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Preface

This volume is a thoroughly revised second edition of Evolutionary Genomics: Statistical and
Computational Methods published in 2012. Like the first edition, the new volume includes
comprehensive reviews of the most recent and fundamental developments in bioinformatics
methods for evolutionary genomics and related challenges associated with increasing data
size, heterogeneity, and its inherent complexity.

Throughout the volume, prominent authors address the challenge of analyzing and
understanding the dynamics of complex biological systems, and elaborate on some
promising strategies that would bring us closer to the ultimate “holy grail” of biology—
uncovering of the relationships between genotype and phenotype. Consequently, the pre-
sented collection of peer-reviewed articles also represents a synergy between theoretical and
experimental scientists from a range of disciplines, working together towards a common
goal. Once again, the revised volume reiterates the power of taking an evolutionary
approach to study molecular data.

This book is intended for scientists looking for a compact overview of the cutting-edge
statistical and computational methods in evolutionary genomics. The volume may serve as a
comprehensive guide for both graduate and advanced undergraduate students planning to
specialize in genomics and bioinformatics. Equally, the volume should be helpful for
experienced researchers entering genomics from more fundamental disciplines, such as
statistics, computer science, physics, and biology. In other words, the material presented
here should suit both a novice in biology with strong statistics and computational skills and a
molecular biologist with a good grasp of standard mathematical concepts. To cater to
differences in reader backgrounds, Part Iis composed of educational primers to help with
fundamental concepts in genome biology (Chapter 1), probability and statistics (Chapter 2),
and molecular evolution (Chapter 3). As these concepts reappear repeatedly throughout the
book, the first three chapters will help the neophyte to stay “afloat”. The exercises and
questions offered at the end of each chapter serve to deepen the understanding of the
material.

Part 1I of this volume focuses on sequence homology and alignment—from aligning
whole genomes (Chapter 4) to disentangling orthologs, paralogs, and transposable ele-
ments (Chapters 5 and 6). Part II1 includes chapters on phylogenetic methods to study
genome evolution. Chapter 7 presents multispecies coalescent methods for reconciling
phylogenetic discord between gene and species trees. However, a mathematically convenient
“binary tree” model does not always live up to scrutiny as numerous evolutionary processes
act in reticulate (network-like) fashion, complicating the statistical description of evolution-
ary models and increasing computational complexity, often to prohibitive levels. One
simplification is to assume that some molecular sequence units (genes, gene segments)
still evolve in a treelike manner. If so, Chapter 8 describes one practical approach to
meaningfully summarize the binary tree distributions for a set of genomes as a “forest of
trees”. Alternatively network-like phylogenetic relationships can be represented by graphs
(Chapter 9). Dating methods for genome-scale data are discussed in Chapter 10, while
Chapter 11 provides more examples of non-treelike processes in a comparative review of
genome evolution in different breeding systems.



Vi Preface

By disentangling different evolutionary forces acting on genomes, we hope to under-
stand the origins of biological innovation, which is often thought to be coupled with natural
selection. After all, how do we explain that, by the words of Darwin, “from so simple a
beginning endless forms most beautiful and most wonderful have been, and are being,
evolved”? This is the main topic of Parz IV that discusses the methodology for evaluating
selective pressures on genomic sequences (Chapters 12-14) and genomic evolution in light
of protein domain architecture and transposable elements (Chapters 15 and 16). Part Vof
this book is dedicated to population genomics and other omics, with example applications to
disease. Indeed, as evolution starts in populations, there is much interest in generating and
studying population genome data for a wide range of species. Chapter 17 discusses models
for genetic architectures of complex disease and genome-wide association studies for finding
susceptibility variants. Chapter 18 reviews approaches to study ancestral population geno-
mics. Chapters 19, 20 and 21 illustrate first principles of analyzing environmental sequences
and applications to clinical trials and systems genetics. Finally, Part VI concludes the book
by discussing current bottlenecks in handling and analyzing genomic data. Chapter 22
focuses on challenges and approaches for large and complex data representation and simul-
taneous querying of heterogeneous databases. Chapter 23 makes the case for using efficient
high-performance computing strategies for computationally demanding phylogenetic ana-
lyses, in particular in the Bayesian framework. Solutions for scalable workflows and sharing
programming resources are presented in Chapters 24 and 25.

On behalf of all authors, I hope that this book will become a source of inspiration and
new ideas for our readers. Wishing you a pleasant reading!

Wadenswil, Switzeriand Maria Anisimova
Lausanne, Switzeviand
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Introduction to Genome Biology and Diversity

Noor Youssef, Aidan Budd, and Joseph P. Bielawski

Abstract

Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and
architecture. In this chapter, we review how the genome can be viewed as both a structural and an
informational unit of biological diversity and explicitly define our intended meaning of genetic information.
A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets
the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We
include a detailed review of genetic elements found outside the primary chromosomal structures, as these
provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we
reassess the definition of the genome in light of recent advancements in our understanding of the diversity
of genomic structures and the mechanisms by which genetic information is expressed within the cell.
Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field
and provide a valuable reference for those developing new statistical or computation methods in genomics.
This review also prepares the reader for anticipated transformations in thinking as the field of genome
biology progresses.

Key words Organism diversity, Viruses, Prokaryotes, Eukaryotes, Organelles, DNA, RNA, Protein,
Regulatory DNA, Epigenetics, Plasmids, Transcription, Translation, DNA replication, Chromatin,
Gene structure

1 Introduction

Following the introduction of the concept of the genome in 1920
[1], the field of genome science has grown to encompass a vast
range of interconnected topics (e.g., nucleic acid chemistry, molec-
ular structure, replication and expression biochemistry, mutational
processes, evolutionary dynamics, and interactions with cellular
processes). Although the notion of the genome as a fundamental
biological unit has been with us for nearly a century, it is only within
the last decade that genomics has emerged as a transformative
discipline within biology and the health sciences [2]. Its rapid
development was in large part due to advances in massively parallel
next-generation sequencing [3], which yielded unprecedented
levels of genomic data. Those data revealed extensive natural

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_1, © The Author(s) 2019
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variation in the way that genomes are structured and processed.
This led modern biologists to reevaluate the fundamental definition
of the genome.

The typical definition of the genome is often dualistic, referen-
cing both structural features and its function to store and transmit
biological information [4 ]. For example, the US National Institutes
of Health (NIH) uses the following definition: “A genome is an
organism’s complete set of DNA, including all of its genes. Each
genome contains all of the information needed to build and main-
tain that organism. In humans, a copy of the entire genome—more
than three billion DNA base pairs—is contained in all cells that have
a nucleus.” This conception, as with many others, is structural with
regard to physical features (viz., genes and DNA base pairs) and
informational with regard to its role in carrying out cellular func-
tions (viz., to build and maintain the organism). Through increased
knowledge of genome diversity, the field has come to realize that
both conceptions of the genome are sometimes insufficient [4]. We
now understand that the physical structures of the genome can be
transient and that the expression of information contained within a
genome is often conditioned on non-genomic factors. The science
of genome biology is entering a new era based on a deeper under-
standing of the relationship between genotype and phenotype [5].

The purpose of this review is to provide a condensed overview
of genome biology and to anticipate transformations in thinking
that will occur as the field progresses. The remainder of this article
is structured into four parts, with the next section providing a brief
overview of the diversity of organismal cell types. The two
subsequent sections introduce the structural and informational
aspects of genomes, respectively. In the final section, we reassess
the definition of the genome through selected biological examples
and conclude with an updated perspective on the nature of the
genome as an informational entity.

2 Organism Diversity and Cell Types

Cells are the smallest living unit of an organism. All cells have three
attributes in common: cell membrane, cytoplasm, and genome.
Structurally, cells can be divided into two basic types: prokaryotic
and eukaryotic cells. Eukaryotic cells tend to be more complex.
They possess a nucleus and other membrane-bound organelles,
which are specialized components in the cell that perform unique
functions (e.g., nucleus, mitochondria, plastids). Conversely, pro-
karyotic cells lack membrane-bound organelles. Although similar in
cell structure, prokaryotes include two fundamentally distinct
domains: the eubacteria (true bacteria, often referred to simply as
bacteria) and the archaea.
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Cellular life is detected in almost every environment on Earth.
As life has colonized and adapted to the vast number of niches, cells
have evolved an incredible amount of diversity in regard to size [6],
form [7], lifestyle [8, 9], and complexity [10]. Understanding the
basis of such diversity remains one of the central aims of biology.
Readers interested in the latest understanding of Earth’s biodiver-
sity, the unique characteristics of its organisms, and how both extant
and extinct forms are related to each other are encouraged to explore
the following resources: the University of California Museum
of Paleontology “History of life through time” exhibit [11],
the Tree of Life Web Project [12], the Encyclopedia of Life [13].

Viruses are infectious agents of living cells that are unable to repro-
duce in the absence of a host. Viruses are not considered cellular
entities since they lack two of the essential attributes that define a
cell; they possess neither a cell membrane nor cytoplasm. The
discovery of virophages, viruses that parasitize other viruses, resur-
rected the debate on their classification as living organisms
[14]. Some consider viruses to be living entities since they can be
hosts to other viruses, with a virophage infection leading to the
eventual death of the host virus, implying an initial “living” state
[15]. The opposing view asserts that a virus’ inability to reproduce
outside of a cellular host makes them nonliving entities
[16, 17]. Irrespective of their delineation as living or nonliving,
viruses are relevant to this review as they possess genomes and are
the most abundant biological replicators in the biosphere [18].

Outside of their host, viruses exist as viral particles (virions)
consisting of a protein capsule that protects and encloses their
genome. Once a virion has entered a host cell, it “hijacks” the
host’s cellular structures and processes to carry out the metaboli-
cally active phase of the viral life cycle. At this stage, the virus
exhibits physiological properties reminiscent of living cells; they
metabolize, grow, and reproduce. There is a wide range of viral
lifestyles, with corresponding diversity in viral forms, sizes, hosts,
and genomes [16]. The largest known virus, the mimivirus, was
originally identified as an infectious agent of an amoeba [19] and
can itself become a host for virophages [14]. To put this in context,
the virion of a mimivirus can be larger than some prokaryotic cells
[16]. At the other end of the scale are viruses such as the circo-
viruses, some of which have small genomes made up of less than
2000 nucleotides [20]. A more detailed account of viral diversity
can be found at the ViralZone website [21].

The bacterial cell is prokaryotic, and it is relatively simple as com-
pared to eukaryotic cells. It has no membrane-bound organelles,
and the chromosome (usually one) is not separated from the other
components of the cell. While predominantly unicellular, they often
live in &iofilms, a community of cells bound together by a secreted
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polymer matrix [22], displaying a range of cooperative behaviors
[23]. They can also exhibit regulated differentiation into different
cell types, where two cells with the same genome have different
morphology and function [22, 24].

Only a very small fraction of bacterial diversity (less than 1%)
can be cultured and grown in the laboratory [25]. The problem of
uncultivable bacteria is a consequence of our limited knowledge of
their physiological diversity and the interactions necessary for their
growth [26]. To this end, efforts are being made to study bacteria
in nature [27-29] but with limited progress given the immense
metabolic diversity of bacteria. Even within the incomplete sam-
pling of cultivable bacteria, there is considerable diversity in cell
shape [30], mode of reproduction [9], and cell cycle
regulation [31].

The bacterial cell cycle involves the coordination of genome
replication and segregation of replicated copies into daughter
cells, followed by cell division. In this way, the transmission of
genetic material is “vertical” from one cell generation to the next.
Under certain conditions, some bacteria, such as E. colz, can initiate
a new round of genome replication prior to completion of cell
division [32, 33], thereby resulting in an increase in the number
of gene copies near the origin of replication as compared to loci
replicated later [31]. Other bacteria, such as Caunlobacter, maintain
a tightly regulated cell cycle to ensure a single replication event per
division [34]. Under optimal conditions, some species can com-
plete their cell cycle every 20 min, implying that a single cell could
produce more than a billion descendants in a mere 10 h. In addition
to vertical transfer, genetic information can be transferred “hori-
zontally” between unrelated cells via the processes of transforma-
tion, conjugation, or transduction [35]. An event that transfers
gene(s) between different species (or cells) by any of these three
processes is referred to as a borizontal gene transfer (HGT) event.

Archaea are single-celled organisms that appear strikingly similar to
bacteria under light and electron microscopes. Like bacteria they
often have a single circular chromosome and lack a nucleus, and for
a long period of time the archaea were wrongly categorized as
bacteria. The first indication that the archaea might be a separate
domain of life was obtained from phylogenetic analyses of the 16S
rRNA gene [36]. Advancements in genome sequencing and analy-
sis yielded further evidence of the evolutionary distinction between
the bacterial and archaeal domains [37]. Despite their superficial
cellular similarity to bacteria, the archaea have many molecular-level
similarities to eukaryotes, leading researchers to hypothesize that
the ancestor of the eukaryotes arose within the archaea [38].
Previously, archaea were assumed to be a minor group of
organisms inhabiting extreme environments beyond the tolerance
of bacteria (salt brines, hydrothermal vents, acidic and anoxic
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conditions, etc.). Through culture-independent methods, archaea
were discovered to be much more widespread and metabolically
diverse. Archaea are now known to inhabit the human gut, and
through mutualistic community relationships, they play a key role
in human health and metabolism [39—41]. There is increasing
evidence for archaea playing a significant role in global nutrient
cycling [42]. They contribute major mechanisms for anaerobic
methane oxidation [42], ammonia oxidation [43], and other
parts of the nitrogen cycle including nitrogen fixation [44]. The
archaea also appear to be ecologically competitive with bacteria, as
they make significant contributions to the microbial communities
of non-extreme soil, aquatic, and marine environments
[43, 45]. Although they can be highly abundant in such environ-
ments, archaeal diversity is greatest in the more extreme
habitats [45].

Archaea possess an array of bacteria-like, eukaryote-like, and
archaea-specific features. The archaeal cell wall is chemically and
structurally diverse, yet they systematically lack a cell wall peptido-
glycan, murein, that is ubiquitous among the bacteria
[46, 47]. Their membrane lipids are chemically different from
those found in either bacteria or eukaryotes [48], and they possess
many novel enzymes that are required for the biosynthesis of their
unique membranes [49, 50]. Consequently, most archeoviruses are
unique to archaea [51]. Even structural appendages that initially
appeared to be homologous to bacterial appendages are often
structurally distinct and have different genetic basis than the bacte-
rial counterparts [52-54]. At the biochemical level, the archaea use
many sources of energy and are metabolically diverse, probably
more so than either bacteria or eukaryotes [55].

All complex multicellular organisms are eukaryotes (animals,
plants, fungi, red algae, and brown algae), as are many unicellular
organisms [56, 57]. Eukaryotic cells are found in a wide diversity of
sizes and shapes [58, 59]. They are generally larger and have a more
complex internal organization than the bacteria and archaea. A key
characteristic of the eukaryotic intracellular organization is the use
of lipid membranes to separate their contents into different com-
partments [60, 61]. The bulk of the eukaryotic genetic material is
surrounded by a nuclear envelope and is thus maintained in a
separate organelle, the nuclens. This provides a fundamental per-
spective on how eukaryotic cells differ from bacterial and archaeal
cells and has important consequences on the expression of eukary-
otic genetic information.

In addition to the nucleus, other organelles (mitochondria and
plastids) contain small genomes that encode additional genes. Both
mitochondria and plastids originated from ancient endosymbiosis
events between ancestral eukaryotic cells and bacterial organisms.
Following these events, the invading bacteria underwent a process
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of genome reduction in which they transitioned from autonomous
organisms to cell-dependent organelles [62].

Despite our familiarity with plants, animals, and fungi, the vast
majority of eukaryotic diversity lies outside of those groups and is
largely microbial [63]. These “other” eukaryotes are collectively
called protists. They do not form a monophyletic group, i.e., pro-
tists do not from a phylogenetic group that is comprised of'a shared
common ancestor and all of its descendants [57, 64]. The term
protist is used largely for convenience to classify all eukaryotes that
are not plants, animals, or fungi. Protists embody extensive ecolog-
ical and structural diversity and include several important groups of
unicellular eukaryotes involved in human diseases [65]. For exam-
ple, the unicellular apicomplexan eukaryote Plasmodium is the
causative agent of malaria, which affects around 10% of the world
population [65]. More positively, protist species are important
primary producers and are an essential link in the ocean’s biogeo-
chemical cycles [66].

3 Genome Structure and Organization

The notion of the gene as the physical carrier of hereditary infor-
mation existed years before its physical and chemical structures
were known. In 1902, Sutton provided the first clear support for
the chromosomal theory of inheritance, allocating genes to seg-
ments on chromosomes [67]. The modern view of the gene is more
often focused on a particular chemical sequence of nucleic acids
rather than a chromosomal locus, but the two are not independent.
The genetic instructions encoded within an organism’s nucleic acid
molecules comprise the organism’s genotype. The physical manifes-
tation of such genetic information, which will depend on environ-
mental interactions, comprises the organism’s phenotype.

There are two types of nucleic acids: deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). Both are polymers consisting
of chains of nucleotides. Each nucleotide includes three compo-
nents: a 5-carbon sugar, a phosphate group, and a nitrogenous
base. A nitrogenous base together with the sugar (without the
phosphate group) is called a nucleoside. The sugar component in
RNA, ribose, is a normal sugar with one hydroxyl group
(OH) attached to each carbon atom. Deoxyribose, the sugar pres-
ent in DNA, differs only in the absence of one oxygen atom at the
2" carbon atom (H instead of OH). This chemical difference is
crucial for enabling enzymes to distinguish between RNA and
DNA polymers. The 5 sugar carbon carries a phosphate group
and is referred to as the 5§ end of the polynucleotide molecule
(DNA or RNA). The 3 end has a free hydroxyl (OH) group that
is available to form chemical bonds with other atoms. As a result,
synthesis of DNA and RNA in the cell proceed through the
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addition of a nucleotide to a 3’ terminal hydroxyl group. The
polynucleotides, therefore, exhibit directionality, and synthesis
occurs in a 5’ to 3’ direction.

All living cells employ the double helical structure of DNA as a
chemical means to store information. Each of the two longitudinal
strands is an alternating sequence of phosphate and a 5-carbon
sugar. At each sugar, the two strands are bridged by two nitroge-
nous bases, one purine molecule (of type adenine [A] or guanine
[G]) and the other a pyrimidine molecule (of type cytosine [C],
thymine [T], or uracil [U]). The chemical bridges between purine
and pyrimidine molecules (called base pairs) are held together by
hydrogen bonds. Each purine can be complemented by only one
pyrimidine: A forms two hydrogen bonds with T (or U in RNA)
and C forms three hydrogen bonds with G. These are referred to as
the canonical or Watson-Crick pairings. Given this pairing pattern,
the sequences of the double-stranded DNA are said to be comple-
mentary, and the sequence of one strand can be deduced from the
sequence of its complementary strand. The order of the nitroge-
nous bases in DNA (or RNA) is what confers the meaning of the
information encoded in the genome.

A vital feature of genetic information is its ability to be repli-
cated and passed on to daughter cells. The core mechanisms that
copy DNA are conserved in all three domains of cellular life:
bacteria, archaea, and eukaryotes [68]. Accurate DNA replication
is essential to produce viable offspring—too many alterations in the
DNA impede the production of functional proteins, thereby
increasing the chances of nonviable progeny. Therefore, most
DNA replicates with high fidelity. However, mistakes do occur. In
humans, on average one error occurs in 30 million bases copied per
cell division [69]. The cells produced from these altered genes are
called mutants.

Although all living things carry DNA, the processes through
which genetic information is physically transferred from DNA to
RNA (called transcription) and then used to create a polypeptide
molecule with a unique sequence of amino acids (called zransia-
tion) differ between domains of life. The lack of membrane-bound
nuclei in prokaryotes permits the simultaneous occurrence of tran-
scription and translation [70]. In eukaryotes, those processes are
separated by the nuclear membrane; DNA is first transcribed to
RNA in the nucleus, and the RNA product is subsequently trans-
lated to an amino acid sequence in the cytoplasm, ultimately lead-
ing to the construction of a protein.

Organisms from all domains of life, and many of the viruses that
parasitize them, have a very large genome compared with the size of
the cell or compartment to which it is confined. For instance, the
human nuclear DNA consists of approximately three billion base
pairs; when stretched out, it amounts to about 2 m of total DNA
per cell. The average human cell size is merely 10 pm. The
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impressive ability to store DNA within the cell is possible through a
process of genome packaging. In eukaryotes and some archaea, the
DNA wraps around histone proteins to form mnucleosomes. In
humans, this results in a two-million-fold decrease in size, allowing
the DNA to compact into the nucleus [68]. Prokaryotic DNA
compaction is achieved using a combination of supercoiling, mac-
romolecular crowding, and association with DNA-binding proteins
[71]. The degree of the supercoiling used in prokaryotes varies
considerably between different species.

Prokaryotic cells tend to have efficient genomes, with most of
their genetic material composed of protein-coding regions.
Archaeal genomes are, on average, more compact than bacterial
genomes [72]. An increase in prokaryotic genome size is therefore
often accompanied by an increase in the number of genes encoded.
This trend is not evident in eukaryotes, for which there is little
association between genome size and the number of protein-
coding genes [73]. Consider the E. coli genome, more than 90%
of its DNA encodes proteins. This is in stark contrast with the
modest 2% protein-coding regions present in human DNA
[74]. Most eukaryotic genomes are riddled with non-protein-cod-
ing regions (see Subheading 4.2 for an evolutionary mechanism).
This results in them having larger genome sizes on average than
prokaryotic cells [74].

Viruses use any combination of either RNA or DNA, either single-
or double-stranded molecules, in either circular or linear forms, to
encode their genetic instructions [75, 76]. The viral genetic mate-
rial is typically referred to as segments rather than chromosomes.
Viral genomes composed of multiple segments are referred to as
segmented. When different strains of the same segmented viral
species infect a cell, genomes from the different strains can mix to
produce hybrids—a process known as reassortment. Hybrid flus
such as the HINI1 swine influenza A virus originated in this
way [77].

Viral strains package their genomes in various ways. Most DNA
and RNA viruses with small genomes (<20 kb) employ energy-
independent packaging systems where capsid assembly and genome
condensation are coupled. One example is the RNA genome of the
HIV retrovirus that, in the mature virion, forms a RNA-protein
complex with one of the cleavage products of the Gag polyprotein
[78]. Other viruses, such as the lambda bacteriophage, require ATP
to pump their genome directly into a preassembled capsid
[79]. The latter type of machinery is ubiquitous in bacterial viruses.
Alternatively, large viruses package their genome using histone-like
proteins that are critical for eukaryotic genome packaging [80]. For
a review on genome packaging in viruses, see ref. 81.
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Despite not being confined within a membrane-bound compart-
ment, the prokaryotic genome will be unevenly distributed
throughout the cell. It often clusters in an irregularly shaped vis-
cous region known as the nucleoid that makes up about a quarter of
the intracellular volume [82]. The organization and distribution of
the nucleoid are dynamic and dependent on the growth rate and
presence of antibiotics [83].

It was previously thought that all bacterial cells possessed a
single circular chromosome. In 1989, the first linear bacterial chro-
mosome was discovered in the spirochaete Borrelia burgdorferi, the
causative agent of Lyme disease [84, 85]. Additionally, recent
advancements have revealed that many cells retain multiple circular
or linear chromosomes [86]. These often consist of a primary
chromosome, which is larger and harbors a higher density of essential
genes compared to the secondary chromosome(s) [87].

The replication of bacterial DNA initiates at a well-defined
sequence, called the origin of replication. The proteins involved in
replication bind to the origin site and DNA synthesis proceeds in
both directions. Circular chromosomes require a single origin, and
replication is terminated by either a stop signal or when the two
replication forks meet [88]. Linear bacterial chromosomes typically
have a central origin, and replication proceeds bidirectionally much
as in circular chromosomes. However, replication enzymes are
unable to synthesize new DNA at the ends of a linear chromosome,
and this results in the gradual shortening of DNA after each repli-
cation event [89]. Linear chromosomes, therefore, require terminal
structures known as zelomeres to protect against DNA degradation.
Telomeres are characterized by the presence of multiple tandem
repeats of short noncoding nucleotide sequences.

Linear prokaryotic chromosomes have evolved two different
types of telomeres [90]. The first, best understood in the strepto-
mycetes, uses a terminal protein complex covalently attached to the
5" end of the DNA molecules. During replication, DNA polymerase
binds the first synthesized nucleotide directly to the terminal pro-
tein. This replication strategy allows for the complete duplication of
the linear molecule with no loss of genetic information [91]. The
second type, best studied in the spirochetes, involves the formation
of closed hairpin structures at the termini [92]. Replication of the
linear DNA proceeds as expected. Once duplication of each DNA
strand is completed the newly synthesized DNA are temporarily still
attached—forming a structure superficially resembling a circular
chromosome. A specific enzyme is then recruited to separate the
two linear strands and re-form the telomeres [93]. For an overview
of telomeric structures, se¢ ref. 94.

Archaeal genomes share features with both bacteria and eukaryotes.
Archaea typically possess circular chromosomes reminiscent of bac-
teria genomes; some have a single chromosome and a single origin



12 Noor Youssef et al.

3.4 Eukaryotic
Genomes

of replication, while other species have multiple chromosomes and
multiple origins on each [95, 96]. Given that archaea have the
prokaryote cell type that lacks membrane-bound organelles (and
hence nuclei), they are similar to bacteria in permitting the simul-
taneous occurrence of transcription and translation. Nonetheless,
there are fundamental differences from the bacteria in the proces-
sing of genomic information. The initiation of amino acid synthesis
in archaea more closely resembles that used in the eukaryotic tran-
scription process. Additionally, the core archaeal transcription
machineries are more closely related to eukaryotes [97, 98].
Archaeal and eukaryotic DNA replication and repair systems have
also been shown to have many features in common [99].

Relatively little is known about the structure of archaeal gen-
omes [100], but some are packaged into chromatin via histone
proteins. Chromatin is a compact and organized chromosome
structure that consists of DNA in close association with proteins.
Interestingly, this form of chromatin is present in all eukaryotes and
missing from bacteria [101]. Among the archaea that use histones
(i.e., Thermoproteales and Euryarchaea), the geometry of their
histone-mediated chromatin is the same as in eukaryotes [102].
However, archaeal histones are often shorter than the eukaryotic
histones [101]. Groups of archaea that lack histones (e.g., Cre-
narchaen) encode other DNA-binding proteins associated with
the architecture of bacterial chromatin [100]. Another family of
DNA-binding proteins called Alba (acetylation lowers binding
affinity) is ubiquitous among archaea. They are abundant small
proteins that facilitate genome compaction, play a key role in
determining the architecture of archaeal chromatin, and regulate
gene expression on a genomic scale [101]. Alba proteins have been
detected in both histone-lacking and histone-containing
archaea [103].

Eukaryotes sequester their linear chromosomes within a
membrane-bound nucleus. Linear eukaryotic chromosomes have
three essential structural elements: a centromere, a pair of telo-
meres, and origins of replication. The centromere is the attachment
point for spindle microtubules—the filaments responsible for phys-
ically moving chromosomes during cell division. Telomeres are the
protective ends of a linear chromosome. The origins of replication
are the sites where DNA synthesis begins. Eukaryotes typically have
multiple linear chromosomes, each with many origins of replica-
tion. The larger genome size and slower replication machinery in
eukaryotes necessitate the need of multiple origins to speed up the
replication process.

In eukaryotic cells, nuclear DNA compaction involves the asso-
ciation of DNA with the protein products of a family of genes, the
histones, whose sequence variants provide for a variety of different
functions. The eukaryotic chromosome is organized at the lowest
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level by wrapping the DNA around histones, forming nucleosomes.
This structure constitutes the basic unit of the chromatin fiber,
which is further organized into higher-order structures mediated
by other proteins [104, 105]. Sequence variation in histones, in
combination with posttranslational modification of the protein,
affects the structural properties of chromosomal nucleosomes and
gene expression.

Eukaryotic DNA consists of at least three types of sequences:
unique-sequence DNA, moderately repetitive DNA, and highly
repetitive DNA. Unique-sequence DNA are regions that are present
only once or at most a few times in the genome. Most protein-
coding regions fall within this category. Alternatively, more than
half of the total DNA in all eukaryotic genomes is made up of
repeated sequence motifs that are either moderately or highly
repetitive [106]. Moderately repetitive DNA are sequences from
160 to 180 base pairs (bp) in length that are repeated thousands
of times [106]. Some of these sequences perform important func-
tions for the cell, such as coding for types of RNA [107]. Highly
repetitive DNA are short sequences, less than 60 bp that are present
in hundreds of thousands of copies repeated throughout the
genome. Repeats that are 2-10 bp are known as microsatellites,
whereas motifs that are 10-60 bp are termed minisazellstes [ 108].

Most of the repetitive sequences arise through transposition
(see Subheading 4.2). The repeated sequences can be found either
in tandem arrays, i.e., appearing adjacent to each other, or inter-
spersed throughout the genome. The evolution and maintenance
of nonfunctional repeated sequences have spurred the interest of
genome scientists, with some classifying these motifs as selfish-genes
that reproduce to propagate themselves and provide no positive
contribution to the organism’s phenotype or fitness [ 106]. Repeats
also represent technical challenges for bioinformaticians developing
software for sequence alignment and genome assembly. From a
computational perspective, repeats create ambiguities that are chal-
lenging to resolve. For a review on computational challenges and
solutions, see ref. 108.

Both prokaryotes and eukaryotes have secondary chromosomal
structures. For eukaryotes, this refers to any form of DNA found
outside of a nucleus—although the discovery of microDNA
extends this classification [109]. Eukaryotic auxiliary DNA often
contains essential genes that are necessary for normal cell produc-
tion. For example, the DNA chromosome located within the mito-
chondrial organelle encodes genes that are involved in oxidative
phosphorylation and the creation of different types of RNA
[110]. For prokaryotes, auxiliary DNA refers to any DNA that is
not associated with the primary chromosome, and unlike eukar-
yotes, the genes encoded in such DNA are often dispensable. For
example, small circular chromosomes, called plasmids, often
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contain genes that allow the bacterium to survive various environ-
mental conditions; however they are not usually essential for nor-
mal cell function [110].

The mitochondrion is a double membrane-bound organelle that is
ubiquitous in eukaryotic cells. There is only one known case of a
eukaryotic cell able to survive without a mitochondrion
[111]. Mitochondria are essential because they are the site of
production for most of the cell’s energy, which is produced as
ATP by the oxidative phosphorylation metabolic pathway. Addi-
tionally, the mitochondrion is the site of iron-sulfur (Fe/S) cluster
assembly. Fe/S clusters are protein cofactors that are essential for
various extramitochondrial pathways [112]. The mitochondria-
lacking eukaryote, a species of Monocercomonoides, is unique in
that it lives only within the intestine of the chinchilla and has
evolved different strategies for Fe /S cluster formation and obtain-
ing energy absorbed from its environment [111].

Mitochondria are the derivatives of prokaryotic cells that were
engulfed by a common ancestor of all eukaryotes. The DNA within
these organelles are the remnants of the DNA genome of the
ancestral prokaryotic endosymbiont. Thus, the mitochondrial
DNA (mtDNA) more closely resembles a prokaryotic genome.
For example, in most animals and fungi, mtDNA consists of a single
circular chromosome. However, small linear mtDNA chromo-
somes with defined telomeres have been identified within various
protists, animals, and fungi [113, 114]. Additionally, the architec-
ture of mtDNA is not determined by histones but instead by a set of
small DNA-binding proteins that induce structures analogous to
the bacterial chromatin. Mitochondrial genomes have been cate-
gorized into six different types depending on shape, size, structure,
and number (see ref. 115).

In humans, the mitochondrial genome encodes 13 of the
80 proteins that are directly involved in oxidative phosphorylation.
The remaining proteins are encoded in the nuclear chromosomes
[110]. The exact contribution from mitochondrial and nuclear
genomes varies across eukaryotes. Nonetheless, in the vast majority
of known eukaryotic species, the mtDNA is essential to produce
important proteins involved in energy production, demanding that
all cells have faithfully inherited the mtDNA.

Plastids are similarly derived from an endosymbiosis with a bacte-
rium, with the organelle retaining remnants of that ancestral bacte-
rial genome. Like the mitochondrion, the plastid is a double
membrane-bound cytoplasmic organelle. Unlike the mitochon-
drion, plastids often contain pigment used in photosynthesis. Plas-
tids are found in the cytoplasm of protists and all higher plants.
Plastid DNA (ptDNA) is highly reduced relative to the genomes of
extant photosynthetic bacteria. In part, the reduction in genome
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size is due to gene loss with some regions excised and incorporated
into the host nuclear DNA [116]. The ptDNA encodes important
proteins that are essential for cell viability [117]. Almost all plastids
have circular DNA, with the alveolate Chromera velia being the
single known case of linear ptDNA. The linear extrachromosomal
ptDNA has a telomere arrangement resembling those of linear
mtDNA[117,118].

Genes encoded in ptDNA are involved in the synthesis and
storage of various cellular components, including those necessary
for photosynthesis. Plastids have diverged to carry out different
functions with multiple types identified. For example, chloroplasts
are specialized for carrying out photosynthesis; chromoplasts con-
tain pigments that provide petal colors, whereas amyloplasts are
used for bulk storage of starch [117].

A nucleomorph is a vestigial eukaryotic nucleus found in crypto-
monads and chlorarachniophytes, which are both plastid-
containing algae. The nucleomorph is located in these organisms
between the inner and outer membranes of the plastid and is
believed to be derived from the nucleus of an endosymbiotic algal
cell engulfed by a larger eukaryotic cell [119]. Thus, the plastid
organelle in this case evolved from two endosymbiotic events: a
prokaryote was engulfed by a eukaryote which thereby became
photoautotrophic and that cell was then engulfed by another
eukaryote. The nucleomorph genomes are extremely small com-
pared to the typical nuclear genome, being comprised of mostly
single-copy housekeeping genes and having no mobile elements.
The nucleomorph genome of the cryptomonads suggests that it
was derived from a red algal ancestor, whereas the nucleomorph
genome of the chlorarachniophytes suggests a green algal
ancestor [119].

Plasmids are present in bacteria, archaea, and eukaryotes [120].
Most plasmids are circular, although linear plasmids have been
identified [121]. The genes carried on plasmids tend to be asso-
ciated with functions that enable or enhance survival and growth
under specific conditions. They can be horizontally transferred
between prokaryotic cells and represent an important vehicle for
sharing genetic information [122]. For example, a plasmid that has
evolved an antibiotic resistance gene(s) can be transferred to neigh-
boring bacteria promoting their rapid adaptation to various stresses
associated with an antibiotic environment.

The eubacteria E. coli is estimated to have more than 270 plas-
mids having different distributions among and within cells; some
promote mating, while others contain genes that kill other bacteria.
The number of plasmids known and sequenced is much higher in
bacteria as compared to archaea, with the lowest number having
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been identified in eukaryotes [ 122]. In recent years, plasmids have
been used extensively in genetic engineering as a means of introdu-
cing and modifying target genes [122, 123].

3.5.5 MicroDNA In 2012, Shibata et al. discovered a new form of extrachromosomal
DNA in eukaryotes, called microDNA [122]. In contrast with
other auxiliary DNA, microDNA is derived from non-repetitive
sequences that are often associated with functional genes. They
are circular DNA between 200 and 400 bp and are found in the
nuclei of mammalian cells [122]. microDNA is thought to be
associated with the repair and maintenance processes of nuclear
DNA. It is not yet clear if microDNA plays a functional role in
these processes or if they are merely an unavoidable by-product. For
the time being, detection of specific microDNA is being proposed
as a screening measure to aid the successful eradication of tumors in
humans and as a potential method for cancer diagnosis and
prognosis [124].

4 Genomic Storage and Processing of Information

It was not possible to understand how hereditary information was
encoded and transmitted across generations without first having
knowledge of the structure of DNA. Knowledge of DNA structure
led to a structure-oriented conception of genomes as linear
sequences of ordered nucleotides. Once protein synthesis was
linked to gene sequences, the structural view of the genome
began to be supplanted by the informational view [125]. Genetic
information was initially viewed as a static property belonging to
the specific sequence of ordered subunits. However, others have
argued that the static view of information is not satisfactory (e.g.,
[4, 125]). Barbieri [125] contends that “it is only when a sequence
provides a guideline to a copymaker that it becomes information for
it. It is only an act of copying, in other words, that brings organic
information into existence.” Based on Barbieri’s viewpoint, infor-
mation is not always a property of a specific structure (e.g., DNA or
RNA); rather his view is that such molecules are information rele-
vant only when they are used to perform a biological function. A
DNA sequence, for example, is said to have information if it is
transcribed or interacts with a protein in a biologically relevant
way. Similarly, an mRNA transcript also encodes information as it
is translated into a protein. Also then, a protein could be viewed as
an informational entity in the sense that it is necessary to carry out a
biological function. Therefore, under this new conception, as well
as the static view, it is clear that biological information can be
manifest in different biological molecules; an observation that has
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complicated the notion of the genome as the fundamental unit of
biological information [4].

We now understand that storage of the genetic information
required to sustain life does not need to be restricted to biological
molecules. This was vividly illustrated in the laboratory when a
bacterial genome was chemically sequenced, its information stored
within a computer (a completely different medium composed of
binary states), then resynthesized in the form of a new DNA
chromosome, and that synthetic DNA ultimately used as the sole
means to maintain a living cell [126]. Although the information
required for life can be stored independently of the chemical struc-
ture of the DNA, it cannot be expressed in a biologically useful
form without various proteins and RNA molecules. Thus, expres-
sion of information encoded within a genome (bringing that infor-
mation into existence) is contingent on its cellular context. In this
section, we examine different ways in which information may be
contained within a genome and mechanisms that result in biologi-
cally useful expression of that information.

Mere knowledge of the DNA sequence of a genome is often insuf-
ficient to predict phenotype. The amount and timing of gene
expression play a key role. For example, human cells with a nucleus
have copies of almost identical DNA sequences. Yet cells perform
varying functions, and they organize to create the multiple organs
that constitute the human body. Cells achieve this primarily by
differentially regulating the rate of transcription and /or translation
of genes.

DNA transcription and protein translation comprise elemen-
tary levels of information transfer from genotype to phenotype.
Maintaining control of these processes is fundamental for all organ-
isms. Genetic elements involved in regulating gene expression are
referred to as regulatory elements. They often represent sequences
found on the DNA or RNA. In this way, regulatory information can
be encoded directly within the nucleic acid sequence. Direct struc-
tural proximity if often not necessary, as regulatory elements may be
found proximal or distal to the genes they affect. In humans,
approximately 8% of nuclear DNA is composed of elements
involved directly in regulation such as promoters, enhancers, silen-
cers, and insulators (defined in Subheading 4.1.1; [127, 128]).

If all genetic and regulatory information is encoded in the
DNA sequence, why can’t any cell with a complete genome be
used to produce a viable organism? The specificity of cells suggests
that additional regulatory markers also exist outside of the primary
DNA sequence. This type of regulation is epigenetic (above the
genes) and is essential for normal development. Epigenetic infor-
mation is derived from chemical modifications of the chromosome
(e.g., DNA methylation or histone modification) that do not
change the primary sequence of chromosomal DNA and can be
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4.1.1 Transcriptional
Regulation

4.1.2 Translational
Regulation

passed from one generation to the next [129, 130]. It is only
through the collective actions of all cellular processes that gene
products contribute to biochemical pathways and participate in
the network of regulatory interactions to produce a complex organ-
ism or phenotype.

DNA transcription is the chemical process through which informa-
tion is transferred from DNA to RNA. The transcribed RNA may
itself carry out some biological function or may be part of an
intermediate information-carrying class of RNA known as messen-
ger RNA (mRNA). mRNA along with other RNA molecules
(tRNA and rRNA) are part of the machinery used to synthesize
proteins. The flow of genetic information from DNA to RNA to
protein is present in all forms of life. However, it is important to
note that information transfer is not exclusively unidirectional. The
enzyme reverse transcriptase can transfer genetic information from
an RNA template into DNA.

The basic model of transcriptional regulation requires that
regulatory proteins called transcriptional factors (TFs) bind specific
DNA sequences in regulatory modules (RMs). TFs are protein
products that are themselves subjected to regulation of gene
expression. RMs are defined according to both the primary DNA
sequence to which TFs bind and their role in the process of reg-
ulating gene expression. One type of RMs are promoters. They are
specific motifs on DNA that are necessary regulatory elements for
RNA transcription in prokaryotes and eukaryotes. They bind the
basal transcriptional machinery, RNA polymerase and general TFs.
Enbancers are RMs that bind activator proteins and enhance the
affinity of RNA polymerase to the promoter region. They, there-
fore, result in an upregulation of transcription of a gene or set of
genes. Enhancers often act by stabilizing RNA polymerase binding
through structural histone modifications [131]. Silencers are regu-
latory elements that when bound to repressor proteins function to
prevent gene transcription. Silencers and enhancers are often
distance-independent, meaning that they can act on gene(s) that
are proximal or distal to their location [132]. Enhancers can be
thought of as on-switches for gene expression, whereas silencers are
the off-switches.

The fate of all mRNAs, transcribed from protein-coding genes, is
not the same. The mRNA is often subjected to translational regu-
lation depending on cellular and environmental conditions. These
regulatory mechanisms affect the rate of protein synthesis. In pro-
karyotes and eukaryotes, most translational regulation involves
structural changes in the mRNA molecule that impact its accessi-
bility [133, 134]. The mRNAs can be sequestered in stress granules
or localized in specific regions of a cell’s cytoplasm
[135-137]. Another mechanism of translational regulation is
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RNA interference (RNAI). This regulation strategy is common in
eukaryotes and involves short noncoding RNAs—microRNA
(miRNA) or small interfering RNA (siRNA)—that bind with
imperfect complementarity to their target mRNA transcripts. The
binding of miRNA (or siRNA) to mRNA destabilizes (or degrades)
the target mRNA, thereby inhibiting its translation. The imperfect
pairing allows a single RNAi molecule to affect the expression of
multiple genes. In the human genome, almost 50% of mRNA
transcripts are regulated by one or more miRNAs [138].

In prokaryotes, transcription and translation are more tightly
coupled than in eukaryotes, and this allows prokaryotes to regulate
their gene expression primarily by controlling the amount of tran-
scription. Nevertheless, prokaryotes can still conduct translational
regulation. They can employ fundamentally different types of trans-
lational regulatory machinery: the recently discovered CRISPR-Cas
system. Although the CRISPR loci were first identified in prokar-
yotes in 1987 [139], it was only recently described as a bacterial
immune defense system [140]. The CRISP-Cas system is most
commonly known to target external DNA (viral or plasmid) and
degrade it before it can be transcribed or translated. Recent
advancement suggests that some CRISPR-Cas systems are more
general and have the capacity to target RNA molecules. This was
first discovered in Pyrococcus furiosus [141]; similar RNA targeting
was later found in Sufolobus solfataricus [142]. Throughout these
advancements, CRISPR-Cas system was still strictly viewed as an
immune response to target and degrade external nucleic acid mole-
cules. It was only in 2016 that a CRISPR-Cas system was discov-
ered that targets cellular mRNAs and thereby participates in
translational regulation [143].

