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Preface

In 2008, November 23-28, the workshop of “Classical Problems on Planar Polyno-
mial Vector Fields ” were held in Banff International Research Station of Canada.
So called “classical problems”, it concerns with the following: (1) Problems on inte-
grability of planar polynomial vector fields. (2) The problem of the center stated by
Poincaré for real polynomial differential systems, asks us to recognize when a planar
vector field defined by polynomials of degree at most n possesses a singurality which
is a center. (3) Global geometry of specific classes of planar polynomial vector fields.
(4) Hilbert’s 16th problem.

These problems had been posed more than 110 years. Therefore, they are called
“classical problem” in the studies of the theory of dynamical systems.

The qualitative theory and stability theory of differential equations, created by
Poincaré and Lyapunov at the end of the 19th century had major developments as
two branches of the theory of dynamical systems during the 20th century. As a part
of the basic theory of nonlinear science, it is one of the very active areas in the new
millennium.

This book presents in an elementary way the recent significant developments
in the qualitative theory of planar dynamical systems. The subjects are covered
as follows: The studies of center and isochronous center problems, multiple Hopf
bifurcations and local and global bifurcations of the equivariant planar vector fields
which concern with Hilbert’s 16th problem.

We are interested in the study of planar vector fields, because they occur very of-
ten in applications. Indeed, such equations appear in modelling chemical reactions,
population dynamics, travelling wave systems of nonlinear evolution equations in
mathematical physics and in many other areas of applied mathematics and mechan-
ics. In the other hand, the study of planar vector fields has itself theoretical sig-
nification. We would like to cite Canada’s mathematician Dana Schlomiuk’s words
to explain this fact: “Planar polynomial vector fields and more generally, algebraic
differential equations over the projective space are interesting objects of study for
their own sake. Indeed, due to their analytic, algebraic and geometric nature they
form a fertile soil for intertwining diverse methods, and success in finding solutions
to problems in this area depends very much on the capacity we have to blend the
diverse aspects into a unified whole.”

We emphasize that for the problems of the planar vector fields, many sophisti-
cated tools and theories have been built and still being developed, whose field of
application goes far beyond the initial areas. In this book, we only state some im-
portant progress in the above directions which have attracted our study interest.
The materials of this book are taken mainly from our published results.

This book is divided ten chapters. In Chapter 1 we provide some basic results in
the theory of complex analytic autonomous systems. We discuss the normal forms,
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integrability and linearized problem in a neighborhood of an elementary singular
point.

In order to clearly understand the content in Chapter 2∼Chapter 10 for young
readers, and to save space in the following chapters, we shall describe in more detail
the subjects which are written in this book and give brief survey of the historic
literature.

I. Center-focus problem

We consider planar vector fields and their associated differential equations:

dx

dt
= X(x, y),

dy

dt
= Y (x, y), (E)

where X(x, y), Y (x, y) are analytic functions or polynomials with real coefficients. If
X, Y are polynomials, we call degree of a system (E), the number n = max(deg(X),
deg(Y )). Without loss of generality, we assume that X(0, 0) = Y (0, 0) = 0, i.e., the
origin O(0, 0) is a singular point of (E) and the linearization at the origin of (E) has
purely imaginary eigenvalues.

The origin O(0, 0) is a center of (E) if there exists a neighborhood U of the
origin such that every point in U other than O(0, 0) is nonsingular and the orbit
passing through the point is closed. In 1885, Poincaré posed the following problem.

The problem of the center Find necessary and sufficient conditions for a
planar polynomial differential system (E) of degree m to possess a center.

This problem was solved in the case of quadratic systems by Dulac who proved
that all quadratic systems with a center are integrable in finite terms. Actually
they could be shown to be Darboux integrable by the method of Darboux by using
invariant algebraic curves. Similar results were obtained for some classes of cubic
differential systems with a center. Darboux integrability is an important tool, al-
though not the only one. The problem of the center is open for general cubic systems
and for higher degrees.

Poincaré considered the above problem. He gave an infinite set of necessary and
sufficient conditions for such system to have a center at the origin. In his memoir
on the stability of motion, Lyapunov studies systems of differential equations in n
variables. When applied to the case n = 2, his results also gave an infinite set of
necessary and sufficient conditions for system (E) with X, Y polynomials to have a
center. (Actually, Lyapunov’s result is more general since it is for the case where
X and Y are analytic functions). In searching for sufficient conditions for a center,
both Poincaré and Lyapunov’s work involve the idea of trying to find a constant of
the motion F (x, y) for (E) in a neighborhood U of the origin, where

F (x, y) =
∞∑

k=2

Fk(x, y), (1)

Fk is a homogeneous polynomial of order k and F2 is a positive definite quadratic
form. If F is constant on all solution curve (x(t), y(t)) in U , we say that F is a first
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integral on U of system (E). If there exists such an F which is nonconstant on any
open subset of U , we say that system (E) is integrable on U .

Poincaré and Lyapunov proved the following theorem.
Poincaré-Lyapunov Theorem The origin of the polynomial (or analytic)

system (E) is a center if and only if in an open neighborhood U of the origin, (E)
has a nonconstant first integral which is analytic.

Thus, we can construct a power series (1) such that

dF

dt

∣∣∣∣
(E)

= V3(x2 + y2)2 + V5(x2 + y2)3 + · · · + V2k+1(x2 + y2)k+1 + · · · (2)

with V3, V5, · · · , V2k+1, · · · constants. The first non-zero V2n+1 give the asymptotic
stability or instability of the origin according to its negative or positive sign. Indeed,
stopping the series at Fk, we obtain a polynomial which is a Lyapunov function for
the system (E). The V2k+1

�s are called the Lyapunov constants. Some people also
use the term focal values for them. In fact, Andronov et al defined the focal values
by the formula νi = Δ(i)(0)/i!, where Δ(i)(ρ0) is the ith-derivative of the function
Δ(ρ0) = P (ρ0) − ρ0, P is the Poincaré return map. The first non-zero focal value
of Andronov corresponding to an odd number i = 2n + 1. It had been proved that
the first non-zero Lyapunov constant V2n+1 differs only by a positive constant factor
from the first non-zero focal value, which is Δ(2n+1)(0). Hence, the identification in
the terminology is natural.

In terms of the V2i+1
�s, the conditions for a center of the origin become V2k+1 =

0, for all k = 1, 2, 3, · · · . Now V3, V5, · · · , V2k+1, · · · are polynomial with ratio-
nal coefficients in the coefficients of X(x, y) and Y (x, y). Theoretically, by using
Hilbert’s basis theorem, the ideal generated by these polynomials has a finite basis
B1, B2, · · · , Bm. Hence, we have a finite set of necessary and sufficient conditions
for a center, i.e., Bi = 0 for i = 1, 2, · · · , M. To calculate this basis, we reduce each
V2k+1 modulo � V3, V5, · · · , V2k−1 �, the ideal generated by V3, V5, · · · , V2k−1. The
elements of the basis thus obtained are called the Lyapunov quantities or the focal
quantities. The origin is said to be an k-order fine focus (or a focus of multiplicity
k) of (E) if the fist k − 1 Lyapunov quantities are 0 but the k-order one is not.

The above statement tell us that the solution of the center-focus for a parti-
cular system, the procedure is as follows: Compute several Lyapunov constants
and when we get one significant constant that is zero, try to prove that the system
obtained indeed has a center. Unfortunately, the described method has the following
questions.

(1) How can we be sure that you have computed enough Lyapunov constants?
(2) How do we prove that some system candidate to have a center actually has

a center?
(3) Do you know the general construction of Lyapunov constants in order to get

general shortened expressions for Lyapunov constants V3, V5, · · · .

In Chapter 2 we devote to give possible answer for these questions.
In addition, we shall consider the following two problems.
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Problem of center-focus at infinite singular point

A real planar polynomial vector field V can be compactified on the sphere as fol-
lows: Consider the x, y plane as being the plane Z = 1 in the space R3 with
coordinates X, Y, Z. The center projection of the vector field V on the sphere of
radius one yields a diffeomorphic vector field on the upper hemisphere and also an-
other vector field on the lower hemisphere. There exists an analytic vector filed
p(V ) on the whole sphere such that its restriction on the upper hemisphere has
the same phase curves as the one constructed above from the polynomial vector
field. The projection of the closed northern hemisphere H+ of S2 on Z = 0 un-
der (X, Y, Z) → (X, Y ) is called the Poincaré disc. A singular point q of p(V ) is
called an infinite (or finite) singular point if q ∈ S1 (or q ∈ S2/S1). The vector
field p(V ) restricted to the upper hemisphere completed with the equator is called
Poincaré compactification of a polynomial vector field.

If a real polynomial vector field has no real singular point in the equator Γ∞ of
the Poincaré disc and Γ∞ can be seen a orbit. All orbits in a inner neighborhood of
Γ∞ are spirals or closed orbits, then Γ∞ is called the equator cycle of the vector field.
Γ∞ can be become a point by using the Bendixson reciprocal radius transformation.
This point is called infinity of the system. For infinity, there exists the problem of
the characterization of center for concrete families of planar polynomial (or analytic)
systems. In Chapter 5, we introduce corresponding research results.

Problem of center-focus at a multiple singular point

The center-focus problem for a multiple (degenerate) singular point is essentially
difficult problems. There is only a few results on this direction before 2000. This
book shall give some basic results in Chapter 6.

II. Small-amplitude limit cycles created by multiple Hopf bifurcations

So called Hopf bifurcation, it means that a differential system exhibits the phe-
nomenon that the appearance of periodic solution (or limit cycle in plane) branching
off from an equilibrium point of the system when certain changes of the parameters
occur. Hopf’s original work on this subject appeared in 1942, in which the author
considered higher dimensional (greater than two) systems. Before 1940s, Andronov
and his co-workers had done the pioneering work for planar dynamical systems.
Bautin showed that for planar quadratic systems at most three small-amplitude
limit cycles can bifurcate out of one equilibrium point. By the work of Andronov
et al, it is well known that the bifurcation of several limit cycles from a fine focus
is directly related with the stability of the focus. The sign of the first nonvanishing
Lyapunov constant determines the stability of the focus. Furthermore, the number
of the leading V2i+1

�s(i = 1, 2, · · · ) which vanish simultaneously is the number of
limit cycles which may bifurcate from the focus. This is the reason why the inves-
tigation of the bifurcation of limit cycles deal with the computation of Lyaponov
constants.

The appearance of more than one limit cycles from one equilibrium point is called
multiple Hopf bifurcation. How these small-amplitude limit cycles can be generated?
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The idea is to start with a system (E) for which the origin is a k-th weak focus,
then to make a sequence of perturbations of the coefficients of X(x, y) and Y (x, y)
each of which reverses the stability of the origin, thereby causing a limit cycle to
bifurcate.

In Chapter 3 and Chapter 9 the readers shall see a lot of examples of systems
having multiple Hopf bifurcation.

III. Local and non-local bifurcations of Zq-equivariant perturbed planar
Hamiltonian vector fields

The second part of Hilbert’s 16th problem deals with the maximum number H(n)
and relative positions of limit cycles of a polynomial system

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (En)

of degree n, i.e., max(degP, degQ) = n. Hilbert conjectured that the number of limit
cycles of (En) is bounded by a number depending only on the degree n of the vector
fields.

Without any doubt, the most famous one of the classical problems on planar
polynomial vector fields is the second part of Hilbert’s 16th problem. This a doubly
global problem: It involves the behavior of systems in the whole plane, even at
infinity, and this for the whole class of systems defined by polynomials of a fixed
degree n. Not only is this problem unsolved even in the case of quadratic systems,
i.e. for n = 2, but it is still unproved that the uniform upper bound of the numbers
of limit cycles occurring in quadratic systems is finite. This in spite of the fact that
no one was ever able to construct an example of a quadratic system for which more
than four limit cycles can be proven to exist.

Let χ
N

be the space of planar vector fields X = (Pn =
n∑

i+j=0

aijx
iyj, Qn =

n∑
i+j=0

bijx
iyj) with the coefficients (aij , bij) ∈ B ⊂ RN , for 0 � i + j � n, N =

(n + 1)(n + 2). The standard procedure in the study of polynomial vector fields is
to consider their behavior at infinity by extension to the Poincaré sphere. Thus,
we can see (En) as an analytic N -parameter family of differential equations on S2

with the compact base B. Then, the second part of Hilbert’s 16th problem may be
splited into three parts:

Problem A Prove the finiteness of the number of limit cycles for any concrete
system X ∈ χ

N
(given a particular choice for coefficients of (En) i.e,

�{L.C. of (En)} < ∞.

Problem B Prove for every n the existence of an uniformly bounded upper
bound for the number of limit cycles on the set B as the function of the parameters,
i.e.,

∀n, ∀(aij , bij) ∈ B, ∃H(n) such that �{L.C. of (En)} � H(n),
and find an upper estimate for H(n).
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Problem C For every n and known K = H(n), find all possible configurations
(or schemes) of limit cycles for every number K, K−i, i = 1, 2, · · · , K−1 respectively.

Hence, the second part of Hilbert’s 16th problem consists of Problems A∼Prob-
lem C.

The Problem A for polynomial and analytic differential equations are already
solved by J.Ecalle [1992] and Yu.Ilyashenko [1991] independently. Of course, as S.
Small stated that “These two papers have yet to be thoroughly digested by mathe-
matical community”.

Up to now, there is no approach to the solution of the Problem B, even for n = 2,
which seem to be very complicated. But there exists a similar problem, which seems
to be a little bit easier. It is the weakened Hilbert’s 16th problem proposed by
Arnold [1977]:

“Let H be a real polynomial of degree n and let P be a real polynomial of
degree m in the variables (x, y). How many real zeroes can the function

I(h) =

∫∫

H�h

Pdxdy

have ? ”

The question is why zeroes of the Abelian integrals I(h) is concerned with the
second part of Hilbert’s 16th problem ?

Let H(x, y) be a real polynomial of degree n, and let P (x, y) and Q(x, y) be real
polynomials of degree m. We consider a perturbed Hamiltonian system in the form

dx

dt
=

∂H

∂y
+ εP (x, y, λ),

dy

dt
= −∂H

∂x
+ εQ(x, y, λ), (EH)

in which we assume that 0 < ε � 1 and the level curves

H(x, y) = h

of the Hamiltonian system (EH)ε=0 contain at least a family Γh of closed orbits for
h ∈ (h1, h2).

Consider the Abelian integrals

I(h) =
∫

Γh

Pdy − Qdx =
∫∫

H�h

(
∂P

∂x
+

∂Q

∂y

)
dxdy.

Poincaré-Pontrjagin-Andronov Theorem on the global center bifurcation

The following statements hold.
(i) If I(h∗) = 0 and I �(h∗) �= 0, then there exists a hyperbolic limit cycle Lh∗

of system (6.1) such that Lh∗ → Γh∗ as ε → 0; and conversely, if there exists a
hyperbolic limit cycle Lh∗ of system (EH) such that Lh∗ → Γh∗ as ε → 0, then
I(h∗) = 0, where h∗ ∈ (h1, h2).

(ii) If I(h∗) = I �(h∗) = I ��(h∗) = · · · = I(k−1)(h∗) = 0, and I(k)(h∗) �= 0, then
(EH) has at most k limit cycles for ε sufficiently small in the vicinity of Γh∗ .

(iii) The total number of isolated zeroes of the Abelian integral (taking into
account their multiplicity) is an upper bound for the number of limit cycles of system
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(EH) that bifurcate from the periodic orbits of a period annulus of Hamiltonian
system (EH)ε=0.

This theorem tells us that the weakened Hilbert’s 16th problem posed by Arnold
[1977] is closely related to the problem of determining an upper bound N(n, m) =
N(n, m, H, P, Q) for the number of limit cycles in a period annulus for the Hamilto-
nian system of degree n−1 under the perturbations of degree m, i.e., of determining
the cyclicity on a period annulus. Since the problem is concerned with the number
of limit cycles that occur in systems which are close to integrable ones (only a class
of subsystems of all polynomial systems). So that it is called the weakened Hilbert’s
16th problem.

A closed orbit Γh∗ satisfying the above theorem (i) is called a generating cycle.
To obtain Poincaré-Pontrjagin-Andronov Theorem, the problem for investigating

the bifurcated limit cycles is based on the Poincaré return mapping. It is reduced
to counting the number of zeroes of the displacement function

d(h, ε) = εM1(h) + ε2M2(h) + · · · + εkMk(h) + · · · ,

where d(h, ε) is defined on a section to the flow, which is parameterized by the
Hamiltonian value h. I(h) just is equal to M1(h). The function Mk(h) is called
k-order Melnikov function. If I(h) = M1(h) ≡ 0, we need to estimate the number
of zeroes of higher order Melnikov functions. The zeroes of the first nonvanishing
Melnikov function Mk(h) determine the limit cycles in (EH) emerging from periodic
orbits of the Hamiltonian system (EH)ε.

In Chapter 8, we discuss a class of particular polynomial vector fields: Zq-equivar-
iant perturbed planar Hamiltonian vector fields, by using Poincaré-Pontrjagin-An-
dronov Theorem and Melnikov’s result. The aim is to get some information for the
studies of the second part of Hilbert’s 16th problem.

IV. Isochronous center problem and periodic map

Suppose that system (E) has a center in the origin (0, 0). Then, there is a family of
periodic orbits of (E) enclosing the origin. The largest neighborhood of the center
entirely covered by periodic orbits is called a period annulus of the center. If the
period of the orbits is constant for all periodic orbits lying in the period annulus of
the origin, then the center (0, 0) is called an isochroous center. It has been proved
that the isochronous center can exist if the period annulus of the center is unbounded.

If the origin is not an isochronous center, for a point (ξ, 0) in a small neighbor-
hood of the origin (0, 0), we define P (ξ) to be the minimum period of the periodic
orbit passing through (ξ, 0). The study for the period function ξ → P (ξ) is also very
interesting problem, since monotonicity of the period function is a non-degeneracy
condition for the bifurcation of subharmonic solutions of periodically forced inte-
grable systems.

The history of the work on period functions goes back at least to 1673 when
C. Huygens observed that the pendulum clock has a monotone period function and
therefore oscillates with a shorter period when the energy is decreased, i.e., as the
clock spring unwinds. He hope to design a clock with isochronous oscillations in order
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to have a more accurate clock to be used in the navigation of ships. His solution, the
cycloidal pendulum, is perhaps the first example of nonlinear isochronous center.

In the last three decades of the 20th century, a considerable number of papers
of the study for isochronous centers and period maps has been published. But, for
a given polynomial vector field of the degree is more than two, the characterization
of isochronous center is still a very difficult, challenging and unsolved problem.

In Chapter 4, we introduce some new method to treat these problems.
Except the mentioned seven chapters, we add three chapters to introduce our

more recent study results.
In Chapter 7, we consider a class of nonanalytic systems which is called “quasi-

analytic systems”. We completely solve its center and isochronous center problems
as well as the bifurcation of limit cycles.

In Chapter 8, as an example, for a class of Z2-symmetric cubic systems, we give
the complete answer for the center problem and the bifurcations of limit cycles. We
prove that this class of cubic systems has at least 13 limit cycles.

In the final chapter (Chapter 10), we study the center-focus problem and bifur-
cations of limit cycles for three-multiple nilpotent singular points. The materials are
taken by our recent new papers.

We would like to cite the following words written by Anna Schlomiuk in 2004
as the finale of this preface: “Planar polynomial vector fields are dynamical sys-
tems but to perceive them uniquely from this angle is limiting, missing part of their
essence and hampering development of their theory. Indeed, as dynamical systems
they are very special systems and the prevalent generic viewpoint pushes them on
the side. This may explain in part why Hilbert’s 16th problem as well as other prob-
lems are still unsolved even in their simple case, the quadratic one. But, Poincaré’s
work shows that he regarded these systems as interesting object of study from sev-
eral viewpoints, and his appreciation of the work of Darboux which he qualifies as
‘admirable’ emphasizes this point. This area is rich with problems, very hard, it
is true, but exactly for this reason an open mind and a free flow of ideas is neces-
sary. It is to be hoped that in the future there will be a better understanding of
this area which lies at a crossroads of dynamical systems, algebra, geometry and
where algebraic and geometric problems go hand in hand with those of dynamical
systems.”

The book is intended for graduate students, post-doctors and researchers in dy-
namical systems. For all engineers who are interested the theory of dynamical sys-
tems, it is also a reasonable reference. It requires a minimum background of an
one-year course on nonlinear differential equations.

The publication of this book is supported by the research foundation of the Center
for Dynamical Systems and Nonlinear Scienu Science Studies given by Zhejiang Nor-
mal University. The work described in this book is supported by the grants from the
National Natural Science Foundation of China (11371373,11071222 and 11261013).
The third author would like to thank the support by Guangxi Key Laboratory of
Trusted Software in Guilin University of Electronic Technology and Guangxi Educa-
tion Department Key Laboratory of Symbolic Computation and Engineering Data
Processing in Hezhou University.
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Chapter 1

Basic Concept and Linearized Problem of

Systems

In this chapter, we discuss the normal forms, integrability and linearized problem for
the analytic autonomous differential system of two variables in a neighborhood of an
elementary singular point. In addition, we give the definition of the multiplicity for a
multiple singular point and study the quasi-algebraic integrals for some polynomial
systems.

1.1 Basic Concept and Variable Transformation

Consider the following two-order differential equations

dx

dt
= X(x, y),

dy

dt
= Y (x, y). (1.1.1)

When x, y, t are real variables, X(x, y), Y (x, y) are real functions of x and y, we say
that system (1.1.1) is a real autonomous planar differential system, or (X, Y ) is a
real planar vector field. When x, y, t are complex variables and X(x, y), Y (x, y) are
complex functions of x and y, we say that system (1.1.1) is a two-order complex
autonomous differential system.

When the functions X(x, y), Y (x, y) are two polynomials of x and y of degree n,
system (1.1.1) is called a polynomial system of degree n. It is often represented by
(En).

If the functions X(x, y), Y (x, y) can be expanded as a power series of x− x0 and
y − y0 in a neighborhood of the point (x0, y0) with non-zero convergent radius, then
system(1.1.1) is called an analytic system in a neighborhood of (x0, y0).

If system (1.1.1) is real and analytic in a neighborhood of (x0, y0), then, we can
see x, y, t as complex variables in this small neighborhood to extend system (1.1.1)
to complex field.

We next assume that X(x, y), Y (x, y), F (x, y) is continuously differentiable in a
region D of the (x, y) real plane (or (x, y) complex space).
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Along the orbits of system (1.1.1), the total derivative of F in D is given by

dF

dt

∣∣∣∣
(1.1.1)

=
∂F

∂x
X +

∂F

∂y
Y. (1.1.2)

If F (x, y) is not constant function and
dF

dt

∣∣∣∣
(1.1.1)

≡ 0 in D, then F is called a

first integral of (1.1.1) in D.
If M(x, y) is a non-zero function in D and

∂(MX)
∂x

+
∂(MY )

∂y
≡ 0 (1.1.3)

in D, we say that M is an integral factor of (1.1.1) in D. On the other hand, if M−1

is an integral factor of (1.1.1) in D, we say that M is an inverse integral factor of
(1.1.1) in D.

If X(x0, y0) = Y (x0, y0) = 0, the point (x0, y0) is called a singular point or
equilibrium point of (1.1.1). Otherwise, (x0, y0) is called an ordinary point of (1.1.1).

When (x0, y0) is a singular point of (1.1.1) and x0, y0 are real, we say that (x0, y0)
is a real singular point. Otherwise, (x0, y0) is a complex singular point.

If (x0, y0) is a unique singular point in a neighborhood of the singular point
(x0, y0) of (1.1.1), we say that (x0, y0) is an isolated singular point of (1.1.1). In
this case, if (

∂X

∂x

∂Y

∂y
− ∂Y

∂x

∂X

∂y

)

x=x0,y=y0

�= 0, (1.1.4)

then, (x0, y0) is called an elementary singular point. Otherwise, it called a multiple
singular point.

Suppose that the functions

u = ϕ(x, y), v = ψ(x, y) (1.1.5)

are continuously differentiable in D and when (x, y) ∈ D, (u, v) ∈ D�. Write that

J1 =

∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
, J2 =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
. (1.1.6)

If for all (x, y) ∈ D, J1 is bounded and J1 �= 0, we say that (1.1.5) is a non-singular
transformation in D.

Clearly, if (1.1.5) is non-singular in D, then, for all (x, y) ∈ D, J1J2 ≡ 1.

It is easy to prove the following two conclusions by using the chain rule.
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Proposition 1.1.1. Suppose that the functions X(x, y), Y (x, y), M(x, y) are
continuously differentiable in D and (1.1.5) is a non-singular transformation. Under
(1.1.5), system (1.1.1) becomes

du

dt
= U(u, v),

dv

dt
= V (u, v). (1.1.7)

Then, for all (x, y) ∈ D and any continuously differentiable function F (x, y),

dF

dt

∣∣∣∣
(1.1.1)

=
dF

dt

∣∣∣∣
(1.1.7)

. (1.1.8)

Proposition 1.1.2. Under the conditions of Proposition 1.1.1, in addition, if the
functions ϕ(x, y), ψ(x, y) are two-order differentiable in D, then, for all (x, y) ∈ D,

∂(J1X)
∂x

+
∂(J1Y )

∂y
= J1

(
∂U

∂u
+

∂V

∂v

)
, (1.1.9)

∂(J2U)
∂u

+
∂(J2V )

∂v
= J2

(
∂X

∂x
+

∂Y

∂y

)
. (1.1.10)

For system

dx

dt
= M(x, y)X(x, y),

dy

dt
= M(x, y)Y (x, y) (1.1.11)

by Proposition 1.1.2, we have

Proposition 1.1.3. Under the conditions of Propositions 1.1.1 and 1.1.2, for
all continuously differentiable function M(x, y) in (x, y) ∈ D,

∂(J1MX)
∂x

+
∂(J1MY )

∂y
= J1

[
∂(MU)

∂u
+

∂(MV )
∂v

]
, (1.1.12)

∂(J2MU)
∂u

+
∂(J2MV )

∂v
= J2

[
∂(MX)

∂x
+

∂(MX)
∂y

]
. (1.1.13)

By the above proposition, we obtain

Proposition 1.1.4. Under the conditions of Propositions 1.1.1 and 1.1.2, If
M(x, y) is an integral factor of (1.1.1) in D and M(x, y) is continuously differen-
tiable, then, J2M is an integral factor of (1.1.7) in D′.

1.2 Resultant of the Weierstrass Polynomial and Multiplicity

of a Singular Point

In this section, we first study the resultant of Weierstrass polynomials. By using their
properties, we give the definition of multiplicity of singular points. For a multiple
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singular point, we investigate its division and composition from some simple singular
points.

Suppose that

P (x, y) = ϕ0(x)ym + ϕ1(x)ym−1 + · · · + ϕm(x),

Q(x, y) = ψ0(x)yn + ψ1(x)yn−1 + · · · + ψn(x), (1.2.1)

are two polynomials of y, where m and n are two positive integers, ϕk(x), ψk(x) are
power series of x with non-zero convergent radius, x and y are complex variables.
In addition, ϕ0(x)ψ0(x) is not identically vanishing,

Definition 1.2.1. The following (n + m)-order determinant

Res(P, Q, y)

=

ϕ0 ϕ1 · · · · · · · · · ϕm

ϕ0 ϕ1 · · · · · · · · · ϕm

· · · · · · · · · · · · · · · · · ·
ϕ0 ϕ1 · · · · · · · · · ϕm

⎫
⎪⎬
⎪⎭

n rows

ψ0 ψ1 · · · · · · ψn

ψ0 ψ1 · · · · · · ψn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

ψ0 ψ1 · · · · · · ψn

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

m rows

(1.2.2)

is called the resultant of P (x, y) and Q(x, y) with respect to y.

Definition 1.2.2. Write that

H(x, y) = ym + h1(x)ym−1 + h2(x)ym−2 + · · · + hm(x), (1.2.3)

where m is a positive integer, hk(x), k = 1, · · · , m, are power series of x with non-
zero convergent radius. If

h1(0) = h2(0) = · · · = hm(0) = 0, (1.2.4)

we say that H(x, y) is a Weierstrass polynomial of degree m of y.

Definition 1.2.3. Let U(x, y) be a power series of x, y with a non-zero con-
vergent radius and U(0, 0) = 1. We say that U(x, y) is an unitary power series of
x, y.

Definition 1.2.4. Let f(z) be a power series of z with a non-zero convergent
radius, q be a positive integer. If f(0) = 0, we say that x = 0 is an algebraic zero
of the function f(x

1
q ). If there is a positive integer p, such that f(x) = cpx

p + o(xp)
and cp �= 0. Then, cpx

p
q is called the first term of f(x

1
q ).
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By the theory of the algebraic curves, we know that

Theorem 1.2.1. Let

P (x, y) = ϕ0(x)
m∏

k=1

(y − fk(x)), Q(x, y) = ψ0(x)
n∏

j=1

(y − gj(x)). (1.2.5)

Then,

Res(P, Q, y)=ϕn
0 (x)ψm

n (x)
m∏

k=1

n∏
j=1

(fk(x) − gj(x))

=ϕn
0 (x)

m∏
k=1

Q(x, fk(x)) = (−1)mnψm
0 (x)

n∏
j=1

P (x, gj(x)). (1.2.6)

Theorem 1.2.2. Let Ak(x) be the algebraic cofactor of (1.2.2) with the k-row
and the (m+n)-column, Bj(x) be the algebraic cofactor with (n+j)-row and (m+n)-
column, k = 1, 2, · · · , n, j = 1, 2, · · · , m. Then

Res(P, Q, y) = A(x, y)P (x, y) + B(x, y)Q(x, y), (1.2.7)

where

A(x, y) = A1(x)yn−1 + A2(x)yn−2 + · · · + An(x),

B(x, y) = B1(x)ym−1 + B2(x)ym−2 + · · · + Bm(x). (1.2.8)

Theorem 1.2.3 (Weierstrass preparatory theorem). Let F (x, y) be a power
series of x, y with a non-zero convergent radius. If there exists a positive integer m,
such that

F (0, y) = cmym + h.o.t., cm �= 0, (1.2.9)

where h.o.t. stand for the high order terms. Then, there is a unique Weierstrass
polynomial H(x, y) of y with the degree m and an unitary power series U(x, y), such
that in a small neighborhood of the origin

F (x, y) = cmH(x, y)U(x, y). (1.2.10)

Theorem 1.2.4. Under the conditions of Theorem 1.2.3, there exist two positive
number σ1 and σ2, such that when |x| < σ1, F (x, y) as a function of y, it has exactly
m complex zeros y = fk(x) inside the disk |y| < σ2, where fk(0) = 0 and x = 0 is
an algebraic zero of fk(x), k = 1, 2, · · · , m.

Corollary 1.2.1. If H(x, y) is a Weierstrass polynomial of y with the degree
m, then, there exist m functions f1(x), f2(x), · · · , fm(x), for which x = 0 is their
algebraic zero, such that in a small neighborhood of the origin,

H(x, y) ≡
m∏

k=1

(y − fk(x)). (1.2.11)
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Corollary 1.2.2. Let F (x, y) be a power series of x, y with a non-zero convergent
radius. If there exist an integer m, such that

F (0, 0) =
∂F (0, 0)

∂y
= · · · =

∂Fm−1(0, 0)
∂ym−1

= 0,
∂Fm(0, 0)

∂ym
�= 0. (1.2.12)

Then, the implicit function equation

F (x, y) = 0, y|x=0 = 0 (1.2.13)

has exactly m complex solutions y = fk(x) in a small neighborhood of the origin and
x = 0 is an algebraic zero of fk(x), k = 1, 2, · · · , m.

We know consider the multiplicity of singular point for the complex autonomous
differential system:

dx

dt
= F1(x, y),

dy

dt
= F2(x, y), (1.2.14)

where F1(x, y) and F2(x, y) are power series of x, y with a non-zero convergent radius,
F1(0, 0) = F2(0, 0) = 0. Suppose that O(0, 0) is an isolated singular point of (1.2.14).

Without loss of generality, we assume that F1(0, y) �= 0. Hence, there is an integer
m, such that

F1(0, y) = amym + h.o.t., am �= 0. (1.2.15)

By Theorem 1.2.3 and Corollary 1.2.1, in a small neighborhood of the origin, F1(x, y)
has the form as follows:

F1(x, y) = amH1(x, y)U1(x, y) = amU1(x, y)
m∏

k=1

(y − fk(x)), (1.2.16)

where

H1(x, y) =
m∏

k=1

(y − fk(x)) (1.2.17)

is a Weierstrass polynomial of y of degree m. x = 0 is an algebraic zero of fk(x).
U1(x, y) is a unitary power series of x, y.

Consider the function

R(x) =
m∏

k=1

F2(x, fk(x)). (1.2.18)

Lemma 1.2.1. Let the origin be an isolated singular point of (1.2.14). Then
there is an integer N > 0, such that

R(x) = AxN + o(xN ), A �= 0. (1.2.19)
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Proof. We can write that
F2(x, y) = xsF̃2(x, y), (1.2.20)

where F̃2(x, y) is a power series of x, y with a non-zero convergent radius and F̃2(0, y)
is not identically vanishing. Consider the following two cases.

1. Suppose that F̃2(0, 0) �= 0. Since F2(0, 0) = 0, so that, s is a positive integer.
(1.2.18) and (1.2.20) follow that

R(x) = F̃m
2 (0, 0)xsm + o(xsm). (1.2.21)

By (1.2.21), when F̃2(0, 0) �= 0, the conclusion of Lemma 1.2.1 holds.
2. Suppose that F̃2(0, 0) = 0. Since F̃2(0, y) is a non-zero function, thus, there

is an integer n > 0, such that

F̃2(0, y) = bnxn + h.o.t., bn �= 0. (1.2.22)

By Theorem 1.2.3 and Corollary 1.2.1, in a small neighborhood of the origin, F̃2(x, y)
can be written as

F̃2(x, y) = bnH2(x, y)U2(x, y). (1.2.23)

where H2(x, y) is a Weierstrass polynomial of y with the degree n and U2(x, y) is a
unitary power series of x, y. By (1.2.18), (1.2.20) and (1.2.23), we know that

R(x) = bm
n xsmM(x)

m∏
k=1

H2(x, fk(x)), (1.2.24)

where

M(x) =
m∏

k=1

U2(x, fk(x)) = 1 + o(1). (1.2.25)

By Theorem 1.2.1,
m∏

k=1

H2(x, fk(x)) = Res(H1, H2, y) (1.2.26)

is a power series of x with a non-zero convergent radius. Because the origin is an
isolated singular point of (1.2.14), it follows that Res(H1, H2, y) is not zero function.
By (1.2.24), (1.2.25) and (1.2.26), when F̃2(0, 0) = 0, the conclusion of Lemma 1.2.1
is also holds.

Definition 1.2.5. Suppose that the origin is an isolated singular point of (1.2.14).
F1(x, y) is given by (1.2.16), where for all k, x = 0 is an algebraic zero of fk(x) and
U1(x, y) is a unitary power series of x, y, am �= 0. If there is a positive integer N ,
such that

R(x) =
m∏

k=1

F2(x, fk(x)) = AxN + o(xN ), A �= 0, (1.2.27)

then the origin is called a N -multiple singular point of (1.2.14). N is called the
multiplicity of the origin.
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In the theory of algebraic curves, there is the definition of the crossing number
of two curves. We see from Definition 1.2.5 that if the origin is an isolated singular
point of (1.2.14) and F1(x, y), F2(x, y) are polynomial of x, y, then, the multiplicity
of the origin is the same as the crossing number of the two curves of F1(x, y) = 0
and F2(x, y) = 0.

How to determine the multiplicity of a singular point? The following examples
give some results.

Consider the following autonomous analytic system in a neighborhood of the
origin:

dx

dt
=

∞∑
k=m

Xk(x, y) = X(x, y),

dy

dt
=

∞∑
k=n

Yk(x, y) = Y (x, y), (1.2.28)

where m, n are integers, for all k, Xk(x, y), Yk(x, y) are homogeneous polynomials of
degree k of x, y. In addition, Xm(x, y)Yn(x, y) is not identically vanishing.

Theorem 1.2.5. If Xm(x, y) and Yn(x, y) are irreducible, then the origin is a
mn-multiple singular point of (1.2.28).

Proof. Since Yn(s, 1) is a polynomial of degree n, so that, there is a complex number
s such that Yn(s, 1) �= 0. By the transformation

ξ = x − sy, η = y (1.2.29)

(1.2.28) becomes

dξ

dt
= X(ξ + sη, η) − sY (ξ + sη, η) = X̃(ξ, η),

dξ

dt
= Y (ξ + sη, η) =

∞∑
k=n

Ỹk(ξ, η) = Ỹ (ξ, η). (1.2.30)

Notice that Y (0, η) = Yn(s, 1)ηn + o(ηn). We can write

Ỹn(ξ, η) = Yn(s, 1)
n∏

k=1

(η − λkξ). (1.2.31)

By Corollary 1.2.2 and (1.2.30), in a neighborhood of the origin, the implicit function
equation

Ỹ (ξ, η) = 0, η|ξ=0 = 0 (1.2.32)

has exact n solutions η = fk(ξ) = λkξ + o(ξ), k = 1, 2, · · · , n. Denote X̃m(ξ, η) =
Xm(ξ + sη, η), then
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n∏
k=1

X̃(ξ, fk(ξ))=
n∏

k=1

X(ξ + sfk(ξ), fk(ξ))

=
n∏

k=1

Xm(ξ + sλkξ, λkξ) + o(ξmn)

=
n∏

k=1

X̃m(ξ, λkξ) + o(ξmn)

=
n∏

k=1

X̃m(1, λk)ξmn + o(ξmn). (1.2.33)

By the irreducibility of Xm(x, y) and Yn(x, y), we see from (1.2.31) that

n∏
k=1

X̃m(1, λk) �= 0. (1.2.34)

Thus, (1.2.33) follows the conclusion of Theorem 1.2.5.

Obviously, by this theorem, the multiplicity of an elementary singular point is 1.
In addition, by Definition 1.2.5, we have

Theorem 1.2.6. Suppose that

F1(x, y) = ax + by + h.o.t., F2(x, y) = cx + dy + h.o.t., b �= 0. (1.2.35)

If y = f(x) is the unique solution of the equation

F1(x, y) = 0, y|x=0 = 0, (1.2.36)

then, when F2(x, f(x)) ≡ 0, the origin is not a isolated singular point of (1.2.14).
When F2(x, f(x)) = AxN + o(xN ), where N is a positive integer, A �= 0, the origin
is a N -multiple singular point of (1.2.14).

Consider the polynomial system

dx

dt
=

m∑
k=1

Xk(x, y) = Xm(x, y),

dy

dt
=

n∑
k=1

Yk(x, y) = Yn(x, y), (1.2.37)

where m, n are positive integers, Xk(x, y), Yk(x, y) are homogeneous polynomials of
degree k. Xm(x, y) and Yn(x, y) are irreducible.

By Definition 1.2.5 and Bezout theorem in the theory of algebraic curves, we
obtain
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Theorem 1.2.7. The sum of multiplicities of all finite singular points of (1.2.37)
is less than mn or equals to mn.

In addition, we have

Theorem 1.2.8. If

Xm(o, y) = aym, Yn(0, y) = byn, ab �= 0 (1.2.38)

and Res(Xm,Ym, y) = AxN + o(xN ), A �= 0, then, the origin of (1.2.37) is a N -
multiple singular point.

Finally, we investigate the division and composition of the singular points. Take
m = n. We consider the perturbed system of (1.2.37):

dx

dt
=

n∑
k=1

Xk(x, y) + Φn(x, y, ε),

dy

dt
=

n∑
k=1

Yk(x, y) + Ψn(x, y, ε). (1.2.39)

where

Φn(x, y, ε) =
n∑

k+j=0

εkjx
kyj , Ψn(x, y, ε) =

n∑
k+j=0

ε′kjx
kyj , (1.2.40)

for all k, j, εkj , ε
′
kj are small parameters. ε stands for a vector consisting of all

εkj , ε
′
kj .

We have the following conclusions.

Theorem 1.2.9. Suppose that when ε = 0, two functions of the right hands of
(1.2.39) are irreducible and the origin is a N -multiple singular point of (1.2.39)ε=0.
Then, there exist two positive numbers r0 and ε0, such that when |ε| < ε0, the sum of
multiplicities of all singular points of (1.2.39) in the region |x| < r0, |y| < r0 is exact
N . In addition, the coordinates of these singular points are continuous functions of
ε. When ε → 0, these singular points attend to the origin.

By choosing the parameters of Φn(x, y, ε) and Ψn(x, y, ε), system (1.2.39) can
have exactly N complex elementary singular points.

1.3 Quasi-Algebraic Integrals of Polynomial Systems

In this section, we consider the polynomial system of degree n as follows:

dx

dt
=

n∑
k=0

Xk(x, y) = Xn(x, y),

dy

dt
=

n∑
k=0

Yk(x, y) = Yn(x, y). (1.3.1)
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In [Darboux, 1878], the author first studied systematically the invariant algebraic
curve solutions of (1.3.1) and gave a method to construct first integrals and integral
factors of (1.3.1), by using finitely many invariant algebraic curve solutions.

Definition 1.3.1. Let f(x, y) be a nonconstant polynomial of degree m. If there
is a bounded function h(x, y), such that

df

dt

∣∣∣∣
(1.3.1)

=
∂f

∂x
Xn(x, y) +

∂f

∂y
Yn(x, y) = h(x, y)f(x, y), (1.3.2)

then, f = 0 is called an algebraic curve solution of (1.3.1). The polynomial f is
called an algebraic integral of (1.3.1). The function h is called a cofactor of f .

Clearly, we see from (1.3.2) that the following conclusion holds.

Proposition 1.3.1. If f is an algebraic integral of (1.3.1), then the cofactor h

of f is a polynomial of degree at most n − 1.

In [Liu Y.R. etc, 1995], the authors developed Darboux’s results to that f is not
polynomial. They defined a quasi-algebraic integral of (1.3.1). We next introduce
their main conclusions.

Definition 1.3.2. Suppose that f(x, y) is a continuously differentiable noncon-
stant function in a region D. If there is a polynomial h(x, y) of degree at most n−1,
such that (1.3.2) holds in D. We say that f(x, y) is a quasi-algebraic integral of
(1.3.1) in D.

It is easy to see that an algebraic integral must be a quasi-algebraic integral.

Example 1.3.1. Obviously, the quintic system

dx

dt
= −y + x(x2 + y2 − 1)2,

dy

dt
= x + y(x2 + y2 − 1)2 (1.3.3)

has the following quasi-algebraic integrals:

f1 = x2 + y2 − 1, f2 = e
1

x2+y2−1 ,

f3 = x2 + y2, f4 = earctan y
x ,

f5 = x + iy, f6 = x − iy. (1.3.4)

They satisfy
dfk

dt

∣∣∣∣
(1.3.3)

= hk(x, y)fk(x, y), k = 1, 2, 3, 4, 5, 6, (1.3.5)
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where for all k = 1 − 6, hk(x, y) are as follows:

h1 = 2(x2 + y2)(x2 + y2 − 1), h2 = −2(x2 + y2),

h3 = 2(x2 + y2 − 1)2, h4 = 1,

h5 = (x2 + y2 − 1)2 + i, h6 = (x2 + y2 − 1)2 − i. (1.3.6)

Because
h1 + h2 − h3 + 2h4 = 0, (1.3.7)

by (1.3.5) and (1.3.7), (1.3.3) has the first integral

F = f1f2f
−1
3 f2

4 = constant, (1.3.8)

which satisfies
dF

dt

∣∣∣∣
(1.3.3)

= (h1 + h2 − h3 + 2h4)F = 0. (1.3.9)

Definition 1.3.3. Let f1, f2, · · · , fm be m quasi-algebraic integrals of (1.3.1).
If there exists a group of complex number α1, α2, · · · , αm, such that fα1

1 fα2
2 · · · fαm

m

is identically equal a constant, then, f1, f2, · · · , fm is called dependent. Otherwise,
f1, f2, · · · , fm is called independent.

