ωk} on a set of prespecified reference branches, and from a
modified set of rate ratios ωT ¼ fωm

1 , . . . ,ω
m
k g on test branches,

wherem is an exponent. A value 0 < m < 1moves the rate ratios in
ωT closer to one compared to their corresponding values in ωR,
consistent with relaxation of selection pressure at all sites on the test

422 Christopher T. Jones et al.



branches. Relaxation is indicated when the contrast of the null
hypothesis that m ¼ 1 versus the alternative that m < 1 is statisti-
cally significant. The distribution of PL(m̂) can be estimated from
alignments generated with m ¼ 1. The PRD(m̂ ) estimated from
the real data can then be compared to this to assess the impact of PL
(cf. Fig. 4). This approach is predicated on the existence of a
generating model that could have plausibly produced the site pat-
terns in the real data. Jones et al. [26] present a variety of methods
for assessing the realism of a simulated alignment, although further
development of such methods is warranted. Software based on
MutSel is currently available for generating data that mimic large
alignments of 100-plus taxa (Pyvolve; [56]). Other methods have
been developed to mimic smaller alignments of certain types of
genes (e.g., MutSel-mmtDNA; [25]). It is only by the use of
these or other realistic simulation methods that the relationship
between a given model and an alignment can be properly
understood.
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Chapter 14

Evolution of Viral Genomes: Interplay Between Selection,
Recombination, and Other Forces

Stephanie J. Spielman, Steven Weaver, Stephen D. Shank,
Brittany Rife Magalis, Michael Li, and Sergei L. Kosakovsky Pond

Abstract

Natural selection is a fundamental force shaping organismal evolution, as it both maintains function and
enables adaptation and innovation. Viruses, with their typically short and largely coding genomes, experi-
ence strong and diverse selective forces, sometimes acting on timescales that can be directly measured.
These selection pressures emerge from an antagonistic interplay between rapidly changing fitness require-
ments (immune and antiviral responses from hosts, transmission between hosts, or colonization of new host
species) and functional imperatives (the ability to infect hosts or host cells and replicate within hosts).
Indeed, computational methods to quantify these evolutionary forces using molecular sequence data were
initially, dating back to the 1980s, applied to the study of viral pathogens. This preference largely emerged
because the strong selective forces are easiest to detect in viruses, and, of course, viruses have clear
biomedical relevance. Recent commoditization of affordable high-throughput sequencing has made it
possible to generate truly massive genomic data sets, on which powerful and accurate methods can yield
a very detailed depiction of when, where, and (sometimes) how viral pathogens respond to various selective
forces.
Here, we present recent statistical developments and state-of-the-art methods to identify and characterize

these selection pressures from protein-coding sequence alignments and phylogenies. Methods described
here can reveal critical information about various evolutionary regimes, including whole-gene selection,
lineage-specific selection, and site-specific selection acting upon viral genomes, while accounting for
confounding biological processes, such as recombination and variation in mutation rates.

Key words Virus evolution, Molecular evolution, Recombination, Positive selection, Relaxed selec-
tion, Phylogenetics, Codon models

1 Introduction

Natural selection is a powerful evolutionary force that shapes gen-
omes of all living organisms. A variety of computational approaches
have been developed to measure the strength and direction of
selection directly from genomic data. Given an alignment of
homologous gene sequences, the strength of natural selection act-
ing on a given gene or genes can be measured in a phylogenetic
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context using codon models [1, 3]. A typical analysis on viral gen-
omes, for example, might be performed for a single gene repre-
sented by isolates from different individuals (e.g., sequences from
many HIV-1-infected hosts) or from different hosts (e.g., primate
lentiviruses).

In the context of codon models, selection is typically measured
using dN/dS (also referred to as ω, or Ka/Ks), which represents
the ratio of the non-synonymous evolutionary rate (dN) to the
synonymous evolutionary rate (dS). The synonymous evolutionary
rate is used to provide a baseline rate of neutral evolution because
the average selective effect of a synonymous substitution is assumed
to be negligible compared to the effect of a non-synonymous
substitution. 1 The selective regime can be deduced by establishing,
with a degree of statistical confidence, that dN/dS differs from
unity, i.e., the neutral expectation where dN/dS ¼ 1. Diversifying,
balancing, or (sometimes) directional selection yields dN/dS > 1,
whereas purifying selection effects dN/dS < 1. Comparative meth-
ods for selection detection estimate dN/dS, or dS and dN sepa-
rately, at sites and/or branches and perform a statistical test to
establish on which side of the neutral expectation the inferences
fall. As with any statistical procedure applied to finite data, each
inference can be a false positive or a false negative, although meth-
ods typically take care to control the rates of both.

While the question “Is this gene under selection?” is an obvious
one, the nearly universally applicable answer to this question is
“yes.’. That is because a functional gene is (or has been) subject
to some form of selection, e.g., negative selection to maintain
essential features. On the other extreme is the question that has
an immediate biological significance: “Is changing a leucine to an
arginine at position 209 in gene X along a specific branch in the
phylogeny adaptive?”. Without additional information, such as a
carefully experimentally measured fitness impact of introducing
said substitution, current comparative sequence approaches cannot
answer this question. Indeed, such a scenario presents a sample size
of one, which cannot be statistically meaningful.

In this chapter, we present a collection of statistical methods,
each of which is designed to carefully address a biological question
somewhere on the spectrum between the two extremes: sufficiently
specific to be interesting, yet general enough to be answerable
based only on the evolutionary history of homologous sequences.
We will not discuss the technical details of codon substitution
methods here (for details, please see one of the excellent available
reviews Anisimova and Kosiol [1], Delport et al. [3], Yang [44], or
the primary methods papers including Goldman and Yang [8],

1We note that there are a variety of well-documented situations where synonymous substitutions can have strong
effects on fitness [11, 30].
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Kosakovsky Pond and Muse [13], Muse and Gaut [27], Nielsen
and Yang [29]). Instead, we present each method operationally
(“How and when does one use this method?”), by addressing the
following points:

1. What biological question is the method designed to answer?

2. What are the recommended applications?

3. What is the statistical procedure and statistical test used to
establish significance for this method?

4. How should one interpret positive and negative test results?

5. Rules of thumb for when this method is likely to work well, and
when it is not.

We conclude by discussing how inferences can accommodate
potentially confounding biological processes, including intragenic
recombination and mutation rate variation. It is critical to model
these processes, both in their own right and because ignoring their
effects could bias selection inference tools and yield misleading
results.

2 Materials

The data used throughout the following tutorials and exercises
are available at https://github.com/veg/evogenomics_hyphy. A
“README” file in the top directory of this repository provides
a detailed description of all contents. Importantly, all datasets
used here reside in the datasets directory. Please refer to
http://www.hyphy.org for instructions on downloading and instal-
ling HyPhy to your system. All exercises have been validated using
version 2.3.4. Throughout, we will use the hyphymp executable
(MP ¼ multiprocessor). For all analyses, you will need the following
information:

(a) the full path to all files being analyzed (alignment and tree),
e.g., /home/user/data/alignment.fna,

(b) the genetic code (in almost all cases, universal), and

(c) level of statistical significance; suggestions are given below.

All methods will produce a final file of results in JSON (Java-
Script Object Notation) format, a highly extensible format that is
simple, relatively compact, and both machine- and human-
readable. JSON output files can be visually and interactively exam-
ined within our new web application, hyphy-vision, accessible at
vision.hyphy.org.

All methods employ the general time reversible (GTR) nucleo-
tide model for initial branch length optimization and correcting
nucleotide substitution biases, followed by fitting a Muse–Gaut
model (with general time reversible nucleotide biases) to obtain
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preliminary dN/dS estimates (see Kosakovsky Pond and Frost [12]
for a detailed model description) for selection inference. Codon
frequencies are estimated using the CF3x4 procedure [15]. In our
view, the historical rationale for using simpler evolutionary models
(e.g., K80, F81, or HKY85), namely, computational cost, to fit
nucleotide data is no longer relevant.

Finally, we recommend different P-value thresholds depending
on the given analysis method. As site-level methods (FEL, SLAC,
and MEME) tend to be conservative on biological data, we recom-
mend significance as P � 0.1 (or posterior probability � 0.9 for
FUBAR). By contrast, we recommend significance as P � 0.05 for
alignment-wide methods—BUSTED, RELAX, and aBSREL.

3 Methods

3.1 How to Run a

Selection Analysis

There is a uniform workflow to run any of the described methods,
either locally (on one’s own computer and/or a high-performance
computing environment) in HyPhy or using the Datamonkey
web-service, available at www.datamonkey.org. The version of
HyPhy that supports all of the analyses is a command-line program,
i.e., it must be run from a terminal prompt (similar to most other
bioinformatics packages) in Linux or Mac OS X. It is also possible
to run the program in Windows, with an appropriate POSIX emu-
lation environment (e.g., MinGW) installed.

To execute a selection analysis locally, the following steps will
need to be taken.

1. Prepare your coding sequence alignment. In general, any
duplicate sequences should be removed before analysis. Most
importantly, it is imperative that the sequence alignment be in
the correct reading frame, meaning that alignment must be
performed with codon structure in mind. A common approach
to ensure this criterion is met is to generate the alignment using
translated amino-acid data and then back-translate to the orig-
inal nucleotide sequences.

2. Prepare a phylogenetic tree from the multiple sequence align-
ment. Note that certain analyses may require a labeled phylo-
genetic tree, as indicated within each subsequent tutorial. Keep
in mind that for most selection analyses, a tree topology is a
nuisance parameter. Hence, while it is advisable to use good
practices when inferring trees, minor errors in tree inference
tend to have minor effects on gene- and site-level inference. A
notable exception occurs when lineage-specific selection is
investigated; in this case, ensuring high-quality tree topologies
is important.

430 Stephanie J. Spielman et al.

http://www.datamonkey.org


3. An essential and strongly recommended step before analyzing
data for selection is to screen sequences for recombination. If
recombinant sequences are naively analyzed without an appro-
priate phylogenetic correction, inference results are likely to be
biased (Posada et al. [33]) (see the section on Screening
sequences for recombination later in this chapter).

4. Prepare your data (alignment and phylogeny) for input to
HyPhy. There are three ways to provide a dataset for HyPhy
analysis, each of which will trigger a different analysis prompt at
runtime:

l Two separate files containing the alignment and phylogeny,
respectively. In this circumstance, HyPhy issues two succes-
sive prompts: the first for the file containing the alignment,
and the second for the file containing the tree.

l A single file containing an alignment in one of the formats
supported by HyPhy (FASTA,MEGA, and PHYLIP), with a
Newick-formatted phylogeny included at the bottom of this
file. In this circumstance, HyPhy issues two successive
prompts: the first for the file containing the alignment, and
the second asking whether to accept the tree found in the file
(provide the affirmative response, e.g., “y,” to accept it).

l A NEXUS file containing both the alignment and phylog-
eny. In this circumstance, HyPhy automatically accepts the
provided phylogeny and therefore only issues a single
prompt for the file containing the alignment. This is also
the format that can be used to specify partitioned data,
which is necessary to account for recombination.

5. Execute the appropriate method in HyPhy, selecting options
suitable for the specific analysis.

Each method will provide live on-the-screen progress updates
and, when finished, a text summary of the analysis. The output is
generated in Markdown,2 which can either be read directly as text
or formatted using one of many Markdown viewers.

When an analysis is finished, HyPhy will write a JSON file with
numerous details about the analysis to disk. By convention, this file
will be placed in the same directory as the input alignment file, with
the added <method>.json extension, e.g., flu_ha.nex.
BUSTED.json for an input alignment named flu_ha.nex ana-
lyzed by the method BUSTED. All results contained in this JSON
file can be explored visually within a web browser using a web
application from the hyphy-vision suite of tools, accessible at
vision.hyphy.org. Since JSON files can be easily accessed by

2With the exception of GARD.
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scripting and data-analysis languages, these are also well-suited for
incorporation into pipelines.3

When run through www.datamonkey.org, this entire workflow
is automated: one simply uploads an alignment, selects options for
the analysis, and waits for the job to finish. Once the job has
completed, the results will be displayed in an interactive application
within the web browser. Note that Datamonkey will automatically
remove duplicate sequences before executing any analysis.

3.2 BUSTED

What Biological Question Is the Method Designed to
Answer?:
Is there evidence that some sites in the alignment have been
subject to positive diversifying selection, either pervasive
(throughout the evolutionary tree) or episodic (only on some
lineages)? In other words, BUSTED asks whether a given gene
has been subject to positive, diversifying selection at any site, at
any time [26]. If a priori information about lineages of interest
is available (e.g., due to migration, change in the environment,
etc.), then BUSTED can be restricted to test for selection only on
a subset of tree lineages, potentially boosting power.

Recommended Applications

1. Annotating a collection of alignments with a binary attribute:
Has this alignment been subject to positive diversifying selec-
tion (yes/no)? [34].

2. Testing small- or low-divergence alignments (i.e., �� 10
sequences) for evidence of positive diversifying selection,
where neither branch- nor site-level methods have sufficient
power to detect weak, but present, signal.

Statistical Test Procedure:
Each (branch, site) pair evolves with ω1 � ω2 � 1, or ω3 � 1,
with the ratio chosen independently of other (branch, site) pairs
with probability p1, p2, p3 (normalized to sum to 1). The three-
rate ω distribution is estimated jointly from the entire align-
ment, i.e., rates are shared by all (branch,site) combinations.
Therefore, BUSTED is technically a “branch-site” model [16],
although it is not intended to detect individual sites which drive
signal of selection.

3Note that the method GARD does not provide markdown output or a JSON, and output is in a different format.
This may be updated in a future HyPhy release.
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The test for episodic diversifying selection is performed by
comparing the full model versus the nested null model, where ω3

is constrained to 1. Statistical significance is obtained by the likeli-
hood ratio test, assuming the χ22 asymptotic distribution of the
likelihood ratio statistic under the null model.

When only some of the branches are chosen for testing, and the
remainder are designated as the background, two independent
three-rate ω distributions are fitted: one for the test branches, and
one for the background branches. Testing for selection is carried
out by constraining the distribution on the test branches as
described above.

Example Analysis:
To begin, we will perform a BUSTED analysis using a dataset of
primate-specific KSR2, kinase suppressor of RAS2, genes from
Enard et al. [5]. This gene has been implicated as a so-called
‘virus-interacting protein,’ and previous work has suggested it
has experienced adaptation in mammalian lineages due to
selective pressures exerted by viruses [5]. We will test all lineages
for positive selection (rather than specifying a subset of “test”
branches), thereby asking the question: “Has KSR2 been subject
to diversifying selection at some time during evolution in
primates?”

To run BUSTED, open a terminal session and enter HYPHYMP
from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 5 to reach the BUSTED analysis
menu, and supply values for the following prompts:

1. Choose genetic code. This option tells HyPhy which transla-
tion table to use for codon-level analyses. Enter 1 to use the
Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/ksr2.fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)? Enter “y” to use the tree.

4. Choose the set of branches to test for selection. Enter 1 to
test all branches for selection.

BUSTED will now run to completion, printing status indica-
tors to screen while it runs. For an example of how this output will
look when rendered into HTML (or similarly, PDF), see this link:
http://bit.ly/2vsRZrh.
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Listing 1 Partial BUSTED screen output:

### Branches to test for selection in the BUSTED analysis

* Selected 15 branches to test in the BUSTED analysis: ‘HUM, PAN, Node6, GOR,

Node5, PON, Node4, GIB, Node3, MAC, BAB, Node12, Node2, MAR, BUS‘

### Obtaining branch lengths and nucleotide substitution biases under the

nucleotide GTR model

* Log ( L ) = -5768.01, AIC - c = 11582.06 (23 estimated parameters)

### Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L ) = -5342.48, AIC - c = 10745.17 (30 estimated parameters)

* non - synonymous / synonymous rate ratio for *test* = 0.0342

### Improving branch lengths , nucleotide substitution biases, and global dN/dS

ratios under a full codon model

* Log ( L ) = -5333.46, AIC - c = 10727.13 (30 estimated parameters)

* non - synonymous / synonymous rate ratio for *test* = 0.0307

### Performing the full ( dN / dS > 1 allowed) branch-site model fit

* Log ( L ) = -5319.67, AIC - c = 10707.62 (34 estimated parameters)

* For * test * branches , the following rate distribution for branch-site

combinations was inferred

| Selection mode | dN/dS |Proportion, %| Notes |

|---------------------------------- |--------------|-------------|----------------–|

| Negative selection | 0.024 | 99.151 | |

| Negative selection | 0.085 | 0.812 | |

| Diversifying selection | 118.143 | 0.037 | |

### Performing the constrained (dN/dS > 1 not allowed) model fit

* Log ( L ) = -5326.18, AIC - c = 10718.63 (33 estimated parameters)

* For * test * branches under the null (no dN/dS > 1 model), the following

rate distribution for branch-site combinations was inferred

| Selection mode | dN/dS |Proportion, %| Notes |

|-----------------------------|--------------|-------------|---------------------––|

| Negative selection | 0.000 | 10.598 | |

| Negative selection | 0.000 | 86.086 | Collapsed rate class |

| Neutral evolution | 1.000 | 3.316 | |

----

## Branch - site unrestricted statistical test of episodic diversification

[BUSTED]

Likelihood ratio test for episodic diversifying positive selection, **p =

0.0015**.

434 Stephanie J. Spielman et al.



Interpreting Results:
The results printed to the terminal indicate a highly significant
result (P ¼ 0.0015) in the test for whole-gene selection. Analysis
with BUSTED therefore provides robust evidence that KSR2
experienced episodic positive selection in the primates. Because
we performed the original BUSTED analysis on the entire tree
(i.e., without a specified set of test branches), we do not know
from this result along which lineages KSR2 was subject to posi-
tive selection. We can conclude only that a non-zero proportion of
sites on some lineage(s) in the primate tree experienced diversify-
ing selection pressure.

The output additionally provided information about the spe-
cific BUSTED model fits to the test data, including the inferred ω
distributions and corresponding weights. The BUSTED alternative
model (shown under the output header Performing the full (
dN/dS >1 allowed) branch-site model fit) found that a very
small proportion (only�0.037%) of sites evolved under a very large
ω of over 100 (118.143 ). Importantly, neither of these estimates is
precise because they were derived from a small subset of the data. As
such, all the BUSTED tests establish the fact that the proportion of
sites along test lineages (here, the entire phylogeny) with ω > 1 is
non-zero. For example, if BUSTED had inferred a rate category of
ω ¼ 10 on a different gene, it would not be correct to claim that
this gene evolves under weaker selection than does KSR2. A formal
statistical test would have to be carried out to establish such a claim.

Conversely, had the result not been statistically significant, we
would not be able to reject the null hypothesis that no positive
selection had occurred in KSR2. Importantly, however, a negative
finding would not unequivocally rule out the presence of positive
selection. This outcome could be due to a lack of statistical power
wherein the provided data did not contain a sufficiently strong
selection.

BUSTED’s fixed a priori assumption of model complexity
(a three-rate ω distribution) may lead to over-parameterized
(or under-parameterized) models. For example, in the constrained
model for KSR2, two of the three rate classes have the same value of
ω(0.0), implying that one of them is unnecessary. HyPhy will report
this to the screen as a diagnostic message Collapsed rate
class, but there is no corrective action that needs to be taken.
These messages simply point to low-complexity data.

We will additionally take this opportunity to showcase the
visual power of our accompanying web browser, HyPhy-Vision.
Figure 1 displays the rendering of the output ksr2.fna.
BUSTED.json as it appears in HyPhy-Vision. On this site, users
can interactively view and explore inference results, view figures and
charts, and perform other tasks.
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Rules of Thumb for BUSTED Use

1. Best applied to small- or medium-sized datasets (e.g., up to
100 sequences). Larger datasets will take longer to run andmay
not be well described by a fixed complexity model.

2. If one suspects that only a small subset of lineages is subject to
selection, e.g., because the phenotype, environment, or fitness
changed along those branches, designating those a priori as the
test set will significantly boost power.

3. In simulation studies, BUSTED performs best when a suffi-
cient proportion (5–10%) of branch site combinations is sub-
ject to positive diversifying selection, and the effect size (ω
value) is reasonably large (e.g., � 3).

Fig. 1 Example analysis visualization in HyPhy-Vision of BUSTED results. (a) The summary section provides a
brief overview of the analysis performed, including information about the inputted data (which can be
downloaded via the linked file name) and primary results from the hypothesis test performed. (b) The
model statistics section provides information about models fitted to the data. In BUSTED, this section
additionally includes an interactive display of site evidence ratios, which can be interpreted as a descriptive
measure for which sites may have contributed to the selection signal. (c) The tree section displays the
phylogeny as fitted under all inferred models and data partitions, if specified. Tree views can be toggled under
the Options drop-down menu. (d) Graphical views of each model’s inferred ω distribution can be viewed when
clicking on a given row’s plot icon in the Model fits table seen in (b)
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3.3 RELAX

What Biological Question Is the Method Designed to
Answer?:
Is there evidence that the strength of selection has been relaxed
(or conversely intensified) on a specified group of lineages (Test)
relative to a set of reference lineages (Reference)? We note that
the RELAX framework can perform this specific hypothesis test
as well as fit a suite of descriptive models which address, for
example, overall rate differences between test and reference
branches or lineage-specific inferences of selection relaxation.
We focus our attention here on RELAX’s hypothesis testing
abilities. More information about descriptive analyses is avail-
able on hyphy.org as well as in RELAX’s primary publication
[43]. Importantly, RELAX is not designed to detect diversify-
ing selection specifically.

Recommended Applications

1. Testing for a systematic shift (relaxation/intensification) in
the distribution of selection pressure associated with major
biological transitions such as hosting switching in viruses [6]
or lifestyle evolution in bacteria (i.e., transition from free-living
to endosymbiotic lifestyle [43]).

2. Comparing selective regimes between two subsets of
branches in the tree, e.g., to investigate selective differences
among transmission routes in HIV-1 [42].

Statistical Test Procedure:
Given a tree with at least two sets of branches, one of which is
designated as Test, and the other as Reference, the core version
of RELAX compares two nested models, which follow the same
general framework as BUSTED. Each (branch, site) combina-
tion is drawn independently from a 3-rate ω distribution. The
evolutionary rates for Test branches are functions of those for
Reference branches. Specifically, ωTest ¼ ωK

Reference, where K is
the relaxation or intensification parameter. The alternative
model infers K from the data, and the null model sets K ¼ 1.
Statistical significance is obtained by the likelihood ratio test,
assuming the χ21 asymptotic distribution under the null model. A
significant result of K > 1 indicates that selection strength has
been intensified along the test branches, and a significant result
of K < 1 indicates that selection strength has been relaxed along
the test branches. In other words, for K < 1 the Test ω values
shrink toward neutrality (ω ¼ 1) relative to Reference, and for
K > 1 they move away from neutrality.
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If some branches in the tree belong to neither the Test or the
Reference set, they are allocated to a group with its own (Unclassi-
fied) distribution of ω, which is uncoupled from the testing
procedure.

Example Analysis:
We will perform a RELAX analysis using a dataset of Influ-
enza A PB2 subunit sequences from Tamuri et al. [41]. The
PB2 subunit, which is part of influenza’s RNA polymerase
complex, has emerged as a critical determinant of influenza
infectivity and, as a consequence, host range [9, 18]. The dataset
we examine here contains sequences from both avian host and
human host strains.4 Previous studies have shown that this host
switch is correlated with significant shifts in selection pressures
and preferred amino acids at key sites in PB2 [36, 40, 41]. We
now re-analyze this dataset using RELAX to ask a different but
related question: “Was the shift from avian to human hosts
associated with a relaxation of selection pressures in Influenza
A PB2?”

RELAX requires an a priori specification of test and reference
lineages, although not all lineages in a tree need to be classified. As
such, youmust label your test (and reference, if desired) branches in
the input phylogeny. We provide an online widget to assist with tree
labeling at http://phylotree.hyphy.org. The dataset we have
provided for this analysis already has a labeled phylogeny, with the
human host lineages labeled as “test.”

To run RELAX, open a terminal session and enter HYPHYMP
from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 7 to reach the RELAX analysis
menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal
genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/pb2.fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)? Enter “y” to use the tree.

4. Choose the set of branches to test for selection. This option
asks you to specify the label inside your tree used to specify the
test lineages. You can either select all unlabeled branches, or
HyPhy will show all labels it found in the tree you provided.

4The original dataset in Tamuri et al. [41] contained 401 sequences. For the purposes of this chapter, we analyze a
subset of this alignment with only 35 sequences (20 from avian and 15 from human hosts), thereby achieving a
tractable runtime on a personal machine.
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Enter 1 to select the branches labeled as “test” as the test set in
RELAX analysis. Note that when multiple labels are present in
your tree, HyPhy will issue an additional prompt to choose the
set of Reference branches, in the event that some branches
should remain Unclassified.

5. Analysis type. This option asks you to specify the scope of
RELAX analysis. Selecting “Minimal” will run the RELAX
hypothesis test, and selecting “All” will run hypothesis testing
and fit two additional descriptive models, described earlier.
Here, we will perform only hypothesis testing to determine
whether the data shows evidence for a relaxation or intensifica-
tion of selection intensity between the test and reference
lineages. Enter the option 2 to run the “Minimal” analysis.

RELAX will now run to completion, printing status indicators
to screen while it runs.

Listing 2 Partial RELAX screen output:

### Obtaining branch lengths and nucleotide substitution biases under the

nucleotide GTR model

* Log ( L ) = -16755.26, AIC - c = 33660.66 (75 estimated parameters)

### Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L ) = -14410.97, AIC - c = 28988.46 (83 estimated parameters)

* non - synonymous / synonymous rate ratio for *Reference* = 0.0401

* non - synonymous / synonymous rate ratio for *Test* = 0.0604

### Improving branch lengths , nucleotide substitution biases, and global dN/dS

ratios under a full codon model

* Log ( L ) = -14354.67, AIC - c = 28875.86 (83 estimated parameters)

* non - synonymous / synonymous rate ratio for *Reference* = 0.0358

* non - synonymous / synonymous rate ratio for *Test* = 0.0609

### Fitting the alternative model to test K != 1

* Log ( L ) = -14337.22, AIC - c = 28849.02 (87 estimated parameters)

* Relaxation / intensification parameter (K) = 0.73

* The following rate distribution was inferred for **test** branches

| Selection mode | dN/dS |Proportion, %| Notes |

|-------------------------------– |--------------|-------------|------------------–|

| Negative selection | 0.031 | 94.752 | |

| Negative selection | 0.086 | 2.951 | |

| Diversifying selection | 1.406 | 2.297 | |
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* The following rate distribution was inferred for **reference** branches

| Selection mode | dN/dS |Proportion, %| Notes |

|-------------------------------– |--------------|-------------|------------------–|

| Negative selection | 0.009 | 94.752 | |

| Negative selection | 0.035 | 2.951 | |

| Diversifying selection | 1.591 | 2.297 | |

### Fitting the null ( K := 1) model

* Log ( L ) = -14342.33, AIC - c = 28857.22 (86 estimated parameters)

* The following rate distribution for test/reference branches was inferred

| Selection mode | dN/dS |Proportion, %| Notes |

|-------------------------------– |--------------|-------------|------------------–|

| Negative selection | 0.010 | 94.149 | |

| Negative selection | 0.021 | 3.391 | |

| Diversifying selection | 1.735 | 2.460 | |

----

## Test for relaxation ( or intensification) of selection [RELAX]

Likelihood ratio test ** p = 0.0014**.

> Evidence for * relaxation of selection* among **test** branches _relative_ to

the **reference** branches at P<=0.05

----

Interpreting Results:
On this data, RELAX has inferred a relaxation parameter
K ¼ 0.73 with a highly significant P ¼ 0.0014. Therefore,
there is evidence to reject the null hypothesis that selection pres-
sure has not been shifted in the test (here, human host) lineages.
We instead have strong evidence that selection has been relaxed
(because the inferred K < 1) in the human host lineages. In
other words, selection in the test branches has generally moved
towards neutrality (ω ¼ 1) compared to the reference branches.
This finding is consistent with the evolutionary changes that
typically occur during a virus host-switching event, wherein
selection stringency will be reduced to facilitate viral
adaptation.

Keep in mind that RELAX defines relaxation (or intensifica-
tion) in a fairly restrictive fashion. In other words, all selective
regimes (i.e., all ω rates), both negative and positive, must weaken
or strengthen. Therefore, certain relaxation scenarios, for example,
when only positive selection is relaxed but negative selection is
maintained, may result in a non-significant RELAX test even
though selection has changed.
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Rules of Thumb for RELAX Use

1. Always provide a labeled phylogeny indicating which branches
to include in the “test” lineages. You can additionally label
“reference” lineages if you wish to keep some branches as
unclassified. It is convenient to use the phylotree.js online
widget at http://phylotree.hyphy.org/ to label branches
before analysis.

3.4 aBSREL It is often of interest to determine whether a specific lineage or
lineage(s) have been subject to selection. Such analyses have histor-
ically been performed using the so-called branch or branch-site
class of models, which allow evolutionary rates to vary across
branches or across sites and branches [16, 45, 46]. Early versions
of branch-site models allowed users to compare selection pressure
on a pre-selected branch sets of “foreground” branches to a
pre-selected set of “background” branches, on which positive selec-
tion was disallowed [45, 46]. (Note that this approach is similar to
how BUSTED performs gene-wide selection inference [26].) Later
efforts demonstrated that disallowing positive selection on back-
ground branches could lead to highly elevated false positive rates
and advocated a strategy wherein any branch, regardless of data
partition, could evolve at any rate [16]. This strategy has been
described as the BS-REL model in HyPhy [16]. However, in
BS-REL, each branch was constrained to have three rate categories,
an assumption with little justification.

Since then, we have developed a greatly improved branch-site
model called aBSREL (“adaptive branch-site random effects likeli-
hood”). Rather than assuming that each branch should be fit with
three rate classes, aBSREL infers, using small-sample Akaike Infor-
mation Criterion correction (AICc), the optimal number of rate
categories per branch. In this manner, computational complexity
and the number of parameters are greatly reduced, leading to a
tractable runtime for larger datasets that could not otherwise be
studied with earlier branch-site models.

What Biological Question Is the Method Designed to
Answer?:
Like classical branch-site models, aBSREL asks whether some
proportion of sites is subject to positive selection along specific
branches or lineages of a phylogeny.

Recommended Applications

1. Exploratory testing for evidence of lineage-specific positive
diversifying selection in small- to medium-sized alignments
(up to 100 sequences).
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2. Targeted testing of branches selected a priori for positive
diversifying selection. This includes alignments with prohibi-
tive runtimes under older branch-site models (up to �1000
sequences) [37].

Statistical Test Procedure:
aBSREL uses the information-theoretic criterion AICc to auto-
matically determine the complexity of the evolutionary process at
every branch [37]. As a heuristic optimization, aBSREL will
always examine branches in order from longest to shortest,
because longer branches tend to be the ones requiring more
complex models. In this adaptive model, one rate class is allowed
to assume any value of ω > 1, whereas for any other inferred
rate class is constrained as ω � 1. In the null model, all ω
categories are constrained as ω � 1. For any branch inferred
to have sufficient rate variation (i.e., more than one rate cate-
gory) where one rate category is described by ω > 1, aBSREL
will proceed to fit a null model to this branch. In other words, if
the maximum-inferred ω � 1 on a branch, the null model will
have the same exact fit as the alternative model, and the result-
ing P-value is 1. The test for lineage-specific diversifying selec-
tion is performed by comparing the full model versus the nested
null model, and statistical significance is obtained by the likeli-
hood ratio test. Significance is evaluated using a mixture of

50%χ20, 20%χ21, and 30%χ22 distributions (proportions deter-
mined via simulations Smith et al. [37]). Finally, aBSREL will
correct all P-values obtained from individual tests for multiple
comparisons using the Bonferroni–Holm procedure to control
family-wise false-positive rates (i.e., the probability of generating
one or more false positives, when all null hypotheses are correct).

One can either select a specific set of branches in order to test a
specific a priori hypothesis or one can perform an exploratory
analysis across the entire phylogeny by testing all branches for
selection. The former approach may have substantially more
power to detect selection, especially if only a few branches in a
large tree are chosen, due to the decreased volume of multiple
testing. However, the approach does carry the risk of failing to
identify branches subject to positive selection that have not been
included in the test set.
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Example Analysis:
Here, we will demonstrate aBSREL use and interpretation
using a dataset of HIV-1 env sequences collected from an epide-
miologically linked donor–recipient transmission pair [7]. This
dataset can be found in the provided file hiv1_transmission.

fna.

To run aBSREL, open a terminal session and enter HYPHYMP
from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 6 to reach the aBSREL analysis
menu, and supply values for the following prompts:

1. Choose genetic code. This option tells HyPhy which transla-
tion table to use for codon-level analyses. Enter 1 to use the
Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/hiv1_transmission.
fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)? Enter “y” to use the included tree.

4. Choose the set of branches to test for selection. You can now
select on which branches aBSREL should conduct a formal
hypothesis test for positive selection. Enter 1 to test all
branches for selection.

aBSREL will now run to completion, printing status indicators
to screen while it runs (some output abbreviated).

Listing 3 Partial aBSREL screen output:

### Obtaining branch lengths and nucleotide substitution biases under the

nucleotide GTR model

* Log ( L ) = -5524.50, AIC - c = 11153.08 (52 estimated parameters)

### Fitting the baseline model with a single dN/dS class per branch, and no

site-to-site variation.

* Log ( L ) = -5402.40, AIC - c = 11009.72 (102 estimated parameters)

* Branch - level non - synonymous / synonymous rate ratio distribution has median

0.66, and 95% of the weight in 0.00--5.41

### Determining the optimal number of rate classes per branch using a step up

procedure
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| Branch |Length|Rates| Max. dN/dS | Log(L) | AIC-c |Best AIC-c so far|

|-----------|-------|-----|--------------–– |------------|--------- |---------------–|

| 0564 _22 | 0.01 | 2 | 1.96 (52.27%) | -5402.41 | 11013.78 | 11009.72 |

| 0564 _7 | 0.01 | 2 | 0.74 ( 5.19%) | -5402.40 | 11013.76 | 11009.72 |

| Separator | 0.01 | 2 | 197.32 ( 3.95%) | -5397.53 | 11004.02 | 11004.02 |

| Separator | 0.01 | 3 | 180.22 ( 4.08%) | -5397.53 | 11008.06 | 11004.02 |

| 0564 _4 | 0.01 | 2 | 29.79 ( 2.15%) | -5394.37 | 11001.74 | 11001.74 |

| 0564 _4 | 0.01 | 3 | 29.78 ( 2.15%) | -5394.37 | 11005.78 | 11001.74 |

| 0564 _3 | 0.01 | 2 | 126.86 ( 3.14%) | -5388.59 | 10994.22 | 10994.22 |

| 0564 _3 | 0.01 | 3 | 135.96 ( 3.05%) | -5388.59 | 10998.25 | 10994.22 |

| 0564 _9 | 0.01 | 2 | 10.01 ( 8.61%) | -5388.37 | 10997.82 | 10994.22 |

...

| Node53 | 0.00 | 2 | 1.00 (100.00%) | -5371.63 | 10976.46 | 10971.76 |

| 0557 _6 | 0.00 | 2 | 27.66 (100.00%) | -5371.32 | 10975.83 | 10971.76 |

| 0557 _21 | 0.00 | 2 | 0.25 ( 1.96%) | -5371.30 | 10975.80 | 10971.76 |

| 0557 _7 | 0.00 | 2 | 0.25 ( 1.96%) | -5371.30 | 10975.80 | 10971.76 |

### Rate class analyses summary

* 38 branches with **1** rate classes

* 6 branches with **2** rate classes

### Improving parameter estimates of the adaptive rate class model

* Log ( L ) = -5370.66, AIC - c = 10970.49 (114 estimated parameters)

### Testing selected branches for selection

| Branch | Rates | Max. dN/dS | Test LRT | Uncorrected p-value |

|-----------------–|--------- |--------------------–|----------|--------------------|

| 0564 _22 | 1 | 1.22 (100.00%) | 0.11 | 0.43015 |

| 0564 _7 | 1 | 0.61 (100.00%) | 0.00 | 1.00000 |

| Separator | 2 | 197.72 ( 3.95%) | 14.13 | 0.00029 |

| 0564 _4 | 2 | 28.89 ( 2.15%) | 4.81 | 0.03281 |

| 0564 _3 | 2 | 127.66 ( 3.14%) | 14.06 | 0.00030 |

| 0564 _9 | 1 | 0.72 (100.00%) | 0.00 | 1.00000 |

| 0564 _1 | 1 | 1.07 (100.00%) | 0.01 | 0.48208 |

...

| 0557 _21 | 1 | 1.00 (100.00%) | 0.00 | 1.00000 |

| 0557 _7 | 1 | 1.00 (100.00%) | 0.00 | 1.00000 |

----

### Adaptive branch site random effects likelihood test

Likelihood ratio test for episodic diversifying positive selection at Holm-

Bonferroni corrected _p = 0.0500_ found **3** branches under selection among **44**

tested.

* Node35 , p - value = 0.00018

* Separator , p - value = 0.01251

* 0564 _3 , p - value = 0.01266
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Interpreting Results:
The first printed markdown table ("Determining the optimal

number of rate classes per branch using a step up procedure")
summarizes the model selection process. For example, when two ω
rates were assigned to branch Separator, this improved the AICc

score of the fit (compared to the single-rate model) from
11, 009.72 to 11, 004.02. However, allocating three ω rates to
the same branch worsens the score to 11, 008.06. Therefore the
aBSREL model will use two ω rates at the branch.

The second printed markdown table ("Testing selected
branchesforselection") shows the results of tests for episodic
selection on individual branches. At branch 0564_4, for example,
the tested model includes two ω rates, with the positive selection
class taking on value 28.89 (2.15% proportion of the mixture).
Constraining this rate to range between 0 and 1 yields the likeli-
hood ratio test statistic of 4.81, which maps to a P-value (before
multiple test correction) of 0.03281.

Finally, aBSREL reports three branches under episodic diversi-
fying selection pressure. Further examination of results using
HyPhy-Vision shows that these branches are found (a) along the
transmission event from donor to recipient, and (b) within a highly
diverged clade in the donor (Fig. 2). The first finding is consistent
with an expected increase in evolutionary rate when a virus infects a
new host and encounters novel host immunity, and the second
finding is consistent with intrahost adaptive dynamics of the
donor’s long-termHIV infection. Importantly, a close examination
of the markdown-output table under the header "Testing
selected branches for selection" reveals several nodes
with uncorrected P-values whose significance was lost upon apply-
ing the Bonferroni–Holm correction, e.g., 0564_4 whose uncor-
rected P ¼ 0.03281. This result illustrates the potential loss of
power incurred by this aBSREL exploratory analysis.

Rules of Thumb for aBSREL Use

1. A priori identification of branches to test for selection will
generally increase power to detect selection on those branches.
That said, to maintain statistical robustness, we strongly discour-
age performing multiple separate tests for selection on different
branch sets. Such an approach will necessarily introduce false
positives. In such a case, we recommend performing an explor-
atory analysis wherein all branches are considered.

2. Exploratory analyses of very large datasets are unlikely to yield
many significant results, because correcting for multiple testing
will reduce power as the number of branches grows, while the
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amount of statistical signal does not increase for larger datasets.
One option is to thin out large phylogenies (before performing
any testing), retaining major clades and lineages of interest.

Fig. 2 HyPhy-Vision tree viewer depicting the fitted aBSREL Adaptive model to HIV-1 data. Branches are
colored by their inferred ω distribution, as indicated in the legend. Lineages identified as positive selection at
P < 0.05 after correction for multiple testing are shown with thick branches, with color distributions
representing the relative values and proportions of inferred ω categories. Note that taxon labels beginning
with “0554” represent HIV-1 sequences derived from the donor patient, and labels beginning with “0557”
represent HIV-1 sequences derived from the recipient patient
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3.5 Site-Level

Selection: MEME, FEL,

SLAC, and FUBAR
What Biological Question Is the Method Designed to
Answer?:
The methods FEL, SLAC, and FUBAR address the question:
Which site(s) in a gene are subject to pervasive, i.e., consistently
across the entire phylogeny, diversifying selection? MEME
addresses a more general question: Which site(s) in a gene are
subject to pervasive or episodic, i.e., only on a single lineage or
subset of lineages, diversifying selection?

Recommended Applications

1. MEME is the sole method in HyPhy for detecting selection at
individual sites that considers both pervasive and episodic selec-
tion. MEME is therefore our recommended method if maxi-
mum power is desired.

2. The phenomenon of pervasive selection is generally most prev-
alent in pathogen evolution and any biological system influ-
enced by evolutionary arms race dynamics (or balancing
selection), including adaptive immune escape by viruses. As
such, FEL, SLAC, and FUBAR are ideally suited to identify
sites under positive selection which represent candidate sites
subject to strong selective pressures across the entire phylog-
eny. Each of these methods has a particular use case as well:

l FEL is our recommended method for analyzing small-to-
medium size datasets when one wishes only to study perva-
sive selection at individual sites.

l FUBAR is our recommended method for detecting perva-
sive selection at individual sites on large (> 500 sequences)
datasets for which other methods have prohibitive runtimes,
unless you have access to a computer cluster.

l SLAC provides legacy functionality as a counting-based
method adapted for phylogenetic applications. In general,
this method will be the least statistically robust.

Statistical Test Procedure:
Each method presented here employs a distinct algorithmic
approach to inferring selection. FEL uses maximum likelihood
to fit a codon model to each site, thereby estimating a value for
dN and dS at each site. FEL tests for selection with the likelihood
ratio test using the χ21 distribution, asking whether the dN
estimate is significantly greater than the inferred dS estimate.

(continued)
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SLAC represents the most basic inference method and is an
extension of the Suzuki–Gojobori counting-based method [39]
for phylogenetically related sequences (as opposed to sequence
pairs). SLAC uses maximum likelihood to infer ancestral char-
acters for each site across the phylogeny and then directly counts
the number of synonymous and non-synonymous changes which
have occurred at each site over evolutionary time. SLAC then
tests for selection by testing whether or not there are too many or
too few non-synonymous changes compared to what is expected
under neutrality. The neutral expectation is derived based on
the phylogeny-wide estimated numbers of synonymous and
non-synonymous nucleotide sites at a given codon. The statistical
test employs the binomial distribution to compute significance,
e.g., how likely is it to observe 13 non-synonymous and 1 synony-
mous substitutions at a site, if the expected synonymous to
non-synonymous substitution count ratio under neutrality is 1:4?

MEME employs a mixed-effects maximum likelihood
approach. For each site, MEME infers two ω rate classes and
corresponding weights representing the probability that the site
evolves under each rate class at a given branch. To this end,
MEME infers a single α (dS) parameter and two separate β
(dN) parameters, β� and β+. The ω rates per site, therefore,
consist of β+/α and β�/α. MEME uses this framework to fit a
null and alternative model each, both models enforcing the
constraint β�� α. The null model disallows positive selection by
enforcing the constraint β+ � α, whereas the alternative model
places no constraint on β+. MEME uses the likelihood ratio test to
compare between null and alternative model fits, with signifi-
cance assessed using the mixture of 33%χ20, 30%χ

2
1, and 37%χ22.

FUBAR takes a Bayesian approach to selection inference
and is a particular case of statistical models developed in the
context of document classification (latent Dirichlet allocation).
The key innovation to FUBAR’s approach is its use of an a priori
specified grid of dN and dS values (typically 20 � 20), span-
ning the range of negative, neutral, and positive selection
regimes, whose likelihoods can be pre-computed and used
throughout analysis (rather than having to re-compute likeli-
hoods during optimization as traditional random-effects
approaches do [12, 29]). This approach, combined with other
algorithmic advances, speeds computation time by at least an
order of magnitude compared to FEL, while yielding compara-
ble statistical performance. FUBAR estimates every model
parameter except the proportion of sites allocated to each grid
point using simple (and fast) nucleotide models. The proportions
are estimated using an MCMC procedure, and non-neutral
evolution at each site is inferred using a straightforward naive

(continued)
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empirical Bayes approach [29]. Sites are called positively or
negatively selected if the corresponding posterior probabilities
are sufficiently high.

Note that FEL and SLAC report both positively and negatively
selected sites, but MEME and FUBAR report only sites under
positive selection.

Example Analysis:
We will demonstrate the use and interpretation of site-level
methods using data from influenza strain H3N2 (the “Hong
Kong flu”), the primary circulating strain of seasonal influ-
enza since the late 1960s. We specifically will assess selection on
the H3 hemagglutinin, the influenza surface protein which is
responsible for host cell binding. Hemagglutinin experiences
rapid evolution triggered by host immune escape, and previous
studies have identified numerous signatures of positive diversify-
ing selection in H3 sequences with a particular concentration
around the host-binding domain [28].

We base analyses here on an alignment from Meyer and Wilke
[22] of H3 sequences sampled over time since the 1991–1992
influenza season. We removed all partial and strongly outlying
sequences (i.e., those with excessive divergence) from the original
dataset before proceeding, yielding 2555 sequences to comprise
our “full” H3 dataset. We further subsetted this alignment to two
smaller alignments with comparable numbers of taxa but spanning
different evolutionary time frames: The first smaller alignment
(“trunk”) contains 163 sequences sampled along the influenza
H3 trunk, whereas the second smaller alignment (“shallow”) con-
tains 121 sequences sampled from a single clade (Fig. 3). There-
fore, while these two smaller datasets contain a comparable number
of sequences, the trunk dataset spans a much longer time frame and
contains substantially more sequence divergence relative to the
shallow dataset. Indeed, the trunk dataset has a total tree length
(sum of branch lengths, in units substitutions/site/unit time) of
0.43, whereas the shallow dataset had a total tree length of 0.12,
meaning that the trunk dataset contains nearly four times the
amount of sequence divergence seen in the shallow dataset. We
have compiled results for all three datasets analyzed with all four
methods (Table 1). We now describe, using the trunk dataset as an
example, how to run each of these analyses in HyPhy.
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Fig. 3 Phylogeny of H3 hemagglutinin sequences analyzed here. Tip colors indicate those selected for each
dataset

Table 1
Sites identified as positively selected across the H3 datasets analyzed here

Dataset Method Sites under selection at P � 0.1∗

Full H3 MEME (16) 19, 47, 61, 69, 110, 151, 154, 156, 173, 208, 236, 241, 277,
278, 292, 538

Full H3 FEL (15) 19, 47, 61, 69, 110, 154, 156, 173, 236, 237, 241, 277, 278,
292, 538

Full H3 SLAC (19) 19, 47, 61, 69, 110, 137, 154, 156, 158, 173, 189, 208, 236,
237, 241, 277, 278, 292, 505, 546

Full H3 FUBAR (13) 47, 61, 69, 110, 154, 160, 173, 208, 236, 237, 241, 278, 538

Shallow H3 MEME (2) 49, 320

Shallow H3 FEL (2) 49, 241

Shallow H3 SLAC None

Shallow H3 FUBAR (3) 19, 49, 241

Trunk H3 MEME (6) 64, 154, 171, 208, 242, 402

Trunk H3 FEL (3) 64, 154, 208

Trunk H3 SLAC (2) 154, 208

Trunk H3 FUBAR (6) 61, 64, 69, 154, 208, 242

Bold sites are those identified by multiple methods for a given dataset. Bold italicized sites are those identified in more

than one dataset, generally by more than one method. Numbers in parentheses give the total number of positively

selected sites identified with the given method and dataset
∗ For FUBAR, significance is assessed as posterior probability � 0.9



FEL: Launch HyPhy from the command line, and enter
options 1 (Selection Analyses) and then 2 to reach the FEL analysis
menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/h3_trunk.fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)?. Enter “y” to use the tree.

4. Choose the set of branches to test for selection. This option
allows you to specify which branches along which site-level
inference should be performed. Enter 1 to test all branches
for selection.

5. Use synonymous rate variation?. This option asks you to spec-
ify whether the dS parameter in the codon model should be
allowed to vary across sites (“Yes”) or be fixed to 1 at all sites
(“No”). Enter 1 to use a model with synonymous rate variation.

6. Select the P-value used to perform the test at (permissible
range ¼ [0,1], default value ¼ 0.1). Provide the default
threshold of 0.1.

FEL will now run to completion and print status indicators to
the screen, including results for any site found to be under selection
(either positive or negative). Abbreviated results are shown below.

Listing 4 Partial FEL screen output:

### Obtaining branch lengths and nucleotide rates under the GTR model

* Log ( L ) = -7506.06

### Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L ) = -7302.10

* non - synonymous / synonymous rate ratio for *test* = 0.2923

### Improving branch lengths , nucleotide substitution biases, and global dN/dS

ratios under a full codon model

* Log ( L ) = -7289.65

* non - synonymous / synonymous rate ratio = 0.2598

### For partition 1 these sites are significant at p <=0.1

| Codon | Partition | alpha | beta | LRT | Selection detected? |

|:---------–:|:----------–:|:--------–: |:------–:|:---------–:|:-----------------–:|

...
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| 146 | 1 | 3.818 | 0.000 | 7.336 | Neg. p = 0.0068 |

| 152 | 1 | 1.968 | 0.000 | 3.634 | Neg. p = 0.0566 |

| 154 | 1 | 0.000 | 3.912 | 4.652 | Pos. p = 0.0310 |

| 159 | 1 | 4.413 | 0.716 | 2.972 | Neg. p = 0.0847 |

| 164 | 1 | 2.082 | 0.000 | 2.713 | Neg. p = 0.0995 |

| 176 | 1 | 1.659 | 0.000 | 2.986 | Neg. p = 0.0840 |

| 177 | 1 | 6.393 | 0.000 | 8.421 | Neg. p = 0.0037 |

| 181 | 1 | 1.928 | 0.000 | 3.286 | Neg. p = 0.0699 |

| 190 | 1 | 2.085 | 0.000 | 2.715 | Neg. p = 0.0994 |

| 201 | 1 | 1.645 | 0.000 | 3.370 | Neg. p = 0.0664 |

| 208 | 1 | 0.000 | 3.625 | 4.668 | Pos. p = 0.0307 |

...

### ** Found _3_ sites under pervasive positive diversifying and _115_

sites under negative selection at p <= 0.1**

Inference details for codons with significant likelihood ratio
tests for positive or negative selection are reported to the screen.

Codon The codon where non-neutral evolution has
been detected.

Partition Allows one to keep track which subset of the
alignment a particular site belongs to. This is
important for recombination-corrected parti-
tion analyses.

alpha Site-specific synonymous substitution rate
beta Site-specific non-synonymous substitution rate
LRT Site-specific likelihood ratio test statistic for

non-neutral evolution (alpha 6¼ beta)
Selection detected? Selection classification (positive or negative)

and the corresponding P-value

Note that the “Codon” and “Partition” columns are common
to all site-specific analyses.

MEME and SLAC: SLAC and MEME follow identical menu
prompts as FEL, with the exception that only FEL will prompt
for synonymous rate variation. Instead, SLAC has a different
prompt for Step 5: Select the number of samples used to assess
ancestral reconstruction uncertainty. If this number is positive,
then HyPhy will draw samples from the distribution of ancestral
states and use them to measure whether or not inference is sensitive
to ancestral inference uncertainty. When you encounter this option,
provide the default value of 100 (or 0 to forego sampling). MEME
does not emit any additional prompts.
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Listing 5 Partial SLAC screen output:

...

### For partition 1 these sites are significant at p <=0.1

| Codon | Partition| S | N | dS | dN |Selection detected?|

|:-------–:|:------–: |:-------–: |:-----–: |:------–:|:------–:|:---------------–: |

...

| 146 | 1 | 3.000 | 0.000 | 3.000 | 0.000 | Neg. p = 0.037 |

| 154 | 1 | 0.000 | 8.000 | 0.000 | 4.000 | Pos. p = 0.039 |

| 177 | 1 | 3.000 | 0.000 | 4.038 | 0.000 | Neg. p = 0.020 |

| 208 | 1 | 0.000 | 6.000 | 0.000 | 2.994 | Pos. p = 0.089 |

...

### Ancestor sampling analysis

> Generating 100 ancestral sequence samples to obtain confidence intervals

Resampling results for partition 1

|Codon|Part.|S[median,IQR]|N[median,IQR]|dS[median,IQR]|dN[median,IQR]|p-value[median,IQR]|

|:--–:|:--–:|:---------:|-----------:|--------–:|---------–:|---------------------:|

...

|146 |1|3.00[3.00-3.00]|0.00[0.00-0.00]|3.00[3.00-3.00]|0.00[0.00-0.00]|0.04[0.04-0.04].|

|154 |1 |0.00 [0.00-0.00]| 8.00 [8.00-8.00]| 0.00 [0.00-0.00]|4.00 [4.00-4.00]| 0.04 [0.04-0.04] |

| 177|1| 3.00 [3.00-4.00]| 0.00 [0.00-0.00]| 4.04 [4.04-5.38]| 0.00 [0.00-0.00]| 0.02 [0.01-0.02] |

| 208| 1| 0.00 [0.00-0.00]| 6.00 [6.00-6.00]| 0.00 [0.00-0.00]| 2.99 [2.99-2.99]| 0.09 [0.09-0.09] |

...
SLAC reports several key quantities for codons with significant

P-values for positive or negative selection to the screen.

S The number of synonymous substitutions
inferred at this site

NS The number of non-synonymous substitutions
inferred at this site

dS Estimated site-specific synonymous rate
dN Estimated site-specific non-synonymous rate
Selection detected? Selection classification (positive or negative)

and the corresponding P-value for the binomial
test

If the user elected to perform ancestral resampling, another
table is reported, showing how much these quantities are affected
by ancestral state reconstruction uncertainty. For example, at codon
177, some ancestral reconstructions yielded 3 synonymous substi-
tutions, whereas others yielded 4; however, this was not sufficient
to move the P-value on different sides of the threshold.
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Listing 6 Partial MEME screen output:

...

| Codon |Partition | alpha |beta+ | p+ |LRT |Episodic selection detected?|#branches|

|:------:|:-------: |:----:|:----: |:---: |:---:|:---------------------–: |:--------:|

| 64 | 1 | 0.000 |14.717|0.204|3.512| Yes, p = 0.0816 | 5 |

| 154 | 1 | 0.000 |35.302|0.145|5.334| Yes, p = 0.0317 | 8 |

| 171 | 1 | 0.000 |45.005|0.017|5.753| Yes, p = 0.0256 | 1 |

| 208 | 1 | 0.000 |59.749|0.089|5.554| Yes, p = 0.0283 | 6 |

| 242 | 1 | 1.839 |34.114|0.216|4.273| Yes, p = 0.0549 | 7 |

| 402 | 1 | 0.000 |10.476|0.091|3.493| Yes, p = 0.0824 | 2 |

### ** Found _6_ sites under episodic diversifying positive selection at p

<= 0.1**
MEME prints information only about codons subject to posi-

tive selection, since MEME does not directly test for negative
selection.

alpha Site-specific synonymous substitution
rate

beta+ Site-specific non-synonymous substi-
tution rate for the positive selection
category

p+ Site-specific weight (� proportion of
branches) assigned for the positive
selection category

LRT Site-specific likelihood ratio test sta-
tistic for episodic diversifying selec-
tion (beta+ > 1 and p+ > 0)

Episodic selection detected? Selection classification (yes) and the
corresponding P-value

# branches An exploratory estimate of the num-
ber of individual branches which have
sufficient empirical Bayes support for
positive selection; since MEME pools
signal from multiple branches, there
may be overall evidence for selection,
without necessarily implicating any
individual branches.

FUBAR: To run FUBAR, launch HyPhy from the command line,
and enter options 1 (Selection Analyses) and then 4 to reach the
FUBAR analysis menu, and supply values for the following
prompts5:

5Note that for all prompts with default values, simply pressing enter will choose this default.
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1. Choose genetic code. Enter 1 to use the Universal
genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/h3_trunk.fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)?. Enter “y” to use the tree.

4. Number of grid points per dimension. This option controls
how fine the FUBAR analysis is by setting the range of possible
dN and dS values that can be inferred, along an N � N grid.
We will use the default value of 20 (leading to a 20 � 20 grid of
dN/dS ratios). FUBAR will now pre-compute likelihoods for
each value in the grid.

5. Number of MCMC chains to run. This option determines
the number of Markov Chain Monte Carlo chains to run
during Bayesian inference of evolutionary rates. Enter the
default value of 5 to run 5 chains.

6. The length of each chain. This option controls for how long
each MCMC chain should be run. Enter the default value of
2000000 to run each chain for two million generations (thus
obtaining two million samples).

7. Use this many samples as burn-in. This option determines
how many initial samples drawn from the MCMC chain should
be discarded as burn-in, as is standard in Bayesian analyses.
Enter the default value of 1000000, leading to a final value of
one-million draws per chain.

8. How many samples should be drawn from each chain. This
option determines the final number of samples to draw from
the full set of one-million draws per chain. Enter the default
value of 100.

9. The concentration parameter of the Dirichlet prior. This
option controls the shape of the Dirichlet prior distribution.
Enter the default value of 0.5.

Listing 7 Partial FUBAR screen output:

...

### Tabulating site - level results

| Codon |Partition| alpha | beta | N.eff |Posterior prob for positive selection|

|:-------:|:------–:|:----:|:---–: |:------–:|:----------------------------------–:|

| 61 | 1 | 0.753 | 4.365| 64.549 | Pos. posterior = 0.9262 |

| 64 | 1 | 0.753 | 3.920| 77.106 | Pos. posterior = 0.9095 |

| 69 | 1 | 0.730 | 4.447| 64.182 | Pos. posterior = 0.9325 |

| 154 | 1 | 0.637 | 6.595| 53.312 | Pos. posterior = 0.9826 |
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| 208 | 1 | 0.622 | 5.908| 55.794 | Pos. posterior = 0.9731 |

| 242 | 1 | 2.215 | 12.055| 1489.879 | Pos. posterior = 0.9131 |

----

## FUBAR inferred 6 sites subject to diversifying positive selection at

posterior probability >= 0.9

Of these , 0.36 are expected to be false positives (95% confidence interval

of 0-2 )

Like other site analyses, FUBAR will print a number of infer-
ences about each individual site detected to be under pervasive
positive selection

alpha The posterior estimate of the synonymous
substitution rate at a site

beta The posterior estimate of the
non-synonymous substitution rate at a site

N.eff An estimate of the effective sample size for
inferring positive selection at this site; smaller
values (e.g., < 20) imply that the MCMC
procedure may have failed to sample the
parameter space well, and longer chains
(or more chains) might be warranted

Posterior prob
for positive selection

The estimated posterior probability for per-
vasive diversifying selection (dN/dS > 1).

Interpreting Results:
Sites identified as positively selected by each method, across all
three datasets, are given in Table 1. In general, we expect
MEME to be the most comprehensive and robust of all site-level
methods because it uniquely considers both pervasive and epi-
sodic selection [24]. In addition, power studies have shown that
FUBAR is expected to outperform FEL and SLAC under most
circumstances [25]. Finally, we expect that SLAC will be the
least robust method due to its reliance on a relatively naive
counting-based approach [12].

These expectations are generally borne out in the results
obtained here in our brief study of H3 selection. For the full H3
dataset of 2555 sequences, MEME identified 16 sites, and FEL
identified 15 sites under positive selection. All sites were identical
except for the following: MEME uniquely identified sites 151 and
208, and FEL uniquely identified with 237. Interestingly, site
208 was additionally identified as positively selected by all methods
on the trunk H3 dataset. Combined, these results demonstrate
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MEME’s ability to identify sites subject to both pervasive and
episodic selection, as site 208 appears to be under pervasive selec-
tion only along the H3 trunk. Because FEL uses a less stringent test
statistic distribution ( χ21 ) to call significance, occasionally sites
subject to pervasive selection near the significance thresholds may
be detected by FEL but missed by MEME (e.g., site 237, with FEL
reporting P ¼ 0.08 and MEME reporting P ¼ 0.105).

FUBAR identified two fewer selected sites in the full H3 align-
ment compared to FEL (which is a directly comparable test),
missing sites 19 (posterior 0.83), 277 (posterior 0.59), and
292 (posterior 0.89) relative to FEL, but adding site 160 (FEL
P ¼ 0.8).

In addition to differences across methods, we expect to see
some important differences for sites inferred across the full, shallow,
and trunk H3 datasets. Because the trunk and full H3 datasets span
similar time frames, we expect sites returned for these two datasets
to have the most overlap. In addition, sites found to be under
selection in the shallow lineage may not be detected across the
full H3 phylogeny, as selection may have been fleeting, weak, or
constrained to the specific shallow clade examined here. For exam-
ple, site 49 was specifically selected in the shallow H3 lineage alone,
as indicated by three of the four methods. In contrast, sites 19 and
241 were found to be selected in both the shallow and the full H3
datasets, but this signal was not apparent when the trunk lineage
was examined independently, perhaps because these sites experi-
ence only transient changes that do not propagate along the trunk.

What are some potential reasons for seeing discrepancies in
inferences across H3 datasets? The site 154, for example, is posi-
tively selected in both the full H3 phylogeny and the trunk H3
lineage, but not the shallow H3 lineage. This result suggests that
site 154 may have experienced pervasive selection throughout H3
evolution, but its signal in the shallow clade alone was either too
weak to detect or selection was attenuated in the shallow clade. In
addition, sites which appeared only in the shallow clade analyses
may have experienced lineage-specific selection where the signal
was too weak to detect when the entire phylogeny was considered.

Furthermore, while MEME, FEL, and FUBAR were able to
detect selected sites in the shallow H3 lineage, SLAC did not
identify any such sites. This is because SLAC requires a large
number of substitutions, which are unlikely to have occurred in
the shallow sample, to achieve significance. Overall, we emphasize
that in many cases different site-level methods will not identify
exactly the same set of sites under selection, although, as the H3
example shows, the agreement between is typically good.

Evolution of Viral Genomes: Interplay Between Selection, Recombination. . . 457



Rules of Thumb for Site-Level Detection of Selection
1. Small datasets, i.e., � 10 sequences (especially when coupled

with low divergence), are unlikely to yield any sites under
selection. Consider using gene-wide methods like BUSTED
or aBSREL to look for selection in these cases.

2. On large datasets (e.g., > 500 sequences), all methods tend to
give similar results (but see the MEME exception below),
hence the default method of choice is FUBAR, since its run
time is dramatically shorter than FEL or MEME, and its statis-
tical performance is better than SLAC.

3. MEME tends to be the most sensitive method, because it is the
only one designed to detect episodic selection. Indeed, some-
times SLAC, FEL, or FUBAR may all call a site subject to
episodic positive selection site negatively selected, if a burst of
selection is followed by strong conservation. MEME is often
able to tease the two processes apart and correctly call such sites
positively selected. Hence, MEME should be the preferred
method, unless computationally prohibitive.

4. We cannot universally recommend running all the available
methods on a given dataset and then aggregating the results,
as done in Table 1, for several reasons. Firstly, while it may be
tempting to use agreement between all methods as a hedge
against false positives, i.e., calling a site selected only if all the
methods agreed on it, reduces the power of the analysis to that
of the least sensitive method. Secondly, while comparing the
sites on which methods disagree can potentially reveal critical
information (e.g., a site detected by MEME but not FUBAR
may be under strong episodic selection), considerable effort
and diligence must be put into disentangling meaningful
biological differences from statistical artifacts. Thirdly, statisti-
cal strategy must be informed before the analysis commences
by deciding which is more important to optimize: does one
care more about specificity (reducing false positives) or sensi-
tivity (reducing false negatives)? For example, if little is known
about a gene, it may be advisable to generate the most inclusive
list of sites that could be subject to selection for subsequent
testing using other approaches; in this case, the most sensitive
method or the union of all methods may be appropriate.

5. We strongly recommend against performing multiple testing or
false discovery rate correction on individual site results. Firstly,
methods are calibrated to not generate excessive false positives
on strictly neutral data. In most genes, most sites will be under
relatively strong negative selection, making the statistical test-
ing procedure conservative. Secondly, multiple testing
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corrections will nearly always yield no significant results on
small to moderate sized datasets. Thirdly, some key assump-
tions of methods for correcting false discovery rates are not
applicable for site-level testing. For example, a typical collec-
tion of results from site-level testing will contain very few, if
any, true sites with P-values supporting neutrality (dN/
dS ¼ 1).

3.6 Screening

Sequences for

Recombination

A critical aspect of sequence analysis we have not yet covered is the
detection of and correction for intragenic recombination in an
alignment of homologous sequences. Because recombination is
such a key biological process in many viral pathogens, we strongly
advocate screening an alignment for recombination before pro-
ceeding with additional analyses, unless there is a sound biological
reason to discount (i.e., intragenic recombination Influenza A is
negligibly rare). Indeed, because recombination causes different
regions of an alignment to be related by different phylogenies, its
presence can heavily influence selection detection and other down-
stream applications.

There are many computational approaches to finding evidence
of recombination in a sequence alignment [32], however at their
core, many such methods look for evidence of phylogenetic incon-
gruence. Here, we demonstrate one such method, GARD (genetic
algorithms for recombination detection) that we have found to
perform very well among a wide range of approaches on simulated
data [14]. Note that at this time, GARD will not produce a JSON
file as output but instead several text files containing inference
information, as well as a final partitioned alignment for downstream
use if recombination was detected.

3.7 GARD

What Biological Question Is the Method Designed to
Answer?:
Have sequences in the given alignment undergone recombina-
tion, and if so what are the recombination breakpoints and
segment-specific phylogenies?

Recommended Applications:

GARD is geared towards mapping the breakpoints and detecting
segments of the alignment which can be adequately described by a
single tree topology. Therefore, alignments, particularly alignments
of viral sequences, should be screened for the presence of recombi-
nation before performing any selection inference. The NEXUS
output from GARD can be directly used as input for most down-
stream selection detection analyses.
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Statistical Test Procedure:
GARD employs a genetic algorithm to find a solution to a complex
optimization problem by mimicking processes of biological evolu-
tion (mutation, recombination, and selection) in a population of
competing solutions. In this application of genetic algorithms, we
are evolving a population of “chromosomes” that specify different
numbers and locations of recombination breakpoints in the align-
ment with the objective of detecting topological incongruence, i.e.,
support for different phylogenies by separate regions of the align-
ment. The “fitness” of each chromosome is determined by using
maximum likelihood methods to evaluate a separate phylogeny
for each non-recombinant fragment defined by the breakpoints
(e.g., to the left and to the right of a breakpoint in Fig. 4), and
computing a goodness of fit (AICc) for each suchmodel. The genetic
algorithm searches for the number and placement of breakpoints
yielding the best AICc and also reports confidence values for
inferred breakpoint locations based on the contribution of each
considered model weighted by how well the model fit the data. For
computational expedience, the current implementation of GARD
infers topologies for each segment using neighbor joining [37]
based on the TN93 pairwise distance estimator [41] and then
fits a user-specified nucleotide evolutionarymodel usingmaximum
likelihood to obtain AICc scores.

O

A

B

R

A B ROB A RO

A

B

R

Fig. 4 Phylogenetic incongruence caused by the presence of a recombinant
sequence in an alignment. Sequence R is a product of homologous recombina-
tion between sequences A and B. Phylogenies reconstructed from sequences A,
B, R and an outgroup sequence (O) will differ based on which part of the
alignment is being considered. To the left of the breakpoint, R clusters with A,
whereas to the right of the breakpoint R clusters with B
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Example Analysis 1: We will demonstrate the use of GARD, as well
as its benefits for downstream analysis, using a dataset consisting of 13
glycoprotein sequences from Cache Valley Fever virus (cvf.fna). We
will first use GARD to detect recombination in this dataset, and then
we will process both the GARD-informed data and the original
alignment (with no recombination assumed) with FEL to see how
the presence of recombination may confound selection inference.

Importantly, GARD specifically requires the use of HyPhy’s MPI-
enabled executable, HYPHYMPI. To run GARD from the command
line, you will need an operating system with a MPI headers and
libraries installed so that this executable can be compiled. Here, we
will describe how to use GARD from the command line, but we
emphasize that GARD is fully implemented and available on www.
datamonkey.org and takes the same input options described here.

To run GARD, open a terminal session and start HYPHYMPI
in the appropriate MPI environment (e.g., MPIRUN in OpenMPI)
from the command line to launch the HyPhy analysis menu. Enter
12 (Recombination) and then 1 to reach the GARD analysis menu,
and supply values for the following prompts:

1. Nucleotide file to screen: Provide the full path to the dataset
of interest: /path/to/data/cvf.fna.

2. Please enter a 6-character model designation (e.g., 010010
defines HKY85). This option controls which nucleotide sub-
stitution model is to be used for analysis, using PAUP nota-
tional shorthand. The six-character shorthand allows the user
to specify the entire spectrum from F81 (000000) to GTR
(012345), which we recommend as default option. Provide
the value 012345 for this prompt.

3. Rate variation options. This option determines how site-to-
site rate variation should be modeled. The option None will
discount site-to-site rate variation, allowing the analysis to run
several times faster than other options but also creating the risk
of mistaking rate heterogeneity for recombination. As such, we
can only recommend this option for extremely small align-
ments (i.e., 3–5 sequences). The option General Discrete
(the default) models rate variation using an N bin general
discrete distribution, and option Beta-Gamma models rate
variation using an adaptively discretized distribution, a more
flexible version of the standard Gamma+4 model. Enter option
2 to select the General Discrete model.