The term epigenetics was coined in 1942 by Waddington
[144]. He defined it as changes in an organism’s phenotype with-
out an underlying alteration of its genome. It is now understood
that epigenetic effects cause variation in phenotypes not associated
with a change in the primary sequence but by chemical alterations
of the DNA. Consider this analogy: throughout this review, when-
ever a word was being defined it was written in this format. If this
chapter was rewritten with all bolds and italics removed, the infor-
mational content would be unaltered; however, the emphasis
would be different. These “decorative” changes in font are akin to
chemical epigenetic markers appended to the DNA. DNA methyl-
ation is a type of chemical decoration that is analogous to striking
through a phrase. Specifically, it corresponds to the addition of a
methyl group to parts of the DNA that results in gene silencing
[145]. This additional information is not directly encoded within
the primary DNA sequence but is manifested through chemical
changes in nucleotides [145]. Thus, DNA methylation is one
form of epigenetic control of gene expression. Epigenetic factors



20 Noor Youssef et al.

4.2 Mobile Genetic
Elements

may also have an impact on regulation by changing protein-DNA
binding. In eukaryotes, epigenetic factors may bind to consecutive
histones moving them closer to each other. This results in local
DNA compaction and prevents the expression of the gene(s) in this
location.

Importantly, an organism’s exposure to certain environmental
conditions can impact the epigenetic markers on its genome.
Because epigenetic mechanisms ultimately affect the physiological
form of the chromosome, such environmental exposures can lead
to heritable changes in gene expression with no change to the
underlying DNA sequence. It was initially thought that these
alterations are not heritable and that following fertilization all
epigenetic markers are removed from the zygote genome. Accu-
mulating evidence suggests that such erasure of epigenetic marks
occurs for most but not all genes [129, 130].

Also known as transposons or jumping genes, mobile genetic ele-
ments are sequences that can move around within a genome inde-
pendently of the complex networks which otherwise regulate gene
expression [146]. Through their movement, transposons often
cause mutations either by inserting into a gene and disturbing its
function or by promoting DNA rearrangement. If a transposon is
inserted within a protein-coding region, then it will undoubtedly
affect the expression of this gene by altering the final protein
product. Transposons may also be inserted into regulatory regions
resulting in over- or under-expression of certain gene(s). The capa-
bility of these DNA sequences to produce new copies of themselves
elsewhere in a genome is called transposition. The two types of
transposition are:

Copy-and-paste (veplicative) transposition: a new copy of the trans-
posable element is inserted into a new site, while the old copy
remains integrated into the original site [147]. This type of
transposition requires transfer of information into an RNA
intermediate  (retrotransposons) and subsequent retro-
transcription into DNA. This mechanism results in an increase
in the number transposon copies.

Cut-and-paste (non-replicative or conservative) tramsposition: the
transposable element is excised from the old site and is inserted
into a new site in the genome. The number of transposons is
not increased in this case [147].

Transposable elements are found in all cell types. The kinds of
transposable elements vary within and between prokaryotes and
cukaryotes. They are often viewed as genetic parasites since they
rely on a host cell for information processing systems (replication,
transcription, and/or translation). In humans, about 44% of the
genome is comprised of sequences that are related to transposable
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elements [148]. These mobile genetic elements had an important
impact on eukaryotic evolution [149, 150]. For example, siRNA
regulation is believed to have evolved to regain control of the
expression of transposable elements [151]. For a review of the
regulatory mechanisms of transposable elements, see ref. 152.

5 The Role of the Genome as an Informational Entity in Biology

Although the information contained within a genome is necessary
to maintain a living cell, it is not sufficient on its own. Expression of
biologically useful information requires a complex network of cel-
lular components for processing and regulation of the genome.
This dependency on external cellular components permits consid-
erable flexibility in how the information is stored. As we have seen,
the information essential for eukaryotic life is partitioned between
chromosomes located in nuclear and organelle compartments, with
some nuclear-encoded proteins being transported to the organelle
for assembly with other proteins synthesized within the organelle
[110]. Thus, as long as the cellular mechanisms for expression and
processing are in place, genomic information can be physically
dispersed within the cell. The Cryptophytes have taken this to an
extreme, having their genomic information distributed across four
cellular compartments: the nucleus, nucleomorph, mitochondria,
and plastids [153]. Clearly, the physical location of the genome is
not a constraint to information storage and processing. Further-
more, the storage of that information need not remain in a particu-
lar physical location. In the case of temperate phages, genomic
information is transferred, for a period of time, to the genome of
its host where it is maintained by its host’s replication processes
[154]. These examples, and others (e.g., [126]), underscore the
importance of viewing the genome foremost as an informational
entity irrespective of its physical location.

In a well-argued critique of conventional notions of the
genome, Goldman and Landweber [4] argue that viewing DNA
as the sole source of information leads to additional difficulties.
Recall that the NIH definition refers to the genome as containing
all of the information needed to build and maintain that organism.
We now understand that even the cell and its associated cytoplasm
are not always sufficient for realization of all functional capabilities
encoded within a genome. In other words, the genome, as conven-
tionally defined, appears to be an incomplete informational entity
[4]. Genome research has identified a variety of extracellular infor-
mational entities that can influence, and in some cases are even
essential to, the creation and maintenance of an organism. Below
we review selected examples of this phenomenon prior to reasses-
sing the definition of the genome in light of modern genome
science.
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Marine cyanobacteria (Prochlorococcus and Symechococcus) are
among the most abundant photosynthetic organisms in the world’s
oceans. The viruses that infect them (cyanophages) were discovered
to possess copies of some of their hosts photosynthesis genes (e.g.,
PsbA and PsbD: [155, 156]). Through the process of HGT, the
cyanophages acquired host genes, which they express after infection
to optimize their own gene expression and broaden their host range
[157]. As novel as this discovery was, it was completely unexpected
that the cyanobacteria and their phages continued to exchange
genetic  variation  through  homologous  recombination
[157]. Through such exchanges, the PsbA and PsbD genes partici-
pate in gene pools that extend beyond the photosynthetic species
boundaries [157]. Given that cyanobacteria contribute as much as
30% of carbon fixation worldwide, those findings suggest that viral
gene pool dynamics have influenced the evolution of oceanic pho-
tosynthesis on a global scale. This case demonstrates that to fully
understand the origin and distribution of photosynthetic diversity,
one must be aware that relevant genetic information can reside
outside of the genomes of the photosynthetic organisms.

The bacterial genus Listeria is comprised of ecologically diver-
gent lineages that share gene pools through the process of homol-
ogous recombination [158, 159]. Listeria monocytogenes is a
pathogen closely related to the nonpathogenic species L. innocun.
L. monocytogenes evolved as a pathogen through the process of
HGT [160] and then subsequently evolved into ecologically diver-
gent lineages differing in population structure and ability to
respond to environmental stress [161]. Among Listeria, recombi-
nation is frequent enough to permit natural selection to act inde-
pendently of the variability present at unlinked loci, thereby
promoting or impeding exchangeability of genes among species
and ecotypes residing in different niches [159]. This is just one
example of the “mosaic genome” model of prokaryotic genome
evolution, where the combined effects of recombination, drift, and
selection lead to genomes comprised of a mosaic of differentially
extendible trans-species gene pools. A wide variety of bacterial
species are now thought to have genome dynamics consistent
with the mosaic genome model [159, 162-165]. In some cases,
the process of genomic divergence can even become decoupled
from the process of ecological divergence [159, 163]. Thus, the
physical genomes of some species of prokaryotes are incomplete
informational entities.

The single-celled stichotrichous ciliates Oxytricha and Stylony-
chin have two nuclei that store genomic information in very difter-
ent forms [166]. One nucleus, called the macronuclens, contains
information in the form required for growth and maintenance of a
cell. Hence, the macronuclear DNA is often referred to as “active.”
The second nucleus, called the micronuclens, contains the same
information in a “stored” form, which is used to produce the active
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form of the DNA in the next generation. However, information
storage in the micronucleus is extremely complex. Protein-coding
genes expressed by the macronucleus are partitioned into small
segments, inverted, and scrambled among ~1 GB of other DNA
sequences within the micronucleus. Furthermore, the production
of a working macronucleus in the next generation cannot be
accomplished without information contained within both small
RNA molecules (piRNA) and long RNA templates (IncRNA),
which are passed across generations via the cytoplasm of the mater-
nal macronucleus [167, 168]. The piRNA are crucial to the elimi-
nation of DNA during the development of an active macronucleus,
and the IncRNA mediate (1) unscrambling of the inactive micro-
nuclear DNA, (2) regulation of gene dosage in the macronucleus,
and (3) epigenetic transfer of somatic (macronuclear) alterations
that are not found within the germ-line (micronuclear) DNA
[167]. Thus, without those RNA molecules, the DNA genome of
the stichotrichous ciliates is an incomplete informational entity
[4]. Furthermore, emerging work on both Oxytricha and Stylony-
chin suggests that epigenetic modification of their DNA may play a
role in the production of active macronuclear DNA
[166, 169-171]

Complex microbial communities live in close association with
the human body and have a strong impact on human health and
disease. Host genetic variation is known to influence the composi-
tion of those communities [172], and, conversely, microbial varia-
bility is thought to influence various host disease states [ 173]. This
association is so intimate that the microbiome has been referred to
as an additional “human organ” [174], and substantial amounts of
missing heritability associated with many complex human diseases
are now being attributed, in part, to a failure to adequately account
for microbial genetic variation [175]. Taking inflammatory bowel
disease (IBD) as an example, host human genetic variation accounts
for less than 50% of its estimated heritability [176]. This result
implies that there exists undiscovered context dependence of
human genetic variation for IBD. We have since come to under-
stand that there is extensive inter-individual variation in the genetic
composition of the gut microbiome and this metagenomic varia-
tion can influence healthy and dysregulated human immune
responses [177] and is predictive of IBD patient outcomes
[178]. Because the development of the IBD phenotype is related
to gut microbiome variability, and because genetically similar
human hosts can have different microbiomes, heritability estimates
for human DNA variation will be impacted [175]. In other words,
the expression of similar IBD phenotypes in humans is a function of
both human and microbial genetics. Regardless of whether such
interactions should be formally included within any future concep-
tion of the genome, this example illustrates how the human
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Probability, Statistics, and Computational Science

Niko Beerenwinkel and Juliane Siebourg

Abstract

In this chapter, we review basic concepts from probability theory and computational statistics that are
fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and
discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden
Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in
many variations in genomics applications. In particular, we discuss efficient inference algorithms and
methods for learning these models from partially observed data. Several simple examples are given
throughout the text, some of which provide the basis for models that are discussed in more detail in
subsequent chapters.

Key words Bayesian inference, Bayesian networks, Dynamic programming, EM algorithm, Hidden
Markov models, Markov chains, Maximum likelihood, Statistical models

1 Statistical Models

Evolutionary genomics can only be approached with the help of
statistical modeling. Stochastic fluctuations are inherent to many
biological systems. Specifically, the evolutionary process itself is
stochastic, with random mutations and random mating being
major sources of variation. In general, stochastic effects play an
increasingly important role if the number of molecules, or cells,
or individuals of a population is small. Stochastic variation also
arises from measurement errors. Biological data is often noisy due
to experimental limitations, especially for high-throughput tech-
nologies, such as microarrays or next-generation sequencing [ 1, 2].

Statistical modeling addresses the following questions: What
can be generalized from a finite sample obtained from an experi-
ment to the population? What can be learned about the underlying
biological mechanisms? How certain can we be about our model
predictions?

In the frequentist view of statistics, the observed variability in
the data is the result of a fixed true value being perturbed by
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random variation, such as, for example, measurement noise. Prob-
abilities are thus interpreted as long-run expected relative frequen-
cies. By contrast, from a Bayesian point of view, probabilities
represent our uncertainty about the state of nature. There is no
true value, but only the data is real. Our prior belief about an event
is updated in light of the data.

Statistical models represent the observed variability or uncer-
tainty by probability distributions [3, 4]. The observed data are
regarded as realizations of random variables. The parameters of a
statistical model are usually the quantities of interest because they
describe the amount and nature of systematic variation in the data.
Parameter estimation and model selection are discussed in more
detail in the next section. In this section, we first consider discrete,
and then continuous random variables and univariate
(1-dimensional) before multivariate (#-dimensional) ones. We
start by formulating the well-known Hardy—-Weinberg principle
[5, 6] as a statistical model.

Example 1 (Hardy—Weinberg Model): The Hardy—Weinberg model
is a statistical model for the genotypes in a diploid population of
infinite size. Let us assume that there are two alleles, denoted A and
a, and hence three genotypes, denoted AA, Aa = aA, and aa. Let
X be the random variable with state space X = { AA, Aa, aaj
describing the genotype. We parametrize the probability distribu-
tion of X by the allele frequency p of A and the allele frequency
g =1 — pof a. The Hardy—Weinberg model is defined by:

P(X =AA) =77, (1)

P(X = Aa) = 2p(1 - p), (2)

P(X =aa) = (1 —p)* (3)

The parameter space of the model is

O ={peR|0<p<1}=]0,1], the unit interval. We denote the
Hardy-Weinberg model by HW(p) and write X ~ HW(p) if
X follows the distribution (Egs. 1-3). O

The Hardy—Weinberg distribution P(X) is a discrete probability

distribution (or probability mass function) with finite state space:
We have 0 < (X =«) <1 forall x€X and ) ., P(X =x) =
PA2p1—p)+(1—p? =[p+ (1 —p]>=1. In general, any
statistical model for a discrete random variable with # states defines
a subset of the (# — 1)-dimensional probability simplex:

Ay ={(pr,-- 0, E0L])" [ py+--+p, =1} (4)

The probability simplex is the set of all possible probability distri-
butions of X, and statistical models can be understood as specific
subsets of the simplex [7].



Probability, Statistics, and Computational Science 35

The Hardy—-Weinberg distribution is of interest because it arises
under the assumption of random mating. A population with major
allele frequency p has genotype probabilities given in Egs. 1-3
after one round of random mating. We find that the new allele
frequency:

¢ = P(AA) + P(Aa)/2 = p* +2p(1 — p)/2 = p, (5)

is equal to the one in the previous generation. Thus, genetic varia-
tion is preserved under this simple model of sexual reproduction,
and the population is at equilibrium after one generation. In
other words, Eqs. 1-3 describe the set of all populations at
Hardy—Weinberg equilibrium. The parametric representation:

{(Pan-Pasrbaa) € D2 | an = 17, Pag = 20(1 — p),

P = (1 _P)Z}’ (6)

of this set of distributions is equivalent to the implicit representa-
tion as the intersection of the Hardy—Weinberg curve:

4PAApaa_p12§a:0 (7)

with the probability simplex A, (Fig. 1).

The simplest discrete random variable is a binary (or Bernoulli)
random variable X. The textbook example of a Bernoulli trial is the
flipping of a coin. The state space of this random experiment is the
set that contains all possible outcomes, namely, whether the coin
lands on heads (X = 0) or tails (X = 1). We write X = {0,1} to
denote this state space. The parameter space is the set that contains
all possible values of the model parameters. In the coin tossing
example, the only parameter is the probability of observing tails,
p, and this parameter can take any value between 0 and 1, so we
write ® = {p | 0 < p < 1} for the parameter space. In general, the
event X =1 is often called a “success,” and p = P(X = 1) the
probability of success.

Aa

AA aa

Fig. 1 De Finetti diagram showing the Hardy—Weinberg curve
4 Ppp Paa — pf\a =0 inside the probability simplex A, = {(Pan, DPras Pad)l
Daa + Paa + Paa = 1}. Each point in this space represents a population as
described by its genotype frequencies. Points on the curve correspond to
populations in Hardy—Weinberg equilibrium
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Example 2 (Binomial Distribution): Consider # independent
Bernoulli trials, each with success probability p. Let X be the
random variable counting the number of successes £ among the
n trials. Then, X has state space X = {0, ..., n} and

Px =k = (,)rf(1-p"" (8)

This is the binomial distribution, denoted Binom(#, p). Its param-
eter space is ® = N x [0,1]. Examples of binomially distributed
random variables are the number of “heads” in # successive coin
tosses or the number of mutated genes in a group of species. O

Important characteristics of a probability distribution are its
expectation (or expected value, or mean) and its variance. They
are defined, respectively, as:

E(X) = Zx P(X =x), 9)

xEeX

Var(X) = > v~ E(X)]* P(X = x). (10)
xEX
The standard deviation is 1/ Var(X). For the binomial distribution,
X ~ Binom(n, p), we find E(X) = np and Var(X) = np(1 — p).

Example 3 (Poisson Distribution): The Poisson distribution Pois(4)
with parameter 4 > 0 is defined as:
/f{k —A
P(X=F = zj , keEN. (11)
It describes the number X of independent events occurring in a
fixed period of time (or space) at average rate A and independently
of the time since (or distance to) the last event. The Poisson

distribution has equal expectation and  variance,
E(X) = Var(X) = A. O

The Poisson distribution is used frequently as a model for the
number of DNA mutations in a gene after a certain time period,
where 1 is the mutation rate. Both the binomial and the Poisson
distribution describe counts of random events. In the limit of large
n and fixed product #np, the two distributions coincide,
Binom(#, p) — Pois(np), for n —oo.

Example 4 (Shotgun Sequencing): Let us consider a simplified model
of the shotgun approach to DNA sequencing. Suppose that # reads
of length L have been obtained from a genome of size G. We
assume that all reads have the same probability of being sequenced.
Then, the probability of hitting a specific base with one read
is p = L/G, and the average coverage of the sequencing run is
¢ = np. Under this model, the number of times X a single base is
sequenced is distributed as Binom(#, p). For large #, we have
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Probability
0.10 0.15 0.20
|

0.05
|

0.00
L

Reads per base

Fig. 2 Coverage distribution of a shotgun sequencing experiment with n = 108 reads of length L = 100 of the
human genome of length G = 3 - 10°. The average coverage is ¢ = np = 3.4, where p = L/G. Dots show
the binomial coverage distribution Binom(n, p) and the solid line its approximation by the Poisson distribution
Pois(np). Note that the Poisson distribution is also discrete and just shown as a line to distinguish it from the
binomial distribution

chee

P(X = k) = (’Z)pm -t e (12)

For example, using next-generation sequencing technology, one
might obtain 7 = 10® reads of length L = 100 bases in a single
run. For the human genome of length G = 3 - 10°, we obtain a
coverage of ¢ = 3.4. The distribution of the number of reads per
base pair is shown in Fig. 2. In particular, the fraction of unse-
quenced positions is (X = 0) = ¢ “ = 3.57%. O

A continuous random variable X takes values in X = R and is
defined by a nonnegative function f{x) such that:

P(X€EB) = /f(x)dx, for all subsets B C R. (13)
B
The function fis called the probability density function of X. For an
interval:
b
PXelnd) = Pas X <0) = [ fls (14)
a

The cumulative distribution function is
b
F(b) = P(X <) :/ f(x)dx, beER. (15)

Thus, the density is the derivative of the cumulative distribution
S d —
function, 7 F(x) = f (x) . .

In analogy to the discrete case, expectation and variance of a
continuous random variable are defined, respectively, as:
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E(X) = /_Doxf(x) dx, (16)

o

Var(X) = / T v X f(x) da. (17)

oo

Example 5 (Normal Distribution): The normal (or Gaussian) dis-
tribution has the density function:

f(x) = (2ﬂ62)_1/2CXp

_—p)” ”)2] . (18)

202

The parameter space is © = {(4,0°) | u€R, 6> € R, }. A normal
random variable X ~ Norm(u,06?) has mean E(X) =y and
variance Var(X) = ¢?. Norm(0,1) is called the standard normal
distribution. O

The normal distribution is frequently used as a model for
measurement noise. For example, X ~ Norm(u, 6*) might describe
the hybridization intensity of a sample to a probe on a microarray.
Then, u is the level of expression of the corresponding gene and
o® summarizes the experimental noise associated with the micro-
array experiment. The parameters can be estimated from a finite
sample {xV, ... &™)} ie., from N replicate experiments, as the
empirical mean and variance, respectively:

1 N
X = ﬁZM, (19)
1=

2= Nl_ DI (20)

i=1

The normal distribution plays a special role in statistics due to
the central limit theorem. It asserts that the average
Xy=XY4...+ XN)/N of Nindependent (see below) and
identically distributed (i.i.d.) random variables X' with equal
mean g and variance 6> converges in distribution to the standard
normal distribution:

VN (XNG_ ”) 2, Norm(0,1), (21)

irrespective of the shape of their distribution. As a consequence,
many test statistics and estimators are asymptotically normally
distributed. For example, the Poisson distribution Pois(4) is
approximately normal Norm(4, 1) for large values of 4.

We often measure multiple quantities at the same time, for
example the expression of several genes, and are interested in
correlations among the variables. Let X and ¥ be two random
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variables with expected values yx and yyand variances 6% and %,
respectively. The covariance between X and 7 is

Cov(X,T) = E[(X - ux)(Y — uy)] = E[XY] - E[X]E[Y]

and the correlation between X and Y s Px.T
Cov(X,Y)/(oxoy). For observations (&', y1), ... (&™) Ny,
the sample correlation coefficient is

N i v i -
Py = Zi:l <x( ) — x)(y() _)’) (23)
(N— I)SXsy

where sy and sy are the sample standard deviations of X and 7,
respectively, defined in Eq. 20.

So far, we have worked with univariate distributions and we
now turn to multivariate distributions, i.c., we consider random
vectors X = (Xj, ..., X,,) such that each X; is a random variable.
For the case of discrete random variables X;, we first generalize the
binomial distribution to random experiments with a finite number
of outcomes.

Example 6 (Multinomial Distribution): Let K be the number of
possible outcomes of a random experiment and 6, the probability of
outcome k. We consider the random vector X = (X, . .., Xg) with
values in ¥ = NX where X;, counts the number of outcomes of type %.
The multinomial distribution Mult(#, 6y, ...,60k) is defined as:

PX =)=

xp! - xg! ook (24)
if Ef:l xp, = n,and 0 otherwise. The parameter space of the model
is® =N x Ag_;. For K = 2, we recover the binomial distribution
(Eq. 8). Each component X}, of a multinomial vector has expected
value E(X;) = n0), and Var(X;) = n0,(1 — ;). The covariance of
two components is Cov(X, X;) = —n8,0,, for k # 1. O

In general, the covariance matrix £ of a random vector X is

defined by:
ZZA]' = COV(XHX]) = E[(Xt - /"z‘)(Xf - ﬂ]’)]a (25)

where u; is the expected value of X;. The matrix X is also called the
variance—covariance matrix because the diagonal terms are the var-
iances Z;; = Cov(X;, X;) = Var(X,).

A continuous multivariate random variable X takes values in
X =R”. It is defined by its cumulative distribution function:

F(x)=P(X <x), x€R” (26)
or, equivalently, by the probability density function:

0" "
f(X):mF(X1,,xn), xeR”. (27)
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Example 7 (Multivaviate Normal Distribution): For n > 1 and
x €R”) the multivariate normal (or Gaussian) distribution has
density:

1

f) = @m) " det(D) " exp |~ 5 (v ) T (x — )|

(28)
with parameter space O = {(u,X) | p = (yy, --.,4,) €ER” and
T = (o'”) R}, where X is the symmetric, positive-definite

covariance matrix and p the expectation. We write
X = (X1, ...,X,) ~Norm(u,X) for a random vector with such a
distribution. O

We say that two random variables X and 7" are independent if P
(X, Y) = PX)P(Y) or, equivalently, if the conditional probability
PX|Y)=PX,7T)/PY)is equal to the unconditional proba-
bility P(X). If X and T are independent, denoted X L 7, then
E[XY | =E[X]E[Y ] and Var(X + Y) = Var(X) + Var(Y). It
follows that independent random variables have covariance zero.
However, the converse is only true in specific situations, for exam-
ple if (X, 1) is multivariate normal, but not in general because
correlation captures only linear dependencies.

This limitation can be addressed by using statistical models
which allow for a richer dependency structure. Subheading 7 is
devoted to Bayesian networks, a family of probabilistic graphical
models based on conditional independences. Let X, 7, and Z be
three random vectors. Generalizing the notion of statistical inde-
pendence, we say that X is conditionally independent of 1~ given
Zandwrite X L V| Zif X, Y| Z)=PX| Z)PY| Z). Bayes’
theorem states that

P(X | T)P(Y)
P(X)

where P(Y) is called the prior probability and P(Y | X) the poste-
rior probability. Intuitively, the prior (1" ) encodes our a priori
knowledge about Y (i.e., before observing X), and P(Y | X) is our
updated knowledge about Y a posteriori (i.e., after observing X).
We have P(X) =2P(X, 7) if T is discrete, and similarly
X)=[+P(X, Y)dY if T is continuous. Here, P(X) is called
the marginal and P(X, 1) the joint probability. This summation
or integration is known as marginalization (Fig. 3).
Since P(X) =2yP(X, T ) =3y X| Y)Y ), Bayes’ theo-
rem can also be rewritten as:

P(Y|X) = (29)

PX | Y)P(T)

Y PX|y)Ply) (30)
YEY

where P(y) = P(Y = ) and Y is the state space of 7".

P(T | X) =
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2 0

3 5 6 1 3

Fig. 3 Marginalization. Left: two-dimensional histogram of a discrete bivariate distribution with the two
marginal histograms. Right: contour plot of a two-dimensional Gaussian density with the marginal distribu-

tions of each component

Example 8 (Diagnostic Test): We want to evaluate a diagnostic test
for a rare genetic disease. The binary random variables D and
T indicate disease status (D = 1, diseased) and test result (7= 1,
positive), respectively. Let us assume that the prevalence of the
disease is 0.5%, i.e., 0.5% of all people in the population are
known to be affected. The test has a false positive rate (probability
that somebody is tested positive who does not have the disease) of
P(T=1| D=0)=5% and a true positive rate (probability that
somebody is tested positive who has the disease) of (T=1| D
= 1) = 90%. Then, the posterior probability of a person having the
disease given that he or she tested positive is

PD=1|T=1)=

P(T=1|D=1)P(D=1)
P(T=1|D=0P(D=0)+P(T=1|D=1)P(D=1)

= 0.083,

(31)

that is, only 8.3% of the positively tested individuals actually have
the disease. Thus, our prior belief of the disease status, (D), has
been modified in light of the test result by multiplication with
P(T| D) to obtain the updated belief P(D | T). O

Exercise 9 (Conditional Independence): Let X, T, and Zbe random
variables. Using the laws of probability, show that X and Y are
conditionally independent given Z (i.e., X L 7| Z) if and only if
PX|Y,Z)=PX|Z).
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2 Statistical Inference

Statistical models have parameters and a common task is to estimate
the model parameters from observed data. The goal is to find the
set of parameters with the best model fit. There are two major
approaches to parameter estimation: maximum likelihood
(ML) and Bayes.

The maximum likelihood approach is based on the likelihood
function. Let us consider a fixed statistical model M with parameter
space ® and assume that we have observed realizations
D= {xM, ... ¥} of the discrete random variable X ~ M(6y)
for some unknown parameter 8y € ©. For the fixed data set @, the
likelihood function of the model is

L(0) = P(D | 0), (32)

where we write P(® | 0) to emphasize that, here, the probability of
the data depends on the model parameter 6. For continuous ran-
dom variables, the likelihood function is defined similarly in terms
of the density function, L(8) = f(® | 6). Maximum likelihood
estimation seeks the parameter 6 € © for which () is maximal.
Rather than I(#), it is often more convenient to maximize
£(0) =logL(0), the log-likelihood function. If the data are i.i.d.,
then:

N
£(0) = > logP(X = x| 6). (33)
i=1

Example 10 (Likelibood Function of the Binominl Model): Suppose
we have observed & = 7 successes in a total of N = 10 Bernoulli
trials. The likelihood function of the binomial model (Eq. 8) is

Lip) =" 1 - p)" ", (34)

where p is the success probability (Fig. 4). To maximize L, we
consider the log-likelihood function:

((p) = logL(p) = Hog(p) + (N — k)log(1 — p) (35)

and the likelihood equation 4¢/dp = 0. The ML estimate (MLE) is
the solution py; = k/N = 7/10. Thus, the MLE of the success
probability is just the relative frequency of successes. O

Example 11 (Likelihood Function of the Havdy—Weinberg Model): 1If
we genotype a finite random sample of a population of diploid
individuals at a single locus, then the resulting data consists of the
numbers of individuals 74, 7., and z,, with the respective geno-
types. Assuming Hardy—Weinberg equilibrium (Egs. 1-3), we want
to estimate the allele frequencies p and g=1— p of the
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Fig. 4 Likelihood function of the binomial model. The underlying data set
consists of k = 7 successes out of N = 10 Bernoulli trials. The likelihood L
(p = p“ (1 — p"*is plotted as a function of the model parameter p, the
probability of success (solid line). The MLE is the maximum of this function,
pw. = k/N = 7/10 (dashed line)

population. The likelihood function of the Hardy—Weinberg model
is L(p) = P(AA)" P(Aa)"™ P(aa)™ and the log-likelihood is

£(p) = naalogp? + naidog2p(1 — p) + nalog(l — p)?

36
o (ZWAA + ﬂAa)IOgP + (”Aa + 2”aa>log(1 - P)v ( )

where we have dropped the constant na,log2. The MLE of
p €10, 1] can be found by maximizing ¢. Solving the likelihood
equation:

% _ 2nAA + 7aa . naa + 27’1':13

op p 1—p
yields the MLE py; = (2maa + 7a,)/(2N), where N = npp +
Baq + My, 1s the total sample size. For example, if we sample
N = 100 genotypes with nyy = 81, ns, = 18, and n,, = 1, then
we find py;; = (2 (81 +18))/(2-100) = 0.9 for the frequency of
the major allele. O

=0 (37)

MULEs have many desirable properties. Asymptotically, as the
sample size N —oo, they are normally distributed, unbiased, and
have minimal variance. The uncertainty in parameter estimation
associated with the sampling variance of the finite data set can be
quantified in confidence intervals. There are several ways to
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construct confidence intervals and statistical tests for MLEs based
on the asymptotic behavior of the log-likelihood function
£(0) =logL(#) and its derivatives. For example, the asymptotic
normal distribution of the MLE is

O 2 Norm<9,](9)*1), (38)

where I(0) = —0%¢/06” is the Fisher information and J(9) = E[I
(0)] the expected Fisher information. This result gives rise to the
Wald confidence intervals:

[Ome £ 2142 J(O)7'], (39)

where z)_qp =inf{x€R|1—-a/2 < F(x)} is the (1 —a/2)
quantile and Fthe cumulative distribution function of the standard
normal distribution. Equation 38 still holds after replacing J(6)
with the standard error se(Omy.) = [1(Omr)] 2 or [J(Omr)] %, and it
also generalizes to higher dimensions. Other common construc-
tions of confidence intervals include those based on the asymptotic
distribution of the score function §(@) = 0¢/06 and the
log-likelihood ratio log(L(0ny)/L(6)) [8].

We now discuss another more generic approach to quantify
parameter uncertainty, not restricted to ML estimation, which is
applied frequently in practice due to its simple implementation.
Bootstrapping [9] is a resampling method in which independent
observations are resampled from the data with replacement. The
resulting new data set consists of (some of) the original observa-
tions, and under i.i.d. assumptions, the bootstrap replicates have
asymptotically the same distribution as the data. Intuitively, by
sampling with replacement, one is pretending that the collection
of replicates thus obtained is a good proxy for the distribution of
data sets that one would have obtained, had we been able to actually
replicate the experiment. In this way, the variability of an estimator
(or more generally the distribution of any test statistic) can be
approximated by evaluating the estimator (or the statistic) on a
collection of bootstrap replicates. For example, the distribution of
the ML estimator of a model parameter € can be obtained from the
bootstrap samples.

Example 12 (Bootstrap Confidence Interval for the ML Allele Fre-
quency): We use bootstrapping to estimate the distribution of the
ML estimator p,y; of the Hardy-Weinberg model for the data set
(man, Paay Maa) = (81, 18, 1) of Example 11. For each bootstrap
sample, we draw N = 100 genotypes with replacement from the
original data to obtain random integer vectors of length three
summing to 100. The ML estimate is computed for each of a
total of B bootstrap samples. The resulting distributions of py
are shown in Fig. 5, for B = 100, 1000, and 10,000. The means of
these empirical distributions are 0.899, 0.9004, and 0.9001,
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Fig. 5 Bootstrap analysis of the ML allele frequency. The bootstrap distribution of the maximum likelihood
estimator oy = (21 + Naa)/(2N) of the major allele frequency in the Hardy-Weinberg model is plotted for
B = 100 (left), B = 1000 (center), and B = 10, 000 (right) bootstrap samples, for the data set (s, Maa,
Naa) = (81,18, 1)

respectively, and 95% bootstrap confidence intervals can be derived
from the 2.5 and 97.5% quantiles of the distributions. For
B =100, 1000, and 10,000, we obtain, respectively, [0.8598,
0.9350],[0.860, 0.940], and [0.855, 0.940]. The basic bootstrap
confidence intervals have several limitations, including bias of the
bootstrap estimator and skewness of the bootstrap distribution.
Other methods exist for constructing confidence intervals from
the bootstrap distribution to address some of them [9]. O

The Bayesian approach takes a different point of view and
regards the model parameters as random variables [10]. Inference
is then concerned with estimating the joint distribution of the
parameters 6 given the observed data ®. By Bayes’ theorem
(Eq. 30), we have

_P@|0)PE)  P@]0)PE)
PO =) = [ ooP(® [ 0)P(0) d6°

(40)

that is, the posterior probability of the parameters is proportional to
the likelihood of the data times the prior probability of the para-
meters. It follows that, for a uniform prior, the mode of the poste-
rior is equal to the MLE.

From the posterior, credible intervals of parameter estimates
can be derived such that the parameter lies in the interval with a
certain probability, say 95%. This is in contrast to a 95% confidence
interval in the frequentist approach because, there, the parameter is
fixed and the interval boundaries are random variables. The mean-
ing of a confidence interval is that 95% of similar intervals would
contain the true parameter, if intervals were constructed indepen-
dently from additional identically distributed data.

The prior P(@) encodes our a priori belief in 8 before observing
the data. It can be used to incorporate domain-specific knowledge
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into the model, but it may also be uninformative or objective, in
which case all observations are equally likely, or nearly so, a priori.
However, it can sometimes be difficult to find noninformative
priors. In practice, conjugate priors are most often used. A conju-
gate prior is one that is invariant with respect to the distribution
family under multiplication with the likelihood, i.e., the posterior
belongs to the same family as the prior. Conjugate priors are
mathematically convenient and computationally efficient because
the posterior can be calculated analytically for a wide range of
statistical models.

Example 13 (Dirvichiet Prior): Let T = (13, ..., Tx) be a continuous
random variable with state space Ax_;. The Dirichlet distribution
Dir(ar) with parameters a € Rf has probability density function:

)

f(ala "';eK) = Ki;lge?l_l’ (41)

INNCD)

where I' is the gamma function. The Dirichlet prior is conjugate to
the multinomial likelihood: If T ~ Dir(a) and (X | T =6) ~
Mult(n, 0y, ...,0k), then (0| X = x) ~ Dir(a+ x). For K = 2,
this distribution is called the beta distribution. Hence, the beta
distribution is the conjugate prior to the binomial likelihood. O

Example 14 (Posterior Probability of Genotype Frequencies): Let us
consider the simple genetic system with two loci and two alleles
each of Example 1, but without assuming the Hardy—Weinberg
model. We regard the observed genotype frequencies (7#aa, #aa,
7.) = (81, 18, 1) as the result of a draw from a multinomial
distribution Mult(#, 04, 0a4, 022). Assuming a Dirichlet prior
Dir(aaa, @aq, %aa), the posterior genotype probabilities follow the
Dirichlet distribution Dir(aaa + #aa, 0aa + #aa> ®aa + #aq). In
Fig. 6, the prior Dir(10, 10, 10) is shown on the left, the multino-
mial likelihood P((7aa, a4, 722) = (81,18, 1) | Oan, Oaa, 0,a) in the
center, and the resulting posterior Dir(10 + 81, 10 + 18,10 + 1)
on the right. Note that the MLE is different from the mode of the
posterior. As compared to the likelihood, the nonuniform prior has
shifted the maximum of the posterior toward the center of the
probability simplex. |

We often have two or more competing models and would like
to assess which one describes best the given data. For example, we
may have observed genotypes from the set {AA, Aa, aa} and want to
test whether the Hardy—Weinberg model (Example 1) is a more
appropriate description of the genotype data than the multinomial
model of the previous Example 14. Intuitively, we might want to
select the model that fits the data best, for example, by comparing
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Fig. 6 Dirichlet prior for multinomial likelihood. The Dirichlet prior is conjugate to the multinomial likelihood.
Shown are contour lines of the prior Dir(10, 10, 10) on the left, the multinomial likelihood A(aa, Maa,
Nya) = (81, 18, 1)|0na, Ona, Baa) in the center, and the resulting posterior Dir(91, 28, 11) on the right. The
posterior is the product of prior and likelihood

their likelihoods. However, the Hardy—Weinberg model has only
one parameter, namely the allele frequency p, whereas the multino-
mial model has three parameters subject to the constraint O, +
Oaqs + 0., = 1. Hence, the number of free parameters is one and
two, respectively, for the two models. This difference in the com-
plexity of the models makes a comparison based only on the good-
ness of fit invalid, because models with more parameters, i.e.,
higher complexity, can generally provide a better fit. Estimating
model complexity and scoring models based on both model com-
plexity and goodness of fit is therefore essential for model compari-
son and model selection.

The goal of model selection is to find the model that best
generalizes to unseen data, rather than just fits the observed data,
because we seek the model capable of the most accurate predic-
tions. A model that fits well but generalizes poorly is said to overfit
the data. Models that are too complex tend to overfit the data.
Model selection can be regarded as finding the right level model
complexity for the given data, such that the predictive performance
is optimized. This involves defining a criterion of optimality and a
procedure for finding the optimal model.

A common frequentist approach to model selection are likeli-
hood ratios. For a data set @, we compare a null model, My, to an
alternative model, M}, at given point estimates using the ratio of
their likelihoods:

_ L(0y)
L(6y)

If A(D) < ¢, for a defined threshold ¢, we reject the null model and
favor the alternative model. The choice of ¢ should be informed by
the distribution of A under the null. If the two models are nested,
i.e., if My can be obtained from M; by specifying a subset of the
parameters, then —2 logA is approximately y>-distributed with
degrees of freedom equal to the difference in the number of free
parameters between M; and M.

A(D) (42)
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In the Bayesian framework, it is natural to compare the poste-
rior probabilities of the two models. By Bayes theorem, we have, for

1=0, 1:
pM; | o) = 22| 11)\/(2)1) (M) (43)
where:
P(®|M;) = [P(D]6;, M;)P(6; | M;) d6; (44)

is the marginal likelihood. The marginal likelihood accounts for
model complexity and for uncertainty in parameter estimates, but is
usually analytically intractable and costly to compute. Various
approximations of the marginal likelihood exist that give rise to
model selection scores, such as the Bayesian information criterion
(BIC; see Subheading 7) and the Akaike information criterion
(AIC) [11].

For Bayesian model comparison, we consider the posterior
odds:

P(My | D) _ P(D|Mo) P(Mo)

P(M; [ @)~ P(0|My) P(My) (#5)

The ratio of the marginal likelihoods, i.e., the first factor on the
right-hand side of Eq. 45, is called the Bayes factor. With equal
priors, a Bayes factor larger than 20 is often considered strong
support for My over M [12].

Exercise 15 (Poisson Distribution): We wish to model the number of
bacterial colonies in a Petri dish and assume that the count data of
this experiment follows a Poisson distribution Pois(4) (Example 3).
Derive the log-likelihood function of this model and calculate the
MLE of the model parameter 4. Suppose now that the number of
bacterial colonies on a Petri dish follows the Poisson distribution
with mean A = 5. What is the probability of finding exactly three
colonies?

3 Hidden Data and the EM Algorithm

We often cannot observe all relevant random variables due to, for
example, experimental limitations or study designs. In this case, a
statistical model P(X, Z | 6 € ©) consists of the observed random
variable X and the hidden (or latent) random variable Z, both of
which can be multivariate. In this section, we write X = (X" .. |
XM for the random variables describing the N observations and
refer to X also as the observed data. The hidden data for this model
is Z=(2Y, ..., Z™) and the complete data is (X, Z). For
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convenience, we assume the parameter space ® to be continuous
and the state spaces X' of X and Z of Z to be discrete.

In the Bayesian framework, one does not distinguish between
unknown parameters and hidden data, and it is natural to assess the
joint posterior (0, Z| X) x X | 6, Z)P(0, Z), which is P(X,
Z | 0)P(0) if priors are independent, i.c., if P(6, Z) = P(O)P(Z).
Alternatively, if the distribution of the hidden data Zis not of interest,
it can be marginalized out. Then, the posterior (Eq. 40) becomes

fee@ZZ X,Z | 0)P(0) d6
In the likelihood framework, it can be more efficient to estimate

the hidden data, rather than marginalizing over it. The hidden
(or complete-data) log-likelihood is

(46)

hia(6) = logP(X, Z | 6) ZlogP ) o). (47)

For ML parameter estimation, we need to consider the observed

log-likelihood:

Cops(0) = logP(X | 0) = 1ogZPXZ|9

=1 &) Z0) | g).
og Y > gp@f VAR
zZWNez

zWez

(48)

This likelihood function is usually very difficult to maximize and one
has to resort to numerical optimization techniques. Generic local
methods, such as gradient descent or Newton’s method, can be
used, but there is also a more specific local optimization procedure,
which avoids computing any derivatives of the likelihood function,
called the expectation maximization (EM) algorithm [13].

In order to maximize the likelihood function (Eq. 48), we
consider any distribution ¢(Z) of the hidden data Zand write

fasl0) = lo8Y_ 0(2) P2 logelP(x, 2 | 0)/4(2),

(49)

where the expected value is with respect to g(Z). Jensen’s inequality
applied to the concave log function asserts thatlog E[Y] > E[logY].
Hence, the observed log-likelihood is bounded from below by

Ellog(P(X,Z | 0)/9(Z))], or
Cobs(0) > E[tnia(0)] + H(q), (50)
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where H(gq) = —E[logg(Z)] is the entropy. The idea of the EM
algorithm is to maximize this lower bound instead of ,,s(8) itself.
Intuitively, this task is easier because the big sum over the hidden
data in Eq. 48 disappears on the right-hand side of Eq. 50 upon
taking expectations.

The EM algorithm is an iterative procedure alternating
between an E step and an M step. In the E step, the lower bound
(Eq. 50) is maximized with respect to the distribution g by setting
92 Z) = P(Z| X, 67), where 67 is the current estimate of 0, and
computing the expected value of the hidden log-likelihood:

Q(016%) =E,x g [lhia(6)]. (51)

In the M step, Q is maximized with respect to € to obtain an
improved estimate:

ol = argmgle(e | 6)). (52)

The sequence oV, 0 93 .. converges to a local maximum of
the likelihood surface (Eq. 48). The global maximum and, hence,
the MLE is generally not guaranteed to be found with this local
optimization method. In practice, the EM algorithm is often run
repeatedly with many different starting solutions 6’ or with few
very reasonable starting solutions obtained from other heuristics or
educated guesses.

Example 16 (Naive Bayes): Let us assume that we observe realiza-
tions of a discrete random variable (X, ..., X;) and we want to
cluster observations into K distinct groups. For this purpose, we
introduce a hidden random variable Z with state space
Zz=[K]={1,...,K} indicating class membership. The joint
probability of (Xi, ..., X7) and Zis

P(Xla "')XL>Z): P(Z)P(Xl, "')XL | Z)

= P(Z) li[lP(X” | Z). (53)

The marginalization of this model with respect to the hidden data
Zis the unsupervised naive Bayes model. The observed variables X,
are often called features and Z the latent class variable (Fig. 7).