For example, in (1.3.4), we have that f5f6 = f3 and f5f
−1
6 = f2i

4 , hence, f3, f5, f6

and f4, f5, f6 are dependent, respectively.

Theorem 1.3.1. The first integral F and the integral factor M of (1.3.1) are
quasi-algebraic integrals of (1.3.1).

Proof. By the definition of the first integral, a first integral of (1.3.1) in a region
must be a quasi-algebraic integral of (1.3.1).

Let M is an integral factor of (1.3.1) in a region. Then, we have

∂(MXn)
∂x

+
∂(MYn)

∂y
= 0, (1.3.10)

i.e.,
∂M

∂x
Xn +

∂M

∂y
Yn +

(
∂Xn

∂x
+

∂Yn

∂y

)
M = 0. (1.3.11)

It follows that
dM

dt

∣∣∣∣
(1.3.1)

= −
(

∂Xn

∂x
+

∂Yn

∂y

)
M. (1.3.12)

This implies that M is a quasi-algebraic integral of (1.3.1).
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Theorem 1.3.2. Suppose that f1, f2, · · · , fm are m independent quasi-algebraic
integrals of (1.3.1) satisfying

dfk

dt

∣∣∣∣
(1.3.1)

= hkfk, k = 1, 2, · · · , m. (1.3.13)

Then, for any group of non-zero complex numbers α1, α2, · · · , αm, the function
f = fα1

1 fα2
2 · · · fαm

m is also a quasi-algebraic integral of (1.3.1) satisfying

df

dt

∣∣∣∣
(1.3.1)

= (α1h1 + α2h2 + · · · + α1h1 + αmhm)f. (1.3.14)

We know from the above theorem that

Theorem 1.3.3. Suppose that f1, f2, · · · , fm are m independent quasi-algebraic
integrals of (1.3.1) satisfying (1.3.13). If there is a group of non-zero complex num-
bers α1, α2, · · · , αm, such that

α1h1 + α2h2 + · · · + α1h1 + αmhm = 0. (1.3.15)

Then, f = fα1
1 fα2

2 · · · fαm
m is a first integral of (1.3.1).

By using Theorem 1.3.2 and (1.3.12), we obtain

Theorem 1.3.4. Suppose that f1, f2, · · · , fm are m independent quasi-algebraic
integrals of (1.3.1) satisfying (1.3.13). If there is a group of non-zero complex num-
bers α1, α2, · · · , αm, such that

α1h1 + α2h2 + · · · + α1h1 + αmhm = −
(

∂Xn

∂x
+

∂Yn

∂y

)
. (1.3.16)

Then, f = fα1
1 fα2

2 · · · fαm
m are an integral factor of (1.3.1).

Because the set of all polynomials of degree n−1 forms a linear space of dimension
n(n + 1)/2. Every polynomial of degree n− 1 is a vector of this linear space. Thus,
by Theorem 1.3.2 and Theorem 1.3.3, if f1, f2, · · · , fm are m independent quasi-
algebraic integrals of (1.3.1) satisfying (1.3.13), then

1. If h1, h2, · · · , hm are linear dependent, then, by using f1, f2, · · · , fm, we can
construct a first integral of (1.3.1);

2. If h1, h2, · · · , hm are linear independent and

h1, h2, · · · , hm,
∂Xn

∂x
+

∂Yn

∂y

are linear dependent, then, by using f1, f2, · · · , fm, we can construct an integral
factor of (1.3.1).
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For a given polynomial system, we hope to know that under what parametric
conditions, it has a quasi-algebraic integral and we wish to get more quasi-algebraic
integrals. In principle, if there exists an algebraic integral of (1.3.1) which satis-
fies (1.3.2), then, we can obtain f and h, by using the method of undetermined
coefficients. Letting

f =
m∑

k+j=0

ckjx
kyj , h =

n−1∑
k+j=0

dkjx
kyj, (1.3.17)

and substituting (1.3.17) into (1.3.2), comparing the coefficients of the corresponding
terms in the two sides of obtained representation, it gives rise to a linear system of
algebraic equations with respect to ckj , dk,j , k, j = 1, · · · . Solving this system, it
follows f and h.

Unfortunately, generally, we do not know the existence and its degree m of an al-
gebraic integral f for a given polynomial system. This is a difficult classical problem
in the theory of the planar dynamical systems.

We next discuss some special cases.
Consider the following polynomial system of degree n + m:

dx

dt
= Gk(x)Xn(x, y),

dy

dt
= Yn+m(x, y), (1.3.18)

where 1 � k � m,

Gk(x) = a0 + a1x + · · · + akxk, ak �= 0 (1.3.19)

Because a polynomial of degree k has exact k complex roots. We have the
following conclusion.

Proposition 1.3.2. If x = x0 is a simple zero of Gk(x), then, system (1.3.18)
has a quasi-algebraic integral f = x − x0. If x = x0 is a j-multiple zero of Gk(x),
then, system (1.3.18) has j independent quasi-algebraic integrals as follows:

f1 = x − x0, f2 = e
1

x−x0 , f3 = e
1

(x−x0)2 , · · · , fj = e
1

(x−x0)j−1 . (1.3.20)

Proposition 1.3.3. The system

dx

dt
= Xn(x, y),

dy

dt
= Yn+m(x, y) (1.3.21)

has the following m independent quasi-algebraic integrals

f1 = ex, f2 = ex2
, · · · , fm = exm

. (1.3.22)
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Proposition 1.3.4. Suppose that system (1.3.1) is real and f = f1 + if2 is a
quasi-algebraic integral of (1.3.1) satisfying

df

dt

∣∣∣∣
(1.3.1)

= (h1 + ih2)f, (1.3.23)

where f1 and f2 are two real non-zero functions, h1 and h2 are real coefficient poly-
nomials. Then, f̄ = f1 − if2, f3 = f f̄ and f4 = f if̄−i are quasi-algebraic integrals
of (1.3.1) respectively satisfying

df̄

dt

∣∣∣∣
(1.3.1)

= (h1 − ih2)f̄ ,

df3

dt

∣∣∣∣
(1.3.1)

= 2h1f3,

df4

dt

∣∣∣∣
(1.3.1)

= −2h2f4. (1.3.24)

Example 1.3.2. Consider the following real quadratic system

dx

dt
= −y + δx + lx2 + mxy + ny2,

dy

dt
= x(1 + by). (1.3.25)

This system has the following quasi-algebraic integral

f =
{

(1 + by)
1
b , if b �= 0,

ey, if b = 0.
(1.3.26)

where ey is a limit function of (1 + by)
1
b as b → 0.

1.4 Cauchy Majorant and Analytic Properties in a

Neighborhood of an Ordinary Point

For the complex differential equations, in order to investigate the convergence of
a solution of the power series, Cauchy posed the classical majorant method. It
provided an important tool. In this section, we introduce this method.

Definition 1.4.1. Let f =
∞∑

α+β=0

cαβxαyβ and F =
∞∑

α+β=0

Cαβxαyβ be two

power series of x, y, where x, y are complex variables and for all α, β ∈ N, cαβ are
complex coefficients, Cαβ are non-negative real numbers. If ∀α, β, the inequalities
|cαβ | � Cαβ hold, then, F is called a majorant of f , denoted by f ≺ F or F � f .

Proposition 1.4.1. Suppose that f1, f2, F1, F2 are power series of x, y. F1, F2

have non-negative real coefficients and non-zero convergent radius. If f1 ≺ F1,
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f2 ≺ F2, then, f1, f2 also have non-zero convergent radius and

f1 ± f2 ≺ F1 + F2, f1f2 ≺ F1F2,

∂f1

∂z
≺ ∂F1

∂z
,

∂f1

∂w
≺ ∂F1

∂w
,

∫
f1dz ≺

∫
F1dz,

∫
f1dw ≺

∫
F1dw. (1.4.1)

In addition, if f1(0, 0) = F1(0, 0) = 0, then

1
1 ± f1

≺ 1
1 − F1

=
∞∑

k=0

F k
1 . (1.4.2)

Suppose that f =
∞∑

α+β=0

cαβxαyβ has a non-zero convergent radius. By Cauchy

inequality, there are positive numbers M, r, such that

|cαβ | � M

rα+β
. (1.4.3)

From (1.4.3) and (1.4.2), we have

Proposition 1.4.2. If f =
∞∑

α+β=0

cαβxαyβ has a non-zero convergent radius,

then, there exist positive numbers M, r, such that

f ≺ M(
1 − x

r

)(
1 − y

r

) ≺ M

1 − x + y

r

. (1.4.4)

Proposition 1.4.3. If f =
∞∑

α+β=0

cαβxαyβ has a non-zero convergent radius,

then, there exist positive numbers M, r, such that for any positive integer m,
∞∑

α+β=m

cαβxαyβ ≺ M(x + y)m

rm−1(r − x − y)
. (1.4.5)

Proof. By (1.4.3), for any positive integer k, we have

∑
α+β=k

cαβxαyβ ≺ M
∑

α+β=k

xαyβ

rk
≺ M

(
x + y

r

)k

. (1.4.6)

Thus,
∞∑

α+β=m

cαβxαyβ ≺ M

∞∑
k=m

(
x + y

r

)k

=
M(x + y)m

rm−1(r − x − y)
. (1.4.7)
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We next discuss the analytic properties of the solutions of system (1.1.1) in a
neighborhood of an ordinary point. Suppose that the right hand of (1.1.1) are
analytic in a neighborhood of (x0, y0) and (x0, y0) is an ordinary point of (1.1.1).
We can see (x0, y0) as the origin. Consider system

dx

dt
= a0 + a1x + a2y + h.o.t.,

dy

dt
= b0 + b1x + b2y + h.o.t., (1.4.8)

where
|a0| + |b0| �= 0. (1.4.9)

Since the origin is an ordinary point of (1.4.8). Cauchy proved the following result.

Theorem 1.4.1. If a0 �= 0, then system (1.4.8) has a unique power series solu-
tion with the initial condition y(0) = 0 as follows:

y =
∞∑

k=1

ckxk, (1.4.10)

which has non-zero convergent radius.

By using the non-singular linear transformation

u = −b0x + a0y, v = −ā0x − b̄0y, (1.4.11)

system (1.4.8) becomes

du

dt
= U(u, v) =

∞∑
k=0

ϕk(u)vk,

dv

dt
= −Δ + V (u, v) = −Δ +

∞∑
k=0

ψk(u)vk. (1.4.12)

where for all k, ϕk(u), ψk(u) are power series of u and

Δ = |a0|2 + |b0|2 > 0,

U(0, 0) = ϕ0(0) = 0, V (0, 0) = ψ0(0) = 0. (1.4.13)

Definition 1.4.2. Let f =
∞∑

α+β=0

cαβxαyβ be power series of x, y. If we do not

consider the convergence of f , then f is called a formal power series of x, y.
If f(x, y) is a formal power series of x, y and f(0, 0) = 1, then f is called a

unitary formal power series of x, y.
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Let {cαk,βk
} for some k be a subsequence of {cαβ}, then

�
cαk,βk

xαkyβk is called
a subseries of f .

For two formal series, when we make the algebraic operations and analytic op-
erations of term by term, if we do not consider their convergence, these operations
are called the formal operations.

Definition 1.4.3. Suppose that the functions of right hand of (1.1.1) are analytic
in a neighborhood of the origin. If a formal series F (x, y) of x, y satisfies

dF

dt

����
(1.1.1)

=
∂F

∂x
X +

∂F

∂y
Y = 0 (1.4.14)

and F is a nonconstant function in a neighborhood of the origin, then, F is called a
formal first integral of (1.1.1) in a neighborhood of the origin.

If a formal series M(x, y) of x, y satisfies

∂(MX)
∂x

+
∂(MY )

∂y
= 0 (1.4.15)

and M is a nonconstant function in a neighborhood of the origin, then, M is called
a formal integral factor of (1.1.1) in a neighborhood of the origin.

Lemma 1.4.1. For system (1.4.12), one can determine term by term the formal
series

H(u, v) =
∞�

k=0

hk(u)vk, h0(u) = u, (1.4.16)

such that
dH

dt

����
(1.4.12)

= 0. (1.4.17)

Proof. Using (1.4.16) and (1.4.12) to do formal operation, we have

dH

dt

����
(1.4.12)

=
∂H

∂u
U +

∂H

∂v
(−Δ + V )

=
∞�

k=0

h�
k(u)vk

∞�
j=0

ϕj(u)vj

+
∞�

k=1

khk(u)vk−1

⎡
⎣−Δ +

∞�
j=0

ψj(u)vj

⎤
⎦

=
∞�

m=0

[−(m + 1)(Δ − ψ0)hm+1 + gm] vm, (1.4.18)

where

gm =
m�

k=0

(h�
kϕm−k + khkψm−k+1) (1.4.19)
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is a polynomial of hk, h�
k, ϕj , ψj with positive coefficients. (1.4.17) and (1.4.18) imply

the recursion formulas of hm as follows:

hm+1 =
gm

(m + 1)(Δ − ψ0)
, m = 0, 1, 2, · · · . (1.4.20)

Because the relationship of h0(u) = u has been given, by (1.4.20), this lemma
holds.

Lemma 1.4.2. The function H(u, v) defined by (1.4.16) has a non-zero conver-
gent radius.

Proof. Since the functions U(u, v), V (u, v) are analytic in a neighborhood of the
origin and U(0, 0) = V (0, 0) = 0, by Proposition 1.4.3, there exist two positive
numbers M, r, such that

U(u, v) ≺ M(u + v)
r − u − v

, V (x, y) ≺ M(u + v)
r − u − v

. (1.4.21)

Consider the majorant system

du

dt
=

M(u + v)
r − u − v

,
dv

dt
= −Δ +

M(u + v)
r − u − v

. (1.4.22)

It is easy to see that system (1.4.22) has the following formal first integral

H̃(u, v) = u + G(u + v), (1.4.23)

where

G(w)=
−MΔr

(Δ + 2M)2

[
Δ + 2M

Δr
w + ln

(
1 − Δ + 2M

Δr
w

)]

=
MΔr

(Δ + 2M)2

∞∑
k=2

1
k

(
Δ + 2M

Δr

)k

wk = o(w) (1.4.24)

is a power series of w with positive coefficients, which is analytic in the disk |w| <

Δr/(Δ + 2M). In order to prove

H(u, v) ≺ H̃(u, v), (1.4.25)

write that

H̃(u, v) =
∞∑

k=0

h̃k(u)vk,
M(u + v)
r − u − v

=
∞∑

k=0

χk(u)vk, (1.4.26)

then,

h0(u) ≺ h̃0(u) = u + G(u),

ϕk(u) ≺ χk(u), ψk(u) ≺ χk(u), k = 0, 1, 2, · · · . (1.4.27)
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Similar to the proof of Lemma 1.4.1, we have the recursion formulas for the compu-
tation of h̃k as follows:

h̃m+1 =
g̃m

(m + 1)(Δ − χ0)
, m = 0, 1, 2, · · · , (1.4.28)

where

g̃m =
m∑

k=0

(h̃�
kχm−k + kh̃kχm−k+1). (1.4.29)

By using Proposition 1.4.1, (1.4.19), (1.4.20) (1.4.27), (1.4.28), (1.4.29) and mathe-
matical induction, for any positive integer m, we obtain

gm ≺ g̃m, hm ≺ h̃m. (1.4.30)

It follows (1.4.25) and this lemma.

Theorem 1.4.2. Let
h∗

0(u) = u + h.o.t. (1.4.31)

be a power series which is convergence in a neighborhood of u = 0. One can derive
successively every term of the following unique power series of u, v,

H∗(u, v) =
∞∑

k=0

h∗
k(u)vk, (1.4.32)

with a non-zero convergent radius, such that

dH∗

dt

∣∣∣∣
(1.4.12)

= 0, (1.4.33)

and
H∗(u, v) = h∗

0(H(u, v)). (1.4.34)

Proof. Similar to the proof of Lemma 1.4.1, for any positive integer k, we use h∗
k

instead of hk of (1.4.19) and (1.4.20) to get the the recursion formulas for h∗
k(u).

When h∗
0(u) has been obtained, then, there is unique formal series H∗(u, v) satisfying

(1.4.33). Write that
H(u, v) = h∗

0(H(u, v)). (1.4.35)

By Lemma 1.4.1 and Lemma 1.4.2, H(u, v) is a power series with a non-zero con-
vergent radius and

H(u, 0) = h∗
0(u),

dH
dt

∣∣∣∣
(1.4.12)

= 0. (1.4.36)

By the uniqueness, we have H∗(u, v) = H(u, v), i.e., this theorem holds.
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Theorem 1.4.3. In a neighborhood of the origin there is a first integral of (1.4.8)
as follows:

F (x, y) = −b0x + a0y +
∞∑

k=2

Fk(x, y), (1.4.37)

where F (x, y) is convergent in a small neighborhood of the origin, for every k,
Fk(x, y) is a homogeneous polynomial of x, y. Especially,

F2(x, y) =
1

2(|a0|2 + |b0|2)2 (ā0x + b̄0y)(Ax + By), (1.4.38)

where

A = 2b0b̄0(a1b0 − a0b1) + ā0(a0a1b0 − a2b
2
0 − a2

0b1 + a0b0b2),

B = 2a0ā0(a2b0 − a0b2) − b̄0(a0a1b0 − a2b
2
0 − a2

0b1 + a0b0b2). (1.4.39)

Proof. Let
F (x, y) = H(−b0x + a0y, −ā0x − b̄0y). (1.4.40)

By Lemma 1.4.1 and Lemma 1.4.2, F (x, y) is a first integral of (1.4.8) and it has a
non-zero convergent radius. Write that

H(x, y) = u + (c1u + c2v)v + h.o.t., (1.4.41)

substituting (1.4.41) into (1.4.17), we can determine c1, c2. It follows the represen-
tation of F2.

Theorem 1.4.4. For system (1.4.8), one can derive successively every term of
the following power series

T (x, y) =
ā0x + b̄0y

|a0|2 + |b0|2 + h.o.t., (1.4.42)

which is convergent in a neighborhood of the origin, such that

dT
dt

∣∣∣∣
(1.4.8)

= 1. (1.4.43)

Proof. By Lemma 1.4.1 and Lemma 1.4.1, the first integral H(u, v) = u + h.o.t. of
(1.4.12) has a non-zero convergent radius. Hence, in a small neighborhood of the
origin, by using the implicit function equations

z = H(u, v), w = v, (1.4.44)

we can uniquely solve

u = ζ(z, w) = z + h.o.t., v = w, (1.4.45)
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where the function ζ(z, w) has a non-zero convergent radius. By using the transfor-
mation (1.4.44), system (1.1.12) becomes

dz

dt
= 0,

dw

dt
= −Δ + V (ζ(z, w), w). (1.4.46)

Write that

1
−Δ + V (ζ(z, w), w)

= − 1
Δ

+
∞∑

k+j=1

Ckjz
kwj ,

T =
−w

Δ
+

∞∑
k+j=1

1
j + 1

Ckjz
kwj+1. (1.4.47)

By (1.4.11), (1.4.44) and (1.4.47), we obtain (1.4.42) and the convergence of T (x, y)
in a small neighborhood of the origin. By (1.4.46) and (1.4.47), we have

dz

dt
= 0,

dT
dt

= 1. (1.4.48)

Theorem 1.4.5. For system (1.4.8), one can derive successively every term of
the following unique power series of x, y

ξ = x + h.o.t., η = y + h.o.t., (1.4.49)

with a non-zero convergent radius, such that, by the transformation (1.4.49), system
(1.4.8) becomes the following normal form

dξ

dt
= a0,

dη

dt
= b0. (1.4.50)

Proof. For the function F (x, y) in Theorem 1.4.3 and the function T (x, y) in Theo-
rem 1.4.4, letting

ξ = a0T (x, y) − b̄0

|a0|2 + |b0|2 F (x, y),

η = b0T (x, y) +
ā0

|a0|2 + |b0|2 F (x, y), (1.4.51)

then, Theorem 1.4.3 and Theorem 1.4.4 imply (1.4.49) and (1.4.50).

Finally, we consider the following analytic system

dx

dt
= ym−1

[
a0 + a1x

n + a2y
m +

∞∑
k=2

Xk(xn, ym)

]
,

dy

dt
= xn−1

[
b0 + b1x

n + b2y
m +

∞∑
k=2

Yk(xn, ym)

]
, (1.4.52)
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where m and n are two positive integers, for all k, Xk(u, v), Yk(u, v) are homogeneous
polynomials of u, v with degree k, b0 �= 0.

The origin of (1.4.52) may be an ordinary point, an elementary singular point or
a multiple singular point.

Theorem 1.4.6. In a neighborhood of the origin, system (1.4.52) has the fo-
llowing formal first integral:

F (xn, ym) = −mb0x
n + na0y

m +
∞∑

k=2

Fk(xn, ym), (1.4.53)

where F (u, v) is analytic in a neighborhood of the origin. For all k, Fk(u, v) are
homogeneous polynomials of u, v.

Proof. By the transformation

u = xn, v = ym, dτ = xn−1ym−1dt (1.4.54)

system (1.4.52) becomes

du

dτ
= n (a0 + a1u + a2v) + n

∞∑
k=2

Xk(u, v),

dv

dτ
= m (b0 + b1u + b2v) + m

∞∑
k=2

Yk(u, v). (1.4.55)

Because b0 �= 0, the origin is an ordinary point of (1.4.55). Thus, Theorem 1.4.3
follows the conclusion of this theorem.

For an analytic system, as a corollary of Theorem 1.4.6, we can obtain the sym-
metric principle to the test of center or focus in the theory of real planar dynamical
systems. In fact, if n = 2, m = 1, a0 = 0, b0 �= 0, then (1.4.52) becomes

dx

dt
= a1x

2 + a2y +
∞∑

k=2

Xk(x2, y) = a2y + h.o.t.,

dy

dt
= x

[
b0 + b1x

2 + b2y +
∞∑

k=2

Yk(x2, y)

]
= b0x + h.o.t., (1.4.56)

By the transformation
u = x2, v = y, dτ = xdt, (1.4.57)

system (1.4.56) becomes

du

dτ
= 2a1u + 2a2v + h.o.t.,

dv

dτ
= b0 + b1u + b2v + h.o.t. (1.4.58)

By Theorem 1.4.3 and Theorem 1.4.6, we have
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Corollary 1.4.1. In a neighborhood of the origin, system (1.4.56) has the fo-
llowing formal first integral:

F (x, y) = −b0x
2 + a2y

2 +
∞∑

k=3

Fk(x, y), (1.4.59)

where F (x, y) is analytic in a neighborhood of the origin and for all k, Fk(x, y) are
homogeneous polynomials of x, y.

Suppose that (1.4.56) is a real system. Then, the vector field defined by (1.4.56) is
symmetric with respect to y-axis. In this case, when a2 = 0, the origin of (1.4.56) is
a multiple singular point; When b0a2 > 0, it is a saddle point. When b0a2 < 0, by the
symmetric principle, it is a center. Corollary 1.4.1 implies that when b0a2 � 0 and
the coefficients of the right hand of (1.4.56) are complex numbers, in a neighborhood
of the origin, system (1.4.56) is integrable.

Corollary 1.4.2. For system (1.4.56), One can determine successively every
term of the following convergent power series of x, y

g(x, y) = y + h.o.t., (1.4.60)

such that
dg

dt

∣∣∣∣
(1.4.56)

= b0x. (1.4.61)

Proof. By Theorem 1.4.4, for system (1.4.58), in a neighborhood of the origin, there
is a convergent power series

T (u, v) =
v

b0
+ h.o.t., (1.4.62)

such that
dT
dτ

∣∣∣∣
(1.4.58)

= 1. (1.4.63)

Let g(x, y) = b0T (x2, y). Then, (1.4.57), (1.4.62) and (1.4.63) follows this lemma.

This corollary means that if (1.4.56) is a polynomial system, then, eg is a quasi-
algebraic integral of (1.4.56) in a neighborhood of the origin.

1.5 Classification of Elementary Singular Points and

Linea-rized Problem

Suppose that system (1.1.1) is analytic in a neighborhood of the origin and the origin
is an elementary singular point of (1.1.1). We consider the complex system

dx

dt
= ax + by + h.o.t.,

dy

dt
= cx + dy + h.o.t.. (1.5.1)
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The coefficient matrix of the linearized system of (1.5.1) at the origin has the
characteristic equation

λ2 − (a + d)λ + ad − bc = 0. (1.5.2)

Let λ1, λ2 be two roots of (1.5.2). If λ1λ2 = ad− bc �= 0, the origin is an elementary
singular point.

For an isolated singular point of the complex equations, the following result is
useful.

Theorem 1.5.1 (Briot-Bouquet theorem). Let F (u, v) = Au + Bv + h.o.t.

be a power series of u, v with a non-zero convergent radius. If B is not a positive
integer, then, in a neighborhood of the origin, equation

u
dv

du
= F (u, v), v|u=0 = 0 (1.5.3)

has the unique solution:

v = f(u) =
A

1 − B
u + h.o.t., (1.5.4)

where f(u) is a power series of u with a non-zero convergent radius.

We next consider

dx

dt
= λ1x +

∞∑
k=2

Xk(x, y),
dy

dt
= λ2y +

∞∑
k=2

Yk(x, y), (1.5.5)

where the functions of right hand of (1.5.5) are analytic and X2(0, 1) = A, Y2(1, 0) =
B.

Theorem 1.5.2. If λ1 �= 0, λ2/λ1 is not a positive integer, then, system (1.5.5)
has a solution

y = ψ(x) =
B

2λ1 − λ2
x2 + h.o.t., (1.5.6)

satisfying ψ(0) = 0, where ψ(x) a power series of x with a non-zero convergent
radius.

Proof. Let y = xv. Then (1.5.5) becomes

x
dv

dx
= −v +

λ2v +
∞∑

k=2

xk−1Yk(1, v)

λ1 +
∞∑

k=2

xk−1Xk(1, v)

=
Bx + (λ2 − λ1)v

λ1
+ h.o.t.. (1.5.7)

(1.5.7) and Theorem 1.5.1 follows this theorem.
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Similarly, we have

Theorem 1.5.3. If λ1 �= 0, λ2/λ1 is not a positive integer, then, system (1.5.5)
has a solution

x = ϕ(y) =
A

2λ2 − λ1
y2 + h.o.t., (1.5.8)

satisfying ϕ(0) = 0 where ϕ(y) is a power series of y with a non-zero convergent
radius.

The above two theorems imply the following result.

Theorem 1.5.4. If λ1λ2 �= 0, λ1/λ2 and λ2/λ1 are not positive integers, then,
system (1.5.5) has two analytic solutions x = ϕ(y) and y = ψ(x), satisfying ϕ(0) =
ψ(0) = ϕ�(0) = ψ�(0) = 0. By transformation

u = x − ϕ(y), v = y − ψ(x) (1.5.9)

system (1.5.5) can be reduced to

du

dt
= λ1uF1(u, v),

dv

dt
= λ2vF2(u, v). (1.5.10)

where F1(u, v) and F2(u, v) are two power series of u, v with non-zero convergent
radius and F1(0, 0) = F2(0, 0) = 1.

Definition 1.5.1. If there exist two convergent power series

ξ = x +
∞∑

α+β=2

cαβxαyβ , η = y +
∞∑

α+β=2

dαβxαyβ, (1.5.11)

such that by transformation (1.5.11), system (1.5.1) becomes

dξ

dt
= aξ + bη,

dη

dt
= cξ + dη, (1.5.12)

Then, we say that system (1.5.1) is linearizable in a neighborhood of the origin.
(1.5.11) is called a linearized transformation of (1.5.1) in a neighborhood of the
origin.

Remark 1.5.1. Suppose that (1.5.1) is linearizable in a neighborhood of the
origin and (1.5.11) is a linearized transformation of (1.5.1). The function F (ξ, η)
is continuously differentiable and satisfies

dF

dt

∣∣∣∣
(1.5.12)

= 0. (1.5.13)

Let
ξ̃ = ξF (ξ, η), η̃ = ηF (ξ, η). (1.5.14)
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We see from (1.5.13) and (1.5.14) that

dξ̃

dt
= aξ̃ + bη̃,

dη̃

dt
= cξ̃ + dη̃. (1.5.15)

Thus, if F (ξ, η) is power series of ξ, η with non-zero convergent radius and F (0, 0) =
1, then, (1.5.14) is also a linearized transformation of (1.5.1) in a neighborhood of
the origin.

Remark 1.5.2. Suppose that (1.5.1) is linearizable in a neighborhood of the
origin and (1.5.11) is a linearized transformation of (1.5.1). System (1.5.1) is a
real coefficient system. Then, we can see x, y, t as real variable and write

ξ = ξ1 + iξ2, η = η1 + iη2, (1.5.16)

where ξ1, η1, ξ2, η2 are power series of x, y with non-zero convergent radius and

ξ1 = x + h.o.t., η1 = y + h.o.t.. (1.5.17)

Substituting (1.5.16) into (1.5.12), separating the real and imaginary parts, we have

dξ1

dt
= aξ1 + bη1,

dη1

dt
= cξ1 + dη1,

dξ2

dt
= aξ2 + bη2,

dη2

dt
= cξ2 + dη2. (1.5.18)

In this case, (1.5.17) is a real linearized transformation of (1.5.1) in a neighborhood
of the origin.

In [Qin Y.X., 1985], the author introduced the following definition.

Definition 1.5.2. For system (1.5.1):
(1) If λ1λ2 �= 0, Im(λ1/λ2) �= 0, then the origin is called a focus type singular

point;
(2) If λ1λ2 �= 0, Im(λ1/λ2) = 0, Re(λ1/λ2) > 0, then the origin is called a node

type singular point;
(3) If λ1λ2 �= 0, Im(λ1/λ2) = 0, Re(λ1/λ2) < 0, then the origin is called a

critical type singular point.

In details, we have

Definition 1.5.3. Suppose that the origin of (1.5.1) is a node type singular
point.

If λ1 = λ2 and b = c = 0, then the origin of (1.5.1) is called a starlike node.
If λ1 = λ2 and |b|+ |c| �= 0, then the origin of (1.5.1) is called a degenerate node.
If λ1/λ2 or λ2/λ1 is a positive integer more than 1, then the origin of (1.5.1) is

called an integer-ratio node.
If λ1/λ2 and λ2/λ1 are not positive integer, then the origin of (1.5.1) is called

an ordinary node.
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Definition 1.5.4. Suppose that the origin of (1.5.1) is a critical type singular
point.

If λ1/λ2 = −1, then the origin of (1.5.1) is called a weak critical singular point.
If λ1/λ2 = −p/q, where p and q are irreducible positive integers and p/q �= −1,

then the origin of (1.5.1) is called a p : q resonance singular point.
If λ1/λ2 is a negative irrational number, then the origin of (1.5.1) is called an

irrational singular point.

If the origin is an elementary singular point of (1.5.1), but is not a degenerate
node, then, by a linear transformation, (1.5.1) can be reduced to as follows:

dx

dt
= λ1x +

∞∑
k=2

Xk(x, y),
dy

dt
= λ2y +

∞∑
k=2

Yk(x, y), (1.5.19)

where λ1λ2 �= 0 and for all k, Xk(x, y), Yk(x, y) are homogeneous polynomials of x, y

of degree k.

By the theory of classical complex analysis, we know that

Theorem 1.5.5. If the origin of (1.5.19) is not an integer-ratio node, a weak
critical singular point or a resonance singular point, then, one can determine suc-
cessively every term of the following formal series

ξ = x +
∞∑

α+β=2

cαβxαyβ , η = y +
∞∑

α+β=2

dαβxαyβ, (1.5.20)

such that, by this formal transformation, (1.5.19) becomes the following linear sys-
tem:

dξ

dt
= λ1ξ,

dη

dt
= λ2η. (1.5.21)

Proof. For any positive integer k more than 1, letting fk(x, y), gk(x, y) be two ho-
mogeneous polynomials of x, y of degree k given by

fk(x, y) =
∑

α+β=k

cαβxαyβ , gk(x, y) =
∑

α+β=k

dαβxαyβ. (1.5.22)

Clearly,

dξ

dt
− λ1ξ =

∞∑
m=2

[(
λ1

∂fm

∂x
x + λ2

∂fm

∂y
y − λ1fm

)
+ Φm(x, y)

]
,

dη

dt
− λ2η =

∞∑
m=2

[(
λ1

∂gm

∂x
x + λ2

∂gm

∂y
y − λ2gm

)
+ Ψm(x, y)

]
, (1.5.23)
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where for all m, Φm(x, y), Ψm(x, y) are defined by the following homogeneous poly-
nomials:

Φm(x, y) = Xm(x, y) +
m−1∑
k=2

(
∂fk

∂x
Xm−k+1 +

∂fk

∂y
Ym−k+1

)
,

Ψm(x, y) = Ym(x, y) +
m−1∑
k=2

(
∂gk

∂x
Xm−k+1 +

∂gk

∂y
Ym−k+1

)
. (1.5.24)

From (1.5.22), we have

λ1
∂fm

∂x
x + λ2

∂fm

∂y
y − λ1fm =

∞∑
α+β=m

(αλ1 + βλ2 − λ1)cαβxαyβ,

λ1
∂gm

∂x
x + λ2

∂gm

∂y
y − λ2gm =

∞∑
α+β=m

(αλ1 + βλ2 − λ2)dαβxαyβ. (1.5.25)

By the conditions of this theorem, because λ1/λ2 and λ2/λ1 are not a positive
integer more than 1 and are not a negative irrational number. So that, for any
positive integers α, β, when α + β � 2,

αλ1 + βλ2 − λ1 �= 0, αλ1 + βλ2 − λ2 �= 0. (1.5.26)

Write that

Φm(x, y) =
∑

α+β=m

Aαβxαyβ, Ψm(x, y) =
∑

α+β=m

Bαβxαyβ . (1.5.27)

Thus, (1.5.23), (1.5.25) and (1.5.27) imply (1.5.21) if and only if for any positive
integer α, β, when α + β � 2,

(αλ1 + βλ2 − λ1)cαβ = −Aαβ , (αλ1 + βλ2 − λ2)dαβ = −Bαβ . (1.5.28)

Obviously, (1.5.28) is just the recursion formulas to compute cαβ , dαβ . Namely,
cαβ , dαβ can be uniquely determined by (1.5.28).

For the convergence of the formal transformation (1.5.20), in [Qin Y.X., 1985],
by using Cauchy majorant method, the author proved that if the origin of (1.5.19)
is a nfocus type singular point, ordinary node or starlike node, then in (1.5.20), the
power series of ξ, η with respect to x, y have non-zero convergent radius. Therefore,
we have

Theorem 1.5.6. If the origin of (1.5.1) is a focus type singular point, ordinary
node or starlike node, then, system (1.5.1) is linearizable in a neighborhood of the
origin. In addition, the linearized transformation is unique.
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If the origin of (1.5.19) is a irrational singular point, so that λ1/λ2 is an negative
irrational number. Then, in (1.5.28), αλ1 + βλ2 − λ1 and αλ1 + βλ2 − λ2 can be
taken as very small number, such that the convergence problem of the formal series
(1.5.20) becomes very difficult problem.

1.6 Node Value and Linearized Problem of the Integer-Ratio

Node

Let the origin of system (1.5.1) be an integer-ratio node. By using a suitable linear
transformation, system (1.5.1) can be reduced to

dx

dt
= λx +

∞∑
α+β=2

aαβxαyβ ,
dy

dt
= nλy +

∞∑
α+β=2

bαβxαyβ, (1.6.1)

where λ �= 0 and n is an integer greater than 1. System (1.6.1) is a special case of
system (1.5.19) under the condition λ1 = λ, λ2 = nλ. For system (1.6.1), (1.5.28)
becomes

(α + nβ − 1)cαβλ = −Aαβ , (α + nβ − n)dαβλ = −Bαβ . (1.6.2)

Obviously, for any natural numbers α and β, α + β � 2 leads α + nβ − 1 �= 0.
α + nβ − n = 0 holds if and only if α = n, β = 0. Hence, all cαβ , dαβ can be deter-
mined uniquely by (1.6.2) except dn0. Consequently, there is a formal transformation
(1.5.20) such that system (1.6.1) becomes linear system if and only if Bn0 = 0, and
when Bn0 = 0, dn0 can take any value.

By cited Theorem 2.3 in [Qin Y.X., 1985], we have the following conclusion.

Theorem 1.6.1. For system (1.6.1), one can find series (1.5.20) which are
convergent in a neighborhood of the origin, such that system (1.6.1) reduced to the
normal form

dξ

dt
= λξ,

dη

dt
= nλη + σ λ ξn. (1.6.3)

In (1.6.3), σ = Bn0/λ is determined uniquely by the coefficients of system (1.6.1).

Theorem 1.6.2. If there are formal series ξ̃ = x + h.o.t., η̃ = y + h.o.t., such
that

dξ̃

dt

∣∣∣∣∣
(1.6.1)

= λξ̃,
dη̃

dt

∣∣∣∣
(1.6.1)

= nλη̃ + σλ (ξ̃)n, (1.6.4)

then
ξ̃ = ξ, η̃ = η + Cξn, (1.6.5)

where, C is an arbitrary constant.
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Proof. We take ξ̃, η̃ as the power series of ξ, η of the form

η̃ = η + Cξn + h(ξ, η), h(ξ, η) =
∞∑

k=m

hk(ξ, η), (1.6.6)

where hk(ξ, η) are homogeneous polynomials of degree k of ξ, η, m is a positive
integer. It is easy to see that all cαβ , dαβ in (1.5.20) except dn0 are determined
uniquely by (1.6.2). Thus, we have

ξ̃ = ξ, m > n. (1.6.7)

From (1.6.3), (1.6.4) and (1.6.6), we obtain

dη̃

dt

∣∣∣∣
(1.6.3)

− nλη̃ − σλ(ξ̃)n =
dh

dt

∣∣∣∣
(1.6.3)

− nλh = 0. (1.6.8)

Let us prove (1.6.5) by using reductio ad absurdum, i.e., we prove that h is equivalent
to zero. Suppose that

hm(ξ, η) =
∑

α+β=m

eαβξαηβ (1.6.9)

is not zero. From (1.6.8) and (1.6.9) we have

0=
dh

dt

∣∣∣∣
(1.6.3)

− nλh

=λ

(
ξ
∂hm

∂ξ
+ nη

∂hm

∂η
− nhm

)
+ h.o.t.

=λ
∑

α+β=m

(α + nβ − n)eαβξαηβ + h.o.t.. (1.6.10)

When α + β = m > n, α + nβ − n is a positive integer. From (1.6.10), it reduces
that all eαβ in (1.6.9) equal zero, which contradicts with hm is not identically zero.
Hence, the conclusion of Theorem 1.6.2 holds.

System (1.6.3) has a first integral of the form

η

ξn
− σ ln ξ = constant. (1.6.11)

Obviously, the fact of σ is zero or nonzero is concerned with the linearized problem
system (1.6.1) and the analytic property of (1.6.11). We need to introduce the
following definition given in [Liu Y.R., 2002].

Definition 1.6.1. σ is called node value of the origin of system (1.6.1).

From Theorem 1.6.1 we obtain
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Theorem 1.6.3. System (1.6.1) is linearizable in a neighborhood of the origin
if and only if the node value σ = 0.

Let the origin be an integer-ratio node. In order to know if system is linearizable.
We need to compute node values.

Theorem 1.6.4. For every α and β satisfying 2 � α + β � n − 1, dαβ defined
by (1.5.20) are determined uniquely by the recurrent formula

dαβ =
1

λ(n − α − nβ)

⎡
⎣ bαβ +

α+β−1�
k+j=2

(α − k + 1)ak,jdα−k+1,β−j

+
α+β−1�
k+j=2

(β − j + 1)bk,jdα−k,β−j+1

⎤
⎦ . (1.6.12)

Furthermore, σ is given uniquely by

σ =
1
λ

�
bn0 +

n−1�
k=2

(n − k + 1)ak0dn−k+1,0 + bk0dn−k,1

�
. (1.6.13)

Proof. From (1.5.20) and (1.6.3), we have

0=
dη

dt

����
(1.6.1)

− nλη

=
∞�

α+β=2

αdαβxα−1yβ

⎛
⎝λx +

∞�
k+j=2

akjx
kyj

⎞
⎠

+

⎛
⎝1 +

∞�
α+β=2

βdαβxαyβ−1

⎞
⎠

⎛
⎝nλy +

∞�
k+j=2

bkjx
kyj

⎞
⎠

−nλ

⎛
⎝y +

∞�
α+β=2

dαβxαyβ

⎞
⎠ . (1.6.14)

It implies that

0=λ
∞�

α+β=2

(α + nβ − n)dαβxαyβ +
∞�

α+β=2

bαβxαyβ

+
∞�

α+β=2

∞�
k+j=2

αdαβakjx
α+k−1yβ+j

+
∞�

α+β=2

∞�
k+j=2

βdαβbkjx
α+kyβ+j−1. (1.6.15)
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Thus, we have

0=λ
∞∑

α+β=2

(α + nβ − n)dαβxαyβ +
∞∑

α+β=2

bαβxαyβ

+
∞∑

α+β=2

α+β−1∑
k+j=2

(α − k + 1)akjdα−k+1,β−jx
αyβ

+
∞∑

α+β=2

α+β−1∑
k+j=2

(β − j + 1)bkjdα−k,β−j+1x
αyβ . (1.6.16)

Because ξ = x+h.o.t. and when α+β � 2, α+nβ−n = 0 if and only if α = n, β = 0.
(1.6.16) follows the conclusion of Theorem 1.6.4.

From the recursive formulas (1.6.12) and (1.6.13) we have

Theorem 1.6.5. When n = 2, 3 and 4, the node values of the origin of system
(1.6.1) are as follows

σ|n=2 =
1
λ

b20,

σ|n=3 =
1
λ2

[(2a20 − b11)b20 + b30λ],

σ|n=4 =
1

4λ3
[b20(12a2

20 − 10a20b11 + 2b2
11 − 2a11b20 + b02b20)

+2(2a30b20 − b20b21 + 6a20b30 − 2b11b30)λ + 4b40λ
2]. (1.6.17)

Theorem 1.6.6. If

b20 = b30 = · · · = bn−1,0 = 0, (1.6.18)

then the node value of the origin of system (1.6.1) is

σ =
1
λ

bn0. (1.6.19)

Proof. Theorem 1.6.4 follows that if (1.6.18) holds, then d20 = 0 and when α =
3, 4, · · · , n − 1, we have

dα0 =
1

λ(n − α)

α−1∑
k=2

(α − k + 1)ak0dα−k+1,0. (1.6.20)

By using the mathematical induction, we obtain

d20 = d30 = · · · = dn−1,0 = 0. (1.6.21)

By (1.6.18), (1.6.21) and (1.6.13), the conclusion of Theorem 1.6.6 holds.
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Theorem 1.6.6 tell us that if b20 = b30 = · · · = bn0 = 0, then the node value of
the origin of system (1.6.1) is zero.

Corollary 1.6.1. If y = 0 is a solution of system (1.6.1), then at the origin, the
node value σ = 0.

Notice that in some special cases, other singular points can become an integer-
ratio nodes. Therefore, at these singular points, the integrability and linearized
problem of systems can be solved by computing node values in an integer-ratio
nodes. For example, we have

Theorem 1.6.7. System

dz

dT
= z + 2b3z

3w + a2z
2w2 + a1zw3,

dw

dT
= −w − b1w

4 − 2a2zw3 − b3z
2w2 (1.6.22)

is linearizable in a neighborhood of the origin.

