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Preface

This book originates in a set of lectures I delivered at University Col-
lege London between 2012 and 2018, corresponding to a master’s degree
module in the Physics and Astronomy Department. Although a good num-
ber of excellent published references on this material are available, my
intended goal was to produce a set of notes that give a simplified, yet
effective overview of the topic of galaxy formation and evolution, with
special emphasis on dynamics. Extragalactic astrophysics started in earn-
est as a discipline of physics when galaxies were discovered as “island
universes” in the 1920s. The first steps in this field focused on under-
standing the distance to the extragalactic nebulæ and to put them in
context with the large-scale environment. Within the same decade, galax-
ies became very distant objects and unveiled the cosmological process of
expansion, shaping our current view of the Universe. Further analysis
concentrated on the details of stellar dynamics in galaxies and the phys-
ics driving the underlying components (dark matter, stellar populations,
gas and dust). The advent of large galaxy surveys such as the Sloan Di-
gital Sky Survey, and exquisite observations from facilities such as the
Hubble Space Telescope have considerably transformed the field, allow-
ing us to probe the distribution of galaxies over large cosmological scales,
and to look at galaxy formation mechanisms ‘under the microscope’. The
material presented in this book provides an introduction to the field for
advanced undergraduates and beginning postgraduates. No substantial
background in astrophysics is expected, but good knowledge of calculus
is needed to enjoy the physics of galaxies at its fullest.

I would like to thank the staff at UCL Press, especially Chris Penfold,
for offering the opportunity to publish these lecture notes in an open ac-
cess format. I would like to thank the previous lecturers of a precursor
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module to the one I taught, Jonathan Rawlings, Jeremy Yates and Mark
Cropper, for outlining and developing such an exciting course. I also
thank Anna Pasquali, Prasenijt Saha, Witold Maciejewski, Andrew Hop-
kins and Roger Davies for their support in putting together this book, and
Joe Silk and Ofer Lahav for their guidance throughout the years. My inter-
active audience, the students who participated in this module, are warmly
thanked for their input, and often inquisitive minds. I am especially grate-
ful to Jennifer Chan, Lorne Whiteway and Ellis Owen. My wife, Isabel, will
always have my immense thanks and gratitude for her undying support
during the many weekends when these lecture notes were put together.

Horsham, West Sussex, July 2018

xiv PREFACE



Acknowledgements

The images of M51 (figure 5.6) and M13 (figure 8.1) are based on photo-
graphic data of the National Geographic Society – Palomar Observatory
Sky Survey (NGS-POSS) obtained using the Oschin Telescope on Palo-
mar Mountain. The NGS-POSS was funded by a grant from the National
Geographic Society to the California Institute of Technology. The plates
were processed into the present compressed digital form with their per-
mission. The image of M6 in figure 8.3 is based on photographic data
obtained using the UK Schmidt Telescope. The UK Schmidt Telescope
was operated by the Royal Observatory Edinburgh, with funding from
the UK Science and Engineering Research Council, until June 1988 and
thereafter by the Anglo-Australian Observatory. Original plate material is
copyright c© the Royal Observatory Edinburgh and the Anglo-Australian
Observatory. The plates were processed into the present compressed di-
gital form with their permission. The Digitized Sky Survey was produced
at the Space Telescope Science Institute under US Government grant NAG
W-2166.

The sketch of the Hubble fork diagram (figure 1.3) was created by
modifying a set of images from the Sloan Digital Sky Survey (http://www
.sdss.org).

It is a pleasure to acknowledge the National Aeronautics and Space
Administration (NASA) and European Space Agency (ESA) for use of their
superb and inspiring images from missions such as the Hubble Space Tele-
scope and Gaia. The National Radio Astronomy Observatory (NRAO) is
thanked for use of the radio image of M81 in figure 8.1 (rightmost panel).

We are grateful to Astronomy & Astrophysics and Institute of Phys-
ics (IoP; publisher of the Astrophysical Journal) for their straightforward
reprint permission process. All authors cited in figures copied or based

xv

http://www.sdss.org
http://www.sdss.org


on ApJ, A&A, MNRAS and PASJ papers are warmly thanked for allowing
us to use their work. Antony Lewis is thanked for the use of the Python
code PyCAMB in figures 7.2 and 7.4. This code can be found at https://
camb.info. Regarding figures from data published in MNRAS (figures 1.4,
5.2, 5.3, 6.1, 6.3, 9.3, 9.4): these are by permission of Oxford Uni-
versity Press on behalf of the Royal Astronomical Society. The material
reproduced from the articles cited in the figure captions is not covered
by the CC-BY license of this publication. For permissions, please email
journals.permissions@oup.com.

xvi ACKNOWLEDGEMENTS

https://camb.info
https://camb.info
mailto:journals.permissions@oup.com


1
An introduction to galaxy formation

Galaxies are the building blocks of the Cosmos. Separated by vast
distances, they also serve as tracers of the cosmic expansion and the
primordial density fluctuations that gave rise to structure in the universe.
Galaxy formation requires an understanding of the most fundamental
physical processes: gravitation, statistical mechanics, gas hydrodynam-
ics, radiative transfer, atomic physics, etc. In this book we will focus on
the gravitational side of galaxies, dealing with both the statistical treat-
ment of galaxies as an N-body system evolving purely under gravitational
forces and with the growth of galaxies from evolving density fluctuations
in an expanding Universe. This introductory chapter presents an overview
of the field, including the observables typically used to study galaxies,
the mechanisms underpinning galaxy formation and the characteristic
timescales involved.

1.1 The main ingredients of a galaxy

A galaxy is a complex system bound by gravity. In our current paradigm,
the gravitational potential is dominated by dark matter, whose distribu-
tion is much more extended than the visible part, and forms a spheroidal
halo. The ordinary matter – loosely called “baryonic matter” – is made up
mostly of hydrogen and helium, in the form of stars, diffuse and clumpy
gas, dust, planets, etc. Although the dark matter dominates the mass
budget – with a contribution of around 85 per cent in mass of the total
matter content – emission in the electromagnetic spectrum is provided
only by the baryons, except for potential, but hard to find dark matter
particle annihilation events. Therefore, there is a substantial difference
between mass and light in galaxies.
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The gaseous component provides fuel for star formation. A highly
complex set of processes involving gas infall, turbulence, radiative trans-
fer, feedback from star formation and magnetic fields plays a role in the
physics of star formation (something we will leave aside in this textbook).
In addition, dust provides an important tracer of star formation as it is
typically found in gas-rich star-forming environments. The scattering,
absorption and emission of radiation from dust makes this component
key in the thermodynamics of star formation. Galaxies with very high
star formation rates (starbursts) are often enshrouded in dust, with the
most active regions being practically opaque to optical radiation and dis-
playing prominent emission in the infrared by heated dust: this is the
case with Ultra-Luminous Infrared Galaxies (ULIRGs) or submillimetre
galaxies (SMGs).

In addition to these components, it is worth noting the presence of a
supermassive black hole (SMBH) at the centres of galaxies. With masses
between a few million and several billion Suns, SMBHs can regulate the
formation of their host galaxy. As gas accretes onto the SMBHs, a very
luminous Active Galactic Nucleus (AGN) is formed. The energetic output
from the AGN in the form of jets can affect star formation over the full
scale of the galaxy, in ways that are still open to debate.

1.2 Observables

This section gives a nonexhaustive overview of the type of observables
commonly applied to the study of galaxies.

Colours

In astrophysics, colour is defined as the flux ratio measured through dif-
ferent filters (see section 1.5). The interpretation of a colour depends on
the wavelengths covered by the filters. In the ultraviolet/optical/infrared
spectral windows, colour can be considered a rough proxy of stellar age.
Light from younger stellar populations is predominantly contributed by
massive, luminous, blue stars. However, other factors – such as chemical
composition or dust – will affect this interpretation: a red colour need not
imply old stars. For instance, the red colours found in so-called ERO galax-
ies (Extremely Red Objects) often originate from a young, but dusty stellar
population. Figure 1.1 shows a mosaic of images of the nearby spiral
galaxy M81, illustrating how a coverage of different regions of the elec-
tromagnetic spectrum allows us to study different processes in galaxies.
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Figure 1.1 Different views of nearby galaxy M81 (NGC3031, distance
3.7 Mpc). From left to right, images in the X-ray (NASA/CXC/Wisconsin/
Pooley & CfA/Zezas), ultraviolet (NASA/JPL-Caltech/CfA/Huchra et al.),
optical (NASA/ESA/CfA/Zezas), infrared (NASA/JPL-Caltech/CfA) and
radio (NRAO/AUI/Adler &Westpfahl) spectral windows.

The X-ray image reveals a diffuse component tracing hot gas; a central
bright source betraying the presence of a supermassive black hole; and a
number of point sources that correspond to X-ray binaries – stellar sys-
tems where one of the members is a compact object (neutron star or
black hole), whose strong gravitational potential drags and heats up the
outer layers of the companion star. In contrast, the ultraviolet emission is
due mainly to massive, young stars and reveals the sites of ongoing star
formation. The optical and near infrared windows are dominated by the
bulk of the stellar populations, whereas at longer wavelengths, in the far
infrared, emission is produced by dust, that – like UV light – also traces
sites of ongoing star formation. At even longer wavelengths, in the radio,
emission originates from supernova remnants and HII regions (ionized
hydrogen around star-forming sites), and at λ=21 cm, we find resonant
emission from neutral atomic hydrogen (HI).

Spectroscopy

The spectrum of a galaxy is the observed flux density as a function of
wavelength, F(λ), or frequency, F(ν). Galaxy spectra carry valuable in-
formation about the kinematics and the chemical composition of the
stellar and gaseous components. Motions along the line of sight towards
the observer affect the position and shape of the spectral features (both in
absorption and emission) via the Doppler shift. For instance, the absorp-
tion lines of a massive galaxy are significantly broader with respect to the
same features in a low-mass galaxy, an effect caused by the higher velo-
city dispersion of the stellar component. The bulk rotation of disc galaxies
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Figure 1.2 Extragalactic spectroscopy at work: high quality stacked
spectra from the Sloan Digital Sky Survey are shown for two early-type
galaxies with different velocity dispersion – broadly tracing the mass of
the galaxy. The insets zoom in special windows that feature absorption
lines sensitive to the age, chemical composition and mass distribution
of the underlying stellar component. (Source: data from Ferreras et al.,
2013, MNRAS, 429, L15.)

is measured by the characteristic ‘S’-shaped pattern of the spectral line
centres with respect to galactocentric distance. Moreover, a non-Gaussian
analysis of the kinematic kernel – via higher order moments or a Gauss-
Hermite expansion – allows us to further constrain the motion of the gas
and stars of a galaxy.

The absorption lines in ultraviolet/optical/infrared galaxy spectra
originate in the atmospheres of their stars. Therefore, they carry inform-
ation about the properties of the stellar populations (see an example in
figure 1.2). For instance, spectral line strengths such as Balmer absorp-
tion (Hβ, Hγ , Hδ), or metallicity-dependent features such as the Mgb-Fe
complex in the 5100-5400Å region provide constraints on the age and
the chemical composition of galaxies. In emission, spectral lines originate
from ionized regions, and the line luminosities constrain the proper-
ties of the gas, including its composition, temperature and ionisation
state. For instance, the BPT diagram1 (named after Baldwin, Phillips and
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Terlevich) provides a simple diagnostic to discriminate between emission
from star-forming and AGN activity, by comparing the ratio between two
pairs of line luminosities, such as Hβ/[OIII] and Hα/[NII].

The dust component can also be probed with spectroscopy, includ-
ing its overall attenuation effect with respect to wavelength and the pres-
ence of spectral features, most notably the NUV 2175Å “bump” or the
silicate features in the infrared at 9.8 and 18μm. Also in the infrared win-
dow, emission lines from polyaromatic hydrocarbons (PAH) and thermal
radiation are also sources of information regarding dust.

Surface brightness

Surface brightness (SB) is defined as the flux received from a section
of the galaxy, i.e., within a solid angle. Therefore, it is not possible to
measure the surface brightness of an unresolved source (e.g., the vast
majority of stars observed with standard techniques). A simplified charac-
terization involves the definition of elliptical isophotes, regions with the
same surface brightness, leading to a one-dimensional surface brightness
profile �(θ), where θ is the angular galactocentric distance, measured,
e.g., as the semi-major axis of the ellipse describing the isophote. This
distance can be translated into the physical projected two-dimensional,
radius R, by use of the (angular diameter) distance (Da): R=Da tan θ

(note R is often defined as a circularized radius
√
ab, where a and b are

the semi-major and semi-minor axis, respectively, of the corresponding
ellipse that describes the galaxy). Although trivial for nearby sources,
there is a second measure of the distance that translates between lumin-
osity (L) and flux (F). This so-called luminosity distance (Dl) is defined
such that F= L/4πD2

l . For large but noncosmological separations (i.e.,
where the general relativistic effects are unimportant), Da and Dl are
practically the same, making the surface brightness independent of dis-
tance, but for cosmological separations Dl= (1+ z)2Da, where z is the
redshift to the source (see chapter 7). The radial distribution of the sur-
face brightness of disc galaxies can be described by an exponentially
decaying profile:

�(R)=�he
1−R/h, (1.1)

where h is the disc scale length, and �h is the SB at R= h. In contrast,
elliptical galaxies have a much steeper profile (de Vaucouleurs, or R1/4

profile):

�(R)=�ee
7.67

[
1−

(
R
Re

)1/4
]

. (1.2)
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The effective radiusRe is defined such that half of the total flux is enclosed
within Re, and �e is the surface brightness at Re. A generic expres-
sion often used in the description of the SB distribution is the Sérsic
profile:

�(R)=�ee
−κ

[(
R
Re

)1/n−1
]

, (1.3)

where n is the Sérsic index, and κ =1.9992n−0.3271 is a normalization
factor that ensures the flux within R≤Re is one half of the total flux.2 This
profile includes the exponential case forn=1 and the de Vaucouleurs pro-
file for n=4. The value of the index is commonly used as a quantitative
indicator of morphology, with the early-type galaxies having n� 2.5, and
late-type galaxies having lower values of n.

Morphology

The morphology of a galaxy gives us information about the distribution of
stars, gas and dust. Note that the appearance of a galaxy strongly depends
on the spectral window (see figure 1.1). Morphological studies normally
concern the stellar component as the main tracer of the gravitational po-
tential of the galaxy. Galaxies are split roughly into three main groups:
elliptical, spiral and irregular. The presence of a bar in spiral galaxies
motivates a branching in the classification scheme, illustrated by the
Hubble tuning fork diagram (figure 1.3). Elliptical and lenticular galaxies
are combined into early-type galaxies and present a spheroidal distribu-
tion, explained by a major merging event, or some collapse mechanism
by which the total angular momentum was kept low. The oblateness of
these systems cannot be fully explained by rotation (see chapter 5), and
their spectral energy distribution corresponds to old and metal-rich stel-
lar populations, which reflect an early, intense and efficient process of
star formation and are corroborated by their chemical composition (see
chapter 6).

In contrast, spiral galaxies, more aptly described as disc (or late-
type) galaxies, are flatter systems where a large fraction of the total kinetic
energy is in the form of bulk rotation. For example, the (thin) disc of our
Milky Way galaxy has a vertical extent about one-tenth of the disc size.
The collapse of gas under gravity can develop such a rotating structure,
as for instance, during the formation of our solar system. Disc galaxies
have a more complex distribution of stellar populations than ellipticals,
featuring ongoing star formation as well as a substantial presence of old
stars. The central part of a disc galaxy usually hosts a spheroidal structure,

6 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



Figure 1.3 Hubble-de Vaucouleurs tuning fork diagram, showing the
major morphological classification of galaxies into ellipticals (left) and
spirals (right), the latter consisting of standard and barred spiral galax-
ies. (Source: The images of the galaxies were created from observations
taken by the Sloan Digital Sky Survey.)

a bulge, whose origin also constitutes an open problem, with some bulges
resembling an early-type galaxy (classic bulges) and others being the
product of secular dynamical evolution (pseudo-bulges). Spiral arms are
the most conspicuous features of disc galaxies. Their origin is based on
dynamical resonances, which will be briefly explored in chapter 5. Irreg-
ular galaxies are more complex dynamical structures, often betraying the
presence of an ongoing merger or tidal interaction with a neighbour.

The standard method of morphological analysis involves visual in-
spection of images, preferably done through several filters. Morphology
can also be determined from the surface brightness profile (see above),
or by the application of alternative methods involving nonparametric ob-
servables, which do not make any assumption about the radial surface
brightness profile. A number of observables are defined such as the con-
centration, asymmetry or clumpiness, or even higher order moments of
the pixellated surface brightness distribution.3 More recently, machine
learning methods are being applied to perform “visual classification” in
a fully automated way, using, for instance, artificial neural networks
trained on visually classified data sets.4
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Size

It is difficult to provide a clear-cut definition of the size of galaxies.
Being diffuse objects, their borders are fuzzy. One typically simplifies the
problem to a one-dimensional equivalent by binning the observation radi-
ally within elliptical isophotes. A traditional definition of size, D25, hypo-
thesizes that the galaxy extends in a region brighter than 25 mag arcsec−2

in the B band. This choice is motivated by the fact that surface bright-
ness does not vary with distance over noncosmological scales. However,
we know that over large distances, the surface brightness does indeed
change, decreasing as (1+ z)4, where z is the redshift (termed ‘Tolman
dimming’). A more robust criterion is based on the Petrosian radius,
derived from the following expression:

η(R0)≡ �(R0)

〈�(R)〉R<R0

. (1.4)

This function starts at η∼1 for R0∼0 and decreases outwards. The Pet-
rosian radius is defined as the value RP for which η(RP)=0.2. Its being a
ratio of surface brightness eliminates the dependence on the cosmological
Tolman dimming. Another option involves fitting the observed data with
a generic surface brightness profile such as the Sérsic function presen-
ted above (equation 1.3), so that the parametric effective radius of the
function can be used as a measure of size.

Exercise 1.1

Find the Petrosian radius as a function of h for the exponentially
decaying surface brightness case shown in equation 1.1.

Luminosity function

Galaxies can be classified according to their absolute luminosity (i.e.,
their power, or energy emitted per unit time, usually defined with respect
to solar luminosity, L�, or given by their apparent flux when located at a
fiducial distance). The volume number density of galaxies (n) per lumin-
osity interval is the Luminosity Function. It can be suitably described by
a power law with an exponential cutoff at the bright end, defined as the
Schechter function:
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dn
dL

dL≡(L)dL=0

( L
L�

)α

e−L/L� dL
L�

, (1.5)

with three free parameters: the characteristic luminosity (L�, usually
given in units of L�, or as an absolute magnitude, M�), the power law
index, equivalent to the slope at the faint end (α), and the normalisation,
given by the number density of L� galaxies (given, aside from a factor e, by
0, usually in units of Mpc−3). We will see in chapter 7 that the shape of
the Schechter function is a direct consequence of galaxies being created
from random density fluctuations following collapse once the fluctuations
are large enough.

The parameters describing the luminosity function change with
respect to galaxy morphology. For instance, elliptical galaxies are less
numerous (lower 0), but are brighter (higher L�) than disc galaxies.
Moreover, these populations change with respect to environment, with
ellipticals being more prevalent in galaxy clusters (a property often
termed the ‘morphology-density relation’). An alternative description of
the galaxy census is the stellar mass function, with a similar notation as
in the Schechter function, but referring to mass instead of luminosity. We
will see below that a comparison between the stellar mass function and
the dark matter mass function expected from a simple theoretical argu-
ment gives a very powerful diagnostic of the nontrivial relation between
dark matter halos and galaxies.

Exercise 1.2

Show that if we adopt the Schechter luminosity function (equa-
tion 1.5), we need α >−2 if the total luminosity (integrated
throughout the whole galaxy population) is finite. Then consider
the α=−1 case: find the total luminosity from all galaxies, and
show that the total number of galaxies diverges. How can an infinite
number of galaxies have a finite total luminosity?

Star formation rate

The star formation rate (SFR, often denoted by the greek letter ψ) is
defined as the mass content in stars created per unit time. This can be
defined over different scales as an integrated quantity over a cosmological
volume, for a single galaxy, or as a volume (or projected surface) density
of star formation within a galaxy. The average star formation rate of
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the Milky Way galaxy at present is ψMW∼1M� yr−1, and star-bursting
galaxies can sustain rates hundreds (or even thousands) of times higher.
Measurements of the SFR use indirect tracers, focusing either on the
presence of young stars or on the fuel that triggers formation. The ultra-
violet emission from a galaxy reveals the presence of massive (therefore
young) stars. Emission lines from ionized gas also betray the presence
of the most massive stars, hot enough to ionize large volumes surround-
ing the star-forming regions. The (hydrogen) gas can be observed both
in atomic and molecular form (the latter normally detected indirectly
through the presence of CO), and the dust – which is abundant in star-
forming regions – can also be probed by attenuation of starlight or by
emission at infrared wavelengths. There is a whole industry of extracting
star formation rates from observations, beyond the scope of these lecture
notes.5

Environment

‘Environment’ refers to the large-scale regions where galaxies are found.
It can be characterized by a density averaged over volumes that include
many galaxies. It provides a link between local formation processes
in galaxies and the large-scale structure of the Universe (figure 1.4).
Roughly four different environments can be considered: voids (under-
dense regions, away from large-scale filaments), field (representing aver-
age densities over cosmological volumes), groups (gravitationally bound
structures that include several massive galaxies, with velocity dispersions
among group members comparable with the velocity dispersion of stars
within galaxies, i.e., 100–300 km s−1) and clusters (the highest density
regions, including thousands of galaxies within a∼1 Mpc radius, and ve-
locity dispersions �500 km s−1; see chapter 9). Another classification of
environment can be given by the mass of the dark matter halo that hosts
a given galaxy. Moreover, inside groups and clusters, the environment
of the central region is very different from the cluster outskirts, and the
distinction between a central (i.e., the most massive galaxy in a dark mat-
ter halo) and a satellite appears to be fundamental in the description of
galaxy formation.6

There are important environment-related processes that affect the
evolution of galaxies: mergers, strangulation, ram pressure stripping, har-
assment. The environment is tightly linked with the initial conditions of
the system: clusters are structures formed from higher (and rarer) fluctu-
ations of the primordial density distribution. Furthermore, because of the
inherent growth of structures with cosmic time (bottom-up formation),
clusters can be found only at relatively later cosmic epochs.
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Figure 1.4 A slice of the Universe as seen by the EAGLE galaxy form-
ation project. The cosmic web is readily apparent, with filaments,
voids and clusters (at the confluence of filaments). The zoomed-in
panels give an idea of the size of a typical galaxy within the cosmic
web. Environment-related processes will shape the formation histor-
ies of galaxies. (Source: Schaye et al., 2015, MNRAS, 446, 521.) Used by
permission of Oxford University Press.

Nuclear activity

Most galaxies harbour a supermassive black hole (SMBH) at their centres,
with a mass in the range 106–109M�. When gas is available, as it flows
into the SMBH, it forms an accretion disc where the material gets heated,
emitting copious amounts of radiation across a wide range of wavelengths
and producing an AGN that can outshine the whole galaxy. Only a few
galaxies display AGN activity, but it is believed that most massive galaxies
experienced AGN activity some time during their past formation history.
There are many types of AGN: Quasars, Seyferts, Radio Galaxies, Liners,
BL Lacs, etc.

The fundamental issue related to galaxy formation is that AGN
activity can affect the flow and heating of the gas that fuels star formation
in galaxies. Therefore, although AGNs are confined to a minuscule volume
within the galaxy (a 109M� SMBH has a radius rg=2GM/c2≈20 AU
and a region of influence ri=GM•/σ 2≈ 50 pc), they can control galaxy
formation (i.e., over scales �50 kpc). It is believed that AGN activity
provides a feedback mechanism that contributes to the quenching of star
formation in massive galaxies. A strong correlation is found between
galaxy properties and the mass of the central black hole.7
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Distance

A simple but fundamental observable is the distance to galaxies from
our vantage point. Measuring distances beyond the solar system entails
a progressive set of steps (called the ‘cosmological distance ladder’) to
measure successively larger distances. The first ‘extragalactic’ rung of the
ladder is based on the use of variable stars, especially bright Cepheids.
Their period-luminosity relation allows us to determine their true lumin-
osity (L) from a sequence of observations with time (the light curve). In
combination with the observed flux (), the distance (d) is obtained via
= L/4πd2. This method pioneered the field of extragalactic astrophys-
ics, when our neighbour, the Andromeda galaxy, was found to lie much
farther out than any of the visible stars. Additional steps of the ladder
involve the use of tight scaling relations among galaxies, such as the Tully-
Fisher relation (chapter 5). Closer to home, the first step of the ladder
uses basic trigonometry: by carefully measuring the positions of stars,
we find that in addition to their proper motion (caused by their relat-
ive velocity with respect to the Sun), they follow a conspicuous yearly
cycle, with all stars moving “in phase” but with different amplitudes.
This motion is caused by parallax, the apparent change in the observed
position as the Earth orbits the Sun. Therefore, those with the largest
cycles are closest to us. These cycles are nevertheless very small, and
thus limit useful estimates of parallax to the nearest stars.8 A natural
unit of distance is therefore the one at which a star would have a paral-
lax of 1 arcsec. This is called the ‘parsec’ (pc), and trivially amounts to
∼1 AU/π , where π is the parallax in radians and AU denotes an astro-
nomical unit (the average Sun-Earth separation, about 150 million kilo-
metres). Therefore, 1 pc amounts to 3.086×1016 m, or 3.26 light-years.
Distances within galaxies are measured in kiloparsec, and galaxy-galaxy
separations are measured in Megaparsec (Mpc) or Gigaparsec (Gpc). The
distance from the Sun to the centre of the Milky Way galaxy is approx-
imately 8 kpc, and the distance to the neighbouring Andromeda galaxy
is 0.8 Mpc.

Redshift

At the top of the cosmological distance ladder, the separation between
galaxies takes advantage of redshift. Due to the expansion of the Universe,
photons with wavelength λ0, emitted from a distant galaxy (at cosmic
time t), are observed (at time t0), at a longer wavelength, λobs, stretched
by a factor z, termed ‘redshift’:
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λobs

λ0
≡1+ z= a(t0)

a(t)
, (1.6)

where z is the redshift, anda(t) is the scale factor of the Universe, a dimen-
sionless quantity that represents the global cosmic expansion. The scale
factor at present time, a(t0) can be arbitrarily set to one. Since redshift
increases towards earlier times, it directly correlates with distance. Note
that in groups of nearby galaxies the relative motions (termed ‘peculiar
velocities’) will also affect, via the Doppler effect, the observed redshift.
Only at very large distances does the cosmological effect overwhelm any
contribution from peculiar velocities. We will see in chapter 7 that it is
convenient to separate the uniform expansion (termed the ‘Hubble flow’)
and the peculiar motion, by use of co-moving distances between galax-
ies where the contribution from the uniform expansion is factored out.
We will also see in that chapter that the concept of distance becomes less
trivial, and different distances to the same object will be obtained when
using alternative definitions (section 7.1). Measuring galaxy properties
over a range of redshifts implies testing the evolution of galaxies across
cosmic time. As reference, at redshift z=2, galaxies are found in a Uni-
verse that is only 3 Gyr old, i.e., about 20 per cent of its current age. At very
high redshift, cosmic age poses a stringent constraint regarding the times-
cales expected in the formation of galaxies. For instance, bright quasars
or galaxies at z∼10 have only about 500 Myr of time to evolve, so obser-
vations at such high redshift substantially reduce the number of potential
scenarios of formation.

1.3 Physical processes

We switch from the observational properties of galaxies to the physical
mechanisms of galaxy formation. This section gives a succinct view of
some of the processes that play an important role in the formation and
evolution of galaxies.

Initial conditions

Galaxies develop from small density perturbations in the dark matter
distribution at early times. Under gravity, these perturbations grow
within an expanding Universe, until virialisation is achieved, forming
stable structures called ‘dark matter halos’. In the current cosmological
framework, about one-sixth of all matter is in the form of baryons (mostly
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H and He). Originally in gaseous form, this material dissipates energy –
in contrast with the collisionless dark matter. The gas falls to the centre of
the halo, cooling down and eventually forming stars.

Certain initial conditions in the overdensities are needed to ex-
plain the properties of galaxies: too low and there will not be enough
galaxies at present; too high, and we would be surrounded by a large num-
ber of massive, old galaxies, at odds with the observational evidence.
The present distribution of galaxies is compatible with a model where
∼24 per cent of the total matter/energy content of the Universe is in
the form of dark matter, an additional ∼4 per cent is in the form of ba-
ryons and the remaining∼72 per cent is made up of an unknown energy
field commonly known as ‘dark energy’, that produces an accelerated ex-
pansion (this is the standard �CDM framework, where � refers to the
dark energy term, and CDM stands for cold dark matter). Galaxy form-
ation is inherently tied to cosmology, and moreover to the fundamental
properties of particles. In fact, many cosmology-oriented experiments
use large galaxy surveys to map the large-scale structure of the Universe
(e.g., the Sloan Digital Sky Survey, the Dark Energy Survey, or the Euclid
mission).

Gravitational instability

Small fluctuations are rapidly amplified by gravity – as neither expansion
nor the repulsive effect of dark energy are effective over galaxy scales.
It is useful to quantify the evolution of the fluctuations with the density
contrast, defined as follows:

δ(
r; t)≡ ρ(
r; t)
〈ρ〉(t) −1. (1.7)

In a noncosmological environment, where the effects of expansion are
negligible (e.g., a gas cloud within the Milky Way), a small overdensity
will grow exponentially with time (δ∝ et). Over cosmological scales, the
expansion will slow down this growth rate to a power law of cosmic time,
δ∝ tα , with the power law index depending precisely on the expansion
rate, given by the cosmological model. Cosmologists often work in the
linear regime (δ� 1), where the growth equations can be expanded as a
Taylor series, and truncated to the lowest order (i.e., linear) terms. In con-
trast, astrophysicists tend to work instead in the highly nonlinear regime
(δ 1), where galaxies constitute huge overdensities with respect to the
background density of the Universe.
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The hierarchical growth of structure inherent to the current cos-
mological paradigm implies that fluctuations over small scales are the
first to form virialized, stable systems at early times, whereas the more
massive structures assemble later. Therefore, the linear regime corres-
ponds at present time to very large scales (of cluster/supercluster size),
and the equivalent linear regime for galaxy scales took place at earlier
times. Hence, cosmology studies using galaxies need to probe very
large volumes. Over smaller scales (galaxy clusters or groups), galaxy-
related processes overwhelm any imprint on the observations related to
cosmology.

Gas cooling and star formation

The only channel of interaction among dark-matter particles is via
gravity, in a collisionless way, i.e., simply following the trajectories dic-
tated by the overall gravitational potential. In contrast, gas particles
(hydrogen/helium) can lose energy, as they also interact through elec-
tromagnetic forces. Photons emitted from collisions of gas particles
are lost from the system, and act as an energy sink. The cooling rate
depends on the physical properties of the gas: temperature, density,
composition. At very high temperatures (T � 107 K), the gas is fully
ionized, and cools mainly through bremsstrahlung emission from free
electrons. At lower temperatures (104 K < T <107 K) atomic recombina-
tion/collisional excitation processes dominate, in ways that are strongly
dependent on the species present (i.e., the metallicity of the gas). At
even lower temperatures (T< 104 K), the gas is almost completely neut-
ral, and collisional excitation of fine structure energy levels (atoms/ions)
and rotational/vibrational energy levels (molecules) will contribute sig-
nificantly in this regime. We will see in chapter 7 that the balance between
gas cooling and the dynamical timescale from gravity is responsible for
the characteristic sizes and masses of galaxies. To quantify the role of
cooling, it is convenient to define a cooling timescale as the time it would
take to remove the internal energy of the gas at the rate dictated by its
cooling. It is proportional to (T/n�), where T is the temperature of the
gas, n is its number density, and � is the cooling rate, a complex func-
tion that, in its simplest form, depends on temperature and chemical
composition.

The cooling of atomic gas leads to pressures and temperatures at
which molecular gas can form. Following the formation of molecular
clouds, fragmentation of clumps create the so-called pre-stellar cores,
which act as seeds of star formation. This process poses one of the
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most difficult and challenging problems in physics. For instance, the
distribution of stellar masses in a newly forming region (called the ‘Ini-
tial Mass Function’, see chapter 6) remains an open problem as analytic
models cannot describe the complexity of the underlying processes, and
hydrodynamical simulations lack the necessary dynamical range to probe
these processes in detail.

From a phenomenological point of view, we make use of scaling rela-
tions backed by the observations that allow us to describe in simple terms
the process of star formation in galaxies. One of the most fundamental
scaling relations is the one between the star formation rate (SFR) and the
gas content. The SFR is found to follow a power law of either the volume
gas density (Schmidt law) or the surface gas density (Kennicutt law). For
instance, the latter is defined as follows:

�ψ

M�yr−1kpc−2 =1.6×10−4
( �gas

1M�pc−2

)1.4
. (1.8)

The power law index can be derived from a straightforward theoretical
argument: ψ ∝ ρgas/tdyn, where tdyn∝ ρ

−1/2
gas is the dynamical timescale

of collapse of the gas (see exercise 1.3). More recent observations sug-
gest this law is valid when the densities correspond to the molecular (not
atomic) gas.9

Figure 1.5 illustrates the overall link between the mass of a galaxy
and its formation history. The left panel shows the colour-mass diagram
of low redshift galaxies – colour can be used as a rough proxy for age,
with red colours ( g− r� 0.8) meaning old populations. At the massive
end, most galaxies – at late cosmological times – populate an elongated
region towards the red side (top of the figure) called the ‘red sequence’,
consisting of old stars. These are galaxies whose stellar component was
formed at early times. In contrast, low-mass galaxies are markedly blue,
populating a region called the ‘blue cloud’ and representing star-forming
systems. The panels on the right give a very schematic view of the inter-
play between the red sequence and the blue cloud. Mergers will induce
mass growth in galaxies. The ages of the stellar component reveal the age
of the progenitors that merge into a more massive system, as well as poten-
tial star formation, when the merger includes gas (black arrows, termed
‘wet mergers’). Mergers between galaxies that have no gas (white arrows,
‘dry mergers’) mix their stellar content without adding any younger com-
ponent. However, this picture is, alas, too simplistic. Incidentally, the
region between the blue cloud and the red sequence is called the ‘green
valley’, and it may hold valuable clues about galaxy evolution processes,
as it represents a transition stage from star-forming galaxies to quiescent
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Figure 1.5 Evolution of galaxies on the colour versus mass diagram.
The left panel shows the observed distribution of galaxies from the Sloan
Digital Sky Survey (https://www.sdss.org), coding the number dens-
ity of galaxies as a grey scale. The panels on the right give a number of
schematic trends of evolution, with black (white) arrows representing
gas-rich (gas-poor) mergers. (Source: adapted from Faber et al., 2007,
ApJ, 665, 265.)

systems. It is in the green valley where we expect the feedback-driven
processes that lead quenching to operate.

Feedback

The simple laws that relate the star formation activity in a galaxy to
the amount of gas – such as the Kennicutt law of equation 1.8 – also
depend on additional properties that can be encoded as a star forma-
tion efficiency. For instance, in its basic form, Schmidt’s law (ψ = νρ1.5

gas)
leaves a free parameter (ν) that relates to the efficiency of the process.
Various mechanisms can reduce the star formation rate, even if gas is
present. The most direct one is star formation itself: massive stars end
their lives as supernova explosions, releasing vast amounts of energy both
as a heat source and as ejected material ploughing through the gaseous
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Figure 1.6 The ratio between galaxy (stellar) mass and dark matter
halo mass is shown as a function of galaxy mass, at two different red-
shifts. The top horizontal line is the cosmological limit (≈ 1

6 ) derived
from the Planck 2015 cosmological parameters (see table 7.1).
(Source: adapted from Behroozi et al., 2010, ApJ, 717, 379.)

component that feeds star formation. Since star formation is a highly
clustered process, many supernova explosions can trigger a super-wind
that will drag substantial fractions of the gas into intergalactic space, in
a form of negative feedback (termed ‘stellar feedback’). A second feed-
back process involves the activity from a central Active Galactic Nucleus,
ejecting gas and heating the surrounding regions, in a similar way to the
above, and suppressing star formation.