The model parameters are the class prior P(Z), which we
assume to be constant and will ignore, and the conditional prob-
abilities 6,, ,, = P(X,, = x| Z= k). The complete-data likelihood
ofo?g{r)ved data X = (X(l), ey X<N)) and hidden data Z = (29,
ceo ) is

N N L
P(X,Z|0) = I1P(x", Z29 | ) = ILP(Z") I1 P(X) | Z)
(54)
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5
o @ - @

Fig. 7 Graphical representation of the naive Bayes model. Observed features X,
are conditionally independent given the latent class variable Z

N L 5
ljlj l—g Hen,kx ) (55)

1 ke (K] ¥EX 7, kx

where In,kx(Z(i)) is equal to one if and only if Z*) = kand ng) =
and zero otherwise.

To apply the EM algorithm for estimating 8 without observing
Z, we consider the hidden log-likelihood:

hia(0) = logP(X,Z | 6) ZZ Z Z L i (Z D) 0g0 .

i=1 n=1 ke[K] x€X

(56)
In the E step, we compute the expected values of Z*):
; ; P X" =x|Z" = k
ke GI( (57)
_ 7, kx
Zk’el(e/n, klx ’
where ¢ is the current estimate of @. The expected value J/E/Li)kx is

sometimes referred to as the responsibility of class % for observation

X, () — x. The expected hidden log- hkellhood can be written in
terms of the expected counts N, j, = Z 1 y;)kx as:

EZ|X o fhld Z Z Z Nn kxlogﬁn Joxc+ (58)

n=1 ke[K] x€X

In the M step, maximization of this sum yields
gn,lzx = Nn,kx/zx/Nn,kx“ O

4 Markov Chains

A stochastic process { X, #E€7 } is a collection of random variables
with common state space X. The index set 7 is usually interpreted as
time and X, is the state of the process at time z A discrete-time
stochastic process X = (X1, X5, X3, ... ) is called a Markov chain
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[14], if X,.1 L X, 1] X, for all » > 2 or, equivalently, if each
state depends only on its immediate predecessor:

PX,| X,1,...,.X1)=P(X, | X,—1), foralln>2.
(59)

We consider here Markov chains with finite state space
X =[K] ={1, ..., K} that are homogeneous, i.c., with transition
probabilities independent of time:

Tu=PX,n=1|X,=k), foral kI€[K],n>2. (60)

The finite-state homogeneous Markov chain is a statistical model
denoted MC(I1, T') and defined by the initial state distribution IT €
Ag_1,where I, = P(X; = k), and the stochastic K x K transition
matrix T = (Ty).

We can generalize the one-step transition probabilities 7}, to:

Ty=PX,yj=1|X;=1), (61)

the probability of jumping from state % to state /in » time steps. Any
(m + m)-step transition can be regarded as an #-step transition
followed by an m-step transition. Because the intermediate state
7 is unknown, summing over all possible values yields the
decomposition:

K

T7 " = ZT;@ " forall mm > 1, k1€ [K], (62)
i=1

known as the Chapman—Kolmogorov equations. In matrix nota-

tion, they can be written as 7" = T T Tt follows that the

n-step transition matrix is the z-th matrix power of the one-step

transition matrix, 7 = 17,

A state / of a Markov chain is accessible from state kif 77, > 0.
We say that % and / communicate with each other and write %2 ~ /if
they are accessible from one another. State communication is reflex-
ive (k ~ k), symmetric (k ~ [ = [ ~ k), and, by the Chapman—Kol-
mogorov equations, transitive (j~ k~ [ = j~ [). Hence, it
defines an equivalence relation on the state space. The Markov
chain is irreducible if it has a single communication class, i.e., if
any state is accessible from any other state.

A state is recurrent if the Markov chain will reenter it with
probability one. Otherwise, the state is transient. In finite-state
Markov chains, recurrent states are also positive recurrent, i.e.,
the expected time to return to the state is finite. A state is aperiodic
if the process can return to it after any time » > 1. Recurrence,
positive recurrence, and aperiodicity are class properties: if they
hold for a state £, then they also hold for all states communicating
with k.
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A Markov chain is ergodic if it is irreducible, aperiodic, and
positive recurrent. An ergodic Markov chain has a unique stationary
distribution z given by:

K K
7 = lim T} = anm, I€[K], Z’” -1 (63)
k=1 =1

independent of the initial distribution IT. In matrix notation, x is
the solution of z* = z'T.

Example 17 (Two-State Markov Chain): Consider the Markov chain
with state space {1, 2} and transition probabilities 77, = a > 0 and
151 = f > 0. Clearly, the chain is ergodic and its stationary distri-
bution z is given by:

(m m)=(m ﬂz)@“ ‘f_ﬂ) (64)

or, equivalently, ar, = pr,. With 7y + 7, = 1, we obtain z° = (a +

B (a, B)- O

In Example 17, if @ = 0, then state 1 is called an absorbing state
because once entered it is never left. In evolutionary biology and
population genetics, Markov chains are often used to model evol-
ving populations, and the fixation probability of an allele can be
computed as the absorption probability in such models.

Example 18 (Wright—Fisher Process): We consider two alleles, A and
a, in a diploid population of size N. The total number of A alleles in
generation # is described by a Markov chain X,, with state space
{0, 1,2, ..., 2N}. We assume that individuals mate randomly and
that maternal and paternal alleles are chosen randomly such that
(Xus1| X») ~ Binom(2N, k/(2N)), where £ is the number of A
alleles in generation 7. The Markov chain has transition
probabilities:

YT e

If the initial number of A alleles is X; = k, then E(X;) = k. After
binomial sampling, E(X5) = 2N(k/(2N)) = kand hence E(X,,) =
k for all » > 0. The Markov chain has the two absorbing states
0 and 2 N, which correspond, respectively, to extinction and fixa-
tion of the A allele. To compute the fixation probability 4, of A
given k initial copies of it:

by = lim P(X, =2N | X; = k), (66)
we consider the expected value, which is equal to &, in the limit as
7n —00 to obtain
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k= lim E(X,)=0-(1—=4;)+2N -l (67)
Thus, the fixation probability is just 4, = k/(2N), the initial rela-
tive frequency of the allele. The Wright—Fisher process [15, 16]is a
basic stochastic model for random genetic drift, i.e., for the varia-
tion in allele frequencies only due to random sampling. O

If we observe data X = (X", ..., X)) from a finite Markov
chain MC(I1, T) of length L, then the likelihood is

N ) N L L=l . )
L, 1) = I p(x®) = Tp(x ) L P(XY), | X))
N ) (68)
= O L T o

which can be rewritten as:

IO & 1 qq e
i=1 re(k] * re[k) ie(k] (69)

- I I I1 7,

re(K] * kelK]i€[K]

LI, T)

with Nj,(X) the number of observed transitions from state % into
state / in observation )((i), and Ny = Z;IL Nkl(X(i)) the total
number of k-to-/ transitions in the data, and similarly Ny X))
and N, the number of times the 7-th chain, respectively all chains,
started in state £.

Exercise 19 (Markov Chains): Let us consider a simple infectious
disease model, where each individual is either healthy (H) or dis-
eased (D). We assume the following two-state Markov chain to
describe infection-related disease and recovery via clearance of the
pathogen:

g

The probability of a healthy individual becoming sick due to
infection is @ = 0.6, and the probability of a diseased individual to
clear the infection and recover is f = 0.9. The initial probabilities
for health and disease are P(H) = 0.7 and P(D) = 0.3. Write down
the transition matrix 7'of this Markov chain. What is the probability
of observing the disease trajectories DDHHD and HDHDH? Cal-
culate the stationary distribution of the Markov chain.
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5 Continuous-Time Markov Chains

A continuous-time stochastic process { X(z), # > 0} with finite state
space [ K] is a continuous-time Markov chain if

PIX(t+s5)=1]|X() =k, X(u) =x(n), 0 < u<j]
=PX(t+s)=1]| X(s) =]
forall s, £ > 1, k, I, x(») € [K], 0 < u < 5. The chain is homoge-

neous if Eq. 70 is independent of 5. The transition probabilities are
then denoted:

Tu(t) = P[X(t+s)=1]| X(s) = k. (71)

(70)

It can be shown that the transition matrix 7{¢) is the matrix expo-
nential of a constant rate matrix R times £

o0

T() = exp(Rr) = » Jl, (Rt). (72)

7=0

Example 20 (Jukes—Cantor Model): Consider a fixed position in a
DNA sequence, and let T;(¢) be the probability that, due to muta-
tion, nucleotide % changes to nucleotide / after time ¢ at this
position (Fig. 8). The Jukes—Cantor model [17] is the simplest
DNA substitution model. It assumes that the transition rates from
any nucleotide to any other are equal:

—3a «a a a
a —3a «a a

R=]a a —3a «a . (73)
a a a —3a

Sy

C |«<—| G

& )

Fig. 8 Nucleotide substitution model. The state space and transitions of a
general nucleotide substitution model are shown. For the Jukes—Cantor model
(Example 20), all transitions from any nucleotide to any other nucleotide have the
same probability § (1 — e~*)
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The resulting transition matrix 7'(¢) = exp(R¢) is

1+ 36—401? 1— g—4at 1 — e—4at 1— g—4at
1-— 674111: 1+ 3674111: 1— 374(11? 1-— 674(”
T(Z‘) — l 1— 574051? 1— 6740:1? 1+ 36740:1? 1 — 574—051?
4 1 — E—4at 1 — g—4at 1 — g—4at 1+ 33—40[1?
(74)

and the stationary distribution as £ —oo is uniform, z = (1/4,1 /4,

1/4,1/4)". O

Example 21 (The Poisson Process): A continuous-time Markov chain
X(¢) is a counting process, if X(¢) represents the total number of
events that occur by time z It is a Poisson process, if in addition
X(0) = 0, the increments are independent, and in any interval of
length # the number of events is Poisson distributed with rate Az

(Ar)*

PWO+Q—X®:H:HXM:H:fM?F. (75)
The Poisson process is used, for example, to count mutations in a
gene. O

Example 22 (Exponential Distribution): The exponential distribu-
tion Exp(4) with parameter 4 > 0 is a common distribution for
waiting times. It is defined by the density function:

f(x) =Ae™*, for x> 0. (76)

If X ~ Exp(4), then X has expectation E(X) = A~ ' and variance
Var(X) = A2, The exponential distribution is memoryless, which
means that (X >s+¢t| X > 1) = (X > s), for all 5, £> 0. An
important consequence of the memoryless property is that the
waiting times between successive events are i.i.d. For example, the
waiting times z,, (# > 1) between the events of a Poisson process,
the sequence of interarrival times, are exponentially distributed,
7, ~ Exp(4), for all » > 1. O

Exercise 23 (Kimura Model): The Kimura two-parameter model is a
DNA substitution model that distinguishes between transitions,
i.e., purine-to-purine and pyrimidine-to-pyrimidine substitutions,
from transversions, i.e., purine-to-pyrimidine and pyrimidine-to-
purine substitutions [18]. It is defined by the rate matrix:

—2f—a p a p
r_|” —2f—a p a

a p —2f—a p ’

p a p —2f—-a

where a, fER, are the two substitution rates. Assuming that the
Markov chain is ergodic, derive its stationary distribution.
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6 Hidden Markov Models

A hidden Markov model (HMM) is a statistical model for hidden
random variables Z = (41, ..., Z;), which form a homogeneous
Markov chain, and observed random variables X = (X, ..., Xp).
Each observed symbol X,, depends on the hidden state Z,. The
HMM is illustrated in Fig. 9. It encodes the following conditional
independence statements:

Zpi1LZ, 1 | Z,,y 2<n<L-1 (Markovproperty)

XLl X | Zy, 1<mn<L, m#n (78)

The parameters of the HMM consist of the initial state
probabilities IT = P(Z;), the transition probabilities Ty, = P(Z, =
l'| Z, 1 = k) of the Markov chain, and the emission probabilities
E,.= P(X, = x| Z, = k) of symbols x€X. The HMM is denoted
HMM(I1, T, E). For simplicity, we restrict ourselves here to finite
state spaces Z = [K] of Zand X of X. The joint probability of (Z, X)
factorizes as:

L-1
P(X,7)= P(Zl)nl;llP(Xn |\ Z)P(Z i1 | Z,)
L-1
=Tz 1 Es, x,T2, 2

+1°
n=1 "

(79)

The HMM is typically used to model sequence data x = (x, x5,

.., xr) generated by different mechanisms z, which cannot be

observed. Each observation & can be a time series or any other

object with a linear dependency structure [19]. In computational

biology, the HMM is frequently applied to DNA and protein

sequence data, where it accounts for first-order spatial dependen-
cies of nucleotides or amino acids [20].

B— - —O—E—6— —®
Fig. 9 Hidden Markov model. Shaded nodes represent observed random variables (or symbols) X, and clear
nodes represent hidden states (or the annotation). Directed edges indicate statistical dependencies which are

given, respectively, by transition and emission probabilities among hidden states and between hidden states
and observed symbols
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Example 24 (CpG Islands): CpG islands are CG-enriched regions in
a DNA sequence. They are typically a few hundreds to thousands of
base pairs long. We want to use a simple HMM to detect CpG
islands in genomic DNA. The hidden states Z,€2Z = {—, +} indi-
cate whether sequence position 7 belongs to a CpG island (+ ) or
not (—). The observed sequence is given by the nucleotide at each
position, X,eX ={A,C,G,T}.

Suppose we observe the sequence x= (C, A, C, G). Then, we can
calculate the joint probability of x and any state path z by Eq. 79.
For example, if z = (+, —, —, +), then (X = x, Z = z) =11, E,
T E_ T _E T ,E,.;. O

Typically, one is interested in the hidden state path z = (2, 2,
..., 2r) that gave rise to the observation x. For biological sequences,
z is often called the annotation of x. In Example 24, the genomic
sequence is annotated with CpG islands. For generic parameters,
any state path can give rise to a given observed sequence, but with
different probabilities. The decoding problem is to find the anno-
tation z* that maximizes the joint probability:

*

z*¥ =argmax P(X =x,Z = z). (80)
z2€Z
There are K* possible state paths such that already for sequences of
moderate length, the optimization problem (Eq. 80) cannot be
solved by enumerating all paths.
However, there is an efficient algorithm solving (Eq. 80) based
on the following factorization along the Markov chain:

-1
max P(X,Z) = 2% P(Z) L P(X,y | Zy)P(Zyir | Zn)
= maXP(ZL | ZLfl)P(XL | ZL)

Zr

[ [néaZxP(Zg | Z2)P(X2 | Z2)

[r%alxmzz | Z0)P(X1 | Z1) - P(21)]]... ).

(81)

Thus, the maximum over state paths (4, ..., Z1) can be obtained
by recursively computing maxima over each Z,. Each of the L terms
in parenthesis defines a probability distribution over K states by
maximizing over K values. Hence, the time complexity of the
algorithm is O(LK?), despite the fact that the maximum is over
K* paths. This procedure is known as dynamic programming and it
is the workhorse of biological sequence analysis. For HMMs, it is
known as the Viterbi algorithm [21].
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In order to compute the marginal likelihood P(X = x) of an
observed sequence x, we need to sum the joint probability X(Z = z,
X = x) overall hidden states z € Z. The length of this sum is K, but
it can be computed efficiently by the same dynamic programming
principle used for the Viterbi algorithm:

ZP(X’Z): Z P(Zl):HIP(Xn |Zn)P(Zn+l |Zn)
Z

Zl,..A,ZL
— ZP(ZL | Z11)P(X1 | Z1)
Zy,
[ Do Pzs 1 22)P(x5 | 22)
)
[ZP(Z2|Zl)P(X1 | Z1) P(Zl)H ]
Z1

(82)

Indeed, this factorization is the same as in Eq. 81 with maxima
replaced by sums. The recursive algorithm implementing (Eq. 82)
is known as the forward algorithm. In each step, it computes the
partial solution f{n, Z,) = (X, ..., X,, Z,).

The factorization along the Markov chain can also be done in
the other direction starting the recursion from Z; down to Z;. The
resulting backward algorithm generates the partial solutions &(,
Z,) = P(X,1, .- Xr | Z,). From the forward and backward quan-
tities, one can also compute the position-wise posterior state
probabilities:

P(Zy | X) = P(X,Z,) P(Xi,...,X,,Z,)P(Xp11,..-,X1|Z,)
P(X) P(X)
f(?’L,Zn)b(Vl,Zn)
P(X) '

(83)

For example, in the CpG island HMM (Example 24), we can
compute, for each nucleotide, the probability that it belongs to a
CpG island given the entire observed DNA sequence. Selecting the
state that maximizes this probability independently at each
sequence position is known as posterior decoding. In general, the
result will be different from Viterbi decoding.

Example 25 (Pairwise Sequence Alignment): The pair HMM is a
statistical model for pairwise alignment of two observed sequences
over a fixed alphabet A. For protein sequences, A is the set of
20 natural amino acids and for DNA sequences, A consists of the
four nucleotides, plus the gap symbol (“~""). At each position of the
alignment, a hidden variable Z,€ 2z = {M, X, Y} indicates whether
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there is a (mis-)match (M), an insertion (X), or a deletion (Y) in
sequence ¥ relative to sequence x. For example:

z=MMMMMMMMMMMMMXXMMMMMMMMMMMMYMMMMYMMMMM
x= CTRPNNNTRKSIRPQIGPGQAFYATGD-IGDI-RQAHC
y= CGRPNNHRIKGLR——IGPGRAFFAMGAIRGGEIRQAHC

The emitted symbols are pairs (X,,, 1,,) of aligned sequence char-
acters with state space (A x A)\{(—, —)}. Thus, a pairwise align-
ment is a probabilistically generated sequence of pairs of symbols.

The choice of transition and emission probabilities corresponds
to fixing a scoring scheme in nonprobabilistic formulations of
sequence alignment. For example, the emission probabilities
P{(a, b) | ] from a match state encode pairwise amino acid pre-
ferences and can be modeled by substitution matrices, such as PAM
and BLOSUM [20].

In the pair HMM, computing an optimal alignment between
x and y means to find the most probable state path
z* = argmax, P(X = x, ¥ = 5, Z = z), which can be solved using
the Viterbi algorithm. Using the forward algorithm, we can also
compute efficiently the marginal probability of two sequences
being related independent of their alignment, P(X, 1) =2,P
(X, 7, Z). In general, this probability is more informative than the
posterior A(Z | X, T) of an optimal alignment z* because many
alignments tend to have the same or nearly the same probability
such that P(Z = z* | X, ') can be very small. Finally, we can also
compute the probability of two characters x,, and y,, being aligned
by means of posterior decoding. O

Example 26 (Profile HMM): Profile hidden Markov models repre-
sent groups of related sequences, such as protein families. They are
used for searching homologous sequences and for building multi-
ple sequence alignments. They can be regarded as unrolled versions
of the pair HMM. A profile HMM is a statistical model for observed
sequences, which are regarded as i.i.d. realizations. It has site-
specific emission probabilities E,(#) = P(X,, = a). In its simplest
form allowing only gap-free alignments, the probability of an
observation x is just

P(X =x) = nri[lEn(m. (84)

The matrix (E,(#)),<,<r, se is called a position-specific scoring
matrix (PSSM).

Profile HMMs can also model indels. Figure 10 shows the
hidden state space of such a model. It has match states M,,, which
can emit symbols according to the probability tables E,, insert
states I,,, which usually emit symbols in an unspecific manner, and
delete states D,,, which do not emit any symbols. The possible
transitions between those states allow for modeling alignment
gaps of any length.
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Fig. 10 Profile hidden Markov model. The hidden state space and its transitions
are shown for the profile HMM of length L = 3. Match states are denoted M,,
insert states /,, and delete states D,. Band E denote silent begin and end states,
respectively. With match and insert states, probability tables for the emissions of
symbols (amino acids or nucleotides, and gaps) are associated

A given profile HMM for a protein family can be used to detect
new sequences that belong to the same family. For a query sequence
x, we can either consider the most probable alignment of the
sequence to the HMM, P(X = x, Z = z*), or the marginal proba-
bility independent of the alignment, A( X = x) =2,P(X = x, Z),
to decide about family membership. O

Parameter estimation in HMMs is complicated by the presence
of hidden variables. In Subheading 2, the EM algorithm has been
introduced for finding a local maximum of the likelihood surface.
For HMMs, the EM algorithm is known as the Baum-Welch
algorithm [22]. For simplicity, let us ignore the initial state prob-
abilities IT and summarize the parameters of the HMM by
0 = (1, E). For ML estimation, we need to maximize the observed
log-likelihood:

Cops(0) = logP(X | 0) = 1ogZPX Z10)
(85)

where XV .. X are the i.i.d. observations. For each observa-
tion, we can rewrite the joint probability as:

P(x®, 7% |o)= I1 T Eg=7". I1 TI 7«
’ pe[K]vEX kX Crefk) ek M ’

(86)
where ka(Z@) is the number of x emissions when in state % and

Ni(Z?) the number of k-to-/ transitions in state path Z?
(cf. Eq. 68).
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In the E step, the expectation of Eq. 85 is computed with
respect to X(Z | X, 8'), where ¢ is the current best estimate of 6.
We use Eq. 86 and denote by N, and N, the expected value of
S Nw(ZD) and 2, Nup(Z£D), respectively, to obtain

Eltya(0))= > P(Z| X,0)logP(X,Z | 6)
Z

= ) PzIX.0)

Z0, .z

Z N (Z logEkx + Z Nu(Z long;
= Z kalOgEkx + Z lellongl~
Iy x Iy 1

(87)

The expected counts Ny, and Ny, are the sufficient statistics [11] of
the HMM, i.c., with respect to the model, they contain all infor-
mation about the parameters available from the data. The expected
counts can be computed using the forward and backward algo-
rithms. In the M step, this expression is maximized with respect to
0= (T, E). We find the MLEs Ty = Ny/>, Np, and

Epe = Niw/3, Ny

7 Bayesian Networks

Bayesian networks are a class of probabilistic graphical models
which generalize Markov chains and HMMs. The basic idea is to
use a graph for encoding conditional independences among ran-
dom variables (Fig. 11). The graph representation provides not
only an intuitive and simple visualization of the model structure,
but it is also the basis for designing efficient algorithms for infer-
ence and learning in graphical models [23-25].

A Bayesian network (BN) for a set of random variables
X =(Xy, ..., X7) consists of a directed acyclic graph (DAG) and
local probability distributions (LPDs). The DAG G = (V, E) has
vertex set V= [L]and edgeset EC V x V. Eachvertexn € V is
identified with the random variable X,,. If there is an edge X,, —
X, in G, then X,, is a parent of X, and X, is a child of X,,,. For each
vertex #n € V, there is an LPD P(X,, | X,u()), Where pa(z) is the
set of parents of X, in G. The Bayesian network model is defined as
the family of distributions for which the joint probability of
X factors into conditional probabilities as:

L
P(X1,...,.X1) = I P(X,y | Xpai)- (88)
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Fig. 11 Example of a Bayesian network. Vertices correspond to random variables
and edges represent conditional probabilities. The graph encodes conditional
independence statements about the random variables U, V, W, X, Y, and Z
Their joint probability factors according to the graph as AU, V, W, X, Y) = AU)
AY)AV| U, Y)RW | V)PX | U)

In this case, we write X ~ BN(G,0), where 8 = (6y, ..., 61)
denotes the parameters of the LPDs.

For the Bayesian network shown in Fig. 11, we find P(U, V, W,
X, )=PU)PY)PV| U Y)(W| V)PX| U). The graph
encodes several conditional independence statements about (U,
V, W, X, ), including, for example, W L{U, X} | V.

Example 27 (Markov Chain): A finite Markov chain is a Bayesian
network with the DAG X; — X, —--- — X, denoted C, and
joint distribution:

P(X1,...,X,) = P(X1)P(Xs | X1)P(X3 | X2)---P(Xp | X1_1).
(89)

If X ~MC(L,T) is homogeneous, then the LPDs are ; = P
(X1)= Mand 6,1 = P(X,.1 | X,) = Tforall » € [L — 1] such
that MC(II, T') = BN(C, ). Similarlyy, HMMs are Bayesian net-
works with hidden variables Z and factorized joint distribution
given in Eq. 79. o

The meaning of the parameters @ of a Bayesian network
depends on the family of distributions that has been chosen for
the LPDs. In the general case of a discrete random variable with
finite state space, 6, is a conditional probability table. If each vertex
X, has K possible states, then:

O = (P(X” =a| Xpan) = b))beU(]/’”(’”,ae[I(] (90)
has KP*") x (K — 1) free parameters. If X,, depends on all other
variables, then 6, has the maximal number of K* — 1 parameters,
which is exponential in the number of vertices. If, on the other
hand, X, is independent of all other variables, pa(») = (), then 6,,
has (K — 1) parameters, which is independent of L. For the chain
(Example 27) where each vertex has exactly one outgoing and one
incoming edge, we find atotalof (K — 1) + (L — 1)K(K — 1) free
parameters which is of order O(LK?).
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A popular model for continuous random variables X, is the
linear Gaussian model. Here, the LPDs are Gaussian distributions
with mean a linear function of the parents:

P(X, | Xpam)) = Norm(v,, + w}, - Xpain)» o), (91)

with parameters 7, €R and w; ERP™ specifying the mean and
variance 2. The number of parameters increases linearly with the
number of parents, but only linear relationships can be modeled.
All marginal and conditional probabilities of (X, ..., X7) are also
Gaussians.

Learning a Bayesian network BN(G, ) from data ® can be done
in different ways following either the Bayesian or the maximum
likelihood approach as introduced in Subheading 2. In general, it
involves first finding the optimal network structure:

*
G* = argglax P(G| D), (92)

and then estimating the parameters:

* _ *
0" = argglax PO| G, D) (93)

for the given optimal structure G*. The first step is a model selec-
tion problem as introduced in Subheading 2.

Model selection for Bayesian networks is a particularly hard
problem because the number of DAGs increases super-
exponentially with the number of vertices rendering exhaustive
searches impractical, and the objective function in Eq. 92 is difficult
to compute. Recall that the posterior P(G | @) is proportional to
the product P(D | G)P(G) of marginal likelihood and network
prior, and the marginal likelihood:

P@|G)= [P(D|0, G)P(O]|G) 40 (94)

is usually analytically intractable. Here, P(@ | G) is the prior distri-
bution of parameters given the network topology.

To address this limitation, the marginal likelihood (Eq. 94) can
be approximated by a function that is easier to evaluate. A popular
choice is the Bayesian information criterion (BIC) [26]:

logP(® | G) ~ logP(D | Opy, G) — %ulogN, (95)

where v is the number of free parameters of the model and N the
size of the data. The BIC approximation can be derived under
certain assumptions, including a unimodal likelihood. It replaces
computation of the integral (Eq. 94) by evaluating the integrand at
the MLE and adding the correction term —(vlogN)/2, which
penalizes models of high complexity.

The model selection problem remains hard even with a tracta-
ble scoring function, such as BIC, because of the enormous search
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space. Local search methods, such as greedy hill climbing or
simulated annealing, are often used in practice. They return a
local maximum as a point estimate for the best network structure.
Results can be improved by running several local searches from
different starting topologies.

Often, data are sparse and we will find diffuse posterior distri-
butions of network structures, which might not be represented very
well by a single point estimate. In the fully Bayesian approach, we
aim at estimating the full posterior P(G | ®) < P(® | G)P(G). One
way to approximate this distribution is to draw a finite number of
samples from it. Markov chain Monte Carlo (MCMC) methods
generate such a sample by constructing a Markov chain that con-
verges to the target distribution [27].

In the Metropolis—Hastings algorithm [28], we start with a
random DAG G and then iteratively generate a new DAG G
from the previous one G\~ by drawing it from a proposal distri-
bution Q;

G" ~ Q(G™ | GY), (96)
The new DAG is accepted with acceptance probability:

[ P@16")PG)0(6 ) | 6)
mm{P(@ G I)P(G )G | G ) 1} 7

Otherwise, the model is left unchanged and the next sample is
drawn. With this acceptance probability, it is guaranteed that the
Markov chain is ergodic and converges to the desired distribution.
After an initial burn-in phase, samples from the stationary phase of
the chain are collected, say G, ..., G™. Any feature f of the
network (e.g., the presence of an edge or a subgraph) can be
estimated as the expected value:

N

=3 FOPG D)~ D (G, 98)

n=m

A critical point of the Metropolis—Hastings algorithm is the choice
of the proposal distribution Q, which encodes the way the network
space is explored. Because not all graphs, but only DAGs, are
allowed, computing the transition probabilities Q(G™ | G~ 1) is
usually the main computational bottleneck.

Parameter estimation, i.e., solving (Eq. 93), can be done along
the lines described in Subheading 2 following either the ML or the
Bayesian approach. If the model contains hidden random variables,
then the EM algorithm (Subheading 3) can be used. However, this
approach is feasible only if efficient inference algorithms are avail-
able. For hidden Markov models (Subheading 6), the forward and
backward algorithms provided an efficient way to compute mar-
ginal probabilities and the expected hidden log-likelihood. These
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algorithms can be generalized to the sum—product algorithm for
tree-like graphs and the junction tree algorithm for general DAGs.
The computational complexity of the junction tree algorithm is
exponential in the size of the largest clique of the so-called mor-
alized graph, which is obtained by dropping edge directions and
adding edges between any two vertices that have a common child in
the original DAG [11].

Alternatively, if exact inference is computationally too expen-
sive, then approximate inference can be used. For example, Gibbs
sampling [29]is an MCMC technique for generating a sample from
the joint distribution P(X), ..., X7). The idea is to iteratively
sample from the conditional probabilities of P(X], ..., X}), starting
with XU ~ P(X1 | XV, ..., X)) and cycling through all vari-
ables in turns:

S XY)

(n+1) (n+1) (n+1) (n)
X~ PG XXX,

(99)
forallj=2,...,L.

Gibbs sampling can be regarded as a special case of the Metropo-
lis—-Hastings algorithm. It is particularly useful, if it is much easier to
sample from the conditionals P(X}, | X\;) than from the joint dis-
tribution P(X), ..., X1), where X\, denotes all variables X, except
X For graphical models, the conditional probability of each vertex
X, depends only on its Markov blanket Xy15(%), defined as the set of
its parents, children, and co-parents (vertices with the same chil-

dren), P(X; | X\z) = (X | Xmpr))-

Example 28 (Phylogenetic Tree Models): A phylogenetic tree model
[30] for a set of aligned DNA sequences from different species is a
Bayesian network model, where the graph is a tree in which the
leaves represent the observed contemporary species and the interior
vertices correspond to common extinct ancestors (Fig. 12). The
topology (graph structure) S defines the branching order and the
branch lengths correspond to (phylogenetic) time. The LPDs are
defined by a nucleotide substitution model (Subheading 5).

Let X' € (a, ¢, G, T}* denote the i-th column of a multiple
sequence alignment of L observed species. We regard the alignment
columns as independent observations of the evolutionary process.
The character states of the hidden (extinct) ancestors are denoted
Z9_ The likelihood of the observed sequence data X = (X
XNy given the tree topology Sand the branch lengths 7 is

N B B
P(X[8,1)=) IIP(x®, 20 s,1), (100)
Z

where P(X'Y), Z?| S, 1) factors into conditional probabilities
according to the tree structure. This marginal probability can be
computed efficiently with an instance of the sum—product algorithm
known as the peeling algorithm (or Felsenstein algorithm) [31].
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Fig. 12 Phylogenetic tree model. The observed random variables X; represent
contemporary species and the hidden random variables Z; their unknown
common ancestors

For example, in the tree displayed in Fig. 12, each observation
X has probability:

P(X)=) P(X,Z) (101)
Z
= ZP(Xl | Z4)P(X2 | Z1)P(X3 | Z1)P(X4 | Z2):
Z (102)
P(X5 | Z2)P(Z1 | Z3)P(Z2 | Z3)P(Z3 | Z4) P(Z)
= PZ)P(X1 | Z4) | Y P(Z5 | Zs)
Z4 ZS
> P(Z2| Z)P(Xy | Z2)P(Xs | Z2) (103)

Z>

D P21 Z3)P(Xs | Z1)P(X5 | 1) |
A

where we have omitted the dependency on the branch length .
Several software packages implement ML or Bayesian learning of
phylogenetic tree models. O

In the simplest case, we suppose that the observed alignment
columns are independent. However, it is more realistic to assume
that nucleotide substitution rates vary across sites because of vary-
ing selective pressures. For example, there could be differences
between coding and noncoding regions, among different regions
of a protein (loops, and catalytic sites), or among the three bases
of a triplet coding for an amino acid. More sophisticated models
can account for this rate heterogeneity. Let us assume site-specific
substitution rates 7; such that the local probabilities become
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P(X? | 7, ¢, S). To model the distribution of the rates, often a
gamma distribution is used.

Example 29 (Gamma Distribution): The gamma distribution
Gamma(a, ) is parametrized by a shape parameter a and a rate
parameter f. It is defined by the density function:

f(x) = %x“‘lg_ﬂx, for x > 0. (104)

Its expectation is E(X) = a/f and its variance Var(X) = a/f*. The

gamma distribution generalizes several other distributions, for

example Gamma(1,1) = Exp(4) (Example 22). O

Another approach to account for varying mutation rates are
phylogenetic hidden Markov models (phylo-HMMs).

Example 30 (Phylo-HMM): Phylo-HMMs [32] combine HMMs
and phylogenetic trees into a single Bayesian network model. The
idea is to use an HMM along the linear chain of the genomic
sequence and, at each position, to condition a phylogenetic tree
model on the hidden state (Fig. 13). This architecture allows for
modeling different evolutionary histories at different sites of the
genome. In particular, the model can account for heterogeneity in
the rate of evolution, for example, due to functionally conserved
elements, but it also allows for a change in tree topology along the
sequence, a situation that can result from recombination [23].
Phylo-HMMs are also used for gene finding. O

Exercise 31 (Infevence in Bayesian Networks): Consider the gene
network on five genes denoted A, B, C, D, E, with the graph
structure displayed below. Gene expression profiles under different
conditions C1-C9 have been observed and are summarized in the
table below, where a zero indicates that the gene is not expressed
and a one that it is expressed.

Fig. 13 Phylo-HMM. Shown are the first four positions of a Phylo-HMM. The hidden Markov chain has random
variables Z In the trees, Y denote the hidden common ancestors and X the observed species. Note that the
tree topology changes between position 2 and 3



A B CDE
Cl{0 0 0 0 0
C2/0 0 0 0 1
C3/0 0 0 0 1
C4{1 1 1 1 0
C5/1 0 1 1 0
C6|/0 0 0 1 1
C7{1 1 1 1 0
c8|1 0 0 0 1
col1 0 0 1 1

(a)

(b)

(c)

(d)
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Specify the adjacency matrix of the directed graph.

Determine the local probability distributions for each vertex of
the graph. Use conditional counting to determine the condi-
tional probabilities as:

N (X, Xpa(i))
P(X; | Xouis) ~ P ,
( | pal >) ZkN(Xt = kv Xpa(i)

where N (X, X,,(;))is the number of joint observations of X;
and its parents.

What is the joined probability of (Xa, Xz, Xc, Xp, Xg) for this
network?
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A Not-So-Long Introduction to Computational Molecular
Evolution

Stephane Aris-Brosou and Nicolas Rodrigue

Abstract

In this chapter, we give a not-so-long and self-contained introduction to computational molecular evolu-
tion. In particular, we present the emergence of the use of likelihood-based methods, review the standard
DNA substitution models, and introduce how model choice operates. We also present recent developments
in inferring absolute divergence times and rates on a phylogeny, before showing how state-of-the-art
models take inspiration from diffusion theory to link population genetics, which traditionally focuses at a
taxonomic level below that of the species, and molecular evolution. Although this is not a cookbook
chapter, we try and point to popular programs and implementations along the way.

Key words Likelihood, Bayes, Model choice, Phylogenetics, Divergence times

1 Introduction

Many books [1-7] and review papers [8—10] have been published
in recent years on the topic of computational molecular evolution,
so that updating our previous primer on the very same topic [11]
may seem redundant. However, the field is continuously under-
going changes, as both models and algorithms become even more
sophisticated, efficient, robust, and accurate. This increase in refine-
ment has not been motivated by a desire to complicate existing
models, but rather to make an old wish come true: that of having
integrated methods that can take unaligned sequences as an input,
and simultaneously output the alignment, the tree, and other esti-
mates of interest, in a sound statistical framework justified by sound
principles: those of population genetics.

The aim of this chapter is still to provide readers with the
essentials of computational molecular evolution, offering a brief
overview of recent progress, both in terms of modeling and algo-
rithm development. Some of the details will be left out as they are
dealt with by others in this volume. Likewise, the analysis of

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_3, © The Author(s) 2019

71


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9074-0_3&domain=pdf

72 Stéphane Aris-Brosou and Nicolas Rodrigue

genomic-scale data is briefly touched upon, but the details are left
to other chapters.

2 Parsimony and Likelihood

2.1 A Brief Overview
of Parsimony

The simplest phylogenetic question pertains to the reconstruction
of'a rooted tree with three sequences (Fig. 1). The sequences can be
made of DNA, RNA, amino acids, or codons, but for the sake of
simplicity we focus on DNA throughout this chapter. In the basic
example below, based on [12 ], DNA sequences are assumed to have
been sampled from three different species that diverged a “long
time ago.” In this context, we assume that the data or gene
sequences have been aligned (see Subheading 6), and that the
DNA alignment is:

51 ATGACCCCAATACGCAAAACTAACCCCCTAATAAAATTAATTAACCACTCCTTC

5 ATGACCCCAATACGGAAAACTAACCCCCAAATAAAATTAATTAACCACTCATTC

53 ATGACGCCAATACGCAAAACTAACCGCCTAATAAAATTAATTTACCACTCATTC

The objective is to estimate which of the three fully resolved
topologies in Fig. 1 is supported by the data. In order to go further,
we recode the data in terms of site patterns, which correspond to
the patterns observed in each column of our alignment. This recod-
ing implies that columns, or sites, in our alignment evolve accord-
ing to an identically and independently distributed (iid) process.
With this in mind, our alignment can be recoded in the following
manner. When all the characters (nucleotides) in a column are
identical, the same letter is assigned to each character, for example,
x, irrespective of the actual character state. When a substitution
occurs in one of the three sequences, we have three corresponding
site patterns: xxy, xyx, and yxx, where the order within each site
pattern respects the order of the sequences in the alignment, 5, 5,53.

T T T, T,
S, S, S8 S, S8, S S8 S5 S

Fig. 1 The simplest phylogenetic problem. With three species, s; S, and s, four
rooted trees are possible: Ty, the star tree, and the three resolved topologies
ILi—T5
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XXXXXXXXXXXXXXXXXXXXXX XX XXX XXX XX XXX XXX XXX XXX XX XX XXYXXX

XXXXXXXXXXXXXXYXXXXXXXXXXXXXYXX XXX XXX XXX XXX XXX XX XXXXXX

XXXXXYXXXXXXXXXXXXXXXXXXXYXX XXX XXX XXX XXX XXY XXX XX XXXXXX

Table 1
The winning-site strategy

Site pattern Supported T; Count
XXX Ty 48
XXy Ty 3
XYX T, 2
VXX 1; 1

The data alignment is reduced to a frequency table of site patterns. In the case of three
sequences, only the last three site patterns are informative

The first informative site pattern, xxy, implies that at this
particular site, sequences s; and s, are more similar than any of
these to s3, so that this site pattern supports topology 71}, which
groups sequences s; and s, together (Fig. 1). The most intuitive
idea, called the winning-site strategy, is that the topology supported
by the data corresponds to the fully resolved topology that has the
largest number of site patterns in its favor. In the example shown
above, topology 71 is supported by three columns (with site pattern
xxy), topology 15 by two columns (xyx), and 73 by one column
(yxx; see Table 1). This is the intuition behind parsimony, which
minimizes the amount of change along a topology. Strictly
speaking, unordered parsimony cannot distinguish these three
trees as they all require at least one single change. Yet, it can be
argued that if tree T} is the true tree, site pattern xxy is more likely
than any other patterns as xxy requires at least one change along a
long branch (the one leading to sequence s3) while both xyx and
yxx require a change along a short branch (see p. 28 sgg. in [13];
[12]).

A number of methodological variations exist. A very condensed
overview can be found in the books by Durbin [14] or, with more
details, Felsenstein [15]. Most computer programs that implement
substitution models where sites are iid condense the alignment as
an array of site patterns; some, like PAML [16], even output these
site patterns.

Note that in obtaining this topology estimate, most of the site
columns were discarded from our alignment (all the xxx site pat-
terns, representing 89% of the site in our example above). Most of
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2.2 Assessing the
Reliability of an
Estimate: The
Bootstrap

our data were phylogenetically uninformative (for parsimony). We
also failed to take evolutionary time into account, or any process of
basic molecular biology, such as the observation that transitions
(substitution of a purine [A or G] by a purine, or a pyrimidine by a
pyrimidine) are more frequent than transversions (substitution
between a purine and a pyrimidine).

As with any statistical exercise estimating a quantity of interest, we
would like to have a confidence interval, taken at a particular level,
so that we can gauge the reliability of our estimate. A standard
approach to derive confidence intervals is the bootstrap [17], a
computational technique that resamples data points with replace-
ment to simulate the distribution of any test statistic under the null
hypothesis that is tested. The bootstrap, particularly useful in com-
plicated nonparametric problems where no asymptotic results can
be obtained [18], was adapted by Felsenstein to the nonstandard
phylogenetic problem [19]. Indeed, the problem is nonstandard in
that the object for which we wish to assess accuracy is not a real-
valued parameter, but a graph.

The basic idea, clearly explained in [20], consists in resampling
columns of the alignment, with replacement, to construct a “syn-
thetic” alignment of the same size as the original alignment. This
synthetic or bootstrap replicate is then subjected to the same tree-
reconstruction algorithm used on the original data (Fig. 2). This
exercise is repeated a large number of times (e.g., x 10°), and the
proportion of each original bipartition (internal node) in the set of
bootstrapped trees is recorded. In Fig. 2, for instance, the bipar-
tition 515, |s3 is found in two bootstrap trees out of three, so the
bootstrap support for this node is 66.7%. In this simple case with
three sequences, the bootstrap support for topology 71i is also
66.7%. This bootstrap proportion for topologies (or for trees
when branch lengths are taken into account, in a maximum likeli-
hood context, for instance—see below) can be computed very
quickly by bootstrapping the sitewise log-likelihood values, instead
of the columns of the alignment; this bootstrap is called RELL, for
“resampling estimated log-likelihood” [21].

However, this approach is no longer used or cited extensively
since 2008 (source: ISI Thompson). One alternative that has
gained momentum is the one based on the approximated likelihood
ratio test (aLRT) [22], implemented, for instance, in phyml
[23, 24]. Instead of resampling any quantity (sites or sitewise
log-likelihood values), the aLRT tests the null hypothesis that an
interior branch length is zero. In spite of being slightly conservative
in simulations, the approach is extremely fast and hence highly
practical [22].