Proof. By the transformation

z1 = zw2, w1 = w3, (1.6.23)

system (1.6.22) can become a special quadratic system

dz1

dT
= −z1 − 3a2z

2
1 + (a1 − 2b1)z1w1,

dw1

dT
= −3w1 − 3b3z

2
1 − 6a2z1w1 − 3b1w

2
1. (1.6.24)

The origin of system (1.6.24) is an integer-ratio node with n = 3. Theorem 1.6.5
implies that the node value σ = 0. Notice that z1 = 0 is a solution of system (1.6.24),
Theorem 1.6.1 follows that there are two convergent power series

ξ = z1f1(z1, w1), η = w1 +
∞∑

k=2

ηk(z1, w1), (1.6.25)

in a neighborhood of the origin, where f1(0, 0) = 1, and ηk(z1, w1) are homogeneous
polynomials of degree k of z1, w1, such that system (1.6.24) becomes

dξ

dT
= −ξ,

dη

dT
= −3η. (1.6.26)

Let
z2 = ξη

−2
3 , w2 = η

1
3 , (1.6.27)
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then from (1.6.26) we have

dz2

dT
= z2,

dw2

dT
= −w2. (1.6.28)

We next prove that z2, w2 are power series in z, w. Write that

f2(z, w) = 1 +
∞∑

k=2

w2k−3ηk(z, w). (1.6.29)

From (1.6.23) and (1.6.25), we have

ξ = zw2f1(zw2, w3), η = w3f2(z, w). (1.6.30)

Hence (1.6.27) and (1.6.30) follows that

z2 = zf1(zw2, w3)f
−2
3

2 (z, w) = z + h.o.t.,

w2 = wf
1
3
2 (z, w) = w + h.o.t.. (1.6.31)

This means that z2, w2 are power series of z, w having nonzero radius of convergence.
So from (1.6.28), it is obtained that system (1.6.22) is linearizable in a neighborhood
of the origin.

Similarly, we have

Theorem 1.6.8. System

dz

dT
= z(1 + a1w

3 + a2w
2z),

dw

dT
= −w(1 + b1w

3 + b2w
2z) (1.6.32)

is linearizable in a neighborhood of the origin.

1.7 Linearized Problem of the Degenerate Node

If the origin is a degenerate node of system (1.5.1), we can find a suitable linear
transformation such that system (1.5.1) becomes

dx

dt
= λx +

∞∑
α+β=2

aαβxαyβ,
dy

dt
= μx + λy +

∞∑
α+β=2

bαβxαyβ , (1.7.1)

where λμ �= 0.

In the classical complex analytic theory, the linearized problem of the degenerate
node is still an open problem. In this section, we discuss this problem.
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Lemma 1.7.1. In a neighborhood of the origin, there is a convergent power
series solution of system (1.7.1) as follows:

x = ϕ(y) =
a02

λ
y2 + h.o.t., (1.7.2)

where all coefficients of power series of ϕ(y) can be determined uniquely by the
coefficients of (1.7.1).

Proof. Let x = yv, from (1.7.1) we have

y
dv

dy
=

λv +
∞�

α+β=2

aαβvαyα+β−1

μv + λ +
∞�

α+β=2

bαβvαyα+β−1

− v

=
a02

λ
y + h.o.t.. (1.7.3)

According to Theorem 1.5.1, equation (1.7.3) has a unique and convergent power
series solution in a neighborhood of the origin

v = v(y) =
a02

λ
y + h.o.t., (1.7.4)

which follows Lemma 1.7.1.

Let x = ϕ(y) given by (1.7.2) be a convergent power series solution of system
(1.7.1) in a neighborhood of the origin, then by the transformation

u = x − ϕ(y), v = y, (1.7.5)

system (1.7.1) becomes the following analytic system:

du

dt
= λu

⎛
⎝1 +

∞�
α+β=1

a�
αβuαvβ

⎞
⎠ ,

dv

dt
= μu + λv +

∞�
α+β=2

b�αβuαvβ . (1.7.6)

Letting
u = w2, v = v. (1.7.7)

System (1.7.6) changes to

dw

dt
=

λ

2
w

⎛
⎝1 +

∞�
α+β=1

a�
αβw2αvβ

⎞
⎠ ,

dv

dt
= μw2 + λv +

∞�
α+β=2

b�αβw2αvβ , (1.7.8)
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where the origin of system (1.7.8) is an integer-ratio node with n = 2. By Theorem
1.6.5, the node value σ = 2μ/λ. From Theorem 1.6.1 and Theorem 1.6.2, we have

Lemma 1.7.2. There are two power series of w and v

f(w, v) = w + h.o.t., g(w, v) = v + h.o.t., (1.7.9)

having a nonzero convergent radius, such that system (1.7.8) becomes

df

dt
=

λ

2
f,

dg

dt
= λg + μf2. (1.7.10)

Moreover, if there exist two formal series of w and v of the form

f̃ = w + h.o.t., g̃ = v + h.o.t., (1.7.11)

such that system (1.7.8) changes to

df̃

dt
=

λ

2
f̃ ,

dg̃

dt
= λg̃ + μf̃2. (1.7.12)

Then
f̃ = f, g̃ = g + Cf2, (1.7.13)

where C is a constant.

Remark 1.7.1. Lemma 1.7.2 implies that we can assume that the coefficient of
w2 in the power series of the g given by (1.7.9) is zero.

Lemma 1.7.3. The function f = f(w, v) given by (1.7.9) is an odd function of
w, i.e.,

f(w, v) = w h(w2, v), (1.7.14)

where h(u, v) is a power series of u and v with nonzero convergent radius and
h(0, 0) = 1.

Proof. Write that
f(w, v) = f1(w, v) + f2(w, v), (1.7.15)

where

f1(w, v) =
f(w, v) − f(−w, v)

2
,

f2(w, v) =
f(w, v) + f(−w, v)

2
. (1.7.16)

Clearly, f1 is an odd function of w and f2 is an even function of w. We see from
(1.7.8) that

df1

dt

∣∣∣∣
(1.7.8)

=
df1

dw

dw

dt
+

df1

dv

dv

dt
(1.7.17)
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is an odd function of w and

df2

dt

∣∣∣∣
(1.7.8)

=
df2

dw

dw

dt
+

df2

dv

dv

dt
(1.7.18)

is an even function of w. (1.7.10) and (1.7.15) follows that

df1

dt

∣∣∣∣
(1.7.8)

+
df2

dt

∣∣∣∣
(1.7.8)

=
λ

2
f1 +

λ

2
f2. (1.7.19)

Comparing the functions in the right and left sides of (1.7.19), we have

df1

dt

∣∣∣∣
(1.7.8)

=
λ

2
f1,

df2

dt

∣∣∣∣
(1.7.8)

=
λ

2
f2. (1.7.20)

Because the function f in Lemma 1.7.2 is unique and f1 = w +h.o.t.. Therefore, we
obtain f = f1. It give rise to this lemma.

Similarly, we have

Lemma 1.7.4. The function g(w, v) in Lemma 1.7.2 is an even function of w.

Theorem 1.7.1. There are two power series of x and y with a nonzero conver-
gent radius of the form

ξ = x + h.o.t., η = y + h.o.t., (1.7.21)

such that system (1.7.1) becomes the following linear system:

dξ

dt
= λξ,

dη

dt
= μξ + λη. (1.7.22)

In addition, if there are another two formal series of x and y

ξ̃ = x + h.o.t., η̃ = y + h.o.t., (1.7.23)

such that system (1.7.1) reduces to

dξ̃

dt
= λξ̃,

dη̃

dt
= μξ̃ + λη̃, (1.7.24)

then
ξ̃ = ξ, η̃ = η + Cξ, (1.7.25)

where C is a constant.

Proof. By Lemma 1.7.4 and Remark 1.7.1, the function g(w, v) in Lemma 1.7.2 can
be written as

g(w, v) = η(w2, v), (1.7.26)
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where η(u, v) is a power series of u and v having a nonzero convergent radius:

η(u, v) = v +
∞∑

α+β=2

eαβuαvβ . (1.7.27)

Let
ξ(u, v) = uh2(u, v). (1.7.28)

From (1.7.14) and (1.7.28) we have

ξ(w2, v) = f2(w, v). (1.7.29)

Thus, (1.7.7), (1.7.10), (1.7.26) and (1.7.29) follow that

dξ

dt

∣∣∣∣
(1.7.6)

= λξ,
dη

dt

∣∣∣∣
(1.7.6)

= μξ + λη. (1.7.30)

(1.7.5), (1.7.30) and Lemma 1.7.2 implies the result of Theorem 1.7.1.

1.8 Integrability and Linearized Problem of Weak Critical

Singular Point

Let the origin of system (1.5.1) be a weak critical singular point. By using a suitable
linear transformation, system (1.5.1) can become the following second-order complex
differential autonomous system

dx

dt
= −y +

∞∑
k=2

Xk(x, y) = X(x, y),

dy

dt
= x +

∞∑
k=2

Yk(x, y) = Y (x, y), (1.8.1)

which is analytic in a neighborhood of the origin, where Xk(x, y), Yk(x, y) are poly-
nomials of degree k of x and y:

Xk(x, y) =
∑

α+β=k

Aαβxαyβ , Yk(x, y) =
∑

α+β=k

Bαβxαyβ. (1.8.2)

Making the transformation

z = x + iy, w = x − iy, T = it, i =
√−1, (1.8.3)

system (1.8.1) becomes

dz

dT
= z +

∞∑
k=2

Zk(z, w) = Z(z, w),

dw

dT
= −w −

∞∑
k=2

Wk(z, w) = −W (z, w), (1.8.4)
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where

Zk = Yk − iXk =
∑

α+β=k

aαβzαwβ ,

Wk = Yk + iXk =
∑

α+β=k

bαβwαzβ (1.8.5)

are homogeneous polynomials of degree k of z and w (k = 2, 3, · · · ), z, w, T are
independent complex variables, aαβ , bαβ are independent complex constants.

We call that system (1.8.1) is the associated system of (1.8.4) and vice versa.
We see from (1.8.5) that ∀(α, β), Aα,β , Bαβ are real coefficients if and only if
∀(α, β), bαβ = āαβ .

If ∀(α, β), Aα,β , Bαβ are real coefficients and x, y, t are all real variables, then
system (1.8.1) is a real planar differential autonomous system, for which the origin is
a center or a focus. While if ∀(α, β), aαβ, bαβ are real coefficients and z, w, T are all
real variables, then system (1.8.4) is a real planar differential autonomous system,
for which the origin is a weak saddle. The monograph [Amelikin etc, 1982] proved
that

Theorem 1.8.1. For any given c̃k+1,k and d̃k+1,k, k = 1, 2, · · · , one can deter-
mine successively other c̃k,j and d̃k,j and derive uniquely the formal series

ξ̃ = z +
∞∑

k+j=2

c̃kjz
kwj ,

η̃ =w +
∞∑

k+j=2

d̃kjw
kzj, (1.8.6)

such that by formal variable transformation (1.8.6), system (1.8.4) reduces to the
following normal form

dξ̃

dT
= ξ̃ + ξ̃

∞∑
k=1

p̃k(ξ̃η̃)k,

dη̃

dT
= −η̃ − η̃

∞∑
k=1

q̃k(ξ̃η̃)k. (1.8.7)

Proof. We denote

ξ̃ =
∞∑

k=1

fk(z, w), η̃ =
∞∑

k=1

gk(z, w), (1.8.8)

where f1 = z, g1 = w, fk(z, w), gk(z, w) are homogeneous polynomials of degree k

of z, w. Write that
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ξ̃

∞∑
k=1

p̃k(ξ̃η̃)k =
∞∑

k=1

p̃kzk+1wk +
∞∑

k=3

Φk(z, w),

η̃

∞∑
k=1

q̃k(ξ̃η̃)k =
∞∑

k=1

q̃kwk+1zk +
∞∑

k=3

Ψk(z, w), (1.8.9)

where Φk(z, w), Ψk(z, w) are homogeneous polynomials of degree k of z, w. From
(1.8.4) and (1.8.8), we have

dξ̃

dT
− ξ̃ =

∞∑
m=2

[(
∂fm

∂z
z − ∂fm

∂w
w − fm

)
+ Fm

]
,

dη̃

dT
+ η̃ =

∞∑
m=2

[(
∂gm

∂z
z − ∂gm

∂w
w + gm

)
− Gm

]
, (1.8.10)

where

Fm = Zm +
m−1∑
j=2

(
∂fj

∂z
Zm−j+1 − ∂fj

∂w
Wm−j+1

)
,

Gm = Wm +
m−1∑
j=2

(
∂gj

∂w
Wm−j+1 − ∂gj

∂z
Zm−j+1

)
(1.8.11)

are homogeneous polynomials of degree m of z, w. From (1.8.9), (1.8.10) and (1.8.7),
we obtain

∞∑
m=2

(
∂fm

∂z
z − ∂fm

∂w
w − fm

)
=

∞∑
m=2

(Φm − Fm) +
∞∑

k=1

p̃kzk+1wk,

∞∑
m=2

(
∂gm

∂w
w − ∂gm

∂z
z − gm

)
=

∞∑
m=2

(Ψm − Gm) +
∞∑

k=1

q̃kwk+1zk, (1.8.12)

where

∂fm

∂z
z − ∂fm

∂w
w − fm =

∑
α+β=m

(α − β − 1)c̃αβzαwβ ,

∂gm

∂w
w − ∂gm

∂z
z − gm =

∑
α+β=m

(α − β − 1)d̃αβwαzβ. (1.8.13)

For Fm, Gm, Φm, Ψm in (1.8.12), we see from (1.8.8) (1.8.9) and (1.8.11) that for
any positive integer k, Φ2k, Φ2k+1 Ψ2k and Ψ2k+1 are polynomials of f1, f2, · · · ,
f2k−1, g1, g2, · · · , g2k−1, p1, p2, · · · , pk−1, q1, q2, · · · , qk−1, which have positive ra-
tional coefficients. In addition, for any m, Fm, Gm only depend on f1, f2, · · · , fm−1,
g1, g2, · · · , gm−1. Write that
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Φm − Fm =
∑

α+β=m

Cαβzαwβ , Ψm − Gm =
∑

α+β=m

Dαβwαzβ. (1.8.14)

From (1.8.13) and (1.8.14), we know that (1.8.12) holds if and only if for any positive
integer k,

∑
α+β=2k

(α − β − 1)c̃αβzαwβ =
∑

α+β=2k

Cαβzαwβ ,

∑
α+β=2k

(α − β − 1)d̃αβwαzβ =
∑

α+β=2k

Dαβwαzβ (1.8.15)

and
∑

α+β=2k+1

(α − β − 1)c̃αβzαwβ = p̃kzk+1wk +
∑

α+β=2k+1

Cαβzαwβ ,

∑
α+β=2k+1

(α − β − 1)d̃αβwαzβ = q̃kwk+1zk +
∑

α+β=2k+1

Dαβwαzβ. (1.8.16)

Because in (1.8.16), all coefficients of c̃k+1,k, d̃k+1,k are zeros. Hence, all c̃k+1,k and
d̃k+1,k can be given as arbitrary constants. By (1.8.15) and (1.8.16), for any two
natural numbers α, β satisfying α + β � 2 and α − β − 1 �= 0, c̃αβ , d̃αβ can be
uniquely determined by the recursive formulas

c̃αβ =
Cαβ

α − β − 1
, d̃αβ =

Dαβ

α − β − 1
. (1.8.17)

In addition, p̃k, q̃k can be derived uniquely by the recursive formulas

p̃k = −Ck+1,k, q̃k = −Dk+1,k. (1.8.18)

This completes the proof of this theorem.

Definition 1.8.1. Suppose that by means of formal transformation (1.8.6), sys-
tem (1.8.4) can be reduced to the normal form (1.8.7). Then, the transformation
(1.8.6) is called a normal transformation in a neighborhood of the origin of system
(1.8.4). System (1.8.7) is called a normal form corresponding to the transformation
(1.8.6).

Let (1.8.6) be a normal transformation in a neighborhood of the origin of system
(1.8.4) and c̃k+1,k = d̃k+1,k = 0, k = 1, 2, · · · . Then (1.8.6) is called a standard
normal transformation in a neighborhood of the origin of system (1.8.4), which is
written by

ξ = z +
∞∑

k+j=2

ckjz
kwj = ξ(z, w), η = w +

∞∑
k+j=2

dkjw
kzj = η(z, w). (1.8.19)
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The normal form derived by standard normal transformation is called standard nor-
mal form, which is written by

dξ

dT
= ξ + ξ

∞∑
k=1

pk(ξη)k,

dη

dT
= −η − η

∞∑
k=1

qk(ξη)k. (1.8.20)

From Theorem 1.8.1 and its proof, we have

Corollary 1.8.1. Let

ξ∗ = z +
∞∑

k+j=2

c∗kjz
kwj , η∗ = w +

∞∑
k+j=2

d∗kjw
kzj (1.8.21)

and (1.8.6) be two standard normal transformations in a neighborhood of the origin
of system (1.8.4). If for any positive integer k, we have c∗k+1,k = c̃k+1,k, d∗k+1,k =
d̃k+1,k. Then ξ∗ = ξ̃, η∗ = η̃.

Remark 1.8.1. From Corollary 1.8.1 and the proof of Theorem 1.8.1, we know
that the standard normal transformation is unique in a neighborhood of the origin
of system (1.8.4). Moreover, all ckj , dkj , pk and qk in (1.8.19) and (1.8.20) are
polynomials of aαβ’s, bαβ

�s. Their coefficients are all rational numbers.

[Amelikin etc, 1982] proved that

Theorem 1.8.2. If for any positive integer k, we have pk = qk. Then the formal
series of ξ, η in the standard normal transformation have nonzero convergent radius.

Theorem 1.8.3. Let H = ξη and F (H), G(H) be any unit formal power series
of H. Then,

ξ̃ = ξF (H), η̃ = ηG(H) (1.8.22)

is a normal transformation in a neighborhood of the origin of system (1.8.4).

Proof. From equations (1.8.20) and (1.8.22), we have

dξ̃

dT
= ξ̃Φ(H),

dη̃

dT
= −η̃Ψ(H), (1.8.23)

where Φ(H), Ψ(H) are the following unit formal power series of H :

Φ(H) = 1 +
∞∑

k=1

pkHk +
F �(H)
F (H)

∞∑
k=1

(pk − qk)Hk+1,

Ψ(H) = 1 +
∞∑

k=1

qkHk − G�(H)
G(H)

∞∑
k=1

(pk − qk)Hk+1. (1.8.24)
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Denote that
H̃ = ξ̃η̃ = HF (H)G(H) = H + h.o.t.. (1.8.25)

Thus, H can be written as the formal series of H̃

H = H̃ + o(H̃). (1.8.26)

(1.8.23) and (1.8.26) follow thee assertion of this theorem.

Theorem 1.8.4. Let (1.8.6) be a normal transformation in a neighborhood of
the origin of system (1.8.4). Then, there exists unit formal series of H as follows:

F (H) = 1 +
∞∑

k=1

AkHk, G(H) = 1 +
∞∑

k=1

BkHk, (1.8.27)

such that ξ̃ = ξF (H), η̃ = ηG(H), where Ak, Bk are the given constant coefficients.

Proof. Denote that

f = ξF (H) = z +
∞∑

k+j=2

c�kjz
kwj ,

g = ηG(H) = w +
∞∑

k+j=2

d�kjw
kzj. (1.8.28)

Since the functions of ξ, η in the standard normal transformation are determined
uniquely, we only need to find Ak, Bk of f and g (k = 1, 2, · · · ). From (1.8.27) and
(1.8.28), f and g can can be written as

f(z, w) = z +
∞∑

k=1

Akzk+1wk +
∞∑

k=2

fk(z, w),

g(z, w) = w +
∞∑

k=1

Bkwk+1zk +
∞∑

k=2

gk(z, w), (1.8.29)

where fk(z, w), gk(z, w) are homogeneous polynomials of degree k of z, w. For any
positive integer k, f2k+1 only depend on A1, A2, · · · , Ak−1, while g2k+1 only depend
on B1, B2, · · · , Bk−1. From (1.8.28) and (1.8.29), we can take appropriately Ak, Bk,
such that for any positive integer k, c�k+1,k = c̃k+1,k, d�k+1,k = d̃k+1,k hold. By
Corollary 1.8.1, we obtain the conclusion of this theorem.

From equation (1.8.20) and Proposition 1.1.2, we obtain the following three im-
portant formulas

Theorem 1.8.5. Denote that

μk = pk − qk, τk = pk + qk, k = 1, 2, · · · . (1.8.30)
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For system (1.8.4), we have

dH

dT
=

∞∑
k=1

μkHk+1,

dΩ
dT

=
1
2i

(
2 +

∞∑
k=1

τkHk

)
(1.8.31)

and
∂

∂z
(JZ) − ∂

∂w
(JW ) = J

∞∑
k=1

(k + 1)μk(ξη)k, (1.8.32)

where

H = ξη, Ω =
1
2i

ln
ξ

η
, J(z, w) =

∣∣∣∣∣∣∣

∂ξ

∂z

∂ξ

∂w
∂η

∂z

∂η

∂w

∣∣∣∣∣∣∣
. (1.8.33)

In [Liu Y.R. et al, 1989] and [Liu Y.R. et al, 2003a], we introduced the following
definition.

Definition 1.8.2. Let μ0 = τ0 = 0. For any positive integers k, μk = pk − qk is
called the k-th singular point value of the origin of system (1.8.4), while τk = pk +qk

is called the k-th period constant of the origin of system (1.8.4).
If there exists a positive integer m, such that μ0 = μ1 = · · · = μm−1 = 0, μm �= 0,

then the origin of is called a m order weak critical singular point of system (1.8.4).
If for all k, we have μk = 0. Then the origin of system (1.8.4) is called a complex
center.

Theorem 1.8.6. Let (1.8.6) be any normal transformation in a neighborhood of
the origin of system (1.8.4). Denote that H̃ = ξ̃η̃. When the origin of system (1.8.4)
is a m-order weak critical singular point, we have

dH̃

dT
= μmH̃m+1 + h.o.t.. (1.8.34)

When the origin of system (1.8.4) is a complex center, we have

dH̃

dT
= 0. (1.8.35)

Proof. Let (1.8.6) be any normal transformation in a neighborhood of the origin of
system (1.8.4). By Theorem 1.8.4, there exist two unit formal series F (H), G(H) of
H , such that

H̃ = HF (H)G(H) = H + h.o.t.. (1.8.36)
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From (1.8.36) and Theorem 1.8.5, we have

dH̃

dT
=(FG + HF �G + HFG�)

dH

dT

=(FG + HF �G + HFG�)
∞∑

k=1

μkHk+1, (1.8.37)

where FG + HF �G + HFG� is a unit formal series of H . By using (1.8.36), we can
represent H as a formal series of H̃ :

H = H̃ + h.o.t.. (1.8.38)

Hence, (1.8.37) and (1.8.38) follows the conclusion of this theorem.

Lemma 1.8.1. Let F be a formal first integral in a neighborhood of the origin of
system (1.8.4). Then, F can be written as a formal power series of ξ, η as follows:

F = Cmm(ξη)m +
∞∑

α+β=2m+1

Cαβξαηβ , Cmm �= 0, (1.8.39)

where m is a positive integer.

Proof. Solving z and w from (1.8.19), we obtain

z = z(ξ, η) = ξ + h.o.t., w = w(ξ, η) = η + h.o.t.. (1.8.40)

Hence, F can be written as the following formal power series of ξ, η:

F =
∑
k=n

Fn(ξ, η) =
∞∑

α+β=n

Cαβξαηβ , (1.8.41)

where n is a positive integer. Fk(ξ, η) is a homogeneous polynomial of degree k of
ξ, η. Fn is a non-zero polynomial. From (1.8.41) and (1.8.20), we have

0=
dF

dT
=

∂F

∂ξ

dξ

dT
+

∂F

∂η

dη

dT

=
∂Fn

∂ξ
ξ − ∂Fn

∂η
η + h.o.t.

=
∑

α+β=n

(α − β)Cαβξαηβ + h.o.t. (1.8.42)

It implies that ∑
α+β=n

(α − β)Cαβξαηβ = 0. (1.8.43)

Since Fn is a non-zero polynomial, we see from (1.8.43) that n = 2m, H2m =
Cmmξmηm, Cmm �= 0. Thus, the assertion of this lemma holds.
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Theorem 1.8.7. System (1.8.4) has a formal first integral in a neighborhood of
the origin if and only if all singular point values of the origin are zero.

Proof. First, we prove the sufficiency of theorem. If all singular point values are
zeros , then by Theorem 1.8.2, the power series of ξ, η have a nonzero convergent
radius. Theorem 1.8.5 implies that H = ξη is a first integral in a neighborhood of
the origin, which is a power series of z, w with a a nonzero convergent radius.

Second, we prove the necessity of theorem. Suppose that system (1.8.4) has a
formal first integral F in a neighborhood of the origin. By Lemma 1.8.1, F can be
written as the form of (1.8.41). From (1.8.40) and (1.8.20), we have

dF

dT
=

⎛
⎝mCmmξmηm +

∞�
α+β=2m+1

αCαβξαηβ

⎞
⎠

�
1 +

∞�
k=1

pkξkηk

�

−
⎛
⎝mCmmξmηm +

∞�
α+β=2m+1

βCαβξαηβ

⎞
⎠

�
1 +

∞�
k=1

qkξkηk

�
. (1.8.44)

It can be represented by a formal power series of ξ, η as follows:

dF

dT
=

∞�
α+β=2m

Dαβξαηβ . (1.8.45)

Since F is a formal first integral in a neighborhood of the origin for system (1.8.4),
therefore, all Dαβ must be zeros. From (1.8.44) and (1.8.45), we have

0=
∞�

k=m

Dkkξkηk

=

⎛
⎝mCmmξmηm +

∞�
j=m+1

jCjjξ
jηj

⎞
⎠

�
1 +

∞�
k=1

pkξkηk

�

−
⎛
⎝mCmmξmηm +

∞�
j=m+1

jCjjξ
jηj

⎞
⎠

�
1 +

∞�
k=1

qkξkηk

�

=

⎛
⎝mCmmξmηm +

∞�
j=m+1

jCjjξ
jηj

⎞
⎠

∞�
k=1

μkξkηk = 0. (1.8.46)

Because of Cmm �= 0. (1.8.46) follows that

∞�
k=1

μkξkηk = 0. (1.8.47)

It means that for all k, μk = 0.
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Theorem 1.8.8. If the the origin of system (1.8.4) is a complex center, then,
in a neighborhood of the origin, any formal first integral F of system (1.8.4) can be
represented by

F = F(H), (1.8.48)

where F(H) is a formal series of H.

Proof. Let the origin of system (1.8.4) be a complex center. Then, H(z, w) = ξη is
an analytic first integral in a neighborhood of the origin. Suppose that F is a first
integral in a neighborhood of the origin of system (1.8.4), which is represented as a
formal series of ξ, η:

F =
∞∑

α+β=1

Cαβξαηβ . (1.8.49)

Write that

F∗ =
∞∑

k=1

Ckk(ξη)k, F̃ = F − F∗. (1.8.50)

Clearly, F∗ is also a formal first integral in a neighborhood of the origin of system
(1.8.4). Lemma 1.8.1 follows that F̃ is not a formal first integral in a neighborhood
of the origin of system (1.8.4). Since F̃ is the difference of two formal first integrals.
So that, F̃ ≡ 0.

Theorem 1.8.8 gives rise to the following conclusion.

Theorem 1.8.9. If the the origin of system (1.8.4) is a complex center, then
in a neighborhood of the origin, any analytic first integral of system (1.8.4) can be
written as a power series of H with a nonzero convergent radius.

Theorem 1.8.10. The origin of system (1.8.4) is a complex center if and only
if there exists an analytic integrating factor M(z, w) in a neighborhood of the origin
with M(0, 0) �= 0.

Proof. The sufficiency of the conclusion is obvious. We prove the necessity. If the
origin of system (1.8.4) is a complex center, Theorem 1.8.2 and Theorem 1.8.5 tell
us that the Jacobian determinant J(z, w) of ξ, η with respect to z, w is an analytic
integral factor in a neighborhood of the origin and J(0, 0) = 1.

Theorem 1.8.11. In a neighborhood of the origin, system (1.8.4) is linearizable
if and only if

pk = qk = 0, k = 1, 2, · · · . (1.8.51)

Proof. If (1.8.51) holds, then system (1.8.20) is just a linear system.
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Suppose that system (1.8.4) can be linearized in a neighborhood of the origin.
Thus, there exists a normal transformation (1.8.6) in a neighborhood of origin, such
that system (1.8.4) is reduced to the linear system

dξ̃

dT
= ξ̃,

dη̃

dT
= −η̃. (1.8.52)

Denote that

H̃ = ξ̃η̃, Ω̃ =
1
2i

ln
ξ̃

η̃
. (1.8.53)

From (1.8.52), we have
dH̃

dT
≡ 0,

dΩ̃
dT

≡ −i. (1.8.54)

It follows that H̃ is a first integral in a neighborhood of the origin of system (1.8.4).
Hence, by Theorem 1.8.7, we obtain

μk = 0, k = 1, 2, · · · . (1.8.55)

From Theorem 1.8.4, there are two unit formal series F (H) and G(H) of H , such
that

ξ̃ = ξF (H), η̃ = ηG(H). (1.8.56)

From (1.8.33), (1.8.53) and (1.8.56), we have

Ω̃ − Ω =
1
2i

ln
F (H)
G(H)

. (1.8.57)

Because the right side of (1.8.57) is a formal power series of H , from (1.8.31), (1.8.55)
and (1.8.57), we obtain

dΩ̃
dT

=
dΩ
dT

=
1
2i

(
2 +

∞∑
k=1

τkHk

)
. (1.8.58)

From (1.8.54) and (1.8.58), we have

τk = 0, k = 1, 2, · · · . (1.8.59)

Thus, (1.8.30), (1.8.55) and (1.8.59) give rise to (1.8.51).

Theorem 1.8.12. In system (1.8.4), if for all α and β, the relationships bαβ =
āαβ hold. Then in (1.8.19) and (1.8.20), we have that ∀k, j, ckj = d̄kj , pk = q̄k.

Proof. The relationships ∀(α, β), bαβ = āαβ imply that Aαβ , Bαβ are real numbers
in (1.8.2). Let x, y, t be real variables. Then (1.8.1) is real planar differential system.
From (1.8.3), we have

z̄ = w, w̄ = z, T ∗ = −T. (1.8.60)
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By (1.8.19) and (1.8.60), we obtain

η̄ = z +
∞∑

k+j=2

d̄kjz
kwj , ξ̄ = w +

∞∑
k+j=2

c̄kjw
kzj. (1.8.61)

Denote that
ξ∗ = η̄, η∗ = ξ̄. (1.8.62)

Making the conjugated transformation on the two sides of (1.8.20), from (1.8.60)
and (1.8.62), we have

dξ∗

dT ∗ = ξ∗ + ξ∗
∞∑

k=1

q̄k(ξ∗η∗)k,
dη∗

dT ∗ = −η∗ − η∗
∞∑

k=1

p̄k(ξ∗η∗)k. (1.8.63)

(1.8.61) and (1.8.63) follows that (1.8.62) is a standard normal transformation in a
neighborhood of the origin of system (1.8.4). The uniqueness of the standard normal
transformation gives that

η = ξ̄, q̄k = pk, k = 1, 2, · · · . (1.8.64)

It follows the conclusion of this theorem.

For system (1.8.1), consider the normal transformation

u=
ξ(x + iy, x − iy) + η(x + iy, x − iy)

2
= x +

∞∑
k+j=2

c�kjx
kyj ,

v =
ξ(x + iy, x − iy) − η(x + iy, x − iy)

2i
= y +

∞∑
k+j=2

d�kjx
kyj . (1.8.65)

Theorem 1.8.12 implies that if all coefficients on the right side of system (1.8.1) are
real numbers, then u, v are power series of x, y having real coefficients. (1.8.20) and
(1.8.3) follow the following conclusion given by [Amelikin etc, 1982].

Theorem 1.8.13. By using formal transformation (1.8.65), complex autonomous
differential system (1.8.1) can become a normal form as follows:

du

dt
=−v +

1
2

∞∑
k=1

(σku − τkv)(u2 + v2)k = U(u, v),

dv

dt
=u +

1
2

∞∑
k=1

(τku + σkv)(u2 + v2)k = V (u, v), (1.8.66)

where
σk = i(pk − qk), τk = pk + qk (1.8.67)

and all σk, τk, c�kj and d�kj are polynomials of Aαβ,Bαβ with rational coefficients.
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Proposition 1.1.2 and Theorem 1.8.13 imply the following three important for-
mulas.

Theorem 1.8.14. For system (1.8.1), we have

dH
dt

=
∞∑

k=1

σkHk+1,
dω

dt
= 1 +

1
2

∞∑
k=1

τkHk (1.8.68)

and
∂(JX)

∂x
+

∂(J Y )
∂y

= J
(

∂U

∂u
+

∂V

∂v

)
= J

∞∑
k=1

(k + 1)σkHk, (1.8.69)

where

H = u2 + v2, ω = arctan
v

u
, J =

∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
. (1.8.70)

Theorem 1.8.7 gives the following conclusion.

Theorem 1.8.15. System (1.8.4) has a formal first integral in a neighborhood
of the origin if and only if all σk = 0.

From Theorem 1.8.8 and Theorem 1.8.9, we have

Theorem 1.8.16. If the origin of system (1.8.1) is a complex center, then any
first integral F in a neighborhood of the origin of system (1.8.1) can be written by

F = F(H), (1.8.71)

where F(H) is a formal series of H. In addition, any analytic first integral in a
neighborhood of the origin of system (1.8.1) can be represented as a power series of
H with a nonzero convergent radius.

Theorem 1.8.10 derives the following conclusion.

Theorem 1.8.17. The origin of system (1.8.1) is a complex center if and only
if there exists an analytic integral factor M(x, y) in a neighborhood of the origin and
M(0, 0) �= 0.

By Theorem 1.8.11, we have

Theorem 1.8.18. System (1.8.1) is linearizable in a neighborhood of the origin
if and only if for all positive integer k, σk = 0, τk = 0.

Definition 1.8.3. Suppose that the functions of the right side of system (1.8.1)
satisfy

X(x,−y) = −X(x, y), Y (x,−y) = Y (x, y). (1.8.72)
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We say that the functions of the right side of system (1.8.1) are symmetric with
respect to the coordinate x.

Suppose that the functions of the right side of system (1.8.1) satisfy

X(−x, y) = X(x, y), Y (−x, y) = −Y (x, y), (1.8.73)

we say that the functions of the right side of system (1.8.1) are symmetric with
respect to the coordinate y.

If one of (1.8.72) and (1.8.73) satisfies, we say that system (1.8.1) is a symmetric
system with respect to a coordinate.

From Corollary 1.4.1, we have

Theorem 1.8.19 (The symmetric principle). Suppose that (1.8.1) is a sym-
metric system with respect to a coordinate. Then, it has a analytic first integral in
a neighborhood of the origin.

Since the coefficients of the right side of system (1.8.1) can be complex, Theorem
1.8.19 expands the symmetric principle for the center-focus problem in real planar
differential autonomous systems.

Theorem 1.8.20 (The anti-symmetric principle). Suppose that the origin
of system (1.8.1) is a complex center. Then, there exist two power series u, v of x, y:

u = x + h.o.t., v = y + h.o.t.. (1.8.74)

with a nonzero convergent radius, such that by transformation (1.8.74), system
(1.8.1) becomes a symmetric system.

Proof. Since the origin of system (1.8.1) is a complex center, by Theorem 1.8.2, the
functions of (1.8.65) are power series of x, y with nonzero convergent radius. From
Theorem 1.8.13 and Theorem 1.8.15, we see that by the transformation (1.8.65),
system (1.8.1) can become the following symmetric system:

du

dt
=−v − 1

2
v

∞∑
k=1

τk(u2 + v2)k,

dv

dt
=u +

1
2
u

∞∑
k=1

τk(u2 + v2)k. (1.8.75)

By using the above two theorems, we obtain a method to check if the origin is a
complex center. In fact, for a given system of the form (1.8.1), if we find a suitable
transformation to make this system become a symmetric system, then the origin of
the system is a complex center.



1.8 Integrability and Linearized Problem of Weak Critical Singular Point 53

Example 1.8.1. Consider the real planar differential system

dx

dt
=−y + x2,

dy

dt
= x + 2x3 − 5ax8 − 2(1 − 4ax5)xy − 4ax2y3 + ay4. (1.8.76)

By the transformation u = x, v = y − x2, system (1.8.76) becomes

du

dt
= −v,

dv

dt
= u − 6au4v2 + av4. (1.8.77)

Letting ξ = v2, the above system reduces to the Riccati equation

dξ

du
= −2(u − 6au4ξ + aξ2). (1.8.78)

The functions of the right side of system (1.8.77) is symmetric with respect to the
variable v. Therefore, Theorem 1.8.19 follows that the origin of system (1.8.76) is a
center.

We now consider the existence of integrating factor in a neighborhood of the
origin when the origin of system (1.8.20) is a m-order weak critical singular point.
It is easy to show that the following conclusion holds.

Theorem 1.8.21. Let the origin of system (1.8.20) be a m-order weak criti-
cal singular point. Then, in a neighborhood of the origin, system (1.8.20) has the
following integrating factor :

M(ξ, η) =
1

Hm+1

(
1 +

∞∑
k=1

μm+k

μm
Hk

) =
1

Hm+1
(1 + h.o.t.) , (1.8.79)

where H = ξη.

From Proposition 1.1.4 and Theorem 1.8.21, we have

Theorem 1.8.22. Let the origin of system (1.8.4) be a m-order weak critical sin-
gular point. Then, in a neighborhood of the origin, system (1.8.4) has the following
integrating factor :

M(z, w) = JM =
1

(zw + h.o.t.)m+1 , (1.8.80)

where H and J are given by (1.8.33), M is given by (1.8.79).

Similarly, we have
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Theorem 1.8.23. Let the origin of system (1.8.66) be a m-order weak criti-
cal singular point. Then, in a neighborhood of the origin, system (1.8.66) has the
following integrating factor :

M∗(u, v) =
1

Hm+1

(
1 +

∞∑
k=1

σm+k

σm
Hk

) =
1

Hm+1
(1 + h.o.t.) . (1.8.81)

where H = u2 + v2.

Theorem 1.8.24. Let the origin of system (1.8.1) be a m-order weak focus.
Then, in a neighborhood of the origin, system (1.8.1) has the following integrating
factor:

M∗(x, y) = JM∗ =
1

Hm+1
(1 + h.o.t.) =

1
(x2 + y2 + h.o.t.)m+1 , (1.8.82)

where H and J are given by (1.8.70), M∗ is given by (1.8.81).

Theorem 1.8.25. Suppose that in a neighborhood of the origin, system (1.8.1)
has an integrating factor M̃∗(x, y) with the form fs(x, y)G(x, y) and s + 1 is not a
negative integer, where

f(x, y) = x2 + y2 + h.o.t., G(x, y) = 1 + h.o.t. (1.8.83)

are two formal series of x, y. Then, the origin of (1.8.1) is a complex center.

Proof. We use reductio ad absurdum. Suppose that the origin of system (1.8.1) is
not a complex center but a m order weak focus. Then, Theorem 1.8.24 follows that
there is a first integral of (1.8.1)

F (x, y) =
M̃∗(x, y)
M∗(x, y)

= fs(x, y)G(x, y)(x2 + y2 + h.o.t.)m+1 (1.8.84)

in a neighborhood of the origin. From (1.8.83) and (1.8.84), F (r cos θ, r sin θ) has
the form

F (r cos θ, r sin θ) = r2(s+m+1)

[
1 +

∞∑
k=1

ζk(θ)rk

]
, (1.8.85)

where for all k, ζk(θ) are polynomials of cos θ, sin θ (k = 1, 2, · · · ). Because s + 1 is
not a negative integer, hence, s+m+1 �= 0. (1.8.85) implies that the origin of system
(1.8.1) is a complex center which is in contradiction to the original hypothesis.

We next consider the case of s + 1 is a negative integer. Let s + 1 = −k, where
k is a positive integer. Then, M̃∗(x, y) in Theorem 1.8.25 has the form:

M̃∗(x, y) =
G(x, y)

fk+1(x, y)
. (1.8.86)
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Theorem 1.8.26. Suppose that system (1.8.1) has an integrating factor M̃∗(x, y)
with the form (1.8.86) in a neighborhood of the origin. If the origin is not a k order
weak focus. Then the origin of (1.8.1) is a complex center.

Proof. We use reductio ad absurdum. Suppose that the origin of system (1.8.1) is
not a complex center but a m order weak focus, where k �= m. Then, Theorem
1.8.24 follows that in a neighborhood of the origin of system (1.8.1), there is the
following first integral

F (x, y) =
M̃∗(x, y)
M∗(x, y)

=
G(x, y)(x2 + y2 + h.o.t.)m+1

fk+1(x, y)
. (1.8.87)

Since k �= m, (1.8.87) implies the origin of system (1.8.1) is a complex center. It is
in contradiction to the original hypothesis.

Similarly, we have

Theorem 1.8.27. If system (1.8.4) has an integrating factor M̃(z, w) of the
form f s(z, w)G(z, w) in a neighborhood of the origin, where s + 1 is not a negative
integer and

f(z, w) = zw + h.o.t., G(z, w) = 1 + h.o.t. (1.8.88)

are two formal series of z, w. Then the origin of (1.8.4) is a complex center.

If s + 1 = −k, where k is a positive integer. Then M̃(z, w) given by Theorem
1.8.27 becomes

M̃(z, w) =
G(z, w)

fk+1(z, w)
. (1.8.89)

Theorem 1.8.28. Suppose that system (1.8.4) has an integrating factor M̃(z, w)
of the form (1.8.89) in a neighborhood of the origin. If the origin of (1.8.4) is not a
k-order weak critical singular point. Then, the origin of (1.8.4) is a complex center.

Example 1.8.2. System

dz

dT
= z + 3zw(az2 + bw2),

dw

dT
= −w (1.8.90)

has an integrating factor

M̃(z, w) =
1

(zw)3e2bw3 . (1.8.91)

This is a singular factor. However, we have the first two singular point values
μ1 = μ2 = 0 of the origin of system (1.8.90). The origin is not a 2-order weak
critical singular point. By Theorem 1.8.28, the origin is a complex center.

Example 1.8.2 tells us that Theorem 1.8.25 ∼ Theorem 1.8.28 are useful for
solving the center problem.
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Definition 1.8.4. If there are a constant γ �= 0 and three formal series of
(z∗, w∗):

ϕ(z∗, w∗) = γw∗ + h.o.t., ψ(z∗, w∗) =
1
γ

z∗ + h.o.t., G(z∗, w∗) = 1 + h.o.t.,

(1.8.92)
such that by using the transformation

z = ϕ(z∗, w∗), w = ψ(z∗, w∗) (1.8.93)

system (1.8.4) becomes

dz∗

dT
= −Z(z∗, w∗)G(z∗, w∗),

dw∗

dT
= W (z∗, w∗)G(z∗, w∗). (1.8.94)

Then, system (1.8.4) is called generalized time-reversible system.

Let the origin of system (1.8.4) is a complex center. Then, in a neighborhood of
the origin, the standard normal form of (1.8.4) has the form

dξ

dT
= ξ

[
1 +

1
2

∞∑
k=1

τk(ξη)k

]
= Φ(ξ, η),

dη

dT
= −η

[
1 +

1
2

∞∑
k=1

τk(ξη)k

]
= −Ψ(ξ, η). (1.8.95)

By using the transformation ξ = η∗, η = ξ∗, system (1.8.94) can become the following
system:

dξ∗

dT
= −Φ(ξ∗, η∗),

dη∗

dT
= Ψ(ξ∗, η∗), (1.8.96)

It implies that system (1.8.95) is generalized time-reversible system.

Theorem 1.8.29. If the origin of system (1.8.4) is a complex center, then, by
using a suitable analytic transformation, system (1.8.4) can become a generalized
time-reversible system.