One of the key figures that conveys the most fundamental issues of
galaxy formation (figure 1.6) compares the mass function of dark matter
halos (from numerical simulations of structure formation) with the ob-
served stellar mass function of galaxies. Making the assumption that one
can match the abundance of dark matter halos to galaxies (the former be-
ing hosts to the latter), it is possible to define the mass ratio between dark
matter halos and stellar mass in galaxies (this procedure is called ‘abund-
ance matching’). The figure shows that at both ends (massive galaxies
on the right and dwarf galaxies on the left), the mass ratio decreases,
suggesting that a mechanism must be present to reduce the efficiency
of conversion from gas into stars. Stellar feedback is believed to con-
trol the low-mass end, producing an increasing correlation of the ratio
with galaxy mass: lower mass galaxies will have shallower gravitational
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potentials, ejecting more gas, and therefore reducing the star formation
rate. In contrast, massive galaxies have stronger potential wells, mak-
ing stellar feedback less effective. AGN-driven feedback is supposed to
drive the negative correlation at the high-mass end, as the mass of the
SMBH – and therefore the energetic output from the AGN – will increase
with galaxy mass. Also note that at the peak of the trend, correspond-
ing to galaxies with stellar masses ∼3×1010M�, the ratio is about 4 per
cent, substantially lower than the ‘primordial’ ratio between baryons and
dark matter (∼16 per cent, top horizontal line). Moreover, galaxies at the
peak of the ratio do not have a vast amount of gas (or dust) to compensate
for this mismatch, suggesting that only a small fraction of the available
baryons is found in galaxies, with the remainder either not forming part
of the galaxy formation process or being ejected during the main forma-
tion phases. The redshift evolution, from the dashed line (at z=1) to the
solid line (at z=0.1) illustrates the significant growth in the dark mat-
ter halo at the massive end, without a comparative stellar mass growth –
another sign of the mismatch between the growth of dark matter halos
and galaxies.

Galaxy mergers and dynamical evolution

Dark matter halos (and their galaxies) interact among themselves, lead-
ing to a hierarchical growth process, whereby small structures – formed at
early times – lead to more massive structures via mergers. When halos of
a similar mass merge (major mergers), the gas in the progenitors is shock-
heated to the new equilibrium (virial) temperature of the newly formed
halo. Galaxies in the progenitor halos will also merge, producing a new
galaxy at the centre of the newly formed halo. When the mass ratio of
the halos is larger (minor merging), the merging may not be so effective,
keeping the galaxy from the small halo as a satellite. Merging processes
lead to morphological changes that strongly depend on the environment.
For instance, spheroidal galaxies, believed to form from major merging
processes, are more abundant in the higher density regions of clusters
than in the field. Massive galaxies are more compact at high redshift,
suggesting a substantial growth in size through galaxy mergers.

Internal dynamical effects may also play a role in the evolution
of a galaxy. Instabilities can redistribute mass and angular momentum,
changing the morphology of a galaxy. For instance, a thin disc with
a high surface mass density is susceptible to instabilities that produce
structures similar to those found in barred spiral galaxies. This process
will efficiently drive gas towards the centre of the galaxy, fuelling star
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formation or AGN activity. Once formed, a bar can buckle away from the
plane of the disc, to form a spheroidal object, called a ‘pseudo-bulge’,10

which should be distinguished from classic bulges, themselves formed
via mergers. Hence, the morphology of a galaxy can be driven either by
external mechanisms such as the merger history or by internal (secular)
processes.

Dynamical evolution introduces a characteristic timescale. In
exercise 1.3 we find that the collapse time of a gravitating system with
negligible internal kinetic energy is uniquely determined by its dens-
ity (assuming no other forces oppose gravity). The dynamical timescale
(tdyn∝ ρ−1/2) broadly introduces a lower limit on the duration of the
‘settling’ time that a galaxy undergoes after a dynamical event such as a
merger or sudden mass loss.

Exercise 1.3

The dynamical timescale can be defined by the time it would take
for a system driven only by gravity to collapse to a point (neg-
lecting the initial contribution from kinetic energy). We assume
each particle moves only under the gravitational potential of the
collapsing mass, neglecting any nongravitational effects or local in-
teractions with neighbouring particles. Show that this timescale
depends only on the density of the galaxy as follows:

tdyn=
√

3π
32Gρ

.

Note that for the Sun (ρ�= 1.4 g cm−3), this time is approximately
30 min, i.e., the time it would take to collapse if it suddenly trans-
formed into pressureless dust. This type of problem will reappear
in chapter 7 with Friedmann’s equations and the spherical collapse
model.

Chemical enrichment

The ‘primordial’ periodic table of the elements is comprised only of hy-
drogen (76 per cent), helium (24 per cent) and traces of lithium. The
phase of cosmological nucleosynthesis – when the temperature and dens-
ity are appropriate for an efficient processing of nuclei – happened a few
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minutes after the Big Bang, but it was not long-lived enough to allow for
the efficient creation of nuclei more massive than helium. The chemical
composition of galaxies is determined, instead, by stellar nucleosynthesis.
As stars evolve, new elements are synthesized in their hot and dense in-
teriors via either thermonuclear reactions in the core, neutron capture, or
explosive processes in the most massive stars. These elements are released
during the final stages of stellar evolution, contributing to the change in
composition (metallicity) of new generations of stars.

Hence, the evolution of the composition of stars with age (chem-
ical enrichment) constitutes an important tracer of the formation history
of a galaxy, as we will see in chapter 6. For instance, we can use the
metallicity of stars as a rough proxy of age: extremely metal-poor stars
are relics from the early formation phases of the Milky Way. However, the
efficiency of star formation can alter this result: the cores of massive ellipt-
ical galaxies feature high metallicity, but they are also very old, reflecting
a very intense process of formation that quickly enriched the interstel-
lar medium at early times. The positive correlation between galaxy mass
and its metallicity (measured both in the stellar populations and in the
gaseous component) can be explained via feedback processes that trigger
a metal-rich wind, preferentially removing material from the shallower
gravitational potential wells of lower mass galaxies.

Evolution of stellar populations

The stellar populations in galaxies feature a wide range of stellar mass,
age, and chemical composition. Observational data in the ultraviolet/
optical/infrared spectral window, covering approximately a wavelength
interval from 0.1 to 4 micron, allow us to study the underlying stellar pop-
ulations. Synthetic models combine our knowledge about stellar structure
and evolution, producing spectra for a choice of parameters (age, metalli-
city, initial stellar mass distribution, etc.).11 These models can be used to
backtrack the star formation histories of galaxies. Although fraught with
degeneracies inherent to the complexity of the population mixtures and
the severe overlapping of spectral features on the stellar atmospheres,
these models have allowed us to shed light on the connection between
various observational properties and the star formation histories of galax-
ies. For instance, it has been found that stellar mass is the dominant
driver of the overall formation history of elliptical galaxies, with massive
galaxies featuring an earlier and more intense process of formation,
whereas low-mass galaxies extend their formation over much longer
timescales.12
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1.4 Stellar clusters

Smaller than galaxies, stellar clusters are associations of stars with total
stellar mass below ∼106M�. They constitute sites of recent or past star
formation – watch out for a notation overload, as we also use the term
‘clusters’ to refer to galaxy clusters! The population of stellar clusters is
split into two main categories. (1) Globular clusters (GCs) are highly con-
centrated, spherical stellar systems whose trajectories do not follow the
disc. Dominated by old stellar populations with relatively low metallicit-
ies, GCs are formed during an early and intense period of star formation.
(2) Open clusters (OCs) are stellar associations found in the disc of the
galaxy. They represent sites of recent or ongoing star formation, and their
chemical composition is more evolved than that of GCs. As a stellar cluster
ages, the system dissolves into the general distribution of disc stars via
various mechanisms, induced mainly by tidal forces within the galaxy.
OCs are less massive than globular clusters (with stellar masses around a
few×103M�). GCs and OCs in our galaxy and nearby systems (most not-
ably the Magellanic Clouds) can be observed in detail. In distant galaxies
it is possible to observe GCs as unresolved sources, and they can be used
as dynamical tracers of the underlying gravitational potential. Moreover,
star-bursting galaxies feature super-star clusters, very massive and young
stellar associations that can be considered a young version of GCs.

1.5 A technical note on astronomical observations

Flux density (or irradiance) is the main observable of an astronomical
source. It is defined as the energy received per unit time and surface (as
in, e.g., the collection area of a telescope). Typical units are erg s−1 cm−2

(cgs). However, flux densities are often quoted as magnitudes on a logar-
ithmic scale:

m=Z−2.5 log F=Z−2.5 log
L

4πD2 , (1.9)

where Z=2.5 log F0 is the zero point, which corresponds to the flux of
a reference star that, by definition, has zero magnitude. Traditionally,
Vega (α Lyr), one of the bright stars in the (Northern) Summer triangle
has been used as reference (see below). D is the distance to the source,
and L is the luminosity (or power, energy emitted per unit time). In
the above equation, m is the apparent magnitude. In order to compare
the luminosities from sources located at difference distances, it is use-
ful to factor out the distance by defining the absolute magnitude (M) as
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the apparent magnitude that the same source would have if located at
a fixed, reference distance (d0=10 pc). Since the flux decays as 1/D2,
we have

M=m−5 log
D
d0

. (1.10)

The term 5 logD/d0 is called the ‘Distance Modulus’. This is a simple
expression where redshift and other cosmology-related effects are neg-
ligible. So far we did not take into account the fact that a source
emits photons over a range of wavelengths, according to some dis-
tribution (called the ‘spectrum’). We define F(λ) as the observed flux
density per unit wavelength, also called the ‘spectral irradiance’ (meas-
ured in, e.g., erg s−1 cm−2 Å−1). Alternatively, the spectrum can be
given per unit frequency, F(ν); a standard unit is the Jansky (1 Jansky=
10−23erg s−1 cm−1 Hz−1). Note that F(ν) �= F(λ), as one is measured per
unit frequency and the other is measured per unit wavelength. We can
relate both using dF= F(λ)dλ= F(ν)dν, so that

F(ν)= λ2

c
F(λ). (1.11)

The total, or bolometric, flux consists of energy from all wavelengths, or
frequencies: F= ´ F(λ)dλ= ´ F(ν)dν. In spectroscopy, the observations
are given as either F(λ) or F(ν). Another expression often used to describe
the spectrum is λF(λ), proportional to the number density of photons
received on a detector per unit time. In photometry, we usually define
the flux density passing through a filter with a transmission throughput
S(λ) as

FS=
´∞

0 F(λ)S(λ)dλ
´∞

0 S(λ)dλ
, (1.12)

from which we can determine the filter-specific apparent magnitudes, as
follows:

mS=ZS−2.5 log FS. (1.13)

For example, in the ultraviolet/optical/infrared windows, there are sets
of standard filters, such as those shown in table 1.1. The choice of ref-
erence star – which gives the ‘zero points’ ZS – defines the photometric
system used. In each one, the reference standard has, by definition, zero
magnitude through any passband. The most standard systems are:

1. VEGAMAG, where the reference star is Vega (αLyr);

2. AB, where the reference star has F(ν)=3, 631 Jansky, constant at all
frequencies;
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Table 1.1 Some of the standard photometric passbands, showing the central
wavelength (λ0) and the full width at half maximum (�λ) of the transmission
function. For reference, we include the absolute magnitude of the Sun (M�).
Note that the apparent magnitude of the Sun from the Earth’s position in the
V band is V� =−26.74.

Filter U B V R I J H K

λ0(Å) 3650 4400 5500 7000 9000 12500 16500 22000
�λ(Å) 680 980 890 2200 2400 3800 4800 7000

M� +5.61 +5.48 +4.83 +4.42 +4.08 +3.64 +3.32 +3.28

3. STMAG, for which the reference star has F(λ)=3.631×10−9 erg s−1

cm−2 Å−1, constant at all wavelengths.
A colour index (or ‘colour’, in short) is defined as the ratio of flux densities
of the same source, when observed through two different filters. In the
logarithmic magnitude scale, the colour is therefore the difference of the
magnitude in each of the filters; for instance,

U−V≡mU −mV =MU −MV =2.5
(

log
LV
LU
− log

L0
V

L0
U

)
, (1.14)

where the 0 superindex refers to the reference star in a given photomet-
ric system. We use luminosities in this expression because the ratios of
fluxes and luminosities should be the same. The colours of astrophysical
sources provide useful information about their properties: the temperat-
ure of a star, the age and chemical composition of a stellar population, or
the redshift of a distant galaxy. Colours contrasting different wavelength
regions are sensitive to specific properties of the stellar populations or
the gas and dust content. We can interpret a set of photometric colours
as the low-resolution equivalent of a spectrum. Indeed, many studies
are based on fluxes covering a large set of passbands that jointly provide
a (multicolour) spectral energy distribution. The spectral resolution is
R≡ λ/�λ, where λ is the (average) wavelength of the observation and
�λ is the width of the passband (commonly quoted as the full width
at half maximum of the spectral response function). From table 1.1 we
find that typical broadband photometric studies have an effective resol-
ution around R∼5. This is equivalent to smoothing the spectra shown
in figure 1.2, reducing each spectrum to just five fluxes within the same
wavelength interval. Although spectroscopy provides much more detailed
information about galaxies, broadband photometry allows us to probe
deeper, as we collect all the photons within the response of the filter into
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a single ‘bin’. The standard approach in observational work is to survey
and select interesting targets with photometry, following up a targeted
set with spectroscopy, where the typical spectral resolution adopted when
observing galaxies lies between R = 500 and 5,000. As a compromise, one
can use medium-band or even narrow-band filters to increase the spec-
tral resolution of photometric measurements (no higher than about 100
or 200) but allowing us to reach deeper than with spectroscopic obser-
vations. Note that the dynamical state of galaxies introduces a velocity
dispersion of the stellar component σ � 50 km s−1. Therefore, a spectral
resolution above R= c/σ ∼6, 000 is less useful for the analysis of, say, ab-
sorption line features originating in stellar atmospheres. Such a natural
resolution limit imposed by the motion of stars in galaxies complicates,
for instance, the study of detailed line strengths, which appear heavily
blended in the spectra of galaxies with respect to data from individual
stars.

Exercise 1.4

Consider two filters with a top-hat spectral response as shown in
the figure. Compute the colour S1− S2 for a star with a spectrum
F(λ)= k, where k is a constant. Use the AB photometric system.

Notes

1 Baldwin, Phillips & Terlevich, 1981, PASP, 93, 5.
2 Caon, Capaccioli & D’Onofrio, 1993, MNRAS, 265, 1013.
3 Conselice, 2014, ARA&A, 52, 291.
4 Huertas-Company et al., 2015, ApJS, 221, 8.
5 Kennicutt, 1998, ARA&A, 36, 189.
6 Pasquali, 2015, Astronomische Nachrichten, 336, 505.
7 Gültekin et al., 2009, ApJ, 698, 198.
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8 However, the cornerstone Gaia mission of the European Space Agency has
shattered traditional measurements of parallax, with accuracies down to
24 micro-arcseconds.

9 Bigiel et al., 2011, ApJ, 730, L13.
10 Kormendy & Kennicutt, 2004, ARA&A, 42, 603.
11 Vazdekis et al., 2012, MNRAS, 424, 157.
12 Thomas et al., 2005, ApJ, 621, 673.
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2
The classical theory of gravitation

The Newtonian theory of gravitation is presented here, along with the
most fundamental equations. We will begin with Kepler’s problem, the
simplest case of a gravitational system. The centrepiece of classical gravity
as a field is Poisson’s equation, which relates the mass density distri-
bution with a scalar function (potential) from which the forces (and
hence the dynamical evolution) can be followed. Variations of this field
equation are found in many other areas of physics, including electro-
dynamics and general relativity. The concept of gravitational potential
energy is presented. The importance of the potential/density relation is
stressed in the chapter. Simple cases of potential theory are explored:
point mass, leading to solar system dynamics; the isothermal sphere,
often used to describe galaxies; the homogeneous sphere, which gives
a good representation of the central region of our Galaxy; and more
generic cases frequently used to describe the density profile of galax-
ies and dark matter halos. The projection of a volume density into
an (observed) two-dimensional distribution is discussed, along with its
inverse.

2.1 Gravitational force

The dominant force in the evolution of galaxies is gravitation. Over the
lengthscales and densities typically found in galaxies, a Newtonian ap-
proach is well justified. Only in chapter 7 will we consider general relativ-
ity to follow the growth of density fluctuations in the framework of an
expanding Universe. In its simplest form, the gravitational force on a mass
m1, exerted by a second mass, m2, separated by a radius vector 
r12 (with
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origin at m1) can be written


F12=−Gm1m2

r3
12

r12, (2.1)

where G is the gravitational constant. This book deals with the role of this
fundamental force in the formation and evolution of galaxies. We simplify
the analysis by neglecting other mechanisms such as gas-related phys-
ics, energy loss due to electromagnetic interations or effects of two-body
collisions. The latter will be justified in the next chapter.

Since forces from different sources can be added linearly, we can
write the net gravitational force on mass m1 exerted by a distribution of
masses {mi} as


F1=−Gm1
∑
i�=1

mi
r1i

r3
1i
→Gm1

˚ 
r′ − 
r
|
r′ − 
r|3 ρ(
r′)d3r′, (2.2)

where the second expression takes the system to the limit of a continuous
distribution, defined by a mass density ρ(
r). An important simplifica-
tion can be invoked if the distribution of mass is spherically symmetric:
ρ(
r)= ρ(r). If the test particle, m1, is located at a distance r from the
centre of symmetry, we find that all the contributions to the net force from
the mass outside r cancel out, leading to


F1=−Gm1

r2 
er
ˆ r

0
ρ(s)4πs2ds. (2.3)

Therefore, a test particle moving in a circular orbit with radius r around
such a distribution of matter will have an orbital speed of

v2
c (r)=

GM(< r)
r

= 4πG
r

ˆ r

0
ρ(s)s2ds. (2.4)

Although stars in galaxies have a wide range of orbital shapes, this simple
scaling relation is a powerful tool to give us an order of magnitude estim-
ate, relating speed, mass and size. For instance, the Sun moves with an or-
bital speed∼220 km s−1 around the Galactic centre, located∼8 kpc away
(∼2.5×1020 m). Therefore, an order of magnitude guess for the Galactic
mass is Mglx∼9.1×1010M� (where M� =2×1030 kg is the mass of the
Sun), which is in the right ballpark. Hereafter, it may help to remem-
ber the value of the gravitational constant, G, in units more suitable for
the analysis of galactic systems: G=4.3×10−6 kpc(km/s)2/M�. It is also
convenient to know that a speed of 1 km/s is approximately 1 pc/Myr.

28 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



2.2 The Kepler problem

The simplest case of a gravitational system is the Kepler problem, con-
sisting of a star with mass ms at position 
rs and a planet with mass mp at
position 
rp. The forces acting on star and planet are, respectively:

ms
̈rs=G
msmp

|
rs−
rp|3 (
rp−
rs)

mp
̈rp=−G msmp

|
rs−
rp|3 (
rp−
rs)

⎫⎪⎪⎬
⎪⎪⎭

. (2.5)

Hereafter, we follow the standard notation using a dot (two dots) over
a quantity to denote its first (second) time derivative (e.g. ẍ= d2x/dt2).
If we subtract one equation from the other, and define the relative vec-
tor separation as 
r≡
rp−
rs, we simplify the two-body problem to a single
gravitating system with mass M=ms+mp:


̈r=−GM
r3 
r =⇒ 1

2

̇r2− GM

r
= constant≡ E, (2.6)

where the second part is obtained by multiplying both sides by 
̇r and
then integrating with respect to time. This first integral represents en-
ergy conservation. A second conserved quantity can be obtained from the
definition of angular momentum (per unit mass):


�≡
r×
̇r =⇒ 
̇�=
̇r×
̇r+
r×
̈r=0, (2.7)

which cancels for any central force (i.e., as long as the acceleration is
aligned with the radius). Therefore 
� is a constant vector, and there is no
loss of generality if we assume the whole trajectory to be confined on the
XY plane, so that the total angular momentum is: 
�= �êz, with � a con-
stant. Noting that � is the area of the parallelogram spanned by 
r and 
̇r,
we arrive at Kepler’s second law: The radius vector joining the star with the
planet sweeps out equal areas during equal intervals of time. The area swept
per unit time is dA/dt= �/2. Using cylindrical coordinates (R, θ , z) allows
us to write the energy (per unit mass) as

E = Ṙ2

2
+eff(R), where eff(R)= �2

2R2 −
GM
R

. (2.8)

Note this is an equivalent one-dimensional problem involving the radial
distance from star to planet.
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Exercise 2.1

Show that the orbit in a Keplerian potential can be obtained by in-
tegrating equation 2.8 with respect to the azimuthal angle θ , and
defining u≡1/R, so that Ṙ=−�du/dθ , leading to

R= α

1+ e cos θ
,

which corresponds to a conic section with eccentricity e:

e=
√

1+ 2E�2

G2M2 ,

and α= �2/GM is the semilatus rectum, directly related to the size
of the orbit, α= b2/a, where a and b are the semi-major and semi-
minor axes of the conic section, respectively.

Exercise 2.1 confirms Kepler’s first law – The orbit of the planet is a conic
section with the star at one of the two foci – adding to it how the orbital
parameters are related to the mass of the star and the energy and angular
momentum of the orbit. Finally, for a closed orbit, we can derive its period
either by integrating the energy equation (2.8) with respect to time, or by
using Kepler’s second law, noting that the area of an ellipse is πab (see
exercise 2.1), and that therefore the period is: τ =2πab/�=2πa

√
αa/�,

where substituting α with respect to mass and angular momentum gives

GM=ω2a3, (2.9)

where ω=2π/τ is the angular frequency. Equation 2.9 is the mathe-
matical expression of Kepler’s third law:1 The square of the orbital period
of the planet is proportional to the cube of the semi-major axis of its orbit.
Moreover, we directly relate this period-orbital size relation to the mass
of the system.

We can use the effective potential, defined in equation 2.8, to il-
lustrate the expected shape of the orbits. The Kepler problem produces
orbits that are conic sections. The type of orbit depends on the initial
conditions – that is, the position and velocity given to the planet ‘in the be-
ginning’. We can use an energy-based argument to determine these orbits.
Note that equation 2.8 corresponds to a one-dimensional case, namely,
following the radial distance from the planet to the star. In addition, the
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Figure 2.1 Kepler’s orbits and the gravitational potential. The bottom
panel shows the effective potential for a choice of angular momentum
(�2=2GMR0/5), and three possible types of orbits defined by the total
energy: E1, E2 and E3. The orbit for each case is shown in the top three
panels.

conserved angular momentum gives us the azimuthal component, via:
θ̇ = v⊥/R= �/R2. Figure 2.1 shows the effective potential for a specific
choice of angular momentum, and three possible cases for the total en-
ergy: E1, E2, E3. Noting that the kinetic energy term is positive definite, we
find that at the minimum (E1) there is only one possible radial distance,
so that the planet describes a circular orbit with constant speed (and zero
eccentricity, i.e., E1=−G2M2/2�2). In the region E1 < E< 0, the planet
is also bound, this time between an aphelion and a perihelion, tracing an
elliptical orbit. If E> 0, the orbit corresponds to a hyperbola, and at the
limiting case E=0, the planet traces a parabola (with eccentricity e=1).

Exercise 2.2

Find the equivalent of Kepler’s three laws of motion if the gravita-
tional force were to behave like a simple harmonic oscillator; i.e.,
substitute equation 2.1 with


F12=−Gm1m2
r12.
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2.3 Potential theory

The gravitational force is a vector field: at each point in space, the ac-
celeration on a test particle is uniquely described by a vector. The grav-
itational potential is a scalar function that provides the same amount of
information as the vector field, and it is defined as

(
r)≡−G
˚

ρ(
r′)
|
r′ − 
r|d

3r′. (2.10)

One can show that at each point in space, the gradient of this scalar func-
tion produces a vector field equivalent to the gravitational force. By using
the expression


∇
r
(

1
|
r′ − 
r|

)
= 
r

′ − 
r
|
r′ − 
r|3 , (2.11)

we can write the gravitational force on a test particle with mass m as


F(
r)
m
=−
∇
r(
r). (2.12)

Moreover, we can derive a field equation that relates the gravitational
potential to the mass density. Taking the divergence of equation 2.12:


∇
r ·
( 
F
m

)
=G
˚

∇
r ·

( 
r′ − 
r
|
r′ − 
r|3

)
ρ(
r′)d3r′, (2.13)

and using the following identity:


∇
r ·
( 
r′ − 
r
|
r′ − 
r|3

)
=− 3
|
r′ − 
r|3 +

3(
r′ − 
r) · (
r′ − 
r)
|
r′ − 
r|5 , (2.14)

we note that this expression vanishes when |
r′ − 
r| �=0, so that any contri-
bution to the integral must come from an infinitesimal volume around 
r′ =

r. Therefore, we restrict the volume of integration to a small sphere at 
r′ =

r with radius h→ 0. Within the infinitesimal volume of integration, we
can swap 
r and 
r′ in the gradient operator, allowing us to apply the diver-
gence theorem, and changing the volume integral into a surface integral:


∇
r ·
( 
F
m

)
=−Gρ(
r)

‹

|
r′−
r|=h
(
r′ − 
r) · d2
S
|
r′ − 
r|3 . (2.15)
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On the sphere, the surface element is related to the solid angle element
by d2
S= (
r′ − 
r)hd2�, and therefore


∇
r ·
( 
F
m

)
=−Gρ(
r)

‹
d2�=−4πGρ(
r). (2.16)

If we write the divergence of the force with respect to the scalar potential,
we arrive at the gravitational field equation:

∇2(
r)=4πGρ(
r), (2.17)

also called ‘Poisson’s equation’. Note this equation provides a direct link
between the source of the field (the density distribution) and the grav-
itational forces, described by (
r). This is the Newtonian equivalent
of Einstein’s general relativistic equation – Gμν =8πGTμν – linking the
field (through the geometric tensor, Gμν) to the mass-energy distibution
(through the stress-energy tensor, Tμν).

Newton’s theorems

Two theorems proved by Newton for spherically symmetric mass distribu-
tions provide a simple way to solve for the gravitational potential. The first
theorem states that the gravitational force on a test mass inside a spher-
ical shell with constant surface density is zero. The second theorem proves
that the force on a test mass outside this shell is the same as if the whole
shell mass were reduced to a point mass at the centre.

There are several ways to solve the theorems. Let us consider a
test point mass P, inside the shell. Figure 2.2 shows how to solve it via
solid angles. We compute the gravitational force exerted by the masses
within two opposite and infinitesimal regions of the shell, which sub-
tend the same solid angle d�. When � is defined as the (constant)
surface mass density of the shell, the mass from each of these two op-
posed regions is dm1=�r2

1d�/ cos θ and dm2=�r2
2d�/ cos θ . Note the

angles are the same, as the triangle formed by the centres of these two
mass elements and the origin is isosceles. Hence, the forces per unit
mass are

F1

m
= dm1

r2
1
= �d�

cos θ

F2

m
= dm2

r2
2
= �d�

cos θ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.18)
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Figure 2.2 Solution to Newton’s theorem, using a simple geometric
argument. Note that at an arbitrary point, represented by P, the solid
angles subtended by dm1 and dm2 are equal.

Since they have the same magnitude and opposite direction, they will
cancel out. Integrating throughout all solid angles, we obtain a net zero
force.

We can solve the second theorem by invoking Gauss’s law, mak-
ing the assumption that, because of the spherical symmetry of the mass
distribution, the potential (or the magnitude of the force) can depend
only on the radial distance r. Choosing a spherical surface S, at dis-
tance r from the origin, enclosing a volume, V, that includes the shell,
we find

‹

∂S(r0)


F(r) · d 
�=
˚

V(r0)


∇ · 
F(r)dV =−
˚

V(r0)

∇2(r)dV =

=−4πG
˚

V(r0)

ρ(r)dV =−4πGM,

(2.19)

where we also apply Poisson’s equation (2.17). Since the force at S is the
same in magnitude, we obtain F(r)=GM/r2, as expected if all the mass of
the shell were located at the origin.
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Exercise 2.3

Show that Newton’s first theorem can be solved by integrating
throughout the spherical shell. An alternative method involves
showing that the gravitational potential inside any point inside the
shell is constant.

2.4 Gravitational potential energy

We have seen in section 2.3 that the gravitational scalar potential gives a
complete description of the force vector field, via 
F=−
∇. Such a result
implies that the work involved in moving a test particle along a closed
orbit (C) should be zero:

Work=
˛

C

F · d
r=

¨

S
( 
∇ × 
F) · d
S=−

¨

S
( 
∇ × 
∇) · d
S=0, (2.20)

where we have applied Stokes’s theorem to the line integral and used the
fact that the curl of a gradient must vanish. This property characterizes
conservative forces and allows us to derive the gravitational potential en-
ergy. Let us assume we have a point mass m at the centre of coordinates,
and we bring another mass m from infinity, assumed to be initially at rest.
The net change in total energy will be the work done to bring that particle
close to the mass at r=0, namely:

Work=
ˆ

F · d
r=

ˆ r

∞
Gm2

r2 dr=−Gm2

r
=�E, (2.21)

where we assume the particle’s final position at radial distance r from the
origin. This net change of energy can be associated with an increase in
the gravitational potential energy: �E= Work. If we do the same with
an ensemble of masses, we have to add the pairwise contributions to the
energy change, making sure we do not count twice the same pair, namely:

W=−Gm2

2

∑
i�=j

1
rij
= 1

2

∑
i

m(
ri), (2.22)

where we follow the standard notation using W as the gravitational
potential energy, and define rij as the separation between the ith and the
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jth mass. The second part of the equation takes advantage of the definition
of the gravitational potential seen by the ith particle. This expression can
be extended to a continuous distribution of mass by replacing the sum
with a volume integral, using densities instead of masses:

W= 1
2

˚
ρ(
r)(
r)d3r. (2.23)

Based on dimensional grounds, it is often useful to write this expression
with respect to the total mass of the system (M) and some estimate of its
size (R):

W=−γ GM2

R
, (2.24)

where the so-called fudge factor (γ ) is just a numerical value, typically
not very different from 1.

Exercise 2.4

Show that the gravitational potential energy of a sphere with mass
M, radius R, and constant density is

W=−3
5
GM2

R
.

Assuming that the solar luminosity L� ∼4×1033 erg s−1 is caused
by a slow contraction of the star releasing gravitational potential
energy into heat, derive the expected lifetime of the Sun, and
contrast your result with its current age∼4.5 Gyr.

2.5 Potential/density pairs: A few fundamental cases

Poisson’s equation (equation 2.17) implies that for any mass distribution,
we can define a gravitational potential from which the force on a test mass
can be obtained. It is useful to define below a set of density-potential pairs
that will be very relevant to galaxy dynamics. We assume here spherical
symmetry. Moreover, it is also practical to derive the radial dependence of
the orbital speed of a test mass in a circular orbit. One of the key observ-
ables in galaxies and stellar clusters is the velocity field, from which we
can derive a large amount of information about the underlying potential.
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The circular speed gives us a good order of magnitude estimate, and in
systems where the kinetic energy is dominated by rotation – such as disc
galaxies – it allows us to probe the mass distribution.

Point mass: This is the Kepler problem described above, for which the
density-potential pair is

ρ(r)=Mδ(r)←→(r)=−GM
r

, (2.25)

from which we derive an orbital speed v2(r)=GM/r, which corresponds
to the characteristic orbital speeds of planets in the solar system (where
M≈M�). This is also the typical velocity profile of matter (gas and stars)
moving close to a supermassive black hole, as found in the centres of
galaxies. A Keplerian profile is a telltale signature of a highly concentrated
distribution of mass.

Homogeneous sphere: The density/potential pair for a sphere with
radius a and constant density ρ0 is

ρ(r)= ρ0H(a− r)←→(r)=

⎧⎪⎪⎨
⎪⎪⎩
−2πGρ0(a2− 1

3
r2) r≤ a

−4πGρ0a3

3r
r> a.

(2.26)

The orbital speed inside the mass distribution rises linearly with radius
v= r
√

4πGρ0/3, switching over to a Keplerian profile at r> a. Inside the
sphere, the potential is equivalent to a three-dimensional harmonic oscil-
lator, with the same spring constant along the three directions, and an
associated period: τ =√3π/Gρ0. Note that the dynamical timescale of a
gravitational system is tdyn∝

√
1/Gρ.

Isothermal sphere: An isothermal sphere is a density distribution often
encountered in gravitating systems. We will see in chapter 3 that it corres-
ponds to the galaxy dynamics equivalent of a system in thermodynamic
equilibrium (although there are substantial differences, as we will see in
that chapter). The density/potential pair is

ρ(r)= ρ0

( r
a

)−2←→(r)=4πGρ0a2 ln(r/a), (2.27)

and the orbital speed is v2
c =4πGρ0a2, i.e., constant. Both the potential

and the total mass diverge at large radii. A more realistic version of this
case involves a truncated profile, where the density vanishes at r> a, and
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the total mass is therefore M=4πρ0a3, with the potential outside the
sphere being Keplerian: (r> a)=−GM/r.

Exercise 2.5

A slight variation of the isothermal sphere is the Jaffe model, where
the gravitational potential is given by

(r)=4πGρ0a2 ln
(

x
1+ x

)
,

and x≡ r/a. Show that the density of this model is

ρ(r)= ρ0
1

x2(1+ x)2 ,

and the total mass is M=4πρ0a3.

NFW profile: The first computer simulations of galaxy formation ex-
plored the growth of structure under a gravitational potential in an ex-
panding Universe. As we will see in chapter 7, small density fluctuations
grow under gravity, creating stable (virialized) structures called ‘halos’.
The numerical simulations appeared to settle into a universal density
profile, termed ‘NFW’ after the authors of the seminal work.2 An NFW
distribution is defined by a total (virial) radius (rVIR), a scale radius (a),
and a central density ρ0, giving the following density/potential pair:

ρ(x)= ρ0

x(1+ x)2 ←→(x)=−4πGρ0a2

x
ln(1+ x), (2.28)

where the dimensionless radial coordinate: x≡ r/a. The circular speed in
this potential is

vc(x)= 4πGρ0a2

x

[
ln(1+ x)− x

1+ x

]
. (2.29)

The logarithmic slope γ ≡ d(ln ρ)/d ln r of the NFW profile goes from −1
at r→ 0 to −3 at r→∞. At the scale length r= a, the slope reaches the
value of the isothermal slope, γ =−2. Note that since the density scales
like ρ∝ r−3 at large radii, the cumulative mass diverges logarithmically.
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Therefore, we also need to truncate the distribution. The outer radius is
commonly defined as the virial radius, i.e., the region within which all
particles are bound in virial equilibrium (see section 3.9). The dimen-
sionless concentration parameter (c) is defined as the ratio between the
virial radius and the scale radius. This is one of the most studied dens-
ity distributions, given its relevance in the study of dark matter halos. An
alternative definition includes free parameters for the behaviour at small
and large radii in the so-called generalized NFW profile:

ρ(x)= ρ0

xα(1+ x)β
, (2.30)

where (α, β)= (1, 2) reduces to the NFW profile, (2, 0) gives the iso-
thermal sphere, and (2, 2) is the Jaffe model presented in exercise 2.5.

Hernquist profile: A similar density distribution was proposed to explain
the mass distribution in elliptical galaxies.3 In this case, we have

ρ(x)= ρ0

x(1+ x)3 ←→(x)=−2πGρ0a2

1+ x
. (2.31)

The two-dimensional projection of this density profile follows quite
closely the standard de Vaucouleurs (R1/4) surface brightness profile, as-
suming a constant M/L ratio. The logarithmic slope changes from −1 to
−4; therefore the total mass of the distribution is finite (M=2πρ0a3), as
the density decreases faster than the volume at large radii. The circular
speed is

v(x)=
√
GM
a

x1/2

1+ x
. (2.32)

Plummer sphere: This potential is especially important in numerical sim-
ulations of dynamical systems, where the parameter λ (softening length)
eliminates the problem of numerical divergence when computing the po-
tential for small values of r. In this case, λ defines the resolution limit in
the calculation of gravitational forces. The density/potential pair is

ρ(r)=
( 3M

4πλ3

)(
1+ r2

λ2

)−5/2

←→(r)=− GM√
r2+ λ2

(2.33)

Note that as λ→ 0, the Plummer sphere resembles a Keplerian profile. At
small radii (r� λ), the model mimics the inside of a sphere with constant
density.
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King profile: This model is often adopted to describe the mass distribu-
tion of stellar clusters, elliptical galaxies and even galaxy clusters. It gives
a good fit to a numerical method that assumes a Maxwellian velocity dis-
tribution along with a simple prescription to take into account the ejection
of stars moving quickly enough to become unbound (see section 8.4):

ρ(r)= ρ0

[
1+

(
r
rc

)2
]−3/2

←→

(r)=0+4πGρ0r2
c

[
1− sinh−1

(r/rc)
(r/rc)

]
. (2.34)

Yukawa potential: The Yukawa potential is defined as the Keplerian case
with an exponential cutoff over a lengthscale r0, namely:

ρ(r)=−GM
r2

0r
e−r/r0←→(r)=−GM

r
e−r/r0 . (2.35)

The Poisson equation for this case gives a negative density! This merely
states that such a mass distribution that results in exponentially decay-
ing forces at large distances cannot be accommodated in gravitation; i.e.,
the force of gravity cannot be screened. We will see in chapter 3 that
this is one of the main reasons why we can consider the motion of a star
within a large ensemble as produced by the gravitational potential pro-
duced by the general distribution of stars. The Yukawa potential gives a
valid description of weak interactions (as in those felt by neutrinos4).