4. How many distribution bins [2–32]?. If rate variation was
selected in the previous step, this option allows the user to
decide how many different rate classes should be included in
themodel.We recommend using 3 rate classes by default, as both
General Discrete and Beta-Gamma distributions are flexible
enough to reliably capture rate variability in themajority of align-
ments with only a few rate classes. Therefore, enter the value 3.
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5. Save results to. For this option, provide a full path to the
output file to which you would like GARD to write results.
The supplied file name will ultimately contain an HTML-for-
matted summary of the analysis. HyPhy will generate several
other files with names obtained by appending suffixes (as in
<file name>_suffix) to the main result file. In particular,
the _finalout file stores the original alignment in NEXUS
format with inferred non-recombinant sections of the alignment
saved in the ASSUMPTIONS block and trees inferred for each
partition in the TREES block. This NEXUS file can be input into
many recombination-aware analyses in HyPhy and other pro-
grams that can read NEXUS. The _ga_details file contains
two lines of information about each model examined by the
genetic algorithm: its AICc score and the location of breakpoints
in the model. Finally, the _ga_splits file stores information
about the location of breakpoints and trees inferred for each
alignment region under the best model found by the GA.

GARD will now run to completion, printing status indica-
tors to screen while it runs:

Listing 8 Partial GARD output:

Fitting a baseline nucleotide model...

Done with single partition analysis. Log(L) = -5921.9511901113, c-AIC = 11914.85153276497

Starting the GA ...

GENERATION 2 with 1 breakpoints (~0% converged)

Breakpoints c - AIC Delta c - AIC [BP 1]

0 11914.85

1 11804.56 110.291 1393

GA has considered 92/ 328 (92 over all runs) unique models

Total run time 0 hrs 0 mins 2 seconds

Throughput 46.00 models/second

Allocated time remaining 999 hrs 59 mins 58 seconds (approx. 165599908 more models.)

...

GENERATION 52 with 4 breakpoints (~100% converged)

Breakpoints c - AIC Delta c - AIC [BP 1] [BP 2] [BP 3] [BP 4]

0 11914.85

1 11804.56 110.291 1445

2 11783.92 20.638 617 1490

3 11778.94 4.978 587 962 1475

4 11778.94 0.000 587 962 1475

GA has considered 268/ 473490550 (1356 over all runs) unique models

Total run time 0 hrs 4 mins 2 seconds

Throughput 5.60 models/second

Allocated time remaining 999 hrs 55 mins 58 seconds (approx. 20170544.82644628 more models.)

Performing the final optimization...
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Interpreting Results:
GARD found evidence of recombination in this dataset with
three breakpoints, yielding a 135.9 point AICc improvement
over the model without recombination. Among all models with
three breakpoints in the Cache Valley Virus glycoprotein align-
ment, the best model places them at nucleotides 587, 962, and
1475. Importantly, if GARD had reported that the best model
had 0 breakpoints, we could conclude that no evidence of recom-
bination had been found. Note that because genetic algorithms
are stochastic, there is no guarantee that replicate runs will
converge to exactly the same quantitative results. When there is
a strong signal of recombination breakpoints in the data, how-
ever, the qualitative results (number and general location of
breakpoints) should be fairly robust.

Example Analysis 2: The NEXUS file that GARD produced is a
partitioned dataset, wherein different groups of sites are described by
different trees. Most HyPhy selection analyses discussed here,6 includ-
ingMEME, FUBAR, FEL, SLAC, and BUSTED, are able to analyze
partitioned data. To demonstrate the importance of screening for
recombination, we will now compare results for a FEL analysis per-
formed on the original alignment of 13 Cache Valley Virus glycopro-
teins, as well as on the GARD-inferred partitioned alignment. All
steps here were carried out as described earlier in this chapter.

Interpreting Results:
FEL inference on the GARD-processed partitioned Cache Valley
Virus data does not detect sites under selection at P � 0.1. By
contrast, FEL inference on the unpartitioned Cache Valley
Virus data (i.e., not pre-screened for recombination) detects
three positively selected sites at P � 0.1 (212, 516, and 558 at
P = 0.08, P = 0.03, and P = 0.09, respectively). From these
results, we can clearly tell that not screening or recombination
has the potential for adverse consequence including an increased
false positive rate as seen here. As such, we strongly encourage
users to screen alignments for recombination if such processes are
suspected before proceeding to selection detection.

3.8 Accounting for

Synonymous Rate

Variation

A critical genomic process that one must consider when detecting
selection is the phenomenon of synonymous rate variation, wherein
the rate of synonymous codon evolution (represented by dS in the

6Note that neither aBSREL nor RELAX accepts partitioned data because they require a consistent phylogeny to
define branch sets.
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context of codon models and representing mutation rate) varies
across species, genes, and even intragenic positions. In particular,
intragenic synonymous rate variation has been identified across
domains of life [11, 20, 30] and can arise from a variety of evolu-
tionary processes, including selection on mRNA secondary struc-
ture [2], gene expression [4], GC-biased gene conversion [10], and
other neutral mutation processes. For example, even the genomic
context of a given nucleotide can influence its mutation rate;
indeed, experimental work has shown that GC-neighboring sites
can feature up to a 75-fold increase in mutation rate [20, 38]. In
addition, the synonymous rate at certain sites may be elevated due
to the mutational vulnerability of the non-template DNA strand
during transcription [20]. These processes must be accounted for
in order to ensure an appropriate baseline dS is used when testing
for selection.

We demonstrate the importance of considering synonymous
rate variation for selection inference using a dataset of 10 mamma-
lian CD2 genes, which code for a specific T-cell surface adhesion
molecule [21]. We use FEL to detect selection in this dataset under
two specifications: with synonymous rate variation (“yes” in
prompt 4 in the FEL analysis menu), and without synonymous
rate variation (“no” in prompt 4 in the FEL analysis menu).

Interpreting Results:
At P � 0.1, analysis of CD2 with synonymous rate variation
revealed a total of 14 sites under positive selection. By contrast,
CD2 analysis with FEL without dS variation only detected four
sites under positive selection (Fig. 5). Similarly, analysis with dS
variation revealed 27 sites under purifying selection, but analy-
sis without dS variation revealed only 15 sites under purifying
selection. Most importantly, all sites detected when dS was fixed
to 1 were a subset of the sites identified by the model with dS
variation (Fig. 5). Together, these results demonstrate that
ignoring dS variation can induce both an increased false nega-
tive rate regarding positive selection detection and an overall
decrease in power to detect any selective regime. We acknowledge
that it is possible that the opposite conclusion might be true,
namely, that additional sites identified by FEL with dS varia-
tion might instead be false positives. However, in our experience,
this is much less frequently the case [12].
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4 Tips

Here we provide some helpful notes on HyPhy usage.

l An actively maintained board for usage questions and filing bug
reports is available at https://github.com/veg/hyphy/
issues.

l Each HyPhy analysis described here will export a JSON file. This
file can either be uploaded to HyPhy-Vision for visual exami-
nation, or it can be easily parsed using a standard scripting
language using standard packages, for example, the json pack-
age in Python or the jsonLite package in R. All fields used in
these output files are defined in http://hyphy.org.

l Mac OS(X) users may need to install a new set of compilers (i.e.,
gcc-6) that are compatible with openMP in order to have full
functionality from the HYPHYMP executable, as is described on
the HyPhy website.

5 Exercises

1. Earlier, we performed a BUSTED analysis without designating
a specific subset of test lineages. For this exercise, we will
analyze the HIV-1 transmission dataset with BUSTED in two
different ways: testing all branches, and testing only recipient-
derived HIV-1 sequences. The input data for this exercise, with
an appropriately labeled phylogeny, is available in exercises/
hiv1_transmission_exercise1.fna. For select branches
labeled All or test as the test lineages.

l Is there evidence (compare model fits using the small sample
AIC) that test branches have a different selective regime
than the rest of the tree?

l The entire dataset should provide evidence for episodic
diversification, but the recipient only analysis should return
a negative result. What does this mean biologically, i.e.,
where does the selection signal come from?

*
*
* * *

*
**

*
*
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* ** * *

*
* **

*
* *
*
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* * * *
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*
*
*
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* ***

*
* *

*
* *
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Site

With dS variation

Without dS variation

Fig. 5 Sites identified as positively (red) and negatively (blue) selected in CD2 at P � 0.1 by FEL run with
(above the line) and without dS variation (below the line). Sites with arrows represent those identified as
selected by FEL with dS variation that were not identified by FEL when dS variation was ignored
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2. Investigate the effect of recombination of site-specific inference
of episodic selection using MEME. Run MEME on exer-
cises/cvf.fna (single partition data, i.e., assuming no
recombination), and then on the same dataset screened for
recombination using GARD exercises/cvf_gard.nexus,
testing for selection on all branches, with P¼0.1. Compare
the list of sites detected to be under selection by the two
analyses.

l Which analysis generated more positive results?

l Do you think these results are true or false positives? How
does this compare to the FEL analysis we described in the
text?

l Compare site-wise estimates of substitution rates (e.g., α)
between the two analyses. Is there a discernible bias intro-
duced by not accounting for recombination?

3. When analyzing intraspecies or intrahost data, dN/dS esti-
mates may be inflated due to the fact that not all observed
sequence variation are due to substitutions, but some are sim-
ply mutations that have not yet been filtered by selection
[17, 23, 31, 35]. In other words, dN/dS may be elevated by
intraspecies/intrahost polymorphism that should not necessar-
ily be attributed to positive selection. One simple approach to
mitigating this undesirable effect is to restrict site-specific ana-
lyses to Internal branches only. Internal branches are less
likely to contain spurious polymorphic variants because they
encompass at least one process on which selection can act (i.e.,
transmission and/or multiple rounds of replication). Apply
MEME and FEL to an intrahost sample of HIV-1 sequences,
found in exercises/JS1774.nex, from an infected individ-
ual analyzed in Lorenzo-Redondo et al. [19] first choosing to
test All branches, and next choosing Internal branches.

4. Compare the lists of selected sites between All/Internal ana-
lyses. How different are they?

5. Use RELAX to formally test whether or not selective regimes
(dN/dS distributions) are different between terminal and
internal branches in exercises/JS1774.nex.
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Chapter 15

Evolution of Protein Domain Architectures

Sofia K. Forslund, Mateusz Kaduk, and Erik L. L. Sonnhammer

Abstract

This chapter reviews current research on how protein domain architectures evolve. We begin by summariz-
ing work on the phylogenetic distribution of proteins, as this will directly impact which domain architec-
tures can be formed in different species. Studies relating domain family size to occurrence have shown that
they generally follow power law distributions, both within genomes and larger evolutionary groups. These
findings were subsequently extended to multi-domain architectures. Genome evolution models that have
been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective
pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial
propensity, and the effects of this have been studied using measures of domain versatility or promiscuity.
Next, we study the principles of protein domain architecture evolution and how these have been inferred
from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain
architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn
from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to
have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a
discussion of some available tools for computational analysis or exploitation of protein domain architectures
and their evolution.

Key words Protein domain, Protein domain architecture, Superfamily, Monophyly, Polyphyly, Con-
vergent evolution, Domain evolution, Kingdoms of life, Domain co-occurrence network, Node degree
distribution, Power law, Parsimony

1 Introduction

1.1 Overview By studying the domain architectures of proteins, we can under-
stand their evolution as a modular phenomenon, with high-level
events enabling significant changes to take place in a time span
much shorter than required by point mutations only. This research
field has become possible only now in the -omics era of science, as
both identifying many domain families in the first place and acquir-
ing enough data to chart their evolutionary distribution require
access to many completely sequenced genomes. Likewise, the con-
clusions drawn generally consider properties averaged for entire
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species or organism groups or entire classes of proteins, rather than
properties of single genes.

We will begin by introducing the basic concepts of domains and
domain architectures, as well as the biological mechanisms by
which these architectures can change. The remainder of the chapter
is an attempt at answering, from the recent literature, the question
of which forces shape domain architecture evolution and in what
direction. The underlying issue concerns whether it is fundamen-
tally a random process or whether it is primarily a consequence of
selective constraints. We end by outlining some available software
tools and resources for analysis of domain architectures and their
evolution.

1.2 Protein Domains Protein domains are high-level parts of proteins that either occur
alone or together with partner domains on the same protein chain.
Most domains correspond to tertiary structure elements and are
able to fold independently. All domains exhibit evolutionary con-
servation, and many either perform specific functions or contribute
in a specific way to the function of their proteins. The word domain
strictly refers to a distinct region of a specific protein, an instance of
a domain family. However, domain and domain family are often
used interchangeably in the literature.

1.3 Domain

Databases

By identifying recurring elements in experimentally determined
protein 3D structures, the various domain families in structural
domain databases such as SCOP [1] and CATH [2] were gathered.
New 3D structures allow assignment to these classes from semiau-
tomated inspection. The SUPERFAMILY [3] database assigns
SCOP domains to all protein sequences by matching them to
hidden Markov models (HMMs) that were derived from SCOP
superfamilies, i.e., proteins whose evolutionary relationship is evi-
denced structurally. The Gene3D [4] database is similarly con-
structed but based on domain families from CATH.

This approach resembles the methodology used in pure
sequence-based domain databases such as Pfam [5]. In these data-
bases, conserved regions are identified from sequence analysis and
background knowledge, to make multiple sequence alignments.
From these, HMMs are built that are used to search new sequences
for the presence of the domain represented by each HMM. All such
instances are stored in the database. The HMM framework ensures
stability across releases and high quality of alignments and domain
family memberships. The stability allows annotation to be stored
along with the HMMs and alignments. The InterPro database [6] is
a meta-database of domains combining the assignments from sev-
eral different source databases, including Pfam. The Conserved
Domain Database (CDD) is a similar meta-database that also con-
tains additional domains curated by the NCBI [7]. SMART [8] is a
manually curated resource focusing primarily on signaling and
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extracellular domains. ProDom [9] is a comprehensive domain
database automatically generated from sequences in UniProt
[10]. Likewise, ADDA [11] is automatically generated by cluster-
ing subsequences of proteins from the major sequence databases,
though it has not been updated for some time. Genome3D [12] is a
recent consensus database which brings together several domain
prediction tools as well as the SCOP and CATH databases for
describing representative domain arrangements in a series of
trusted, well-annotated genomes.

Since the domain definitions from different databases only
partially overlap, results from analyses often cannot be directly
compared. In practice, however, choice of database appears to
have little effect on the main trends reported by the studies
described here.

1.4 Domain

Architectures

The terms “domain architecture” or “domain arrangement” gen-
erally refer to the domains in a protein and their order, reported in
N- to C-terminal direction along the amino acid chain. Another
recurring term is domain combinations. This refers to pairs of
domains co-occurring in proteins, either anywhere in the protein
(the “bag-of-domains” model) or specifically pairs of domains
being adjacent on an amino acid chain, in a specific N- to
C-terminal order [13]. The latter concept is expanded to triplets
of domains, which are subsequences of three consecutive domains,
with the N- and C-termini used as “dummy” domains. A domain X
occurring on its own in a protein thus produces the triplet N-X-
C [14].

1.5 Mechanisms for

Domain Architecture

Change

Most mutations are point mutations: substitutions, insertions, or
deletions of single nucleotides. While conceivably enough of these
might create a new domain from an old one or noncoding sequence
or remove a domain from a protein, in practice we are interested in
mechanisms whereby the domain architecture of a protein changes
instantly or nearly so (but see below for an overview of recent work
on the origin of new domains). Figure 1 shows some examples of
ways in which domain architectures may mutate. In general, adding
or removing domains requires genetic recombination events. These
can occur either through errors made by systems for repairing DNA
damage such as homologous [16, 17] or nonhomologous (illegiti-
mate) [18, 19] recombination or through the action of mobile
genetic elements such as DNA transposons [20] or retrotranspo-
sons [21, 22]. Recombination can cause loss or duplication of parts
of genes, entire genes or much longer chromosomal regions.

In organisms that have introns, exon shuffling [23, 24] refers to
the integration of an exon from one gene into another, for instance,
through chromosomal crossover, gene conversion, or mobile
genetic elements. Exons could also be moved around by being
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brought along by mobile genetic elements such as retrotransposons
[24, 25].

Two adjacent genes can be fused into one if the first one loses
its transcription stop signals. Point mutations can cause a gene to
lose a terminal domain by introducing a new stop codon, after
which the “lost” domain slowly degrades through point mutations
as it is no longer under selective pressure [26]. Alternatively, a
multi-domain gene might be split into two genes if both a start
and a stop signal are introduced between the domains. Novel
domains could arise, for instance, through exonization, whereby
an intronic or intergenic region becomes an exon, after which

Fig. 1 Examples of mutations that can change domain architectures. Adapted from Buljan et al. [25]. (a) Gene
fusion by a mobile element. LINE refers to a Long Interspersed Nuclear repeat Element, a retrotransposon. The
reverse transcriptase encoded within the LINE causes its mRNA to be reverse-transcribed into DNA and
integrated into the genome, making the domain-encoding blue exon from the donor gene integrate along with
it in the acceptor gene. (b) Gene fusion by loss of a stop signal or deletion of much of the intergenic region.
Genes 1 and 2 are joined together into a single, longer gene. (c) Domain insertion through recombination. The
blue domain from the donor gene is inserted within the acceptor gene by either homologous or illegitimate
recombination. (d) Right: Gene fission by introduction of transcription stop (the letterΩ) and start (the letter A).
Left: Domain loss by introduction of a stop codon (exclamation mark) with subsequent degeneration of the
now untranslated domain
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subsequent mutations would fine-tune its folding and functional
properties [25, 27].

Recent literature (see, e.g., [28]) has discussed the possibility of
de novo domain creation through a variety of mutational mechan-
isms, with some support for this occurring more often than previ-
ously thought [29, 30]. The majority of such new domains arise as
novel genes from noncoding sequence but may subsequently
recombine to join with older domains. Furthermore, young
domains in vertebrates tend more often to occur at the
N-terminal of a protein and tend to experience higher relative
rates of non-synonymous substitution than older domains, which
may reflect the nature of the mechanisms through which novel
domains arise. Moore, Bornberg-Bauer et al. explore the relative
prevalence of domain loss, duplication, and de novo origination in
arthropods [31] and plants [32], suggesting such novel domains
most frequently are associated with environmental adaptations.

2 Distribution of the Sizes of Domain Families

Domain architectures are fundamentally the realizations of how
domains combine to form multi-domain proteins with complex
functions. Understanding how these combinations come to be
requires first that we understand how common the constituent
domains of those architectures are and whether there are selective
pressures determining their abundances. Because of this, the body
of work concerning the sizes and species distributions of domain
families becomes important to us.

Comprehensive studies of the distributions and evolution of
protein domains and domain architectures are possible as genome
sequencing technologies have made many entire proteomes avail-
able for bioinformatic analysis. Initial work [33–35] focused on the
number of copies that a protein family, either single domain or
multi-domain, has in a species. Most conclusions from these early
studies appear to hold true for domains, for supra-domains (see
below) and for domain architectures [36–38]. In particular, these
all exhibit a dominance of the population by a selected few [35], i.e., a
small number of domain families are present in a majority of the
proteins in a genome, whereas most domain families are found only
in a small number of proteins.

Looking at the frequencyN of families of size X (defined as the
number of members in the genome), in the earliest studies, this
frequency was modeled as the power law

N ¼ cX�a

where a is an exponent parameter. The power law is a special case of
the generalized Pareto distribution (GPD) [39]:
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N ¼ c i þXð Þ�a

Power law distributions arise in a vast variety of contexts: from
human income distributions, connectivity of internet routers, word
usage in languages, and many other situations ([34, 35, 40, 41], see
also [42], for a conflicting view). Luscombe et al. [35] described a
number of other genomic properties that also follow power law
distributions, such as the occurrence of DNA “words,” pseudo-
genes, and levels of gene expression. These distributions fit much
better than the alternative they usually are contrasted against, an
exponential decay distribution. The most important difference
between exponential and power law distributions in this context
concerns the fact that the latter has a “fat tail,” that is, while most
domain families occur only a few times in each proteome, most
domains in the proteome still belong to one of a small number of
families.

Later work ([39, 43], see also [44]) demonstrated that
proteome-wide domain occurrence data fit the general GPD better
than the power law but that it also asymptotically fits a power law as
X � i. The deviation from strict power law behavior depends on
proteome size in a kingdom-dependent manner [43]. Regardless, it
is mostly appropriate to treat the domain family size distribution as
approximately (and asymptotically) power law-like, and later stud-
ies typically assume this.

The power law, but not the GPD, is scale-free in the sense of
fulfilling the condition

f axð Þ ¼ g að Þf xð Þ
where f(x) and g(x) are some functions of a variable x and where a is
a scaling parameter, that is, studying the data at a different scale will
not change the shape of function. This property has been exten-
sively studied in the literature and is connected to other attributes,
notably when it occurs in network degree distributions (i.e., fre-
quency distributions of edges per node). Here it has been asso-
ciated with properties such as the presence of a few central and
critical hubs (nodes with many edges to other nodes), the similarity
between parts and the whole (as in a fractal), and the growth
process called preferential attachment, under which nodes are
more likely to gain new links the more links they already have.
However, the same power law distribution may be generated
from many different network topologies with different patterns of
connectivity. In particular, they may differ in the extent that hubs
are connected to each other [42]. It is possible to extend the
analysis by taking into account the distribution of degree pairs
along network edges, but this is normally not done.

What kind of evolutionary mechanisms give rise to this kind of
distribution of gene or domain family sizes within genomes? In one
model by Huynen and van Nimwegen [33], every gene within a
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gene family will be more or less likely to duplicate, depending on
the utility of the function of that gene family within the particular
lineage of organisms studied, and they showed that such a model
matches the observed power laws. While they claimed that any
model that explains the data must take into account family-specific
probabilities of duplication fixation, Yanai and coworkers [45]
proposed a simpler model using uniform duplication probability
for all genes in the genome and also reported a good fit with data.

Later, more complex birth-death [43] and birth-death-and-
innovation (BDIM) [29, 34, 39, 46] models were introduced to
explain the observed distributions, and from investigating which
model parameter ranges allow this fit, the authors were able to draw
several far-ranging conclusions. First, the asymptotic power law
behavior requires that the rates of domain gain and loss are asymp-
totically equal. Karev et al. [39] interpreted this as support for a
punctuated equilibrium-type model of genome evolution, where
domain family size distributions remain relatively stable for long
periods of time but may go through stages of rapid evolution,
representing a shift between different BDIM evolutionary models
and significant changes in genome complexity. Like Huynen and
van Nimwegen [33], they concluded that the likelihood of fixated
domain duplications or losses in a genome directly depend on
family size. The family will however only grow as long as new copies
can find new functional niches and contribute to a net benefit for
survival, i.e., as long as selection favors it.

Aside from Huynen and van Nimwegen’s, none of the models
discussed depend very strongly on family-specific selection to
explain the abundances of individual gene families, nor do they
exclude such selection. Some domains may be highly useful to
their host organism’s lifestyle, such as cell-cell connectivity domains
to an organism beginning to develop multicellularity. Expansion of
these domain families might therefore become more likely in some
lineages than in others. To what extent these factors actually affect
the size of domain families remains to be fully explored. Karev et al.
[39] suggested that the rates of domain-level change events them-
selves—domain duplication and loss rates, as well as the rate of
influx of novel domains from other species or de novo creation—
must be evolutionarily adapted, as only some such parameters allow
the observed distributions to be stable. Van Nimwegen [47] inves-
tigated how the number of genes increases in specific functional
categories as total genome size increases. He found that the rela-
tionship matches a power law, with different coefficients for each
functional class remaining valid over many bacterial lineages. Ranea
et al. found similar results. Also, Ranea et al. [48] showed that, for
domain superfamilies inferred to be present in the last universal
common ancestor (LUCA), domains associated with metabolism
have significantly higher abundance than those associated with
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translation, further supporting a connection between the function
of a domain family and how likely it is to expand.

Extending the analysis to multi-domain architectures, Apic
et al. [37] showed that the frequency distribution of multi-domain
family sizes follows a power law curve similar to that reported for
individual domain families. It therefore seems likely that the basic
underlying mechanisms should be similar in both cases, i.e., that
duplication of genes, and thus their domain architectures, is the
most important type of event affecting the evolution of domain
architectures.

Have the trends described above stood the test of time as more
genomes have been sequenced andmore domain families have been
identified? We considered the 1943 UniProt proteomes covered by
version 30.0 of Pfam, plotted the frequency Y of domain families
that have precisely X members as a function of X, and fit a power
law curve to this. Figure 2a shows the resulting plots for three
representative species, one complex eukaryote (Homo sapiens),

Fig. 2 (a) Distribution of domain family sizes in three selected species. Power law distributions were fitted to
these curves such that for frequency f of families of size X, f ¼ cXa. For S. cerevisiae, a ¼ �1.9, for E. coli,
a ¼ �1.7, and for H. sapiens, a ¼ �1.5. (b) Distribution of domain family sizes across the three kingdoms.
Power law distributions were fitted to these curves such that for frequency f of families of size X, f ¼ cXa. For
bacteria, a ¼ �0.9, for archaea, a ¼ �1.1, for eukaryotes, a ¼ �0.8, and for viruses, a ¼ �1.9
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one simple eukaryote (Saccharomyces cerevisiae), and one prokary-
ote (Escherichia coli). Figure 2b shows the corresponding plots for
all domains in all complete eukaryotic, bacterial, and archaeal pro-
teomes. The power law curve fits decently well, with slopes becom-
ing less steep for the more complex organisms, whose distributions
have relatively more large families. The power law-like behavior
suggests that complex organisms with large proteomes were
formed by heavily duplicating domains from relatively few families.
Figures 3a, b show equivalent plots, not for single domains but for
entire multi-domain architectures. The curve shapes and the rela-
tionship between both species and organism groups are similar,
indicating that the evolution of these distributions have been
similar.

Fig. 3 (a) Distribution of multi-domain (architecture) family sizes in three selected species. Power law
distributions were fitted to these curves such that for frequency f of families of size X, f ¼ cXa. For
S. cerevisiae, a ¼ �2.0, for E. coli, a ¼ �1.8, and for H. sapiens, a ¼ �1.5. (b) Distribution of multi-
domain (architecture) family sizes across the three kingdoms. Power law distributions were fitted to these
curves such that for frequency f of families of size X, f ¼ cXa. For bacteria, a¼ �1.0, for archaea, a ¼ �1.1,
for eukaryotes, a ¼ �1.1, and for viruses, a ¼ �2.0
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3 Kingdom and Age Distribution of Domain Families and Architectures

How old are specific domain families or domain architectures? With
knowledge of which organism groups they are found in, it is possi-
ble to draw conclusions about their age and whether lineage-
specific selective pressures have determined their kingdom-specific
abundances. Domain families and their combinations have arisen
throughout evolutionary history, presumably by new combinations
of pre-existing elements that may have diverged beyond recogni-
tion or by processes such as exonization. We can estimate the age of
a domain family by finding the largest clade of organisms within
which it is found, excluding organisms with only xenologs, i.e.,
horizontally transferred genes [14]. The age of this lineage’s root is
the likely age of the family. The same holds true for domain com-
binations and entire domain architectures. This methodology
allows us to determine how changing conditions at different points
in evolutionary history, or in different lineages, have affected the
evolution of domain architectures.

Apic et al. [36] analyzed the distribution of SCOP domains
across 40 genomes from archaea, bacteria, and eukaryotes. They
found that a majority of domain families are common to all three
kingdoms of life and thus likely to be ancient. Kuznetsov et al. [43]
performed a similar analysis using InterPro domains and found that
only about one fourth of all such domains were present in all three
kingdoms, but a majority was present in more than one of them.
Lateral gene transfer or annotation errors can cause a domain family
to be found in one or a few species in a kingdom without actually
belonging to that kingdom. To counteract this, one can require
that a family must be present in at least a reasonable fraction of the
species within a kingdom for it to be considered anciently present
there. For instance, using Gene3D assignments of CATH domains
to 114 complete genomes, mainly bacterial, Ranea et al. [48]
isolated protein superfamily domains that were present in at least
90% of all the genomes and at least 70% of the archaeal and
eukaryotic genomes, respectively. Under these stringent cutoffs
for considering a domain to be present in a kingdom, 140 domains,
15% of the CATH families found in at least one prokaryote
genome, were inferred to be ancient. Chothia and Gough [49]
performed a similar study on 663 SCOP superfamily domains
evaluated at many different thresholds and found that while
516 (78%) superfamilies were common to all three kingdoms at a
threshold of 10% of species in each kingdom, only 156 (24%)
superfamilies were common to all three kingdoms at a threshold
of 90%. They also showed that for prokaryotes, a majority of
domain instances (i.e., not domain families but actual domain
copies) belong to common superfamilies at all thresholds below
90%.
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Extending to domain combinations, Apic et al. [36] reported
that a majority of SCOP domain pairs are unique to each kingdom
but also that more kingdom-specific domain combinations than
expected were composed only of domain families shared between
all three kingdoms. This would imply a scenario where the inde-
pendent evolution of the three kingdoms mainly involved creating
novel combinations of domains that existed already in their com-
mon ancestor.

Several studies have reported interesting findings on domain
architecture evolution in lineages closer to ourselves: in metazoa
and vertebrates. Ekman et al. [50] claimed that new metazoa-
specific domains and multi-domain architectures have arisen
roughly once every 0.1–1 million years in this lineage. According
to their results, most metazoa-specific multi-domain architectures
are a combination of ancient and metazoa-specific domains. The
latter category are however mostly found as novel single-domain
proteins. Much of the novel metazoan multi-domain architectures
involve domains that are versatile (see below) and exon-bordering
(allowing for their insertion through exon shuffling). The novel
domain combinations in metazoa are enriched for proteins asso-
ciated with functions required for multicellularity—regulation, sig-
naling, and functions involved in newer biological systems such as
immune response or development of the nervous system, as previ-
ously noted by Patthy [23]. They also showed support for exon
shuffling as an important mechanism in the evolution of metazoan
domain architectures. Itoh et al. [51] added that animal evolution
differs significantly from other eukaryotic groups in that lineage-
specific domains played a greater part in creating new domain
combinations. Nasir et al. [52] analyzed the age and taxonomic
distribution of domains drawing on species phylogenies recon-
structed from domain repertoires, concluding among other things
that most widespread domains are relatively old and suggesting
high numbers of both domain gain and loss in the evolution of
the three organismal superkingdoms. Bacterial and archaeal genes
have tended to gain or lose domains encoding aspects of metabolic
capacity, whereas those of eukaryotes—including multicellular
ones—have gained domains enabling more elaborate extracellular
processes such as immunity and regulatory capacities.

In the most recent datasets, what is the distribution of domains
and domain combinations across the three kingdoms of life? Look-
ing at the set of UniProt proteomes represented in version 30.0 of
Pfam, the distribution of domains across the three kingdoms are as
displayed in the Venn diagram of Fig. 4a. Figure 4b, c show the
equivalent distributions of immediate neighbors and triplets of
domains, respectively, and Fig. 4d the distribution of multi-domain
architectures across kingdoms. The numbers are somewhat biased
toward bacteria as 56% of the UniProt proteomes are from this
kingdom. However, with this high coverage of all kingdoms
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(506 eukaryotic, 94 archaeal, and 1090 bacterial proteomes, as well
as 253 viral entities), the results should be robust in this respect.
Compared to most previous reports, we see a striking difference in
that a much smaller portion of domains are shared between all
kingdoms. There are some potential artifacts which could affect
this analysis. If lateral gene transfer is very widespread, we may
overestimate the number of families present in all three kingdoms.
Moreover, there are cases where separate Pfam families are actually
distant homologs of each other, which could lead to underestima-
tion of the number of ancient families. To counteract this, we make
use of Pfam clans, considering domains in the same clan to be
equivalent. While not all distant homologies have yet been

Fig. 4 (a) Kingdom distribution of unique domains. Values are given as percentages of the total, 10,330
domains. (b) Kingdom distribution of unique domain pairs. Values are given as percentages of the total, 31,287
domain pairs. (c) Kingdom distribution of unique domain triplets. Values are given as percentages of the total,
33,662 domain triplets. (d) Kingdom distribution of unique multi-domain architectures. Values are given as
percentages of the total, 23,238 multi-domain architectures
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registered in the clan system, performing the analysis on the clan
level reduces the risk of such underestimation.

Our finding that 10% of all Pfam-A domains are present in all
three main kingdoms is strikingly lower than in the earlier works
and is even lower than reported by Ranea et al. [48], who used very
stringent cutoffs. However, a direct comparison of statistics for
Pfam domains/clans and CATH superfamilies is difficult. The
decrease in ancient families that we observe may be a consequence
of the massive increase in sequenced genomes and/or that the
recent growth of Pfam has added relatively more kingdom-specific
domains. We further found that only 1.5% of all domains or domain
combinations are unique to archaea, suggesting that known repre-
sentatives of this lineage have undergone very little independent
evolution and/or that most archaeal gene families have been hori-
zontally transferred to other kingdoms. The trend when going
from domain via domain combinations to whole architectures is
clear—the more complex patterns are less shared between the king-
doms. In other words, each kingdom has used a common core of
domains to construct its own unique combinations of multi-
domain architectures.

4 Domain Co-occurrence Networks

A multi-domain architecture connects individual domains with
each other. There are several ways to derive these connections and
quantify the level of co-occurrence. The simplest method is to
consider all domains on the same amino acid chain to be connected,
but we can also limit the set of co-occurrences we consider to, e.g.,
immediate neighbor pairs or triplets. Regardless of which method is
used, the result is a domain co-occurrence network, where nodes
represent domains and where edges represent the existence of
proteins in which members of these families co-occur. Figure 5
shows an example of such a network and the set of domain archi-
tectures which defines it. This type of explicit network representa-
tion is explored in several studies, notably by Itoh et al. [51],
Przytycka et al. [53], and Kummerfeld and Teichmann [13]. It is
advantageous as it allows the introduction of powerful analysis tools
developed within the engineering sciences for use with artificial
network structures such as the World Wide Web. The patterns of
co-occurrences that we observe should be a direct consequence of
the constraints and conditions under which domain architectures
evolve, and because of this, the study of these patterns becomes
relevant for understanding such factors.

The frequency distribution of node degrees in the domain
co-occurrence network has been fitted to a power law [36] and a
more general GPD as well [40]. The closer this approximation
holds, the more the network will have the scale-free property.
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This property can be thought of as a hierarchy in the network,
where the more centrally connected nodes link to more peripheral
nodes with the same relative frequency at each level. In the context
of domains, this means that a small number of domains co-occur
with a high number of other domains, whereas most domains only
have a few neighbors—usually some of the highly connected hubs.
The most highly connected domains are referred to as promiscuous
[54], mobile, or versatile [14, 55, 56]. Many such hub domains are
involved in intracellular or extracellular signaling, protein-protein
interactions and catalysis, and transcription regulation. In general,
these are domains that encode a generic function, e.g., phosphory-
lation, which is reused in many contexts by additional domains that

Fig. 5 Example of protein domain co-occurrence network, adapted from Kum-
merfeld and Teichmann [13]. (a) Sample set of domain architectures. The lines
represent proteins and the boxes their domains in N- to C-terminal order. (b)
Resulting domain co-occurrence (neighbor) network. Nodes correspond to
domains and are linked by an edge if at least one domain exists where the
two domains are found adjacent to each other along the amino acid chain
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confer substrate specificity or localization. Table 1 shows the
domains (or clans) with the highest numbers of immediate neigh-
bors in Pfam 30.0.

One way of evolving a domain co-occurrence network that
follows a power law is by “preferential attachment” [53, 57]. This
means that new edges (corresponding to proteins where two
domains co-occur) are added with a probability that is higher the
more edges these nodes (domains) already have, resulting in a
power law distribution.

Apic et al. [37] considered a null model for random domain
combination, in which a proteome contains domain combinations

Table 1
The 20 most densely connected hubs with regard to immediate domain neighbors, according to Pfam
30.0

Identifier Name
Number of different immediate
neighbors

CL0023 P-loop containing nucleoside triphosphate hydrolase
superfamily

415

CL0063 FAD/NAD(P)-binding Rossmann fold superfamily 390

CL0123 Helix-turn-helix clan 358

CL0016 Protein kinase superfamily 192

CL0159 Ig-like fold superfamily (E-set) 148

CL0020 Tetratricopeptide repeat superfamily 146

CL0028 Alpha/beta-hydrolase fold 140

CL0172 Thioredoxin-like 136

CL0036 Common phosphate-binding site TIM barrel
superfamily

136

CL0219 Ribonuclease H-like superfamily 127

CL0058 Tim barrel glycosyl hydrolase superfamily 120

CL0257 N-acetyltransferase-like 115

CL0167 Zinc beta-ribbon 114

CL0072 Ubiquitin superfamily 112

CL0125 Peptidase clan CA 106

CL0186 Beta propeller clan 105

CL0021 OB fold 101

CL0192 Family A G protein-coupled receptor-like superfamily 101

CL0015 Major facilitator superfamily 97

CL0220 EF-hand-like superfamily 95
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with a probability based on the relative abundances of the domains
only. They showed that this model does not hold and that far fewer
domain combinations than expected under it are actually seen. If
most domain duplication events are gene duplication events that do
not change domain architecture—or at the very least do not disrupt
domain pairs—then this finding is not unexpected, nor does it
require or exclude any particular selective pressure to keep these
domains together in proteins. There is growing support for the idea
that separate instances of a given domain architecture in general
descend from a single ancestor with that architecture [58], with
polyphyletic evolution of domain architectures occurring only in a
small fraction of cases [53, 59, 60].

Itoh et al. [51] performed reconstruction of ancestral domain
architectures using maximum parsimony, as described in the next
section. This allowed them to study the properties of the ancestral
domain co-occurrence network and thus explore how network
connectivity has altered over evolutionary time. Among other
things, they found increased connectivity in animals, particularly
of animal-specific domains, and suggest that this phenomenon
explains the high connectivity for eukaryotes reported by Wuchty
[40]. For non-animal eukaryotes, they reported a correlation
between connectivity and age, such that older domains had rela-
tively higher connectivity, with domains preceding the divergence
of eukaryotes and prokaryotes being the most highly connected,
followed by early eukaryotic domains. In other words, early eukary-
otic evolution saw the emergence of some key hub proteins, while
the most prominent eukaryotic hubs emerged in the animal lineage.
Parikesit et al. [61] studied the functional annotation of
co-occurring domains in eukaryotes, concluding that while these
may have different associated functional descriptors, these descrip-
tors usually tend to fall within the same overall category within the
gene ontology. Co-occurring domains thus tend to contribute to
the same overall process type rather than have very widely divergent
functional annotations. Hsu et al. [62] constructed a network
linking domain architectures (i.e., each node is a multi-domain
architecture, as opposed to in a regular domain co-occurrence
network) where parsimonious reconstruction suggests evolution
of one from the other, identifying “highly evolvable” architectures
as hubs in this network. Proteins with such architectures were
reported to be more widespread, less often essential, more often
duplicated, and more often associated with gene functions involved
in specific adaptation of organisms.

What is the degree distribution of current domain
co-occurrence networks? We again used the domain architectures
from all complete proteomes in version 30.0 of Pfam and consid-
ered the network of immediate neighbor relationships, i.e., nodes
(domains) have an edge between them if there is a protein where
they are adjacent. Each domain was assigned a degree as its number
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of links to other domains. We then counted the frequency with
which each degree occurs in the co-occurrence network. Figure 6a
shows this relationship for the set of domain architectures found in
the same species as for Figs. 2a, and 6b shows the equivalent plots
for the three kingdoms as found among the complete proteomes in
Pfam. Regressions to a power law have been added to the plots. The
presence of a power law-like behavior of this type implies that few
domains have very many immediate neighbors, while most domains
have few immediate neighbors. Note that the observed degrees in
our dataset were strongly reduced by removing all sequences with a
stretch longer than 50 amino acids lacking domain annotation.

Fig. 6 (a) Distribution of domain co-occurrence network node degrees in three selected species. Power law
distributions were fitted to these curves such that for frequency f of families of size X, f ¼ cXa. For
S. cerevisiae, a ¼ �2.2, for E. coli, a ¼ �2.0, and for H. sapiens, a ¼ �1.9. (b) Distribution of domain
co-occurrence network node degrees across the three kingdoms. This corresponds to a network where two
domains are connected if any species within the kingdom has a protein where these domains are immediately
adjacent. Power law distributions were fitted to these curves such that for frequency f of families of size X,
f ¼ cXa. For bacteria, a ¼ �1.6, for archaea, a ¼ �1.7, for eukaryotes, a ¼ �1.5, and for viruses a ¼ �2.0
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5 Supra-domains and Conserved Domain Order

As we have seen, whole multi-domain architectures or shorter
stretches of adjacent domains are often repeated in many proteins.
These only cover a small fraction of all possible domain combina-
tions. Are the observed combinations somehow special? We would
expect selective pressure to retain some domain combinations but
not others, since only some domains have functions that would
synergize together in one protein. Often, co-occurring domains
require each other structurally or functionally, for instance, in
transcription factors where the DNA-binding domain provides
substrate specificity, whereas the trans-activating domain recruits
other components of the transcriptional machinery [63]. Vogel
et al. [38] identified series of domains co-occurring as a fixed unit
with conserved N- to C-terminal order but flanked by different
domain architectures and termed them supra-domains. By investi-
gating their statistical overrepresentation relative to the frequency
of the individual domains in the set of nonredundant domain
architectures (where “nonredundant” is crucial, as otherwise, e.g.,
whole-gene duplication would bias the results), they identified a
number of such supra-domains. Many ancient domain combina-
tions (shared by all three kingdoms) appear to be such selectively
preserved supra-domains.

How conserved is the order of domains in multi-domain archi-
tectures? In a recent study, Kummerfeld and Teichmann [13] built
a domain co-occurrence network with directed edges, allowing it to
represent the order in which two domains are found in proteins. As
in other studies, the distribution of node degrees fits a power law
well. Most domain pairs were only found in one orientation. This
does not seem required for functional reasons, as flexible linker
regions should allow the necessary interface to form also in the
reversed case [58], but may rather be an indication that most
domain combinations are monophyletic. Weiner and Bornberg-
Bauer [64] analyzed the evolutionary mechanisms underlying a
number of reversed domain order cases and concluded that inde-
pendent fusion/fission is the most frequent scenario. Although
domain reversals occur in only a few proteins, it actually happens
more often than was expected from randomizing a co-occurrence
network [13]. That study also observed that the domain
co-occurrence network is more clustered than expected by a ran-
dom model and that these clusters are also functionally more
coherent than would be expected by chance.
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6 Domain Mobility, Promiscuity, or Versatility

While some protein domains co-occur with a variety of other
domains, some are always seen alone or in a single architecture in
all proteomes where they are found. A natural explanation is that
some domains are more likely to end up in a variety of architectural
contexts than others due to some intrinsic property they possess. Is
such domain versatility or promiscuity a persistent feature of a given
domain, and does it correlate with certain functional or biological
properties of the domain?

Several ways of measuring domain versatility have been sug-
gested. One measure, NCO [40], counts the number of other
domains found in any architectures where the domain of interest
is found. Another measure, NN [37], instead counts the number of
distinct other domains that a domain is found adjacent to. Yet
another measure, NTRP [65], counts the number of distinct tri-
plets of consecutive domains where the domain of interest is found
in the middle. All of these measures can be expected to be higher
for common domains than for rare domains, i.e., variations in
domain abundance (the number of proteins a domain is found in)
can hide the intrinsic versatility of domains. Therefore, three differ-
ent studies [14, 55, 66] formulated relative domain versatility
indices that aim to measure versatility independently of abundance.
It is worth noting that most studies have considered only immedi-
ately adjacent domain neighbors in these analyses, a restriction
based on the assumption that those are more likely to interact
functionally than domains far apart on a common amino acid
chain. More recent work [67] introduced a network versatility
metric which can classify domains as being central or peripheral
with regard to the large-scale structure of their bigram network
(i.e., the network-linking domains found adjacent in proteins),
observing how peripheral such domains exhibit relatively higher
primary sequence conservation suggestive of adaptation to more
specific functions, whereas the core domains may be more
multifunctional.

The first relative versatility study was presented by Vogel et al.
[66], who used as their domain dataset the SUPERFAMILY data-
base applied to 14 eukaryotic, 14 bacterial, and 14 archaeal pro-
teomes. They modeled the number of unique immediate neighbor
domains as a power law function of domain abundance, performed
a regression on this data, and used the resulting power law expo-
nent as a relative versatility measure. Basu et al. [55] used Pfam and
SMART [8] domains and measured relative domain versatility for
28 eukaryotes as the immediate neighbor pair frequency normal-
ized by domain frequency. They then defined promiscuous
domains as a class according to a bimodality in the distribution of
the raw numbers of unique domain immediate neighbor pairs.
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Weiner et al. [14] used Pfam domains for 10,746 species in all
kingdoms and took as their relative versatility measure the logarith-
mic regression coefficient for each domain family across genomes,
meaning that it is not defined within single proteomes.

To what extent is high versatility an intrinsic property of a
certain domain? Vogel et al. [66] only examined large groups of
domains together and therefore did not address this question for
single domains. Basu et al. [55] and Weiner et al. [14] instead
analyzed each domain separately and concluded that there are
strong variations in relative versatility at this level. Their results
are very different in detail, however, reflected by the fact that only
one domain family (PF00004, AAA ATPase family) is shared
between the ten most versatile domains reported in the two studies.
As they used fairly similar domain datasets, it would appear that the
results strongly depend on the definition of relative versatility.
Another potential reason for the different results is that Basu’s list
was based on eukaryotes only, while Weiner’s analysis was heavily
biased toward prokaryotes. Furthermore, the top ten list in Basu
et al. [55] and their follow-up paper [56] only overlap by four
domains, yet the main difference is that in the latter study all
28 eukaryotes were considered, while the former study was limited
to the subset of 20 animal, plant, and fungal species. The choice of
species thus seems pivotal for the results when using this method.
They also used different methods for calculating the average value
of relative versatility across many species, which may influence the
results.

Does domain versatility vary between different functional clas-
ses of domains? Vogel et al. [66] found no difference in relative
versatility between broad functional or process categories or
between SCOP structural classes. In contrast to this, Basu et al.
[55] reported that high versatility was associated with certain func-
tional categories in eukaryotes. However, no test for the statistical
significance of these results was performed. Weiner et al. [14] also
noted some general trends but found no significant enrichment of
gene ontology terms in versatile domains. This does not necessarily
mean that no such correlation exists, but more research is required
to convincingly demonstrate its strength and its nature. More
recently, Cromar et al. [68] analyzed domain architectures in
eukaryotic extracellular matrix proteomes, noting that these struc-
tures are organized around a set of versatile domains under the
weighted bigram metric of Basu et al. [55].

Another important question is to what extent domain versatil-
ity varies across evolutionary lineages. Vogel et al. [66] reported no
large differences in average versatility for domains in different king-
doms. The versatility measure of Basu et al. [55] can be applied
within individual genomes, which means that according to this
measure domains may be versatile in one organism group but not
in another, as well as gain or lose versatility across evolutionary
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time. They found that more domains were highly versatile in ani-
mals than in other eukaryotes. Modeling versatility as a binary
property defined for domains in extant species, they further used
a maximum parsimony approach to study the persistence of versa-
tility for each domain across evolutionary time and concluded that
both gain and loss of versatility are common during evolution.
Inferring ancestral domain architectures, Cohen-Gihon et al. [69]
report an increase in versatility in many domains during eukaryotic
evolution, in particular around the divergence of Bilateria. Weiner
at al. [14] divided domains into age categories based on distribu-
tion across the tree of life and reported that the versatility index is
not dependent on age, i.e., domains have equal chances of becom-
ing versatile at different times in evolution. This is consistent with
the observation by Basu et al. [55] that versatility is a fast-evolving
and varying property. When measuring versatility as a regression
within different organism groups, Weiner et al. [14] found slightly
lower versatility in eukaryotes, which is in conflict with the findings
of Basu et al. [55]. Again, this underscores the strong dependence
of the method and dataset on the results.

Further properties reported to correlate with domain versatility
include sequence length, where Weiner et al. [14] found that
longer domains are significantly more versatile within the frame-
work of their study, while at the same time, shorter domains are
more abundant and hence may have more domain neighbors in
absolute numbers. Basu et al. [55] further reported that more
versatile domains have more structural interactions than other
domains. To determine which of these reported correlations that
genuinely reflect universal biological trends, further comprehensive
studies are needed using more data and uniform procedures. This
would hopefully allow the results from the studies described here to
be validated and any conflicts between them to be resolved.

Basu et al. [55] further analyzed the phylogenetic spread of all
immediate domain neighbor pairs (“bigrams”) containing domains
classified as promiscuous. The main observation this yielded was
that although most such combinations occurred in only a few
species, most promiscuous domains are part of at least one combi-
nation that is found in a majority of species. They interpreted this as
implying the existence of a reservoir of evolutionarily stable domain
combinations from which lineage-specific recombination may draw
promiscuous domains to form unique architectures. Later work by
Hsu et al. [70] analyzed the domain co-occurrence networks cen-
tered on each domain family, classifying such subnetworks as being
either mostly starlike, taillike, or tetragon-like, with promiscuous
domains forming cores of starlike architecture networks in this
representation.
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7 Principles of Domain Architecture Evolution

What mutation events can generate new domain architectures, and
what is their relative predominance? The question can be
approached by comparing protein domain architectures of extant
proteins. This is based on the likely realistic assumption that most
current domain architectures evolved from ancestral domain archi-
tectures that can still be found unchanged in other proteins.
Because of this, in pairs of most similar extant domain architectures,
one can assume that one of them is ancestral. This agrees well with
results indicating that most groups of proteins with identical
domain architectures are monophyletic. By comparing the most
similar proteins, several studies have attempted to chart the relative
frequencies of different architecture-changing mutations.

Björklund et al. [71] used this particular approach and came to
several conclusions. First, changes to domain architecture are much
more common by the N- and C-termini than internally in the
architecture. This is consistent with several mechanisms for archi-
tecture changes such as introduction of new start or stop codons or
mergers with adjacent genes, and similar results have been found in
several other studies [15, 25, 26]. Furthermore, insertions or dele-
tions of domains (“indels”) are more common than substitutions of
domains, and the events in question mostly concern just single
domains, except in cases with repeats expanding with many
domains in a row [72]. In a later study, the same group made use
of phylogenetic information as well, allowing them to infer direc-
tionality of domain indels [50]. They then found that domain
insertions are significantly more common than domain deletions.

Weiner et al. [26] performed a similar analysis on domain loss
and found compatible results—most changes occur at the termini
(see also discussion in [28]). Moreover, they demonstrated that
terminal domain loss seldom involves losing only part of a domain,
or rather, that such partial losses quickly progress into loss of the
entire domain. However, it is important to ensure such observa-
tions are not confounded by cases where errors in gene boundary
recognition make domain detection less accurate [73].

There is some support [23, 74, 75] for exon shuffling to have
played an important part in domain evolution, and there are a
number of domains that match intron borders well, for example,
structural domains in extracellular matrix proteins. While it may not
be a universal mechanism, exon shuffling is suggested to have been
particularly important for vertebrate evolution [23].

Recognizing the potential role of gene duplications in domain
architecture evolution, Grassi et al. [76] analyzed domain architec-
ture shifts following either whole-genome duplication (WGD) or
smaller-scale gene duplication events in yeast. Surviving WGD
duplicates had retained ancestral architecture in ca 95% of cases,
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with approximately the same chance of architecture change in
WGD as under local duplication. Genes retained over time from
either type of duplication were enriched for a core of commonly
occurring domains but with a subset of rarer domains additionally
enriched in retained WGD duplicates compared to locally dupli-
cated genes. The former category more often was associated with
housekeeping-type gene functions, whereas the latter more often
involved adaptive functions. Functional change was generally larger
than architectural change following duplication. Zhang et al. [77]
similarly studied domain architecture evolution in plants, noting
that lineage-specific architecture expansions largely can be
explained from differential retention of genes following successive
whole-genome duplications. Another form of domain duplication
particularly relevant in plants is amplification of the numbers of
domain repeats in proteins, discussed, e.g., by Sharma and
Pandey [78].

8 Inferring Ancestral Domain Architectures

The above analyses, based on pairwise comparison of extant protein
domain architectures, cannot tally ancestral evolutionarily events
nearer the root of the tree of life. With ancestral architectures, one
can directly determine which domain architecture changes have
taken place during evolution and precisely chart how mechanisms
of domain architecture evolution operate, as well as gauge their
relative frequency. A drawback is that since we can only infer
ancestral domain architectures from extant proteins, the result will
depend somewhat on our assumptions about evolutionary mechan-
isms. On the upside, it should be possible to test how well different
assumptions fit the observed modern-day protein domain architec-
ture patterns.

Attempts at such reconstructions have been made using parsi-
mony. Given a gene tree and the domain architectures at the leaves,
dynamic programming can be used in order to find the assignment
of architectures to internal nodes that require the smallest number
of domain-level mutation events. This simple model can be elabo-
rated by weighting loss and gain differently or by requiring that a
domain or an architecture can only be gained at most once in a tree
(Dollo parsimony) [79].

An early study of Snel et al. [80] considered 252 gene trees
across 17 fully sequenced species and used parsimony to minimize
the number of gene fission and fusion events occurring along the
species tree. Their main conclusion, that gene fusions are more
common than gene fissions, was subsequently supported by a larger
study by Kummerfeld and Teichmann [81], where fusions were
found to be about four times as common as fissions in a most
parsimonious reconstruction. Fong et al. [82] followed a similar
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procedure on yet more data and concluded that fusion was 5.6
times as likely as fission.

Buljan and Bateman [15] performed a similar maximum parsi-
mony reconstruction of ancestral domain architectures. They too
observed that domain architecture changes primarily take place at
the protein termini, and the authors suggested that this might
largely occur because terminal changes to the architecture are less
likely to disturb overall protein structure. Moreover, they con-
cluded from reconciliation of gene and species trees that domain
architecture changes were more common following gene duplica-
tions than following speciation but that these cases did not differ
with respect to the relative likelihood of domain losses or gains.

Recently, Buljan et al. [25] presented a new ancestral domain
architecture reconstruction study which assumed that gain of a
domain should take place only once in each gene tree, i.e., Dollo
parsimony [79]. Their results also support gene fusion as a major
mechanism for domain architecture change. The fusion is generally
preceded by a duplication of either of the fused genes. Intronic
recombination and insertion of exons are observed but relatively
rarely. They also found support for de novo creation of disordered
segments by exonization of previously noncoding regions. More
recently still a method for domain architecture history reconstruc-
tion using a network construct called a plexus was described
[83]. Yang and Bourne [84] further described another
parsimony-based reconstruction approach, as did Wu et al. [85],
reporting that histories of signaling and development proteins are
enriched for gene fusion/fission events. Stolzer et al. [86] present
another method for domain architecture history inference, made
available through the Notung software.

9 Polyphyletic Domain Architecture Evolution

There appears to be a “grammar” for how protein domains are
allowed to be combined. If nature continuously explores all possi-
ble domain combinations, one would expect that the allowed com-
binations would be created multiple times throughout evolution.
Such independent creation of the same domain architecture can be
called convergent or polyphyletic evolution, whereas a single origi-
nal creation event for all extant examples on an architecture would
be called divergent or monophyletic evolution. This is relevant for
several reasons, not least because it determines whether or not we
can expect two proteins with identical domain architectures to have
the same history along their entire length.

A graph theoretical approach to answer this question was taken
by Przytycka et al. [53], who analyzed the set of all proteins con-
taining a given superfamily domain. The domain architectures of
these proteins define a domain co-occurrence network, where
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edges connect two domains both found in a protein, regardless of
sequential arrangement. The proteins of such a set can also be
placed in an evolutionary tree, and the evolution of all multi-
domain architectures containing the reference domain can be
expressed in terms of insertions and deletions of other domains
along this tree to form the extant domain architectures. The ques-
tion, then, is whether or not all leaf nodes sharing some domain
arrangement (up to and including an entire architecture) stem from
a single ancestral node possessing this combination of domains. For
monophyly to be true for all architectures containing the reference
domain, the same companion domain cannot have been inserted in
more than one place along the tree describing the evolution of the
reference domain. By application of graph theory and Dollo parsi-
mony [79], they showed that monophyly is only possible if the
domain co-occurrence network defined by all proteins containing
the reference domain is chordal, i.e., it contains no cycles longer
than three edges.

Przytycka et al. [53] then evaluated this criterion for all super-
family domains in a large-scale dataset. For domains where the
co-occurrence network contained fewer than 20 nodes (domains),
the chordal property and hence the possibility of complete mono-
phyly of all domain combinations and domain architectures con-
taining that domain held. By comparing actual domain
co-occurrence networks with a preferential attachment null
model, they showed that far more architectures are potentially
monophyletic than would be expected under a pure preferential
attachment process. This finding is analogous to the observation by
Apic et al. [37] that most domain combinations are duplicated
more frequently (or reshuffled less) than expected by chance. In
other words, gene duplication is much more frequent than domain
recombination [66]. However, for many domains that co-occurred
with more than 20 other different domains, particularly for
domains previously reported as promiscuous, the chordal property
was violated, meaning that multiple independent insertions of the
same domain, relative to the reference domain phylogeny, must be
assumed.

A more direct approach is to do complete ancestral domain
architecture reconstruction of protein lineages and to search for
concrete cases that agree with polyphyletic architecture evolution.
There are two conceptually different methodologies for this type of
analysis. Either one only considers architecture changes between
nodes of a species tree, or one considers any node in a reconstructed
gene tree. The advantage of using a species tree is that one avoids
the inherent uncertainty of gene trees, but on the other hand, only
events that take place between examined species can be observed.

Gough [59] applied the former species-tree-based methodol-
ogy to SUPERFAMILY domain architectures and concluded that
polyphyletic evolution is rare, occurring in 0.4–4% of architectures.
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The value depends on methodological details, with the lower
bound considered more reliable.

The latter gene-tree-based methodology was applied by For-
slund et al. [60] to the Pfam database. Ancestral domain architec-
tures were reconstructed through maximum parsimony of single-
domain phylogenies which were overlaid for multi-domain pro-
teins. This strategy yielded a higher figure, ranging between 6%
and 12% of architectures depending on dataset and whether or not
incompletely annotated proteins were removed. The two different
approaches thus give very different results. The detection of poly-
phyletic evolution is in both frameworks dependent on the data
that is used—its quality, coverage, filtering procedures, etc. The
studies used different datasets which makes it hard to compare.
However, given that their domain annotations are more or less
comparable, the major difference ought to be the ability of the
gene-tree method to detect polyphyly at any point during evolu-
tion, even within a single species. It should be noted that domain
annotation is by no means complete—only a little less than half of
all residues are assigned to a domain [5]—and this is clearly a
limiting factor for detecting architecture polyphyly. The numbers
may thus be adjusted considerably upwards when domain annota-
tion reaches higher coverage. A later study by Zmasek and Godzik
[87] reports much higher rates (25–75%) still of polyphyletic evo-
lution of eukaryotic multi-domain architectures, arguing that pre-
vious datasets were too small to have the power to reveal this.

Future work will be required to provide more reliable estimates
of how common polyphyletic evolution of domain architectures
is. Any estimate will depend on the studied protein lineage, the
versatility of the domains, and methodological factors. A compre-
hensive and systematic study using more complex phylogenetic
methods than the fairly ad hoc parsimony approach, as well as
effective ways to avoid overestimating the frequency of polyphyletic
evolution due to incorrect domain assignments or hidden homol-
ogy between different domain families, may be the way to go. At
this point all that can be said is that polyphyletic evolution of
domain architectures definitely does happen, but relatively rarely,
and that it is more frequent for complex architectures and versatile
domains. A detailed case study was made recently of netrin domain-
containing proteins, where polyphyletic evolution in metazoa
seems well-supported [88]; these authors further suggest the
term merology for such polyphyletic evolution. A series of papers
by Nagy and Patthy et al. [73, 89, 90] further elaborates on
challenges faced within this line of research; they report strong
confounding influence of gene prediction errors. They further
propose the term epaktology for gene similarity resulting from the
independent acquisition of two proteins by the same additional
domain. The authors suggest such cases inflate both estimates of
terminal domain changes and estimates of gene fusion-driven
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changes in domain architecture. Beyond such changes, whether
correctly inferred or not, the authors describe internal domain
shuffling as an important mechanism for how domain architecture
evolution has occurred.

10 Conclusions

As access to genomic data and to increasing amounts of compute
power has grown during the last decade-and-a-half, so has our
knowledge of the overall patterns of domain architecture evolution.
Still, no study is better than its underlying assumptions, and differ-
ences in the representation of data and hypotheses mean that results
often cannot be directly compared. Overall, however, the current
state of the field appears to support some broad conclusions.

Domain and multi-domain family sizes, as well as numbers of
co-occurring domains, all approximately follow power laws, which
implies a scale-free hierarchy. This property is associated with many
biological systems in a variety of ways. In this context, it appears to
reflect how a relatively small number of highly versatile components
have been reused again and again in novel combinations to create a
large part of the domain and domain architecture repertoire of
organisms. Gene duplication is the most important factor to gen-
erate multi-domain architectures, and as it outweighs domain
recombination, only a small fraction of all possible domain combi-
nations is actually observed. This is probably further modulated by
family-specific selective pressure, though more work is required to
demonstrate to what extent. Most of the time, all proteins with the
same architecture or domain combination stem from a single ances-
tor where it first arose, but there remains a fraction of cases,
particularly with domains that have very many combination part-
ners, where this does not hold.

Most changes to domain architectures occur following a gene
duplication and involve the addition of a single domain to either
protein terminus. The main exceptions to this occur in repeat
regions. Exon shuffling played an important part in animals by
introducing a great variety of novel multi-domain architectures,
reusing ancient domains as well as domains introduced in the
animal lineage.

In this chapter, we have reexamined with the most up-to-date
datasets many of the analyses done previously on less data and
found that the earlier conclusions still hold true. Even though we
are at the brink of amassing enormously much more genome and
proteome data thanks to the new generation of sequencing tech-
nology, there is no reason to believe that this will alter the funda-
mental observations we can make today on domain architecture
evolution. However, it will permit a more fine-grained analysis, and
also there will be a greater chance to find rare events, such as
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independent creation of domain architectures. Furthermore, care-
ful application of more complex models of evolution with and
without selection pressure may allow us to determine more closely
to what extent the process of domain architecture evolution was
shaped by selective constraints.

11 Materials and Methods

Updated statistics were generated from the data in Pfam 30.0. All
UniProt proteins in the SwissPfam set for Pfam 30.0 were included.
These span 1090 bacteria, 506 eukaryotes, and 94 archaea. All
Pfam-A domains regardless of type were included. However, as
stretches of repeat domains are highly variable, consecutive subse-
quences of the same domain were collapsed into a single pseudo-
domain, if it was classified as type Motif or Repeat, as in several
previous works [50, 60, 66, 82].

Domains were ordered within each protein based on their
sequence start position. In the few cases of domains being inserted
within other domains, this was represented as the outer domain
followed by the nested domain, resulting in a linear sequence of
domain identifiers. As long regions without domain assignments
are likely to represent the presence of as-yet uncharacterized
domains, we excluded any protein with unassigned regions longer
than 50 amino acids (more than 95% of Pfam-A domains are longer
than this). This approach is similar to that taken in previous works
[59, 60, 71]. Other studies [50, 72] have instead performed addi-
tional, more sensitive domain assignment steps, such as clustering
the unassigned regions to identify unknown domains within them.

Pfam domains are sometimes organized in clans, where clan-
mates are considered homologous. A transition from a domain to
another of the same clan is thus less likely to be a result of domain
swapping of any kind and more likely to be a result of sequence
divergence from the same ancestor. Because of this, we replaced all
Pfam domains that are clan members with the corresponding clan.

The statistics and plots were generated using a set of Perl and R
scripts, which are available upon request. Power law regressions
were done using the R nls function. For reasons of scale, the
regression for a power law relation such as

N ¼ cX�a

was performed on the equivalent relationship

log Xð Þ ¼ 1=að Þ log cð Þ � log Nð Þð Þ
for the parameters a and c, with the exception of the data for Fig. 6,
where instead the relationship

log Nð Þ ¼ log cð Þ � alog Xð Þ
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was used. Moreover, because species or organism group datasets
were of very different size, raw counts of domains were converted
to frequencies before the regression was performed.

12 Online Domain Database Resources

For further studies or research into this field, the first and most
important stop will be the domain databases. Table 2 presents a
selection of domain databases in current use.

Table 2
A selection of protein domain databases

Database URL Notes Reference

ADDA http://ekhidna.biocenter.
helsinki.fi/sqgraph/
pairsdb

Automatic clustering of protein domain
sequences

[11]

CATH http://www.cathdb.info Based solely on experimentally determined 3D
structures

[2]

CDD http://www.ncbi.nlm.nih.
gov/Structure/cdd/
cdd.shtml

Meta-database joining together domain
assignments from many different sources, as
well as some unique domains

[7]

Gene3D http://gene3d.biochem.
ucl.ac.uk

Bioinformatic assignment of sequences to CATH
domains using hidden Markov models

[4]

InterPro http://www.ebi.ac.uk/
interpro

Meta-database joining together domain
assignments from many different sources

[6]

Pfam http://pfam.sanger.ac.uk Domain families are defined from manually
curated multiple alignments and represented
using hidden Markov models

[5]

ProDom http://prodom.prabi.fr Automatically derived domain families from
proteins in UniProt

[9]

SCOP http://scop.mrc-lmb.cam.
ac.uk

Based solely on experimentally determined 3D
structures

[1]

SMART http://smart.embl-
heidelberg.de

Domain families are defined from manually
curated multiple alignments and represented
using hidden Markov models

[8]

SUPE
RFAMIL
Y

http://supfam.cs.bris.ac.
uk

Bioinformatic assignment of sequences to SCOP
domains using hidden Markov models trained
on the sequences of domains in SCOP

[3]

Genome3D http://genome3d.eu/ Meta-database joining together domain
assignments from many different sources,
operating on the architecture level for a set of
selected genomes

[12]
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13 Domain Architecture Analysis Software

Several software tools have been described and made available that
allow for analysis and visualization of domain architectures and
their evolution. A selection of such tools is shown in Table 3.

A few of these tools allow domain architecture evolution analy-
sis by visualizing each protein’s domain architecture along a protein
sequence tree. An example is the web tool TreeDom [96] which,
given a protein domain family and an anchor sequence, fetches the
family from Pfam and builds a tree with the nearest neighbors of the
anchor sequence. An example output from TreeDom is shown in
Fig. 7, in which a nonredundant set of representative proteomes
were queried. Here one can see that while the NUDIX domain of
the anchor sequence tends to co-occur with two other domains
(zf-NADH-PPase and NUDIX-like), it also has recombined with
many other domains over the course of evolution.

Other tools allow different types of analyses, for instance,
searching for similar domain architectures or showing taxonomic
distributions. Some of the protein domain databases listed in
Table 2 include variants of such analyses, while external tools
typically offer more specialized functionality. For example, the
Pfam website allows searching for domain content, while the java
tool PfamAlyzer allows searching Pfam for particular domain archi-
tecture patterns specified with a given domain order and
spacing [94].

The RAMPAGE/RADS tools [95] make use of domain assign-
ments for rapid homology searching. DoMosaics [92] is a software

Table 3
A selection of online software applying protein domain architecture evolution analysis

Tool URL Description Reference

CDART https://www.ncbi.nlm.nih.
gov/Structure/lexington/
lexington.cgi

Searches for proteins with similar domain
architecture

[91]

DoMosaics http://www.domosaics.net/ Visualizes domain evolution using trees [92]

FACT http://fact.cibiv.univie.ac.at/ Searches for functionally equivalent
proteins by scoring domain
architecture similarities

[93]

PfamAlyzer http://pfam.xfam.org/search Searches Pfam for proteins with specific
domain architecture patterns

[94]

RADS/
RAMPAGE

http://rads.uni-muenster.de/ Homology searching by aligning multiple
domains instead of residues

[95]

TreeDom http://treedom.sbc.su.se/ Graphical web tool for analyzing domain
architecture evolution using Pfam

[96]
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tool that can act as a wrapper for domain annotation tools, allowing
detailed visualization and analysis of domain architectures, as does
DomArch [97]. The DAAC algorithm [98] explicitly transfers
functional annotation to query sequences based on domain archi-
tectural similarity to annotated homologs, as does FACT [93]. In
the same vein, similarity measures between architectures are avail-
able using the WDAC [99] tool and in ADASS [100]. Domain
architecture similarity is used for orthology detection in the
porthoDom software [68]. The DOGMA tool makes use of
domain content data to assess completeness of a proteome or
transcriptome [101].

Fig. 7 TreeDom output using as query the NUDIX domain (PF00293), the human NUDT12 (Q9BQG2) protein,
30 closest sequences, and RP15 (representative proteomes at 15% co-membership). The domains are green,
NUDIX; blue, NUDIX-like (PF09296); yellow, zf-NADH-PPase (PF09297); red, Ocnus (PF05005); cyan, Ank_2
(PF12796); black, Ank_5 (PF13857); orange, Prefoldin (PF02996); and pink, Fibrinogen_C (PF00147)
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14 Exercises/Questions

– Which aspects of domain architecture evolution follow from
properties of nature’s repertoire of mutational mechanisms,
and which follow from selective constraints?

– What trends have characterized the evolution of domain archi-
tectures in animals?

– Discuss approaches to handle limited sampling of species with
completely sequenced genomes. How can one draw general
conclusions or test the robustness of the results? Apply, e.g., to
the observed frequency of domain architectures that have
emerged multiple times independently in a given dataset.

– Describe the principle of “preferential attachment” for evolving
networks. In what protein domain-related contexts does this
seem to model the evolutionary process, and what distribution
of node degrees does it produce?

– What protein properties correlate with domain versatility? Can
the versatility of a domain be different in different species
(groups) and change over evolutionary time?