The following is the converse theorem of Theorem 1.8.29.

Theorem 1.8.30. If system (1.8.4) is a generalized time-reversible system, then
the origin of system (1.8.4) is a complex center.

Proof. We use reductio ad absurdum. Suppose that system (1.8.4) is a generalized
time-reversible system and its origin is not a complex center. Then, there is a
positive integer m, such that μ1 =μ2 = · · · = μm−1= 0, μm �= 0. Thus, there is a
polynomial F (z, w) = zw + h.o.t., such that

dF (z, w)
dT

∣∣∣∣
(1.8.4)

=
∂F (z, w)

∂z
Z(z, w) − ∂F (z, w)

∂w
W (z, w)

=μm(zw)m+1 + h.o.t.. (1.8.97)
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By using (1.8.93), in a neighborhood of the origin, we can solve z∗ and w∗ as follows:

z∗ = ϕ∗(z, w) = γw + h.o.t., w∗ = ψ∗(z, w) =
1
γ

z + h.o.t.. (1.8.98)

Let
F ∗(z, w) = F (ϕ∗(z, w), ψ∗(z, w)) = zw + h.o.t.. (1.8.99)

We see from (1.8.97) that

dF ∗(z, w)
dT

∣∣∣∣
(1.8.4)

=
dF (z∗, w∗)

dT

∣∣∣∣
(1.8.94)

=−G(z∗, w∗)
[
∂F (z∗, w∗)

∂z∗
Z(z∗, w∗) − ∂F (z∗, w∗)

∂w∗ W (z∗, w∗)
]

=−μm(zw)m+1 + h.o.t.. (1.8.100)

(1.8.97) and (1.8.100) follows that μm = 0. It gives the conclusion of this theorem.

Example 1.8.3. Consider the following system

dz

dT
= Z(z, w)

=z + 9(7 − 8λ)[3(1 + 4λ)z3 + 9λwz2 + (7 − 8λ)w2z − 3(2 − λ)w3]z,

dw

dT
= −W (z, w)

=−w + 9(7 − 8λ)[3(1 + 4λ)w3 + (4 + 7λ)w2z − 9wz2 + 3(2 − λ)z3]w. (1.8.101)

This system has a algebraic integral

f(z, w) = 1 + 27(1 + 4λ)(7 − 8λ)(w + z)2(z − w). (1.8.102)

Let
z∗ =

w

f
1
3 (z, w)

, w∗ =
z

f
1
3 (z, w)

. (1.8.103)

Then
z =

w∗

f
1
3 (z∗, w∗)

, w =
z∗

f
1
3 (z∗, w∗)

. (1.8.104)

By transformation (1.8.103), system (1.8.101) becomes

dz∗

dT
= −Z(z∗, w∗)

f(z∗, w∗)
,

dw∗

dT
=

W (z∗, w∗)
f(z∗, w∗)

. (1.8.105)

Thus, system (1.8.101) is a generalized time-reversible system. By Theorem 1.8.30,
the origin of system (1.8.101) is a complex center.
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1.9 Integrability and Linearized Problem of the Resonant

Singular Point

Let the origin of the system (1.5.1) be a p, q resonant singular point. By using a
suitable linear transformation, system (1.5.1) become

dz

dT
= pz +

∞∑
k=2

Zk(z, w) = Z(z, w),

dw

dT
= −qw −

∞∑
k=2

Wk(z, w) = −W (z, w), (1.9.1)

where p, q are two irreducible integers, Z(z, w), W (z, w) are two power series of z, w

having nonzero convergent radius. For all k, Zk(z, w), Wk(z, w) are homogeneous
polynomials of degree k of z, w:

Zk(z, w) =
∑

α+β=k

aαβzαwβ , Wk(z, w) =
∑

α+β=k

bαβwαzβ. (1.9.2)

We now cite the definition of a normal form of system(1.9.1) given by [Christopher
ect, 2003].

Definition 1.9.1. Suppose that there are two formal series of z, w

ξ̃ = z + h.o.t., η̃ = w + h.o.t., (1.9.3)

such that by transformation (1.9.3), system (1.9.1) reduces to the form:

dξ̃

dT
= pξ̃

[
1 +

∞∑
k=1

p̃k(ξ̃q η̃p)k

]
,

dη̃

dT
= −qη̃

[
1 +

∞∑
k=1

q̃k(ξ̃q η̃p)k

]
. (1.9.4)

Then, we say that (1.9.3) is a normal transformation in a neighborhood of the ori-
gin of the system (1.9.1). System (1.9.4) is a normal form corresponding to the
transformation (1.9.3).

A resonant singular point can be transformed to a weak critical singular point
by a suitable transformation. Actually, from Theorem 1.5.4, there are two power
series ϕ(w), ψ(z) with nonzero convergent radius, satisfying ϕ(0) = ψ(0) = ϕ�(0) =
ψ�(0) = 0, such that by the transformation

u = z − ϕ(w), v = w − ψ(z), (1.9.5)



1.9 Integrability and Linearized Problem of the Resonant Singular Point 59

system (1.9.1) becomes

du

dT
= p u U(u, v) = p u

�
1 +

∞�
k=1

Uk(u, v)

�
,

dv

dT
= −q v V (u, v) = −q v

�
1 +

∞�
k=1

Vk(u, v)

�
, (1.9.6)

where U(u, v), V (u, v) are two power series with nonzero convergent radius of u, v.
Uk(u, v), Vk(u, v) are homogeneous polynomials of degree k of u, v.

Suppose that z = ϕ(w), w = ψ(z) are analytic solutions of the system (1.9.1),
passing through the origin. By using the transformation

u = xp, v = yq (1.9.7)

system (1.9.6) becomes the following special system having weak critical singular
point O(0, 0):

dx

dT
= xU(xp, yq) = x

�
1 +

∞�
k=1

Uk(xp, yq)

�
,

dy

dT
= −yV (xp, yq) = −y

�
1 +

∞�
k=1

Vk(xp, yq)

�
. (1.9.8)

Since x = 0 and y = 0 are two solutions of system (1.9.8), hence, any normal
transformation in a neighborhood of the origin of system (1.9.8) has the form

χ∗ = x

⎛
⎝1 +

∞�
α+β=1

c∗αβxαyβ

⎞
⎠ , ζ∗ = y

⎛
⎝1 +

∞�
α+β=1

d∗αβyαxβ

⎞
⎠ . (1.9.9)

By Theorem 1.8.1, for the coefficients of the formal series (1.9.9), first, c∗kk, d∗kk are
taken as any constant numbers. Then, the other coefficients can be determined
uniquely. Corresponding to (1.9.9), the normal form of system (1.9.8) is as follows:

dχ∗

dT
= χ∗

�
1 +

∞�
k=1

p∗k(χ∗ζ∗)k

�
,

dζ∗

dT
= −ζ∗

�
1 +

∞�
k=1

q∗k(χ∗ζ∗)k

�
. (1.9.10)

Compare with system (1.8.4), the right sides functions of the system (1.9.8) have
the following properties:

(1) x = 0 and y = 0 are two solutions of (1.9.8).
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(2) U(xp, yq), V (xp, yq) are two power series of xp, yq.
These properties of (1.9.8) make it have a particular normal transformation and

a special normal form.

Definition 1.9.2. Let (1.9.9) be a normal transformation of system (1.9.8) in
a neighborhood of the origin satisfying for m/(pq) are not positive integers, c∗mm =
d∗mm = 0. We say that (1.9.9) is a p, q resonant normal transformation. The
corresponding normal form is called the p, q resonant normal form.

Obviously, the standard normal transformation in a neighborhood of the origin
of system (1.9.8) is p, q resonant.

Theorem 1.9.1. For all given c̃kq, kp and d̃kp, kq (k = 1, 2, · · · ), one can derive
uniquely and successively the terms of the formal series

χ̃ = x

⎛
⎝1 +

∞�
α+β=1

c̃αβxαpyβq

⎞
⎠ = xf̃(xp, yq),

ζ̃ = y

⎛
⎝1 +

∞�
α+β=1

d̃αβyαqxβp

⎞
⎠ = yg̃(xp, yq), (1.9.11)

such that by transformation (1.9.11), system (1.9.8) becomes the following normal
form

dχ̃

dT
= χ̃

�
1 +

∞�
k=1

p̃k(χ̃ζ̃)kpq

�
,

dζ̃

dT
= −ζ̃

�
1 +

∞�
k=1

q̃k(χ̃ζ̃)kpq

�
. (1.9.12)

.

Proof. Write that

f̃(u, v) = 1 +
∞�

m=1

f̃m(u, v),

g̃(u, v) = 1 +
∞�

m=1

g̃m(u, v), (1.9.13)

where f̃m(u, v), g̃m(u, v) are homogeneous polynomials of degree m of u, v:

f̃m(u, v) =
�

α+β=m

c̃αβuαvβ , g̃m(u, v) =
�

α+β=m

d̃αβvαuβ . (1.9.14)
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From (1.9.8), (1.9.11) and (1.9.13), we have

dχ̃

dT
− χ̃ = x

∞∑
m=1

[
pu

∂f̃m

∂u
− qv

∂f̃m

∂v
+ Fm(u, v)

]
,

dζ̃

dT
+ ζ̃ = y

∞∑
m=1

[
pu

∂g̃m

∂u
− qv

∂g̃m

∂v
− Gm(u, v)

]
, (1.9.15)

where Fm(u, v), Gm(u, v) are homogeneous polynomials of degree m of u, v:

Fm = Um +
m−1∑
k=1

[(
f̃k + pu

∂f̃k

∂u

)
Um−k − qv

∂f̃k

∂v
Vm−k

]
,

Gm = Vm +
m−1∑
k=1

[(
g̃k + qv

∂g̃k

∂v

)
Vm−k − pu

∂g̃k

∂u
Um−k

]
. (1.9.16)

By using (1.9.11), we obtain

χ̃

∞∑
k=1

p̃k(χ̃ζ̃)kpq = x

∞∑
k=1

p̃kukqvkpf̃kpq+1(u, v)g̃kpq(u, v),

ζ̃

∞∑
k=1

q̃k(χ̃ζ̃)kpq = y

∞∑
k=1

q̃kukqvkpg̃kpq+1(u, v)f̃kpq(u, v). (1.9.17)

Let

χ̃

∞∑
k=1

p̃k(χ̃ζ̃)kpq = x

[ ∞∑
k=1

p̃kukqvkp +
∞∑

m=1

Φm(u, v)

]
,

ζ̃
∞∑

k=1

q̃k(χ̃ζ̃)kpq = y

[ ∞∑
k=1

q̃kukqvkp +
∞∑

m=1

Ψm(u, v)

]
. (1.9.18)

Then, by (1.9.13), (1.9.17) and (1.9.18), we see that for any integer m, Φm, Ψm

only depend on f̃1, f̃2, · · · , f̃m−1 and g̃1, g̃2, · · · , g̃m−1. For any positive integer k,
when (k − 1)(p + q) < m � k(p + q), Φm, Ψm only depend on p̃1, p̃2, · · · , p̃k−1 and
q̃1, q̃2, · · · , q̃k−1. We know from (1.9.15) and (1.9.18) that (1.9.12) holds if and only
if

∞∑
m=1

(
pu

∂f̃m

∂u
− qv

∂f̃m

∂v

)
=

∞∑
m=1

(Φm − Fm) +
∞∑

k=1

p̃kukqvkp,

∞∑
m=1

(
qv

∂g̃m

∂v
− pu

∂g̃m

∂u

)
=

∞∑
m=1

(Ψm − Gm) +
∞∑

k=1

q̃kukqvkp. (1.9.19)
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From (1.9.14), for any positive integer m, we have

pu
∂f̃m

∂u
− qv

∂f̃m

∂v
=

∑
α+β=m

(αp − βq)c̃αβuαvβ ,

qv
∂g̃m

∂v
− pu

∂g̃m

∂u
=

∑
α+β=m

(βq − αp)d̃βαuαvβ . (1.9.20)

Denote that

Φm − Fm =
∑

α+β=m

Cαβuαvβ , Ψm − Gm =
∑

α+β=m

Dαβvαuβ. (1.9.21)

Then, from (1.9.19), (1.9.20) and (1.9.21) we get

∞∑
m=1

∑
α+β=m

(αp − βq)c̃αβuαvβ =
∞∑

m=1

∑
α+β=m

Cαβuαvβ +
∞∑

k=1

p̃kukqvkp,

∞∑
m=1

∑
α+β=m

(βq − αp)d̃βαuαvβ =
∞∑

m=1

∑
α+β=m

Dβαuαvβ +
∞∑

k=1

q̃kukqvkp. (1.9.22)

Since p and q are two irreducible integers, hence for any natural numbers α, β,
when α + β � 1, αp − βq = 0 if and only if there exists a positive integer k, such
that α = kp, β = kq. Thus, (1.9.22) follows that for any natural numbers α, β, when
αp−βq �= 0, all c̃αβ , d̃βα are determined uniquely by the following recursive formulas

c̃αβ =
1

αp − βq
Cαβ , d̃βα =

1
βq − αp

Dβα. (1.9.23)

Moreover, for any positive integer k, p̃k, q̃k are determined uniquely by the following
recursive formulas

p̃k = −Ckq, kp, q̃k = −Dkp, kq. (1.9.24)

Because all coefficients of c̃kq,kp and d̃kp,kq in (1.9.22) are zeros. So that, c̃kq,kp and
d̃kp,kq can be given as arbitrary constants in advance.

From Theorem 1.9.1 and Corollary 1.8.1 we have

Theorem 1.9.2. In a neighborhood of the origin, any p, q resonant normal trans-
formation of system (1.9.8) has the form of (1.9.11). The corresponding normal form
has the form of (1.9.12).

In a neighborhood of the origin, the standard normal transformation and the
standard normal form of the origin of system (1.9.8) can be written respectively as
follows:
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χ = x

⎛
⎝1 +

∞�
α+β=1

cαβxαpyβq

⎞
⎠ = xf(xp, yq),

ζ = y

⎛
⎝1 +

∞�
α+β=1

dαβyαqxβp

⎞
⎠ = yg(xp, yq), (1.9.25)

dχ

dT
= χ

�
1 +

∞�
k=1

pk(χζ)kpq

�
,

dζ

dT
= −ζ

�
1 +

∞�
k=1

qk(χζ)kpq

�
, (1.9.26)

where
ckq, kp = dkp, kq = 0, k = 1, 2, · · · . (1.9.27)

Theorem 1.9.3. Let (1.9.11) be a p, q resonant normal transformation in a
neighborhood of the origin of system (1.9.8) and its corresponding normal form be
(1.9.12). Then,

ξ̃ = (z − ϕ)f̃p(z − ϕ, w − ψ), η̃ = (w − ψ)g̃q(z − ϕ, w − ψ) (1.9.28)

is a resonant normal transformation in a neighborhood of the origin of system (1.9.1).
By transformation (1.9.28), system (1.9.1) can be reduced to (1.9.4).

Proof. From (1.9.5), (1.9.7), (1.9.11) and (1.9.28), we have

ξ̃ = χ̃p, η̃ = ζ̃q. (1.9.29)

(1.9.12) and (1.9.29) follows (1.9.4).

Theorem 1.9.4. Let (1.9.3) be a normal transformation in a neighborhood of
the origin of system (1.9.1) and corresponding normal form be (1.9.4). Then, there
exist two unit formal series f̃(u, v), g̃(u, v) of u, v, such that ξ̃, η̃ can be expressed as
the form of (1.9.28). By using transformation

χ̃ = xf̃(xp, yq), ζ̃ = yg̃(xp, yq) (1.9.30)

system (1.9.8) becomes the p, q resonance normal form (1.9.12).

Proof. Let (1.9.3) be a normal transformation in a neighborhood of the origin of
system (1.9.1). Then, by transformation (1.9.5), ξ̃ and η̃ can be represented as two
formal series of u, v. Since u = 0 and v = 0 are two solutions of system (1.9.6)hence,
there are two unit formal series F̃ (u, v), G̃(u, v) of u, v, such that,

ξ̃ = uF̃ (u, v), η̃ = vG̃(u, v). (1.9.31)



64 Chapter 1 Basic Concept and Linearized Problem of Systems

Denote that
f̃(u, v) = F̃

1
p (u, v), g̃(u, v) = G̃

1
q (u, v), (1.9.32)

where the functions of the right hands take their principal values. Then, f̃(u, v),
g̃(u, v) are unit formal series of u, v. From (1.9.5), (1.9.31) and (1.9.32) we obtain
the representations (1.9.28) of ξ̃, η̃.

From (1.9.5), (1.9.7),(1.9.28) and (1.9.30), we have (1.9.29).
(1.9.4) and (1.9.29) follows (1.9.12).

Remark 1.9.1. Theorem (1.9.3) and theorem (1.9.4) imply that in a neigh-
borhood of the origin, the p, q resonance normal transformation (1.9.11) of system
(1.9.8) and the following normal transformation of system (1.9.1)

ξ̃ = (z − ϕ)

⎡
⎣1 +

∞�
α+β=1

c̃αβ(z − ϕ)α(w − ψ)β

⎤
⎦

p

= z + h.o.t.,

η̃ = (w − ψ)

⎡
⎣1 +

∞�
α+β=1

d̃αβ(w − ψ)α(z − ϕ)β

⎤
⎦

q

= w + h.o.t. (1.9.33)

have the one-to-one correspondence relation. Moreover, (1.9.5) and (1.9.7) imply
(1.9.29).

Definition 1.9.3. We say that in a neighborhood of the origin,

ξ = (z − ϕ)

⎡
⎣1 +

∞�
α+β=1

cαβ(z − ϕ)α(w − ψ)β

⎤
⎦

p

= z + h.o.t.,

η = (w − ψ)

⎡
⎣1 +

∞�
α+β=1

dαβ(w − ψ)α(z − ϕ)β

⎤
⎦

q

= w + h.o.t. (1.9.34)

is the standard normal transformation of system (1.9.1), where ckq, kp = dkp, kq =
0, k = 1, 2, · · · . Corresponding to transformation (1.9.34), system

dξ

dT
= pξ

�
1 +

∞�
k=1

pk(ξqηp)k

�
= Φ(ξ, η),

dη

dT
= −qη

�
1 +

∞�
k=1

qk(ξqηp)k

�
= −Ψ(ξ, η) (1.9.35)

is called the standard normal form in a neighborhood of the origin of system (1.9.1).

From Remark 1.9.1 and Theorem 1.8.2, we have
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Theorem 1.9.5. In a neighborhood of the origin, the standard normal transfor-
mation of system (1.9.1) and the standard normal transformation of system (1.9.8)
have the following relation

ξ = χp, η = ζq. (1.9.36)

Moreover, if for all k, pk = qk, then ξ, η are two power series of z, w having nonzero
convergent radius.

Theorem 1.9.6. Let

μk = pk − qk, τk = pk + qk, k = 1, 2, · · · . (1.9.37)

For system (1.9.1), we have

dH

dT
= pq

∞∑
k=1

μkHk+1,

dΩ
dT

=
pq

2i

(
2 +

∞∑
k=1

τkHk

)
(1.9.38)

and
∂

∂z
(MZ) − ∂

∂w
(MW ) = pqM

∞∑
k=1

(k + 1)μk(H)k, (1.9.39)

where

H = ξqηp, Ω =
1
2i

ln
ξq

ηp
, M = ξq−1ηp−1

∣∣∣∣∣∣∣

∂ξ

∂z

∂ξ

∂w
∂η

∂z

∂η

∂w

∣∣∣∣∣∣∣
. (1.9.40)

Proof. By using (1.9.35) and (1.9.40) to do computations directly, we obtain (1.9.38).
Let M = ξq−1ηp−1J , where J is the Jacobian of ξ, η with respect to z, w. Then,
Proposition 1.1.3 follows that

∂

∂z
(MZ) − ∂

∂w
(MW )

=
∂

∂z

(
ξp−1ηq−1JZ

) − ∂

∂w

(
ξp−1ηq−1JW

)

=J

[
∂

∂ξ

(
ξp−1ηq−1Φ

) − ∂

∂η

(
ξp−1ηq−1Ψ

)]
. (1.9.41)

(1.9.41) implies (1.9.39).

Similar to Theorem 1.8.3, we have
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Theorem 1.9.7. Let F (H) and G(H) be two unit formal power series of H.
Then,

ξ̃ = ξF (H), η̃ = ηG(H) (1.9.42)

gives the normal transformation in a neighborhood of the origin of system (1.9.1).

Theorem 1.9.8. If (1.9.3) is a normal transformation in a neighborhood of the
origin of system (1.9.1), then there exist two units of formal series of H of the form

F (H) = 1 +
∞∑

k=1

AkHk, G(H) = 1 +
∞∑

k=1

BkHk, (1.9.43)

such that ξ̃ = ξF (H), η̃ = ηG(H).

Proof. Let (1.9.3) be a normal form in a neighborhood of the origin of system (1.9.1).
Then system (1.9.1) becomes the normal form (1.9.4) by transformation (1.9.3). By
Theorem 1.9.4, there are two unit formal series f̃(u, v), g̃(u, v) of u, v, such that
(1.9.28) holds. System (1.9.8) becomes the normal form (1.9.12) by transformation
(1.9.30). From Theorem 1.8.4, χ̃, ζ̃ can be written as the following formal series of
χ, ζ:

χ̃ = χ

[
1 +

∞∑
m=1

Ãm(χζ)m

]
, ζ̃ = ζ

[
1 +

∞∑
m=1

B̃m(χζ)m

]
. (1.9.44)

From (1.9.25) and (1.9.44), we have

χ̃ = xf

[
1 +

∞∑
m=1

Ãm(xy)m(fg)m

]
,

ζ̃ = yg

[
1 +

∞∑
m=1

B̃m(xy)m(fg)m

]
, (1.9.45)

where f = f(xp, yq), g = g(xp, yq). By (1.9.30), χ̃/x = f̃(xp, yq) and ζ̃/y = g̃(xp, yq)
are two formal series of xp and yq. Thus, when m/(pq) is not a positive integer, we
have Ãm = B̃m = 0. Now (1.9.45) can be become

χ̃ = χ

[
1 +

∞∑
k=1

Ãkpq(χζ)kpq

]
, ζ̃ = ζ

[
1 +

∞∑
k=1

B̃kpq(χζ)kpq

]
. (1.9.46)

(1.9.29), (1.9.36) and (1.9.46) follow that

ξ̃ = ξ

[
1 +

∞∑
k=1

Ãkpq(ξqηp)k

]p

, η̃ = η

[
1 +

∞∑
k=1

B̃kpq(ξqηp)k

]q

. (1.9.47)

This gives the conclusion.
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In [Xiao P., 2005], the author gave the following definition.

Definition 1.9.4. For any positive integer k, μk = pk − qk is called the k-th
resonant singular point value of the origin of system (1.9.1) and τk = pk + qk is
called the k-th resonant period constant of the origin of system (1.9.1).

Define that μ0 = 0. If there is a positive integer k, such that μ0 = μ1 = · · · =
μk−1 = 0, but μk �= 0, then the origin is called the k-order resonant singular point;

If for any positive integer k, there are μk = 0, then the origin is called a complex
resonant center.

Remark 1.9.2. The k-th resonant singular point value is the k-th saddle quatity
given by [Christopher ect, 2003]

Remark 1.9.3. Theorem 1.9.5 and Theorem 1.9.6 imply that if the origin of
system(1.9.1) is a complex resonant center, then H = ξpηq is an analytic first integral
of system (1.9.1), and H a is power series in z, w having nonzero convergent radius.

Similar to the proofs of Theorem 1.8.7∼ Theorem 1.8.11, we have the following
results.

Theorem 1.9.9. System (1.9.1) has an analytic first integral in a neighborhood
of the origin if and only if all resonant singular point values of the origin are zeros.

Theorem 1.9.10. System (1.9.1) in a neighborhood of the origin is linearizable
if and only if for all k, pk = 0 and qk = 0.

Theorem 1.9.11. If the origin of system(1.9.1) is a complex resonant center,
then any first integral in a neighborhood of the origin of system(1.9.1) can be ex-
pressed as a formal series of H. In addition, any analytic first integral in a neigh-
borhood of the origin of system (1.9.1) can be expressed as power series of H with a
nonzero convergent radius.

Because system (1.9.8) can be reduced to system (1.9.26) by using standard
normal transformation (1.9.25). Therefore, we have

Theorem 1.9.12. The origin of system (1.9.1) is a complex resonant center if
and only if in a neighborhood of the origin there is an analytic integral factor :

M(z, w) = zq−1wp−1 + h.o.t.. (1.9.48)

Remark 1.9.4. In [Simon etc 2000], the conditions of Theorem 1.9.9 are taken
as the definition of the integrability. While the conditions given by Theorem 1.9.10
are taken as the definition of the linearizable systems in a neighborhood of the origin
of system (1.9.1).
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Theorem 1.9.13. For any positive integer k, the k-th resonant singular value
and resonant period constant of the origin of system (1.9.1) are the kpq-th singular
value and the kpq-th period constant of the origin of system (1.9.8), respectively.
In addition, if m/(pq) isn’t a positive integer, then the m-th singular value and the
m-th period constant of the origin of (1.9.8) are zeros.

Finally, we have

Theorem 1.9.14. For system (1.9.1), if the origin is a m-order resonant singu-
lar point, then its standard normal form (1.9.35) has the following integrating factor
in a neighborhood of the origin:

M =
1

ξηHm

(
1 +

∞∑
k=1

μm+k

μm
Hk

) . (1.9.49)

Moreover, system (1.9.1) has an integrating factor J M in a neighborhood of the
origin, where H = ξqηp, J = 1 + h.o.t. is the Jacobian of ξ, η with respect to z, w.
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Chapter 2

Focal Values, Saddle Values and Singular

Point Values

In this chapter, we consider a class of real planar autonomous differential systems,
for which the functions of the right hand are analytic in a neighborhood of the origin
and the origin is a focus or a center. We introduce the elementary theory to solve
the center problem.

2.1 Successor Functions and Properties of Focal Values

By making a linear change of the space coordinates and a rescaling of the time
variable if necessary, a planar differential system can be written as

dx

dt
= δx − y +

∞∑
k=2

Xk(x, y) = X(x, y),

dy

dt
= x + δy +

∞∑
k=2

Yk(x, y) = Y (x, y), (2.1.1)

where X(x, y), Y (x, y) are analytic in a sufficiently small neighborhood of the origin
and

Xk(x, y) =
∑

α+β=k

Aαβxαyβ ,

Yk(x, y) =
∑

α+β=k

Bαβxαyβ (2.1.2)

are homogeneous polynomials of order k.
It is well know that the origin of system (2.1.1) is a rough focus when δ �= 0 and it

is either a weak focus or a center when δ = 0. The problem of determining whether
a non-degenerate singular point (it has purely imaginary eigenvalues) is a center or
a weak focus is called the center-focus problem (or simply, center problem). This
is one of the most important topics in the qualitative theory of planar dynamical
systems. [Poincaré, 1891-1897], [Lyapunov, 1947] and [Bautin, 1952-1954] had done
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pioneering fundamental work. In last century, many mathematicians also made some
important contributions in this direction. We first introduce the method of Poincaré
successor function.

Under the polar coordinate transformation

x = r cos θ, y = r sin θ, (2.1.3)

system (2.1.1) is become

dr

dt
= r

[
δ +

∞∑
k=1

ϕk+2(θ)rk

]
,

dθ

dt
= 1 +

∞∑
k=1

ψk+2(θ)rk , (2.1.4)

where

ϕk(θ) = cos θXk−1(cos θ, sin θ) + sin θYk−1(cos θ, sin θ),

ψk(θ) = cos θYk−1(cos θ, sin θ) − sin θXk−1(cos θ, sin θ). (2.1.5)

We see from (2.1.4)that

dr

dθ
= r

δ +
∞∑

k=1

ϕk+2(θ)rk

1 +
∞∑

k=1

ψk+2(θ)rk

. (2.1.6)

To study the solutions of this equation, we discuss a class of general differential
equations

dr

dθ
= r

∞∑
k=0

Rk(θ)rk = R(r, θ). (2.1.7)

Where we assume that there exists a positive real numbers r0, such that R(r, θ)
is analytic with respect to r in the region {|r| < r0, |θ| < 4π}, and it is continuously
differentiable with respect to the real variable θ. In addition,

Rk(θ + π) = (−1)kRk(θ), k = 0, 1, · · · . (2.1.8)

We next use the small parameter method given by Poincaré (see [Poincaré, 1892]).
Suppose that (2.1.7) has the following solution of convergent power series

r = r̃(θ, h) =
∞∑

k=1

νk(θ)hk, (2.1.9)
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satisfying the initial condition r|θ=0 = h, where h is sufficiently small and

ν1(0) = 1, νk(0) = 0, k = 2, 3, · · · . (2.1.10)

Substituting (2.1.9)) into (2.1.7) and equating coefficients of the same powers of
h, it follows that

ν�
1(θ) = R0(θ)ν1(θ),

ν�
2(θ) = R0(θ)ν2(θ) + R1(θ)ν2

1 (θ),

· · · · · ·
ν�

m(θ) = R0(θ)Ω1,m(θ) + R1(θ)Ω2,m(θ) + · · · + Rm−1(θ)Ωm,m(θ),

· · · · · · (2.1.11)

where Ωk,m(θ) is given by

Ωk,m(θ) =
∑

j1+j2+···+jk=m

m!
j1!j2! · · · jk!

νj1(θ)νj2 (θ) · · · νjk
(θ). (2.1.12)

Particularly,
Ω1,m(θ) = νm(θ), Ωm,m(θ) = νm

1 (θ). (2.1.13)

Thus, (2.1.10) and (2.1.11) follow that

ν1(θ) = e
∫

θ
0 R0(ϕ)dϕ,

· · · · · ·
νm(θ) = ν1(θ)

∫ θ

0

R1(ϕ)Ω2,m(ϕ) + · · · + Rm−1(ϕ)Ωm,m(ϕ)
ν1(ϕ)

dϕ,

· · · · · · (2.1.14)

We see from R0(θ + π) = R0(θ), and (2.1.14) that

Lemma 2.1.1. For equation (2.1.7), we have

ν2
1 (π) = ν1(2π). (2.1.15)

For system (2.1.1), if δ = 0, then (2.1.14) becomes

ν1(θ) = 1,

νm(θ) =
∫ θ

0

[R1(ϕ)Ω2,m(ϕ) + · · · + Rm−1(ϕ)Ωm,m(ϕ)] dϕ,

m = 1, 2, · · · . (2.1.16)

Thus, we have
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Lemma 2.1.2. For system (2.1.1), if δ = 0, then all νk(θ) are polynomials of
θ, sin θ and cos θ, whose coefficients are polynomials of Aαβ , Bαβ. Particularly, for
all k, νk(π), νk(2π) are polynomials of Aαβ , Bαβ.

Lemma 2.1.3. For a sufficiently small h, we have

−r̃(θ + π, h) ≡ r̃(θ,−r̃(π, h)). (2.1.17)

Proof. The condition (2.1.8) follows that under the transformations ρ = −r, ω =
θ + π, (2.1.7) is invariant, i.e.,

dρ

dω
= ρ

∞∑
k=0

Rk(ω)ρk = R(ρ, ω). (2.1.18)

Therefore, a solution of (2.1.18) satisfying the initial condition ρ|ω=0 = h is ρ =
r̃(ω, h), i.e., r = −r̃(θ+π, h) is one solution of (2.1.7) satisfying the initial condition
r|θ=0 = −r̃(π, h). On the other hand, r = r̃(θ,−r̃(π, h)) is also a solution of (2.1.7)
satisfying the same initial condition. By the uniqueness of solution, (2.1.17) holds.

Similarly, the following conclusion holds.

Lemma 2.1.4. For a sufficiently small h, we have

r̃(θ + 2π, h) ≡ r̃(θ, r̃(2π, h)). (2.1.19)

In order to study the stability of the zero solution of (2.1.7), Poincaré introduced
the following successor function:

Δ(h) = r̃(2π, h) − h = [ν1(2π) − 1]h +
∞∑

k=2

νk(2π)hk, (2.1.20)

where r̃(2π, h) is called Poincaré return map.
The following theorem is given by [Liu Y.R., 2001].

Theorem 2.1.1. For any positive integer m and ν2m(2π) given by (2.1.20), we
have

[1 + ν1(π)]ν2m(2π) = ζ(0)
m [ν1(2π) − 1] +

m−1∑
k=1

ζ(k)
m ν2k+1(2π). (2.1.21)

where for all k, k = 1, · · · , m−1, ζ
(k)
m are polynomials of ν1(π), ν2(π), · · · , ν2m(π),

ν1(2π), ν2(2π), · · · , ν2m(2π) with rational coefficients.
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Proof. Taking θ = 2π in (2.1.17) and θ = π in (2.1.19), we have

r̃(π, r̃(2π, h)) + r̃(2π,−r̃(π, h)) ≡ 0. (2.1.22)

We see from (2.1.9) and (2.1.23) that

∞∑
k=1

[νk(π)r̃k(2π, h) + (−1)k νk(2π)r̃k(π, h)] ≡ 0. (2.1.23)

It can be written as the power series of h, for which the coefficient of the term h2m

satisfies
2m∑
k=1

[νk(π)Ωk,2m(2π) + (−1)k νk(2π)Ωk,2m(π)] = 0. (2.1.24)

Therefore, we have
[1 + ν1(π)]ν2m(2π) = G1 + G2, (2.1.25)

where

G1 = −[ν2m
1 (π) − 1]ν2m(2π) − [ν2m

1 (2π) − ν1(2π)]ν2m(π), (2.1.26)

G2 = −
2m−1∑
k=2

[νk(π)Ωk,2m(2π) + (−1)k νk(2π)Ωk,2m(π)]. (2.1.27)

According to (2.1.26) and Lemma 2.1.1, G1 has the factor ν1(2π)− 1. Hence, we
have from (2.1.25),(2.1.27) and (2.1.12)that

[1 + ν1(π)]ν2m(2π) = ξ(0)
m [ν1(2π) − 1] +

2m−1∑
k=2

ξ(k)
m νk(2π), (2.1.28)

where all ξ
(k)
m are polynomials of ν1(π), ν2(π), · · · , ν2m(π), ν1(2π), ν2(2π), · · · ,

ν2m(2π) with rational coefficients. By using the mathematical induction, we obtain

[1 + ν1(π)]mν2m(2π) = η(0)
m [ν1(2π) − 1] +

m−1∑
k=1

η(k)
m ν2k+1(2π), (2.1.29)

where all η
(k)
m are polynomials in ν1(π), ν2(π), · · · , ν2m(π), ν1(2π), ν2(2π), · · · ,

ν2m(2π) with rational coefficients. Denote that

(1 + x)m = 2m−1(1 + x) + (x2 − 1)f(x). (2.1.30)

Then f(x) is a polynomial of x with rational coefficients. By using (2.1.30) and
Lemma 2.1.1, we have

[1 + ν1(π)]m = 2m−1[1 + ν1(π)] + [ν1(2π) − 1]f(ν1(π)). (2.1.31)

Thus, (2.1.29) and (2.1.31) follow the conclusion of Theorem 2.1.1.



74 Chapter 2 Focal Values, Saddle Values and Singular Point Values

This theorem is important in the studies of the properties of successor function
and focal values as well as in the discussion of the multiple Hopf bifurcation of limit
cycles.

Theorem 2.1.1 has the following corollary.

Corollary 2.1.1. If ν1(2π) = 1, then, the first positive integer k satisfying
νk(2 π) �= 0 is an odd number.

Corollary 2.1.1 and the definition of Poincaré successor function (2.1.20) give
rise to the following result.

Theorem 2.1.2. Consider equation (2.1.7).
(1) If ν1(2π) < 1 (> 1), then the zero solution r = 0 is stable (unstable).
(2) If ν1(2π) = 1 and there exists an integer k > 1, such that ν2(2π) = ν3(2π) =

· · · = ν2k(2π) = 0 and ν2k+1(2π) �= 0, then when ν2k+1(2π) < 0 (> 0), the zero
solution r = 0 is stable (unstable).

(3) If ν1(2π) = 1 and all positive integers k, we have ν2k+1(2π) = 0, then for
a sufficiently small h , all solutions satisfying initial condition r|θ=0 = h are 2π-
periodical solutions.

Definition 2.1.1. Consider system (2.1.1).
(1) If ν1(2π) �= 1, then the origin is called rough focus.
(2) If ν1(2π) = 1 and there exists a positive integer k, such that ν2(2π) =

ν3(2π) = · · · = ν2k(2π) = 0 and ν2k+1(2π) �= 0, then the origin is called the k-order
weak focus, ν2k+1(2π) is called k−th focal value.

(3) If ν1(2π) = 1 and for all positive integers k, we have ν2k+1(2π) = 0, then the
origin is called a center.

2.2 Poincaré Formal Series and Algebraic Equivalence

When δ = 0, systems (2.1.1) have the following forms

dx

dt
= −y +

∞∑
k=1

Xk(x, y) = −y +
∞∑

α+β=2

Aαβxαyβ = X(x, y),

dy

dt
= x +

∞∑
k=1

Yk(x, y) = x +
∞∑

α+β=2

Bαβxαyβ = Y (x, y), (2.2.1)

where Xk(x, y), Yk(x, y) are given by (2.1.2).

Definition 2.2.1. Let λ1, λ2, · · · , λm, and λ̃m, be polynomials with respect to
Aαβ

�s and Bαβ
�s. If for a positive integer m, there exist polynomials ξ

(m)
1 , ξ

(m)
2 , · · · ,

ξ
(m)
m−1, with respect to Aαβ

�s and Bαβ
�s, such that

λm = λ̃m + (ξ(m)
1 λ1 + ξ

(m)
2 λ2 + · · · + ξ

(m)
m−1λm−1), (2.2.2)
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then, we say that λm is algebraic equivalent to λ̃m, written by λm ∼ λ̃m. Further-
more, if for any positive integer m, we have λm ∼ λ̃m, then we say that sequences
of functions {λm} is algebraic equivalent to {λ̃m}, written as {λm} ∼ {λ̃m}.

Remark 2.2.1. It is easy to see from Definition 2.2.1 that the following conclu-
sions hold:

(1)The algebraic equivalent relationship of the sequences of functions is self-
reciprocal, symmetric and transmissible.

(2)If for some positive integer m, λm ∼ λ̃m, then, when λ1 = λ2 = · · · = λm−1 =
0, we have λm = λ̃m.

(3)The relationship λ1 ∼ λ̃1 implies that λ1 = λ̃1.

Definition 2.2.2. Suppose that

G(h) = 1 +
∞∑

k=1

ckhk (2.2.3)

is a formal power series of h, where for any k, ck is a polynomial with respect to
Aαβ

�s and Bαβ
�s, then G(h) is called a unit formal power series of h. In addition, if

G(h) is a unit formal power series, and G(h) has non-zero convergent radius, then
G(h) is called a unit power series.

Theorem 2.2.1. Let λm and λ̃m be polynomials with respect to Aαβ
�s and Bαβ

�s,
Gm(h) and G̃m(h) be unit formal power series of h, m = 1, 2, · · · . If

∞∑
m=1

λmhmGm(h) =
∞∑

m=1

λ̃mhmG̃m(h), (2.2.4)

then {λm} ∼ {λ̃m}.
Proof. For any positive integer m, comparing the coefficients of hm at the right-
hand side and the left-hand side of (2.2.4), we then have the conclusion of this
theorem.

By using Lemma 2.1.2 and Theorem 2.1.1, we have the following conclusion.

Theorem 2.2.2. For system (2.2.1), we have

ν2m(2π) ∼ 0, m = 1, 2, · · · . (2.2.5)

Moreover, the equivalence relations ν2m+1(2π) ∼ ν̃2m+1 hold if and only if for any
positive integer m, there exist η1, η2, · · · , ηm−1, such that

ν2m+1(2π) =
m−1∑
k=1

ηkν2k+1(2π) + ν̃2m+1, (2.2.6)

where all ηk are polynomials of Aαβ
�s,Bαβ

�s.
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We next introduce Poincaré’s formal series method.

Theorem 2.2.3. For system (2.2.1), one can construct successively a formal
power series

F (x, y) =
∞∑

k=2

Fk(x, y), (2.2.7)

where Fk(x, y) is a homogeneous polynomial of order k of x, y and F2(x, y) = x2+y2,

such that
dF

dt
=

∞∑
m=1

V2m+1(x2 + y2)m+1. (2.2.8)

Definition 2.2.3. For any positive integer m, V2m+1 is called the m-th Liapunov

constant of system (2.2.1).

Remark 2.2.2. We do not consider the convergence for the formal power se-
ries. When we realize some operations such as addition, subtraction, multiplication,
division, differentiate and integration on a formal series, we only deal with its coef-
ficients, do not consider its convergence. Such operation is called formal operation.

It is clear that for a given system (2.2.1), all ν2k+1(2π) can be uniquely deter-
mined. But the coefficients of formal series F in (2.2.7) are not unique. In fact,
for any positive integer m, when F2, F3, · · · , F2m−1 have been determined, the
coefficient of one term of F2m can be arbitrarily chosen. So that, this value will
effect the latter Liapunov constants.

Each time when the first nonzero Liapunov constant is determined for the given
system, it seems that we have solved the center-focus problem. But when we study
the multiple Hopf bifurcation of limit cycles from a weak focus, only considering the
first nonzero Liapunov constant is not enough. It is necessary to investigate the
zero roots and their distributions of the Poincaré successor function.

We notice that the relationship between the focal values and the Liapunov con-
stants was studied in [Gobber etc, 1979] and the algebraic equivalent relation be-
tween the Liapunov constants and the focal values was proved in [Liu Y.R., 2001].

[Liu Y.R., 2001] proved

Theorem 2.2.4. For system (2.2.1), we have

{V2m+1} ∼
{

1
π

ν2m+1(2π)
}

. (2.2.9)

Proof. By using the polar coordinate to F given by Theorem 2.2.3, we have

F̃ (θ) = F (r̃(θ, h) cos θ, r̃(θ, h) sin θ) =
∞∑

k=2

Fk(cos θ, sin θ)r̃k(θ, h). (2.2.10)
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Thus, we obtain

ΔF̃ = F̃ (2π) − F̃ (0) =
∞∑

k=2

Fk(1, 0)[r̃k(2π, h) − hk]

=2h[r̃(2π, h) − h]G(h) = 2h

∞∑
k=2

vk(2π)hkG(h), (2.2.11)

where G(h) is a unit formal series of h.
On the other hand, (2.1.4) and (2.2.8)) can be transformed into

ΔF̃ =
∫ 2π

0

dF

dt

dt

dθ
dθ

=
∫ 2π

0

V2k+1 r̃
2k+2(θ, h)dθ

1 +
∞∑

k=1

ψk+2(θ)r̃k(θ, h)

=2π

∞∑
k=2

V2k+1h
2k+2Gk(h), (2.2.12)

where for any positive integer k,

Gk(h) =
1

2πh2k+2

∫ 2π

0

r̃2k+2(θ, h)dθ

1 +
∞∑

k=1

ψk+2(θ)r̃k(θ, h)

(2.2.13)

is a unit formal series of h. From (2.2.11) and (2.2.12). we have

h

∞∑
k=2

vk(2π)hkG(h) = π

∞∑
k=2

V2k+1h
2k+2Gk(h). (2.2.14)

From (2.2.14), Theorem 2.2.1 and Theorem 2.2.2, we then have the conclusion of
this theorem.

Theorem 2.2.4 has important application in the study of successor function and
focal value as well as in that of multiple Hopf bifurcations of limit cycles created by
higher-order weak focus.