Notice that in many of the potentials presented here, the density pro-
file diverges at small radii. This does not cause a divergence in the amount
of mass in the central region, as long as the rate of increase of the dens-
ity is slower than the decrease of volume as r→ 0. However, divergent
central densities (cusps) may be erased by other mechanisms, such as
the infall of smaller structures (mergers), creating a flatter distribution: a
core. The core-cusp dilemma in galaxy halos is one of the open problems
today.

Exercise 2.6

Find the circular velocity profile of the last three cases (Plummer,
King, Yukawa).

40 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



Figure 2.3 Projection of a spherical distribution onto a two-
dimensional (observer) plane.

2.6 Two-dimensional projection

A comparison of a density distribution with an observed galaxy or cluster
involves the projection of the three-dimensional volume mass density into
a two-dimensional surface mass density (or a deprojection if going from
the observational to the theoretical data). To transform mass into light
(needed when contrasting models with observational data), we need to
include the mass to light ratio, ϒ ≡M/L. One typically assumes a simple
scaling of ϒ with respect to the galactocentric radius. Let us consider here
the simple case of a spherical galaxy with constant densityρ(r)= ρ0 inside
r< r0, vanishing outside. We need to integrate along the line of sight (fig-
ure 2.3) to write the 2D surface brightness, �(R), as a function of the 3D
density, ρ(r):

�(R)=
ˆ +∞

−∞
ϒ−1(r)ρ(r)dz=

ˆ r0

R

2rρ(r)

ϒ(r)
√
r2−R2

dr= 2ρ0

ϒ0

√
r2

0−R2.

(2.36)

The last step makes the approximation of a constant mass-to-light ratio
throughout the galaxy. The inverse process, i.e., the deprojection from a
2D surface brightness profile to a 3D mass density distribution, can also be
obtained by considering that equation 2.36 describes an Abel transform
that can be inverted as follows (assuming a constant ϒ):

ρ(r)=−ϒ0

π

ˆ ∞

r

d�
dR

dR√
R2− r2

. (2.37)
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Of course, in practice, this expression may not be practical if the data
are too noisy or the assumption of some level of symmetry is unreal-
istic. One useful pair of 2D/3D distributions corresponds to the modified
Hubble law:

�(R)
�0
=

[
1+

(
R
r0

)2
]−1

←→ ρ(r)
ρ0
=

[
1+

(
r
r0

)2
]−3/2

, (2.38)

where �0=2ρ0r0/ϒ0. Note that at large radii, the surface brightness de-
creases as∝R−2 and the mass density scales like∝ r−3. In either case, the
integrated quantity diverges logarithmically.

Exercise 2.7

Consider a galaxy described by a spherically symmetric Hernquist
profile (equation 2.31), and assume a constant mass to light ra-
tio, ϒ . Show that the two-dimensional projected surface brightness
of this galaxy is

�(y)= M
ϒ2πa2

(y2+2)F(y)−3
(1− y2)2 ,

where y≡R/a, and R is the projected radial coordinate, and

F(y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
1− y2

sech−1y, for 0≤ y≤1

1√
y2−1

sec−1y, for 1≤ y<∞.

Notes

1 Aptly called Kepler’s ‘1-2-3’ law in Misner, Thorne & Wheeler, 1973, Gravitation,
W. H. Freeman.

2 Navarro, Frenk & White, 1997 ApJ, 490, 493.
3 Hernquist, 1990, ApJ, 356, 359.
4 E.g., Bettini, 2008, Introduction to elementary particle physics, Cambridge.
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3
A statistical treatment of
stellar systems

A many-body gravitational problem – involving millions or even billions
of stars – cannot be solved in the same way as the standard two-body
problem. A statistical treatment is required, following an analogy between
thermodynamics and statistical physics. The concept of phase space and
the distribution function is fundamental to a statistical description of a dy-
namical system. This treatment is valid for stellar systems because of the
nature of gravity and the characteristic densities in these systems, which
lead to a long relaxation time, a concept that will be explored in some de-
tail here. The main equation that governs the evolution of the distribution
function in a system made up of stars (or dark matter particles) is the colli-
sionless Boltzmann equation (CBE). Simplifications to the CBE arise from
symmetries of the system (similarly to Noether’s theorem in theoretical
physics), leading to the concept of isolating integrals and Jeans theorem
and allowing us to describe the distribution function in terms of a reduced
set of variables (the isolating integrals themselves). Simple cases are dis-
cussed with spherical and axial symmetry. A more pragmatic approach to
the CBE involves taking moments of velocity, leading to Jeans equations,
a fundamental workhorse in stellar dynamics. A brief glimpse of the con-
sequences of perturbatively removing the collisionless behaviour of stars
is presented, with dynamical friction being one of the most representative
effects.

3.1 Phase space

Since the evolution of a dynamical system is governed by a second order
differential equation of the position with respect to time (i.e., 
F=m
̈r),
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there are two boundary conditions, say at some reference time (t0): on
the position 
r(t0), and on the velocity 
v(t0)=
̇r(t0). Therefore, the evol-
ution can be traced in phase space, comprised of position and velocity
(or linear momentum). Phase space is therefore six dimensional. Let us
consider an example of one-dimensional motion subject to a simple har-
monic potential: (x)= 1

2kx
2. The solution to the equation of motion of

a particle of mass m in this potential is

x(t)=A sin(ωt+φ0)

ẋ(t)=Aω cos(ωt+φ0)

}
, (3.1)

where the angular frequency is ω2= k/m; A is the amplitude of the os-
cillations; and φ0 is a phase term that depends on the initial position and
velocity of the mass. The trajectory in the corresponding two-dimensional
phase space is an ellipse. Each ellipse has a unique value of the (con-
served) energy, E=mA2ω2, and the trajectories corresponding to differ-
ent values of the energy do not cross, creating a nested set of ellipses that
cover all of phase space. This is an important concept that will be exploited
when we discuss Jeans theorem below.

Exercise 3.1

Find the trajectories in phase space of closed orbits in the Kepler
problem (see section 2.2). Simplify the 4-dimensional parameter
space – we can neglect motion along the z-axis – by plotting sub-
spaces (R,Ṙ) and (θ ,θ̇).

3.2 The distribution function

Now we change from a single star moving under a potential, to a many-
body system comprised of multiple stars. One can study the evolution of
all the stars in phase space by creating a complex set of trajectories. We
define the distribution function – f(
r, 
v; t) – as the number of stars located
within some differential volume element in phase space (dτ = d3rd3v),
at some time, t (hereafter, we use DF to refer to the distribution func-
tion). After normalization, the distribution function can be considered a
probability distribution in phase space. For instance, we define the spatial
number density of stars as
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ν(
r; t)≡
˚

f(
r, 
v; t)d3v. (3.2)

Moreover, we can define observables such as the average velocity as

〈
v(
r; t)〉≡ 1
ν(
r; t)

˚
f(
r, 
v; t)
vd3v, (3.3)

or the velocity dispersion (via the variance) as

σ 2
v (
r; t)≡〈v2(
r; t)〉− 〈
v(
r; t)〉2

= 1
ν(
r; t)

˚
f(
r, 
v; t)v2d3v−〈
v(
r; t)〉 · 〈
v(
r; t)〉. (3.4)

These will be useful quantities that can be compared with observations.
For instance, the projection of the average velocity can be extracted from
spectroscopic observations of galaxies, where the spectral lines appear
differentially offset depending on their bulk motion, due to the com-
bination of Doppler-shifted lines for every star in the system. Likewise,
the velocity dispersion can be inferred from the widths of the spectral
lines. Most of the time, we assume a steady state, where the distribution
functions and all the averaged quantities do not have any explicit time
dependence.

3.3 Relaxation time

There is a direct analogy between the motion of stars in a galaxy and the
motion of particles in a fluid, say, e.g., molecules of nitrogen in a room.
Although it is possible to envisage the trajectory of a molecule in phase
space, the number of collisions (understood as interactions with other
molecules that affect its dynamical state) is so numerous that after a very
short timescale, these interactions have completely altered its initial dy-
namical state. This process, called ‘relaxation’, affects all molecules and
erases all information about their initial dynamical state. This is the main
reason why it is relatively simple to deal with a complex system made up of
a large number of particles as a macroscopic (thermodynamic) ensemble.
In a relaxed system, energy equipartition is achieved, and, in terms of
the central limit theorem, the distribution function of energies can be de-
scribed as a Gaussian distribution, with a simple parameter that controls
its width:

f(
r, 
v)∝ e−
mv2
2kT . (3.5)

A STAT IST ICAL TREATMENT OF STELLAR SYSTEMS 45



Figure 3.1 Computing the relaxation time: simplified (rectilinear)
trajectory of a star-star encounter.

This is the Maxwell-Boltzmann distribution. The single parameter
that uniquely defines this system, temperature, enables us to wholly
describe its properties. Is it possible to extend this treatment to the dis-
tribution of stars moving in a galaxy? To answer that question, we need
to consider the relaxation timescale in typical gravitating systems.

We can address this problem by studying the trajectory of a star (S1)
moving in the galaxy. We begin with a single encounter with another star,
S2 (figure. 3.1). Both stars have mass m. The point of closest approach,
b, is termed the ‘impact parameter’. We assume here that the deflection
angle is small, so that the trajectory is approximately a straight line. The
gravitational force of S2 on S1 is decomposed into longitudinal and tan-
gential components. There is a net change in the tangential component of
the velocity from the force:

F⊥ = F cos θ = Gm2

b2+ x2
b
r
= Gm2

b2

[
1+

(
vt
b

)2
]−3/2

. (3.6)

This net force will result in a change of the tangential component of
velocity:

δv⊥ = Gm
b2

ˆ +∞

−∞

[
1+

(
vt
b

)2
]−3/2

dt= 2Gm
bv

. (3.7)

This change in velocity can be interpreted as the force at the point of
closest distance (r= b) multiplied by the ‘duration’ of the passage (b/v),
i.e., an impulse. The symmetry of the process results in a cancellation
of the longitudinal component during the passage (δv‖ =0). Now we
assume there are a number of similar passages as S1 moves through-
out the galaxy. Let us consider the galaxy as a flat system, with N stars
within a radius R. After a crossing time – defined simply as a typical
timescale for a star to traverse the length of the galaxy – the number of
encounters with impact parameter b within an infinitesimal interval db –
can be written

δn= N
πR2 2πbdb. (3.8)
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The collisions are random events, so that, on average, there is no net
change in the velocity (〈δv⊥〉=0). However, the interactions will impart
a level of fluctuations, as expected from a random walk process, with a
root mean square given by

δv2⊥ =
(

2Gm
bv

)2 2N
R2 bdb. (3.9)

The net effect will be obtained by integrating across all impact parameters.
However, as is always the case in these scattering processes, the contribu-
tion diverges as b→ 0. We simply substitute the lower limit by some bmin,
at which our simple approximation of a linear trajectory breaks down.
bmin can thus be defined as the value of b for which the change in velo-
city is as large as the actual speed of the incoming star: δv⊥ ∼ v=⇒ bmin=
Gm/v2. We also change the upper limit to the extent of the galaxy and get

�v2⊥ =
ˆ R

bmin

δv2⊥db=8N
(
Gm
Rv

)2

ln
(

R
bmin

)
. (3.10)

Note that the effect of the integration limits appear as a (weakly vary-
ing) logarithmic trend, usually called the ‘Coulomb logarithm’ (ln �).
Just to get a feeling for the effect of this term, for typical galaxy scales
(R∼10 kpc; m=M�; v∼200 km/s) we get bmin∼0.02 AU. Interactions
within this value of b are very unlikely unless the system has density
∼1/b3

min, which is too high in all stellar systems. Therefore the approx-
imation is well justified.

Finally, in order to assess the onset of relaxation, we would need to
have this level of fluctuation in velocity comparable with a typical velocity
in the galaxy, roughly v2=GM/R=GNm/R, where M is the mass of the
galaxy. Therefore, when relaxation is achieved, after nrel ‘crossings’ of the
galaxy by the star,

nrel

(
�v⊥
v

)2

=nrel
8 ln �

N
∼1. (3.11)

The argument of the Coulomb logarithm can be simplified as follows:

�= R
bmin
= R

Gm
v2∼N, (3.12)

leading to

nrel∼ N
8 lnN

. (3.13)
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Table 3.1 Relaxation times of typical stellar systems.

R v tcross trel
System N pc km/s yr yr Age/trel

Open cluster 100 2 0.5 4×106 107 ≤ 1
Globular cluster 105 4 10 4×105 4×108 ≤ 10
Massive galaxy 1011 104 300 3×107 1017 10−7

Dwarf galaxy 109 103 50 2×107 1014 10−4

Galaxy cluster 103 106 103 109 2×1010 0.1

This expression can be translated to a timescale by use of the crossing
time:

trel=nrel tcross= N
8 lnN

R
v

. (3.14)

Table 3.1 shows the relaxation times in several stellar systems. In most
cases, the relaxation time is comparable or even greater than the cur-
rent age of the Universe. Only in the densest regions (e.g., the cores
of globular clusters) could one expect the effects from relaxation to
be significant. In fact, the inherent instability of gravitational forces
(unscreened, as ‘negative mass’ does not exist!) leads to a rapid col-
lapse if thermodynamic equilibrium is to be achieved. This issue will
be explored in more detail in chapter 8. However, for the rest of the
stellar systems, especially galaxies, we can assume relaxation is never
achieved. This allows us to adopt the approximation that as a star moves
in phase space, it is affected only by the (long-range) gravitational poten-
tial of the system, and not by local interactions. Such behaviour repres-
ents one of the fundamental properties of dynamical systems moving under
gravitation.

3.4 Local and distant encounters

We can gain more insight into the role that local and distant encoun-
ters play in relaxation by giving a more realistic description of a two-
body interaction. In section 2.2 we derived the trajectories in a Kepler
potential, finding them to be conic sections. We will focus here on scat-
tering events, tracing hyperbolic trajectories as illustrated in figure 3.2
for the interaction between two stars with masses m and M. D is the im-
pact parameter – the closest approach had there been no gravitational
attraction – and v∞ is the original velocity of incoming star m (we will use
the rest frame of star S2). As r→∞, the azimuthal angle φ→π/2+ θ/2.
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Figure 3.2 Computing the relaxation time: encounter of two stars on
an unbound hyperbolic trajectory.

Hence

1+ e cos(π/2+φ/2)=0 ⇒ sin(θ/2)= 1
e

. (3.15)

Using this expression along with the derivation of the angle θ/2 from the
triangle XF̂C, we get

cot(θ/2)= D
a

. (3.16)

Equations 3.15 and 3.16 can also be used to find the eccentricity:

e=
√

1+
(
D
a

)2

=
√

2
1− cos θ

. (3.17)

When D→ a, θ→π/2. Another useful equation here is the vis viva integ-
ral found in the Kepler problem. Along the path of the orbit (which, in
general, could correspond to any conic section), the quantity

v2=G(M+m)

(
2
r
± 1

a

)
(3.18)

is conserved (use the negative sign for an elliptical orbit, and the positive
sign for a hyperbola). In the case r→∞,

v2∞=
G(M+m)

a
⇒ cot(θ/2)= Dv2∞

G(M+m)
. (3.19)
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One interesting result from this expression is the concept of ‘gravitational
focusing’. Let us compare the cross section (i.e., the area within which a
strong gravitational interaction is likely) with the geometric area of the
stars (i.e., πr2

1 and πr2
2, where r1 and r2 are the radii of stars S1 and S2,

respectively). A physical collision will take place if the true point of closest
approach is smaller than the sum of the stellar radii, i.e., a(e−1)≤ r1+
r2. From (3.18)

(
vMAX

v∞

)2

=1+ 2a
rmin
= rmin(2a+ rmin)

r2
min

(3.20)

leads to
vMAX

v∞
= D

r1+ r2
. (3.21)

For typical values in the solar neighbourhood (vMAX∼ vesc∼620 km s−1;
v∞∼30 km s−1) we get a difference between the actual cross section of
interaction and the simple geometric cross section of

(
D

r1+ r2

)2

∼400, (3.22)

leading to the idea of focusing: two stars will get closer because of their
mutual gravitational interaction, increasing their chances of collision by
a factor ∼400 with respect to a simple geometric argument (i.e., no
long-range forces). Taking the local stellar mass density in the solar neigh-
bourhood as reference, ρ0∼0.1M�pc−3, we obtain a typical separation
between stars λ∼2 pc. Given that λ∼D, we find that rMIN∼2/20 pc
r1+ r2. Therefore, even if focusing is taken into account, the probability
of physical collisions is negligible. Only in the densest systems, such as the
cores of globular clusters, we can expect this type of effect to be relevant.

Let us now revisit the issue of relaxation time (section 3.3). We could
adopt the more rigorous treatment of hyperbolic orbits to deal with the
two-body interaction, and follow a similar treatment as in our rectilin-
ear case above, integrating with respect to the parameters of the collision
to create an averaged version of the process. The method is a bit more
involved, but follows the same argument, estimating a parameter that
traces the interactions as a stochastic process that introduces a random
walk in the evolution of the kinetic energy of a test star. We refer the
reader to the standard treatment of Chandrasekhar,1 and show the final
result for the relaxation time:

τREL= 1
16

√
3
π

〈v2〉3/2

nG2m2 ln
(
Rv2/GM

) , (3.23)
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where v and m are the typical velocities and masses of stars in the sys-
tem, and n gives their number density. R is the upper limit to the impact
parameter, similar to the derivation followed for the rectilinear case, for
which we assume this term to be roughly comparable to the size of the
whole system. Just to give a simple estimate, the solar neighbourhood
(m∼1M�, v∼30 km s−1, n∼0.1 pc−3, R∼300 pc) has a relaxation time
τREL∼5×1013 yr, therefore much longer than the Hubble time. This
treatment allows us to determine the contribution to the potential relaxa-
tion process from nearby or distant ‘collisions’: here we define a ‘collision’
as a gravitational interaction that will produce some deflection of the tra-
jectory of the test star. From equation 3.19 and noting that v∞ represents
the typical velocity of a test star, we can write the Coulomb logarithm as
ln(R/a), where a is defined by the hyperbolic trajectory of the star. We can
now assess the contribution to the relaxation time from collisions with an
impact parameter D by calculating the ratio

X(D)≡ ln(D/a)
ln(R/a)

, (3.24)

where D/a is related to the deflection angle θ , via equation 3.16. Let
us consider an example at the highest stellar densities, say, a globular
cluster core (a∼9×10−5 pc; R= rcore∼0.3 pc). In this scenario, colli-
sions with D/a∼1.5 lead to θ ∼67o (i.e., very large deflections), and the
contribution is just X∼5%. At weaker deflection angles, say D/a∼10
(corresponding to θ ∼10o), the contribution increases to X∼30%, and
for very weak scattering events, i.e., those caused by far away stars (say
D/a∼500−→ θ ∼0.2o), the contribution is X∼75%. Therefore, we con-
clude that in galaxy dynamics, most of the ‘collisions’ between stars that
eventually cause relaxation are distant.

3.5 Collisionless Boltzmann equation

Given that in most circumstances a stellar system can be treated as an
ensemble of particles without any collisions, with individual trajectories
corresponding to the underlying gravitational potential, we can describe
this motion in phase space according to a simple differential equation.
Consider the motion of these stars in phase space as some sort of ‘fluid’,
moving through a differential element of phase space, dτ ≡ d3rd3v. We
will use Cartesian coordinates for simplicity, so that the differential ele-
ment is a six-dimensional hypercube. We want to describe the change in
phase space density, f(
r, 
v; t), following two steps. First we write down
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the flux of stars through the opposite faces in position of the hypercube.
For instance, through the faces normal to the êx direction, we have a flux
difference of

{
fu−

[
fu+ ∂(fu)

∂x
du

]}
dy dz du dv dw=−∂(fu)

∂x
dτ , (3.25)

which, combining all three spatial directions, leads to the first part of the
variation of the distribution function:

− 
∇
r(f
v)dτ =−
v · 
∇
rf dτ . (3.26)

The second part of the variation of the distribution function arises from
the flux through the ‘velocity’ faces of the hypercube. For instance, the
contribution along the êu direction (i.e., the x-component of the velo-
city) is{

f
du
dt
−

[
f
du
dt
+ ∂(f dudt )

∂u
du

]}
dy dz du dv dw=−∂(f dudt )

∂u
dτ =

= ∂f
∂u

∂

∂x
dτ . (3.27)

The final expression uses the fact that the x-component of the acceleration
can be written with respect to the gradient of the gravitational potential
(from chapter 2). Note that this step also needs to assume the potential
does not depend on the velocity (always true in Newtonian gravity). The
variation of the number of stars within this volume of phase space should
equal the implicit dependence of the distribution function with time, ∂t f .
The combination of all these terms results in a continuity equation:

∂f
∂t
+
v · 
∇
rf − 
∇(
r) · 
∇
vf =0. (3.28)

The above equation is the collisionless Boltzmann equation (hereafter
CBE). We can understand this equation if we consider that in fluid dynam-
ics, the Lagrangian derivative is defined as the rate of change of a physical
quantity in the fluid as one follows its trajectory. In an ordinary fluid, this
derivative, applied to the fluid density (ρ) can be written

Dρ= ∂tρ+
v · 
∇ρ=0. (3.29)

We can extend this concept to phase space, so that the CBE can be written
with respect to a Lagrangian derivative as

Df =0. (3.30)
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Therefore, the motion of stars in phase space is such that as we follow
the trajectory of one of these stars, we do not find any local variation of
the stellar number density (Liouville’s theorem). An alternative way to
arrive at this interpretation is by looking at the CBE as an equation in par-
tial derivatives in seven coordinates (phase space plus time), leading to
six subsidiary, first order, ordinary differential equations:

dt
1
= dx

u
= dy

v
= dz

w
= du(
− ∂

∂x

) = dv(
− ∂

∂y

) = dw(
− ∂

∂z

) . (3.31)

These correspond to the standard equations of motion of a test particle
under the gravitational potential of the system.

Exercise 3.2

Give the two main reasons why the distribution of stars in the Milky
Way galaxy cannot be described by analogy with respect to the dis-
tribution of air molecules in a room. How about the description of
stars in a dense globular cluster?

3.6 Isolating integrals: Jeans theorem

The CBE governs the behaviour of the distribution function in phase
space. It encodes all information about the dynamical system, although
normally we use the velocity moments to make comparisons between
models and observations. It is not trivial to determine the distribution
function that corresponds to a stellar system, and the use of conserved
quantities is fundamental to be able to operate with this formalism. In
this context, we can separate conserved quantities in two categories: isol-
ating and nonisolating integrals of motion. The best way to visualize the
difference between them is to take pairs of dynamical variables (i.e., posi-
tion and its associated momentum) as action-angle pairs. It is easiest to
picture the evolution of such a pair: a trajectory will cover the surface
of a torus (see figure 3.3). The trajectory of a star with a given con-
stant of motion may be as in panel (a) of the figure, where the orbit is
closed and the whole trajectory does not cover the whole surface of the
torus. Another option is shown in panel (b), where the trajectory does
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Figure 3.3 Illustration of the difference between nonisolating (a) and
isolating (b) integrals.

not close and ergodically covers the whole surface. Keeping in mind that
no two orbits should cross (as they correspond to different integrals of
motion), one could say that by choosing a conserved quantity that be-
haves as in panel (b), we can separate this part of phase space volume
from the rest, by choosing that specific value of the integral. Different
values of the integral will define different tori. A choice of the related
constant of motion can thus be used to ‘compartmentalize’ phase space.
These constants of motion are called ‘isolating integrals’. In the more gen-
eral case, a given isolating integral will divide phase space into disjoint
hypersurfaces, a second isolating integral will define a different set of hy-
persurfaces, and so on, so that one could fully describe the distribution
function with respect to these integrals, rather than the standard way
using position and velocity (Jeans theorem). Moreover, these isolating
integrals emanate from a symmetry of the system, allowing us to produce
educated guesses for the distribution function of a stellar system, as we
will see in section 3.7.

The isolating integrals most often found in stellar systems are en-
ergy, expected in stationary systems, i.e., those without an explicit time
dependence in the distribution function; total angular momentum (and
its components) if the system is spherically symmetric; or a single com-
ponent of angular momentum if only rotational symmetry is present
about one of the axes. For instance, in the Milky Way galaxy, to low-
est approximation, we may consider the system to be in steady state and
with cylindrical symmetry, so that E (energy) and Jz (the projection of
angular momentum along the axis of rotation) are isolating integrals.2 In
chapter 4 we will see that the motion of stars in the Galaxy suggests an ad-
ditional third integral. Although finding isolating integrals is non trivial,
one can make use of the properties of the system to produce educated
guesses.
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3.7 Examples of distribution functions

We will show here the properties of some distribution functions (DFs) fre-
quently used to describe stellar systems. All systems are assumed to be in
a stationary state. Hence, energy (E) is always an isolating integral. Note
that if E is the only isolating integral, the velocity distribution must be iso-
tropic. This stems from the fact that E= v2/2+(
r), so that the second
order moment of the j-th component of velocity is

〈v2
j (
r)〉=

1
ν(
r)
˚

v2
j F(E)d

3v, (3.32)

leading to 〈v2
x (
r)〉= 〈v2

y (
r)〉= 〈v2
z (
r)〉. Therefore, if the observed velocity

distribution is not isotropic, there must be an additional isolating integ-
ral that breaks this symmetry. Such is the case with motion in an axially
symmetric system (e.g., a rotating disc), where the projection of angular
momentum along the symmetry axis (say Jz= rv⊥) breaks the symmetry
with respect to v2.

When defining distribution functions, one commonly encounters an
energy floor, corresponding to the minimum of the effective potential
(0), from which a relative potential can be defined as

�(
r)≡−(
r)+0, (3.33)

as well as a relative energy:

E(
r)≡−v2

2
+�(
r). (3.34)

Polytrope

The polytrope model defines the distribution function as some power law
of the relative energy:

F(E)=
{
AEn− 3

2 , E > 0
0, E ≤0,

(3.35)

where n is the polytropic index. The density can be written with respect
to the relative potential by integrating in velocity space:

ρ=m
˚

F(E)d3v=4πm
ˆ √2�

0
F(� − v2

2
)v2dv= · · ·= cn�n, (3.36)
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where the coefficient cn is defined as

cn=mA(2π)3/2 (n− 3
2 )!

n! . (3.37)

Note that for this coefficient to converge, we need n> 1/2. There-
fore the case n=0 (i.e., a homogeneous polytrope) is not physically
possible. We can write the equation that leads to the radial depend-
ence of the density by using Poisson’s equations in spherical polar
coordinates:

∇2� =−4πGρ=⇒ 1
r2

d
dr

(
r2 d�

dr

)
+4πGcn�n=0, (3.38)

which is the Lane-Emden equation, typically found in the analysis of stel-
lar structure, when describing a system in hydrostatic equilibrium, as
illustrated in exercise 3.3.

Exercise 3.3

By assuming hydrostatic equilibrium in a spherical distribution of
gas with a polytropic equation of state p∝ ργ , show that we recover
the equivalent case to a collisionless polytrope (i.e., equation 3.38),
with γ =1+1/n.

Two interesting cases arise for the polytrope model: n=5 produces the
Plummer sphere presented in chapter 2, and n→∞ leads to the iso-
thermal model, presented below.

Isothermal sphere

In stellar dynamics, the isothermal sphere is the thermodynamic equi-
valent to a Maxwell-Boltzmann distribution. Replacing the kinetic en-
ergy by the total energy, and the temperature (which behaves as an
energy scale, kT) by a velocity dispersion parameter (σ ), the isothermal
sphere is

F(E)=
⎧⎨
⎩
Ae

E
σ2 , E > 0

0, E ≤0.
(3.39)
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Exercise 3.4

Show that for the isothermal sphere distribution function defined
in equation 3.39, the density profile is ρ(r)∝1/r2.

The isothermal sphere is one of the most useful distributions in
gravitational dynamics. Note that the velocity of a circular orbit is con-
stant (v0):

v2(r)= GM(< r)
r

= G
r

ˆ r

0
4πs2 K

s2 ds=4πGK≡ v2
0=⇒ ρ(r)= v2

0
4πGr2 .

(3.40)

Also note that the cumulative mass profile increases linearly with radius.
Therefore, in order to avoid a divergent mass, the density is truncated at
some radius r0. This defines the so-called Truncated Singular Isothermal
Sphere. In spiral galaxies, the velocity profile outside of the central
regions is roughly flat, suggesting a quasi-isothermal distribution.

Mestel disc

Mestel disc3 is a distribution related to the dynamics in disc galaxies
such as our Milky Way. This distribution features a net bulk rotation, and
the stars move within a very thin disc. Therefore, the three-dimensional
mass density, ρ(r), is replaced by a two-dimensional density, �(R). Note
that, hereafter, we distinguish between the 3D radial distance (r) and
the 2D projection (R). The equivalent of an isothermal sphere in a 2D
system is given by �(R)∝1/R. Denoting v0 as the radius-independent ve-
locity of any circular orbit in this system, we can write the surface mass
density as

�(R)= v2
0

2πGR
, (3.41)

and the associated relative potential as

�(R)=−v2
0 ln

(
R
R0

)
, (3.42)

where we assume the gravitational potential, , vanishes at R=R0. The
cumulative mass profile also increases linearly with radius and calls for a
truncated model, where the mass density vanishes at R>R0.

Following Jeans theorem, we assume that energy (E) and the
vertical component of angular momentum (Jz) are isolating integrals
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(we assume the disc is located on the xy horizontal plane). We follow the
previous ansatz of an isothermal distribution for the energy and add a
power law term with respect to angular momentum:

F(E)=
⎧⎨
⎩
A
(

Jz
R0v0

)q

e
E
σ2 , Jz > 0∧ E > 0

0, Jz≤0∨ E ≤0.
(3.43)

The condition on the sign of Jz eliminates counterrotating stars. From the
DF, we can derive the surface mass density:

�(R)=
¨

F(E, Jz)d2v=

=A
ˆ ∞

0
dv⊥
ˆ +∞

−∞
dv‖

(
Rv⊥
R0v0

)q

exp

[
−v2‖ + v2⊥

2σ 2 − v2
o

σ 2 ln
(

R
R0

)]
,

(3.44)

leading to

�(R)=Aσ 2π
1
2 2

q
2 �(

q
2
+ 1

2
)

(
Rσ
R0v0

)q ( R
R0

)−v2
0/σ

2

. (3.45)

This result is compatible with our original estimate of the surface mass
density (equation 3.41) if

q= v2
0

σ 2 −1. (3.46)

This expression allows us to consider two different regimes: if q is a large
number, the system is a cold dynamical disc, where the kinetic energy is
mostly in bulk rotational motion (v0 σ ). If q→−1, then we have a hot
dynamical disc, and the kinetic energy budget is dominated by random
motion (loosely called ‘pressure’).

Osipkov-Merritt models

An extension that includes angular momentum in the DF to a spherical
system is given by the Osipkov-Merritt models.4 We consider a 3D system
where the isolating integrals are energy (E) and angular momentum (J),
but the dependence of the DF is given by a variable Q:

f(
r, 
v)= F(Q), where Q≡ E + J2

2r2
a

. (3.47)
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Note that this expression is motivated by the contribution of angular
momentum to the energy. For instance, in the Kepler problem (see
chapter 2), the total energy can be written

E= Ṙ2

2
− GM

R
+ J2

2R2 . (3.48)

In this case, ra is a free parameter that relates to the anisotropy of the
orbits, as we will see below. We separate the velocity vector into a radial
and a tangential component: 
v= vr
er+ 
vt. The mass density is

ρ(r)=
˚

F(Q)d3v=2π
ˆ

dvr

ˆ
dvtvtF(Q)= · · ·

· · · = 2π

1+ r2

r2
a

ˆ 0



dQ
√

2(Q−)F(Q),
(3.49)

where (r) is the gravitational potential. We are interested in the an-
isotropy of the velocity distribution, so let us compute the radial and
tangential components of the velocity dispersion tensor:

ρ〈v2
r 〉= · · · =

1
3

2π

1+ r2

r2
a

ˆ 0



dQ [2(Q−)]3/2 F(Q),

ρ〈v2
t 〉= · · · =

2
3

2π

1+ r2

r2
a

ˆ 0



dQ [2(Q−)]3/2 F(Q).

(3.50)

Therefore, the level of anisotropy is given by the ‘beta’ parameter:

β ≡1− σ 2
t

σ 2
r
= r2

r2+ r2
a

. (3.51)

In this model, the central regions (r� ra) have an isotropic velocity dis-
tribution (β ∼0), whereas the outskirts (r ra) feature radial anisotropy
(β ∼1). This behaviour is typical of galaxies, where the outer regions
have a more significant presence of stars on orbits which are very close
to radial trajectories, reflecting events in the mass assembly history. Re-
member that in galaxy dynamics, the relaxation times are very long;
hence stellar orbits retain their past dynamical history for long periods
of time.
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3.8 Jeans equations

The CBE is defined in the six-dimensional phase space, making it hard
to exploit with observational data, which offer instead an ‘integrated’
mapping of this equation. The Jeans equations provide a more tractable
set of equations for comparisons with data. They consist of moments of
velocity:

Jeans equations=⇒
ˆ

d3vvni (CBE) , (3.52)

where n is the moment order. To avoid overloading the expressions in the
rest of this chapter, we will use a single integral sign to denote ‘velocity-
volume’ integrals. Let us begin with the zeroth order moment:

ˆ
∂tfd3v+

∑
i

ˆ
vi∂xi fd

3v−
∑
i

∂xi

ˆ
∂vi fd

3v=0. (3.53)

The last term vanishes: apply the divergence theorem, which reduces the
volume integral to a surface integral evaluated at v→±∞, where the dis-
tribution function should vanish. Note we have also pulled the spatial and
time dependence out of the velocity integrals as these are independent
variables. The remaining integrals refer to the number density ν(
r; t) and
average velocity 〈vi(
r; t)〉, leading to a continuity equation, this time on
averaged variables:

∂tν+
∑
i

∂xi (ν〈vi〉)=0. (3.54)

We can relate the stellar number density, ν, to the mass density in stars,
ρ=mν, where m is the mass of a single star.

The first order moment of the j-th component of velocity is obtained
in an analogous way:

ˆ
∂tfvjd3v+

∑
i

ˆ
vivj∂xi fd

3v−
∑
i

∂xi

ˆ
vj∂vi fd

3v=0. (3.55)

Applying again the divergence theorem to the last term and assuming a
vanishing surface integral (in velocity space) leads to the following:

∂t(ν〈vj〉)+
∑
i

∂xi
(
ν〈vivj〉

)+ ν∂xj=0. (3.56)
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The second term is usually written with respect to the covariance of the
velocity distribution (the velocity dispersion tensor):

σ 2
ij ≡〈(vi−〈vi〉) (vj−〈vj〉)〉= 〈vivj〉− 〈vi〉〈vj〉, (3.57)

leading to

ν∂t〈vj〉+ ν〈
v〉 · 
∇xi〈vj〉+ ν∂xj+
∑
i

∂xi(νσ
2
ij )=0. (3.58)

Jeans equations in spherical coordinates

We will show below the derivation of a very useful representation of Jeans
equations. We assume here spherical symmetry, and consider only the
equation created by multiplying the CBE by the radial component of the
velocity. The three components of velocity and acceleration in spherical
coordinates are shown in the equation in exercise 3.5.

Exercise 3.5

Show that in spherical polar coordinates (r,θ ,φ), where θ and φ are
the polar and azimuthal angles, respectively, the three compon-
ents of velocity are vr= ṙ; vθ = rθ̇ and vφ = rφ̇ sin θ , and the three
components of the acceleration are

ar= r̈− rθ̇2− rφ̇2 sin2 θ

aθ = rθ̈ +2ṙθ̇ − rφ̇2 sin θ cos θ

aφ = rφ̈ sin θ +2ṙφ̇ sin θ +2rφ̇ cos θ

⎫⎪⎪⎬
⎪⎪⎭

.