– What protein domain-related properties differ between prokar-
yotes and eukaryotes?
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89. Nagy A, Bányai L, Patthy L (2011) Reasses-
sing domain architecture evolution of meta-
zoan proteins: major impact of errors caused
by confusing paralogs and epaktologs. Genes.
2(3):516–561

90. Nagy A, Patthy L (2011) Reassessing domain
architecture evolution of metazoan proteins:
the contribution of different evolutionary
mechanisms. Genes 2(3):578–598

91. Geer LY, Domrachev M, Lipman DJ, Bryant
SH (2002) CDART: protein homology by
domain architecture. Genome Res 12
(10):1619–1623

92. Moore AD, Held A, TerraponN,Weiner J III,
Bornberg-Bauer E (2014) DoMosaics: soft-
ware for domain arrangement visualization
and domain-centric analysis of proteins. Bio-
informatics 30(2):282–283

93. Koestler T, von Haeseler A, Ebersberger I
(2010) FACT: functional annotation transfer
between proteins with similar feature archi-
tectures. BMC Bioinformatics 11(1):417

94. Hollich V, Sonnhammer ELL (2007) PfamA-
lyzer: domain-centric homology search. Bio-
informatics 23(24):3382–3383

95. Terrapon N, Weiner J, Grath S, Moore AD,
Bornberg-Bauer E (2014) Rapid similarity
search of proteins using alignments of domain
arrangements. Bioinformatics 30(2):274–281

96. Haider C, Kavic M, Sonnhammer ELL
(2016) TreeDom: a graphical web tool for
analysing domain architecture evolution. Bio-
informatics 32(15):2384–2385

97. Vera-Parra N, Gutiérrez-Ramirez M, Lopez-
Sarmiento D (2016) Automatic construction
and graph-making of functional domain
architectures. Adv Nat Appl Sci 10
(12):99–106

Evolution of Protein Domain Architectures 503
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Chapter 16

New Insights on the Evolution of Genome Content:
Population Dynamics of Transposable Elements in Flies
and Humans

Lain Guio and Josefa González

Abstract

Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand
genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as
in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in
genomes. In addition to reference genomes, we now have access to population datasets in which multiple
individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of
TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE
abundance, diversity, and activity. We review the most recent methodological approaches applied to the
study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity.
In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect
the dynamics of TEs in genomes.

Key words Long-read sequencing, Transposition rates, Self-regulation, Effective population size,
Adaptation, Horizontal transfer

1 Transposable Elements Are Abundant and Active Genome Denizens

Transposable elements (TEs) are short DNA sequences, typically
from a few hundred bp to ~10 kb long, which have the ability to
move around in the genome by generating new copies of them-
selves. In addition to active autonomous elements, genomes also
contained nonautonomous elements that can be mobilized by the
enzymatic machinery of active TEs from the same family. Addition-
ally, genomes contain TEs that cannot be mobilized anymore due
to accumulation of mutations in their sequences [1]. TEs are an
ancient, extremely diverse, and exceptionally active component of
genomes. TEs have been found in virtually all organisms studied so
far including bacteria, archaea, fungi, protists, plants, and animals
[2–5]. The main TE groups, class I and class II, are present in all
kingdoms, revealing their persistence over evolutionary time
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[2]. These two classes of TEs differ in their transposition inter-
mediates: while class I TEs transpose through RNA intermediates,
class II TEs transpose directly as DNA. TEs within each class are
further classified into (1) different orders, based on their insertion
mechanism, structure, and encoded proteins; (2) different super-
families, based on their replication strategy and on presence and
size of target site duplications; and (3) different families, based on
sequence conservation [2, 3]. Piegu et al. [1] criticized the current
classification system, which accounts for sequence homology, struc-
tural features, and target site duplications, because it does not
always take into account the evolutionary origins of the TEs
[1–3]. As a consequence, phylogenetically unrelated classes or sub-
classes of TEs are grouped [1]. Piegu et al. [1] also suggested that a
more inclusive classification that includes prokaryotic and eukary-
otic TE classes should be considered. Recently, Arkhipova [6]
proposed a TE classification system based on the replicative, inte-
grative, and structural components of TEs, which integrates differ-
ent aspects of all the existing classification systems [6].

TEs constitute a substantial albeit variable (from ~1% to almost
90%) proportion of genomes [7, 8] (Fig. 1). The identification
methods, as well as the sequencing and assembly methods, have
an important effect in the TE content estimation [4, 9–11]. In
some cases, the TE-generated fraction of genomes is likely to be
underestimated because methods for detecting TEs in genomic
sequences are necessarily biased toward younger and more easily
recognizable TEs. Indeed, new tools developed in recent years are
able to identify TEs that remained hidden until now [4, 11]. As an
example, when the human genome was first sequenced, ~40–45%
of the genome was identifiable TEs, 5% was genes and other func-
tional sequences (functional RNAs or regulatory regions), and the
remaining ~50% of the genome had no identifiable origin [12]. de
Koning et al. [13] using a highly sensitive new strategy named
P-cloud found that at least 66–69% of the human genome is identi-
fiable as repetitive sequences, most of them derived from TEs
[13]. In Drosophila melanogaster, third-generation sequencing
techniques (3GS) have allowed the detection of 37% more TE
insertions in chromosome 2L compared to previously available
short-read sequencing estimates (see below) [14]. In other Dro-
sophila species such as D. buzzatii, the TE content has also been
updated from 6% to 11%, thanks to the recent availability of whole-
genome sequences [15].

As mentioned above, TEs are extremely active genomic deni-
zens that are able to generate mutations of a great diversity of types
[16–21]. TE-induced mutations range from subtle regulatory
mutations to gross genomic rearrangements and often have pheno-
typic effects of a complexity that is not achievable by point muta-
tions (Fig. 2). Among others, TEs can affect the expression of
nearby genes by adding new splice sites, adenylation signals,
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promoters, or transcription factor binding sites [22–24]. TEs can
also be targets of epigenetic histone modifications that spread into
adjacent genes affecting their expression [25, 26]. In addition to
transcriptional changes, TEs have been shown to affect translation
regulation when they are transcribed within a mRNA [27–29], to
contribute to protein-coding regions both at the transcript and at
the protein level [30–35], and TE-encoded proteins have been
domesticated and are part of host genes [17, 36–40]. TE excision
can lead to DNA deletions [41], and TE insertion can result in
adding DNA through 30 and, less frequently, through 50 transduc-
tion [42, 43]. Finally, ectopic recombination between TEs causes

Fig. 1 TE content in the genome of different organisms expressed as percentage of the genome: Homo sapiens
(~45% [12], >66% [13]) Mus musculus [143], Saccharomyces cerevisiae [144], Arabidopsis thaliana [145],
Pyrococcus furiosus [146], Clostridium difficile [147], Danio rerio [133], Kryptolebias marmoratus [148],
Bombyx mori [149], Hypothenemus hampei [150], Drosophila melanogaster (11%, [68], ~20% [69]), Pseu-
dozyma antarctica, and Laccaria bicolor [151]. Zea mays [152] and Fritillaria imperialis [8]. All estimates were
obtained with homology-based methods except [13] that uses P-cloud and [69] that uses de novo approaches
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Fig. 2 Effects of TEs on the host genome. (a) TEs can affect the expression and/or structure of genes. Exons
are represented as blue boxes and TEs as green boxes. (1) A TE inserted in the upstream region of a gene can
add insulator sequences, transcription factor-binding site (TFBS), or can disrupt an existing promoter gene;
(2) A TE inserted in an intron can truncate the mRNA or induce alternative splicing; (3) A TE inserted in the
downstream region of a gene can add microRNA binding sites or alter the polyadenylation site; (4) A TE
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deletions, duplications, and sequence rearrangements. Two recent
studies in the human genome identified 516 chromosome rearran-
gements potentially generated by LINE-LINE nonallelic homolo-
gous recombination and 78 HERV-mediated rearrangements
[44, 45]. Both studies used the annotations of LINEs and
HERVs in the reference genome and look for evidence of rearran-
gements induced by these TEs using clinical databases of copy
number variants containing information from thousands of
patients. In addition to being associated with diseases
[24, 46–49], the number of TE-induced mutations associated
with positive effects on fitness-related traits also continues to
increase both in humans and in Drosophila [50–63].

Overall, recent advances in sequencing technologies and in TE
detection methods showed that, as expected, the TE content is
higher than previously estimated. These new data also provided
further evidence for the impact of TEs in genome function and
genome structure. Thus, it is still indisputable that a thorough
understanding of TE population dynamics is essential for the
understanding of the eukaryotic genome structure, function, and
evolution.

2 Drosophila and Humans: Two Extremes in TE Diversity and Population Dynamics

Much of the detailed information on TE evolution still comes from
two species with the best-studied genomes: fruit flies
(D. melanogaster) and humans. Fortunately, these two genomes
represent two extremes in terms of TE diversity and population
dynamics and thus give a reasonably diverse picture of the TE
evolution and dynamics. For the rest of this chapter, we focus

�

Fig. 2 (continued) inserted in the exon of a gene can lead to exonization of the TE or to transcript truncation;
(5) the whole domain of a TE protein could insert in the coding region of a gene generating a chimeric gene
with host and TE domains [5, 21]. In addition to these changes that depend on where the TE is inserted and on
the sequences that the TE is adding, TEs can also alter the posttranslational modifications of histones. (b) TEs
could also induce translation repression by generating secondary structure in the 30 UTR of genes that leads to
changes in the localization of the mRNA. This secondary structure could bind to one of the protein components
of paraspeckle (P54nrb) and translocate to paraspeckle, a group of subnuclear bodies, avoiding moving out of
the nucleus. However, the same secondary structure could bind to the dsRNA-binding protein Staufen 1
(STAU1) and in this case translocate to cytoplasm. Once in the cytoplasm, the secondary structure could bind
to STAU1 again allowing translation, but under some situations mRNA could bind to the ds-RNA- dependent
protein kinase (PKR) repressing translation [23]. (c) Ectopic recombination between TE copies (green boxes
with yellow arrows) in the same orientation can lead to deletions when recombination takes place between
copies located on the same chromatid (1) or deletions and duplications when recombination takes place
between copies in different chromosomes (2) (recombination between two nonhomologous chromosomes
should lead to a translocation). Ectopic recombination between TE copies in opposite orientation leads to
inversion of the DNA between the two TEs (3)
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primarily on these two genomes and will highlight the similarities
and differences observed between them.

As mentioned above, the human reference genome has millions
of TE copies, with 66–69% of the genome mostly derived from TE
sequences [13]. Two human retrotransposable element (class I)
families, LINE1 (L1, long interspersed nuclear element 1) and
Alu, account for 60% of all interspersed repeat sequences. The
vast majority of the TEs in the human genome are fixed, and
most families are inactive. However, some elements of the main
families of human endogenous retrovirus (HERV-K) and LINE1
elements show autonomous transposition. Meanwhile, elements of
Alu and the hybrid SVA elements formed by SINEs (short inter-
spersed nuclear elements), VNTRs (variable number tandem
repeat), and Alus show nonautonomous activity [64–66].

In contrast, the fruit fly D. melanogaster reference genome
contains only thousands of individual TE copies (5416 TE copies
in FlyBase R6.04) accounting for only ~5.5% of the euchromatin
[67]. If the missing percentage of TEs detected in chromosome 2L
is similar in other chromosomes, the euchromatin TE content
might be higher (~ 8.7%) [14]. If heterochromatin is also included,
TEs account for 11–20% of the D. melanogaster genome
[68, 69].D. melanogaster TEs belong to approximately 100 diverse
families of both class I and class II elements [69, 70]. Each family
consists of 1–304 copies with no dominant family corresponding to
the majority of TEs. The only exception is INE-1 family that
contains ~2000 copies and has been inactive for the past ~3–-
4.6 million years [71–73]. The majority of TE families are consid-
ered to be active in Drosophila: individual TE copies are generally
polymorphic in the population and show a high sequence similarity
[69, 70, 74, 75]. Indeed, there is experimental evidence showing
that Gypsy and ZAM elements are active [76, 77]. Besides, there is
indirect evidence for the activity of 24 D. melanogaster superfami-
lies based on a whole-genome sequencing experiment of mutation
accumulation lines [75] (Table 1).

Why do these two genomes differ so profoundly in content,
diversity, and activity of TEs? The answer must lie in different
aspects of TE population dynamics within genomes and forces
that lead to varying rates of TE family birth and extinction. In the
rest of this review, we focus on the state of knowledge of different
aspects of TE population dynamics and discuss aspects of TE family
evolution. Specifically, we focus on rates of TE transposition, fixa-
tion, or loss in human and D. melanogaster populations due to
stochastic forces and natural selection for or against TE insertions
and forces that affect coexistence of multiple TE families and the
standing diversity of TE types (Fig. 3).
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Table 1
Summary of recent TE population dynamic studies

Objectives Findings Relevance for TE dynamics References

Overview of new
discoveries about TEs in
75 basidiomycete fungi
genomes

TE content varies among
species displaying different
lifestyles from 0.1% to
45.2%. The correlation
between TE content and
genome size is not strong.
TEs seem essential for
chromosomal architecture.
A large battery of
mechanisms to avoid
transposition is present

The result of most TE activity
is likely neutral as they
often insert in intergenic
regions. However, TEs
play an important role in
the evolution of plant
pathogens and probably in
symbiotic species

[151]

Characterization of TE
content in the only
selfing hermaphroditic
vertebrate: the mangrove
killifish Kryptolebias
marmoratus

TE content is 27%. There is a
great diversity of families
with a pronounce
abundance of Helitrons
compared to its closest
phylogenetic relatives. TE
sequence divergence is also
higher in K. marmoratus
compared to close species

Against expectations, the
number and composition
of TEs in these selfing
organisms is comparable to
that of many other fish with
outcrossing mating
systems. The high Helitron
content is one of the factors
that could explain the high
genetic diversity observed
in this selfing killifish

[148]

Testing whether genome
size equilibrium observed
in 10 mammals and
24 birds species is due to
covariation between
DNA gain by
transposition and DNA
loss by deletion

DNA gain varies by more than
sixfold across mammals and
30-fold across birds. DNA
loss varies by twofold in
mammals and threefold in
birds. Neither DNA gain
nor loss can solely explain
variation in genome size.
DNA loss exceeded gain in
all but two lineages. Midsize
deletions (31 bp to 10 kb)
play a larger role than
microdeletions (1–30 bp) in
DNA loss

Genome size equilibrium is
maintained through DNA
loss counteracting DNA
gains through TE
expansions. DNA loss has
probably been driven by
large deletions (>10 kb).
Genome expansion via
transposition could
promote genome
contraction through
TE-mediated deletions

[134]

Understanding the
differences in abundance
and diversity of L1
elements across
vertebrates

Vertebrate L1s differ in the
length of the 50 UTR, 30

UTR, and intergenic
regions. They also differ in
base composition with
mammals and lizards
showing a stronger A bias
on the positive strand than
frog and fish

Mammals show very little 50

UTR homology due to the
frequent acquisition of
novel nonhomologous 50

UTR during evolution.
This seems not to occur in
other groups of vertebrates
since the relative
conservation of the 50 UTR
and ORF1 suggests that
the host do not repress
transposition in a
sequence-specific way

[153]

(continued)
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Table 1
(continued)

Objectives Findings Relevance for TE dynamics References

Understanding the role of
TEs in D. melanogaster
genome evolution, by
estimating their insertion
and deletion rates

24 TE superfamilies are active
in mutation accumulation
lines. TE activity is
background dependent.
There is an association
between activity of some
TE families and chromatin
state, as well as a week
correlation between
insertion activity and GC
content, and a negative
correlation between
deletion activity and exon
content

Insertion rate is higher than
deletion rate which helps
explain the relative stability
of TE numbers and
genome size in Drosophila
in the face of previously
reported deletion bias.
Heterochromatin may play
a bigger role than
recombination in shaping
TE accumulation

[75]

Characterization and
description of TEs in the
coffee berry borer
Hypothenemus hampei
genome

8.3% of the genome are TEs
(880 TE sequences):
49.24% of the TEs are
MITEs. Several new
families described: Hypo
belonging to Gypsy
superfamily, Hamp a new
non-LTR family and rosa a
new DNA TE family

Low TE content, compared
with other insects, could be
related to the reproductive
characteristics and the
population size of this
species. Males have a
chromosome set not
transmitted to the next
generation like asexual
populations. The
colonization of America
probably produced a
founder effect

[150]

To develop a
comprehensive
assessment of
transposition activity at
the A. thaliana species
level

The analysis includes
211 samples collected all
over the world. 165 of the
326 families annotated in
A. thaliana showed recent
transposition activity at the
species level. TE
composition and activity
are strongly affected both
by environmental and
genetic factors

TEs have pervasive effects on
the expression and
methylation status of
nearby genes which are
likely deleterious and could
help explain why bursts of
transposition were not
detected. Its self-fertilizing
mating system should also
lead to accelerated
elimination of deleterious
TE insertions. TEs are also
involved in the generation
of large-effect alleles at
adaptive trait loci

[154]

(continued)
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3 Methodology Used to Study TE Population Dynamics

TE dynamics continues to be studied using three main approaches:
mathematical modeling, computer simulations, and the analysis of
empirical data. Often a combination of these approaches is used to
better understand TE abundance, diversity, and distribution
(Table 2). Le Rouzic et al. [78] applied the statistical framework
originally developed to infer speciation and extinction dynamics in
species phylogenies to reconstruct the evolutionary history of TEs
[78]. The model allows to estimate and to interpret the pattern of
transposition activity that results in different TE copy number
distributions [78]. The authors also performed computer simula-
tions to provide reference dynamics that aid in the interpretation of
the results obtained (Table 2).

Traditionally, mathematical models considered the relationship
between the host and a homogenous group of active TEs. How-
ever, the TE content of any genome is a mixed of autonomous and
nonautonomous insertions. Xue and Goldenfeld [79] proposed a
mathematical model that considers the relationship between non-
autonomous and autonomous TEs as a predator-prey dynamic.
Unlike previous models that also use the analogy to ecological
models, Xue and Goldenfeld model takes into account the

Table 1
(continued)

Objectives Findings Relevance for TE dynamics References

Characterization of TE
presence/absence in
216 A. thaliana
accessions with respect to
the reference genome

TE deletions were biased
toward pericentromeric
regions, while TE
insertions had a more
uniform distribution over
chromosomes. TE variants
associated with changes in
nearby gene expression and
local and distal methylation
patterns

TEs are a significant source of
genetic variation. Most
TEs present at low
frequencies. TEs likely play
a role in facilitating
epigenomic and
transcriptional differences
between A. thaliana
accessions

[155]

To understand the role of
TE in genome evolution
of the sweet potato
Ipomoea batatas

1405 TEs described based on
transcriptomic data.
417 TEs are expressed in
one or more tissues and
107 in the seven tissues
analyzed

TE activity is tissue- and
background-specific.
Although several TEs are
expressed in all the tissues
and strains analyzed, some
of them are active only in
one specific strain and/or
tissue. Authors suggest
that TEs may play a role in
environmental adaptation

[156]
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molecular level interactions between transposable elements and the
small copy number of the active transposons. The model predicts
oscillations in the number of TEs in a time scale much longer than
the cell replication time, suggesting that the genome stores the
predator-prey state during successive generations [79].

TE dynamics have also been analyzed in variable environments
[80, 81] (Table 2). Gogolesky et al. [81] proposed a stochastic
computational model to analyze the dynamics of active TEs in
genomes of sexual diploid organisms under environmental stress.
They based their model in the Fisher geometrical model of fitness
landscapes. Overall, the authors conclude that the presence of
inactive copies of TEs is necessary for the transposition-selection
equilibrium of autonomous copies and that the mutator capacity of
TEs might be important when host populations face rapid environ-
mental changes [81].

Other recently developed methods analyzed the influence of
the mating system in TE dynamics, different modes of selection, or
applied branching models for studying the propagation of particu-
lar TE classes [82–84] (Table 2).

In addition to mathematical modeling and simulations, multi-
ple computational tools have been developed to analyze TEs in

Self-regulation

TE REGULATION

• Overproduction inhibition 
mechanisms

• Non-active TEs as 
repressors of transposition

• Proteins involved in other cellular 
processes: viral immunity, tumor 
suppression, longevity regulation 

• DNA editing enzymes
• Histone modifications
• piRNA pathways
• miRNAs
• DNA methylation

Host factors

Natural selection
HOST

• Purifying selection
- Gene disruption
- Transposition products
- Rearrangements 

through ectopic 
recombination

• Positive selection
- Directional selection
- Spatially varying 

selection • Population size and genetic drift
• Population history
• Rate and strengh of adaptation and 

genetic draft

Host population 
processes

TE INSERTION

• Rate of TE insertion
• Horizontal transfer

TE DELETION

• Ectopic recombination
- Unequal intra-strand 

homologous recombination
- Illegitimate recombination

• Random deletion

• Genome size
• Mating system
• Recombination rate
• Chromosomal location
• Chromatin state

Host genome

POPULATION PROCESSES

Fig. 3 Factors that influence the population and evolutionary dynamics of TEs. Our understanding of TE
population and evolutionary dynamics is still incomplete. The different factors that affect TE population and
evolutionary dynamics are interrelated, new factors have been identified in recent years, and future research
is still likely to reveal existence of additional factors
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Table 2
Summary of recent mathematical models and computer simulations applied to the study of TE
dynamics

Model description TEs modelled Conclusions References

The model quantifies the
transposition activity over
time based on the
distribution of transposition
events in the phylogenetic
tree and the tree topology

Fot subfamilies from
Fusarium
oxysporum

The four subfamilies analyzed are
still active with two of them
showing clear changes in their
transposition dynamics. The
results obtained showed that
regulation of transposition by
the number of copies is not
strong enough to maintain
stable transposition-deletion
equilibrium

[78]

Considering the genome as an
ecosystem, the model
analyzes the interaction
between nonautonomous
and autonomous TEs as a
predator-prey relationship in
individual cells

L1 and Alus from
Homo sapiens

The model predicts oscillations
in the number of TEs in a time
scale much longer than the cell
replication time. Thus, the
genome stores the predator-
prey state during successive
generations

[79]

The model, based in the Fisher
geometric model, analyzes
TE dynamics under changing
environments in clonal
organisms

Autonomous and
nonautonomous
TEs in asexual
population

The model predicts that when
nonautonomous TE copies are
present, the transposition
activity is lost and thus the
stability of the host-TE system
is compromised. Changes in
the environment may induce
bursts of transposition activity
associated with faster
adaptation. However, it is
unlikely that the transposition
activity is maintained in the
long term

[80]

The model, based on the Fisher
geometrical model, analyzes
TEs dynamics in sexual
diploid organisms under
environmental changes

TEs in sexual diploid
populations

The model suggests that the
presence of inactive copies of
TEs is necessary for the
transposition-selection
equilibrium of active copies
and that the mutagenic role of
TEs is crucial when host
populations face rapid
environmental changes

[81]

The model, based in the selfish
DNA theory, analyzes the
invasion dynamics of active
TEs during the first stages of
an experimental evolution
experiment

Mos1 and peach,
mariner family from
Drosophila
melanogaster

The model predicts lower
invasion frequencies than the
ones observed experimentally.
A substantial rate of replicative
transposition during the initial
invasion of the element was

[102]

(continued)
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sequenced genomes in the last 5 years. While some of these tools
aimed at assessing the global abundance and diversity of TEs in the
genome, such as dnaPipeTE, or to annotate TEs in assembled
genomes, such as REPET, most of them are focused on discovering
and/or genotyping individual copies of TEs in the genome using
next-generation sequencing (NGS) data [11, 64, 85–90]. The
diversity of methods available makes it difficult to choose the
most appropriate one for the analyses of a given genome. To try

Table 2
(continued)

Model description TEs modelled Conclusions References

inferred from the discrepancy
between observed and
theoretical copy numbers

The model analyzes the impact
of intermediate selfing rates
on TE dynamics and the
influence of the mating
system on the evolutionary
properties of TEs

Active TEs in a diploid
hermaphrodite
population

The model predicts that the
efficiency of TEs as genomic
parasites decreases with the
selfing rate, although rare TE
invasions can still occur even in
populations with 90% selfers.
The model predicts TE
extinction if populations
change from sexual to asexual
reproduction, although
empirical data does not
strongly support this result

[82]

The model studies the
evolutionary behavior of TE
copy number and the
molecular evolution of their
DNA sequences

TEs in sexual diploid
populations

The model predicts that weak
selection allows high copy
numbers of TEs most of them
inactive copies, while strong
selection reduces the number
of TEs but increases the
proportion of active copies.
Regarding TE sequences, the
model shows that the
phylogeny of these sequences
allows distinguishing active
copies from non- and less
active copies

[83]

The model analyzes the
propagation of LTR TEs by
taking into account the TE
position in the chromosome,
the degradation level of the
TEs, and the duplication rate
that varies with the
degradation level

roo, Gypsy andDM412,
TEs of LTR family
from Drosophila
melanogaster

The simulation estimates several
parameters affecting the
propagation of TEs and
identifies the initial copy from
which three LTR families have
spread on the euchromatin
part of the 3L chromosome

[84]
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to overcome this limitation, Nelson et al. [91] developed an
integrated pipeline named McClintock that incorporates six com-
plementary TE detection methods. McClintock generates standar-
dized output for the different TE detection methods, thus
facilitating the comparison of the results obtained with the different
pipelines, as well as facilitating their installation and use [91]. This
and other studies that compared the performance of several tools
arrived to the same conclusion: several computational tools should
be combined to increase the accuracy of TE analysis [64, 86, 91].

The availability of third-generation sequencing techniques
(3GS) should help improve the detection and genotyping of TE
insertions. Although 3GS was developed before 2010 [92], it has
only been in the last few years when this technique has started to be
used [14, 93]. Chakraborty et al. [14] reported the assembly of a
D. melanogaster genome from a Zimbabwe strain using long-read
single molecule real-time sequencing with 147X coverage. Among
several novel structural variants described, they identified 37%
additional TE insertions in the 2L chromosome compared with a
previous study that used 70X coverage of short reads [14, 94]. 3GS
technologies have also been applied to the sequencing of human
genomes, although a detailed analysis of TE content based on long-
read data has not been performed yet [95–97].

Recently, Disdero and Filée [98] introduced the first tool that
uses long-read sequences to identify TE insertions in the
D. melanogaster genome: LoRTE [98]. The authors argue that
available software based on short reads fail to correctly identify
TEs that are present in highly repetitive regions of the genome,
while long-read technologies should allow us to identify all TEs in a
given genome. LoRTE, developed in Python, verifies presence
and/or absence of previously annotated TEs and can also detect
new insertions not previously annotated in the reference genome.
LoRTE is able to work with low-coverage sequences (<10X)
providing an efficient accurate TE annotation in a cost-effective
manner [98].

4 Rates of Transposition

4.1 Empirical

Estimates of the Rates

of Transposition in

Drosophila and

Humans

Transposition rates in D. melanogaster have been traditionally esti-
mated empirically by in situ hybridization and by using PCR
approaches. The activation of TEs following intra- and interspecific
hybridization has been studied in different Drosophila species
[99–101]. For example, Vela et al. [100] estimated transpositions
rates in D. buzzatii-D. koepferae interspecific hybrid flies by in situ
hybridization [100]. They found that hybrids showed at least one
order of magnitude higher transposition rates than parental lines
for at least three TE families [100]. Robillard et al. [102] estimated
transposition rates by qPCR in an experimental evolution study in
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which a TE insertion was introduced in a strain lacking insertions
from that particular family [102]. In the first generations after the
introduction of the TE insertion, the transposition rate was
0.33–0.45 per copy per generation, while in the following genera-
tions, transposition rates were reduced at least one order of magni-
tude per copy per generation. These values represent the first steps
in the invasion of a TE in a genome that is faster than the rate of
transposition when measured in natural populations [102].

In the first edition of this chapter [103], we anticipated that
NGS would allow studying transposition rates in a deeper and more
accurate way. Indeed, recent studies have taken advantage of NGS
data to estimate transposition rates in D. melanogaster. Rahman
et al. [89] estimated using NGS data the transposition rate in the
reference strain by comparing two available genomes that were
sequenced with ~15 years difference. The average transposition
rate for TEs belonging to different families was 7 � 10�5, which
is on the same order of magnitude as the previously reported rates
(~10�4–10�5). Furthermore, they confirmed the prediction of
increased transposition rate in inbred lines: they estimated a higher
average number of TE insertions in lab strains inbred for more
generations compared with strains inbred for a smaller number of
generations [89]. Adrion et al. [75] estimated spontaneous inser-
tion and deletion rates in D. melanogaster mutation accumulation
lines [75]. The authors identified 24 active superfamilies and esti-
mated genome-wide insertion rates to be higher than deletion
rates: 2.11 � 10�9 vs. 1.37 � 10�10 per site per generation,
respectively. Superfamily-specific rates of insertion varied from
0 to 5.13 � 10�3 insertions per copy per generation and were
within the range of previously estimated rates [75] (Table 1).

In humans, previous studies estimated the transposition rate as
in 1 in 95 to 1 in 250 births for L1, 1 in 20 births for Alu insertions,
and 1 in 916 births for SVA retrotransposons [104–107]. Although
there are several recent studies that estimate transposition rate in
humans using NGS data, they all focused on somatic transposition
in the brain or in tumor samples [47, 48, 90].

4.2 Transposition

Control Mechanisms

Understanding the mechanisms controlling the transposition of
TEs is central to our understanding of TE dynamics. Many differ-
ent mechanisms of TE regulation have been described [43, 108,
109]. In this section, we will highlight recent advances in both TE
self-regulation and regulation by host factors.

4.2.1 TE Self-Regulation Self-regulation of transposition was first described in prokaryotes
and soon after in TEs involved in hybrid dysgenesis in Drosophila
[110]. Recent studies have cast some doubt on one of the self-
regulation mechanisms described: transposase overproduction
inhibition. The transposase overproduction inhibition mechanism
regulates the transposition of IS630-Tc1-mariner piggyBac and
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hobo-AC-Tam (hAT) superfamilies [111, 112]. However, several
studies reported contradictory results suggesting that transposase
inhibition by overproduction does not always happen [113]. Bire
et al. [113] suggested that some works failed to detect transposase
inhibition because cellular cofactors are necessary to execute this
regulation system, and as such it can only be detected in in vivo
experiments [113]. However, Woodard et al. [114] showed that
aggregation of transposase proteins produces filamentous struc-
tures (rodlets) in the nucleus in a host independent manner
[114]. The authors further showed that a decline in transposition
occurs after transposase concentrations are high enough for fila-
mentous structures to be visible [114]. Thus, it is still not clear why
some in vitro experiments failed to detect transposase overproduc-
tion inhibition [114].

4.2.2 Regulation by Host

Factors

Small RNAs, such as small-interfering RNAs (siRNAs) and piwi-
interacting RNAs (piRNAs), are well-known to play an essential
role in silencing TEs and preventing transposition. Several recent
reviews highlight the monumental progress in this field
[115–119]. In addition to posttranscriptional regulation of TEs,
small RNAs are involved in transcriptional regulation as well. In
mouse, piRNAs are required for de novo methylation and silencing
of TEs [120]. InDrosophila, Piwi proteins repress transcription and
correlate with an increase in repressive chromatin marks at loci
targeted by piRNAs [121].

While the role of siRNAs and piRNAs has been established for
several years, a role of micro RNAs (miRs) in suppressing the
mobility of retrotransposons was only recently described
[122]. The authors showed that mir-128 binds to L1 RNA and
represses its integration in humans [122].

New studies have also provided evidence for the role in TE
repression of proteins previously known for their roles in other
cellular processes such as interferon-stimulated proteins, the
tumor suppressor p53, and the longevity regulating protein
SIRT6. Several interferon-stimulated genes, such as the Moloney
leukemia virus 10 (MOV10), the zinc-finger antiviral protein
(ZAP), and the 30 repair exonuclease 1 (TREX1), which are asso-
ciated with virus response, have been recently involved in the
inhibition of L1 activity [66, 123]. Recently, it has also been
shown that the p53 transcription factor, which is involved in stress
response networks and acts to restrict oncogenesis, also restricts
retrotransposon activity in zebra fish, flies, and humans [124]. The
authors showed that p53 interacts with components of the piwi-
interacting RNA to suppress retrotransposition [124]. Finally, the
longevity regulating protein SIRT6 is also involved in retrotranspo-
son repression by coordinating their packaging into transcription-
ally repressive heterochromatin. SIRT6 binds to the 50 UTR region
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of retrotransposons and mono-ADP ribosylates the Krüppel-asso-
ciated protein 1 (KAP1) facilitating the interaction of KAP1 with
the heterochromatin protein 1α (HP1α) leading to chromatin
compaction [125].

5 Rate of Fixation and Frequency Distribution

5.1 Natural Selection

Against TE Insertions

Natural selection and stochastic processes influence both the rate of
fixation and the frequency distribution of TEs in populations. The
efficiency of selection depends on the effective population size,
which largely differs between Drosophila and humans: >108 and
~104, respectively [126, 127]. Thus, while in Drosophila the high
efficiency of selection should led to the removal of slightly deleteri-
ous TE insertions, in humans, these insertions may accumulate in
the genome. Indeed most of the TE sequences in the human
genome are remnants of ancient insertions [12].

A review by Barrón et al. [128] explored the latest insights on
the nature of selection acting against the deleterious effects of TEs
in D. melanogaster populations [128]. More recently, Kofler et al.
[129] analyzed intraspecific TE dynamics between D. melanogaster
and D. simulans populations to shed light on the long-term evolu-
tion of TEs [129]. They confirmed that most of the TEs are present
at low frequencies in D. melanogaster and showed that the same
pattern is present in D. simulans. Based on computer simulations
showing that 50% of the TE families have temporally heteroge-
neous transposition rates, and on the differences in TE composition
between populations of the same species, the authors suggested
that TE activity has recently increased in the two species. They
proposed that the demographic history of both species, with a
recent colonization of different environments, could be the cause
of the high TE activity detected [129].

In humans, a recent study took advantage of the 1000 Genome
Project data that reports 16,192 polymorphic TEs to perform the
most complete TE dynamics analysis to date [130]. Most of the
polymorphic TEs were found to be present at very low frequencies:
>93% of TEs showed <5% allele frequency in 26 human popula-
tions. These results confirm that overall polymorphic TE insertions
are deleterious in humans as was previously suggested with smaller
family-specific datasets [131].

5.2 TE-Induced

Adaptations

Several recent reviews have compiled results that showcase the
adaptive role of TEs [19, 24, 50, 59, 128]. We would like to
highlight the recent discovery of a TE in a fish-like marine chordate
that encodes RAG-like proteins with endonuclease-transposase
activity [39]. This discovery provides evidence that supports the
TE origin hypothesis for the adaptive immune system in jawed
vertebrates [39]. Two other recent publications provide
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experimental evidence for a role of TEs as providers of functional
transcription factor binding sites (TFBS) involved in immune
response and in cell pluripotency [50, 132]. A recent study linked
ERV elements in humans with the interferon response pathway
[50]. The authors showed that ERVs carrying enhancers have
been co-opted to activate different genes involve in inflammatory
response activated by interferon. This example shows how the
exaptation of one family of TEs could shape a transcriptional net-
work to activate different genes with one trigger system [50]. Sun-
daram et al. [132] reported mouse-specific TEs that contain
multiple transcription factor binding sites for pluripotency tran-
scription factors. The majority of the TEs were experimentally
shown to exhibit enhancer activity in mouse embryonic stem cells
including an in silico reconstructed ancestral TE. This latter result
suggests that ancestral TEs already had transcriptional regulatory
sites [132].

In Drosophila, the adaptive role of several TEs has also been
identified. Most of the TEs characterized so far are involved in
stress response: viral infection and xenobiotics (Doc1420,
[60, 61]), oxidative stress (FBti0018880, [53]), xenobiotic stress
(Accord, [62, 63], and FBti0019627, [52]), cold stress
(FBti0019985, [55]), and heavy metal stress (FBti0019170, [56]),
while FBti0019386 insertion was associated with faster develop-
mental time [54]. Some of these adaptive insertions have been
shown to affect gene expression through different molecular
mechanisms, such as affecting the polyadenylation site choice
[52], and adding TFBS [53], while others have been associated
with gene duplication [60, 62].

6 Rate of Loss

A recent study estimated genome-wide and superfamily-specific TE
deletion rates in D. melanogaster inbred lines [75]. The authors
found that most of the deletions involved retrotransposon elements
suggesting that the deletions were due to ectopic recombination
instead of excision. Deletion rates were smaller than insertion rates
estimated in the same inbred lines [75].

In vertebrates, lineage-specific differences in TE deletion rates
have been reported [133]. A possible explanation for this observa-
tion is that the success of some families results in a competition for
the genome resources leading to the elimination of other TE
families [133].

In addition to TE deletion rates, DNA loss rates should also be
considered. In the human linage, estimates of DNA loss are smaller
than estimates of DNA gain, 650 Mb vs. 815 Mb [134], while in
D. melanogaster, the rate of DNA loss is higher than the rate of
DNA gain [135–137].
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7 Horizontal Transfer of TE Insertions

In addition to parent to offspring transmission, TEs can also be
horizontally transferred [138–141]. By combining simulation and
analytical approaches, Groth and Blumenstiel [142] suggested that
exposure rate to new TE families through horizontal transfer can be
an important determinant of TE genomic content when the effects
of drift in a population are weak [142]. Thus, larger populations are
expected to carry a higher TE content if population exposure rate is
proportional to population size [142]. So far, most of the evidence
for TE horizontal transfer comes from closely related and geo-
graphically close species [140]. There are several examples of hori-
zontal transfer of TEs in Drosophila species, while so far horizontal
transfer of TEs has not been described in humans [138].

8 Conclusion

Recent years have seen an increase in the number of reference
genome sequences available as well as of population genome data-
sets. The availability of all these genome sequences and the devel-
opment of new bioinformatics tools have allowed us to update our
previous estimates of genomic TE content that have increased both
in humans and inD. melanogaster. These data has also allowed us to
gather more evidence for the functional impact, both detrimental
and beneficial, of TE insertions. Thus, it is still indisputable that
understanding TE population dynamics is essential to understand
genome structure, genome function, and genome evolution.

New methods developed to analyze the dynamics of TEs in
populations have shed light on the interplay between autonomous
and nonautonomous TE copies, TE invasion dynamics, and how
the mating system influences the dynamics of TEs in genomes. We
have also considerably advanced our knowledge on the host factors
that regulate TE activity as well as in the genome features that
influence TE dynamics (Fig. 3). Finally, differences in effective
population sizes that affect the efficiency of selection against new
TE insertions and differences in the rates of TE loss between
humans and D. melanogaster can still be considered two important
factors that contribute to the different abundance, diversity, and
activity of TEs in this two species [103].

9 Questions

How differences in the rate of DNA loss can affect the evolutionary
dynamics of TEs?

Why host regulation of transposition is relevant for TE dynamics?
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Which is the most important factor explaining the differences in TE
content, diversity, and activity between humans and
Drosophila?

Have the next-generation sequencing (NGS) technologies allowed
us to identify all the TEs in a given genome?

How does the interaction between active and inactive copies of TEs
affect TE dynamics?
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Chapter 17

Association Mapping and Disease: Evolutionary
Perspectives

Søren Besenbacher, Thomas Mailund, Bjarni J. Vilhjálmsson,
and Mikkel H. Schierup

Abstract

In this chapter, we give a short introduction to the genetics of complex diseases emphasizing evolutionary
models for disease genes and the effect of different models on the genetic architecture, and we give a survey
of the state-of-the-art of genome-wide association studies (GWASs).

Key words Complex diseases, Association mapping, Genome-wide association studies, Common
disease/common variant

1 Introduction

A combination of genes and environment determines our pheno-
type. The degree to which genotype or environment influences our
phenotype—the balance of nature versus nurture—varies from trait
to trait, with some traits independent of genotype and determined
by the environment alone and others determined by the genotype
alone and independent of the environment.

A measure quantifying the importance of genotype compared
to the environment is the so-called heritability. It is the fraction of
the total phenotypic variation in the population explained by varia-
tion in the genotype within the population [1]. A trait of interest,
say a common disease, which exhibits a nontrivial heritability, tells
us that genes are important for understanding this trait and that it is
worthwhile to identify the specific genetic polymorphisms influen-
cing the trait. The first step toward this is association mapping:
searching for genetic polymorphisms that, statistically, associate
with the trait. Polymorphisms associated with a given phenotype
need not influence that phenotype directly, but it is among those
associated genetic polymorphisms that we will find the causal ones.
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Genetic variants are correlated, a phenomenon called linkage
disequilibrium (LD), so by examining the trait association of a few
variants, we learn about the association of many others. Examining
the association between a phenotypic trait and a few hundred
thousand to a million genetic variants suffices to capture how
most of the common variation in the entire genome associates
with the trait [2–4]. When we find a genetic variant associated
with the trait, we have not necessarily located a variant that has
any functional effect on the trait, but we have located a genomic
region containing genetic variation that does. LD is predominantly
a local phenomenon, so correlated genetic variants tend to be
physically near each other on the genome. If we observe an associa-
tion between the phenotype and a variant, and the variant is not
causally affecting the trait but is merely in LD with a causal variant,
the causal variant is likely nearby. Further examination of the region
might reveal which variants affect the trait, and how, but that often
involves functional characterization and is beyond association
mapping. With association mapping, we merely seek to identify
genetic variation that associates with a trait.

2 The Allelic Architecture of Genetic Determinants for Disease

Many complex diseases show a high heritability, typically ranging
between 20% and 80%. Each genetic variant that increases the risk
of disease contributes to the measured heritability of the disease and
thus explains some fraction of the estimated total heritability of the
trait. For most diseases investigated, many variants contribute, and
the fraction of the heritability explained for each is therefore low.
The number of contributing variants, their individual effects on the
disease probability, their selection coefficient, and their dominance
relations can be collectively termed the genetic architecture of a
common disease. Insights into this architecture are slowly emerging
and reveal differences between diseases [5].

Below we first consider two proposed genetic architectures
based on theoretical arguments: the common disease common
variant (CDCV) architecture and the common disease rare variant
(CDRV) architecture. CDCV states that most of the heritability can
be explained by a few high-frequency variants with moderate
effects, while CDRV states that most of the heritability can be
explained by moderate- or low-frequency variants with large effects.
We present population genetic arguments for the two architectures
and the consequences of the two architectures for association
mapping. Later, in Subheading 5.1, we present empirical knowl-
edge we have obtained about the genetic architectures of common
diseases.
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2.1 Theoretical

Models for the Allelic

Architecture of

Common Diseases

Understanding the distribution of the number and frequency of
genetic variants in a population is the purview of population genet-
ics. Using diffusion approximations we can derive the expected
frequency distribution of independent mutations under mutation-
drift-selection balance in a stable population (see, e.g., Wright [6]).
Central parameters are the mutation rate, u, and the selection for or
against an allele, measured by s, scaled with the effective population
size, N. Mutations enter a population with a rate determined by
Nu, and subsequently, their frequencies change in a stochastic
manner. If a mutant allele is not subject to natural selection, for
example, if it does not lead to any change in function, it is selectively
neutral. Its frequency then rises and falls with equal probability. If
the allele is under selection, it has a higher likelihood of increasing
in frequency than decreasing if it is under positive selection (s > 0)
and conversely for negative selection (s < 0).

At very high or very low frequencies, selection has an insignifi-
cant effect on the change in frequency, and the system evolves
essentially entirely stochastic (genetic drift). At moderate frequen-
cies, however, the effect of selection is more pronounced, and given
sufficiently strong selection (of an order Ns � 1), the direction of
changes in the allele frequency is almost deterministically deter-
mined by the direction of selection. An allele subject to a sufficiently
strong selection that happens to reach moderate frequencies either
halts its increase if selection works against it, and drifts back to a low
frequency, or if selection favors it, it rapidly rises to high frequen-
cies, where eventually the stochastic effects again dominate (see
Fig. 1).

The range of frequencies, where drift dominates, or selection
dominates, is determined by the strength of selection (Ns) and the
genotypic characteristics of selection, as, e.g., dominance relations
between alleles. For strong selection or in large populations, the
process is predominantly deterministic for most frequencies, while
for weak selection or a small population, the process is highly
stochastic for most frequencies. The time an allele can spend at
moderate frequencies is also determined by Ns and selection
characteristics.

Pritchard and Cox [7, 8] used diffusion arguments to show that
common diseases are expected to be caused by a large number of
distinct mutations. This implies that genes commonly involved in
susceptibility exert their effect through multiple independent
mutations rather than a single mutation identical by descent in all
carriers (see Fig. 2). Each mutation, if under weak purifying selec-
tion, is unlikely to reach moderate frequencies, and since the popu-
lation will only have few carriers of each disease allele, each can only
explain little of the heritability. The accumulated frequency of
several alleles, each kept to low frequency by selection, can, how-
ever, reach moderate frequencies. So the heritability can be
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explained either by many recurrent mutations or many independent
loci affecting the disease: the CDRV architecture.

Implicitly, this model assumes a population in mutation-
selection equilibrium, and this does not necessarily match human
populations. Humans have recently expanded considerably in num-
bers, and changes in our lifestyle, e.g., from hunter-gatherers to
farmers might have changed the adaptive landscape driving selec-
tion of our genes.

Interval between new mutations determined by Nu

Time in phase:
1/s log(2N) 1/s log(2N)log log 2N

domain

domain

domain

Fig. 1 Mutation, drift, and selection. New mutations enter a population at stochastic intervals, determined by
the mutation rate, u, and the effective population size, N. For low or high frequencies, where the range of such
frequencies is determined by the selection factor, s, and the effective population size, the frequency of a
mutant allele changes stochastically. At medium frequencies, on the other hand, the frequency of the allele
changes up or down, depending on s, in a practically deterministic fashion. If a positively selected allele
reaches moderate frequency, it will quickly be brought to high frequency, at a speed also determined by s and
N
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Fig. 2 Accumulation of several rare frequencies. If selection works against a set of alleles, each will be kept at
a low frequency. Their accumulated frequency, however, can be high in the population
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The frequency range where drift, rather than deterministic
selection, dominates is larger with a smaller population than with
a larger population. We can think of the drift process as a birth–-
death process operating on individual copies of genes, which is
highly stochastic. Only when we consider a large number of these
processes do we get an almost deterministic process. At low allele
frequencies, the process is stochastic because we only have a few
copies of the allele to consider. At higher frequencies, we have many
copies, so we get the deterministic behavior. The same number of
copies, however, constitutes a higher frequency of a small popula-
tion than of a larger population. Consequently, selection is effective
at much lower frequencies in a large population than it is in a small
population; the absolute number of copies of a deleterious allele
might be the same in a small and a large population, but they
constitute a smaller fraction of the large population. In large popu-
lations, we expect to see deleterious mutations to be found at small
frequencies unless, as is the case for most human populations, the
large population size is a consequence of recent dramatic growth
[9]. This effect is illustrated as the “transient period” in Fig. 3,
where common genetic variants may contribute much more to
disease than under stable demographic conditions. Following
expansion, alleles that would otherwise be held at low frequency
by selection may be at moderate frequencies and thus contribute a
larger part of the heritability: the CDCV architecture.

Similarly, a recent change in the adaptive landscape of a popu-
lation might cause an allele that was previously held at low fre-
quency to be under positive selection and now rise in frequency
[10]. In this transition period, an allele may be at a moderate
frequency and therefore contributes significantly to the heritability
of disease susceptibility (see Fig. 4).

Depending on which architecture underlies a given disease,
different strategies are needed to discover the genetic variants

Transition period where allele frequency is higher
than what would be expected from selection

Fig. 3 A population out of equilibrium following an expansion. In a transition period following a population
expansion, the allele frequency patterns are different from the patterns in a stable population
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involved. When genome-wide association mapping was proposed as
a strategy for discovering disease variants, the proposal was based
on the hypothesis that, at least for some common diseases, the
CDCV architecture underlies them. GWAS relies on the CDCV
hypothesis for two practical reasons. The first is that the LD pat-
terns across the genome greatly restrict examination to only a small
fraction of the total possible variation. It is feasible to probe the
common variants of a genome from a small selection of representa-
tive variants, but the association with rare variants is far less detect-
able. Second, statistical analysis of the association between
polymorphism and disease is rather straightforward for moderate-
frequency alleles but has far less power to detect association with
low-frequency alleles.

While the GWAS approach is only practical as an approach for
variant discovery for common alleles, it was necessary to hypothe-
size that the CDCV architecture would be underlying diseases of
interest. The actual genetic architecture behind common diseases
was unknown, but there were no alternative methods aimed at
CDRV, so GWAS was the only show in town.

2.2 The Allelic

Frequency Spectrum in

Humans

The vast majority of human nucleotide variation is very rare because
of our history of population bottlenecks followed by rapid growth.
For instance, in the 2500 individuals of the 1000 genomes study,
64 million SNVs have frequency <0.5%, and 20 million SNVs have
frequency >0.5% [11]. Nevertheless the majority of heterozygous
variants observed within a single individual are not rare [11]. The

Change in the direction
of selection

Fig. 4 A population out of equilibrium following changes in the selective landscape. If the selection of an allele
changes direction, so the positively selected allele becomes negatively selected and vice versa, it will
eventually move through moderate frequencies. Following a change in the selective landscape, it is thus
possible to find alleles at moderate frequencies that would not otherwise be found
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rare variants are most often very recent and therefore specific to
populations, and they are also more often deleterious because
selection has not yet acted on them [12]. This is particularly clear
for loss-of-function variants and other protein-coding variants. A
study of 2636 Icelanders found that the fraction of variants with a
minor allele frequency (MAF) below 0.1% was 62% for protein-
truncating variants, 46% for missense variants, and 38% for synony-
mous variants [13].

The strong recent population expansions have also allowed
variants to increase in frequency by surfing on the population
expansion wave front even if they would be selected against in a
population with stable size. Thus, rare variants with large effects on
disease may exist. The GWAS studies so far have been successful in
identifying a large set of common variants associated with disease,
so common variants contributing to disease do exist. It is likely that
rare variants with large phenotypic effects also contribute to the
heritability of many common diseases, but the extend is likely to be
disease specific.

3 The Basic GWAS

The first GWASs were published around 2006 [14, 15] when
Illumina and Affymetrix first introduced genotyping chips that
made it possible to test hundreds of thousands of SNPs quickly
and inexpensively. The GWASs’ approach to find susceptibility
variants for diseases boils down to testing approximately 0.3–-
2 million SNPs (depending on chip type) for differences in allele
frequencies between cases and controls, adjusting for the high
number of multiple tests. This approach is a wonderfully simple
procedure that requires no complicated statistics or algorithms but
only well-known statistical tests and a minimum of computing
power. Despite the simplicity, some issues remain, such as faulty
genotype data and confounding factors that can result in erroneous
findings if not handled properly. The most important aspects of any
GWAS are, therefore, thorough quality control of the data used and
measures to avoid and reduce the effect of confounding factors.

3.1 Statistical Tests The primary analysis in an association study is usually testing each
variant separately under the assumption of an additive or multipli-
cative model. One way of doing that is by creating a 2 � 2 allelic
contingency table as shown in Table 1 by summing the number of
A and B alleles seen in all case individuals and all control individuals.
Be aware that we are counting alleles and not individuals in this
contingency table, so Ncases will be equal to two times the number
of case individuals because each individual carries two copies of each
variant unless we are looking at non-autosomal DNA. If there is no
association between the variant and the disease in question, we
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would expect the fraction of cases that have a particular allele to
match the fraction of controls that have that allele. In that case, the
expected allele count (EN) would be as shown in Table 2. To test
whether the difference between the observed allele counts
(in Table 1) and the expected allele counts (in Table 2) is signifi-
cant, a Pearson χ2 statistic can be calculated:

X 2 ¼ ΣPhenotypeΣAllele N Phenotype,Allele � ENPhenotype,Allele

� �2
=ENPhenotype,Allele

This statistic approximates a χ2 distribution with 1 degree of
freedom, but if the expected allele counts are very low (<10), the
approximation breaks down. This means that if theMAF is very low
or if the total sample size, N, is small, an exact test, such as the
Fisher’s exact test, should be applied. An alternative to the tests that
use the 2 � 2 allelic contingency table and thereby assumes a
multiplicative model is the Cochran–Armitage trend test that
assumes an additive risk model [16]. This test is preferred by
some since it does not require an assumption of Hardy–Weinberg
equilibrium in cases and controls combined [17].

While a 1 degree of freedom test that assumes an additive or
multiplicative model is usually the first analysis, some studies also
perform a test that would be better at picking up associations
following a dominant or recessive pattern, for instance, by
performing a 2 degrees of freedom test of the null hypothesis of
no association between rows and columns in the 2� 3 contingency
table that counts genotypes instead of alleles.

Table 1
Contingency table for allele counts in case/control data

Allele A Allele B

Case Ncase,A Ncase,B Ncases

Control Ncontrol,A Ncontrol,B Ncontrols

NA NB N

Table 2
Expected allele counts in case/control data

Allele A Allele B

Case (Ncases · NA)/N (Ncases · NB)/N Ncases

Control (Ncontrols · NA)/N (Ncontrols · NB)/N Ncontrols

NA NB N
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3.2 Effect Estimates A commonly used way of measuring the effect size of an association
is the allelic odds ratio (OR), which is the ratio of the odds of being
a case given that you carry n copies of alleles A to the odds of being
a case if you carry n� 1 copies of allele A. Assuming a multiplicative
model, this can be calculated as:

OR ¼ N case,A=N control,A

� �
= N case,B=N control,B

� �

¼ N case,AN control,B=N case,BN control,A

Another measure of effect size that is perhaps more intuitive is
the relative risk (RR), which is the disease risk in carriers divided by
the disease risk in noncarriers. This measure, however, suffers from
the weakness that it is harder to estimate. If our cases and controls
were sampled from the population in an unbiased way, the allelic
RR could be calculated as:

RR ¼ N case,A=NA

� �
= N case,B=NB

� �

but it is very rare to have an unbiased population sample in associa-
tion studies because the studies are generally designed to deliber-
ately oversample the cases to increase the power. This oversampling
affects the RR as calculated by the formula above but not the OR
which is one of the reasons why the OR is usually reported in
association studies instead of the RR.

3.3 Quality Control Data quality problems can be either variant specific or individual
specific, and inspection usually results in the removal of both prob-
lematic individuals and problematic variants from the data set.

Individual-specific problems can be caused by low DNA quality
or contamination by foreign DNA. A sample of low DNA quality
results in a high rate of missing data, where particular variants
cannot be called, and there is a higher risk of miscalling variants.
It is, therefore, recommended that individuals lacking calls in more
than 2–3% of the variants are removed from the analysis. Excess
heterozygosity is an indicator of sample contamination, and indivi-
duals displaying that should also be disregarded. Sex checks and
other kinds of phenotype tests might also be applied to remove
individuals, where the genotype information does not match the
phenotype information due to a sample mix-up [18].

For a given variant, the data from an individual can be suspi-
cious in two ways: it can fail to be called by the genotype-calling
program or it can be miscalled. Typically, a conservative cutoff value
is used in the calling process securing that most problems show up
as missing data rather than miscalls. Most problematic variants,
therefore, reveal a high fraction of missing data, and variants miss-
ing calls above a given threshold (typically, 1–5%) are removed.
Miscalls typically occur when the homozygotes are hard to distin-
guish from the heterozygotes, and some of the heterozygotes are
being misclassified as homozygotes or vice versa. Both biases
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manifest as deviation fromHardy–Weinberg equilibrium, and SNPs
that show large deviations from Hardy–Weinberg equilibrium
within the controls should be removed [19].

3.4 Confounding

Factors

Confounding in GWAS can arise if there are genotyping batch
effects or if there is population or family structure in the sample.
For example, if cases and controls in GWAS are predominantly
collected from geographically distinct areas, association signals
could arise due to genetic differences caused by geographic varia-
tion, and most of such genetic signals are unlikely to be causal. Such
confounding due to population structure typically occurs when
samples have different genetic ancestry, e.g., if the sample contains
individuals of both European and Asian ancestry. Population struc-
ture confounding can also happen when the population structure is
more subtle, especially for large sample sizes. Methods for inferring
population substructure, such as principal components analysis, are
useful for detecting outliers we can remove from the data
[20]. However, this approach is not suitable when dealing with
subtle structure, as a small bias can become significant in a large
enough sample of individuals of similar genetic ancestry.

Confounding in GWAS can be detected as inflation of the test
statistics, beyond what is expected due to truly causal variants. A
useful way of visualizing such inflation of test statistics is the
so-called quantile–quantile (QQ) plot. In this plot, ranked values
of the test statistic are plotted against their expected distribution
under the null hypothesis. In the case of no true positives and no
inflation of the test statistic due to population structure or cryptic
relatedness, the points of the plot lie on the x ¼ y line (see Fig. 5a).
True positives show an increase in values above the line in the right
tail of the distribution but do not affect the rest of the points since
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Fig. 5 QQ plots from a χ2 distribution. (a) A QQ plot, where the observation follows the expected distribution.
(b) A QQ plot, where the majority of observations follow the expected distribution, but where some have
unexpectedly high values, i.e., are statistically significant. (c) A QQ plot, where the observations all seem to be
higher than expected, which is an indication that the observations are not following the expected distribution
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only a small fraction of the SNPs is expected to be true positives
(Fig. 5b). Cryptic relatedness and population stratification lead to a
deviation from the null distribution across the whole distribution
and can, thus, be seen in the QQ plot as a line with a slope larger
than 1 (Fig. 5c).

Several approaches accounting for population structure in
GWAS have been proposed. Devlin and Roeder [21, 22] proposed
genomic control, i.e., to shrink the observed χ2 test statistic to make
the median coincide with the expected value under the null model.
However, studies by Yang et al. [23] and Bulik-Sullivan et al. [24]
pointed out that the median and mean χ2 statistic is expected to be
inflated for polygenic traits, even when there is no population
structure confounding. With that in mind, we recommend adjust-
ing for the confounders in the statistical model instead of
performing genomic control. One such approach is to include
covariates that capture the relevant structure in the model. Price
et al. [25] proposed including the largest principal components as
covariates in the model to adjust for population structure. This
approach has proved to be effective in most cases. However, if the
sample includes related individuals or if it is very large, controlling
for the top PCs may not be able to capture subtle structure. An
alternative approach is to use mixed models [26, 27], where the
expected genetic relatedness between the individuals is included in
the model. Advances in computational efficiency of mixed models
[28] now enable analysis of very large and complex data sets, such
as the UK biobank data set [29].

Besides population structure, family structure or cryptic relat-
edness can also confound the analyses. Here one can identify closely
related individuals by calculating a genetic relatedness matrix and
prune the data so that it does not contain any close relatives. Lastly,
sequencing batch effects due to incomplete randomizations can
lead to structure, unrelated to genetics, which confounds the anal-
ysis. A study on polygenic prediction of longevity by Sebastiani
et al. [30] serves as a warning. The researchers applied two different
kinds of chips and failed to remove several SNPs that exhibited bad
quality on only one of the chips [31]. If the fraction of the two
different kinds of chips had been the same in both cases and con-
trols that would probably not have resulted in false signals, unfor-
tunately, the chip with the bad SNPs was used in twice as many cases
as controls. When this genotyping batch effect was discovered, the
authors had to retract their publication from Science. Type and
frequency of errors that may happen during sample preparation and
SNP calling are likely to vary through time and space, so case and
control samples should be completely randomized as early as possi-
ble in the procedure of genotypic typing. Failure to carefully plan
this aspect of an investigation introduces errors in the data that are
hard, if not impossible, to disclose, and they may reduce interesting
findings to mere artifacts.
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3.5 Meta-analysis

of GWAS

The statistical power to detect association depends directly on the
sample size used, all other things being equal. This fact has driven
researchers to collaborate across institutions and countries in
GWAS consortia, where they combine multiple cohorts in one
large analysis. However, for logistic and legal reasons, it may not
be possible to share individual-level genotypes, which are required
for all of the GWAS approaches covered so far. Meta-analyses of
GWASs performed in each cohort are a solution to this problem.
These require coordination between the researchers, where they
share GWAS summary statistics instead of individual-level geno-
types. These summary statistics are then meta-analyzed using sta-
tistical approaches that either assume a constant effect across
cohorts or not. In recent years many large-scale GWAS meta-
analyses have been published, and the resulting summary statistics
of these are often made public, providing a treasure trove for
understanding genetics of common diseases and traits [32].

3.6 Replication The best way to make sure that a finding is real is to replicate it. If
the same signal is found in an independent set of cases and controls,
it means that the association is unlikely to be the result of a con-
founding factor specific to the original data. Likewise, if the associ-
ation persists after typing the markers using another genotyping
method, it means that it is not a false positive due to some artifact of
the genotyping method used.

When trying to replicate a finding, the best strategy is to try to
replicate it in a population of similar ancestry. A marker that corre-
lates with a true causal variant in one population might not be
correlated with the same variant in a population of different ethnic-
ity, where the LD structure can be different. This is especially
problematic when trying to replicate an association found in a
non-African population in an African population [33]. A marker
might easily have 20 completely correlated markers in a European
population, but no good correlates in an African population. To
replicate a finding in the European population of one of these
variants, it does not suffice to test one of the variants in an African
population; all 20 variants must be tested. This, however, also offers
a way to fine map the signal and possibly find the causative
variant [34].

Before spending time and effort to replicate an association
signal in a foreign cohort, it is a good idea to search for the existing
partial replication of the marker within the data. Usually, a marker is
surrounded by several correlated markers on the genotyping chip,
and if one marker shows a significant association, then the corre-
lated markers should show an association too. If a marker is signifi-
cantly associated with a disease, but no other marker in the region
is, then it should be viewed as suspicious.
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4 Imputation: Squeezing More Information Out of Your Data

The current generation of SNP chip types includes only 0.3–-
2 million of the nine to ten million common SNPs in the human
(i.e., SNPs with a MAF of more than 5%). Because of the correla-
tion between SNPs in LD, however, the SNP chips can still claim to
assay most of the common variants in the genome (in European
populations at least). Although the Illumina HumanHap300 chip
only directly tests about 3% of the ten million common SNPs, it still
covers 77% of the SNPs in HapMap with a squared correlation
coefficient (r2) of at least 0.8 in a population of European ancestry
[35]. The corresponding fraction in a population of African ances-
try is only 33%, however.

These numbers expose two limitations of the basic GWAS
strategy. First, there is a substantial fraction of the common SNPs
that are not well covered by the SNP chips even in European
populations (23% in the case of the HumanHap300 chip). Second,
we rely on tagging to test a large fraction of the common SNPs, and
this diluted signal from correlated SNPs inevitably causes us to
overlook true associations in many instances. An efficient way of
alleviating these limitations is genotype imputation, where geno-
types that are not directly assayed are predicted using information
from a reference data set that contains data from a large number of
variants. Such imputation improves the GWAS in multiple ways: It
boosts the power to detect associations, gives a more precise loca-
tion of an association, and makes it possible to do meta-analyses
between studies that used different SNP chips [36].

4.1 Selection of

Reference Data Set

The two important choices when performing imputation are the
reference data set to use and the software to use. Usually, a publicly
available reference data set, such as the 1000 Genomes Project [11]
or the large Haplotype Reference Consortium [37], is used. Alter-
natively, researchers sequence a part of their study cohort and thus
create their own reference data set. The latter strategy has the
advantage that one can be certain that the ancestry of the reference
data matches the ancestry of the study cohort. It is important that
the reference data be from a population that is similar to the study
population. If the reference population is too distantly related to
the study population, the reliability of the imputed data will be
reduced. The quality and nature of the reference data also limit the
quality of the imputed data in other ways. A reference data set
consisting of only a small number of individuals is not able to
reliably estimate the frequency of rare variants and that in turn
means that the imputation of rare variants lacks in accuracy. This
means that there is a natural limit to how low a frequency a variant
can have and still be reliably imputed.
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The largest publicly available reference data set is the Haplotype
Reference Consortium (HRC) that combines whole-genome
sequence data from 20 studies of predominantly European ancestry
[37]. The first release of this reference panel has data from 32,611
samples at 39,235,157 SNPs. The large sample size means that
variants with minor allele frequencies as low as 0.1% can correctly
be imputed using this data set.

The use of imputation methods does not only offer the possi-
bility of increased SNP coverage, but, given the right reference
data, also eases the analysis of common non-SNP variation, such
as indels and copy number variations (CNVs). So far some refer-
ence panels have, however, only include SNVs and disregarded
indels and structural variants. The increasing quality of whole-
genome sequencing and software for calling structural variants
means that better data sets that include structural variants should
soon become available. Imputation will then make it possible to use
the SNP chips to test many indels and structural variants that are
not being (routinely) tested today [38].

4.2 Imputation

Software

The commonly applied genotype imputation methods, such as
IMPUTE2 [39], BIMBAM [40], MaCH-Admix [41], and mini-
mac3 [42], are all based on hidden Markov models (HMMs).
Comparisons of these software packages have shown that they
produce data of broadly similar quality but that they are superior
to imputation software based on other methodological approaches
[36, 43]. The basic HMMs used in these programs are similar to
earlier HMMs developed to model LD patterns and estimate
recombination rates.

When the sample size is large, imputation using these
HMM-based methods imposes a high computational burden.
One possible way of decreasing this burden is to pre-phase the
samples so that resolved haplotypes are used as input for the impu-
tation software instead of genotypes [44]. But even with
pre-phasing, the computational task is far from trivial, and whole-
genome imputation is not a task that can be performed on a single
computer. This computational problem can be solved by using one
of the two free imputation services that have recently been launched
(https://imputationserver.sph.umich.edu, https://imputation.
sanger.ac.uk). These services allow users to upload their data
through a web interface and choose between a set of reference
panels. The data set will then be imputed on a High Performance
Computing Cluster, and the user will receive an email when the
imputed data is ready for download.

4.3 Testing Imputed

Variants

Since imputation is based on probabilistic models, the output is
merely a probability for each genotype for the unknown variants in
a given individual. That is, instead of reporting the genotype of an
individual as AG, say, the program reports that the probability of
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the genotype being AA is 5%, that of being AG is 93%, and that of
being GG is 2%. This nature of the output data challenges the
GWAS. The simplest way of analyzing the imputed data is to use
the “best guess” genotype, i.e., assume the genotype with the
highest probability and ignore the others. In the example above,
the individual would be given the genotype AG at the SNP in
question, and usually, an individual’s genotype would be consid-
ered as missing if none of the genotypes have a probability larger
than a certain threshold (e.g., 90%). The use of “best guess”
genotype is problematic since it does not take the uncertainty of
the imputed genotypes into account, may introduce a systematic
bias, and lead to false positives and false negatives. A better way is to
report a logistic regression on the expected allele count—in the
example above, the expected allele count for allele A would be 1.03
(2pAA + pAG). This method has proved to be surprisingly robust at
least when the effect of the risk allele is small [45], which is the case
for most of the variants found through GWAS. An even better
solution is to use methods that fully account for the uncertainty
of the imputed genotypes [45–47].

5 Current Status

After the first GWAS saw publication in 2005, it was followed by
many more studies, and today almost 4000 such studies of human
diseases or traits have been published (Fig. 6a). The first GWASs
had moderate sample sizes with hundreds of samples, but over the
years the sample sizes and thereby the power of the studies have
gradually been increasing (Fig. 6b). Imputation and later also next-
generation sequencing have resulted in a rapid increase in the

Fig. 6 GWAS statistics from the NHGRI-EBI GWAS Catalog [63] (accessed June 2017). (a) The cumulative
number of GWASs published since 2005. (b) The initial sample sizes of the GWASs. For dichotomous traits the
combined number of cases and controls is shown. Replication samples are not counted. (c) The number of
tested variants in each study
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number of variants that are tested in a GWAS (Fig. 6c). All these
GWASs published in the last decade have increased our knowledge
about the genetic architecture of common diseases a lot. In this
section, we will go through some of the insights that have been
revealed by these studies.

5.1 Polygenic

Architecture of

Common Diseases

GWASs have consistently shown that most complex traits and dis-
eases have very polygenic architectures with a large number of
causal variants with small effects. The small effect sizes mean that
enormous sample sizes are needed to detect the associated variants
and that each variant only explains a small fraction of the heritabil-
ity. Even though large sample sizes have led to the discovery of
many loci affecting common diseases, the aggregated effect of all
these loci still only explains a small fraction of the heritability.

A good example is type 2 diabetes where researchers by 2012
had identified 63 associated loci that collectively only explained
5.7% of the liability-scale variance [48]. Such results led to much
discussion about the possible source of the remaining “missing
heritability” [49, 50]. A significant contribution to this debate
was when researchers in 2010 started using mixed linear models
to estimate the heritability explained by all common variants not
only those that surpass a conservative significance threshold. These
studies showed that a significant fraction of the so-called missing
heritability was not truly missing from the GWAS data sets but only
hidden due to small effect sizes. This was first illustrated in height
where 180 statistically significant SNPs could only explain 10% of
the heritability, but this fraction increased to 45% when all geno-
typed variants were considered [51].

For common diseases, such analyses have typically shown that
around half of the heritability can be explained by considering all
common variants. Given the small individual contribution of each
of the discovered variants and that the individual contribution of
the yet to be found variants will be even smaller, it is likely that the
actual number of causal variants will be much more than a thousand
for many common diseases. Recent data shows that in many dis-
eases these causal variants are relatively uniformly distributed along
the genome. It has, for instance, been estimated that 71–100% of
1 MB windows in the genome contribute to the heritability of
schizophrenia [52]. Another article recently estimated that most
100 kB windows contribute to the variation of height and that
more than 100,000 markers have an independent effect on height.
This strikingly large number leads the authors to propose a new
“omnigenic” model in which most genes expressed in a cell type
that is relevant for a given disease have a nonzero contribution to
the heritability of that disease [53].