Theorem 2.2.5. Let

H2m+2(x, y) = (x2 + y2)m+1 + h.o.t., m = 1, 2, · · · , (2.2.15)

be given formal series of x and y, which coefficients be all polynomials with respect
to Aαβ

�s and Bαβ
�s. For system (2.2.1), one can construct successively a formal

power series F = x2 + y2 + h.o.t., such that

dF

dt
=

∞∑
k=1

V �
2m+1H2m+2(x, y). (2.2.16)
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Furthermore, we have

{V �
2m+1} ∼

{
1
π

ν2m+1(2π)
}

. (2.2.17)

The prove of (2.2.17) is similar to Theorem 2.2.4.
Form Theorem 1.8.13, there exist two formal series of x, y,

u = x + h.o.t., v = y + h.o.t., (2.2.18)

and by means of the transformations (2.2.18), system (2.2.1) can be transformed
into the following normal form

du

dt
= −v +

1
2

∞∑
k=1

(σku − τkv)(u2 + v2)k = U(u, v),

dv

dt
= u +

1
2

∞∑
k=1

(τku + σkv)(u2 + v2)k = V (u, v). (2.2.19)

Let

H = u2 + v2, (2.2.20)

then
dH

dt
=

∞∑
m=1

σmHm+1. (2.2.21)

From Theorem 2.2.5, we have

Theorem 2.2.6. {σm} ∼ {V2m+1} ∼
{

1
π

ν2m+1(2π)
}

. (2.2.22)

2.3 Linear Recursive Formulas for the Computation of

Singular Point Values

In this section, we assume that Aαβ
�s and Bαβ

�s are all complex coefficients, t is a
complex variable. By using the transformations

z = x + iy, w = x − iy, T = it, i =
√−1, (2.3.1)

system (2.2.1) is transformed to system (1.8.4), i.e.,

dz

dT
= z +

∞∑
α+β=2

aαβzαwβ = Z(z, w),

dw

dT
= −w −

∞∑
α+β=2

bαβwαzβ = −W (z, w). (2.3.2)
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where aαβ
�s and bαβ

�s are all complex coefficients, T is a complex variable.
For system (2.3.2), the singular point values {μm} of the origin is defined in

Definition 1.8.2. From Theorem 1.8.5, Theorem 1.8.13 and Theorem 2.2.6, we have

Theorem 2.3.1. For system (2.2.1) and (2.3.2), we have

{V2m+1} ∼ {iμm}, {ν2m+1(2π)} ∼ {iπμm}. (2.3.3)

From Theorem 2.2.3, we have

Theorem 2.3.2. For system (2.3.1), one can determine successively a formal
series

F (z, w) =
∞∑

α+β=2

cαβzαwβ = zw + h.o.t., (2.3.4)

where c11 = 1, c20 = c02 = 0, such that

dF

dT
=

∞∑
m=1

λm(zw)m+1, (2.3.5)

and {λm} ∼ {μm}.

Theorem 2.3.3. In (2.3.4) and (2.3.5), let c11 = 1, c20 = c02 = 0, ck,k = 0,
k = 2, 3, · · · , then when α + β � 3 and α �= β, cαβ and λm have the recursive
formulas given by

cαβ =
1

β − α

α+β+2∑
k+j=3

[(α − k + 1)ak,j−1 − (β − j + 1)bj,k−1]cα−k+1,β−j+1, (2.3.6)

and

λm =
2m+4∑
k+j=3

[(m − k + 2)ak,j−1 − (m − j + 2)bj,k−1]cm−k+2,m−j+2, (2.3.7)

where cαβ = 0 when α < 0 or β < 0.

Proof. Denote

Z(z, w)= z +
∞∑

k+j=3

ak,j−1z
kwj−1,

W (z, w)=w +
∞∑

k+j=3

bj,k−1z
k−1wj , (2.3.8)



80 Chapter 2 Focal Values, Saddle Values and Singular Point Values

then

dF

dT
=

∞∑
α+β=2

[αcαβzα−1wβZ − βcαβzαwβ−1W ]

= (α − β)
∞∑

α+β=3

cαβzαwβ

+
∞∑

α+β=2

∞∑
k+j=3

(αak,j−1 − βbj,k−1)cαβzα+k−1wβ+j−1

=
∞∑

α+β=3

[(α − β)cαβ + Δαβ ]zαwβ , (2.3.9)

where

Δαβ =
α+β+2∑
k+j=3

[(α − k + 1)ak,j−1 − (β − j + 1)bj,k−1]cα−k+1,β−j+1. (2.3.10)

Thus, (2.3.9) and (2.3.10) follow the formulas (2.3.6) and (2.3.7).

From Theorem 2.2.5, we have

Theorem 2.3.4. Let

H2m+2(z, w) = (zw)m+1 + h.o.t., m = 1, 2, · · · , (2.3.11)

be given formal series of z and w, which coefficients be all polynomials with respect
to aαβ

�s and bαβ
�s. For system (2.3.2), one can construct successively a formal

power series F = zw + h.o.t., such that

dF

dt
=

∞∑
k=1

λ�
mH2m+2(z, w). (2.3.12)

Furthermore, we have
{λ�

m} ∼ {μm}. (2.3.13)

Theorem 2.3.5. For system (2.3.2), one can derived successively the formal
series

M(z, w) =
∞∑

α+β=0

cαβzαwβ , (2.3.14)

with c00 = 1, such that

∂(MZ)
∂z

− ∂(MW )
∂w

=
∞∑

m=1

(m + 1)λ̃m(zw)m. (2.3.15)
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To calculate cαβ and λ̃m, we have

Theorem 2.3.6. In (2.3.14) and (2.3.15), let c00 = 1, ckk = 0, k = 1, 2, · · · ,

then when α + β � 1 and α �= β, cαβ and λ̃m have the recursive formulas given by

cα,β =
1

β − α

α+β+2∑
k+j=3

[(α + 1)ak,j−1 − (β + 1)bj,k−1]cα−k+1,β−j+1 (2.3.16)

and

λ̃m =
2m+2∑
k+j=3

(ak,j−1 − bj,k−1)cm−k+1,m−j+1, (2.3.17)

where cαβ = 0 when α < 0 or β < 0.

Proof. We see from (2.3.8) that

∂(MZ)
∂z

− ∂(MW )
∂w

=
∂M

∂z
Z − ∂M

∂w
W +

(
∂M

∂z
− ∂M

∂w

)
M

=
∞∑

α+β=1

(α − β)cαβzαwβ

+
∞∑

α+β=0

∞∑
k+j=3

[(α + k)ak,j−1 − (β + j)bj,k−1]cαβzα+k−1wβ+j−1

=
∞∑

α+β=1

(α − β)cαβzαwβ

+
∞∑

α+β=1

α+β+2∑
k+j=3

[(α + 1)ak,j−1 − (β + 1)bj,k−1]cα−k+1,β−j+1z
αwβ . (2.3.18)

Hence, (2.3.15) and (2.3.18) implies the conclusion of this theorem.

What is the relationship between {λ̃m} and {μm}? The following theorem answer
this problem.

Theorem 2.3.7. For {λ̃m} defined by Theorem 2.3.5, we have

{λ̃m} ∼ {μm}. (2.3.19)

Proof. Let

Z∗ = MZ − 1
2

∞∑
m=1

λ̃mzm+1wm,

W ∗ = MW +
1
2

∞∑
m=1

λ̃mzmwm+1. (2.3.20)
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From (2.3.15) and (2.3.20), we have

∂Z∗

∂z
− ∂W ∗

∂w
= 0. (2.3.21)

From (2.3.21), there exist a formal power series F (z, w) = zw + h.o.t., such that

∂F

∂z
= W ∗ = MW +

1
2

∞∑
m=1

λ̃mzmwm+1,

∂F

∂w
= Z∗ = MZ − 1

2

∞∑
m=1

λ̃mzm+1wm. (2.3.22)

From (2.3.22), For system (2.3.2) we have

dF

dT
=

∂F

∂z
Z − ∂F

∂w
W =

∞∑
m=1

λ̃mH2m+2(z, w), (2.3.23)

where

H2m+2(z, w) =
1
2
(zw)m(wZ + zW ) = (zw)m+1 + h.o.t.. (2.3.24)

(2.3.24) and Theorem 2.2.5 implies the conclusion of this theorem.

We see from the above discussion that when we use the recursive formulas given
by Theorem 2.3.3 and Theorem 2.3.6 to compute singular point values of the origin
of system (2.3.2) in a computer, we only need to perform finite many arithmetic
operations, this is, plus, minus, multiply and division, to the coefficients of the
system. Such calculation is symbolic and it has no error.

In principle, according to the recursive formulas given by Theorem 2.3.3 and
Theorem 2.3.6 and using computer algebra systems such as Mathematica, Maple we
can compute singular point values of the origin of system (2.3.2). Unfortunately, the
simplification of singular values is a very difficult problem.

For an example, we use the recursive formulas of Theorem 2.3.6 and computer
algebra system such as Mathematica to calculate the singular point values of the
origin for the cubic system

dz

dT
= z + a20z

2 + a11zw + a02w
2 + a30z

3 + a21z
2w + a12zw2 + a03w

3,

dw

dT
= −w − b20w

2 − b11wz − b02z
2 − b30w

3 − b21w
2z − b12wz2 − b03z

3. (2.3.25)

We found that the first eight singular point values have the terms shown in the
following table.
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µk µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

terms 4 42 306 1482 5694 18658 54256 143770 overflow

This table tell us that for the computation of the singular point values, to find a
method for the simplification of μk under the conditions μ1 = μ2 = · · · = μk−1 = 0,
it is a key step.

2.4 The Algebraic Construction of Singular Values

We now introduce the work of algebraic construction of singular values (see [Liu
Y.R. etc, 1989]).

Consider the two parameter transformation

z = ρeiφz̃, w = ρe−iφw̃. (2.4.1)

where z̃, w̃ are new space variables, ρ, φ are complex parameters, ρ �= 0.

Denote that z = x+iy, w = x−iy, z̃ = x̃+iỹ, w̃ = x̃−iỹ. Then, (2.4.1) becomes

x = ρ(x̃ cosφ − ỹ sin φ),

y = ρ(x̃ sinφ + ỹ cosφ). (2.4.2)

In the case of real variables and real parameters, (2.4.2) just is a composite trans-
formation of a similarity and a rotation.

Definition 2.4.1. We say that the transformation (2.4.1) is a generalized rota-
tion and similar transformation.

Under the transformation (2.4.1), system (2.3.2) is changed to

dz̃

dT
= z̃ +

∞∑
α+β=2

ãαβ z̃αw̃β ,

dw̃

dT
= −w̃ −

∞∑
α+β=2

b̃αβw̃αz̃β, (2.4.3)

where

ãαβ = aαβρα+β−1ei(α−β−1)φ,

b̃αβ = bαβρα+β−1e−i(α−β−1)φ. (2.4.4)

For convenience, let f = f(aαβ, bαβ) be a polynomial with respect to finite many
coefficients of system (2.3.2) and f̃ = f(ãαβ, b̃αβ), f∗ = f(a∗

αβ , b∗αβ), where a∗
αβ =

bαβ , b∗αβ = aαβ , α � 0, β � 0, α + β � 2.



84 Chapter 2 Focal Values, Saddle Values and Singular Point Values

Definition 2.4.2. Suppose that there exist constants λ, σ, such that f̃ = ρλeiσϑf ,
we say that λ is a similar exponent and σ a rotation exponent of system (2.3.2) under
the transformation (2.4.2), which are denoted by Is(f) = λ and Ir(f) = σ.

From (2.4.4) and Definition 2.4.2, we have

Is(aαβ) = α + β − 1, Is(bαβ) = α + β − 1,

Ir(aαβ) = α − β − 1, Ir(bαβ) = −(α − β − 1). (2.4.5)

Definition 2.4.3. For system (2.3.2), suppose that f = f(aαβ , bαβ) is a polyno-
mial of aαβ

�s, bαβ
�s,

(1) If f̃ = ρ2kf , then f is called a k-order generalized rotation invariant under
(2.4.2);

(2) If f is a generalized rotation invariant,and f is a monomial of aαβ
�s, bαβ

�s,
then f is called a monomial generalized rotation invariant;

(3) If f is a monomial generalized rotation invariant, and it can not be expressed
as a product of two monomial generalized rotation invariant, then f is called a
elementary generalized rotation invariant.

Definition 2.4.4. A polynomial f = f(aαβ , bαβ) of system (2.3.2) is called self-
symmetry, if f∗ = f . It is called self-antisymmetry, if f∗ = −f .

Theorem 2.4.1. Let f1 = f1(aαβ , bαβ) and f2 = f2(aαβ , bαβ) be two polynomial
with respect to finite many coefficients of system (2.3.2). If f̃1 = ρλ

1eiσ1ϑf1, f̃2 =
ρλ
2eiσ2ϑf2, then

Is(f1f2) = Is(f1) + Is(f2), Ir(f1f2) = Ir(f1) + Ir(f2). (2.4.6)

Corollary 2.4.1. If f1 and f2 are two generalized rotation invariants, then their
product f1f2 is also an generalized rotation invariant and Is(f1f2) = Is(f1)+Is(f2).

We see from (2.4.3) that

Theorem 2.4.2. A monomial of the coefficients of (2.3.2) given by

g =
n∏

j=1

aαj ,βj

m∏
k=1

bγk,δk
(2.4.7)

is a N -order generalized rotation invariant under (2.4.2) if and only if

Is(g) =
n∑

j=1

(αj + βj − 1) +
m∑

k=1

(γk + δk − 1) = 2N,

Ir(g) =
n∑

j=1

(αj − βj − 1) −
m∑

k=1

(γk − δk − 1) = 0. (2.4.8)
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It is easy to see that N is a positive integer when (2.4.8) holds. From Theorem
2.4.2, we have

Theorem 2.4.3. If a monomial g = g(aαβ , bαβ) is a k-order generalized rotation
invariant (or elementary generalized rotation invariant) of (2.3.2), then so is g∗.

We see from §1.8 that by the standard normal transformation

ξ = z +
∞∑

k+j=2

ckjz
kwj = ξ(z, w), η = w +

∞∑
k+j=2

dkjw
kzj = η(z, w), (2.4.9)

system (2.3.2) can become the standard normal form

dξ

dT
= ξ + ξ

∞∑
k=1

pk(ξη)k,

dη

dT
= −η − η

∞∑
k=1

qk(ξη)k. (2.4.10)

Theorem 2.4.4. All pk and qk given by (2.4.10) are k-order generalized rotation
invariants of (2.3.2), k = 1, 2, · · · .

Proof. For the variables ξ, η of the formal series given by (2.4.9), we denote that

ξ̃ =
1
ρ
e−iφξ(ρeiφz̃, ρe−iφw̃),

η̃ =
1
ρ
eiφη(ρeiφz̃, ρe−iφw̃). (2.4.11)

By means of transformation (2.4.11), system (2.4.3) can be changed into the standard
normal form

dξ̃

dT
= ξ̃ +

∞∑
k=1

ρ2kpkξ̃k+1η̃k,

dη̃

dT
= −η̃ −

∞∑
k=1

ρ2kqkη̃k+1ξ̃k. (2.4.12)

We have from (2.4.12) that

p̃k = ρ2kpk, q̃k = ρ2kqk, k = 1, 2, · · · . (2.4.13)

It follows the conclusion of this theorem.

Theorem 2.4.5. For system (2.3.2), we have

p∗k = qk, q∗k = pk, k = 1, 2, · · · . (2.4.14)
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Proof. By using the transformation

z = w∗, w = z∗, T = −T ∗, (2.4.15)

system (2.3.2) becomes

dz∗

dT ∗ = z∗ +
∞∑

α+β=2

a∗
αβ(z∗)α(w∗)β ,

dw∗

dT ∗ = −w∗ −
∞∑

α+β=2

b∗αβ(w∗)α(z∗)β . (2.4.16)

The transformation

ξ∗ = η(w∗, z∗), η∗ = ξ(w∗, z∗) (2.4.17)

makes system (2.4.16) have the following standard normal form

dξ∗

dT ∗ = ξ∗ +
∞∑

k=1

qk(ξ∗)k+1(η∗)k,

dη∗

dT ∗ = −η∗ −
∞∑

k=1

pk(η∗)k+1(ξ∗)k. (2.4.18)

Clearly, (2.4.14) holds.

We see from Theorem 2.4.4 and Theorem 2.4.5 that

Theorem 2.4.6. For any positive integer k, μk is a k-order generalized rotation
invariant and the anti-symmetry relation μ∗

k = −μ∗
k holds. τk is also a k-order

generalized rotation invariant having self-symmetry relation τ∗
k = τk.

Theorem 2.4.6 implies the following conclusions.

Theorem 2.4.7 (The construction theorem of singular point values).
The k-order singular point value μk of (2.3.2) at the origin can be represented as
a linear combination of k-order monomial generalized rotation invariants and their
antisymmetry forms, i.e.,

μk =
N∑

j=1

γkj(gkj − g∗kj), k = 1, 2, · · · , (2.4.19)

where N is a positive integer, and γkj is a rational number, gkj and g∗kj are k-order
monomial generalized rotation invariants of (2.3.2).
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Theorem 2.4.8 (The construction theorem of period constant). The k-
order period constant τk of (2.3.2) at the origin can be represented as a linear combi-
nation of k-order monomial generalized rotation invariants and their self-symmetry
forms, i.e.,

τk =
N∑

j=1

γ�
kj(gkj + g∗kj), k = 1, 2, · · · , (2.4.20)

where N is a positive integer and γ�
kj is a rational number, gkj and g∗kj are k-order

monomial generalized rotation invariants of (2.3.2).

Theorem 2.4.9 (The extended symmetric principle). Let g be an elemen-
tary generalized rotation invariant of (2.3.2). If for all g the symmetric condition
g = g∗ is satisfied, then the origin of (2.3.2) is an complex center. Namely, all
singular point values of the origin are zero.

Remark 2.4.1. The symmetry principle of a real differential system is a special
case of this extended symmetric principle. In fact, suppose that real vector field
(2.2.1) has a symmetry axis passing through the origin (without loss the generality,
we assume that it is the x-axis). Then, (2.2.1) satisfies

X(x,−y) = −X(x, y), Y (x,−y) = Y (x, y). (2.4.21)

It implies that for the associated system of (2.2.1), the relationship Z(w, z) =
W (z, w) holds. Hence, for all pairs (α, β) , we have aαβ = bαβ. It gives rise to
the condition of the extended symmetric principle.

For example, we consider the following complex analytic system

dz

dT
= z + a11zw +

∞∑
k=2

fk(z)wk,

dw

dT
= −w −

∞∑
k=2

hk(z)wk (2.4.22)

and its symmetry system

dz

dT
= z +

∞∑
k=2

hk(w)zk,

dw

dT
= −w − b11wz −

∞∑
k=2

fk(w)zk, (2.4.23)

where fk, hk are two polynomials and

deg(fk) � k, deg(gk) � k − 2, k = 2, 3, · · · . (2.4.24)

It is easy to show that the origin of (2.4.22) and (2.4.23) is a complex center
(see [Liu Y.R. etc, 1989]). The following is a new result.
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Theorem 2.4.10. There exists an analytic change of the form (2.4.9), such that
system (2.4.22) and (2.4.23) becomes a linear system

dξ

dT
= ξ,

dη

dT
= −η. (2.4.25)

Proof. If (2.4.24) holds, the rotation exponent of any coefficient of a nonlinear term
of (2.4.22) is negative, while for (2.4.23) it is positive. We have from Theorem 1.5.2
that any generalized rotation invariant of (2.4.22) and (2.4.23) is zero. Hence, for
systems (2.4.22) and (2.4.23), Theorem 2.4.2 implies that pk = qk = 0, k = 1, 2, · · · ,
which follows the conclusion of this theorem.

Remark 2.4.2. By using Theorem 2.4.1 and the mathematical induction method,
we can easily prove the following conclusion: for cαβ and λm, λ̃m in Theorem 2.3.3
and Theorem 2.3.6, we have

Is(cαβ) = α + β, Ir(cαβ) = α − β, cβα = c∗αβ,

Is(λm) = 2m, Ir(λm) = 0,

Is(λ̃m) = 2m, Ir(λ̃m) = 0. (2.4.26)

2.5 Elementary Generalized Rotation Invariants of the Cubic

Systems

In this section, we consider the complex second-order cubic polynomial differential
system

dz

dT
= z + a20z

2 + a11zw + a02w
2

+a30z
3 + a21z

2w + a12zw2 + a03w
3,

dw

dT
=−w − b20w

2 − b11wz − b02z
2

−b30w
3 − b21w

2z − b12wz2 − b03z
3. (2.5.1)

By using the theory mentioned in Section 2.4, we obtained (see [Liu Y.R. etc, 1989])

Theorem 2.5.1. System (2.5.1) has exactly 120 elementary generalized rotation
invariants, which are listed as follows:

Self-symmetry

order 1 a20b20, a11b11, a02b02.

order 2 a30b30, a12b12, a03b03.

(2.5.2)
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Asymmetry

order 1 a20a11, b20b11; a21, b21.

a30a12, b30b12; a2
20b30, b220a30;

a20b11b30, b20a11a30; b211b30, a2
11a30;

a2
20a12, b220b12; a20b11a12, b20a11b12;

b211a12, a2
11b12; a3

20a02, b320b02;

order 2 a2
20b11a02, b220a11b02; a20b211a02, b20a2

11b02;

b311a02, a3
11b02; a20a30a02, b20b30b02;

a20b12a02, b20a12b02; b11a30a02, a11b30b02;

b11b12a02, a11a12b02; a20b02a03, b20a02b03;

b11b02a03, a11a02b03.

a2
30a03, b230b03; a30b12a03, b30a12b03;

b212a03, a2
12b03; a2

30b20a02, b230a20b02;

a30b12b20a02, b30a12a20b02; b212b20a02, a2
12a20b02;

a2
30a11a02, b230b11b02; a30b12a11a02, b30a12b11b02;

b212a11a02, a2
12b11b02; a4

20a03, b420b03;

a3
20b11a03, b320a11b03; a2

20b211a03, b220a2
11b03;

a20b311a03, b20a3
11b03; b411a03, a4

11b03;

order 3 a20b30b03a02, b20a30a03b02; a20a12b03a02, b20b12a03b02;

b11b30b03a02, a11a30a03b02; b11a12b03a02, a11b12a03b02;

b30a03b202, a30b03a2
02; a12a03b202, b12b03a2

02;

b220a03b202, a2
20b03a2

02; b20a11a03b202, a20b11b03a2
02;

a2
11a03b202, b211b03a2

02; b220b30b03, a2
20a30a03;

b20a11b30b03, a20b11a30a03; a2
11b30b03, b211a30a03;

b220a12b03, a2
20b12a03; b20a11a12b03, a20b11b12a03;

a2
11b12a03, b211a12b03.

b20b302a2
03, a20a3

02b203; a11b302a2
03, b11a3

02b203;

a30b202a2
03, b30a2

02b203; b12b202a2
03, a12a2

02b203;
order 4

a3
30a2

02, b330b202; a2
30b12a2

02, b230a12b202;

a30b212a2
02, b30a2

12b202; b312a2
02, a3

12b202.

order 5 b402a3
03, a4

02b303.

(2.5.3)

Corollary 2.5.1. The quadratic system

dz

dT
= z + a20z

2 + a11zw + a02w
2,

dw

dT
= −w − b20w

2 − b11wz − b02z
2 (2.5.4)

has exactly 13 elementary generalized rotation invariants as follows :

a20b20, a11b11, a02b02, a20a11, b20b11,

a3
20a02, b3

20b02; a2
20b11a02, b2

20a11b02;

a20b
2
11a02, b20a

2
11b02; b3

11a02, a3
11b02.

(2.5.5)
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Corollary 2.5.2. The Z2-equivariant cubic system

dz

dT
= z + a30z

3 + a21z
2w + a12zw2 + a03w

3,

dw

dT
= −w − b30w

3 − b21w
2z − b12wz2 − b03z

3 (2.5.6)

has exactly 13 elementary generalized rotation invariants as follows

a30b30, a12b12, a03b03, a30a12, b30b12, a21 b21,

a2
30a03, b2

30b03, a30b12a03, b30a12b03, b2
12a03, a2

12b03. (2.5.7)

2.6 Singular Point Values and Integrability Condition of the

Quadratic Systems

For some concrete families of differential equations, the characterization of center and
finding and simplifying focal values (or saddle values) has extensively been studied
during the last decades.

[Liu Y.R. etc, 1989] studied the computation and simplification of singular point
va-lues for systems (2.5.4) and (2.5.6). We now introduce their study results.

Applying recursive formulas of Theorem 2.3.6, we can compute the singular point
values of the origin of system (2.5.4) and simplify them by using computer algebra
system. Mathematica and Maple are very good computation software.

Theorem 2.6.1. The first three singular point values at the origin of system
(2.5.4) are given as follows:

μ1 = b20b11 − a20a11,

μ2 ∼ −1
3

(2I1 + 3I2 − 2I3),

μ3 ∼ 5
8
(a11b11 − a02b02)(2I2 − I3), (2.6.1)

where

I0 = a3
20a02 − b3

20b02, I1 = a2
20b11a02 − b2

20a11b02,

I2 = a20b
2
11a02 − b20a

2
11b02, I3 = b3

11a02 − a3
11b02. (2.6.2)

Theorem 2.6.2. For quadratic system (2.5.4), the first three singular point va-
lues are all zero if and only if one of the following four conditions holds:
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C1 : 2a20 − b11 = 0, 2b20 − a11 = 0;

C2 : a20a11 − b20b11 = 0, I0 = I1 = I2 = I3 = 0;

C3 : a11 = b11 = 0;

C4 :

{
b20 + 2a11 = a20 + 2b11 = 0, a02b02 = a11b11,

|b11| + |b02| �= 0, |a11| + |a02| �= 0.
(2.6.3)

Theorem 2.6.3. For system (2.5.4), we write that

f1 =1 + 2(a20z + b20w) + [(a2
20 + b20b02)z2

+3(a20b20 − a02b02)zw + (b2
20 + a20a02)w2]

+(a20b20 − a02b02)(b02z
3 + a20z

2w + b20zw2 + a02w
3),

f2 =2a11b11[1 − 3(b11z + a11w)]

+[3(b11z + a11w) − (a11z − a02w)(b11w − b02z)]

×[a11(b2
11 − a11b02)z + b11(a2

11 − a02b11)w],

f3 =1 − 2(b11z + a11w) − (a11b02z
2 − 2a11b11zw + a02b11w

2). (2.6.4)

Then,
(1) If Condition C1 in (2.6.3) holds, then system (2.5.4) is Hamiltonian.
(2) If Condition C2 in (2.6.3) holds, then the conditions of the extended symmet-

ric principle are satisfied.
(3) If Condition C3 in (2.6.3) holds, then there exists a integrating factor f−1

1 .
(4) If Condition C4 in (2.6.3) holds, then there exists a first integral f2

2f−3
3 .

From Theorem 2.6.1 ∼ Theorem 2.6.3, we have

Theorem 2.6.4. The origin of quadratic system (2.5.4) is a complex center if
and only if the first three singular point values are all zero.

Appendix

The computational course of the singular point values in Theorem 2.6.1 is given as
follows:

Let ckk = 0, k = 1, 2, · · · . We use the recursive formulas to do the computation.
The computational course of above singular point value is given as follows:

μ1 = b20b11 − a20a11,

μ2 =
1
3
(−24a2

11a
2
20−2a3

11b02−4a02a11a20b02+15a2
11a20b11−2a02a

2
20b11−3a02a20b

2
11

+2a02b
3
11+30a11a

2
20b20+3a2

11b02b20+4a02b02b11b20−15a11b
2
11b20+2a11b02b

2
20

−30a20b11b
2
20 + 24b2

11b
2
20).
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Let

k21 =
1
3
(24a11a20 + 4a02b02 − 15a11b11 − 30a20b20 + 24b11b20),

μ2 → μ2 − k21μ1,

then

μ2 =
1
3
(−2a3

11b02 − 2a02a
2
20b11 − 3a02a20b

2
11 + 2a02b

3
11 + 3a2

11b02b20 + 2a11b02b
2
20),

i.e.,

μ2 =
1
3
(−2I1 − 3I2 + 2I3),

μ3 =
1
72

(−7236a3
11a

3
20 − 696a02a11a

4
20 − 778a4

11a20b02 − 2250a02a
2
11a

2
20b02

−153a02a
3
11b

2
02 − 120a2

02a11a20b
2
02 + 8424a3

11a
2
20b11 − 614a02a11a

3
20b11

+381a4
11b02b11 + 1204a02a

2
11a20b02b11 − 108a2

02a
2
20b02b11 − 2628a3

11a20b
2
11

−159a02a11a
2
20b

2
11 − 252a2

02a20b02b
2
11 + 1082a02a11a20b

3
11 + 153a2

02b02b
3
11

−381a02a11b
4
11 + 15876a2

11a
3
20b20 + 2160a3

11a20b02b20 + 2504a02a11a
2
20b02b20

+252a02a
2
11b

2
02b20−15120a2

11a
2
20b11b20 +1452a02a

3
20b11b20−1082a3

11b02b11b20

+120a2
02b

2
02b11b20 + 482a02a

2
20b

2
11b20 − 1204a02a11b02b

2
11b20 + 2628a2

11b
3
11b20

−2160a02a20b
3
11b20 + 778a02b

4
11b20 − 9288a11a

3
20b

2
20 − 482a2

11a20b02b
2
20

+108a02a11b
2
02b

2
20+159a2

11b02b11b
2
20−2504a02a20b02b11b

2
20+15120a11a20b

2
11b

2
20

+2250a02b02b
2
11b

2
20 − 8424a11b

3
11b

2
20 − 1452a11a20b02b

3
20 + 9288a2

20b11b
3
20

+614a11b02b11b
3
20 − 15876a20b

2
11b

3
20 + 7236b3

11b
3
20 + 696b02b11b

4
20).

Let
k31 =

1
144

(14472a2
11a

2
20 +1392a02a

3
20 +290a3

11b02 +4500a02a11a20b02 +240a2
02b

2
02

−16848a2
11a20b11−38a02a

2
20b11−2408a02a11b02b11+5256a2

11b
2
11−909a02a20b

2
11

+290a02b
3
11 − 31752a11a

2
20b20 − 909a2

11b02b20 − 5008a02a20b02b20

+44712a11a20b11b20 + 4500a02b02b11b20 − 16848a11b
2
11b20 + 18576a2

20b
2
20

−38a11b02b
2
20 − 31752a20b11b

2
20 + 14472b2

11b
2
20 + 1392b02b

3
20),

k32 =
1
6
(211a11a20 + 36a02b02 − 112a11b11 − 252a20b20 + 211b11b20),

μ3 → μ3 − k31μ1 − k32μ2,

then
μ3 =

5
8
(−a02b02 + a11b11)(a3

11b02 + 2a02a20b
2
11 − a02b

3
11 − 2a2

11b02b20),

i.e.

μ3 =
5
8
(a11b11 − a02b02)(2I2 − I3)).
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2.7 Singular Point Values and Integrability Condition of the

Cubic Systems Having Homogeneous Nonlinearities

Theorem 2.7.1. The first five singular point values at the origin of system
(2.5.6) are given as follows:

μ1 = a21 − b21,

μ2 ∼ b30b12 − a30a12,

μ3 ∼ 1
8
(3I4 + 8I5 − 3I6),

μ4 ∼ 1
40

(a21 + b21)(9I4 − 6I5 + I6),

μ5 ∼ 1
60

(4a12b12 − a03b03)(9I4 − 6I5 + I6), (2.7.1)

where

I4 = a2
30a03 − b2

30b03,

I5 = a30b12a03 − b30a12b03,

I6 = b2
12a03 − a2

12b03. (2.7.2)

Theorem 2.7.2. For system (2.5.6), the first five singular point values are all
zero if and only if one of the following four conditions holds:

C1 : a21 = b21, 3a30 − b12 = 3b30 − a12 = 0;

C2 : a21 = b21, a30a12 = b30b12, I4 = I5 = I6 = 0;

C3 :

{
a21 = b21 = 0, a03b03 = 4a12b12,

a30 + 3b12 = b30 + 3a12 = 0.
(2.7.3)

Theorem 2.7.3. For system (2.5.6), we write that

f5 =1 − 6(b12z
2 + a12w

2)

+3(3b2
12z

4 − 2a12b03z
3w + 2a12b12z

2w2 − 2b12a03w
3z + 3a2

12w
4)

+
1
2
(2a12z − a03w)(2b12w − b03z)

×(b03z
4 − 2b12z

3w − 2a12w
3z + a03w

4). (2.7.4)

Then,
(1) If Condition C1 in (2.7.3) holds, then system (2.5.6) is Hamiltonian.
(2) If Condition C2 in (2.7.3) holds, then the conditions of the extended symmet-

ric principle are satisfied.
(3) If Condition C3 in (2.7.3) holds, then there exists a integrating factor f

−5/6
5 .
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From Theorem 2.7.1 ∼ Theorem 2.7.3, we have

Theorem 2.7.4. The origin of (2.5.6) is a complex center if and only if μ1 =
μ2 = μ3 = μ4 = μ5 = 0.

Appendix

The computational course of the singular point values in Theorem 2.7.1 is given as
follows:

μ1 = a21 − b21,

μ2 = −a12a30 + b12b30,

μ3 =
1
8
(28a12a21a30 + 3a03a

2
30 + 3a2

12b03 − 12a12a21b12 + 8a03a30b12 − 3a03b
2
12

−20a12a30b21 + 12a12b12b21 − 36a21a30b30 − 8a12b03b30 + 20a21b12b30

+36a30b21b30 − 28b12b21b30 − 3b03b
2
30).

Let

k31 =
3
2
(2a12a30 − a12b12 − 3a30b30 + 2b12b30),

k32 =
−1
2

(a21 + b21),

μ3 → μ3 − k31μ1 − k32μ2,

then

μ3 =
1
8
(3a03a

2
30 + 3a2

12b03 + 8a03a30b12 − 3a03b
2
12 − 8a12b03b30 − 3b03b

2
30),

i.e.

μ3 =
1
8
(3I4 + 8I5 − 3I6),

μ4 =
1
16

(−108a12a
2
21a30 −72a2

12a
2
30−81a03a21a

2
30 −13a2

12a21b03−24a03a12a30b03

+28a12a
2
21b12 + 32a2

12a30b12 + 24a03a21a30b12 + a03a21b
2
12 + 88a12a21a30b21

+75a03a
2
30b21 − a2

12b03b21 − 64a03a30b12b21 + 13a03b
2
12b21 + 4a12a30b

2
21

−28a12b12b
2
21 + 84a2

21a30b30 + 96a12a
2
30b30 + 64a12a21b03b30 − 4a2

21b12b30

+24a03b03b12b30−32a12b
2
12b30−24a12b03b21b30−88a21b12b21b30−84a30b

2
21b30

+108b12b
2
21b30 − 75a21b03b

2
30 − 96a30b12b

2
30 + 72b2

12b
2
30 + 81b03b21b

2
30).

Let

k41 =
1
8
(−52a12a21a30−39a03a

2
30−3a2

12b03 +14a12a21b12 +22a03a30b12−3a03b
2
12

−4a12a30b21 + 14a12b12b21 + 42a21a30b30 + 22a12b03b30 − 4a21b12b30

+42a30b21b30 − 52b12b21b30 − 39b03b
2
30),

k42 =
1
4
(a2

21 +18a12a30 +6a03b03 −8a12b12 +2a21b21 + b2
21−24a30b30 +18b12b30),

k43 =
−11
10

(a21 + b21),
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μ4 → μ4 − k41μ1 − k42μ2 − k43μ3,

then

μ4 =
−1
40

(a21+b21)(−9a03a
2
30+a2

12b03+6a03a30b12−a03b
2
12−6a12b03b30+9b03b

2
30),

i.e.

μ4 =
1
40

(a21 + b21)(9I4 − 6I5 + I6),

μ5 =
1

192
(4608a12a

3
21a30 + 7104a2

12a21a
2
30 + 2961a03a

2
21a

2
30 + 1482a03a12a

3
30

+423a2
12a

2
21b03 + 462a3

12a30b03 + 1944a03a12a21a30b03 + 72a2
03a

2
30b03

+104a03a
2
12b

2
03 − 1728a12a

3
21b12 − 4524a2

12a21a30b12 − 744a03a
2
21a30b12

+712a03a12a
2
30b12 − 200a3

12b03b12 − 672a03a12a21b03b12 + 288a2
03a30b03b12

+876a2
12a21b

2
12−81a03a

2
21b

2
12−1002a03a12a30b

2
12−104a2

03b03b
2
12+200a03a12b

3
12

−9120a12a
2
21a30b21 − 4008a2

12a
2
30b21 − 2448a03a21a

2
30b21 − 216a2

12a21b03b21

−984a03a12a30b03b21 + 4032a12a
2
21b12b21 + 3060a2

12a30b12b21

+168a03a21a30b12b21 + 672a03a12b03b12b21 − 876a2
12b

2
12b21 + 216a03a21b

2
12b21

+7008a12a21a30b
2
21 − 513a03a

2
30b

2
21 + 81a2

12b03b
2
21 − 4032a12a21b12b

2
21

+1440a03a30b12b
2
21 − 423a03b

2
12b

2
21 − 2304a12a30b

3
21 + 1728a12b12b

3
21

−5184a3
21a30b30 − 12684a12a21a

2
30b30 − 576a03a

3
30b30 − 1440a12a

2
21b03b30

−2160a2
12a30b03b30 − 2736a03a21a30b03b30 − 288a03a12b

2
03b30 + 2304a3

21b12b30

+10080a12a21a30b12b30 − 2130a03a
2
30b12b30 + 1002a2

12b03b12b30

+984a03a21b03b12b30 − 3060a12a21b
2
12b30 + 2160a03a30b

2
12b30 − 462a03b

3
12b30

+12096a2
21a30b21b30 + 8532a12a

2
30b21b30 − 168a12a21b03b21b30

+2736a03a30b03b21b30 − 7008a2
21b12b21b30 − 10080a12a30b12b21b30

−1944a03b03b12b21b30 + 4524a12b
2
12b21b30 − 12096a21a30b

2
21b30

+744a12b03b
2
21b30 + 9120a21b12b

2
21b30 + 5184a30b

3
21b30 − 4608b12b

3
21b30

+6732a21a
2
30b

2
30 + 513a2

21b03b
2
30 + 2130a12a30b03b

2
30 − 72a03b

2
03b

2
30

−8532a21a30b12b
2
30 − 712a12b03b12b

2
30 + 4008a21b

2
12b

2
30 − 6732a2

30b21b
2
30

+2448a21b03b21b
2
30 + 12684a30b12b21b

2
30 − 7104b2

12b21b
2
30 − 2961b03b

2
21b

2
30

+576a30b03b
3
30 − 1482b03b12b

3
30).

Let
k51 =

1
64

(1528a12a
2
21a30 + 1852a2

12a
2
30 + 987a03a21a

2
30 + 117a2

12a21b03

+488a03a12a30b03 − 576a12a
2
21b12 − 1264a2

12a30b12 − 320a03a21a30b12

−224a03a12b03b12+292a2
12b

2
12−3a03a21b

2
12−1536a12a21a30b21+171a03a

2
30b21

−3a2
12b03b21+768a12a21b12b21−408a03a30b12b21+117a03b

2
12b21+776a12a30b

2
21

−576a12b12b
2
21 − 1728a2

21a30b30 − 3536a12a
2
30b30 − 408a12a21b03b30

−912a03a30b03b30 + 776a2
21b12b30 + 3360a12a30b12b30 + 488a03b03b12b30

−1264a12b
2
12b30 + 2304a21a30b21b30 − 320a12b03b21b30 − 1536a21b12b21b30

−1728a30b
2
21b30 +1528b12b

2
21b30 +2244a2

30b
2
30 +171a21b03b

2
30 − 3536a30b12b

2
30
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+1852b2
12b

2
30 + 987b03b21b

2
30),

k52 =
1
96

(−12a3
21−774a12a21a30−519a03a

2
30−9a2

12b03−240a03a21b03+366a12a21b12

+200a03a30b12 − 9a03b
2
12 − 36a2

21b21 − 774a12a30b21 − 240a03b03b21

+366a12b12b21−36a21b
2
21−12b3

21+1038a21a30b30+200a12b03b30−774a21b12b30

+1038a30b21b30 − 774b12b21b30 − 519b03b
2
30),

k53 =
1
30

(27a2
21 +185a12a30 +42a03b03 − 78a12b12 +54a21b21 +27b2

21 − 240a30b30

+185b12b30),

k54 =
−3
2

(a21 + b21),
μ5 → μ5 − k51μ1 − k52μ2 − k53μ3 − k54μ4,

then
μ5 =

−1
60

(−a03b03 +4a12b12)(−9a03a
2
30 +a2

12b03 +6a03a30b12−a03b
2
12−6a12b03b30

+9b03b
2
30),

i.e.
μ5 =

1
60

(4a12b12 − a03b03)(9I4 − 6I5 + I6).
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Chapter 3

Multiple Hopf Bifurcations

In this chapter, we discuss the bifurcations of limit cycles created from the origin
for perturbed systems of (2.1.1).

3.1 The Zeros of Successor Functions in the Polar

Coordinates

We consider the perturbed systems of (2.1.1) as follows:

dx

dt
= δx − y +

∞∑
k=2

Xk(x, y, ε, δ) = X(x, y, ε, δ),

dy

dt
= x + δy +

∞∑
k=2

Yk(x, y, ε, δ) = Y (x, y, ε, δ), (3.1.1)

where x, y and t are real variables, ε=(ε1, ε2, · · · , εn) and δ are real small parame-
ters,

Xk(x, y, ε, δ) =
∑

α+β=k

Aαβ(ε, δ)xαyβ,

Yk(x, y, ε, δ) =
∑

α+β=k

Bαβ(ε, δ)xαyβ (3.1.2)

are homogeneous polynomial in x, y. We assume that Aαβ(ε, δ)�s, Bαβ(ε, δ)�s are
power series of ε, δ which have real coefficients and nonzero convergent radius. And
there are x0, y0, ε0, δ0, such that for |x| < x0, |y| < y0, |ε| < v0, |δ| < δ0, the
power series X(x, y, ε, δ) and Y (x, y, ε, δ) of x, y, ε, δ are convergent.

By using the polar coordinate transformation

x = r cos θ, y = r sin θ, (3.1.3)
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system (3.1.1) becomes

dr

dt
= r

[
δ +

∞∑
k=1

ϕk+2(θ, ε, δ)rk

]
,

dθ

dt
= 1 +

∞∑
k=1

ψk+2(θ, ε, δ)rk, (3.1.4)

where

ϕk(θ, ε, δ) = cos θXk−1(cos θ, sin θ, ε, δ) + sin θYk−1(cos θ, sin θ, ε, δ),

ψk(θ, ε, δ) = cos θYk−1(cos θ, sin θ, ε, δ) − sin θXk−1(cos θ, sin θ, ε, δ). (3.1.5)

From (3.1.4), we have

dr

dθ
= r

δ +
∞∑

k=1

ϕk+2(θ, ε, δ)rk

1 +
∞∑

k=1

ψk+2(θ, ε, δ)rk

= r[δ + o(r)] . (3.1.6)

We consider the following equation

dr

dθ
= r

∞∑
k=0

Rk(θ, ε, δ)rk = R(r, θ, ε, δ), (3.1.7)

where we assume that there exist positive real numbers r0, ε0, δ0, such that R(r, θ, ε, δ)
is analytic with respect to r, ε, δ in the region {|r| < r0, |ε| < ε0, |δ| < δ0, |θ| < 4π}
and it is continuously differentiable with respect to the real variable θ. In addition,

∫ 2π

0

R0(θ,0, 0)dθ = 0,

Rk(θ + π, ε, δ) = (−1)kRk(θ, ε, δ), k = 0, 1, · · · . (3.1.8)

For sufficiently small complex constant h (i.e. |h| � 1), the solution of (3.1.6)
satisfying r|θ=0 = h and corresponding Poincaré successor function are given by

r = r̃(θ, h, ε, δ) =
∞∑

k=1

νk(θ, ε, δ)hk,

Δ(h, ε, δ) = r̃(2π, h, ε, δ) − h, ν1(θ,0, δ) = 1. (3.1.9)

On the basis of the analytic dependence of solutions of a differential equation with
respect to initial conditions and parameters, there exist positive numbers h0, ε�

0

and δ�0, such that r̃(θ, h, ε, δ) is analytic with respect to h, ε, δ in the the region
{|h| < h0, |ε| < ε�0, |δ| < δ�0, |θ| < 4π} and it is continuously differentiable with
respect to the real variable θ.
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Definition 3.1.1. Suppose that h = h(ε, δ) is a continuous function with com-
plex value in real variables ε, δ when |ε| � 1 and |δ| � 1. If h(0, 0) = 0 and
Δ(h(ε, δ), ε, δ) ≡ 0, then h = h(ε, δ) is called a zero of Δ(h, ε, δ).