(Hint: find first the time derivatives of the unit vectors: ˙̂er, ˙̂eθ , ˙̂eφ).

We begin with the most general expression for the CBE:

∂tf +
∑
i

ṙi∂ri f +
∑
i

v̇i∂vi f =0, (3.59)

and use the vector equation 
v=−
∇ in spherical polar coordinates, not-
ing that, by the assumed symmetry, the potential depends only on the
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radial component, leading to

v̇r=−d
dr
+ v2

θ + v2
φ

r

v̇θ =
v2
φ cot θ − vrvθ

r

v̇φ =−vφvr+ vφvθ cot θ
r

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (3.60)

We replace these expressions into the CBE, and follow the same pro-
cedure as above, multiplying by the radial component of the velocity
and integrating in all of velocity space. Let us write the expression
in full:

∂t

ˆ
d3vvrf + ∂r

ˆ
d3vv2

r f + ∂θ

ˆ
d3vvrvθ f + ∂φ

ˆ
d3vvrvφ f

+
ˆ

d3vvr

(
v2
θ + v2

φ

r
− d

dr

)
∂vr f +

ˆ
d3vvr

v2
φ cot θ − vrvθ

r
∂vθ f

−
ˆ

d3vvr
vφvr+ vφvθ cot θ

r
∂vφ f =0. (3.61)

Some of the integrals can be readily evaluated as averages of velocities
(using equations 3.2, 3.3, 3.4). The last three terms require integration
by parts, where we are left with integrals such as

ˆ
d3vg(vi, · · · )∂vi f =

[
fg(vi, · · · )

]+∞
−∞−

ˆ
d3vf∂vig(vi, · · · ), (3.62)

and the first term vanishes, as it is evaluated in the limit towards in-
finite velocities, where we expect the distribution function to decrease
faster than the increase in any other velocity-related expression – to
avoid, for instance, an infinite velocity average or velocity dispersion. The
expression simplifies to

∂t(ν〈vr〉)+ ∂r(ν〈v2
r 〉)+ ∂θ (ν〈vrvθ 〉)+ ∂φ(ν〈vrvφ〉)

− ν

( 〈v2
θ 〉+ 〈v2

φ〉
r

− d
dr

)
+2ν
〈v2

r 〉
r
=0

(3.63)

Since the system is spherically symmetric, we expect the average velo-
cities to vanish (〈vi〉=0), allowing us to write σ 2

i =〈v2
i 〉. The velocity
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dispersion tensor can have only two non-zero components: σrr≡ σr

and σθθ = σφφ ≡ σ⊥. The off-diagonal terms vanish. Therefore, the final
equation is

1
ν

∂(νσ 2
r )

∂r
+ 2σ 2

r
r

β + d
dr
=0, (3.64)

where we have defined the anisotropy parameter β ≡1− (σ 2⊥/σ 2
r ). We

will also see in chapter 4 the equivalent version of Jeans equations in
cylindrical symmetry.

Exercise 3.6

Let us describe a dark matter halo as a spherically symmetric distri-
bution with a constant and isotropic velocity dispersion σ . The halo
includes a baryon, diffuse, gaseous component without a tempera-
ture gradient. The dark matter density dominates the mass budget
(ρDM ρg). With the use of Jeans equation, assuming a stationary
state and no bulk motion, show that the gas density profile and the
dark matter density profile are related via:

ρg(r)∝ [ρDM(r)]η , where η= μmpσ
2

kT
.

If the anisotropy parameter, β, is a function of the radial coordinate, the
solution to the homogeneous version of equation 3.64 is

(
νσ 2

r

)
=K exp

(
−2
ˆ r

0

β(p)
p

dp
)

, (3.65)

and K is a constant that trivially corresponds to the value of (νσ 2
r ) at the

origin of coordinates. The general solution can be obtained by promoting
the constant to a radial function K(r), leading to

(
νσ 2

r

)
=
ˆ ∞

r

[
GM(< s)ν(s)

s2 exp
(

2
ˆ s

r

β(p)
p

dp
)]

ds, (3.66)

where we have applied the boundary condition K(r)→ 0 as r→∞.
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3.9 The virial theorem

The Jeans equations were obtained by removing information about in-
dividual velocities and replacing them by averaged quantities. Further-
more, one can integrate the Jeans equations over the spatial coordinates,
effectively removing all space-related information and leading to an equa-
tion that deals with the energy balance in the dynamical system. This is
the virial theorem:

virial theorem=⇒
ˆ

d3xxk(Jeans equations). (3.67)

Let us start from the equation corresponding to the j-th component of
velocity (equation 3.56):

ˆ
xk∂t(ρ〈vj〉)d3x=−

∑
i

ˆ
xk∂xi

(
ρ〈vivj〉

)
d3x−

ˆ
ρxk∂xjd3x=

=
∑
i

ˆ
ρ〈vivj〉δikd3x+Wkj=2Kkj+Wkj,

(3.68)

where we have integrated by parts the first term on the RHS and ap-
plied the divergence theorem, so that the surface integral vanishes as
x→∞. The two integrals on the RHS are symmetric with respect to
the indices k, j, and we define them as K and W, representing the
kinetic and potential energy tensors, respectively. The kinetic energy
tensor can be split into two parts related to bulk motion (T ) and bulk
motion (�):

Kkj= 1
2

ˆ
ρ〈vkvj〉d3x= 1

2

ˆ
ρ
[
〈vk〉〈vj〉+ σ 2

kj

]
d3x≡ Tkj+�kj. (3.69)

The gravitational potential energy tensor can be duly identified if we write
it as

Wkj=G
ˆ

ρ(
x)xk ∂

∂xj

[ˆ
ρ(
x′)
|
x− 
x′|d

3x′
]
d3x=

=G
¨

ρ(
x)ρ(
x′)
xk(x′j − xj)

|
x− 
x′|3 d3xd3x′.

(3.70)

The expression is symmetric with respect to the integrating variables

x and 
x′. We can symmetrize it, i.e., add a new term switching these
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variables, and multiply all by a factor of 1
2 , to get

Wkj=−G
2

¨
ρ(
x)ρ(
x′)

(x′k− xk)(x′j − xj)

|
x− 
x′|3 d3xd3x′. (3.71)

The trace of this expression is

tr W =
3∑

j=1

Wjj= 1
2

ˆ
ρ(
x)(
x)d3x, (3.72)

which is the standard gravitational potential energy (see equation 2.23).

Exercise 3.7

Elliptical galaxies are believed to form from the mergers of pro-
genitor systems that can be either discs or other ellipticals. Let
us consider two elliptical galaxies with the same mass (M), size
(r0) and velocity dispersion (σ0), slowly approaching from infinity
and eventually merging to form a more massive galaxy that settles
into virial equilibrium. Show that the total energy of the system is
ETOT=−3Mσ 2

0 . Find the velocity dispersion, size and density of the
new galaxy, assuming that its mass distribution is identical to that
of the original galaxies.

3.10 Beyond the collisionless Boltzmann equation:
The Fokker-Planck equation

When collisions need to be taken into account (e.g., when describing the
dense, central region of a globular cluster), the CBE is not an adequate
description of the phase space density, and an additional term needs to
be considered:

Df
dt
= ∂f

∂t
+
v · 
∇rf − 
∇r · 
∇vf =

(
∂f
∂t

)
coll

. (3.73)

The term on the RHS takes into account the change in phase space dens-
ity from collisions. We can describe this term by a probability distribution
function, such that p(
v, �
v)d�
v gives the probability that a particle with
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velocity 
v experiences a shift in velocity �
v within a differential element
d�
v over a time interval �t. This probability gives information about
individual encounters. According to this definition, we can write

f(
v, t+�t)=
ˆ +∞

−∞
f(
v−�
v, t)p(
v−�
v, �
v)d3�v, (3.74)

thereby transforming the Boltzmann equation into a rather complicated
integro-differential equation (called the ‘master equation’).

Even in dense stellar systems, we are still in a regime where the re-
laxation time is long enough. Therefore �v� v during a crossing time,
and we can perform a Taylor expansion (LHS in �t and RHS in �
v) and
truncate at the second order; this is the Fokker-Planck approximation:

(
∂f
∂t

)
coll
=−

3∑
i=1

∂(f 〈�vi〉)
∂vi

+ 1
2

3∑
i=1

3∑
j=1

∂2(f 〈�vi�vj〉)
∂vi∂vj

, (3.75)

with the first and second order moments of the change in velocity given by

〈�vi〉≡
ˆ

p(
v, �
v)�vid3�v,

〈�vi�vj〉≡
ˆ

p(
v, �
v)�vi�vjd3�v,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.76)

commonly known as encounter integrals, or diffusion coefficients. The
first term in the RHS of equation 3.75 describes a drag process (dynamical
friction). The second term describes a diffusion process in velocity space
(compare it with the diffusion equation ∂tf =−k∇2f). Note that the more
general treatment of the Fokker-Planck equation (3.73 and 3.75) would
involve the diffusion coefficients to be integrated over velocity and pos-
ition. However, we apply the local approximation, where the individual
interactions take place over regions much smaller than the size of the
system. Hence, we can simplify the treatment of interactions as a super-
position of Keplerian hyperbolæ unaffected by the global potential of the
system.

Dynamical friction

In equation 3.75 we came across the dynamical friction term. Physically,
one can think of it as a drag force (i.e., velocity-dependent) where the
passage of a mass, say an object like a black hole, a globular cluster or
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an incoming galaxy, affects the surrounding region, altering the potential
that, in turn, produces a back reaction. It can be represented pictorially
as a wake behind the moving mass that changes the local density of stars,
introducing an additional force. There is a useful expression to describe
dynamical friction, due to Chandrasekhar.5 We assume that a mass M
moves through a homogeneous sea of stars, each of mass m<M. The
motion can be simplified as a combination of hyperbolic trajectories in
a Kepler potential (see section 2.2). Section 3.4 describes the details of
a hyperbolic trajectory, but we neglected there the effect of the scatter-
ing event on mass M. By considering conservation of momentum, we can
relate the reaction on M from the scattering of m as imparting a velocity
change:

�vM =−
(

m
M+m

)
�vm, (3.77)

and we know from section 3.4 that the effect on m is a rotation of the
incoming velocity vector 
v∞ by an angle θ . Now we use the frame of ref-
erence of star M, and add many such scattering events as it traverses the
field of stars with mass m. For a single scattering event, the net change in
velocity is

�v⊥ =− mv∞
M+m

sin θ

�v‖ =− mv∞
M+m

(1− cos θ)

⎫⎪⎪⎬
⎪⎪⎭

, (3.78)

where we split the contribution into a parallel and a perpendicular com-
ponent, with respect to the motion of M. The symmetry of the problem
will give, on average, zero net change in �v⊥, and so we need only to
consider the parallel contribution. The deflection angle can be written

cos θ =1− 2
e2 , (3.79)

where e is the eccentricity of the hyperbolic trajectory. We also introduce
here the impact parameter, i.e., the distance of closest approach during
the scattering event – b= a(e−1) – and use the expression of eccentricity
from equation 3.17, leading to

�v‖ = 2mv∞
M+m

[
1+

(
D
a

)2
]−1

= 2mv∞
M+m

[
1+ b2v4∞

G2(M+m)2

]−1

. (3.80)

Now we can add up all the contributions from each star as an integral
with respect to the impact parameter b, including the number density of
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stars in this homogeneous sea, by use of the distribution function, that,
by definition, can depend only on velocity, f(
vm):

d
vM
dt
= (
vm−
vM)

ˆ bMAX

0
2πb�v‖(b)dbf(
vm)d3vm. (3.81)

In this expression, we have replaced 
v∞ by the relative velocity between
mass M and one of the stars, i.e., 
vm−
vM, so that we can add up the
individual contributions. The range of integration in b extends to some
maximum value bMAX, normally represented by the size of the stellar dis-
tribution. Since the integral produces a logarithmic term (the Coulomb
logarithm), our choice is not critical in the derivation:

d
vM
dt
=4πG2(M+m)m


vm−
vM
|
vm−
vM|3 ln �f(
vm)d3vm, (3.82)

where �≡ bMAXv∞/G(M+m), and we have simplified the Coulomb log-
arithm by assuming ln(1+�2)≈2 ln �. This expression corresponds to a
specific choice of velocity of the sea of stars. Therefore, we need to integ-
rate it in 
vm. By use of the vector expression encountered in equation 2.11,
we can write

ˆ
d3vmf(
vm)


vm−
vM
|
vm−
vM|3 =


∇vMH(
vM), (3.83)

and H is called the first Rosenbluth potential. If we assume this potential
to be isotropic, the gradient can be written:


∇H= (∂vMH)
vM/vM, (3.84)

arriving at the final expression for the dynamical friction effect, namely:

d
vM
dt
=−16π2G2(M+m)m ln �


vM
v3
M

ˆ vM

0
f(vm)v2

mdvm. (3.85)

The integral represents the number density of stars with speeds below vM.
The force is directed against the motion of mass M and depends on its
velocity. If we assume Mm, and a Maxwellian distribution of velocities
for the sea of stars, with dispersion σ , we find

d
vM
dt
=−4πG2Mρ ln �


vM
v3
M
g(s), (3.86)
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where ρ is the mass density of stars, s≡ vM/σ
√

2, and the function g(s)
can be written with respect to the error function:

g(s)= erf(s)− 2s√
π
e−s2

. (3.87)

Dynamical friction is responsible, for instance, for the orbital decay of
globular clusters as they move around the galaxy. Note that this expres-
sion assumes a point mass M moving through a homogeneous sea of stars
with mass m, but a similar result can be derived for more realistic scen-
arios, such as the merging of two galaxies. From equation 3.86 we expect
a drag force proportional to M2 and inversely proportional to v2

M. There-
fore, dynamical friction is more efficient when the incoming galaxy in a
merger is more massive: major mergers – those where the masses of both
galaxies are comparable – proceed faster than minor mergers, but fast
encounters – those in high-density environments – will imply a weaker
contribution from dynamical friction.

Notes

1 Chandrasekhar, 1960, Principles of stellar dynamics, Dover, p. 48.
2 Throughout this book, unless explicitely noted, these isolating integrals are defined

per unit mass.
3 This is a simplified version of the model presented in Mestel, 1963, MNRAS, 126,

553.
4 Merritt, 1985, AJ, 90, 1027.
5 Chandrasekhar, 1943, ApJ, 97, 255.
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4
Understanding our Galaxy

The Milky Way Galaxy can be described, to the lowest order, as a system
of stars in a thin, differentially rotating disc. A more detailed description
includes additional components: bulge, thick disc, stellar halo and dark
matter halo, with the latter dominating the overall gravitational poten-
tial. Each component is in a different dynamical state, imprinted during
the formation history of the Galaxy. After a brief introduction to the main
properties of our Galaxy, including basic details of positional astronomy
(galactic coordinates and the local standard of rest), the chapter dives into
the standard approach of measuring galactic rotation and to the definition
of Oort’s constants. A perturbation analysis of idealized circular orbits
leads to harmonic oscillations, and to the concept of epicyclic motion. In
addition to rotation, stars experience vertical motion, perpendicular to
the plane of the disc. This motion is also treated in a perturbative way. In
the context of the distribution function, one can identify the separation
of motion on the plane and perpendicular to it as a fundamental isolating
integral (the so-called third integral). The chapter finishes with applica-
tions of Jeans equations to the Milky Way and introduces typical functions
adopted to describe the potential of the Galaxy.

4.1 General description of the Galaxy

Our Galaxy (see figure 4.1) – commonly written with a capital ‘G’, to dif-
ferentiate it from other galaxies – is a late-type system, i.e., a disc galaxy,
with a fairly typical luminosity, around 2×1010L� (where L� represents
the solar luminosity). The chemistry and kinematics of its stellar pop-
ulations reflect several components, with a different formation history,
namely:
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• Bulge/Bar: Stars in the central region of the Galaxy have different
properties than those in the solar neighbourhood, in terms of the
distribution of their ages and chemical composition, as well as their
kinematics. In contrast to disc stars, bulge stars have a higher frac-
tion of their kinetic energy in the form of random motion. In addi-
tion, there is a bar component, with a significant fraction of radial
motion. We know from chapter 3 that stellar orbits keep track of the
past dynamical history. Stars in the bulge encode its past formation
both through the orbits and the chemical composition, revealing an
early and intense formation process (hence the old ages and high
metallicity of bulge stars). The stellar mass in the bulge comprises
roughly one-fourth of the total.

• Thin disc: This is the component where the solar system is em-
bedded, and it dominates the stellar mass budget of the Galaxy.
It can be described by a flat structure, with vertical scalelength
∼0.3 kpc, and an exponentially decaying profile along the radial
direction, with scalelength ∼2.5 kpc, stretching out to 15–20 kpc.
The Sun is located at a distance R∼8 kpc from the galactic centre.
The motion of stars in the thin disc is dominated by bulk ro-
tation, with a roughly constant tangential velocity in the neigh-
bourhood of the Sun, around 220 km s−1, therefore orbiting the
Galaxy with a period of ∼220 Myr. Stellar populations of different
ages feature different velocity dispersions and vertical scalelengths,
with the youngest stars having smaller vertical motion and lower
dispersion.

• Thick disc: This is the second disc-like component of the Galaxy,
with a significantly larger vertical extent (∼1 kpc), featuring older
stars with different chemical composition (higher [Mg/Fe], see sec-
tion 6.4), although the transition between the thin and the thick disc
is very gradual, so it is difficult to identify stars – especially close
to the Galactic plane – as belonging to either the thin or the thick
disc.

• Stellar halo: Made up of preferentially old and metal-poor stars,
moving with high velocities and populating a large spheroidal
volume. Its mass contribution to the Galaxy is relatively minor,
amounting to about 1 per cent of the total mass in stars.

• Dark matter halo: Although the observations can target only
the stellar or gaseous component, we should keep in mind that
the whole system is embedded in a much larger structure made
up of dark matter particles. In chapter 7 we will explore in
more detail the role of dark matter in galaxy formation. We can
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Figure 4.1 Gaia/DR2 view of the Milky Way galaxy.
(Source: courtesy European Space Agency/Gaia/Data Processing and
Analysis Consortium.)

simplify this component as a spheroidal or triaxial system that
extends much farther out that any of the above components, to
∼150 kpc, comprising about 95 per cent of the total mass content
of the Galaxy. However, note that as it occupies a larger volume,
the dark matter mass density is rather low. Such low densities
explain why, for instance, within the comparatively minute volume
spanned by the solar system, the contribution from dark matter is
negligible.

The coordinate system

The position of stars in the sky is determined by assuming a so-called
celestial sphere; i.e., irrespective of their distance to us, we assign two
angular coordinates, equivalent to the longitude-latitude system that pin-
points a location on Earth. These coordinates are defined in various ways,
depending on the adopted frame of reference. The most important ones
in astrophysics are the following:

1. Alt-Azimuthal coordinates: The simplest choice uses the local
frame of reference; i.e., the vertical angle above the horizon is the
elevation, and the horizontal angle – measured from due South – is
the azimuth. These coordinates are useful to locate a star in the sky
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at night, but depend on the time of observation and the location of
the observer.

2. Equatorial coordinates: The Earth’s rotation determines the frame
of reference. The horizon is replaced by the celestial equator,
i.e., the projection of the Earth’s equator on the celestial sphere.
The ‘vertical’ angle with respect to the equator is the declination.
The ‘horizontal’ angle, measured along the equator from the ver-
nal point – the place where the Sun crosses the celestial equator
at the (Northern) Spring equinox1 – is the right ascension. This is
the standard coordinate system for all extragalactic astrophysical
sources, as it is independent of the time or location of observation,
although it is affected by the long-term precession and nutation
of the Earth’s rotation axis, requiring the definition of a reference
epoch (e.g., J2000.0).

3. Ecliptic coordinates: This system uses the ecliptic as the frame of
reference, i.e., the projection on the celestial sphere of the Earth’s
orbit around the Sun. The ecliptic latitude and longitude are the
equivalent angles, where the zero point on the ecliptic is also the
vernal point (note the ecliptic plane and the celestial equator inter-
sect at the vernal point, and its opposite position, i.e., the location
of the Sun six months later, at the (Northern) Autumn equinox).

4. Galactic coordinates: This is the most convenient way to describe
the location of sources in our Galaxy, also given as longitude and
latitude. The reference is the projection of the galactic plane on the
sky, and the zero point of longitude is the position of the galactic
centre.

One can translate the coordinates of a celestial object among these differ-
ent systems via a set of rotations. In addition to the standard location on
the sky, the positions of galactic objects are also typically described by a
right-handed Cartesian {X,Y,Z} coordinate system, where the origin is at
the solar position, the X axis points towards the Galactic centre, the Y axis
points along the direction of rotation and the Z axis is perpendicular to
the disc plane.

Exercise 4.1

Where on Earth would the Alt-Azimuthal and equatorial coordinate
systems be one and the same?
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4.2 Differential rotation in the Galaxy

The motion of stars in the solar neighbourhood and, by extension, in
the disc can be described by a differential rotational motion. Most of the
kinetic energy in the stars of late-type (i.e., disc) galaxies is in the form
of bulk rotation. Note this treatment cannot apply to bulge or halo stars.
Historically, this description of motion provided the first steps towards
our understanding of the structure of the Galaxy, with astronomers like
Oort, Kapteyn and Lindblad pioneering the field. Two different types of
stellar motion can be observed. On the celestial sphere we can measure
the proper motion with respect to distant, i.e., fixed, sources. This angu-
lar motion on the celestial sphere can be mapped onto a physical motion
on the normal plane with respect to our line of sight, hence defining a
tangential velocity. Along the line of sight it is also possible to measure
a radial velocity via the Doppler shift of spectral lines. Both components
need to be referred to a fixed frame of reference. The first correction needs
to take into account the motion of the Earth around the Sun, which in-
troduces a seasonal variation along the ecliptic of �vORB=±30 km s−1.
Furthermore, these heliocentric velocities need to take into account the
orbital motion of the Sun around the Galactic centre. We therefore need
to define a Galactic local standard of rest.

Local standard of rest

In order to understand the motion of stars in the Galaxy, we need to
describe their observed velocities as measured from a frame considered
“at rest” with respect to the bulk rotational motion of the Galaxy. There
are two main definitions of such a local standard of rest (LSR), and it is
important to note the difference:

• Kinematic LSR (kLSR): Defined by a frame of reference located at
the position of the Sun, moving with the average velocity of the stars
in the neighbourhood. This is the easiest system from the observa-
tional point of view, as it requires only knowledge of the distribution
of stellar velocities of nearby stars.

• Dynamical LSR (dLSR): Defined as a frame of reference also located
at the solar position, but moving in a circular orbit on the Galactic
plane, whose velocity is dictated by the gravitational potential. This
definition is the natural one from a theoretical point of view, but we
will see that kLSR and dLSR are not the same and that they move
apart. This effect is termed ‘asymmetric drift’, and we will describe
it below.
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Figure 4.2 Outline of the system involving a nearby star (S), the
Sun (L), representing the observer, and the Galactic centre (G).

Lowest order motion: Oort’s constants

The simplest model assumes that all disc stars move on the Galactic
plane along circular orbits following the gravitational potential. An
arbitrary potential is adopted, although for simplicity we will con-
sider spherical symmetry. Note at this point that the potential relates
to the total mass content. Therefore, the dark matter halo must be
included.

We want to describe the motion of a disc star from our vantage
point. The observed motions will be given with respect to the Sun, as-
sumed to follow a simple circular orbit around the Galaxy. Figure 4.2
outlines the measurement, where L is our (heliocentric) reference, S is
the target star, and G is the Galactic centre. We denote θ̇0 and θ̇ the
angular velocity of the circular orbits of Sun and star, respectively. We
begin by writing the radial and tangential motion of the stars, relative
to L:

vr=Rθ̇ cos α−R0θ̇0 sin �,

vt=Rθ̇ sin α−R0θ̇0 cos �

⎫⎬
⎭. (4.1)

Eliminating α from segments GP and LP and making a Taylor expansion,
assuming S is close to L (i.e., d�R0), we find, to the lowest order:

vr=−1
2
R0

( dθ̇
dR

)
R0
d sin 2�,

vt=−1
2
R0

( dθ̇
dR

)
R0
d cos 2�−

[
θ̇ + 1

2
R0

( dθ̇
dR

)
R0

]
d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (4.2)
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These two equations are usually written

vr≡Ad sin 2�,

vt≡Ad cos 2�+Bd

⎫⎬
⎭, (4.3)

where A and B are Oort’s constants of Galactic rotation, defined at
R=R0:

A= 1
2

[
v⊥
R
−

(
dv⊥
dR

)]
R0

B=−1
2

[
v⊥
R
+

(
dv⊥
dR

)]
R0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (4.4)

Oort’s ‘constants’ therefore represent a first order description of the rota-
tion curve of the Galaxy. Note that A and B in general are not constants,
but depend on the location of the observer – much in the same way as
Hubble’s constant depends on the cosmological epoch of the observer (see
chapter 7).

Exercise 4.2

Show that an isothermal sphere yields A=−B=1⁄2�0; a spherical
distribution with homogeneous density results in A=0, B=−�0;
and a Keplerian potential gives A=3⁄4�0, B=−1⁄4�0, where �0=
v0/R0 is the angular speed measured at R=R0.

In the solar neighbourhood, Oort’s constants are:2 A=15.3±0.4 km s−1

kpc−1 and B=−11.9±0.4 km s−1 kpc−1, which, according to the three
options in exercise 4.2, suggests a density distribution closer to an iso-
thermal sphere.

Exercise 4.3

Leaving aside potential issues of stability, contrast the values of
Oort’s constants for a homogeneous spherical distribution and a
homogeneous disc (i.e., flat) distribution.

76 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



A more general approach to Oort’s constants

The derivation shown above is restricted to the case where the orbits are
perfectly circular. Hence, at each point the velocity is purely tangential
and constant at fixed radius. We can extend this simple model to a more
general case – still assuming motion on the plane – if we write the velocity,
measured from the dLSR, as


v(
R)=H(
R0) · (
R− 
R0)+O(|
R− 
R0|2). (4.5)

Note this is a general Taylor expansion of the velocity field, retaining only
the linear terms. The matrix H can be interpreted as a Jacobian between
velocity and position. In Cartesian coordinates,

H(
R0)=
(
∂xvx ∂yvx
∂xvy ∂yvy

)

R0

≡
(
K+C A−B
A+B K−C

)
, (4.6)

where the second expression defines four Oort’s constants, including our
previous definitions of A and B, this time extended to the general case,
where a radial component of the velocity is present, and where v⊥ can
depend on the azimuthal angle. We used the simplified notation ∂x ≡ ∂/∂x,
and so on. In cylindrical coordinates, the generalized Oort’s constants are

A= 1
2

[
v⊥
R
− ∂Rv⊥ − 1

R
∂θv‖

]

R0

B= 1
2

[
−v⊥

R
− ∂Rv⊥ + 1

R
∂θv‖

]

R0

C= 1
2

[
−v‖

R
+ ∂Rv‖ − 1

R
∂θv⊥

]

R0

K= 1
2

[
v‖
R
+ ∂Rv‖ + 1

R
∂θv⊥

]

R0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.7)

Note thatA andB are equivalent to our previous definition in equation 4.4,
when v‖ =0 and ∂θv⊥ =0. Furthermore, in the simplified case C=K=0.
If we keep the axial symmetry but introduce a non-zero radial term, e.g.,
radial migration, Oort’s constants A and B remain unchanged, but C and
K will be non-zero, although potentially small with respect to A and B,
as long as this migration term is small compared to the rotation velocity.
In the solar neighbourhood, the quoted values of the new constants3 are:
C=−3.2±0.4 km s−1 kpc−1; and K=−3.3±0.6 km s−1 kpc−1.
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Exercise 4.4

Consider a galaxy with a homogeneous density distribution, where
stars are assumed to move on circular orbits. Via the Doppler effect,
we observe the radial velocity of a star at distance d and Galactic
longitude (�). The distance from the observer (O) to the Galactic
centre (GC) is R0. Find the radial velocity as a function of dis-
tance (d) from the observer. Do the same for an isothermal sphere
distribution.

The next order: Epicycles

Let us go back to our original assumption of uniform circular motion (i.e.,
C=K=0), but now introduce small perturbations about this motion. As
is common practice in physics, a first order correction – i.e., retaining only
linear terms in the equations of motion – will lead to harmonic oscillations
that will allow us to understand the more complex trajectories in the real
system. We still constrain the orbits on the Galactic plane, but the radial
and tangential components are displaced with respect to the ‘equilibrium’
case of a circular orbit with radius R0 (see figure 4.3):

ξ ≡R−R0

η≡R0(θ − θ0)

}
. (4.8)
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View looking from NGP
z=0

Figure 4.3 Coordinate system used to derive epicyclic motion.

Both perturbed coordinates are assumed to be small with respect to R0,
allowing us to perform a Taylor expansion and retain only the linear
terms. The position (R0, θ0, z=0), also called the ‘guiding centre’, follows
a circular orbit with angular speed

dθ0

dt
= v⊥,0

R0
. (4.9)

The acceleration of the motion can be approximated by the centripetal
acceleration of the circular orbit:


a�−êR v
2⊥
R

. (4.10)

Now, the acceleration in cylindrical coordinates (see exercise 4.5) is


a= (R̈−Rθ̇2)êR+ (2Ṙθ̇ +Rθ̈ )êθ + z̈êz. (4.11)

Assuming the dominant component is only the centripetal term leads to

R̈−Rθ̇2=−v2⊥
R

. (4.12)

Furthermore, conservation of Jz (the vertical projection of the angular
momentum vector) gives

R2θ̇ =R0v⊥,0. (4.13)

Equation 4.13 can be used to eliminate the θ̇ term in equation 4.12.
Finally, we write the equation in terms of the small displacements (equa-
tion 4.8) giving

ξ̈ = R2
0v

2⊥,0

R3 − v2⊥
R

. (4.14)

After some algebra, expanding v⊥(R) in a Taylor series and keeping only
the first order terms, we can write this equation with respect to Oort’s
constants of rotation:

ξ̈ =4B(A−B)ξ , (4.15)
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which is the equation of a simple harmonic oscillator, with solution:

ξ(t)=H sin κ(t− t0). (4.16)

This motion includes a new frequency, termed the ‘epicyclic frequency’,
namely:

κ =2
√−B(A−B). (4.17)

The rate of change of ξ is therefore

ξ̇ =Hκ cos κ(t− t0)→H= (v‖)R0

κ
. (4.18)

To describe the tangential motion (along the η direction), we begin with
the conservation of angular momentum (equation 4.13), written in terms
of ξ , to lowest order:

θ̇ � v⊥,0

R0

(
1− 2ξ

R0

)
. (4.19)

The first term in brackets simply tracks the dLSR, whereas the second term
gives the motion relative to the dLSR. Taking only the latter, and writing
down the solution to ξ(t) gives:

�θ̇ =−2v⊥,0

R2
0κ

(
v‖
)
R0

sin κ(t− t0). (4.20)

The tangential separation of the star and the dLSR is then

η=
ˆ

R0�θ̇dt= 2v⊥,0

κ2R0

(
v‖
)
R0

cos κ(t− t0), (4.21)

which can be written in terms of Oort’s B constant

η=−
(
v‖
)
R0

2B
cos κ(t− t0). (4.22)

Using equation 4.22 along with equations 4.16 and 4.18, we find the re-
lative motion of nearby stars around the dLSR as a retrograde epicyclic
orbit, with axial ratio β ≡�η/�ξ =−κ/2B (see figure 4.4). The axis ratio
can also be written

β =
√

1− A
B

. (4.23)

The dLSR acts as the guiding centre of the epicycle. Notice that the char-
acteristics of the epicyclic orbits depend purely on the behaviour of the
Galactic rotation curve at R0.
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Figure 4.4 Epicyclic motion.

Exercise 4.5

Show that in cylindrical coordinates, the velocity can be written


v= ṘêR+Rθ̇ êθ + żêz,

and the acceleration is


a= (R̈−Rθ̇2)êR+2(Ṙ− θ̇ +Rθ̈ )êθ + z̈êz.

Using the derived values of A and B, we find the epicycles have a period
τr=2π/κ ≈170 Myr and axis ratio β =1.51 (ellipse elongated along the
tangential direction). Given that the ‘Galactic year’ is 226 Myr, nearby
stars take 0.75 galactic rotation periods to complete an epicycle around
the dLSR.

Noting that the typical speed along the radial direction is (v‖)R0

∼ 30 km/s, we find the dimensions of the ellipse are 1.26 kpc along the
η direction, and 0.83 kpc along the ξ direction. So, most stars in the
solar neighbourhood come from within a radial distance approximately
R0±1 kpc (from the Galactic centre).

Following a star along its epicycle, we note that the ratio of average
speeds is

〈|v‖|〉
〈|v⊥ − v⊥,0|〉 =

〈dξ/dt〉
〈dη/dt〉 =

(v‖)0(−2B)〈cos κt〉
(v‖)0κ〈sin κt〉 = 1

β
=0.68. (4.24)
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However, this measurement cannot be derived from the observations. In-
stead, we compute the average over many stars moving in the solar neigh-
bourhood, each having its own epicentric radius.

Some stars will have guiding centresRg >R0, i.e., farther away from
the position of the dLSR. Those stars will move in the solar vicinity faster
along the tangential direction, because of angular momentum conserva-
tion. Other stars will have guiding centres Rg <R0, showing up in the
solar neighbourhood with slower tangential speeds. The relative tangen-
tial speed can be written (using conservation of angular momentum, and
keeping only lowest order terms in ξ):

η̇=R0(θ̇ − θ̇0)�R0

[
θ̇ (Rg)+2ξ

θ̇(Rg)

Rg
− θ̇0

]
= · · ·=−2Bξ . (4.25)

Taking an average of the square of the tangential velocity gives

〈η̇2〉=4B2〈ξ2〉= 4B2

κ2 〈ξ̇2〉=− B
A−B

〈ξ̇2〉. (4.26)

Hence, the ratio of RMS speeds is

〈v2⊥〉
〈v2‖〉
= −B

A−B
�0.46, (4.27)

which is compatible with the observations. Note the epicycles are more
elongated along the tangential direction, whereas the velocity distribu-
tion is elongated along the radial direction.

If we note that the number density of stars is higher at small radii,
we expect more stars with Rg <R0, i.e., moving with slower tangential
speeds in the solar neighbourhood: this produces the so-called asym-
metric drift. This effect is stronger in older stellar populations (they
have higher random speeds, so their orbits deviate further from circular
motion).

Exercise 4.6

A galaxy is described by a homogeneous, spherical distribution of
stars with total mass M0 and radius R0. Find the ratio between the
angular velocity and the epicyclic frequency. Can such a potential
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produce closed orbits (i.e., orbits that repeat themselves after a
number of periods)?

4.3 Vertical motion

We can make a simple estimate of the force normal to the Galactic plane by
assuming an infinitely thin, plane-parallel slab with constant density, ρ.
Let us assume the vertical motion is independent of the epicyclic motion
on the plane (figure 4.5). At point P above the plane, the acceleration due
to the volume element dAdz is


da= GρdzdA
r2 êr, (4.28)

whose z component is

daz= 
da · êz=−z
r
GρdAdz

r2 =−Gρdzd�, (4.29)

and we use the solid angle of the volume element as viewed from P:

d�= dA
r2

z
r

. (4.30)

Given that the slab is infinite and homogeneous, we can trivially integrate
in solid angle, getting the total vertical acceleration from the whole mass
plane as

daz=−2πGρdz. (4.31)

Note that the acceleration is independent of z. The disc of the Galaxy has
a vertical extent, so we consider as the next approximation, two thin slabs
symmetrically located above and below the z=0 plane, at some distance
±z, with the same density: ρ(−z)= ρ(z).

So, for z(P)> z daz=−4πGρdz,

whereas for z(P)< z daz=0,
(4.32)

and all material farther out from the Galactic plane does not affect the
acceleration at P. Hence, the total acceleration can be written as

az=−4πG
ˆ z=P

0
ρ(z)dz. (4.33)
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Figure 4.5 Vertical motion.