The meaning of the bootstrap has been a matter of debate for
years. As noted before [8] (see also [22]), the bootstrap proportion
P can be seen as assessing the correctness of an internal node, and
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Original sequence alignment T,

000000000111111111122222222223333333333444444444455555
123456789012345678901234567890123456789012345678901234
ATGACCCCAATACGCAAAACTAACCCCCTAATAAAATTAATTAACCACTCCTTC
ATGACCCCAATACGGAAAACTAACCCCCAAATAAAATTAATTAACCACTCATTC _>
ATGACGCCAATACGCAAAACTAACCGCCTAATAAAATTAATTTACCACTCATTC

Bootstrap replicate #1 -

043053000522400123244401023400123244440012324440144321 T
825507119163149560338088219149560338014956033806238973
CTACCTAAACCATAACCAAACACATTATAACCAAACATAACCAAACACAACACC I

CTACCTAAAACATAAGCAAACACATTATAAGCAAACATAAGCAAACACAACACC
CTACCTAAAAGATAACGAATCACATTATAACGAATCATAACGAATCAGATCACC

. S, 'S5
Bootstrap replicate #2

101232414430531044010200102324143441001230240123201231 T T
595603350255075180882134566033505946455604719560395605 2
CACCAAACATACCTCACACATTGACCCAAACAATAAACCCAACTACCAAACCAC
GAGCAAAGATACCTGACACATTGAGCCAAAGAATAAACGCAACTAGCAAAGCAG _> 2/ 3
CACGAATCATACCTCACACATTGACGGAATCAATAAACCGAACTACGAAACGAC

Bootstrap replicate #3

244401443212401232043051232444444321211111130202324004
338062389737195603825505603380238973712345983923570921
AACACAACACCCTACCAACTACCCCAAACATACACCCTACGCATGTTAACAATT
AACACAACACCCTAGCAACTACCGCAAACATACACCCTACGGATGATAACAATT _>
ATCAGATCACCCTACGAACTACCCGAATCATTCACCCTACGCATGTTAACAATT

Fig. 2 The (nonparametric) bootstrap. See text for details

failing to do so [25], or 1 — P can be interpreted as a conservative
probability of falsely supporting monophyly [26]. Since bootstrap
proportions are either too liberal or too conservative depending on
the actual interpretation of P [27], it is difficult to adjust the
threshold below which monophyly can be confidently ruled out
[28]. Alternatively, an intuitive geometric argument was proposed
to explain the conservativeness of bootstrap probabilities [ 18] and
was further developed into the approximately unbiased or AU test,
implemented in CONSEL [29]. In spite of these difficulties, the
bootstrap is still widely used—and mandatory in all publications
featuring a phylogeny—to assess the confidence one can have in the
tree estimated from the data under a particular scheme or model
(see Subheading 2.9.3 below). Lastly, note that bootstrap support
has often been abused [30], as a high value does not necessarily
indicate high phylogenetic signal, and can be the result of system-
atic biases [31] due to the use of the wrong model of evolution, for
instance, as detailed below.
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Now that we have a means of evaluating the support for the
different topologies, we can test some of the conditions under
which parsimony estimates the correct tree topology. Ideally, a
good method should return the correct answer with a probability
of one when the number of sites increases to infinity. This desirable
statistical property is called consistency. One serious criticism of
parsimony is its sensitivity to long branch attraction, or LBA, even
in the presence of an infinite amount of data (infinite alignment
length) [31]. In other words, parsimony is not statistically
consistent.

Different types of model misspecification can lead to LBA, and
new ones are continually identified. The topology originally used to
demonstrate the artifact is represented in Fig. 3, where two long
branches are separated by a shorter one. Felsenstein demonstrated
that, under a simple evolutionary process, the artifact or LBA tree is
reconstructed. Note that parsimony is not the only phylogenetic
method affected by LBA, but because it posits a very simple model
of evolution [32-34], parsimony is particularly sensitive to the
artifact. In spite of this, one particular journal chose to enforce
the use of parsimony, stating that authors should estimate their
phylogenies by parsimony but also that, if estimated by some
other method, they would need to defend their position “on phil-
osophical grounds” [35]; there is of course no valid scientific
justification for taking such a step—derided in the “Twittersphere”
as “#parsimonygate.”

The LBA artifact has been shown to plague the analysis of
numerous data sets, and a number of empirical approaches have
been used to detect the artifact [36, 37]. Most recent papers based
on multigene analyses (e.g., [38, 39]) now examine carefully the
effect of across-site and across-lineage rate variation (in addition to
the use of heterogeneous models). For both sites and lineages, the

Tree topology
(in absence of LBA)

Fig. 3 The long branch attraction artifact. The true tree topology has two long branches separated by a short
one. The tree reconstructed under a simple model of evolution (a) is the artifact or LBA tree on the left. The tree
reconstructed under the correct model of evolution (b) is the correct tree, on the right
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’

Ve
, 7 ideal distance: linear with time

7 sites begin to saturate with
7 multiple substitutions

—— - =
P

present

Geological time (and actual number of substitution) past

Fig. 4 Saturation of DNA sequences. As time increases, the observed number of differences between pairs of
sequences reaches a plateau, whereas the actual number of substitutions keeps increasing

2.4 Origin of the
Problem

2.5 Modeling
Molecular Evolution

procedure is the same and consists in successively removing either
the sites that evolve the fastest or the taxa that show the longest
root-to-tip branch lengths.

By definition, parsimony minimizes the number of changes along
each branch of the tree. When there is only a small number of
changes per branch, the method is expected to be accurate. How-
ever, when sequences are quite divergent, the parsimony assump-
tion leads to underestimating the actual number of changes (Fig. 4;
see also [40]).

Consequently, we would like a tree-reconstruction method that
accounts for multiple substitutions. We would also like a method
that (1) takes into account less parsimonious as well as most parsi-
monious state reconstructions (ntervals, tests), (2) weights changes
differently if they occur on branches of different length (evolution-
ary time), and (3) weights different kinds of events (transitions,
transversions) differently (&iological realism). Likelihood methods
include such considerations explicitly, as they require modeling the
substitution process itself.

The basic model of DNA substitution (Fig. 5) is defined on the
DNA state space, made of the four nucleotides thymine (7)), cyto-
sine (C), adenine (A), and guanine (G). Note that T and C are
pyrimidines (biochemically, six-membered rings), while A and
G are purines (fused five- and six-membered heterocyclic com-
pounds). Depending on these two biochemical categories, two
different types of substitutions can happen: transitions within a
category, and transversions between categories. Their respective
rates are denoted « and f in Fig. 5.

The process we want to model should describe the substitution
process of the different nucleotides of a DNA sequence. Again, we
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o
pyrimidines (Y) Té_> C

o transitions
purines (R) A<<—G
o
Fig. 5 Molecular evolution 101. Specification of the basic model of DNA
substitution

will make the simplifying assumption that sites evolve under a time-
homogeneous Markov process and are iid, as above. We can there-
fore concentrate on one single site for now (e.g., [41]).

At a particular site, we want to describe the change in nucleo-
tide frequency after a short amount of time 4, during which the
nucleotide frequency of A, for instance, after 4¢ will change from
fa(t) to fa(t + dt). According to Fig. 5, f4(¢ + dz) will be equal to
what we had at time #, f4(¢), minus the quantity of A that “dis-
appeared” by mutation during 4, plus the quantity of A that
“appeared” by mutation during 4¢. Denoting the mutation rate as
u, the quantity of A that “disappeared” by mutation during 4t is
simply fa(#)padt. These mutations away from A generated quanti-
ties of T, C, and G, in which we are not interested at the moment
since we only want to know what happens to A. There are three
different ways to generate A: from either 7, C, or G (Fig. 5).
Coming from 7, mutation will generate fr(#)ur_ 44t of A during
dt. Similar expressions exist for C and for G, so that in total, over
the three non-A nucleotides, mutation will generate
2z afit)ui. adt. Mathematically, we can express these ideas as:

Falt+dt) = F4() = Fa(uade + Y f(Dpiads 1)
i#A
Equation 1 describes the change of frequency of A during a
short time interval 4. Similar equations can be written for 7, C, and
G, so that we actually have a system of four equations describing the
change in nucleotide frequencies over a short time interval 4z

frt+de) =fr(8) = fr(2) MTﬁlHZﬂ fi(O)urdt
Felt+de)=fo(t) = fe(Bucdt + Y flhpicds
Falttde) = f4(0) = f4Opade + Y, fi(O)uiadr
Folt+dr)=fo() = fa(Ouedt + . fiDpigt

which, in matrix notation, can simply be rewritten as:
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F(t+dt) = F(t) + QF(¢)dt (3)
with an obvious notation for F, while the instantancous rate matrix
Qis

—Hr Hrc HrAa Hrc

0= HcTt  —Hc /iCA Hee (4)
Har Hac Ha Hac
Her Heec Hea —He

In all the following matrices, we will use the same order for nucle-

otide: T, C, A, and G, which follows the order in which codon

tables are usually written. Recall that y;; is the mutation rate from

nucleotide 7 to nucleotide 7. Note also that the sum of each row is 0.
Let us rearrange the matrix notation from Eq. 3 as:

F(t+dt) — F(t) = QF(¢t)dt (5)
and take the variation limit when 4t — 0:

AF(t)

— 6

20— or) (©)

which is a first-order differential equation that can be integrated as:
F(t) = 27 F(0) (7)

Very often, this last equation 7 is written as K¢) = P(¢)KO0), where
K(0) is conveniently taken to be the identity matrix and (¢) = {P;,
A} = ¢2 is the matrix of probabilities of going from state i to
7 during a finite time duration . Note that the right-hand side of
this equation is a matrix exponentiation, which is not the same as
the exponential of all the elements (row and columns) of that
matrix. The computation of the term ¢2 demands that a spectral
decomposition of the matrix Q be realized. This means finding a
diagonal matrix D of eigenvalues and a matrix M of (right) eigen-
vectors so that:

P(t) = MeP"M™! (8)

The exponential of the diagonal matrix D is simply the exponential
of the diagonal terms.

Except in the simplest models of evolution, finding analytical
solutions for the eigenvalues and associated eigenvectors can be
tedious. As a result, numerical procedures are employed to solve
Eq. 8. Alternatively, a Taylor expansion can be used to approximate
P(t).

If all entries in Q are positive, any state or nucleotide can be
reached from any other in a finite number of steps (all states
“communicate”) and the base frequencies have a stationary distri-
bution 7 = (x4 wc, w4, 7). This is the steady state reached after an
“infinite” amount of time, or long enough for the Markov process
to forget its initial state, starting from “random?” base frequencies.
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2.6 Computation on
a Tree

i (fictive root)

Fig. 6 Likelihood computation on a small tree. See text for details

Now that we know how to determine the rate of change of nucleo-
tide frequencies during a time interval 4%, we can compute the
probability of a particular nucleotide change on a tree. The simplest
case, though somewhat artificial with only two sequences, is
depicted in Fig. 6.

We are looking at a particular nucleotide position, denoted j,
for two aligned sequences. The observed nucleotides at this posi-
tion are T'in sequence 1, and Cin sequence 2. The branch separat-
ing T from C has a total length of # + #;. For the sake of
convenience, we set an arbitrary root along this path. The likeli-
hood at site j is then given by the probability of going from the
fictive root 7 to T in %y, and from 7 to C in #;. Any of the four
nucleotides can be present at the fictive root. As we do not know
which one was there, we sum these probabilities over all possible
state, weighted by their prior probabilities, the equilibrium fre-
quencies 7;. In all, we have the likelihood ¢; at site j:

G= > mPir(t)Pic(t)
i={T,C,A,G}

©)

which is equivalent to the Chapman-Kolmogorov equation
[42]. As all the sites are assumed to be iid, the likelihood of an
alignment is the product of the site likelihoods in Eq. 9. Because all
these sitewise probabilities can be small, and that the product of
small numbers can become smaller than what a computer can
represent in memory (underflow), all computations are done on a
logarithmic scale and may include some form of rescaling [43].
Note that this example is somewhat artificial: with only
two sequences, we can compute the likelihood directly with 7P,
o + 1) = ncPc(ty + t1); the full summation over unknown
states as in Eq. 9 is required with three sequences or more. When
analyzing a multiple-sequence alignment of S sequences, there will
be many nodes in the tree for which the character state is unknown,
which means that the summation required will involve many terms.
Specifically, the sum will be over 4%~ terms. Fortunately, terms can
be factored out of the summation, and a dynamic programing
algorithm with a complexity of the order of O(4S), called the
pruning algorithm [44], can be used (see [15] for details).
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Now that we have almost all the elements to compute the likeli-
hood of a set of parameters, including the tree (i.e., the set of
branch lengths and the tree topology; see Subheading 2.10), the
only missing element required to compute the likelihood at each
site, as in Eq. 9, for instance, is the specification of the instanta-
neous rate matrix Q as in Eq. 4. Remember that the y; ; represent
mutation rates from state (nucleotide) z to ;. This matrix is generally
rewritten as:

- rrc¢ "TA VTG

rcr - TCA rcG
Q=u (10)

VAT TVAC — YAG
rGr TGC TGA —

so that each entry 7;; is a rate of change from nucleotide 7 to
nucleotide j. The diagonal entries are left out, indicated by a “—.”
and are in fact calculated as the negative sum of the oft-diagonal
entries (as rows sum to 0).

The simplest specification of Q would be that all rates of change
are identical, so that Q becomes (leaving out the mutation rate u
and indexing the matrix to indicate the difference):

— 1 1 1
1 — 1 1

Q}C: 1 1 - 1 (11)
1 1 1 -

which is the model proposed by Jukes and Cantor [45] and often
noted “JC” or “JC69”. Under the specification of Eq. 11, this
model has no free parameter. The process is generally scaled such
that the unit of branch lengths can be interpreted as an expected
number of substitutions per site.

Of course, this model is extremely simplistic and neglects a fair
amount of basic molecular biology. In particular, it overlooks two
observations. First, base frequencies are not all equal in actual DNA
sequences, but are rather skewed, and second, transitions are more
frequent than transversions (se¢ Subheading 2.5).

The way to account for this first “biological realism” is as
tollows. If DNA sequences were made exclusively of As, for
instance, that would mean that all mutations are towards the
observed base, in this case A, whose equilibrium or stationary
frequency is w4. The same reasoning can be used for arbitrary
equilibrium frequencies 7, so that all relative rates of change in
Q become proportional to the vector of equilibrium frequency #
of the zarget nucleotide. In other words, the instantaneous rate
matrix Q becomes:
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— J7ic T4 TG

T — A TG

Qps1 = (12)

T 7c — e
mT TmC ‘A

again with the requirement that rows sum to 0. This matrix repre-
sents the Felsenstein or F81 model [44]. This model has four
parameters (the four base frequencies), but since base frequencies
sum to 1, we only have three free parameters.

The second “biological realism,” accounting for the different
rates of transversions and transitions, can be described by saying
that transitions occur k times faster than transversions. From Fig. 5,
recall that transitions are mutations from 7'to C(and vice versa) and
from A to G (and vice versa). This translates into:

— « 1 1
k — 1 1

Qxso = 1 1 - « (13)
1 1 « -

This model is called the Kimura two-parameter model or K80
(or K2P) [46]. The model is alternatively described with the two
rates @ and f (see Fig. 5). In the “k version” of the model as in
Eq. 13, there is only one free parameter.

Of course it is possible to account for both kinds of “biological
realism,” unequal equilibrium base frequencies and transition bias,
all in the same model, whose generator Q becomes:

— TCK TAQ G
TTK — W4 WG
OQpxy = (14)
T TC - GK
T TC TpAK  —
which corresponds to the Hasegawa—Kishino—Yano or HKY
(or HKY85) model [47]. This model has four free parameters:
and three base frequencies.
The level of “sophistication” goes “up to” the general time-

reversible model [48], denoted GTR or REV, which has for
generator:

— arngc bﬂ'A G
art — PlfL'A EnG
Qg = (15)

bny dnc — nG

T eEmC TA —
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The number of free parameters is now eight (three base frequencies
plus five nucleotide propensities). The name is derived from the
time-reversibility constraint, which implies that the likelihood is
independent of the actual orientation of time.

In fact, there exist only a few “named” additional substitution
models [15], most of which are time-reversible models, while a
total of 203 models can be derived from GTR [49]. We have
tfocused solely on DNA models in this chapter, but the problem is
similar with amino acid or codon models, except that the number
of parameters increases quickly. We have also limited ourselves to
time-reversible time-homogeneous models, but irreversible
non-homogeneous models were developed some time ago [50]
and are used, for instance, to root phylogenies [51] or to help
alleviate the effects of LBA [39].

2.8 Some For a given substitution model, how should parameters be esti-
Computational mated, given the (potentially) high dimensionality of the model?
Aspects Analytical solutions consist in determining when the first derivative

of the likelihood function is equal to zero (with a change of sign in
the second derivative). However, finding the root of the likelihood
function analytically is only possible in the simple case of three
sequences of binary characters under the assumption of the molec-
ular clock (see Subheading 3.1) [12]. As a result, numerical solu-
tions must be found to maximize the likelihood function.

A number of ideas have been combined to search efficiently for
the parameter values that maximize the likelihood function. Most
programs will start from a random starting point, for example,

2.8.1 Optimization of the
Likelihood Function

(930),(920)), denoted by an x in Fig. 7, where we limit ourselves to
a two-parameter example. The optimization procedure can follow

(B) /

(A)

X
= 3
5 / 5
© ©
IS l / S
o / / o
| | B Q I /
parameter 01 parameter 61

Fig. 7 Two optimization strategies. The likelihood surface of a function with two parameters 8, and 6, (e.g.,
two branch lengths) is depicted as a contour plot, whose highest peak is at the + sign. (a) Optimization one
parameter at a time. (b) Optimization of all parameters simultaneously. See text for details
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2.8.2 Convergence

2.9 Selection of the
Appropriate
Substitution Model

one of the two strategies. In the first one, parameters are optimized
one at a time. In Fig. 7a, parameter 60, is first optimized to maximize
the likelihood function with a line search, which defines a direction
along which the other parameter (6,) or parameters in the multidi-
mensional case are kept constant. Once 011 is found, a new
direction is defined to optimize 6,, and so on so forth until conver-
gence to the maximum of the likelihood function. As shown in
Fig. 7a, many iterations can be required, in particular when the
parameters ) and 6, are correlated. The alternative to optimizing
one parameter at a time is to optimize all parameters simulta-
neously. In this case (Fig. 7b), an initial direction is defined at

(9%0),99)) such that the slope at this point is maximized. The
process is repeated until convergence. More technical details can
be found in [52]. The simultaneous optimization procedure gener-
ally requires fewer steps than optimizing parameters one at a time,
but not always. Since the computation of the likelihood function is
the most expensive computation of these algorithms, the simulta-
neous optimization is much more efficient, at least in our toy
example.

How general is this result? Simultaneously optimizing para-
meters of the substitution model, while optimizing branch lengths
one at a time, was shown to be more effective on large data sets
[43], potentially because of the correlation that exists between
some of the parameters entering the Q matrix (see Subheading 2.7).

Convergence is usually reached either when the increment in the
log-likelihood score becomes smaller than an € value, usually set to
a small number such as 107¢ (but yet a number larger than the
machine ¢: the smallest number that a given computer can repre-
sent), or when the log-likelihood score has not changed after a
predetermined number of iterations. However, none of these stop-
ping rules guarantees that the global maximum of the likelihood
function has been found. Therefore, it is generally reccommended to
run the optimization procedure at least twice, starting from differ-
ent initial values of the model parameters, and to check that the
likelihood score after optimization is the same across the different
runs (Fig. 8). If this is not the case, additional runs may be required,
and the one with the largest likelihood is chosen for inference (e.g.,
[53]).

In many instances though, different substitution models will
give different tree topologies, and therefore different biological
conclusions. One difficulty is therefore to know which model
should be used to analyze a particular data set.

One important issue in model selection is about the trade-off
between bias and variance [55]: a simple model will fail to capture
all the sophistication of the actual substitution process, and will
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Fig. 8 Likelihood surfaces behaving badly. Schematic of the probability surface
of the function p(X10) is plotted as a function of . Most line search strategies will
converge (CV) to the MLE when the initial value is in the “CV” interval, and fail
when it is in the “no CV” interval. Adapted with permission from [54]

therefore be highly biased even if all the parameters can be esti-
mated with tight precision (little variance). Alternatively, a highly
parameterized model will “spread” the information available from
the data over a large number of parameters, hereby making their
estimation difficult (flat likelihood surface; see Subheading 2.8.1),
with a large variance, in spite of perhaps being a more realistic
model with less bias. The objective of most model selection proce-
dure is therefore to find not the dest model in terms of likelihood
score, but the most appropriate model, the one that strikes the right
balance between bias and variance in terms of number of para-
meters. However, we argue that optimizing for this bias—variance
trade-oft works only for statistical procedures, be they, for instance,
frequentist (LRT, likelihood ratio test) or Bayesian (BF, Bayes
factor). On the other hand, information-theoretic criteria (e.g.,
AIC, Akaike information criterion) aim at selecting the model
that is approximately closest to the “true” biological process.

The bias—variance trade-off mainly concerns the comparison of
models that are based on the same underlying rationale, for
instance, choosing among the 203 models that can be derived
from GTR. We may also be interested in comparing models that
are based on very different rationales. The likelihood ratio test is
suited for assessing the bias—variance trade-off, while Bayesian and
information-theoretic approaches, as well as cross-validation (CV),
can be used for more general model comparisons. Here we review
four approaches to model selection: LRT, BF, AIC, and CV.

The substitution models presented above have one key property: it
is possible to reduce the most sophisticated time-reversible named
model (GTR+I'+1) to any simpler model by imposing some con-
straints on parameters. As a result, the models are said to be nested,
and statistical theory (the Neyman—Pearson lemma) tells us that
there is an optimal (most powerful) way of comparing two nested
models (a simple null vs. a simple alternative hypothesis) based on
the likelihood ratio test or LRT.
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The test statistic of the LRT is twice the log-likelihood difter-
ence between the most sophisticated model (which by definition is
always the one with the highest likelihood—if this is not the case,
there is a convergence issue; see Subheading 2.8.1) and the simpler
model. This test statistic follows asymptotically a y* distribution
(under certain regularity conditions), and the degree of freedom of
the test is equal to the difference in the number of free parameters
between the two models.

The null hypothesis is that the two competing models explain
the data equally well. The alternative is that the most sophisticated
model explains the data better than the simpler model. If the null
hypothesis cannot be rejected at a certain level (type-I error rate),
then, based on the argument developed above, the simpler model
should be used to analyze the data. Otherwise, if the null hypothe-
sis can be rejected, the more sophisticated model should be used to
analyze the data. Note that a test never leads to accepting a null
hypothesis; the only outcomes of a test are either reject or fuil to
reject a null hypothesis.

Intuitively, we can see the null hypothesis Hy as stating that a
certain parameter 6 is equal to 6p. The maximum likelihood
estimate (MLE) is at 6, which is our alternative hypothesis Hj,
left unspecified. We note the log-likelihood as In p(X|0) = £(6),
where X represents the data. Under Hjp, we have 6 = 6, while
under H; we have 6 =0. The log-likelihood ratio is therefore
In LR = £(6) — €(6y). Under the null Hy, £(8) = 0 (by definition).
The log-likelihood ratio then reduces to In LR = —£(6p). We can
then take the Taylor expansion of the log-likelihood function ¢

around 6, which gives us £ ~ : 6 — 90)2% (recall that £(9) = 0,

so that the first terms of the series “disappear”). Therefore,

log-likelihood ratio can be approximated by —1 (0 — 90)2 %. Recall
that Fisher’s information is negative reciprocal of the second deriv-
ative of the likelihood function, so that:
1(0—6)7°

InLR~ - ~——— 16

" 2 var(0) (16)
which follows asymptotically halfa y? distribution. Hence the usual
approximation:

2InLR =2 x (1 — o) ~ 12 (17)

with % being the difference in the number of free parameters
between the two models 0 and 1. The important points in this
intuitive outline of the proof are that (1) the two hypotheses need
to be nested and (2) taking the Taylor expansion around @ requires
that the likelihood function be continuous at that point, which
implies that ¢ is differentiable left and right of 6. Therefore, testing
points at the boundary of the parameter space cannot be done by



2.9.2 Information-
Theoretic Approaches

A Not-So-Long Introduction to Computational Molecular Evolution 87

approximating the distribution of the test statistic of the LRT by a
regular y? distribution, as noted many times in molecular evolution
[56-64]. A solution still involves the LRT, but the asymptotic
distribution becomes a mixture of y* distributions [65].

An approach that has become popular under the widespread
adoption of computer programs such as ModelTest [66] and
jModelTest [67] is the hierarchical LRT (hLRT). This hierarchy
goes from the simplest model (JC) to the set of most complex
models (+I'+1), traversing a tree of models. The issue is that there
is more than one way to traverse this tree of models, and that
depending on which way is adopted, the procedure may end up
selecting different models [68, 69].

Information theory provides us with a number of solutions to
circumvent the three limitations of the LRT (nestedness, continu-
ity, and dependency on the order in which models are compared).

The core of the information-based approach is the
Kullback-Leibler (KL) distance, or information [70], which mea-
sures the distance between an approximating model g and a “true”
model £[55]. This distance is computed as:

f(x)
where 6 is a vector of parameters entering the approximating
model g and x represents the data. Note that this distance is not
symmetric, as typically dxy( f; 9) # dxi (g, f), and that the “true”
model fis unknown. The idea is to rewrite dxy(f; g) in a slightly
different form, to make it clear that Eq. 18 is actually a difference
between two expectations, both taken with respect to the unknown

“truth” £
dxu(f>4) = Eflf (%) Inf(x)] — Ep[f(x) Ing(«]0)] (19)

Equation 19 therefore measures the loss of information incurred by
fitting g when the data x actually come from f. As fis unknown,
dxi( f, 4) cannot be computed as such.

Two points are key to deriving the criterion proposed by Akaike
(see [55]). First, we usually want to compare at least two approx-
imating models, go and g;. We can then measure which one is
closest to the “true” process f by taking the difference between
their respective Kullback-Leibler distances. In the process, the
direct reference to the “true” process cancels out. As a result, the
“best” model among go and g, is the one that is closest to the
“true” process f: it is the model that minimizes the distance to f. By
setting model parameters to their MLEs, we now deal with esti-
mated distances, but these are still with respect to the unknown f.

Second, in the context of a frequentist approach, we would
repeat the experiment of sampling data an infinite number of times.

dx (18)
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We would then compute the expected estimated KL distance, so that
model selection can be done on the sole estimated log-likelihood
value. Akaike, however, showed that this latter approximation is
biased, and must be adjusted by a term that is approximately equal
to the number of parameters K entering model g4 (see [55]). For
“historical reasons” (similarity with asymptotic theory with the
normal distribution), the selection criterion is multiplied by 2 to
give the well-known definition of the Akaike information criterion
or AIC:

AIC = —2In£(9) + 2K (20)

Unlike the case of the hLRT, where we were selecting the “most
appropriate model” (with respect to the bias—variance trade-oft), in
the case of AIC we can select the dest model. This best model is the
one that is closest to the “true” unknown model ( f), with the
smallest relative estimated expected KL distance. The best AIC
model therefore minimizes the criterion in Eq. 20.

A small-sample second-order version of AIC exists, where the
penalty for extra parameters (2K in Eq. 20) is slightly modified to
account for the trade-off between information content in the data
and K (see [55]). In our experience, we find it advisable to use this
small-sample correction irrespective of the actual size of the data,
since this correction vanishes in large and informative samples, but
corrects for proper model ranking when K becomes very large
compared to the amount of information (e.g., in phylogenomics
where models are partitioned with respect to hundreds of genes).

The AIC has been shown to tend to favor parameter-rich
models [71-75], which has motivated the use and development
of alternative approaches in computational molecular evolution.
These include, the Bayesian information criterion [76], and the
decision theory or DT approach, which is based on AAIC weighted
by squared branch length differences [71]. Most of these
approaches, including the hLRT, have recently been compared in
a simulation study that suggests, in agreement with empirical stud-
ies [72, 77], that both BIC and DT have the highest accuracy and
precision [75].

One particular drawback of these information-theoretic
approaches is that they require that every single model of evolution,
or at least the most “popular” models (the few named ones), be
evaluated. This step can be time-consuming, especially if a full
maximum likelihood optimization is performed under each
model. A first set of heuristics consists in fixing the tree topology
to a tree estimated with a quick distance-based method such as
BioN]J [78], and then estimating just the branch lengths and the
parameters of the substitution model, as implemented in
jModelTest [67]. As the optimizations are independent of each
other under each substitution model, these computations are
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typically forked to multiple cores or processors [79]. Further heur-
istics exist to avoid all these independent optimizations [79], as
implemented in SMS (Smart Model Selection in PhyML), which is
reported to be cutting runtimes in half without forfeiting
accuracy [80].

Note finally that all these approaches are not limited to select-
ing the most appropriate or the best model of evolution. Disregard-
ing the hLRT, which requires that models be nested (to be able to
use the y? approximation; otherwise, se¢ [65]), AIC, BIC, etc. allow
us to compare non-nested models and, in particular, phylogenetic
trees (branch lengths plus topology).

The Bayesian framework has permitted the development of two
main approaches, which are actually two sides of the same coin: one
based on finding the model that is the most probable a posteriori,
and one based on ranking models and estimating a quantity called
the Bayes factor.

In a nutshell, the frequentist approaches developed in the
previous sections are based on the likelihood, which is the proba-
bility of the data, given the parameters: p(X]0). However, this
approach may not be the most intuitive, since most practitioners
are not interested in knowing the conditional probability of their
data, as the data were collected to learn more about the processes
that generated them. It can therefore be argued that the Bayesian
approach, which considers the probability of the parameters given
the data or p(6|X), is more intuitive than the frequentist approach.
Unlike likelihood, which relies on the function p(X]€) and permits
point estimation, Bayesian inference is based on the posterior dis-
tribution p(@|X). This distribution is often summarized by a cen-
trality measure such as its mode, mean, or median. Measures of
uncertainty are based on credibility intervals, the Bayesian equiva-
lent of confidence intervals. Typically, credibility intervals are taken
at the 95% cutoff and are called highest posterior densities (HPDs).

The connection between posterior probability and likelihood is
made with Bayes’ inversion formula, also called Bayes’ theorem, by
means of a quantity called the prior distribution p(0):

p(?;l(e))(fw) (21)

The prior represents what we think about the process that gener-
ated the data, before analyzing the data, and is at the origin of all
controversies surrounding Bayesian inference. In practice, priors
are more typically chosen based on statistical convenience, and
often have nothing to do with our genuine state of knowledge
about parameters before observing the available data. We will see
in Subheading 3.1 that priors can be used to distinguish between
parameters that are confounded in a maximum likelihood analysis

p(01X) =
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(model), so that we argue that the frequentist vs. Bayesian contro-
versy is sterile, and we advocate a more pragmatic approach, that
often results in the mixing of both approaches (in their concepts
and techniques) [81, 82].

All models have parameters. Subheading 2.7 treats substitution
models, which can have eight free parameters in the case of GTR
+ I'. Most people are not really interested in these parameters 6 or
in their estimates @, but have to use them in order to estimate a
phylogenetic tree z. These parameters 6 are called nuisance para-
meters because they enter the model but are not the focus of
inference. The likelihood solution consists in setting these para-
meters to their MLE, ignoring the uncertainty with which they can
be estimated, while the Bayesian approach will integrate them out,
directly accounting for their uncertainty:

p(XJ) = Lp(XIT, 0)4(6) d6 (22)

One difficulty in Bayesian inference is about the denominator
in Eq. 21, as this denominator often has no analytical solution. In
spite of being a normalizing constant, p(X) requires integrating out
nuisance parameters by means of prior distributions as in Eq. 22.
Thus, it is easy to see from Eq. 21 that the posterior distribution of
the variable of interest (e.g., 7) can quickly become complicated:

_ | _2Xl7.6) p(z) p(6)
)= | e s 29

where 7 and 0 are assumed to be independent and the discrete sum
is taken over the set T of all possible topologies (see Subheading
2.10.1). However, the ratio of posteriors evaluated at two different
points will simplify: as the denominator in Eq. 23 is a constant, it
will cancel out from the ratio. This simple observation is at the
origin of an integration technique for approximating the posterior
distribution in Eq. 23: Markov chain Monte Carlo (MCMC) sam-
plers. A very clear introduction can be found in [83].

Building on this, two approaches can be formulated to compare
models in a Bayesian framework. The first is to treat the model as a
“random variable,” and compute its posterior probability. The best
model is then the one that has the highest posterior probability.
This approach is typically implemented in a reversible-jump
MCMC (or rjMCMC) sampler (e.g., see [49]).

The alternative is to use the Bayesian equivalent of the LRT, the
Bayes factor. Rather than comparing two likelihoods, the Bayes
factor compares the probability of the data under two models, M,
and M;:

~pXIMy)
BFo1 = xPn) .



A Not-So-Long Introduction to Computational Molecular Evolution 91

More specifically, BF ; evaluates the weight of evidence in favor of
model M, against model M;, with BFy; > 1 considered as evi-
dence in favor of M. Just as in a frequentist context, where a null
hypothesis is significantly rejected at a certain threshold, 5%, 1%, or
less depending on different costs or error types, Bayes factors can be
evaluated on a specific scale [84 ]. However, because this scale is just
as ad hoc as in a frequentist setting, it might be preferable to use the
probability of the data under a particular model p( X|M;) as a means
of ranking models M.

The quantity p(X|Mp), which is the denominator in Eq. 23
(where we did not include the dependence on the model in the
notation), is called the marginal likelihood. Note that it is also an
expectation with respect to a prior probability distribution:

p(X|Mo) = J p(X10,Mo) p(6|Mo) 46 (25)
e

A number of approximations to evaluate Eq. 25 exist and are
reviewed in [85] (see also [86, 87]). The simplest one is based on
the harmonic mean of the likelihood sampled from the posterior
distribution [88], also known as the harmonic mean estimator
(HME). The way this estimator is derived demands to understand
how integrals can be approximated. Briefly, to compute
I=[4(0) p(6) 46, generate a sample from a distribution p*(6)
and calculate the simulation-consistent estimator
I=> w; 4(0)/> w; where w; is the importance function p(0)/
p7(0). Take g = p(XI0) and p*(0) = p(XI0) p(0)/p(X), then
I = p(X|Mo) = limy—oo (& X 5y) with & ~ p(6]X) (see sup-
plementary information in [89]). As a result, a very simple way to
estimate the marginal likelihood and Bayes factors is to take the
output of an MCMC sampler and compute the harmonic mean of
the likelihood values (not the log-likelihood values) sampled from
the posterior distribution.

Because of its simplicity, this estimator is now implemented in
most popular programs such as MrBayes [90] or BEAST [91].
However, it might be considered as the worst estimator possible,
because its results are unstable [88, 92] and biased towards the
selection of parameter-rich models [86]. An alternative and reliable
estimator, based on thermodynamic integration (TI; [86]—also
known as path sampling; [93, 94]), is much more demanding in
terms of computation. Indeed, it requires running MCMC sam-
plers morphing one model into the other (and vice versa), which
can increase computation time by up to an order of magnitude
[86]. Improvements of the TT estimator are however available. The
stepping-stone (SS) approach builds on importance sampling and
TT to speed up the computation while maintaining the accuracy of
the standard TT estimator [87, 95].
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2.9.4 Cross-Validation

Moving away from the estimation of marginal likelihoods, an
analogue of AIC that can be obtained through the output of an
MCMC sampler (AICM) was proposed [96]. In essence, it relies on
the asymptotic convergence of the posterior distribution of the
log-likelihood on a gamma distribution [97]. As such, it becomes
possible to estimate the effective number of parameters as twice the
sample variance of posterior distribution of the log-likelihood,
which itself can be estimated by a resampling procedure
[96]. This gives a very elegant means of estimating AIC, from the
posterior simulations. However, although AICM seems to be a
more stable measure of model ranking than HME, both TT and
SS still seem to outperform this estimator, at least in the case of the
comparison of demographic and relaxed molecular clock models

[96] (see Subheading 3).

Cross-validation is another model selection approach, which is
extremely versatile in that it can be used to compare any set of
models of interest. Besides, the approach is very intuitive. In its
simplest form, cross-validation consists in dividing the available
data into two sets, one used for “training” and the other one used
for “validating.” In the training step (TS), the model of interest is
fitted to the training data in order to obtain a set of MLEs. These
MULE:s are then used to compute the likelihood using the validation
data (validation step, VS). Because the validation data were not part
of the training data, the likelihood values computed during VS can
be directly used to compare models, without requiring any explicit
correction for model dimensionality.

The robustness of the cross-validation scores can be explored in
various ways, such as repeating the above procedure with a switched
labeling of training and validation data (hence the expression cross-
validation). Of course, this simple 2-fold cross-validation could be
extended to #n-fold cross-validation, where the data are subdivided
into » subsets, with # — 1 subsets serving for training, and one for
validation. Ideally, the procedure is repeated » — 1 additional
times.

We know of only two examples of its use in phylogenetics, one
in the ML framework [98] and one with a Bayesian approach [99].
Given the increasing size of modern data sets, putting aside some of
the data for validation is probably not going to dramatically affect
the information content of the whole data set. As a result, model
selection via cross-validation, which is statistically sound, could
become a very popular approach.
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2.10 Finding the Best  Now that we can select a model of evolution (Subheading 2.9) and
Tree Topology estimate model parameters (Subheading 2.8) under a particular
model (Subheading 2.5), how do we find the optimal tree? The
basic example in Subheading 2.1 suggested that we score all possi-
ble tree topologies and choose for inference the one that has the
highest score. However, a simple counting exercise shows that an
exhaustive examination of all possible topologies is not realistic.

Figure 9 shows how to count tree topologies. Starting from the
simplest possible unrooted tree, with three taxa, there are three
positions where a fourth branch (leading to a fourth taxon) can be
added. As a result, there are three possible topologies with four
taxa. For each of these, there are four places on the tree where a fifth
branch can be added, which leads to a total of 3 x 5 = 15 topol-
ogies with five taxa. A recursion appears immediately, and it can be
shown that the total number of unrooted topologies with #» taxa is
equalto 1 x 3 x--- x 2% — 5 [100] (see [15] for the deeper his-
tory), which, as given in [101], is equal to:

2.10.1 Counting Trees

n— 3
tw (@u-sy XT3 (26)
unrooted 2%—3<n _ 3)| - \/7_[
where the I' function for any real number «x is defined as
I(x) = [y"#! " dr. An approximation based on Stirling num-
ber is also given in [101].
The same exercise can be done for rooted trees (Fig. 10), where

the number of possible rooted topologies with # taxa becomes
1 x 3 x---x2n— 3, whichis

I SNPANG S
\ \B \)
\

1 topology 3 topologies 5 topologies 7 topologies

A

l

Fig. 9 Procedure to count the number of unrooted topologies. The top line shows the current number of taxa
included in the tree below. Gray arrows indicate locations where an additional branch can be grafted to add
one taxon. Black arrows show the resulting number of topologies after addition of a branch (taxon). Only one
such possible topology is represented at the next step. The bottom line indicates the number of possibilities.
These numbers multiply to obtain the total number of trees
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Table 2
Counting tree topologies

Number of taxa Unrooted tree Rooted trees

3 1 3

4 3 15

5 15 105

6 105 945

10 2,027,025 34,459,425

20 221,643,095,476,699,771,875 8,200,794,532,637,891,559,375

Number of tree topologies are given for the unrooted and rooted cases

3 taxa / 4 taxa / 5 taxa K;
J e
54 o r
—> — > =
N ~ —>»
N J >
A B C ~
A B C D \
A B C D E
3 topology 5 topologies 7 topologies 9 topologies

Fig. 10 Procedure to count the number of rooted topologies. See Fig. 9 for legend and text for details

2.10.2 Some Heuristics
to Find the Best Tree

2”11"(74 - l)

NTO) (2n — 3)! _ 2 (27)
rooted 2;172(” _ 2)| \/7_1.

Note that N Z:E:Qoted =N :f(ﬁ:dl ), as Table 2 clearly suggests.

As a result, the number of possible topologies quickly becomes
very large when the number # of sequences increases, even with a
very modest 7, so that heuristics become necessary to find the best-
scoring tree.

The simplest approach builds upon the idea presented in Figs. 9
and 10. Stepwise addition, for instance, starts with three sequences
drawn at random among the # sequences to be analyzed, and adds
sequences one at a time, keeping only the tree that has the highest
score at each step (e.g., [52]). However, there is no guarantee that
the final tree is the optimal tree [44]. The idea behind branch-and-
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bound [102], refined in [103], is to have a look-ahead routine that
prevents entrapment in suboptimal trees. This routine sets a bound
on the trees selected at each round of additions, such that only the
trees that have a score at least as good as that of the trees obtained in
the next round are kept in the search algorithm. Solutions found by
the branch-and-bound algorithm are optimal, but computing time
becomes quickly prohibitive with more than 20 sequences.

As a result, most tree-search algorithms will start with a quickly
obtained tree, often reconstructed with an algorithm based on
pairwise distances such as neighbor-joining [104] or a related
approach [78, 105], and then alter the tree randomly until no
further improvement is obtained or after a certain number of
unsuccessful attempts are reached. Examples of such algorithms
include nearest neighbor interchange (NNI), subtree pruning and
regrafting (SPR), or tree bisection and reconnection (TBR), see,
for instance, [6] for a full description. While the details are of little
importance here, the critical point is the extent of topological
rearrangement in each case. With, e.g., NNI, each rearrangement
can give rise to two topologies. The result is that exploring the
topology space is slow, especially in problems with large »#. On the
other hand, TBR has, among the three methods cited above, the
largest number of neighbors. As a result, the topology space is
explored quickly, but the optimal tree can be “missed” simply
because a dramatic change is attempted, so that the computational
cost increases. Alternatively, the chance of finding the optimal tree
when 7 is very different from the current tree is higher when the
algorithm can create some dramatic rearrangements. Some pro-
grams, such as PhyML ver. 3.0, now use a combination of NNI
and SPR to address this issue [24]. MCMC samplers that search the
tree space implement somewhat similar tree-perturbation algo-
rithms that are either “global,” and modify the topology dramati-
cally, or “local” [106] (see also [ 107 ] for a correction of the original
local moves). As a result, MCMC samplers are affected by the same
issues as traditional likelihood methods. Much of the difficulty
therefore comes from this kind of trade-oft between larger rearran-
gements that are expected to improve accuracy and the computa-
tional burden associated with these extra computations [ 108].

As some of the above computations can become quite costly (high
runtimes, heavy memory footprints, poor scalability with large data
sets, etc.), computational workarounds have been and are being
explored. One of these resorts to approximate Bayes computing
(ABC), which is essentially a likelihood-free approach. First devel-
oped in the context of population genetics [109, 110], the driving
idea is to bypass the optimization procedures and replace them with
simulations in the context of a rejection sampler. In population
genetics, the problem could be about a gene tree, which is usually
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appropriately described by a coalescence tree [111, 112], for which
we want to estimate some model parameters. As we are able to
simulate trees from such a process, it is possible to place prior
distributions on these model parameters, and simulate trees by
drawing parameters until the simulated trees “look like” the
observed tree. The set of parameters thus drawn approximates the
posterior distribution of the corresponding variables. This forms
the basis of a naive rejection sampler, that is quite flexible as it does
not even require that a probabilistic model be formulated, but one
that can be inefficient, especially if the posterior distribution is far
from the prior distribution—which is usually the case. As a result, a
number of variations have been described, trying either to correlate
sample draws as in MCMC samplers [113] or to resample sequen-
tially from the past [114, 115]. In spite of recent reviews of the
computational promises and deliveries of ABC samplers
[116-118], the few applications in molecular evolution have
been, to date, mostly limited to molecular epidemiology
[119-122]. One of the major challenges to estimate a phylogenetic
tree from a sequence alignment with ABC is the lack of'a proper and
efficient simulation strategy: it is possible to simulate trees under
various processes (we saw the coalescent above), it is also possible to
simulate an alignment from a given (possibly simulated tree), so
that in theory one could imagine an ABC algorithm that would use
this backward process to estimate phylogenetic trees by comparing
a simulated alignment to an “actual” alignment. This, however,
would most likely be a very inefficient sampler.