To study the limit cycles created from the origin of (3.1.1), when the origin is a
weak focus or centers, the problem can be formulated as follows: for |ε| � 1, δ � 1,
how many small positive real zeros of Δ(h, ε, δ) can have?

In order to answer the above problem, we shall deal with it in the area of analytic
theory of differential equations. We have to investigate the numbers, positions of
all complex zeros of Δ(h, ε, δ) as well as some algebraic and analytic properties for
Δ(h, ε, δ).

First, Lemma 2.1.3 gives

Theorem 3.1.1. For sufficiently small h, ε and δ, if h = h(ε, δ) is a real or
a complex zero of Δ(h, ε, δ), then h = −r̃(π, h(ε, δ), ε, δ) so is. Thus, in the real
domain, the positive zero and the negative zero of Δ(h, ε, δ) are paired appearance.

Definition 3.1.2. For sufficiently small h, ε and δ, if h = h(ε, δ) is a real or
complex zero of multiplicity k of Δ(h, ε, δ), then we say that r = r̃(θ, h(ε, δ), ε, δ) is
a 2π period solution of multiplicity k of (3.1.6)

Particularly, if Δ(h, ε) ≡ 0 when 0 < |ε � 1, |δ| � 1 , then, for all (ε, δ)
∈{0 < |ε| � 1, |δ| � 1}, the origin of (3.1.1) is an center .

Theorem 3.1.2. Suppose that the origin of system (3.1.1)ε=0,δ=0 is a weak
focus of order m. Then, when 0 < |ε| � 1, 0 < |δ| � 1, there exist exactly 2m + 1
complex period solutions of system (3.1.6) with 2π period near the trivial solution
r = 0

Proof. Under the condition of Theorem 3.1.2, we have

ν2(2π,0, 0) = ν3(2π,0, 0) = · · · = ν2m(2π,0, 0) = 0,

ν2m+1(2π,0, 0) �= 0. (3.1.10)

From (3.1.9) and (3.1.10), we have

Δ(h,0, 0) = ν2m+1(2π,0, 0)h2m+1 + o(h2m+1). (3.1.11)

From (3.1.11), Theorem 3.1.1 and Weierstrass preparation theorem, there exist pos-
itive number h′

0, ε′
0, δ′0, such that for |ε| < ε′

0, |δ| < δ′0, Δ(h, ε, δ) has exact 2m + 1
complex zeros ( in the multiplicity) h = hk(ε, δ), k = 0, 1, 2, · · · , 2m in the disc
|h| < h′

0, where

h0(ε, δ) ≡ 0, hm+k(ε, δ) = −r̃(π, hk(ε, δ), ε, δ), k = 1, 2, · · · , m. (3.1.12)

Thus, the conclusion of this theorem holds.
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We see from Theorem 3.1.1 that there are at most m positive real zeros in the
2m+1 zeros given by Theorem3.1.2. Furthermore, we have the following conclusion.

Theorem 3.1.3. If the origin of system (3.1.1)ε=0,δ=0 is a weak focus of or-
der m, then, when 0 < ε � 1, δ| � 1, (3.1.1) has at most m limit cycles in a
neighborhood of the origin .

Theorem 3.1.4. Suppose that (1) the origin of system (3.1.1)ε=0,δ=0 is a weak
focus of order m; (2) n � m−1 and there exist j1, j2, · · · , jm−1 ∈ {1, 2, · · · , n}, such
that at the origin of ε − δ parameter space, we have

∂(ν1, ν3, ν5, · · · , ν2m−1)
∂(δ, εj1 , εj2 , · · · , εjm−1)

�= 0, (3.1.13)

where
ν2k+1 = ν2k+1(2π, ε, δ), k = 1, 2, · · · , m − 1. (3.1.14)

Then for choosing proper ε = (ε1, ε2, · · · , εn) and δ in the parameter space of (n+1)-
dimension, in a sufficiently small neighborhood of the origin, system (3.1.1) has
exactly m limit circles .

The proof of Theorem 3.1.4 will be given in Section 3.3.

3.2 Analytic Equivalence

Thereinafter we assume that the dimension of parameter space is one, i.e., ε = ε is
an real small parameters. System (3.1.1) becomes

dx

dt
= δx − y +

∞∑
k=2

Xk(x, y, ε, δ) = X(x, y, ε, δ),

dy

dt
= x + δy +

∞∑
k=2

Yk(x, y, ε, δ) = Y (x, y, ε, δ). (3.2.1)

Usually, when we consider the problem of multiple Hopf bifurcation of limit
cycles for a concrete planar dynamical system, we are always going to find the focal
value ν2k+1 under the conditions δ = 0 and ν3 = ν5 = · · · = ν2k−1 = 0. We do not
like to compute ν2, ν4, · · · , ν2k. Generally, a successor function has infinitely many
terms, one can only find the first finitely many terms. Therefore, it is difficult to
determine exactly all zeros of a successor function. We shall show in Section 3.3
that if Condition 3.3.1 is satisfied, one can find a quasi successor function, by which
the first terms of all zeros of a successor function can be determined.

In this section, we study the relation of analytic equivalence of focal values.
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Definition 3.2.1. Suppose that for some positive integer k > 1, there exist power
series ξ

(1)
k , ξ

(2)
k , · · · , ξ

(k−1)
k of ε and δ with a nonzero convergence radius, such that

νk(2π, ε, δ) = ξ
(1)
k [ν1(2π, ε, δ) − 1] +

k−1∑
j=2

ξ
(j)
k νj(2π, ε, δ) + ν̃k(ε, δ). (3.2.2)

We say that νk(2π, ε, δ) and ν̃k(ε, δ) are analytic equivalent. They are written by
νk(2π, ε, δ) � ν̃k(ε, δ).

We see from ν1(π, 0, 0) = ν1(2π, 0, 0) = 1 and Theorem 2.1.1 that the following
conclusions hold.

Theorem 3.2.1. For every positive integer m, we have ν2m(2π, ε, δ) � 0.

Theorem 3.2.2. For every positive integer m, ν2m+1(2π, ε, δ) � ν̃2m+1(ε, δ) if
and only if there exist power series η

(0)
m , η

(1)
m , · · · , η

(m−1)
m of ε and δ with nonzero

convergence radius, such that

ν2m+1(2π, ε, δ)= η(0)
m [ν1(2π, ε, δ) − 1]

+
m−1∑
k=1

η(k)
m ν2k+1(2π, ε, δ) + ν̃2m+1(ε, δ). (3.2.3)

Theorem 3.2.3. For system (3.2.1), we have

ν2k+1(2π, ε, δ) � ν2k+1(2π, ε, 0), k = 1, 2, · · · . (3.2.4)

Proof. For system (3.2.1), denote that

ν1(2π, ε, δ) − 1 = e2πδ − 1 = 2πδg0(δ),

ν2k+1(2π, ε, δ) = ν2k+1(2π, ε, 0) + δgk(ε, δ) k = 1, 2, · · · , (3.2.5)

where g0(0) = 1, g0(δ) is a power series of δ and for all k, gk(ε, δ) are power series
of ε and δ with nonzero convergence radius. From (3.2.5), we have

ν2k+1(2π, ε, δ) =
gk(ε, δ)
2πg0(δ)

[ν1(2π, ε, δ) − 1] + ν2k+1(2π, ε, 0). (3.2.6)

It follows the conclusion of Theorem 3.2.3.

Considering the algebraic equivalence of focal values, the following conclusion
holds.

Theorem 3.2.4. For systems (3.2.1)δ=0, if there exists a positive integer k, such
that ν2k+1(2π, ε, 0) ∼ ν̃2k+1(ε), then ν2k+1(2π, ε, 0) � ν̃2k+1(ε).
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The associated system of (3.2.1)δ=0 has the form:

dz

dT
= z +

∞∑
α+β=2

aαβ(ε)zαwβ ,

dw

dT
= −w −

∞∑
α+β=2

bαβ(ε)wαzβ, (3.2.7)

where all aαβ(ε), bαβ(ε) are power series of ε with nonzero convergence radius.

Definition 3.2.2. For systems (3.2.7), if there is a positive integer m > 1 and
power series ξ

(1)
m (ε), ξ

(2)
m (ε), · · · , ξ

(m−1)
m (ε) of ε with nonzero convergence radius,

such that

μm(ε) =
m−1∑
k=1

ξ(k)
m (ε)μk(ε) + μ̃m(ε). (3.2.8)

Then, we say that μm(ε) and μ̃m(ε) are analytic equivalence. They are written by
μm(ε) � μ̃m(ε).

Obviously, if μm(ε) � μ̃m(ε), then, μ̃m(ε) is a power series of ε with nonzero
convergent radius. Similar to theorem 3.2.4, we have

Theorem 3.2.5. For systems (3.2.7), if there exists a positive integer m > 1,
such that μm(ε) ∼ μ̃m(ε), then μm(ε) � μ̃m(ε).

From the relationship of focal values and singular point values, we have the
following result.

Theorem 3.2.6. For the associated system (3.2.7) of system (3.2.1), if there
exists a positive integer m > 1, such that μm(ε) � μ̃m(ε), i.e., they are analytic
equivalent, then

ν2m+1(2π, ε, 0) � iπμ̃m(ε). (3.2.9)

3.3 Quasi Successor Function

Let δ = δ(ε) be a power series of real coefficients with respect to ε, which has a
nonzero convergence radius and δ(0) = 0. System (3.2.1) becomes

dx

dt
= δ(ε)x − y +

∞∑
k=2

Xk(x, y, ε, δ(ε)) = X(x, y, ε, δ(ε)),

dy

dt
= x + δ(ε)y +

∞∑
k=2

Yk(x, y, ε, δ(ε)) = Y (x, y, ε, δ(ε)). (3.3.1)

The Poincaré successor function of system (3.3.1) is given by

Δ(h, ε, δ(ε)) = r̃(2π, h, ε, δ(ε)) − h =
∞∑

k=1

νk(θ, ε, δ(ε))hk − h, (3.3.2)
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where h is a sufficiently small complex constant.
In this section, we suppose that Δ(h, ε, δ(ε)) is not identically zero when 0 <

|ε| � 1. Thus, the following condition holds

Condition 3.3.1. There exist natural numbers N , m and λ0, λ1, · · · , λm, which
are independent of ε, such that

ν1(2π, ε, δ(ε)) − 1=λ0ε
l0+N + o(εl0+N ),

ν2k+1(2π, ε, δ(ε)) � λkεlk+N + o(εlk+N ), k = 1, 2, · · · , m, (3.3.3)

where l0, l1, · · · , lm−1 are positive integers,

lm = 0, λm �= 0, (3.3.4)

and
ν2m+k+1(2π, ε, δ(ε)) = O(εN ), k = 1, 2, · · · . (3.3.5)

Remark 3.3.1. (1) In Condition 3.3.1, if N = 0, then the origin of (3.3.1)ε=0 is
a m-th weak focus. In this case, we suppose that εN ≡ 1. Furthermore, if the origin
of (3.3.1)ε=0 is a m-th weak focus, then N = 0, and (3.3.5) hods. (2) If N > 0,

then the origin of (3.3.1)ε=0 is an center. Furthermore, if the origin of (3.3.1)ε=0

is an center, and N = 1, then (3.3.5) hods.

Remark 3.3.2. (1) In Condition 3.3.1, if ν1(2π, ε, δ(ε)) ≡ 1, we suppose that
λ0 = 0, l0 = ∞. (2) If for some positive integer k ∈ {1, 2, · · · , m − 1}, we have
ν2k+1(2π, ε, δ(ε)) ∼ 0, then we suppose that λk = 0, lk = ∞.

Lemma 3.3.1. If Condition 3.3.1 is satisfied, then Δ(h, ε, δ(ε)) can be repre-
sented as

Δ(h, ε, δ(ε)) = εNhΔ̃(h, ε), (3.3.6)

where

Δ̃(h, ε) =
m∑

k=0

λkεlkh2kgk(h, ε) (3.3.7)

and gk(h, ε) is a power series of h and ε with nonzero convergent radius, gk(0, 0) =
1, k = 0, 1, · · · , m.

Proof. The proof is divided into the following three steps.
(1) First, Condition 3.3.1 and Theorem 2.1.1 follow that for every positive integer

k, ε−Nνk(2π, ε, δ(ε)) is a power series of ε with nonzero convergent radius.
(2) We rewrite (3.3.3) as

ν1(2π, ε, δ(ε)) − 1 = λ0ε
l0+Nξ0(ε),

ν2k+1(2π, ε, δ(ε)) � λkεlk+Nξk(ε), k = 1, 2, · · · , m, (3.3.8)



104 Chapter 3 Multiple Hopf Bifurcations

where ξk(ε) is a power series of ε with real coefficients, which has nonzero convergent
radius and ξk(0) = 1, k = 0, 1, · · · , m. From Theorem 2.1.1 and Definition 3.2.2,
we know that when 2 � k � 2m + 1, νk(2π, ε, δ(ε)) is a linear combination of
λ0ε

l0+N , λ1ε
l1+N , · · · , λmεlm+N , for which the coefficients are power series of ε

with real coefficients and nonzero convergent radius. It leads to

ν1(2π, ε, δ(ε)) − 1 +
2m+1∑
k=2

νk(2π, ε, δ(ε))hk−1

= εN
m−1∑
k=0

λkεlkh2kgk(h, ε) + λmεlm+Nξm(ε)h2m, (3.3.9)

where gk(h, ε) is not only a polynomial of h, but also a power series of ε with real
coefficients and nonzero convergent radius, gk(0, ε) = ξk(ε), k = 0, 1, · · · , m − 1.

(3) From (3.3.4) and (3.3.5),

gm(h, ε) = ξm(ε) +
1

λmεN

∞∑
k=2m+2

νk(2π, ε, δ(ε))hk−2m−1 (3.3.10)

is a power series of h, ε with real coefficients and nonzero convergent radius. From
(3.3.9) and (3.3.10), we have

Δ(h, ε, δ(ε)) = εNh

m∑
k=0

λkεlkh2kgk(h, ε). (3.3.11)

This completes the proof of this lemma.

Definition 3.3.1. Suppose that Condition 3.3.1 is satisfied. We say that

L(h, ε) =
m∑

k=0

λkεlkh2k (3.3.12)

is a quasi successor function of system (3.3.1).

Obviously, the quasi successor function of (3.3.1) can be computed by finitely
many steps under Condition 3.3.1.

Clearly, we have

Lemma 3.3.2. Under Condition 3.3.1, if h = 0 is a zero of multiplicity k of
Δ̃(h, ε), then k must be an even number. Moreover, h = 0 is a zero of multiplicity
k of L(h, ε).

Remark 3.3.3. Suppose that h=h(ε, δ(ε)) is a zero of Δ(h, ε, δ(ε)) and h(ε, δ(ε))
is not identically zero when |ε| � 1. If Condition 3.3.1 holds, then, by using Weier-
strass preparation theorem, it follows that ε = 0 is an algebraic zero of h(ε, δ(ε)).
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Namely, there are two irredusible positive numbers p and q and a nonzero constant
η, such that

h(ε, δ(ε)) = ηε
p
q + ε

p
q ζ(ε

1
q ), (3.3.13)

where ζ(σ) is a power series of σ with nonzero convergence radius and ζ(0) = 0. ηε
p
q

is called the first term of h(ε, δ(ε)).

From Lemma 3.3.1, we obtain

Lemma 3.3.3. If Condition 3.3.1 is satisfied, then, for every positive integers p

and q, we have

Δ̃(σpη, σq) = σD[G(η) + σΦ(η, σ)],

L(σpη, σq) = σD[G(η) + σΨ(η, σ)], (3.3.14)

where Φ(η, σ), Ψ(η, σ) are analytic for sufficiently small σ and a bounded |η|. In
addition,

D = min
0�k�m

{lkq + 2kp}, (3.3.15)

G(η) =
m∑

k=0

λ′
kη2k, (3.3.16)

λ′
k =

{
λk, if lkq + 2kp = D,

0, if lkq + 2kp > D.
(3.3.17)

(3.3.14) implies the following lemma.

Lemma 3.3.4. If Condition 3.3.1 is satisfied, h = h(ε, δ(ε)) is a zero of Δ(h, ε,

δ(ε)), for which the first term is η0ε
p
q , η0 �= 0, then η = η0 is a zero of G(η).

Moreover, replacing Δ(h, ε, δ(ε)) with L(h, ε), above conclusion also holds.

(3.3.14) and implicit function theorem follows that

Lemma 3.3.5. If Condition 3.3.1 is satisfied and η = η0 �= 0 is a simple zero of
G(η), then, Δ̃(σpη, σq) has also a zero η = η0 + f(σ)correspondingly, Δ(h, ε, δ(ε))
has a zero h = η0ε

p
q + ε

p
q f(ε

1
q ), where f(σ) is a power series of σ with nonzero

radius of convergence and real coefficients, f(0) = 0 and η0 is a real number.
Moreover, replacing Δ(h, ε, δ(ε)) with L(h, ε), above conclusion also holds.

Again (3.3.14) and the Weierstrass preparation theorem imply that

Lemma 3.3.6. If Condition 3.3.1 holds and η = η0 �= 0 is a zero of multiplicity
k of G(η), then Δ̃(σpη, σq) has k zeros η = η0+fj(σ). Correspondingly, Δ(h, ε, δ(ε))
also has k zeros h = η0ε

p
q +ε

p
q fj(ε

1
q ), where fj(σ) are power series of σ with nonzero

convergent radius, fj(0) = 0, j = 1, 2, · · · , k.

For L(h, ε), we have the same conclusion.
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Thus, from Lemma 3.3.1 ∼ Lemma 3.3.6, we obtain

Theorem 3.3.1. If Condition 3.3.1 holds, then, the zeros of Δ̃(h, ε) and L(h, ε)
have the same first terms by rearranging the orders of these zeros.

From Theorem 3.3.1 and Lemma 3.3.5, we have

Theorem 3.3.2. If Condition 3.3.1 holds and for 0 < ε � 1, there exist exactly
s zeros having positive first term in all 2m zeros of L(h, ε)). In addition, these s

positive first terms are different each other. Then, Δ̃(h, ε) has exactly s positive
zeros.

For the case 0 < −ε � 1, replacing ε by −ε in the quasi successor function, we
obtain the corresponding result.

Theorem 3.3.3. Suppose that Condition 3.3.1 holds. If (1) There is a positive
integer d, such that

lk = (m − k)d, k = 0, 1, · · · , m. (3.3.18)

(2) G(η) =
∞∑

k=0

λkη2k has exactly m different positive zeros η1, η2, · · · , ηm.

Then, for 0 < ε � 1, Δ̃(h, ε) has exactly m positive zeros

h = hk(ε) = ηkε
d
2 + o(ε

d
2 ), k = 1, 2, · · · , m. (3.3.19)

Correspondingly, in a sufficiently small neighborhood of the origin, system (3.3.1) has
exactly m limit cycles, which are close to the circles x2+y2 = η2

kεd, k = 1, 2, · · · , m.

Proof. If the Conditions of Theorem 3.3.3 hold, then

L(h, ε) =
m∑

k=0

λkε(m−k)dh2k.

By Theorem 3.3.2, we know the conclusions of this theorem.

Theorem 3.3.4. Suppose that Condition 3.3.1 holds. In addition,

λk−1λk < 0, k = 1, 2, · · · , m,

lk−1 − lk > lk − lk+1, k = 1, 2, · · · , m − 1. (3.3.20)

Then, for 0 < ε � 1, Δ̃(h, ε) has exactly m positive zeros

h = hk(ε) =
√−λk−1

λk
ε

lk−1−lk
2 + o(ε

lk−1−lk
2 ), k = 1, 2, · · · , m. (3.3.21)

Correspondingly, system (3.3.1) has exactly m limit cycles in a sufficiently small

neighborhood of the origin, which are close to the circles x2 + y2 =
−λk−1

λk
εlk−1−lk ,

k = 1, 2, · · · , m.
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Proof. Let k ∈ {1, 2, · · · , m}, (3.3.20) implies that

lj − lk � (k − j)(lk−1 − lk), j = 0, 1, · · · , m. (3.3.22)

(3.3.22) becomes an equality if and only if j = k−1 or j = k. Let 2p = q(lk−1− lk),
where p, q are relatively prime. Lemma 3.3.3 follows that D = lkq + k(lk−1 −
lk)q, G(η) = λk−1η

2k−2 + λkη2k. Hence, Lemma 3.3.5 follows the conclusion of
Theorem 3.3.4

Example 3.3.1. Suppose that for system (3.3.1), we have

ν1(2π, ε, δ(ε)) − 1 = λ0ε + o(ε),

ν2k+1(2π, 0, 0) = 0, k = 1, 2, · · · , m − 1,

ν2m+1(2π, 0, 0) = λm, λm �= 0. (3.3.23)

Then
ν2k+1(2π, ε, δ(ε)) � 0, k = 1, 2, · · · , m − 1 (3.3.24)

and the quasi successor of system (3.3.1) is L(h, ε) = λ0ε + λmh2m. It follows the
conclusion of Hopf bifurcation theorem.

Proof of Theorem 3.1.4 Based on the Implicit function theorem, under the
conditions of Theorem 3.1.4, solving

ν1(2π, ε, δ) − 1 = c0ν2m+1(2π,0, 0)σ2m,

ν2k+1(2π, ε, δ) = ckν2m+1(2π,0, 0)σ2m−2k, k = 1, 2, · · · , m − 1, (3.3.25)

we obtain the unique solution

δ = δ(σ), ε = ε(σ), (3.3.26)

where c0, c1, · · · , cm−1 are determined by

m∏
k=1

(η2 − k2) =
m∑

k=0

ckη2k. (3.3.27)

δ(σ), ε(σ) is analytic at σ = 0 and δ(0) = 0, ε(0) = 0.
From (3.3.25) and (3.3.27), the quasi successor function of system

(3.1.1)δ=δ(σ),ε=ε(σ) is

L(h, σ)= ν2m+1(2π,0, 0)
m∑

k=0

ckσ2m−2kh2k

= ν2m+1(2π,0, 0)σ2m
m∏

k=1

(
h2

σ2
− k2

)
. (3.3.28)
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Thus, from Theorem 3.3.3, when 0 < σ � 1, in a sufficiently small neighborhood of
the origin, system (3.1.1)δ=δ(σ), ε=ε(σ) has exactly m limit cycles, which are close to
the circles x2 + y2 = k2σ2, k = 1, 2, · · · , m. It follows the conclusion of Theorem
3.1.4.

3.4 Bifurcations of Limit Circle of a Class of Quadratic

Systems

In order to obtain more limit circles, as an example, in this section, we consider a
planar quadratic system to show how to compute quasi successor function and find
focal values in a higher order weak focus (or a center).

We investigate the planar quadratic system

dx

dt
= δx − y + X2(x, y),

dy

dt
= x + δy + Y2(x, y), (3.4.1)

where X2(x, y), Y2(x, y) are homogenous quadratic polynomials of x, y. By trans-
formations z = x + iy, w = x − iy, T = it, i =

√−1, system (3.4.1)δ=0 becomes

dz

dT
= z + a20z

2 + a11zw + a02w
2,

dw

dT
= −w − b20w

2 − b11wz − b02z
2, (3.4.2)

where

aαβ = Aαβ + iBαβ, bαβ = Aαβ − iBαβ . (3.4.3)

Now

X2(x, y) = −(B20 + B11 + B02)x2 − 2(A20 − A02)xy + (B20 − B11 + B02)y2,

Y2(x, y) = (A20 + A11 + A02)x2 − 2(B20 − B02)xy − (A20 − A11 + A02)y2. (3.4.4)

Theorem 2.6.1 follows that the first 3 focal values of system (3.4.2) are

μ1 = b20b11 − a20a11,

μ2 ∼ − 1
3 (2I1 + 3I2 − 2I3),

μ3 ∼ 5
8 (a11b11 − a02b02)(2I2 − I3), (3.4.5)

where

I0 = a3
20a02 − b3

20b02 I1 = a2
20b11a02 − b2

20a11b02,

I2 = a20b
2
11a02 − b20a

2
11b02, I3 = b3

11a02 − a3
11b02. (3.4.6)
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Suppose that N is a natural number, taking

δ =
25
8

(3 + ε2N )ε12+N , a11 = b11 = 1,

a02 = 2 + εN i, b02 = 2 − εN i,

a20 = −2 − 15
8

(3 + ε2N )ε2 − 25
8

ε6+N (3 + ε2N )i,

b20 = −2 − 15
8

(3 + ε2N)ε2 +
25
8

ε6+N (3 + ε2N )i. (3.4.7)

Then Theorem 2.3.1 implies that

ν1(2π) − 1 =
25
4

π(3 + ε2N )ε12+N + o(ε12+N ),

ν3(2π) � −25
4

π(3 + ε2N )ε6+N + o(ε6+N ),

ν5(2π) � 25
4

π(3 + ε2N )ε2+N + o(ε2+N ),

ν7(2π) � −25
4

π(3 + ε2N )εN + o(εN ). (3.4.8)

Furthermore, when (3.4.7) holds, we have

a20a11 − b20b11 = o(εN ),

Ik = O(εN ), k = 0, 1, 2, 3. (3.4.9)

Therefore, Theorem 2.4.7 and the elementary invariants of the quadratic system
given by Corollary 2.5.1 follows that

ν2k+1 = O(εN ), k = 1, 2, · · · . (3.4.10)

(3.4.8) and (3.4.10) give rise to that under condition (3.4.7), the quasi successor
function of (3.4.1) is

L(h, ε) =
25
4

πλ(ε12 − ε6h2 + ε2h4 − h6), (3.4.11)

where

λ =

{
4, if N = 0,

3, if N > 0.
(3.4.12)

For 0 < ε � 1 there exist three zeros of L(h, ε)

h = hk(ε) = εk + o(εk), k = 1, 2, 3. (3.4.13)

Thus, Theorem 3.3.4 implies that
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Theorem 3.4.1. Suppose the coefficients of right hand of system (3.4.1) are
given by (3.4.7). Then, (1) For N = 0, the origin of system (3.4.1)ε=0 is a 3 order
weak focus, while when N > 0, it is a center. (2) For 0 < |ε| � 1, system (3.4.1)
has exactly 3 limit circles in a sufficiently small neighborhood of the origin, which
are close to the circles x2 + y2 = ε2k, k = 1, 2, 3.

Remark 3.4.1. When N > 0 in (3.4.8), we must show that (3.4.10) holds. It
was proved by using the construction theorem of singular point values.
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Chapter 4

Isochronous Center In Complex Domain

For a given planar dynamical system, when we have characterized its center, it is
also interesting to know whether the center is isochronous or not. In this chapter,
we extended the concepts of the period constant and the isochronous center in the
real systems to the complex systems. The results and methods mentioned in this
chapter are more interesting.

4.1 Isochronous Centers and Period Constants

We consider the following two-dimension complex autonomous differential system

dx

dt
= −y +

∞∑
k=2

Xk(x, y) = X(x, y),

dy

dt
= x +

∞∑
k=2

Yk(x, y) = Y (x, y), (4.1.1)

where x, y, t are complex variables, X(x, y) and Y (x, y) are power series of x, y with
non-zero convergent radius. Xk(x, y) and Yk(x, y) are homogeneous polynomials of
degree k.

By using the polar coordinate transformation

x = r cos θ, y = r sin θ, (4.1.2)

system (4.1.1) becomes

dr

dt
= r

∞∑
k=1

ϕk+2(θ)rk,
dθ

dt
= 1 +

∞∑
k=1

ψk+2(θ)rk, (4.1.3)

where

ϕk(θ) = cos θXk−1(cos θ, sin θ) + sin θYk−1(cos θ, sin θ),

ψk(θ) = cos θYk−1(cos θ, sin θ) − sin θXk−1(cos θ, sin θ). (4.1.4)
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From (4.1.3), we have

dr

dθ
=

r

∞∑
k=1

ϕk+2(θ)rk

1 +
∞∑

k=1

ψk+2(θ)rk

. (4.1.5)

Let

r = r̃(θ, h) =
∞∑

k=1

νk(θ)hk (4.1.6)

be the solution of (4.1.5) satisfying the initial condition r|θ=0 = h, where

ν1(θ) ≡ 1, νk(0) = 0, k = 2, 3, · · · . (4.1.7)

From (4.1.3), we have

t = T (θ, h) =
∫ θ

0

dϑ

1 +
∞∑

k=1

ψk+2(ϑ)r̃k(ϑ, h)

. (4.1.8)

Definition 4.1.1. Suppose that for sufficiently small complex constant h (i.e.,
|h| � 1), we have

r̃(2π, h) = h, T (2π, h) ≡ 2π. (4.1.9)

We say that the origin of system (4.1.1) is a complex isochronous center.

Obviously, if system (4.1.1) is a real planar autonomous differential system and
the origin of system (4.1.1) is a complex isochronous center, then the origin of system
(4.1.1) is an isochronous center in the real field.

Denote that

T (2π, h) =
∫ 2π

0

dθ

1 +
∞∑

k=1

ψk+2(θ)r̃k(θ, h)

= π

(
2 −

∞∑
k=1

Tkhk

)
. (4.1.10)

It is proved in [Chicone etc, 1989] that

Lemma 4.1.1. For system (4.1.1), if r̃(2π, h) = h, then T1 = 0. Furthermore,
for any positive integer k, if T1 = T2 = · · · = T2k = 0, then T2k+1 = 0.

From (4.1.10) , Definition 4.1.1 and Lemma 4.1.1, we have

Theorem 4.1.1. Suppose that the origin is a complex center of system (4.1.1).
Then, the origin is a complex isochronous center if and only if for any positive integer
k, T2k = 0.
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By the transformation

z = x + iy, w = x − iy, T = it, i =
√−1, (4.1.11)

system (4.1.1) becomes its associated system

dz

dT
= z +

∞∑
k=2

Zk(z, w) = Z(z, w),

dw

dT
= −w −

∞∑
k=2

Wk(z, w) = −W (z, w), (4.1.12)

where

Zk = Yk − iXk =
∑

α+β=k

aαβzαwβ ,

Wk = Yk + iXk =
∑

α+β=k

bαβwαzβ (4.1.13)

are homogeneous polynomials of degree k of z, w.

Definition 4.1.2. Suppose that the origin of system (4.1.1) is a complex isoch-
ronous center. Then, we say that the origin of system (4.1.12) is also a complex
isochronous center.

We see from Section 1.8 that system (4.1.1) can be reduced to the following
standard normal form

dξ

dT
= ξ + ξ

∞∑
k=1

pk(ξη)k,

dη

dT
= −η − η

∞∑
k=1

qk(ξη)k, (4.1.14)

by means of the standard formal transformation

ξ = z +
∞∑

k+j=2

ckjz
kwj = ξ +

∞∑
k=2

ξk(z, w) = ξ(z, w),

η = w +
∞∑

k+j=2

dkjw
kzj = η +

∞∑
k=2

ηk(z, w) = η(z, w), (4.1.15)

where for all k, ξk(z, w), ηk(z, w) are homogeneous polynomials of degree k of z, w.
Let

u =
1
2
(ξ + η) = x +

∞∑
k=2

uk(x, y) = u(x, y),

v =
1
2i

(ξ − η) = y +
∞∑

k=2

vk(x, y) = v(x, y), (4.1.16)



114 Chapter 4 Isochronous Center In Complex Domain

where for all k, uk(x, y), vk(x, y) are homogeneous polynomials of degree k of x, y.
By transformation (4.1.16), system (4.1.1) becomes

du

dt
= −v +

1
2

∞∑
k=1

(σku − τkv)(u2 + v2)k,

dv

dt
= u +

1
2

∞∑
k=1

(τku + σkv)(u2 + v2)k, (4.1.17)

where
σk = iμk = i(pk − qk), τk = pk + qk. (4.1.18)

For the origin of system (4.1.12), μk = pk − qk is the k-th singular point value,
τk = pk + qk is the k-th period constant.

We next consider the relation between {T2k} and {τk}.
By the transformation

u = ρ cosω, v = ρ sinω, (4.1.19)

system (4.1.17) can be reduced to

dρ

dt
=

1
2

∞∑
k=1

σkρ2k,
dω

dt
= 1 +

1
2

∞∑
k=1

τkρ2k. (4.1.20)

Obviously, by means of the transformation

ξ = ρeiω, η = ρe−iω, T = it, (4.1.21)

system (4.1.14) can also be reduced to (4.1.20).
Let

ρ(θ, h) =
√

u2(x̃, ỹ) + v2(x̃, ỹ), (4.1.22)

where

x̃ = r̃(θ, h) cos θ, ỹ = r̃(θ, h) sin θ. (4.1.23)

From (4.1.22), we have

ρ(0, h) =
√

u2(h, 0) + v2(h, 0) = hA(h), (4.1.24)

where A(h) is a power series of h with non-zero convergent radius, and A(0) = 1.
By (4.1.3) and (4.1.20), we obtain

Lemma 4.1.2. If the origin of system (4.1.1) is a complex center, then ρ(θ, h)
is independent of θ, namely

ρ(θ, h) ≡ ρ(0, h) = hA(h). (4.1.25)
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Thus, (4.1.3), (4.1.20) and Lemma 4.1.2 follow that

Lemma 4.1.3. Suppose that the origin of system (4.1.1) is a complex center,
then when x = r̃(θ, h) cos θ, y = r̃(θ, h) sin θ, we have

ω = ω(θ, h), (4.1.26)

where

ω(θ, h) = ω(0, h) +

�
1 +

1
2

∞�
k=1

τkρ2k(0, h)

�
T (θ, h) (4.1.27)

and

ω(0, h) = arctan
v(h, 0)
u(h, 0)

= arctan

⎛
⎜⎜⎜⎜⎝

∞�
k=2

vk(h, 0)hk−1

1 +
∞�

k=2

uk(h, 0)hk−1

⎞
⎟⎟⎟⎟⎠

(4.1.28)

is a power series of h with non-zero convergent radius.

From (4.1.2) and (4.1.19), we know that

ω − θ =arctan
xv(x, y) − yu(x, y)
xu(x, y) + yv(x, y)

=arctan

∞�
k=2

�
vk(x, y)x − uk(x, y)y

�

(u2 + v2) +
∞�

k=2

�
uk(x, y)x + vk(x, y)y

� . (4.1.29)

Thus, we have

Lemma 4.1.4. For sufficiently small h, when x = r̃(θ, h) cos θ, y = r̃(θ, h) sin θ,
we have

ω(θ, h) − θ

=arctan

∞�
k=2

�
vk(cos θ, sin θ) cos θ − uk(cos θ, sin θ) sin θ

�
r̃k−1(θ, h)

1 +
∞�

k=2

�
uk(cos θ, sin θ) cos θ + vk(cos θ, sin θ) sin θ

�
r̃k−1(θ, h)

. (4.1.30)

Theorem 4.1.2. If the origin of system (4.1.1) is a complex center, then, in the
sequences {Tk}, we have

{T2k−1} ∼ {0}, {T2k} ∼ {τk}. (4.1.31)
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Proof. Suppose that the origin of system (4.1.1) is a complex center. We see from
(4.1.30) that ω(θ, h) − θ is a 2π periodic function of θ and

ω(2π, h) − ω(0, h) = 2π. (4.1.32)

On the other hand, from (4.1.27), we have

ω(2π, h) − ω(0, h)=

[
1 +

1
2

∞∑
k=1

τkρ2k(0, h)

]
T (2π, h)

=2π

[
1 +

1
2

∞∑
k=1

τkρ2k(0, h)

](
1 − 1

2

∞∑
k=1

Tkhk

)
. (4.1.33)

(4.1.25), (4.1.32) and (4.1.33) imply that

∞∑
k=1

Tkhk =
∞∑

k=1

τkh2kB2k(h), (4.1.34)

where for any positive integer k,

B2k(h) =
A2k(h)

1 +
1
2

∞∑
k=1

τkh2kA2k(h)

(4.1.35)

is a power series of h with non-zero convergent radius and B2k(0) = 1. From
(4.1.34) and Theorem 2.2.1, we obtain (4.1.31). Thus, the conclusion of Theorem
4.1.2 holds.

From Theorem 4.1.1 and Theorem 4.1.2, we obtain

Theorem 4.1.3. The origin of system (4.1.12) is a complex isochronous center
if and only if

{μk} = {0}, {τk} = {0}. (4.1.36)

We see from Theorem 4.1.3 and Theorem 1.8.18 that

Theorem 4.1.4. The origin of system (4.1.12) is a complex isochronous center
if and only if system (4.1.12) is linearizable in a neighborhood of the origin.

4.2 Linear Recursive Formulas to Compute Period Constants

In this section, we discuss a method to compute τk, which was developed by [Liu
Y.R. etc, 2003a].
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Theorem 4.2.1. For system (4.1.12), one can derive uniquely the formal series

f(z, w) = z +
∞∑

k+j=2

c�kjz
kwj =

∞∑
m=1

fm(z, w),

g(z, w) = w +
∞∑

k+j=2

d�kjw
kzj =

∞∑
m=1

gm(z, w), (4.2.1)

where fm(z, w), gm(z, w) are homogeneous polynomials of degree m, and

c�j+1,j = d�j+1,j = 0, j = 1, 2, · · · , (4.2.2)

such that system (4.1.12) reduces to

df

dT
= f +

∞∑
k=1

p�kzk+1wk,

dg

dT
= −g −

∞∑
k=1

q�kwk+1zk. (4.2.3)

Theorem 4.2.2. In (4.2.1) and (4.2.3), when k − j − 1 �= 0, c�kj and d�kj are
determined by the recursive formulas

c�kj =
Ckj

j + 1 − k
, d�kj =

Dkj

j + 1 − k
, (4.2.4)

and for any positive integer m, p�m and q�m are determined by the recursive formulas

p�m = Cm+1,m, q�m = Dm+1,m, (4.2.5)

where

Ckj =
k+j+1∑
α+β=3

[(k − α + 1)aα,β−1 − (j − β + 1)bβ,α−1]c�k−α+1,j−β+1,

Dkj =
k+j+1∑
α+β=3

[(k − α + 1)bα,β−1 − (j − β + 1)aβ,α−1]d�k−α+1,j−β+1. (4.2.6)

In (4.2.6), we have taken c�10 = d�10 = 1, c�01 = d�01 = 0 and if α < 0 or β < 0, we
take aαβ = bαβ = c�αβ = d�αβ = 0.

Proof. From (4.2.3), we have

df

dT
− f =

∞∑
m=2

(
∂fm

∂z
z − ∂fm

∂w
w − fm

)
+

∞∑
m=2

Φm(z, w),

dg

dT
+ g = −

∞∑
m=2

(
∂gm

∂w
w − ∂gm

∂z
z − gm

)
−

∞∑
m=2

Ψm(z, w), (4.2.7)
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where

∂fm

∂z
z − ∂fm

∂w
w − fm =

∑
k+j=m

(k − j − 1)c�kjz
kwj ,

∂gm

∂w
w − ∂gm

∂z
z − gm =

∑
k+j=m

(k − j − 1)d�kjw
kzj (4.2.8)

and

Φm(z, w) =
m−1∑
k=1

(
∂fk

∂z
Zm−k+1 − ∂fk

∂w
Wm−k+1

)
=

∑
k+j=m

Ckjz
kwj ,

Ψm(z, w) =
m−1∑
k=1

(
∂gk

∂w
Wm−k+1 − ∂gk

∂z
Zm−k+1

)
=

∑
k+j=m

Dkjw
kzj. (4.2.9)

From (4.2.3) and (4.2.7) ∼ (4.2.9), we have

∞∑
k+j=2

[
(k − j − 1)c�kj + Ckj

]
zkwj =

∞∑
m=1

p�mzm+1wm,

∞∑
k+j=2

[
(k − j − 1)d�kj + Dkj

]
wkzj =

∞∑
m=1

q�mwm+1zm. (4.2.10)

(4.2.10) follows the conclusion of this theorem.

We next consider the relations between (pj , qj) and (p�j , q
�
j).

Theorem 4.2.3. Let (p0, q0) = (p�0, q�0) = (0, 0). For any positive integer m, if

(p0, q0) = (p1, q1) = · · · = (pm−1, qm−1) = (0, 0),

(p�0, q
�
0) = (p�1, q

�
1) = · · · = (p�m−1, q

�
m−1) = (0, 0), (4.2.11)

then
(p�m, q�m) = (pm, qm). (4.2.12)

Proof. Suppose that there exists a positive integer m, such that (4.2.11) holds. Let

ξ∗ = z +
2m+1∑
k+j=2

ckjz
kwj , η∗ = w +

2m+1∑
k+j=2

dkjw
kzj,

f∗ = z +
2m+1∑
k+j=2

c�kjz
kwj , g∗ = w +

2m+1∑
k+j=2

d�kjw
kzj. (4.2.13)

Then, from (4.1.15), we have

dξ∗

dT
= ξ∗ + pmzm+1wm + h.o.t.,

dη∗

dT
= −η∗ − qmwm+1zm + h.o.t. (4.2.14)
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and from (4.2.3), we obtain

df∗

dT
= f∗ + p�mzm+1wm + h.o.t.,

dg∗

dT
= −g∗ − q�mwm+1zm + h.o.t. (4.2.15)

Because of ξ, η, f and g are all unique, from (4.2.14) and (4.2.15), we have that
ξ∗ = f∗, η∗ = g∗. It follows the conclusion of this theorem.

Remark 4.2.1. For system (4.1.12), if (4.2.11) holds, then, we have p�m + q�m =
pm + qm = τm, p�m − q�m = pm − qm = μm.

The above three theorems give rise to an algorithm of τm. The algorithm is
recursive. It can be easily realized by computer algebra systems.

Similar to Theorem 4.2.1, we have

Theorem 4.2.4. For system (4.1.12), we can derive uniquely the formal series

f̃(z, w) = z +
∞�

k+j=2

c̃kjz
kwj =

∞�
m=1

f̃m(z, w),

g̃(z, w) = w +
∞�

k+j=2

d̃kjw
kzj =

∞�
m=1

g̃m(z, w), (4.2.16)

where f̃m(z, w) and g̃m(z, w) are homogeneous polynomials of order m,

c̃j+1,j = d̃j+1,j = 0, j = 1, 2, · · · , (4.2.17)

such that

df̃

dT
= f̃

�
1 +

∞�
k=1

p̃k(zw)k

�
,

dg̃

dT
= −g̃

�
1 +

∞�
k=1

q̃k(zw)k

�
. (4.2.18)

Thus, we obtain the following result as Theorem 4.2.2.