Near z=0 a constant density profile can be adopted (ρ∼ ρ0). This is a
good approximation in the region |z|� 100 pc. Hence, at small separa-
tions from the Galactic plane, the acceleration will increase linearly with
slope 4πGρ0. If we define � as the surface mass density of the disc, i.e.,

�≡
ˆ +zDISC

−zDISC

ρ(z)dz, (4.34)

then the acceleration at |z|, far from the disc, will be−2πG�.
However, the observed vertical acceleration is found to increase be-

cause of an extended component (a halo). By examining the density of
stars in the halo, it is evident that most of the matter causing this beha-
viour must be in the form of dark matter. Hence, the density of dark matter
can also be derived from vertical motions of stars in the Galaxy. The slope
daz/dz at z� 2 kpc is especially useful. However, if the observed z is very
large, the infinite plane approximation will break down.

Let us now derive the vertical motion for small displacements. If z is
small, one can assume ρ∼ ρ0, and

az= d2z
dt2
=−4πGρ0z, (4.35)

describing a simple harmonic oscillator with solution:

z= zMAX sin[ν(t− t0)]. (4.36)

Differentiating, equation 4.35 gives

ν2=4πGρ0 frequency,

τz= 2π
ν
=

√
π

Gρ0
period.

(4.37)
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For ρ0∼0.15M�pc−3, the period of the vertical motion is τz=68 Myr.
We can now estimate the maximum excursion from the plane, zMAX , for
stars in harmonic motion. We just need to evaluate the velocity of the stars
when crossing the Galactic plane. At z∼0, we observe vz∼6 km/s. Com-
paring z(t) and dz/dt we find vMAX

z = νzMAX, giving zMAX∼67 pc, reached
after τz∼17 Myr.

Therefore, stars in our neighbourhood are expected to probe a tor-
oidal region centred on the LSR, with radial extent �R=±250 pc over a
timescale τr=175 Myr; and a vertical extent �z=±67 pc, with timescale
τz=68 Myr. If any of the periods involved in this motion coincide, e.g.,
τr(R)= 1⁄2 of a Galactic year, then resonance ensues, leading to density
anomalies such as spiral density waves (see chapter 5).

4.4 The collisionless Boltzmann equation in
galactic coordinates

In order to apply the CBE to the Milky Way, we take advantage of the
axisymmetric shape, writing the equation in cylindrical coordinates
(R, φ, z), where the distribution function reads

f(
r, 
v; t)= f(R, φ, z, v‖, v⊥, vz; t), (4.38)

and the CBE can be written

∂tf + Ṙ∂Rf + φ̇∂φ f + ż∂zf + v̇‖∂v‖ f + v̇⊥∂v⊥ f + v̇z∂vz f =0. (4.39)

The general equations of motion for a test particle in cylindrical coordin-
ates – note φ (azimuthal angle) �= (potential) – are

v̇‖ =−∂

∂R
+ v2⊥

R

v̇⊥ =−1
R
∂

∂φ
− v‖v⊥

R

v̇z=−∂

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.40)

leading to

∂tf + v‖∂Rf + v⊥
R

∂φ f + vz∂zf +
(
v2⊥
R
− ∂R

)
∂v‖ f−

− 1
R

(
v‖v⊥ + ∂φ

)
∂v⊥ f − ∂z∂vz f =0.

(4.41)
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We make the following assumptions: (1) the system is in steady state
(∂tf =0); (2) there is full axial symmetry: ∂φ =0 (for any function). Now
the CBE is:

v‖∂Rf + vz∂zf −
(
∂R− v2⊥

R

)
∂v‖ f −

v‖v⊥
R

∂v⊥ f − ∂z∂vz f =0. (4.42)

This CBE (an equation in partial derivatives involving five variables) can
be broken into four first-order differential (subsidiary) equations:

dR
v‖
= dz

vz
= dv‖(

v2⊥
R − ∂R

) = dv⊥(
− v‖v⊥

R

) = dvz(
− ∂z

) . (4.43)

Therefore, a maximum of four isolating integrals can be invoked. Two are
obvious from the symmetries of time (steady state) and rotation about the
z axis, namely, energy and the projection along êz of angular momentum:

I1= E= 1
2

(
v2‖ + v2⊥ + v2

z

)
+(R, z), (4.44)

I2= Jz=Rv⊥. (4.45)

If these two are the only isolating integrals, Jeans theorem implies that

f(R, z, v‖, v⊥, vz)= F(E, Jz). (4.46)

Notice v‖ and vz enter only into I1 and only as a term (v2‖ + v2
z ); hence they

should be interchangeable in the analysis, leading to the same velocity
dispersion:

〈v2‖〉= 〈v2
z 〉. (4.47)

The observations of the motion of stars in the Milky Way lead to a different
outcome:

0.4〈v2‖〉= 〈v2
z 〉, (4.48)

suggesting an additional isolating integral in the system.

Vertical motion and the third isolating integral

The description of stellar trajectories in the galaxy suggests it is possible
to separate between motion on the disc and motion perpendicular to it,
in the flattened potential of a disc. This behaviour reveals the presence of
a third isolating integral. Close to the Galactic plane, the z component of
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the force – which depends on the local mass density – is almost decoupled
from the R component – which depends on the enclosed mass. We have
seen this behaviour in sections 4.2 and 4.3, where the epicycles and the
vertical motion of stars moving close to the Galactic plane can be treated
as independent harmonic oscillators. The potential is, therefore, expected
to be separable into anR-dependent function and a z-dependent function,
namely:

(R, z)�1(R)+2(z), (4.49)

which allows us to solve one of the subsidiary equations of the CBE (see
equation 4.43):

dz
vz
= dvz
−d2/dz

, (4.50)

resulting in an integral of motion:

I3= 1
2
v2
z +2(z), (4.51)

which can be defined as the energy involving vertical motion (being in-
dependently conserved with respect to the energy related to rotation). If
we take this as a third isolating integral, the distribution function for a
flattened axisymmetric distribution (such as our Galaxy) now reads

f(R, z, v‖, v⊥, vz)= F(E, Jz, I3), (4.52)

whose dependence on vz is no longer the same as on v‖, breaking the
symmetry between 〈v2‖〉 and 〈v2

z 〉.

4.5 Application of Jeans equations

There are several applications of Jeans equations to the Milky Way. In
chapter 3 we presented the derivation of Jeans equations as a mar-
ginalization of the CBE in velocity space. The continuity equation (see
equation 3.54) can be written in cylindrical coordinates as follows:

∂ν

∂t
+ 1

R
∂(Rν〈v‖〉)

∂R
+ ∂(ν〈vz〉)

∂z
=0. (4.53)

The derivation of the set of Jeans equations involving the first order mo-
ment of the velocities (from the general expression in equation 3.58) is
more involved but rather straightforward, and leads to the following:

UNDERSTANDING OUR GALAXY 87



∂(ν〈v‖〉)
∂t

+ ∂(ν〈v2‖〉)
∂R

+ ∂(ν〈v‖vz〉)
∂z

+ ν

( 〈v2‖〉− 〈v2⊥〉
R

+ ∂

∂R

)
=0

∂(ν〈v⊥〉)
∂t

+ ∂(ν〈v⊥v‖〉)
∂R

+ ∂(ν〈v⊥vz〉)
∂z

+ 2ν
R
〈v‖v⊥〉=0

∂(ν〈vz〉)
∂t

+ ∂(ν〈vzv‖〉)
∂R

+ ∂(ν〈v2
z 〉)

∂z
+ ν

( 〈v‖vz〉
R
+ ∂

∂z

)
=0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4.54)

We will show below two applications of Jeans equations to the dynamics
of the Milky Way.

Vertical motion and Jeans equation

The first example concerns the equation corresponding to the vertical
component of velocity. Let us assume stationary state – i.e., neglecting
the partial derivative in time – and decorrelation between motion on the
plane and vertical motion – leading to 〈vzv‖〉=0. The latter approxima-
tion is especially relevant for motion close to the Galactic plane and is well
justified by our definition of the third integral. The last equation in 4.54
now reads

1
ν

∂(ν〈v2
z 〉)

∂z
=−∂

∂z
= d2z

dt2
=−4πG

ˆ z

0
ρ(s)ds, (4.55)

where we have used our results from section 4.3 about the vertical acceler-
ation in the infinite plane-parallel slab approximation. In this expression,
the density and RMS of the vertical velocity can be observed, allowing us
to determine the local mass density. Oort obtained a value of the dens-
ity ρ(R0, z=0)∼0.15M� pc−3 (Oort limit). Notice the density requires
a double differentiation, whereas the surface mass density needs only
one derivative (i.e., it is less uncertain). Oort’s estimate was �(R0, |z|<
0.7 kpc)∼90M� pc−2.

Asymmetric drift

The kLSR and dLSR (see section 4.2) are expected to be one and the
same if all stars move along circular orbits dictated by the gravitational
potential. However, their positions slowly drift with time if we adopt epi-
cyclic motion instead. We can give an adequate representation of this
effect. Let us consider the radial velocity component of Jeans equation
(the first equation in 4.54), with the additional assumption of symmetry
of the density profile along the vertical direction. For positions close to
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the plane, we have ∂zν∼0, and so

R
ν

∂(ν〈v2‖〉)
∂R

+R
∂〈v‖vz〉

∂z
+〈v2‖〉− 〈v2⊥〉+R

∂

∂R
=0. (4.56)

We define the azimuthal velocity dispersion as

σ 2
φ ≡〈(v⊥ − 〈v⊥〉)2〉. (4.57)

After some algebra, and noting that the velocity of the dLSR is v2
c =

R(∂)/∂R, we arrive at the asymmetric drift equation:

v2
c −〈v⊥〉2=〈v2‖〉

[
−∂ ln(ν〈v2‖〉)

∂ lnR
−

(
1− σ 2

φ

〈v2‖〉

)
− R
〈v2‖〉

∂(〈v‖vz〉)
∂z

]
.

(4.58)

Note that vc tracks the motion of the dLSR, whereas 〈v⊥〉 corresponds to
the average circular velocity for a number of stars (i.e., the kLSR). Let us
define vkLSR≡〈v⊥〉 and vdLSR≡ vc. Also, since |vdSR− vkLSR|� vdLSR, we
can write

v2
dLSR− v2

kLSR∼2vdLSR(vdLSR− vkLSR), (4.59)

and so

vdLSR− vkLSR∼
〈v2‖〉

2vdLSR
.
[
· · ·

]
. (4.60)

The terms within the brackets are the same ones as in equation 4.58. The
first term in brackets is the dominant one. The last term can be neglected
for our purposes. As the density decreases outwards, the first term in
brackets is positive, i.e., vdLSR > vkLSR, and so, the kLSR lags behind the
dLSR. Empirically, vdLSR− vkLSR∼〈v2‖〉/D, with D=120 km s−1.

4.6 The potential of the Galaxy

The observed rotation velocity profile of disc galaxies (see figure 4.6)
can be described to the lowest order by three regimes, as sketched in
the right panel of the figure. In the central region, we have a linearly
rising portion, which is the standard rigid body motion expected when
the mass density is constant (see section 2.5). Most of the rotation curve
of the galaxy is relatively flat, suggesting an isothermal density profile.
The sketch also shows the expected Keplerian decrease of the rotation
velocity in the regions where the mass density drops to zero. However,
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Figure 4.6 Comparison of the observed rotation velocity profile of
a disc galaxy (left, NGC3198), with a simple model involving three
regions (right). The data for NGC3198 also show the individual
contribution of gas, stars and dark matter to the rotation curve.
(Source: adapted from Dutton et al., 2005, ApJ, 619, 218.)

observations of dynamical tracers in the outer regions of galaxies (us-
ing, e.g., halo stars, planetary nebula or globular clusters) do not seem
to reach such regions, suggesting that the dark matter halo is much more
extended than any of these tracers. The observational data in the figure
show the individual contribution of gas and stars to the rotation curve.
Note that if we write the circular velocity as v2⊥ =GM(<R)/R, we can add
the individual contributions to the orbital velocity in quadrature, namely:
v2⊥ = v2

stars+ v2
gas+ v2

DM. Aside from such simple models to describe the
galaxy, one can create more complex mass distributions to mimic the
rotation curve (and any other dynamical information, such as Oort’s con-
stants) as accurately as possible. The Schmidt model represents one of the
early attempts,4 with a linear superposition of nonhomogeneous spher-
oidal mass distributions, along with a point mass, leading to a rotation
profile:

v2⊥(R)=
GMP

R
+4πG

∑
i

√
1− e2

i

ˆ R

0

∑
i ρi(a)a

2√
R2− a2e2

i

da, (4.61)

where each component is defined by a spheroid with eccentricity ei and
density ρi(a), and a is the semi-major axis of each spheroid. In fact, this
model built upon a previous one defined by Oort that assumed only con-
stant density spheroids.5 More complex models are currently adopted to
describe our Galaxy. As an example, we show below the potential-density
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Figure 4.7 Miyamoto-Nagai model of the Galaxy. The left panel shows
the best-fit rotation curve that consists of two components, with para-
meters a, b and M shown in equation 4.62: one corresponding to the
bulge (subindex 1) and another one representing the galactic disc
(subindex 2). The panel on the right shows a vertical cut of the density
distribution, with contours in units of M� pc−3. (Source: Miyamoto &
Nagai, 1985, PASJ, 27, 533.)

pair corresponding to the Miyamoto-Nagai model:6

(R, z)=− GM√
R2+

(
a2+√b2+ z2

)2

ρ(R, z)= b2M
4π

aR2+[a+3
√
z2+ b2][a+√z2+ b2]2

{R2+[a+√z2+ b2]2}5/2(z2+ b2)3/2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (4.62)

Note the limit a→ 0 represents a spherical Plummer model, and b→ 0 de-
scribes a very flattened potential. For a specific combination of two models
(i.e. two choices of a, b and the associated mass), one can obtain a good
fit to the rotation curve of our Galaxy (see figure 4.7).

Notes

1 I.e., when the Sun moves from the Southern to the Northern celestial hemisphere.
2 Bovy, 2017, MNRAS, 468, 63.
3 Bovy, 2017, MNRAS, 468, 63.
4 Schmidt, 1956, Bulletin of the Astronomical Institutes of the Netherlands, 13, 15.
5 Oort, 1952, ApJ, 116, 233.
6 Miyamoto & Nagai, 1985, PASJ, 27, 533.
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5
Specific aspects of disc and
elliptical galaxies

This chapter presents a few properties of the dynamics of stars in the
two general morphological classes of galaxies: disc and elliptical systems.
Their different dynamical states (discs supported by rotation; ellipticals
supported mostly by random motion) and surface brightness radial gradi-
ents (with discs having exponential distributions and ellipticals featuring
steeper profiles) are telltale signatures of their different formation histor-
ies. We begin with a general overview of their main properties. We explore
the scaling relations in galaxies (Tully-Fisher in discs, Fundamental Plane
and its projections in ellipticals), and their connection with the virial the-
orem, as well as other physical processes. Regarding ellipticals, we will
briefly present the concept of random motion support and its connection
with the observed ellipticities of galaxies. A brief section is included on
spiral structure in disc galaxies, revisiting the epicyclic motion of stars
on the disc, and presenting a scenario (density wave theory), where or-
bital resonance can lead to the rigid body rotation of a pattern (the spiral
structure).

5.1 ‘Hot’ versus ‘Cold’ dynamical systems

We saw in chapter 1 that galaxies can be morphologically classified into
three main families: spheroidal, disc-like and irregular. The morpholo-
gical appearance of a galaxy gives a direct link to its dynamical state.
Detailed studies of the kinematics of the gaseous and stellar compon-
ents reveal a substantial difference. If we split the total kinetic energy of
the stars in a galaxy between ordered motion (rotation) and random mo-
tion (velocity dispersion), we find that spheroidal galaxies are supported
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mostly by velocity dispersion, whereas disc galaxies keep most of their
kinetic energy in the form of bulk rotation. If we use a simple analogy
between velocity dispersion and temperature, one can say that this clas-
sification divides the sample into ‘hot’ and ‘cold’ dynamical systems, or
slow and fast rotators, respectively. There are two parameters often used
to quantify this split: the ratio (v/σ), typically measured within an effect-
ive radius (i.e., the region within which half of the total flux is observed),
and the specific angular momentum parameter:

λ≡ 〈R|v|〉
〈R√v2+ σ 2〉 . (5.1)

Incidentally, the traditional morphological separation between elliptic-
als and spirals as presented by the Hubble tuning fork diagram does not
convey the true dynamical evolution of galaxies, and an alternative classi-
fication scheme was proposed to take into account angular momentum in
addition to morphology.1 Note, for instance, that only one-third of nearby
ellipticals shows a hot dynamical state.

Late-type galaxies

Late-type galaxies (LTGs) consist of the family of disc galaxies, featuring
spiral arms of any type (termed Sa, Sb, Sc, Sd in the classical notation) and
barred systems (SBa, SBb, SBc, SBd). The subclass label from a to d refers
to a gradation from close, tightly wound spiral arms (a) to more open
arms (d). Lenticular galaxies (S0), although classified as disc systems,
are not considered late-type galaxies. In addition to the disc component,
late-types feature a central bulge. The so-called classic bulges have dy-
namical and population properties similar to those of ellipticals. However,
a second type of bulge (pseudo-bulge) is expected to form instead, after
the onset of dynamical instabilities within the galaxy. The bulge-to-disc
ratio – which can be measured either by mass or luminosity – decreases
along the Hubble sequence (largest for S0, smallest for Sd galaxies).

If we invoke conservation of angular momentum, the collapse and
subsequent cooling of the baryonic material is expected to produce a
galaxy with a significant amount of rotation (i.e., a disc). In addition,
processes that feed star formation through the streaming of low-entropy
gas along filaments (cold accretion) will also introduce rotation. Rotating
structures resembling discs are found one way or the other over a wide
range of cosmic distances, although disc galaxies at high redshift appear
dynamically hotter than disc galaxies observed locally.2
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Early-type galaxies

Elliptical galaxies (E) and lenticulars (S0) constitute the other funda-
mental group, termed ‘early-type galaxies’ (ETGs). These systems are
mostly hot dynamical systems (even lenticular discs feature prominent,
dynamically hot bulges). We will see below that their spheroidal mor-
phology is supported by orbital anisotropy. Ellipticals are characterized
by their apparent flattening (although note that the shape is dependent
on projection), ranging from E0 to E7, where the number corresponds to
10× (1− b/a) with b being the projected short axis and a the projected
long axis. Overall, their stellar content is dominated by a roughly homo-
geneously old and metal-rich population, suggesting an early and rapid
process of star formation. This result led to the belief that massive ellipt-
ical galaxies could form from a monolithic collapse of gas.3 Lower mass
ETGs have younger, metal-poor populations and may even feature faint
levels of residual star formation – following the general trend of downsiz-
ing, where the bulk of star formation progresses from massive to low-mass
galaxies with cosmic time.

The standard view of the formation of elliptical galaxies invokes a
merging process where the progenitors can be either ellipticals or disc
galaxies,4 but should have comparable mass (major mergers). Additional
growth mechanisms can be invoked via minor mergers, i.e., the infall of a
low-mass satellite, but these processes are not expected to trigger a mor-
phological change (although they can heat up the distribution of orbits,
as in, e.g., the thick disc of the Milky Way). This merging scenario for
the formation of ellipticals is consistent with the morphology-density rela-
tion,5 whereby elliptical galaxies are preferentially found in high density
environments. The structure growth in these environments evolves at a
faster rate in comparison with the field; therefore, the prevalence of ellip-
ticals reflects the role of interactions among structures as a way to explain
their formation. Compact massive galaxies are already found at redshifts
z ∼ 2, i.e., when the Universe had roughly one-fourth of its present age,
and are viewed as the progenitors of the cores of massive ellipticals and
bulges at present time. However, the details of the formation process, in-
cluding the role of major and minor mergers, and the initial cold accretion
phase are poorly understood.

5.2 Scaling relations

The observable properties of galaxies have strong correlations that indic-
ate, to a lowest order, a similar formation process driven by a reduced
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Figure 5.1 Tully-Fisher relation from the SPARC disc galaxy sample.
(Source: adapted from Lelli, McGaugh & Schombert, 2016, ApJ,
816, L14.)

number of parameters, most notably the mass of the galaxy (either total
or stellar) or the average velocity dispersion of the stars. A blind search
for correlations among galaxy properties via principal component ana-
lysis found that many of the properties can be determined from a single
parameter!6

The Tully-Fisher relation

One of the most important scaling relations in disc galaxies is the correl-
ation between total luminosity and rotation velocity (figure 5.1).7 The
velocity that defines this relation is usually taken in the flat portion of
the rotation curve, away from the centre. The scatter of this correla-
tion is small enough to make it a standard candle and has been used
to measure cosmological distances. The Tully-Fisher relation (TFR) can
be determined from a simple dynamical argument invoking the virial
theorem:

v2
ROT∝

M
R
⇒ L∝ϒ−2�−1v4

ROT. (5.2)

However, this result implies that the TFR requires constant mass-to-light
ratio across all disc galaxies, as well as constant surface brightness. The
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Figure 5.2 Fundamental plane of a sample of early-type galaxies
compiled from the Sloan Digital Sky Survey. (Source: adapted from
La Barbera et al., 2010, MNRAS, 408, 1335.) Used by permission of
Oxford University Press.

latter is found to apply to the subset of high surface brightness galaxies
(Freeman’s law). The relation depends on wavelength, increasing the
power index of vROT towards the redder bands. Notice that at longer (i.e.,
redder) wavelengths, the light from the stellar component is mostly con-
tributed by low-mass (mainly older) stars. Hence, variations in ϒ across
the sample are much smaller than at bluer wavelengths. The correla-
tion with respect to luminosity features a break at low-luminosities, with
galaxies falling below the relation defined for the more massive galaxies
(i.e., lower luminosity at fixed vROT). The correlation is extended to lower
mass galaxies when using total baryonic (stellar plus gas) mass rather
than luminosity, showing that the trend could, in principle, be fully re-
lated to the baryonic mass; this result has been used as an argument to
propose alternative models of gravitation that require no dark matter.8

The Fundamental Plane and its projections

The Fundamental Plane (FP) is a three-parameter correlation involving
the size, velocity dispersion and surface brightness of early-type galaxies.
These estimates are typically averaged inside an aperture extending over
the effective radius or a fraction thereof. The data span a plane on this
three-dimensional parameter space (see figure 5.2). By use of the virial
theorem, it is possible to define a plane that appears to be tilted with re-
spect to the observed FP. This mismatch can be related to several factors.
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(1) A change in the mass-to-light ratio, ϒ ∝ Mα (see exercise 5.1), can ex-
plain this tilt. Such an increase in M/L can be driven by a gradual increase
of the contribution from dark matter towards more massive galaxies.
(2) Rotation will “divert” part of the kinetic energy into bulk rotation,
so that a systematic change in v/σ with galaxy mass could introduce a
similar effect. (3) The simplified model presented in exercise 5.1 also as-
sumes that all galaxies feature the same surface brightness profile (i.e.,
their light distribution is homologous). A systematic trend, for instance,
a change of the Sérsic index with galaxy mass, will produce a tilt of the
plane defined by the simple model based on the virial theorem. The actual
reason for the tilt of the FP is arguably a combination of the three.9

Exercise 5.1

The Fundamental Plane is an important scaling relation of elliptical
galaxies, where the average surface brightness (�), the size (R) and
the velocity dispersion (σ ) are related by the equation

R∝ σ 1.2�−0.8

(these numbers have been slightly changed to make the problem
consistent as is). Using the mass-to-light ratio ϒ =M/L to con-
vert light into mass, show that the virial theorem leads to R∝
σ 2�−1ϒ−1.

Let us now assume that the mass to light ratio changes system-
atically from galaxy to galaxy, such that ϒ ∝Mα . Find the value of
α that brings the virial expectation in line with the observations.

In addition to the three-parameter relation spanned by the Fundamental
Plane, projections defined by just two parameters also provide interest-
ing scaling relations of early-type galaxies, although not as tight, by
definition, as the FP.
1. Faber-Jackson relation: This trend involves the total luminosity
(i.e., a combination of surface brightness and size) and the velocity
dispersion:10

L∝ σα, (5.3)

and a typical value of the power law index is α∼4. It is the equivalent
of the Tully-Fisher relation in disc galaxies. Naively, one could guess this
relation by assuming that while the dominant contribution to the kin-
etic energy of discs comes from rotation, the kinetic energy in early-type
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galaxies appears mostly in the form of velocity dispersion. However, there
is a significant variation of the degree of rotational support in ETGs that
correlates with mass, so this trend is not so trivial.
2. Kormendy relation: This is the ‘easiest’ scaling relation from the ob-
servational point of view,11 as it compares size (R) and surface brightness
(�). Therefore it does not require any spectroscopic data. It can also be
expressed by a simple formula:

�∝Rγ , (5.4)

and γ is approximately −3, i.e., the surface brightness decreases with
galaxy size. This scaling relation deeply encodes information about the
dynamical history of ETGs. In simple words, the Kormendy relation states
that bigger galaxies (broadly more massive galaxies) are ‘fluffier’.

Exercise 5.2

Using exercise 3.7, explain how a scenario that postulates the
formation of early-type galaxies only via mergers can explain the
Kormendy relation.

The colour-magnitude relation

In addition to the above relations, which depend mainly on galaxy dynam-
ics, there is a scaling relation pertaining to the properties of the stellar
populations. The colour-magnitude relation is especially significant in
early-type galaxies, mostly lying on the red sequence (see figure 1.5).
The more massive galaxies have redder colours. This relation has been
exploited, for instance, to detect galaxy clusters, as they host a large frac-
tion of elliptical galaxies. The redness of the colour of a population can
be explained either by its (older) age, (higher) metallicity or (dustier)
interstellar medium. The latter can be ruled out as elliptical galaxies do
not have much gas (or dust) in them. A combination of the first two
factors is thought to explain this trend, so that the star formation history
of early-type galaxies is closely related to its total mass (more accurately
its velocity dispersion). A detailed analysis based on spectroscopic obser-
vations from the Sloan Digital Sky Survey revealed a strong correlation
between the age12 and the metallicity13 of a galaxy with respect to its
mass. This overly simple trend gets more complicated when dealing with
colour gradients. In addition to morphology and the global dynamical
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state of a galaxy, radial gradients provide further information about the
assembly of galaxies, but this is something beyond the scope of this
book.

5.3 Rotation versus ‘pressure’ in early-type galaxies

The tensor virial theorem, presented in section 3.9, allows us to relate the
contribution from rotation and random motion to the shape of the galaxy,
which, in turn, affects the gravitational potential energy. If the system is
in equilibrium, there is no change in the moment of inertia tensor, and
the virial theorem can be written

2Tjk+�jk+Wjk=0, (5.5)

where the kinetic energy is split between a streaming motion component
(T) and a random motion component (�). Using Cartesian coordinates
and adopting the z direction as the axis of rotation, we can write

Txx=Tyy,

Tij=0 if i �= j,
(5.6)

and likewise for � and W. Hence, we only have two nontrivial equations
for 5.5:

2Txx+�xx+Wxx=0

2Tzz+�zz+Wzz=0

}
. (5.7)

We can therefore relate the kinetic and potential energy terms as follows:

2Txx+�xx

2Tzz+�zz
=

∣∣∣∣Wxx

Wzz

∣∣∣∣∼
(a
b

)0.89
, (5.8)

where the final expression in this equation is derived by taking into
account a spheroidal distribution of matter.14 Let us consider the two
possible options that can explain the flattening of an elliptical galaxy:
1. Rotation: If rotation dominates the kinetic energy budget and fully ex-
plains the flattening of ellipticals, we can assume the velocity dispersion
tensor is isotropic:

�xx=�yy=�zz=Mσ 2
0 , (5.9)

where σ0 is the mass-weighted velocity dispersion of the random motion,
along the line of sight to the galaxy. The streaming component of the
kinetic energy is
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Txx+Tyy= 1
2

ˆ
ρ〈v2

φ〉d3x= 1
2
Mv2

0, (5.10)

and v2
0 is the mass-weighted mean square rotation speed. Equation 5.8

gives

v0

σ0
=

√
2
(a
b

)0.89−2. (5.11)

2. Anisotropic velocity dispersion: The flattening can also be caused by
a difference in the distribution of orbits (dynamical systems remember
their past history, in contrast to a system in thermodynamic equilibrium).
In this scenario, the streaming term vanishes:

Txx=Tyy=Tzz=0, (5.12)

and we divide the random motion between a contribution on the rotation
plane, and perpendicular to it:

�xx=�yy=Mσ 2
x

�zz=Mσ 2
z

}
, (5.13)

giving
σz

σx
=

(
b
a

)0.45

. (5.14)

In the extreme case of an E7 elliptical, 1− b/a=0.7, a full rotational sup-
port would require v/σ ∼1.96, i.e., a rather large rotation velocity that is
not observed in ellipticals, whereas a mild anisotropy (σz/σx∼0.58) can
explain the same shape. Figure 5.3 shows the relation between v/σ and
ellipticity in a sample of nearby early-type galaxies, where the solid dots
represent slow rotators (i.e., hot dynamical systems) and the open sym-
bols are fast rotators. The dashed line traces our simple expression from
equation 5.11. A more accurate expression of the rotational support limit
is shown as a solid line, roughly enveloping all the observed data points.15

5.4 A brief introduction to spiral arms in disc galaxies

Disc galaxies often feature spiral arms. In fact, one of the main cri-
teria for the classification of galaxies in the Hubble tuning fork diagram
(see figure 1.3) is the morphology of these spiral features. From the
observational point of view, the nature of spiral structure is correlated
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Figure 5.3 Rotational support of early type galaxies as a function of
ellipticity. (Source: data from the ATLAS3D sample, Emsellem et al.,
2011, MNRAS, 444, 888.) Used by permission of Oxford University Press.

with the global properties, such as the ratio of gas to stellar mass. Gas poor
discs (lenticular galaxies: S0) have no spiral structure. Most spirals fea-
ture two arms with conspicuous dust lanes on their inner edge. There are
two main types of spiral morphology: grand design, with arms that can be
traced over a large radial range, and flocculent, showing patchy, discon-
tinuous spiral features (figure 5.4). The star formation rate is significantly
higher in the spiral arms than in the rest of the galaxy. A consequence of
this is the prominent display along the spiral arms of hot (OB, i.e., very
young < 10 Myr) stars, as well as ionized gas (HII regions).

The winding-up paradox

A first guess at explaining spiral features would resort to differential rota-
tion in the disc. We saw in chapter 4 that a significant part of the rotation
curve of our Galaxy is flat. Hence the orbital speed is independent of
radius, and the angular speed is �(R)∝1/R. This will imply that an exten-
ded burst of star formation would gradually twist into a spiral feature as
the central regions will wind faster than the outer ones. Consider a stripe
of stars, all at the same azimuthal angle φ0=0 at time t=0. At a later
time, the angular distribution will be φ(R, t)=�(R)t. The differential
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Figure 5.4 Spiral arm morphology: flocculent (left) versus grand
design (right). (Source: courtesy NASA/ESA HST and the Hubble
Heritage Project.)

dϕ
R+
dR

Rdφ

R

i
dR

Figure 5.5 Determining the pitch angle of a spiral feature. The dashed
line follows a circumference, for which the pitch angle is i=0.

rotation will therefore shear the straight line into a spiral with a pitch
angle (i), defined as the angle between the tangent to the spiral and the
circle crossing at that point (figure 5.5):

cot i=
∣∣∣∣RdφdR

∣∣∣∣=Rt
∣∣∣∣d�dR

∣∣∣∣=2At, (5.15)

where we have made use of Oort’s A constant (equation 4.4). If the pitch
angle is small, we can relate it to the separation, �R, between arms. Take
two adjacent arms at the same azimuthal angle:

2π = |�(R+�R)−�(R)|t⇒�R= 2πR
cot i
= 2π

t

∣∣∣∣d�dR
∣∣∣∣
−1

= πR
At

, (5.16)
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where the last step assumes �R�R. The separation decreases monoton-
ically with time. Plugging in expected values for the Milky Way (t∼10 Gyr;
At=151.36, R=8.5 kpc), we find �R∼0.2 kpc, which is in conflict with
the observational constraints. This result corresponds to a very small pitch
angle (i∼0.2o), whereas the observed value is around 5o for the earlier-
type systems (Sa), increasing to 10o−30o for the later-type ones (Sc, Sd).
Hence, either the spiral arms are not long lived or the spiral pattern is not
directly linked to differential rotation.

Spiral pattern rotation

A possible explanation for the presence of long-lived spiral arms invokes
a resonance mechanism, such that stars are preferentially found near the
spiral pattern, but, on average, the composition of stars within a spiral
arm changes with time. An analogous example, closer to home, is the pile
up of cars on a congested motorway. As cars approach the traffic jam, they
will slow down, increasing the local density of cars. On the other side of
the congestion, cars will accelerate, decreasing the density as they move
away. If we look from above, we will see an overdensity of cars in a seg-
ment of the motorway, but different cars join and leave this overdensity
with time. Is it possible to produce a similar pattern in galaxies? From
chapter 4, we know that stars in a disc galaxy do not move along circular
orbits. They follow instead an elliptical orbit (an epicycle) that trails along
a guiding centre representing the simple circular orbit (i.e., the location of
the dLSR). The epicyclic motion has frequency κ =2

√−B(A−B), in con-
trast with the angular frequency of the dLSR (�). Let us assume there is a
pattern of stars in a galaxy, i.e., an inhomogeneous distribution of stars
(say a set of spiral arms), which moves with a constant pattern speed
�P. If the number m≡ (�−�P)/κ is a rational number, the trajectories
will be closed and may allow for this density pattern to be sustained. The
choice m=2 is especially relevant, as it creates a two-armed structure.
For a given choice of the pattern angular speed, there are three import-
ant radial positions (figure 5.6, right panel). (1) At the position where
�P=� (called corotation, CR), stars move with the pattern. Therefore,
from a frame of reference rotating with angular speed �P, we will see the
stars simply tracing an epicycle. (2) At �P=�− κ/2 (Inner Lindblad Res-
onance, ILR), a star will move twice round its epicycle for every rotation
around the galaxy, overtaking the pattern. (3) At �P=�+ κ/2 (Outer
Lindblad Resonance, OLR), the star moves twice its epicycle for every
rotation, falling behing the pattern. At any other radii, the orbits are un-
closed trajectories. The left panel of figure 5.6 shows the radial variation
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Figure 5.6 Illustration of Lindblad resonances. (Source: background
image of M51 from the Digital Sky Survey.)

of angular speed for an isothermal density profile; other profiles will look
similar. Notice the �− κ/2 curve is flat outside of R∼ 4 kpc. If the pattern
speed is similar to this value, the galaxy will extend its ILR over a large
radial range; i.e., it would be possible to have oval-like orbits at many
radii – when viewed from a frame of reference moving with the pattern
speed.

Figure 5.7 shows two different cases where an extended ILR can
produce a pattern in solid body rotation. The figure nests orbits similar
to the ones described above for the ILR over a range of radii. We expect
these orbits to rotate with constant angular speed �P. In the first case
(left panel) the orientation is constant from the inside out, producing
a bar-like feature that rotates rigidly. The second case (right panel) in-
troduces a gradual rotation of the orientation of the orbits, producing
a clear spiral feature, also expected to rotate rigidly. This explanation is
purely kinematic, based on the motion of stars. It is meant only to motiv-
ate the case for a resonance that can cause spiral features. Density wave
theory details the mechanism by which the interaction of gas and stars
in a disc galaxy can give rise to spiral arms in solid body rotation.16 The
source of energy to drive the wave is still a matter of debate, and tidal in-
teractions with a nearby object or the presence of a rotating bar may be
involved. Note, for instance, that galaxy M51, shown in the right panel of
figure 5.6, is tidally affected by a nearby galaxy (to the top of the figure),
and many other grand-design spirals also have nearby galaxies that could
be potential interlopers. We have considered in the example above a

104 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



Figure 5.7 Rigidly rotating features expected when the ILR is exten-
ded. Either a bar (left) or a spiral (right) is produced, depending on the
radial variation of the orientation of the orbits.

two-armed spiral by choosing m=2, but in general we could consider a
pattern with m> 2. Stars and gas clouds will pass through the pattern
with frequency m[�p−�(R)] perturbing the system. These motions with
respect to the spiral pattern will affect the gravitational potential of the
disc. It is found that stars respond so as to strengthen the spiral only if the
perturbing frequency is slower than κ. Hence, a spiral density wave can
propagate only in the region where this condition holds, i.e.,

�− κ/m≤�p≤�+ κ/m. (5.17)

The extrema of this interval are the inner and outer Lindblad resonances.
Patterns with many arms (m> 2) will therefore span a narrow region in
the diagram (e.g., the interval between �− κ/4 and �+ κ/4 will shrink
in figure 5.6), impeding the formation of extended spiral structure with
many arms. The vast majority of grand-design spiral galaxies display two
arms. Note that at the corotation radius, stars move along with the pat-
tern, whereas inside (outside) corotation they will move faster (slower)
than the pattern. When gas clouds hit the spiral pattern, they get com-
pressed, triggering star formation. This explains why most of the young
stars are found along the spiral arms. Once they form, the stars over-
take the spiral feature (inside corotation). Hence, we should expect an
offset between the gas, ongoing star formation, and more evolved stars,
following the (orthogonal) distance to a spiral arm. This is one of the
characteristic properties exploited to test density wave theory.17 Gas is
more affected by the spiral pattern than stars, because of its smaller
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random motion. As stars move in the galaxy, they increase their random
motion. The distribution of older stars in the disc is more homogeneous
(i.e., less affected by the presence of spiral arms). Therefore, lenticular
galaxies (S0, disc systems with very little gas) have no spiral structure,
whereas later-type systems (Sb, Sc) normally feature the most prominent
arms.