A second area that holds promises is the use of artificial intelli-
gence (Al), and more specifically of machine learning (ML), in
molecular evolution. Here again, attempts have been made to
using standard ML approaches such as support vector machines
[123] to guide the comparison of tree shapes, for instance, [124],
which can then be used in epidemiology [121], but estimating a
phylogenetic tree has proved more challenging. In one notable
exception, an alignment-free distance-based tree-reconstruction
method was proposed [125], but its main legacy seems to be in
the development of %-mers, or unaligned sequences chopped into
words of length %, to reconstruct phylogenetic trees—in particular
in the context of phylogenomics (phylogenetics at a genomics
scale) [126, 127]. To the best of our knowledge, nobody has ever
tried, yet, to train a neural network or even a deep learning algo-
rithm [128-130] on a database of phylogenetic trees with
corresponding alignments such as TreeBASE [131] or PANDIT
[132]. As applications of deep learning start emerging in genomics
[133] and proteomics [134], it is likely that phylogenetics will
come next.
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3 Uncovering Processes and Times

3.1 Dating the Tree
of Life: Always
Deeper?

3.1.1 The Strict
Molecular Clock

Similar to the problem of estimating the tree of life, dating the tree
of life poses many challenges [135]. Since it was first proposed in
1965 [40], the idea of estimating divergence times has since under-
gone a dramatic change, and new approaches are regularly pro-
posed. Population geneticists have their own approaches, which are
either fully Bayesian [136] or based on approximate Bayesian com-
putation in the coalescent framework [137]. All these approaches
make it possible to infer divergence times between recently
diverged species, as in the case of humans and chimpanzees, or to
date demographic events such as the migrations “out of Africa” of
early human populations [138].

In the context of molecular evolution, we are usually interested
in estimating deeper divergence times, such as those between spe-
cies, which are available online, for instance, at www.timetree.org
[139], recently revamped and extended to cover close to 100k
species [140]. While early “molecular dates” were systematically
biased towards ages that are too old [135], we argue here that
recent developments in the field have led to more accurate methods
and also to a better understanding of methodological limitations.

One quantity that we can estimate when comparing pairs of
sequences is the number of differences that exist. This number,
estimated as a branch length &4, can be corrected for multiple sub-
stitutions (see Subheading 2.7), but basically remains an expected
number of substitutions per site. With “dating” (defined here as the
activity of estimating divergence times [141]), we are interested in
estimating time #, which relates to the expected numbers of sub-
stitutions & according to the following equation:

b=Atxr (28)

where Azis a period of time and 7 the rate of evolution. In technical
terms, times and rates are said to be confounded, because we
cannot estimate one without making an assumption about the
other.

The molecular clock hypothesis does just this by assuming that
rates of evolution are constant in time [40] (see also [142], p. 65).
Under this assumption, the estimated tree is ultrametric as in the
basic example represented in Fig. 11, which implies that all the tips
are level, or equivalently that the distance from root to tip is the
same for all branches.

In this example (Fig. 11), the branch length from the fossil-
dated node is 0.1 substitutions/site (sub/site), and the fossil was
estimated to be present 10 million years ago (MYA). Under the
strict molecular clock assumption (equal rates over the whole tree),
we can (1) estimate the rate of evolution (0.1/10 = 0.01
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Fig. 11 The strict molecular clock. The tree is ultrametric. The node marked with a star indicates the presence
of a fossil, dated in this example to 10 million years ago (MYA). This is the point that we will use to calibrate the
clock, that is, to estimate the global rate of evolution. The number of substitutions that accumulated from the
marked node to the tips (present) is indicated on the right weights in at 0.1 substitutions/site. The node that is
the most recent common ancestor of S2 and S5 is the node of interest. The number of substitutions from this
node to the tips is 0.02 substitutions/site

sub/site/my) and (2) date all the other nodes on the tree. For
instance, the most recent common ancestor of S2 and S5 is sepa-
rated from the tips by a branch length of 0.02 sub/site. Its diver-
gence time is therefore 0.02,/0.01 = 2 MYA.

As with any hypothesis, the strict clock can be tested. Tests
based on relative rates assess whether two species evolve at the same
rate as a third one, used as an outgroup. Originally formulated in a
distance-based context [143], likelihood versions have been
described [44, 144]. However, because of their low power [145]
their use is on the wane. The most powerful test is again the LRT
(see Subheading 2.9.1). The test proceeds as usual, first calculating
the test statistic 24¢ (twice the difference of log-likelihood values).
The null hypothesis (strict clock) is nested within the alternative
hypothesis (clock not enforced), so that 24¢ follows a y? distribu-
tion. The degree of freedom is calculated following Fig. 12. With
an alignment of # sequences, we can estimate 7 — 1 divergence
times under the null model (disregarding parameters of the substi-
tution model) and we have 2% — 3 branch lengths under the
alternative model. The difference in number of free parameters is
therefore » — 2, which is our degree of freedom. This version of
the test actually assesses whether all tips are at the same distance
from the root of the tree [44]. For time-stamped data, serially
sampled in time as in the case of viruses, the alternative model
incorporates information on tip dates [146].

This linear regression model suggested by the molecular clock
hypothesis has often been portrayed as a recipe [147], which gave
rise in the late twentieth to early twenty-first century to a veritable
cottage industry [148-151], culminating with a paper suggesting
that the age of the tree of life might be older than the age of planet
Earth [152]. This recipe was put down by two factors: (1) the
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Fig. 12 Testing the strict molecular clock. The divergence times that can be estimated under the strict clock
assumption are denoted £. The branch lengths that can be estimated without the clock are denoted b;. In the
case depicted, with n = 7 sequences, we have n — 1 = 6 divergence times and 2n — 3 = 11 branch

lengths

3.1.2  Local Molecular
Clocks

3.1.3 Correlated Relaxed
Clocks

publication of a piece written in a rather unusual style for a scientific
paper [153], and (2) new methodological developments. The main
points made in [153] are that (1) most of the early dating studies
relied on one analysis [149] that used a fossil-based calibration
point for the divergence of birds at 310 MYA to estimate a number
of molecular dates for vertebrates, and that (2) these molecular
dates were then used in subsequent studies as a proxy for calibration
points, disregarding their uncertainty. As a result, estimation errors
were passed on and amplified from study to study, leading to the
nonsensical results in [152].

This “debacle” has motivated further theoretical developments in
the dating field. The simplest idea is that, if a global clock does not
hold for the entire tree, then perhaps groups of related species share
the same rate. That is, if a global clock does not hold, perhaps the
tree can be subdivided into Jocal molecular clocks. An initial idea
was proposed in the context of quartets of sequences [ 154 ] and was
later generalized to a tree of any size with any number of local
clocks on the tree [155] (constrained by the number of branches on
the tree and calibration points). Because of the arbitrariness of such
local clocks, methods have been devised to place the clocks on the
tree [156] and to estimate the appropriate number of clocks that
should be used [157]. A Bayesian approach now estimates all these
parameters and their placement in an integrated statistical
framework [158].

The idea of a correlated relaxed molecular clock goes back to
Sanderson [159] (see also [160]), who considered that rates of
evolution can change from branch to branch on a tree. By con-
straining rates of evolution to vary in an autocorrelated manner on
a tree, it is possible to devise a method that minimizes the amount
of rate change.



100 Stéphane Aris-Brosou and Nicolas Rodrigue

Prior distribution
on rates

The idea of an autocorrelated process governing the evolution
of the rates of evolution is attributed to [161] in [159], but could
all the same be attributed to Darwin. Thorne et al. developed this
idea further in a Bayesian framework [162]. Building upon the
basic theory covered in Subheading 2.9.3, the idea is to place
prior distributions on the quantities in the right-hand side of
Eq. 28. The target distribution is p(#/X). It is proportional to
p(X]t) p(¢) according to Bayes’ theorem, but all that we can esti-
mate is

p(X]0) p(b) _ p(X]r, 1) p(r, 1) (29)
p(X) p(X)

One of the possible ways to expand the joint distribution of rates
and times is p(7, £) is p(#]¢) p(¢), which posits a process where rate
change depends on the length of time separating two divergences.
The “art” is now in choosing prior distributions, conditional on the
obvious constraint that rates and times should take positive values.
A number of such prior distributions for rates have been proposed
and assessed [163] and one of the best-performing model for rates
is, in our experience, the log-normal model [162, 164 ]. The prior
on times is either a pure-birth (Yule) model or a birth-and-death
process possibly incorporating species sampling effects [165]. If
sequences are sampled at the population level, a coalescent process
is more appropriate (see [112] for an introduction). In this case, the
past demography of the sampled sequences can be traced back
taking inspiration from spline regression techniques [166, 167] or
multiple change-point models [168].

Once these priors are specified, an MCMC sampler will draw
from the target distribution in Eq. 29, and marginal distributions
for times and rates can easily be obtained. The rationale behind the
sampler is represented in Fig. 13. As per Eq. 28, the relationship

p(b|X) =

rate time

v
T

Prior on
calibration

S}
T

\

0.5 1.0 1.5 2.0 2.5 3.0 time

Prior distribution
on times

Fig. 13 The relaxed molecular clock. See text for details
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3.1.5 Some Applications
of Relaxed Clock Models
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between rates and times is the branch of a hyperbolic curve, where
the priors on rates and on times define a region of higher posterior
probability, symbolized here by a contour plot superimposed on the
hyperbolic curve. On top of this, fossil information is incorporated
into the analysis as constraints on times. A very influential piece
stimulated a discussion about the shape of these prior distributions
[153], which was taken up [169], and further developed in [170].
Briefly, fossil information is usually imprecise, as paleontologists can
only provide minimum and maximum ages (Fig. 13). Of these two
ages, the minimum age is often the most reliable. Under the
assumption that the placement of the fossil on the tree is correct,
the idea is to place on fossil dates a prior distribution that will be
highly skewed towards older (maximum) ages. A “hard bound” can
be placed on the minimum age, possibly by shifting this prior
distribution by an offset equal to the minimum age, while the
tails of the prior distribution will act as “soft bounds,” because
they do not impose on the tree a strict (or bard) constraint. Empir-
ical studies agree, however, that both reliability and precision of
fossil calibrations are critical to estimating divergence times
[136,171].

Because of the autocorrelation between the rate of each branch and
that of its ancestral branch (except for the root, which obviously
requires a special treatment), the tree topology is fixed under the
autocorrelated models described above. By relaxing this assump-
tion about rate autocorrelation, [172] were able to implement a
model that also integrates over topological uncertainty. In spite of
the somewhat counter-intuitive nature of the relaxation of the
autocorrelated process, as implemented in BEAST [91, 173 ], empir-
ical studies have found this approach to be one of the best-
performing (e.g., [157]).

When first published, it was proposed that making use of an
uncorrelated relaxed molecular clock could improve phylogenetic
inference [172]. The idea was that calibration points and their
placement on the tree could act as additional information. How-
ever, a simulation study suggests that relaxed molecular clocks
might not improve phylogenetic accuracy [174], a result that
might be due to the lack of calibration constraints in this particular
simulation study.

Since the advent of relaxed molecular clocks, two very exciting
developments have seen the light of day. The first concerns the
inclusion of spatial statistics into dating models [175, 176]. Spatial
statistics are not new in population genetics [177] and have been
used with success in combination with analyses in computational
molecular evolution (e.g., [178]). However, the originality in
[176], for instance, is to combine in a single statistical framework



102 Stéphane Aris-Brosou and Nicolas Rodrigue

molecular data with geographical and environmental information
to infer the diffusion of sequences through both space and time.
While these preliminary models seem to deal appropriately with
natural barriers to gene flow such as coastlines, a more detailed set
of constraints on gene flow may further enhance their current
predictive power.

The second development coming from relaxed molecular
clocks concerns the mapping of ancestral characters onto uncertain
phylogenies. This is not a novel topic, as a Bayesian approach was
first described in 2004 [179, 180]. The novelty is that we now have
the tools to correlate morphological and molecular evolution in
terms of their absolute rates and to allow both molecular and
morphological rates of evolution to vary in time [181]. Further
development will certainly integrate over topological uncertainty.
While there has been a heated controversy about the existence of
such a correlation in the past [182], all previous studies were using
branch length as a proxy for rate of molecular evolution, which is
clearly incorrect. We can therefore expect some more accurate
results on this topic very soon. More details and examples can be
found in recent and extensive reviews [183—-185] that further dis-
cuss applications to biogeographic studies [186], or extensions to
viral [187, 188], as well as other types of genomic [189] and
morphological [190] data.

4 Molecular Population Phylogenomics

Population genetics is rich in theory regarding the relative roles of
mutation, drift, and selection. Much research in population geno-
mics is now focusing on using this theory to develop statistical
procedures to infer past processes based on population-level data,
such as those of the 1000-genome project [191], the UK’s 10,000
genome project [192], and always more ambitious projects [193].
One limitation of these inference procedures is that they all focus
on a thin slice of evolutionary time by studying evolution at the
level of populations. If we wish to study longer evolutionary time
scales, for example, tens or hundreds of millions of years, we must
resort to interspecific data. In such a context, which is becoming
intrinsically phylogenetic, the most important event is a substitution,
that is, a mutation that has been fixed. Yet substitution rates can be
defined from several features. In particular, from a population
genetics perspective, it is of interest to model both mutational
features and selective effects, combining them multiplicatively to
specify substitution rates. We review briefly how substitution mod-
els that invoke codons as the state space lend themselves naturally to
these objectives in a first section below (Subheading 4.1), before
explaining the origin (and a shortcoming) of all the approaches
developed so far (Subheading 4.2).



4.1 Bridging the Gap
Between Population
Genetics and
Phylogenetics

4.2 Origin of
Mutation-Selection
Models: The Genic
Selection Model
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Assuming a point-mutation process, such that events only change
one nucleotide of a codon during a small time interval, Muse and
Gaut proposed a codon substitution model with rates specified
from the QOgrr nucleotide-level matrix (se¢ Subheading 2.7),
along with one parameter that modulates synonymous events and
another one that modulates nonsynonymous events [ 194]. In most
subsequent formulations, the parameter associated with synony-
mous events is assumed to be fixed, such that the model only
modulates nonsynonymous rates by means of a parameter denoted
w. This parameter has traditionally been interpreted as the nonsy-
nonymous to synonymous rate ratio, and is generally associated
with a different formulation of the codon model proposed by
Goldman and Yang [195]. More details on codon models can be
found in Chapter 4.1 [196]. There continues to be a debate
regarding the interpretation of the w parameter [197,198]. Regard-
less of how this issue is settled, it is clear that @ is aimed at capturing
the net overall effects of selection, irrespective of the exact nature of
these effects.

With the intention to model selective effects themselves, Hal-
pern and Bruno proposed a codon substitution model that com-
bines a nucleotide-level layer, as described above, for controlling
mutational features, along with a fixation factor that is proportional
to the fixation probability of the mutational event [199]. The
fixation factor is in turn specified from an account of amino acid
or codon preferences. One objective of the model, then, consists in
teasing apart mutation and selection. While [199] proposed their
model with site-specific fixation factors, later work has explored
simpler specifications, where all sites have the same fixation factor
[200]. Other models that aimed at capturing across-site heteroge-
neities in fixation factors were proposed using nonparametric
devices and empirical mixtures [201]. Another core idea behind
these approaches is to construct a more appropriate null model
against which to test for features of the evolutionary process. This
idea has been put into practice for the detection of adaptive evolu-
tion in protein-coding genes [202, 203]. Recent developments
include sequence-wide fixation factors [9, 197, 204, 205], and we
predict that these models will play a role in bridging the gap
between molecular evolution at the population and at the species
levels.

In order to understand a shortcoming of these models, we need to
go back to the development of fixation probabilities that took place
in the second half of the twentieth century. The basic unit or
quantum of evolution is a change in allele frequency p. Allele
frequencies can be affected by four processes: migration, mutation,
selection, and drift. Because of the symmetry between migration
and mutation [206], which only differ in their magnitude, these
two processes can be treated as one. We are left with three forces:
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4.2.1 Fixation
Probabilities

mutation, selection, and drift. The question is then, what is the fate
of an allele under the combined action of these processes? Our
development here follows [207] (but see [208] for a very clear
account).

Of the three processes affecting allele frequencies, mutation and
selection can be seen as directional forces in that their action will
shift the distribution of allele frequencies towards a particular point,
be it an internal equilibrium, or fixation/loss of an allele. On the
other hand, drift is a non-directional process that will increase the
variance in allele frequencies across populations, and will therefore
spread out the distribution of allele frequencies. This distribution is
denoted ¥( p, t). We also must assume that the magnitude of all
three processes mutation, selection, and drift, is small and of the
order of 73~ x> Where N, is the effective population size. To derive the
fate of an allele after a certain number of generations, we also need
to define g( p, €;dt), the probability that allele frequency changes
from p to p + e during a time interval 4.

In phylogenetics (and population genetics) we are generally
interested in predicting the past. The tool making this possible is
called the Kolmogorov backward equation, which predicts the
frequency of an allele at some time #, given its frequency po at
time #:

Y(p,t+ dtlpy) = [P (p,tlpy + €) 5(pg, e3dt) de (30)

We can take the Taylor expansion of Eq. 30 around po, neglect all
terms whose order is larger than two (o(p3)) and since ¥ is not a
function of &, we obtain:

oY o’y (&
Y(p,t+ Pltlpo) = Y’Jg d€+a—PO Jé‘gﬂl&'-i- ap Jzﬂde
(31)

This formulation leads to the definition of two terms that represent
the directional processes affecting allele frequencies (M) and the
non-directional process, or drift (V' ):

M(p) dt = Jgeple

(32)
V(p) dt = Jgezde

that we can substitute into Eq. 31. At equilibrium, ¥ 5, = Oand, after
a bit of calculus, we obtain:

oY B J"ZM dp
aPO =Ce (33)
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Table 3
The standard selection models

Selection coefficients A1 A A1 A, A A,
Genic (positive) selection wp=1+s wy, =1+ bs w3 =1
Overdominance wp =1 wy,=1+s w3 =1

Models are represented for one locus with two alleles, A; and A,, which define three
genotypes A1 Ay, A1 A, and A> A, of fitness wy, w,, and w3. The selection coefficient is
s (positive in this table, but not necessarily so) and the dominance is governed by

h(h e [0,1])

for which we need to specify boundary conditions and a model of
selection. The boundary conditions are the two absorbing states of
the system: (1) once fixed, an allele remains fixed (¥(1, c0; 1) = 1)
and (2) once lost, an allele remains lost (¥(1, oo; 0) = 0). With
these two requirements, the probability that the allele frequency is
1 given that it was py in the distant past is the fixation probability:

Po E*I%led
#(1,003) :folz—_MdP
fO gij. 14 pp[p

We therefore only need to compute M and V under a particular
model of selection to fully specify the fixation probability of an allele
in a mutation—selection-drift system. All that is required now to go
further is a selection model.

(34)

We are now ready to derive an explicit form to ¥(1, oco; o) in
Eq. 34 in the case of the genic selection model (Table 3; [209]).
We obtain:

W =1+ sp? +2pqhs = 1 + 2phs + sp*(1 — 2h) (35)

which can be approximated by 1 + 2phs (the result is exact only
when # = 1/2). Therefore, dw/dp = 2bs, and we can calculate the
Mand V terms to obtain the popular result:

2M
jé’o e—j7dpdp 674N£hsp0 -1
T(l’oo;po) = = e—4N.bs _ ]

(36)
fol e I%dpdp

Now, the initial frequency of a mutation in a diploid population
of (census) size N is po = 1/2 N (following [208]; [207] consid-
ered that py = 1/2N,; this debate is beyond the scope of this

chapter), which leads to:
~2N.hs/N _
1 > ¢ 1 (37)

”(wa N1
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If N, is of the order of N, the numerator of the right-hand side of
Eq. 37 becomes approximately ¢ 2* — 1, whose Taylor approxima-
tion around ss = 0 is simply — 24s. We then obtain the result used
in [199], and in all the papers that implemented mutation—selection
(-drift) models (e.g., [197, 199-201, 204]):

1 2hs
’”(Loo;ﬁ) R (38)

Two critical points should be noted here. First, none of the
recent codon models [197,199-202, 204, 210, 211] ever investi-
gated the role of dominance 4, as they all consider that the allele
under (positive) selection is fully dominant. Second, Table 3 shows
that another class of selection models, those based on balancing
selection, has never been considered so far. The impact of the
selection model on the predictions made by the mutation—selection
(-drift) models is currently unknown.

5 High-Performance Computing for Phylogenetics

5.1 Parallelization

5.2 HPC and Cloud
Computing

Because of the dependency of the likelihood computations on the
shape of a particular tree (see Subheading 2.6), most phylogenetic
computations cannot be parallelized to take advantage of a multi-
processor (or multicore) environment. Nevertheless, two main
directions have been explored to speed up computations: first, in
computing the likelihood of substitution models that incorporate
among-site rate variation and second, in distributing bootstrap
replicates to several processors, as both types of computations
can be done independently. A third route is explored in
Chapter 7.4 [212].

In the first case, among-site rate variation is usually modeled
with a I" distribution [213] that is discretized over a finite (and
small) number of categories [214]. The likelihood then takes the
form of a weighted sum of likelihood functions, one for each
discrete rate category, so that each of these functions can be eval-
uated independently. The route most commonly used is the plain
“embarrassingly parallel” solution, where completely independent
computations are farmed out to different processors. Such is the
case for bootstrap replicates, for which a version of PhyML [24]
exists, or in a Bayesian context for independent MCMC samplers
[215] (see Subheading 2.9.3). The PhyloBayes-MPI package imple-
ments distributed likelihood calculations across sites over several
compute-cores, allowing for a genuinely parallelized MCMC run
[2106, 217].

More recent work has focused on the development of heuristics
that make large-scale phylogenetics amenable to high-performance
computing (HPC) that are performed on computer clusters.
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Because of the algorithmic complexity of resolving phylogenetic
trees, an approach based on “algorithmic engineering” was devel-
oped [218]. The underlying idea is akin to the training phase in
supervised machine learning [123], except that here the target is
not the performance of a classifier but that of search heuristics. All
of these heuristics reuse parameter estimates, avoid the computa-
tion of the full likelihood function for all the bootstrap replicates, or
seed the search algorithm for every # replicate on the results of
previous replicates [218]. For instance, in the “lazy subtree rear-
rangement” [219], topologies are modified by SPR (see Subhead-
ing 2.10.2), but instead of recomputing the likelihood on the
whole tree, only the branch lengths around the perturbation are
re-optimized. This approximation is used to rank candidate topol-
ogies, and the actual likelihood is evaluated on the complete tree
only for the best candidates. These heuristics now permit the
analysis of thousands of sequences in a probabilistic framework
[220], but the actual convergence of these algorithms remains
difficult to evaluate, especially on very large data sets (e.g., >10*
sequences).

In addition to the reduction of the memory footprint for sparse
data matrices [221], an alternative direction to “tweaking likeli-
hood algorithms” has been to take direct advantage of the comput-
ing architecture available. One particular effort aims at tapping
directly into the computing power of graphics processing units or
GPUs, taking advantage of their shared common memory, their
highly parallelized architecture, and the comparatively negligible
cost of spawning and destroying threads on them. As a result, it is
possible to distribute some of the summation entering the pruning
algorithm (see Subheading 2.6) to difterent GPUs [222]. The num-
ber of programs taking advantage of these developments is widen-
ing and includes popular options such as BEAST [91] and
MrBayes [223].

All these fast algorithms can be installed on a local computer
cluster, a solution adopted by many research groups since the late
1990s. However, installing a cluster can be demanding and costly
because a dedicated room is required with appropriate cooling and
power supply (not to mention securing the room, physically).
Besides, redundancy requirements, both in terms of power supply
and data storage, as well as basic software maintenance and user
management, may demand hiring a system administrator. An alter-
native is to run analyses on a remote HPC server, in the “cloud.”
Canada, for instance, has a number of such facilities, thanks to
national funding bodies (CAC at cac.queensu.ca, SHARCNET at
www.sharcnet.ca, or Calcul Quebec at www.calculquebec.ca, just to
name a few), and commercial solutions are just a few clicks away
(e.g., Amazon Elastic Compute Cloud or EC2). Researchers can
obtain access to these HPC solutions according to a number of
business models (free, on demand, yearly subscription, etc.) that are


http://cac.queensu.ca
http://www.sharcnet.ca
http://www.calculquebec.ca

108 Stéphane Aris-Brosou and Nicolas Rodrigue

associated with a wide spectrum of costs [224]. But in spite of the
technical support offered in the price, users usually still have to
install their preferred phylogenetic software manually or put a
formal request to the team of system administrators managing the
HPC facility, all of which is not always convenient.

To make the algorithmic and technological developments
described above more accessible, the recent past has seen the emer-
gence of cloud computing [225] dedicated to the phylogenetics
community. Examples include the CIPRES Science Gateway (www.
phylo.org), or Phylogeny.fr (www.phylogeny.fr, [226]). Many
include web portals that do not require that users be well versed
in Unix commands, while others may include an application pro-
gramming interface to cater to the most computer-savvy users. One
potential limitation of these services is the bandwidth necessary to
transfer large files, and storage requirements—especially in the
context of next generation sequencing data. The management of
relatively large files will remain a potential issue, unless phyloge-
netics practitioners are ready to discard these files after analysis, the
end product of which is a single tree file a few kilobytes in size, in
the same way that people involved in genome projects delete the
original image files produced by massively parallel sequencers. Data
security or privacy might not be a problem in most applications,
except in projects dealing with human subjects or viruses such as
HIV that expose the sexual practices of subjects. However, once
these various hurdles are out of the way, users could very well
imagine running their phylogenetic analyses with millions of
sequences from their smartphone while commuting.

6 Conclusions

Although most of the initial applications of likelihood-based meth-
ods were motivated by the shortcomings of parsimony, they have
now become well accepted as they constitute principled inference
approaches that rely on probabilistic logic. Moreover, they allow
biologists to evaluate more rigorously the relative importance of
different aspects of evolution. The models presented in this chapter
have the ability to disentangle rates from times (Subheading 3), or
mutation from selection (Subheading 4), while in most cases
accounting for the uncertainty about nuisance parameters. But
the latest developments described above still make a number of
restrictive assumptions (Subheading 4.2), and while many varia-
tions in model formulations can be envisaged, they still remain to
be explored in practice.

Although some progress has been made in developing integra-
tive approaches (e.g., [176, 181]), throughout this chapter we have
assumed that a reliable alignment was available as a starting point. A
number of methods exist to co-estimate an alignment and a
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phylogenetic tree (see Part I of this book), but the computational
requirements and convergence of some of these approaches can be
daunting, even on the smallest data sets by today’s standards.

This brings us, finally, to the issue of tractability of most of
these models in the face of very large data sets. The field of phylo-
genomics is developing quickly (see Part IIT), at a pace that is ever
increasing given the output rate of whole genome sequencing
projects. Environmental questions are drawing more and more
attention, and metagenomes (see Part VI) will be analyzed in the
context of what will soon be called metaphylogenomics. Exploring
the numerous available and foreseeable substitution models in such
contexts will require continued work in computational methodol-
ogies. As such, modeling efforts will continue to go hand-in-hand
with, and maybe dependent on, algorithmic developments [227]. It
is also not impossible that in the near future, the use of likelihood-
free approach such as ABC or machine learning algorithms in
computational molecular evolution be more thoroughly explored.
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Abstract

Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level
between two or more genomes. It combines aspects of both colinear sequence alignment and gene
orthology prediction and is typically more challenging to address than either of these tasks due to the
size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been
developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic
inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and
significance of WGA and present an overview of the methods that address it. We also examine the problem
of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in
order to make most effective use of our rapidly growing databases of whole genomes.

Key words Sequence alignment, Whole-genome alignment, Homology map, Toporthology,
Genome evolution, Comparative genomics

1 Introduction

When the problem of biological sequence alignment was first
described and addressed in the 1970s, sequencing technology was
limited to obtaining the sequences of individual proteins or
mRNAs or short genomic intervals. As such, classical sequence
alignment (as described in Chapter 7 [1]) is typically focused on
predicting homologous positions within two or more relatively
short and colinear sequences, allowing for the edit events of substi-
tution, insertion, and deletion. Although limited in its scope, this
type of alignment remains extremely important today, with gene-
sized alignments forming the basis of most evolutionary studies.
Starting in 1995 with the sequencing of the 1.8 Mb-sized
genome of the bacterium H. influenzae [2], biologists have had
access to a different scale of biological sequences, those of whole
genomes. DNA sequencing technology has rapidly improved since
that time, and as a result, we have seen an explosion in the availabil-
ity of whole-genome sequences. As of the writing of this chapter,
there are 9071 published complete genome sequences (8380

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_4, © The Author(s) 2019

121


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9074-0_4&domain=pdf

122 Colin N. Dewey

bacterial, 281 archaeal, and 410 eukaryotic), according to the
GOLD database [3]. Whole-genome sequencing remains popular,
with over 140,000 sequencing projects that are either ongoing or
completed.

Along with the ascertainment of these sequences, the problem
of whole-genome alignment (WGA) has arisen. As each genome is
sequenced, there is interest in aligning it against other available
genomes in order to better understand its evolutionary history and,
ultimately, the biology of its species. Like classical sequence align-
ment, WGA is about predicting evolutionarily related sequence
positions. However, aligning whole genomes is made more com-
plicated by the fact that genomes undergo large-scale structural
changes, such as duplications and rearrangements. In addition, a
set of genomes may contain pairs of sequence positions whose
evolutionary relationships can be described by any of the three
major subclasses of homology: orthology, paralogy, and xenology.
As orthologous positions are typically of primary interest, WGA
also involves the classification of homologous relationships.

In this chapter, we describe the problem of WGA and the
methods that address it. We begin with a thorough definition of
the problem and discuss the important downstream applications of
WGAs. We then categorize the WGA methods that have been
developed and describe the key computational techniques that are
used within each category. In addition to describing whole-genome
aligners, we also discuss the various approaches that have been used
for evaluating the alignments they produce. Lastly, we lay out a
number of current methodological challenges for WGA.

2 The Definition and Significance of WGA

21 WGAasa
Correspondence
Between Genomes

In imprecise terms, a WGA is a “correspondence” between gen-
omes. For each segment of a given genome, a WGA tells us where
its “corresponding” segments are in other genomes. A segment
may be one or more contiguous nucleotide positions within a
genome. What does it mean for two genomic segments to “corre-
spond” to each other? In most situations, we consider two seg-
ments to be “corresponding” if they are orthologous. Orthologous
sequences are those that are evolutionarily related (homologous)
and that diverged from their most recent common ancestor
(MRCA) due to a speciation event [4]. In contrast, paralogous
sequences are homologs that diverged from the MRCA due to a
duplication event. Thus, by definition, orthologous sequences are
the most closely related pieces of two genomes and, as is more
thoroughly discussed later and in Chapter 9 [5], are of primary
interest because they are useful for applications such as function
prediction and species tree inference. As such, WGA is most com-
monly taken to be the prediction of orthology between the
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components of entire genome sequences. When a WGA also pre-
dicts paralogy, typically only paralogs whose MRCA is at least as
recent as the MRCA of entire set of genomes are considered, as
there is extensive ancient homology within extant genomes.

It is important to note that the orthologous relationships
between two genomes do not create a one-to-one correspondence.
Duplication events that have occurred since the time of the MRCA
of the species can result in a genomic segment in one species having
multiple orthologous segments in another. This is a particularly
important issue when the genome of one lineage has undergone a
whole-genome duplication event since the time of the MRCA. In
this situation, few segments of the genome of the nonduplicated
lineage have a single ortholog in the other genome.

In many cases, WGAs do not aim to predict all orthologous
sequences. Instead, they only predict toporthology (positional
orthology), a distinguished subset of orthology [6, 7]. The concept
of toporthology captures the notion that not all orthologous rela-
tionships are equivalent in terms of the evolutionary history of the
genomic context of the orthologs. Figure 1 gives an example
scenario in which toporthology helps to distinguish between two
orthologous relationships.

The definition of toporthology relies on a classification of
duplication events. A duplication event is considered to be “sym-
metric” if the removal of either copy of the duplicated genomic
material (immediately after the event) reverts the genome to its
original (preduplication) state. Examples of symmetric duplications
are tandem and whole-genome duplications. If only one specific
copy can be removed to undo a duplication event, then the event is
considered “asymmetric.” In the asymmetric case, the removable
copy is referred to as the “target,” with the other copy referred to as
the “source.” Retrotransposition and segmental duplication both
belong to the asymmetric class.

With this classification of duplication events in hand, we can
now define toporthology. Two genomic segments are toportholo-
gous if they are orthologous and neither segment is derived from
the target of an asymmetric duplication event since the time of the
MRCA of the segments. Thus, two orthologous segments are
toporthologous if their evolutionary history (since the MRCA)
only involves symmetric duplication events or asymmetric duplica-
tions in which their ancestral segment was part of the source copy.

The important property of toporthologs is that, in the absence
of rearrangement events, they share the same ancestral genomic
context. As the context of a gene or genomic segment has func-
tional consequences, toporthologous sequences are generally
expected to be more similar in their function than orthologous
sequences that are not toporthologous (atoporthologs) [6]. How-
ever, there is no guarantee that toporthologs share a common
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Fig. 1 A hypothetical evolutionary scenario in which the relation of toporthology distinguishes between two
ortholog pairs. The bullet-like shapes indicate genomic segments. Both YB1 and YB2 are orthologous to
YA. However, only YB1 is toporthologous to YA because YB2 was derived from the target of an asymmetric
duplication since the time of the most recent common ancestor, Y, of YB2 and YA

2.3 Definition and
Representation

function or that two genomic intervals that have the same function
are toporthologs. Thus, a rigorous functional analysis of genomes
should consider all classes of homology. Nevertheless, WGAs that
focus on toporthology produce a good first approximation to a
functional correspondence between genomes.

To be more precise, a WGA is, in general, the prediction of homol-
ogous pairs of positions between two or more genome sequences.
Often, as we have previously discussed, only orthologous or
toporthologous relations are predicted in WGAs. And while align-
ment is typically focused on homologous relationships between
sequences, whole-genome comparisons can also include alignments
within genomes, which represent paralogous sequences.

Note that we define WGA as homology prediction at the level
of nucleotides. Although the concept of homology is more com-
monly used with respect to entire genes or proteins, it is easily used
and, in fact, more naturally defined at the level of single nucleotides.
Homology of nucleotide positions is established through template-
driven nucleotide synthesis, and the definitions of orthology, paral-
ogy, and xenology for nucleotides follow those for genes [7].

While a WGA can be defined as a prediction of homology
statements, it is usually represented as a set of nucleotide-level
alignment matrices or “blocks,” each block made up by segments
of the genomes that are both homologous and colinear. Homolo-
gous genomic segments are colinear if they have not been broken
by a rearrangement event since the time of their MRCA. Since
rearrangement events, such as inversions, are common at the scale
of entire genomes, WGAs are typically made up of many blocks. In
general, a block contains two or more genomic segments, and
multiple segments in the same block may belong to the same
genome (indicating paralogous sequence). One specific WGA rep-
resentation, the “threaded blockset” [8], requires that every
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Fig. 2 An example WGA of three genomes represented as a set of alignment blocks. (a) The positions of the
genomic segments that are in the alignment blocks are shown as shaded bullet-like shapes (the direction of
the bullet indicates the orientation of the segment). In this example, not all genomic segments belong to a
block (note the unshaded intervals). (b) The alignment blocks of the WGA. Note that blocks do not need to
contain a segment from all genomes (e.g., block Y) and that some blocks can contain multiple segments from
the same genome (e.g., blocks X and Z). (c) A slice of alignment block Z, which is a nucleotide-level alignment

2.4 Comparison to
Other Homology
Prediction Tasks

position belongs to a block and thus additionally allows a block to
contain just a single segment, which would represent a unique
genomic sequence. Figure 2 depicts a hypothetical example of a
WGA, with some blocks containing both orthologous and para-
logous sequences.

As more genomes are added to an alignment or the total
evolutionary divergence between them is increased, the blocks in
a WGA decrease in size and increase in number. One might imagine
that in the limit of an infinite number of genomes or an infinite
amount of time, all blocks might have length one (a single column),
which makes the concept of an “alignment matrix” irrelevant.
However, rearrangements in certain segments of the genome are
likely to be highly deleterious to an organism and will thus never be
observed. Such segments are referred to as genomic “atoms” [9]
and prevent all blocks from becoming single alignment columns.

WGA is closely related to classical sequence alignment (the align-
ment of two or more relatively short and colinear sequences), and
most whole-genome aligners rely on classical alignment techniques
(e.g., the Needleman—-Wunsch [10] and Smith-Waterman [11]
pairwise alignment algorithms and heuristics used for multiple
alignments) as subroutines. However, there are three key differ-
ences between these two classes of alignment. First, and most
importantly, classical alignment requires sequences to be colinear,
which is often not the case for genome sequences due to rearrange-
ment events. Second, even when restricted to toporthologous rela-
tionships, the correspondences between genomes are not one to
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2.5 Significance

one, which is also a requirement of classical alignment. Due, in part,
to the complications of these first two issues, it is difficult to
formulate a useful objective function (such as the sum-of-pairs
score for classical alignment) for WGA. Thus, most genome align-
ment methods are heuristic procedures that lack an explicit objec-
tive. A last difference between classical alignment and WGA is the
scale of the problem. Classical alignment typically focuses on the
alignment of single genes, which are usually on the order of
thousands of nucleotides long. Whole genomes, in contrast, are
millions to billions of nucleotides in length. The facts that genomes
are large and are often neither colinear nor in one-to-one corre-
spondence with other genomes are what make WGA challenging.

Since WGA is often focused on orthologous relationships, it is
also related to the “orthology prediction” problem (se¢ Chapter 9
[5]). The key difference between the two problems is that orthol-
ogy prediction is traditionally cast at the level of genes, whereas
WGA operates at the level of nucleotides. For most orthology
prediction methods, a genome is treated as an unordered set of
genes. Whole-genome aligners, on the other hand, consider a
genome to be a set of DNA sequences (chromosomes) within
which genes are embedded. Thus, a WGA provides orthology
predictions for both genes and intergenic regions. Due in part to
their treatment of genomes as long nucleotide sequences, current
WGA methods rely exclusively on sequence similarity and the
ordering of nucleotides in a genome to predict orthology. In con-
trast, orthology prediction methods often use phylogenetic ana-
lyses, which can be more powerful than genome order and
sequence similarity information alone. Thus, while the problem of
WGA is broader in scope than that of orthology prediction, it is
restricted to the analysis of relatively closely related genomes, for
which homology of nongenic nucleotides is detectable and gene
order is at least partially conserved. Gene-level orthology predic-
tion is more appropriate for distantly related genomes, which may
only have detectable homology at the amino acid level and little
colinearity.

WGASs are powerful because they allow for the analysis of molecular
evolution at both large and small scales. At the large scale, one can
use such alignments to estimate the frequency and location of
rearrangement and duplication events. For example, one might
use a WGA between human and mouse to identify colinear ortho-
logous blocks, which are then given to a rearrangement analysis
method (e.g., [12]) to determine a most parsimonious set of rear-
rangement events explaining the current structures of the two
genomes. At the small scale, WGAs can be used to examine the
rates of substitutions and indels across the entire genome. For
example, one might look at alignments of ancestral repeats to
estimate the neutral rates of nucleotide evolution. Both small-
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and large-scale mutational events identified from WGAs can be
used as data for species tree inference. In combination with carefully
constructed models of genome evolution at both scales, WGAs also
enable the task of ancestral genome reconstruction [13, 14].

Beyond purely evolutionary studies, WGAs are valuable for
identifying functional elements within genomes. Each class of func-
tional element within the genome tends to have a unique “evolu-
tionary signature,” which can be searched for within WGAs
[15]. For example, coding sequences tend to have mutational
patterns with a predominance of substitutions at the third positions
of codons, which are unlikely to affect the amino acid sequence.
This characteristic evolutionary signature of coding sequence has
led to the development of comparative gene-finding methods,
which often use WGAs (Chapter 6 [16]). Noncoding RNA
sequences can also be identified from WGAs but have more com-
plex signatures involving compensatory mutations that maintain
base pairing within RNA secondary structures [17]. More gener-
ally, one can search for evolutionarily constrained regions within
WGAs, which can contain functional elements from a variety of
classes [18]. When combined with the knowledge of transcription
factor-binding motifs, this approach can be used to identify tran-
scription factor-binding sites with a technique called “phylogenetic
footprinting” [19]. The easiest evolutionarily constrained regions
to pick out are those of “ultraconserved elements,” which maintain
high levels of sequence identity across large evolutionary distances
and are primarily noncoding components of the genome [20].

WGAs also allow for the transfer of functional information
about specific elements from one species to another. As WGAs
typically predict orthology and orthologous sequences are likely
to have similar functions, WGAs are valuable for function predic-
tion. By aligning at the nucleotide level across the genome, they can
aid in function prediction for both genes and nongenic regions,
such as those that contain regulatory elements. For example, if we
are interested in a specific disease-associated interval in the human
genome, we might use an alignment to identify where its mouse
orthologs are located. Knowledge of the mouse orthologs would
enable us to have a better understanding of the evolutionary history
of this genomic region and could lead to genetic manipulation
experiments that can only be performed in mice.

3 Methods for WGA

3.1 A Simplistic
Approach

It is easier to understand the existing methods for performing
WGA by first appreciating the shortcomings of a simplistic
approach for comparing whole-genome sequences. One simple
approach would be to run BLAST [21], or another similar local
alignment tool, between all pairs of genomes. The WGA would
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3.2 The Two Major
Approaches to WGA

then be defined as the union of all significant pairwise local align-
ments discovered by BLAST. By using a local alignment tool, we
avoid the issues of rearrangements and duplications, as sets of local
alignments are not constrained to be colinear or in one-to-one
correspondence.

While this approach would certainly yield a large set of homol-
ogy predictions between all pairs of genomes, it has a number of
shortcomings. First, by only using a BLAST significance threshold,
it makes no distinction between orthology, paralogy, and other
refinements of homology. Second, the pairwise alignments that it
produces are not guaranteed to be consistent with each other, even
though homology, by definition, is a transitive relation. Third,
BLAST may miss some homologous sequences that have low simi-
larity but are strongly supported in their relatedness by flanking
homologous sequences. BLAST’s significance statistics are proven
for ungapped sequences and good in practice for sequences with
short indels [22], but are not designed for whole-genome compar-
isons, which often feature large-scale insertions and deletions and
heterogeneous substitution rates. Lastly, this approach is overly
computationally intensive. For example, it does not take advantage
of the fact that homology is a transitive relation, that relationships
between sequences are reasonably modeled by a tree, and that
homologous sequences between genomes are often found in long
colinear segments.