5.2 Pleiotropy The variants that have been discovered by GWASs so far reveal
numerous examples where one genetic locus affects multiple often
seemingly unrelated traits [54, 55]. One explanation for such a
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shared association between a pair of traits is mediation where the
shared locus affects the risk of one of the traits, and that trait is
causal for the other. Another possible explanation is pleiotropy
where the shared locus is independently causal for both traits. It is
possible to distinguish between mediation and true pleiotropy by
adjusting or stratifying for one trait while testing the other. In the
case of mediation, it is also possible to determine the direction of
the causation. In general, it is difficult to make such causal inference
from observational data, but Mendelian randomization, which uses
significantly associated variants as instrumental variables, can in
some circumstances be used to assess a causal relationship between
a potential risk factor and a disease. For instance, Voight and
colleagues used SNPs associated with lipoprotein levels to assess
whether the correlation between different forms of lipoprotein and
myocardial infarction risk was causal [56]. They found that while
low-density lipoprotein (LDL) had a causal effect on disease risk,
high-density lipoprotein (HDL) did not.

The fact that pleiotropy is widespread has several implications.
One is that variants that have already been found to affect one trait
can be prioritized in other studies since they are more likely also to
affect another trait than a random variant is. Another implication is
that we cannot always examine the effect of selection by studying
one trait in isolation. There are multiple examples of antagonistic
pleiotropy where a variant increases the risk of one disease while
decreasing the risk of another.

5.3 Differences

Between Diseases

Because of differences in age of onset and severity, we do not expect
identical allelic architectures in all common diseases. Using the
currently available GWAS data sets, we can now start to identify
these differences in the allelic architectures, but because of the
significant differences in samples sizes and the number of tested
variants, this is not an easy task.

The data available to date show that the degree of polygenicity
differs between diseases with schizophrenia, for example, having
more predicted loci than immune disorders [57] and hypertension
[52]. Results also show that rare variants play a larger role in some
diseases compared to others. Rare variants, for example, have a
greater role in amyotrophic lateral sclerosis than in schizophrenia
[58] and are even less important in lifestyle-dependent diseases
such as type 2 diabetes [59].

6 Perspectives

The price of whole-genome sequencing is still declining, and it is
not unreasonable to expect that at some point in the future, a
majority of people will get their genomes sequenced. At that
point the availability of genetic data will no longer be a limiting
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factor in studies of common human diseases. In order to make the
most of such huge data sets, the genetic information needs to be
combined with high-quality phenotypic and environmental infor-
mation. If that is achieved, we will be able to explain most—if not
all—of the additive genetic variance for the common human dis-
eases. Having large population data sets where genetic data is
combined with extensive phenotypic data including information
about lifestyle, diet and other environmental risk factors will also
enable much better studies of pleiotropy and gene–environment
interactions. A few large population data sets are already available
now with the UK Biobank [29]—a prospective study of 500,000
individuals—being the best example.

While GWASs have found a lot of loci that are associated with
common diseases, the actual causal variant and the functional
mechanism driving the causation are still unknown for a large
fraction of the loci. In order to understand the functional mecha-
nism of a specific locus, it is necessary to combine sequence data
with other types of data. This includes gene expression data (from
the correct tissue) and epigenetic data such as methylation. Such
data sets are fortunately also becoming cheaper to produce and thus
more abundant as a result of falling sequencing costs. Furthermore
large consortium data sets such as GTEx [60], ENCODE [61], and
Roadmap Epigenomics [62] mean that each lab studying these
mechanisms will not have to produce all the data themselves but
can in part rely on these public data sets. It is thus likely that we in
the future not only will find many more GWAS loci for each
common disease but we will also have a much better understanding
of how each of these loci affects the disease.

7 Questions

1. How can you distinguish causal variants from other variants
when all variants have been typed? Is there any statistical way of
distinguishing between correlation and causality just from
genotype data? Could you use functional annotations?

2. Consider a GWAS data set, where in the top ten ranked statis-
tics you have five markers that are close together and the
remaining five scattered across the genome. Would you con-
sider the five close markers more or less likely to be a true
positive? Why? If one of them is a false positive, what would
you think about the others?

3. Why is the RR but not the OR estimate affected by a biased
case/control sample?

4. How would you test for, e.g., dominant or recessive effects in a
contingency table?
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Chapter 18

Ancestral Population Genomics

Julien Y. Dutheil and Asger Hobolth

Abstract

Borrowing both from population genetics and phylogenetics, the field of population genomics emerged as
full genomes of several closely related species were available. Providing we can properly model sequence
evolution within populations undergoing speciation events, this resource enables us to estimate key
population genetics parameters such as ancestral population sizes and split times. Furthermore we can
enhance our understanding of the recombination process and investigate various selective forces. With the
advent of resequencing technologies, genome-wide patterns of diversity in extant populations have now
come to complement this picture, offering an increasing power to study more recent genetic history.
We discuss the basic models of genomes in populations, including speciation models for closely related

species. A major point in our discussion is that only a few complete genomes contain much information
about the whole population. The reason being that recombination unlinks genomic regions, and therefore a
few genomes contain many segments with distinct histories. The challenge of population genomics is to
decode this mosaic of histories in order to infer scenarios of demography and selection. We survey modeling
strategies for understanding genetic variation in ancestral populations and species. The underlying models
build on the coalescent with recombination process and introduce further assumptions to scale the analyses
to genomic data sets.

Key words Ancestral population, Coalescence, Demography, Divergence, Markov model, Migration,
Recombination, Selection, Speciation

1 Introduction

We are in the population genomics era where data sets from the
1000 human genomes project [1], the great apes project [2], and
the 1001 arabidopsis genomes project [3] are available. The under-
lying data sets contain genotypic information for thousands of
individuals in one or several species, in the form of de novo
sequenced genomes or variation compared to an available “refer-
ence” genome (a.k.a. resequencing). By comparing genomes from
several individuals of the same species or closely related species, we
can obtain information about split times, population sizes, recom-
bination events, and selection in contemporary and ancestral
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species (see Fig. 1). In this chapter we discuss various models for
obtaining this information.

Comparing homologous sequences available for a given locus
to infer their degree of relatedness enables the discovery of the
parental relationships of the sequences, depicted as a tree thereby
named genealogy. When one sequence sampled from one individual
of one species is compared with sequences from other species, the
resulting genealogy contains information about the history of spe-
cies, the so-called phylogeny. The phylogeny summarizes the rela-
tionship and the divergence times between the species.

Conversely, when sequences from several individuals within a
species are sampled, we have access to the genetic variation in
contemporary populations. The evolutionary forces that shape
genetic variation within a species are genetic drift, mutation,
recombination, and selection and are the subject of population
genetics. The key modeling tool in population genetics is coales-
cent theory. Classical coalescent theory describes the genetic ances-
try of a sample of homologous DNA sequences from the same
species. This genealogical description includes times to common
ancestry, which is measured back into the past.

Molecular phylogenetics and population genetics have accu-
mulated 50 years of methodological developments. The conver-
gence of these two fields and their key mathematical and statistical
tools is needed in order to fully understand genomic sequence
alignments, because comparing genealogies and phylogenies is at
the heart of the study of the speciation process [4].

We describe the interplay between population genetics and
phylogenetics by reviewing the methods and models that have
been developed to understand evolutionary history from genomic
data (see Table 1 for a comparative summary of all methods).

Species 1 Species 2

Ancestor

Speciation

Position along genome

Divergence time

Recombination event

Fig. 1 Left: Isolation model of two species. Right: The coalescent process along the genomes of the two
species. By comparing the two genomes we obtain information about the split time of the species and the
ancestral population size. Furthermore the breakpoints along the genomes correspond to recombination
events, so we also have information about the recombination process
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2 Coalescent Theory and Speciation

We start by describing the standard coalescent model within one
population. The coalescent model describes the shape of the gene-
alogy of several sequences sampled from a single population. For
more information on the coalescent, we refer to [21, 22] and
[23]. This section describes the coalescent process as a chronologi-
cal process. In the next section, we will see how it can be modeled as
a spatial process along the genome. In subsequent sections we
extend the standard model to include two or more populations.
In the cases where multiple populations are present we describe
both the isolation model and the isolation-with-migration model.

2.1 The Standard

Coalescent Model

The standard coalescent model is a continuous-time approximation
of the neutral Wright–Fisher model. In the Wright–Fisher model
the number of chromosomes 2N (we consider diploid organisms) is
fixed in each non-overlapping generation. Each chromosome in a
new generation chooses its ancestor uniformly at random from the
previous generation.

Consider two chromosomes. The probability of the two chro-
mosomes choosing the same ancestor is 1/(2N) and the probabil-
ity of the two chromosomes not finding a common ancestor is
1 � 1/(2N). Let R2 denote the number of generations back in
time when the two individuals find a most recent common ancestor
(MRCA). By repeating the argument above, the probability of the
two chromosomes not finding a common ancestor r generations
back in time is

PðR2 > rÞ ¼ ð1� 1

2N
Þr :

If we scale time t in units of 2N, i.e., set r ¼ 2Nt, we get

PðR2 > rÞ ¼ ð1� 1

2N
Þr ¼ ð1� 1

2N
Þ2Nt

� e�t ,

where the approximation is valid for large N. In coalescent time
units the waiting time T2 ¼ R2/(2N) before coalescence of two
individuals is therefore exponentially distributed with mean one.

These considerations can be extended to multiple individuals.
In general the time Tn before two of n individuals coalesce is
exponentially distributed with rate n

2

� �
.

The waiting time Wn for a sample of n individuals to find the
most recent common ancestor (MRCA) is given by

Wn ¼ T n þ T n�1 þ � � � þ T 2,

where Tk are independent exponential random variables with
parameter k

2

� �
; see Fig. 2 for an illustration. It follows that the

mean of Wn is
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E½Wn� ¼
Xn

k¼2

E½T k� ¼
Xn

k¼2

2

kðk � 1Þ ¼ 2
Xn

k¼2

ð 1

k � 1
� 1

k
Þ

¼ 2ð1� 1

n
Þ:

Note that limn!1E[Wn] ¼ 2.
The variance of Wn is

Var½Wn� ¼
Xn

k¼2

Var½T k� ¼
Xn

k¼2

k

2

� ��2

¼ 8
Xn�1

k¼1

1

k2
� 4 1� 1

n

� �
3þ 1

n

� �
:

Note that limn!1Var½Wn� ¼ ð8π26 � 12Þ ¼ 1:16.
The consequences of these calculations are that when we only

sample within a population we are limited to relatively recent
events. The expected time for a large sample to find their MRCA
is approximately 2 � (2N) ¼ 4N generations with standard devia-
tion

ffiffiffiffiffiffiffiffiffiffi
1:16

p � ð2N Þ ¼ 2:15N generations. As a consequence, a
neutral sample within a population contains little information
beyond 6N generations.

Humans have a generation time of approximately 20 years and
an effective population size of approximatelyN ¼ 10, 000 (see [21,
p. 251]), and therefore 6N generations correspond to approxi-
mately 1.2 million years (My) for humans. Therefore human

T5

T4

T3

T2

W5

Fig. 2 Illustration of the coalescent process. The waiting time before two out of n individuals coalesce is Tn and
the time before a sample of n individuals find common ancestry is Wn
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diversity at neutral loci contains little demographic information
beyond 1.2 My.

2.2 Adding

Mutations to the

Standard Coalescent

Model

Now suppose mutations occur at a rate u per locus per generation.
In a lineage of r generations, we then expect rumutations or in the
coalescent time units with r ¼ 2Nt we expect 2Ntu mutations. We
let θ ¼ 4Nu be the mutation rate parameter. Since u is small we can
make a Poisson approximation of the binomial number of muta-
tions in a lineage of r generations

Binðr,uÞ ¼ Bin 2Nt ,θ=ð2 � 2N Þð Þ � Poisðtθ=2Þ:
We have thus arrived at the following two-step process for

simulating samples under the coalescent: (a) simulate the genealogy
by merging lineages uniformly at random and with waiting times
exponentially distributed with rate n

2

� �
when n lineages are present;

(b) on each lineage in the tree addmutations according to a Poisson
process with rate θ/2.

Another possibility is to scale the coalescent process such that
one mutation is expected in one time unit. In this case the expo-
nentially distributed waiting times in (a) have rate n

2

� �ð2=θÞ, and in
(b) the mutations are added with unit rate. We use the latter version
of the coalescent-with-mutations process below.

2.3 Taking

Recombination into

Account

For species where recombination occurs, different parts of the
genome come from distinct ancestors, and therefore have a distinct
history. Figure 3 exemplifies this phenomenon for two species. It
displays the genealogical relationships for two sequences which
underwent a single recombination event. In the presence of recom-
bination, each position of a genome alignment therefore has a
specific genealogy, and close positions are more likely to share the
same one (recall Fig. 1). The genome alignment can therefore be
described as an ordered series of genealogies, spanning a variable
amount of sites, and then changing because of a recombination
event [4]. The genealogy is therefore depicted as a complex graph
with nodes representing both coalescence and recombination
events, the ancestral recombination graph (ARG, Fig. 3c). A single
genome thus contains different samples from the distribution of the
age of the MRCA, and the distribution contains information about
the ancestral population size and speciation time. The coalescent
with recombination serves as a basis for modeling genome-wide
genealogy, a point that we will further develop in Subheading 4.

3 Adding Genetic Barriers and Gene Flow to the Picture: The Structured Coalescent

In this section we extend the standard coalescent model. We con-
sider coalescent models with multiple species and introduce popu-
lation splits or speciation events. The models that we describe are
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shown in Fig. 4 (see also Table 1) and include: (a) The two species
isolation model; (b) The two species isolation-with-migration
models; (c) The three species isolation model (and incomplete
lineage sorting); and (d) The three species isolation-with-migration
model. We also discuss the general multiple species isolation-with-
migration model. The two species isolation model was introduced
in [24] and the isolation-with-migration model was introduced
in [25].

3.1 Isolation Model

with Two Species

If the sequences are sampled from two distinct species that have
diverged a time T ago (see Fig. 4a), then the distribution of the age
of the MRCA is shifted to the right with the amount T, resulting in
the distribution

1 2 3

ARGLeft tree Right treeC)

B)A)

4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 3 Ancestral recombination graph for two species. (a) Genealogy of four sampled sequences from two
species. The bold line shows the divergence of two sequences of interest. (b) A single recombination event
happened between the lineages of sequences 3 and 4 (horizontal line), so that in a part of the sequences, the
genealogy is as depicted by the bold line and therefore displays an older divergence. (c) The corresponding
ancestral recombination graph (in black) with the trees of each side of the recombination break point
superimposed (red: left tree; blue: right tree). When going backward in time, a split corresponds to a
recombination event and a merger to a coalescence event
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f T 2
ðtÞ ¼

0 if t < T

2

θA
e�2ðt�T Þ=θA if t > T

8<
: ,

where θA ¼ 4NA � u is the ancestral mutation rate. The mean time
to coalescent is E[T2] ¼ T + θA/2 and the average divergence time
between two sequences is twice this quantity, that is, 2T + θA. Since
θA ¼ 4NAu it follows that the larger the size of the ancestral

T

NA

a)

T N1 N2

NA

m2→1

m1→2

b)

T1

T2 NA1

NA2

c)

T1

T2

N1 N2

N3

NA1

NA2

m2→1

m1→2

m3→2

m2→3

m3→1

m1→3

m3→A1

mA1→3

d)

Fig. 4 Speciation models and associated parameters. In all exemplified models effective population size is
constant between speciation events, represented by dash lines. The timing of the speciation events, noted
T are parameters of the models, together with ancestral effective population sizes, noted NA. In some cases,
contemporary population sizes can also be estimated, and are noted Ni, where i is the index of the population.
Models with post-divergence genetic exchanges have additional migration parameters labeled mfrom!to. The
number of putative migration rates increases with the number of contemporary populations under study, and
some models might consider some of them to be equal or eventually null to reduce complexity. (a) Isolation
model with two species. (b) Isolation-migration model with two species. (c) Isolation model with three species.
(d) Isolation-Migration model with three species
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population, the bigger the difference between the speciation time
and the divergence time.

The variance of the divergence time is Var½T 2� ¼ θ2A=4. With
access to the distribution of divergence times, we could estimate the
speciation time and population size from the mean and variance of
the distribution. Unfortunately we do not know the complete
distribution of divergence times and it is not immediately available
to us, because long regions are needed for precise divergence
estimation but have experienced one or more recombination
events.

3.2 Isolation Model

with Three or More

Species and

Incomplete Lineage

Sorting

Now consider the isolation model with three species depicted in
Fig. 4c. Such a model is often used for the human–chimpanzee–-
gorilla (HCG) triplet (e.g., [10–12]).

The density function for the time to coalescence between
sample 1 and sample 2 is given by

f T 2
ðtÞ ¼

0 if t < T 1

2

θA1
e�2ðt�T 1Þ=θA1 if T 1 < t < T 12

P12
2

θA2
e�2ðt�T 12Þ=θA2 if t > T 12,

8>>>>>>><
>>>>>>>:

ð1Þ

where

T 12 ¼ T 1 þ T 2 and P12 ¼ e�2ðT 12�T 1Þ=θA1

is the probability of the two samples not coalescing in the ancestral
population of sample 1 and sample 2. In the upper right corner of
Fig. 5 we plot the density (Eq. 1) with parameters that resemble the
HCG triplet.

If sample 1 and sample 2 do not coalesce in the ancestral
population of sample 1 and sample 2, then the three trees
((1,2),3), ((1,3),2), and ((2,3),1) are equally likely. The probability
of the gene tree being different from the species tree is thus

PrðincongruenceÞ ¼ 2

3
P12 ¼ 2

3
e�2ðT 12�T 1Þ=θA1 : ð2Þ

The event that the gene tree is different from the species tree is
called incomplete lineage sorting (ILS). ILS is important because
species tree incongruence often manifests itself as a relatively clear
signal in a sequence alignment and thereby allows for accurate
estimation of population parameters. In Fig. 6 we show the (in)
congruence probability Eq. 2. We also refer to Exercise 1 (see
Subheading 8.1) and Exercise 2 (see Subheading 8.2) for more
discussion of ILS.
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In the three species isolation model the mean coalescent time
for a sample from population 1 and a sample from population 2 is
given by

E½T 2� ¼ T 1 þ ð1� P12Þ θA1

2
þ P12

θA2

2
: ð3Þ
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Fig. 5 Illustration of the density for coalescent in various models and data layout. The curves are the
probability density functions. In the most simple case with two species, a constant ancestral population
size and a punctual speciation (top left panel), more genomic regions find a common ancestor close to the
species split (the vertical line), while a few regions have a more ancient common ancestor, distributed in an
exponential manner (see Eq. 1). If speciation is not punctual and migration occurred after isolation of the
species, then some sequences have a common ancestor which is more recent than the species split and the
distribution in the ancestor becomes more complex (bottom left panel, see Eqs. 4 and 6). When a third species
is added (right panel), then another discontinuity appears and all distributions depend on additional para-
meters, particularly when migration is allowed. We use θA1 ¼ 0.0062, θA2 ¼ 0.0033 and τ1 ¼ 0.0038 (the
first vertical line), τ2 ¼ 0.0062 (the second vertical line) corresponding to the HCG triplet. Ancestral population
sizes are taken from the simulation study in Table 6 in Wang and Hey [8]: θ1 ¼ 0.005 and θ2 ¼ 0.003.
Migration parameters are all set to 50
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Burgess and Yang [9] describe the speciation process for
human, chimpanzee, gorilla, orangutan (O), and macaques
(M) using an isolation model with five species. The HCGOM
model contains four ancestral parameters θHC, θHCG, θHCGO, and
θHCGOM. In this case (Eq. 3) extends to

E½T 2� ¼ THC þ ð1� PHCÞ θHC

2
PHCð1� PHCGÞ θHCG

2

þPHCPHCGð1� PHCGOÞ θHCGO

2

þPHCPHCGPHCGOð1� PHCGOMÞ θHCGOM

2
:

3.3 Isolation-with-

Migration Model with

Two Species and Two

Samples

The isolation-with-migration (IM) model with two species is
shown in Fig. 4b. The IM-model has six parameters: The mutation
rates θ1, θ2, and θA, the migration rates m1 and m2, and the
speciation time T. We let Θ ¼ (θ1, θ2, θA, m1, m2, T) be the vector
of parameters.

Wang and Hey [8] consider a situation with two genes. Before
time T the system is in one of the following five states:

S11 : Both genes are in population 1.
S22 : Both genes are in population 2.
S12 : One gene is in population 1 and the other is in population 2.
S1 : The genes have coalesced and the single gene is in population 1.
S2 : The genes have coalesced and the single gene is in population 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Incomplete Lineage Sorting

(τ123−τ12)θ12

P
ro

ba
bi

lit
y

congruence
incongruence

((human,chimpanzee),gorilla)

Fig. 6 Probability (Eq. 2) of gene tree and species tree being incongruent. In case
of the HCG triplet we obtain (T12 � T1)/θA1 ¼ (0.0062 � 0.0038)/
0.0062 ¼ 0.39 which corresponds to an incongruence probability of 30%
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The instantaneous rate matrix Q is given by

S11 S12 S22 S1 S2

S11 · 2m2 0 2/q1 0

S12 m1 · m2 0 0

S22 0 2m1 · 0 2/q2

S1 0 · m2

S2

0 0

0 0 0 m1 ·

Starting in state a, the density for coalescent in population 1 at time
t < T is given by [26]

f 1ðtÞ ¼ ðeQ tÞaS11ð2=θ1Þ, ð4Þ
the density for coalescent in population 2 at time t < T is

f 2ðtÞ ¼ ðeQ tÞaS22ð2=θ2Þ, ð5Þ
and the total density for a coalescent at time t < T is

f ðtÞ ¼ f 1ðtÞ þ f 2ðtÞ: ð6Þ
Here eA ¼ P1

i¼0 A
i=ði!Þ is the matrix exponential of the matrix

A and (eA)ij is entry (i, j) in the matrix exponential.
After time T the system only has two states: SAA corresponding

to two genes in the ancestral population and SA corresponding to
one single gene in the ancestral population. The rate of going from
state SAA to state SA is 2/θA. The density for coalescent in the
ancestral population at time t > T is therefore

f ðtÞ ¼ ½ðeQ T ÞaS11 þ ðeQT ÞaS12 þ ðeQT ÞaS22� 2

θA
e�ð2=θAÞðt�T Þ:

ð7Þ
In Fig. 5 we illustrate the coalescent density in the two species
isolation-with-migration model.

The likelihood for a pair of homologous sequences X is given
by

PðX jΘÞ ¼ LðΘjX Þ ¼
ð1
0

PðX jtÞf ðt jΘÞdt ð8Þ

where f (t) ¼ f (t|Θ) given by Eqs. 6 and 7 is the density of the two
sequences finding a MRCA at time t and P(X|t) is the probability of
the two sequences given that they find aMRCA at time t. The latter
term is calculated using a distance-based method. One possibility is
to use the infinite sites model where it is assumed that substitutions
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happen at unique sites, i.e., there are no recurrent substitutions. In
this case the number of differences between the two sequences
follows a Poisson distribution with rate 1.

For an application of the isolation-with-migration model with
two sequences, we refer to [8]; a discussion of their approach can be
found in [27].

3.4 Isolation-with-

Migration Model with

Three or More Species

and Three or More

Samples

Hey [28] considered the multipopulation isolation-with-migration
(IM)model. Recall from Fig. 4b that the two-population IMmodel
has six parameters: two present population sizes, one ancestral
population size, one speciation time, and two migration rates.
The three-population IM model in Fig. 4d has fifteen parameters:
three present population sizes, two ancestral population sizes, two
speciation times, and eight migration rates. In general a k-popula-
tion IM model has 3k � 2 + 2(k � 1)2 parameters:

l k present population sizes,

l (k � 1) ancestral population sizes,

l (k � 1) speciation times, and

l 2(k � 1)2 migration rates.

See Fig. 5 for an example of divergence distribution with three
species and migration and Exercise 3 (see Subheading 8.3) for a
derivation of the number of migration rates in the general k-popu-
lation model. For k ¼ 5, 6, and 7 we obtain 45, 66, and 91 para-
meters. Because the number of parameters becomes very large even
for small k, Hey [28] suggests adding constraints to the migration
rates, e.g., setting some rates to zero or introducing symmetry
conditions where rates between populations are the same.

4 Approximating the Coalescent with Recombination Along Genomes

Before the genomic era, multilocus population genetics models
were addressing a small fraction of the complete ancestral recombi-
nation graph (ARG) by considering independent loci. As sequenc-
ing technologies evolved and allowed access to larger samples of
genomic diversity, this independence assumption had to be relaxed
and more explicit modeling of the ARG was required. Yet the
complexity of the coalescent with recombination process makes its
application to genome-scale data sets very challenging. Two direc-
tions of analysis methods have emerged: simulation-based or spatial
approximations along the genome. In this chapter we focus on the
latter and refer to Kelleher et al. [29] and Staab et al. [30] for the
former. Simonsen and Churchill [31] described the first model of
the joint distribution of genealogies at two loci for two genomes.
Wiuf and Hein [32] extended this approach and described the
coalescent as a spatial process along the genome. McVean and
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Cardin [33] further approximated the description with a Markov
process. In this section we describe and discuss these types of
approximations.

4.1 The Independent

Loci Approach: Free

Recombination

Between, No

Recombination Within

The simplest way to handle issues relating to the ancestral recom-
bination graph is to divide the data into presumably independent
loci. Such analyses are therefore restricted to candidate regions that
are not too large (to avoid including a recombination point) and
not too close (to ensure several recombination events happened
between loci). Each region can then be described by a single
underlying tree, reducing the analytical and computational load.

Using 15,000 loci distant from 10 kb totaling 7.4 Mb and the
isolation model introduced above, Burgess and Yang [9] (Table 2,
model (b) sequencing errors) find the following ancestral popula-
tion sizes and speciation times estimates for human (H), chimpan-
zee (C), gorilla (G), orangutan (O), and macaque (M) ancestors:
θHC ¼ 0.0062, θHCG ¼ 0.0033, θHCGO ¼ 0.0061, θHCGOM

¼ 0.0118 and THC ¼ 0.0038, THCG ¼ 0.0062, THCGO

¼ 0.0137, THCGOM ¼ 0.0260. Converting these estimates into
time units requires an estimate of the substitution rate, either
absolute or deduced from a scaling point. Using u ¼ 10�9 as an
estimate for substitutions per year, this leads to an estimate of 3.8
My for the human–chimpanzee speciation, a very recent estimate.
Using the same data, Yang [10] showed that the isolation-with-
migration model was preferred. Yang finds a more ancient specia-
tion time THC ¼ 0.0053 (5.3 My with u ¼ 10�9) when migration
is accounted for.

4.2 State-Space

Model:

Simonsen–Churchill

Framework

The coalescent with recombination for two loci and two sequences
is originally described in Simonsen and Churchill [31] as a
continuous-time Markov chain backward in time with eight states
as shown in Fig. 7. This Markov chain is given a careful treatment in
the textbooks by Durrett [34, Section 3.1.1] and Wakeley [21,
Section 7.2.4], and we therefore only briefly explain the basic
properties of the model here.

A single sequence is either linked ( , , , or
meaning that it contains material ancestral to the sample at both
loci, or it is unlinked ( , , , or ) when it contains material
ancestral to the sample at only one locus. The coalescent rate is one
for any two sequences, and the recombination rate is ρ/2 for any
linked sequence. The chain begins at time zero in state 1 with two
linked sequences. After an exponential waiting time with rate 1 + ρ
the chain enters state 8 with probability 1/(1 + ρ) or state 2 with
probability ρ/(1 + ρ). The transition from state 1 to state 8 is a
coalescent event, and the left and right tree heights are identical.
The transition from state 1 to state 2 is a recombination event that
breaks apart one of the two sequences. All other transitions have
similar interpretations. Common ancestry for a locus is marked
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with a�, so the transition from, e.g., state 1 to state 8 is a transition
to the state .

The height S of the left tree is the first time at which the process
enters one of the states 5, 7, or 8 (states with a left �), and the
height T of the right tree is the first time at which one of the states
4, 6, or 8 is entered (states with a right �). When state 8 is entered
from state 1 the two tree heights are identical. State 8 is absorbing
because only the tree heights are of interest.

The two key ingredients for the state-space model are the
conditional probability for staying in a state P(T ¼ s|S ¼ s) and
the conditional density q(t|s) of a new tree height t conditional on
a change and a previous tree height s. Hobolth and Jensen [35]
show that the conditional probability of no change from the left to
the right tree is

PðT ¼ s jS ¼ sÞ ¼ es ½eΛs �11, ð9Þ
and the conditional density q(t|s) of T given S ¼ s and given
T 6¼ S is
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Fig. 7 State transition diagram for two loci and two sequences described as a continuous-time Markov chain
backward in time. The figure is adapted from Figure 7.7 in Wakeley [21]. A line with a bullet or a cross at both
ends is a linked sequence (ancestral material to the sample at both loci), whereas a line with a bullet or a cross
at one end only is a sequence with ancestral material at one locus only. A cross denotes common ancestry.
s and t denote the heights of the left and right trees, respectively
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qðt jsÞ ¼
e�ðs�tÞ ½eΛt �12 þ ½eΛt �13

e�s � ½eΛs �11
t < s,

e�ðt�sÞ ½eΛs �12 þ ½eΛs �13
e�s � ½eΛs �11

t > s,

8>>>><
>>>>:

ð10Þ

where Λ denotes the 8 � 8 rate matrix from Fig. 7.
Wakeley [21, Section 7.2.4] noted that the transitions between

state 4 and 6 and the transitions between state 5 and 7 can be
removed from the chain if we are only interested in the tree heights.
Actually, even more transitions can be removed from the chain.
Note from Eqs. 9 and 10 that we only need the entries (1, 1), (1, 2),
and (1, 3) in eΛt for calculating the probability of the same tree
height in the next position and the transition density conditional on
a change. These entries can be found from a reduced rate matrix
where states 4, 5, 6, and 7 are removed and the rate from states
2 and 3 to a new absorbing state equals 2. In other words, define
the reduced rate matrix

~Λ ¼
�ð1þ ρÞ ρ 0 1

1 �ð3þ ρ=2Þ ρ=2 2
0 4 �6 2
0 0 0 0

0
BB@

1
CCA,

where states are numbered 1, 2, 3, and 4. The holding time and
transition density for the model are now given by Eqs. 9 and 10
with Λ substituted by ~Λ.

In the left plot in Fig. 8 we illustrate the probability (Eq. 9) of
the same tree height in the left and right loci conditional on the
tree height in the left locus and different recombination rates.
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As expected the probability for identical tree heights decreases with
the height of the left tree and with the recombination rate.

In the right plot in Fig. 8 we illustrate the density (Eq. 10) of
the right tree height conditional on the left tree height and a
change in tree height. When the recombination rate increases, the
density for the right tree height moves toward smaller tree heights.
The reason is that at least one recombination is needed for having a
change in tree height. We also observe that the density is continu-
ous but not differentiable in the position of the left tree height.

4.3 Time

Discretization: Setting

Up the Finite State

HMM

Li and Durbin [14] and Mailund et al. [13] analyze pairs of
sequences using a hidden Markov model (HMM). The hidden
states are tree heights (times to the most recent common ancestor),
and the tree height is discretized to obtain a finite hidden state
space. The observed states of the HMM are alignment columns,
with probabilities corresponding to a substitution process on the
tree (see Fig. 9). In the Li and Durbin model, an infinite site model
is assumed and observed states are converted to binary data, telling
whether the site is heterozygous (one mutation) or homozygous
(no mutation).

We now describe how we discretize time for the case of two
sequences considered in the previous section. The discrete version
of the Markov process is used to build a finite Markov chain along
the two sequences. When the finite Markov chain is combined with
a substitution process, we obtain an HMM as in Li and
Durbin [14].

Let the discrete time points (backward in time) of the Markov
chain be d0 ¼ 0 < d1 < d2 < � � � < dM�1 < dM ¼ 1 and denote
the corresponding states by 1, 2, . . ., M. State m (m ∈{1, . . ., M})
then corresponds to a tree height in the interval between dm�1 and
dm. The continuous stationary distribution is πðtÞ ¼ expð�tÞ, and
therefore the discrete times are chosen such that
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Fig. 9 (a) Graphical structure of the hidden Markov Model. (b) Simulation from the hidden Markov model
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1� expð�dmÞ ¼ m=M , ordm ¼ �logð1�m=M Þ, where we define
logð0Þ ¼ �1.

We now get for 1 � ℓ, r � M the joint density

PðL ¼ ℓ,R ¼ rÞ

¼

X
k∈f5,7g

X
j∈f5,7g

X
i∈f1,2,3g½e

Λdℓ�1 �1i

½eΛðdℓ�dℓ�1Þ�i j ½eΛðdr�1�dℓÞ�jk½eΛðdr�dr�1Þ�k8 if ℓ < rX
i∈f1,2,3g½e

Λdℓ�1 �0i½eΛðdℓ�dℓ�1Þ�i8 if ℓ ¼ r

PðL ¼ r,R ¼ ℓÞ if ℓ > r:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ
The reason for the first case is that in order for the left tree height to
be in state ℓ < r, it must be in state 1, 2, or 3 at time dℓ�1 and in
state 5 or 7 at time dℓ (i.e., there have been no coalescent events
before time dℓ�1 and a left coalescent event between time dℓ�1 and
dℓ), and similarly it must still be in state 5 or 7 at time dr�1 and in
state 8 at time dr (i.e., there have been no coalescent events between
time dℓ and time dr�1 and a right coalescent event between time
dr�1 and time dr). The next case corresponds to no coalescent
events before time dℓ�1 and both a left and a right coalescent
event between time dℓ�1 and dℓ. The last case is due to symmetry
of the chain.

From the joint tree states (ℓ, r) we easily get the conditional
tree states

P ðℓ,rÞ ¼ PðrjℓÞ ¼ PðR ¼ rjL ¼ ℓÞ ¼ PðL ¼ ℓ,R ¼ rÞ
PðL ¼ ℓÞ ,

where P(L ¼ ℓ) ¼∑rP(R ¼ r, L ¼ ℓ). These probabilities are used
in the HMM.

4.4 Careful

Treatment of Mutation

Process

A careful treatment of the mutation process allows for a more
coarse binning procedure and is needed to avoid biasing the results.
In continuous time the probability for a mutation given a tree
height t is given by μðtÞ ¼ 1� expð�θtÞ, and the stationary tree
height distribution is πðtÞ ¼ expð�tÞ. The probability of a muta-
tion conditionally on the hidden state m becomes
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μm ¼ pðyi ¼ 1jxi ¼ mÞ

¼ pðyi ¼ 1jt∈ðdm�1, dmÞÞ ¼ pðyi ¼ 1jt∈ðdm�1, dmÞÞ
pðt∈ðdm�1, dmÞÞ

¼

ðdm

dm�1

pðyi ¼ 1jtÞπðtÞdt
ðdm

dm�1

πðtÞdt
¼

ðdm

dm�1

ð1� e�θt Þe�tdt

ðdm

dm�1

e�tdt

¼ 1� e�θdm�1
ð1� e�ð1þθÞðdm�dm�1ÞÞ
ð1þ θÞð1� e�ðdm�dm�1ÞÞ :

ð12Þ

Note that with a fine discretization we have that the interval dm �
dm�1 is small and the first-order Taylor expansion
expð�azÞ � 1� az for z small gives

pðyi ¼ 1jxi ¼ mÞ � 1� e�θdm�1 ,

as perhaps expected. We are, however, discretizing the interval [0,
1[, so it is not possible to avoid one or more large bins. Generally
we have found that a careful treatment of the mutation process is
crucial for accurate inference [36].

4.5 Statistical

Inference of

Population Parameters

from Sequences

Here we choose to focus on three inference methods for estimating
the recombination rate. The first method is based on the full
likelihood obtained from the classical forward (or backward) algo-
rithm for HMMs. The second is based on the distribution of the
distance between segregating sites. This summary statistics was
used in Harris and Nielsen [37] for demographic inference. It is
sometimes also described as the distribution of the distance
between heterozygote sites, runs of homozygosity, or the nearest-
neighbor distribution. The third summary statistics is the probabil-
ity that two sites at certain distance apart are both heterozygote
sites. This probability is closely related to the pair correlation func-
tion from spatial statistics [36] and to the zygosity correlation
introduced in [38].

4.5.1 Summary

Statistics: Runs of

Homozygosity and Pair

Correlation

Recall that in continuous time the probability for a mutation given
a tree height t is given by μðtÞ ¼ 1� expð�θtÞ, and the stationary
tree height distribution isπðtÞ ¼ expð�tÞ. The marginal probability
for a mutation is therefore given byð1

0

μðtÞπðtÞdt ¼ θ=ð1þ θÞ: ð13Þ
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We also get the stationary distribution

ϕðtÞ ¼ μðtÞπðtÞð1
0

μðtÞπðtÞdt
¼ 1þ θ

θ
e�tð1� e�θtÞ

for a tree height t conditional on a mutation. Figure 10a shows ϕ(t)
for different values of θ. Note that small mutation rates imply a
higher tree height when we condition on a mutation. In discrete
time the probability for a mutation given a tree height m was given
by Eq. 12. Let μ ¼ (μ1, . . ., μM) be the vector of mutation
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probabilities. The stationary distribution ϕ ¼ (ϕ1, . . ., ϕM) for a
state m conditional on a mutation is given by

ϕℓ ¼
μℓπℓXM

m¼1

μmπm

,

where πm ¼ 1/M because this is how the time discretization was
chosen.

The probability for a mutation at a distance r from a typical
mutation is then given by

κðrÞ ¼ ϕ0Prμ,

where 0 denotes vector transpose. In Fig. 10b we show κ(r) as a
function of ρ and θ. Note that the curves converge to θ/(1 + θ) and
that the behavior for small r is determined by the
recombination rate.

The distribution of runs of homozygosity is given by

νðrÞ ¼ ϕ0½Pdiagðe � μÞ�r�1Pμ:

Here e ¼ (1, . . ., 1) is the vector of length M with 1 in every entry
and diag(e � μ) is the diagonal matrix with e � μ on the diagonal.
In Fig. 10c we show ν(r) as a function of ρ and θ.

4.5.2 Parameter

Estimation

We estimate the mutation rate using an estimating equation based
on the marginal probability for a mutation (Eq. 13). If the observed
frequency of a mutation is p̂, then the mutation rate is

θ̂ ¼ p̂=ð1� p̂Þ (see left plot in Fig. 11). The recombination rate is
estimated using maximum likelihood for the HMM and goodness
of fit for the pair correlation (see middle plot in Fig. 11) and runs of
homozygosity (see right plot in Fig. 11).

We simulated 50 sequences of length 20,000 base pairs and
with mutation rate θ ¼ 0.1 and recombination rate ρ ¼ 0.1. We
estimated the mutation rate using the estimating equation and the
recombination rate using maximum likelihood and the HMM, and
goodness of fit for the pair correlation and nearest neighbor
(Fig. 12) [35]. As expected the HMM procedure shows the best
results because here we are using all the available information. It
seems, however, that we are not losing too much power when
applying the pair correlation function. This is in contrast to the
nearest-neighbor summary statistics that perform much worse than
the other two methods.

We have provided a detailed treatment of the main components
involved in an analysis of pair of DNA sequences based on anHMM
derived from coalescent theory. Pairwise sequentially Markov coa-
lescent (PSMC) models have been extensively applied to various
organisms, see, for instance [39–43].
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5 Extending the Pairwise Sequentially Markov Coalescent

Extending the SMC to more than two genomes has proved to be
challenging. The number of hidden states becomes prohibitive, as
several divergence times have to be modeled and combined with
distinct possible topologies. Further simplifications are therefore
needed to account for an increasing number of genomes.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Marginal probability of a mutationa b

c

θ

θ/
(1

+θ
)

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

Probability of a mutation

Distance
P

ro
ba

bi
lit

y

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

Empirical
Fitted

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l l

l l

l

l

l
l

l l l

l
l

l l
l l

l
l

l

l
l l

l

l
l

l l l l l l l
l

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

Probability of first mutation

Distance

P
ro

ba
bi

lit
y

Empirical
Fitted

Fig. 11 Parameter estimation for summary statistics. (a) The mutation rate θ is estimated from the observed
number of mutations and length of the region. (b) The recombination rate ρ is estimated using the empirical
distribution of a mutation at various distances from a mutation. (c) The recombination rate is estimated using
the empirical distribution of the first mutation from a mutation
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5.1 From 2 to n

Genomes

5.1.1 The Multiple

Sequentially Markov

Coalescent (MSMC)

Schiffels and Durbin [15] proposed to extend the PSMC model
[14] to more than two haploid genomes by modeling the most
recent coalescence event in the sample. In this framework, the
hidden states of the model are a combination of divergence times,
taken from a discretized distribution, and identity of the
corresponding haplotypes involved. The rationale for such simplifi-
cation was that the PSMC showed poor resolution in the recent
past [14], and considering more genomes would bring additional
signal. The drawback of this implementation is that the more
genomes are considered, the more “shifted” toward the present is
the timeframe where population parameters can be inferred. As a
result, the authors reported that with more than 8 diploid indivi-
duals (16 haploid genomes), parameters can virtually not be esti-
mated (see also [44] for an illustration of this effect with
simulations). Another consequence of this approach is that the
recombination rate parameter cannot be reliably estimated
[15]. The MSMC was used to infer the recent history of human
population. In particular, the authors introduced the possibility to
label individuals and look at cross-coalescence rate between groups,
a way to get a fine-tuned view of population divergence [15, 45].
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Fig. 12 Results of parameter estimation for simulation study. The pair correlation summary performs rather
well compared to the full HMM data analysis. Nearest neighbor is a poor summary statistics

578 Julien Y. Dutheil and Asger Hobolth



5.1.2 The Demographic

Inference with Composite

Approximate Likelihood

(diCal)

An alternative approach was introduced by Song and colleagues
[16–18]. The demographic inference with composite approximate
likelihood (diCal) approach is based on the conditional sampling
distribution, which computes the likelihood of one genome
conditioned on the observation of others. Using the so-called
composite likelihood formula, it is therefore possible to compute
the likelihood of the data for n genomes as the product of the
likelihood of one genome given the n � 1 other ones and the
likelihood the remaining n � 1 genomes:

PðD1...njΘÞ ¼ PrðD1jD2...n,ΘÞ � PðD2...njΘÞ,
where Θ is the set of model parameters and D1. . .n denotes the data
set with n genomes. By further noting that

PðD2...njΘÞ ¼ PðD2jD3...n,ΘÞ � PðD3...n�1jΘÞ
the likelihood of the full data set can be computed by recursion.
The terms P(Di|Di+1. . .n) form the conditional sampling distribu-
tion (CSD). Paul et al. [16] proposed a way to compute the CSD at
the cost of introducing several additional hypotheses: (a) the hap-
lotypes upon which the sample is conditioned are considered inde-
pendent, that is, no coalescence events involving these haplotypes
are allowed and (b) mutations can only occur once in any lineage
(infinite site hypothesis). The likelihood resulting from this
approximated CSD is therefore not exact. This approach was intro-
duced by Li and Stephens [46] and is referred to as the product of
approximate conditionals (PAC) model. Under the PAC model,
the likelihood depends on the order by which the data is
conditioned, which can be circumvented with permutation proce-
dures. While the CSD-based SMC does not have the same draw-
backs as the MSMC of Schiffels and Durbin [15], its computational
efficiency decreases as the number of haplotypes considered
increases and becomes impractical for more than 10 genomes
[19]. An elegant feature of the diCal approach is that it can be
extended to more complex demographic models, including popu-
lation structure and gene flow [18, 45]. Such extension is of
interest as the SMC approximation has been shown to be sensitive
to strong population structure [47].

5.1.3 Extending the SMC

with Conditional Site

Frequency Spectra (CSFS)

In order to use the large amount of data available in “1000 gen-
omes” projects, Terhorst et al. [19] extended the PSMC in a
different direction. Instead of modeling the genealogy of the com-
plete sample, the authors proposed to model the divergence of two
haplotypes (the PSMC model) as hidden states, yet considering the
full set of genomes as observed states. In this approach, the transition
probabilities of the coalescent HMMare similar to the PSMC (or to
be more precise, similar to the MSMC with two haplotypes, as the
original PSMC uses the SMC of McVean and Cardin [33] and not
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the SMC’ of Marjoram and Wall [48]), but the emission probabil-
ities are extended to account for the full site frequency spectrum of
hundreds of genomes. This conditional site frequency spectrum
(CSFS) is computed using coalescence theory, offering a generali-
zation of the Poisson random field (PRF) model introduced by
Sawyer and Hartl [49]. Just like the original PRF, however, the
CSFS ignores linkage of observed states, only linkage between the
two conditioned haplotypes is modeled via the SMC. Additional
data reduction steps are therefore required to ensure that the
independence condition of sampled sites is met.

5.1.4 Explicit

Reconstruction of the

Ancestral Recombination

Graph

While the ARG contains all historical information about a sample of
genomes, genomes themselves contain very little information
regarding the underlying ARG. As a result, in most statistical
inference methods is the ARG treated as a variable accounted for,
but not directly inferred. In the SMC models presented above, this
is taken care of by the hidden Markov methodology, which com-
putes a likelihood for a given sample by summing over all possible
ARG (via the so-called forward algorithm). The Viterbi algorithm
and the posterior decoding procedure are HMM algorithms that
allow to reconstruct a posteriori the most likely ARG for a sample,
such procedures are notably used for the inference of patterns of
incomplete lineage sorting along genomes [11, 12, 50, 51]. Yet the
variance in such estimation is typically very large [12].

Rasmussen et al. [20] proposed a different approach: they
developed a Bayesian sampler of ARGs conditioned on a set of
genome sequences. Similar in principle to the PAC and CSD
approaches, the authors proposed to generate the ARG of
n genomes conditioned on the ARG of n � 1 genomes, a proce-
dure they refer to as threading. The generated ARGs can then be
used to infer evolutionary processes of interest. Palacios et al. [52]
developed a non-parametric method that allows to estimate the
variation in time of the effective population size based on such
reconstructed ARG. Rasmussen et al. further showed that while
the model used for inference is purely neutral, the a posteriori
inferred ARG contains signature of selection, visible for instance
as a decrease of the time of the most common ancestor of two
samples in the data close to coding sequences. Such approaches
offer promising avenues for the development of new statistical
methods to detect genomic regions with unusual history.

5.2 The Case of

Multiple Species

Hobolth et al. [11] developed a hidden Markov model (HMM) to
infer the ancestral recombination graph between three closely
related species. Because this model only contains one haploid
genome per species, it only allows to infer population parameters
in the ancestral species. Dutheil et al. [12] reparametrized this
model in the context of the sequentially Markov coalescent. In
contrast to the previous approaches, only four hidden states were
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considered, corresponding to four alternative scenarios of lineage
segregation (Fig. 13). In states 1 and 2, the genealogy is consistent
with the phylogeny and lineages segregate in the same order as the
species. In states 2, 3, and 4, allele divergence predates the first
speciation event and ancestral polymorphism persists between the
two speciation events, leading to incomplete lineage sorting. The
scenarios depicted by states 2, 3 and 4 are equally likely, and in the
case of states 3 and 4, the resulting topology is inconsistent with the
phylogenetic tree. This model therefore does not rely directly on
divergence variation along the genome alignment but uses patterns
of topology variation instead to compute the speciation times and
ancestral population sizes.

Using this approach, Hobolth et al. estimated a speciation time
between human and chimpanzee around 4.1 My and a large

a

b

Fig. 13 The coalescent process along genomes of three closely related species. (a) Four archetypes of
coalescence scenarios with three species, exemplified with human, chimpanzee, and gorilla. In the first
scenario, human and chimpanzee coalesce within the human–chimpanzee common ancestor. In the three
other scenarios, all sequences coalesce within the common ancestor of all species, with probability 1/3
depending on which two sequences coalesce first. (b) Example of genealogical changes along a piece of an
alignment. The alignment was simulated using the true coalescent process and parameters corresponding to
the human–chimpanzee–orangutan history. The blue line depicts the variation along the genome of the
human–chimpanzee divergence. The background colors depict the change in topology, red and yellow
corresponding to incomplete lineage sorting. Each change in color or break of the blue line is the result of
a recombination event
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ancestral effective population size of 60,000 for the human–chim-
panzee ancestor. Dutheil et al. [12] found similar estimates with the
same data set while accounting for substitution rate variation across
sites and estimated an average recombination rate of 1.7
cM/Mb. With sequencing of more great ape genomes, this
approach allowed to estimate population size in several ape ances-
tors ( [27, 50, 53], reviewed in [54]). As ILS is a proxy for ancestral
effective population size, a major result of these studies is that the
distribution of ILS is not uniform along the genome. For instance,
it is reduced in proximity of genes, a pattern that can be explained
by background selection [27, 50]. Large regions of the X chromo-
some were also found to be devoid of ILS, a pattern resulting from
recurrent selective sweeps along the chromosomes [55].

6 Specific Issues Faced When Dealing with Genomic Data

In previous sections we discussed population genetic models and
methods for parameter estimation. We now describe several chal-
lenges encountered when analyzing whole-genome data sets, at the
intra- and interspecific levels.

6.1 Sequencing

Errors and Rate

Variation

Sequencing errors are a well-described source of bias in population
genetics analyses, resulting in an excess of singletons [56]. At both
the intra- and interspecific/populational level, such error therefore
leads to incorrect estimates of local divergence, in particular for
recent times. When more divergent sequences are compared, for
instance, from distinct species, the issue becomes more complex as
the error rate differs between and within sequences due to coverage
variation, but also properties of the genome (base composition,
repeated elements, etc.). Such errors result in a departure from the
molecular clock hypothesis, thus potentially leading to biases in
parameter estimates, such as asymmetries in genealogy frequencies
[57, 58]. In this respect, data preprocessing becomes a crucial step
in any genomic analysis. Methods would also benefit in many cases
of inclusion of a proper modeling of such errors. Burgess and Yang
noticed that sequencing errors can be seen as a contemporary
acceleration in external branches, resulting in an extra branch
length [9]. Such an extra length can be easily accommodated in
many models. It has to be noted that only a differential in error
rates between lineages results in a departure from molecular clock,
and in such approaches, one still has to consider that at least one
sequence is error-free. In addition, as noted by the authors, assum-
ing a constant error rate over all genomic positions may also turn
out to be inappropriate, and better models should allow this rate to
vary across the sequence. Such approaches still have to be explored.
Moreover, sequencing errors are not distinguishable from lineage-
specific acceleration (or deceleration in another species). In that
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respect, sequence quality scores can be a valuable source of infor-
mation. They are currently used to preprocess the data by removing
doubtful regions, but can ultimately be used in the modeling
framework.

The substitution rate also varies along the genome, which
potentially affects the reconstruction of sequence genealogy, a phe-
nomenon well known by phylogeneticists. In such case the tools
developed for phylogenetic analysis can be applied with a reason-
able cost. This generally consists in assuming a prior distribution of
the site-specific rate and integrating the likelihood over all possible
rates [8, 9, 12]. Alternatively, one can also use one or more out-
group sequences to calibrate the rate, as in [6, 7].

6.2 Diploid Data and

Phasing

While sequencing of diploid individuals allows to infer the two
alleles present at heterozygous positions, establishing how these
alleles are combined on each homologous chromosome requires an
additional, error-prone step calling phasing. Analyses based on the
comparison of individuals from distinct species do not require such
information, as the coalescence time of two alleles from the same
species is expected to have happened much after the speciation time
of the compared species. In such case alleles at each heterozygous
position can be sampled randomly [13] in order to build a com-
posite haploid genome. The same rationale applies with respect to
the use of the human reference genome, a composite genome
obtained from multiple individuals. Conversely, inferences at the
population level typically rely on the modeling of haploid genomes
and therefore require phased data. A notable exception is the
PSMC [14], as well as its extension SMC++ [19], which, when
applied to one diploid individual, only requires the knowledge of
the position of heterozygous positions.

6.3 Structural

Variation and Genome

Alignment

Genome data are intrinsically fragmented, firstly because of chro-
mosomal organization, but also because of rearrangements that
prevent molecule-to-molecule alignment from one species to
another. A genome data set is therefore a set of distinct alignments,
one per synteny block. Synteny information can only be extracted
when individual genomes are available, which is typically not the
case for most “re-sequencing” data sets. At the population level,
however, such large-scale variation is considered negligible (but
see, for instance, [59] for an exception), while it becomes more
prominent when genomes from distinct species are compared. In
such cases, a genome alignment is constructed with potential errors
ultimately leading to the comparison of nonhomologous regions.
So far, the only way to deal with such errors is to restrict the analysis
on regions where orthology can be unambiguous resolved, mostly
by removing short synteny blocks and regions that contain a high
proportion of repeated elements, gaps, and duplications.
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7 Discussion

Studying the speciation process with genome data implies new
modeling challenges, as the basic configuration of a population
genetics data set is drastically changed: instead of having a few
loci sequenced in several individuals, we have an (almost) exhaus-
tive set of loci sequenced in several individuals for multiple closely
related species. The change involves the spatial dimension, but also
time, as the process under study occurred much further back in
time than the ones that are commonly studied with a “standard”
population genetics data set. The use of the spatial signal has a
major consequence, namely, that recombination has to be taken
into account, even if it is not directly modeled.

Apart from these considerations, ancestral population geno-
mics, as population genetics, heavily relies on the study of sequence
genealogy, its shape, but also its variation. The underlying models
build on existing intraspecies population modeling, as they only
need to add the species divergence process, that is, a moment in
time where two populations stop exchanging genetic material and
evolve fully independently. The simplest isolation model assumes
that the speciation is instantaneous, while the isolation-with-migra-
tion model assumes that the two neo-species can still exchange
some material, at least for a certain time after the split. Such a
model is not different from a pure isolation model where the
ancestral population is structured into two subpopulations: in the
first case the speciation time is defined as the time of the split, while
in the second case it is the time of the last genetic exchange. Recent
work on primates [10] suggests that the speciation of human and
chimpanzee was not instantaneous. If the average divergence of the
human and chimpanzee is a bit more than 6 My (using widely
accepted mutation rate), then the split of the two species initiated
around 5.5 My ago, and the last genetic exchange can be dated
around 4 My.

The fact that we sample a large number of positions in the
genome thus appears to have the power to counterbalance the
reduced sampling of individuals within population, allowing
the estimation of demographic parameters in the ancestor. None-
theless, complexity limits are rapidly reached, when considering, for
example, three closely related species that can exchange migrants.
More complex demographic scenarios, incorporating, for instance,
variation in population sizes, will also add additional parameters
that might not all be identifiable.

If the ancient speciation processes have left signatures in the
contemporary genomes, we do not know yet how far back in time
this is true. Intuitively, the signal is maximal when the variation in
divergence due to polymorphism is large enough compared to the
total divergence. The divergence due to polymorphism is
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proportional to the ancestral population size, while the divergence
of species is only dependent on the time when it happened. So the
further back in time we are looking at, the bigger the population
sizes need to be so that the ancient polymorphism leaves a signature
in the total divergence time. In addition to this, one has to take into
consideration sequence saturation due to the too large number of
substitutions that accumulated since ancient splits, and the fact that
demographic scenarios complexity increases with time. For
instance, when considering the evolution of a species over several
millions of generations, the probability that a bottleneck, resetting
the signal from past events, occurred once is not negligible.

We are in the population genomics era. Data sets are available
that allow us to understand the evolutionary processes that are
associated with the formation and evolution of species. Analyzing
such data sets with the current methodologies however offers major
challenges: (1) developing the appropriate computational tools able
to handle such data sets with current machines (both in terms of
processor speed and memory usage) and (2) design realistic models
with enough complexity to capture the most important historical
events while remaining computationally tractable.

8 Exercises

8.1 ILS in Primates Assuming that there are 5 My between the speciation times of
human with the gorilla and the orangutan, that the HG ancestral
effective population size was 50,000, what is the expected amount
of ILS between human, gorilla, and orangutan? Assuming that
another 2.5 My separates the speciations of human with chimpan-
zee and gorilla, with an HC effective ancestral population size of
50,000, what is the expected amount of ILS between human,
chimpanzee, and orangutan? We assume a generation time of
20 years for all extent and ancestral primates.

8.2 Estimating

Ancestral Population

Size from the Observed

Amount of ILS

Given that 30% of incomplete lineage sorting is observed between
human, chimpanzee, and gorilla and assuming a generation time of
20 years and a that 2.5 My separate the splits between human/
chimpanzee and human—chimpanzee/gorilla, what is the effective
ancestral population size compatible with this observed amount?
Using Burgess and Yang’s method [9], a researcher finds a higher
estimate of Ne than expected. What could explain this discrepancy?

8.3 Number of

Migration Rates in the

General k-Population

IM Model

In this exercise we show that a k-population IM model has
2(k � 1)2 migration rates.

1. Starting at the bottom of the k-population IM model argue
that the number of migration rates at the level of k populations
is k(k � 1).
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2. Moving up to the next level where (k � 1) populations are
present (one of them being an ancestral population, we assume
that there two speciation events are never simultaneous) argue
that the new ancestral population introduces 2(k � 1) new
migration rates.

3. Moving up yet another level where (k � 2) populations are
present argue that the new ancestral population introduces 2
(k � 2) new migration rates.

4. Show that the total number of migration rates is 2(k � 1)2.
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Chapter 19

Introduction to the Analysis of Environmental Sequences:
Metagenomics with MEGAN

Caner Bağcı, Sina Beier, Anna Górska, and Daniel H. Huson

Abstract

Metagenomics has become a part of the standard toolkit for scientists interested in studying microbes in the
environment. Compared to 16S rDNA sequencing, which allows coarse taxonomic profiling of samples,
shotgun metagenomic sequencing provides a more detailed analysis of the taxonomic and functional
content of samples. Long read technologies, such as developed by Pacific Biosciences or Oxford Nanopore,
produce much longer stretches of informative sequence, greatly simplifying the difficult and time-
consuming process of metagenomic assembly. MEGAN6 provides a wide range of analysis and visualization
methods for the analysis of short and long read metagenomic data. A simple and efficient analysis pipeline
for metagenomic analysis consists of the DIAMOND alignment tool on short reads, or the LAST alignment
tool on long reads, followed by MEGAN. This approach performs taxonomic and functional abundance
analysis, supports comparative analysis of large-scale experiments, and allows one to involve experimental
metadata in the analysis.

Key words Metagenomics, Software, MEGAN, Taxonomic analysis, Functional analysis, Long reads

1 Introduction

Metagenomics is the study of microbiome samples, such as
obtained from ocean water, soil, plant matter, or feces, say, using
high-throughput DNA sequencing [1]. Metagenomic sequencing
allows the study of microorganisms found in environmental sam-
ples without relying on culturing methods or prior knowledge of
the composition of the community. With metagenomics, one can
determine the taxonomic and functional content of samples.

While most metagenomic projects to date have used short read
sequencing (next-generation sequencing), there is increasing inter-
est in using long read sequencing technologies in this area. Long
read technologies have been considered too expensive, difficult, or
error-prone for application in metagenomics. However, this is
changing and computational analysis methods designed for proces-
sing short reads now need to be modified to work well on long
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reads, so as to make good use of the ability of long reads to cover
multiple genes.

A major computational challenge in metagenomics is the align-
ment of sequencing reads against a comprehensive reference data-
base. Billions of reads can be aligned against a large protein
reference database in reasonable time using high-throughput align-
ment tools such as DIAMOND [2]. Long reads require frame-shift
aware alignment tools, such as LAST [3, 4], because insertions or
deletions due to sequencing errors impact long reads, as discussed
in Subheading 2.

In the following, we will first discuss how to perform basic
alignment and analysis of short reads in Subheading 2.1 and long
reads in Subheading 2.2. We will then show, in Subheading 3, how
to compare large numbers of samples inMEGAN6 [5] and perform
basic statistical analysis of the samples and their metadata. In Sub-
heading 4 we briefly discuss the challenges we will have to face to
further improve the analysis of data from environmental samples.
Finally, in Subheading 4.1 we describe some additional resources
available for using MEGAN 6.

2 Workflows for Metagenomic Analysis with MEGAN

The basic workflow for using MEGAN consists of two main steps:
read alignment against a reference database and then import an
analysis of the alignments in MEGAN. The aim of pipeline is to
perform taxonomic and functional binning of the input reads.

The alignment can be performed using a number of different
tools depending on the type of sequencing data and on the chosen
database, its sequence type, size, and available computer power. For
smaller databases more sensitive tools can be chosen such as MALT
[6] or even BLAST [7]. These tools generally offer higher sensitiv-
ity at the cost of a longer runtime. For large datasets and databases,
it is more suitable to choose an alignment tool such as DIAMOND
or LAST. We use the NCBI NR database [8] with both of the latter
tools, because it is the largest and most comprehensive protein
database available today. NCBI NR contains 144.5 million protein
sequences (August 2017).

2.1 Short Read

Pipeline

We describe here the basic short read analysis pipeline as shown in
Fig. 1. By default, we use DIAMOND to align reads against the full
NCBI NR database.

Before running the pipeline, one can optionally perform
preprocessing, that is, quality control, trimming, and filtering, of
the raw reads. However, these steps usually have little impact on
the results of the alignment-based analysis described in this
document.
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2.1.1 Read Alignment

with DIAMOND

DIAMONDuses double indexed alignment, which means both the
reference database and the query are indexed for comparison. This
leads to a large speedup especially for large queries and databases.
Like BLASTX, DIAMOND uses the “seed and extend” method to
find all matches between a query and the database. To further
increase speed, DIAMOND utilizes spaced seeds, which are long
seeds where only some positions are used for matching the seed.
This leads to another increase of speed without decreasing
sensitivity.

DIAMOND can be run either in fast or sensitive mode. Fast
mode will run around 20,000 times faster than BLASTX on short
reads and will be able to find 75–90% of all relevant matches that
one would find with BLASTX, while sensitive mode provides a
speedup of 2500� while recovering up to 94% of significant
matches.

2.1.2 Taxonomic and

Functional Classification

with MEGAN6

DIAMOND can save alignments in a compressed format called
DAA (DIAMOND alignment archive) format. DAA files can be
imported into MEGAN6 in multiple ways. A small number of small
DAA files can easily be imported interactively using menu items
provided in MEGAN. For larger datasets and or many files, one
should use the command-line tools provided with MEGAN. These
include daa2rma, which will generate a RMA file as used by
MEGAN from one or two (for paired reads) DIAMOND files
and daa-meganizer, which analyzes a DAA file and then appends
the result to the end of the file. Such “meganized” DAA files can
then be opened directly in MEGAN. The latter approach is much
faster and is more space efficient. However, to use paired reads all
alignments have to be in the same file.

One can use the program blast2rma to process the output of
a range of different alignment programs, such as BLAST.

During the processing of alignments for MEGAN, the reads
will be assigned to nodes in the NCBI taxonomy and any functional
classifications that have been configured in the import dialog or on

Fig. 1 Basic pipeline for short read analysis
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the command-line. Taxonomic binning of each read is done sepa-
rately, by assigning it to the lowest common ancestor (LCA) of its
significant matches. Matches can be filtered by multiple parameters,
for example, e-value and bit-score, as well as sequence identity.
Only matches passing those filters will be used to determine the
LCA. It is also important to choose the minimum support
(or minimum support percentage), the number or percentage of
reads that must be assigned to a single taxon before it will be part of
the final result. Reads assigned to a taxon that does not pass the
minimum support filter will be pushed up the taxonomy until a
taxon is found that passes the filter.

Functional binning is performed by mapping the NCBI data-
base accessions for the matches of a read to identifiers of the
selected functional classification. Mapping files are currently avail-
able for InterPro2GO [9, 10] (InterPro families embedded in a
GO-based hierarchy), eggNOG [11], KEGG [12], and
SEED [13].

2.1.3 Investigation of the

Results

The resulting files can be opened and interactively investigated
using the MEGAN6 graphical user interface. The first view when
opening a file is always a hierarchical representation of the taxo-
nomic composition of the sample. Selecting different nodes of this
tree, the user can uncover further information on the reads mapped
to the represented taxon. Selecting Inspect Reads on a node will
open the Inspector Window, which displays the reads assigned to
that node, as well as their alignments. This functionality can be used
both in the Taxonomy Viewer, where nodes represent taxa, and in
any of the Functional Viewers. Figure 2a shows an example of the
Inspector Window.

Instead of just viewing a listing of the matches and alignments,
it is also possible to select Show Alignments. This will open the
Alignment Viewer (Fig. 2b), where for each of the database refer-
ences with matches from the reads assigned to the selected node it is

Fig. 2 (a) The Inspector Viewer showing some reads that have been assigned to Alistipes ihumii. (b) The
Alignment Viewer showing reads aligned to a reference sequence
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possible to show the alignment of all of those reads on the refer-
ence. This can be useful, say, to determine how much of a reference
gene is covered by reads.

Apart from being able to investigating taxonomic diversity, the
advantage of using metagenomic sequencing to study an environ-
mental sample is the ability to study the functional potential of the
community. MEGAN currently provides four different functional
classification systems for this purpose: InterPro & GO, eggNOG,
KEGG, and SEED.

Each functional classification is displayed as a tree. The nodes of
the tree can be investigated very much like the nodes of the taxo-
nomic tree. Abundances can be visualized using different visualiza-
tion options from simple bar charts over box plots and heat maps to
radial tree charts drawn based on the abundances of the selected
nodes. Two examples show charts that are shown in Fig. 3.

Alignments or reads matching a selected function can be
exported to a text file or extracted to a new MEGAN document.
This makes it possible to study only a part of a microbial commu-
nity that is of particular interest. For example, if you select nodes
associated with antibiotic resistance genes, you can determine
which taxonomic assignment the reads assigned to antibiotic resis-
tance genes have. An example of this is shown in Fig. 4.

If you want to study the full gene sequence of proteins found in
your samples and be able to compare variants of those genes, it can
be helpful to use gene-centric assembly [15]. Gene-centric assem-
bly uses the alignments to reference proteins to assemble the
matching reads. One can thus obtain the gene sequences from
different organisms found in a sample for further analysis steps.

We will introduce more possibilities for studying the taxonomic
and functional diversity of multiple samples in comparison in
Subheading 3.

Fig. 3 (a) Bar chart of taxonomic assignments on family level, sorted by abundance. (b) Radial chart of
functional assignments to KEGG for the same sample from [14]
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2.2 Long Read

Pipeline

As presented in the previous section, usingmetagenomic short reads,
one can assembly gene sequences and obtain variants of a single gene
using a gene-centric assembly, or of course use other assembly tech-
niques.However, using short read data, it is very difficult to establish
whether different genes are present in the same organism. We can
connect the genes if they are found on a single DNA molecule with
long sequencing reads, provided by third generation sequencing
technologies such as PacBio [16] or Oxford Nanopore [17].

The PacBio and Nanopore devices can produce reads that are
hundreds of thousands of bases long, with error rates of around
10%, say [17]. In contrast to short reads, which each can be safely
assumed to overlap with only a single gene, long read will usually
overlap or contain multiple genes. Hence, many popular short read
alignment and analysis algorithms may require modification so as to
take into account that a given read can align to multiple genes.

2.2.1 Long Read Analysis

Pipeline

The basic long read analysis pipeline is analogous to the above
described short read pipeline, and consists of the alignment and
MEGAN analysis steps (Fig 5), but the details of the analysis
pipeline as well as some components of MEGAN6 differ from the
short read solution.

As described in the following, for long reads alignment is
performed using LAST, processing of the alignments requires an
additional step and MEGAN provides some modified algorithms
for processing and visualizing long reads.

Fig. 4 Taxonomic assignment of reads from the day 0 sample for “Alice” from the ASARI [14] dataset which
have been assigned to “resistance of fluoroquinolones” in the SEED hierarchy
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2.2.2 Alignment Using

LAST

Third generation sequencing technologies produce much longer
reads, with a higher error rate (approximately 10%, mostly inser-
tions and deletions). Most DNA-to-protein aligners (such as
BLASTX [7] or DIAMOND) translate the complete DNA query
sequence in all six reading frames and then align the translated
sequences against the protein database. Insertions or deletions in
long reads cause a frame-shift and break translation-based align-
ments. LAST is a frame-shift aware aligner that incorporates single-
base insertions or deletions into the alignment calculation. These
are represented as “∖” for forward-shifts and ”/” for reverse-shifts,
as shown in Fig. 6.

LAST, when used with large databases, such as NCBI-nr, splits
the database into several volumes and indexes them individually.
Similarly the large input files are loaded in separate volumes, and
each volume of input is searched against each volume of the data-
base. LAST, by default, generates output in MAF, “Multiple Align-
ment Format.”

2.2.3 Taxonomic and

Functional Classification of

Long Reads

Because of processing both the query and database in different
volumes and writing the output as soon as it is generated, the
alignments for a single read appear in different parts of the MAF
output of LAST. MEGAN processes alignment files line-by-line,
identifies all alignments of a single read, and then assigns that read
to a taxonomic and/or functional class. The unordered structure of
LAST output prevents MEGAN from doing this. Thus, MAF files
produced by LAST must be sorted before they are imported to
MEGAN. For this task, MEGAN provides a command-line script,
called sort-last-maf.