Nevertheless, at present, numerical simulations cannot create a
spiral pattern with solid body rotation, as predicted by density wave the-
ory. Recent research suggests that spiral arms are short-lived, in corota-
tion with the stars.18 This scenario would be compatible with the presence
of flocculent arms, traditionally explained by the onset of detonation
waves caused by star formation, propagating around the disc and get-
ting sheared by differential rotation. However, grand-design spirals pose
a challenge to numerical models when tidal interactions are not invoked.
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6
Galactic chemical enrichment

Most of the chemical elements in the periodic table were synthesized in
the cores of stars. The Big Bang, although very hot during a brief period
of time, could not keep the required condition of temperature and dens-
ity for long enough, resulting only in a 25 per cent production by mass
of helium from hydrogen, along with traces of a few heavier nuclei. The
synthesis in the Universe of elements such as C, O, Mg and Fe can take
place only in the central regions of stars, where the conditions for thermo-
nuclear reactions are adequate. Therefore, the build-up of the elements
in galaxies – observed in the stellar and gaseous components – reflects
the past star formation histories inside galaxies. Tracing the composition
of gas and stars provides a powerful tool for understanding galaxy form-
ation. This chapter presents an overview of chemical enrichment along
with the differential equations that govern the variation of elemental
abundances. The simplification of the instantaneous recycling approxim-
ation allows us to produce very simple solutions that give insight about
the different scenarios of galaxy evolution. We relate these solutions to
the observed scaling relation between mass and metallicity and the solu-
tion of the G-dwarf problem in Milky Way stars. Abundance ratios are also
introduced as a powerful discriminant of star formation histories.

6.1 Nucleosynthesis and the formation of galaxies

The formation and evolution of galaxies can be split into two complement-
ary channels. One deals with the growth of the dark matter halos within
which galaxies live. This growth – the mass assembly history (MAH) – is
driven mainly by gravitational interactions, from the growth of the small
density fluctuations at early times (chapter 7) to merging processes that
gradually create more massive structures. The second channel involves
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the star formation history (SFH) of the galaxies inhabiting these halos
and can be studied via galactic chemical enrichment. As star formation
proceeds, the chemical elements synthesized in stars are progressively
incorporated into subsequent stellar generations, although a fraction of
these elements, along with the H+He gas, can be expelled from galaxies.
A simple description of these proceses allows us to understand the mech-
anisms underlying the transformation of gas into stars. This is arguably
one of the most complicated problems in astrophysics, as a large number
of physical processes play an important role, including the hydrodynamics
of gas inflows and outflows, the cooling and fragmentation of gas clouds,
feedback from star formation and activity from an Active Galactic Nucleus
(AGN).

Central to the analysis of galactic chemical enrichment (hereafter
GCE) is the concept of stellar yields, defined as the mass of a given
chemical element synthesized in a star of mass m. The yields are cal-
culated from models of stellar structure and evolution, aspects that are
beyond the scope of this textbook. However, the most fundamental as-
pect is the significantly different role played by massive stars (�8M�).
They contribute the majority of chemical elements, and feature compar-
atively short lifetimes (25 Myr for a 10 M� star, in contrast with 10 Gyr
for a 1 M� star). Therefore, chemical enrichment closely traces the star
formation history. The presence of an additional nucleosynthetic channel
involving a binary system – type Ia supernovae – introduces an additional
timescale that will be presented at the end of this chapter. The specific de-
tails of a star formation region can, in principle, leave an imprint on the
detailed chemical composition of the stars formed within it. The so-called
chemical tagging analysis is a promising method by which GCE could help
identify the dynamical origin of a population of stars in our Galaxy (or
nearby resolved systems).

6.2 General aspects of galactic chemical enrichment

In the simplest form, the equations of GCE trace the evolution of the gas
and stellar mass, as well as the amount of chemical elements. Often, we
add together all chemical elements – except for H and He – defining metal-
licity (Z) as the mass fraction in these elements with respect to the total.
As a reference, our Sun has a metallicity Z� ∼0.02. An alternative estim-
ator of metallicity uses an individual element, typically iron, with [Fe/H]
defined as the logarithmic ratio, by number, of iron atoms, with respect to
the solar value. In general, one can find stars and stellar populations with
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very low metallicity ([Fe/H] �−3, and even lower), but high metallicity
populations are not found above a factor of∼2−3 times the solar value.

The initial mass function

Of all parameters describing a star, its mass is the most important one
(Russel-Vogt theorem). Given a stellar mass, we can infer its lifetime,
yields, evolutionary phases and remnant properties. Additional factors
such as chemical composition and rotation will also affect these, but we
assume that, to a good approximation, only mass defines lifetime and
yields, essential parts of the GCE equations. Therefore, a fundamental
aspect of chemical enrichment is the distribution of stellar masses in a
population at birth. This is the initial mass function (IMF). Local ob-
servations of stellar populations support the idea that this function may
be universal, although recent evidence in star-forming and quiescent
galaxies reveals potential variations, possibly towards a top-heavy IMF
in star-forming systems (i.e., an excess of massive stars with respect to
the standard IMF); and a bottom-heavy IMF in massive quiescent galaxies
(i.e., an excess of low-mass stars with respect to the standard). Neverthe-
less, we will assume here a unique definition of the IMF, given by a single
power law:

φ(m)≡ dN
dm
∝m−� , (6.1)

where �=2.35 defines the Salpeter IMF. We also need to consider the
mass range of the IMF, i.e., the interval of mass within which stars can
be found. The low-mass end is caused by the threshold in the onset of
thermonuclear reactions in the stellar core, at around 0.08M�. Lower
masses do not have enough gravitational energy to achieve the high cent-
ral temperatures needed. Instabilities in the stellar atmospheres control
the upper limit, although the actual value is not clearly defined. A value of
100M� is commonly adopted for this limit. Quite often, the IMF is defined
on a logarithmic scale in mass:

ξ(m)≡ dN
d logm

∝m−μ, (6.2)

with the Salpeter1 IMF corresponding to a slopeμ=�−1=1.35. We also
need to use the normalization mass scale for a given IMF, defined as

mN ≡
ˆ mhigh

mlow

mφ(m)dm. (6.3)
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This normalization is typically fixed at a solar mass, mN =M�, and some
textbooks redefine the normalization, removing the mass units from this
expression by choosing mN =1. Note that in this case, the IMF is defined
per unit mass, instead of per number of stars. There are a number of addi-
tional functional definitions of the IMF, where the main effect is either to
taper off the low-mass end with either an additional power law (or sets of
power laws), as in the Scalo or Kroupa definitions, or to replace the power
law at low masses with a lognormal distribution, as in the Chabrier IMF.

Exercise 6.1

Show that for a Salpeter IMF, defined in the mass interval 0.1
–100M� a supernova is expected per 184M� of stars formed (as-
suming that only stars with mass m> 10M� undergo a supernova
explosion). The star formation rate of our Milky Way galaxy is
approximately one supernova per century, and the average star
formation rate is 1M� yr−1. Which way should we change the IMF
to reconcile these estimates?

Remnant mass and returned fraction

Once a star reaches its endpoint (after a time τm), we assume that a rem-
nant is left behind: a white dwarf for low- and intermediate-mass stars
(m�8–10M�) and a neutron star or black hole for massive stars. This can
be quantified by defining a remnant mass (wm) that remains locked away
at later times. The rest of the mass is ejected back into the interstellar me-
dium (ISM), including both ‘gas’ and ‘metals’, which become available for
the next episodes of star formation. Therefore, if we consider the form-
ation of a single population of stars (all created at the same time), we
can define the fraction in mass returned back to the ISM. This so-called
returned fraction can be related to the IMF as follows:

R(t)≡ 1
mN

ˆ mhigh

mt

φ(m)(m−wm)dm, (6.4)

where mt is the stellar mass corresponding to a lifetime t. This function
is zero at t = 0, gradually increasing with time towards an asymptotic
value at late times, when stellar lifetimes are as long as the age of the
Universe. Typical values of the returned fraction at late times are∼0.3 for
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the Salpeter IMF and∼0.5 for the Chabrier IMF. Since the latter features
a lower fraction of low-mass stars – which effectively lock up most of their
mass forever – the amount of gas available for recycling is significantly
higher.

Exercise 6.2

Compute the returned fraction at late times of the Salpeter IMF (ad-
opt 1 M� as the low-mass threshold of the integral), if the remnant
mass of a star with initial mass m is given by (in solar mass units):

wm

M�
=

{
0.1(m/M�)+0.5, m≤10M�,

1.5, m> 10M�.

Stellar yields

Another important component of GCE equations is the yield (pm), defined
as the mass fraction in a given element, that is synthesized by the star
(of mass m) and returned to the interstellar medium once it reaches its
endpoint, after a time τm. An equivalent version of the returned fraction
is the net yield, defined as

yp≡ 1
1−R

ˆ mhigh

mt

mpmφ(m)dm. (6.5)

Star formation rate

The star formation rate (ψ) is an essential function in GCE equations, as
it drives the transformation from gas into stars. The Schmidt law assumes
that ψ is some power law of the gas mass available for star formation. A
simple argument gives

ψ(t)∝ ρg(t)
tdyn
=⇒ψ(t)≡ kSFρ

1.5
g (t). (6.6)

From an observational point of view, only projected surface mass
densities can be measured. The equivalent version of the above on two-
dimensional surface formation rates and surface gas mass densities is the
Kennicutt law:
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�ψ(t)= k′SF�
1.4
g (t). (6.7)

Exercise 6.3

Assuming L∝M3.5 – consider only the main sequence and neglect
evolved phases of stellar evolution – compare the average mass and
average luminosity of a population at birth and after 1 Gyr (the life-
time of a 2.5 M� star is 1 Gyr). Neglect the contribution to the mass
from remnants.

6.3 Basic equations of galactic chemical enrichment

The basic equations of GCE2 describe the evolution of the mass in stars
(Ms) and gas (Mg), as well as the amount of “metals” in the gas phase,
described by the metallicity (Z). We assume the total mass is M=Ms+
Mg. More advanced equations separate the gas component into several
‘phases’, mainly a cold phase (which controls the star formation rate) and
a hot phase. Furthermore, the metallicity can be split into the contribution
from individual elements, or from groups closely related to their synthesis
reactions, such as the α elements, iron-peak elements, or s- and r-process
elements. Gas flows are simplified by two time-dependent functions, an
infall rate, f(t) and an outflow rate o(t). The basic equations describing
the evolution of the mass components are

dM
dt
= f − o

dMs

dt
=ψ − E

dMg

dt
=−ψ + E+ f − o

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (6.8)

The quantity E(t) is the ejection rate, i.e., the amount of gas contributed
by stars at the end of their lives. Noting that wm is the remnant mass, we
can write

E(t)=
ˆ mmax

mt

(m−wm)ψ̂(t− τm)φ(m)dm, (6.9)

where ψ̂ =ψ/mN is the star formation rate per unit mass, so defined as
to give E(t) the units of a mass per unit time. The evolution of the metal
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content is given by

d(ZMg)

dt
=−Zψ + EZ+Zf f −Zo. (6.10)

The enrichment process is described by a homogeneous mixture of gas
and metals, with instantaneous mixing. The ejection of metals is given by

EZ(t)=
ˆ mmax

mt

[(m−wm)Z(t− τm)+mpm] ψ̂(t− τm)φ(m)dm, (6.11)

where pm are the stellar yields, i.e., the mass fraction of a star of mass m
converted into metals, and ejected at the end of the stellar life.

The instantaneous recycling approximation

These equations can be simplified if we assume that stars are divided
into two classes: those that live forever (masses below some threshold
m<m0) and those that die out as soon as they are born (m>m0). This is
called the instantaneous recycling approximation (IRA). The approxima-
tion is well justified because most of the yields are produced by M� 8M�
stars, which have much shorter lifetimes than∼M� stars, which lock most
of the mass into stars. The ejecta (see equations 6.9 and 6.11) are now

E(t)=Rψ(t),

EZ(t)=RZ(t)ψ(t)+ y(1−R) [1−Z(t)] ψ(t).
(6.12)

The factor [1−Z(t)] in the second equation is ∼1, given that the metal-
licity is always Z� 1. The equations of chemical enrichment in the IRA
become

dMs

dt
= (1−R)ψ

dMg

dt
=−(1−R)ψ + f − o

d(ZMg)

dt
=−Z(1−R)ψ + y(1−R)ψ +Zf f −Zo

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (6.13)

Instead of tracing the mass in metals (ZMg), one can write the equation
for the evolution of the metallicity (Z), as follows:

Mg
dZ
dt
= y(1−R)ψ + (Zf −Z)f . (6.14)
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Neglecting gas infall and outflow, we see that the total amount of metals
ever formed at some time t is

ZsMs+ZgMg=
ˆ t

0

[ˆ mmax

ms

mpmψ̂(s− τm)φ(m)dm
]
ds= yMs. (6.15)

The closed box model

The above equations can be applied to basic models of chemical evolu-
tion to derive analytic expressions of the stellar metallicity distribution.
The simplest option is the closed box model, which has no infall or out-
flows, with initial conditions Mg(t=0)=M0; Z(t=0)=0. The total mass
remains constant M=Ms+Mg=M0 at all times. Integrating the IRA
equations gives

dZ
y
=−dMg

Mg
=⇒Z= y ln μ−1

g , where μg≡ Mg

Mg+Ms
= Mg

M0
. (6.16)

Note this expression is valid as long as Z� 1, so it will break down at late
times, as μg→ 0. The closed box model produces a significant amount of
low-metallicity stars, which is as expected since the star formation rate
at early times (i.e., with low-metallicity gas) is very high. Comparisons of
this model with observed stellar metallicities in the solar neighbourhood
show a large mismatch, termed the ‘G-dwarf problem’. We can quantify
this difference by estimating the mass fraction in stars with metallicity
below some threshold Z. We need to rewrite the IRA equations, relating
the metallicity to the stellar mass:

dZ
y
= dMs

M0−Ms
=⇒Ms(<Z)=M0

(
1− e−Z/y

)
. (6.17)

In order to derive this expression, we use the fact that the metallicity in the
gas phase increases monotonically in this model, so that the stellar mass
when the gas phase metallicity is Z comprises only stars with metallicities
below this value. We can quantify, for instance, the mass fraction in stars
with metallicity below one quarter of the solar value. Firstly, we need to
derive the yield, by use of the observational constraint of the gas mass
fraction in the solar neighbourhood, at present time:

μg(NOW)= �gas

�gas+stars
∼ 5M� pc−2

50M� pc−2 =0.1, (6.18)
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and the metallicity in the gas phase is at present Z∼Z�. Therefore,
from equation 6.16 we find y=0.43Z�, which, when plugged into equa-
tion 6.17, gives a mass fraction Ms(<Z�/4)∼0.45. The observational
constraint is ∼0.02, i.e., a substantially smaller fraction. Therefore, the
closed-box model does not give a valid representation of the solar neigh-
bourhood as it overproduces low-metallicity stars.

The open box models: Infall and outflows

To mitigate the G-dwarf problem posed by the closed box model, we
need a mechanism to reduce the production of low-metallicity stars. The
simplest solution beyond the closed box model is to consider that stars
are being formed from the infall of gas supplied by an external reservoir.
By assuming a small initial gas mass, we prevent the early locking of a
high-mass content in stars when the metallicity is too low. To simplify the
model, let us assume no outflows, and infall perfectly balancing the star
formation rate, such that the gas mass is kept constant: Mg=M0=⇒ f =
(1−R)ψ , leading to

Ms(<Z)=M0 ln
(

y
y−Z

)
, (6.19)

where we also assume that the gas reservoir has zero metallicity. As in the
closed box case, the net yield can be derived from

dZ
y−Z

= dMs

M0
=⇒ Z

y
=1− e

1− 1
μg . (6.20)

Therefore, in the solar neighbourhood (μg=0.1) we get y�Z�, and
Ms(<Z�/4)=0.032, in line with the observational constraints (see
figure 6.1).

Exercise 6.4

Show that the closed box and infall models presented above lead
to the following distribution of stars with respect to metallicity, as
shown in figure 6.1:

dN
d log ζ

∝

⎧⎪⎨
⎪⎩
ζ e−ζ , closed box,

ζ

1− ζ
, infall,

where ζ ≡Z/y.
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Figure 6.1 Comparison of the observed metallicity of nearby stars
from the Geneva-Copenhagen Surveya, shown in grey, with the closed
box and infall model presented here (the latter labelled ‘Infall #1’). A
second, more realistic distribution from a numerical model of chem-
ical enrichmentb is shown as ‘Infall #2’. Used by permission of Oxford
University Press.

aHolmberg et al., 2007, A& A, 475, 519.
bFerreras, Wyse & Silk, 2003, MNRAS, 345, 1381.

It is also interesting to incorporate the effect of outflows in the chem-
ical enrichment process. For instance, let us assume that the outflow
rate is proportional to the star formation rate, defining o≡ cṀs, where
c is the proportionality constant. This ansatz is justified by the fact that
supernovae-driven winds, triggered effectively by the instantaneous star
formation rate (SFR) when IRA is adopted, drive the gas outflow rate. If
there is no infalling gas, and the initial condition is Mg=M0, and zero
stellar mass, we get

Z= y
1+ c

ln μ−1
g ≡ yeff ln μ−1

g , (6.21)

equivalent to the closed box model, where the effective yield is the net
yield, reduced by a factor (1+ c). Likewise, the cumulative stellar mass
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below some metallicity threshold is

Ms(<Z)= M0

1+ c

[
1− e

− Z
yeff

]
, (6.22)

again, equivalent to the closed box model. By increasing c, one could bring
this mass fraction in line with the observations.

Exercise 6.5

Consider now the leaky box model, with the same properties and
initial conditions as the closed box model, but with additional infall
(f) and outflow (o) terms, where f = o= cṀs (i.e., the infall and
outflow rates are balanced and correspond to a fraction, c< 1, of
the rate of change in stellar mass). Derive the mass fraction in low-
metallicity (Z<Z�/4) stars, and contrast with the observed∼0.02
fraction.

The outflow model can also be presented in the light of the observed
mass-metallicity relation (figure 6.2), where the most massive galaxies
feature the highest metallicities. If we make a simple relation between
the observed gas-phase metallicity and the effective yield, a functional de-
pendence would be established between c – i.e., the gas outflow efficiency
– and galaxy mass. Such a relation could be motivated by an escape velo-
city argument, where the gravitational potential well would ‘modulate’
the amount of gas ejected in outflows.

Exercise 6.6

A galaxy fuels its star formation via infall, but without any out-
flowing material. At time t=0 the gas mass is M0 and the stellar
mass is zero. The infall rate is at all times a fixed fraction (α) of the
star formation rate (f =αψ), and the star formation rate follows
a simple law: ψ = kMg. Find the time evolution of the gas frac-
tion μ≡Mg/(Mg+Ms). What is the asymptotic behaviour of μ as
t→∞? What happens if α=1?
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Figure 6.2 Observed correlation between the stellar mass of the
galaxy and the (gas-phase) metallicity, measured with respect to the
oxygen abundance. In these units, solar metallicity corresponds to a
value of 8.7. (Source: adapted from Tremonti et al., 2003, ApJ, 613,
898.)

6.4 Chemistry as a cosmic clock

So far, the GCE equations adopt a single variable to describe metallicity
(Z). The next step would entail separating the production of elements into
α elements and Fe-peak elements. The main reason for this choice is that
the former are mainly produced by core-collapse (Type II) supernovae,
which are the final evolutionary stage of massive (�8M�) stars. In these
stars, most of the iron-rich core is trapped into a remnant (neutron star or
black hole), locking this material away. The Fe yield of Type II supernovae
is generally rather low (�0.1M� per supernova). In contrast, Type Ia su-
pernovae – triggered in close binary systems involving at least one white
dwarf – release a significantly higher amount of Fe (∼0.7M�). Since such
a scenario requires the presence of a white dwarf, a delay is expected in
the production of Type Ia supernovae with respect to Type II, and thus
iron is incorporated later in subsequent generations, as long as star form-
ation is present. Although estimating this delay is a complicated task that
depends on a large number of factors involving the production and evol-
ution of binaries and the accretion of material in a way that would yield
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Figure 6.3 Correlation between the fraction of old stars (vertical axis,
given as the mass fraction in stars older than 10 Gyr) and the chemical
abundance ratio [α/Fe] (where 0 corresponds to the solar value). Note
that higher ratios are associated with galaxies where the old component
is more prominent, suggesting a relation between the star formation his-
tory and chemical enrichment. (Source: adapted from de la Rosa et al.,
2011, MNRAS, 418, L74.) Used by permission of Oxford University
Press.

a supernova explosion, we can approximate this delay by a �tIa, which
allows us to use the abundance ratio [α/Fe] as a cosmic clock: galaxies
with high stellar [α/Fe] result from an intense, short-lived episode of star
formation that shut off quickly, before Type Ia supernovae had any chance
to contribute to chemical enrichment. If [α/Fe] is low, the star formation
rate was more extended. For most models of the Type Ia progenitor, the
delay time (�tIa) ranges between 0.5 and 2 Gyr. For example, massive
early-type galaxies feature metal-rich and old stellar populations, with
substantially higher [α/Fe] than stars in the solar neighbourhood, reflect-
ing a very different star formation history (figure 6.3). The old and high
metal content suggests an early and efficient formation process to quickly
build up the gas-phase metallicity, and to avoid locking too many low-
mass (i.e., long-lived) stars at low metallicity. The high [α/Fe] reinforces
the need for a high formation efficiency, requiring most of the stars to
be formed within �1–2 Gyr. Massive galaxies are observed at high red-
shift, potentially the cores of high-mass early-type galaxies at present.
They have a stellar mass of about 1011M� at redshift z∼2. These systems
must sustain a very intense formation scenario, where the average star
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formation rate needs to be about two orders of magnitude higher than in
the Milky Way at present. In the Milky Way there is also a signature of
nonsolar abundance ratios, as low-metallicity stars (formed in the early
stages of evolution) have high [α/Fe], a property used, for instance, to
disentangle the populations of thin and thick disc stars (see section 4.1).

Notes

1 Salpeter, 1955, ApJ, 121, 161.
2 Galactic chemical enrichment was a field pioneered by Beatrice Tinsley (Tinsley,

1980, Fundam. Cosmic Phys., 5, 287).
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7
The growth of density fluctuations

Galaxies start as minute density fluctuations in an otherwise homogen-
ous and expanding Universe. During the first phases of galaxy growth,
the fluctuations were so small that simple equations can be solved to
trace this early evolution (linear phase). An overview of cosmology is
necessary, including the treatment of the expanding Universe through
Friedmann’s equations, although a simple Newtonian argument will suf-
fice here, in lieu of a more complex treatment with general relativity
(outside the scope of this textbook). The concept of critical density and
the evolution of the background matter and radiation densities will be
presented, leading to the equations of an expanding fluid with a small
perturbation, parameterized with the density contrast. The Einstein–de
Sitter case will be presented as an easy-to-solve model that gives an ac-
curate representation of the Universe during the main phase of linear
growth. A comparison with the density fluctuations at present in the
Cosmic Microwave Background leads to one of the most robust proofs
that dark matter must be present in large quantities in the Universe. The
linear phase is followed by a more complex stage of nonlinear growth
that can be simplified with a model of spherical collapse and virializa-
tion, also presented here. Once the fluctuation is in virial equilibrium
(forming a so-called dark matter halo), we consider the issue of gas
cooling, responsible for the typical sizes and masses of galaxies. The
distribution of the dark matter halos leads us to a statistical treatment
based on the Gaussian distribution, following the Press-Schechter ar-
gument. This treatment results in a hierarchical buildup of structure.
Finally, galaxy clustering is presented as a way of exploring the underlying
cosmology.
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7.1 A cosmology primer

Galaxy formation, in its earliest stages, involves the growth of small dens-
ity fluctuations in an otherwise homogeneous and isotropic Universe. This
approximation, called the cosmological principle, represents the central
tenet of our current paradigm of cosmology, allowing us to use a highly
simplified metric as the solution to Einstein’s equations of general relativ-
ity. This textbook avoids a relativistic treatment, as stellar and galactic
velocities are, at most, ∼103 km s−1� c, and the ratio of gravitational
to rest-mass energy is W/Mc2∼10−3M10/Rkpc, where M10 is the mass in
units of 1010M�, and Rkpc is the typical size of the stellar system in kpc.
However, it is necessary to invoke the spacetime metric to quantify the
(important) role of the expansion of the Universe in the growth of density
fluctuations. The Friedmann-Lemaître-Robertson-Walker metric (FLRW)
depends on only two parameters, an overall dimensionless scale factor,
a(t), which accounts for the physical separation between two galaxies
with cosmic time, and the curvature constant, κ, with three different
values:−1, 0,+1 for a closed, flat and open Universe, respectively:

ds2= c2dt2− a2(t)
[

dr2

1− κr2 + r2
(
dθ2+ sin2 θdφ2

)]
. (7.1)

The scale factor is set to unity at present time: a(t0)=1. Observations of
the angular distribution of temperature in the Cosmic Microwave Back-
ground (CMB) impose stringent constraints on the curvature, leading to
a flat Universe: κ =0. Although we cannot measure the scale factor dir-
ectly, it is possible to relate it to a direct observable: the wavelength of
a photon emitted from a distant source (say at cosmic time t). Since all
scales are affected by a(t), we can write

λ(t)
a(t)
= λ(t0)

a(t0)
, (7.2)

where λ(t)≡ λ0 is the rest-frame wavelength, and λ(t0)≡ λobs is the ob-
served wavelength. Noting that the redshift (z) is defined as: 1+ z≡
λobs/λ0, we find that

a(t)= 1
1+ z

. (7.3)

Therefore, a galaxy at redshift z=1 lives in a Universe whose size is
half of the size of the present one. We will see that in cosmology one
can interchangeably use time, the scale factor or redshift to track cosmic
evolution.
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Another important parameter is the rate of change of the scale
factor. It can be measured as the recession velocity between distant galax-
ies. Note that in order for these estimates to be valid within the context of
the cosmological principle, we need to work with large enough distances
so that homogeneity and isotropy hold. Therefore, the relative velocity
between two nearby galaxies will be affected by local interactions (termed
‘peculiar velocities’). Incidentally, regardless of the expansion of the Uni-
verse, our nearest neighbour, the Andromeda galaxy, is moving towards
us! It is for much more distant galaxies that the effect of peculiar velocities
is negligible, and the cosmological expansion (Hubble flow) dominates.
A fundamental relation is the Hubble law, where the recession velocity
(vr) is

vr= ȧ(t)
a(t)

d=H(t)d, (7.4)

andd is the separation between the galaxies. Since all galaxies are affected
by the cosmic expansion, it is sometimes useful to define a comoving dis-
tance, rcom= d/a(t), thereby effectively factoring out the expansion.1 In
comoving coordinates, the only motion between two galaxies is caused
by peculiar velocities, a useful framework when tracing the growth of
density fluctuations. The Planck 2015 value (see table 7.1) of Hubble’s
constant is H(t0)= (67.8±0.9) km s−1 Mpc−1. Noting that peculiar ve-
locities among galaxies can be as high as 103 km s−1, we can infer that
distances between galaxies much larger than ∼20 Mpc are needed to be
able to ‘feel’ the cosmological expansion.

Friedmann’s equations

Friedmann’s equations provide a solution to Einstein’s General Relativistic
(GR) equations in the FLRW metric. Although GR is beyond the scope of
this textbook, we need to consider GR to effectively link the geometry of
spacetime (the metric) to the distribution of matter and energy in the sys-
tem. Friedmann’s equations allow us to relate the evolution of the scale
factor, a(t), to the (homogeneous) density in its various guises: radiation,
matter or dark energy. We will show here a simplified derivation based
on Newtonian mechanics which arrives at the correct equations. Let us
model the Universe as a sphere with radius r, expanding with the Hubble
flow. The force on a test particle with mass m is

mr̈=−GM(< r)m
r2 =−4πGm

3
rρ(t)=⇒ ä=−4πG

3
ρ(t)a(t), (7.5)
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where we have identified the radius of this ‘sample Universe’ as the scale
factor. Since the Universe is an isolated system, conservation of mass
gives ρa3= ρ0a3

0= constant. The subindex zero refers to the present time.
Therefore, multiplying equation 7.5 by ȧ gives

ȧä= 1
2
d
dt
ȧ2=−4πG

3a2

(
ρ0a3

0

)
ȧ. (7.6)

Integrating this equation leads to

ȧ2= 8πG
3

ρa2−Kc2, (7.7)

with the last term being an integration constant. In GR this term has the
meaning of the constant curvature allowed by the FLRW metric. To de-
rive the correct equation from this Newtonian approximation, we need to
include the contribution to the energy from pressure. Following a simple
thermodynamic argument, consider the amount of heat flowing into the
Universe, with volume V. Noting that the internal energy is E =Vρc2, we
have

�Q=�E + p�V =V�(ρc2)+ (ρc2+ p)�V. (7.8)

Since the Universe is a closed system, �Q=0, and since the volume is
V ∝ a3, we can write �V/V =3�a/a. Therefore:

dρ
dt
+3

ȧ
a

(
ρ+ p

c2

)
=0. (7.9)

Taking the time derivative of equation 7.7, and using 7.9 to describe
dρ/dt, we arrive at the second of Friedmann’s equations, namely:

ä=−4πG
3

a
[
ρ+3

p
c2

]
. (7.10)

However, this Newtonian example cannot describe the so-called cos-
mological constant (�). Friedmann’s equations including this constant
are

ȧ2= 8πG
3

ρa2− κc2+ 1
3
�a2

ä=−4πG
3

a
[
ρ+ 3p

c2

]
+ 1

3
�a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7.11)
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Dimensionless densities

The first of Friedmann’s equations can be written in terms of the Hubble
parameter:

H2(t)= 8πG
3

ρ− κc2

a2 +
�

3
. (7.12)

This equation introduces a density scale, the critical density, that is time
dependent:

ρc(t)≡3H2(t)/8πG. (7.13)

At present time, the critical density is ρc(t0)=1.879×10−26h2 kg m−3,
or, in more convenient units, 2.775×1011h2M�Mpc−3, where Hubble’s
constant is usually defined as H(t0)=H0=100h km s−1 Mpc−1 (so,
roughly, h=0.7). The density is usually split between radiation (ργ )
and matter (ρm). These two components vary with a as ργ ∝ a−4 and
ρm∝ a−3, respectively. The−3 exponent is a volume dilution factor as the
Universe expands (from conservation of energy) whereas the −4 in the
radiation field takes into account the additional loss of energy because
of the redshift (note that the energy of a photon is εγ = hν= hc/λ). We
also define the equivalent, dimensionless density parameters, taking the
(time-dependent) critical density as reference:

�γ (t)= ργ (t)
ρcrit(t)

�m(t)= ρm(t)
ρcrit(t)

⎫⎪⎪⎬
⎪⎪⎭

. (7.14)

The cosmological constant can also be associated to an additional energy
component (dark energy), with density parameter:

��≡ �

3H2
0

. (7.15)

Plugging these values into the Friedmann equations at present time
(a(t0)=1) allows us to write the curvature as

κ = �γ +�m+��−1
(c2/H2

0)
, (7.16)

which means the Universe is flat (zero curvature) if the sum of the dens-
ity of all components is the critical value. A simple case often used is the
Einstein–de Sitter model, where �γ =��=0 and �m=1, which can be
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Figure 7.1 Evolution of the density parameter of the radiation (�r),
matter (�m) and cosmological constant (��), as a function of the scale
factor. The grey shaded area marks the region �m≥0.9, where the Uni-
verse is well described by an Einstein–de Sitter model. (Cosmological
parameters taken from table 7.1.)

shown to have a simple solution for the scale factor of

a(t)=
(

t
t0

)2/3

. (7.17)

The evolution of the density parameter is shown in figure 7.1, which
illustrates the regime where an Einstein–de Sitter model gives a valid rep-
resentation (grey shaded region). Note this interval corresponds to the
major phase of galaxy formation.

Exercise 7.1

Show that the dimensionless matter density scales with redshift as

�m(z)= �m,0(1+ z)3

�m,0(1+ z)3+�γ ,0(1+ z)4+�κ,0(1+ z)2+��,0
,

where the ‘0’ subindices refer to the values at present time, and
�κ is the corresponding term for the curvature. In our standard
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cosmological model (�CDM), the cosmological parameters are,
approximately �m,0≈0.3; �γ ,0≈10−4; ��,0≈0.7, so that the
curvature is zero. Show that during an earlier epoch, the Universe
was closely represented by an Einstein–de Sitter model.

The age of the Universe

One can estimate the age of the Universe using the following integral:

tU =
ˆ tU

0
dt=
ˆ a0=1

0

dt
da

da=
ˆ 1

0

da
aH(a)

=
ˆ ∞

0

dz
(1+ z)H(z)

. (7.18)

Note we can use the time coordinate t, the scale factor a or the redshift z to
track ‘cosmic time’. Theorists usually prefer the scale factor, whereas ob-
servational cosmologists prefer redshift. Applying Friedmann’s equation
to an Einstein–de Sitter model gives

H(z)=H0(1+ z)3/2, (7.19)

leading to

tU = 1
H0

ˆ ∞

0

dz
(1+ z)5/2 =

2
3H0
=6.52h−1 Gyr∼9.3 Gyr. (7.20)

The most general case can be written as the equivalent of equation 7.18,
using 7.12 and 7.13 to write Hubble’s parameter:

H(z)≡H0E1/2(z)=H0

√
�m,0(1+z)3+�γ ,0(1+z)4+�κ,0(1+z)2+��,0,

(7.21)

and so:

tU = 1
H0

ˆ ∞

0

dz
(1+ z)E1/2(z)

, (7.22)

which, for a vanilla-flavoured �CDM cosmology, with �m,0=0.3, ��,0=
0.7, �γ ,0≈0, and, therefore, zero curvature, gives an age of the Universe
at present of: tU =9.43 h−1 Gyr∼13.7 Gyr, i.e., significantly older than
the Einstein–de Sitter case. To determine the age at an arbitrary redshift,
z, we simply have to replace the lower limit of the integral in equation 7.18
by z.
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Distance(s) in cosmology

Distance is a fundamental parameter in the interpretation of the observa-
tional properties of galaxies. In this succinct primer, we need to refer only
to a fundamental difference between distance indicators. The distance
directly derived from the metric (equation 7.1) is the comoving radial
distance. If we consider the radial trajectory of a photon from a distant
galaxy, at coordinate r, and our observing point, at r=0, the distance is

Dc≡
ˆ r

0

dr√
1− κr2

=
ˆ a0=1

a

cda
a2H(a)

=
ˆ z

0

c
H(z)

dz, (7.23)

and the expression for Hubble’s parameter with respect to redshift is
given by equation 7.21. Note that for cosmologically small distances,
we can approximate this equation by cz∼H0Dc, i.e., Hubble’s law of
expansion.

However, this distance is not what we would use when measuring
the angular extent of a galaxy. In this case, we measure an angle (θ) given
by the ratio of its (comoving) size and the comoving distance to us. If the
physical diameter of the galaxy is ø, the comoving size is ø/a=ø(1+ z);
therefore

tan θ ≈ θ = ø(1+ z)
Dc(z)

≡ ø
Da(z)

, where Da(z)= Dc(z)
1+ z

, (7.24)

and we define the angular diameter distance Da as the one that relates the
physical size with the angular extent of the galaxy. Moreover, we also ob-
serve the flux from galaxies as the luminosity (L) per unit area. A sphere
centred at the position of the observed galaxy, touching our observing po-
sition, has area 4πD2

c . However, the photon rate will decrease by a factor
a−1= (1+ z) because of the cosmological time dilation, and the energy of
the photon will decrease by an additional factor of (1+ z) because of the
cosmological redshift. Therefore, the observed flux can be written

f = L
4πD2

c (z)
= L0

4πD2
c (z)(1+ z)2

= L0

4πD2
l (z)

, where Dl(z)=Dc(z)(1+ z), (7.25)

where L0 is the intrinsic (i.e., rest-frame) luminosity of the galaxy, and
Dl is defined as the luminosity distance. Note that all three distances
converge at low redshift, where large-scale effects become negligible.
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Exercise 7.2

Show that while the surface brightness of galaxies (section 1.2)
remains constant when the distance is small, over cosmological dis-
tances it varies as�(z)∝ (1+ z)−4. This is called ‘Tolman dimming’.