Theorem 4.2.5. In (4.2.1) and (4.2.3), when k − j − 1 �= 0, c̃kj and d̃kj are
determined by the recursive formulas

c̃kj =
1

j + 1 − k

⎛
⎝C̃kj −

[(k+j)/2]−1�
s=1

p̃sc̃k−s,j−s

⎞
⎠ ,

7d̃kj =
1

j + 1 − k

⎛
⎝D̃kj −

(k+j)/2]−1�
s=1

q̃sd̃k−s,j−s

⎞
⎠ , (4.2.19)
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and for any positive integer m, p̃m and q̃m are determined by the recursive formulas

p̃m = C̃m+1,m −
m−1∑
s=1

p̃sc̃k−s,j−s,

q̃m = D̃m+1,m −
m−1∑
s=1

q̃sd̃k−s,j−s, (4.2.20)

where

C̃kj =
k+j+1∑
α+β=3

[(k − α + 1)aα,β−1 − (j − β + 1)bβ,α−1]c̃k−α+1,j−β+1,

D̃kj =
k+j+1∑
α+β=3

[(k − α + 1)bα,β−1 − (j − β + 1)aβ,α−1]d̃k−α+1,j−β+1. (4.2.21)

In (4.2.19) ∼ (4.2.21), we have taken c̃10 = d̃10 = 1, c̃01 = d̃01 = 0, and if α < 0 or
β < 0, we take aαβ = bαβ = c̃αβ = d̃αβ = 0.

For (4.2.18), we write that

μ̃k = p̃k − q̃k, τ̃k = p̃k + q̃k, k = 1, 2, · · · . (4.2.22)

Theorem 4.2.6. In (4.2.22), we have

{μk} ∼ {μ̃k}. (4.2.23)

Proof. Let F (z, w) = f̃(z, w)g̃(z, w) = zw + h.o.t.. From (4.2.18), we have

dF

dT
= f̃ g̃

∞∑
k=1

μ̃k(zw)k. (4.2.24)

(4.2.24) and Theorem 2.3.4 implies the conclusion of this theorem.

Theorem 4.2.7. If the origin of system (4.1.1) is a complex center, then in
(4.2.22), we have

{τk} ∼ {τ̃k}. (4.2.25)

Proof. Let
f̃ = ρ̃ cos�, g̃ = ρ̃ sin �, (4.2.26)

then
d�

dt
= 1 +

1
2

∞∑
k=1

τ̃k(zw)k. (4.2.27)
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Suppose that the origin of system (4.1.1) is a complex center, then when x =
r̃(θ, h) cos θ, y = r̃(θ, h) sin θ, we have � = �(θ, h) and

�(θ, h) − θ =
1
2i

ln

⎛
⎜⎜⎜⎜⎝

1 +
∞�

k=2

e−iθ f̃k(eiθ, e−iθ)r̃k−1(θ, h)

1 +
∞�

k=2

eiθg̃k(eiθ, e−iθ)r̃k−1(θ, h)

⎞
⎟⎟⎟⎟⎠

(4.2.28)

is a 2π periodic function in θ. Thus, we get

�(2π, h) − �(0, h) = 2π. (4.2.29)

(4.2.29) and (4.1.27) imply that

2π =
� 2π

0

d�

dθ
dθ =

� 2π

0

1 +
1
2

∞�
k=1

τ̃k r̃2k(θ, h)

1 +
∞�

k=1

ψk+2(θ)r̃k(θ, h)

dθ

=T (2π, h) +
1
2

∞�
k=1

τ̃k

� 2π

0

r̃2k(θ, h)dθ

1 +
∞�

k=1

ψk+2(θ)r̃k(θ, h)

=T (2π, h) + π
∞�

k=1

τ̃kh2kB̃2k(h), (4.2.30)

where for any positive integer k,

B̃2k(h) =
1

2πh2k

� 2π

0

r̃2k(θ, h)dθ

1 +
1
2

∞�
k=1

τ̃k r̃2k(θ, h)

(4.2.31)

is an unit formal power series of h. From (4.1.10), (4.1.34) and (4.2.30), we obtain

∞�
k=1

τ̃kh2kB̃2k(h) =
∞�

k=1

τkh2kB2k(h). (4.2.32)

Hence, by (4.2.32) and Theorem 2.2.1 we complete the proof of this theorem.
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4.3 Isochronous Center for a Class of Quintic System in the

Complex Domain

In this section, we investigate an example to show how to apply the method men-
tioned in Section 4.2. Consider the following complex quintic system:

dz

dT
= z + a30z

3 + a21z
2w + (a12 + 3b30)zw2 + a03w

3 + λz3w2,

dw

dT
= −w − b30w

3 − b21w
2z − (b12 + 3a30)wz2 − b03z

3 − λw3z2. (4.3.1)

First we have the following conclusion, which is similar to Corollary 2.5.2.

Lemma 4.3.1. System (4.3.1) has exactly 14 elementary invariants as follows

a30b30, a12b12, a03b03, a30a12, b30b12, a21 b21, λ.

a2
30a03, b2

30b03, a30b12a03, b30a12b03, b2
12a03, a2

12b03. (4.3.2)

We next discuss the conditions that the origin of system (4.3.1) is a center.
Applying the recursive formulas given by Theorem 2.3.5, we obtain

Theorem 4.3.1. The first seven singular point values at the origin of (4.3.1)
are as follows:

μ1 = a21 − b21,

μ2 ∼ b12b30 − a12a30,

μ3 ∼ 1
8
[3(a2

12b03 − b2
12a03) − 10(b12a30a03 − a12b30b03)],

μ4 ∼ − 1
40

(a21 + b21)(a2
12b03 − b2

12a03),

μ5 ∼ 1
1500

(25a03b03 − a12b12 − 150λ)(a2
12b03 − b2

12a03),

μ6 ∼ 0,

μ7 ∼− 1
200

a12b12λ(a2
12b03−b2

12a03). (4.3.3)

Theorem 4.3.1 follows that

Theorem 4.3.2. The first seven singular point values of system (4.3.1) are all
zero if and only if one of the following four conditions are satisfied:

C1 : a21 = b21, a12 = b12 = 0;

C2 : a21 = b21, b12b30 = a12a30, a2
12b03 = b2

12a03, |a12| + |b12| �= 0;

C3 :

{
λ = a21 = b21 = 0, 10a30 + 3b12 = 10b30 + 3a12 = 0,

a12b12 = 25a03b03 |a12| + |b12| �= 0, b2
12a03 − a2

12b03 �= 0;

C4 : a21 = b21 = a12 = b30 = 0, 10a30 + 3b12 = 0, a03b03 = 6λ, b12a03b03 �= 0;

C∗
4 : a21 =b21 =b12 =a30 = 0, 10b30 + 3a12=0, a03b03 = 6λ, a12a03b03 �= 0. (4.3.4)
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4.3.1 The Conditions of Isochronous Center Under Condition C1

Suppose that Condition C1 in Theorem 4.3.2 is satisfied. Then, there exists a con-
stant s, such that a21 = b21 = s. Thus, system (4.3.1) becomes

dz

dT
= z + a30z

3 + sz2w + 3b30zw2 + a03w
3 + λz3w2,

dw

dT
= −w − b30w

3 − sw2z − 3a30wz2 − b03z
3 − λw3z2. (4.3.5)

Applying recursive formulas given by Theorem 4.2.2 to do computations, we obtain

Theorem 4.3.3. For the origin of system (4.3.5), the first six complex period
constants are as follows:

τ1 = 2s,

τ2 ∼ 1
2
(−3a03b03 − 48a30b30 + 4λ),

τ3 ∼ 30(a03b
2
30 + b03b

2
30),

τ4 ∼ 15
32

(3a2
03b

2
03 − 128a03b03a30b30 + 768a2

30b
2
30),

τ5 ∼ 0,

τ6 ∼ 7a2
30b

2
30(1111a03b03 − 2688a30b30). (4.3.6)

Moreover, the first six complex period constants are all zero if and only if one of the
following two conditions holds:

C11 : s = λ = a30 = b03 = 0;

C∗
11 : s = λ = b30 = a03 = 0. (4.3.7)

Theorem 4.3.4. If Condition C11 or C∗
11 holds, then the origin of system (4.3.5)

is a complex isochronous center.

Proof. If Condition C11 is satisfied, then system (4.3.5) becomes

dz

dT
= z + 3b30zw2 + a03w

3,
dw

dT
= −w(1 + b30w

2). (4.3.8)

System (4.3.8) is linearizable by using the transformation

ξ = (z + b30zw2 +
1
4
a03w

3)
√

1 + b30w2, η =
w√

1 + b30w2
. (4.3.9)

Thus, the origin of system (4.3.9) is a complex isochronous center.
If Condition C∗

11 is satisfied, then by using the same method as the above, we
know that the origin of system (4.3.5) is also a complex isochronous center.
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4.3.2 The Conditions of Isochronous Center Under Condition C2

If Condition C2 in Theorem 4.3.2 holds, then there exist constants p, q, s, such that

a21 = b21 = s, a30 = p b12, b30 = p a12, a03 = q a2
12, b03 = q b2

12. (4.3.10)

Thus, system (4.3.1) becomes

dz

dT
= z + pb12z

3 + sz2w + (1 + 3p)a12zw2 + q a2
12w

3 + λz3w2,

dw

dT
= −w − pa12w

3 − sw2z − (1 + 3p)b12wz2 − q b2
12z

3 − λw3z2. (4.3.11)

Theorem 4.3.5. The first six complex period constants of the origin of system
(4.3.11) are as follows:

τ1 = 2s,

τ2 ∼ 1
2
[4λ − a12b12(4 + 28p + 48p2 + 3a12b12q

2))],

τ3 ∼ 1
4
a2
12b

2
12(3 + 10p)(7 + 24p)q,

τ4 ∼ 1
96

a2
12b

2
12[192(1 + 3p)2(1 + 4p)(2 + 5p)

+8a12b12(13 + 42p)q2 + 135a2
12b

2
12q

4],

τ5 ∼ − 1
50400

a3
12b

3
12(1559 + 5178p)q(63 + 226p + 105a12b12q

2),

τ6 ∼ 1
8100

a3
12b

3
12[−12(37019 + 310766p + 858060p2 + 781200p3)

+a12b12(1006867 + 3466140p)q2)](1 + 3p)2(1 + 4p). (4.3.12)

In addition, the first six complex period constants are all zero if and only if one of
the following five conditions holds:

C21 : s = 0, r = 0, q = 0, p = −1
3
;

C22 : s = 0, r = 0, q = 0, p = −1
4
;

C23 : s = 0, r = 0, p = − 7
24

, 36a12b12q
2 − 1 = 0;

C24 : s = 0, r = 0, a12 = 0;

C∗
24 : s = 0, r = 0, b12 = 0. (4.3.13)

Proposition 4.3.1. If Condition C21 holds, then the origin of system (4.3.11)
is a complex isochronous center.

Proof. When Condition C21 holds, system (4.3.11) becomes

dz

dT
= z − 1

3
b12z

3,
dw

dT
= −w +

1
3
a12w

3. (4.3.14)
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This system is linearizable by using the transformation

ξ =
z√

1 − 1
3
b12z2

, η =
w√

1 − 1
3
a12w2

. (4.3.15)

It follows the conclusion of this proposition.

Proposition 4.3.2. If Condition C22 holds, then the origin of system (4.3.11)
is a complex isochronous center.

Proof. When Condition C22 holds, system (4.3.11) becomes

dz

dT
=

1
4
z(4 − b12z

2 + a12w
2),

dw

dT
= −1

4
w(4 − a12z

2 + b12w
2). (4.3.16)

Let
z = reiθ, w = re−iθ , T = it, (4.3.17)

then θ =
1
2i

(ln z − ln w), we have
dθ

dt
= i

dθ

dT
≡ 1. It implies the conclusion of this

proposition.

Proposition 4.3.3. If Condition C23 holds, then the origin of system (4.3.11)
is a complex isochronous center.

Proof. When Condition C23 holds, system (4.3.11) becomes

dz

dT
= z − 7b12z

3

24
+

zw2

288b12q2
+

w3

1296b2
12q

3
,

dw

dT
= −w − b2

12qz
3 − b12wz2

8
+

7w3

864b12q2
. (4.3.18)

System (4.3.18) is linearizable by using the transformation

ξ =
f1√
f3

, η =
f1√
f3

, (4.3.19)

where

f1 = z − b12z
3

24
+

z2w

48q
− zw2

288b12q2
+

w3

5184b2
12q

3
,

f2 = w +
b2
12qz

3

4
− b12z

2w

8
+

zw2

48q
− w3

864b12q2
,

f3 = 1 − 3b12z
2

8
− zw

16q
− w2

96b12q2
. (4.3.20)

It gives the conclusion of this proposition.
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Proposition 4.3.4. If Condition C24 holds, then the origin of system (4.3.11)
is a complex isochronous center.

Proof. When Condition C24 holds, system (4.3.11) becomes

dz

dT
= z(1 + b12pz2),

dw

dT
= −w − b2

12qz
3 − 3b12pz2w − b12z

2w. (4.3.21)

System (4.3.21) is linearizable by using the transformation

ξ =
z√

1 + b12z2
, η = f4f5, (4.3.22)

where

f4 =

�
(1 + b12pz2)

1+3p
2p , if p �= 0,

e
b12z2

2 , if p = 0,

f5 = w − qg(z)
z

(4.3.23)

and

g(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − b12z
2 − 2e

−b12z2

2 , if p = 0;

b12z
2 + 2 ln

�
1 − b12z

2

2

�
, if p = −1

2
;

− 2b12z
2 − 2(4 − b12z

2) ln
�

1 − b12z
2

4

�
, if p = −1

4
;

2 − b12(1 + 2p)z2 − 2(1 + b12pz2)
−1+2p

2p

(1 + 2p)(1 + 4p)
, others.

(4.3.24)

It follows the conclusion of this proposition.

Remark 4.3.1. From (4.3.24), we have g(0) = g�(0) = g��(0) = 0.

Similar to Proposition 4.3.4, we have

Proposition 4.3.5. If Condition C∗
24 holds, then the origin of system (4.3.11)

is a complex isochronous center.

Proposition 4.3.1 ∼ Proposition 4.3.5 imply that

Theorem 4.3.6. The origin of system (4.3.11) is a complex isochronous center
if and only if one of condition in (4.3.13) holds.
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4.3.3 The Conditions of Isochronous Center Under Condition C3

If Condition C3 in Theorem 4.3.2 holds, then system (4.3.1) becomes

dz

dT
= z − 3

10
b12z

3 +
1
10

a12zw2 + a03w
3,

dw

dT
= −w − b03z

3 − 1
10

b12z
2w +

3
10

a12w
3, (4.3.25)

where

b2
12a03 − a2

12b03 = 0, a12b12 = 25a03b03, |a12| + |b12| �= 0. (4.3.26)

We have

Theorem 4.3.7. The first two complex period constants of the origin of system
(4.3.25) are as follows:

τ1 = 0, τ2 = −a12b12

50
. (4.3.27)

In addition, the first two complex period constants are all zero if and only if one of
the following two conditions are satisfied:

C31 : a12 = 0, b03 = 0,

C∗
31 : b12 = 0, a03 = 0. (4.3.28)

Theorem 4.3.8. If Condition C31 or C∗
31 holds, then the origin of system

(4.3.25) is a complex isochronous center.

Proof. When Condition C31 holds, system (4.3.25) becomes

dz

dT
= z − 3

10
b12z

3 + a03w
3,

dw

dT
= −w

(
1 +

1
10

b12z
2

)
. (4.3.29)

System (4.3.29) is linearizable by using the transformation

ξ = f6f
−1
2

7 , η = wf
−1
6

7 , (4.3.30)

where

f6 = z +
1
4
a03w

3,

f7 = 1 − 3
10

b12z
2 − 3

10
a03b12zw3 − 1

20
a2
03b12w

6. (4.3.31)

Thus, the origin of system (4.3.29) is a complex isochronous center.
Similarly, if Condition C∗

31 holds, the origin of system (4.3.25) is also a complex
isochronous center.
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4.3.4 Non-Isochronous Center under Condition C4 and C∗
4

If Condition C4 or C∗
4 in Theorem 4.3.2 holds, then for system (4.3.1),we have

τ1 = 0, τ2 = −7
6
a03b03 �= 0. (4.3.32)

Thus,we have

Theorem 4.3.9. If Condition C4 or C∗
4 in Theorem 4.3.2 holds, then the origin

is not an isochronous center.

Thus, the problem of the complex isochronous center for the system is completely
solved in this section.

Remark 4.3.2. On the basis of the conclusions in this section, for system
(4.3.1), if λ �= 0, then the origin is not an isochronous center.

Remark 4.3.3. System (4.3.1)λ=0 is a cubic systems having homogeneous non-
linearities. For the origin of system (4.3.1)λ=0, the problem of the complex
isochronous center is correspondencely solved in this section.

4.4 The Method of Time-Angle Difference

In this section, we introduce another method to characterize isochronous centers of
system (4.1.1) and system (4.1.12) (see[Liu, Li, 2006]).

A center of an analytic system is isochronous if and only if there exists an analytic
change of coordinates such that the original system is reduced to a linear system.
Clearly, such a change of variables needs to determine two functions of two variables.
We now give another new method to characterize isochronous centers of polynomial
systems. Unlike the above method of the linearized system, this method only needs
to determine a function which is called the function of the time-angle difference. In
addition, other two algorithms to compute period constants τk are also given.

Theorem 4.4.1. For system (4.1.12), one can derive successively the terms of
the following formal series

G(z, w) =
∞∑

k=1

g3k(z, w)
(zw)k

, (4.4.1)

where, for any positive integer k,

g3k(z, w) =
∑

α+β=3k

Cαβzαwβ (4.4.2)
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is a homogeneous polynomial of degree 3k in z, w, Ckk can take any constant, such
that

dG

dT
+ i +

dθ

dT
=

1
2i

∞�
m=1

τ �
m(zw)m, (4.4.3)

where

θ =
1
2i

ln
z

w
,

dθ

dT
=

wZ + zW

2izw
. (4.4.4)

Theorem 4.4.2. In Theorem 4.4.1, let C0,0 = 0, for any positive integer m,
when α + β = 3m and α �= β, Cαβ is given by the following recursive formula

Cαβ =
1

3(β − α)
Δαβ . (4.4.5)

In addition, τ �
m is given by the following recursive formula

τ �
m =am+1,m + bm+1,m

+2i

2m+1�
k+j=3

[(m−k+1)ak,j−1−(m − j + 1)bj,k−1]C3m−2k−j+3,3m−2j−k+3, (4.4.6)

where

Δαβ =
−3i

2
(aα−m+1,β−m + bβ−m+1,α−m)

+
m+1�

k+j=3

[(2α − β − 3k + 3)ak,j−1 − (2β − α − 3j + 3)bj,k−1]

×α−2k−j+3,β−2j−k+3. (4.4.7)

In the above two formulas, if α < 0 or β < 0, then we define that aαβ = bαβ =
Cαβ = 0.

Proof. Notice that θ =
1
2i

ln
z

w
. We have

dG

dT
+ i +

dθ

dT
=

∞�
m=1

(zw)−m

�
∂g3m

∂z
z − ∂g3m

∂w
w + H3m

�

=
∞�

m=1

(zw)−m

⎡
⎣ �

α+β=3m

(α − β)Cαβzαwβ + H3m

⎤
⎦ , (4.4.8)
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where for any positive integer m,

H3m =
−i

2
(zw)m−1(wZm+1 + zWm+1)

+
m−1∑
k=1

(zw)k−1

[
∂g3m−3k

∂z
z − (m − k)g3m−3k

]
wZk+1

−
m−1∑
k=1

(zw)k−1

[
∂g3m−3k

∂w
w − (m − k)g3m−3k

]
zWk+1

=
1
3

∑
α+β=3m

Δαβzαwβ . (4.4.9)

From (4.4.8), (4.4.9), and (4.4.3), the conclusion of this theorem holds.

Corollary 4.4.1. For system (4.1.1), one can derive successively the terms of
the following formal series

G∗(x, y) = G(x + iy, x − iy) =
∞∑

k=1

g3k(x + iy, x − iy)
(x2 + y2)k

, (4.4.10)

such that
dG∗

dt
− 1 +

dθ

dt
=

1
2

∞∑
m=1

τ �
m(x2 + y2)m. (4.4.11)

Corollary 4.4.2. For system (4.1.3), one can derive successively the terms of
the following formal series

G(r, θ) = G(reiθ , re−iθ) =
∞∑

k=1

g3k(eiθ, e−iθ)r3k, (4.4.12)

such that
dG
dt

− 1 +
dθ

dt
=

1
2

∞∑
m=1

τ �
mr2m. (4.4.13)

Theorem 4.4.3. If the origin of (4.1.12) is a complex center, then

{τ �
m} ∼ {τm}. (4.4.14)

Proof. From (4.4.13) and (4.1.3), we have

dt

dθ
=

dG(r̃(θ, h), θ)
dθ

+ 1 −

1
2

∞∑
k=1

τ �
k r̃2k(θ, h)

1 +
∞∑

k=1

ψk+2(θ)r̃k(θ, h)

. (4.4.15)
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Because the origin of (4.1.12) is a complex center, so G(r̃(θ, h), θ) is a 2π periodic
function in θ. Integrating the two sides of (4.4.15) from 0 to 2π, it follows

T (2π, h) = 2π − π

∞∑
k=1

τ �
kh2kB̃2k(h), (4.4.16)

where for any positive integer k, B̃2k(h) is given in (4.2.31). From (4.1.10), (4.1.34)
and (4.1.16) we have

∞∑
k=1

τkh2kB2k(h) =
∞∑

k=1

τ �
kh2kB̃2k(h). (4.4.17)

(4.4.17) and Theorem 2.2.1 imply the result of Theorem 4.4.3.

Theorem 4.4.1 and Theorem 4.4.3 give an algorithm to compute period constants
τk.

Definition 4.4.1. (1) For system (4.1.12), if there exists a formal series G(z, w)
having the form (4.4.1), such that

dG

dT
+ i +

dθ

dT
= 0, (4.4.18)

then G(z, w) is called a function of the time-angle difference in a neighborhood of
the origin;

(2) For system (4.1.1), if there exists a formal series G∗(x, y) having the form
(4.4.10), such that

dG∗

dt
− 1 +

dθ

dt
= 0, (4.4.19)

then G∗(x, y) is called a function of the time-angle difference in a neighborhood of
the origin.

For system (4.1.12), we notice that the function of the time-angle difference
is not unique. In fact, if G(z, w) is a function of the time-angle difference and
F (z, w) is a first integral satisfying F (0, 0) = 0, then G(z, w) + F (z, w) is also a
function of the time-angle difference . In addition, if G1(z, w) and G2(z, w) are two
functions of the time-angle difference and G1(z, w)−G2(z, w) is not a constant, then
G1(z, w) − G2(z, w) is a formal first integral.

From Theorem 4.4.1 and 4.4.3, we have

Theorem 4.4.4. (Theorem of time-angle difference) For system (4.1.1) and
(4.1.12), if the origin is a complex center, then the origin is a complex isochronous
center, if and only if there exists a function of the time-angle difference in a neigh-
borhood of the origin.
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This theorem tell us that if the origin of (4.1.1) is a complex isochronous center,
then, when |h| � 1, we have formally

t − θ = G∗(r̃(θ, h) cos θ, r̃(θ, h) sin θ) − G∗(h, 0). (4.4.20)

Now we discuss some properties of the function of the time-angle difference of
system (4.1.12). Suppose that ξ and η are given by (4.1.15) satisfying (4.1.14). We
consider the function

G̃(z, w) =
1
2i

[
ln

ξ(z, w)
z

− ln
η(z, w)

w

]
. (4.4.21)

Letting z = u2v, w = uv2, then, from (4.4.15) we obtain

ξ(z, w)
z

= 1 +
∞∑

k=2

uk−2vk−1ξk(u, v),

η(z, w)
w

= 1 +
∞∑

k=2

uk−1vk−2ηk(u, v), (4.4.22)

where for any positive integer k > 1, uk−2vk−1ξk(u, v), uk−1vk−2ηk(u, v) are two
homogeneous polynomials of degree 3(k − 1) in u, v. Hence, G̃(u2v, uv2) is a power
formal series having the form

G̃(u2v, uv2) =
∞∑

k=1

f̃3k(u, v), (4.4.23)

where for any positive integer k, f̃3k(u, v) is homogeneous polynomials of degree 3k

in u, v. So that, we have

G̃(z, w) =
∞∑

k=1

f̃3k(z, w)
(zw)k

. (4.4.24)

Theorem 4.4.5. For the function G̃(z, w) defined by (4.4.21), we have

dG̃(z, w)
dT

+ i +
dθ

dT
=

1
2i

∞∑
k=1

τk(ξη)k. (4.4.25)

Proof. We see from (4.4.21) that

G̃(z, w) =
1
2i

[ln ξ − ln η] − θ. (4.4.26)

By using (4.1.15) and (4.4.26), we obtain (4.4.25).
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Theorem 4.4.6. Suppose that the origin is a complex isochronous center of
(4.1.12). Then, G̃(z, w) is a function of the time-angle difference of (4.1.12) in
a neighborhood of the origin. As a series of u and v, the convergence radius of
G̃(u2v, uv2) is not zero.

Specially, if z = 0 and w = 0 are two complex straight line solutions of system
(4.1.12), then (4.1.12) has the form

dz

dT
= zP (z, w),

dw

dT
= −wQ(z, w), (4.4.27)

where

P (z, w) = 1 +
∞�

k+j=1

a�
kjz

kwj , Q(z, w) = 1 +
∞�

k+j=1

b�kjw
kzj. (4.4.28)

Theorem 4.4.7. For system (4.4.27), one can derive successively the terms of
the following formal series

G(z, w) =
∞�

k=1

gk(z, w), (4.4.29)

where for any positive integer k,

gk(z, w) =
�

α+β=k

Cαβzαwβ (4.4.30)

is a homogeneous polynomial of degree k in z, w, Ckk can take any constant, such
that

dG

dT
+ i +

dθ

dT
=

1
2i

∞�
m=1

τ �
m(zw)m. (4.4.31)

Theorem 4.4.8. In Theorem 4.4.7, denote C00 = 0, then for all α �= β, Cαβ is
given by the following recursive formula

Cαβ =
1

β − α

⎧⎨
⎩

a�
αβ + b�βα

2i
+

α+β−1�
k+j=1

�
(α − k)a�

kj − (β − j)b�jk

�
Cα−k,β−j

⎫⎬
⎭ . (4.4.32)

For any integer m > 0, τ �
m is given by the following recursive formula

τ �
m = a�

mm + b�mm + 2i

2m−1�
k+j=1

�
(m − k)a�

kj − (m − j)b�jk

�
Cm−k,m−j . (4.4.33)

In the above two formulas, if α < 0 or β < 0, then we define that aαβ = bαβ =
Cαβ = 0.

Theorem 4.4.8 gives an algorithm to calculate complex period constants of the
origin of system (4.4.27). In this case, G(z, w) is a formal power series of z, w.
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4.5 The Conditions of Isochronous Center of the Origin for

a Cubic System

In this section, as an application of the method of Time-Angle Difference, we consider
the following real cubic system

dx

dt
= −y − 2a1xy − (3a4 + a5 − a6)x2y + (a4 − a5 + a6)y3,

dy

dt
=x+(a1 + a2)x2−(a1 − a2)y2+(a4 + a5 + a6)x3−(3a4 − a5 − a6)xy2 (4.5.1)

and its associated system
dz

dT
= z + a1z

2 + a2zw + a4z
3 + a5z

2w + a6zw2,

dw

dT
= −w − a1w

2 − a2wz − a4w
3 − a5w

2z − a6wz2. (4.5.2)

Using Theorem 4.4.8 and computer algebra systems, we have the following result.

Theorem 4.5.1. The first 5 period constants of the origin of (4.5.2) are as
follows:

τ1 = 2(a5 − a1a2 − a2
2),

τ2 ∼ 2[(3a2
2 − a5 − a6)(a4 + a5 + a6) + 3a5a6],

τ3 ∼ 1
3
(a4 + a5 + a6)f3,

τ4 ∼ 1
30

(a4 + a5 + a6)f4,

τ5 ∼ 1
402969600000

a5(a5 − 2a6)(a4 + a5 + a6)f5, (4.5.3)

where

f3 =−20a2
2a5 − 80a2

2a6 + 3a4a5 + 7a2
5 + 6a4a6 + 9a5a6 + 2a2

6,

f4 =36a4a
2
5 + 4a3

5 − 77a4a5a6 − 58a2
5a6 − 98a4a

2
6 + 247a5a

2
6 − 186a3

6,

f5 =1371835883790a2
4 − 57411367448a4a5 − 16682041862a2

5

−3793858253681a4a6 + 1649355227996a5a6 − 989885411687a2
6. (4.5.4)

From Theorem 4.5.1, we have

Theorem 4.5.2. The first 5 period constants of the origin of (4.5.2) are all
zero, if and only if one of the following 5 conditions holds:

C1 : a2 = a5 = a6 = 0,

C2 : a2 = a5 = a4 + a6 = 0,

C3 : a1 + a2 = a5 = a4 + a6 = 0,

C4 : a1 − 3a2 = a4 − 2a2
2 = a5 − 4a2

2 = a6 − 2a2
2 = 0,

C5 : a4 + a2(a1 + a2) = a5 − a2(a1 + a2) = a6 = 0. (4.5.5)
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We next consider respectively 5 conditions C1 ∼ C5.
When Condition C1 holds, system (4.5.2) becomes

dz

dT
= z(1 + a1z + a4z

2),
dw

dT
= −w(1 + a1w + a4w

2). (4.5.6)

Proposition 4.5.1. For this system, there exists a function of the time-angle
difference

t − θ =
i

2

�� z

0

a1 + a4z

1 + a1z + a4z2
dz −

� w

0

a1 + a4w

1 + a1w + a4w2
dw

�
. (4.5.7)

When Condition C2 holds, system (4.5.2) becomes

dz

dT
= z(1 + a1z + a4z

2 − a4w
2),

dw

dT
= −w(1 + a1w + a4w

2 − a4z
2). (4.5.8)

The associated system of (4.5.8) is that

dx

dt
= −y(1 + 2a1x + 4a4x

2),

dy

dt
= x + a1x

2 − a1y
2 − 4a4xy2. (4.5.9)

We have

Proposition 4.5.2. For system (4.5.9), there exists a function of the time-angle
difference

t− θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

2
�

4a4 − a2
1

ln

�
1 + a1x − �

4a4 − a2
1y

1 + a1x +
�

4a4 − a2
1y

�
, if a2

1 − 4a4 < 0,

−a1y

1 + a1x
, if a2

1 − 4a4 = 0,

−a1�
a2
1 − 4a4

arctan

��
a2
1 − 4a4y

1 + a1x

�
, if a2

1 − 4a4 > 0.

(4.5.10)

When Condition C3 holds, system (4.5.2) becomes

dz

dT
= z(1 + a1z − a1w + a4z

2 − a4w
2),

dw

dT
= −w(1 + a1w − a1z + a4w

2 − a4z
2). (4.5.11)

Proposition 4.5.3. For system (4.5.11), there exists a function of the time-
angle difference

t − θ = 0. (4.5.12)
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When Condition C4 holds, system (4.5.2) becomes

dz

dT
= z(1 + 3a2z + a2w + 2a2

2z
2 + 4a2

2zw + 2a2
2w

2),

dw

dT
= −w(1 + 3a2w + a2z + 2a2

2w
2 + 4a2

2wz + 2a2z
2). (4.5.13)

The associated system of (4.5.13) is

dx

dt
= −y(1 + 2a2x)(1 + 4a2x),

dy

dt
= x + 4a2x

2 − 2a2y
2 + 8a2

2x
3. (4.5.14)

We obtain

Proposition 4.5.4. For system (4.5.14), there exists a function of the time-
angle difference

t − θ = − arctan
4a2(1 + 2a2x)y

1 + 4a2x + 8a2
2x

2
. (4.5.15)

When Condition C5 holds, system (4.5.2) becomes

dz

dT
= z[1 + (a1 + a2)z][1 − a2z + a2w],

dw

dT
= −w[1 + (a1 + a2)w][1 − a2w + a2z]. (4.5.16)

The associated system of (4.5.16) is

dx

dt
= −y[1 + 2a1x − 2a2(a1 + a2)x2 + 2a2(a1 + a2)y2],

dy

dt
= x + (a1 + a2)x2 − (a1 − a2)y2 + 4a2(a1 + a2)xy2. (4.5.17)

We have

Proposition 4.5.5. For system (4.5.17), there exists a function of the time-
angle difference

t − θ = − arctan
(a1 + a2)y

1 + (a1 + a2)x
. (4.5.18)

Theorem 4.4.4, Theorem 4.5.2 and Proposition 4.5.1 ∼ Proposition 4.5.5 follow
that

Theorem 4.5.3. The origin of the real system (4.5.1) is an isochronous center
if and only if the first 5 period constants of (4.5.1) are all zero, i.e., one of the
conditions C1 ∼ C5 is satisfied.

Remark 4.5.1. If a1, a2, a4, a5, a6 are all complex constants, and x, y, t are all
complex variables, then the functions of the time-angle difference given in Proposition
4.5.1 ∼ Proposition 4.5.5 are all power series with non-zero convergent radius. Thus,
the conclusion of Theorem 4.5.3 is also correct in the complex field.
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1997b; Cairó etc, 1999; Chavarriga etc, 1999; Chavarriga etc, 1999; Chavarriga etc,
2000; Li C.Z. etc, 2000b; Romanovskii ect, 2001c; Chavarriga etc, 2001; Li C.Z. etc,
2002; Liu Y.R. etc, 2003a; Liu Y.R. etc, 2004; Huang W.T. etc, 2005; Liu Y.R. etc,
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Chapter 5

Theory of Center-Focus and Bifurcation of

Limit Cycles at Infinity of a Class of

Systems

We have mentioned in Preface of this book that a real planar polynomial vector field
V can be compactified on the sphere. The vector field p(V ) restricted to the up-
per hemisphere completed with the equator Γ∞ is called Poincaré compactification
of a polynomial vector field. If a real polynomial vector field has no real singular
point in the equator Γ∞ of the Poincaré disc and Γ∞ can be seen a trajectory, all
trajectories in a inner neighborhood of Γ∞ are spirals or closed orbits, then Γ∞ is
called the equator cycle of the vector field. Γ∞ can be become a point by using
the Bendixson reciprocal radius transformation. This point is called infinity of the
system.

In this chapter, we discuss the center-focus problem of infinity (i.e., to distinguish
when the trajectories in a inner neighborhood of Γ∞ are either closed orbits or
spirals) and the bifurcation of limit cycles at infinity for a class of systems.

5.1 Definition of the Focal Values of Infinity

Consider the following real planar polynomial system of degree (2n + 1):

dx

dt
=

2n+1∑
k=0

Xk(x, y),
dy

dt
=

2n+1∑
k=0

Yk(x, y), (5.1.1)

where n is a positive integer and Xk(x, y), Yk(x, y) are homogeneous polynomials of
degree k in x, y of the form

k(x, y) =
∑

α+β=k

Aαβxαyβ ,

Yk(x, y) =
∑

α+β=k

Bαβxαyβ . (5.1.2)

Suppose that the function xY2n+1(x, y) − yX2n+1(x, y) is not identically zero.
Then, system (5.1.1) only has finite real or complex singular points in Γ∞. It has
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no real singular point in Γ∞ if and only if xY2n+1(x, y) − yX2n+1(x, y) is a positive
(or negative) definite function in the real field. This function can be expressed as a
product of linear terms in the complex field as follows:

xY2n+1(x, y) − yX2n+1(x, y) =
2n+2∏
k=1

(αkx + βky). (5.1.3)

On the Poincaré disk, all infinite singular points (real and complex) of system
(5.1.1) are the intersection points of the straight line αkx + βky = 0 and the unit
circle x2 + y2 = 1, k = 1, 2, · · · , 2n + 2.

Without loss of the generality, we assume that I(x, y) is positive definite (other-
wise, we can take a transformation t � −t), then, there exists a positive numbers
d, such that

xY2n+1(x, y) − yX2n+1(x, y) � d(x2 + y2)n+1. (5.1.4)

By using the transformation

x =
cosθ

r
, y =

sinθ

r
, (5.1.5)

system (5.1.1) becomes

dr

dt
=

−1
r2n−1

2n+1∑
k=0

ϕ2n+2−k(θ)rk,

dθ

dt
=

1
r2n

2n+1∑
k=0

ψ2n+2−k(θ)rk . (5.1.6)

Thus, we have

dr

dθ
= −r

ϕ2n+2(θ) +
2n+1∑
k=1

ϕ2n+2−k(θ)rk

ψ2n+2(θ) +
2n+1∑
k=1

ψ2n+2−k(θ)rk

, (5.1.7)

where ϕk(θ), ψk(θ) are given by (2.1.5). Especially,

ϕ2n+2(θ) = cos θX2n+1(cos θ, sin θ) + sin θY2n+1(cos θ, sin θ),

ψ2n+2(θ) = cos θY2n+1(cos θ, sin θ) − sin θX2n+1(cos θ, sin θ). (5.1.8)

(5.1.4) and (5.1.8) follow that

ψ2n+2(θ) � d > 0. (5.1.9)
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Since for all k, ϕk(θ) and ψk(θ) are homogeneous polynomials of degree k in (cos θ,

sin θ), we have

ϕk(θ + π) = (−1)kϕk(θ), ψk(θ + π) = (−1)kψk(θ). (5.1.10)

It implies that equation (5.1.7) is the specific form of the equation (2.1.7).
For a sufficiently small constant h, we write the solution of (5.1.7) with the initial

condition r|θ=0 = h as

r = r̃(θ, h) =
∞∑

k=1

νk(θ)hk. (5.1.11)

From (5.1.7) and (5.1.11), we obtain

ν1(θ) = exp
∫ θ

0

−ϕ2n+2(ϑ) dϑ

ψ2n+2(ϑ)
. (5.1.12)

By Corollary 2.1.1, if ν1(2π) = 1, then the first positive integer k satisfying
νk(2π) �= 0 is an odd number.

Definition 5.1.1. For any positive integer k, ν2k+1(2π) is called the k-th focal
value at infinity of system (5.1.1)

Definition 5.1.2. For system (5.1.1):
(1) If ν1(2π) �= 1 and when ν1(2π) < 1 (> 1), infinity is called a stable (an

unstable) rough focus;
(2) If ν1(2π) = 1 and there exists a positive integer k, such that ν2(2π) =

ν3(2π) = · · · = ν2k(2π) = 0 and ν2k+1(2π) �= 0, then when ν2k+1(2π) < 0 (> 0),
infinity is called a stable (an unstable) weak focus;

(3) If ν1(2π) = 1 and for any positive integer k, we have ν2k+1(2π) = 0, then
infinity is called a center.

From Corollary 2.1.1 and the geometric properties of the Poincaré successor
function Δ(h) = r̃(2π, h) − h, we obtain

Theorem 5.1.1. If infinity is a stable (an unstable) focus of system (5.1.1), then
Γ∞ is an internal stable (an internal unstable) limit cycle.

If infinity is a center, then there exists a family of closed orbits of system (5.1.1)
in a inner neighborhood of the equator Γ∞.

For a given polynomial system, to solve the center-focus problem of infinity, it
depends on the computations of the focal values of infinity. In next sections, we
discuss this difficult problem.
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5.2 Conversion of Questions

First, we consider a special case of system (5.1.1). Letting

X2n+1(x, y) = (δx − y)(x2 + y2)n,

Y2n+1(x, y) = (x + δy)(x2 + y2)n, (5.2.1)

then system (5.1.1) becomes

dx

dt
= (δx − y)(x2 + y2)n +

2n∑
α+β=0

Aαβxαyβ ,

dy

dt
= (x + δy)(x2 + y2)n +

2n∑
α+β=0

Bαβxαyβ . (5.2.2)

For system (5.2.2), (5.1.8) reduces to

ϕ2n+2(θ) ≡ δ, ψ2n+2(θ) ≡ 1. (5.2.3)

Thus, (5.1.7) becomes

dr

dθ
= −r

δ +
2n+1∑
k=1

ϕ2n+2−k(θ)rk

1 +
2n+1∑
k=1

ψ2n+2−k(θ)rk

. (5.2.4)

It is easy to prove that

Proposition 5.2.1. For system (5.2.2), we have ν1(θ) = e−δθ and when δ >

0 (< 0), infinity is a stable (an unstable) focus.

From Lemma 2.1.2, we obtain

Proposition 5.2.2. If δ = 0, then for system (5.2.2), all νk(θ) are polynomials
in θ, sin θ, cos θ, and their coefficients are polynomials in Aαβ , Bαβ. Especially, for
all k, νk(π), νk(2π) are polynomials in Aαβ, Bαβ.

Notice that infinity of system (5.2.2) can be changed to the origin by using a
suitable transformation. In fact, by the transformation

x =
u

u2 + v2
, y =

v

u2 + v2
,

dt

dτ
= (u2 + v2)2n (5.2.5)
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system (5.2.2) becomes

du

dτ
= −(δu + v)(u2 + v2)n +

2n∑
k=0

(u2 + v2)2n−k[(u2 − v2)Xk(u, v) + 2uvYk(u, v],

dv

dτ
= (u − δv)(u2 + v2)n +

2n∑
k=0

(u2 + v2)2n−k[(u2 − v2)Yk(u, v) − 2uvXk(u, v].

(5.2.6)

In the transformation (5.2.5),

x =
u

u2 + v2
, y =

v

u2 + v2
(5.2.7)

is called Bendixson reciprocal radius transformation. Making the polar coordinate
transformation u = r cos θ, v = r sin θ, the transformation (5.2.7) becomes the
transformation (5.1.5).

The transformation (5.2.5) makes infinity of system (5.2.2) become the origin of
system (5.2.6). Thus, the studies of the center-focus problem and the bifurcation
of limit cycles of infinity of system (5.2.2) can be changed to the studies of the
corresponding problems for the origin of system (5.2.6). Since the origin of system
(5.2.6) is a higher-order singular point (or degenerate singular point), it leads to
some difficult problems. We discuss them in Section 6.

If for all k ∈ {n+1, n+2, · · · , 2n}, we have Xk(x, y) = Yk(x, y) = 0, then system
(5.2.2) becomes

dx

dt
= (δx − y)(x2 + y2)n +

n∑
k=0

Xk(x, y),

dy

dt
= (x + δy)(x2 + y2)n +

n∑
k=0

Yk(x, y). (5.2.8)

Hence, we have the following conclusion.

Theorem 5.2.1. By the transformation

x =
u

u2 + v2
, y =

v

u2 + v2
,

dt

dτ
= (u2 + v2)n, (5.2.9)

system (5.2.8) becomes the following polynomial system

du

dτ
= −δu − v +

n∑
k=0

(u2 + v2)n−k[(u2 − v2)Xk(u, v) + 2uvYk(u, v],

dv

dτ
= u − δv +

n∑
k=0

(u2 + v2)n−k[(u2 − v2)Yk(u, v) − 2uvXk(u, v], (5.2.10)

for which the origin is an elementary singular point.
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We can use the following transformation

x =
u

(u2 + v2)m1
, y =

v

(u2 + v2)m1
,

dt

dτ
= (u2 + v2)m2 , (5.2.11)

such that infinity of system (5.2.2) changes to the origin which is an elementary
singular point.

Theorem 5.2.2. By the transformation

x =
u

(u2 + v2)n+1
, y =

v

(u2 + v2)n+1
,

dt

dτ
= (u2 + v2)n(2n+1), (5.2.12)

system (5.2.2) becomes the following polynomial system:

du

dτ
=

−δu

2n + 1
− v +

2n+1∑
k=1

P2nk+k+1(u, v),

dv

dτ
= u − δv

2n + 1
+

2n+1∑
k=1

Q2nk+k+1(u, v), (5.2.13)

for which the origin is an elementary singular point, where

P2nk+k+1(u, v)=
[(

v2 − 1
2n + 1

u2

)
X2n+1−k(u, v)

− 2n + 2
2n + 1

uv Y2n+1−k(u, v)
]

(u2 + v2)(k−1)(n+1) (5.2.14)

and

Q2nk+k+1(u, v)=
[(

u2 − 1
2n + 1

v2

)
Y2n+1−k(u, v)

−2n + 2
2n + 1

uv X2n+1−k(u, v)
]

(u2 + v2)(k−1)(n+1) (5.2.15)

are homogeneous polynomials of degree (2n+1)k+1 of u and v, k = 1, 2, · · · , 2n+1.