Existing WGA methods attempt to address one or more of the
weaknesses of this simple approach. These methods can be loosely
classified into two major strategies which we refer to as the “hierar-
chical” and “local” approaches. The main idea behind the hierar-
chical approach is to split the WGA problem into a set of global
multiple alignment problems. To do this, it first identifies the
colinear and homologous (typically orthologous) segments of the
genomes. Each set of colinear segments is then given to a
specialized genomic global alignment method to produce a
nucleotide-level alignment. In contrast, the first step of the
“local” approach is to produce a large set of nucleotide-level align-
ments. Later steps involve the filtering and merging of these align-
ments to produce sets of pairwise or multiple alignments of
homologous (typically orthologous) sequences. Despite their dif-
ferences, both strategies typically begin with a local alignment step
that is similar to the simplistic all-vs.-all alignment of the BLAST
approach. A summary of all of the WGA methods described in this
chapter and the role they play within one or both approaches is
given in Table 1.

Both approaches have advantages and disadvantages. The pri-
mary advantage of the hierarchical approach is that it can often be
faster and breaks a WGA into a number of independent subpro-
blems that can be solved in parallel. It is faster because the
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Table 1
A list of the WGA methods cited in this chapter

Relationships Pairwise or
Method Category predicted multiple References
BLAST Local alignment Homology Pairwise [21]
BLAT Local alignment Homology Pairwise [32]
STELLAR Local alignment Homology Pairwise [33]
LASTZ Local alignment Homology Pairwise [34]
LAST Local alignment Homology Pairwise [28]
MUMmer Local alignment Orthology Pairwise [35]
CHAOS Local alignment Homology Pairwise [36]
GRIMM-Synteny Homology mapping Toporthology Multiple [40]
DRIMM-Synteny Homology mapping Homology Multiple [45]
Mercator Homology mapping Toporthology Multiple [46]
Enredo Homology mapping Homology Multiple [47]
OSfinder Homology mapping Toporthology Multiple [48]
SuperMap Homology mapping Homology Multiple [49]
Sibelia Homology mapping Homology Multiple [50]
M-GCAT Hierarchical WGA Toporthology Multiple [51]
progressiveMauve Hierarchical WGA Toporthology Multiple [52]
MUGSY Hierarchical WGA Toporthology Multiple [53]
Cactus Hierarchical WGA Homology Multiple [54]
MAVID Global genomic Colinear homology Multiple [60]
alignment
LAGAN /Multi- Global genomic Colinear homology Pairwise/ [37]
LAGAN alignment multiple
DIALIGN Global genomic Colinear homology Multiple [36]
alignment
SeqAn::T-Coffee Global genomic Colinear homology Multiple [61]
alignment
Pecan Global genomic Colinear homology Multiple [47]
alignment
ESA Global genomic Colinear homology Multiple [62]
alignment
NUCmer/PROmer  Local WGA Orthology Pairwise [35]
MULTIZ/TBA Local WGA Homology Multiple [8]
AXTCHAIN/ Alignment chaining Orthology Pairwise [67]
CHAINNET and filtering

(continued)



130 Colin N. Dewey

Table 1
(continued)
Relationships Pairwise or

Method Category predicted multiple References
PicolnversionMiner  Alignment refinement Orthology Pairwise [68]
Cassis Alignment refinement Orthology Pairwise [69, 70]
GenAlignRefine Alignment refinement Colinear homology Multiple [71]
PSAR-Align Alignment refinement Colinear homology Multiple [73]
Phylo Alignment refinement Colinear homology Multiple [76,77]
SLAM Alignment refinement Colinear homology Pairwise [78]
DOUBLESCAN Alignment refinement Colinear homology Pairwise [79]
CESAR Alignment refinement Colinear homology Pairwise [81]
MORPH Alignment refinement Colinear homology Pairwise [82]
EMMA Alignment refinement Colinear homology Pairwise [83]
MAFIA Alignment refinement Colinear homology Multiple [84]
SAPF Alignment refinement Colinear homology Multiple [85]
REAPR Alignment refinement Colinear homology Multiple [86]

For each method, the approach it uses or the role it plays within a larger WGA system is given in the “category” column.
Each method is labeled as either “pairwise” or “multiple” depending on whether it can be applied to generate multiple
alignments. In addition, the primary type of evolutionary relationship predicted by each method is given in the “relation-
ships predicted” column

identification of long colinear and orthologous segments in the
genomes can be accurately computed without the need for sensitive
nucleotide-level alignments. However, because hierarchical meth-
ods do not often use the most sensitive aligners for this step, they
tend to miss small rearranged or diverged segments. Thus, the
primary advantage of the local method is in its sensitivity to these
regions, although “glocal” alignment methods [23], which allow
for small rearrangements, can partially ameliorate this weakness of
hierarchical methods. Hierarchical methods also run the risk of
being overconfident of the colinearity of genomic segments and
can thus produce more false-positive aligned positions within
sequences predicted to be colinear.

3.3 Local Pairwise
Genomic Alignment

Methods for both WGA strategies generally start by finding local
alignments between, and perhaps within, the genomes. The
Smith-Waterman algorithm is the classical solution to the pairwise
local alignment problem, but is generally not used for WGA
because it runs in time quadratic in the size of the genomes,
which can be large. Instead, most methods adopt a “seed-and-
extend” approach for discovering high-scoring local alignments,
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much like BLAST. This approach first identifies short ungapped
matches between the sequences using one of a variety of data
structures. It then extends the short matches from both ends
using a variant of the Smith—-Waterman algorithm, stopping the
extension when the score of the alignment drops below a specified
threshold. In some cases, nearby and consistent (in terms of order
and orientation) local alignments are “chained” together to form
larger alignments.

There are a number of techniques used for discovering seeds at
the genomic scale for the “seed-and-extend” approach to local
alignment. A first distinction between the techniques is whether
they find exact or inexact matching seeds. Exact seed discovery is
often faster and easier to implement, whereas inexact seeds offer
better sensitivity. Seed techniques also vary in whether they use
“consecutive” or “spaced” seeds [24]. Consecutive seeds consider
matches and mismatches at all positions within a sequence interval,
whereas spaced seeds only check for matches at a subset of positions
within an interval. The specific subset of positions checked is known
as the “seed pattern,” and there has been significant work on
determining optimal sets of multiple seed patterns (e.g.,
[25, 26]). It has been shown that carefully chosen spaced seed
patterns are superior to consecutive seeds in terms of sensitivity
[27]. Lastly, seeds differ in whether their lengths are fixed or
adaptive (variable). For WGA, adaptive seeds have been shown to
allow for faster local alignment at the same level of sensitivity as
fixed seeds [28].

Seed-finding techniques can often be improved by taking
advantage of DNA evolutionary models. A generalization of spaced
seeds is “subset seeds” [29], which allow subsets of bases to be
considered equivalent when determining if there is a match at a
given position. Subset seeds are particularly useful for taking into
account that transitions are often more common than transversions
in genome comparisons. Further taking into account biologically
informed substitution patterns is the “translated” seed, which is a
match at the amino acid level after translating genomic sequences in
all six possible reading frames. Translated seeds enable increased
sensitivity in comparisons of more diverged genomes. Lastly, when
aligning a genome to a set of genomes for which a multiple WGA
has already been constructed, one can take into account the substi-
tution patterns and ancestral sequences inferred from the WGA to
devise more sensitive seeds [30, 31].

The choice of seed type is the major determinant of the data
structures used for seed discovery. For example, BLAT [32] uses a
simple index of all possible k-mers for exact and translated seeds but
uses a heuristic of indexing only nonoverlapping k-mers for mem-
ory efficiency. STELLAR [33] also uses an index of k-mers but
implements an exact algorithm based on filtration for finding all
local alignments with an error rate below a given threshold. LASTZ
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(the successor to BLASTZ [34]), which uses a carefully chosen
spaced seed pattern introduced by [24], instead uses a hash table
to find both exact and inexact matches. Not to be confused with
LASTZ is the more recently developed LAST aligner [28], which
uses adaptive seeds with highly configurable patterns that are iden-
tified via a suffix array data structure. MUMmer uses a suffix tree to
rapidly find all exact consecutive seeds with some minimum length
[35]. CHAOS [36], which is a component of the LAGAN-suite of
genome alignment tools [37], uses a related structure, a “threaded
trie,” to find exact and inexact consecutive seeds.

For computational efficiency reasons, the extension step of the
seed-and-extend approach typically only allows for ungapped align-
ments or alignments with short indels. However, genome align-
ments often feature large indels that are not discovered by
extension from a seed. Thus, many local genomic alignment tools
use a “chaining” step to link nearby and consistent local alignments
discovered by the seed-and-extend strategy. For example, MUM-
mer includes a module for chaining together nearby exact matches
using a variation of the longest increasing subsequence (LIS) prob-
lem [38]. CHAOS also uses an LIS-derived algorithm for chaining
the inexact consecutive seeds it discovers. Chaining is often fol-
lowed by more sensitive alignment between chained local align-
ments. For example, MUMmer runs a variant of Smith—-Waterman
alignment in between chained matches and LASTZ recursively
searches for alignments with more sensitive seeds in between nearby
alignments discovered in previous steps.

The hierarchical approach to WGA consists of two steps. First, a
high-level homology map between the genomes is constructed.
Second, a nucleotide-level alignment is obtained by running a
genomic global alignment tool on each homologous and colinear
set of genomic segments identified by the homology map. Hierar-
chical WGA methods vary in the exact techniques used for
each step.

The idea behind the hierarchical approach is to separate the
problem of identifying rearrangements and duplications from that
of obtaining a nucleotide-level alignment. In the absence of rear-
rangements and duplications, WGA simply reduces to classical
sequence alignment although at a much larger scale. Thus, if a
WGA problem can be broken into a set of subproblems that do
not contain these large-scale events, the numerous methods that
have been developed for classical global alignment can be utilized.

The first step of the hierarchical strategy is to construct a
homology map between the genomes of interest. A homology
map is a collection of sets of genomic intervals, where each set of
intervals is required to be homologous and colinear (i.e., free of
rearrangements and duplications). Each set represents the
sequences that will ultimately form a block within a WGA.
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Homology maps generally have the property that each genomic
position belongs to at most one set and has all of its homologs
contained within that set. For WGA, homology maps are often
restricted in the evolutionary relationships that are captured, as
only a subset of homologous relationships may be of interest.
Typically, only orthologous relationships are captured, forming an
“orthology map.” When orthology maps are restricted to predict-
ing one-to-one relationships, they are more likely to be representa-
tive of toporthology.

The concept of a homology map is closely related to the con-
cepts of “conserved segments” and “syntenic blocks,” which gen-
erally refer to sets of genomic intervals containing multiple
homologous markers (e.g., genes) and featuring conserved orien-
tations and adjacencies of these markers [39, 40]. Unfortunately,
these concepts have long been poorly defined, and, as a result,
methods for syntenic block identification differ markedly in their
output [41]. In addition, methods for identifying syntenic blocks
(or closely related concepts) are often focused on identifying sets of
genomic intervals that exhibit levels of conservation of marker
content or colinearity that exceed what one would expect if markers
were randomly shuffled between genomes (e.g., [42—44]). This is
in contrast to homology maps, which are concerned with colinear
homology, regardless of biological significance. And, in practice,
homology maps are intermediate objects in the process of WGA,
whereas syntenic block predictions are often of direct interest.

Homology maps are most commonly constructed from local
alignments, such as those computed by methods discussed in the
previous section. As only a high-level correspondence is desired,
these methods are often run in faster but less sensitive configura-
tions. For example, local alignments between just the coding inter-
vals of the genomes can be computed quickly and used for the
construction of homology maps that are at least accurate with
respect to protein-coding genes.

Although numerous pairwise homology mapping methods
exist, in this chapter, we restrict our attention to methods that
scale to more than two genomes, as the problem is significantly
more challenging in the multiple genome case. Examples of multi-
ple genome homology map methods include GRIMM-Synteny
[40], its successor DRIMM-Synteny [45], Mercator [46], Enredo
[47], OSfinder [48], SuperMap [49], and Sibelia [50]. The WGA
programs M-GCAT [51], progressiveMauve [52], MUGSY [53],
and Cactus [54] are integrated hierarchical methods that contain a
homology mapping stage.

Many of these methods use graph-based data structures to find
a mapping between multiple genomes simultaneously. Kehr et al.
[55] characterized the relationships between four commonly used
types of graphs: alignment graphs [56], A-Bruijn graphs [57, 58],
Enredo graphs [47], and Cactus graphs [59]. The most
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straightforward graph is the alignment graph, which is a mixed
graph with vertices representing genomic segments, directed
edges representing adjacent segments, and undirected edges repre-
senting homologous segments. In an A-Bruijn graph, vertices
instead represent sets of homologous segments, and directed
edges represent adjacencies between pairs of segments (one from
each set represented by the connected vertices). Relative to align-
ment graphs, A-Bruijn graphs are more compact and readily reveal
the content of each genome. An Enredo graph is very similar to an
A-Bruijn graph, but has a pair of vertices instead of a single vertex
for each set of homologous segments, which captures information
regarding the directionality of each segment within a homologous
set. Lastly, cactus graphs flip the representation of adjacencies, with
vertices corresponding to sets of adjacencies and edges
corresponding to sets of homologous segments. Cactus graphs
have a natural decomposition that provides advantages for analysis
and visualization of WGAs.

Graph-based homology mapping methods generally produce
an initial WGA graph using one of the four representations we have
discussed and then refine the graph via modifications. Of the
homology mapping methods we have listed, GRIMM-Synteny,
Mercator, and MUGSY use alignment graphs. DRIMM-Synteny
and OSfinder use A-Bruijn graphs and Sibelia uses de Bruijn
graphs, of which A-Bruijn graphs are a generalization. And, as
their names suggest, Enredo and Cactus use Enredo and cactus
graphs, respectively. These methods use a variety of techniques for
graph refinement. For example, MUGSY is unique in its use of flow
network algorithms to identify breaks in colinearity. OSfinder uses a
novel probabilistic model to determine a maximum likelihood
multiple genome orthology map. And Cactus uses a simulated
annealing-style algorithm, the Cactus alignment filter, to refine an
initial cactus graph representing a homology map.

Unlike the graph-based methods that build a map between all
genomes simultaneously, the SuperMap and progressiveMauve
methods build a multiple genome map by progressively building
pairwise maps up a guide tree. The pairwise SuperMap algorithm is
essentially a symmetric version of the chaining method used by
Shuffle-LAGAN [23], which allows for rearrangements and dupli-
cations in its chains of orthologous segments. The progressive-
Mauve mapping method instead uses a “breakpoint elimination”
algorithm to find colinear segments and does not allow for duplica-
tions, thus producing output indicative of one-to-one toporthol-
ogy. This algorithm greedily removes local alignments one by one
with the goal of maximizing an objective function that takes into
account both the number of breakpoints implied by an alignment
and substitution scores.

Once a homology map has been created, any one of a number
of genomic global alignment methods can be used to align the
orthologous and colinear segments identified by the map. As for
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our discussion of homology mapping methods, we restrict our
attention to global aligners that can handle multiple genomes.
Examples of such methods are MAVID [60], MLAGAN [37],
DIALIGN [36], SeqAn:: T-Coftee [61], PECAN [47], FSA [62],
and the base-level alignment refinement (BAR) algorithm of Cactus
[54]. For colinear sequences, the genomic alignment problem is
the same as that of classical global alignment but is made more
difficult by the fact that the sequences are long (possibly millions of
nucleotides in length). Thus, global genomic aligners employ heur-
istics to speed up the process. By far, the most common heuristic
used is to first identify short local alignments, or anchors, between
the sequences, identity a chain of these anchors, and then perform
global alignment between the adjacent chained anchors. This tech-
nique is similar to the strategy for hierarchical WGA, but is simpler,
due to the fact that rearrangements and duplications do not need to
be taken into account. MLAGAN and DIALIGN use the CHAOS
local aligner, PECAN and FSA use Exonerate [63], and MAVID
and SeqAn::T-Coftee use suffix trees or arrays to find anchors.

In addition to the specific local alignment technique used to
speed up the alignment process, global genomic aligners also vary
with respect to how they combine local pairwise alignments to
build a multiple global alignment. First;, MAVID, MLAGAN,
SeqAn::T-Coffee, and Pecan all belong to the class of progressive
alignment methods, which use a phylogenetic tree to guide their
algorithms (see Chapter 7 [1]). For the alignment of non-leaf
sequences during progressive alignment, MAVID uses maximum
likelihood ancestral sequence inference, while MLAGAN, SeqAn::
T-Coftee, and Pecan use a sum-of-pairs objective function. Both
SeqAn::T-Coffee and Pecan use a “consistency” technique, which
adjusts the score between pairs of positions (or segments) based on
the consistency of triplets of pairwise alignments. The nonprogres-
sive methods, DIALIGN, FSA, and BAR, instead put together a
multiple alignment by greedily merging consistent local pairwise
alignments. While differing in their use of a tree, the FSA, Pecan,
and BAR methods take advantage of probabilistic models of
sequence alignment and attempt to maximize statistically grounded
objective functions, as opposed to the heuristic score-based func-
tions used by the other methods. BAR is unique in its ability to
predict breakpoints when aligning groups of sequences that may
contain the boundaries of rearrangement events.

Although the hierarchical approach breaks the WGA problem
into a large number of subproblems (one per colinear segment set)
that can be computed in parallel, it is still a significant computa-
tional effort to produce a WGA with this approach, particularly for
large eukaryotic genomes. Thus, a number of Web sites host pre-
computed hierarchical WGAs. Alignments produced by the combi-
nation of Pecan with either Enredo or Mercator are hosted at the
Ensembl Web site [64]. Similarly, the VISTA Web site [65] hosts
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WGAs generated by SuperMap and the LAGAN-suite of genomic
aligners. Both sites offer visualizations of the WGAs, which are
useful for looking at levels of conservation across genomes.

The local approach to WGA bypasses the high-level homology map
construction phase of the hierarchical approach and instead begins
by identifying a comprehensive set of nucleotide-level pairwise local
alignments. The second step of this approach is to combine the
pairwise local alignments into a cohesive WGA by filtering out
nonorthologous relationships and merging pairwise alignments
into multiple alignments. Because there is typically no additional
pairwise nucleotide-level alignment performed in the second step,
the local alignments generated by the first step are obtained with a
more sensitive aligner than that used by hierarchical methods for
homology map building. The two primary examples of local WGA
methods are MUMmer, a pairwise genome aligner, and MULTIZ/
TBA, a multiple genome aligner [8].

MUMmer was one of the first pairwise WGA methods to be
developed and was initially targeted at the alignment of
prokaryotic-sized genomes. The WGA ability of MUMmer is
achieved through a combination of smaller modules that is orche-
strated by the NUCmer or PROmer scripts. The first module
identifies maximum unique matches (MUMs) between a pair of
genomes with a suffix tree data structure. Nearby matches are
clustered together, and a high-scoring colinear chain of matches is
identified within each cluster. Finally, the matches within the chains
are extended with a variant of the Smith-Waterman algorithm, and
the resulting extended chains are output as a WGA. The raw WGA
output by MUMmer can, in general, include all classes of homolo-
gous relationships. However, the chains are typically filtered to
leave only those that are highest scoring or that result in a reference
position being overlapped by only a single chain. Thus, a filtered
WGA from MUMmer is usually representative of orthology.

MULTIZ/TBA, which was instead designed for large eukary-
otic genomes, starts by using LASTZ to generate sensitive local
pairwise alignments between all pairs of genomes or between a
reference genome and all others. MULTIZ is then used to identify
local alignment blocks of subsets of genomes that should be com-
bined and to merge these blocks using a banded variant of the
Smith-Waterman algorithm. TBA is the program that is used to
coordinate this entire process when all pairs of genomes are com-
pared. Thus far, it does not appear that TBA has been used at the
whole-genome scale, although MULTIZ is regularly used for
reference-based WGAs hosted by the UCSC Genome Browser
[66]. For these reference-based WGAs, the ungapped segments of
LASTZ alignments are first processed with a chaining program
(AXTCHAIN) to establish large colinear alignments between the
reference and another genome. In contrast to the output of
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chaining methods discussed in Subheading 3.3, a chain produced
by AXTCHAIN is an ordered set of pairwise local alignments rather
than a single long alignment that explicitly aligns between the short
local alignments that form the chain. AXTCHAIN chains are typi-
cally filtered by the CHAINNET program to retain only the
highest-scoring alignment at each position within the reference
genome [67]. The remaining alignments, which most likely reflect
orthologous relationships, are then combined into multiple align-
ments with MULTIZ.

Because of the computational complexity of multiple alignment,
particularly at the whole-genome scale, methods of both
approaches to WGA use heuristics and simplified models to make
WGA feasible. For example, most of the methods described in this
chapter do not distinguish between different classes of genomic
sequence (e.g., genic and intergenic) while constructing
nucleotide-level alignments. And many methods disregard small,
marginally significant, local alignments for the sake of speed. As a
result, at a local level, the results of current WGA methods often
leave room for improvement.

To remedy this situation, a number of methods have been
developed that may be used to refine WGAs. These methods take
as input either a WGA, a single WGA block, or the set of homolo-
gous and colinear sequences that make up a WGA block. They can
be generally grouped into one of three categories. The first is
composed of methods that refine the local structure of a WGA.
That is, they redefine the boundaries, or “breakpoints,” of the
homologous and colinear blocks in the WGA. A secondary cate-
gory of methods focuses on optimizing individual WGA blocks
with respect to an objective function. The last category includes
methods that perform alignment while taking into account the
structure and evolutionary dynamics of certain classes of genomic
elements.

PicolnversionMiner [68] and Cassis [69, 70] are two methods
tor refining the local structure of a WGA. PicolnversionMiner
identifies very small “inplace” inversions between two genomes
that are left undetected by an initial WGA. Such inversions are
represented by alignments that would typically not have statistically
significant scores at the genome level but can be detected via
probabilistic models of local sequence evolution. In contrast to
PicolnversionMiner, which identifies novel rearrangement events,
Cassis refines the coordinates of breakpoints. The refinements pro-
duced by Cassis are the result of identifying weak similarities
between sequences adjacent to segments of an initial orthology
map and extending the boundaries of segments based on these
similarities. The BAR algorithm of Cactus, which we have previ-
ously discussed in the context of hierarchical WGA, is also an
alignment refinement method that identifies breakpoints.
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Other methods for refining WGAs focus on improving local
colinear multiple alignments with respect to a given objective func-
tion. For example, GenAlignRefine [71] attempts to optimize
WGA blocks according to the COFFEE objective function [72]
using a genetic algorithm. The PSAR-Align method [73] instead
realigns blocks to optimize an expected accuracy objective function
[74] using pairwise alignment probabilities estimated by the PSAR
tool [75] and the sequencing annealing algorithm of the FSA
multiple alignment method [62]. Lastly, the Phylo project
[76, 77] refines WGAs by “crowd sourcing” the task of optimizing
colinear alignment blocks, according to one of a number of objec-
tive functions. Phylo casts the multiple alignment problem as a
casual game that may be played by “citizen scientists” at the pro-
ject’s website (http://phylo.cs.mcgill.ca/).

Lastly, a number of methods have been developed that can
improve the alignments of specific classes of genomic elements,
such as gene structures. The primary goal of these methods is
generally to improve prediction of genomic elements, but a more
accurate alignment often results as a side product. Among the
oldest of such methods are comparative gene finders that perform
protein-coding gene prediction and pairwise alignment simulta-
neously. These include SLAM [78] and DOUBLESCAN [79],
both of which use pair hidden Markov models [80]. A related
method, CESAR [81], was specifically designed for realignment
and targets individual coding exons rather than full gene structures.
Other methods focus on improving the alignment of noncoding
regulatory regions by modeling the evolution of sets of transcrip-
tion factor-binding sites with known motifs (e.g., MORPH [82],
EMMA [83], and MAFIA [84]). Like the comparative gene finders,
these methods also use statistical alignment techniques but with
models extended to take into the account the conservation of
binding sites instead of gene structures. SAPF [85] is also a method
aimed at alignment of noncoding regulatory regions but more
generally models sequences that are mixtures of “slow” and “fast”
evolving elements without knowledge of binding motifs. Lastly,
REAPR [86] focuses on the realignment and detection of noncod-
ing RNAs by using alignment models that take into account the
conserved secondary structures of such RNAs.

4 Evaluation of WGAs

Just as for small-scale alignment (Chapter 7, [1]), assessing the
accuracy of WGAs is hard because we rarely know the true evolu-
tionary history of a set of genome sequences. In fact, the evaluation
of WGAs is even harder than that of protein alignments. While
protein aligners can be evaluated with “gold standard” benchmark-
ing databases where the truth is established through protein
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structural information, genome aligners have no benchmarks of
real data. In addition, WGAs must be assessed not only for whether
they align truly homologous sequences but also for whether they
correctly predict orthologous (or toporthologous) relationships.
Thus, the evaluation of WGAs is related to that of gene orthology
prediction, which is discussed in Chapter 9 [5]. Despite these
challenges, a number of creative approaches have been used for
determining the accuracy of WGA methods. The approaches gen-
erally fall into four categories: (1) simulation, (2) analysis of align-
ments to annotated regions, (3) comparison with predictions from
other methods, and (4) alignment statistics.

Simulated data are appealing for evaluation as we know the
entire evolutionary history of the simulated sequences and can
thus thoroughly evaluate the accuracy of an alignment. Many of
the WGA methods described in this chapter have used simulations
for assessing their accuracies [8, 47, 52, 54, 62]. The Alignathon
[87], one of the most comprehensive evaluations of WGA methods
to date, relied heavily on simulated data sets. This study called
attention to one potential pitfall of simulation-based evaluation,
which is that the performance of a WGA method may be over-
estimated when that method was developed or trained with respect
to the same simulator used for the assessment.

Simulating the evolution of whole genomes is a challenging
task, and it is unclear if the current models used for simulation are
close to reality. Such models are highly complex, as they have to
account for many different types of evolutionary events, at both the
small and large scales. For example, they need to model the random
mutations of both single-nucleotide substitutions and megabase-
sized inversions. In addition, they also need to model natural
selection, which alters the probability of these random mutations
becoming fixed within a population. For example, an inversion that
cuts an essential gene in half might have a much lower probability of
becoming fixed than an inversion with both end points in inter-
genic regions. Despite these challenging model details, a number of
genomic evolution simulators have been developed. Currently, only
three simulators model both small-scale events (e.g., substitutions
and indels) and large-scale rearrangements and duplications
[88-90]. Other simulators focus only on nonrearranging events
[8, 91-98] and are thus good for evaluating colinear genomic
aligners but not homology mapping methods.

A second class of approaches to evaluating WGAS leverages our
knowledge of various classes of elements within the genome. For
example, with our understanding that most coding regions are
conserved across closely related genomes, the fraction of exons in
a genome “covered” by an alignment is an indirect measure of the
sensitivity of a WGA [37, 49, 60, 99]. Specificity can also be
roughly assessed with coding regions, either by counting the num-
ber of coding bases that are aligned to noncoding bases in other
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genomes [36, 100] or by checking that alignments in coding
regions exhibit periodicities in their substitution patterns [99]. A
related approach that instead assesses the accuracy of eukaryotic
orthology maps is to check if exons from the same gene are mapped
in the same order and orientation to other genomes [47]. For the
subset of protein-coding and noncoding RNA genes that have
curated “gold standard” alignments, the accuracy of a WGA with
respect to those genes may be assessed [101]. However, the fact
that genic regions are often highly conserved is also a disadvantage
of using them for evaluation; the most conserved regions are the
easiest to align, and some aligners use exon annotation information
or translated matches. Because of these issues, repeat sequences,
which are believed to evolve more neutrally, have been used for
alignment evaluation [47, 99]. For example, in [99], sensitivity was
assessed by alignments of ancestral repetitive elements, and speci-
ficity was inferred from the number of alignments to lineage-
specific repeat elements (in this study, primate-specific Alu repeats).

Another common evaluation technique is to compare whole-
genome aligners against other related methods. For example, a
WGA produced by one method can be used as the “truth” with
which to evaluate the sensitivity and specificity of other WGAs
[53]. This technique is useful for judging the similarity of different
WGAs but, unfortunately, does not provide much information
about accuracy. Another technique is to compare with the results
from gene orthology prediction programs [48, 49]. The advantage
of this approach is that it provides a more independent test of
accuracy, since gene orthology prediction programs generally use
different algorithms and information sources to infer orthology.
The disadvantages of this approach are that it only provides a gene-
level measure of accuracy and does not evaluate alignments of
noncoding regions. In addition, since WGA and gene orthology
prediction share similar goals, we might expect that future methods
will blend techniques from both and thus that this evaluation
approach will decrease in usefulness.

A last class of evaluation techniques involves the computation
of statistics for WGAs. These statistics can be subdivided into
simple descriptive statistics and measures computed via statistical
or sampling techniques. One of the most straightforward descrip-
tive statistics of a WGA 1is the “coverage” or the fraction of the
genomes included in an alignment or orthology map block [45,47,
49,53, 87]. Generally, the higher the coverage, the more sensitive
the WGA is believed to be, although one can easily create high-
coverage WGAs with poor sensitivity. As a check of large-scale
specificity in mammalian WGAs, the authors of [47] checked the
fraction of the X chromosome that was covered by alignments to
autosomal chromosomes in other genomes (the assumption being
that translocations into and out of the X chromosome are rare in
mammals). Some more detailed nucleotide-level statistics of WGAs
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include the total number of “core” positions [53], which are
gap-free alignment columns containing all genomes, and the aver-
age level of sequence identity in aligned columns [61].

More sophisticated statistics related to WGA accuracy are com-
puted through the use of statistical or sampling techniques. Just as
they are used for BLAST, Karlin and Altschul statistics [ 102 ] may
be used to assess the significance of local pairwise alignments
between genomes. StatSigMA extends these statistics to multiple
alignments [ 103], and StatSigMA-w further extends this technique
to detect dubiously aligned regions in WGAs of multiple genomes
[104]. Whereas a given local pairwise alignment may be highly
significant, the flanks of that alignment may be spurious, and a
p-value may be computed assessing the possible “over-alignment”
of a flank [105]. Within a multiple alignment, a number of techni-
ques have been developed for estimating the accuracy of the align-
ment of pairs of residues or entire columns, including simply
computing an alignment of reversed sequences [106], computing
alignments with bootstrapped guide trees [107], sampling subop-
timal multiple alignments [75], and evaluating consistency within a
library of alternative alignments [108].

5 Future Challenges

Despite the substantial progress made in WGA methodology devel-
opment, there are a number of challenges that remain unsolved.
First, we are in need of WGA methods that can scale to hundreds or
thousands of genomes. Along with ever-improving sequencing
technology, we are accumulating whole-genome sequences at an
increasing rate. Projects such as the Genome 10K Community of
Scientists [ 109], which aims to collect and sequence the genomes
01'10,000 vertebrate species, will further push the WGA problem to
new scales. While most WGA algorithms have been made efficient
for long genomes, very few are practical for large numbers of
genomes. Encouragingly, we are beginning to see methods capable
of scaling to thousands of genomes for the simpler task of “core-
genome alignment” of highly similar microbial-sized genomes
[110]. However, methods scaling to thousands of genomes for
the full WGA task or for mammalian-sized genomes do not cur-
rently exist. In addition to algorithmic advances, we will also be in
need of novel approaches for storing and representing WGAs of
thousands of genomes.

Second, advances are needed in the parameterization of WGA
methods. Current methods are littered with large numbers of
parameters that are often heuristic in nature and not easily deter-
mined. In some cases, the default parameters for a WGA method
may be markedly suboptimal [111]. One solution to this problem is
to adopt probabilistic models, which offer principled approaches to
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parameter estimation, such as maximum likelihood. In fact, proba-
bilistic models of sequence evolution have already been adopted for
the alignment of colinear genomic segments and have been shown
to offer improved accuracy [47, 62]. However, we have yet to see a
method that integrates probabilistic models of both small- and
large-scale changes that is capable of constructing an entire WGA,
although the recently introduced “split-alignment” pairwise WGA
method is a promising step in this direction [112]. In addition,
most WGA alignments use models or scoring schemes that assume
homogenous rates of evolution across the genome. This assump-
tion is obviously violated in real data, and new methods will need to
be developed that take this into account. Simulated noncoding
genomic alignments that represent a heterogeneous mix of evolu-
tionary rates have been developed and should be useful for the
development of new WGA methodology [97].

Lastly, more attention must be paid to the fact that a WGA is
typically just a single estimate of the evolutionary history of a set of
genomes and portions of this estimate may be highly uncertain.
Encouragingly, methods for colinear genomic alignment have
brought light to this issue at the nucleotide level [62, 113]. How-
ever, the issue of uncertainty at the large-scale orthology map level
has not been sufficiently studied, perhaps due to the lack of proba-
bilistic models for that level of the WGA problem. In addition,
most efforts to address uncertainty in alignments simply assign
levels of confidence to the components of a single alignment. It
may be more useful to be presented with a set of near-optimal
alignments so that alternative evolutionary histories can be exam-
ined by downstream analyses [114]. The determination and repre-
sentation of uncertainty for all scales of a WGA will likely remain a
challenging problem as the number of genomes included in align-
ments increases.

6 Exercises

1. Download the whole-genome aligner MUMmer (http: //mum
mer.sourceforge.net) and FASTA-formatted genome sequences for
the species Helicobacter pylovi J99 and Helicobacter pylori B38 from
GenBank (http: //www.ncbi.nlm.nih.gov/genbank/, accessions
NC000921 and NC012973, respectively). Run the NUCmer or
PROmer programs on the two genome sequences. Visualize the
resulting alignment with the mummerplot program. How many
colinear blocks are there in the alignment? How many inversion
events are implied by the alignment?

2. Visit the UCSC Genome Browser (http://genome.ucsc.
edu) and browse the human genome version GRCh38/hg38.
Search for and view the CFTR gene, mutations in which cause the
disease cystic fibrosis. Turn on the Net tracks for alignments to
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Fig. 3 The evolutionary scenario to be considered for Exercise 3. Each bullet-like shape corresponds to a
genomic segment, with the direction of the bullet indicating the orientation of the segment

genomes of non-primate placental mammals by clicking on the
“Placental Chain/Net” link (in the “Comparative Genomics” sec-
tion) and choosing the appropriate configuration. Examine the
Mouse Net track in the visualization and note the color of the
mouse net alignments. Using the “Chromosome Color Key”
(located in between the browser visualization and the track config-
uration section), identify the chromosome on which the mouse
ortholog of CFTR is located. Looking at the net alignments for
all of the placental mammals, does it appear that CFTR has been
conserved across this clade?

3. Consider the evolutionary scenario giving rise to the gen-
omes of three species shown in Fig. 3. For each of the relations
listed below, give the pairs of genomic segments with that relation.

(a) Orthology
(b) Paralogy
(¢) Toporthology
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Inferring Orthology and Paralogy

Adrian M. Altenhoff, Natasha M. Glover, and Christophe Dessimoz

Abstract

The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplica-
tion, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function
annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy.
We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches,
which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differ-
ences among the various orthology inference methods and databases and examine the difficult issue of
verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous
genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.

Key words Orthology, Paralogy, Tree reconciliation, Orthology benchmarking

1 Introduction

The study of genetic material almost always starts with identifying,
within or across species, homologous regions—regions of common
ancestry. As we have seen in previous chapters, this can be done at
the level of genome segments [ 1], genes [2], or even down to single
residues, in sequence alignments [3]. Here, we focus on genes as
evolutionary and functional units. The central premise of this chap-
ter is that it is useful to distinguish between two classes of homolo-
gous genes: orthologs, which are pairs of genes that started diverging
via evolutionary speciation, and paralogs, which are pairs of genes
that started diverging via gene duplication [4] (Fig. 1, Box 1).
Originally, the terms and their definition were proposed by Walter
M. Fitch in the context of species phylogeny inference, i.c., the
reconstruction of the tree of life. He stated “Phylogenies require
orthologous, not paralogous, genes” [4]. Indeed, since orthologs
arise by speciation, any set of genes in which every pair is ortholo-
gous has by definition the same evolutionary history as the
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Fig. 1 (a) Simple evolutionary scenario of a gene family with two speciation
events (S; and S,) and one duplication event (star). The type of events completely
and unambiguously define all pairs of orthologs and paralogs: The frog gene is
orthologous to all other genes (they coalesce at S;). The red and blue genes are
orthologs between themselves (they coalesce at S,), but paralogs between each
other (they coalesce at star). (b) The corresponding orthology graph. The genes
are represented here by vertices and orthology relationships by edges. The frog
gene forms one-to-many orthology with both the human and dog genes, because
it is orthologous to more than one sequence in each of these organisms. In such
cases, the bi-directional best-hit approach only recovers one of the relations
(the highest scoring one). Note that in contrary to BBH, the nonsymmetric BeTs
approach—simply taking the best genome-wide hit for each gene regardless of
reciprocity—would in the situation of a lost blue human gene infer an incorrect
orthologous relation between the blue dog and red human gene

underlying species. These days, however, the most frequent moti-
vation for the orthology/paralogy distinction is to study and pre-
dict gene function: it is generally believed that orthologs—Dbecause
they were the same gene in the last common ancestor of the species
involved—are likely to have similar biological function. By contrast,
paralogs—because they result from duplicated genes that have been
retained, at least partly, over the course of evolution—are believed
to often differ in function. Consequently, orthologs are of interest
to infer function computationally, while paralogs are commonly
used to study function innovation.

Box 1: Terminology

Homology is a relation between a pair of genes that share a
common ancestor. All pairs of genes in the below figure are
homologous to each other.

5
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Sy Sy
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(continued)
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Box 1: (continued)

Orthology is a relation defined over a pair of homologous
genes, where the two genes have emerged through a specia-
tion event [4]. Example pairs of orthologs are (%1, 1) or (%2,
z1). Orthologs can be further subclassified into one-to-one,
one-to-many, many-to-one, and many-to-many orthologs.
The qualifiers one and many indicate for each of the two
involved genes whether they underwent an additional dupli-
cation after the speciation between the two genomes. Hence,
the gene pair (%, 1) is an example of a one-to-one ortholo-
gous pair, whereas (x,, 21 ) is a many-to-one ortholog relation.

Paralogy is a relation defined over a pair of homologous
genes that have emerged through a gene duplication, e.g., (%,
%) or (%1, 92).

In-Paralogyis a relation defined over a triplet. It involves a
pair of genes and a speciation event of reference. A gene pair is
an in-paralog if they are paralogs and duplicated after the
speciation event of reference [5]. The pair (%, ) are
in-paralogs with respect to the speciation event §;.

Out-Paralogyis also a relation defined over a pair of genes
and a speciation event of reference. This pair is out-paralogs if
the duplication event through which they are related to each
other predates the speciation event of reference. Hence, the
pair (x1, 7») are out-paralogs with respect to the speciation
event S,.

Co-orthology is a relation defined over three genes, where
two of them are in-paralogs with respect to the speciation
event associated to the third gene. The two in-paralogous
genes are said to be co-ortholggous to the third (out-group)
gene. Thus, x; and y, are co-orthologs with respect to z;.

Homoeology is a specific type of homologous relation in a
polyploid species, which thus contain multiple “sub-gen-
omes.” This relation describes pairs of genes that originated
by speciation and were brought back together in the same
genome by allopolyploidization (hybridization) [6]. Thus, in
the absence of rearrangement, homoeologs can be thought of
as orthologs between sub-genomes.

In this chapter, we first review the main methods used to infer
orthology and paralogy, including recent techniques for scaling up
algorithms to big data. We then discuss the problem of benchmark-
ing orthology inference. In the last main section, we focus on
various applications of orthology and paralogy.
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2 Inferring Orthology

2.1 Graph-Based
Methods

2.1.1 Graph Construction
Phase: Orthology Inference

Most orthology inference methods can be classified into two major
types: graph-based methods and tree-based methods [7]. Methods
of'the first type rely on graphs with genes (or proteins) as nodes and
evolutionary relationships as edges. They infer whether these edges
represent orthology or paralogy and build clusters of genes on the
basis of the graph. Methods of the second type are based on gene/
species tree reconciliation, which is the process of annotating all
splits of a given gene tree as duplication or speciation, given the
phylogeny of the relevant species. From the reconciled tree, it is
trivial to derive all pairs of orthologous and paralogous genes. All
pairs of genes which coalesce in a speciation node are orthologs and
paralogs if they split at a duplication node. In this section, we
present the concepts and methods associated with the two types
and discuss the advantages, limitations, and challenges associated
with them.

Graph-based approaches were originally motivated by the availabil-
ity of complete genome sequences and the need for efficient meth-
ods to detect orthology. They typically run in two phases: a graph
construction phase, in which pairs of orthologous genes are
inferred (implicitly or explicitly) and connected by edges, and a
clustering phase, in which groups of orthologous genes are con-
structed based on the structure of the graph.

In its most basic form, the graph construction phase identifies
orthologous genes by considering pairs of genomes at a time. The
main idea is that between any given two genomes, the orthologs
tend to be the homologs that diverged least. Why? Because assum-
ing that speciation and duplication are the only types of branching
events, the orthologs branched by definition at the latest possible
time point—the speciation between the two genomes in question.
Therefore, using sequence similarity score as surrogate measure of
closeness, the basic approach identifies the corresponding ortholog
of each gene through its genome-wide best hit (BeT)—the highest
scoring match in the other genome [8]. To make the inference
symmetric (as orthology is a symmetric relation), it is usually
required that BeTs be reciprocal, i.e., that orthology be inferred
for a pair of genes 4; and g, if and only if g, is the BeT of 4; and g; is
the BeT of g, [9]. This symmetric variant, referred to as bi-direc-
tional best hit (BBH), has also the merit of being more robust
against a possible gene loss in one of the two lineages (Fig. 1).
Inferring orthology from BBH is computationally efficient,
because each genome pair can be processed independently and
high-scoring alignments can be computed efficiently using dynamic
programming [ 10] or heuristics such as BLAST [11]. Overall, the
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time complexity scales quadratically in terms of the total number of
genes (Box 2). Furthermore, the implementation of this kind of
algorithm is simple.

Box 2: Computational Considerations for Scaling to Many
Genomes

Time complexity—the amount of time for an algorithm to
run as a function of the input—is an important consideration
when dealing with big data. This is relevant for inferring
orthologs and paralogs due to the massive amounts of
sequence data. Thus, it is necessary to consider the time
complexity of the inference algorithms, especially when scal-
ing for large and multiple genomes. In computer science, this
is commonly denoted in terms of “Big O” notation, which
expresses the scaling behavior of the algorithm, up to a con-
stant factor. Below are listed the common time complexities
for aspects of some orthology inference algorithms, in order
of most efficient to least efficient.

Linear time

e O(n): Optimal algorithm to reconcile rooted, fully
resolved gene tree and species tree [ 12 ]; Hieranoid algo-
rithm, which recursively merges genomes along the spe-
cies tree to avoid all-against-all computation [13].

Quadratic time

e O(#?): The all-against-all stage central to many orthol-
ogy algorithms scales quadratically, where # is total
number of genes.

Cubic time

e O(n*): The COG database’s graph-based clustering
merge triplets of homologs which share a common face
until no more can be added.

NP-complete

e “Nondeterministic polynomial time,” a large class of
algorithms for which no solution in polynomial time is
known, (e.g. scaling exponentially with respect to the
input size), and thus are impractical. NP-complete pro-
blems are typically solved approximately, using heuris-
tics. For instance, maximum likelihood gene tree
estimation is NP-complete [14].