Fig. 5 Basic pipeline for long read analysis

Score = 86 bits (159), Expect = 7e-13
Identities = 34/37 (92%), Positives = 34/37 (92%), Gaps = 2/37 (5%)
Frame = -1
Query: 1080 EAVMVLSLDAEA\LVGYRE/KFPAWMDADRFEIKPRK 976

EAVMVLSLDAEA LV YRE KFPAWMDADRFEIKPRK
Sbjct: 232 EAVMVLSLDAEA-LVRYRE-KFPAWMDADRFEIKPRK 266

Fig. 6 A frame-shift aware DNA-to-protein alignment produced by LAST
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Alternatively, the user can use DAA_Converter (available at
http://github.com/BenjaminAlbrecht84/DAA_Converter), which
converts a givenMAF file to a DAA file. This has several advantages,
including space compression and faster processing. Additionally,
the output of LAST can directly be piped into DAA_Converter
which will then convert the output into a DAA file as LAST con-
tinues to operate. The trade-off when using DAA_Converter cur-
rently is that the alignments are filtered out with the default settings
in MEGAN6 and resulting DAA file only has the alignments that
would pass the filter, making it impossible to change filtration
parameters without running LAST again once the conversion
is done.

Similar to short reads, these long read MAF and DAA can then
be imported into MEGAN and each read will get assigned to a
taxon and/or functional class(es) of any provided functional hier-
archy. The filtration based on bit-score of alignments work differ-
ently for long reads. In case of short reads, the alignments are
filtered globally—only those that are within top 10% (by default)
of the best-scoring alignment are taken into account. For long
reads, this filtration is applied to each “gene” separately, as one
long read can contain many different genes along its length. The
alignments that overlap significantly (>90% by default) are grouped
into segments, denoting different genes, and each interval is then
processed individually in the filtering step.

The LCA algorithm to assign reads to taxonomic classes is also
modified for long reads. As there are multiple genes on a single long
read, and each of them may be conserved in different clades of the
taxonomic tree, the naı̈ve LCA is usually uninformative. Instead
long reads are assigned to the most specific taxon that covers more
than a fixed percentage (>80% by default) of every base pair that
has an alignment. This algorithm assigns reads specifically to lower
levels of taxonomy as long as they cover a gene which has low level
conservation, other taxa gets lower percentages of coverage. Func-
tional classification of long reads does not necessarily assign each
read into one functional class, instead reads are assigned to the
functional class of best-scoring alignment in each segment, thus
each segment is assigned to one function and one read can be
assigned to multiple different functional classes.

2.2.4 Investigation of the

Results

The first view the user gets when a long read dataset is loaded in to
MEGAN6 is identical to that of a short read dataset; however, there
are some underlying differences and several investigation modes
designed specifically for long reads.

Due to a large variability of read length of long reads [18], it is
impractical for MEGAN to report number of reads assigned to class
as a mean of abundance. Using the raw read length is also not
feasible for Nanopore technology as reads tend to have “head”
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and “tail” regions composed of random bases [19] (Fig. 7 shows a
read whose tail region has no significant alignment to any protein in
the database). Thus, the default mean of reporting the abundance
for a particular taxon or functional class in long read pipeline is the
number of aligned bases.

The number of alignments on a long read can easily exceed
hundreds and complicates the Alignment Viewer and the Inspector
features of MEGAN6. In order to simplify the investigation of
alignments on the reads, MEGAN6 offers a Long Read Inspector
window (Fig. 7), accessible via right-click on any of the nodes in
the main view. This inspector draws reads as horizontal lines and
alignments as arrows on their corresponding positions. The names
of taxa or functional classes are also linked to these alignment
arrows.

The Inspector Window helps particularly in the case of suspi-
cious assignments. Figure 8a shows the inspector view for a read
that was assigned to Trichuris trichiura, a human parasitic whip-
worm, in a sample of known mixture of microorganisms [20]. A
closer inspection to Fig. 8a lets us see that, although the read is
spanned by several alignments from Escherichia coli, it is assigned to
T. trichiura because the total length of alignments to T. trichiura is
longer than 80% whereas it is below that for E. coli and all other
competing taxa.

For further analysis of such suspicious assignments, MEGAN6
offers a remote BLAST function, in which selected reads are aligned
against a selected database (such as the nucleotide collection—
NCBI nt) on the NCBI website and the resulting assignments are
captured, processed, and presented in a new MEGAN document.
In Fig. 8b, we see that our “suspicious” read is assigned to E. coli,
which was in the known mixture of microorganisms, based on
remote NCBI-BLAST against NCBI nt.

Similar to exporting alignments and reads as explained in the
previous section, these can also be exported in general feature
format (GFF) for downstream analysis. This provides a simple way
of obtaining the annotation, especially for long reads and contigs.
The annotations exported to the GFF files contain the accessions of

Fig. 7 Long Read Inspector in MEGAN6. The read is drawn as a line in the middle and the protein alignments
are drawn as arrows on their corresponding positions and strands on the read
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references and their corresponding taxonomic and/or functional
mappings depending on which mapping files were used during
importing the dataset into MEGAN.

3 Comparison of Multiple Samples

Most modern metagenomics experiments include the collection
and analysis of multiple samples to compare different groups with
controls or study the dynamic changes of a microbial community
over time. Hence, a very important feature of MEGAN is the ability
to load multiple datasets into a single “comparison document”
(megan file). This is a light-weight file that does not contain the
original reads and alignments, but allows one to compare the
taxonomic and functional diversity of multiple samples.

To be able to easily compare groups of samples and relate
findings to features attached to samples, it is helpful to import
metadata. Metadata should be provided in tabular format and
connect the sample IDs to attributes whose values can be text,
numeric, or boolean values. Using this information you can
group samples in different visualizations. For example, this allows

Fig. 8 MEGAN6 offers a remote BLAST functionality, namely “BLAST on NCBI,” which can be used for
suspicious assignments. (a) Long Read Inspector view for a read assigned to Trichuris trichiura, based on
protein alignments against NCBI nr. (b) Long Read Inspector view for the same read as in (a), assigned to
Escherichia coli, after searching it against nucleotide collection of NCBI using the remote BLAST functionality
of MEGAN6
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easier interpretation of the principal component analysis (PCoA)
plots in MEGAN. Principal components can be calculated using
different distance measures including Bray–Curtis or simple Euclid-
ean distances. MEGAN can include bi-plots and tri-plot vectors
into the PCoA plot, which represent the top taxonomic or func-
tional classes and metadata features, respectively, that correlate
most with the differences between samples. Figure 9 shows multi-
ple examples of PCoA plots including bi-plot and tri-plot vectors.

MEGAN can also calculate and visualize co-occurrence and
correlation plots. For correlation there are two options. The first
is useful for time series analysis, because it calculates correlations
between different taxa. This can be used to determine how changes
in abundance of one taxon influence changes in another, which
makes it possible to detect potential interactions between taxa. To
distinguish the effect of interactions between taxa from it being
caused by an external influence, it is useful to check out the other
attribute correlation plot, which calculates correlations between
taxa and metadata. So, if, for example, two taxa are correlated to
each other and correlated to the same external influence from the
metadata, then they might be less likely to be influencing each
other, but are perhaps both influenced by the same attribute of
the metadata. An example of an attribute correlation plot is shown
in Fig. 10.

Fig. 9 PCoA analysis of 12 samples associated with “Alice” (round shapes) and “Bob” (square shapes), from
[14]. Time points of antibiotic intake are colored light blue, time points before and after antibiotic intake dark
red. (a) A PCoA plot based on Bray–Curtis distances as calculated by MEGAN using the taxonomic abundances
for the samples. The green vectors represent the bi-plot vectors. The samples are grouped by individual,
showing the convex hulls of the groups as well as ellipses. (b) is based on the same data but using the
abundances of GO terms in the InterPro2GO hierarchy and only showing the convex hulls of the group. Here the
orange vectors are the tri-plot vectors, showing the relation of metadata values to the principal components
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4 Outlook

It goes without saying that the quality and quantity of the input
sequencing data limits the reliability of the output analysis. More
directly, quality of the MEGAN hierarchy assignments is deter-
mined by the quality of the read alignment, which, in turn, depends
on the chosen database and alignment tool. On the one hand, the
database needs to be well annotated and comprehensive, as it is only
possible to analyze the organisms or entities present in it. On the
other hand, the alignment tool needs to be sensitive in order to
identify the matching sequence. It is especially difficult to deal with
sets of very similar sequences. Currently, for the human gut micro-
biome sequencing data analyzed with the basic short read pipeline,
as much as 30% of reads are not assigned to any node in the course
of the taxonomic analysis.

In order to avoid the bias introduced by the database one can
also use one of the database-free strategies, e.g., k-mer counting.
They are good for tracking the global changes in the data, but it is
difficult to correct for possible contaminations. Although MEGAN
does not support this type of analysis, it enables global comparisons
with PCoA based on the profiles computed for each of the samples.

Fig. 10 Attribute correlation plot for the data from [14] for two healthy individuals taking antibiotics for 6 days
(day 1–6). Correlation is shown as a heat map with red marking positive correlation between the attribute and
the taxon and blue marking negative correlation. Correlations are shown for antibiotics intake (boolean) and
time (day 0, 1, 3, 6, 8, and 34)
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Another approach is assembly based analysis. In brief, the reads
are assembled and then the scaffolds or contigs are annotated and
investigated. This approach provides some information on gene
co-localization at a cost of data loss in the form of unassembled
reads and short contigs. Full metagenomic read assembly [21] is a
very complex and computationally expensive task that MEGAN
does not address.

Application of the long read sequencing technologies opens
new perspective for metagenomics analysis. Long reads provide
information on gene co-location on a single DNA molecule, and
make assembly much easier. But, long reads also pose new algorith-
mic challenges in aspects of the protein alignment, hierarchy assign-
ment, and abundance computation. As long read technologies
continue to evolve, so, too, must the corresponding analysis
algorithms.

MEGAN is a powerful visual analytics tool that provides a wide
range of the algorithms for analysis of metagenomics sequencing
data. MEGAN can run on hundreds of samples along with
hundreds of metadata columns. It is the main workhorse of the
Tubiom project where metagenomics profiles of 10,000 volunteers
are collected and mined for correlations with the vast metadata
(www.tuebiom.de).

4.1 MEGAN

Resources

MEGANCommunity software is freely available on the website: ab.
inf.uni-tuebingen.de/data/software/megan6, together with the
current mapping files for taxonomic and functional analysis.

Short read datasets presented in this chapter and used for
visualizations are publicly accessible in MEGAN via MeganServer.
The dataset used in the Long Read Pipeline section was down-
loaded from the supplementary material of Brown et al.
[20]. Instructions for use of MEGAN and user support can be
found on the MEGAN community website (megan.informatik.
uni-tuebingen.de).
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http://creativecommons.org/licenses/by/4.0/


Chapter 20

Multiple Data Analyses and Statistical Approaches
for Analyzing Data from Metagenomic Studies
and Clinical Trials

Suparna Mitra

Abstract

Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of
organisms (microbes) obtained from a common habitat. Metagenomics and other “omics” disciplines have
captured the attention of researchers for several decades. The effect of microbes in our body is a relevant
concern for health studies. There are plenty of studies using metagenomics which examine microorganisms
that inhabit niches in the human body, sometimes causing disease, and are often correlated with multiple
treatment conditions. No matter from which environment it comes, the analyses are often aimed at
determining either the presence or absence of specific species of interest in a given metagenome or
comparing the biological diversity and the functional activity of a wider range of microorganisms within
their communities. The importance increases for comparison within different environments such as
multiple patients with different conditions, multiple drugs, and multiple time points of same treatment
or same patient. Thus, no matter how many hypotheses we have, we need a good understanding of
genomics, bioinformatics, and statistics to work together to analyze and interpret these datasets in a
meaningful way. This chapter provides an overview of different data analyses and statistical approaches
(with example scenarios) to analyze metagenomics samples from different medical projects or clinical trials.

Key words Metagenomics, Metatranscriptomics, Microbiome, Clinical trials, Comparative
metagenomics

1 Introduction

The diversity of species on earth is high, and most of them are
microorganisms. Their ubiquitous presence makes it extremely
difficult to identify and classify all microbes in a laboratory environ-
ment. Standard genomics tries to enrich pure cultures and study
them: for example, the taxonomy, the genome, the genes, and the
pathways. However, only a miniscule fraction of all microbes can be
cultured because of their complex symbiosis and nutrient require-
ments in other organisms. The scientific community is now
equipped with the development of new sequencing techniques
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and high-throughput analysis. The study of the genomic content of
a sample of microorganisms obtained from a common habitat is
made possible with the field of metagenomics, also known as envi-
ronmental genomics [1]. Instead of taking the DNA for sequencing
from isolated cultures it is obtained directly from the environment.
Therefore, the analysis of microbes that are deemed unculturable
(which means current laboratory culturing techniques are unable to
grow them) with standard laboratory techniques becomes possible.
Two main approaches commonly used in metagenomic studies:
marker gene-based metagenomics (e.g., 16S amplicon sequencing)
and metagenomic shotgun sequencing. In the first approach, DNA is
used as the template for PCR to amplify a segment of the conserved
16S ribosomal RNA (rRNA) gene sequence. Universal primers
complementary to conserved regions are used so that the region
can be amplified from any bacteria. After purification of PCR
products, sequencing of the 16S rRNA gene is performed [2]. In
the second approach, shotgun sequencing, DNA is broken up
randomly into multiple small segments, which are sequenced
using the chain termination method to obtain reads. Multiple over-
lapping reads for the target DNA are obtained by performing
several rounds of this fragmentation and sequencing. Computer
programs then use the overlapping ends of different reads to assem-
ble them into a continuous sequence [3].There are several publica-
tions discussing the differences in microbial biodiversity discovery
between 16S amplicon and shotgun sequencing, for example see
[4]. In a recent study using water samples from Brazil’s major river
floodplain systems, authors showed shotgun sequencing outdone
by amplicon [5]. Here, the authors ascribed the poor performance
of shotgun sequencing mainly to the weakness of the database used
in the study, as compared to databases for the 16S rRNA gene. This
study can be used as a caution for people working with rare envir-
onments (See article by Catherine Offord in The Scientist1). Com-
parisons of the two methods in well-studied systems such as the gut
microbiome have generally found that shotgun sequencing identi-
fies more microbial diversity [6].

Further recent advancement of culturomics approach is shed-
ding light on multiple high-throughput culture conditions
[7, 8]. As the samples used in metagenomics do not contain the
genome of just one but many different microorganisms, the possi-
bility of analyzing their functional and metabolic interplay arises.
Next-generation sequencing technology (NGS) has effectively
transformed infectious disease research throughout the last decade,
fuelling the growth in genetic data and providing huge number of
DNA reads at an affordable cost. Many studies use these

1 https://www.the-scientist.com/?articles.view/articleNo/50044/title/Shotgun-Sequencing-Outdone-by-
Amplicon/.
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techniques, which examine microorganisms that inhabit niches in
the human body, sometimes causing disease, and researchers often
try to correlate these microorganisms and their change with multi-
ple treatment conditions (e.g., see [9]). Gene annotations in these
studies support the association of specific genes or metabolic path-
ways with health and with specific diseases. In a recent article
authors discussed how host gene–microbial interactions are major
determinants for the development of multifactorial chronic disor-
ders and thus for the relationship between genotype and phenotype
[10]. There are many other reports based on the application of
metagenomics in understanding oral health and disease
[11–13]. As recently described by Forbes et al., metagenomics
and other “omics” disciplines could provide the solution to a cul-
tureless future in clinical microbiology, food safety, and public
health [14].

No matter from which environment it comes, the analysis of
datasets from such studies are similar to some extent. Most projects
aim at determining either the presence or absence of specific species
of interest, or to obtain an overview of the taxa represented in a
given metagenome and comparing the biological diversity and the
functional activity of a wider range of microorganisms within their
communities. The importance increases for comparison of different
datasets, as researchers will need to determine and understand the
similarities and dissimilarities within the metagenomes of different
environments. These environments can be multiple patients with
different conditions, multiple drugs, or multiple time points of
same treatment or same patient. Further, sometimes researchers
also may compare different environments for example to study
antibiotic resistance genes (ARG) and understand which environ-
ments are more prone to such ARGs. Thus, no matter how many
hypotheses we have, we need a good understanding of genomics,
bioinformatics, and statistics to work together to analyze and inter-
pret these datasets in a meaningful way.

This chapter provides an overview of different data analyses and
statistical approaches to analyze metagenomics samples from a
number of clinically derived datasets. The methodological descrip-
tion of this chapter will be guided by three main scenarios. The first
one is a published data set from human atherosclerotic plaque
samples (Scenario 1) [15]; the second one is a clinical trial example
comparing the effects of two omega-3 polyunsaturated fatty acids
(PUFAs) supplements on healthy volunteers (Scenario 2) [16]; and
the third one is another clinical trial example comparing the efficacy
of two drugs for an infectious disease (Scenario 3).

The Scenarios 3 came from an ongoing unpublished project;
therefore, the real datasets are not provided. This chapter is mainly
focused on multiple data analyses/annotation and statistical
approaches that can be used in similar situations, but any biological
finding of the example scenarios is not explained here. Although all
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of these scenarios are derived from medical projects, the analyses
approach can be adapted to environmental samples as well. On this
occasion, I must emphasize the importance to have good metadata,
that is, a detailed description of each parameter like health status or
sampling site or age or any similar information relating to specific
samples that may be important for the analyses. Good metadata are
key to good analyses and noise reduction in data analysis processes.

2 Description of Example Studies

2.1 Scenario 1:

Metagenomic

Analyses of Human

Atherosclerotic Plaque

Samples

To investigate microbiome diversity within human atherosclerotic
tissue samples high-throughput metagenomic analysis was
employed on (1) atherosclerotic plaques obtained from a group of
patients who underwent endarterectomy due to recent transient
cerebral ischemia or stroke and (2) presumed stabile atherosclerotic
plaques obtained from autopsy from a control group of patients
who all died from causes not related to cardiovascular disease. Our
data provides evidence that suggest a wide range of microbial
agents in atherosclerotic plaques, and an intriguing new observa-
tion that shows this microbiota displayed differences between
symptomatic and asymptomatic plaques, as judged from the taxo-
nomic profiles in these two groups of patients. Additionally, func-
tional annotations reveal significant differences in basic metabolic
and disease pathway signatures between these groups.

In this project, we demonstrate the feasibility of novel high-
resolution techniques aimed at identification and characterization
of microbial genomes in human atherosclerotic tissue samples. Our
analysis suggests that distinct groups of microbial agents might play
different roles during the development of atherosclerotic plaques.
These findings may serve as a reference point for future studies in
this area of research. The workflow in Fig. 1 provides a brief
description of the sample processing and analyses pipeline for the
study described in Scenario 1. If readers want to know more details
of the methodology, please refer to (15). This scenario is an exam-
ple of analyzing host-associated metagenome samples.

2.1.1 Methodology

Details

For this study, we used atherosclerotic tissue samples from a group
of 15 patients that underwent elective carotid endarterectomy
following repeated transient ischemic attacks or minor strokes
(samples from symptomatic atherosclerotic plaques as cases).2 Fur-
ther, we have asymptomatic atherosclerotic plaques from seven

2All methods and experimental manuals were approved by The National Committee on Health Research Ethics
(Danish) and was granted by the Ethical Committee of the region of Copenhagen (H-3-2011-013).
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persons who died from causes not related to atherosclerotic disease
(samples from stable plaques as controls).3

All 22 arterial plaque samples resulted in 2,610,268,774 shot-
gun sequencing reads. After mapping these reads against Hg19
using bowtie 2 [17] with “very-sensitive” parameters to filter all
human-like sequences from our samples. The average amount of
non-Hg19 reads is 884,727,044 (average 33.89% per sample,
Table 1). These non-Hg19 reads were extracted and aligned against
nonredundant (nr) protein database (version 30.07.2012) [18]
using BLASTX (ncbi-blast-2.2.25+; Max e-value 10e�3)
[19]. After performing the BLASTX alignment, all output files of
paired read sequences were imported and analyzed using the
paired-end protocol of MEGAN5 [20]. For all non-Hg19 anno-
tated reads, 2–16% (mean 4.6%) were assigned as bacteria in differ-
ent samples. The rest of reads were assigned to Eukaryota. Table 1
provides details of sequencing read statistics and assignments of
reads after different stages of data processing. R statistical

Organising samples

Data processing

Patients
15 patients that underwent

elective carotid 
endarterectomy  following 

repeated  transient is chemic 
attacks or minor strokes

samples from
symptomatic 

atherosclerotic 
plaques as cases

we have asymptomatic
atherosclerotic plaques from

7 persons who died from
causes not related to athero-

sclerotic disease

samples from
stable plaques as 

controls

Sample collection and DNA sequencing

Confirmation that 
all sample data has 
been reconciled to 

study groups

Metadata mapping 
(samples with any 
specific phenotypic 

or medical info)

Clean and organise 
the samples

Data quality check 
and Quality Control 
(QC)

As arterial plaque samples 
represent a host-associated 
metagenome, all reads were 

mapped against human 
reference genome (hg19) 

using bowtie 2-2.0.0

All unmapped reads (non-
hg19) were extracted and 

aligned against non-
redundant (nr) protein 
database using BLASTX

Allblast output filesof 
pairedreadsequenceswere 

importedandanalyzed 
usingthepaired-end 
protocolofMEGAN

Taxonomic 
annotation

Next-generation sequencing 
library preparation was 
prepared by following 
Illumina’s TruSeq DNA
Sample Preparation protocol.

Library quantitation was 
performed using Quant-iTTM
PicoGreen ® dsDNA Reagent. 
Sequencing was done with 

Illumina HiSeq2000

DNA was extracted 
using QIAGEN’s DNeasy 

Blood & Tissue kit

quality of the DNA
samples was assessed 
on a Bioanalyzer 2100, 
using a DNA 12000 Chip 

(Agilent)

Fig. 1 Analysis pipeline for the study of human atherosclerotic plaque samples. Interested readers may refer to
the full study here [15]

3 These samples originated from the tissue bank at the Department of Forensic Medicine (Approval
No. 1501230).
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programming language [21] was used for multivariate statistics.
Later in Subheading 3, we will describe few of the analysis
approaches revisiting this study.

In this study our data provided evidence that suggest a wide
range of microbial agents (some pathogens) in atherosclerotic pla-
ques, and these microbes displayed differences between symptom-
atic and asymptomatic plaques as judged from the taxonomic
profiles in these two groups of patients. Further, fluorescence in
situ hybridization (FISH) was performed to validate the presence of
biofilm-like structures of few pathogens (which have been previ-
ously predicted from taxonomic analyses) in the symptomatic ath-
erosclerotic plague samples. FISH staining demonstrates the
presence of live bacteria; thus, this is a very good approach for
cross-validation of any computational finding in the lab.

There are also potentials of using this data for not only taxo-
nomic annotation but also to reveal the functional profiles through
partial assembly of specific members and their functional annota-
tions. Functional annotations reveal significant differences in basic
metabolic and disease pathway signatures between these groups.
Here, we will not provide details of the whole study, but interested
readers may refer to [15].

On this occasion, it is necessary to mention that in any similar
project in future, for alignment purpose, we would have used
DIAMOND [22] which uses improved algorithms and additional
heuristics and works much faster compared to available other
aligners. Scenario 1 is an example of analyzing shotgun sequence
datasets obtained from tissue samples or host-associated metagen-
ome. In case readers have shotgun sequence datasets from environ-
mental samples or from fecal samples, they do not need to perform
alignment step to get rid of the host-associated sequences, unless
there is any doubt of contamination. Normally we suggest to have
control or blank samples in two wells per 96-well plate to address
any issue with contaminations.

2.2 Scenario 2: The

Effect of Omega-3

Polyunsaturated Fatty

Acid Supplements on

the Human Intestinal

Microbiota

2.2.1 Study Design

A randomized, open-label, crossover trial of 8 weeks’ treatment
with 4 g mixed eicosapentaenoic acid (EPA)/docosahexaenoic acid
(DHA) in two formulations (soft-gel capsules and drinks) with a
12-week “washout” period [16] is chosen. Healthy volunteers aged
greater than 50 years of both genders were included in this study.
Participants were randomized to take two types of EPA and DHA
compositions (Fig. 2):

1. Two 200 mL drinks per day (providing approximately as the
triglyceride daily) at any suitable time of day, or

2. Four soft-gel capsules (each containing 250 mg EPA and
250 mg DHA as the ethyl ester) twice daily with meals
(providing 2000 mg EPA and 2000 mg DHA per day), both
for 8 weeks.
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After a 12-week “washout” period, participants took the sec-
ond intervention for 8 weeks. We also included a final study visit
after a second 12-week “washout” period (V5; Fig. 2). Fecal sam-
ples were collected at five time-points for microbiome analysis by
16S rRNA PCR and Illumina MiSeq sequencing. Parallel red blood
cell (RBC) fatty acid analysis was performed by liquid chromato-
graphy–tandem mass spectrometry.

2.2.2 Sample

Preparation and

Sequencing

Microbial DNA extractions were performed based on the method
of Yu and Morrison, [23] with slight modifications. DNA was
extracted from approximately 250 mg feces using the QIAamp
DNA Stool Mini Kit (Qiagen, Germany) with bead beating. DNA
Library Prep Kit for Illumina, NEBNext Singleplex Oligos for
Illumina (New England Biolabs, UK), and unique in-house-
designed index primers (Integrated DNA Technologies, UK)
were used to allow for multiplexing of samples. Twelve cycles of
enrichment PCR were performed, and final libraries were cleaned
with AMPure Beads (Beckman Coulter, UK). Successful libraries
were confirmed by DNA 1000 bioanalyzer chips or DNA Analysis
screen tapes (Agilent, UK). Quantification was performed with the
Quant-iT dsDNA Assay Kit, broad range. A total of 30 ng of
each library was pooled and sequenced on an Illumina MiSeq
(2 � 250 bp) [24]. The variable region (V4) of the 16S rRNA
gene was sequenced for these samples.

2.2.3 Data Analyses Demultiplexed FASTQ files were trimmed of adapter sequences
using cutadapt [25]. Paired reads were merged using fastq-join
[26] under default settings and then converted to FASTA format.
Consensus sequences were removed if they contained any ambigu-
ous base calls, two contiguous bases with a PHRED quality score
lower than 33, or a length more than 2 bp different from the
expected length of 240 bp. Further analysis was performed using
QIIME [27]. Operational taxonomy units (OTUs) were picked
using usearch [28] and aligned to the Greengenes reference data-
base using PyNAST [29]. Taxonomy was assigned using the RDP
2.2 classifier [30]. The resulting OTU BIOM files from the above

Fig. 2 Schedule of visits for the study to understand the effect of omega-3 polyunsaturated fatty acid
supplements on the human intestinal microbiota

612 Suparna Mitra



analyses were imported in MEGAN for detailed group-specific
analyses, annotations, and plots [31]. R statistical programming
language [21] was used for multivariate statistics and other plots.

This dataset and method pipeline are purely described as an
example for similar analyses; thus, we will not explain the results
here, but interested, readers may see [16]. Scenario 2 is a typical
example of analyzing 16S sequence data. In Subheading 3, we will
describe few of the analysis approaches using data from this study.

2.3 Scenario 3:

Comparing Effects of

Two Drug Treatments

for an Infectious

Disease

In a given situation suppose we need to compare treatment effect of
two drugs (e.g., X and Y) or more, where we have time series data,
that is, patient samples from multiple time points of the treatment
course for both drugs. This time series data can be either collected
every day of the treatment period or in intervals. Furthermore, for
practical reasons we might not be able to obtain data at a desired
day but �1/2 days. It is important to select an error threshold and
be consistent with that throughout the project. For example, we
need to have a similar depth of sequencing reads or need to follow
subsample comparison as detailed later, and, also, we need to
discard samples with very low number of reads. Further during
alignment to reference database and during mapping to taxonomy
similar scores and thresholds should be used for all samples (please
check best parameter selections in individual websites while using
specific tools). Additionally, there can be multiple fundamental
factors in patient samples such as age, gender, and geography that
may not contribute in a similar manner to resiliency. Figure 3 shows
a schematic of the metadata structure, which may help to under-
stand the complexity of a typical clinical trial.

Drug X or
DrugY

Time points 

Everyday Group

Baseline Mid treatment (Day 2
to Day 8) 

End of treatment
(Day 9/10 to Day

11/12)  

Followup (Day 20
or more) 

Multiple
factors 

Age Gender Geography

Fig. 3 Schematic diagram of multiple factors in a clinical study
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2.3.1 Sample

Preparation and

Sequencing and Data

Analyses

In a clinically relevant setting this type of study wants to know
which drug works better for a similar group of patients. Patients
are randomized between drug arms to control any selection bias.
Usually in this type of projects as we want to compare several
factors, we need many samples to start with. Readers are advised
to seek statistics help to do power calculation to obtain the pre-
ferred sample size. In general, as we end up having hundreds of
samples, we usually go for 16S sequencing as a cost-effective solu-
tion. However, some projects can also use shotgun sequencing.
Similar to previous examples, we assume that we have sequenced
(either 16S or shotgun sequencing) our samples and performed
further analysis process as outlined earlier to obtain taxonomic
profile (following data analyses methods as described in previous
scenarios) for each patient at each time point. Besides analyzing
time series of each individual separately, we have also grouped them
in certain time points such as baseline, mid-treatment, end of
treatment, and follow-up. Besides treatment groups, patients are
also compared based on multiple factors such as age, gender, and
geography.

3 General Methods for Annotation and Statistical Analyses

Broadening our focus beyond these studies, additional analysis
techniques are explained below which are used in these studies
and also can be used in similar projects.

3.1 Taxonomic and

Functional Annotation

Taxonomic annotation addresses the question, ‘Who is out there?’ or
in other words tries to obtain information regarding the species
composition of a given metagenome. On the other hand, func-
tional annotation attempts to answer the question, ‘What are they
doing?’ There are different approaches for metagenome analyses,
among which one type of approach is to use phylogenetic markers
to distinguish between different species in a sample. The most
widely used marker is the small subunit ribosomal ribonucleic acid
(SSU rRNA) gene (16S or 18S) and a second type of method is
based on analyzing the nucleotide composition of reads. In a
supervised approach the nucleotide composition of a collection of
reference genomes is used to train a classifier, which is then used to
place a given set of reads into taxonomic bins. In an unsupervised
approach, reads are clustered by composition similarity and then
the resulting clusters are analyzed in an attempt to place the reads.
Subheading 4 of this chapter provide details of multiple approaches
and available different tools which readers can use according to
their preferences.

In general, for annotating 16S rRNA sequences we use QIIME
[27] and for shotgun sequencing we use MEGAN [31] which can
also be used for 16S. MEGAN is a highly efficient program for
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interactive analysis and comparison of microbiome data, allowing
one to explore hundreds of samples and billions of reads. While
taxonomic profiling is performed based on the NCBI taxonomy,
MEGAN also provides a number of different functional profiling
approaches. MEGAN Community Edition also supports the use of
metadata in the context of principal coordinate analysis and cluster-
ing analysis [31]. In all the three scenarios explained in this chapter,
MEGAN is used as primary tool for annotations. For more details
on MEGAN tool, see Chapter 23.

If we have shotgun sequencing then we have good option for
functional annotation, but with 16S sequences we can only perform
taxonomic analyses with confidence although there are few tools
which might predict metagenome functional content from marker
genes [32, 33]. Most shotgun annotation pipelines (such as
MEGAN [31], MG-RAST [34], IMG/MER [35], EBI Metage-
nomics [36]) support functional annotations and they often use
databases such as KEGG [37], SEED [38], eggNOG [39], and
COG/KOG [40], as well as protein domain databases such as
TIGRFAM [41] and PFAM [42].

3.2 Metagenome

Assembly

Similar in nature to the genomic assembly, which is the reconstruc-
tion of genomes from the sequenced DNA segments (or reads),
metagenome assembly is more complex. The main goal is to stitch
together the fragments of the reads that could be from the same
genome. Here the reads consist of mixture of DNA from different
organisms and also may have widely different levels of abundance.
Few recent reviews discussed new challenges and opportunities as
well as assessed the most common and freely available metagenome
assembly tools with respect to their output statistics, their sensitiv-
ity for low-abundance community members and variability in
resulting community profiles as well as their ease of use. Interested
readers please refer to reviews [43, 44].

3.3 Rarefaction

Curves

Rarefaction curves represent a powerful method for comparing
species richness among habitats on an equal-effort basis based on
the construction of the so-called rarefaction curves [45]. This is a
very useful tool for statistical data analyses that helps us to Correct
for bias in species number due to unequal sample sizes by standar-
dization to the number of species expected in a sample if it had the
same total size as the smallest sample. As an example, we have two
sample groups, first having 50 individuals and second 30 individuals
with multiple number of species obtained from their taxonomic
analyses. Rarefaction helps us to compare the situation, if we would
have same number of individuals in two sample groups. Rarefaction
curves are used differently in case of 16S and shotgun metage-
nomics. Ni and colleagues have described methods for estimating
a reasonable and practical amount for SSU rRNA gene sequencing
and explained how much metagenomic sequencing is enough to
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achieve a given goal [46]. In metagenomic shotgun sequencing,
the fraction of the metagenome represented in the data set is
termed coverage, which can be assessed through rarefaction
curve. Interested readers may refer to a recent publication which
has advocated for the estimation of the average coverage obtained
in metagenomic studies, and briefly presented the advantages of
different approaches [47].

In Scenario 1, for comparing case and control groups from
human atherosclerotic plaque samples, we computed rarefaction
curves from the normalized profile of 22 samples using the bacterial
reads, showing the number of nodes that would be present in the
analysis if based from 10% to 90% of the reads (Fig. 4). From
sequence statistics (Table 1) and the rarefaction curve (Fig. 4), it
is apparent that 2 (sample 233 and 238) of the 22 samples had
much higher sequencing depth than the other samples. Later in the
study we therefore omitted these two samples from merged
case vs. control analyses.
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Legend (samples):

232-megan5-ExtractionBac

233-megan5-ExtractionBac

234-megan5-ExtractionBac

235-megan5-ExtractionBac

236-megan5-ExtractionBac

237-megan5-ExtractionBac

238-megan5-ExtractionBac

239-megan5-ExtractionBac

240-megan5-ExtractionBac

241-megan5-ExtractionBac

242-megan5-ExtractionBac

243-megan5-ExtractionBac

48-megan5-Extraction_Bac

49-megan5-Extraction_Bac

50-megan5-Extraction_Bac

51-megan5-Extraction_Bac

52-megan5-Extraction_Bac

53-megan5-Extraction_Bac

54-megan5-Extraction_Bac

55-megan5-Extraction_Bac

56-megan5-Extraction_Bac

P0613_pooled-megan5-Extraction_Bac

Fig. 4 Rarefaction. Rarefaction plot using annotated species profile for all 22 (unstable and stable) athero-
sclerotic plaque samples. These curves show the number of nodes that would be present if based on 10%,
20%, and up to 90% of the reads
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Similarly, in Scenario 2 also, rarefaction was performed at vari-
ous levels to compare diversity for different sample groupings. All
groups were rarefied to the lowest read number, and the diversity
calculated using weighted and unweighted UniFrac as well as the
non-phylogenetic Bray–Curtis dissimilarity measure.

3.4 Subsample

Comparison

In situations like Fig. 3, where two samples have much higher
sequencing depth, another option can be subsample comparison.
In this process without excluding high-depth samples from further
study, another approach is to simulate subsample of lowest sample
size (of other samples in the study) for sufficient number of times.
And then take a median of the subsamples to generate a pseudo
profile, which can serve as a good comparable sample for the group.
For example, if in a study for most of the samples sequence reads are
in a range of 200,000–300,000. However, only few samples have
approx. 1 million reads, in those cases we simulate subsample of
200,000 reads from them for large number of times (say 1000) and
we take median of the profiles, which we can then compare with
other samples.

3.5 Comparative

Visualization

Comparative visualization includes different types of plots and
charts (pie charts, histograms, and many other kinds of plots)
which can help us to draw basic conclusions regarding our data.
For example, Fig. 5 depicts basic comparison of patients in two
drug treatment groups for certain time points such as baseline,
mid-treatment, end of treatment and follow up (from Scenario 3).

Baseline Follow up

Baseline Mid treatment End of treatment Follow up

Mid treatment End of treatment

Genus level comparison at multiple treatment time points for Drug Y

Genus level comparison at multiple treatment time points for Drug X

Fig. 5 Genus level taxonomic comparison of patients’ microbiome (median of each time point group) in two
drug treatment groups for certain time points such as baseline, mid-treatment, end of treatment and follow
up. Here different colors indicate different genera and the size of each color in the pie reflects the percentage
of those genus in median microbiome for each time point group and for each drug
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Form this figure we can easily see that the microbiome pattern in
drug X over treatment period is more consistent (or more stable
over the time) than in drug Y. Here with visual comparison we are
not making any conclusion, but with these types of plots we can
start to see if there is any trend in our data, which can later be
investigated with appropriate statistical tests.

Further as metagenomic data are often hierarchical in nature,
besides doing basic plots which can be done only at certain taxo-
nomic levels (e.g., family/genus), often it is helpful to display the
whole data as comparative tree view. For example in Scenario
1, samples from cases and controls have grouped closely (as can
be seen later in Subheading 3.9), we can explore their broad differ-
ences by comparing total biome from cases and controls using
comparative tree view (Fig. 6). This kind of tree view also help us
to assess multiple time point samples from single patient or
grouped data comparison for multiple factors (e.g., in Scenario 3).

3.6 Diversity

Analyses

Diversity analyses is one of the prominent statistical analysis
approaches that address some of the downstream analysis steps
associated with metagenomic studies. Species abundance estimates
in the community are used to make inference about diversity on the
whole community. The terms alpha, beta, and gamma diversity
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Fig. 6 Tree view at “family” level taxonomy comparing merged data from cases and control samples using
data from Scenario 1
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were all introduced by R. H. Whittaker to describe the spatial
component of biodiversity [48]. Alpha diversity is just the diversity
of each site (samples in each group). Beta diversity represents the
differences in species composition among sites. Gamma diversity is
the diversity of the entire landscape of different sites (all species
pool from multiple samples). A diversity index measures how many
different types (such as species) are there in a dataset (a community)
and simultaneously takes into account how evenly the basic entities
(such as individuals) are distributed among these types. Three
commonly used measures of diversity, Simpson’s index, Shannon’s
entropy, and the total number of species, are related to Renyi’s
definition of a generalized entropy, and are well explained and
compared by Hill [49]. Interested readers may also refer to [50]
for consistent terminology for quantifying species diversity. Many
other publications also explain this topic very well.

3.7 Comparison

Using Distance

Matrices

Another common technique to compare metagenomic datasets is
using distance matrices. First, a taxonomic profile is computed for
each data set. Second, a matrix of pairwise distances is determined
using one of several possible ecological indices. Finally, the dis-
tances are represented using an appropriate visualization technique.
Mitra et al. [51] explained multiple distance matrices (such as
Bray–Curtis, Kulczynski, χ2, Hellinger, and Goodall) in the context
of multiple metagenome comparison. In addition to theseUniFrac
is another distance metric used for comparing biological commu-
nities. It differs from dissimilarity measures such as Bray–Curtis by
incorporating information on the relative relatedness of community
members by incorporating phylogenetic distances between
observed organisms in the computation [52–54]. Both weighted
(quantitative) and unweighted (qualitative) variants of UniFrac are
often used in microbial ecology, where the former accounts for
abundance of observed organisms, while the latter only considers
their presence or absence.

3.8 Boxplots In descriptive statistics, “boxplot” or alternatively called “box and
whisker plot,” is an important and one of the most informative
tools that is used for graphically depicting groups of numerical data
through their quartiles [55]. The boxplot is a quick way of examin-
ing multiple groups of data graphically, which easily provides infor-
mation regarding quartiles, range, variation, and even outliers and
enables us to compare within and between group samples. For
example, Fig. 7 shows distribution of samples in multiple time
point for both drugs (example data in Scenario 3). From this plot
we can clearly gather the idea that diversity with drug X is consis-
tently higher than that with drug Y. Further in Fig. 5 we have
already seen that microbiome pattern in drug X showed less disrup-
tion, thus from these two figures we can hypothesize that drug Y
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being more disruptive to the microbiome. Such hypotheses can
help us in further statistical analyses.

3.9 Hierarchical

Clustering

Cluster analysis, especially hierarchical clustering [56, 57], is an
important tool for the exploratory and unsupervised analysis
(where we do not need a training dataset to feed the programme)
of high dimensional datasets and often used in genomics and other
fields for their ability to simultaneously uncover multiple layers of
clustering structure. In our example, Fig. 8 depicts a hierarchical
clustering result of family level taxonomic comparison data for all
22 samples. Interestingly, samples 238 and P0613 were mostly
different, and among the other samples, all unstable plaques clus-
tered together, apart from all stable plaque controls that clustered
separately.

Interestingly, the asymptomatic atherosclerotic plaques have
more abundance of host microbiome-associated microbial families
such as Porphyromonadaceae, Bacteroidaceae, Micrococcaceae, and
Streptococcaceae than the symptomatic atherosclerotic plaques. In
contrast, the symptomatic atherosclerotic plaques have more abun-
dance of pathogenic microbial families such as Helicobacteraceae,
Neisseriaceae, and sulfur-consuming families such as sulfur-
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Fig. 7 Boxplot showing Simpson diversity indices for samples from each time point and for both the drugs X
and Y
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oxidizing symbionts and Thiotrichaceae than the asymptomatic
atherosclerotic plaques (Fig. 8). For P0613, the species profile
appeared very different from all other samples. Thus, this sample
also treated as an outlier in further analyses (see [15] if interested in
actual study).

3.10 Principal

Component Analysis

(PCA) and Principal

Coordinates Analysis

(PCoA)

PCA and PCoA are tools for multivariate analysis. PCA uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorre-
lated variables called principal components [58]. This is often used
for quantitative variables, so the axes in graphic have a quantitative
weight, and the positions of the samples are in relation with those
weight. On the other hand, PCoA or multidimensional scaling
(MDS) is a means of visualizing the level of similarity of individual
cases of a dataset [59]. PCoA is similar to Polar ordination (PO;
[60]) arranges samples between endpoints or ‘poles’ according to
the distance matrix maximizing the linear correlation between the
distances in the distance matrix. If further interested in these meth-
ods please see [61].

For multiple sample comparison we often use PCoA and PCA,
these are among the best tools available for multivariate analysis.
These can give us powerful information of similarities and dissim-
ilarities within samples. When coupled with phenotypic data or
metadata (using colors and symbols etc.), these can be very helpful
tools to understand within group variations. As an example, we
have used PCoA on 22 plaque samples from Scenario 1 (Fig. 9).
Here we can see that sample 238 and 238 being very different
possibly due to high sequence depth (as also seen in Fig. 4).

Biplots: In addition to PCA or PCoA, variables can also be
plotted on the same diagram (this is called a biplot). The biplot
provides a useful tool of data analysis and allows the visual appraisal
of the structure of large data matrices [62]. In our examples, where
taxa are variables, biplot can show important taxa which helps in
determining relatedness represented as arrows. For example, in
Scenario 2, β diversity was compared using principal coordinate
analysis (PCoA) on all samples from all visits, where biplots are
displayed with green arrows (Fig. 10). From this PCoA with biplot,
we interpret that samples from volunteers 8, 13, and 16 are differ-
ent than the other volunteers and that they have higher abundance
of Succinivibrionaceae, Gammaproteobacteria, Aeromonadales, etc.

3.11 Canonical-

Correlation Analysis

(CCA) and Canonical-

Correspondence

Analysis (CCA)

CCA (correlation) seeks to find the linear combination of the Xi

and Yj that have the greatest correlation with each other where
X ¼ (X1, . . ., Xn) and Y ¼ (Y1, . . ., Ym) of random variables thus it
is often used as a dimension–reduction method. The method was
first introduced by Harold Hotelling [63]. On the other hand,
CCA (correspondence) is a multivariate method to elucidate the
relationships between biological assemblages of species and their
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environment. This method by Cajo J. F. ter Braak involves a canon-
ical correlation analysis and a direct gradient analysis [64]. By envi-
ronment we mean any kind of metadata, such as some
physicochemical parameters obtained from same group where the
species data is obtained. The idea is to relate the prevalence of a set
of species to a collection of environmental variables. Biplots are
often used in CCA (correspondence) for visualization purpose. For
example, in our Scenario 2, a typical illustration of correlation and
correspondence analyses between the microbiome and RBC fatty
acid data is displayed in Fig. 11.

In this occasion it is important to note that CCA does not
perform variable selection. Further, when the number of variables
exceeds the number of observations (or sample size), CCA cannot
be applied directly due to singularity of the covariance matrix. In a
recent study [65] the authors have discussed this problem and a few
existing solutions. Additionally, they developed a method for
structure-constrained sparse canonical correlation analysis
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(ssCCA) in a high-dimensional setting. ssCCA takes into account
the phylogenetic relationships among bacteria, which provides
important prior knowledge on evolutionary relationships among
bacterial taxa (see [65] if interested).

3.12 Multivariate

Analyses

Multivariate data analysis refers to any statistical approach used to
analyze data with more than one variable. For example, as described
in Scenario 3 we have multiple factors. The key to identifying
important microbial taxa associated with two treatments is that
the large datasets from each patient are compared within groups,
and then the metadata from the patients’ groups are compared
against each other. Analysis of multivariate data in response to
factors, groups, or treatments in an experimental design needs
sophisticated methods.

To achieve this, we can use PERMANOVA (permutational
multivariate analysis of variance) [66] to test the homogeneity of
multivariate dispersions within groups, on the basis of any resem-
blance measure. PERMANOVA is a better approach than ANOVA
(Analysis of variance)/MANOVA (Multivariate analysis of variance)
for our study as PERMANOVA works with any distance measure
that is appropriate to the data, and uses permutations to make it
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distribution free, unlike assuming normal distributions. Finally, in
addition to the above multiple comparisons, we can examine if
there is consistency of microbiota changes and patterns across the
geographical locales of treatment subjects; as our samples are from
different countries. We are not showing the details of multivariate
analyses, but there are multiple available packages for such analyses
with good tutorials. Interested readers may visit these packages and
websites as detailed below.

The Primer-E package [67] is commonly used by microbial
ecologists and allows for multiple multivariate statistical analyses.
We often use R statistical programming language [21] for multi-
variate statistics. Moreover R is used for several types of graphical
representations. Particular packages provide in-built functions and
libraries (within R environment) specially for metagenomic datasets
such as Bioconductor [68], vegan [69], and phyloseq [70].

4 Tools and Packages Commonly Used in Metagenomic Studies

A list of multiple tools is provided below for analyzing metage-
nomic data from raw sequence reads to final comparisons and
statistical analyses. Discussion of all these tools are beyond the
scope of this chapter, but interested readers can see recent review
articles [71–74] and it must be noted that there can be other tools
as well outside this list.
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1. Processing of raw sequence reads and quality control (QC):

(a) FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/).

(b) Fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).

(c) Cut-adapt (both adapter trimming and quality trim) [25].

(d) BBTools (http://jgi.doe.gov/data-and-tools/bbtools/).

(e) Condetri (Read trimmer for Illumina data) [75].

(f) Trimmomatic (allows multiple threads) [76].

(g) SolexaQA [77].

(h) PRINSEQ [78].

2. Alignment tool:

(a) BLAST [18].

(b) USEARCH [28].

(c) DIAMOND [22].

(d) Rapsearch [79].

(e) PyNAST [29].

3. Analyses for 16S projects: OTU clustering, picking, and taxo-
nomic assignment.

(a) QIIME [27].

(b) USEARCH [28].

(c) RDP classifier [30].

(d) SILVA (for 16S + 18S) [80].

(e) Mothur [81].

(f) SILVAngs (https://www.arb-silva.de/documentation/
silvangs/).

(g) MEGAN [31].

(h) AmpliconNoise [82].

(i) Open reading frame (ORF) prediction, for example, with
MG-DOTUR [83].

4. Assembly of shotgun metagenomics data.

(a) Reference-based assembly.

l MIRA 4 [84].

l MetaAMOS (https://www.cbcb.umd.edu/software/
metamos).

(b) De novo assembly.

l Newbler (Roche).

l iAssembler [85].

l EULER [86].
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l Velvet [87].

l SOAP [88].

l Abyss [89].

(c) The next generation of assembly tools.

l MetaVelvet-SL [90].

l Meta-IDBA [91].

l InteMAP [92].

l SAT-Assembler [93].

l IDBA-UD [94].

5. Removing near-exact matches by maping to specific genomes.

(a) Bowtie 2 [17].

6. Binning tools for metagenomes.

(a) Composition-based binning algorithms.

l S-GSOM [95].

l PhylopythiaS [96].

l TACAO [97].

l PCAHIER [98].

l ESOM [95].

l ClaMS [99].

(b) Similarity-based binning software include tools.

l MEGAN [31].

l IMG/MER 4 [35].

l MG-RAST [34].

l CARMA [100].

l MetaPhyler [101].

(c) Unsupervised binning.

l PhylopythiaS+ [102].

l PhymmBL [103].

l ESOMs [104].

l VizBin [105].

l IFCM (fuzzy c-means method) [106].

7. Binning of metagenome contigs for reconstructing single
genomes.

(a) ICoVeR [107].

(b) MyCC [108].

(c) MetaBAT [109].

(d) GroopM [110].
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(e) MaxBin2 [111].

(f) CONCOCT [112].

8. Identification of genes within the reads/assembled contigs or
“gene calling”.

(a) MetaGeneMark [113].

(b) Prodigal [114].

(c) Orphelia [115].

(d) FragGeneScan [116].

9. Predict for clustered regularly interspaced short palindromic
repeats (CRISPRs).

(a) CRT [117].

(b) PILER-CR [118].

(c) IMG/MER [35].

10. Annotation pipelines.

(a) MEGAN [31].

(b) QIIME for 16S projects [27].

(c) Galaxy platform.

(d) MG-RAST [34].

(e) IMG/MER [35].

(f) Primer-E package [67].

(g) Several packages built within R [21].

l Vegan [69].

l Phyloseq [70].

l Bioconductor [68].

11. Prediction of functional content from metagenomics.

(a) PICRUSt [33].

(b) Tax4Fun [32].

12. Statistical computing.

(a) R [21].

(b) Many other tools can be used for statistical analyses.

13. Web service for the analysis of metagenomic data.

(a) The EBI Metagenomics service [36].

(b) European Nucleotide Archive (ENA).

(c) MG-RAST [34].

(d) METAGENassist [119].

(e) BusyBee Web [120].

(f) Meta4 [121].
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5 Concluding Remarks

This chapter has illustrated multiple data analyses and annotation
techniques in metagenomic studies with three case studies. This is
not a chapter about any newmethod development but a description
of optimized pipelines using various available tools. With these
example scenarios, the use of multiple pipelines has been demon-
strated to analyze and interpret the data starting from very raw
sequence to the final statistical outputs. Example scenarios describe
some of the tools that we have used for analyzing the projects
selected for demonstration, but besides these there are plenty of
other available tools for metagenomics, most of which are listed in
Subheading 4. This chapter does not provide the details of the tools
or describe their pros and cons but this can be a good starting point
for the readers to explore available options to analyze and interpret
their datasets. From this chapter readers shall get an idea of current
research projects in medical studies and multiple approaches used
to analyze the data originating from these projects, although read-
ers should keep in mind that this is not an exclusive list of possible
pipelines for analyzing metagenomic samples. There might be
other approaches as well. While step-by-step instructions of all the
tools is beyond the scope of this chapter, the methods outline here
might be useful to researchers to plan, analyze, and interpret their
research projects successfully.
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Chapter 21

Systems Genetics for Evolutionary Studies

Pjotr Prins, Geert Smant, Danny Arends, Megan K. Mulligan,
Rob W. Williams, and Ritsert C. Jansen

Abstract

Systems genetics combines high-throughput genomic data with genetic analysis. In this chapter, we review
and discuss application of systems genetics in the context of evolutionary studies, in which high-throughput
molecular technologies are being combined with quantitative trait locus (QTL) analysis in segregating
populations.
The recent explosion of high-throughput data—measuring thousands of RNAs, proteins, and metabo-

lites, using deep sequencing, mass spectrometry, chromatin, methyl-DNA immunoprecipitation, etc.—
allows the dissection of causes of genetic variation underlying quantitative phenotypes of all types. To deal
with the sheer amount of data, powerful statistical tools are needed to analyze multidimensional relation-
ships and to extract valuable information and new modes and mechanisms of changes both within and
between species. In the context of evolutionary computational biology, a well-designed experiment and the
right population can help dissect complex traits likely to be under selection using proven statistical methods
for associating phenotypic variation with chromosomal locations.
Recent evolutionary expression QTL (eQTL) studies focus on gene expression adaptations, mapping the

gene expression landscape, and, tentatively, define networks of transcripts and proteins that are jointly
modulated sets of eQTL networks. Here, we discuss the possibility of introducing an evolutionary “prior”
in the form of gene families displaying evidence of positive selection, and using that prior in the context of
an eQTL experiment for elucidating host-pathogen protein-protein interactions.
Here we review one exemplar evolutionairy eQTL experiment and discuss experimental design, choice of

platforms, analysis methods, scope, and interpretation of results. In brief we highlight how eQTL are
defined; how they are used to assemble interacting and causally connected networks of RNAs, proteins, and
metabolites; and how some QTLs can be efficiently converted to reasonably well-defined sequence variants.

Key words Systems genetics, Genetical genomics, QTL, eQTL, xQTL, R-genes, Evolution, R/qtl,
LMM, GEMMA, NGS, Genomics, Metabolomics, Network inference, GeneNetwork

1 Introduction

Genetics concerns the study of heritably quantitative or complex
traits. Many agricultural traits of interest, such as milk production
in cattle and response to fertilizer in crops andmost human, animal,
and plant diseases, are complex traits. Associating, or linking,
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complex traits with certain positions on the genome is achieved
through the mapping of the so-called quantitative trait loci (QTL).

Mapping QTL in experimental populations is possible when
linkage and/or association information is available. When we have a
population of individuals with known genotypes, it may be possible
to link a phenotype with a certain genotype. To genotype indivi-
duals, first marker maps are created. A marker is a known genomic
location, where the genotype of an individual can be determined. In
the early days, the genotype was determined by visible chromosome
features, later with restriction fragment length polymorphism
(RFLP) and amplified fragment length polymorphism (AFLP, see
also [1–3]), and, increasingly, with SNP/haplotype data [4]. When
all individuals with genotype A at a marker location somewhere on
the genome are susceptible to a disease and all other individuals
with genotype B are not, there is linkage/association or a QTL. If it
is clear cut, i.e., single QTL explains all phenotype variance, it is
likely to be a single gene effect. Often it is not clear cut, and we
need statistics to determine the strength of association between
phenotype and genotype.

It is also possible to use linkage disequilibrium (LD) to map
QTL in outbred and natural populations. LD occurs when certain
stretches of the genome (haplotypes) show nonrandom behavior
based on allele frequencies and recombination. Associating haplo-
type frequencies with phenotypes potentially renders QTL. Kim
et al. describe the genome-wide pattern of LD in a sample of
19 Arabidopsis thaliana accessions using SNP microarrays
[5]. LD is tested, for example, by Dixon et al., to globally map
the effect of polymorphism on gene expression in 400 children
from families recruited through a proband with asthma [6].

The use of terms “association” and “linkage” can be confusing,
even in literature. In this text we use association with haplotypes in
natural populations of unrelated individuals and linkage with mar-
kers in families and groups of families, often termed experimental
populations. Note some genetic studies are hybrids of both meth-
ods, such as Dixon et al. [6], and individuals are related, i.e., some
within-family linkage information is available for 400 children from
206 families which should be accounted for in the analysis.

Statistical power can be increased by using experimental crosses
instead of natural populations. For example, each individual line in
a set of recombinant inbred lines (RILs) is homozygous across the
genome, doubling the genetic variance, simplifying genetic models,
and increasing statistical power. For model organisms, such as
A. thaliana, Caenorhabditis elegans, Drosophila melanogaster, and
Mus musculus, genotyped and even fully sequenced experimental
crosses are available; i.e., for these species it is not necessary to
generate a new cross, and for these crosses comprehensive SNP and
sequence data may be available. One of the features of inbred model
organisms is that they are “immortal” which means that
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experiments conducted more than 10, even 30, years ago can still
be compared with those today. Databases, such as GeneNetwork
[7, 8], contain thousands of studies conducted on the same indi-
vidual mouse strains.

Systems genetics combines genetics with high-throughput
molecular technologies. Combining gene expression, as measured
by microarray probes or RNA sequencing, with linkage leads to
gene expression QTL (eQTL). Such eQTL studies elucidate how
genotypic variation underlies, for example, morphological pheno-
types, by using gene expression levels as intermediate molecular
phenotypes. In other words, the expression level, as measured by a
microarray probe or probe set, is treated as a phenotype, i.e., a gene
expression trait. This phenotype is associated with the genome in
the form of one or more eQTL. With microarrays, the genomic
location of the probe is usually known. Therefore, expression phe-
notype and probe connect two types of genomic information:
eQTL location(s) and gene location. It is usually assumed that
eQTL loci represent cis- or trans-transcription regulators of the
target gene [9]. If the eQTL is located close to the gene on the
genome, the eQTL may point to a cis-regulator. If the eQTL is
located far from the gene on the genome, the eQTL may point to a
trans-regulator of a single gene or even eQTL trans-bands that
regulate multiple genes (see Fig. 1a and [10, 11]).

In a similar fashion, proteins and metabolites can be measured
to map protein QTL ( pQTL) and metabolite QTL (mQTL). A
remarkable study published in 1994 used two-dimensional protein
electrophoresis and a restriction fragment length polymorphism
map (RFLP) [12]. Deep sequencing, chromatin, and methyl-
DNA immunoprecipitation are just a few of the latest technologies
that add to the arsenal of tools available for the study of the genetic
variation underlying quantitative phenotypes. Together, eQTL,
mQTL, and pQTL are referred to as xQTL. Different xQTL appear
to confirm each other, for example, with the A. thaliana glucosi-
nolate pathway where eQTL, mQTL, and pQTL were mapped
together and used to infer the underlying pathways [13]. Such
causal inference can lead to dissecting pathways and gene networks
which is an active field of research, e.g., [14–16] (see also Fig. 1).

1.1 Evolutionary

xQTL Studies

From the perspective of evolutionary biology, systems genetics has
been applied to elucidate evolutionary adaptations of transcript
regulation. For example, Fraser et al. introduced a test for
lineage-specific selection on gene expression and analyzed the
directionality of microarray eQTL for 112 haploid segregants of a
genetic cross between two strains of the budding yeast Saccharomy-
ces cerevisiae, reanalyzing the two-color cDNA microarray data of
Brem and Kruglyak [17]. They found that hundreds of gene
expression levels have been subjected to lineage-specific selection.
Comparing these findings with independent population genetic
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Fig. 1 In this hypothetical and schematic example related to mapped locations on a chromosome, prior
information is combined with multiple phenotype-genotype QTL mappings to zoom in on genomic areas and to
reason about causal relations between different layers of information. (a) The prior (red area on the
chromosome) points out that certain sections are of interest; these sections consist of related genes with
high homology showing evidence of positive selection, as discussed in the main text. The blue double arrow
points out the confidence interval for each QTL, above the significance threshold (red dotted line). The
accumulated evidence (light-blue areas) leads to a narrowed down section on the genome, where in this case
the prior information is the most specific. In addition, expression phenotypes A and B point to exact gene
locations (dotted line, based on exact probe information). (b) To infer causal relationships, network inference is
possible. On the left (vertical I), traits A, B, and D map to one hot spot, where A may be a regulator of B
because one QTL is shared. B causes metabolite phenotype C, again a shared QTL. Phenotype D matches A
and B, and phenotype E matches A, B, and C. These causal relationships are drawn by arrows. The figure
suggests that, even if individual QTL are not very informative, the accumulated evidence starts to paint a
picture
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evidence of selective sweeps suggests that this lineage-specific selec-
tion has resulted in recent sweeps at over a hundred genes, most of
which led to increased transcript levels. Fraser et al. suggest that
adaptive evolution of gene expression is common in yeast, that
regulatory adaptation can occur at the level of entire pathways,
and that similar genome-wide scans may be possible in other spe-
cies, including human [18].

In another S. cerevisiae study, Zou et al., by reanalyzing the
same two-color cDNA microarray data, uncovered genetic regu-
latory network divergence between duplicate genes. They found
evidence that the regulation of the ancestral gene diverged due to
gene duplication [19].

Li et al. studied plasticity of gene expression inC. elegans, using
a set of 80 RILs generated from a cross of N2 (Bristol) and CB4856
(Hawaii), representing two genetic and ecological extremes of
C. elegans. While the overall level of polymorphism among wild
isolates of C. elegans is relatively low, the genetic distance between
N2 and CB4856 is high, representing millions of years of genetic
drift. Differential expression induced in a RIL population by tem-
peratures of 16 �C and 24 �C has a strong genetic component. With
a group of transgenes, there was prominent evidence for a common
master regulator: an eQTL trans-band of 66 coregulated genes
appeared at 24 �C. The results suggest widespread genetic variation
of differential expression responses to environmental impacts and
demonstrate the potential of systems genetics for mapping the
molecular determinants of phenotypic plasticity [11], leading to a
more generalized systems genetics, where value is added from
environmental perturbation [20].

Hager et al. determined that genetic architecture supports
mosaic brain evolution and independent brain-body size regulation
by a quantitative genetic approach involving over 10,000 BXD
mouse RILs. The BXD family consists of over 100 lines derived
from parental strains that differ at five million single nucleotide
polymorphisms (SNPs), indels, transposons, and copy-number var-
iants. This model system harbors naturally occurring genetic varia-
tion at a level approximating that of human populations. The study
utilizes a high-density linkage analysis to map loci modulating
phenotypic variation in overall brain size, body size, and the size
of seven major brain parts: neocortex, cerebellum, striatum, olfac-
tory bulb, hippocampus, lateral geniculate nucleus, and basolateral
complex of the amygdala. Under the mosaic evolutionary hypoth-
esis, the size of different systems evolves independently due to
differential selective pressures associated with different tasks. They
identified independent loci for size variation in seven key parts of
the brain and observe that brain parts show low or no phenotypic
correlation, as is predicted by a mosaic scenario. They also demon-
strate that variation in brain size is independently regulated from
body size [21].
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Kliebenstein et al. detected significant gene network variation
in 148 RILs originating from a cross between two A. thaliana
accessions, Bay-0 and Shahdara. They were able to identify eQTL
controlling network responses for 18 out of 20 a priori defined
gene networks, representing 239 genes [22].

According to Gilad, eQTL studies show that (1) variation in
gene expression levels is both widespread and highly heritable;
(2) gene expression levels are highly amenable to genetic mapping;
and (3) most strong eQTL are found near the target gene, suggest-
ing that variation in cis-regulatory elements underlies much of the
observed variation in gene expression levels [23]. Meanwhile,
Alberts et al. suggest that sequence polymorphisms influencing
the binding of microarray probes may cause many false cis eQTL,
which should be accounted for [24].

1.2 Adding a Prior QTL mapping links complex traits with one or more locations on
the genome (see Fig. 1). Such a location is a wide measure because a
QTL is a statistical estimate and rarely a precise indicator. On the
genome, a single QTL may represent tens, hundreds, and even
thousands of real genes. Combining the QTL with high-
throughput technologies, such as microarrays, can add informa-
tion. To zoom in on the genes underlying QTL, information from
other sources has to be utilized. Such a priori knowledge (prior)
could consist of results from traditional linkage studies or associa-
tion studies of, for example, human disease. That way one can
assign a specific regulatory role to polymorphic sites in a genomic
region known to be associated with disease [23]. Other useful
priors can be derived from existing information on gene ontology
terms, metabolic pathways, and protein-protein interactions, which
can be used to identify genes and pathways [25], provided these
databases are sufficiently informative.

Zou et al., for example, used gene ontology as a prior and
concluded that trans-acting eQTL divergence between duplicate
pairs of genes is related to a fitness defect under treatment condi-
tions, but not with fitness under normal condition [19].

Chen et al. identified strong candidate genes for resistance to
leaf rust in barley and on the general pathogen response pathway
using a custom barley microarray on 144 doubled haploid lines of
the St/Mx population [26]. Fifteen thousand six hundred and
eighty-five eQTL were mapped from 9557 genes. Correlation anal-
ysis identified 128 genes that were correlated with resistance, of
which 89 had eQTL colocating with the phenotypic QTL (phQTL)
or classic QTL. Transcript abundance in the parents and conserva-
tion of synteny with rice prioritized six genes as candidates for
Rphq11, the phQTL of largest effect [26].

640 Pjotr Prins et al.



In this chapter we discuss the steps needed to design an xQTL
experiment to make use of systems genetics in evolutionary studies
more concrete. As the prior we add information on plant host genes
showing evidence of positive selection.

2 Designing an Evolutionary xQTL Experiment

An experimental design based on systems genetics can highlight
sections of the genome showing correlation with an evolutionary
trait. One such evolutionary trait of interest is plant resistance
against pathogens. Plants have developed mechanisms to defend
themselves against pests. When a pathogen, such as potato blight
Phytophthora infestans, or a nematode, such as Meloidogyne hapla,
infects a plant, it uses a battery of so-called effectors to help invade
the plant. Some of these effector molecules act to dissolve cellulose
[27]. Intriguingly, other molecules are involved in actively repro-
gramming plant cells. Such plant-pathogen effectors have been
shown to mimic plant transcription factors [28] and switch on
genes that help the pathogen [29]. A susceptible plant allows the
pathogen to suppress defense mechanisms and to change cell con-
figuration. For example, the nematodes M. hapla and Globodera
rostochiensis transform plant cells, so they become elaborate feeding
structures. The genetics of this plant-pathogen interaction is poten-
tially even relevant for human medicine, as an increased under-
standing of host-pathogen relationships may help understand the
workings of the innate immune system and nematode immunomo-
dulation [30, 31]. The innate immune system, through plant resis-
tance genes (R-genes, see Box 1), influences susceptibility to
infections in all multicellular organisms and is a much older evolu-
tionary mechanism than the advanced adaptive immune system
found in higher organisms.

Box 1: Adaptive evolution in R-genes
Plant resistance genes (R-genes) are a homologous family of
genes, formed by gene duplication events and hypothesized
to be involved in an evolutionary arms race with pathogen
effectors. R-genes are involved in recognizing specific patho-
gens with cognate avirulence genes and initiating defense
signaling that results in disease resistance [32]. R-genes are
characterized by a molecular gene-for-gene interaction [33]
in which a specific allele of a disease resistance gene recognizes
an avirulence protein or pathogen allele. This specificity is
often encoded, at least in part, in a relatively fast-evolving
leucine-rich repeat (LRR) region [34], which consists of a
varying number of LRR modules. Activation of at least some

(continued)
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Box 1: (continued)
of these proteins is regulated in trans, as has been shown for
RPM1 and RPS2 [35].

A single A. thaliana plant has about 150 R-genes, repre-
senting a subset of R-genes in the overall population. The
protein products of R-genes are involved in molecular inter-
actions. They generally have a recognition site which can dock
against, i.e., recognize, one or more specific molecule(s). The
proteins encoded by the largest class of R-genes carry a
nucleotide-binding site LRR domain (NB-LRR, also referred
to as NB-ARC-LRR and NBS-LRR). NB-LRR R-genes can
be further subdivided based on their N-terminal structural
features into TIR-NB-LRR, which have homology to the
Drosophila Toll and mammalian interleukin-1 receptors and
CC-NB-LRR, which contain a putative coiled-coil motif
[36]. The LRR domain appears to mediate specificity in path-
ogen recognition, while the N-terminal TIR, or coiled-coil
motif, is likely to play a role in downstream signaling
[34]. When a molecule is docked, the R-protein is able to
activate pathways in the cell, resulting in, for example, a
hypersensitive response causing apoptosis and preventing
spread of infection.

Meanwhile, one single R-protein only recognizes one
type of invading molecule. Therefore, through its R-genes,
one individual plant only recognizes a limited number of
strains of invading pathogens, as the individual pathogens
have variation in effectors too. When a pathogen evolves to
use nonrecognized effectors, the plant becomes susceptible.
The success of plant defense is determined by both evolution
and the variation of specificity in a population. Unlike the
evolved mammal immune system, which can change in a living
organism and learn about invasions “on the fly” [37], plant
R-genes depend on the variation inside a gene pool to provide
the resistance against a pathogen; see, for example, Holub
et al. [38]. Even so, many genes involved in pathogen recog-
nition undergo rapid adaptive evolution [39], and studies
have found that A. thaliana R-genes show evidence of posi-
tive selection, e.g., [40–42].

In this chapter we do not limit ourselves to (known) R-genes.
Plants have evolved a complex array of chemical and enzymatic
defenses, both constitutive and inducible, that are not involved in
pathogen detection but whose effectiveness influences pathogene-
sis and disease resistance. The genes underlying these defenses
comprise a substantial portion of the host genome. Based on
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genomic sequencing, it is estimated that some 14% of the 21,000
genes in A. thaliana are related to defense against pathogens
[43]. Most of these genes are not involved in direct pathogen
detection, but their protein products interact directly with patho-
gen proteins or protein products at the molecular level. Among
these proteins, for example, are chitinases and endoglucanases that
attack and degrade the cell walls of pathogens and which pathogens
counterattack with inhibitors. Such systems of antagonistically
interacting proteins provide the opportunity for molecular coevo-
lution of individual systems of attack and resistance [39].

In this chapter we design an experiment to look for all gene
families showing evidence of positive selection. This evidence of
positive selection is the prior for eQTL analysis: combining known
genomic locations of gene families with eQTL locations derived
from gene expression variation in a host-pathogen interaction
experiment, which hopefully results in zooming in on gene families
involved in plant resistance. The prior adds statistical power in
locating putative gene families involved in host-pathogen coevolu-
tion (Fig. 1). Note that, in this chapter, the term “interaction” is
used in two ways. The first is for QTL interaction, where two QTL
on the genome interact statistically. The second is for host-
pathogen gene-for-gene interaction, where gene products from
different species interact physically.