7.2 Linear regime

A perfectly homogeneous Universe can be easily described by the equa-
tions presented in the previous section. However, such a density distribu-
tion would not develop structure. Hence, we need to introduce minute,
but nonnegligible perturbations in the density field at early times. An
inflationary scenario posits that microscopic fluctuations (over Planck
scales, i.e., driven by the quantum nature of gravity) will expand at early
times in an exponential way, moving outside the horizon – i.e., the re-
gion within which perturbations can be in causal contact. Being outside
the horizon means the different areas of the perturbation will not be in
causal contact. Therefore, these fluctuations are frozen (they cannot in-
teract), and require general relativity (outside the scope of this book) for
a correct description. Later on, because of the steady expansion, the ho-
rizon catches up with the extent of these fluctuations. For the sake of a
simple, pedagogical argument, it is assumed that a standard Newtonian
treatment in an expanding background suffices.

Let us consider the equations that describe the evolution of a density
fluctuation as a fluid. First of all, we write down the unperturbed solution,
(v0, ρ0, p0, 0), where we adopt the Lagrangian notation (i.e., the time
derivatives follow the fluid) d/dt= ∂/∂t+ (
v · 
∇):

dρ0

dt
=−ρ0∇ · 
v0

d
v0

dt
=− 1

ρ0

∇p0− 
∇0

∇20=4πGρ0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (7.26)

These three expressions describe the conservation of mass, the force (i.e.,
Euler) equation and Poisson’s equation, respectively. These equations are
now modified with small perturbations in the velocity, density, pressure
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and gravitational potential fields: (δv, δρ, δp, δ). Retaining the terms to
the lowest order, we get

d
dt

(
δρ

ρ0

)
=−
∇ · δ
v

d(δ
v)
dt
+ (δ
v · 
∇)
v0=− 1

ρ0

∇(δp)− 
∇(δ)

∇2(δ)=4πGδρ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (7.27)

The next step involves a change of coordinates from physical distance
(
x) to comoving distance (
r), factoring out the effect of the cosmological
expansion:


x= a(t)
r


v= d
x
dt
=H
x+ a

d
r
dt
=H
x+ a
u

ρ(
x, t)= ρ0(t)
[
1+ δ(
r, t)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (7.28)

Physical velocities (
v) are decomposed into a Hubble flow (H
x) and a
peculiar velocity (
u). The density is also split between a smooth, back-
ground average (ρ0) and a density contrast (δ). Note that the comoving
separation between two galaxies that move only with the Hubble flow
(i.e., ‘at rest’ in an expanding Universe) remains constant with cosmic
time. Finally, we arrive at the linear perturbation equation for the density
contrast:

δ̈+2
(
ȧ
a

)
δ̇−4πGρ0δ= c2

s

a2∇2
r δ+O(δ2, δ̇2). (7.29)

This equation has an oscillator term (∝ δ) driven by the background mat-
ter density, a damping term caused by the expansion (∝ δ̇), and a driving
force, on the RHS, with a characteristic scale given by the sound speed
(cs=√δp/δρ). This equation is similar to the growth of a fluctuation in
standard Newtonian dynamics (say, the collapse of a large cloud of gas
in a galaxy), with the difference being the damping term caused by the
expansion. This term fundamentally affects the rate of structure growth.
For example, in an Einstein–de Sitter Universe (�m=1), and assuming
dust-like matter (cs=0),

a(t)=
(

3
2
H0t

)2/3

⇒ ȧ
a
= 2

3t
,

�= 8πGρ0

3H2 =1⇒4πGρ0= 2
3t2 ,

(7.30)
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giving the following linear perturbation equation:

δ̈+ 4
3t

δ̇− 2
3t2 δ=0. (7.31)

If we try a solution of the type δ(t)∝ tn, we find solutions for n=−1
(decaying mode) and n=2/3 (growing mode). Neglecting the decaying
mode, we find that

δ(t)∝ t2/3∝ a(t). (7.32)

Therefore, a density fluctuation will grow linearly with respect to the scale
factor, in contrast with the density perturbation in a gas cloud within a
galaxy, which follows an exponential rate: the cosmological expansion
dampens this growth.

Exercise 7.3

Neglect the pressure term in the linear growth of density fluctu-
ations (i.e., the term with ∇2δ), and consider an empty Universe
(i.e., zero matter and energy density). This is the Milne model.
Show that in this case, density fluctuations will remain constant
with time.

Jeans mass

The treatment of the density growth presented above traces only the
time evolution, but it does not take into account the scale of the fluc-
tuation. The linear density growth equation (7.29) can be applied to
a specific lengthscale. One can describe the spatial distribution of the
density fluctuation as a Fourier series in space,

δ(
r; t)=
∑
k

δk(t)e
ikr, (7.33)

where the coefficients, δk quantify the contribution of lengthscale λ=
2π/k to the fluctuation. For simplicity, we will assume spherical sym-
metry, considering k a scalar quantity. In the linear regime, each com-
ponent, δk, evolves independently, giving

δ̈k+2
(
ȧ
a

)
δ̇k=

(
4πGρ0− c2

s k
2
)
δk, (7.34)
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where we have used the comoving wave-number kc= k/a. We can solve
this equation with the ansatz

δkc(t)= δkc,0e
−iωt, (7.35)

which leads to a dispersion relation

ω2= c2
s k

2
c −4πGρ0. (7.36)

Hence, the small density fluctuations will oscillate if the RHS is positive.
If it is negative, the fluctuations will have exponential growing/decaying
behaviour. This means density fluctuations will only grow if

4πGρ0 > c2
s k

2
c ⇒ λ>λJ ≡ 2π

kJ
= cs

(
π

Gρ0

)1/2

. (7.37)

The second part refers to the size of a (comoving) fluctuation (λ), defining
the Jeans length. Any density perturbation whose size is greater than λJ

will grow. This threshold can also be given as a mass (called the ‘Jeans
mass’):

MJ = 4π
3

ρ0λ
3
J . (7.38)

The Jeans instability reflects a balance between pressure forces (related
to the sound speed) and gravitational forces (from ρ0). If a fluctuation
involves a mass greater than MJ, then gravity will overcome pressure,
and the fluctuation will collapse. For smaller masses, sound waves will
counteract the gravitational pull, preventing the formation of a structure.

Let us consider the growth of galaxies after photon decoupling. At
this epoch (z � 1,100), we can make the simplifying assumption that the
sound speed of the gas is given by that of monoatomic hydrogen gas:

cs=
√

5kBT
3mP

∼3.7T1/2
3 km s−1, (7.39)

with T3≡T/1000 K. Close to decoupling, T3≈3, and the comoving
Jeans length is 0.014 Mpc, leading to a Jeans mass around 1.6×106M�
(where we made the assumption of an Einstein–de Sitter Universe and
H0 = 70 km s Mpc−1). Therefore, anything more massive than a globular
cluster can, in principle, form a collapsed structure. However, the coup-
ling of the ordinary matter to the photons at earlier times washed out any
potential fluctuations over these scales. We will see in the next section
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how an additional matter component is needed to produce the high levels
of density contrast we see in the Universe today.

The need for (nonbaryonic) dark matter

The linear behaviour of a perturbation implies that a long time is needed
to evolve from the the early linear regime (δ 1) to the present distribu-
tion of matter in the Universe. Furthermore, observations of the Cosmic
Microwave Background – which give a glimpse of the density fluctuations
in the baryonic content of the Universe at photon-electron decoupling,
i.e., 380,000 yr after the Big Bang – reveal temperature inhomogeneit-
ies around δT/T∼10−5. Considering adiabatic temperature fluctuations,
i.e., keeping the entropy, S∝T3n−1

γ constant, we can write

δT
T
= 1

3
δnγ

nγ

∼ 1
3
δρ

ρ
. (7.40)

It is assumed that before recombination, photons and electrons/baryons
were well coupled (via Thomson scattering). Hence, the measurements of
the CMB temperature fluctuations imply a density contrast at decoupling
(at redshift zCMB∼1, 000) around δ(tCMB)∼3×10−5. Using a simple ar-
gument for the growth in an Einstein–de Sitter model (equation 7.32), we
find those fluctuations should be at present time as follows:

δ(t0)∼ δ(tCMB)

(
a(t0)

a(tCMB)

)
= δ(tCMB)(1+ zCMB)∼0.1. (7.41)

This means the contrast of the baryon density field at the time of de-
coupling is not large enough to create galaxies today! Hence, we need
an additional component, not coupled to photons, so that the growth of
their density seeds took place at earlier stages, unimpeded. After decoup-
ling, the baryons fall on to the (larger) density fluctuations of this (dark)
matter field, allowing for larger values of the density contrast.

Therefore, let us consider a two-fluid component involving baryons
and dark matter (the contribution from radiation is negligible at decoup-
ling and afterwards). The growth of density fluctuations of both fluids
is described by the linear perturbation equation (neglecting the pressure
term):

δ̈B+2
ȧ
a
δ̇B=4πG(ρ0,BδB+ ρ0,DMδDM)

δ̈DM +2
ȧ
a
δ̇DM =4πG(ρ0,DMδDM + ρ0,BδB)

⎫⎪⎪⎬
⎪⎪⎭

. (7.42)
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Figure 7.2 Evolution of the density contrast with cosmic time,
parameterized with the scale factor, a. (Plot produced with the
PyCAMB code of Lewis & Challinor, Astrophysics Source Code Library,
ascl:1102.026.)

Assuming a dominant contribution from the dark matter, we find (for the
Einstein–de Sitter case) that

δDM = δDM(0)a(t), (7.43)

which goes back into the first equation, giving

δ̈B+2
(
ȧ
a

)
δ̇B=4πGaρ0,DMδDM(0). (7.44)

Rewriting the differential equation with respect to the scale factor (or
redshift), instead of time, we find that

δB(z)= δDM(z)
(

1− 1+ z
1+ zN

)
, (7.45)

where zN is some reference value (obtained from the constant of in-
tegration). Hence, at high redshift, during the earliest phases of evolu-
tion, z→ zN, and the baryon fluctuations are negligible (e.g., during the
epoch of recombination/decoupling, zN ∼1, 000), whereas later on, at
z� 1, 000, the density fluctuations of the baryons follow the dark matter
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distribution, δB∼ δDM. Figure 7.2 shows the evolution of the density
contrast of the dark matter (δc), baryons (δb) and radiation (δγ ) as a func-
tion of the scale factor. A standard �CDM model is assumed, with a scale
k = 0.3 Mpc−1. Note that all fields evolve similarly during the radiation-
dominated phase (a δ∝ a2 trend is shown as reference). At later times,
the photon/baryon mix undergoes a set of oscillations, and at decoupling
(a∼10−3), the baryon matter follows the evolution of the cold dark mat-
ter density fluctuations. At later times, the trend δ∝ a is also shown as
reference.

7.3 Spherical collapse

The spherical collapse model is the simplest way to follow the evolution of
a density fluctuation from its initial growth in the linear regime (δ� 1) –
where it ‘detaches’ from the Hubble flow – to the final state of a virial-
ized, stable structure (i.e., a dark matter halo). We begin with a spherical
region, with radius R(t), evolving within an expanding background. The
force equation drives the evolution of the region:

d2R
dt2
=−GM

R2 =−
4πG

3
ρ0(1+ δ)R. (7.46)

Notice the analogy of this equation with the evolution of the scale factor
in an expanding Universe:

d2a
dt2
=−GM

a2 =−
4πG

3
ρa. (7.47)

Originally, the fluctuation is so small that the region expands with the
background, but the slight overdensity gradually slows it down. At some
time, tMAX, the sphere will halt its expansion and start collapsing (turn-
around). Conservation of energy gives

1
2

(
dR
dt

)2

− GM
R
= E(M)=− GM

RMAX
. (7.48)

The time evolution is therefore

t=
ˆ [

2GM
(

1
R
− 1

RMAX

)]−1/2

dR. (7.49)

This equation can be readily solved if we defineR=RMAX cos2 α. Finally, if
we redefine the angular parameter α= π/2− θ/2, so that R=0 at θ =0 and
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Figure 7.3 Schematic figure depicting the evolution of the density in a
fluctuation following the spherical collapse model.

R=RMAX at θ = π/2, we arrive at the following parametric equations:

R(θ)=R0(1− cos θ)

t(θ)= t0(θ − sin θ)

ρ(θ)= ρ0(θ)
9(θ − sin θ)2

2(1− cos θ)3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (7.50)

which describe the trajectory of a cycloid. Note that the density equation
takes into account the evolution of the background density in an Einstein–
de Sitter model, i.e., ρ0∝ a−3 and a∝ t2/3. In these equations, t0=√
R3

MAX/8GM∝√1/Gρ, i.e., the dynamical timescale (see section 1.3).
Therefore, denser fluctuations – on average found at earlier times – will
have shorter collapse timescales.

In this model (see figure 7.3), the fluctuation starts expanding with
the background. However it gradually slows down until it stops expand-
ing at the turnaround time, when θ =π . At this time, the radius of the
fluctuation isRMAX=2R0. The density at turnaround is 5.55ρ0. The spher-
ical collapse model allows us to determine the epoch at which a structure
collapses (virializes):
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1+ zMAX

1+ zVIR
= a(2tMAX)

a(tMAX)
=22/3�1.59, (7.51)

(for an EdS model). Hence, if turnaround occurs at zMAX=10, the system
is virialized at zVIR∼6. We can also probe the properties of the virialized
halo by applying energy conservation:

E(tMAX)= E(tVIR)⇒− 3GM2

5RMAX
= WVIR

2
=−1

2

(
3GM2

5RVIR

)
⇒

⇒RVIR= 1
2
RMAX.

(7.52)

leading to a halo density at collapse of

ρVIR=8ρ(tMAX)�44.4ρ0(tMAX)=

=44.4
(

1+ zMAX

1+ zVIR

)3

ρ0(tVIR)�180ρ0(tVIR),
(7.53)

providing a relationship between the density of a halo and its cosmic
epoch of collapse:

ρVIR∼180ρcrit,0�m,0(1+ zVIR)
3. (7.54)

For instance, for the properties of the Milky Way (MDM ∼3×1011M�;
RVIR∼50 kpc) we find a virialization epoch of zVIR∼3, whereas the col-
lapse of a galaxy cluster (MDM ∼1015M�; RVIR∼1.5 Mpc) happens at a
later epoch zVIR∼1. This result reflects the hierarchical nature of struc-
ture formation, with small, denser fluctuations occuring first. However,
this result concerns the formation of dark matter halos. The galaxies
are actually formed through the subsequent collapse of baryonic mater-
ial (H, He gas) into the centres of these halos. Unfortunately, a direct
mapping of dark matter formation and galaxy formation is not straightfor-
ward, and requires a proper understanding of processes involving, among
others, the collapse of the infalling gas and its cooling, star formation and
potential feedback effects. These complex mechanisms are loosely termed
‘baryon physics’. Moreover the formalism assumes no mass mergers after
the collapse of the halo. Nevertheless, it provides powerful insight about
the relation between the epoch of formation and the properties of the dark
matter halos.
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Exercise 7.4

A dark matter halo forms in an Einstein–de Sitter universe, col-
lapsing at redshift zvir, with a mass density profile given by

ρ(r)≡

⎧⎪⎪⎨
⎪⎪⎩

v2
c

4πGr2 , r≤ r0,

0, r> r0,

where r0 represents the radial extent of the halo, and vc is the velo-
city of any circular orbit in the halo. Show that the radial extent of
the halo is

r0= vc
10H(zvir)

,

where H(zvir) is the Hubble parameter at virialization. Assuming
that the stars in a galaxy have the same circular velocity as its dark
matter halo, how could we compare the formation epochs of two
galaxies with the same vc?

The linear density equivalent

In the next section we will extend spherical collapse to a statistical de-
rivation of the halo mass function. First, however, it will be useful to
derive the equivalent density contrast for collapse in the linear regime,
i.e., assuming that the difference between the density of the clump and
the background density can be expressed to the lowest order. In this case
it is useful to rewrite equation 7.50 with respect to the turnaround radius
(RMAX) and time at turnaround (tMAX) as

s≡ R
RMAX

= 1
2
(1− cos θ)

τ ≡ t
tMAX

= 1
π
(θ − sin θ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7.55)

In the linear regime we expand to the lowest nontrivial order in θ :

s� θ2

4

[
1− θ2

12

]
, τ � θ3

6π

[
1− θ2

20

]
.
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Writing out s as a function of τ by retaining the lowest order terms in θ

leads to

s� (6πτ)2/3

4

[
1− (6πτ)2/3

20

]
. (7.56)

Note that the lowest order term gives the evolution of the size of the
perturbation if it is moving with the Hubble flow (i.e., following an
Einstein–de Sitter model). Now we write the density contrast in the lin-
ear approximation as 1+ δlin= sback/s, where the numerator corresponds
to this lowest order behaviour that follows the background expansion.
Retaining again the lowest order term leads to

δlin= 3
20

(6πτ)2/3=1.69, (7.57)

where the numerical solution corresponds to the linear prediction at
collapse time, i.e., τ =2.

Exercise 7.5

Numerical simulations of structure formation suggest that dark
matter halos follow a universal profile (Navarro-Frenk-White, or
NFW):

ρ

(
x≡ r

rS

)
= δ0ρcrit

x(1+ x)2 ,

(assume spherical symmetry), where rS is the scale radius of the
halo, ρcrit is the critical background density, and δ0 is the dens-
ity contrast. The concentration of the halo is defined as c= rVIR/rS.
Following the spherical collapse model, show that

δ0= 180
3

c3

ln(1+ c)− c/(1+ c)
.

7.4 Press-Schechter formalism

The combination of the linear density growth equation (7.29) and
spherical collapse (7.54) allows us to trace the evolution of single density
perturbations from the small seeds with δ� 1 all the way to the formation
of a stable halo. The next step involves dealing with the whole distribution
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of density fluctuations as a random field, identifying the formation of
halos in a statistical way. Such a treatment will enable us to define a mass
function of virialized halos, much in the same way that we defined the
luminosity function of galaxies in chapter 1. However, this process gets
complicated as structures can form within structures: a galaxy in a cluster
can be considered part of the dark matter halo that formed the progenitor
galaxy early on, or part of the cluster that incorporated the galaxy/halo
system at later times (cloud-in-cloud problem). We need a way to associ-
ate a density fluctuation that eventually forms a halo with a (mass or size)
scale. To do that, the density field is convolved with a spherical top-hat fil-
ter, defining at each point the smoothed average density within a radius
RM as

δs(
r;RM)=
ˆ

δ(
r′)W(
r−
r′;RM)d3r′, (7.58)

where the function W(
r;RM) is constant inside |
r| ≤RM, and zero outside.
A given scale RM corresponds to a mass M=4π〈ρ〉R3

M/3. The Press-
Schechter formalism assumes that the probability that δs >δc – i.e., the
density contrast for collapse – is the same as the fraction of structures
present at time t, contained in halos with mass greater than M. The linear
theory equivalent of the density of a collapsed structure shown in equa-
tion 7.54 corresponds to δc=1.69 (equation 7.57). The density contrast,
δ(
r), can be described by a random Gaussian field, and likewise for the
smoothed version, so that the probability of having a structure of mass
greater than M is

P[>δc]= 1

σ(M)
√

2π

ˆ ∞

δc

e−δ2
s /2σ2(M)dδs∝ F(>M), (7.59)

where the variance of the Gaussian distribution is

σ 2(M)=〈δ2
s (
r;RM)〉, (7.60)

and F(>M) is the fraction of halos with mass greater thanM. A problem in
this formalism is that asM→ 0, the mass variance σ 2(R) diverges, and the
total probability P→ 1/2, as if only half of the total mass would eventu-
ally collapse into halos. Therefore, only the mass contained in overdense
regions, i.e., above average, are assumed to collapse into halos. However,
underdense regions can form part of collapsed structures, and Press and
Schechter argued,2 without proof, that all matter will eventually collapse
into halos, therefore requiring an extra factor of 2 to account for this:
F(>M)=2P[>δc], so that the number density of halos with masses in
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the range M and M+ dM is

n(M)dM= 〈ρ〉
M

∂F(>M)

∂M
dM=

√
2
π

〈ρ〉
M2

δc

σ
e−δ2

c /2σ2
∣∣∣∣ d ln σ

d lnM

∣∣∣∣ dM. (7.61)

The Press-Schechter formalism gives a useful tool to map the evolution
of structure in a statistical way. Only halos with mass M form in a sig-
nificant number if σ(M)� δc. The time evolution of the mass function is
implicit in the variation of σ(M) with cosmic time, defined as σ(M, t)=
σ(M, 0)D(t), where D(t) is the growth factor of fluctuations, for instance
in the Einstein–de Sitter case, D(t)= (t/t0)2/3. An alternative way to in-
troduce the time evolution is to adopt a different density contrast for
collapse with cosmic time, following δc(t)= δc(0)/D(t). In the standard
�CDM framework, σ(M) decreases with mass, implying that halos form
in a bottom-up way, from small, dense structures at early times towards
massive halos at later times. If we assume a simple scaling relation for the
variance,

σ =
(

M
M0

)−α
, (7.62)

we obtain the following halo mass function:

n(M)=n0

(
M
M�

)α−2

e
−
(

M
M�

)2α

, (7.63)

where n0 is the normalization factor, and

M�=M0

(
2
δ2
c

)1/2α

(7.64)

is the characteristic mass scale. Note this result is reminiscent of the
Schechter function (see equation 1.5), presented in the description of the
luminosity function as a power law with an exponential cutoff. As cos-
mic time increases, the density contrast threshold decreases as 1/D(t),
pushing the exponential cutoff towards higher masses, as expected in the
progressive growth of structure.

7.5 Correlation function

In addition to the census of halos with respect to mass, given by the
Press-Schechter formalism, one can also consider the correlation of the
density fluctuations: Are they randomly distributed in space, or do they
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preferentially cluster? The clustering information provides a strong dis-
criminant among different structure formation scenarios. We quantify
this property with the two point auto-correlation function ξ(
r), defined
as the excess probability of finding a pair of galaxies (or clumps, or halos)
separated by a radius vector 
r, with respect to a purely homogeneous dis-
tribution. The number of galaxy pairs within infinitesimal volumes dV1

and dV2 is therefore

dNp(
r)=N2
0[1+ ξ(
r)]dV1dV2, (7.65)

where N2
0 gives the value for a homogeneous, uncorrelated distribution.

This can be related to the density contrast:

dNp(
r)= ρ(
x)dV1ρ(
x+
r)dV2= ρ2
0 [1+ δ(
x)][1+ δ(
x+
r)]dV1dV2.

(7.66)
Averaging over a large number of volume elements,

dNp(
r)= ρ2
0 [1+〈δ(
x)δ(
x+
r)〉]dV1dV2. (7.67)

Hence, the two-point correlation function is

ξ(r)=〈δ(
x)δ(
x+
r)〉. (7.68)

Invoking isotropy, this function is assumed to depend only on distance but
not on direction. The observed correlation function is found to be well
represented by a simple power law, such that

ξ(r)∝
(

r
r0

)−γ
(7.69)

over physical scales between 100 h−1kpc and 10 h−1Mpc, with a charac-
teristic length scale r0=5 h−1Mpc, and γ =1.8. This trend depends on
galaxy morphology, with elliptical galaxies being more clustered than
disc galaxies. The connection between the correlation function and the
power spectrum can be established if we take the Fourier transform of
the density contrast:

δ(
r)= V
(2π)3

ˆ
δ
ke
−i
k·
rd3k,

δ
k=
1
V

ˆ
δ(
r)ei
k·
rd3r.

(7.70)
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Using Parseval’s theorem relating Fourier transform pairs, we find that

1
V

ˆ
δ2(
r)d3r= V

(2π)3

ˆ
|δ
k|2d3k, (7.71)

where the mean square of the density fluctuations (LHS=〈δ2〉) is given
with respect to the quantity |δ
k|2, defined as the power spectrum P(k).
For each value of k, the power spectrum gives the ‘intensity’ of dens-
ity fluctuations over lengthscales λ=2π/k. Using the definition of the
autocorrelation function from equation 7.68, we get

ξ(r)= V
(2π)3

ˆ
P(k)ei


k·
rd3k. (7.72)

Hence, the two-point autocorrelation function and the power spectrum
are Fourier pairs. Assuming spherical symmetry, and inverting the previ-
ous integral, we can compute the power spectrum from observations of
galaxy clustering:

P(k)= 1
V

ˆ ∞

0
ξ(r)

sin kr
kr

4πr2dr. (7.73)

The primordial power spectrum is assumed to be a simple power law:

P0(k)∝ kn; (7.74)

this implies a correlation function (for the primordial structures) of

ξ0(r)∝
ˆ

sin kr
kr

kn+2dk∼ r−(n+3)∝M−(n+3)/3, (7.75)

where we have transformed the distance r into a mass scale M via M∼
ρr3. We can relate this scaling to the density fluctuations (eq. 7.68) over
a mass M:

δ0(M)≡〈δ2〉1/2∝M−(n+3)/6. (7.76)

At very early times, fluctuations grow as δ∼ a2(t) (see figure 7.2), and the
amount of mass within the horizon goes asM∝ a3⇒ a∝M1/3. Hence, the
density contrast of fluctuations over a mass scale M at early times – when
they cross the horizon – is

δ(M, t)∝ a2(t)δ0(M)∝M2/3M−(n+3)/6∝M−(n−1)/6. (7.77)
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Figure 7.4 Transfer function for three different cosmological models:
a standard �CDM scenario (see table 7.1); a baryon-dominated model
where the �b and �m values of the �CDM model are swapped; and a
hot dark matter (HDM) model, dominated by massless neutrinos. (Plot
produced with the PyCAMB code of Lewis & Challinor, Astrophysics
Source Code Library, ascl:1102.026.)

Hence, for n=1, the fluctuations are independent of mass. This is a
desirable behaviour that defines the Harrison-Zeldovich spectrum. The
primordial density fluctuations will be affected by a number of physical
processes, removing power from specific lengthscales. For instance, hot
dark matter removes power from small scales, because of free streaming.
The transfer function T(k) relates the original fluctuations to the evolved
ones, namely:

δk(t)= δk(0)T(k)D(t), (7.78)

where D(t) is the growth of a fluctuation with cosmic epoch, derived from
the geometry of spacetime, e.g., for an EdS universeD(t)= a(t)= t2/3 (see
equation 7.32). Some of the effects from the transfer function can be seen
directly in the two-point autocorrelation function. The wiggles at scales
∼100h−1 Mpc (related to the evolution of the growth function with time,
as shown in figure 7.4) reflect the Baryon Acoustic Oscillations. They are
a very powerful tool to constrain cosmological models.

Types of dark matter and the power spectrum

The fundamental aspect that defines the role of dark matter in the form-
ation and evolution of structure is the average energy per particle at
decoupling, i.e., when the expansion rate exceeds the interaction rate of
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dark matter particles with the rest of the components, much in the same
way as decoupling between the photon and electron/proton components,
but at earlier times. We can differentiate three types of dark matter that
will leave different imprints on the density distribution:
Hot dark matter (HDM) is made of particles that are relativistic at de-
coupling. They are low-mass (but non-zero), fast moving particles (e.g.,
standard neutrinos) that do not cluster into small structures, because a
large mass (> 1014M�) is needed to keep them gravitationally bound.
Since the speed of sound is close to the speed of light, the Jeans mass
must be very high. Structure formation evolves from the top-down, i.e.,
starting with the formation over large scales/masses, with fragmentation
later producing galaxy-type structures.
Cold dark matter (CDM) consists of particles that are nonrelativistic at
decoupling. They clump over all scales, leading to a bottom-up process
of structure formation. Examples are heavy neutrinos, axions (these ones
may be nonthermal relics), or the more generic WIMPS (Weakly Interact-
ing Massive Particles), such as the neutralino (involving supersymmetry).
Warm dark matter (WDM) has intermediate properties between HDM
and CDM. The formation of small structures is suppressed, perhaps solv-
ing an excess of small halos in a CDM scenario. However, this also delays
the formation process of galaxies, which is at odds with the observa-
tion of galaxies with very old stellar populations at present time, and the
presence of massive galaxies at relatively high redshift.

As the growth of density fluctuations as a function of mass de-
pends on the nature of dark matter, the measurement of the density
fluctuation power spectrum at a given cosmic epoch will constrain the
nature of dark matter. The scale-dependent growth of fluctuations is de-
scribed by the Transfer Function, shown in figure 7.4 for three different
cosmological models. Note that the HDM model will suppress density
fluctuations over small scales, with respect to the standard �CDM frame-
work. The baryon-dominated scenario also suppresses fluctuations over
small scales, because of its early coupling with the photon fluid (indeed,
justifying the need for nonbaryonic dark matter; see section 7.2), and
introduces a significant amount of oscillations.

CDM is the favoured model – along with a cosmological constant,
defining the �CDM model. The Planck 2015 best-fit cosmological para-
meters (see table 7.1) show that only ≈1/6 of the matter content in the
Universe is in the form of ‘baryons’. You should also contrast this with the
much lower fraction (∼3%) expected in galaxies (figure 1.6), suggesting
that a large amount of baryons was ejected from halos and should live in
the intergalactic medium, in the form of a diffuse gas. Figure 7.1 shows
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Table 7.1 Cosmological parameters.

Parameter Symbol Value

Matter density �m 0.3089 ± 0.0062
Baryon density �b 0.0486 ± 0.0010
Dark energy density �� 0.6911 ± 0.0062
Hubble constant H0 67.74 ± 0.46
Power spectrum normalizarion σ8 0.8159 ± 0.0086
Power spectrum index n 0.9667 ± 0.0040

Source: Planck collaboration, 2016, A&A, 594, 13.

Note: All parameters are dimensionless, except for the Hubble constant, given in
km s−1 Mpc−1.

that the expansion at present is dominated by the cosmological constant
(dark energy).

7.6 Cooling and the masses of galaxies

Right after the formation (virialization) of a dark matter halo, we can
assume that the gas is homogeneously distributed in this halo, at the
virial temperature. However, the gas will lose energy, settling into the
central region, cooling down and eventually forming stars. A very simple
argument, invoking the cooling function, leads to the physical proper-
ties of structures where galaxies form. The cooling function, �(T,Z), is
defined such that the energy loss per unit time of gas with (electron)
number density n is dE/dt=n2�(T,Z). Hence, one can define a cooling
timescale as

tcool≡ E
Ė
=

3
2nkT

n2�(T,Z)
. (7.79)

The cooling function is governed by processes that result in emission of
photons, with the subsequent loss of energy from the system. This com-
plex derivation is simplified by assuming a balance between the collisional
ionization and recombination of the different atom and ion species. When
a galaxy forms, two fundamental timescales are confronted: the cooling
timescale and the dynamical timescale, where the latter depends only on
the mass density. The collapse time of a homogeneous sphere with mass
M and radius R is

tdyn≈ 1√
Gρ
∼5×107 yr

( n
1 cm−3

)−1/2
. (7.80)
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Figure 7.5 Region where galaxy formation is allowed, following
the Rees-Ostrikercriterion.a The solid and dashed lines delimit the
parameter region corresponding to fixed values of mass and size,
respectively.

aRees & Ostriker 1977, MNRAS, 179, 541.

The difference between dynamical, cooling (and cosmological) time-
scales determines whether a baryon gas can form a galaxy.3 There are
three main regimes to consider:
1. H−1

0 < tcool: No structure can form, and the gas stays as a diffuse
component.
2. H−1

0 > tcool > tdyn: A hot structure can be formed, but the cooling is not
efficient enough, forming a hot, pressure-supported gaseous halo, as in
the intracluster medium (see chapter 9).
3. H−1

0 > tdyn > tcool: Cooling proceeds, triggering the collapse of the gas
in the central region of the halo, leading to galaxy formation.

Therefore, the parameter that controls galaxy formation is R≡
tcool/tdyn. Only for R< 1 can the gas cool and form stars. This can be
directly related to the typical sizes and masses of galaxies. Figure 7.5
shows the galaxy formation regime within the grey shaded region – inside
whichR< 1, representing gas with solar chemical composition. The black
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wiggly line – corresponding to zero metallicity – would delimit instead a
narrower region for star formation, as expected, since a higher metalli-
city leads to a more efficient cooling process. The dashed and dotted lines
mark the trends of fixed mass and radius, respectively, assuming an ideal
gas, and a 10 per cent contribution in baryons.

Exercise 7.6

Show that the slope of the lines in the log-log plot of figure 7.5 for
structures with constant radius have slope 1, and the lines at con-
stant mass have slope 3. Adopt an ideal gas equation of state and
impose hydrostatic equilibrium to find the answer.

Notes

1 Note that the FLRW metric (equation 7.1) is defined with comoving coordinates.
2 Press and Schechter, 1974, ApJ, 187, 425.
3 Rees & Ostriker, 1977, MNRAS, 179, 541.
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8
Smaller stellar systems:
Stellar clusters

While this book focuses on galaxies, there exist smaller gravitating sys-
tems in which very interesting dynamical mechanisms that are not found
in galaxies play an important role. Stellar clusters, which inhabit galax-
ies themselves, come in two flavours: open clusters and globular clusters.
This chapter explores the properties of these systems and the differ-
ences with respect to the dynamics of a galaxy. Strong tidal forces are
especially important, leading to the destruction of lower-mass clusters.
In addition, the high densities found in the cores of globular clusters
lead us to explore in more detail the connection between collisionless
dynamics and thermodynamics. As the velocities of stars in a globular
cluster evolve towards a Maxwell-Boltzmann distribution, a small but
sizeable fraction of stars acquires high speeds and leaves the system.
This process leads to a slow but gradual evaporation. The King mod-
els are a simple way of describing these systems. In the limit of very
high densities, a collisional, gravitating structure would collapse into a
singularity (gravothermal catastrophe). However, we do not find massive
black holes at the centres of globular clusters. Other mechanisms coun-
teract this collapse, most notably the formation of tightly bound binaries
(Heggie’s law).

8.1 Open and globular clusters

Stellar clusters are sites of past star formation activity, where gas clouds
cooled and fragmented. Their dynamical evolution is strongly affected
by their motion in the Galaxy. The different morphological appear-
ances of open and globular clusters (figure 8.1) reflect a substantially
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Figure 8.1 Image of an open cluster (left, Pleiades) and a globu-
lar cluster (right, M13). DSS-2 images, and inset of M13 taken by
the Hubble Space Telescope/ACS. (Source: courtesy Space Telescope
Science Institute.)

disparate formation scenario. Globular clusters (GCs) are very dense stel-
lar systems, where up to a million stars can be found within a spherical
volume of a few parsec in radius. Their stellar populations are overall very
old and metal poor. The orbits of GCs are not confined to the plane of
the Galaxy, and are instead found over a large spheroidal volume. These
properties suggest an early formation process during the collapse of the
gas component towards the centre of the dark matter halo. Our Milky Way
galaxy contains about 200 GCs, with half of them located within 10 kpc
of the Galactic centre, but with a number of them being very distant
(�50 kpc).

Exercise 8.1

Consider the motion of a globular cluster of mass m moving along
a circular orbit around a galaxy with an isothermal potential ρ(r)=
v2
c /4πGr2, where vc is the (constant) orbital velocity. Dynamical

friction (see section 3.10) will slow down the orbit. Noting that this
force acts tangentially along the orbit, find the rate of decrease of
angular momentum and the time it would take to sink to the centre
of the galaxy from some initial distance r0. Assume constant orbital
velocity throughout.
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In contrast, open clusters (OCs) comprise younger and more metal
rich populations, and their orbits are mostly confined to the galactic
plane. Moreover, they are less dense systems than GCs, and there is an
age-compactness relation, so that older OCs are more dispersed. These
properties show that OCs are typical sites of star formation in the Galaxy.
In the past, about 4.5 Gyr ago, the Sun formed as part of an open cluster.
Young systems such as the Orion nebula provide a glimpse into the very
formation of an OC.