However, orthology inference by BBH has several limitations,
which motivated the development of various improvements
(Table 1).
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Some genes can have more than one orthologous counterpart in a
given genome. This happens whenever a gene undergoes duplica-
tion after the speciation of the two genomes in question. Since
BBH only picks the best hit, it only captures part of the ortholo-
gous relations (Fig. 1). The existence of multiple orthologous
counterparts is often referred to as one-to-many or many-to-many
orthology, depending whether duplication took place in one or
both lineages. To designate the copies resulting from such duplica-
tions occurring after a speciation of reference, Remm et al. coined
the term in-paralogs and introduced a method called InParanoid
that improves upon BBH by potentially identifying all pairs of
many-to-many orthologs [5]. In brief, their algorithm identifies
all paralogs within a species that are evolutionarily closer (more
similar) to each other than to the BBH gene in the other genome.
This results in two sets of in-paralogs—one for each species—where
all pairwise combinations between the two sets are orthologous
relations. Alternatively, it is possible to identify many-to-many
orthology by relaxing the notion of “best hit” to “group of best
hits.” This can be implemented using a score tolerance threshold or
a confidence interval around the BBH [23, 34].

Instead of using sequence similarity as a surrogate for evolutionary
distance to identify the closest gene(s), Wall et al. proposed to use
direct and proper maximum likelihood estimates of the evolution-
ary distance between pairs of sequences [31]. This estimate of
evolutionary distance is based on the number and type of amino
acid substitutions between the two sequences. Indeed, previous
studies have shown that the highest scoring alignment is often
not the nearest phylogenetic neighbor [35]. Building upon this
work, Roth et al. showed how statistical uncertainties in the dis-
tance estimation can be incorporated into the inference
strategy [36].

As discussed above, one of the advantages of BBH over BeT is that
by virtue of the bi-directional requirement, the former is more
robust to gene losses in one of the two lineages. But if gene losses
occurred along both lineages, it can happen that a pair of genes
mutually closest to one another is in fact paralogs, simply because
both their corresponding orthologs were lost—a situation referred
to as “differential gene losses.” Dessimoz et al. [37] presented a
way to detect some of these cases by looking for a third species in
which the corresponding orthologs have not been lost and thus can
act as witnesses of non-orthology.

The graph construction phase yields orthologous relationships
between pairs of genes. But this is often not sufficient. Concep-
tually, information obtained from multiple genes or organisms is
often more powerful than that obtained from pairwise comparisons



156

Adrian M. Altenhoff et al.

only. In particular, as the use of a third genome as potential witness
of non-orthology suggests, a more global view can allow identifica-
tion and correction of inconsistent/spurious predictions. Practi-
cally, it is more intuitive and convenient to work with groups of
genes than with a list of gene pairs. Therefore, it is often desirable to
cluster orthologous genes into groups.

Tatusov et al. [8] introduced the concept of clusters of ortho-
logous groups (COGs). COGs are computed by using triangles
(triplets of genes connected to each other) as seeds and then
merging triangles which share a common face, until no more
triangle can be added. This clustering can be computed relatively
efficient in time O(#°), where # is the number of genomes analyzed
[38]. The stated objective of this clustering procedure is to group
genes that have diverged from a single gene in the last common
ancestor of the species represented [8]. Practically, they have been
found to be useful by many, most notably to categorize prokaryotic
genes into broad functional categories.

A different clustering approach was adopted by OrthoMCL,
another well-established graph-based orthology inference method
[29]. There, groups of orthologs are identified by Markov Cluster-
ing [39]. In essence, the method consists in simulating a random
walk on the orthology graph, where the edges are weighted accord-
ing to similarity scores. The Markov Clustering process gives rise to
probabilities that two genes belong to the same cluster. The graph
is then partitioned according to these probabilities and members of
cach partition form an orthologous group. These groups contain
orthologs and “recent” paralogous genes, where the recency of the
paralogs can be somewhat controlled through the parameters of the
clustering process.

A third grouping strategy consists in building groups by iden-
tifying fully connected subgraphs (called “cliques” in graph theory)
[23]. This approach has the merits of straightforward interpreta-
tion (groups of genes which are all orthologous to one another)
and high confidence in terms of orthology within the resulting
groups, due to the high consistency required to form a fully
connected subgraph. But it has the drawbacks of being hard to
compute (clique finding belongs to the NP-complete class of pro-
blems, for which no polynomial time algorithm is known; see Box
2) and being excessively conservative for many applications.

As emerges from these various strategies, there is more than
one way orthologous groups can be defined, each with different
implications in terms of group properties and applications [40]. In
fact, there is an inherent trade-oft in partitioning the orthology
graph into clusters of genes, because orthology is a non-transitive
relation: if genes A and B are orthologs and genes B and C are
orthologs, genes A and C are not necessarily orthologs, e.g., con-
sider in Fig. 1 the blue human gene, the frog gene, and the red dog
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gene. Therefore, if groups are defined as sets of genes in which all
pairs of genes are orthologs (as with OMA groups), it is not
possible to partition A, B, and C into groups capturing all ortho-
logous relations while leaving out all paralogous relations.

More inclusive grouping strategies necessarily lead to orthologs
and paralogs within the same group. Nevertheless, it can be possi-
ble to control the nature of the paralogs included. For instance, as
seen above, OrthoMCL attempts at including only “recent” para-
logs in its groups. This idea can be specified more precisely by
defining groups with respect to a particular speciation event of
interest, e.g., the base of the mammals. Such bierarchical groups
are expected to include orthologs and in-paralogs with respect to
the reference speciation—in our example all copies that have des-
cended from a single common ancestor gene in the last mammalian
common ancestor. Conceptually, hierarchical orthologous groups
can be defined as groups of genes that have descended from a single
common ancestral gene within a taxonomic range of interest.

Several resources provide hierarchical clustering of orthologous
groups. EggNOG [15] and OrthoDB [25], for example, both
implement this concept by applying a COG-like clustering method
for various taxonomic ranges. Another example, Hieranoid, pro-
duces hierarchical groups by using a guide tree to perform pairwise
orthology inferences at each node from the leaves to the root—
inferring ancestral genomes at each node in the tree [13, 18]. Simi-
larly, OMA GETHOGs is an approach based on an orthology graph
of pairwise orthologous gene relations, where hierarchical ortho-
logous groups are formed starting with the most specific taxonomy
and incrementally merges them toward the root [21, 22]. Another
method, COCO-CL, identifies hierarchical orthologous groups
recursively, using correlations of similarity scores among homolo-
gous genes [41] and, interestingly, without relying on a species
tree. By capturing part of the gene tree structure in the group
hierarchies, these methods try in some way to bridge the gap
between graph-based and tree-based orthology inference
approaches. We now turn our attention to the latter.

At their core, tree-based methods infer orthologs on the basis of
gene family trees whose internal nodes are labeled as speciation or
duplication nodes. Indeed, once all nodes of the gene tree have
been inferred as a speciation or duplication event, it is trivial to
establish whether a pair of genes is orthologous or paralogous,
based on the type of the branching where they coalesce. Such
labeling is traditionally obtained by reconciling gene and species
trees. In most cases, gene and species trees have different topolo-
gies, due to evolutionary events acting specifically on genes such as
duplications, losses, lateral transfers, or incomplete lineage sorting
[42]. Goodman et al. [43] pioneered research to resolve these
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Fig. 2 Schematic example of the gene/species tree reconciliation. The gene tree
and species tree are not compatible. Reconciliation methods resolve the
incongruence between the two by inferring speciation, duplication, and losses
events on the gene tree. The reconciled tree indicates the most parsimonious
history of this gene, constrained to the species tree. The simple representation
(bottom right) suggests that the human and frog genes are orthologs and that
they are both paralogous to the dog gene

incongruences. They showed how the incongruences can be
explained in terms of speciation, duplication, and loss events on
the gene tree (Fig. 2) and provided an algorithm to infer such
events.

Most tree reconciliation methods rely on a parsimony criterion:
the most likely reconciliation is the one which requires the least
number of gene duplications and losses. This makes it possible to
compute reconciliation efficiently and is tenable as long as duplica-
tion and loss events are rare compared to speciation events. In their
seminal article, Goodman et al. [43] had already devised their
reconciliation algorithm under a parsimony strategy. In the
subsequent years, the problem was formalized in terms of a map
function between the gene and species trees [44 ], whose computa-
tional cost was conjectured [45], and later proved [12, 46] to
coincide with the number of gene duplication and losses. These
results yielded highly efficient algorithms, either in terms of asymp-
totic time complexity [12] or in terms of runtimes on typical
problem sizes [47]. With these near-optimal solutions, one might
think that the tree reconciliation problem has long been solved. As
we shall see in the rest of this section, however, the original formu-
lation of the tree reconciliation problem has several limitations in
practice, which have stimulated the development of various refine-
ments to overcome them (Table 2).
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2.2.1 Unresolved
Species Tree

2.2.2 Rooting

A first problem ignored by most early reconciliation algorithms lies
in the uncertainty often associated with the species tree, which
these methods assume as correct and heavily rely upon.

One way of dealing with the uncertainties is to treat unresolved
parts of the species tree as multifurcating nodes (also known as soft
polytomies). By doing so, the reconciliation algorithm is not forced
to choose for a specific type of evolutionary event in ambiguous
regions of the tree. This approach is, for instance, implemented in
TreeBeST [52] and used in the Ensembl Compara project [53].

Alternatively, Heijden et al. [57] demonstrated that it is often
possible to infer speciation and duplication events on a gene tree
without knowledge of the species tree. Their approach, which they
call species overlap, identifies for a given split the species represented
in the two subtrees induced by the split. If at least one species has
genes in both subtrees, a duplication event is inferred; else a specia-
tion event is inferred. In fact, this approach is a special case of soft
polytomies where all internal nodes have been collapsed. Thus, the
only information needed for this approach is a rooted gene tree.
Since then, this approach has been adopted in other projects, such
as PhylomeDB [59].

The classical reconciliation formulation requires both gene and
species trees to be rooted. But most models of sequence evolution
are time reversible and thus do not allow to infer the rooting of the
reconstructed gene tree. One sensible solution is to root a gene tree
so that it minimizes the number of duplication events [62]. Thus,
this method uses the parsimony principle for both rooting and
reconciliation. For cases of multiple optimal rootings, ties can be
broken by selecting the tree that minimizes the tree height [63] or
by picking the rooting which minimizes the number of gene
losses [61].

Another approach is to place the root at the “center of the
tree”—also known as “midpoint rooting” [58]. The idea of this
method goes back to Farris [64] and is motivated by the concept of
a molecular clock. But for most gene families, assuming a constant
rate of evolution is inappropriate [65, 66], and thus this approach is
not used widely. A newly introduced refinement based on minimiz-
ing average deviations among children nodes holds promise of
being more robust [67] but still relies on a molecular clock
assumption.

For the species tree, the most common and reliable way of
rooting trees is by identifying an outgroup species. PhylomeDB
uses genes from outgroup species to root gene trees [59]. One
main potential problem with this approach is that in many situa-
tions, it can be difficult to identify a suitable outgroup. For exam-
ple, in analysis covering all kingdoms of life, an outgroup species
may not be available, or the relevant genes might have been lost
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[68]. A suitable out-group needs to be close enough to allow for
reliable sequence alignment, yet it must have speciated clearly
before any other species separated. Furthermore, ancient duplica-
tions can cause outgroup species to carry im-group genes. These
difficulties make this approach more challenging for automated,
large-scale analysis [69].

Another assumption made in the original tree reconciliation prob-
lem is the (topological) correctness of the gene tree. But it has been
shown that this assumption is commonly violated, often due to
finite sequence lengths, taxon sampling [70, 71], or gene evolution
model violations [72]. On the other hand, techniques of expressing
uncertainties in gene tree reconstruction via support measures, €.g.,
bootstrap values, have become well established. Storm and Sonn-
hammer [58] as well as Zmasek and Eddy [63] independently
suggested to extend the bootstrap procedure to reconciliation,
thereby reducing the dependency of the reconciliation procedure
on any one gene tree while providing a measure of support of the
inferred speciation/duplication events. The downsides of using the
bootstrap are the high computational costs and interpretation dif-
ficulties associated with it [73].

Similarly to how unresolved species tree can be handled, unre-
solved parts of the gene tree can also be collapsed into multifurcat-
ing nodes. For instance, HOGENOM [55] and Softparsmap [6]]
collapse branches with low bootstrap support values.

A third way of tackling this problem consists in simultaneously
solving both the gene tree reconstruction and reconciliation pro-
blems [74]. They use the parsimony criterion of minimizing the
number of duplication events to improve on the gene tree itself.
This is achieved by rearranging the local gene tree topology of
regions with low bootstrap support such that the number of dupli-
cations and losses is further reduced.

All the approaches mentioned so far try to minimize the number of
gene duplication events. This is generally justified by a parsimony
argument, which assumes that gene duplications and losses are rare
events. But what if this assumption is frequently violated? Little is
known about duplication and loss rates in general [75], but there is
strong evidence for historical periods with high gene duplication
occurrence rates [76] or gene families specifically prone to massive
duplications (e.g., olfactory receptor, opsins, serine/threonine
kinases, etc.)

Motivated by this reasoning, Arvestad et al. introduced the idea
of a probabilistic model for tree reconciliation [49]. They used a
Bayesian approach to estimate the posterior probabilities of a rec-
onciliation between a given gene and species tree using Markov
chain Monte Carlo (MCMC) techniques. Arvestad et al. [49]
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2.3 Graph-Based
vs. Tree-Based: Which
Is Better?

modeled gene duplication and loss events through a birth-death
process [77]. In the subsequent years, they refined their method to
also model sequence evolution and substitution rates in a unified
framework called gene sequence evolution model with iid rates (GSR)
[49, 50].

Perhaps the biggest problem with the probabilistic approach is
that it is not clear how well the assumptions of their model (the
birth-death process with fixed parameters) relate to the true process
of gene duplication and gene loss. Doyon et al. [78] compared the
maximum parsimony reconciliation trees from 1278 fungi gene
families to the probabilistically reconciled trees using gene birth/
death rates fitted from the data. They found that in all but two
cases, the maximum parsimony scenario corresponds to the most
probable one. This remarkably high level of consistency indicates
that in terms of the accuracy of the “best” reconciliation, there is
little to gain from using a likelihood approach over the parsimony
criterion of minimizing the number of duplication events. But how
this result generalizes to other datasets has yet to be investigated.

Given the two fundamentally different paradigms in orthology
inference that we reviewed in this section, one can wonder which
is better. Conceptually, tree reconciliation methods have several
advantages. In terms of inference, by considering all sequences
from all species at the same time, it can also be expected that they
can extract more information from the sequences. This in turn
should translate into higher statistical power. In terms of their
output, reconciled gene trees provide the user more information
than pairs or groups of orthologs. For example, the trees display the
order of duplication and speciation events, as well as evolutionary
distances between these events. In practice, however, these meth-
ods have the disadvantage of having much higher computational
complexity than their graph-based counterparts. Furthermore, the
two approaches are in practice often not that strictly separated.
Tree-based methods often start with a graph-based clustering step
to identify families of homologous genes. Conversely, several hier-
archical grouping algorithms also rely on species trees in their
inference.

Thus, it is difficult to make general statements about the rela-
tive performance of the two classes of inference methods. One
solution that can leverage the unique abilities of both tree-based
and graph-based methods is to combine several independent
orthology inference methods into one. We discuss this technique
in the next section.
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3 Meta-methods

In recent years a new class of orthology inference tools has emerged
which attempts to make the most out of multiple orthology predic-
tion algorithms—umeta-methods. These are approaches which com-
bine several individual and distinct methods in order to produce
more robust orthology predictions. These meta-methods are able
to take advantage of the standardized formats of output which has
been a goal of the orthology community [79], as well as the many
new and well-established methods out there.

Generally, meta-methods assign a confidence score to a given
predicted orthologous relation. In its most basic form, more weight
is given to orthologs predicted by the most methods. Some exam-
ples include methods which simply take the intersection of several
methods, such as GET_HOMOLOGUES [80], COMPARE [81],
HCOP [82], and DIOPT [83]. These methods maintain a high
level of precision, but since they are based on intersections, they
necessarily have a lower recall.

Additionally, post-processing techniques can be used to build
upon the base of orthologs found by several methods—thus assign-
ing more sequences as orthologs and improving performance. For
example, MOSAIC (Multiple Orthologous Sequence Analysis and
Integration by Cluster optimization) [84] uses an iterative graph-
based optimization approach that works on ortholog sets predicted
by several independent methods. MOSAIC captures orthologs
which are missed by some individual methods, producing a 1.6-
fold increase in the number of orthologs detected. Another exam-
ple is the MARIO software, which looks for the intersection of
several different orthology methods as seed groups and then pro-
gressively adds unassigned proteins to the groups based on HMM
profiles [85]. MetaPhOrs’ approach integrates phylogenetic and
homology information derived from different databases
[86]. They demonstrate that the number of independent sources
from which an orthology prediction is made, as well as the level of
consistency across predictions, can be used as confidence scores.

So far the previously mentioned meta-methods combine inde-
pendent orthology prediction algorithms and give a higher score
based on the more algorithms which predict a given orthologous
relation. However, another emerging approach is to use machine
learning techniques to recognize patterns among several different
orthology inference methods. With this, one can predict previously
unknown high-confidence orthologs. WORMHOLE is a tool
which uses the information from 17 different orthology prediction
methods to train support vector machine classifiers for predicting
least diverged orthologs [87]. WORMHOLE was able to strongly
re-predict least diverged orthologs in the reference set and also
predict previously unclassified orthologous genes.
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The type of meta-approach and its associated stringency
depends on what the user is going after. For example, if the goal
is to get very-high-confidence groups, methods which only com-
bine for the intersection without trying to add more orthologs may
be preferable. Studies requiring both high precision and recall may
be better suited to use the meta-methods which use post-
processing or machine learning to predict orthologs. And as with
all methods, it is important to understand which clades the method
has been benchmarked in and which orthology tools have been
combined. For example, if several methods have the same bias, one
will just propagate the bias and end up with a false sense of security
because the methods are not independent.

4 Scaling to Many Genomes

In terms of orthology inference, the abundance of genomes now
available has resulted in an emphasis on driving down computa-
tional processing time via efficient algorithms. When inferring
orthology for many genomes, the bottleneck is generally the all-
against-all computations—aligning the proteins in every genome
against the proteins in every other genome. This is the first step of
nearly all graph-based methods. The all-against-all computation has
an O(»?) runtime, meaning it scales quadratically with the number
of genomes analyzed (Box 2).

So far, two main techniques for scaling orthology prediction to
many genomes have emerged. The first approach is by making the
all-against-all comparisons faster. Because comparisons are inde-
pendent of each other, the most obvious way of doing this is by
taking advantage of a high-performance computing cluster, as this
is an embarrassingly parallel computing problem. Many methods
have implemented this, such as Hieranoid [13], PorthoMCL [88],
or OMA [22]. Another way to save time on the all-against-all
comparisons is by using very fast algorithms for the homology
search. For example, preliminary results of SonicParanoid showed
160-750x speedup of orthology inference compared to InPara-
noid [89]. Innovations in alignment algorithms with methods such
as DIAMOND [90] or MMSeq2 [91] have the potential to greatly
reduce the time to do the all-against-all comparisons.

A second approach to efficiently scale up orthology inference to
many genomes is by simply avoiding doing the entire all-against-all
comparisons. This makes sense, since a significant amount of time is
spent comparing unrelated gene pairs. For example, it is possible to
avoid aligning many unrelated pairs by exploiting the transitive
property of homology. Wittwer et al. [92] did this by first building
clusters of homologous sequences with one representative
sequence per cluster and subsequently performing the all-against-
all within each cluster. Hieranoid avoids unnecessary all-against-all
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comparisons by using a species tree as a guide, reducing the number
of comparisons to N — 1 for N genomes, scaling linearly rather than
quadratically [18]. Another way to avoid all-by-all comparison is by
using a mapping strategy, whereby new proteomes are mapped
onto precomputed orthologous groups. This strategy has been
successfully implemented with the eggNOG database—each
sequence in a new proteome is mapped to a precomputed ortholo-
gous cluster based on hidden Markov models. Then, orthology
relations and function are transferred to the new sequence from
the best matching sequence in the database [93].

5 Benchmarking Orthology

5.1 Benchmarking
Approaches

5.1.1  Functional
Conservation

Assessing the quality of orthology predictions is important but
difficult. The main challenge is that the precise evolutionary history
of entire genomes is largely unknown and thus, predictions can
only be validated indirectly, using surrogate measures. To be infor-
mative, such measures need to strongly correlate with orthology/
paralogy. At the same time, they should be independent from the
methods used in the orthology inference process. Concretely, this
means that the orthology inference is not based on the surrogate
measure and the surrogate measure is not derived from orthology/

paralogy.

Several ways of benchmarking orthology inference have been devel-
oped in the past years. In the next sections, we go over the main
approaches, bringing attention to the advantages and limitations
to each.

The first surrogate measures proposed revolved around conserva-
tion of function [94]. This was motivated by the common belief
that orthologs tend to have conserved function, while paralogs
tend to have different functions. Indeed, orthologs tend to be
more conserved than paralogs in terms of GO annotation similarity
[95]. Thus, “for a given evolutionary distance, more accurate
orthology inference is likely to be correlated with more functionally
similar gene pairs.” Hulsen et al. [94 ] assessed the quality of ortho-
log predictions in terms of conservation of co-expression levels,
domain annotation, and protein-protein interaction partners.
Additionally, Altenhoff et al. [96] used similarity of experimentally
validated GO annotations as well as Enzyme Commission
(EC) numbers as a functional benchmark. Functional benchmarks
have an advantage in that many researchers are interested in orthol-
ogy because they want to find functionally conserved genes, thus
making functional tests important for assessing different inference
methods. The main limitation of these measures is that it is not so
clear how much they correlate with orthology/paralogy. Indeed, it
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5.1.2 Gene
Neighborhood
Conservation

5.1.3 Species Tree
Discordance Test

5.1.4 Gold Standard
Gene Tree Test

has been argued that the difference in function conservation trends
between orthologs and paralogs might be much smaller than com-
monly assumed and indeed many examples are known of orthologs
that have dramatically different functions [97].

The fraction of orthologs that have neighboring genes being ortho-
logs themselves is an indicator of consistency and therefore to some
extent also of quality of orthology predictions [94]. Although
synteny has been used as part of the orthology inference for several
algorithms, to date it has not been used as part of large-scale
benchmarking efforts. One possible problem is that gene neighbor-
hood can be conserved among paralogs, such as those resulting
from whole-genome duplications. Furthermore, some methods use
gene neighborhood conservation to help in their inference process,
which can bias the assessment done on such measures (principle of
independence stated above).

The quality of ortholog predictions can also be assessed based on
phylogeny. By definition, the tree relating a set of genes all ortho-
logous to one another only contains speciation splits and has the
same topology as the underlying species. We introduced a bench-
marking protocol that quantifies how well the predictions from
various orthology inference methods agree with undisputed species
tree topologies [96, 98]. Thus, the species tree discordance test
judges the accuracy of ortholog predictions based on the correct-
ness of the species tree which can be constructed from them.
The advantage of this measure is that by virtue of directly ensuing
from the definition of orthology, it correlates strongly with it and
thus satisfies the first principle. However, the second principle,
independence from the inference process, is not satisfied with
methods relying on the species tree—typically all reconciliation
methods but also most graph-based methods producing hierarchi-
cal groups. In such cases, interpretation of the results must be done
carefully.

High-quality reference gene trees can also be used to assess
orthology inferences. For this, one compares the pairs of ortho-
logs from a given method to pairs of orthologs derived from these
expertly curated gene trees [40, 99]. One drawback of this bench-
mark is that it is limited by the ability to curate the phylogeny—if
the evolutionary history of the gene family is ambiguous, the
resulting reference tree will unavoidably have mistakes. Another
limitation is the small size of most benchmarks of this type. This
casts doubts on their generalizability and makes them prone to
overfitting.



5.1.5 Subtree
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5.1.6 Latent Class
Analysis

5.1.7 Simulated
Genomes

5.2 Orthology
Benchmarking Service
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For inference methods based on reconciliation between gene and
species trees, Vilella et al. [53] proposed a different phylogeny-
based assessment scheme. For any duplication node of the labeled
gene tree, a consistency score is computed, which captures the
balance of the species found in the two subtrees. Unbalanced
nodes correspond to an evolutionary scenario involving extensive
gene losses and therefore, under the principle of parsimony, are less
likely to be correct. Given that studies to date tend to support the
adequacy of the parsimony criterion in the context of gene family
dynamics (Subheading 2.2.4), it can be expected that this metric
correlates highly with correct orthology/paralogy assignments.
However, since virtually all tree-based methods themselves incor-
porate this very criterion in their objective function (i.e., minimiz-
ing the number of gene duplications and losses), the principle of
independence is violated, and thus the adequacy of this measure is
questionable.

Chen et al. [100] proposed a purely statistical benchmark based on
latent class analysis (LCA). Given the absence of a definitive answer
on whether two given genes are orthologs, the authors argue that
by looking at the agreement and disagreement of predictions made
by several inference methods on a common dataset, one can esti-
mate the reliability of individual predictors. More precisely, LCA is
a statistical technique that computes maximum likelihood estimates
of sensitivity and specificity rates for each orthology inference
methods, given their predictions and given an error model. This is
attractive, because it does not depend on any surrogate measure.
However, the results depend on the error model assumed. Thus, we
are of the opinion that LCA merely shifts the problem of assessing
orthology to the problem of assessing an error model of various
orthology inference methods.

Finally, simulated data can be used in benchmarking. By this, the
precise evolutionary history of a genome can be validated, in terms
of gene duplication, insertion, deletion, and lateral gene transfer
[101]. Knowing for certain all aspects of the simulated genomes
gives an advantage over assessments based on empirical data, where
the true evolutionary history is unknown. On the other hand, how
well the simulated data reflect “real” data is debatable.

The orthology benchmarking service is a web-based platform for
which users can upload their ortholog predictions and run them
through a variety of benchmarks. The user must use quest for
orthologs (QFO) reference proteome set, which is a set of 66 gen-
omes that covers a diverse set of species across all domains [79], to
infer pairwise or groups of orthologs. Several phylogenetic and
function-based benchmarks are automatically run on the uploaded
data, and then summary statistics of the results of each benchmark
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5.3 Conclusions on
Benchmarking

are reported. The user can compare their method’s performance
with that of other well-known orthology inference algorithms and
choose to make theirs public as well. For each benchmark, a
precision-recall curve is reported, allowing for ease of comparison
and evaluation of individual inference techniques. Because of the
range of benchmarking tests and publicly available methods for
comparison, the benchmarking service is useful for both users,
who can check which methods work well for their particular prob-
lem and for method developers. The orthology benchmarking
service can be accessed at http: //orthology.benchmarkservice.org.

Overall, it becomes apparent that there is no “magic bullet” strat-
egy for orthology benchmarking, as each approach discussed here
has its limitations (though some limitations are more serious than
others). Nevertheless, comparative studies based on these various
benchmarking measures have reported surprisingly consistent find-
ings [40, 94,96, 98, 100]: these assessments generally observe that
there is a trade-off between accuracy and coverage and most com-
mon databases are situated on a Pareto frontier. The various assess-
ments concur that the “best” orthology approach is highly
dependent on the various possible applications of orthology.

6 Applications

As we have seen so far, there is a large diversity in the methods for
orthology inference. The main reason is that, although the meth-
ods discussed here all infer orthology as part of their process, many
of them have been developed for different reasons and have ditfer-
ent ultimate goals. Unfortunately, this is often not mentioned
explicitly and tends to be a source of confusion. In this section,
we review some of these ultimate goals and discuss which methods
and representation of orthology are better suited to address them
and why.

As mentioned in the introduction, most interest for orthology
is in the context of function prediction and is largely based on the
belief that orthologs tend to have conserved function. A conserva-
tive approach consists in propagating function between one-to-one
orthologs, i.¢., pairs of orthologous genes that have not undergone
gene duplication since they diverged from one another. Several
orthology databases directly provide one-to-one orthology predic-
tions. But even with those that do not, it might still be possible to
obtain such predictions, for instance, by selecting hierarchical
groups containing at most one sequence in each species or by
extracting from reconciled trees’ subtrees with no duplication. A
more sophisticated approach consists in propagating gene function
annotations across genomes on the basis of the full reconciled gene
tree. Thomas et al. [102], for instance, proposed a way to assign
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gene function to uncharacterized proteins using a gene tree and a
hidden Markov model (HMM) among gene families. Engelhardt
et al.. [103] developed a Bayesian model of function change along
reconciled gene trees and showed that their approach significantly
improves upon several methods based on pairwise gene function
propagation. Ensembl Compara [53] and Panther [102] are two
major databases providing reconciled gene trees.

Since Darwin, one traditional question in biology has always
been how species are related to each other. As we recall in the
introduction of this chapter, Fitch’s original motivation for defin-
ing orthology was phylogenetic inference. Indeed, the gene tree
reconstructed from a set of genes which are all orthologous to each
other should by definition be congruent to the species tree. OMA
Groups (OMA) have this characteristic and, crucially, are con-
structed without help of a species tree.

Yet another application associated with orthology are general
alignments between genomes, e.g., protein-protein interaction
(PPI) network alignments or whole-genome alignments. Finding
an optimal PPI network alignment between two genomes on the
basis of the network topology alone is a computationally hard
problem (i.e., it is an instance of the subgraph isomorphism prob-
lem which is NP-complete [104]). Orthology is often used as
heuristic to constrain the mapping of the corresponding genes
between the two networks and thus to reduce the problem com-
plexity of aligning networks [ 105]. For whole-genome alignments,
people most often use homologous regions and use orthologs as
anchor points [106]. These types of application typically rely on
ortholog predictions between pairs of genomes, as provided, e.g.,
by InParanoid [5] or OMA [23].

7 Conclusions and Outlook

The distinction between orthologs and paralogs is at the heart of
many comparative genomic studies and applications. The original
and generally accepted definition of orthology is based on the
evolutionary history of pairs of genes. By contrast, there is a con-
siderable diversity in how groups of orthologs are defined. These
differences largely stem from the fact that orthology is a
non-transitive relation and therefore, dividing genes into ortholo-
gous groups will either miss or wrongly include orthologous rela-
tions. This makes it important and worthwhile to identify the type
of orthologous group best suited for a given application.
Regarding inference methods, while most approaches can be
ordered into two fundamental paradigms—graph-based and tree-
based—the difference between the two is shrinking, with graph-
based methods increasingly striving to capture more of the evolu-
tionary history. On the other hand, the rapid pace at which new
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genomes are sequenced limits the applicability of tree-based meth-
ods, computationally more demanding.

Benchmarking this large variety of methods remains a hard
problem—from a conceptual point as described above but also
because of very practical challenges such as heterogenecous data
formats, genome versions, or gene identifiers. This has been recog-
nized by the research community and has led to the development of
the QFO consortium benchmarking service [96].

Looking forward, we see potential in extending the current
model of gene evolution, which is limited to speciation, duplica-
tion, and loss events. Indeed, nature is often much more compli-
cated. For instance, lateral gene transfer (LGT) is believed to be a
major mode of evolution in prokaryotes. While there has been
several attempts at extending tree reconciliation algorithms to
detecting LGT [107, 108], the problem is largely unaddressed in
typical orthology resources [109]. Another relevant evolutionary
process omitted by most methods is whole-genome duplications
(WGD). Even though WGD events act jointly on all gene families,
with few exceptions [110, 111], most methods consider each gene
family independently.

Overall, the orthology/paralogy dichotomy has proved to be
useful but also inherently limited. Reducing the whole evolutionary
history of homologous genes into binary pairwise relations is
bound to be a simplification—and at times an oversimplification.
The shift toward hierarchical orthologous groups is thus a
promising step toward capturing more features of the evolutionary
history of genes. Yet further development will still be needed, as we
are nowhere close to grasp the formidable complexity of gene
evolution across the full diversity of life.

8 Exercises

Assume the following evolutionary scenario

x
*x

A B CDE F

where duplications are depicted as star and all other splits are
speciations.

Problem #1: Draw the corresponding orthology graph, where the
vertices correspond to the observed genes and the edges indi-
cate orthologous relations between them.

Problem #2: Apply the following two clustering methods on your
orthology graph. First, reconstruct all the maximal fully
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connected subgraphs (cliques) that can be found. Second,
reconstruct the COGs. COGs are built by merging triangles
of orthologs whenever they share a common face. Remember
that in both methods, a gene can only belong to a one cluster.
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Abstract

Most genomes are populated by hundreds of thousands of sequences originated from mobile elements. On
the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On
the other hand, they are very interesting biological subjects involved in many cellular processes. Here we
present an overview of transposable elements biodiversity, and we discuss different approaches to transpo-
sable elements detection and analyses.
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1 Introduction

Most eukaryotic genomes contain large numbers of repetitive
sequences. This phenomenon was described by Waring and Britten
a half century ago using reassociation studies [1, 2]. It turned out
that most of these repetitive sequences originated in transposable
elements (TEs) [3], though the repetitive fraction of a genome
varies significantly between different organisms, from 12% in Cae-
novhabditis elegans [4] to 50% in mammals [ 3], and more than 80%
in some plants [5]. With such large contributions to genome
sequences, it is not surprising that TEs have a significant influence
on the genome organization and evolution. Although much prog-
ress has been achieved in understanding the role TEs play in a host
genome, we are still far from the comprehensive picture of the
delicate evolutionary interplay between a host genome and the
invaders. They also pose various challenges to the genomic com-
munity, including aspects related to their detection and classifica-
tion, genome assembly and annotation, genome comparisons, and
mapping of genomic variants. They also pose various challenges to
the genomic community, including aspects related to their detec-
tion and classification, genome assembly and annotation, genome
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comparisons, and mapping of genomic variants. Here we present an
overview of TE diversity and discuss major techniques used in their
analyses.

2 Discovery of Mobile Elements

Transposable elements were discovered by Barbara McClintock
during experiments conducted in 1944 on maize. Since they
appeared to influence phenotypic traits, she named them
controlling elements. However, her discovery was met with less
than enthusiastic reception by the genetic community. Her presen-
tation at the 1951 Cold Spring Harbor Symposium was not under-
stood and at least not very well received [6]. She had no better luck
with her follow-up publications [7-9] and after several years of
frustration decided not to publish on the subject for the next two
decades. Not for the first time in the history of science, an unap-
preciated discovery was brought back to life after some other
discovery has been made. In this case it was the discovery of
insertion sequences (1S) in bacteria by Szybalski group in the early
1970s [10]. In the original paper they wrote: “Genetic elements
were found in higher organisms which appear to be readily trans-
posed from one to another site in the genome. Such elements,
identifiable by their controlling functions, were described by
McClintock in maize. It is possible that they might be somehow
analogous to the presently studied IS insertions” [10]. The impor-
tance of McClintock’s original work was eventually appreciated by
the genetic community with numerous awards, including 14 hon-
orary doctoral degrees and a Nobel Prize in 1983 “for her discovery
of mobile genetic elements” (http://nobelprize.org/nobel_
prizes/medicine /laureates /1983 /).

Coincidently, at the same time as Szybalski “rediscovered” TEs,
Susumu Ohno popularized the term junk DNA that influenced
genomic field for decades [11], although the term itself was used
already before [12, 13].' Ohno referred to the so-called noncoding
sequences or, to be more precise, to any piece of DNA that do not
code for a protein, which included all genomic pieces originated in
transposons. The unfavorable picture of transposable and trans-
posed elements started to change in early 1990s when some
researchers noticed evolutionary value of these eclements
[14, 15]. With the wheel of fortune turning full circle and advances
of genome sciences, TE research is again focused on the role of
mobile elements played in the evolution of gene regulation
[16-23].

! The historical background of the “junk DNA” term was recently discussed by Dan Graur in his excellent blog
http://judgestarling.tumblr.com/post/64504735261 /the-origin-of-the-term-junk-dna-a-historical
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3 Transposons Classification

3.1 Insertion
Sequences and Other
Bacterial Transposons

The bacterial genome is composed of a core genomic backbone
decorated with a variety of multifarious functional elements. These
include mobile genetic elements (MGEs) such as bacteriophages,
COnJugative transposons, integrons, unit transposons, composite trans-
posons, and insertion sequences (1S). Here we elaborate upon the last
class of these elements as they are most widely found and
described [24].

The ISs were identified during studies of model genetic systems
by virtue of their capacity to generate mutations as a result of their
translocation [10]. In-depth studies in antibiotic resistance and
transmissible plasmids revealed an important role for these mobile
elements in formation of resistance genes and promoting gene
capture. In particular, it was observed that several different ele-
ments were often clustered in “islands” within plasmid genomes
and served to promote plasmid integration and excision.

Although these elements sometimes generate beneficial muta-
tions, they may be considered genomic parasites as ISs code only for
the enzyme required for their own transposition [24]. While an IS
element occupies a chromosomal location, it is inherited along with
its host’s native genes, so its fitness is closely tied to that of its host.
Consequently, ISs causing deleterious mutations that disrupt a
genomic mode or function are quickly eliminated from the popula-
tion. However, intergenically placed ISs have a higher chance to be
fixed in the population as they are likely neutral regarding popula-
tion’s fitness [25].

ISs are generally compact (Fig. 1). They usually carry no other
functions than those involved in their mobility. These elements
contain recombinationally active sequences which define the
boundary of the element, together with Tpase, an enzyme, which
processes these ends and whose gene usually encompasses the
entire length of the element [26]. Majority of ISs exhibit short
terminal inverted-repeat sequences (IR) of length 1040 bp. Sev-
eral notable exceptions do exist, for example, the IS91, IS110, and
1S200/605 families.

The IRs contain two functional domains [27]. One is involved
in Tpase binding; the other cleaves and transfers strand-specific
reactions resulting in transposition. IS promoters are often posi-
tioned partially within the IR sequence upstream of the Tpase gene.
Binding sites for host-specific proteins are often located within
proximity to the terminal IRs and play a role in modulating trans-
position activity or Tpase expression [28]. A general pattern for the
functional organization of Tpases has emerged from the limited
numbers analyzed. The N-terminal region contains sequence-
specific DNA binding activities of the proteins while the catalytic
domain is often localized toward the C-terminal end [28].



180 Wojciech Makatowski et al.

3.2 Eukaryotic
Transposable
Elements

3.2.1 Class I: Mobile
Elements

E crver T 1

Fig. 1 Schematic representation of insertion sequences (IS). dr direct repeats, IR
inverted repeats, ORF open reading frame

Another common feature of ISs is duplication of a target site
that results in short direct repeats (DRs) flanking the IS [29]. The
length of the direct repeat varies from 2 to 14 base pairs and is a
hallmark of a given element. Homologous recombination between
two IS elements can result in each having two different DRs [30].

ISs have been classified on the basis of (1) similarities in genetic
organization (arrangement of open reading frames); (2) marked
identities or similarities in their Tpases (common domains or
motifs); (3) similar features of their ends (terminal IRs); and
(4) fate of the nucleotide sequence of their target sites (generation
of a direct target duplication of determined length). Based on the
above rules, ISs are currently classified in 30 families (Table 1) [31].

The first TE classification system was proposed by Finnegan in
1989 [32] and distinguished two classes of TEs characterized by
their transposition intermediate: RNA (class I or retrotransposons)
or DNA (class IT or DNA transposons). The transposition mecha-
nism of class I is commonly called “copy and paste” and that of class
I1, “cut and paste.” In 2007 Wicker et al. [33] proposed hierarchi-
cal classification based on TEs structural characteristics and mode of
replication (see Table 2 and Fig. 2). Below we present a brief
overview of eukaryotic mobile elements that in general follows
this classification.

As mentioned above, class I TEs transpose through an RNA inter-
mediary. The RNA intermediate is transcribed from genomic DNA
and then reverse-transcribed into DNA by a TE-encoded reverse
transcriptase (RT), followed by reintegration into a genome. Each
replication cycle produces one new copy, and as a result, class I
elements are the major contributors to the repetitive fraction in
large genomes. Retrotransposons are divided into five orders: LTR
retrotransposons, DIRS-like elements, Penelope-like elements
(PLEs), LINEs (long snterspersed elements), and SINEs (short
interspersed elements). This scheme is based on the mechanistic
features, organization, and reverse transcriptase phylogeny of these
retroelements. Accidentally, the retrotranscriptase coded by an
autonomous TE can reverse-transcribe another RNA present in
the cell, e.g., mRNA, and produce a retrocopy of it, which in
most cases results in a pseudogene.

The LTR retrotransposons are characterized by the presence of
long terminal repeats (LTRs) ranging from several hundred to
several thousand base pairs. Both exogenous retroviruses and
LTR retrotransposons contain a gag gene that encodes a viral
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Prokaryotic transposable elements as presented in the IS Finder database [31]
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Family Typical size range in bp Direct repeat size in bp IRs? Number of ORFs
1S1 740-4600 0-10 Y lor2
1S110 1200-1550 0 Y 1

1S1182 1330-1950 0-60 Y 1

1S1380 1550-2000 4-5 Y 1

181595 700-7900 8 Y 1

1S1634 1500-2000 5-6 Y 1
1S200/1S605 600-2000 0 Y/N lor2
1S21 1750-2600 4-8 Y 2

1S256 1200-1500 8-9 Y 1

1S3 1150-1750 5 Y 2

1S30 1000-1700 2-3 Y 1

1S4 1150-5400 8-13 Y 1 or more
1S481 950-1300 4-15 Y 1

1S5 800-1500 2-9 Y lor2
1S6 700-900 8 Y 1

1S607 1700-2500 0 N 2

1S630 1000-1400 2 Y lor2
1S66 1350-3000 8-9 Y 1 or more
1S701 1400-1550 4 Y 1

1S91 1500-2000 0 N 1

1S982 1000 3-9 Y 1

ISAsl 1200-1500 8-10 Y 1
ISAz013 1250-2200 0—4 Y 1

ISH3 1225-1500 4-5 Y 1

ISH6 1450 8 Y ISL
ISKra4 1400-2900 0-9 Y 1 or more
ISL3 1300-2300 8 Y ISKra4
ISLre2 1500-2000 9 Y 1

Tn3 Over 3000 0 Y More than 1
ISNCY 1300-2400 0-12 Y/N 1 or2

*Presence (Y) or absence (N) of terminal inverted repeats
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Classification of eukaryotic transposable elements as proposed by Wicker et al. [33]

Class Order Superfamily Phylogenetic distribution
Class I (retrotransposons) LTR Copia Plants, metazoans, fungi
Gypsy Plants, metazoans, fungi
Bel-Pao Metazoans
Retrovirus Metazoans
ERV Metazoans
DIRS DIRS Plants, metazoans, fungi
Ngaro Metazoans, fungi
VIPER Trypanosomes
PLE Penelope Plants, metazoans, fungi
LINE R2 Metazoans
RTE Metazoans
Jockey Metazoans
L1 Plants, metazoans, fungi
SINE tRNA Plants, metazoans, fungi
7SL Plants, metazoans, fungi
58 Metazoans
SVA? Primates
Retrogenes® Plants, metazoans, fungi
Class IT (DNA transposons) TIR Tcl-Mariner Plants, metazoans, fungi
Subclass 1 hAT Plants, metazoans, fungi
Mutator Plants, metazoans, fungi
Merlin Metazoans
Transib Metazoans, fungi
P Plants, metazoans
PiggyBac Metazoans
PIE-harbinger Plants, metazoans, fungi
CACTA Plants, metazoans, fungi
Crypton Crypton Fungi
Class IT (DNA transposons) Helitron Helitron Plants, metazoans, fungi
Subclass 2 Maverick Maverick Metazoans, fungi

Please note that SVAs and retrogenes are not included in that classification
"Not included in the original Wicker classification

particle coat and a pol gene that encodes a reverse transcriptase,
ribonuclease H, and an integrase, which provide the enzymatic
machinery for reverse transcription and integration into the host
genome. Reverse transcription occurs within the viral or viral-like
particle (GAQG) in the cytoplasm, and it is a multistep process
[34]. Unlike LTR retrotransposons, exogenous retroviruses con-
tain an env gene, which encodes an envelope that facilitates their
migration to other cells. Some LTR retrotransposons may contain
remnants of an eny gene, but their insertion capabilities are limited
to the originating genome [35]. This would rather suggest that
they originated in exogenous retroviruses by losing the env gene.
However, there is evidence that suggests the contrary, given that
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Fig. 2 Structures of eukaryotic mobile elements. See text for detailed discussion

LTR retrotransposons can acquire the ezy gene and become infec-
tious entities [ 36]. Presently, most of the LTR sequences (85%) in
the human genome are found only as isolated L'TRs, with the
internal sequence being lost most likely due to homologous
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recombination between flanking L'TRs [37]. Interestingly, LTR
retrotransposons target their reinsertion to specific genomic sites,
often around genes, with putative important functional implica-
tions for a host gene [35]. Lander et al. estimated that 450,000
LTR copies make up about 8% of our genome [38]. LTR retro-
transposons inhabiting large genomes, such as maize, wheat, or
barley, can contain thousands of families. However, despite the
diversity, very few families comprise most of the repetitive fraction
in these large genomes. Notable examples are Angela (wheat) [39],
BARE1L (barley) [40], Opie (maize) [41], and Retrosor6
(sorghum) [42].