2.1 Create a Prior

with PAML

To create the prior, we use Ziheng Yang’s codeml implementation
of phylogenetic analysis by maximum likelihood (PAML)
[44]. PAML can find amino acid sites which show evidence of
positive selection using dN/dS ratios, which is the ratio of
non-synonymous over synonymous substitution (ω, see [44]). The
calculation of maximum likelihood for multiple evolutionary mod-
els is computationally expensive, and executing PAML over an
alignment of a hundred sequences may take hours, sometimes
days, on a PC. The software for generating the prior is prepackaged
and makes up the workflow in Chap. 25, which includes BLAST
[45], Clustal Omega [46], pal2nal [47], PAML [44], and
BioRuby [48].

It is possible to find nonoverlapping large gene families by
using BLASTCLUST, a tool that is part of the BLAST tool set
[45]. After fetching the A. thaliana cDNA sequences from the
Arabidopsis Information Resource (TAIR) [49], convert the
sequences to a protein BLAST database format. Based on a homol-
ogy criterion, the identity score and genes are clustered into puta-
tive gene families by running BLASTCLUST with 70% amino acid
sequence identity. Note that the percentage identity may not render
all families and will leave out a number of genes. It is used here for
demonstration purposes only. For A. thaliana such a genome-wide
search finds at least 60 gene families, including some R-gene
families.

Systems Genetics for Evolutionary Studies 643



After aligning all family sequences, use PAML’s codeml to find
evidence of positive selection in the gene families. Clustal Omega is
used to align the amino acid sequences and create a phylogenetic
tree. Next, pal2nal creates codon alignments, which can be used by
PAML. Finally run PAML’s codeml M0-M3 (one ratio vs. nearly
neutral) tests and M7-M8 (beta vs. beta + ω) tests in a computing
cluster environment as shown in Chap. 25.

An M0-M3 χ2 test finds that 43 gene families (out of 60) show
significant evidence of positive selection. M7-M8, meanwhile, finds
35 gene families. Therefore, based on the described procedure,
approximately half the families show significant evidence of positive
selection and can be considered candidate gene families involved in
host-pathogen interactions. Note that this number contains false
positives because the evolutionary model may be too simplistic; see
also [50]. Nevertheless, these candidate gene families can be used as
an effective filter for further research.

When a gene family displays evidence of positive selection, the
genome locations can be used as a prior for systems genetics (see
Fig. 1). With the full genome sequence ofA. thaliana available, the
location of gene families showing evidence of positive selection is
known. For example, in the Columbia (Col-0) ecotype, the major-
ity of the 149 R-genes are combined in clusters spreading 2–9 loci;
the remaining 40 are isolated. Clusters are organized in so-called
superclusters [36, 51]. Phylogenetic analysis shows that such clus-
ters are the result of both old segmental duplications and recent
chromosome rearrangements [36, 52].

2.2 Select a Suitable

Experimental

Population

To select a suitable experimental population, the choice of parents
is key. Because we want a descriptive evolutionary prior based on
gene families with known genome locations, we also need a
sequenced genome, from one parent and ideally from both of the
parental strains. The choice of parents for QTL analysis is normally
based on large (classical) phenotypic differences. For testing path-
ogen resistance, the choice would ideally be one susceptible parent
and one resistant (nonsusceptible) parent. For eQTL, phylogenetic
distance can be used, when there is no obvious phenotype. In
general, it is a good idea to choose one or both parents from
common library strains based on, for example, Columbia (Col-0),
Landsberg erecta (Ler-0), Wassilewskija (Ws-0), or Kashmir
(Kas-1). This is because a great number of experimental resources
and online information will be available. In addition, a reference
genetic background is provided in this way, which allows the com-
parison of the effects of QTL and mutant alleles [53]. A number of
RIL populations can be found through TAIR, a model organism
database providing a centralized, curated gateway to Arabidopsis
biology, research materials, and community [49].
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2.3 Select an xQTL

Technology

A large part of published xQTL studies is based on gene expression
eQTL partly because gene expression probe provides a direct geno-
mic link. When it comes to selecting single-color or two-color
arrays, one consideration may be that two-color arrays have higher
efficiency when using a distant pair design [54].

Deep sequencing technology (RNA-seq, [55]) is affordable for
eQTL studies. The main advantage over microarrays is improved
signal-to-noise ratios and possibly improved coverage depending
on the reference genome. Microarrays are noisy partly due to cross
hybridization, e.g., [56], and have limited signal on low-abundance
transcripts or expressors; both facts are detrimental to significance.
Deep sequencing is no panacea, however, since it accentuates the
high expressors. High expressors are expressed thousands of times
higher than low expressors. Low expressors may lack significance
for differential expression. Worse because deep sequencing is sto-
chastic, many low expressors may even be absent. Another point to
consider is that currently at least 1 in 1000 nucleotide base pairs is
misread, which makes it harder to disentangle error from genetic
variation. Only when a sequence polymorphism is measured many
times (say 20�), it can be considered to represent genetic variation.

Also a choice for a certain eQTL technology should take into
account that, when looking at differential gene expression analysis,
different microarray platforms agree with each other, but overlap
between microarray and deep sequencing is much lower, suggest-
ing a technical bias [57].

For an example of a metabolite mQTL study, see Keurentjes
et al. [58] and Fu et al. [59]. For a study integrating eQTL, pQTL,
mQTL, and classical phenotypic QTL, see Fu et al. [60] and Jansen
et al. [13].

2.4 Sizing the

Experimental

Population

The size of the experimental population should be large enough to
give informative results. For classical QTL analysis, the sizing may
be assisted using estimates of total environmental variance and the
total genetic variance derived from the accessions, selected as par-
ents. Roughly, population sizes of 200 RILs, without replications,
will allow detection of large-effect QTL with an explained variance
of 10% in confidence intervals of 10–20 cM. Detection of small-
effect QTL or mapping accuracy below 5% requires increasing the
population size to at least 300 RILs [53]. It is important to note
that QTL mapping accuracy is a function of marker density and
population size. The number of strains to use differs between
inbred lines. The promise of extreme dense marker maps, such as
delivered by SNPs, does not automatically translate to higher accu-
racy. It is the number of recombination events in the population for
a particular genomic region that limits QTL interval size. In fact,
current marker maps, in the order of thousands of (evenly spread)
markers per genome, suite population sizes of a few hundred RILs.
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It is a fallacy, for example, to expect higher mapping power when
combining an ultradense SNP map with just 20 individuals.

For high-throughput xQTL, the experimental population
should be sized against an acceptable false discovery rate (FDR),
minimizing for type I and type II errors. This can be achieved using
a permutation strategy to assess statistical significance, maintaining
the correlation of the expression traits while destroying any genetic
linkages or associations in natural populations: marker data is per-
muted while keeping the correlation structure in the trait data, such
as presented by Breitling et al. [61]. Unfortunately, this informa-
tion differs for every experiment and is only available afterward.
Analyzing a similar experiment, using the same tissue and data
acquisition technology, may give an indication [60], but when no
such material is available, a crude estimate may be had by taking the
thresholds of a (classic) single-trait QTL experiment and adjusting
that for multiple testing by the Bonferroni correction (minimize
type I errors) or Benjamini-Hochberg correction (minimize type II
errors). Note that Bonferroni results in a very conservative
estimate.

2.5 Analyzing the

xQTL Experiment with

R/qtl

R/qtl is extensible, interactive free software for the mapping of
xQTL in experimental crosses. It is implemented as an add-on
package for the widely used statistical language/software R. Since
its introduction, R/qtl has become a reference implementation
with an extensive guide on QTL mapping [62].

R/qtl includes multiple QTLmapping (MQM), as described in
[10], an automated procedure, which combines the strengths of
generalized linear model regression with those of interval mapping.
MQM can handle missing data by analyzing probable genotypes.
MQM selects important marker cofactors by multiple regression
and backward elimination. QTL are moved along the chromo-
somes using these preselected markers as cofactors. QTL are inter-
val mapped using the most informative model through maximum
likelihood. MQM for R/qtl brings the following advantages to
QTL mapping: (1) higher power, as long as the QTL explain a
reasonable amount of variation; (2) protection against overfitting,
because MQM fixes the residual variance from the full model;
(3) prevention of ghost QTL detection (between two QTL in
coupling phase); and (4) detection of negating QTL (QTL in
repulsion phase) [10].

MQM for R/qtl brings additional advantages to systems genet-
ics data sets with hundreds to millions of traits: (5) a pragmatic
permutation strategy for control of the FDR and prevention of
locating false QTL hot spots, as discussed above; (6) high-
performance computing by scaling on multi-CPU computers, as
well as clustered computers, by calculating phenotypes in parallel,
through the message passing interface (MPI) of the parallel package
for R; and (7) visualizations for exploring interactions in a genomic
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circle plot and cis- and trans-regulation. MQM comes with a
40-page tutorial for MQM and is part of the software distribution
of R/qtl [10, 63].

2.6 Matching the

Prior

After detecting eQTL, we have a map of gene regulation in the form
of a cis-trans map. When taking a priori information into account,
i.e., genomic locations derived through other methods, we can
potentially match the genomic locations of genes and gene families
with the eQTL cis-trans map. Until now, there has been no com-
bined QTL and evolutionary study, involving PAML, for host-
pathogen relationships in plants, though they have been conducted
separately.

2.7 Combining xQTL

Results: Causality and

Network Inference

In addition to identifying eQTL or xQTL, it is possible to think in
terms of grouping related traits by correlations. Molecular and
phenotypic traits can be informative for inferring underlyingmolec-
ular networks. When two independent non-correlated traits share
multiple QTL, inference of a functional relationship is possible
(Fig. 1b). Thus, distinguishing trait causality, reactivity, or indepen-
dence can be based upon logic involving underlying QTL. This was
the basic idea in Jansen and Nap 2001 [64]. Later, people started to
use biological variation as an extra source for reasoning because if A
affects B, biological variation in trait A is propagated to B and not
vice versa. This assumes there is no hidden trait C affecting both A
and B; see also Li et al. [15].

Mapping QTL for thousands of molecular phenotypes is the
first step in attempting to reconstruct gene networks. Not only can
network reconstruction be used within a particular layer, say within
eQTL analysis, i.e., transcript data only, but also across layers. Such
interlevel (system) analysis integrates transcript eQTL, protein
pQTL, metabolite mQTL, and classical QTL [13].

The examination of pairwise correlation between traits can lead
to the hypothesis of a functional relationship when that correlation
is high. Beyond the detected QTL, the correlation between resi-
duals among traits, after accounting for QTL effects, or correla-
tions between traits conditional on other traits is further evidence
for a network connection. To infer directional effects, it is necessary
to analyze the correlations among pairs of traits in detail. If trait A
maps to a subset of the QTL of trait B, then the common QTL can
be taken as evidence for their network connection, while the dis-
tinct QTL can be used to infer the direction (Fig. 1b), unless all the
common QTL have widespread pleiotropic effects, which is when a
single gene influences multiple traits. If traits A and B have com-
mon QTL, without QTL that are distinct, then the inference is
more complicated, and further analysis is needed to discriminate
pleiotropy from any of the possible orderings among traits [13, 15].

Li et al. [15] point out that, despite the exciting possibilities of
correlation analysis, extreme caution is advised, especially in
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intralevel analyses, owing to the potential impact of correlated
measurement error (leading to false-positive connections). By
introducing a prior, however, causal inference becomes feasible
for realistic population sizes [15]. The outcome of a causal infer-
ence on two traits sharing a commonQTLmay be either that one is
causal for the other or that they are independent. In the first case,
QTL-induced variation is propagated from one trait to the other,
while in the latter case, the two traits may even be regulated by
different genes or polymorphisms within the QTL region, and their
apparent relationship (correlation) is explained by linkage disequi-
librium and not by a shared biological pathway [15].

3 Discussion

A QTL is a statistical property connecting genotype with pheno-
type. In this chapter, we reviewed studies which, with various
degrees of success, combine some type of prior information with
xQTL. We propose that a search for genome-wide evidence of
positive selection can produce a valid and interesting prior for
xQTL analysis. This is achieved by combining information of geno-
mic locations of putative gene families, possibly involved in plant-
pathogen interactions, with QTL locations derived from a systems
genetics experiment. Both the eQTL example and the search for
genome-wide evidence of positive selection pressure are essentially
exploratory and result in a list of putative genes, or gene families,
with known genomic locations. The combined information yields
candidate genes and pathways that are under positive selection
pressure and, potentially, involved in host-pathogen interactions.
We explain that it is possible to design an eQTL experiment using
existing experimental populations, e.g., using an A. thaliana RIL
population, and analyze results with existing free and open-source
software, such as the R/qtl tool set.

Systems genetics bridges the study of quantitative traits with
molecular biology and gives new momentum to QTL population
studies. Genetic variation at multiple loci in combination with
environmental factors can induce molecular or phenotypic varia-
tion. Variation may manifest itself as linear patterns among traits at
different levels that can be deconstructed. Correlations can be
attributed to detectable QTL and a logical framework based on
common and distinct QTL and propagation of biological variation,
which can be used to infer network causality, reactivity, or indepen-
dence [15]. Unexplained biological variation can be used to infer
direction between traits that share a common QTL and have no
distinct QTL, though it may be difficult to separate biological from
technical variation. Prior knowledge and complementary experi-
ments, such as deletion mapping followed by independent gene
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expression studies between parental lines, may validate or disprove
implicated network connections [65].

Evolutionary systems genetics can help dissect the underlying
genetics of pathogen susceptibility in plants. Where “evolutionary
genetics” describes how evolutionary forces shape biodiversity, as
observed in nature, “evolutionary systems genetics” describes how
phenotype variation in a population is formed by genotype varia-
tion between, for example, host and pathogen involved in an evo-
lutionary arms race.

For purpose of online analysis we created GeneNetwork.org
(GN) [7], a free and open-source (FOSS) framework for web-based
genetics that can be deployed anywhere. GN allows biologists to
upload high-throughput experimental data, such as expression data
from microarrays and RNA-seq, and also classical phenotypes, such
as disease phenotypes. These phenotypes can be mapped interac-
tively against genotypes using embedded tools, such as R/QTL
[10] for model organisms and FaST-LMM [66] and GEMMA [67]
which are suitable for human populations and outbred crosses, such
as the mouse diversity outcross. Interactive D3 graphics are
included from R/qtl charts, and presentation-ready figures can be
generated. Recently we have added functionality for phenotype
correlation [68], correlation trait loci [16], and network analysis
[14]. For examples on using GeneNetwork, see also Mulligan
et al. [8].

If you want to know more about eQTL, we suggest the review
by Gilad et al. [23], which also discusses eQTL in genome-wide
association studies (GWAS), useful in situations where experimen-
tal crosses are not available (such as with many pathogens and
humans). For further reading on R-gene evolution, we recommend
Bakker et al. [34]. For R/qtl analysis, we recommend the R/qtl
guide [62] and our MQM tutorial online [63]. For integrating
different xQTL methods and causal inference, we recommend Li
et al. [15] and Jansen et al. [13].

4 Questions

1. What is an eQTL, and why does it present two genomic
locations?

2. Can a prior, as used here, really add statistical power, or is it no
more than circumstantial evidence?

3. When designing an evolutionary systems genetics experiment,
what are the steps to consider?

4. How can causality be inferred from QTL networks?
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Chapter 22

Semantic Integration and Enrichment of Heterogeneous
Biological Databases

Ana Claudia Sima, Kurt Stockinger, Tarcisio Mendes de Farias,
and Manuel Gil

Abstract

Biological databases are growing at an exponential rate, currently being among the major producers of Big
Data, almost on par with commercial generators, such as YouTube or Twitter. While traditionally biological
databases evolved as independent silos, each purposely built by a different research group in order to answer
specific research questions; more recently significant efforts have been made toward integrating these
heterogeneous sources into unified data access systems or interoperable systems using the FAIR principles
of data sharing. Semantic Web technologies have been key enablers in this process, opening the path for new
insights into the unified data, which were not visible at the level of each independent database. In this
chapter, we first provide an introduction into two of the most used database models for biological data:
relational databases and RDF stores. Next, we discuss ontology-based data integration, which serves to
unify and enrich heterogeneous data sources. We present an extensive timeline of milestones in data
integration based on Semantic Web technologies in the field of life sciences. Finally, we discuss some of
the remaining challenges in making ontology-based data access (OBDA) systems easily accessible to a larger
audience. In particular, we introduce natural language search interfaces, which alleviate the need for
database users to be familiar with technical query languages. We illustrate the main theoretical concepts
of data integration through concrete examples, using two well-known biological databases: a gene expres-
sion database, Bgee, and an orthology database, OMA.

Key words Data integration, Ontology-based data access, Knowledge representation, Query proces-
sing, Keyword search, Relational databases, RDF stores

Abbreviations

ABox Assertional box
Bgee dataBase for Gene Expression Evolution, https://bgee.org/
FK Foreign key in a relational database
HBB Hemoglobin unit beta gene
IRI Internationalized Resource Identifier
OBDA Ontology-based data access
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OMA Orthologous Matrix, a database for the inference of orthologs among complete
genomes.—https://omabrowser.org, SPARQL endpoint: https://sparql.
omabrowser.org/sparql

PK Primary key in a relational database
PK-FK Primary key-foreign key relationship; enables joining two tables in a relational

database
RDB Relational database
RDF Resource Description Framework
SODA Search Over Relational Databases [21]
SQL Structured Query Language
SPARQL SPARQL Protocol and RDF Query Language
TBox Terminological box
URI Uniform Resource Identifier

1 Introduction

Biological databases have grown exponentially in recent decades,
both in number and in size, owing primarily to modern high-
throughput sequencing techniques [1]. Today, the field of geno-
mics is almost on par with the major commercial generators of Big
Data, such as YouTube or Twitter, with the total amount of
genome data doubling approximately every 7 months [2]. While
most biological databases have initially evolved as independent
silos, each purposely built by a different research group in order
to collect data and respond to a specific research question, more
recently significant efforts have been made toward integrating the
different data sources, with the aim of enabling more powerful
insights from the aggregated data, which would not be visible at
the level of individual databases.

Let us consider the following example. An evolutionary biolo-
gist might want to answer the question “What are the human-rat
orthologs, expressed in the liver, that are associated with leuke-
mia?”. Getting an answer for this type of question usually requires
information from at least three different sources: an orthology
database (e.g., OMA [3], OrthoDB [4], or EggNog [5]); a gene
expression database, such as Bgee [6]; and a proteomics database
containing disease associations (e.g., UniProt [7]). In the lack of a
unified access to the three data sources, obtaining this information
is a largely manual and time-consuming process. First, the biologist
needs to know which databases to search through. Second, depend-
ing on the interface provided by these databases, he or she might
need to be familiar with a technical query language, such as SQL or
SPARQL (note: a list of acronyms is provided at the beginning of
this chapter). At the very least, the biologist is required to know the
specific identifiers (IDs) and names used by the research group that
created the database, in order to search for relevant entries. An
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integrated view, however, would allow the user to obtain this
information automatically, without knowing any of the details
regarding the structure of the underlying data sources—nor the
type of storage these databases use—and eventually not even spe-
cific IDs (such as protein or gene names).

Biological databases are generally characterized by a large het-
erogeneity, not only in the type of information they store but also in
the model of the underlying data store they use—examples include
relational databases, file-based stores, graph based, etc. Examples of
databases considered fundamental to research in the life sciences
can be found in the ELIXIR Europe’s Core Data Resources, avail-
able online at https://www.elixir-europe.org/platforms/data. In
this chapter we will mainly discuss two types of database models:
the relational model (i.e., relational databases) and a graph-based
data model, RDF (the Resource Description Framework).

Database systems have been around since arguably the same
time as computers themselves, serving initially as “digitized” copies
of tabular paper forms, for example, in the financial sector, or for
managing airline reservations. Relational databases, as well as the
mathematical formalism underlying them, namely, the relational
algebra, were formalized in the 1970s by E.F. Codd, in a founda-
tional paper that now has surpassed 10,000 citations [8]. The
relational model is designed to structure data into so-called tuples,
according to a predefined schema. Tuples are stored as rows in
tables (also called “relations”). Each table usually defines an entity,
such as an object, a class, or a concept, whose instances (the tuples)
share the same attributes. Examples of relations are “Gene”,
“Protein”, “Species”, etc. The attributes of the relation will repre-
sent the columns of the table, for example, “gene name.” Further-
more, each row has a unique identifier. The column
(or combination of columns) that stores the unique identifier is
called a primary key and can be used not only to uniquely identify
rows within a table but also to connect data betweenmultiple tables,
through a Primary Key-Foreign key relationship. Doing such a
connection is called a join. In fact, a join is only one of the opera-
tions defined by relational algebra. Other common operations
include projection, selection, and others. The operands of relational
algebra are the database tables, as well as their attributes, while the
operations are expressed through the Structured Query Language
(SQL). For a more in-depth discussion on relational algebra, we
refer the reader to the original paper by E.F. Codd [8].

This chapter is structured as follows. In Sect. 2, we give a brief
introduction to relational databases, through the concrete example
of the Bgee gene expression database. We introduce the basics of
Semantic Web technologies in Sect. 3. Readers who are already
familiar with the Semantic Web stack might skip Sect. 3 and jump
directly to Sect. 4, which presents an applied use case of Semantic
Web technologies in the life sciences: modeling the Bgee and OMA
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databases. Section 5 represents the core of this chapter. Here, we
present ontology-based data integration (Sect. 5.1) and illustrate it
through the concrete example of a unified ontology for Bgee and
OMA (Sect. 5.2), as well as the mechanisms required to further
extend the integrated system with other heterogeneous sources
such as the UniProt protein knowledge base (Sect. 5.3). We intro-
duce natural language interfaces, which enable easy data access even
for nontechnical users, in Sect. 5.4. We present an extensive time-
line of milestones in data integration based on Semantic Web
technologies in the field of life sciences in Sect. 6. Finally, we
conclude in Sect. 7.

2 Modeling a Biological Database with Relational Database Technology

In this section we will demonstrate how to model a biological
database with relational database technology.

Figure 1 illustrates the data model of a sample extracted from
the Bgee database. The sample contains five tables and their rela-
tionships, shown as arrows, where the direction of the arrow is
oriented from the foreign key of one table to the primary key of a
related one. For example, the Primary Key (PK) of the Species table
is the SpeciesID. Following the relationships highlighted in bold, we
see that the SpeciesID also appears in the two tables connected to
Species:GlobalCond andGene. In these tables, the attribute plays the

Fig. 1 Sample relational database (extracted from the gene expression database Bgee)

658 Ana Claudia Sima et al.



role of a Foreign Key (FK). The PK-FK relationships allow com-
bining or aggregating data from related tables. For example, by
joining Species and Gene, through the SpeciesID, we can find to
which species a gene belongs. Concretely, let’s assume we want to
find the species where the gene “HBB” can be found. Given that
this information is stored in the SpeciesCommonName attribute, we
can retrieve it through the following SQL query:

SELECT SpeciesCommonName from Species JOIN Gene

WHERE Gene.GeneName = ’HBB’ and Species.SpeciesID = Gene.

SpeciesID

This query enables retrieving (via the “SELECT” keyword) the
attribute corresponding to the species name (SpeciesCommon-
Name) by joining the Species and Gene tables, based on their
primary key-foreign key relationship, namely, via the SpeciesID, on
the condition that the GeneName exactly matches “HBB.” For a
more detailed introduction to the syntax and usage of SQL, we
refer the reader to an online introductory tutorial [9], as well as the
more comprehensive textbooks [10, 11].

Taking this a step further, we can imagine the case where a
second relational database also stores information about genes, but
perhaps with some additional data, such as associations with dis-
eases. Can we still combine information across these distinct data-
bases? Indeed, as long as there is a common point between the
tables in the two databases, such as the GeneID or the SpeciesID, it
is usually possible to combine them into a single, federated database
and use SQL to query it through federated joins. An example of
using federated databases for biomedical data is presented in [12].

2.1 Limitations of

Relational Databases

and Emerging

Solutions for Data

Integration

So far, we have seen that relational databases are a mature, highly
optimized technology for storing and querying structured data.
Also, combined with a powerful and expressive query language,
SQL, they allow users to federate (join) data even from different
databases.

However, there are certain relationships that are not natural for
relational databases. Let us consider the relationship “hasOrtho-
log”. Both the domain and the range of this relationship, as defined
in the Orthology Ontology [13], are the same—a gene. For exam-
ple, the hemoglobin (HBB) gene in human has the Hbb-bt ortho-
logous gene in the mouse (expressed via the relation hasOrtholog).
In the relational database world, this translates into a so-called self-
join. As the name suggests, this requires joining one table—in this
case, Gene—with itself, in order to retrieve the answer. These types
of “self-join” relations, while frequent in the real world (e.g., a
manager of an employee is also an employee, a friend of a person
is also a person, etc.), are inefficient in the context of relational
databases. While there are sometimes ways to avoid self-joins, these
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require even more advanced SQL fluency on the part of the
programmer [14].

Moreover, relational databases are typically not well-suited for
applications that require frequent schema changes. Hence, NoSQL
stores have gained widespread popularity as an alternative to tradi-
tional relational database management systems [15–17]. These sys-
tems do not impose a strict schema on the data and are therefore
more flexible than relational databases in the cases where the struc-
ture of the data is likely to change over time. In particular, graph
databases, such as Virtuoso [18], are very well suited for data
integration, as they allow easily combining multiple data sources
into a single graph. We discuss this in more detail in Sect. 3.

These and other considerations have led to the vision of the
Semantic Web, formalized in 2001 by Tim Berners Lee et al.
[19]. At a high-level, the Semantic Web allows representing the
semantics of data in a structured, easy to interlink, machine-
readable way, typically by use of the Resource Description Frame-
work (RDF)—a graph-based data model. The gradual adoption of
RDF stores, although widespread in the Web context and in the life
sciences in particular, did not replace relational databases alto-
gether, which lead to a new challenge: how will these heteroge-
neous data sources now be integrated?

Initial integration approaches in the field of biological data-
bases have been largely manual: first, many of them (either rela-
tional or graph-based) have included cross-references to other
sources. For example, UniProt contains links to more than
160 other databases. However, this raises a question for the user:
which of the provided links should be followed in order to find
relevant connections? While a user can be assumed to know the
contents of a few related databases, we can hardly expect anyone to
be familiar with more than 160 of them! To avoid this problem,
other databases have chosen an orthogonal approach: instead of
referencing links to other sources, simply copy the relevant data
from those sources into the database. This approach also has a few
drawbacks. First, it generates redundant data (which might result in
significant storage space consumption), and, most importantly, it
might lead to the use of stale, outdated results. Moreover, this
approach is contradictory to best practices of data warehousing
used widely across various domains in industry. For a discussion
on this, we refer the reader to [20].

Databases such as UniProt are highly comprehensive, with new
results being added to each release, results that may sometimes even
contradict previous results. Duplication of this data into another
database can quickly lead to missing out the most recent informa-
tion or to high maintenance efforts required to keep up with the
new changes. In the following sections, we discuss an alternative
approach: integrating heterogeneous data sources through the use
of a unifying data integration layer, namely, an integrative ontology,
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that aligns, but also enriches the existing data, with the purpose of
facilitating knowledge discovery.

Throughout the remainder of this chapter, we will combine
theoretical aspects of data integration with concrete examples,
based on our SODA project [21], as well as from our ongoing
research project, Bio-SODA [22], where we are currently building
an integrated data access system for biological databases (starting
with OMA and Bgee), using a natural language search interface. In
the context of this project, Semantic Web technologies, such as
RDF, are used to enhance interoperability among heterogeneous
databases at the semantic level (e.g., RDF graphs with predefined
semantics). Moreover, currently, several life science and biomedical
databases such as OMA [3], UniProt [7], neXtProt [22], the
European Bioinformatics Institute (EMBL-EBI) RDF data [24],
and the WorldWide Protein Data Bank [25] already provide RDF
data access, which also justifies an RDF-based approach to enable
further integration efforts to include these databases. A recent
initiative for (biological) data sharing is based on the FAIR princi-
ples [26], aiming to make data findable, accessible, interoperable,
and re-usable.

3 Semantic Web Technologies

The Semantic Web, as its name shows, emerged mainly as a means
to attach semantics (meaning) to data on the Web [19]. In contrast
to relational databases, Semantic Web technologies rely on a graph
data model, in order to enable interlinking data from disparate
sources available on the Web. Although the vision of the Semantic
Web still remains an ideal, many large datasets are currently pub-
lished based on the Linked Data principles [27] using Semantic
Web technologies (e.g., RDF). The Linked Open Data Cloud
illustrates a collection of a large number of different resources
including DBPedia, UniProt, and many others.

In this section, we will describe the Semantic Web (SW) stack,
focusing on the technologies that enhance data integration and
enrichment. For a more complete description of the SW stack, we
refer the reader to the comprehensive introductions in [28–30].

The Semantic Web stack is presented in Fig. 2. We will focus on
the following standards or layers of the stack: URI, the syntax layer
(e.g., Turtle (TTL), an RDF serialization format), RDF, OWL,
RDFS, and SPARQL. These layers are highlighted in gray in Fig. 2.

3.1 Unique Resource

Identifier (URI)

A Uniform Resource Identifier (URI) is a character sequence that
identifies an abstract or physical resource. A URI is classified as a
locator, a name, or both. The Uniform Resource Locators (URLs)
are a subset of URIs that, in addition to identifying a resource,
provide a means of locating the resource by describing its primary
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access or network “location.” For example, https://bgee.org is a
URI that identifies a resource (i.e., the Bgee gene expression web-
site), and it implies solely a representation of this resource (i.e., an
HTMLWeb page). This resource is accessible through the HTTPS
protocol.

The Uniform Resource Name (URN) is also a URI that refers
to both the “urn” scheme [32], which are URIs required to remain
globally unique and persistent even when the resource does not
exist anymore or becomes unavailable, and to any other URI with
the properties of a name. For example, the URN urn:isbn:978-1-
61779-581-7 is a URI that refers to a previous edition of this book
by using the International Standard Book Number (ISBN). How-
ever, no information about the location and how to get this
resource (book) is provided.

The URI syntax consists of a hierarchical sequence of compo-
nents referred to as the scheme, authority, path, query, and frag-
ment [33]. Figure 3 describes a UniProt URI that includes these
components.

An individual scheme does not have to be classified as being just
one of “name” or “locator.” Instances of URIs from any given
scheme may have the characteristics of names (URN) or locators

Fig. 2 The Semantic Web stack modified from [31]

Fig. 3 An example of a UniProt URI with a fragment

662 Ana Claudia Sima et al.

https://bgee.org


(URL) or both (URN + URL). Further examples of URIs with
variations in their syntax components are:

l ftp://ftp.bgee.org/current/download/calls/expr_calls/Sus_
scrofa_expr_simple_development.tsv.zip

l http://www.ensembl.org/Multi/Search/Results?q¼BRCA2

l mailto:Bgee@sib.swiss

l urn:miriam:pubmed:26615188

l https://www.ncbi.nlm.nih.gov/pubmed/26615188

3.2 Resource

Description

Framework (RDF)

The Resource Description Framework (RDF) is a framework for
describing information about resources in the World Wide Web,
which are identified with URIs. In the previous section, we have
seen that data in relational databases is organized into tables,
according to some predefined schema. In contrast, in RDF stores,
data is mainly organized into triples, namely, <subject, predicate,
object>, similarly to how sentences in natural language are
structured. An informal example would be: <Bob, isFriendOf,
Alice>. A primer on triples and the RDF data model, using this
simple example, is available online [34]. Figure 4 illustrates the
RDF triple: the subject represents the resource being described,
the predicate is a property of that resource, and finally the object is
the value of the property (i.e., an attribute of the subject).

Triples can be defined using the RDF. The data store for RDF
data is also called a “triple store.” Moreover, in analogy to the data
model (or the schema) of a relational database, the high-level
structure of data in a triple store can be described using an ontology.
According to Studer et al. [35], an ontology is a formal, explicit
specification of a shared conceptualization. “Formal” refers to the
fact that the expressions must be machine readable: hence, natural
language is excluded. In this context, we can mention description
logic (DL)-based languages [36], such as OWL 2 DL (see Sect. 3.3
for further details) to define ontologies. A DL ontology is the
equivalent of a knowledge base (KB). A KB is mainly composed
of two components that describe different statements in ontolo-
gies: the terminological box (TBox, i.e., the schema) and the
assertional box (ABox, i.e., the data). Therefore, the conceptual
statements form the set of TBox axioms, whereas the instance level
statements form the set of ABox assertions. To exemplify this, we
can mention the following DL axioms: Man � Human u Male

Fig. 4 An RDF graph with two nodes (subject and object) and an edge connecting
them (predicate)
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(a TBox axiom that states a man is a human and male) and john:
Man (an ABox assertion that states john is an instance of man).

Given that one of the goals of the Semantic Web is to assign
unambiguous names to resources (URIs), an ontology should be
more than a simple description of data in a particular triple store.
Rather, it should more generally serve as a description of a domain,
for instance, genomics (see Gene Ontology [37]) or orthology (see
Orth Ontology [13]). Different instantiations of this domain, for
example, by different research groups, should reuse and extend this
ontology. Therefore, constructing good ontologies requires careful
consideration and agreement between domain specialists, with the
goal of formally representing knowledge in their field. As a conse-
quence, ontologies are usually defined in the scope of consor-
tiums—such as the Gene Ontology Consortium [38] or the
Quest for Orthologs Consortium [39]. A notable collaborative
effort is the Open Biological and Biomedical Ontology (OBO)
Foundry [40]. It established principles for ontology development
and evolution, with the aim of maximizing cross-ontology coordi-
nation and interoperability, and provides a repository of life science
ontologies, currently, including about 140 ontologies.

To give an example of RDF data in a concrete life sciences use
case, let us consider the following RDF triples, which illustrate a
few of the assertions used in the OMA orthology database to
describe the human hemoglobin protein (“HBB”), using the first
version of the ORTH ontology [13]:

oma:PROTEIN_HUMAN04027 rdf:type orth:Protein.

oma:PROTEIN_HUMAN04027 oma:geneName “HBB”.

oma:PROTEIN_HUMAN04027 biositemap:description “Hemoglobin

subunit beta".

oma:PROTEIN_HUMAN04027 obo:RO_0002162 <http://www.uniprot.

org/taxonomy/9606>.

This simple example already illustrates most of the basics of
RDF. The instance that is being defined—the HBB protein in
human—has the following URI in the OMA RDF store: http://
omabrowser.org/ontology/oma#PROTEIN_HUMAN04027

The URI is composed of the OMA prefix, http://omabrowser.
org/ontology/oma# (abbreviated here as “oma:”), and a fragment
identifier, PROTEIN_HUMAN04027. The first triple describes
the type of this resource—namely, an orth:Protein—based on the
Orthology Ontology, prefixed here as “orth:,” http://purl.org/
net/orth#. As mentioned previously, this is a higher-level ontology,
which OMA reuses and instantiates. It is important to note that
other ontologies are used as well in the remaining assertions: for
example, the last triple references the UniProt taxonomy ID 9606.
This is based on the National Center for Biotechnology Informa-
tion (NCBI) organismal taxonomy [41]. If we follow the link in a
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Web browser, we see that it identifies the “Homo sapiens” species,
while the property obo:RO_0002162 (i.e., http://purl.obolibrary.
org/obo/RO_0002162) simply denotes “in taxon” in OBO
[40]. Lastly, the concept also has a human-readable description,
“Hemoglobin subunit beta.”

3.3 RDF Schema

(RDFS)

RDF Schema (RDFS) provides a vocabulary for modeling RDF
data and is a semantic extension of RDF. It provides mechanisms
for describing groups (i.e., classes) of related resources and the
relationships between these resources. The RDFS is defined in
RDF. The RDFS terms are used to define attributes of other
resources such as the domains (rdfs:domain) and ranges (rdfs:
range) of properties. Moreover, the RDFS core vocabulary is
defined in a namespace informally called rdfs here, and it is conven-
tionally associated with the prefix rdfs:. That namespace is identified
by the URI http://www.w3.org/2000/01/rdf-schema#.

In this section, we will mostly focus on the RDF and RDFS
terms used in this chapter. Further information about RDF/RDFS
terms is available in [42].

l Classes

– rdfs:Resource—all things described by RDF are called
resources, which are instances of the class rdfs:Resource (i.e.,
rdfs:Resource is an instance of rdfs:Class).

– rdfs:Class is the class of resources that are RDF classes.
Resources that have properties (attributes) in common may
be divided into classes. The members of a class are instances.

– rdf:Property is a relation between subject and object
resources, i.e., a predicate. It is the class of RDF properties.

– rdfs:Literal is the class of literal values such as textual strings
and integers. rdfs:Literal is a subclass of rdfs:Resource.

l Properties
– rdfs:range is an instance of rdf:Property. It is used to state

that the values of a property are instances of one or more
classes. For example, orth:hasHomolog rdfs:range orth:Sequen-
ceUnit (see Fig. 5a). This statement means that the values of
orth:hasHomolog property can only be instances of orth:
SequenceUnit class.

– rdfs:domain is an instance of rdf:Property. It is used to state
that any resource that has a given property is an instance of
one or more classes. For example, orth:hasHomolog rdfs:
domain orth:SequenceUnit (see Fig. 5b). This statement
means that resources that assert the orth:hasHomolog prop-
erty must be instances of orth:SequenceUnit class.

– rdf:type is an rdf:Property that is used to state that a resource
is an instance of a class.
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– rdfs:subClassOf is an rdf:Property to assert that all instances
of one class are instances of another. For example, if C1 rdfs:
subClassOf C2 then an instance ofC1 is also an instance ofC2
but not vice versa.

– rdfs:subPropertyOf is used to state that all resources related
by one property (i.e., the subject of rdfs:subPropertyOf) are
also related by another (i.e., the object of rdfs:subProper-
tyOf, the “super-property”). For example, all orthologous
relations are also homologous relations. Because of this, in
the latest release candidate of the Orthology Ontology [13],
it is stated that orth:hasOrtholog is a sub-property of orth:
hasHomolog. Figure 5c illustrates this statement.

3.4 Web Ontology

Language (OWL)

The first level above RDF/RDFS in the Semantic Web stack (see
Fig. 2) is an ontology language that can formally describe the
meaning of resources. If machines are expected to perform useful
reasoning tasks on RDF data, the language must go beyond the
basic semantics of RDF Schema [43]. Because of this, OWL and
OWL 2 (i.e., Web Ontology languages) include more terms for
describing properties and classes, such as relations between classes
(e.g., disjointness, owl:disjointWith), cardinality (e.g., “exactly 2,”
owl:cardinality), equality (i.e., owl:equivalentClass), richer typing
of properties, characteristics of properties (e.g., symmetry, owl:
SymmetricProperty), and enumerated classes (i.e., owl:oneOf). The
owl: prefix replaces the following URI namespace: http://www.w3.
org/2002/07/owl#.

As a full description of OWL andOWL 2 is beyond the scope of
this chapter, we refer the interested reader to [44, 45]. In the
following, we focus solely on some essential modeling features
that the OWL languages offer in addition to RDF/RDFS
vocabularies.

l owl:Class is a subclass of rdfs:Class. Like rdfs:Class, an owl:Class
groups instances that share common properties. However, this
new OWL term is defined due to the restrictions on DL-based

Fig. 5 Examples of RDF/RDFS statements
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OWL languages (e.g., OWLDL and OWL Lite; OWL 2DL and
its syntactic fragments EL, QL, and RL). These restrictions
imply that not all RDFS classes are legal OWL DL/OWL
2 DL classes. For example, the orth:SequenceUnit entity in the
ORTH ontology is stated as an OWL class (i.e., orth:SequenceU-
nit rdf:type owl:Class—Fig. 5d illustrates this axiom). Therefore,
orth:SequenceUnit is also an RDFS class since owl:Class is a
subclass of rdfs:Class.

l owl:ObjectProperty is a subclass of rdf:Property. The instances
of owl:ObjectProperty are object properties that link individuals to
individuals (i.e., members of an owl:Class). For example, the
orth:hasHomolog object property (see Fig. 5e) relates one orth:
SequenceUnit individual to another one. Figure 5a illustrates this
example.

l owl:DatatypeProperty is a subclass of rdf:Property. The
instances of owl:DatatypeProperty are datatype properties that
link individuals to data values. To illustrate a datatype property,
we can mention the oma:ensemblGeneId (see Figs. 5f and 6b).
This property asserts a gene identifier to an instance of an orth:
Gene.

Further information about OWL languages are available as
World Wide Web Consortium (W3C) recommendations in [46]
and [47].

3.5 RDF Serialization

Formats

RDF is a graph-based data model which provides a grammar for its
syntax. Using this grammar, RDF syntax can be written in various
concrete formats which are called RDF serialization formats. For
example, we can mention the following formats: Turtle [48],
RDF/XML (an XML syntax for RDF) [49], and JSON-LD
(a JSON syntax for RDF) [50]. In this section, we will solely
focus on the Turtle format.

Turtle language (TTL) allows for writing an RDF graph in a
compact textual form. To exemplify this serialization format, let us
consider the following turtle document that defines the homolo-
gous and orthologous relations:

Fig. 6 Examples of instances of orth:SequenceUnit and orth:Gene and object and datatype property assertions
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix orth: <http://purl.org/net/orth#> .

# http://purl.org/net/orth#SequenceUnit

orth:SequenceUnit rdf:type owl:Class .

orth:hasHomolog rdf:type owl:ObjectProperty ;

rdf:type owl:SymmetricProperty ;

rdfs:domain orth:SequenceUnit ;

rdfs:range orth:SequenceUnit .

orth:hasOrtholog rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf orth:hasHomolog .

This example introduces many of features of the Turtle lan-
guage: @prefix and prefixed names (e.g., @prefix rdfs:
http://www.w3.org/2000/01/rdf-schema#), predicate lists
separated by “;” (e.g., orth:hasOrtholog rdf:type owl:
ObjectProperty; rdfs:subPropertyOf orth:hasHomo-
log.), comments prefixed with “#” (e.g., # http://purl.org/net/
orth#SequenceUnit), and a simple triple where the subject, predi-
cate, and object are separated by white spaces and ended with a “.”
(e.g., orth:SequenceUnit rdf:type owl:Class).

Further details about TTL serialization are available as a W3C
recommendation in [48]

3.6 Querying the

Semantic Web with

SPARQL

Once we have defined the knowledge base (TBox and ABox), how
can we use it to retrieve relevant data? Similar to SQL for relational
databases, data in RDF stores can be accessed by using a query
language. One of the main RDF query languages, especially used
in the field of life sciences, is SPARQL [51]. A SPARQL query
essentially consists of a graph pattern, namely, conjunctive RDF
triples, where the values that should be retrieved (the unknowns—
either subjects, predicates, or objects) are replaced by variable names,
prefixed by “?”. Looking again at the previous example, if we want to
get the description of the “HBB” protein from OMA, we would
simply use a graph pattern, where the value of the “description”—
the one we want to retrieve—is replaced by a variable as follows:

SELECT ?description WHERE {

?protein oma:geneName “HBB”.

?protein biositemap:description ?description.

}

The choice of variable name itself is not important (we could
have used “?x”, “?var”, etc., albeit with a loss of readability).
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Essentially, we are interested in the description of a protein about
which we only know a name—“HBB.”

In order to get a sense of how large bioinformatics databases
currently are, but also to get a hands-on introduction into how they
can be queried using SPARQL, we propose to retrieve the total
number of proteins in UniProt in Exercise A at the end of this
chapter. Furthermore, Exercise C will allow trying out and refining
the OMA query introduced above, but also writing a new one,
using the OMA SPARQL endpoint.

4 Modeling Biological Databases with Semantic Web Technologies

In this section we show a concrete example of how we can use
Semantic Web technologies to model the two biology databases
Bgee and OMA.

Figure 7 illustrates a fragment of a candidate ontology describ-
ing the relational database sample from Bgee (see Fig. 1). The
ellipses illustrate classes of the ontology, either specific to the
Bgee ontology, such as AnatomicEntity (the equivalent of the
anatEntity table in the relational view), or classes from imported
ontologies, such as the Taxon class (the prefix “up:” denoting the
UniProt ontology, http://purl.uniprot.org/core/). The advantage
of using external (i.e., imported) classes is that integration with
other databases which also instantiate these classes will be much
simpler. For example, we will see that the class Gene serves as the
“join point” between OMA and Bgee. Arrows define properties of
the ontology: either datatype properties (similar to attributes of a
table in the relational world), such as the speciesName or the stage-
Name, or object properties, which are similar to primary key-foreign
key relationships, given that they link instances of one class to those
of another. If we compare Fig. 7 (the ontology view) against Fig. 1
(the relational view), we notice that the object properties isExpres-
sedIn and isAbsentIn only appear explicitly in the ontology. This is
because the values of these properties will actually be calculated
on-the-fly, frommultiple attributes in the relational database. Given
that Bgee is mainly used to query gene expressions, these properties
are exposed as new semantic properties in the domain ontology,
namely, expression or absence of expression of a gene in a particular
anatomic entity. This is one of the means through which the
semantic layer can not only describe but also enrich the data avail-
able in the underlying layers (in this case, in the relational database).
The domain of both the isExpressedIn and isAbsentIn properties is
in this case a gene, while the range is an anatomic entity, such that
triples that instantiate this relationship will have the structure:
<Gene, isExpressedIn, AnatomicEntity>.

Given that the OMA ontology is significantly larger than the
one for Bgee, we only show here the class hierarchy in Fig. 8. The
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most important concepts in the ontology are shown in the top right
corner, namely, the cluster of orthologs and the cluster of paralogs,
which store information about gene orthology (or paralogy) in a
hierarchical tree structure (the gene-tree node). Similarly to the
Bgee ontology, the Gene class in OMA is external. Arrows indicate
the “rdfs:subClassOf” relationship—for example, both the “Clus-
ter of Orthologs” and the “Cluster of Paralogs” classes—are

Fig. 7 A portion of the ontology defined over the relational database sample from Bgee. For readability
purposes, we omitted the namespace (“bgee:”) for the ontology properties

Fig. 8 The class hierarchy of the OMA ontology. Ellipses indicate class labels, while arrows indicate the “rdfs:
subClassOf ” property. Further details are available in [13]
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subclasses of the “Cluster of Homologs” class. For a description of
the ontology, as well as a discussion regarding its design within the
Quest for Orthologs Consortium, we point the reader to [13]. Fur-
thermore, the ontology can be explored or visualized in Web-
VOWL [52] using the Web page of the OMA SPARQL endpoint
[53] available online at https://sparql.omabrowser.org/sparql.

Until here we have explored a few relatively simple examples in
order to get familiar with the basics of Semantic Web technologies
(URIs, RDF triples, and SPARQL). However, we can now intro-
duce a more complex query that will better illustrate the expressiv-
ity of the SPARQL query language for accessing RDF stores—that
is, for integrating and joining data across different databases.

Since all RDF stores structure data using the same standard
model for data interchange, the main requirements in order to
efficiently join multiple sources are:

1. That they each expose data through a SPARQL endpoint that
supports federation (SPARQL 1.1)

2. That the sources share URIs or ontologies

This is the reason why already today we can jointly query, for
example, OMA and UniProt—essentially, integrating the two data-
bases by means of executing a federated SPARQL query.

To illustrate this, let us consider the following example: what
are the human genes available in the OMA database that have a
known association with leukemia? OMA does not contain any
information related to diseases, however, UniProt does. In this
case, since OMA already cross-references UniProt with the oma:
xrefUniprot property, we can write the following federated
SPARQL query, which will be running at the OMA SPARQL
endpoint:

select distinct ?proteinOMA ?proteinUniProt

where {

service <http://sparql.uniprot.org/sparql> {

?proteinUniProt a up:Protein .

?proteinUniProt up:organism taxon:9606 . # Homo Sapiens

?proteinUniProt up:annotation ?annotation . # annotations of this protein

entry

?annotation rdfs:comment ?text

filter( regex(str(?text), "leukemia") ) # only those containing the

text "leukemia"

}

?proteinOMA a orth:Protein.

?proteinOMA oma:xrefUniprot ?proteinUniProt.

}

We skip the details regarding the prefixes used in the example
and focus on the new elements in the query. The main part to point
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out is the “service<http://sparql.uniprot.org/sparql>” block, delim-
ited between the inner brackets. This enables using the SPARQL
endpoint of UniProt remotely, as a service. Through this mecha-
nism, the query will first fetch from UniProt all instances of pro-
teins that are annotated with a text that contains “leukemia” (this is
achieved by the filter keyword in the service block). Then, using the
cross-reference oma:xrefUniprot property, the query will return all
the equivalent entries from OMA. From here, the user can explore,
either in the OMA browser or by further refining the SPARQL
query, other properties of these proteins: for example, their ortho-
logs in a given species available in the database. In Exercise D at the
end of this chapter, we encourage the reader to try this out in the
OMA SPARQL endpoint. Note that the same results can be
obtained by writing this query in the UniProt SPARQL endpoint
and referencing the OMA one as a service. For an overview of
federation techniques for RDF data, we refer the reader to the
survey [54].

The mechanisms illustrated so far, while indeed powerful for
federating distinct databases, have a major drawback: they require
the user to know the schema of the databases (otherwise, how
would we know which properties to query in the previous exam-
ples?), and, more importantly, they require all users to be familiar
with a technical query language, such as SPARQL. While very
expressive, formulating such queries can quickly become over-
whelming for non-programmer users. In the following, we will
look at techniques that aim to overcome these limitations.

5 Ontology-Based Integration of Heterogeneous Data Stores

So far we have seen some of the alternatives available for storing
biological data—relational databases and triple stores. In this sec-
tion, we look at how these heterogeneous sources can be integrated
and accessed in a unified, user-friendly manner that does not
require knowledge of the location or structure of the underlying
data nor of the technical language (SQL or SPARQL) used to
retrieve the data. The architecture we present is inspired by work
presented in [21], which focused strictly on keyword search in
relational databases.

5.1 A System’s

Perspective

We start with a bottom-up description of the layers that make up an
integrated data access system, followed by a concrete example using
the two bioinformatics databases introduced above: the orthology
database OMA and the gene expression database Bgee.

The main four layers of an integrated data access system, as
shown in Fig. 9, are:
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5.1.1 Base Data Layer This represents the physical storage layer, where all the actual data,
for example, experimental results, annotations, etc., are kept.
Figure 9 illustrates only a few of the possible storage types, namely,
relational databases, hierarchical data stores (e.g., HDF5), and
RDF stores. At this low-level layer, the data are usually structured
so as to optimize machine parameters, such as storage space, com-
plexity of joins required to answer physical queries, etc. Therefore,
it is not designed for human readability. Furthermore, tables, col-
umn names, or even IDs may not match any real terms. For exam-
ple, the Bgee relational database uses the table name “anatEntity”
to refer to the term “anatomic entity,” while others may be even
further away from the original terms.

5.1.2 Data Model Layer This layer is used to describe, at a higher level of abstraction, the
data contained in the physical storage. Here, for example, original
names for terms are recovered while also creating a mapping
between these higher-level terms (“Anatomical Entity”) and their
corresponding physical layer location (table “anatEntity” in schema
Bgee). The data model layer can be viewed as the first semantic layer
in the system, as it allows representing the actual terms referred to
in the underlying physical storage while abstracting away the details
of the actual structure of the physical storage. The data model layer
can be understood as an ontology, however, only applicable to the
level of an individual database.

5.1.3 Integration Layer The integration layer performs a similar task to the data model
layer, in that it defines a mapping between high-level concepts
(“Anatomical Entity”) and all the occurrences where these concepts
can be found in the physical storage (table “anatEntity” in schema
Bgee, class “Anatomic Entity” in UniProt, etc.). In doing so, the
integration layer also aligns the different data models, by defining

Fig. 9 Integrated data access system
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which identifiers from one data model correspond to which ones
from the others. In the case of biological databases, this is usually
done by taking into account cross-references, which already exist
between most databases, as we have seen in the SPARQL query in
Sect. 5.

While the data model layer can be seen as a local ontology, the
integration layer will serve as a global ontology. The integration
layer can be queried using, for example, SPARQL. However, in
order to get the results from the underlying sources, the SPARQL
query needs be translated in the native query languages of the
underlying sources (e.g., SQL for relational databases). This is
achieved by using the mappings defined in the global ontology.
For example, the keyword “expressed in” does not have a direct
correspondence in Bgee, but it can be translated into an SQL
procedure (in technical terms, it represents an SQL view of the
data). Without going into details, at a high level, the property
“gene A expressed in anatomic entity B” will be computed by
looking at the number of experiments stored in the database,
showing the expression of A in B. It is conceivable that in another
database, which could also form part of the integrated system, this
information is available explicitly. In this case the mapping would
simply be a 1-to-1 correspondence to the property value stored in
the database. The role of the integration layer is to capture all the
occurrences where a certain concept (entity or property) can be
found, along with a mapping for each of the occurrences, defining
how information about this concept can be computed from the
base data.

To summarize, the integration layer abstracts away the location
and structure of data in the underlying sources, providing users a
unified access through a global ontology. One of the drawbacks of
this approach is that, in the lack of a presentation layer, such as a
user-friendly query interface (e.g., a visual query builder or a
keyword-based search interface), the data represented in the global
ontology is accessible mainly through a technical query language,
such as SPARQL. Therefore, in order to be able to access the data,
users are required to become fluent in the respective query
language.

It is worth at this point mentioning that most data integration
systems available at the time of this writing only offer the three
layers presented so far. Examples of such systems, generically
denoted as ontology-based data access (OBDA) systems, are
Ontop [55], Ultrawrap [56], or D2RQ [57].

5.1.4 Presentation Layer The three layers presented so far already achieve data integration,
but with a significant drawback, which is that the user is required to
know a technical query language, such as SPARQL. The role of the
presentation layer is to expose data from all integrated resources in
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an easy to access, user-friendly manner. The presentation layer
abstracts away the structure of the integration layer and exposes
data through a search interface that users (including
non-programmers) are familiar with, such as keyword search
[21, 58] or even full natural language search [59, 60].

The challenges in building the presentation layer are manyfold:
first, human language is inherently ambiguous. As an example, let
us assume a user asks: “Is the HBB gene expressed in the blood?”
What does the user mean? The hemoglobin gene (HBB) in general?
Or just in the human? The system should be proactive in helping
the user clarify the semantics or intents of the question, before
trying to compute the underlying SPARQL query. Second, the
presentation layer should provide not only raw results but also an
explanation—for example, what sources were queried, how many
items from each source have been processed in order to generate
the response, etc. This enables the user to validate the generated
results or to otherwise continue refining the question. Third, the
presentation layer must also rank the results according to some
relevance metric, similarly to how search results are scored in Web
search engines. Given that the number of results retrieved from the
underlying sources can easily become overwhelming (e.g., search-
ing for “HBB” in Bgee returns over 200 results), it is important
that the most relevant ones are shown first.

From a technical point of view, the presentation layer maintains
an index (i.e., the vocabulary) of all keywords stored in the lower
layers, both data and metadata (descriptions, labels, etc.), such that
each keyword in a user query can be mapped to existing data in the
lower layers. An important observation is that the presentation
layer highly relies on the quality of the annotations available in the
lower layers. In the lack of human-readable labels and descriptions
in the global ontology, the vocabulary collected by the presentation
layer will miss useful terms that the user might search for. One way
to detect and fix this problem is to always log user queries and
improve the quality of the annotations “on demand,” whenever the
queries cannot be solved due to missing items in the vocabulary.
For a more extended discussion on the topic of labels and their role
in the Semantic Web, refer to [61].

Finally, it is worth noting that none of these layers need to be
centralized—indeed, even in the case of the integration layer,
although its role is to build a common view of all data in the physical
storage, it can be distributed across multiple machines, just as long
as the presentation layer knows which machine holds which part of
the unified view.

5.2 A Concrete

Example: A Global

Ontology to Unify OMA

and Bgee

So far we have seen an abstract view of a system for data integration
across heterogeneous databases. It is time to look at how this
translates into a real-world example, using the Bgee relational
database and the OMA RDF database.
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The top part of Fig. 10, the terminological box, illustrates part
of the global ontology (layer 3, integration layer) for the two
databases, with most of the terms being part of OMA, except for
Anatomic Entity, which is specific to Bgee. As mentioned previ-
ously, OMA extends the ORTH ontology, which is why the
corresponding terms in the ontology are prefixed with “orth:.”
The Gene concept can actually be found in both Bgee and OMA;
therefore the global ontology will define mappings to both sources.
As we can see in the ontology, the Gene is the common point that
joins together OMA and Bgee. The gene IDs used in both data-
bases are Ensembl IDs [62], stored in the ensemblGeneId string
property. For example, the human hemoglobin gene, “HBB,”
which we previously showed as an example entry in OMA, corre-
sponds to the ENSG00000244734 Ensemble ID and can also be
found in Bgee.

Fig. 10 A sample global ontology for integrating OMA and Bgee and an example assertion

676 Ana Claudia Sima et al.



The lower part of Fig. 10, the assertional box, illustrates an
example assertion—in this case, that the protein HUMAN22168
in OMA is orthologous to the protein HORSE13872 and that,
furthermore, this protein is encoded by the gene with the Ensemble
ID ENSG000001639936. Moreover, this gene is expressed in the
brain (the Uberon ID for this being “UBERON:0000955”). The
human-readable description is stored in the String literal label—as,
for example, the name of the anatomic entity, “brain,” shown in the
bottom-right corner in the figure. Without labels, much of the
available data would not be easily searchable by a human user nor
by an information retrieval system.

Note that with this sample ontology, we can already answer
questions related to orthology and gene expression jointly, such as
the first part of our introductory query: “What are the human-rat
orthologs, expressed in the liver. . .?”. This question essentially
refers to pairs of orthologous Genes (those in human and rat) and
their expression in a given Anatomic Entity (the liver). Apart from
the Species class, which is not explicitly shown, all of the information
is already captured by the ontology in Fig. 10. A similar mechanism
can be used to further extend this to UniProt (for instance, based
again on gene IDs as the “join point,” or by using existing cross-
references, as we have shown in the previous section), therefore
enabling users to ask even more complex queries.

5.3 How to Link a

Database with an

Ontology?

One of the main challenges in implementing technologies for the
Semantic Web was recognized from early on (see the study pub-
lished in 2001 by Calvanese et al. [63]) to be the problem of
integrating heterogeneous sources. In particular, one of the observa-
tions made was that integrating legacy data will not be feasible
through a simple 1-to-1 mapping of the underlying sources into
an integrative ontology (e.g., mapping all attributes of tables in
relational databases to properties of classes in an ontology), but
rather through more complex transformations, that map views of
the data into elements of the global ontology [63].

To illustrate this with a concrete example, let us consider again
the unified ontology for OMA and Bgee that we introduced in the
previous section. Although Figure 10 shows properties such as
“gene isExpressedIn” or “gene hasOrtholog,” this data is actually
not explicitly stored in the underlying databases but rather needs to
be computed on-the-fly based on the available data. For example,
the “isExpressedIn” property can be computed based on the num-
ber of experiments which show the expression of a gene in a certain
anatomic entity in Bgee. Deciding the exact threshold for when a
gene is considered as “expressed” according to the data available is
not straightforward and needs to be agreed upon by domain spe-
cialists. Therefore, the integration layer will also serve to enrich the
data available in the underlying layers, by defining new concepts
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based on this data (e.g., the presence or absence of gene expression
in an anatomic entity).

At this point it is worth clarifying an important question: why
are mappings necessary? Why is it not enough to replicate the data
in the different underlying formats into a single, uniform way (e.g.,
translate all RDB data into RDF)? The answer is that not only
would such a translation require a lot of engineering effort, but
more importantly, it would transform the data from a format that is
highly optimized for data access, into a format that is optimized for
different purposes (data integration and reasoning). Querying rela-
tional databases still is, today, the most efficient means of accessing
very large quantities of structured data. Transforming all of it into
RDF would in many cases mean downgrading the overall perfor-
mance of the system. In some cases storing RDF data in the
relational format was proven to be more efficient [64].

So how are mappings then created? One of the main mechan-
isms to achieve this is currently the W3C standard R2RML, avail-
able as a W3C recommendation online [65]. R2RML enables
mapping relational data to the RDF model, as chosen by the
programmer. For a concrete example of how mappings can be
defined and what are the advantages of this approach, we refer the
reader to [66]. A mapping essentially defines a view of the data,
which is a query (in this case, an SQL query) that allows retrieving a
relevant portion of the underlying data, in order to answer a higher-
level question (e.g., what is “expressed in”?). The materialization of
this query (the answer) will be returned in RDF format, on
demand, according to the mapping. This avoids duplicating or
translating data in advance from the underlying relational database
into RDF until it is really needed, in order to answer a user query.

For a discussion regarding the limitations of R2RML and
alternative approaches to define mappings from relational data to
RDF, we refer the reader to the survey [67].

5.4 Putting Things

Together

So far we have seen how individual sources can be represented into
a single, unified ontology, and we had a high-level view of a data
access system that enables users to ask queries and get responses in a
unified way, without knowledge of where data is located or how it is
structured. In this section we finally look at how all of these com-
ponents can work together in answering natural language queries
on biological databases. Although there are multiple alternatives to
natural language interfaces, including visual query interfaces or
keyword-based search interfaces, it has been shown that natural
language interfaces are the most appropriate means to query
Semantic Web data for non-technical end-users [68]. As a conse-
quence, natural language querying, based on Semantic Web tech-
nologies, is currently one of the active areas of research, examples of
recent systems implementing an ontology-based natural language
interface including the Athena [59] and TRDiscover [60] systems.
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First, recall the user question we formulated in the beginning of
this chapter: “What are the human-rat orthologs, expressed in the
liver, that are associated with leukemia?” Let us assume the
resources at hand to answer this question are the biological data-
bases OMA, Bgee, and UniProt. The four main steps required to
translate the natural language question into the underlying query
languages of OMA, Bgee, and UniProt will be:

(a) Identify entities in the query
This is the natural language processing step that extracts

the main concepts the user is interested in, based on the key-
words of the input query: orthologs, human, rat, expressed,
liver, associated, and leukemia.

(b) Identify matches of the entities in the integrative ontology
The extracted keywords will be searched for in the vocabu-

lary of the presentation layer, resulting in one ormultipleURIs,
given that a keyword can match multiple concepts. For exam-
ple, the keyword “orthologs” can match either the entity
“OrthologCluster” or the property “hasOrtholog” of a gene
inOMA. The index of the presentation layer will also return the
location the URI originates from (OMA or Bgee or UniProt).

(c) Construct subqueries for each of the matches
The extracted URIs will be used to construct subqueries

on each of the underlying data sources. This step requires
translating the original query into the native language of
each underlying database, with specific mechanisms for each
type of database (relational or triple store). At a high level, the
translation process involves finding the minimal sub-schema
(or subgraph in the case of RDF data) that covers all the
keywords matched from the input query. Taking the example
previously shown in Fig. 10, the minimal subgraph that con-
tains “orthologs” and “expressed” will essentially contain only
two nodes of the entire graph:Gene (which is both the domain
and the range of the “hasOrtholog” property in the Orthol-
ogy Ontology) and AnatomicEntity (which is the range of the
“isExpressedIn” property in the Bgee ontology). All the
unknowns of the query (e.g., which ortholog genes) are
replaced by variables. The final subqueries for OMA and
Bgee might therefore (informally) look like this:

OMA: select ?gene1 ?gene2 where {

?protein1 a Protein.

?protein1 inTaxon “Homo sapiens”.

?protein1 isEncodedBy ?gene1.

?protein1 hasOrtholog ?protein2.

?protein2 inTaxon “Rattus norvegicus”.

?protein2 isEncodedBy ?gene2.

}
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Note that we have simplified the actual query for readabil-
ity purposes (using the literals “Homo sapiens” and “Rattus
norvegicus” instead of their corresponding URIs). This sub-
query will cover the keywords: ortholog, human, and rat.
Notice that the query should return genes, not proteins,
because the join point between OMA and Bgee is the Gene
class.

Bgee: select ?gene where {

?gene a Gene.

?gene isExpressedIn ?anatomicEntity.

?anatomicEntity rdfs:label “liver”.

}

This subquery will therefore cover the expressed and liver
keywords. The final step will be then to get the similar sub-
query for UniProt (which we omit here for brevity) and to
compute the joint result, namely, the intersection between all
the sets returned by the subqueries.

(d) Join the results from each of the subqueries
This final step is essential in keeping the performance of

the system to an acceptable level. Joining (federating) the
results of several subqueries into a unified result is not an
easy task and requires a careful ordering of the operations
from all subqueries. To understand this problem, let us con-
sider again our example and try to see how many results each
of the subqueries will return. First, if we take a look at the
OMA browser and try to find all orthologs between human
and rat, this will amount to more than 21,000 results. How-
ever, is the user really interested in all of them? Certainly not,
as the input query shows—the user is only interested in a small
fraction of the orthologs, namely, those that are expressed in
the liver and have an association with leukemia (according to
the data stored in Bgee and UniProt). How many are these? If
we now refer to UniProt and look for the disease leukemia, we
will find that there are only 20 entries which illustrate the
association with this disease. Clearly, getting only the ortho-
logs of these 20 entries will be much more efficient than
retrieving all 21,000 pairs from OMA first and then removing
most of them to only keep relevant ones.

However, note that in this case, we only know this infor-
mation because we constructed the queries and tried them out
by hand first. How should the system estimate the number of
results (i.e., the cardinality of each subquery) in advance? This
question has been an active area of research for a long time.
Some of the methods used to tackle this problem are either to
precompute statistics regarding the number of results available
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in different tables of the underlying sources [69] or to use
statistics regarding previously asked queries to optimize the
new ones, for example, via statistical machine learning [70]. In
the first case, we would, for instance, store the individual
counts of different orthologous pairs while also keeping statis-
tics about diseases if we expect these types of questions to be
asked frequently, whereas in the second case, we would simply
look at the number of results similar subqueries generated in
the past, to optimize which results to fetch first. For a recent
study of optimization methods for federated SPARQL
queries, see [71].

(e) Present the user the final results
Finally, the joined results are returned to the user, along

with an explanation regarding the constructed query and the
entities that were matched in order to construct it. In this way,
the user has the opportunity to validate the correctness of the
answer or otherwise to further refine the question.

For a more in-depth discussion regarding natural lan-
guage query interfaces in ontology-based data access systems,
we refer the reader to Athena [59] and TRDiscover [60].

6 Timeline of Semantic Web Technologies and Ontology-Based Data Integration in
Life Sciences

The field of life sciences has been an early adopter of Semantic Web
technologies, due to the need of interoperability and integration of
biological data spread across different databases. In this section, we
provide a brief timeline (see Fig. 11), including the example ontol-
ogies introduced in this chapter.

– 1995: Davidson et al. [72] suggest basic steps to integrate
bioinformatics data (common data model, match semantically
related objects, schema integration, transform data into feder-
ated database, match semantically equivalent data).

– 2000: TAMBIS (Transparent Access to Multiple Bioinfor-
matics Information Sources) [73] proposes a unified ontology
covering many aspects of the bioinformatics knowledge space.

– 2000: The “Gene Ontology—a tool for the unification of
biology” [37] is the first significant milestone in unifying
diverse biological databases, focusing on gene functions. Even
before the publication of the Semantic Web paper by Tim Ber-
ners Lee (in the following year), the GO highlighted the benefits
of controlled vocabularies and standardized naming, both pre-
cursors of Semantic Web technologies, which were adopted in
the GO in the year 2002 [74]. Today it is, arguably, the most
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comprehensive resource of computable knowledge regarding
gene functions and products.

– 2001: Launch of the BioMoby project [75] providing a unified
registry of Web services for life scientists using a consensus-
driven approach. It listed, for instance, all services converting
gene names to GO terms or all databases accepting GO terms.
The registry is currently no longer maintained.

– 2003: A Nature Reviews Genetics article on Integrating
Biological Databases [76] highlights the “database-surfing”
problem (i.e., the time-consuming process of manually visiting
multiple databases to answer complex biological research ques-
tions) and argues for standardized naming of biological objects to
overcome the problem. Link integration, view integration, and
data warehousing are proposed for data integration. Arguably,
link integration has since become the most adopted solution.

– 2003: Launch of UniProt [77] by the UniProt Consortium, a
collaboration between the Swiss Institute of Bioinformatics
(SIB), the European Bioinformatics Institute (EBI), and the
Protein Information Resource (PIR). UniProt is the world’s
most comprehensive freely accessible resource on protein
sequences and functional annotation. Since 2008 the data is

Fig. 11 A selective timeline of data integration efforts in life sciences
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published in RDF, and since 2013 a SPARQL endpoint is
provided [78].

– 2004: The first International Workshop on Data Integration
in the Life Sciences, held in Leipzig, promotes “a Bioinformat-
ics Semantic Web” and highlights solutions for heterogeneous
data integration. The workshop continues to be held every year,
and its proceedings (e.g., [79]) provide a good overview of
advances in the field.

– 2005: The W3C Consortium launches the Semantic Web
Health Care and Life Sciences Interest Group (HCLS IG)
to develop the use of Semantic Web technologies to improve
health care and life sciences research. Today, the HCLS Linked
Data Guide [80] provides best practices for publication of
biological Linked Data on the Web.

– 2006: TheOBO Foundry [40] establishes principles for ontol-
ogy development and evolution to support biomedical data
integration through a suite of orthogonal interoperable refer-
ence ontologies.