8.2 Internal evolutionary effects

We will follow a simple argument based on the gravitational energy con-
tent of stellar clusters to explore the evolution of these systems under the
effect of internal mechanisms. Starting from the virial theorem,

W=2E=−γ GM2

R
, (8.1)

and assuming γ does not evolve, i.e., the stars in the cluster keep the same
mass distribution, we find that

dR
R
=2

dM
M
− dE

E
. (8.2)

Let us examine the effects of two important mechanisms.

Mass loss by stellar winds

Stellar winds are processes linked to stellar evolution, where the outer
layers of stars are being pushed away, for instance in massive Wolf-Rayet
stars, or in the later evolutionary phases (e.g., Asymptotic Giant Branch)
of lower mass stars. We could also include here the mass ejection from
supernovae explosions, as massive stars reach their endpoints. If a mass
dM escapes from the cluster, there is a net change in kinetic energy:

dT= 1
2
dM

(
〈v2

e 〉− 〈v2〉
)
= 3

2
〈v2〉dM=−dE. (8.3)

The last steps involve the virial theorem. Using 〈v2〉=−2E/M,

dE
E
=3

dM
M
⇒ dR

R
=−dM

M
⇒R∝1/M. (8.4)
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Consequently, mass loss leads to cluster expansion, by a factor of two or
more during the lifetime of a cluster. If the mass loss takes place very
quickly – for example, as a result of young hot stars blowing away the pro-
tostellar material – then we have an energy E0=T0+W0=M0〈v2〉/2−
γGM2

0/R, before the event, and E=βT0+β2W0, after the event, where β

is the mass fraction remaining in the cluster (we assume the mass loss is
so rapid that both 〈v2〉 and R do not have time to adjust). Hence

E=β(2β −1)E0. (8.5)

If half of the mass were lost, we total energy E=0, which means the
cluster becomes unbound. This is one of the mechanisms that explain why
so few stars (<1 per cent in the Galactic disc) live in open clusters.

Core collapse: The gravothermal catastrophe

Consider a cluster where evolution is self-similar (i.e., the shape and mass
distribution do not change). Invoking once more the virial theorem, we
can write:

E=−γ

2
GM2

R
, (8.6)

where γ is a dimensionless parameter that depends on the density profile.
If mass loss is caused only by evaporation, we can neglect the change in
energy. Hence

− γ

2
GM2

0
R0
=−γ

2
GM2

R
⇒R=R0

(
M
M0

)2

. (8.7)

The mass loss rate can be written

dM
dt
=−λ M

trel
, (8.8)

where λ is the mass fraction loss due to evaporation per unit relaxation
time (i.e., λ� 0.01). Here we need to know only the scaling of the relax-
ation time with respect to the mass and the radius of the cluster. From
equation 3.23,

trel∝〈v2〉3/2/ρ∝
√
MR3,

and using equation 8.7,

trel= trel,0

(
M
M0

)7/2

,
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we can integrate equation 8.8, getting

M(t)=M0

(
1− 7

2
λt

trel,0

)2/7

. (8.9)

Therefore, the cluster will evaporate in a finite time given by

7
2

λtev

trel,0
∼1⇒ tev∼ 2trel,0

7λ
∼40trel,0,

where the last estimate uses λ∼0.7%. Turning now to the evolution of
the stellar density in the cluster,

ρ∝ M
R3 ∝M−5,

and using equation 8.9, we find that

dρ
dt
∝
(

1− 7
2

λt
trel,0

)−17/7

.

The density increases very quickly with time, leading to core collapse.
Tidal forces will accelerate the evaporation rate. This runaway process
is inherently caused by the properties of the gravitational force. If we
model the stars in a cluster as a gas of particles, in analogy with statist-
ical mechanics, we find that this gas features a negative heat capacity (as
‘temperature’ increases, the internal energy gets more negative). There-
fore, as the system ‘loses’ thermal energy, it gets hotter, i.e., the velocity
dispersion rises. The system will evolve away from an isothermal distri-
bution, towards a state of higher entropy consisting of an isothermal core
and a nonisothermal envelope. The core collapses, becoming more tightly
bound (a cuspy structure), while the halo expands. A singularity may be
found at the centre. Roughly 20 per cent of globular clusters have central
density profiles indicative of core collapse. Unsurprisingly, these are the
clusters with the shortest relaxation times.

Additional long-term internal evolutionary effects

Mass segregation: When a system has a shorter relaxation time, stars
will interact very frequently, exchanging energy towards equipartition. So
far, we assume all stars have the same mass, leading also to an equiparti-
tion of the velocity distribution. However, a more realistic scenario would
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feature a range of stellar masses. In this case, massive stars will transfer
energy, on average, to lower mass stars, leading to mass segregation,
where the lighter stars speed up, and the massive ones slow down, sinking
to the cluster centre.

Post core-collapse evolution: As density rises during core collapse, the
number of star-star interactions increases significantly, even leading to
physical collisions – usually deemed unlikely in the densities expected of
galaxies. There are typically hundreds of collisions during the lifetime of a
dense cluster. Blue stragglers are stars that appear on the Main Sequence
above the turn-off point; i.e., they are more massive than expected from
the age of the cluster. These stars were created by collisions. Such a high
density environment can also lead to the formation of a singularity (i.e.,
black hole), formed at the centre of the cluster and expected to be of in-
termediate mass (∼103M�). A few possible cases are known so far (e.g.,
M15). The paucity of collapsed cores is likely the result of a mechanism
that opposes this process: heating by binary systems, an effect we will see
next.

Stellar binaries and Heggie’s law: So far, we have considered only indi-
vidual stars, but they can exist as binary systems, and their internal energy
can help ‘absorb’ the increasing binding energy as the core collapses. Bin-
aries can be formed in a primordial way. Pre-collapsed cores contain stars
formed already as binaries. This is still a relatively unknown quantity, but
it could be very significant. They could also form via three-body encoun-
ters, or even in a two-body encounter if tidal interactions are involved, so
that variations in the internal energy can compensate for the evolution
from an unbound (positive energy) to a bound system (negative energy).
Encounters with binaries will change the orbits of stars, acting as a sink
or a source of gravitational energy.

Binaries can be defined as soft or hard depending on whether their
binding energy is less or greater than the mean kinetic energy of indi-
vidual stars, respectively. Dynamical studies show that as a result of en-
counters, soft binaries (Eb�mσ 2) get softer (decreasing |Eb|), and hard
binaries (Ebmσ 2) get harder (increasing |Eb|). This is known as ‘Heg-
gie’s law’.1 This behaviour can be explained via equipartition. Consider a
soft binary. If the kinetic energy of field stars is greater than the kinetic en-
ergy of stars in the binary, the internal energy of the binary will be raised,
becoming softer. This process will eventually lead to the break up of the
binary, operating over timescales shorter than the relaxation timescale.
We can envisage an equilibrium state when the rate of binary loss equates
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the rate of binary formation via three-body encounters. Hence, this pro-
cess is not important in the evolution of the core. In the opposite case, a
hard binary has a higher kinetic energy than a typical field star. The inter-
action will transfer energy to the field star, making the binary more bound
(harder). This can be an important energy source in dense star clusters,
and could stop core collapse, and even drive the expansion of the core, at
the expense of hardening the binary population. The exchange of energy
with binaries makes X-ray binaries (systems that emit in X-ray because of
the infall of gas from a main sequence star to a compact object in a close
binary) more common in the central regions of globular clusters.

Exercise 8.2

Let us describe a GC as an isothermal sphere, truncated at r0=5 pc,
with total mass M=106M�. If a mass fraction, f , is in the form of
close binaries, consisting of two 1 M� stars orbiting with a sep-
aration a=10 R�, determine the value of f for which the binding
energy in binaries equals the total binding energy of the GC.

8.3 External effects: Tidal disruption

Stellar systems are affected by their motion within the host galaxy. Being
extended systems, they are especially prone to tidal interactions. Tidal
forces arise from the fact that an extended distribution of mass feels dif-
ferent gravitational forces in different regions (such is the case with the
Moon-Earth system). Therefore, stars in the outer regions of a cluster
are substantially affected either by the potential of the galaxy or by the
passage of nearby masses. Moreover, for a GC with an eccentric orbit
outside of the Galactic plane, the passage through the disc produces a
tidal pulse. We can therefore classify tidal effects as either continuous
processes caused by the motion within the potential of the galaxy, or
tidal shocks, where the effect is experimented during a relatively short
timescale. We will consider these two mechanisms below.

Steady tidal forces: Jacobi radius

Consider a cluster orbiting its host galaxy. Tidal forces exerted by the grav-
itational potential of the galaxy will be able to strip stars from the cluster.
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Figure 8.2 Simplified version of the steady tidal interaction as a
globular cluster (GC) orbits around the Galaxy (Glx).

Therefore, at a given radius (the tidal radius) the number density of stars
will drop abruptly as their orbits are no longer bound to the cluster.

Let us explore a simple case, where the cluster (mass m) orbits
the galaxy (mass M), at a distance D, on a circular orbit, beyond the
outer edge of the host system. Both galaxy and cluster are spherical.
The angular speed of the orbital motion (around the common centre of
mass) is

ω=
√
G(M+m)

D3 . (8.10)

The total energy per unit mass of the cluster can be written in terms of the
effective potential:

E = 1
2
v2+eff(r)= 1

2
v2+(r)+ J2

z

2r2 . (8.11)

This effective potential – which includes the contribution of angular mo-
mentum to the energy – introduces a zero-velocity surface, such that
orbits will never enter the region where E <eff(r). Figure 8.2 shows con-
tours of the effective potential for the simplest case of two orbiting point
masses. The real thing will be roughly similar. At some critical value of the
distance, we have the last zero-velocity contour for the cluster. Hence, we
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should identify the tidal radius at this point (r= rJ), such that

(
∂eff

∂r

)
rJ
=0. (8.12)

In our simple model with two point masses we have

GM
(D− rJ)2 −

Gm
r2
J
− G(M+m)

D3

(
D

1+m/M
− rJ

)
=0. (8.13)

Given that m�M, we have rJ�D, and we can expand (D− rJ)−2 as a
Taylor series, and truncate to the lowest order:

rJ �D
( m

3M

)1/3
. (8.14)

This is the Jacobi limit of the mass m, which provides an estimate of the
tidal radius of a cluster. There are several aspects that can make rJ differ
from the tidal radius:

+ The zero velocity surface is not spherical (a single radius is not
valid).

+ Noncircular (stellar) orbits can be bound to the cluster, even though
they probe out to r> rJ.

+ The cluster does not move along a circular orbit. The difference will
be especially large with highly elongated orbits.

+ The cluster orbits within the host.

In any case, the Jacobi limit from equation 8.14 gives values around tens
of parsec, similar to the cutoff radii found in the surface brightness profiles
of globular clusters.

Tidal shocks

In these encounters – for example, between open clusters and giant mo-
lecular clouds – the stars are given a sudden jolt. On average, the energies
will increase. Let us consider the effect on a static star in the cluster
located close to the centre, after the passage of a cloud (see figure 8.3).
�v is perpendicular to the direction of motion of the cloud. (This is
similar to the relaxation time approximation we did in section 3.3.) Sum-
ming up the effect in all stars in the cluster gives the total change in
energy:
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Figure 8.3 Illustration of a tidal shock as a cloud passes near a stellar
cluster.

�E= 1
2
Mc(�v)2. (8.15)

We follow by integrating over all encounters with clouds at all impact
parameters, to get

dE
dt
=4πG2 McR2

c
3v

ρneb
Mneb

R2
neb

. (8.16)

We can use the virial theorem 2T+W=0⇒ E=W/2 and take a generic
expression of the potential energy as

W=−γ GM2
c

Rc
, (8.17)

where γ is, once more, a factor depending on the geometry of the cluster.
Hence

dE
dt
= γ

2
GM2

c

R2
c

dRc

dt
. (8.18)

Comparing equations 8.16 and 8.18, we get

dRc

dt
= 8πG

3γ v
ρneb

Mneb

Mc

R4
c

R2
neb

. (8.19)

We can relate this equation to the evolution of the density in the cluster:

158 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



dρc
dt
=−6G

γ v
ρneb

Mneb

R2
neb

, (8.20)

which means the cluster density decreases at a constant rate. The life-
time of the cluster against tidal shocks can be estimated by assuming the
change in density is equivalent to the density itself (�ρc∼ ρc), leading to

tshock= γ v
6G

ρc

ρneb

R2
neb

Mneb
, (8.21)

proportional to ρc. Hence, this effect is very important in open clusters
(lower density and located on the Galactic plane). Higher density clusters
will be less likely to be affected by tidal shocks (rather, affected by cluster
evaporation).

Globular clusters would be less affected by tidal shocks because of
their higher densities and orbits away from the plane of the disc. However,
they can be affected by the passages through the disc, and it is believed
that low-mass globular clusters were indeed dissolved during the early
phases of the formation of the Galaxy.

8.4 Cluster evaporation: King models

One of the differences between a thermodynamic system and a collision-
less set of particles moving under gravity is the issue of escape velocity:
In a relaxed cluster, achieving a Maxwellian distribution in the velocities
does not imply settling into equilibrium. Stars in the high-velocity tails of
the distribution will escape from the gravitational potential. A new equi-
librium, after several relaxation timescales, would now imply a slightly
lower escape velocity, continuing the evaporation process. The simplest
approximation to solve this problem is to follow an iterative method, al-
lowing the cluster to relax to a Maxwellian distribution, then ‘chopping
off’ the high velocity tails at |v|> vesc, etc. This introduces the concept
of a loss rate per relaxation period. The distribution function in velocity
space is

f(v)= 1
(2π)3/2σ 3 e

−v2/2σ2
, where σ =

√
〈v2〉

3
.

From the virial theorem we obtain 〈v2
esc〉=4〈v2〉=12σ 2. So, the fraction

of stars moving faster than the escape velocity is
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Figure 8.4 Lowered Gaussian distribution to reconcile a Maxwell-
Boltzmann profile with the expected ejection of unbound stars from a
cluster (hatched region).

F= 1
(2π)3/2σ 3

ˆ ∞

vesc

e−v2/2σ2
4πv2dv= 4√

π

ˆ ∞
√

6
e−x2

x2dx=0.007.

A more accurate estimate using the Fokker-Planck equation, assuming
all stars have the same mass, gives F = 0.008. So, roughly 1 per cent of
the stars escape from the globular cluster during each relaxation time.
Therefore we can approximate the distribution function as a lowered Max-
wellian velocity distribution (see figure 8.4), where the value of the phase
space distribution function is identically zero for speeds greater than vesc.
There are two aspects that simplify the dynamical modelling of globular
clusters:

+ trelax tcrossing⇒ the collisionless Boltzmann equation (CBE) can
be used.

+ trelax� age of the cluster⇒ clusters are relaxed.

We need to obtain a self-consistent density-potential pair (ρ, ) compat-
ible with the lowered Gaussian distribution function. For a spherically
symmetric system there is only one spatial variable, r; the velocity can be
radial or transverse, (vr, vt); and there are only two integrals of motion:
Energy (E = v2/2+) and angular momentum (J= rvt). Therefore, the
density profile can be written:

ρ(r)=
ˆ

f(r, vr, vt)2πvtdvtdvr=2π
ˆ

F(E, J)vtdvtdvr, (8.22)

160 FUNDAMENTALS OF GALAXY DYNAMICS , FORMAT ION AND EVOLUT ION



where the second equality derives from Jeans theorem. The other
equation needed to relate the density and potential is Poisson’s equation
(equation 2.17), in spherical coordinates:

1
r2

d
dr

(
r2 d(r)

dr

)
=4πGρ(r). (8.23)

King models provide a practical representation of the density and poten-
tial of a globular cluster. They make the following assumptions:

1. The velocity distribution is isotropic, so that F= F(E).
2. Because of external tidal forces, the cluster has a finite radius (i.e.,

the Jacobi radius), where we define the velocity to be zero.
3. The velocity distribution at r=0 is given by the lowered Gaussian

approximation, namely:

f(r=0, v)=
⎧⎨
⎩
k
(
e−v2/2σ2 − e−v2

esc/2σ2
)

v≤ vesc,

0 v> vesc.
(8.24)

Notice σ is the root mean square dispersion along any of the components
of the velocity. By defining f(0, v), we can calculate f(r, v) at all radii by
using v2

esc=−2(r). From this we can derive the density distribution:

ρ(r)=25/2πkσ 3e0/σ
2

×
[√

π

2
e−/σ2

erf

(√−
σ 2

)
−

√−
σ 2 −

2
3

(
− 

σ 2

)3/2
]

, (8.25)

and the gravitational potential:

(r)−0=G
ˆ r

0

M(< s)
s2 ds=4πG

[
−1
r

ˆ r

0
ρ(s)s2ds+

ˆ r

0
ρ(s)sds

]
.

(8.26)

The integral is solved by parts (
´
udv=uv− ´ vdu), choosing u=M(<s)

and applying the Leibnitz integral rule. These equations are solved by
choosing a central value for the potential (0) and integrating the above
equations outwards until (R)=0. We need to solve these equations via
numerical integration, yielding a family of models characterized by the
concentration index:

c≡ log
(
rt
r0

)
, (8.27)
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where rt=R is the tidal radius (i.e., the ‘total’ radius of the globular
cluster), and r0 is the King radius, defined by

r0≡
√

9σ 2

4πGρ0
, (8.28)

which corresponds to the radial distance where the projected density of
the isothermal sphere is 0.5013 of its central value; hence r0 is close
to the definition of the core radius. Typically, the concentration lies in
the region 0.5 < c< 2.3. King models give acceptable fits to globular and
open clusters. They can also be applied to model the surface brightness
profile of dwarf spheroidal and elliptical galaxies. With a knowledge of
r0 and σ 2 (observed), we can infer the central density, hence obtaining
the central mass-to-light ratio. This technique is known as ‘core fitting’.
Most clusters are therefore modelled by three parameters: rc, rt, ρ0. In the
central region, the projected two-dimensional surface mass density (see
section 2.6) can be approximated by

�(r)= �0

1+
(

r
rc

)2 , (8.29)

which can be extended to a surface brightness profile if we make an
assumption about ϒ =M/L (usually kept constant). This function gives
a good aproximation to the observed profiles of elliptical galaxies. The
three-dimensional equivalent is the King profile presented in chapter 2.

For a galaxy (or an unrelaxed cluster), the assumption of isotropy
may not be well justified, and we have to consider anisotropic velocity
distributions. For instance, the orbits in the outer parts of the cluster may
be mainly radial.

Note

1 Heggie, 1975, MNRAS, 173, 729.
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9
Larger stellar systems: Galaxy clusters

Beyond galaxy scales, an extended structure pervades the Universe in
the form of filaments over very large distances (�10s of Mpc). At the
confluence of these filaments lie clusters of galaxies. We will briefly ex-
plore their properties in this final chapter, in relation to all the material
seen so far. A simple model including hydrostatic equilibrium allows us to
measure the masses of galaxy clusters, leading to yet another robust proof
of the presence of dark matter. In addition, gravitational lensing based on
the deflection of light by the presence of large masses is a useful tech-
nique. We will present the lensing equation and its application to simple
mass distributions, showing how one can measure cluster (and galaxy)
masses. The use of galaxy clusters as cosmological probes is also explored
here, along with the imprint of large-scale structure on galaxy formation.

9.1 The most massive structures

Galaxy clusters are gravitationally bound structures comprising several
hundred galaxies extended over a radius �1 Mpc. Measurements of
galaxy redshifts towards a cluster reveal an overdensity at the cluster
redshift, with a velocity dispersion around ∼700–1,000 km s−1. Clusters
shine brightly at X-ray wavelengths (figure 9.1). The X-ray light is
produced by a large amount of diffuse gas at very high temperatures
(kT∼keV). The morphology of the galaxy distribution and the X-ray emis-
sion is varied, sometimes featuring substructure and irregular shapes,
but often showing the smooth morphology expected of a system in equi-
librium. Clusters are the largest virialized structures in the Universe. In
the bottom-up hierarchical formation scenario, massive clusters assemble
at later times (see section 7.3). Therefore, in contrast with galaxies,
their properties are closer to the expectations from linear theory, making
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Figure 9.1 Image of galaxy cluster Abell 383 in the optical (left,
Hubble Space Telescope) and X-ray spectral window (right, Chandra
Space Telescope). Optical photons originate mostly from the galaxies
within the cluster, including a few background galaxies distorted in the
shape of arcs by gravitational lensing (see section 9.3). The X-ray image
shows the hot diffuse intracluster medium (see section 9.2).
(Sources: Optical courtesy: NASA/STScI; X-ray courtesy: NASA/CXC/
Cinestav/T.Bernal et al.)

cluster samples valuable cosmological probes. The virial theorem (see
section 3.9) allows us to determine the typical mass range of a galaxy
cluster. For an isothermal density profile, we find that

M∼ 3σ 2R
G
≈6.9×1014M�

(
σ

1, 000 km s−1

)2 (
R

1 Mpc

)
. (9.1)

Making the simple assumption that a rich cluster includes the equival-
ent of 100 galaxies with an average luminosity similar to the Milky Way
(4×1010L�) gives a mass-to-light ratio ϒ ∼200ϒ�, significantly higher
than any stellar population would produce. Hence the contribution from
stars to the total mass budget in clusters is negligible. In the next sec-
tion we will see that X-ray observations allow us to constrain the gas
mass as well, which, although overwhelmingly higher than the stellar
mass content, is still short of the masses needed to explain the high velo-
city dispersion. Clusters are strongly dark matter–dominated systems (see
figure 1.6), and produce very interesting observational constraints about
the interplay between dark matter and baryons.

9.2 X-ray measurements of the cluster mass

An important tracer of galaxy clusters is the gaseous component
pervading the cluster in a hot diffuse form. It includes the vast majority
of the baryon matter content, up to 80–90 per cent by mass. The presence
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of this so-called intra-cluster medium (ICM) can be explained follow-
ing the cooling argument invoked in section 7.6. The low density of
the ICM results in very long cooling timescales, preventing the col-
lapse and eventual transformation of this gas into stars. It can be de-
scribed by a relatively simple model, following the equation of state of an
ideal gas:

p=nkT=
(

ρg

μmP

)
kT, (9.2)

whereμmP is the mean weight of a gas particle, andmP is the proton mass.
The gas is assumed to be in hydrostatic equilibrium within the gravita-
tional potential of the underlying dark matter halo. This model allows
us to derive the mass of a galaxy cluster by observations in the X-ray
spectral window. We obtain

dp
dr
= kT

μmP

dρg
dr
+ ρgk

μmP

dT
dr
=−GM(< r)

r2 ρg, (9.3)

leading to the following expression:

M(< r)=− kTr
GμmP

(
d lnT
d ln r

+ d ln ρg

d ln r

)
. (9.4)

How hot is this gas? By use of the virial theorem, and relating the kinetic
energy per particle to the thermal energy, we get

3kT
μmP

∼ GM
R
=GM

(
4πρ
3M

)1/4

. (9.5)

The density of the cluster can be obtained from the spherical col-
lapse model, adopting the Planck 2015 cosmological parameters (see
table 7.1), namely:

kT=0.39 keV M
2/3

14μ0.5(1+ zVIR), (9.6)

where M14 is the cluster mass in units of 1014M�, and μ0.5=μ/0.5.
Note the virialization of a cluster takes place at relatively low redshift
zVIR∼1. Therefore, typical cluster masses yield ICM temperatures in the
range ∼1 keV, i.e., in the X-ray spectral window. The dominant emission
of the hot ICM gas is produced by thermal bremsstrahlung,1 so that the
emissivity at frequency ν is

J(ν)∝ ρ2
g T
−1/2e−hν/kT. (9.7)
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A spatially resolved observation of the surface brightness profile in
X-ray (∝ J), including its spectral shape (∝ dJ/dν), allows us to determ-
ine the density and temperature profile of the gas, which, via equa-
tion 9.4, leads to the total mass profile M(<r). A density distribution
commonly used to model the dark matter in clusters is the King profile
(see equation 2.34). Noting the gas is in hydrostatic equilibrium (see exer-
cise 3.6), we understand that the gas density is described by the so-called
β-model:

ρg(r)= ρ0

[
1+

(
r
rc

)2
]−3β/2

, (9.8)

where β =μmpσ
2/kT is the ratio between the thermal energy of the gas

and the typical energy of a dark matter particle. By fitting this model to
the observations, we can derive the gas and total mass profile. A com-
parison of the total mass with the luminosity in the optical window, i.e.,
contributed by galaxies, gives values of the mass to light ratio of ϒ �
200ϒ�, compatible with our previous virial mass estimate (equation 9.1).
Moreover, integrating the gas density profile (equation 9.8) with the con-
straints from X-ray emission produces a mass content that amounts to over
80 per cent of the total baryon budget in clusters. Note that even in this
case, the total baryon mass to light ratio would be ϒb∼50ϒ�, still lower
that the expectation from the virial theorem, and unmistakably requiring
a large fraction of the cluster mass in the form of dark matter.

9.3 Gravitational lensing

The gravitational field of a mass distribution distorts spacetime, bending
the path of photons. This effect is especially strong when the photons
originate from a distant background source along a very similar line of
sight to the observer. We can derive the lensing equation by adopting the
thin lens approximation, a simple, but realistic assumption that the ex-
tent of the perturber (i.e., the lens) is much smaller than the distance
between the lens and the source (DLS) or between the observer and the
lens (DOL).

The layout of the lensing problem is shown in figure 9.2. The ob-
server (O) looks at a distant galaxy (S), located very close to a foreground
mass distribution that acts as a lens (L). Our measurements are based on
angular separations on the sky. The angle θ is the observed position of S,
at point I on the source plane, whereas the true position – which would
have been the observed position, had the lens not been there – is β. The
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Figure 9.2 Gravitational lensing effect. Light from a background
source (S) is deflected by a mass (L) between the source and the ob-
server (O). The deflection angle α causes the observer to image the
source at position I. The different parameters shown here help us
derive the lensing equation (9.10).

deflection angle caused by the effect of the lens is α. For a point mass
acting as lens, the deflection angle of a light ray hitting the lens plane at
impact parameter b is

α= 4GM
c2b

. (9.9)

We assume that the angles considered here are very small (θ , α, β� 1),
so that β = y/DOS and θ = x/DOS= b/dOL and x− y=αDLS. The lensing
equation (relating observed and true position of the source) is therefore

θ −β =α
DLS

DOS
= 4GM

c2
DLS

DOLDOS

1
θ
≡ θ2

E
θ

, (9.10)

where

θE≡
√

4GM
c2

DLS

DOLDOS
(9.11)

is the Einstein radius of the lens. This is a second order equation in the
observed position, with solutions
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θ2−βθ − θ2
E =0⇒ θ± =

β ±
√
β2+4θ2

E

2
. (9.12)

If β =0 – i.e., the background galaxy is exactly positioned along the line
of sight to the lensing mass – the source will appear as a ring with radius
θE (Einstein ring). Otherwise, the equation produces two solutions: one
image ‘inside the ring’ (θ < θE) and another one ‘outside’. For an extended
mass distribution with spherical symmetry, the solution is analogous, re-
placing the mass in the deflection angle (equation 9.9) by the cumulative
mass contained within the impact parameter, M(< b).

Figure 9.3 shows an example of the use of the image positions to
solve for the mass contained inside. Note that some asssumption has
to be made regarding the mass density profile of the lens. For a case
close to total alignment (β� 1), the mass contained within the Einstein
radius should be independent of this assumption. In general, lensing mass
estimates tend to have uncertainties that sharply decrease at the equi-
valent of the Einstein radius. As the true position of the source departs
outwards (x≡ θE/β� 1), one of the solutions is very close to the true po-
sition, θ+ =β(1+2x), and the other one is close to the origin (θ− =−2βx)
and is therefore not visible as it is located at the position of the lens. This
behaviour defines the weak lensing regime, whereas β ∼ θE corresponds
to strong lensing. If we relax the assumption of spherical symmetry for
the lens mass distribution, more complex solutions are produced.2 To put
in context the expected behaviour in galaxies and clusters, the deflection
angle in typical units of these systems are

α=0.4 arcsec
(

M
1011M�

)(
b

10 kpc

)−1

=40 arcsec
(

M
1015M�

)(
b

1 Mpc

)−1

, (9.13)

making strong lensing events available over both galaxy and cluster scales
– noting that typical ground-based images without adaptive optics can
reach a spatial resolution ∼0.5-1.0 arcsec, and the Hubble Space Tele-
scope features a typical resolution ∼0.1 arcsec. An additional quantity
often used in gravitational lensing is the critical surface mass density:

�c≡ c2DOS

4πGDLSDOL
. (9.14)

This expression depends only on the geometry of the lens, i.e., the angular
diametre distance to lens and source and between them, given by the
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Figure 9.3 Luminosity (dots) and lensing mass profile (shaded area)
of the Einstein Cross, a lensing system that produces four images of a
background quasar. Note that the uncertainties in the lensing mass pro-
duce a typical “butterfly” diagram, where the uncertainty is lowest at
the position of the Einstein radius, represented by a circle in the inset.
(Source: Ferreras et al., 2010, MNRAS, 409, L30.) Used by permission of
Oxford University Press.

redshifts and the adopted cosmology. �c represents the typical surface
mass density needed for the presence of a detectable lensing signal, i.e.,
with large enough θE. This is especially evident when comparing it with
the definition of the Einstein radius:

�c= M
π(θEDOL)2 . (9.15)

Exercise 9.1

Consider the strong gravitational lens HE1104-1805a, a galaxy
at redshift zL=0.73 that produces two images of a background
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source at redshift zS=2.32, with an apparent angular separation
of 1.1 and 2.1 arcsec away from the galaxy in opposite directions.
Taking a fiducial �CDM cosmology (h=0.7; �m,0=0.3), the
angular diameter distances are: DOL=1498 Mpc; DOS=1690 Mpc;
and DLS=910 Mpc. Assuming a point source model for the lens,
calculate the lensing mass. What would be your answer if you
adopt an isothermal profile?

ahttps://www.cfa.harvard.edu/castles.

9.4 Clusters and cosmology

In chapter 7 we traced the evolution of galaxies from the linear regime,
where the density fluctuations are very small, to the collapse and virializa-
tion of a structure. We could also appreciate how the standard�CDM (see
chapter 7) framework leads to a bottom-up formation, so that the most
massive structures virialize, on average, at later times. Galaxies are sup-
posed to collapse at rather early cosmic times with respect to the present,
so that linear theory is not applicable to describe the properties of nearby
galaxies. In contrast, clusters, or, even better, superclusters, are more
massive structures whose formation took place at later times, thereby al-
lowing us to use linear theory to describe their evolution. The distribution
of clusters and their evolution with redshift thus provides a useful probe of
the cosmology. For instance, one of the key cosmological parameters that
describes the amplitude of the power spectrum of density fluctuations is
σ8, i.e., the variance (when squared) of the mass fluctuations over a scale
of 8h−1 Mpc, a size that engulfs the typical mass of a galaxy cluster. One of
the most direct applications of the Press-Schechter methodology (see sec-
tion 7.4) is to infer this normalization from the number density of clusters
at present time. Observations of X-ray clusters at low redshift3 give a num-
ber density of Mc=1015M� clusters around 3.8×10−8 Mpc−3 within a
mass interval of 1014M� (in this exercise we are assuming h=0.7 and
�m,0=0.3). We use equation 7.61, noting that the average background
density at present time is 〈ρ〉= ρcrit,0�m,0=4.1×1010M�Mpc−3. The
mass variance σ(M) can be related to the radius (R) of the spherical
top-hat filter over which we perform the Press-Schechter smoothing:4

σ(R)= σ8R
−γ
8 , where R8 is the radius in units of 8 h−1 Mpc, and γ =0.8.
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Finally, we get

n(Mc)=3.8×10−8 1
Mpc31014M�

=1.2×10−6 1
Mpc31014M�

xe−x2
,

where x≡ δcR
γ

8/σ8
√

2. The solution to this equation is x≈2.04. If we
consider that the linear density contrast for collapse is δc∼1.7 (see equa-
tion 7.57) and take R8=1, we infer a normalization of σ8=0.6. This very
simple exercise gives the right ballpark value (see table 7.1), illustrat-
ing how clusters can be approximately considered ‘linear structures’ to
characterize the normalization of the power spectrum.5

9.5 Environment-related processes

In addition to the cosmological importance of galaxy clusters as tracers
of structure growth at late times, they also enable us to probe the vari-
ous mechanisms of the baryon physics that drives galaxy formation. The
simple description of an isolated ‘structure unit’ comprising a galaxy living
in the centre of a virialized dark matter halo, along with an additional dif-
fuse gas component pervading the halo, breaks down when we take into
account the complex environment of galaxies over larger scales, with such
units under constant gravitational interaction within a highly nontrivial
cosmic web (see figure 1.4). In this context, clusters represent regions
where galaxies experiment the extreme case of environment-related
processes. Large surveys in combination with highly detailed numerical
models of galaxy formation in a cosmological context have allowed us
to visualize the potential factors that regulate the evolution of galaxies.
The most important environment-related effects, in no particular
order, are:

1. Ram-pressure stripping, suffered by the gas component in galax-
ies as they fall into a cluster: This process will be more efficient at increas-
ing infall velocity and at lower surface gas density (i.e., the outer regions
of galaxies are more prone to stripping). The pressure is exerted by the
hot intracluster medium. This process is one of the factors that control the
quenching of star formation in galaxies as they enter clusters, potentially
transforming spiral galaxies into lenticulars (S0).

2. Harassment, which is a repetitive process of gravitational interac-
tion among galaxies at high speed: Like the tidal shock scenario presented
in section 8.3, each high-speed passage acts as an impulsive force on the
stars and gas, increasing the energy of the galaxy, whose components
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Figure 9.4 Variation of the stellar population properties in Early-type
galaxies according to their local ‘mass’ (parameterized by the velocity
dispersion, σ ) and their environment (split into galaxies in low- and
high-mass groups). From top to bottom, the age, metallicity, abund-
ance ratio and dust attenuation are shown with respect to σ . At fixed
galaxy mass, galaxies in more massive halos appear younger, dustier and
with a lower [α/Fe], representative of a more extended star formation
history. (Source: La Barbera et al., 2014, MNRAS, 445, 1977.) Used by
permission of Oxford University Press.

become less bound. In a cluster environment, these events will be quite re-
petitive, leading to the disruption of the galaxies, especially by removing
the outer, less bound envelopes, and by triggering dynamical instabilities
that will affect the morphology.

3. Strangulation: Star formation in a galaxy can be fuelled by the in-
fall of gas from a diffuse component throughout the halo. As a galaxy falls
into a cluster, this reservoir may be depleted. Note the difference from ram
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pressure stripping, which removes the interstellar medium of the galaxy,
therefore instantaneously truncating the star formation process. The ef-
fect of strangulation on the star formation rate is more gradual, extending
over larger timescales.

4. Mergers and cannibalism: The interaction between two galaxies
and their host halos may lead to a merger, greatly helped by dynamical
friction (see section 3.10). Note that a merger process is more effective if
the relative velocities of the galaxies is comparable to the velocity disper-
sion of the underlying stellar components. Therefore, the cores of massive
clusters, with relative velocities∼1,000 km s−1 are not fertile ground, but
lower mass groups and the outskirts of clusters are regions where galaxy
mergers may be present. An additional merging process, termed ‘canni-
balism’, can be quite efficient in the central regions of clusters, where
galaxies will lose energy via dynamical friction, merging with the central,
most massive galaxy.

Therefore, if we assume that, to the lowest order, the formation of a
galaxy is driven by its total mass (i.e., a local property), the combination
of all these environment-related processes produces an entangled mixture
of star formation histories that greatly complicate the analysis and extend
the formation to a global context. In some cases, for instance choosing
early-type galaxies – whose more homogeneous stellar populations are
easier to study – it is possible to quantify the role of environment, as shown
in figure 9.4, where the spectra of early-type galaxies from the Sloan
Digital Sky Survey were used to constrain the properties of the stellar
populations. At fixed velocity dispersion (a rough proxy of galaxy mass),
central galaxies living in more massive halos appear slightly younger, with
lower [α/Fe], reflecting a more extended star formation history than their
counterparts in lower density environments. This effect can be explained
by the contribution of infalling satellite galaxies.

Notes

1 Bradt, 2008, Astrophysics processes, Cambridge, section 5.5.
2 Schneider, Kochanek & Wambsganss, 2006, Gravitational lensing: Strong, weak and

micro, Springer.
3 E.g., Reiprich & Böhringer, 2002, ApJ, 567, 716.
4 Viana & Liddle, 1996, MNRAS, 281, 323.
5 Allen, Evrard & Mantz, 2011, ARA&A, 49, 409.
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