The DIRS order clusters structurally diverged group of trans-
posons that possess a tyrosine recombinase (YR) gene instead of an
integrase (INT) and do not form target site duplications (TSDs).
Their termini resemble either split direct repeats (SDR) or inverted
repeats. Such features indicate a different integration mechanism
than that of other class I mobile elements. DIRS were discovered in
the slime mold (Dictyostelium discoidenm) genome in the early
1980s [43], and they are present in all major phylogenetic lineages
including vertebrates [44]. It has been showed that they are also
common in hydrothermal vent organisms [45].

Another order, termed Penelope-like elements (PLE), has wide,
though patchy distribution from amoebae and fungi to vertebrates
with copy number up to thousands per genome [46]. Interestingly,
no PLE sequences have been found in mammalian genomes, and
apparently they were lost from the genome of C. elegans
[47]. Although PLEs with an intact ORF have been found in
several genomes, including Ciona and Danio, the only transcrip-
tionally active representative, Pencelope, is known from Drosophila
varilis. It causes the hybrid dysgenesis syndrome characterized by
simultaneous mobilization of several unrelated TE families in the
progeny of dysgenic crosses. It seems that Penelope invaded
D. virilis quite recently, and its invasive potential was demonstrated
in D. melanogaster [46]. PLEs harbor a single ORF that codes for a
protein containing reverse transcriptase (RT) and endonuclease
(EN) domains. The PLE RT domain more closely resembles telo-
merase than the RT from LTRs or LINEs. The EN domain is
related to GIY-YIG intron-encoded endonucleases. Some PLE
members also have LTR-like sequences, which can be in a direct
or an inverse orientation, and have a functional intron [46].

LINEs [48,49] do not have LTRs; however, they have a poly-A
tail at the 3’ end and are flanked by the TSDs. They comprise about
21% of the human genome and among them L1 with about
850,000 copies is the most abundant and best described LINE
family. L1 is the only LINE retroposon still active in the human
genome [50]. In the human genome, there are two other LINE-
like repeats, L2 and L3, distantly related to L1. A contrasting
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situation has been noticed in the malaria mosquito Anopheles gam-
bine, where around 100 divergent LINE families compose only 3%
of'its genome [51]. LINE:s in plants, e.g., Cin4 in maize and Tall
in Arabidopsis thaliana, seem rare as compared with LTR retro-
transposons. A full copy of mammalian L1 is about 6 kb long and
contains a Polll promoter and two ORFs. The ORF1 codes for a
non-sequence-specific RNA binding protein that contains zinc fin-
ger, leucine zipper, and coiled-coil motifs. The ORF1p functions as
chaperone for the L1 mRNA [52, 53]. The second ORF encodes
an endonuclease, which makes a single-stranded nick in the geno-
mic DNA, and a reverse transcriptase, which uses the nicked DNA
to prime reverse transcription of LINE RNA from the 3’ end.
Reverse transcription is often unfinished, leaving behind fragmen-
ted copies of LINE elements; hence most of the L1-derived repeats
are short, with an average size of 900 bp. LINEs are part of the CR1
clade, which has members in various metazoan species, including
fruit fly, mosquito, zebrafish, pufferfish, turtle, and chicken
[54]. Because they encode their own retrotransposition machinery,
LINE elements are regarded as autonomous retrotransposons.
SINEs [48, 49] evolved from RNA genes, such as 7SL and
tRNA genes. By definition, they are short, up to 1000 base pair
long. They do not encode their own retrotranscription machinery
and are considered as nonautonomous elements and in most cases
are mobilized by the L1 machinery [55]. The outstanding member
of this class from the human genome is the Alu repeat, which
contains a cleavage site for the A/ul restriction enzyme that gave
its name [56]. With over a million copies in the human genome,
Alu is probably the most successful transposon in the history of life.
Primate-specific Alu and its rodent relative B1 have limited phylo-
genetic distribution suggesting their relatively recent origins. The
mammalian-wide interspersed repeats (MIRs), by contrast, spread
before eutherian radiation, and their copies can be found in difter-
ent mammalian groups including marsupials and monotremes
[57]. SVA elements are unique primate elements due to their
composite structure. They are named after their main components:
SINE, VNTR (a variable number of tandem repeats), and Alu
[58]. Usually, they contain the hallmarks of the retroposition, i.e.,
they are flanked by TSDs and terminated by a poly(A) tail. It seems
that SVA elements are nonautonomous retrotransposons mobilized
by L1 machinery, and they are thought to be transcribed by RNA
polymerase II. SVAs are transpositionally active and are responsible
for some human diseases [59]. They originated less than 25 million
years ago, and they form the youngest retrotransposon family with
about 3000 copies in the human genome [58].
Retro(pseudo)genes are a special group of retroposed
sequences, which are products of reverse transcription of a spliced
(mature) mRNA. Hence, their characteristic features are an absence
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of promoter sequence and introns, the presence of flanking direct
repeats, and a 3’-end polyadenosine tract [60]. Processed pseudo-
genes, as sometimes retropseudogenes are called, have been gener-
ated in vitro at a low frequency in the human HelLa cells via mRNA
from a reporter gene [60]. The source of the reverse transcription
machinery in humans and other vertebrates seems to be active L1
elements [61]. However, not all retroposed messages have to end
up as pseudogenes. About 20% of mammalian protein-encoding
genes lack introns in their ORFs [62]. It is conceivable that many
genes lacking introns arose by retroposition. Some genes are known
to be retroposed more often than others. For instance, in the
human genome there are over 2000 retropseudogenes of ribosomal
proteins [63]. A genome-wide study showed that the human
genome harbors about 20,000 pseudogenes, 72% of which most
likely arose through retroposition [64]. Interestingly, the vast
majority (92%) of them are quite recent transpositions that
occurred after primate /rodent divergence [ 64 ]. Some of the retro-
posed genes may undergo quite complicated evolutionary paths.
An example could be the RNF13B retrogene, which replaced its
own parental gene in the mammalian genomes. This retrocopy was
duplicated in primates, and the evolution of this primate-specific
copy was accompanied by the exaptation of two TEs, Alu and L1,
and intron gain via changing a part of coding sequence into an
intron leading to the origin of a functional, primate-specific retro-
gene with two splicing variants [65].

Class I elements move by a conservative cut-and-paste mechanism;
the excision of the donor element is followed by its reinsertion
elsewhere in the genome. DNA transposons are abundant in bacte-
ria, where they are called insertion sequences (see Subheading 3.1),
but are present in all phyla. Wicker et al. distinguished two sub-
classes of DNA transposons based on the number of DNA strands
that are cut during transposition [33].

Classical “cut-and-paste” transposons belong to the subclass I,
and they are classified as the TIR order. They are characterized by
terminal inverted repeats (TIR) and encode a transposase that binds
near the inverted repeats and mediates mobility. This process is not
usually a replicative one, unless the gap caused by excision is
repaired using the sister chromatid. When inserted at a new loca-
tion, the transposon is flanked by small gaps, which, when filled by
host enzymes, cause duplication of the sequence at the target site.
The length of these TSDs is characteristic for particular transpo-
sons. Nine superfamilies belong to the TIR order, including 7cI-
Mariner, Merlin, Mutator, and PiggyBac. The second order Cryp-
ton consists of a single superfamily of the same name. Originally
thought to be limited to fungi [66], now it is clear that they have a
wide distribution, including animals and heterokonts [67]. A
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heterogeneous, small, nonautonomous group of elements MITEs
also belong to the TIR order [68], which in some genomes ampli-
fied to thousands of copies, €.g., Stowawayin the rice genome [69],
Tourist in most bamboo genomes [70], or Gallubop in the chicken
genome [71].

Subclass 1T includes two orders of TEs that, just as those from
subclass I, do not form RNA intermediates. However, unlike “clas-
sical” DNA transposons, they replicate without double-strand
cleavage. Helitrons replicate using a rolling-circle mechanism, and
their insertion does not result in the target site duplication
[72]. They encode tyrosine recombinase along with some other
proteins. Helitrons were first described in plants, but they are also
present in other phyla, including fungi and mammals
[73, 74]. Mavericks are large transposons that have been found in
different eukaryotic lineages excluding plants [75]. They encode
various numbers of proteins that include DNA polymerase B and an
integrase. Kapitonov and Jurka suggested that their life cycle
includes a single-strand excision, followed by extrachromosomal
replication and reintegration to a new location [76].

4 Identification of Transposable Elements

With the ever-growing number of sequenced genomes from differ-
ent branches of the tree of life, there are increasing TE research
opportunities. There are several reasons why one would like to
analyze TEs and their “offsprings” left in a genome. First of all,
they are very interesting biological subjects to study genome struc-
ture, gene regulation, or genome evolution. In some cases, they
also make genome assembly and annotation quite challenging,
especially with the current NGS technology that generates reads
shorter than TEs. Nevertheless, TEs should be and are worthy to
study. However, it is not a simple task and requires different
approaches depending on the level of analysis. We will walk through
these different levels starting with raw genome sequences without
any annotation and discuss different methods and software used for
TE analyses. In principle, we can imagine two scenarios: in the first
one, genomic or transcriptome sequences are coming from a spe-
cies for which there is already some information about the transpo-
son repertoire, for instance, a related genome has been previously
characterized or TEs have been studied before. In the second
scenario, we have to deal with a completely unknown genome or
a genome for which little information exists with regard to TEs. In
the former case, one can apply a range of techniques used in
comparative genomics or try to search specific libraries of transpo-
sons using the “homology search” approach. In the latter, which is
basically an approach to identify TEs de novo, first we need to find
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4.1 De Novo
Approaches to Finding
Repetitive Elements

any repeats in a genome and then attempt characterization and
classification of newly identified repetitive sequences. In this
approach, we will find any repeats, not necessarily transposons.
There are many algorithms, and even more software, that can be
applied in both approaches.

There are several steps involved in the de novo characterization of
transposons. First, we need to find all the repeats in a genome, then
build a consensus of each family of related sequences, and finally
classify detected sequences. For the first step, three groups of
algorithms exist: the k-mer approach, sequence self-comparison,
and periodicity analysis.

In the k-mer approach, sequences are scanned for overrepre-
sentation of strings of certain length. The idea is that repeats that
belong to the same family are compositionally similar and share
some oligomers. If the repeats occur many times in a genome, then
those oligomers should be overrepresented. However, since repeats
and transposons in particular are not perfect copies of a certain
sequence, some mismatches must be allowed when oligo frequen-
cies are calculated. The challenge is to determine optimal size of an
oligo (%k-mer) and number of mismatches allowed. Most likely,
these parameters should be different for different types of transpo-
sons, i.e., low versus high copy number, old versus young transpo-
sons, and those from different classes and families. Several programs
have been developed based on the k-mer idea using a suffix tree data
structure including REPuter [77, 78], Vmatch (Kurtz, unpub-
lished; http: //www.vmatch.de/), and Repeat-match
[79, 80]. Another approach is to use fixed length %-mers as seeds
and extend those seeds to define repeat’s family as it was imple-
mented in ReAS [81], RepeatScout [82], and Tallymer
[83]. Another interesting algorithm can be found in the FORRe-
peats software [84 ], which uses factor oracle data structure [85]. It
starts with detection of exact oligomers in the analyzed sequences,
followed by finding approximate repeats and their alignment.

The second group of programs developed for de novo detec-
tion of repeated sequences is using self-comparison approach.
Repeat Pattern Toolkit [86], RECON [87], PILER [88, 89], and
BLASTER [90] belong to this group. The idea is to use one of the
fast sequence similarity tools, e.g., BLAST [91], followed by clus-
tering search results. The programs differ in the search engine for
the initial step, though most are using some of the BLAST algo-
rithms, the clustering method, and heuristics of merging initial hits
into a prototype element. For instance, RECON [87], which was
developed for the repeat finding in unassembled sequence reads,
starts with an all-to-all comparison using WU-BLAST engine.
Then, single-linkage clustering is applied to alignment results that
is followed by construction of an undirected graph with overlap-
ping. The shortest sequence that contains connected images


http://www.vmatch.de

4.2 Transposable
Elements
Determination in
NGS Data

Transposable Elements: Classification, Identification, and Their Use. .. 189

(aligned subsequences) creates a prototype element. However, this
procedure might result in composite elements. To avoid this, all the
images are aligned to the prototype element to detect potential
illegitimate mergers and split those at every point with a significant
number of image ends.

PILER [88, 89] is using a different approach to find initial
clusters. Instead of BLAST, it uses PALS (pairwise alignment of
long sequences) for the initial alignment. PALS records only hit
points and uses banded search of the defined maximum distance to
optimize its performance. To further improve performance of the
system, PILER uses different heuristics for different types of
repeats, i.e., satellites, pseudosatellites, terminal repeats, and inter-
spersed repeats. Finally, a consensus sequence is generated from a
multiple sequence alignment of the defined family members.

Dot matrix is a simple method to compare two biological
sequences. The graphical output of such an analysis is called a dot-
plot. Dotplots can be used to detect conserved domains, sequence
rearrangements, RNA secondary structure, or repeated sequences. It
compares every residue in one sequence to every residue in the other
sequence or to every residue of the same sequence in the self-
comparison mode. In the latter case, there will be a main diagonal
line representing a perfect match and a number of short diagonal
lines representing similar regions (red circles in Fig. 3). Interestingly,
simple repeats appear as diamond shapes on a main diagonal line or
short vertical and horizontal lines outside the main diagonal line (red
squares in Fig. 3). The method was introduced to biological analyses
almost a half century ago [92, 93]. However, the first easy-to-use
software with a graphical interface, DOTTER, was developed much
later [94]. The major problem of this approach is the time required
for the dotplot calculation, which is of quadratic complexity. This
proved to be prohibitive for comparison of the genome-size
sequences. One of the solutions to this problem is using a word
index for the fast identification of substrings. Gepard implements
the suffix array data structure to improve the execution time [95]. It
is written in Java, which makes it platform-independent. Gepard
enables analyses of sequences at the mega-base level in the matter
of seconds, and it takes about an hour to analyze the whole human
chromosome I [95]. The example of the dotplot produced by the
Gepard is presented in Fig. 3.

With constant improvement of sequencing technology associated
with decreasing sequencing cost, the number of new sequenced
genomes is exploding. As of January 2019, there are more than
7000 eukaryotic and almost 180,000 prokaryotic genomes publicly
available (information retrieved on January 16,2019, from https: //
www.ncbi.nlm.nih.gov/genome /browse /). However, this comes
with a price; most of the recently sequenced genomes, due to the
short read sequencing technology, are available at various levels of
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4.3 Population-Level
Analyses of
Transposable
Elements

Fig. 3 Graphical output of the Gepard. A 30 kb fragment of mouse chromosome
12 was compared to itself. Similar sequences are represented by diagonal lines
if both fragments are located on the same strains or by reverse diagonal lines if
the fragments with significant similarity are located on opposite strands. Some
of the examples are marked with the red circles. Simple repeats are represented
by either diamond shapes on the main diagonal or horizontal and vertical lines.
Some of the examples are marked with the red squares

“completeness” or assembly. For most non-model organisms, we
are presented with draft assemblies of rather short contigs. More-
over, these genomes usually are not very well annotated, with TEs
not being on the annotation priority list. Unfortunately, genome
annotation pipelines do not include TE annotation, focusing on
protein-coding and RNA-coding genes. To fill the gap, a number of
methods have been developed to detect repeats from short reads.
Two algorithms dominate in attempts to determine repeats in NGS
raw reads: clustering and %-mer. Transposome [96] and RepeatEx-
plorer [97] employ the former approach, while RepARK [98],
REPdenovo [99], and dnaPipeTE [100] utilize the latter one.
Since NGS results in the relatively short reads, assembly of selected
sequences into longer contigs representing TEs is required after
initial clustering of the raw reads.

Recent advances in sequencing technology and the sharp decrease
in sequencing costs allow genomic studies at population level.
Although initially focused on human populations [101-103],
recent population studies of other species have been initiated as
well [104, 105]. One of the common questions in such studies is
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Fig. 4 Detection of a TE insertion (polymorphic TE) from the NGS data. The upper panel shows real genomic
sequence with a TE, which is not present in the reference genome (lower panel). Hypothetical discordant pair-
reads (a, b, d, f, g, i, ], k, I, 0, q, s, and t) have only one the pairs mapped to the reference genome, while the
other would map to a consensus sequence of a TE. The hypothetical split reads (c, e, h, m, p, and r) will have
part of the sequence mapped to the reference genome and the other to a TE consensus sequence

how much structural variation (SV) exists in different populations.
TE insertions are responsible for about 25% of structural variants in
human genomes [106]. In general, any tool designed for detection
of SV should work for TE insertion analysis, but specialized soft-
ware can take advantage of specific expectations related to inser-
tions of TEs. Most of the SV-detection algorithms rely on paired-
end reads and are based on discordant read pair mapping and/or
split reads mapping (Fig. 4). A discordant pair read is defined as one
that is inconsistent with the expected insert size in the library used
for sequencing. For example, if the insert size of the library used for
sequencing is 300 nt but the reads map to a reference genome
within much larger distance or to two different chromosomes,
such a pair is considered to be discordant. If, additionally, one of
the reads maps to a TE, it might be an indication of a polymorphic
TE. Usually some filtering is used to reduce a chance of false
positives. These include minimum read number in the cluster
mapped to a unique position, quality score of the reads, or consis-
tency in reads orientation. However, the discordant read mapping
cannot detect exact insertion position. Therefore another step is
required that may include local assembly and split-read mapping.
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4.4 Comparative
Genomics of TE
Insertions

A split read is defined as a read for which part of it maps
uniquely to one position in the genome and the other part to
another position. This is, for example, a very common feature of
the mapping of RNA-seq data to eukaryotic genomes when reads
span two exons. Split reads are being also observed if structural
variants exist. In a case of a TE insertion, a part of the read will be
mapped to a unique location and the rest to a TE in some other
location or may not be mapped at all (Fig. 4).

Different methods for structure variant detection return differ-
ent results on the same data. Recently published benchmarking
demonstrates that TE detection is not an exception
[107, 108]. Ewing [107] compared TranspoSeq [109] with two
other tools, Tea [110] and TraFIC [111], on the same data sets.
Results were not very encouraging as in both comparisons there
was a high fraction of insertions detected only by a single program
[107]. Similar conclusion was drawn by Rishishwar et al. [108]in a
benchmark of larger number of tools including MELT [106],
Mobster [112], and RetroSeq [113]. It is clear that different soft-
ware have different biases, and each one can produce a high number
of false positives. It is recommended then to employ several pro-
grams for high confidence results. Exhaustive tests run on real and
simulated human genome data showed superior performance of
MELT [106, 108]. TIPseqHunter is another tool developed to
identify transposon insertion sites based on the transpose insertion
profiling using next-generation sequencing [114]. It employs
machine learning algorithm to ensure high precision and reliability.
It is worth to note that all these tools were designed for short read
sequencing methods. However, with current development of
single-molecule long reads, sequencing technologies such as Pac-
Bio and Oxford Nanopore may make these methods irrelevant and
obsolete. Long reads should be of superior performance and make
TE insertion detection relatively easy with more traditional
aligners, such as MegaBLAST [115], BLAT [116], or LAST [117].

To understand the general pattern of TE insertions in different
genomes and evolutionary dynamics of TE families, a comparative
approach is necessary. Although precomputed alignments of ditfer-
ent genomes are publicly available, for example, the UCSC
Genome Browser includes Multiz alignments of 100 vertebrate
genomes [118], not many tools are available for such analyses.
One of them is GPAC (genome presence /absence compiler) that
creates a table of presence and absence of certain elements based on
the precomputed multiple genomes alignment [119] (http: //bioin
formatics.uni-muenster.de /tools /gpac/index.hbi). The tool is
quite generic, but is well suited for the TE comparative analysis
(see Fig. 5 for an example).
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4.5 Classification of
Transposable
Elements

Once the consensus of a repetitive element has been constructed, it
can be subjected to further analyses. There are two major categories
of programs dealing with the issue of TE classification: library or
similarity-based and signature-based. The latter approach is very
often used in specialized software, i.e., tailored for specific type of
TEs. However, some general tools also exist, e.g., TEclass [120].
The library approach is probably the most common approach
for TE classification. It is also very efficient and quite reliable as long
as good libraries of prototype sequences exist. In practice, it is the
recommended approach when we analyze sequences from well-
characterized genomes or from a genome relatively closely related
to a well-studied one. For instance, since the human genome is one
of the best studied, any primate sequences can be confidently
analyzed using the library approach. Most likely, the first software
using the similarity-based approach for repeat classification was
Censor developed by Jerzy Jurka in the early 1990s [121]. It uses
RepBase [122] as a reference collection and BLAST as a search
engine [91]. However, the most popular TE detection software is
RepeatMasker (RM) (http: //www.repeatmasker.org). Interest-
ingly, RM is also using RepBase as a reference collection and
AB-BLAST, RM-BLAST, or cross-match as a search engine. In
both cases, original search hits are processed by a series of Perl
scripts to determine the structure of elements and classify them to
one of known TE families. Both Censor and RM also employ user-
provided libraries, including “third-party” lineage-specific libraries,
e.g., TREP [123]. Over the years, RepeatMasker has become a
standard tool for TE analyses, and often its output is used for
more biologically oriented studies (see below). The aforemen-
tioned programs have one important drawback: since they are
completely based on sequence similarity, they can detect only TEs
that had been previously described. Nevertheless, similarity
searches, like in many other bioinformatics tasks, should be the
first approach for the analysis of repetitive elements.
Signature-based programs are searching for certain features
that characterize specific TEs, for example, long terminal repeats
(LTRs), target site duplications (TSDs), or primer-binding sites
(PBSs). Since different types (families) of elements are structurally
different, they require specific rules for their detection. Hence,
many of the programs that use signature-based algorithms are
specific for certain type of transposons. There are a number of
programs specialized in detection of LTR transposons, which are
based on a similar methodology. They take into account several
structural features of LTR retroposons including size, distance
between paired LTRs and their similarity, the presence of TSDs,
and the presence of replication signals, i.e., the primer-binding site
and the polypurine tract (PPTs). Some of the programs check also
for ORFs coding for the gayg, pol, and env proteins. LTR_STRUC
[124] was one of the first programs based on this principle. It uses
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seed-and-extend strategy to find repeats located within user-
defined distance. The candidate regions are extended based on
the pairwise alignment to determine cognate LTRs” boundaries.
Putative full-length elements are scored based on the presence of
TSD, PBS, PPT, and reverse transcriptase ORFE. However, because
of the heuristics described above, LTR_STRUC is unable to find
incomplete LTR transposons and in particular solo LTRs. Another
limitation of this program is its Windows-only implementation that
significantly prohibits automated large-scale analysis. Several other
programs have been developed based on similar principles, e.g.,
LTR par [125], find LTR [126], LTR_FINDER [127], and
LTRharvest [128]. Lerat tested performance of these programs
[129], and although sensitivity of the methods was acceptable
(between 40% and 98%), it was at the expense of specificity, which
was very poor. In several cases, the number of falsely assigned
transposons exceeded the number of correctly detected ones.

Another group of transposons that have a relatively conserved
structure are MITEs and Helitrons. Several specialized programs
were developed that take advantage of their specific structure.
FINDMITE [130] and MUST [131] are tailored for MITEs,
while HelitronFinder [132] and HelSearch [133] were developed
for Helitron detection.

A further interesting approach to transposon classification was
implemented by Abrusan et al. [120] in the software package called
TEclass, which classifies unknown TE consensus sequences into
four categories, according to their mechanism of transposition:
DNA transposons, LTRs, LINEs, and SINEs. The classification
uses support vector machines, random forests, learning vector
quantization, and predicts ORFs. Two complete sets of classifiers
are built using tetramers and pentamers, which are used in two
separate rounds of the classification. The software assumes that the
analyzed sequence represents a TE and the classification process is
binary, with the following steps: forward versus reverse sequence
orientation > DNA versus retrotransposon > LTRs versus
nonLTRs (for retroelements) > LINEs versus SINEs (for nonL’TR
repeats). If the different methods of classification lead to conflicting
results, TEclass reports the repeat either as unknown or as the last
category where the classification methods agree (http://bioinfor
matics.uni-muenster.de /tools /teclass /index.hbi).

Recent years witnessed some attempt to create more complex,
global analyses systems. One such a system is REPCLASS
[134]. It consists of three classification modules: homology
(HOM), structure (STR), and target site duplication (TSD). Each
module can be run separately or in the pairwise manner, whereas
the final step of the analysis involves integration of the results
delivered by each module. There is one interesting novelty in the
STR module, namely, implementation of tR NAscan-SE [135] to
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4.7 Meta-analyses

detect tRNA-like secondary structure within the query sequence,
one of the signatures of many SINE families. The REPPET is
another pipeline for TE sequence analyses. It uses “classical”
three-step approach for de novo TE identification: self-alignment,
clustering, and consensus sequences generation. However, the
pipeline is using a spectrum of different methods at each step,
tfollowed by a rigorous TE classification step based on recently
proposed classification of TEs [136]. Unfortunately, a complex
implementation that makes installation and running the system
rather difficult limits usage of the pipeline. The classification step
seems to be unreliable as it may annotate lineage-specific TEs in
wrong taxonomical linecages (Kouzel and Makalowski,
unpublished data).

There are other attempts to create comprehensive systems for
“repeatome” analysis. One of them is dnaPipeTE developed for
mosquito genomes’ analyses [100]. Interestingly, dnaPipeTE
works on the raw NGS data, which makes the pipeline well suited
for genomes with lower sequencing depth. The raw reads are first
subjected to k-mer count on the sampled data. The sampling of the
data to size less than 0.25x of the genome is required to avoid
clustering reads representing unique sequences. The determined
repetitive reads are assembled into contigs using Trinity
[137]. Although Trinity was originally developed for transcriptome
assembly from RNA-seq data, it proves to be very useful for TEs
assembly from short reads as it can efficiently determine consensus
sequences of closely related transposons. In the next step, dnaPi-
peTE annotates repeats using RepeatMasker with either built-in or
user-defined libraries. This is probably the weakest point of the
pipeline as it will not annotate any novel TEs, which have no similar
sequences present in the provided libraries. It would be useful to
complement this step with model-based or machine learning
approaches (see Subheading 4.5). After contigs’ annotation, copy
number of the TEs are estimated using BLAST algorithm
[91]. Finally, sequence identity between an individual TE and its
consensus sequence is used to determine the relative age of the TEs.
The pipeline produces a number of output files including several
graphs, i.e., pie chart with the relative proportion of the main
repeat classes and graph with the number of base pairs aligned on
each TE contig and TE age distribution. Overall, the dnaPipeTE is
very efficient, outperforming, according to the authors, RepeatEx-
plorer by severalfold [100].

Most of the software developed are focused on the TE discovery
and rarely offer more biological oriented analyses. Consequently,
researchers interested in TE biology or using TE insertions as tools
for another biological investigations need to utilize other resources.
One of them is TinT (transposition in transposition), tool that
applies maximum likelihood model of TE insertion probability to
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estimate relative age of TE families [138] (http: //bioinformatics.
uni-muenster.de /tools /tint/index.hbi). In the first steps, it takes
RepeatMasker output to detect nested retroposons. Then, it gen-
erates a data matrix that is used by a probabilistic model to estimate
chronology and activity period of analyzed families. The method
was applied to resolve the evolutionary history of galliformes [139],
marsupials [140], lagomorphs [141], squirrel monkey [142], or
elephant shark [143].

Another interesting application that takes advantage of TEs is
their use for detecting signatures of positive selection [144], a
central goal in the field of evolutionary biology. A typical research
scenario for this application would be investigating whether a spe-
cific TE fragment exapted into resident genomic features, such as
proximal and distal enhancers or exons of spliced transcripts, has
undergone accelerated evolution that could be indicative of gain of
function events. In short, the test first requires the identification of
all genomically interspersed TE fragments that are homolog to the
TE segment of interest, which can be done through alignments
with a family consensus sequence. Based on multi-species genome
alignments, a second step involves identification of lineage-specific
substitutions in every single homolog fragment, which are then
consolidated into a distribution of lineage-specific substitutions
that provides the expectation (null distribution) for a segment
evolving largely without specific constraints (neutrally). A signifi-
cantly higher number of lineage-specific substitutions observed in
the TE fragment of interest compared to the null distribution could
then be interpreted as a molecular signature of adaptive evolution.
However, the possibility of confounding molecular mechanisms,
such as GC-biased gene conversion [145-147], needs to be eval-
uated. We note that building the null distribution based only on
data from intergenic regions, where transcription-coupled repair is
absent, results in a more liberal estimate of the expected substitu-
tions, which in turn leads to a more conservative estimate of the
adaptive evolution. Additionally, building the null distribution
requires the detection of many homolog fragments, which limits
the applicability of the test to TE families with numerous members
in a given genome. Prime examples would be human Alu or murine
B1 SINEs. In theory, this test could also be used for detecting
signatures of purifying selection by searching for fragments
depleted of lineage-specific substitutions. However, the low level
or complete lack of lineage-specific substitution is characteristic to
many TE fragments, obscuring the effect of potential purifying
forces.
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5 Concluding Remarks

Table 3

Annoying junk for some, hidden treasure for others, TEs can hardly
be ignored [148]. With their diversity and high copy number in
most of the genomes, they are not the easiest biological entities to
analyze. Nevertheless, recent years witnessed increased interest in
TEs. On the one hand, we observe improvement in computational
tools specialized in TE analyses. Table 3 lists some of such tools and

Selected resources for transposable elements discovery and analyses

Software Address

AB-BLAST http: //www.advbiocomp.com /blast.html

ACLAME http: //aclame.ulb.ac.be/

BLASTER suite http: //urgi.versailles.inra.fr /index.php /urgi/Tools /BLASTER
Censor http: //www.girinst.org/censor,/download.php

DOTTER http: //sonnhammer.sbc.su.se /Dotter.html

DROPOSON ftp://biom3.univ-lyonl.fr//pub/drosoposon/

find_ltr http: //darwin.informatics.indiana.edu /cgi-bin /evolution /Itr.pl
FINDMITE http: //jaketu.biochem.vt.edu/dl_software.htm

FORRepeats http: //al jalix.org/FORRepeats /

Gepard http: //cube.univie.ac.at/gepard

HelitronFinder http: //limei.montclair.edu/HT.html

HelSearch http: //sourceforge.net/project/showfiles.php?group_id=260708
HERVd http: //hervimg.cas.cz/

IRF http: //tandem.bu.edu/irf/irf.download.html

LTR_FINDER http: //tlife.fudan.edu.cn/lItr_finder/

LTR_MINER http://genomebiology.com,/2004,/5,/10/R79 /suppl/s7

LTR par http: //www.eecs.wsu.edu/~ananth /software.htm

MGEScan-LTR

MGEScan-nonLL TR

microTranspoGene

MITE-Hunter
PILER
REannotate
ReAS
RECON

http: //darwin.informatics.indiana.edu/cgi-bin/evolution /daphnia_ltr.pl
http: //darwin.informatics.indiana.edu/cgi-bin /evolution /nonltr /nonltr.pl
http: //transpogene.tau.ac.il/microTranspoGene.html

http: //target.iplantcollaborative.org,/mite_hunter.html

http: //www.drive5.com /piler/

http: //www.bioinformatics.org/reannotate /index.html
ftp://ftp.genomics.org.cn/pub/ReAS /software /

http: //eddylab.org/software /recon/

(continued)
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Table 3
(continued)

Software Address

RepSeck http: //wwwabi.snv.jussieu.fr /public/RepSeck /

RepeatFinder http: //cbcb.umd.edu/software /RepeatFinder /

RepeatMasker http: //www.repeatmasker.org,/

RepeatModeler http: //www.repeatmasker.org/RepeatModeler /

RepeatRunner http: //www.yandell-lab.org/software /repeatrunner.html

Repeat-match
REPET
RepMiner
REPuter
RetroMap
SMaRTFinder
SoyTEdb
Spectral Repeat Finder
T-lex

Tallymer
TARGeT
TEclass

TE Displayer
TE nest

TESD

TinT
TIPseqHunter
TRANSPO
TranspoGene
Transposon-PSI
TRAP

TRF

TROLL
TSDfinder
WikiPoson
VariationHunter

Vmatch

http: //mummer.sourceforge.net/

http: //urgi.versailles.inra.fr/index.php /urgi/Tools /REPET
http: //repminer.sourceforge.net/index.htm

http: //bibiserv.techfak.uni-bielefeld.de /reputer/

http: //www.burchsite.com /bioi/RetroMapHome.html
http: //services.appliedgenomics.org/software /smartfinder,/
http: //www.soytedb.org

http: //www.imtech.res.in /raghava/srt/

http: //petrov.stanford.edu /cgi-bin/Tlex.html

http: //www.zbh.uni-hamburg.de /Tallymer/

http: //target.iplantcollaborative.org/

http: //www.bioinformatics.uni-muenster.de /tools /teclass /
http: //labs.csb.utoronto.ca/yang/TE_Displayer/

http: //www.plantgdb.org/prj/TE_nest/TE_nest.html

http: //pbil.univ-lyonl.fr/software /TESD /

http: //www.bioinformatics.uni-muenster.de /tools /tint/
https: //github.com /fenyolab /TIPseqHunter

http: //alggen.Isi.upc.es /recerca/search /transpo/transpo.html
http: //transpogene.tau.ac.il/

http: //transposonpsi.sourceforge.net,/

http: //www.coccidia.icb.usp.br/trap /tutorials /

http: //tandem.bu.edu/trf/trf.html

http: //finder.sourceforge.net/

http: //www.ncbi.nlm.nih.gov/CBBresearch /Landsman/TSDfinder/

http: //www.bioinformatics.org,/wikiposon /doku.php
http: //compbio.cs.sfu.ca/software-variation-hunter

http: //www.vmatch.de/
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the up-to-date list can be found at our web site: http:/www.
bioinformatics.uni-muenster.de /ScrapYard /. On the other hand,
improved tools and new technologies enable biologists to explore
new research avenues that might lead to novel, fascinating insights
into the biology of mobile elements.
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Using the Multispecies Coalescent Model
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Abstract

The multispecies coalescent (MSC) model provides a compelling framework for building phylogenetic trees
from multilocus DNA sequence data. The pure MSC is best thought of as a special case of so-called
“multispecies network coalescent” models, in which gene flow is allowed among branches of the tree,
whereas MSC methods assume there is no gene flow between diverging species. Early implementations of
the MSC, such as “parsimony” or “democratic vote” approaches to combining information from multiple
gene trees, as well as concatenation, in which DNA sequences from multiple gene trees are combined into a
single “supergene,” were quickly shown to be inconsistent in some regions of tree space, in so far as they
converged on the incorrect species tree as more gene trees and sequence data were accumulated. The
anomaly zone, a region of tree space in which the most frequent gene tree is different from the species tree,
is one such region where many so-called “coalescent” methods are inconsistent. Second-generation
implementations of the MSC employed Bayesian or likelihood models; these are consistent in all regions
of gene tree space, but Bayesian methods in particular are incapable of handling the large phylogenomic
data sets currently available. Two-step methods, such as MP-EST and ASTRAL, in which gene trees are first
estimated and then combined to estimate an overarching species tree, are currently popular in part because
they can handle large phylogenomic data sets. These methods are consistent in the anomaly zone but can
sometimes provide inappropriate measures of tree support or apportion error and signal in the data
inappropriately. MP-EST in particular employs a likelihood model which can be conveniently manipulated
to perform statistical tests of competing species trees, incorporating the likelihood of the collected gene
trees on each species tree in a likelihood ratio test. Such tests provide a useful alternative to the multilocus
bootstrap, which only indirectly tests the appropriateness of competing species trees. We illustrate these
tests and implementations of the MSC with examples and suggest that MSC methods are a useful class of
models effectively using information from multiple loci to build phylogenetic trees.

Key words Introgression, Hybridization, Coalescent, Recombination, Neutrality, Molecular
evolution

1 Introduction

The concept of a phylogeny or “species tree,” a bifurcating den-
drogram graphically depicting the relationships among a group
species, is one of the oldest and most powerful icons in all of
biology. After Charles Darwin sketched the first species tree
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1.1 Stopgap
Approaches to Gene
Tree Heterogeneity

(in Transmutation of Species, Notebook B, 1837), he remained
fascinated by the image for 22 years, eventually including a species
tree as the only figure in On the Origin of Species [1]. Though
species trees reached their aesthetic apogee with Ernst Haeckel’s
Tree of Life in 1886, the pursuit of ever-more scientifically accurate
trees has kept phylogenetics a vibrant discipline for the 150 years
since.

Because the direct evolution of species in the past is not observ-
able (not even in the fossil record), relationships among species are
often inferred by shared characteristics among extant taxa. Until the
1970s, this effort took place almost exclusively by using morpho-
logical characters. Although this approach had many successes, the
paucity of characters and the challenges of comparing species with
no obvious morphological homologies were persistent problems
[2, 3]. When molecular techniques were developed in the late
1960s, it soon became clear that the sheer volume of molecular
data that could be collected would represent a vast improvement.
When DNA sequences became widely available for a range of
species [4], molecular comparisons quickly became de rigueur
[5-8]. Nonetheless, it was recognized early on that molecular
phylogenies had their own suite of problems; the concept that not
all gene tree topologies would match the true species tree topology
(i.e., would not be speciodendric sensu Rosenberg [9]) was implicit
in early empirical allozyme and mitochondrial DNA studies
[10, 11]. However, it was generally assumed that the idiosyncratic
genealogical history of any one gene, as reconstructed from extant
mutations, was an acceptable approximation for the true history of
the species given the potentially overwhelming quantity and seduc-
tive utility of molecular data [12-15]. Indeed, this assumption is
still prevalent in the thinking of those who favor concatenation or
supermatrix approaches as a means of combining information from
multiple genes that may still differ in their genealogy from each
other and from the species tree [ 16, 17]. In the meantime, the term
“phylogeny” frequently became conflated with “gene tree,” the
entity produced by many of the leading phylogenetic packages of
the day. The term “species tree,” in use since the late 1970s to
emphasize the distinction between lineage histories and gene his-
tories (reviewed in [11, 18]), was only gradually acknowledged,
despite the fact that species trees are the rightful heirs to the term
“phylogeny” and better encapsulate the true goals of molecular and
morphological systematics [19].

By and large, the ensuing decades of molecular phylogenetics has
fulfilled much of its potential, revolutionizing taxonomies and
resolving conundrums previously considered intractable. However,
as the amount of genetic data per species becomes ever-more
voluminous, it has become clear that the conflicts between individ-
ual genes with each other and with the overarching species tree,
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both in topology and branch lengths, can have practical conse-
quences for phylogenetic analysis if not dealt with properly
[18-23]. At first, some researchers treated this phenomenon as
though it were an information problem: when working with only
a few mutations, you were bound to occasionally get unlucky and
sequence a gene whose random signal of evolution did not match
that of the taxa being studied. The reasoning was surely more
and/or longer sequences would fix that problem and cause gene
trees to converge [16]. However, as more genes were sequenced,
and as the properties of gene lineages within populations were
studied in detail [24, 25], the twin realities of gene tree heteroge-
neity and “incomplete lineage sorting” [11] (ILS) became clear
(Figs. 1 and 2). The probability of an event such as incomplete
lineage sorting, which if considered alone would lead to inferring
the wrong species tree, was worked out theoretically for the four
allele /two species case first [26], followed by the three allele /three
species case [7, 13] and more general cases [12, 27]. Pamilo and
Nei [12] were among those that proposed that the solution was to
simply acquire more gene sequences, after which the central ten-
dency of this gene set would point to the correct relationships, a
“democratic vote” method, where each gene was allowed to pro-
pose its own tree, and the topology with the most “votes” was
declared the winner and therefore the true phylogeny. Though
generally true for three-species case, it can sometimes produce the
wrong topology with four or more species [28]. In fact, we now
know that with four or more species, there is an “anomaly zone” for
species trees with short branch lengths as measured in coalescence
units, in which the addition of more genes for sampled taxa is
guaranteed to lead to the wrong species tree topology for the
democratic vote method [29, 30]. (Coalescent time units, equiva-
lent to t/Ne where ¢is the number of generations since divergence
and Ne is the effective population size of the lineage, are a conve-
nient unit for discussions of gene tree/species tree heterogeneity.
For a clear explanation, see Box 2 of Degnan and Rosenberg [28].)
Such anomaly zones may be rare empirically [31], but empirical
examples are emerging [32, 33], and even the theoretical possibility
remains disconcerting. In addition, because the number of possible
tree topologies increases as the double factorial of the number of
tips, for species trees with more than four tips, a very large number
of genes are required to determine which gene tree is in fact the
most frequent. Advanced consensus methods [34] can circumvent
some of the problems of the democratic vote by using novel assem-
bly methods, such as rooted triple consensus [35], greedy consen-
sus [36], or supertree methods [37]. However, although such
methods suffer from lack of a biological model motivating the
method of consensus, approaches such as that proposed by Steel
and Rodrigo [38] might help approximate the dynamics of
biological models while allowing for faster and more flexible exten-
sions and should be further developed.
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Fig. 1 An example showing the utility of multiple gene trees in producing species tree topologies. (a) Nine
unlinked loci are simulated (or inferred without error) from a species group with substantial amounts of
incomplete lineage sorting. Note that no single gene recovers the correct relationship between clades.
Furthermore, despite identical conditions for all nine simulations, no two genes agree on the correct topology,
let alone the correct divergence times. (b) Superimposing the nine gene trees on top of each other clarifies the
relationships. It can be (correctly) inferred that the true tree is perfectly ordered, with (ABC) diverging from D
about 1500 generations ago, the (AB)-C split occurring at 800, and A diverging from B about 600 generations
ago. Also, the amount of crossbreeding within the recently diverged taxa implies (correctly) that C has the
effective smallest population size

The second empirical approach to the problem of conflicting
gene trees was to bypass it altogether. Concatenation methods
appended t