– 2006: Publication of the Ontology Lookup Service (OLS), a
repository for biomedical ontologies with the aim to provide a
single point of access (with controlled vocabulary queries) to the
latest ontology versions. It allows interactive browsing, as well as
programmatic access [81].

– 2007: Launch of the National Center for Biomedical Ontol-
ogy (NCBO) BioPortal [82], a web portal to biomedical
ontologies. OBO ontologies are a central component. The por-
tal started with 50 ontologies; to date it is the most comprehen-
sive repository with currently 852 biomedical ontologies and
more than eight million classes.

– 2008: Launch of the BioMoby Consortium [83] and the first
release of the BioMoby Semantic Web Service, at the time
providing interoperable access to over 1400 bioinformatics
resources worldwide.

– 2008: BioGateway [84] provides a single SPARQL entry point
to all OBO candidate ontologies, the GO annotation files, the
SWISS-PROT protein set, the NCBI taxonomy, and several
in-house ontologies.

– 2008: The Briefings in Bioinformatics journal launches a
special issue dedicated to Database Integration in Life
Sciences [85], acknowledging the major challenge of integrat-
ing data scattered over millions of publications and thousands of
heterogeneous databases.

– 2008: Bio2RDF [86] applies Semantic Web technology to
various publicly available databases (converting them into RDF
format and linking with normalized URIs and a common
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ontology). Updates continue to be provided for increased inter-
operability among bioinformatics databases [87, 88].

– 2009: Briefings in Bioinformatics publishes a review on
Biological Knowledge Management [89], highlighting the
transforming role of ontologies and Semantic Web technologies
in enabling knowledge representation and extraction from het-
erogeneous bioinformatics databases.

– 2010: NCBO launches a SPARQL endpoint, available at
http://sparql.bioontology.org/.

– 2012: Publication of a survey highlighting the benefits of inte-
gration using Semantic Web technologies in the field of Inte-
grative Biology [90].

– 2016: Publication of the Orthology Ontology [13].

7 Conclusions and Outlook

Data integration is arguably one of the most important enablers of
new scientific discoveries, given that research data is currently
growing at an unprecedented rate. This is especially true in the
case of biological databases. While data integration poses many
challenges, the emergence of standards, integrative ontologies, as
well as the availability of cross-references between many of the
biological databases make the problem easier to tackle. This chapter
has provided a brief introduction to the methods that can be used
to integrate heterogeneous databases using Semantic Web technol-
ogies while also providing a concrete example of achieving this goal
for three well-known existing biological databases: OMA, Bgee,
and UniProt.

Although there would be many more aspects to cover and
much of the work for achieving wide-scale data integration still
remains to be done, we would like to end this chapter by reinfor-
cing the following conclusion, extracted from a study of Biological
Ontologies for Biodiversity Knowledge Discovery [91]:

We hope that current work will spur interest and feedback from scientists and
bioinformaticians who see data integration, interoperability, and reuse as the
solution to bringing the past 300 years of biological exploration of the planet
into currency for science and society.

8 Exercises

A. Querying UniProt with SPARQL

The goal of this warm-up exercise is to get familiar with a SPARQL
endpoint and to write your first SPARQL query. For this purpose,
open the link to the UniProt SPARQL endpoint, http://sparql.
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uniprot.org/ in a Web browser. Howmany entries do you think are
available in UniProt? To find out, simply check the bottom-left
corner of the Web page—you will notice that the total number of
triples is always kept up to date there. How many of these entries
describe proteins? To find out, try running the following SPARQL
query that counts all instances of the database that belong to the
protein class. What is the result?

PREFIX up:<http://purl.uniprot.org/core/>

SELECT (count(?protein) as ?count)

WHERE

{ ?protein a up:Protein. }

Notice that the UniProt SPARQL web page includes many
examples on the right-hand side—in order to get more familiar
with UniProt and SPARQL, try further some of the sample queries
provided there.

B. Exploring Biological Ontologies Through Keyword Search in
the Ontology Lookup Service

We have seen in Sect. 3.6 an example assertion about the
“HBB” gene in the human, including the following triple:

oma:PROTEIN_HUMAN04027 obo:RO_0002162 <http://www.uniprot.

org/taxonomy/9606> .

This triple essentially asserts that the gene is located in the
Homo sapiens taxon. However, as a regular user, how could you
know what the URIs for “in taxon” and Homo sapiens are? One of
the possible ways to get these identifiers is by searching for the
keywords of interest in the Ontology Lookup Service (OLS). To do
this, go to the Web page of the service https://www.ebi.ac.uk/ols/
index, and try to enter first “in taxon”. What is the result? Try also
Homo sapiens. What about “human”?

C. Querying OMA with SPARQL

Recall from Sect. 3.6 the sample query we presented for retriev-
ing the description of the human hemoglobin gene fromOMA.We
provide it in a more explicit form here:

SELECT ?description WHERE {

?protein oma:geneName "HBB".

?protein <http://bioontology.org/ontologies/biositemap.owl#description> ?de-

scription.

}

First try to think about possible information that is missing
from this query. For example, is this query guaranteed to return a
single result (remember we are using an orthology database)?
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Try to look again at how the human “HBB” protein is defined
in Sect. 3. Then, try to run the SPARQL query as-is in the OMA
SPARQL endpoint: https://sparql.omabrowser.org/sparql. What
do you get? What is the reason? Try to print out more information
about the protein, not just its description. For example, add
another triple pattern to capture the oma:hasOMAId property
value as well (don’t forget to add it to the selected variables in the
first line!), perhaps also the taxon ID in UniProt. What can you
deduce? Can you correct the query so that it only gets the descrip-
tion we were originally interested in?

D. Federated Queries Using SPARQL (OMA and UniProt)

In Sect. 4 we presented an example Federated Query using the
SPARQL endpoint of OMA and the remote SPARQL endpoint of
UniProt, as a service. We recall the query here:

prefix up:<http://purl.uniprot.org/core/>

prefix taxon:<http://purl.uniprot.org/taxonomy/>

select distinct ?proteinOMA ?proteinUniProt

where {

service <http://sparql.uniprot.org/sparql> {

?proteinUniProt a up:Protein .

?proteinUniProt up:organism taxon:9606 . # Homo Sapiens

?proteinUniProt up:annotation ?annotation . # annotations of this

protein entry

?annotation rdfs:comment ?text

filter( regex(str(?text), "leukemia") ) # only those containing

the text "leukemia"

}

?proteinOMA a orth:Protein.

?proteinOMA oma:xrefUniprot ?proteinUniProt.

}

Try running this query in the OMA SPARQL endpoint,
https://sparql.omabrowser.org/sparql. You might need to wait a
couple of minutes to get the remote results. Next, try to look at the
examples provided in the right side of the page to see how to get
more properties of the proteinOMA variable—for example, try
getting the description or the OMA ID. Next, try modifying this
query so that it can run in the UniProt SPARQL endpoint, invok-
ing the OMA one as a service. Remember to get the relevant
prefixes and define them in the header of the query first (“oma,”
“orth”). You can get these by looking at “Namespace prefixes” in
the OMA SPARQL Web page. Finally, test your modifications
using UniProt, http://sparql.uniprot.org/.
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High-Performance Computing in Bayesian Phylogenetics
and Phylodynamics Using BEAGLE

Guy Baele, Daniel L. Ayres, Andrew Rambaut, Marc A. Suchard,
and Philippe Lemey

Abstract

In this chapter, we focus on the computational challenges associated with statistical phylogenomics and how
use of the broad-platform evolutionary analysis general likelihood evaluator (BEAGLE), a high-
performance library for likelihood computation, can help to substantially reduce computation time in
phylogenomic and phylodynamic analyses. We discuss computational improvements brought about by the
BEAGLE library on a variety of state-of-the-art multicore hardware, and for a range of commonly used
evolutionary models. For data sets of varying dimensions, we specifically focus on comparing performance
in the Bayesian evolutionary analysis by sampling trees (BEAST) software between multicore central
processing units (CPUs) and a wide range of graphics processing cards (GPUs). We put special emphasis
on computational benchmarks from the field of phylodynamics, which combines the challenges of phylo-
genomics with those of modelling trait data associated with the observed sequence data. In conclusion, we
show that for increasingly large molecular sequence data sets, GPUs can offer tremendous computational
advancements through the use of the BEAGLE library, which is available for software packages for both
Bayesian inference and maximum-likelihood frameworks.

Key words Adaptive Markov chain Monte Carlo, Multipartite data, Generalized linear model, High-
performance computing, BEAGLE, BEAST, Pathogen phylodynamics, Data integration, Bayesian
phylogenetics, Phylogenomics

1 Introduction

Phylogenomics, a term coined by Eisen and Fraser [13], explores
the intersection of evolutionary studies and genomic analyses.
Accurate phylogenetic reconstruction using genomic data has
important repercussions for answering particular questions in
genome analysis, as phylogenomic analyses often involve estimating
the underlying evolutionary history of sequences either as an inter-
mediate goal or as an end point. The availability of more and more
complete genomes can help to correct for phylogenetic reconstruc-
tion artifacts and contradictory results that often appeared in
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molecular phylogenies based on a single or few orthologous genes
[21]. Expanding the number of characters that can be used in
phylogenetic reconstruction from a few thousand to tens of
thousands, these large quantities of data lead to reduced estimation
errors associated with site sampling, to very high power in the
rejection of simple evolutionary hypotheses and to high confidence
in estimated phylogenetic patterns [4].

Among the phylogenetic reconstruction approaches that have
attained widespread recognition, Bayesian inference has become
increasingly popular, in large part due to the availability of open-
source software packages such as the Bayesian evolutionary analysis
by sampling trees (BEAST) software [11] andMrBayes [29]. Bayes-
ian phylogenetic inference is based on a quantity called the poste-
rior distribution of trees, which involves a summation over all trees
and, for each tree, integration over all possible combinations of
branch length and substitution model parameter values [20]. Ana-
lytical evaluation of this distribution is practically infeasible, and
hence needs to be approximated using a numerical method, the
most common being Markov chain Monte Carlo (MCMC). The
basic idea is to construct a Markov chain that has as its state space
the parameters of the statistical model and a stationary distribution
that is the posterior distribution of the parameters (including the
tree) [20]. While MCMC integration has revolutionized the field of
phylogenetics [34], the continuously increasing size of data sets is
pushing the field of statistical phylogenetics to its limits.

While promising approaches to improve MCMC efficiency
have emerged recently from the field of computational statistics,
such as sequential Monte Carlo (SMC; see, e.g., Doucet [10]) and
Hamiltonian Monte Carlo (HMC; see, e.g., Neal [27]), these
approaches do not yet find widespread use in phylogenetics. The
primary difficulty in this adoption centers around the tree that
encompasses both continuous and discrete random variables.
Instead, considerable attention is being meted on techniques for
parallelization [32] to improve phylogenetic software run-times.
Obtaining sufficient samples from a Markov chain may take many
iterations, due to the large number of trees that may describe the
relationships of a group of species and high autocorrelation
between the samples. It is therefore of critical importance to per-
form each iteration in a computationally efficient manner, making
optimal use of the available hardware. High-performance compu-
tational libraries, such as the broad-platform evolutionary analysis
general likelihood evaluator (BEAGLE) [3], can be useful tools to
enable efficient use of multicore computer hardware (or even
special-purpose hardware), while at the same time requiring mini-
mal knowledge from the software user(s).

In this chapter, we first introduce the BEAGLE software library
and its primary purpose, characteristics, and typical usages in Sub-
heading 2, along with the hardware specifications of the devices
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used for benchmarks in this chapter. In Subheading 3, we present
computational benchmarks on the different hardware devices for a
collection of data sets that are typically analyzed with models of
varying complexity. Subheading 4 presents a brief overview of
studies for which GPU computing capabilities were critical to
analyze the data in a timely fashion. Given the increasing capabil-
ities over hardware devices, we present an interesting avenue for
further research in Subheading 5, in the form of adaptive MCMC.

2 The BEAGLE Library

BEAGLE [3] is a high-performance likelihood-calculation platform
for phylogenetic applications. BEAGLE defines a uniform applica-
tion programming interface (API) and includes a collection of
efficient implementations for evaluating likelihoods under a wide
range of evolutionary models, on graphics processing units (GPUs)
as well as on multicore central processing units (CPUs). The BEA-
GLE library can be installed as a shared resource, to be used by any
software aimed at phylogenetic reconstruction that supports the
library. This approach allows developers of phylogenetic software to
share any optimizations of the core calculations, and any program
that uses BEAGLE will automatically benefit from the improve-
ments to the library. For researchers, this centralization provides a
single installation to take advantage of new hardware and paralleli-
zation techniques.

The BEAGLE project has been very successful in bringing
hardware acceleration to phylogenetics. The library has been
integrated into popular phylogenetics software including BEAST
[11], MrBayes [29], PhyML [19], and GARLI [35] and has been
widely used across a diverse range of evolutionary studies. The
BEAGLE library is free, open-source software licensed under the
Lesser GPL and available at https://beagle-dev.github.io.

2.1 Principles

2.1.1 Computing

Observed Data Likelihoods

The most effective methods for phylogenetic inference involve
computing the probability of observed character data for a set of
taxa given an evolutionary model and phylogenetic tree, which is
often referred to as the (observed data) likelihood of that tree.
Felsenstein demonstrated an algorithm to calculate this probability
[16], and his algorithm recursively computes partial likelihoods via
simple sums and products. These partial likelihoods track the prob-
ability of the observed data descended from an internal node con-
ditional on a particular state at that internal node.

The partial likelihood calculations apply to a subtree compris-
ing a parent node, two child nodes, and connecting branches. It is
repeated for each unique site pattern in the data (in the form of a
multiple sequence alignment), for each possible character of the
state space (e.g., nucleotide, amino acid, or codon), and for each
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internal node in the proposed tree. The computational complexity
of the likelihood calculation for a given tree is O( p � s2 � n),
where p is the number of unique site patterns in the sequence
(typically on the order of 102–106), s is the number of states each
character in the sequence can assume (typically 4 for a nucleotide
model, 20 for an amino-acid model, or 61 for a codon model), and
n is the number of operational taxonomic units (e.g., species and
alleles).

Additionally, the tree space is very large; the number of
unrooted topologies possible for n operational taxonomic units is
given by the double factorial function (2n � 5)!! [15]. Thus, to
explore even a fraction of the tree space, a very large number of
topologies need to be evaluated, and hence a very great number of
likelihood calculations have to be performed. This leads to analyses
that can take days, weeks, or even months to run. Further com-
pounding the issue, rapid advances in the collection of DNA
sequence data have made the limitation for biological understand-
ing of these data an increasingly computational problem. For phy-
logenetic inferences, the computation bottleneck is most often the
calculation of the likelihoods on a tree. Hence, speeding up the
calculation of the likelihood function is key to increasing the per-
formance of these analyses.

2.1.2 Parallel

Computation

Advances in computer hardware, specifically in parallel architec-
tures, such as many-core GPUs, multicore CPUs, and CPU intrin-
sics (e.g., SSE and AVX), have created opportunities for new
approaches to computationally intensive methods. The structure
of the likelihood calculation, involving large numbers of positions
and multiple states, as well as other characteristics, makes it a very
appealing computational fit to these modern parallel processors,
especially to GPUs.

BEAGLE exploits GPUs via fine-grained parallelization of
functions necessary for computing the likelihood on a (phyloge-
netic) tree. Phylogenetic inference programs typically explore tree
space in a sequential manner (Fig. 1, tree space) or with only a small
number of sampling chains, offering limited opportunity for task-
level parallelization. In contrast, the crucial computation of partial
likelihood arrays at each node of a proposed tree presents an excel-
lent opportunity for fine-grained data parallelism, which GPUs are
especially suited for. The use of many lightweight execution threads
incurs very low overhead on GPUs, enabling efficient parallelism at
this level.

In order to calculate the overall likelihood of a proposed tree,
phylogenetic inference programs perform a post-order traversal,
evaluating a partial likelihood array at each node. When using
BEAGLE, the evaluation of these multidimensional arrays is off-
loaded to the library. While each partial likelihood array is still
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evaluated in sequence, BEAGLE assigns the calculation of the array
entries to separate GPU threads, for computation in parallel (Fig. 1,
partial likelihood). Further, BEAGLE uses GPUs to parallelize
other functions necessary for computing the overall tree likelihood,
thus minimizing data transfers between the CPU and GPU. These
additional functions include those necessary for computing branch
transition probabilities, for integrating root and edge likelihoods,
and for summing site likelihoods.

Multicore CPU parallelization through BEAGLE can only be
done via multiple instances of the library, such that each instance
computes a different data partition. Multiple CPU threads can be
used (e.g., one for each partition) if the application program
(BEAST, for the remainder of this chapter) creates the BEAGLE
instances in separate computation threads, which will be the case
when using BEAST. This approach suits the trend of increasingly
large molecular sequence data sets, which are often heavily parti-
tioned in order to better model the underlying evolutionary pro-
cesses. BEAGLE itself does not employ any kind of load balancing
nor are the site columns computed in individual threads. Each
BEAGLE instance only parallelizes computation on CPUs via SSE
vectorization.

BEAGLE can also use GPUs to perform partitioned analyses,
however for problem sizes that are insufficiently large to saturate
the capacity of one device, efficient computation requires multiple
GPUs. Recent progress has been made in parallelizing the compu-
tation of multiple data subsets on one GPU [1], and future releases
of BEAGLE will include this capability.

Fig. 1 Diagrammatic example of the tree sampling process and fine-grained parallel computation of
phylogenetic partial likelihoods using BEAGLE for a nucleotide model problem with five taxa, nine site
patterns, and four evolutionary rate categories. Each entry in a partial likelihood array L is assigned to a
separate GPU thread t. In this example, 144 GPU threads are created to enable parallel evaluation of each
entry of the partial likelihood array L(x0)
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2.2 Design

2.2.1 Library

The general structure of the BEAGLE library can be conceptua-
lized as layers (Fig. 2, library), the upper most of which is the
application programming interface. Underlying this API is an
implementation management layer, which loads the available
implementations, makes them available to the client program, and
passes API commands to the selected implementation.

The design of BEAGLE allows for new implementations to be
developed without the need to alter the core library code or how
client programs interface with the library. This architecture also
includes a plugin system, which allows implementation-specific
code (via shared libraries) to be loaded at runtime when the
required dependencies are present. Consequently, new frameworks
and hardware platforms can more easily be made available to pro-
grams that use the library, and ultimately to users performing
phylogenetic analyses.

Currently, the implementations in BEAGLE derive from two
general models. One is a serial CPU implementation model, which
does not directly use external frameworks. Under this model, there
is a standard CPU implementation, and one with added SSE intrin-
sics, which uses vector processing extensions present in many CPUs
to parallelize computation across character state values. The other
implementation model involves an explicit parallel accelerator pro-
gramming model, which uses the CUDA external computing
framework to exploit NVIDIA GPUs. It implements fine-grained
parallelism for evaluating likelihoods under arbitrary molecular
evolutionary models, and thus harnessing the large number of
processing cores to efficiently perform calculations [3, 32].

library API

BEAGLE

CPU SSECPU GPU

implementation manager

implementation base-code

CUDA modelCPU model

BEAST

application programming interface one-time initialization

analysis parameters

sequence data

iterative tree sampling

tree traversal operations

tree likelihood request

BEAGLE

Fig. 2 Layer diagram depicting BEAGLE library organization, and illustration of API use. Arrows indicate
direction and relative size of data transfers between the client program and library
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Recent progress has been made in developing new implemen-
tations for BEAGLE, beyond those described here, thus expanding
the range of hardware that can be used. Upcoming releases of the
library will include additional support for CPU parallelism via a
multi-threaded implementation and will support the OpenCL stan-
dard, enabling the use of AMD GPUs [2].

2.2.2 Application

Programming Interface

The BEAGLE API was designed to increase performance via fine-
scale parallelization while reducing data transfer and memory copy
overhead to an external hardware accelerator device (e.g., GPU).
Client programs, such as BEAST [11], use the API to offload the
evaluation of tree likelihoods to the BEAGLE library (Fig. 2, API).
API functions can be subdivided into two categories: those which
are only executed once per inference run and those which are
repeatedly called as part of the iterative sampling process. As part
of the one-time initialization process, client programs use the API
to indicate analysis parameters such as tree size and sequence
length, as well as specifying the type of evolutionary model
and hardware resource(s) to be used. This allows BEAGLE to
allocate the appropriate number and size of data buffers on device
memory. Additionally at this initialization stage, the sequence data
is specified and transferred to device memory. This costly memory
operation is only performed once, thus minimizing its impact.

During the iterative tree sampling procedure, client programs
use the API to specify changes to the evolutionary model and
instruct a series of partial likelihood operations that traverse the
proposed tree in order to find its overall likelihood. BEAGLE
efficiently computes these operations and makes the overall tree
likelihood as well as per-site likelihoods available via another
API call.

2.3 Performance Peak performance with BEAGLE is achieved when using a high-
end GPU; however, the relative gain over using a CPU depends on
model type and problem size as more demanding analyses allow for
better utilization of GPU cores. Figure 3 shows speedups relative to
serial CPU code when using BEAGLE with an NVIDIA P100
GPU for the critical partial likelihood function, with increasing
unique site pattern counts and for two model types. Computing
these likelihoods typically accounts for over 90% of the total execu-
tion time for phylogenetic inference programs and the relationship
between speedups and problem size observed here primarily
matches what would be observed for a full analysis.

Figure 3 includes performance results for computing partial
likelihoods under both nucleotide and codon models. The vertical
axis labels show the speedup relative to the average performance of
a baseline serial, single threaded and non-vectorized, CPU imple-
mentation. This nonparallel CPU implementation provides a
consistent performance level across different problem sizes and
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provides a relevant point of comparison as most phylogenetic infer-
ence software packages use serial code as their standard.

Using a nucleotide model, relative GPU performance over the
CPU strongly scales with the number of site patterns. For very
small numbers of patterns, the GPU exhibits poor performance
due to greater execution overhead relative to overall problem size.
GPU performance improves quickly as the number of unique site
patterns is increased and by 10,000 patterns it is closer to a satura-
tion point, continuing to increase but more slowly. At 100,000
nucleotide patterns, the GPU is approximately 64 times faster than
the serial CPU implementation.

For codon-based models, GPU performance is less sensitive to
the number of unique site patterns. This is due to the better
parallelization opportunity afforded by the 61 biologically mean-
ingful states that can be encoded by a codon. The higher state
count of codon data compared to nucleotide data increases the
ratio of computation to data transfer, resulting in increased GPU
performance for codon-based analyses. For a problem size with
10,000 codon patterns, the GPU is over 256 times faster than the
serial CPU implementation.

2.4 Memory Usage When assessing the suitability of a phylogenetic analysis for GPU
acceleration via BEAGLE, it is also important to consider if the
GPU has sufficient on-board memory for the analysis to be per-
formed. GPUs typically have less memory than what is available to
CPUs, and the high transfer cost of moving data from CPU to
GPU memory prevents direct use of CPU memory for GPU
acceleration.

Figure 4 shows how much memory is required for problems of
different sizes when running nucleotide and codon-model analyses
in BEAST with BEAGLE GPU acceleration. Note that when mul-
tiple GPUs are available, BEAST can partition a data set into
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Fig. 3 Plots showing BEAGLE partial likelihood computation performance on the GPU relative to serial CPU
code, under nucleotide and codon models and for an increasing number of unique site patterns. Speedup
factors are on a log-scale
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separate BEAGLE instances, one for each GPU. Thus, each GPU
will only require as much memory as necessary for the data subset
assigned to it. Typical PC-gaming GPUs have 8 GB of memory or
less, while GPUs dedicated to high-performance computing, such
as the NVIDIATesla series, may have as much as 24 GB of memory.

2.5 Hardware Highly parallel computing technologies such as GPUs have over-
taken traditional CPUs in peak performance potential and continue
to advance at a faster pace. Additionally, the memory bandwidth
available to the processor is especially relevant to data-intensive
computations, such as the evaluation of nucleotide model likeli-
hoods. In this measure as well, high-end GPUs significantly out-
perform equivalently positioned CPUs.

BEAGLE was designed to take advantage of this trend of
increasingly advanced GPUs and uses runtime compilation meth-
ods to optimize code for whichever generation of hardware is being
used. Table 1 lists hardware specifications for the processors used in
this chapter. We note that further advancements in the GPUmarket
for scientific computing are on its way, with NVIDIA preparing the
launch (at the time of writing) of the Tesla V100 in Q3 of 2017.
The new NVIDIATesla V100 features a total of 5120 CUDA cores
and comes equipped with 32 GB of on-board memory with
900 GB/s of bandwidth. As such, it seems to have the potential
to reach 7.5 TFLOPs in double-precision peak performance
(DP PP), a roughly 50% increase over their current flagship, the
Tesla P100.
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Fig. 4 Contour plots depicting BEAGLE memory usage on GPUs for BEAST nucleotide and codon-model
analyses with 4 rate categories in double-precision floating-point format, for a range of problem sizes with
different numbers of taxa and of unique site patterns. Memory requirements shown here assume an
unpartitioned dataset. Partitioned analyses and more sophisticated models that use multiple BEAGLE
instances incur memory overhead per additional library instance. Black dots indicate memory usage require-
ments for the unpartitioned version of three data sets subsequently described in this chapter
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3 Results

In this section, we compare the performance of various typical
Bayesian phylogenetic, phylogenomic, and phylodynamic analyses
on different multicore architectures. In Subheading 3.1, we analyze
a data set of mitochondrial genomes [32] using a high-dimensional
model of codon substitution which, albeit low in number of para-
meters, is particularly challenging in phylogenetic analyses specifi-
cally because of the high-dimensional state space. In Subheading
3.2, we analyze the largest Ebola virus data set at the time of
publication [12] using a collection of nucleotide substitution mod-
els, i.e., one per codon position and an extra one for analyzing the
intergenic regions, where the large number of taxa and unique site
patterns offer an interesting test case for the comparison between
CPU and GPU performance. Finally, Subheading 3.3 reports on
the performance of analyzing data sets that complement sequence
data with discrete trait data (typically host data or geographic data),
for which transition rates between (a potential large number of)
discrete trait states are parameterized as a generalized linear model
(GLM). All performance evaluations in this results section were run
for 100,000 iterations (which is usually insufficient to achieve
convergence) in BEAST v1.8.4 [11], using double precision
(both on CPU and GPU) and in conjunction with BEAGLE
v2.1.2 [3]. By default, BEAST—through BEAGLE—uses SSE2
(Streaming SIMD Extensions 2), an SIMD instruction set exten-
sion to the x86 architecture, when performing calculations
on CPU.

Table 1
Hardware specifications for the Intel CPUs and NVIDIA GPUs used in this chapter

Hardware Year Cores Memory Bandwidth DP PP

Xeon E5-2680v2 2013 2 � 10 64 GB 60 GB/s 0.45 TFLOPS

Xeon E5-2680v3 2014 2 � 12 64 GB 68 GB/s 0.96 TFLOPS

GTX 590 2011 2 � 512 2 � 1.5 GB 164 GB/s 0.31 TFLOPS

Tesla K20X 2012 2688 6 GB 250 GB/s 1.31 TFLOPS

Tesla K40 2013 2880 12 GB 288 GB/s 1.43 TFLOPS

Quadro P5000 2016 2560 16 GB 288 GB/s NA

Tesla P100 2016 3584 16 GB 720 GB/s 4.70 TFLOPS

Estimated performance in double-precision peak performance (DP PP) taken from the manufacturer’s website. Note that

the Quadro P5000 GPU only lists performance in single precision and we hence list its double-precision performance as

not available (NA)
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3.1 Carnivores Selection is a key evolutionary process in shaping genetic diversity
and a major focus of phylogenomics investigations [23]. Research-
ers frequently evaluate the strength of selection operating on genes
or even individual codons in the entire phylogeny or in a subset of
branches using statistical methods. Codon substitution models
have been particularly useful for this purpose because they allow
estimating the ratio of non-synonymous and synonymous substitu-
tion rates (dN/dS) in a phylogenetic framework. Goldman and
Yang [18] and Muse and Gaut [26] developed the first codon-
based evolutionary models (GY and MG, respectively), i.e., models
that have codons as their states, incorporating biologically mean-
ingful parameters such as transition/transversion bias, variability of
a gene, and amino acid differences.

Full codon substitution models are computationally expensive
compared to standard nucleotide substitution models due to their
large state space. Compared to nucleotide models (4 states) and
amino acid models (20 states), a full vertebrate mitochondrial
codon model has 60 states (ignoring the four nonsense or stop
codons). We restrict ourselves to the standard GY codon substitu-
tion model implementation in BEAST [11], employ the standard
assumption that mutations occur independently at the three codon
positions and therefore only consider substitutions that involve a
single-nucleotide substitution, and assume that codons evolve
independently from one another. Additionally, we allow for substi-
tution rate heterogeneity among codons using a discrete gamma
distribution (i.e., each codon is allowed to evolve at a different
substitution rate) [33], which increases the computational
demands of such an analysis fourfold (given that we allow for the
standard assumption of four discrete rate categories).

As a first application of using state-of-the-art hardware in sta-
tistical phylogenetics, we reevaluate the performance of a full codon
model on a set of mitochondrial genomes from extant carnivores
and a pangolin outgroup [4, 32]. This genomic sequence align-
ment contains 10,869 nt columns that code for 12 mitochondrial
proteins and when translated into a single 60-state vertebrate mito-
chondrial codon model, yields a total of 3623 alignment columns,
of which 3601 site patterns are unique [32]. Figure 5 shows a
comparison of the computational throughput between various
CPU and GPU computing platforms. To this end, we make use
of an option in BEAST [11] to split an alignment into two or more
pieces of equal length, with each resulting alignment being evalu-
ated on a separate processor core or computing device for optimal
performance. Figure 5 shows that the analysis scales remarkably
well on CPU, where the use of each additional processor core
results in a performance increase. This can be attributed to the
use of full codon models, which invokes a higher workload when
evaluating each likelihood and hence more concurrent evaluation
compared to thread communication. As the evaluation of the total
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amount of unique site patterns is split over more processor cores,
the workload per core decreases and the communication overhead
increases, resulting in smaller relative performance increases.

The performance of a 24-core CPU setup is easily matched by a
single GPU (the GTX 590) that was originally aimed at the market
of PC gaming. However, subsequent improvements in GPU cards
for scientific computing have yielded impressive performance gains,
with a single Tesla K20 GPU outperforming 2 GTX 590 GPUs.
Whereas the advent of the Tesla K40 offered further performance
increases, it was mainly welcomed for having twice the amount of
on-board memory, allowing for much larger data sets to be ana-
lyzed on GPU. The recent introduction of the Tesla P100 GPU
promised and delivered astonishing results, as shown in Fig. 5, with
a single Tesla P100 GPU delivering six times the performance of a
Tesla K40 GPU on these high-dimensional full codon models. We
conclude that the use of a high-performance computational library
such as BEAGLE, in combination with a powerful GPU, has signif-
icantly facilitated the evaluation of and phylogenetic inference with
full codon models.
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3.2 Ebola Virus The original developments within the BEAGLE library offered
considerable computational speedup when evaluating codon mod-
els—up to a 52-fold increase when employing three GPU cards—
and nucleotide models—up to a 15-fold increase when using three
GPU cards—in double precision [32]. This may have resulted in
the perception that GPU cards are mainly useful when evaluating
codon models, but that the benefit for fitting models was not
sufficiently substantial to warrant GPUs. To offer an objective
assessment of the usefulness of GPUs in such cases, we analyze
the use of various CPU and GPU configurations on a full genome
Ebola virus data set, consisting of 1610 publicly available genomes
sampled over the course of the 2013–2016 Ebola virus disease
epidemic in West Africa [12] (we discuss this study in more detail
in Subheading 4). This data set encompassing 18,992 nt columns is
modelled with four partitions: one for each codon position and one
additional partition for the intergenic region (which consists of
several noncoding regions interspersed in the genome). The three
codon partitions contain, respectively, 2366, 2328, and 2731
unique site patterns, while the intergenic partition contains 2785
unique site patterns. We model among-site rate variation [33] in
each partition independently, which confronts us with a computa-
tionally demanding analysis for this large number of taxa and
unique site patterns.

Figure 6 shows how the performance of such a large nucleotide
data set scales with the available CPU and GPU resources. Contrary
to the carnivores data set analysis in Subheading 3.1, this analysis
does not scale particularly well with the number of CPU cores
available, as the main benefit lies with splitting each partition into
two subpartitions and only limited performance gains can be
observed when using additional partitions or threads. Popular
single GPU cards for scientific computing—such as the Tesla
K40—match the optimal performance brought about by using
16 CPU cores, and may provide a useful alternative to multicore
CPU systems. However, the decreasing cost for increasingly parallel
multicore CPU systems makes this a difficult matchup for slightly
older GPUs. More recently introduced GPU cards, such as the
Tesla P100, are able to deliver a substantial performance improve-
ment over a multicore CPU setup, with two Tesla P100 GPUs
running in parallel offering over twice the performance of a
16-core CPU setup. We note that the GTX 590 cards, as well as a
single Tesla K20 card, do not contain sufficient on-board memory
to hold the full data set and as such, these benchmarks could not be
run on those resources.

3.3 Phylogeography As shown in the results in Subheadings 3.1 and 3.2, different
partitions of the aligned sequence data can contain a large number
of unique site patterns, rendering phylogenomic inference chal-
lenging. However, other data types are also included more
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frequently, such as trait data to be analyzed alongside the sequence
data and hence potentially influencing the outcome of such an
analysis (for an overview, see, e.g., Baele et al. [6]).

Arguably, the most frequently considered traits in phylody-
namics, and molecular evolution in general, are spatial locations.
The interest in spatial dispersal has developed into its own research
field referred to as phylogeography, with Bayesian inference of
discrete phylogenetic diffusion processes being adopted in the
field of biogeography [30]. Jointly estimating the phylogeny and
the trait evolutionary process, Lemey et al. [23] implemented a
similar Bayesian full probabilistic connection between sequences
and traits in BEAST [11], with applications focusing on spatiotem-
poral reconstructions of viral spread. These approaches offer exten-
sive modelling flexibility at the expense of a quadratic growth in
number of instantaneous rate parameters in the continuous-time
Markov chain (CTMC) model as a function of the state dimension-
ality of the trait. This can be seen in Fig. 7, which shows two maps
with different numbers of (discrete) locations and the
corresponding CTMC models that describe the instantaneous
rates of transition between these locations.
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Many phylodynamic hypotheses can be addressed through the
combination of genetic and trait data, but additional data in the
form of covariates can help explain the evolutionary or epidemio-
logical process. Such covariates can be used in a GLM formulation
on a matrix of transition rate parameters between locations defining
a CTMC process. Lemey et al. [25] developed an approach to
simultaneously reconstruct spatiotemporal history and identify
which combination of covariates associates with the pattern of
spatial spread. This approach involves parameterizing each rate of
among-location movement, typically denoted as the ijth elements
(λij) of the CTMC transition rate matrix, in the phylogeographic
model as a log linear function of various potential covariates:

logλi j ¼ β1δ1xi,j ,1 þ β2δ2xi,j ,2 þ � � � þ βN δNxi, j ,N , ð1Þ
where βi is the estimated effect size of covariate xi, δi is a binary
indicator that tracks the posterior probability of the inclusion of
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Fig. 7 Graphical depiction of the Benelux countries (top) and the provinces of Belgium (bottom). When these
countries and provinces are used as discrete location states in a discrete trait model, this yields, respectively,
a 3 � 3 and a 10 � 10 CTMC model with instantaneous rates of transition between each pair of locations.
Such models are subject to the same restrictions as those used in popular substitution models, i.e., the rows
sum to 0. As such, these CTMC models consist of, respectively, 6 and 90 free parameters to be estimated
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covariate xi in the model, and N equals the number of covariates;
further, in the case of Fig. 7: i, j ∈ {A, B, C} withN ¼ 3 (top), and
i, j ∈{A, B, C, D, E, F, G, H, I, J} with N ¼ 10 (bottom). Priors
and posteriors for the inclusion probabilities (δ) can be used to
express the support for each predictor in terms of Bayes factors (for
more information, see Baele et al. [6], Lemey et al. [25]). We discuss
examples of such possible predictors in a phylogeographic setting in
Subheading 4 but focus here on performance benchmarks for such
generalized linear models.

3.3.1 Bat Rabies We here assess the performance of a phylodynamic setup aimed at
reconstructing the spatial dispersal and cross-species dynamics of
rabies virus (RABV) in North American bat populations based on a
set of 372 nucleoprotein gene sequences (nucleotide positions:
594–1353). The data set comprises a total of 17 bat species sam-
pled between 1997 and 2006 across 14 states in the USA [31]. Two
additional species that had been excluded from the original analysis
owing to a limited amount of available sequences, Myotis austror-
iparius (Ma) and Parastrellus hesperus (Ph), are also included here
[14]. We also include a viral sequence with an unknown sampling
date (accession no. TX5275, sampled in Texas from Lasiurus bor-
ealis), which will be adequately accommodated in our inference.
This leads to a total of 548 unique site patterns. Following Faria
et al. [14], we employ two GLM-diffusion models for this analysis,
one on the discrete set of 17 bat species and another on the discrete
set of 14 location states.

Figure 8 shows the performance of various multicore platforms
on the bat rabies Bayesian phylodynamic analysis. In contrast to
previous examples, the low number of sites (and hence unique site
patterns) in the alignment does not offer many options for splitting
the observed data likelihood over additional threads. While four
CPU cores offer the optimal performance across our CPU plat-
forms, using more threads for the analysis causes serious communi-
cation overhead, slowing down the analysis. Comparing the CPU
results with the GPU results shows that, across all multicore plat-
forms tested, a 4-core CPU offers the best performance.

Nonetheless, this scenario provides a very interesting use case
for employing multiple graphics cards for scientific computing.
Even though the (relatively small) dimensions of this particular
example do not allow for a performance increase, it will be benefi-
cial for higher-dimensional cases to compute each diffusion model
on a separate GPU. When assuming independent diffusion pro-
cesses that only depend on the underlying phylogeny, each of the
trait diffusion models can be computed on a different GPU,
whereas the data alignment can be split into two subpartitions of
equal complexity (i.e., with an equal number of unique site pat-
terns) and hence also be computed in parallel over the two GPUs.
However, the limited sequence data size and the relatively restricted
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number of discrete locations make this data set less suited for
illustrating performance increases using GPUs.

3.3.2 Ebola Virus We here assess the performance of a similar setup as in the previous
section, but using the data from the 2013–2016 West African
epidemic caused by the Ebola virus [12]. We hence use the nucleo-
tide data from the previous Ebola example (see Subheading 3.2) and
augment it with location states. Using a phylogeographic GLM
that integrates covariates of spatial spread, we have examined
which features influenced the spread of EBOV among administra-
tive regions at the district (Sierra Leone), prefecture (Guinea), and
country (Liberia) levels. This resulted in a GLM parameterizing
transition rates among 56 discrete location states according to
25 potential covariates (seeDudas et al. [12] for more information),
resulting in a computationally challenging analysis.

As shown in Fig. 9, we have evaluated the performance of this
challenging data set on our different multicore platforms. By com-
paring these benchmarks with those in Fig. 6, it’s clear that the
addition of a high-dimensional discrete trait model is much harder
to process for any multicore CPU configuration. Adding more
CPU cores to the analysis does not improve performance by
much, indicative of the discrete trait model being the main
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bottleneck in this analysis. This can be attributed to the high
dimension of the discrete phylogeographic model [23] and the
fact that this model describes a single column of characters, which
cannot be split into multiple partitions. Relative to the computa-
tional complexity of modelling the location states, splitting the
observed sequence data over multiple partitions/threads yields
relatively small performance improvements.

Some of the (older) GPUs cannot fit the full data set in memory
(such as the GTX 590 and a single Tesla K20), but those that are
able to vastly outperform any CPU setup. Further, as these GPUs
are better equipped to handle high-dimensional models, splitting
the observed sequence data over multiple physical cards still yields
noticeable performance gains. In contrast to Fig. 8, where two
discrete phylogeographic models were used that could each be
computed on different GPUs, the fact that this example only con-
siders a single trait observation explains why less performance gains
can be obtained by adding an additional GPU to the analysis.

4 Examples

In this section, we highlight examples of large sequence data sets
that are augmented with trait data in the form of discrete geo-
graphic locations, for which BEAGLE [3] offers impressive
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computational benefits, specifically when running these analyses on
powerful graphics cards for scientific computing. Further, discrete
phylogeographic models can be equipped with generalized linear
models to identify predictors of pathogen spread. Both inclusion
probabilities and conditional effect sizes for these predictors are
estimated in order to determine support for such explanatory vari-
ables of (pathogen) spread.

4.1 Human Influenza

H3N2

A potentially powerful predictor for the behavior of influenza and
other infectious diseases comes in the form of information on
global human movement patterns, of which the worldwide air
transportation network is by far the best studied system of global
mobility in the context of human infectious diseases [8].

Lemey et al. [25] use a discrete phylogeographic model
equipped with a GLM to show that the global dynamics of influ-
enza H3N2 are driven by air passenger flows, whereas at more local
scales spread is also determined by processes that correlate with
geographic distance. For a data set that encompasses 1441 time-
stamped hemagglutinin sequences (sampled between 2002 and
2007) and up to 26 locations to be used in a discrete phylogeo-
graphic model equipped with a GLM, BEAGLE can offer substan-
tial performance gains. A snapshot of a visual reconstruction
through geographic space is presented in Fig. 10, which includes
a summary of the support for the collection of covariates in the

Passenger
flow

Destination
population

density

Destination
sample size

Average
distance

Origin
sample size

Origin
population

density

Minimum
distance

Origin
antigenic

divergence

Destination
population size

Origin
population size

inclusion probability
0.0 0.2 0.4 0.6 0.8 1.0

BF > 150
20 < BF < 150
3 < BF < 20
1 < BF < 3

Fig. 10 Snapshot of the geographic spread of human influenza subtype H3N2, based on 1441 hemagglutinin
sequences sampled between 2002 and 2007 [25]. A discrete phylogeographic approach was used, allocating
the sequence data into a discrete number of locations and employing a generalized linear model on the
parameters that model geographic spread. Inclusion probabilities and Bayes factor support are shown for the
most prominent predictors of H3N2 geographic spread. D3 visualization is made using SpreaD3 [7], with
circular polygon areas proportional to the number of tree lineages maintaining that location at that time
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GLM that offer the strongest contribution to spatial spread among
those tested. As illustrated in Fig. 10 (but see Lemey et al. [25] for
additional data), there is strong evidence that air passenger flow is
among the most dominant drivers of the global dissemination of
H3N2 influenza viruses. Further, geographic spread is found to be
inversely associated (data not shown; but see Lemey et al. [25]) with
geographical distance between locations and with origin and desti-
nation population densities, which may seem counterintuitive. As
the authors state, this negative association of population density
with viral movement may suggest that commuting is less likely, per
capita, to occur out of, or into, dense subpopulations.

4.2 Ebola Virus During the two and a half years Ebola virus (EBOV) circulated in
West Africa, it caused at least 28,646 cases and 11,323 deaths. As
mentioned in Subheading 3.3.2, Dudas et al. [12] used 1610
genome sequences collected throughout the epidemic, represent-
ing over 5% of recorded Ebola virus disease (EVD) cases to recon-
struct a detailed phylogenetic history of the movement of EBOV
within and between the three most affected countries. This study
considers a massive time-stamped data set that allows to uncover
regional patterns and drivers of the epidemic across its entire dura-
tion, whereas individual studies had previously focused on either
limited geographical areas or time periods. The authors use the
phylogeographic GLM to test which features were important in
shaping the spatial dynamics of EVD during the West African
epidemic (see Fig. 11).

The phylogeographic GLM allowed Dudas et al. [12] to deter-
mine the factors that influenced the spread of EBOVamong admin-
istrative regions at the district (Sierra Leone), prefecture (Guinea),
and country (Liberia) levels. The authors find that EBOV tends to
disperse between geographically close regions, with great circle
distances having among the strongest Bayes factor support for
inclusion in the GLM among all covariates tested (along with four
other predictors). Additionally, both origin and destination popu-
lation sizes are equally strongly and positively correlated with viral
dissemination (see Fig. 11). Dudas et al. [12] conclude that the
combination of the positive effect of population sizes with the
inverse effect of geographic distance implies that the epidemic’s
spread followed a classic gravity-model dynamic, with intense dis-
persal between larger and closer populations. Finally, the authors
found a significant propensity for virus dispersal to occur within
each country, relative to internationally, suggesting that country
borders may have provided a barrier for the geographic spread
of EBOV.
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5 Adaptive MCMC

The various data sets described in this chapter so far have shown the
use and computational performance of a wide range of models in
phylogenetic, phylogenomic, and phylodynamic research. Whether
employing full codon models (e.g., the carnivores data set), codon
partition models (e.g., the Ebola data set), or discrete phylogeo-
graphic models, the number of parameters of a typical Bayesian
phylogenetic analysis has increased drastically over the years. This is
exacerbated by the use of partitioning strategies, resulting also in a
potentially large array of likelihoods that need to be evaluated
simultaneously, increasing run times for most phylogenetic ana-
lyses. In a similar fashion, computational resources available to
researchers have also markedly increased, both in the form of multi-
core CPU technology and increasingly powerful graphics cards
targeted towards scientific computing. The ubiquitous availability
of multiprocessor and multicore computers practically has moti-
vated the design of novel parallel algorithms to make efficient use of
these machines [22, 32].
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Fig. 11 Snapshot of the geographic spread of the Ebola virus during the 2013–2016 West African epidemic,
based on 1610 whole genome sequences [12]. A discrete phylogeographic approach was used, allocating the
sequence data into a discrete number of locations and employing a generalized linear model on the
parameters that model geographic spread. Inclusion probabilities and Bayes factor support are shown for
the most prominent predictors of Ebola virus geographic spread. D3 visualization is made using SpreaD3 [7],
with circular polygon areas proportional to the number of tree lineages maintaining that location at that time
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Many Bayesian phylogenetics software packages, such as
BEAST [11] and MrBayes [29], do not fully exploit the inherent
parallelism of such multicore systems when analyzing partitioned
data because they typically update one single parameter at a time
(a practice called single-component Metropolis–Hastings; Gilks
et al. [17]). Such a single parameter often belongs to an evolution-
ary model for a single data partition, leading to only one of the
potentially large collection of (observed) data likelihoods to be
modified at any one time. Such a strategy does not use the compu-
tational power of modern-day multiprocessor and multicore sys-
tems to its full advantage. Updating all the models’ parameters at
once however leads to multiple data likelihoods being modified
simultaneously, thereby making better use of the resources offered
by these multicore systems (see Fig. 12).

Fig. 12 Conceptual visualization on the potential benefits of an adaptive MCMC algorithm over single-
component Metropolis–Hastings (green bars indicate that a processor is computing a specific likelihood). In
Bayesian phylogenetics, the common practice of updating a single parameter (i.e., either a, b, c, or d ) at a time
leaves many CPU cores idle, underusing the computational performance of such architecture. Adaptive MCMC
allows to update a collection of continuous parameters simultaneously (i.e., a, b, c, and d ), putting many cores
(in this case: 4) to work in a parallel fashion. Quad-Core AMD Opteron processor silicon die is shown, courtesy
of Advanced Micro Devices, Inc. (AMD), obtained from Wikimedia Commons
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In recent work, Baele et al. [5] propose to use multivariate
components to update blocks of parameters, leading to acceptance
or rejection for all of those parameters simultaneously, rather than
updating all the parameters one by one in a sequential fashion using
low-dimensional or scalar components [17]. To this end, the
authors developed an adaptable variance multivariate normal
(AVMVN) transition kernel for use in Bayesian phylogenetics,
based on the work of Roberts and Rosenthal [28], to simulta-
neously estimate a large number of partition-specific parameters.
Baele et al. [5] implemented this adaptive MCMC approach in the
popular open-source BEAST software package [11], which enables
this transition kernel to exploit the computational routines within
the BEAGLE library [3]. The authors applied this transition kernel
to a collection of clock model parameters, speciation model para-
meters, coalescent model parameters, and partition-specific evolu-
tionary model parameters (which include substitution model
parameters, varying rates across sites parameters, and relative rate
parameters), although this kernel may find its use on parameters in
many additional models.

Baele et al. [5] show that such an AVMVN transition kernel
tremendously increases estimation performance over a standard set
of single-parameter transition kernels. Importantly, the use of an
AVMVN transition kernel requires a paradigm shift in assessing
performance of transition kernels in MCMC. It is common to
judge the performance of Bayesian phylogenetic software packages
strictly by the time they take to evaluate proposed parameter values,
often expressed in time per number of states or iterations. How-
ever, comparing transition kernels that only require a single proces-
sor core to evaluate a proposed value against transition kernels that
require a collection of processor cores to evaluate a collection of
proposed values simultaneously is unfair, as the latter will logically
take up more time as this involves more (computational) work
(on multiple processor cores). Hence, a fair comparison involves
calculating the effective sample size (ESS) per time unit, as this
takes into account differences in execution speed while still report-
ing a main statistic of interest.

We note that the approach of Baele et al. [5] has been shown to
yield performance increases on CPU, but that it still needs to be
tested on GPU. This is due to the specific design of the BEAGLE
library [3], which evaluates a collection of BEAGLE likelihoods/
instances sequentially on GPU. Current work is underway to sim-
plify the run time process of the BEAGLE library on GPU, allowing
for simultaneous evaluation of such a collection of instances.
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6 Conclusions

In this chapter, we have focused on the computational challenges
associated with typical analyses in the fields of phylogenetics, phy-
logenomics, and phylodynamics. We have provided a detailed
description of how the BEAGLE library can employ multicore
hardware to perform efficient likelihood evaluations and have
focused on its interaction with the BEAST software package.
Using benchmarks collected on a range of multicore hardware,
both from the CPU and GPUmarket, we have shown that employ-
ing the BEAGLE high-performance computational library can con-
siderably decrease computation time on these different systems and
this for data sets with different characteristics in terms of size and
complexity. The BEAGLE library allows to simultaneously com-
pute the likelihoods for different data partitions on different CPU
cores or even on different hardware devices, such as multiple GPU
cards. In addition, existing data partitions can be split into multiple
subpartitions to be computed in parallel across multicore hardware,
yielding potentially drastic performance increases as shown in the
benchmarks discussed in this chapter.

Having employed the BEAGLE library on state-of-the-art mul-
ticore hardware for a range of commonly used evolutionary models,
we conclude that the combination of using BEAGLE and running
analyses on powerful graphics cards aimed at the scientific comput-
ing market allows for massive performance gains for many challeng-
ing data sets. Given that sequence data sets keep growing in size and
are being complemented with associated trait data, we have paid
particular attention to a popular discrete trait model that parame-
terizes the transition rates between its states as a GLM, to allow for
the inclusion of covariates to help explain transitions in the trait
data. Graphics cards can be particularly useful when dealing with
such models, as shown in the benchmarks presented, and we have
hence presented a number of examples from the literature in which
such a setup was used to perform the analyses.

Discrete phylogeography approaches (or discrete trait ana-
lyses), as the ones presented in this chapter, treat the sampling
locations of the sequences as informative data, rather than uninfor-
mative auxiliary variables [9, 23, 25]. As such, the posterior distri-
bution of the parameters given the data contains not only the
likelihood of the sequences given the genealogy and substitution
model but also the likelihood of the sampling locations given the
genealogy and migration matrix, calculated by integrating over all
possible discrete state transition histories using Felsenstein’s prun-
ing algorithm [16]. What makes this computationally demanding is
a potential large number (equal to the number of branches in the
phylogeny) of potentially high-dimensional (depending on the
number of sampling locations) matrices, which can be parallelized
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across a large number of computing cores such as those found on
a GPU.

Similarly, structured coalescent approaches also contain the
likelihood of the sequences given the genealogy and substitution
model in their posterior distribution of the parameters given the
data. The use of BEAGLE will yield equal benefits to both
approaches when it comes to the computation of the likelihood of
the sequences given the genealogy and substitution model. How-
ever, rather than the likelihood of the sampling locations,
structured coalescent approaches require computation of the prob-
ability density of the genealogy and migration history under the
structured coalescent given the migration matrix and effective pop-
ulation sizes. To compute this density, a product of exponentials—
one for each of the time intervals between successive events (coa-
lescence, sampling, or migration)—needs to be calculated. If the
number of demes is sufficiently large, a GPU implementation of the
probability density of the genealogy and migration history under
the structured coalescent may be able to compute the contribution
to this density for each of those time intervals in a highly parallel
manner.

Approximations to the structured coalescent include, for exam-
ple, BASTA [9], which aims to compute the probability density of
the genealogy under the structured coalescent, integrated over
migration histories. The computational bottleneck of this approach
lies with calculating and updating the probability distribution of
lineages among demes, over all lineages and over all coalescent
events. This involves computing the matrix exponential of the
product of each time interval duration with the backwards-in-
time migration rate matrix, of which the diagonal elements are
defined such that the rows sum to zero. BEAGLE is equipped
with a parallel thread block design for computing such finite-time
transition probabilities, and to construct the finite-time transition
probabilities in parallel across all lineages, and therefore has the
potential to provide performance increases for structured coales-
cent approximations such as BASTA. However, the application
software that calls upon BEAGLE needs to be implemented to
rely on BEAGLE’s API in order to achieve the corresponding
performance increases.

Graphics cards aimed at the scientific computing market have
traditionally offered roughly three times the single-precision per-
formance compared to their double-precision performance (Tesla
K40, K20X and K20). Previous generation cards, such as the Tesla
K10, offered poor double-precision performance and focused
solely on single-precision performance (up to 24 times their
double-precision performance). The latest generation of GPUs,
specifically the Tesla P100, offers tremendous double-precision
performance, while single-precision performance is still twice as
high. We therefore expect a doubling in performance for the
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computations described in this chapter if we would run them in
single precision on GPU, provided that the decrease in accuracy
would not lead to rescaling issues which would slow down the
evaluations.

In theory, single-precision likelihood evaluations will be twice
as fast as double-precision likelihood evaluations on CPU as well,
but with more rescaling issues hampering performance. However,
the influence of switching to single precision is more difficult to
assess for CPUs, as there are a number of other factors to consider.
Single-precision floating points are half the size compared to
double-precision floating points and hence they may fit into a
lower level of cache with a lower latency, which potentially frees
up cache space to cache more (or other) data. Additionally, they
require half the memory bandwidth, which frees up that bandwidth
for other operations to be performed. Nevertheless, the total over-
all bandwidth will still be limited compared to that of powerful
graphics cards and this will not suffice to bridge the performance
differences between CPUs and GPUs in phylogenetics.

Finally, we have presented an interesting avenue for further
increasing computational performance on multicore hardware, in
the form of a new adaptive MCMC transition kernel. Traditional
MCMC transition kernels generally update single parameters in a
serial fashion triggering sequential likelihood evaluations on single
cores. The adaptive transition kernel however updates a collection
of continuous parameters simultaneously, triggering multiple like-
lihood evaluations in parallel on multiple cores and hence allowing
for potentially large improvements in computational efficiency.
Further research into this area is needed to continuously advance
MCMC kernels and keep computation time manageable for a wide
range of models in Bayesian phylogenetics.

7 Notes

1. We have showcased the potentially impressive performance
gains brought about by using BEAGLE in conjunction with
powerful graphics cards. However, users sometimes complain
about the poor performance gains they experience when using
a GPU for their analyses, which may have to do with their GPU
being not particularly suited for scientific computing. We urge
readers to be cautious as to which GPU they invest in, as there
is an important distinction between graphics cards aimed at the
gaming market and those aimed at the scientific computing
market. Computer gaming cards mainly offer tremendous
single-precision performance, but typically weak double-
precision performance. We hence advise to invest in GPUs
aimed at scientific computing, offering increased accuracy and
performance in double precision. As a rule, computer gaming
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cards have a much reduced cost compared to scientific comput-
ing cards, but we advise readers to check the technical specifica-
tions of the card before purchase.

2. While 32-bit operating systems are no longer the norm, such
systems are still being used from time to time, and problems
have been reported in the use and/or installation of BEAGLE
on such systems. We strongly advise to install and run BEAST
together with BEAGLE on a 64-bit operating system and, in
the case of problems, urge users to check that their Java instal-
lation is a proper 64-bit installation as well (i.e., avoid 32-bit or
mixed mode software installations). The BEAGLE website,
hosted at https://github.com/beagle-dev/beagle-lib, con-
tains installation instructions for Windows, Linux/Unix, and
Mac systems.

3. While powerful GPUs can be purchased and installed in desk-
top computers for immediate use, high-performance comput-
ing (HPC) centers or computing clusters can also be equipped
with GPUs. These systems typically run a job scheduler that
allows users to submit BEAST analyses to either CPU or GPU
nodes. In case the requested resources are not immediately
available, the submitted job is placed in a queue until those
resources become available, which may take some time. We
hence strongly advise users (especially those who manually
compose their input files) to first test their BEAST XML files
on a local desktop machine with BEAGLE installed, in order to
not have wasted precious time in a job queue only to find out
the BEAST XML cannot be run properly.

8 Exercises

1. An important aspect to getting computations—such as those
discussed in this chapter—up and running, is defining which
hardware is available on your computer or server. This can
easily be checked using BEAST once BEAGLE has been
installed. To check this when using the BEAST graphical user
interface (GUI), simply check the box that says “Show list of
available BEAGLE resources and Quit”; alternatively, when
using the command-line interface using a BEAST Java Archive
(or JAR) file—which can usually be found in the lib directory
within the BEAST folder—you can simply type:

java -jar beast.jar -beagle_info

If the path to the BEAGLE library hasn’t been set up
automatically, be sure to add its location to the command by
adding:
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java -Djava.library.path=/usr/local/lib ...

On a typical desktop system equipped with a GPU fit for
scientific computing, this will yield the following output to
screen:

Using BEAGLE library v2.1.2 for accelerated, parallel

likelihood evaluation. 2009-2013, BEAGLE Working Group.

Citation: Ayres et al (2012) Systematic Biology 61: 170-173

BEAGLE resources available:

0 : CPU

Flags: PRECISION_SINGLE PRECISION_DOUBLE ...

1 : Intel(R) HD Graphics 530

Global memory (MB): 1536

Clock speed (Ghz): 1.05

Number of compute units: 24

Flags: PRECISION_SINGLE COMPUTATION_SYNCH ...

2 : Tesla K40c

Global memory (MB): 11520

Clock speed (Ghz): 0.74

Number of cores: 2880

Flags: PRECISION_SINGLE PRECISION_DOUBLE ...

In order to determine which resource to use for your
computations, it’s important to look into the specifications of
the GPU as listed by the hardware vendor. For example, certain
GPUs will be equipped with a large number of cores and yet
they’re aimed at the computer gaming market, which will result
in poor double-precision performance. As we have shown in
Table 1, the Tesla brand is typically well suited for GPU com-
puting, but other cards may be appropriate as well if they
deliver adequate double-precision peak performance. In the
output printed above, it’s quite obvious that we’ll be interested
in running our analyses on resource 2, i.e., a GPU equipped
with thousands of computing cores (resource 1 is an integrated
graphics unit, mainly fit for delivering graphics output to
screen).

2. Once you have located a GPU fit for scientific computing on
your desktop computer or server, try to perform your analysis
both on the system’s CPU and GPU to compare performance.
Using BEAST’s GUI, the default option is to run on CPU; if
you’d like to run your analysis on a suitable GPU, use BEAST’s
GUI to select “GPU” where it says “Prefer use of:.” However,
most desktop computers don’t come equipped with powerful
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graphics cards, and most often servers aimed at high-
performance computing (HPC) will be used for performing
these types of computations. As such servers are typically
instructed using a command-line interface, BEAST offers the
possibility to assign computations to one or more specific
GPUs. Using the system described here, it would hence make
sense to run your analysis on resource 2, which can be done as
follows:

java -jar beast.jar -beagle_gpu -beagle_order 2 data.xml

Note that not specifying -beagle_orderwill result in the
analysis being run on the system’s CPU, i.e., resource 0. Addi-
tionally, when employing a GPU for your analyses, adding the
-beagle_gpu argument is highly advised. Many different
combinations of using resources arise when your data set is
partitioned into multiple subsets, for example if your data is
partitioned according to gene and/or codon position. In such
cases, it may be beneficial to split those partitions onto multiple
resources by using the -beagle_order command-line
option. For example, the Ebola virus data set (without trait
data) has four partitions; it may be useful (although this
depends on the actual hardware and needs to be tested) to
compute the likelihood of one partition on the CPU (i.e.,
resource 0) and the other three likelihoods on the GPU (i.e.,
resource 2). This can be done as follows:

java -jar beast.jar -beagle_gpu -beagle_order 0,2,2,2

ebola.xml

3. In some cases, such as for example the carnivores data set
analyzed in this chapter, only one (sequence) data partition is
available. On CPU, drastic performance improvements can still
be achieved by using a BEAGLE feature that allows to split up a
data partition into multiple subsets, as can be seen in Fig. 5.
This approach will lead to performance increases on most CPU
systems, as many laptops now come equipped with 4-core
processors; this can hence easily be tested on the system
you’re currently using. To split a (sequence) data partition
into two subsets, you can use the following command:

java -jar beast.jar -beagle_instances 2 carnivores.xml

To generate the results in Fig. 5, we have used this
approach to split the data set into 2, 4, 8, 12, 16, 20, and
24 subpartitions, increasing performance every step of the way.
Note that on GPU, this approach will only lead to an increased
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overhead and hence worse performance compared to keeping
the single data partition, as all the likelihood calculations end
up on the same (GPU) device. With multiple GPUs in a system
however, this can also lead to drastic performance improve-
ments, as shown throughout this chapter.
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Chapter 24

Scalable Workflows and Reproducible Data Analysis
for Genomics

Francesco Strozzi, Roel Janssen, Ricardo Wurmus, Michael R. Crusoe,
George Githinji, Paolo Di Tommaso, Dominique Belhachemi,
Steffen Möller, Geert Smant, Joep de Ligt, and Pjotr Prins

Abstract

Biological, clinical, and pharmacological research now often involves analyses of genomes, transcriptomes,
proteomes, and interactomes, within and between individuals and across species. Due to large volumes, the
analysis and integration of data generated by such high-throughput technologies have become computa-
tionally intensive, and analysis can no longer happen on a typical desktop computer.
In this chapter we show how to describe and execute the same analysis using a number of workflow

systems and how these follow different approaches to tackle execution and reproducibility issues. We show
how any researcher can create a reusable and reproducible bioinformatics pipeline that can be deployed and
run anywhere. We show how to create a scalable, reusable, and shareable workflow using four different
workflow engines: the Common Workflow Language (CWL), Guix Workflow Language (GWL), Snake-
make, and Nextflow. Each of which can be run in parallel.
We show how to bundle a number of tools used in evolutionary biology by using Debian, GNU Guix,

and Bioconda software distributions, along with the use of container systems, such as Docker, GNU Guix,
and Singularity. Together these distributions represent the overall majority of software packages relevant for
biology, including PAML, Muscle, MAFFT, MrBayes, and BLAST. By bundling software in lightweight
containers, they can be deployed on a desktop, in the cloud, and, increasingly, on compute clusters.
By bundling software through these public software distributions, and by creating reproducible and

shareable pipelines using these workflow engines, not only do bioinformaticians have to spend less time
reinventing the wheel but also do we get closer to the ideal of making science reproducible. The examples in
this chapter allow a quick comparison of different solutions.

Key words Bioinformatics, Evolutionary biology, Big data, Parallelization, MPI, Cloud computing,
Cluster computing, Virtual machine, MrBayes, Debian Linux, GNUGuix, Bioconda, CWL, Common
Workflow Language, Guix Workflow Language, Snakemake, Nextflow
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Availability: All included software, scripts, and Docker images are based on free and open-source software and
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1 Introduction

1.1 Overview In this chapter, we show how to create a bioinformatics pipeline
using four workflow systems: CWL, GWL, Snakemake, and Next-
flow. We show how to put them together, so you can adapt it for
your own purposes while discussing in the process the different
approaches. All scripts and source code can be found on GitHub.
The online material allows a direct comparison of how such work-
flows are assembled with their syntax.

Due to large volumes, the analysis and integration of data
generated by high-throughput technologies have become compu-
tationally intensive, and analysis can no longer happen on a typical
desktop computer. Researchers therefore are faced with the need to
scale analyses efficiently by using high-performance compute
clusters or cloud platforms. At the same time, they have to make
sure that these analyses run in a reproducible manner. And in a
clinical setting, time becomes an additional constraint, with moti-
vation to generate actionable results within hours.

In the case of evolutionary genomics, lengthy computations are
often multidimensional. Examples of such expensive calculations
are Bayesian analyses, inference based on hidden Markov models,
and maximum likelihood analysis, implemented, for example, by
MrBayes [1], HMMER [2], and phylogenetic analysis by maximum
likelihood (PAML) [3]. Genome-sized data, or Big Data [4, 5],
such as produced by high-throughput sequencers, as well as grow-
ing sample size, such as from UK Biobank, the Million Veterans
Program, and the other large genome-phenome projects, are
exacerbating the computational challenges, e.g., [6].

In addition to being computationally expensive, many imple-
mentations of major algorithms and tools in bioinformatics do not
scale well. One example of legacy software requiring lengthy com-
putation is Ziheng Yang’s CodeML implementation of PAML
[3]. PAML finds amino acid sites that show evidence of positive
selection using dN/dS ratios, i.e., the ratio of nonsynonymous and
synonymous substitution rate. For further discussion see also
Chapter. 12. Executing PAML over an alignment of 100 sequences
may take hours, sometimes days, even on a fast computer. PAML
(version 4.x) is designed as a single-threaded process and can only
exploit one central processing unit (CPU) to complete a calcula-
tion. To test hundreds of alignments, e.g., different gene families,
PAML is invoked hundreds of times in a serial fashion, possibly
taking days on a single computer. Here, we use PAML as an
example, but the idea holds for any software program that is CPU
bound, i.e., the CPU speed determines program execution time. A
CPU bound program will be at (close to) 100% CPU usage. Many
legacy programs are CPU bound and do not scale by themselves.
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Most bioinformatics (legacy) programs today do not make effective
use of multi-core computers

The reason most bioinformatics software today does not make
full use of multicore computers or GPUs is because writing such
software is difficult. (See also the text box below for a further
treatment of this topic; see Box 1.)

A common parallelization strategy in bioinformatics is to start
with an existing nonparallel application and run it by dividing data
into independent units of work or jobs which run in parallel and do
not communicate with each other. This is also known as an “embar
rassingly parallel” solution, and we will pursue this below.

1.2 Parallelization in

the Cloud

Cloud computing allows the use of “on-demand” CPUs accessible
via the Internet and is playing an increasingly important role in
bioinformatics. Bioinformaticians and system administrators previ-
ously had to physically install and maintain large compute clusters
to scale up computations, but now cloud computing makes it
possible to rent and access CPUs, GPUs, and storage, thereby
enabling a more flexible concept of on-demand computing
[7]. The cloud scales and commoditizes cluster infrastructure and
management and, in addition, allows users to run their own
operating system, usually not true with existing cluster and GRID
infrastructure (a GRID is a heterogeneous network of computers
that act together). A so-called hypervisor sits between the host
operating system and the guest operating system, and it makes
sure they are clearly separated while virtualizing host hardware.
This means many guests can share the same machine that appears
to the users as a single machine on the network. This allows
providers to efficiently allocate resources. Containers are another
form of light virtualization that is now supported by all the main
cloud providers, such as Google, Microsoft, Rackspace OpenStack,
and Amazon (AWS). Note that only OpenStack is available as free
and open-source software.

An interesting development is that of portable batch systems
(PBS) in the cloud. PBS-like systems are ubiquitous in high-
performance computing (HPC). Both Amazon EC2 andMicrosoft
Cloud offer batch computing services with powerful configuration
options to run thousands of jobs in the cloud while transparently
automating the creation and management of virtual machines and
containers for the user. As an alternative, Arvados is an open-source
product specifically aimed at bioinformatics applications that makes
the cloud behave as if it is a local cluster of computers, e.g., [8].

At an even higher level, MapReduce is a framework for
distributed processing of huge datasets, and it is well suited for
problems using large number of computers [9]. The map step takes
a dataset and splits it into parts and distributes them to worker
nodes. Worker nodes can further split and distribute data. At the
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reduce step, data is combined into a result, i.e., it is an evolved
scatter and gather approach. An API is provided that allows pro-
grammers to access functionality. The Apache Hadoop project
includes a MapReduce implementation and a distributed file system
[10] that can be used with multiple cloud providers and also on
private computer clusters. Another similar example is the Apache
Spark project based on resilient distributed datasets (RDD)—a
fault-tolerant collection of elements that can be accessed and oper-
ated on in parallel.

The advantage of such higher-level systems is that they go well
beyond hardware virtualization: not only the hardware infrastruc-
ture but also the operating system, the job scheduler, and resource
orchestration are abstracted away. This simplifies data processing,
parallelization, and the deployment of virtual servers and/or con-
tainers. The downside is that users have less control over the full
software stack and often needs to program and interact with an
application programmers interface (API).

Overall, in the last decade, both commercial and noncommer-
cial software providers have made cloud computing possible. Bioin-
formaticians can exploit these services.

1.3 A Pipeline for the

Cloud

To create a bioinformatics pipeline, it is possible to combine remote
cloud instances with a local setup. Prepare virtual machines or
containers using similar technologies on a local network, such as a
few office computers or servers, and then use these for calculations
in the cloud when an analysis takes too long. The cloud computing
resources may, for instance, support a service at peak usage, while
regular loads are met with local infrastructure (i.e., burst compute).
New ideas can be developed and pre-evaluated using modest
in-house setups and then scaled to match the most demanding
work.

Cloud services can be used for burst computing – enabling local
clusters to be much smaller – as small as a single computer

In the following sections, we will provide instructions to deploy
applications, and we will show how the use of workflow systems and
reproducible environments can greatly simplify running scalable
workflows on different environments, including the cloud.

1.4 Parallelization of

Applications Using a

Workflow

In case of embarrassingly parallel applications, programs are run
independently as separate processes which do not communicate
with each other. This is also a scatter and gather approach, i.e.,
inputs split into several jobs are fed into each process by the user.
Job outputs are collected and collated. In bioinformatics, such tasks
are often combined into computational pipelines. With the PAML
example, each single job can be based on one alignment, potentially
giving linear speed improvements by distributing jobs across multi-
ple CPUs and computers. In other words, the PAML software, by
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itself, does not allow calculations in parallel, but it is possible to
parallelize multiple runs of PAML by splitting the dataset. The
downside of this approach is the deployment and configuration of
pipeline software, as well as the management and complexity of
splitting inputs and the collecting and collating of outputs. Also,
pipelines are potentially fragile, because there is no real interprocess
communication. For example, it is hard to predict the conse-
quences of a storage or network error in the middle of a week- or
month-long calculation.

Even for multithreaded applications that make use of multiple
CPUs, such as BLAST and MrBayes, it is possible to scale up
calculations by using a workflow. For example, MrBayes-MPI ver-
sion 3.1.2 does not provide between-machine parallelization and is
therefore machine bound, i.e., the machine’s performance deter-
mines the total run time. Still, if one needs to calculate thousands of
phylogenetic trees, discrete jobs can be distributed across multiple
machines. A similar approach is often used for large-scale BLAST
analyses over hundreds of thousands of sequences.

A pipeline typically consists of linear components, where one
software tool feeds into another, combined with a scattering of jobs
across nodes and a gathering and collation of results.

In existing compute clusters, to distribute work across nodes,
portable batch system (PBS) schedulers are used, such as Slurm
[11]. Many pipelines in bioinformatics are created in the form of
Bash, Perl, or Python scripts that submit jobs to these schedulers.
Such scripted pipelines have the advantage that they are easy to
write and adaptable to different needs. The downside is that they
are hard to maintain and not very portable, since the description of
the environment and the software packages are not part of these
scripts, reducing or completing preventing the reproducibility of a
certain analysis in a different context. This has led to the current
state of affairs in bioinformatics that it is surprisingly hard to share
pipelines and workflows. As a result much effort is spent reinvent-
ing the wheel.

Most existing bioinformatics pipelines cannot easily be shared and
reproduced

In recent years, a number of efforts have started to address the
problem of sharing workflows and making analyses reproducible.
One example is the Common Workflow Language (CWL), a speci-
fication for describing analysis workflows and tools in a way that
makes them portable and scalable across a variety of environ-
ments—from workstations to cluster, cloud, and HPC environ-
ments. CWL is a large bioinformatics community effort. Different
platforms support CWL, including Arvados, Galaxy, and Seven
Bridges [8].
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A second workflow language is the Guix Workflow Language
(GWL) built on top of the GNUGuix software deployment system.
GWL aims to provide a deterministic and bit-reproducible analysis
environment.

A third workflow language and orchestrator, Nextflow, allows
scalable and reproducible scientific workflows to run seamlessly
across multiple platforms from local computers to HPC clusters
and the cloud, offering a concise and expressive DSL to describe
complex workflows. Nextflow is routinely used in organizations
and institutes, such as the Roche Sequencing, the Wellcome Trust
Sanger Institute, and the Center for Genomic Regulation (CRG)
Nextflow workshop.

Forth there is Snakemake, another widely used workflow man-
ager system, written in Python and inspired by GNU Make. It
allows for the composition of workflows based on a graph of rules
whose execution is triggered by the presence, absence, or modifica-
tion of expected files and directories.

It is interesting to note that all these workflow languages and
systems originated in bioinformatics. It suggests that in this rapidly
growing field, the increasing computational needs and moreover
the diverse demands made more formal solutions a necessity. It also
suggests that existing workflow engines used in astronomy and
physics, for example, have different requirements.

Box 1: Understanding Parallelization
Parallel computing is related to concurrent computing. In
parallelized computing, a computational task is typically bro-
ken down in several, often many, very similar subtasks that can
be processed independently and whose results are combined
afterward, upon completion, i.e., a simple scatter and gather
approach. In contrast, in distributed computing, the various
processes often do not address related tasks; or when they do,
the separate tasks may have a varied nature and often require
some interprocess communication during execution. The lat-
ter is also a hallmark of supercomputing where compute
nodes have high-speed connections.

In the bioinformatics space, we usually discuss embarrass-
ingly parallel computing which means similar tasks are
distributed across multiple CPUs without interprocess com-
munication. This can be among multiple cores within a single
processor, a multiprocessor system, or a network of compu-
ters, a so-called compute cluster.

Even so, parallel multicore programming easily becomes
complex. Typically, parallel programming has to deal with
extra data and control flow; it has to deal with deadlocks,

(continued)
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Box 1: (continued)
where depending tasks wait for each other forever and, with
race conditions, where tasks try to modify a shared resource
(e.g., a file) at the same time resulting in a loss of data or an
undetermined condition. This introduces additional com-
plexity in software development, bug hunting, and code
maintenance. Typically it takes more time to debug such
code than to write it.

Writing programs that fully utilize multi-core architectures is hard

Not only is parallel programming intrinsically complicated;
programmers also have to deal with communication overheads
between parallel threads. MrBayes, for example, a program for
calculating phylogenetic trees based on Bayesian analysis, comes
with MPI support. MPI is a message-based abstraction of paralle-
lization, in the form of a binary communication protocol imple-
mented in a C programming library [12]. In some cases the
parallelized version is slower than the single CPU version. For
example, the MPI version calculates each Markov chain in parallel,
and the chains need to be synchronized with each other, in a
“scatter and gather” pattern. The chains spend time waiting for
each other in addition to the communication overheads introduced
by MPI itself. Later MrBayes adopted a hybrid use of coarse-
grained OpenMPI and fine-grained use of pthreads or OpenMP
leading to improved scalability, e.g., [13].

Another example of communication overhead is with the sta-
tistical programming language R [14], which does not have native
threading support built into the language. One possible option is to
use an MPI-based library which only allows coarse-grained paralle-
lization from R, as each parallelized R thread starts up an R
instance, potentially introducing large overheads, both in commu-
nication time and memory footprint. For a parallelized program to
be faster than its single-threaded counterpart, these communica-
tion overheads have to be dealt with.

Parallelization in R is coarse-grained with large overhead

The need for scaling up calculations on multi-CPU computers
has increased the interest in a number of functional programming
languages, such as Erlang [15], Haskell [16], Scala [17], and Julia
[18]. These languages promise to ease writing parallel software by
introducing a higher level of abstraction of parallelization, com-
bined with immutable data, automatic garbage collection, and
good debugging support [5, 19]. For example, Erlang and Scala
rely on Actors as an abstraction of parallelization and make
reasoning about fine-grained parallelization easier and therefore
less error prone.
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Actors were introduced and explored by Erlang, a computer
language originally designed for highly parallelized telecommuni-
cations computing. To the human programmer, each Actor appears
as a linear piece of programming and is parallelized without the
complexity of locks, mutexes, and semaphores. Actors allow for
parallelization in a manageable way, where lightweight threads are
guaranteed to be independent and each has a message queue,
similar to MPI. Actors, however, are much faster, more intuitive,
and, therefore, probably, safer than MPI. Immutable data, when
used on a single multi-CPU computer, allows fast passing of data by
reference between Actors. When a computer language supports the
concept of immutability, it guarantees data is not changed between
parallel threads, again making programming less error prone and
easier to structure. Actors with support for immutable data are
implemented as an integral part of the programming language in
Erlang, Haskell, Scala, Elixir, and D [20].

Another abstraction of parallelized programming is the intro-
duction of goroutines, part of the Go programming language
[21]. Where MPI and Actors are related to a concept of message
passing and mail boxes, goroutines are more closely related to Unix
named pipes. Goroutines also aim to make reasoning about paral-
lelization easier, by providing a pipe where data goes in and results
come out, and this processing happens concurrently without use of
mutexes, making it easier to reason about linear code. Goroutines
are related to communicating sequential processes (CSP), the orig-
inal paper by TonyHoare in 1978 [22]. Meanwhile, recent practical
implementations are driven by the ubiquity of cheap multicore
computers and the need for scaling up. A Java implementation of
CSP exists, named JCSP [23], and a Scala alternative named CSO
[24]. Go made goroutines intuitive and a central part of the
strongly typed compiled language.

Erlang, Elixir, Haskell, Scala, Julia, Go andD are languages offering
useful abstractions and tools for multi-core programming

It is important to note that the problems, ideas, and concepts of
parallel programming are not recent. They have been an important
part of computer science theory for decennia. We invite the reader
interested in parallel programming to read up on the languages that
have solid built-in support high-level parallelization abstractions, in
particular, Scala [17], Go [21], and D [20].

1.4.1 GPU Programming Another recent development is the introduction of GPU comput-
ing or “heterogeneous computing” for offloading computations.
Most GPUs consist of an array of thousands of cores that can
execute similar instructions at the same time. Having a few
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thousand GPU cores can speed up processing significantly. Pro-
gramming GPUs, however, is a speciality requiring specialized
compilers and communication protocols, and there are many con-
siderations, not least the I/O bottleneck between the main mem-
ory and the GPU’s dedicated RAM [5]. Even so, it is interesting to
explore the use of GPUs in bioinformatics since they come with
almost every computer today and clusters of GPU can increasingly
be found in HPC infrastructure and in the cloud, alike. With the
advent of “deep neural networks” and the general adoption of
machine learning techniques for Big Data, GPUs have become a
mainstream technology in data mining.

2 Package Software in a Container

Container technologies, such as Docker and Singularity, have
gained popularity because they have less overhead than full virtual
machines (VMs) and are smaller in size [24]. Containers are fully
supported by the major cloud computing providers and play an
important role for portability across different platforms.

Adoption of container solutions onHPC has been problematic,
mostly because of security concerns. Singularity [26] offers a
decentralized environment encapsulation that works in user space
and that can be deployed in a simpler way since no root privileges
are required to execute tools provided with Singularity. That is,
Singularity containers can be created on a system with root privi-
leges but run on a system without root privileges—though it
requires some special kernel support. Docker containers can be
imported directly in Singularity, so when we present how to build
Docker container images in the following sections, the reader
should be aware that the same images can also be used with Singu-
larity. Singularity is slowly being introduced in HPC setups [27].

GNU Guix also has support for creating and running Linux
containers. One interesting benefit is that, because the software
packaging system is read-only and provides perfect isolation, con-
tainers automatically can share specific software running on the
underlying system, making running containers even lighter and
extremely fast.

In this section we discuss three popular software distribution
systems for Linux: Debian GNU/Linux (Debian), GNUGuix, and
Conda can be used together on a single system allowing access to
most bioinformatics software packages in use today. In this section
we bundle tools that can be deployed in a Docker image, which can
run on a single multicore desktop computer and a compute cluster
and in the cloud.
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2.1 Debian Med Debian (http://www.debian.org) is the oldest software distribution
(started 1993) mentioned here with the largest body of software
packages. Debian targets a wide range of architectures and includes
a kernel plus a large body of other user software including graphical
desktop environments, server software, and specialist software for
scientific data processing. Overall Debian represents millions of
users and targets most platforms in use today, even though it is
not the only packaging system around (RPM being a notable
alternative, for RedHat, Fedora, OpenSuSE, and CentOS).

Debian Med is a project within Debian that packages software
for medical practice and biomedical research. The goal of Debian
Med is a complete open system for all tasks in medical care and
research [28]. With Debian Med over 400 precompiled bioinfor-
matics software programs are available for Linux, as well as some
400 R packages. Proper free and open-source software (FOSS) can
easily be packaged and distributed through Debian. Debian and its
derivatives, such as Ubuntu andMint, share the deb package format
and have a long history of community support for bioinformatics
packages [28, 29].

2.1.1 Create a Docker

Image with Debian

Using the bio packages already present in Debian, it is straightfor-
ward to build a Docker container that includes all the necessary
software to run the example workflows. Here is the code for creat-
ing the Docker image (see also [30]). We created a pre-built Docker
image which is available on Docker Hub [31].

Essentially, write a Docker script:

FROM debian:buster

RUN apt-get update && apt-get -y install perl clustalo paml

ADD pal2nal.pl /usr/local/bin/pal2nal.pl

RUN chmod +x /usr/local/bin/pal2nal.pl

And build and run the container:

docker build -t scalability_debian -f Dockerfile.debian

2.2 GNU Guix GNU Guix (https://www.gnu.org/software/guix/) is a package
manager of the GNU project that can be installed on top of other
Linux distributions and represents a rigorous approach toward
dependency management [32]. GNU Guix software packages are
uniquely isolated by a hash value computed over all inputs, includ-
ing the source package, the configuration, and all dependencies.
This means that it is possible to have multiple versions of the same
software and even different variants or combinations of software,
e.g., Apache web server with SSL and without SSL compiled on a
single system.
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As of November 2017, GNU Guix provides over 6500 soft
ware packages, including a wide range of dedicated scientific soft-
ware for bioinformatics, statistics, and machine learning

2.2.1 Create a Docker

Image with GNU Guix

GNUGuix has native support for creating Docker images. Creating
a Docker image with GNU Guix is a one liner:

guix pack -f docker -S /bin=bin paml clustal-omega

which creates a reproducible Docker image containing PAML and
Clustal Omega [33], including all of their runtime dependencies.
Guix makes it very easy to write new package definitions using the
Guile language (a LISP). If you want to include the definition of
your own packages (that are not in Guix main line), you can include
them dynamically. This is how we add pal2nal [34] in below GWL
workflow example (see Subheading 3.3 below).

2.3 Conda Conda (https://conda.io/docs/) is a cross-platform package man-
ager written in Python that can be used to install software written in
any language. Conda allows the creation of separate environments
to deploy multiple or conflicting packages versions, offering a
means of isolation. Note that this isolation is not as rigorous as
that provided by GNU Guix or containers. The Bioconda [35]
(https://bioconda.github.io/) project provides immediate access
to over 2900 software packages for bioinformatics, and it is main-
tained by an active community of more than 200 contributors.

2.3.1 Create a Docker

Image with Bioconda

A Docker container can be created starting from the “Miniconda”
image template, which is based on Debian. The Docker instruc-
tions are comparable to those of Debian above:

FROM conda/miniconda3

RUN conda config --add channels conda-forge

RUN conda install -y perl=5.22.0

RUN conda install -y -c bioconda paml=4.9 clustalo=1.2.4

wget=1.19.1

ADD pal2nal.pl /usr/local/bin/pal2nal.pl

RUN chmod +x /usr/local/bin/pal2nal.pl

Note that we provide the version numbering of the packages. If
you want to build this container, you can use the Dockerfile
provided in the GitHub repository [30] and then run:

docker build -t scalability .

We also added a pre-built container image on Docker
Hub [31].

Conda can also be used outside any container system to install
the software directly on a local computer or cluster. To do that first
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install the Miniconda package https://conda.io/miniconda.html,
and then you can create a separate environment with the necessary
software to run the workflows. Following is an example to set up a
working environment:

conda create -n scalability

source activate scalability

conda config --add channels conda-forge

conda install -y perl=5.22.0

conda install -y -c bioconda paml=4.9 clustalo=1.2.4

wget=1.19.1

wget http://www.bork.embl.de/pal2nal/distribution/pal2nal.

v14.tar.gz

tar xzvf pal2nal.v14.tar.gz

sudo cp pal2nal.v14/pal2nal.pl /usr/local/bin

sudo chmod +x /usr/local/bin/pal2nal.pl

Note that we use Miniconda here to bootstrap Bioconda.
Bioconda can be bootstrapped in other ways. One of them is
GNU Guix which contains a Conda package.

2.4 A Note on

Software Licenses

All above packaging systems use free and open-source software
(FOSS) released under a permissible license, i.e., a license permit-
ting the use, modification, and distribution of the source code for
any purpose. This is important because it allows software distribu-
tions to distribute all included software freely. Software that is made
available under more restrictive licenses, such as for “academic
nonprofit use only,” cannot be distributed in this way. An example
is PAML that used to have such a license. Only when it was changed
PAML got included into Debian, etc. Also, for this book chapter,
we asked the author of pal2nal to add a proper license. After adding
the GPLv2, it became part of the Debian distribution; see also
https://tracker.debian.org/pkg/pal2nal. This means that above
Docker scripts can be updated to install the pal2nal Debian
package.

When you use scientific software, always check the type of
license under which it is provided, to understand what you can or
cannot do with it. When you publish software, add a license along
with your code, so others can use it and distribute it.

Typical licenses used in bioinformatics are MIT (Expat) and
BSD, which are considered very permissive, and also GPL and the
Apache License, which are designed to grant additional protections
with regard to derivative works and patentability. Whenever possi-
ble, free software licenses such as mentioned above are encouraged
for scientific software. Check the guidelines of your employer and
funding agencies.
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3 Create a Scalable and Reusable Workflow

3.1 Example

Workflow

We have created a number of examples to test a scalable and
reproducible workflow, the full code, and examples that are avail-
able on GitHub [30]. In this case putative gene families of the
oomycete Phytophthora infestans are tested for evidence of positive
selection. P. infestans is a single-cell pathogen, which causes late
blight of potato and tomato. Gene families under positive selection
pressure may be involved in protein–protein interactions and are
potentially of interest for fighting late blight disease.

As an example the P. infestans genome data [36] was fetched
from http://www.broadinstitute.org/annotation/genome/phyto
phthora_infestans/MultiDownloads.html, and predicted genes
were grouped by \name{blastclust} using 70% identity (see also
Chapter. 21). This resulted in 72 putative gene families listed on
the online repository on GitHub [30].

The example workflow aligns amino acid sequences using Clus-
tal Omega, creates a neighbor joining tree, and runs CodeML from
the PAML suite. The following is one example to look for evidence
of positive selection in a specific group of alignments:

clustalo -i data/clusterXXXXX/aa.fa --guidetree-out=data/

clusterXXXXXX/aa.ph > data/clusterXXXXXX/aa.aln

pal2nal.pl -output paml data/clusterXXXXX/aa.aln data/clus-

terXXXXX/nt.fa > data/clusterXXXXX/alignment.phy

cd data/clusterXXXXX

Codeml ../paml0-3.ctl

First we align amino acid with Clustal Omega, followed by
translation to a nucleotide alignment with pal2nal. Next we test
for evidence of positive selection using PAML’s \name{Codeml}
with models M0–M3. Note that the tools and settings used here are
merely chosen for educational purposes. The approach itself here
may result in false positives, as explained by Schneider et al.
[37]. Also, PAML is not the only software that can test for evidence
of positive selection, for example, the HyPhy molecular evolution
and statistical sequence analysis software package contains similar
functionality and uses MPI to parallelize calculations [38]. PAML is
used here because it is a reference implementation and is suitable as
an example how a legacy single-threaded bioinformatics application
can be parallelized in a workflow.

In the next section, different workflow systems are presented
that can be used to run the described analysis: in a scalable and
reproducible manner, locally on a desktop, on a computer cluster,
or in the cloud. All the code and data to run these examples is
available on GitHub [30]. To load the code on your desktop, clone
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the git repository locally. The examples can be executed from the
repository tree:

git clone https://github.com/EvolutionaryGenomics/scalabil-

ity-reproducibility-chapter.git

3.2 Common

Workflow Language

Common workflow language (CWL, http://www.commonwl.
org/) is a standard for describing workflows that are portable across
a variety of computing platforms [39]. CWL is a specification and
not a software in itself though it comes with a reference implemen-
tation which can be run with Docker containers. CWL promotes an
ecosystem of implementations and supporting systems to execute
the workflows across multiple platforms. The promise is that when
you write a workflow for, e.g., Arvados, it should also run on
another implementation, e.g., Galaxy.

Given that CWL takes inspiration from previously developed
tools and GNUMake in particular [40], the order of execution in a
CWL workflow is based on dependencies between the required
tasks. However unlike GNU Make, CWL tasks are defined to be
isolated, and you must be explicit about inputs and outputs. The
benefits of explicitness and isolation are flexibility, portability, and
scalability: tools and workflows described with CWL can transpar-
ently leverage software deployment technologies, such as Docker,
and can be used with CWL implementations from different ven-
dors, and the language itself can be applied to describe large-scale
workflows that run in HPC clusters, or the cloud, where tasks are
scheduled in parallel across many nodes.

CWL workflows are written in JSON or YAML formats. A
workflow consists of blocks of steps, where each step in turn is
made up of a task description that includes the inputs and outputs
of the task itself. The order of execution of the tasks is determined
automatically by the implementation engine. In the GitHub repos-
itory, we show an example of a CWL workflow to describe the
analysis over the protein alignments. To test the workflow, you
will need the CWL reference runner implementation:

pip install cwlref-runner

and then to run the example from the repository tree:

CWL/workflow.cwl --clusters data

To run the CWL workflow on a grid or cloud multi-node
system, we can install another CWL implementation, this one
built upon the toil platform [41]:

pip install toil[cwl]

toil-cwl-runner CWL/workflow.cwl --clusters data
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CWL comes with extra tooling, such as visualization of CWL
workflows (Fig. 1). See view.commonwl.org for more examples.

3.3 Guix Workflow

Language

The Guix Workflow Language (GWL) extends the functional pack-
age manager GNU Guix [32] with workflow management capabil-
ities. GNU Guix provides an embedded domain-specific language
(EDSL) for packages and package composition. GWL extends this
EDSL with processes and process composition.

In GWL, a process describes the computation, for example,
running the clustalo program. A workflow in the GWL describes
how processes relate to each other. For example, the Codeml
program can only run after both clustalo and pal2nal finished
successfully.

The tight coupling of GWL and GNU Guix ascertains that not
only the workflow is described rigorously but also the deployment
of the programs on which the workflow depends.

To run the GWL example, you need to install GNU Guix
(https://www.gnu.org/software/guix/manual/html_node/
Binary-Installation.html) and the GWL installed on your com-
puter. Once GNU Guix is available, installing GWL can be done
using:

guix package -i gwl

Workflow Inputs

nucleotides proteins

nucleotides clustal

protein_alignment

sequences

codeml

nucleotides alignment

Workflow Outputs

dN/dS results proteins alignment guide tree

pal2nal tree

multi_sequence

Fig. 1 Workflow automatically generated from the CWL schema displays how
PAML’s Codeml receives inputs from two sources and outputs the dN/dS infor-
mation. A workflow engine figures out that it has to run clustal first, followed by
pal2nal and Codeml as a linear sequence. For each input, the job can be
executed in parallel
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The example can be run using:

cd scalability-reproducibility-chapter/GWL

guix workflow -r example-workflow

GWL also implements execution engines to offload computa-
tion on compute clusters, allowing it to scale. The process engines
can use the package composition capabilities of GNU Guix to
create the desirable form of software deployment—be it installing
programs on the local computer or creating an application bundle,
a Docker image, or a virtual machine image.

Running our example on a cluster that has Grid Engine:

guix workflow -r example-workflow -e grid-engine

GNU Guix + GWL can ensure full reproducibility of an analy-
sis, including all software dependencies—all the way down to glibc.
GNU Guix computes a unique string, a hash, on the complete set
of inputs and the build procedure of a package. It can guarantee
that a package is built with the same source code, dependency
graph, and the same build procedure, and produces identical out-
put. In GWL for each process and workflow, a hash is computed of
the packages, the procedure, and the execution engine. By compar-
ing hashes it is not only possible to compare whether the workflow
is running using the exact same underlying software packages, and
using the same procedures, but also the full graph of dependencies
can be visualized. To obtain such an execution plot:

guix package -i graphviz

guix workflow -g example-workflow | dot -Tpdf > example-

workflow.pdf

Note that, unlike the other workflow solutions discussed here,
GWL does not use the time stamps of output files. The full depen-
dency graph is set before running the tools, and it only needs to
check whether a process returns an error state. This means that
there are no issues around time stamps and output files do not have
to be visible to the GWL engine.

3.4 Snakemake Snakemake [42] is a workflow management system that takes inspi-
ration from GNU Make [40], a tool to coordinate the compilation
of large programs consisting of interdependent source files
(https://snakemake.readthedocs.io/en/stable/).

Snakemake provides a DSL that allows the user to specify
generator rules. A rule describes the steps that need to be per-
formed to produce one or more output files, such as running a
shell script. These output files may be used as inputs to other rules.
The workflow is described as a graph in which the nodes are files
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(provided input files, generated intermediate files, or the desired
output files) and the edges are inferred from the input/output
interdependencies of connected rules.

When a user requests a certain file to be generated, Snakemake
matches the file name against concrete or wildcard rules, traverses
the graph from the target file upward, and begins processing the
steps for every rule for which no new output file is available.
Whether or not an output file is considered new depends on its
time stamp relative to the time stamp of prerequisite input files. In
doing so, Snakemake only performs work that has not yet been
done or for which the results are out of date, just like GNU Make.
Snakemake can be configured to distribute jobs to batch systems or
to run jobs on the local system in parallel. The degree of paralleliza-
tion depends on the dependencies between rules.

Snakemake is written in Python and allows users to import
Python modules and use them in the definition of rules, for exam-
ple. It also has special support for executing R scripts in rules, by
exposing rule parameters (such as inputs, outputs, concrete values
for wildcards, etc.) as an S4 object that can be referenced in the R
script.

Snakemake provides native support for the Conda package
manager. A rule may specify a Conda [35] environment file describ-
ing a software environment that should be active when the rule is
executed. Snakemake will then invoke Conda to download the
required packages as specified in the environment file. Alternatively,
Snakemake can interface with an installation of the Singularity
container system [26] and execute a rule within the context of a
named application bundle, such as a Docker image.

To run the Snakemake workflow, you need to install Snakemake
(example showed with Conda):

conda install -y -c bioconda snakemake=4.2.0

And then to run the example from the repository tree:

cd Snakemake

snakemake

3.5 Nextflow Nextflow [43] is a framework and an orchestration tool that enables
scalable and reproducible scientific workflows using software con-
tainers (https://www.nextflow.io/). It is written in the Groovy
JVM programming language [44] and provides a domain-specific
language (DSL) that simplifies writing and deploying complex
workflows across different execution platforms in a portable
manner.

A Nextflow pipeline is described as a series of processes, where
each process can be written in any language that can be executed or
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interpreted on Unix-like operating systems (e.g., Bash, Perl, Ruby,
Python, etc.). A key component of Nextflow is the dataflow pro-
gramming model, which is a message-based abstraction for parallel
programming similar to the CSP paradigm (see [23]). The main
difference between CSP and dataflow is that in the former, pro-
cesses communicate via synchronous messages, while in the latter,
the messages are sent in an asynchronous manner. This approach is
useful when deploying large distributed workloads because it has
latency tolerance and error resilience. In practical term the dataflow
paradigm uses a push model in which a process in the workflow
sends its outputs over to the downstream processes that waits for
the data to arrive before starting their computation. The commu-
nication between processes is performed through channels, which
define inputs and outputs for each process. Branches in the work-
flow are also entirely possible and can be defined using conditions
that specify if a certain process must be executed or not depending
on the input data or on user defined parameters.

The dataflow paradigm is the closest representation of a pipe-
line idea where, after having opened the valve at the beginning, the
flow progresses through the pipes. But Nextflow can handle this
data flow in a parallel and asynchronous manner, so a process can
operate on multiple inputs and emit multiple outputs at the same
time. In a simple workflow where, for instance, there are 100 nucle-
otide sequences to be aligned with the NCBI NT database using
BLAST, a first process can compute the alignment of the
100 sequences independently and in parallel, while a second process
will wait to receive and collect each of the outputs from the
100 alignments to create a final results file. To allow workflow
portability, Nextflow supports multiple container technologies
such as Docker and Singularity and integrates natively with Git
and popular code sharing platforms, such as GitHub. This makes
it possible to precisely prototype self-contained computational
workflows, tracking also all the modifications over time and ensur-
ing the reproducibility of any former configuration. Nextflow
allows executing workflows across different computing platforms
by supporting several cluster schedulers (e.g., SLURM, PBS, LSF
and SGE) and allowing direct execution on the Amazon cloud
(AWS), using services, such as AWS Batch or automating the crea-
tion of a compute cluster in the cloud for the user.

To run the Nextflow example, you need to have Java 8 and a
Docker engine (1.10 or higher) installed. Next install Nextflow
with:

curl -s https://get.nextflow.io | bash

Run the example from the repository tree:
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./nextflow run Nextflow/workflow.nf -with-docker evolutionar-

ygenomics/scalability

To save the graph of the executed workflow, it is sufficient to
add the option “-with-dag workflow.pdf.” The same example can
also be run without Docker if the required packages have been
installed locally following the Bioconda or Guix examples. In this
case you can omit the “-with-docker” instruction. To run the
example on a compute cluster or in the cloud, it is sufficient to
specify a different executor (e.g., sge or awsbatch) in the Nextflow
configuration file and ensure that those environments are config-
ured to properly work with the Docker container.

4 Discussion

In this chapter we show how to describe and execute the same
analysis using a number of workflow systems and how these follow
different approaches to tackle execution and reproducibility issues.
It is important to assess underlying design choices of these solu-
tions and also to look at the examples we provide online. Even
though it may look attractive to opt for the simplest choices, it may
be that the associated maintenance burden may be cause for regret
later.

The workflow tools introduced in this chapter offer direct
integration of software packages. The overall advantage of the
bundling software approach is that when software deployment
and execution environment are controlled, the logic of the analysis
pipeline can be developed separately using descriptive workflows.
This separation allows communities to build best practice shareable
pipelines without worrying too much about individual system
architectures and the underlying environments. An example is the
effort by the Global Alliance for Genomics and Health (GA4GH,
https://www.ga4gh.org) to develop and share best practice analysis
workflows with accompanying container images [45].

In this chapter we also discussed the scaling up of computations
through parallelization. In bioinformatics, the common paralleliza-
tion strategy is to take an existing nonparallel application and divide
data into discrete units of work, or jobs, across multiple CPUs and
clustered computers. Ideally, running jobs in parallel on a single
multicore machine shows linear performance increase for every
CPU added, but in reality it is less than linear [46]. Resource
contention on the machine, e.g., disk or network I/O, may have
processes wait for each other. Also, the last, and perhaps longest,
running job causes total timing to show less than linear perfor-
mance, as the already finished CPUs are idle. In addition to the
resource contention on a single machine, the network introduces
latencies when data is moved around.
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Running the example workflow in the cloud has similar perfor-
mance and scalability compared to running it on a local infrastruc-
ture, after adjusting for differences in hardware and network
speeds. Cloud computing is an attractive proposition for scaling
up calculation jobs and storing data. Cloud prices for virtual servers
and data storage have decreased dramatically, and the possibility of
using spot or preemptible instances (i.e., virtual servers that can be
priced down to 70% or 80% the normal price but that can be shut
down in any moment by the cloud provider) is making cloud
computing solutions competitive for high-performance and scien-
tific computing. Cloud essentially outsources hardware and related
plumbing and maintenance. Sophisticated tooling allows any
researcher to run software in the cloud. We predict an increasing
number of groups and institutes will move from large-scale HPC
clusters toward tight HPC cluster solutions that can handle contin-
uous throughput with burst compute in the cloud.

Reproducibility is a prime concern in science. Today several
solutions are available to address reproducibility concerns. Systems
such as Docker and Singularity are built around bundling binary
applications and executing them in a container context. Advanced
package managers such as Conda or Guix allow the user to create
separate software environments where different application versions
can be deployed without collisions while ensuring control and
traceability over changes and dependencies. All these solutions
represent a different approach to address the reproducibility chal-
lenge while also offering a different user experience and requiring
different setups to work properly. For instance, container-based
systems such as Docker and Singularity are not always a viable
option in HPC environments since they may require updates to
the existing computing infrastructure. Also, HPC operating system
installations may include kernel versions that do not allow for the
so-called user namespaces, a fundamental component among the
many kernel features that together allow an application to run in an
isolated container environment. Another downside of containers is
that it is hard to assess what is in them—they act like a black box.
When creating containers with above Docker scripts, it depends on
the time they are assembled what goes in. A Debian or Conda
update between creating containers, for example, may include a
different software version therefore a different dependency graph.
Only GNU Guix containers provide a clear view on what is
contained.

Containers provide isolation from the underlying operating
system. On HPC environments it may be required to run software
outside a container. While applications built with Guix or Conda
can be run in isolation when container support is available, they do
not require these features at runtime. As a package manager Conda,
neither depends on container features nor on root privileges, but it
pays for this convenience with a lack of both process isolation and
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bit-reproducibility [47]. GNUGuix, meanwhile, provides the most
rigorous path to reproducible software deployment. In order to
guarantee that packages are built in a bit-reproducible fashion and
share binary packages, Guix requires to store packages in the direc-
tory /gnu/store. There are several work-arounds for this; one of
them is by using containers, and another is by mounting /gnu/
store from a host that has built privileges for that directory. A third
option is to build packages targeted at a different directory, but this
loses the bit-reproducibility and the convenience of binary installs.
A fourth option is to provide relocatable binary installation
packages that can be installed in a user available directory, similar
to what Bioconda does. Such packages exist for sambamba, gemma,
and the D-compiler.

Finally, each combination of these packaging and workflow
solutions occupies a slightly different region in the solution space
for the scalability and reproducibility challenge. Fortunately, the
packaging tools can be used next to each other without interfer-
ence, thereby providing a wealth of software packages for bioinfor-
matics. Today, there is hardly ever a good reason to build software
from source.

5 Questions

1. Using one of the packaging or container systems described
(e.g., Conda, Guix, or Docker), prepare a working environ-
ment to run the examples. Now try to run the workflows using
the tools presented and appreciate the different approaches to
execute the same example.

2. Compare the different syntaxes used by the tools to define a
workflow and explore how each tool describes the processes
and the dependencies in a different way.

3. Use the Amazon EC2 calculation sheet, and calculate how
much it would cost to store 100 GB in S3, and execute a
calculation on 100 “large” nodes, each reading 20 GB of
data. Do the same for another cloud provider.
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Chapter 25

Sharing Programming Resources Between Bio* Projects

Raoul J. P. Bonnal, Andrew Yates, Naohisa Goto, Laurent Gautier,
Scooter Willis, Christopher Fields, Toshiaki Katayama, and Pjotr Prins

Abstract

Open-source software encourages computer programmers to reuse software components written by others.
In evolutionary bioinformatics, open-source software comes in a broad range of programming languages,
including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times
for different languages, it is possible to share components by bridging computer languages and Bio*
projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor.
In this chapter, we compare the three principal approaches for sharing software between different

programming languages: by remote procedure call (RPC), by sharing a local “call stack,” and by calling
program to programs. RPC provides a language-independent protocol over a network interface; examples
are SOAP and Rserve. The local call stack provides a between-language mapping, not over the network
interface but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java
virtual machine stack. This functionality provides strategies for sharing of software between Bio* projects,
which can be exploited more often.
Here, we present cross-language examples for sequence translation and measure throughput of the

different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with
the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations and with call stack
bindings to BioJava and the European Molecular Biology Open Software Suite (EMBOSS).
In general, call stack approaches outperform native Bio* implementations, and these, in turn, outper-

form “RPC”-based approaches. To test and compare strategies, we provide a downloadable Docker
container with all examples, tools, and libraries included.

Key words Bioinformatics, R, Python, Ruby, Perl, Java, Web services, RPC, EMBOSS, PAML

1 Introduction

Bioinformatics has created its tower of Babel. The full set of func-
tionality for bioinformatics, including statistical and computational
methods for evolutionary biology, is implemented in a wide range
of computer languages, e.g., Java, C/C++, Perl, Python, Ruby, and
R. This comes as no surprise, as computer language design is the
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result of multiple trade-offs, for example, in strictness, convenience,
and performance. In this chapter we discuss strategies for combin-
ing solutions from different languages and look at performance
implications of combining cross-language functionality. In the pro-
cess we also highlight implications of such strategic choices.

Computer languages used in bioinformatics today typically fall
into two groups: those compiled and those interpreted. Java, C++,
and D, for example, are statically typed compiled languages,
while R, Perl, Ruby, and Python are dynamically typed interpreted
languages. In principle, a compiled language is converted into
machine code once by a language compiler, and an interpreted
language is compiled every time at runtime, the moment it is run
by an interpreter. Static typing allows a compiler to optimize
machine code for speed. Dynamic typing requires an interpreter
and resolves variable and function types at runtime. Such design
decisions cause Java, C++, and D to have stronger compile-time
type checking and faster execution speed than R, Perl, Ruby, and
Python. When comparing runtime performance of these languages,
compiled statically typed languages, such as C++, D, and Java,
generally outperform interpreted dynamically typed languages,
such as Python, Perl, and R. For speed comparison between lan-
guages, see, for example, the benchmarks game.

Statically typed compiled languages tend to produce faster code at
runtime

Runtime performance, however, is not the only criterion for
selecting a computer language. R, Perl, Ruby, and Python offer
sophisticated interactive analysis of data in an interpreted shell
which is not directly possible with C++, D, or Java. Another impor-
tant criterium may be conciseness. Interpreted languages generally
allow functionality to be written in less lines of code. The number
of lines matter, as it is often easier to grasp something expressed in a
short and concise fashion, if done competently, leading to easier
coding and maintenance of software and resulting in increased
programmer productivity. In general, with R, Perl, Ruby, and
Python, it takes less lines of code to write software than with C+
+, D, or Java; this is also visible from the examples in the bench-
marks game.

Interpreted languages allow for concise code that is easier to read
and results in increased programmer productivity

Based on the conciseness criterium, computer languages fall
into these two groups. This suggests a trade-off between execution
speed and conciseness/programmer productivity. Even so, strong
typing may help later when refactoring code, perhaps regaining
some of that lost productivity. The authors also note that in their
experience, the more programming languages one masters, the
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easier it becomes mastering new languages (with the exception,
perhaps, of Haskell). Learning new programming languages is
important when writing software.

Logically, to fully utilize the potential of existing and future
bioinformatics functionality, it is necessary to bridge between com-
puter languages. Bioinformaticians cannot be expected to master
every language, and it is inefficient to write the same functionality
for every language. For example, R/Bioconductor contains unique
and exhaustive functionalities for statistical methods, such as for
gene expression analysis [1]. The singular implementation of this
functionality in R has caused researchers to invest in learning the R
language. Others, meanwhile, have worked on building bridges
between languages. For example, RPy and Rserve allow accessing
R functionality from Python [2], and JRI and Rserve allow acces-
sing R functionality from Java [3, 4]. Other languages have similar
bindings, such as RSRuby that allows accessing R from Ruby.

Discussing other important criteria for selecting a program-
ming language, such as ease of understanding, productivity, porta-
bility, and the size and dynamics of the supporting Bio* project
developer communities, is beyond the scope of this chapter. The
authors, who have different individual preferences, wish to empha-
size that every language has characteristics driven by language
design and there is no single perfect all-purpose computer lan-
guage. In practice, the choice of a computer language depends
mainly on the individuals involved in a project, partly due to the
investment it takes to master a language. Researchers and program-
mers have prior investments and personal preferences, which have
resulted in a wide range of computer languages used in the bioin-
formatics community.

Contrasting with singular implementations, every mainstream
Bio* project, such as BioPerl [5], Biopython [6], BioRuby [7],
R/Bioconductor [1], BioJava [8], the EuropeanMolecular Biology
Open Software Suite (EMBOSS) [9], and Bio++ [10], contains
duplication of functionality. Every Bio* project consists of a
group of volunteers collaborating at providing functionality for
bioinformatics, genomics, and life science research under an
open-source software (OSS) license. The BioPerl project does
that for Perl, BioJava for Java, etc. Next to the language used, the
total coverage of functionality, and perhaps quality of implementa-
tion, differs between projects. Not only is there duplication of
effort, both in writing and testing code, but also there are differ-
ences in implementation, completeness, correctness, and perfor-
mance. For example, implementations between projects differ
even for something as straightforward as codon translation, e.g.,
in number of types of encoding and support for the translating of
ambiguous nucleotides. EMBOSS, uniquely, attempts to predict
the final amino acid in a sequence, even when there are only two
nucleotides available for the last codon.
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Whereas Chapter 25 discusses Internet data resources and how
to share them, in this chapter, we discuss how to share functional
resources by interfacing and bridging functionality between differ-
ent computer languages. This is highly relevant to evolutionary
biology as most classic phylogenetic resources were written in C,
while nowadays phylogenetic routines are written in Java, Perl,
Python, Ruby, and R. Especially for communities with relatively
few software developers, we argue here that it is important to
bridge these functional resources from multiple languages. For
bridging, strategies are here discussed to invoke one program
from another, use some form of remote procedure calls (RPC), or
use a local call stack.

1.1 Bridging

Functional Resources

Calling from Program

to Program

The most simple way of interfacing software is by invoking one
program from another. This strategy is often used in Bio* projects,
for example, for invoking external programs. A regular subset
would be PAML [11], HMMER [12], ClustalW [13], MAFFT
[14], Muscle [15], BLAST [16], and MrBayes [17]. The Bio*
projects typically contain modules which invoke the external pro-
gram and parse the results. The advantage of this approach is that it
mimics running a program on the command line, so invocation is
straightforward. Another advantage, in a web service context, is
that if the called program crashes, it does not have to take the whole
service down. There are also some downsides, however. Loading a
new instance of a program every time incurs extra overhead. More
importantly, nonstandard input and output makes the interface
fragile, i.e., what happens when input or output differs between
two versions of a program? A further downside is that external
programs do not have fine-grained function access and have no
support for advanced error handling and exceptions. What hap-
pens, for example, when the invoked program runs out of process
memory? How to handle that gracefully? A final complication is
that such a program is an external software deployment depen-
dency, which may be hard to resolve for an end user.

1.2 Remote

Procedure Call

In contrast to calling one program from another, true cross-
language interfacing allows one language to access functions
and/or objects in another language, as if they are native function
calls. To achieve transparent function calls between different com-
puter languages, there are two principal approaches. The first
approach is for one language to call directly into another language’s
function or method over a network interface, the so-called remote
procedure call (RPC). The second approach is to call into another
language over a local “call stack.”

In bioinformatics, cross-language RPC comes in the form of
web services and binary network protocols. A web service applica-
tion programming interface (API) is exposed, and a function call
gets translated with its parameters into a language-independent
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format, a procedure called “marshalling.” After calling the function
on a server, the result is returned in, for example, XML and trans-
lated back through “unmarshalling.” Examples of cross-language
XML protocols are SOAP [18] and XML/RPC [19].

More techniques exist for web service-type cross-language
RPC. For example, representational state transfer (REST), or
ReSTful [20], is a straightforward HTTP protocol, often preferred
over SOAP because of its simplicity. Another XML-based protocol
is Resource Description Framework (RDF), as part of the semantic
web specification. Both REST and RDF can be used for RPC
solutions.

In addition, binary alternatives exist because XML-based pro-
tocols are not very efficient. XML is verbose, increasing the data
load, and requires parsing at both marshalling and unmarshalling
steps. In contrast, binary protocols are designed to reduce the data
transfer load and increase speed. Examples of binary protocols are
Rserve [3], which is specifically designed for R, and Google proto-
col buffers [21]. Another software framework based on a binary
protocol is Thrift, by the Apache software foundation, designed for
scalable cross-language service development [22]. Finally, also
worth considering are very fast interoperable messaging-based
paradigms, such as ZeroMQ [23], and high-level message-level
optimizers, such as GraphQL.

1.3 Local Call Stack The alternative to RPC is to create native local bindings from one
language to another using a shared native call stack, essentially
linking into code of a different computer language. With the call
stack, function calls do not run over the network but over a stack
implementation in shared computer memory. In a single virtual
machine, such as the JVM and Erlang Beam, compiled code can
share the same call stack, which can make cross-language calling
efficient. For example, the languages Java, Jython, JRuby, Clojure,
Groovy, and Scala can transparently call into each other when
running on the same virtual machine using native speeds.

Native call stack sharing is also supported at the lowest level by
the computer operating system through compiled shared libraries.
These shared libraries have an extension .so on Linux, .dylib on
OSX, and .dll on Windows. The shared libraries are designed so
that they contain code and data that provide services to indepen-
dent programs, which allows the sharing and changing of code and
data in a modular fashion. Shared library interfaces are well defined
at the operating system level, and languages have a way of binding
them. Specialized interface bindings to shared libraries exist for
every language, for example, R’s C modules, the Java Native Inter-
face (JNI) for the JVM, Foreign Function Interfaces (FFI) for
Python and Ruby, the Parrot native compiler interface PerlXS
for Perl.
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With (dynamic) shared libraries, certain algorithms can be
written in a low-level, high-performance compiled computer lan-
guage, such as C/C++, D, or FORTRAN. And high-level lan-
guages, such as Perl, Python, Ruby, R, and even Java, can access
these algorithms. This way, languages can be mixed to optimize
solutions. Creating these shared library interfaces, however, can be
a tedious exercise, which often calls for code generators. One such
generator is the Simplified Wrapper and Interface Generator
(SWIG) [24], which consists of a macro-language, a C header file
parser, and the tools to bind low-level shared libraries to a wide
range of languages. For C/C++, SWIG can parse the header files
and generate the bindings for other languages, which, in turn, call
into these shared libraries. The Boost project has similar facilities
for mapping calls to SWIG. C FFI’s that come with programming
languages, such as Python’s CFFI and Ruby’s FFI, tend to be the
easiest to work with.

Even though this extensive functionality for interfacing is avail-
able, the full potential of creating cross-language adapters is not fully
exploited in bioinformatics. Rather than bridge two languages,
researchers often opt to duplicate functionality. This is possibly
due to a lack of information on the effort involved and the added
complexity of creating a language bridge. Also, the impact on
performance may be an unknown quantity. A further complication
is the need to understand, to some degree, both sides of the equa-
tion, i.e., to provide an R function to Python requires some under-
standing of both R and Python, at least to the level of reading the
documentation of the shared module and creating a working bind-
ing. Likewise, binding Python to C using a call stack approach
requires some understanding of both Python and C. Sometimes,
binding of complex functions can be daunting, and deploymentmay
be a concern, e.g., when creating shared library bindings on Linux,
they may not easily work on Windows or macOS.

1.4 Comparing

Approaches

Here, we compare bridging code from one language to another
using the RPC approach and the call stack approach. As a compari-
son we also provide a program-to-program approach and show how
dependencies can be fixated. The comparison is done in the form of
short experiments (scripts) which can be executed by the reader. To
measure performance between different approaches, we use codon
translation as an example of shared functionality between Bio*
projects. Codon translation is a straightforward algorithm with
table lookups. Such sequence translation is representative of many
bioinformatics tasks that deal with genome-sized data and require
many function calls with small-sized parameters.

In this chapter we first focus on comparing R and Python
bindings. We include native Bio* implementations, i.e., Biopython,
BioRuby, BioPerl, BioJava, and EMBOSS (C) for an absolute speed
comparison. Next we try bindings on the JVM.
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Examples and tests can in principle be experimented with a
computer running Linux, macOS, or Windows. To ease trials, we
have defined GNU Guix packages that contain the tools and their
dependencies. From this we have created a downloadable Docker
image that supports all interfaces and performance examples (GNU
Guix and Docker are discussed in Chapter 25).

2 Results

2.1 Calling into R R is a free and open-source environment for statistical computing
and graphics [25]. R comes with a wide range of functionality,
including modules for bioinformatics, such as bundled in R/Bio-
conductor [1]. R is treated as a special citizen in this chapter
because the language is widely used and comes with statistical
algorithms for evolutionary biology, such as Ape [26] and SeqinR
[27], both available through the comprehensive R archive network
(CRAN).

R defines a clear interface between the high-level language R
and low-level highly optimized C and FORTRAN libraries, some of
which have been around for a long time, such as the libraries for
linear regression and linear algebra. In addition, the R environment
successfully handles cross-platform packaging of C, C++, FOR-
TRAN, and R code. The combination of features has resulted in
R becoming the open-source language of choice in a number of
communities, including statistics and some disciplines in biology.
R/Bioconductor has gene expression analysis [1] and R/qtl [28]
and R/qtlbim [29] for QTL mapping (see also QTL mapping in
Chapter 21). Not all is lost, however, for those not comfortable
with the R language itself. R can act as an intermediate between
functionality and high-level languages. A number of libraries have
been created that interface to R from other languages, either
providing a form of RPC, through RSOAP or Rserve, or a call
stack interface calling into the R-shared library and executing R
commands, for example, RPy for Python, RSPerl for Perl, RSRuby
for Ruby, and JRI for Java. Of the last call stack approaches, RPy
currently has the most complete implementation; see also [2].

In this chapter, we compare different approaches for invoking
full R functionality from another language. To test cross-language
calling, we elected to demonstrate codon translation. Codon-to-
protein amino acid translation is representative for a relatively sim-
ple computation that potentially happens thousands of times with
genome-sized data. Every Bio* project includes such a translation
function, so it is a fair way to test for language interoperability and
performance. For data, we use a WormBase [30] C. elegans cDNA
FASTA file (33 Mb), containing 24,652 nucleotide sequences,
predicted to translate to protein (Fig. 1).
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2.1.1 Using GeneR with

Plain R

“The R/Bioconductor GeneR package [31] supports fast codon
translation with the strTranslate function implemented in C.”
GeneR supports the eukaryotic code and other major encoding
standards. R usage is:

library(GeneR)

strTranslate("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt")

[1] "MSMVRNVSNQSEKLEIL"

The \name{R+GeneR} script (also available here) reads:

fasta = ’dna.fa’

library(GeneR)

idx = indexFasta(fasta)

Fig. 1 Throughput of mRNA to protein translation using combinations of cross-language calling with a range of
programming resources. WormBase C. elegans predicted protein coding DNA that was parsed in FASTA format
and translated into amino acids. Tests were executed inside a container. Different file sizes were used
containing 500, 1000, 5000, 15,000, and 25,000 sequences (X-axis) and the number of sequences processed
per seconds (Y-axis log10 scale). Measurements were taken on an AMD Opteron(TM) 6128 8 cores at 2.0 GHz,
4 sockets � 8 cores, with 512 GB RAM DDR3 ECC, and an HDD SATA of 2 TB. Broadly the figure shows that
sustained throughput is reached quickly and flattens out. R-Biostrings performs poorly at 285 Seq/s, while
R-GeneR and Rserve (Python+Rserve+GeneR) perform at the level of native Bio* libraries, respectively,
658 Seq/s and 660 Seq/s. The cross-language Ruby-FFI at 6256 Seq/s calls EMBOSS C translation and
outperforms all others
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lines <-readLines( paste(fasta,’.ix’,sep=’’) )

index <-read.table(paste(fasta,’.ix’,sep=’’) )[,1]

n = 0

for (i in 1:times) {

for (name in index) {

readFasta (file=fasta, name = name)

ntseq = getSeq(0)

aaseq = strTranslate(ntseq)

cat(">",name," (",n,")\n",aaseq,"\n",sep="")

n = n+1

}

}

and parses the nucleotide FASTA input and outputs amino acid
FASTA. Run the script:

docker run --rm -v ‘pwd‘/tmp:/tmp -v ‘pwd‘/scripts:/scripts -e \

BATCH_VARS=/tmp/test-dna-${i}.fa -t bionode bash -c "source

/etc/profile

cd /book-evolutionary-genomics

./scripts/create_test_files.rb

R -q --no-save --no-restore --no-readline --slave < src/R/

DNAtranslate_GeneR.R" > /dev/null

Used directly from R, the throughput of the GeneR module is
about 658 sequences per second (Seq/s) on the test system, an
AMD Opteron(TM) 6128 CPU at 2.00 GHz (see also Fig. 1).
When checking the implementation by reading the source code,
in the first edition, we found that the GeneR FASTA parser was a
huge bottleneck. The FASTA parser implementation created an
index on disk and reloaded the full index file from disk for each
individual sequence, thereby incurring a large overhead for every
single sequence.

To see if we could improve throughput, we replaced the slow
FASTA parser with \name{R+Biostrings} which reads FASTA once
into RAM using the R/Bioconductor BioStrings module and still
uses GeneR to translate. At the time, this implementation was 1.6
times faster than GeneR. At this time GeneR is 3.2 on average faster
than reading with Biostrings which had a throughput of
284.83 Seqs/s proving some work was done by the authors to
improve GeneR. The second script can be found here.

2.1.2 Calling into R from

Other Languages with RPC

One strategy for bridging between languages is to use R as a
network server and invoke remote procedure calls (RPC) over the
network.

1. SOAP
SOAP allows processes to communicate using XML over
HTTP in a client/server setup. SOAP is an operating system
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and computer language “agnostic,” so it can be used to bridge
between languages. In the previous edition of this chapter {Ref
to Previous Edition, same chapter}, we wrote a R/SOAP [32]
adapter for codon translation and invoked it from Python
(a Python to R bridge). That client script can be found here.
The SOAP bridge was dropped from this chapter because the
SOAP packages are not maintained and it was by far the slowest
method of cross-language interfacing we tried! The marshal-
ling and unmarshalling of simple string objects using XML over
a local network interface takes a lot of computational resources.
We do not recommend using SOAP.

2. Rserve
Rserve [3] is a custom binary network protocol, more efficient
than XML-based protocols [3]. R data types are converted into
Rserve binary data types. Rserve was originally written for Java,
but nowadays connectors exist for other languages. With
Rserve, Python and R do not have to run on the same server.
Furthermore, all data structures will automatically be con-
verted from native R to native Python and numpy types
and back.

With RServe fired up a Python example is:

import pyRserve

conn = pyRserve.connect()

conn.eval(’library(GeneR)’)

conn.eval(’strTranslate("atgtcaatggtaagaaatgtatcaaatcagagc-

gaaaaattggaaattttgt")’)

’MSMVRNVSNQSEKLEIL’

where Rserve+GeneR uses the GeneR translate function. In
our test Biopython [6] is used for parsing FASTA, and at
797 Seq/s, even with this network bridge, Python+Rserve’s
speed is on par with that of R. The script can be found here.

2.1.3 Calling into R from

Other Languages with the

Call Stack Approach

Another strategy for bridging language is to use a native call stack,
i.e., data does not get transferred over the network. RPy2 executes
R code from within Python over a local call stack [2]. Invoking the
same GeneR functions from Python:

import rpy2.robjects as robjects

from rpy2.robjects.packages import importr

importr(’GeneR’)

strTranslate=robjects.r[’strTranslate’]

strTranslate("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt")[0]

’MSMVRNVSNQSEKLEIL’
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This example uses Biopython for parsing FASTA and invokes
GeneR translation over a call stack handled by RPy2. At 2049 Seq/
s, throughput is the highest of our calling into R examples. The
Python implementation outperforms the other FASTA parsers, and
GeneR is fast too when only the translation function is called
(GeneR’s strTranslate is actually written in C, not in R). Still,
there are some overheads for bridging and transforming string
objects from Python into R and back. The RPy2 call stack approach
is efficient for passing data back and forth. The script can be found
here.

2.2 Native Bio*

Implementations

When dealing with cross-language transport comparisons, it is
interesting to compare results with native language implementa-
tions. For example, Biopython [6] would be:

from Bio.Seq import Seq

from Bio.Alphabet import generic_dna

coding_dna = Seq("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt", generic_dna)

coding_dna.translate()

Seq(’MSMVRNVSNQSEKLEIL’, ExtendedIUPACProtein())

which runs at 797 Seq/s which is slower than the Python3+RPy2
+GeneR version. This is because the translate function is written in
Python and not in C. It is, however, still faster than R+GeneR.
Ruby+BioRuby runs faster at 1481 Seq/s. Perl+BioPerl is in the
middle with 1165 Seq/s. We can assume the Biopython, BioPerl,
and BioRuby implementations are reasonably optimized for perfor-
mance. Therefore, throughput reflects the performance of these
interpreted languages (see Fig. 1).

Java is a statically typed compiled language. Java+BioJava [8]
outperforms the interpreters and runs at 2266 Seq/s.

The source code for all examples can be found here in the
{Biopython}, {BioRuby}, {BioPerl}, and {BioJava} subdirectories.

2.3 Using the JVM

for Cross-Language

Support

The Java virtual machine (JVM) is a “bytecode” standard that
represents a form of computer intermediate language. This lan-
guage conceptually represents the instruction set of a stack-
oriented capability architecture. This intermediate language, or
“bytecode,” is not tied to Java specifically, and in the last 10 years,
a number of languages have appeared which target the JVM,
including JRuby (Ruby on the JVM), Jython (Python on the
JVM), Groovy [33], Clojure [34], and Scala [35]. These languages
also compile into bytecode and share the same JVM stack. The
shared JVM stack allows transparent function calling between dif-
ferent languages.
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An example of calling BioJava translation from a Scala program:

import org.biojava.nbio.core.sequence.transcription.Tran-

scriptionEngine

import org.biojava.nbio.core.sequence._

val transcriber = TranscriptionEngine.getDefault()

val dna = new DNASequence("atgtcaatggtaagaaatgtatcaaatcagagc-

gaaaaattggaaattttgt")

val rna = dna.getRNASequence(transcriber)

rna.getProteinSequence(transcriber)

’MSMVRNVSNQSEKLEIL’

which uses the BioJava libraries.
A native Java function, such as getProteinSequence, is directly

invoked from the other language without overheads (the passed-in
transcriber object is passed by reference, just like in Java). In fact,
Scala compiles to bytecode, which maps one to one to Java, includ-
ing the class definitions. The produced bytecode is a native Java
bytecode; therefore, the performance of calling BioJava from Scala
or Java is exactly the same. This also holds for other languages on
the JVM, such as Clojure and Groovy.

We have also included a JRuby example that calls into BioJava4
on the JVM and runs at 1413 Seq/s. JRuby is an interpreter on the
JVM that still needs some translation calling into JVM functions. It
is therefore slower than native calls.

2.4 Shared C Library

Cross-Calling Using

EMBOSS Codon

Translation

EMBOSS is a free and OSS analysis package specially developed for
the needs of the molecular biology user community, mostly written
in C [9].

2.4.1 FFI Using Foreign Function Interface (FFI), it is possible to load
dynamic libraries at runtime, define classes to map composite data
types, and bind functions for a later use inside your host program-
ming language. We used FFI to bind the EMBOSS translation
function to Python and Ruby. The Python example:

from ctypes import *

import os

emboss = cdll.LoadLibrary(os.path.join(os.path.dirname(os.

path.abspath(__file__)),"emboss.so"))

trnTable = emboss.ajTrnNewI(1)

ajpseq = emboss.ajSeqNewNameC(b"atgtcaatggtaagaaatgtatcaaat-

cagagcgaaaaattggaaattttgt", b"Test sequence")

ajpseqt = emboss.ajTrnSeqOrig(trnTable,ajpseq,1)

seq = emboss.ajSeqGetSeqCopyC(ajpseqt)

seq = str(c_char_p(seq).value,’utf-8’)
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print(seq)

MSMVRNVSNQSEKLEILX

The Ruby example:

require ’ffi’

module Emboss

extend FFI::Library

ffi_lib "./emboss.so"

attach_function :ajTrnNewI, [:int], :pointer

attach_function :ajSeqNewNameC, [:pointer, :pointer], :

pointer

attach_function :ajTrnSeqOrig, [:pointer, :pointer, :int], :

pointer

attach_function :ajSeqGetSeqCopyC, [:pointer], :string

end

trnTable = Emboss.ajTrnNewI(1)

ajpseq = Emboss.ajSeqNewNameC("atgtcaatggtaagaaatgtatcaaatca-

gagcgaaaaattggaaattttgt", "Test sequence")

ajpseqt = Emboss.ajTrnSeqOrig(trnTable,ajpseq,1)

aa = Emboss.ajSeqGetSeqCopyC(ajpseqt)

print aa,"\n"

MSMVRNVSNQSEKLEILX

In both cases the advantage of FFI is that it does not require to
compile any source code, just loading the shared library and bind-
ing what is needed. Python has a native library called ctypes, and
more sophisticated libraries are available to help the programmer
bind complex data structures and functions. Ruby has a dedicated
gem called [ruby-ffi].

The Ruby and Python FFI outperforms all above methods at
6257 Seq/s and 4787 Seq/s, respectively (see Fig. 1). Plotting the
time in seconds spent to translate the sequences, Ruby and Python
FFI are the lowest (quickest) in the whole comparison (see Fig. 2).
The high speed points out that (1) the invoked Biopython and
BioRuby functions are reasonably efficient at parsing FASTA,
(2) the FFI-generated call stack is efficient for moving data over
the local call stack, and (3) the EMBOSS transeq DNA to protein
translation is optimal C code.

2.5 Calling Program

to Program

Calling program to program is far more common than you may
think because even when you run a program in a shell, such as Bash,
you are calling program to program. You can invoke EMBOSS
from the command line:
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transeq test-dna.fa test.pep

transeq is written in C and runs at a very fast 23,478 Seq/s.
Invoking above EMBOSS’ transeq in Python looks like this:

os.system("transeq "+fn+" out.pep")

for seq_record in SeqIO.parse("out.pep", "fasta"):

print(">",seq_record.id)

seq = str(seq_record.seq)

print(seq)

and this combination runs at 4768 Seq/s. That is close to Python
FFI and a third of the speed of transeq on its own because of Python
parsing the output. Every parsing step has a cost attached.

2.6 Web Services A discussion on bridging languages would not be complete if we
did not include web services, particularly using RESTAPI’s. Service
like TogoWS and EBI web services which include EMBOSS transeq

Fig. 2 Number of seconds needed for processing mRNA to protein translation using cross-language calling
with a range of programming resources. See Fig. 1 for the setup. The figure shows that for all the
implementations, the time increases linearly with the number of sequences in input. R-Biostrings performs
poorly with an upstart of 6.50 s and the highest slope. The cross-language Ruby-FFI, Python FFI, and Python-
EMBOSS with an upstart slightly higher than Java have a very minimal slope; Ruby-FFI has a nearly
constant time
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(SOAP) offer functionality over http(s) and can be used from any
programming language. Here a Ruby example of using TogoWS:

## Invoke irb by loading BioRuby

% irb -r bio

## Create a TogoWS object

>> togows = Bio::TogoWS::REST.new

=> #<Bio::TogoWS::REST:0x007f840faab9d8 @pathbase="/",

@http=#<Net::HTTP togows.dbcls.jp:80 open=false>,

@header={"User-Agent"=>"BioRuby/1.5.1"}, @debug=false>

## Search for UniProt entries by keywords

>> togows.search(’uniprot’, ’lung cancer’)

=> "KKLC1_MACFA\nKKLC1_HUMAN\nDLEC1_HUMAN\n .....

## Retrieve one UniProt entry (or multiple entries if you like)

>> entry = togows.entry(’uniprot’, ’KKLC1_MACFA’)

## See the entry content

>> puts entry

ID KKLC1_MACFA Reviewed; 114 AA.

AC Q4R717;

:

## Convert the retrieved UniProt entry into FASTA format

>> puts togows.convert(entry, ’uniprot’, ’fasta’)

>KKLC1_MACFA RecName: Full=Kita-kyushu lung cancer antigen

1 homolog;

MNVYLLLASGILCALMTVFWKYRRFQRNTGEMSSNSTALALVRPSSTGLINSNTDNNLSV

YDLSRDILNNFPHSIAMQKRILVNLTTVENKLVELEHILVSKGFRSASAHRKST

Web services can harness a lot of power because they use large
databases and access up-to-date information. As an example, let’s
generate RDF from above entry:

## Retrieve PubMed entry and convert it into RDF/Turtle

(or JSON or XML if you like)

>> puts togows.entry(’pubmed’, ’16381885’, ’ttl’)

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix prism: <http://prismstandard.org/namespaces/2.0/ba-

sic/> .

@prefix medline: <http://purl.jp/bio/10/pubmed/> .

<http://rdf.ncbi.nlm.nih.gov/pubmed/16381885> medline:pmid

"16381885" ;
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rdfs:label "pmid:16381885" ;

dc:identifier "16381885" ;

medline:own "NLM" ;

Unfortunately, data centric web services can be slow, i.e., send-
ing and retrieving data over the internet incurs large latency and
throughput penalties. Sometimes they use powerful back ends, and
it is possible to submit large batch jobs which compete with locally
installed solutions. Examples are the BLAST service [16] and
GeneNetwork [36].

3 Discussion

The half-life of bioinformatics software is 2 years—Pjotr Prins

In this chapter we show that there are many ways of bridging
between computer languages. Cross-language interfacing is a
topic of importance to evolutionary genomics (and beyond)
because computational biologists need to provide tools that are
capable of complex analysis and cope with the amount of biological
data generated by the latest technologies. Cross-language interfac-
ing allows sharing of code. This means computer software can be
written in the computer language of choice for a particular purpose.
Flexibility in choice of computer programming language allows
optimizing of computational resources and, perhaps even more
important, software developer resources, in bioinformatics.

When some functionality is needed that exists in a different
computer language than the one used for a project, a developer has
the following options: either rewrite the code in the preferred
language, essentially a duplication of effort, or bridge from one
language to the other. For bridging, there are essentially two tech-
nical methods that allow full programmatic access to functionality:
through RPC or a local call stack. A third option may be available
when functionality can be reached through the command line, as
shown above with transeq.

RPC function invocation, over a network interface, has the
advantage of being language agnostic and even machine indepen-
dent. A function can run on a different machine or even over the
Internet, which is the basis of web services and may be attractive
even for running services locally. RPC XML-based technologies,
however, are slow because of expensive parsing and high data load.
Our metrics suggest that it may be worth experimenting with
binary protocols, such as Rserve and Apache Thrift.

When performance is critical, e.g., when much data needs to be
processed, or functions are invoked millions of times, a native call
stack approachmay be preferred over RPC.Metrics suggest that the
EMBOSS C implementation performs well and that binding to the
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native C libraries with FFI is efficient (see Fig. 2). Alternatively, it is
possible to use R as an intermediate to C libraries. Interestingly,
calling R libraries, many of which are written in C, may give higher
performance than calling into native Bio* implementations. For
example, Python+RPy2+GeneR is faster that Biopython pure
Python implementation of sequence translation, and it is also faster
than R calling into GeneR directly—confirming a common com-
plaint that R can be slow.

Even though RPC may perform less well than local stack-based
approaches, RPC has some real advantages. For example, if you
have a choice of calling a local BLAST library or call into a remote
and ready NCBI RPC interface, the latter lacks the deployment
complexity. Also the public resource may be more up to date than a
copied server running locally. This holds for many curated services
that involve large databases, such as PDB [37], Pfam [38], KEGG
[39], and UniProt [40]. Chapter 25 gives a deeper treatment of
these Internet resources.

From the examples given in this chapter, it may be clear that
actual invocation of functions through the different technologies is
similar, i.e., all listed Python scripts look similar, provided the
underlying dependencies on tools and libraries have been resolved.
The main difference between implementations is with deployment
of software, rather than invocation of functionality. The JVM
approach is of interest, because it makes bridging between sup-
ported languages transparent and deployment straightforward. Not
only can languages be mixed, but also the advanced Java tool chain
is available, including debuggers, profilers, load distributors, and
build tools. Other shared virtual machines, such as .NET and
Parrot, potentially offer similar advantages but are less used in
bioinformatics.

In the first edition, we wrote that when striving for reliable and
correct software solutions, the alternative strategy of calling com-
puter programs as external units via the command line should be
discouraged: not only is it less efficient that a program gets started
every time a function gets called, but also a potential deployment
nightmare is introduced. What happens when the program is not
installed, or the interface changed between versions, or when there
is some other error? With the full programmatic interfaces, dis-
cussed in this chapter, incompatibilities between functions get
caught much earlier. In this edition of the chapter, we add that
efficiency considerations still hold, and error handling can be prob-
lematic. When it comes to deployment, however, there now exist
solutions that fixate versions of software and give control of the
dependency graph, i.e., a tool like transeq can be coupled with its
exact version against your software. To ascertain coupling: first
there are containers, such as offered by Docker, that allow for
bundling software binaries. Second, some recent software distribu-
tions allow for formal deployment solutions with reproducible
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dependency graphs. If you want to know more, check the GNU
Guix and NixOS projects. It is possible to combine these deploy-
ment technologies. In fact, with this chapter, we provide tools and
scripts defined as GNU Guix packages and hosted in a Docker
container. These solutions are discussed in Chapter 25.

Choosing a computer language should not be based on run-
time performance considerations alone. The maturity of the lan-
guage and accompanying libraries, tools, and documentation
should count heavily, as well as the activity of the community
involved. The time saved by using a known language versus
learning a new language should be factored in. The main point
we are trying to make here is that it is possible to mix languages
using different interfacing strategies. This allows leveraging existing
functionality, as written by others, using a language of choice.
Depending on one’s needs, it is advisable to test possible alterna-
tives for performance, as the different tests show that performance
varies.

Whichever language and bridging technology is preferred, we
think it important to test the performance of different ways of
interfacing languages, as there is (1) a need for combining lan-
guages in bioinformatics and (2) it is not always clear what impact
a choice of cross-language interface may have on performance. By
testing different bridging technologies and functional implementa-
tions, the best solution should emerge for a specific scenario.

So far, we have focused on the performance of cross-language
calling. In Chapter 25, scalability of computation is discussed by
programming for multiple processors and machines.

4 Questions

1. Install the Docker container and run different tests. Can you
replicate the differences of throughput statistics?

2. Why are network protocols such as Rserve slower than native
call stack approaches?

3. What are possible advantages of using a virtual machine, such as
the JVM?

4. If you were to bridge between your favorite language and an R
library, what options do you have?
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