This theorem tell us that the studies of the center-focus problem and bifurcation
of limit cycles at infinity of system (5.2.2) can be change to the studies of the
corresponding problems at the elementary singular point O(0, 0) of system (5.2.13).
Because system (5.2.13) is a class of particular systems of (2.1.1). Therefore, we
can apply all known theory for the center-focus problem of system (2.1.1) to system
(5.2.13).

Of course, system (5.2.13) have the following particular properties.
(1) The subscripts (i.e., the degree of homogeneous polynomials) of P2nk+k+1,

Q2nk+k+1 form an arithmetic sequence having common difference 2n + 1, k =
1, 2, · · · , 2n + 1.
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(2) P2nk+k+1 and Q2nk+k+1 have the common factor (u2 + v2)(k−1)(n+1).
(3) System (5.2.13) has a pair of conjugated complex straight line solutions u ±

iv = 0.
We can use these special properties to study the theory of center-focus at infinity

for system (5.2.2).

5.3 Method of Formal Series and Singular Point Value of

Infinity

By the polar coordinate transformation

u = ρ cos θ, v = ρ sin θ (5.3.1)

system (5.2.13) becomes

dρ

dθ
=

−ρ

2n + 1
·

δ +
2n+1∑
k=1

ϕ2n+2−k(θ)ρk(2n+1)

1 +
2n+1∑
k=1

ψ2n+2−k(θ)ρk(2n+1)

. (5.3.2)

Substituting (5.3.1) and (5.1.5) into (5.2.12), we have

r = ρ2n+1. (5.3.3)

Obviously, equation (5.3.2) can also be obtained from equation (5.2.4) by using
transformation (5.3.3).

Let ρ = ρ̃(θ, ρ0) be the solution of (5.3.2) satisfying the initial condition ρ|θ=0 =
ρ0. By using the particular properties of (5.2.13) mentioned in the above section,
we obtain

Proposition 5.3.1. ρ̃(θ, ρ0)ρ−1
0 is a power series of ρ2n+1

0 , i.e., ρ̃(θ, ρ0) has the
following form:

ρ̃(θ, ρ0) =
∞∑

m=1

σ(m−1)(2n+1)+1(θ)ρ
(m−1)(2n+1)+1
0 . (5.3.4)

Proof. Let r = r̃(θ, h) =
∞∑

m=1

νm(θ)hm be the solution of (5.2.4) satisfying the initial

condition r|θ=0 = h. From (5.3.3), we obtain

ρ̃2n+1(θ, ρ0) = r̃(θ, ρ2n+1
0 ). (5.3.5)
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Let h0 = ρ2n+1
0 . (5.3.5) follows that

ρ̃(θ, ρ0)
ρ0

=
(

r̃(θ, h0)
h0

) 1
2n+1

=

[ ∞∑
m=1

νm(θ)hm−1
0

] 1
2n+1

. (5.3.6)

Since the right hand of (5.3.6) can be expanded as a power series of h0, it follows
the conclusion of this proposition.

Clearly,

ν1(2π) − 1 = e−2πδ − 1 = −2πδ + o(δ),

σ1(2π) − 1 = e
−2πδ
2n+1 − 1 =

−2πδ

2n + 1
+ o(δ). (5.3.7)

Theorem 5.3.1. If δ = 0, for any positive integer k, we have

σ2k(2n+1)+1(2π) ∼ 1
2n + 1

ν2k+1(2π),

σ(2k−1)(2n+1)+1(2π) ∼ 0, (5.3.8)

and when m is not an integer multiple of 2n + 1, σm+1(2π) = 0, where ν2k+1(2π) is
the k-th focal value at infinity of system (5.2.2) and σ2k(2n+1)+1(2π) is the k(2n+1)-
th focal value at the origin of system (5.2.13).

Proof. First, when δ = 0, we see from (5.3.7) that ν1(2π) = σ1(2π) = 1. Thus, from
(5.3.4), we have

ρ̃2n+1(2π, ρ0) − ρ2n+1
0

=
2n∑

j=0

ρ2n−j
0 ρ̃j(2π, ρ0)[ρ̃(2π, ρ0) − ρ0]

= (2n + 1)ρ2n
0 G(ρ0)[ρ̃(2π, ρ0) − ρ0]

= (2n + 1)G(ρ0)
∞∑

m=2

σ(m−1)(2n+1)+1(2π)ρm(2n+1)
0 , (5.3.9)

where G(ρ0) is an unit formal power series in ρ0 (see Definition 1.2.3).
On the other hand, (5.3.5) follows that

ρ̃2n+1(2π, ρ0) − ρ2n+1
0 = r̃(2π, ρ2n+1

0 ) − ρ2n+1
0

=
∞∑

m=2

νm(2π)ρm(2n+1)
0 . (5.3.10)

By (5.3.9) and (5.3.10), we have
∞∑

m=2

σ(m−1)(2n+1)+1(2π)ρm(2n+1)
0

=
1

(2n + 1)G(ρ0)

∞∑
m=2

νm(2π)ρm(2n+1)
0 . (5.3.11)
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Comparing the coefficients of the same power of ρ0 on the two sides of (5.3.11), it
gives rise to the conclusion of this theorem.

By the transformation

z = x + iy, w = x − iy, T = it, (5.3.12)

system (5.2.2) becomes

dz

dT
= (1 − iδ)zn+1wn +

2n∑
k=0

Zk(z, w),

dw

dT
= −(1 + iδ)wn+1zn −

2n∑
k=0

Wk(z, w), (5.3.13)

where

Zk(z, w)=
∑

α+β=k

aαβzαwβ

=Yk

(
z + w

2
,
z − w

2i

)
− iXk

(
z + w

2
,
z − w

2i

)
,

Wk(z, w)=
∑

α+β=k

bαβwαzβ

=Yk

(
z + w

2
,
z − w

2i

)
+ iXk

(
z + w

2
,
z − w

2i

)
. (5.3.14)

We say that system (5.2.2) is the associated system of (5.3.13) and vice versa.
Let

ξ = u + iv, η = u − iv, T = iτ. (5.3.15)

Then, from (5.3.12), (5.3.15) and (5.2.12), we have

z =
ξ

(ξ η)n+1
, w =

η

(ξ η)n+1
,

dT

dT = (ξ η)n(2n+1). (5.3.16)

By transformation (5.3.16), system (5.3.13) can be reduced to

dξ

dT =
(

1 +
iδ

2n + 1

)
ξ + ξ

2n+1∑
k=1

Φk(2n+1)(ξ, η),

dη

dT = −
(

1 − iδ

2n + 1

)
η − η

2n+1∑
k=1

Ψk(2n+1)(ξ, η), (5.3.17)

where

Φk(2n+1)(ξ, η)=
[

n

2n + 1
ηZ2n+1−k(ξ, η)

+
n + 1
2n + 1

ξW2n+1−k(ξ, η)
]

(ξ η)(k−1)(n+1),
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Ψk(2n+1)(ξ, η)=
[

n

2n + 1
ξ W2n+1−k(ξ, η)

+
n + 1
2n + 1

ηZ2n+1−k(ξ, η)
]

(ξ η)(k−1)(n+1) (5.3.18)

are homogeneous polynomials of degree k(2n + 1) in ξ, η.
Obviously, system (5.3.17) can also be obtained from system (5.2.13) by using

transformation (5.3.15), thus, system (5.2.13) is the associated system of (5.3.17)
and vice versa.

We next consider the case of δ = 0. When δ = 0, system (5.2.2), (5.2.13), (5.3.13)
and (5.3.17) take the following forms, respectively,

dx

dt
= −y(x2 + y2)n +

2n∑
k=0

Xk(x, y) = X(x, y),

dy

dt
= x(x2 + y2)n +

2n∑
k=0

Yk(x, y) = Y (x, y); (5.3.19)

du

dτ
= −v +

2n+1∑
k=1

P2nk+k+1(u, v) = P (u, v),

dv

dτ
= u +

2n+1∑
k=1

Q2nk+k+1(u, v) = Q(u, v); (5.3.20)

dz

dT
= zn+1wn +

2n∑
k=0

Zk(z, w) = Z(z, w),

dw

dT
= −wn+1zn −

2n∑
k=0

Wk(z, w) = −W (z, w); (5.3.21)

dξ

dT = xi + ξ

2n+1∑
k=1

Φk(2n+1)(ξ, η) = Φ(ξ, η),

dη

dT = −η − η

2n+1∑
k=1

Ψk(2n+1)(ξ, η) = −Ψ(ξ, η). (5.3.22)

The right hand of system (5.3.22) have the following particular properties:
(1) The subscripts (the degree of homogeneous polynomials) of Φk(2n+1), Ψk(2n+1)

form an arithmetic sequence with common difference 2n + 1, k = 1, 2, · · · , 2n + 1.
(2) Φk(2n+1) and Ψk(2n+1) have the common factor (ξη)(k−1)(n+1).
(3) System (5.3.22) has a pair of straight line solutions ξ = 0 and η = 0.
From these properties of the right hand of system (5.3.22), we have
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Theorem 5.3.2. For system (5.3.22), one can derive uniquely and successively
the terms of the following formal series

F (ξ, η) = (ξη)2n+1

[
1 +

∞∑
m=1

fm(2n+1)(ξ, η)

]
, (5.3.23)

such that
dF

dT
∣∣∣∣
(5.3.22)

=
∞∑

m=1

μm(ξη)(m+1)(2n+1), (5.3.24)

where
fm(2n+1)(ξ, η) =

∑
α+β=m(2n+1)

cαβξαηβ (5.3.25)

are homogeneous polynomials of degree m(2n+1) in ξ, η (m = 1, 2, · · · ) and we take

c00 = 1, ck(2n+1),k(2n+1) = 0, k = 1, 2, · · · . (5.3.26)

Definition 5.3.1. For any positive integer m, μm given by (5.3.24) is called the
m-th singular point value at infinity of system (5.3.21).

If there exists a positive integer k, such that μ1 = μ2 = · · · = μk−1 = 0, μk �= 0,
then infinity of system (5.3.21) is called a weak critical singular point of order k.

If for all positive integer k, μk = 0, then infinity of system (5.3.21) is called a
complex center.

Theorem 5.3.3. In the (5.3.25), for all pairs (α, β), when α �= β, and α+β � 1,
cαβ is given by

cαβ =
1

(2n + 1)(β − α)

×
2n+1∑

k+j=1

{
[nα − (n + 1)β + (n − k)(2n + 1)]ak,j−1

−[nβ − (n + 1)α + (n − j)(2n + 1)]bj,k−1

}

×cα+nk+(n+1)j−(n+1)(2n+1),β+nj+(n+1)k−(n+1)(2n+1). (5.3.27)

For any positive integer m, μm is given by

μm =
2n+1∑

k+j=1

[(n − k − m)ak,j−1 − (n − j − m)bj,k−1]

×cnk+(n+1)j+(m−n−1)(2n+1),nj+(n+1)k+(m−n−1)(2n+1), (5.3.28)

where for all pairs (α, β), when α < 0 or β < 0, we take aαβ = bαβ = cαβ = 0.
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Proof. From (5.3.23), we have

dF

dT
∣∣∣∣
(5.3.22)

= (ξη)2n+1

{ ∞∑
m=1

(
∂fm(2n+1)

∂ξ
ξ − ∂fm(2n+1)

∂η
η

)

+
∞∑

m=1

2n+1∑
s=1

[
ξ
∂ f(m−s)(2n+1)

∂ξ
+ (2n + 1)f(m−s)(2n+1)

]
Φs(2n+1)

−
∞∑

m=1

2n+1∑
s=1

[
η
∂f(m−s)(2n+1)

∂η
+ (2n + 1)f(m−s)(2n+1)

]
Ψs(2n+1)

}
.

(5.3.29)

By (5.3.25) and (5.3.29), we obtain

dF

dT
∣∣∣∣
(5.3.22)

=(ξη)2n+1
∞∑

m=1

∑
α+β=

m(2n+1)

(α − β)cαβξαηβ

+(ξη)2n+1
∞∑

m=1

2n+1∑
s=1

∑
α+β=

(m−s)(2n+1)

[
(α + 2n + 1)Φs(2n+1)

− (β + 2n + 1)Ψs(2n+1)

]
cαβξαηβ . (5.3.30)

From (5.3.18) and (5.3.30), we get

(ξη)−(2n+1) dF

dT
∣∣∣∣
(5.3.22)

=
∞∑

m=1

∑
α+β=

m(2n+1)

(α − β)cαβξαηβ

+
1

2n + 1

∞∑
m=1

2n+1∑
s=1

∑
α+β=

(m−s)(2n+1)

[
(nα − nβ − β − 2n− 1)ηZ2n+1−s

−(nβ − nα − α − 2n − 1)ξW2n+1−s

]
cαβξα+(s−1)(n+1)ηβ+(s−1)(n+1). (5.3.31)

(5.3.14) becomes

Z2n+1−s(ξ, η) =
∑

k+j=2n+2−s

ak,j−1ξ
kηj−1,

W2n+1−s(ξ, η) =
∑

k+j=2n+2−s

bj,k−1ξ
k−1ηj . (5.3.32)
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Thus, (5.3.31) and (5.3.32) follow that

(ξη)−(2n+1) dF

dT
∣∣∣∣
(5.3.22)

=
∞∑

m=1

∑
α+β=

m(2n+1)

(α − β)cαβξαηβ

+
1

2n + 1

∞∑
m=1

2n+1∑
s=1

∑
α+β=

(m−s)(2n+1)

∑
k+j=

2n+2−s

[
(nα − nβ − β − 2n − 1)ak,j−1

−(nβ−nα−α−2n−1)bj,k−1

]
cαβξα+(s−1)(n+1)+kηβ+(s−1)(n+1)+j. (5.3.33)

Write that

α1 = α + (s − 1)(n + 1) + k,

β1 = β + (s − 1)(n + 1) + j. (5.3.34)

Hence, when k + j = 2n + 2 − s, α + β = (m − s)(2n + 1), we have

α1 + β1 = m(2n + 1),

α = α1 + nk + (n + 1)j − (n + 1)(2n + 1),

β = β1 + nj + (n + 1)k − (n + 1)(2n + 1),

nα − nβ − β − 2n − 1 = nα1 − (n + 1)β1 + (n − k)(2n + 1),

nβ − nα − α − 2n − 1 = nβ1 − (n + 1)α1 + (n − j)(2n + 1). (5.3.35)

Substituting (5.3.34), (5.3.35) into (5.3.33), and using the symbols α, β instead of
α1, β1, we obtain

dF

dT
∣∣∣∣
(5.3.22)

= (ξη)2n+1
∞∑

m=1

∑
α+β=

m(2n+1)

[(α − β)cαβ + Hαβ ] ξαηβ , (5.3.36)

where

Hαβ =
1

2n + 1

2n+1∑
k+j=1

{[nα − (n + 1)β + (n − k)(2n + 1)]ak,j−1

− [nβ − (n + 1)α + (n − j)(2n + 1)]bj,k−1}
× cα+nk+(n+1)j−(n+1)(2n+1),β+nj+(n+1)k−(n+1)(2n+1) . (5.3.37)

From (5.3.24) and (5.3.36), it gives rise to the conclusion of this theorem.

For any positive integer m, let μ�
m be the m-th singular point values at the origin

of system (5.3.22), we have
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Theorem 5.3.4. For any positive integer k, we have

μ�
k(2n+1) ∼ μk

2n + 1
(5.3.38)

and when m is not an integer multiple of 2n + 1, we have μ�
m = 0.

Proof. For the function F (ξ, η) given by (5.3.23), let

F̂ (ξ, η) = F
1

2n+1 (ξ, η) = ξη

[
1 +

∞∑
m=1

fm(2n+1)(ξ, η)

] 1
2n+1

. (5.3.39)

From (5.3.24) and (5.3.39), we have

dF̂

dT

∣∣∣∣∣
(5.3.22)

=

∞∑
m=1

μm(ξη)m(2n+1)+1

(2n + 1)

[
1 +

∞∑
m=1

fm(2n+1)(ξ, η)

]2n/(2n+1)
. (5.3.40)

(5.3.40) follows the conclusion of the theorem.

From Theorem 5.3.1, Theorem 5.3.4 and Theorem 1.4.4, we have

Theorem 5.3.5. For any positive integer k,

σ2k(2n+1)+1(2π) ∼ iπ

2n + 1
μk,

ν2k+1(2π) ∼ iπμk, (5.3.41)

where σ2k(2n+1)+1(2π) is the k(2n+1)-th focal value at the origin of system (5.3.20),
ν2k+1(2π) is the k-th focal value at infinity of system (5.3.19) and μk is the k-th
singular point value at infinity of system (5.3.21)

From Theorem 2.3.4 and the particular properties of the right hand of system
(5.3.22), we have

Theorem 5.3.6. For system (5.3.22), one can derive successively the terms of
the following formal series

M(ξ, η) = 1 +
∞∑

m=1

gm(2n+1)(ξ, η), (5.3.42)

such that

∂(MΦ)
∂ξ

− ∂(MΨ)
∂η

=
∞∑

m=1

2mn + m + 1
2n + 1

λm(ξη)m(2n+1), (5.3.43)
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where, for any positive integer m,

gm(2n+1)(ξ, η) =
∑

α+β=m(2n+1)

dαβξαηβ (5.3.44)

is a homogeneous polynomial of degree m(2n + 1) in ξ, η, and

λm ∼ (2n + 1)μ�
m(2n+1) ∼ μm. (5.3.45)

Similar to Theorem 5.3.3, we have

Theorem 5.3.7. In the right hand of (5.3.42), letting d00 = 1 and taking
dk(2n+1),k(2n+1)(k = 1, 2, · · · ) as arbitrary numbers, then for all (α, β), when α �= β,
and α + β � 1, dαβ is given by

dαβ =
1

(2n + 1)(β − α)

2n+1∑
k+j=1

{
[nα − (n + 1)β − 1]ak,j−1

−[nβ − (n + 1)α − 1]bj,k−1]
}

× dα+nk+(n+1)j−(n+1)(2n+1),β+nj+(n+1)k−(n+1)(2n+1) (5.3.46)

and for any positive integer m, λm is determined by

λm =
2n+1∑

k+j=1

(bj,k−1 − ak,j−1)

×dnk+(n+1)j+(m−n−1)(2n+1),nj+(n+1)k+(m−n−1)(2n+1) , (5.3.47)

where for all (α, β), when α < 0 or β < 0, we take aαβ = bαβ = dαβ = 0.

Theorem 5.3.3 and Theorem 5.3.7 give the recursive formulas to compute singular
point values at infinity of system (5.3.21).

Theorem 5.3.8. For system (5.3.21), one can derive successively the terms of
the following formal series

F(z, w) =
1

zw

[
1 +

∞∑
m=1

fm(2n+1)(z, w)
(zw)m(n+1)

]
, (5.3.48)

such that
dF
dT

∣∣∣∣
(5.3.21)

= (zw)n
∞∑

m=1

μm

(zw)m+1
, (5.3.49)

where μm is the m-th singular point value at infinity of system (5.3.21), m = 1, 2, · · · .
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Proof. The inverse transformation of (5.3.16) is

ξ = z(zw)
−(n+1)
2n+1 , η = w(zw)

−(n+1)
2n+1 ,

dT
dT

= (zw)n. (5.3.50)

By (5.3.23) and (5.3.48), we have

F(z, w) = F
(
z(zw)

−(n+1)
2n+1 , w(zw)

−(n+1)
2n+1

)
. (5.3.51)

From (5.3.50), (5.3.51) and (5.3.24), it gives rise to the conclusion of this theorem.

Theorem 5.3.9. For system (5.3.21), one can derive successively the terms of
the following formal series

M(z, w) = (zw)−n−1− 1
2n+1

[
1 +

∞∑
m=1

gm(2n+1)(z, w)
(zw)m(n+1)

]
, (5.3.52)

such that

∂(MZ)
∂z

− ∂(MW )
∂w

= (zw)−1− 1
2n+1

∞∑
m=1

(2mn + m + 1)λm

(2n + 1)(zw)m
, (5.3.53)

where λm ∼ μm, m = 1, 2, · · · .

Proof. First, by (5.3.42), we have

M(z, w) = (zw)−n−1− 1
2n+1 M

[
z(zw)

−(n+1)
2n+1 , w(zw)

−(n+1)
2n+1

]
. (5.3.54)

We consider the system

dz

dT =
MZ

(zw)n
= Z(z, w),

dw

dT = − MW

(zw)n
= −W(z, w). (5.3.55)

By the transformation

ξ = z(zw)
−(n+1)
2n+1 , η = w(zw)

−(n+1)
2n+1 , (5.3.56)

system (5.3.55) becomes

dξ

dT = M(ξ, η)Φ(ξ, η),
dη

dT = −M(ξ, η)Ψ(ξ, η). (5.3.57)

The Jacobin determinant of transformation (5.3.56) is given by

J =
∂ξ

∂z

∂η

∂w
− ∂ξ

∂w

∂η

∂z
=

−1
2n + 1

(zw)−1− 1
2n+1 . (5.3.58)
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Then, from (5.3.54), (5.3.55) and (5.3.58), we have

−1
2n + 1

MZ = JZ,
−1

2n + 1
MW = JW . (5.3.59)

Thus,

−1
2n + 1

[
∂(MZ)

∂z
− ∂(MW )

∂w

]
=

∂(JZ)
∂z

− ∂(JW)
∂w

. (5.3.60)

By applying Proposition (1.1.3) to systems (5.3.55) and (5.3.57), from (5.3.57) we
get

∂(JZ)
∂z

− ∂(JW)
∂w

=J

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]

=
−1

2n + 1
(zw)−1− 1

2n+1

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]
. (5.3.61)

From (5.3.60) and (5.3.61), it follows that

∂(MZ)
∂z

− ∂(MW )
∂w

= (zw)−1− 1
2n+1

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]
. (5.3.62)

(5.3.62), (5.3.43) and (5.3.56) give rise to the conclusion of this theorem.

We now consider the following formal series

H(z, w) = 1 +
∞∑

m=1

hm(2n+1)(z, w)
(zw)m(n+1)

, (5.3.63)

where
hm(2n+1)(ξ, η) =

∑
α+β=m(2n+1)

eαβzαwβ (5.3.64)

are homogeneous polynomials of degree m(2n + 1) in z, w ( m = 1, 2, · · · ), and
h0 = e00 = 1.

Reference [Liu Y.R., 2001] gave the following two theorems.

Theorem 5.3.10. For all s �= 0, γ �= 0, one can derive successively the terms
of the formal series

F̃ (z, w) = (zw)sH
1
γ (z, w), (5.3.65)

such that
dF̃

dT

∣∣∣∣∣
(5.3.21)

=
1
γ

(zw)n+sH
1
γ −1

∞∑
m=1

λ�
m

(zw)m
(5.3.66)

and for any positive integer m,

λ�
m ∼ −sγμm. (5.3.67)
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Theorem 5.3.11. Let s, γ be two constants, if for any positive integer m, γ(s+
n + 1 − m) �= 0, then one can derive successively the terms of the formal series

M̃(z, w) = (zw)sH
1
γ (z, w), (5.3.68)

such that
∂(M̃Z)

∂z
− ∂(M̃W )

∂w
=

1
γ

(zw)n+sH
1
γ −1

∞∑
m=1

λ��
m

(zw)m
(5.3.69)

and for any positive integer m,

λ��
m ∼ −γ(s + n + 1 − m)μm. (5.3.70)

By Theorem 5.3.10 and Theorem 5.3.11, the authors of [Chen H.B. etc, 2005b]
gave the recursive formulas to compute singular point values of infinity of system
(5.3.21) as follows.

Theorem 5.3.12. For the formal series F̃ given by Theorem 5.3.10,
ek(2n+1),k(2n+1) can be taken arbitrarily, k = 1, 2, · · · . If α �= β and α + β � 1,
eαβ is given by

eαβ =
1

(2n + 1)(β − α)

×
2n+1∑

k+j=1

{
[nα − (n + 1)β + (γs + n + 1 − k)(2n + 1)]ak,j−1

−[nβ − (n + 1)α + (γs + n + 1 − j)(2n + 1)]bj,k−1

}

×eα+nk+(n+1)j−(n+1)(2n+1),β+nj+(n+1)k−(n+1)(2n+1). (5.3.71)

For any positive integer m, λ�
m is given by

λ�
m =

2n+1∑
k+j=1

[(γs + n + 1 − k − m)ak,j−1

−(γs + n + 1 − j − m)bj,k−1]

×enk+(n+1)j+(m−n−1)(2n+1),nj+(n+1)k+(m−n−1)(2n+1). (5.3.72)

In above two recursive formulas, for all (α, β), if α < 0 or β < 0, we take aαβ =
bαβ = eαβ = 0.

Theorem 5.3.13. For the formal series M̃ given by Theorem 5.3.11,
ek(2n+1),k(2n+1) can be taken arbitrarily, k = 1, 2, · · · . If α �= β, and α + β � 1, eαβ

is given by
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eαβ =
1

(2n + 1)(β − α)

×
2n+1∑

k+j=1

{
[nα − (n + 1)β + (γs + n + 1 − k)(2n + 1)]ak,j−1

−[nβ − (n + 1)α + (γs + γj + n + 1 − j)(2n + 1)]bj,k−1

}

×eα+nk+(n+1)j−(n+1)(2n+1),β+nj+(n+1)k−(n+1)(2n+1), (5.3.73)

else eαβ = 0.

For any positive integer m, λ��
m is given by

λ��
m =

2n+1∑
k+j=1

[(γs + γk + n + 1 − k − m)ak,j−1

−(γs + γj + n + 1 − j − m)bj,k−1]

× enk+(n+1)j+(m−n−1)(2n+1),nj+(n+1)k+(m−n−1)(2n+1). (5.3.74)

In above two recursive formulas, for ∀(α, β), when α < 0 or β < 0, we take aαβ =
bαβ = eαβ = 0.

From Theorem 5.3.10 and Theorem 5.3.11, we have

Theorem 5.3.14. Infinity of system (5.3.21) is a complex center if and only if
there exists a first integral F̃ (z, w) with the form (5.3.65).

Theorem 5.3.15. Infinity of system (5.3.21) is a complex center if and only if
there exists an integral factor M̃(z, w) with the form (5.3.68).

5.4 The Algebraic Construction of Singular Point Values of

Infinity

By means of the transformation

z = ρeiφẑ, w = ρe−iφŵ, T = ρ−2nT̂ , (5.4.1)

system (5.3.21) becomes

dẑ

dT̂
= (ẑ)n+1(ŵ)n +

2n∑
α+β=0

âαβ(ẑ)α(ŵ)β ,

dŵ

dT̂
= −(ŵ)n+1(ẑ)n −

2n∑
α+β=0

b̂αβ(ŵ)α(ẑ)β , (5.4.2)
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where ẑ, ŵ, T̂ are new variables and ρ, φ are complex constants, ρ �= 0 and for all
(α, β),

âαβ = aαβρα+β−2n−1ei(α−β−1)φ,

b̂αβ = bαβρα+β−2n−1e−i(α−β−1)φ. (5.4.3)

If

z = x + iy, ẑ = x̂ + iŷ,

w = x − iy, ŵ = x̂ − iŷ,

T = it, T̂ = it̂, (5.4.4)

then transformation (5.4.1) becomes

x = ρ(x̂ cosφ − ŷ sin φ), y = ρ(x̂ sin φ + ŷ cosφ), t = ρ−2nt̂. (5.4.5)

Compared with transformation (2.4.1), transformation (5.4.1) has a new time
scale T = ρ−2nT̂ . We say that transformation (5.4.1) is a generalized rotation and
similar transformation with time exponent n.

Definition 5.4.1. For systems (5.4.1), assume that f = f(aαβ , bαβ) is a poly-
nomial in aαβ , bαβ. Denote that f̂ = f(âαβ , b̂αα), f∗ = f(bαβ , aαβ). If there exist
λ, σ, such that f̂ = ρλeiσφf , then λ and σ are respectively called the similar expo-
nent and the rotation exponent with time exponent n of f under the transformation
(5.4.1), which are represented by I

(n)
s (f) = λ, I

(n)
r (f) = σ.

We see from (5.4.3) and Definition 5.4.1 that

I(n)
s (aαβ) = α + β − 2n − 1, I(n)

r (aαβ) = α − β − 1,

I(n)
s (bαβ) = α + β − 2n − 1, I(n)

r (bαβ) = −(α − β − 1). (5.4.6)

Obviously, for the generalized rotation and similar transformation in Definition
Section 2.4, the similar exponent, the rotation exponent and the generalized rotation
invariant all have time exponent 0. From (2.4.4) and (5.4.3), we have

âαβ = ρ−2nãαβ , b̂αβ = ρ−2nb̃αβ. (5.4.7)

In addition, (2.4.5) and (5.4.6) imply that

I(n)
s (aαβ) = Is(aαβ) − 2n, I(n)

r (aαβ) = Ir(aαβ),

I(n)
s (bαβ) = Is(bαβ) − 2n, I(n)

r (bαβ) = Ir(bαβ). (5.4.8)
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Proposition 5.4.1. Suppose that f1 = f1(aαβ , bαβ) and f2 = f2(aαβ , bαβ) are
polynomials in aαβ , bαβ. If there exist λ1, λ2, σ1, σ2, such that f̂1 = ρλ1eiσ1φf1,
f̂2 = ρλ2eiσ2φf2, then

I(n)
s (f1f2) = I(n)

s (f1) + I(n)
s (f2), I(n)

r (f1f2) = I(n)
r (f1) + I(n)

r (f2). (5.4.9)

We see from Proposition 5.4.1 and formula (5.4.6) that

Proposition 5.4.2. For m1 + m2 order monomial

g =
m1∏
j=1

aαj ,βj

m2∏
k=1

bγk,δk
, (5.4.10)

given by the coefficients of system (5.3.21), we have

I(n)
s (g) =

m1∑
j=1

(αj + βj − 2n − 1) +
m2∑
k=1

(γk + δk − 2n − 1),

I(n)
r (g) =

m1∑
j=1

(αj − βj − 1) −
m2∑
k=1

(γk − δk − 1). (5.4.11)

Remark 5.4.1. For the coefficients aαβ, bαβ of system (5.3.21), we have 0 �
α + β � 2n, thus, from (5.4.11), for m1 + m2 order monomial g of the coefficients
of system (5.3.21), we have I

(n)
s (g) < 0.

From Proposition 5.4.2 and Theorem (t2.4.2), we obtain

Proposition 5.4.3.

I(n)
s (g) = Is(g) − 2n(m1 + m2), I(n)

r (g) = Ir(g). (5.4.12)

Definition 5.4.2. (1) Suppose that f = f(aαβ, bαβ) is a polynomial in aαβ , bαβ.
If f̂ = ρ2kf , then f is called a k-order generalized rotation invariant with time
exponent n under the transformation (5.4.1).

(2) A generalized rotation invariant f is called a monomial generalized rotation
invariant, if f is a monomial of aαβ , bαβ.

(3) A monomial generalized rotation invariant f is called an elementary gener-
alized rotation invariant if it can not be expressed as a product of two monomial
generalized rotation invariant.

(4) A generalized rotation invariant f is called self-symmetry, if f∗ = f . It is
called antisymmetry, if f∗ = −f .

From Proposition 5.4.1 and Definition 5.4.2, we have
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Proposition 5.4.4. Suppose that f1 and f2 are monomial generalized rotation
invariants (or elementary generalized rotation invariants), then so are f∗

1 and f1f2,
moreover,

I(n)
s (f∗

1 ) = I(n)
s (f1), I(n)

s (f1f2) = I(n)
s (f1) + I(n)

s (f2). (5.4.13)

We see from Proposition 5.4.2 and Definition 5.4.2 that

Proposition 5.4.5. The m1+m2 order monomial given by (5.4.10) is a N -order

generalized rotation invariant if and only if

I(n)
s (g) =

m1∑
j=1

(αj + βj − 2n − 1) +
m2∑
k=1

(γk + δk − 2n − 1) = 2N,

I(n)
r (g) =

m1∑
j=1

(αj − βj − 1) −
m2∑
k=1

(γk − δk − 1) = 0. (5.4.14)

Lemma 5.4.1. For any positive integer m, the m-th singular point value μm at
infinity of system (5.3.21) is a “−m” order generalized rotation invariant with time
exponent n under the transformation (5.4.1), i.e.,

μ̂m = ρ−2mμm. (5.4.15)

Proof. For the function F(z, w) given by Theorem 5.3.8, let F̂ = ρ2F(ρeiφẑ, ρe−iφŵ),
then, from (5.3.48), we have

F̂ =
1

ẑŵ

[
1 +

∞∑
m=1

fm(2n+1)(ẑeiφ, ŵe−iφ)
ρm(ẑŵ)m(n+1)

]
. (5.4.16)

And from (5.3.49), we have

dF̂
dT̂

∣∣∣∣∣
(5.4.2)

= (ẑŵ)n
∞∑

m=1

μm

ρ2m(ẑŵ)m+1
. (5.4.17)

(5.4.17) leads (5.4.15), thus, Lemma 5.4.1 holds.

Lemma 5.4.2. For any positive integer m, the m-th singular point value μm at
infinity of system (5.3.21) is antisymmetry, i.e.,

μ̂∗
m = −μm. (5.4.18)

Proof. By the antisymmetry transformation

z = w∗, w = z∗, T = −T ∗, (5.4.19)
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system (5.3.21) becomes

dz∗

dT ∗ = (z∗)n+1(w∗)n +
2n∑

k=0

Wk(w∗, z∗) = W (w∗, z∗),

dw∗

dT ∗ = −(w∗)n+1(z∗)n −
2n∑

k=0

Zk(w, z) = −Z(w∗, z∗). (5.4.20)

For the function F(z, w) given by Theorem 5.3.8, let F∗ = F(w∗, z∗), then from
(5.3.48), we have

F∗ =
1

z∗w∗

[
1 +

∞∑
m=1

fm(2n+1)(w∗, z∗)
(z∗w∗)m(n+1)

]
. (5.4.21)

From (5.3.49), we obtain

dF∗

dT ∗

∣∣∣∣
(5.4.20)

= (z∗w∗)n
∞∑

m=1

(−μ∗
m)

(z∗w∗)m+1
. (5.4.22)

(5.4.22) follows (5.4.18). Thus, the conclusion of this lemma holds.

We see from Lemma 5.4.1 and 5.4.2 that

Theorem 5.4.1 (The construction theorem of singular point values at
infinity). For any positive integer m, the m-th singular point value μm at infinity of
system (5.3.21) can be represented as a linear combination of “−m” order monomial
generalized rotation invariants with time exponent n and their antisymmetry forms,
i.e.,

μm =
N∑

j=1

γkj(gkj − g∗kj), k = 1, 2, · · · , (5.4.23)

where N is a positive integer and γkj are rational numbers, gkj and g∗kj are −m order
monomial generalized rotation invariants with time exponent n of system (5.3.21).

This theorem follows that

Theorem 5.4.2 (The extended symmetric principle at infinity). If all
elementary generalized rotation invariants g of (5.3.21) satisfy symmetric condition
g = g∗, then all singular point values at infinity of system (5.3.21) are zero.

Under the translational transformation

z� = z − z0, w� = w − w0, (5.4.24)
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system (5.3.21) becomes

dz′

dT
= (z′)n+1(w′)n +

2n∑
α+β=0

a′
αβ(z′)α(w′)β ,

dw′

dT
= −(w′)n+1(z′)n −

2n∑
α+β=0

b′αβ(w′)α(z′)β . (5.4.25)

For any positive integer m, the m-th singular point value at infinity of system (5.4.25)
is written by μ′

m. In [Liu Y.R. etc, 2006c], the authors proved that

Theorem 5.4.3. In the sense of the algebraic equivalence, singular point value
at infinity of system (5.3.21) have the property of translational invariance. Namely,

{μ′
m} ∼ {μm}. (5.4.26)

5.5 Singular Point Values at Infinity and Integrable

Conditions for a Class of Cubic System

Consider a class of real planar cubic system

dx

dt
= X1(x, y) + X2(x, y) + (δx − y)(x2 + y2),

dy

dt
= Y1(x, y) + Y2(x, y) + (x + δy)(x2 + y2). (5.5.1)

where Xk, Yk are homogeneous polynomials of degree k in x, y, k = 1, 2.

When δ = 0, by means of transformation

z = x + iy, w = x − iy, T = it, (5.5.2)

system (5.5.1) can be reduced to

dz

dT
= a10z + a01w + a20z

2 + a11zw + a02w
2 + z2w,

dw

dT
= −b10w − a01z − b20w

2 − b11wz − b02w
2 − w2z. (5.5.3)

If

a10 = A10 + iB10, b10 = A10 − iB10,

a01 = A01 + iB01, b01 = A01 − iB01

a20 = A20 + iB20, b20 = A20 − iB20,

a11 = A11 + iB11, b11 = A11 − iB11,

a02 = A02 + iB02, b02 = A02 − iB01, (5.5.4)
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system (5.5.1)δ=0 can be reduced to

dx

dt
=−(B10 + B01)x − (A10 − A01)y − (B20 + B11 + B02)x2

−2(A20 − A02)xy + (B20 − B11 + B02)y2 − y(x2 + y2),
dy

dt
=(A10 + A01)x − (B10 − B01)y + (A20 + A11 + A02)x2

−2(B20 − B02)xy − (A20 − A11 + A20)y2 + x(x2 + y2). (5.5.5)

By using the following generalized rotation and similar transformation with time
exponent 1:

z = ρeiφẑ, w = ρe−iφŵ, T = ρ−2T̂ (5.5.6)

and (5.4.6), we obtain the similar exponent and rotation exponent of all aαβ , bαβ as
follows:

I(1)
s (a10) = I(1)

s (b10) = −3, I
(1)
r (a10) = 0, I(1)

r (b10) = 0,

I(1)
s (a01) = I(1)

s (b01) = −3, I
(1)
r (b01) = 2, I(1)

r (a01) = −2,

I(1)
s (a20) = I(1)

s (b20) = −1, I
(1)
r (a20) = 1, I(1)

r (b20) = −1,

I(1)
s (a11) = I(1)

s (b11) = −1, I
(1)
r (b11) = 1, I(1)

r (a11) = −1,

I(1)
s (a02) = I(1)

s (b02) = −1, I
(1)
r (b02) = 3, I(1)

r (a02) = −3. (5.5.7)

From (5.5.7), we know all elementary generalized rotation invariant of system
(5.5.3). For example, since

I(1)
s (b3

01a
2
02) = 3I(1)

s (b01) + 2I(1)
s (a02) = −8,

I(1)
r (b3

01a
2
02) = 3I(1)

r (b01) + 2I(1)
r (a02) = 0,

b3
01a

2
02 is “−8/2 = −4” order generalized rotation invariant. It can not be expressed

as a product of two monomial generalized rotation invariants. Namely, the general-
ized rotation invariant is “elementary”. Similarly, (b3

01a
2
02)

∗ = a3
01b

2
02 is also a “−4”

order elementary generalized rotation invariant.

Theorem 5.5.1. System (5.5.3) has exactly 32 elementary generalized rotation
invariants with time exponent 1 at infinity, which are listed as follows.

By means of transformation

z =
ξ

ξ2η2
, w =

η

ξ2η2
,

dT

dT = ξ3η3, (5.5.8)
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Degree elementary generalized rotation invariant number

a20b20, a11b11, a02b02 (self-symmetry)

−1 a10, b10 7

a20a11, b20b11

a01b01 (self-symmetry )

b01b220, b01b20a11, b01a2
11, b01a20a02, b01b11a02

−2 a01a2
20, a01a20b11, a01b211, a01b20b02, a01a11b02 9

a3
20a02, a2

20b11a02, a20b211a02, b311a02

b320b02, b220a11b02, b20a2
11b02, a3

11b02

−3 b201b20a02, a2
01a20b02, b201a11a02, a2

01b11b02 4

−4 b301a2
02, a3

01b202 2

system (5.5.3) becomes a 7-th differential system with the elementary singular point
as follows:

dξ

dT = ξ +
1
3

[
2b02ξ

3 + (a20 + 2b11)ξ2η + (a11 + 2b20)ξη2
]
ξ

+
1
3

[
2b01ξ

2 + (a10 + 2b10)ξη + a01η
2
]
ξ3η2 = Φ(ξ, η),

dη

dT =−η − 1
3

[
2a02η

3 + (b20 + 2a11)η2ξ + (b11 + 2a20)ηξ2
]
η

−1
3

[
2a01η

2 + (b10 + 2a10)ηξ + b01ξ
2
]
η3ξ2 = −Ψ(ξ, η). (5.5.9)

From Theorem 5.3.6, we have

Theorem 5.5.2. For system (5.5.9), one can derive successively the terms of
the following formal series

M(ξ, η) = 1 +
∞∑

m=1

∑
α+β=3m

dαβξαηβ, (5.5.10)

such that

∂(MΦ)
∂ξ

− ∂(MΨ)
∂η

=
∞∑

m=1

3m + 1
3

λm(ξη)3m. (5.5.11)

In addition, for any positive integer number m,

λm ∼ 3μ�
3m ∼ μm, (5.5.12)

where μ�
3m is the 3m-th singular point value at the origin of system (5.5.9), and μm

is the m-th singular point value at infinity of system (5.5.3).

From Theorem 5.3.7, we know that
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Theorem 5.5.3. For (5.5.10), letting d00 = 1 and taking d3k,3k = 0, k =
1, 2, · · · , then for all (α, β) and α �= β, dαβ is given by the recursive formula

dαβ =
1

3(β − α)

3∑
k+j=1

[(α − 2β − 1)ak,j−1

− (β − 2α − 1)bj,k−1] dα+k+2j−6,β+j+2k−6. (5.5.13)

For any positive integer m, λm is given by the recursive formula

λm =
3∑

k+j=1

(bj,k−1 − ak,j−1)dk+2j+3m−6,j+2k+3m−6 . (5.5.14)

where for all (α, β), when α < 0 or β < 0, we take aαβ = bαβ = dαβ = 0.

Theorem 5.5.1 and Theorem 5.5.2 give the recursive formulas to compute directly
the singular point values at the origin of system (5.5.3). By using computer algebra
system Mathematica, we obtain the terms of the first eight singular point values at
infinity of system (5.5.3) as follows:

µk µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

terms 4 30 166 600 1764 4516 10378 21984 · · ·

We see from this table that the expressions of the singular point values are very
long. We need to simplify them.

When A10 = λ, A01 = B01 = B10 = 0, system (5.5.5) can be reduced to

dx

dt
=−λy − (B20 + B11 + B02)x2 − 2(A20 − A02)xy

+(B20 − B11 + B02)y2 − y(x2 + y2),
dy

dt
=λx + (A20 + A11 + A02)x2 − 2(B20 − B02)xy

−(A20 − A11 + A20)y2 + x(x2 + y2). (5.5.15)

In [Blows etc, 1993], the author discussed the center-focus problem and the bifur-
cation of limit cycles at origin and infinity of system (5.5.15) where the parameters
of (5.5.15) are real. We next assume that the parameters of (5.5.15) are complex.

The associated system of (5.5.15) is given by

dz

dT
= λz + a20z

2 + a11zw + a02w
2 + z2w,

dw

dT
= −λw − b20w

2 − b11wz − b02w
2 − w2z. (5.5.16)

From Theorem 5.5.1, we have
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Lemma 5.5.1. System (5.5.16) has exactly 14 elementary generalized rotation
invariants which are listed as follows

λ, a20b20, a11b11, a02b02, a20a11, b20b11,

a3
20a02, a2

20b11a02, a20b
2
11a02, b3

11a02,

b3
20b02, b2

20a11b02, b20a
2
11b02, a3

11b02. (5.5.17)

By Theorem 5.5.1 and Theorem 5.5.2, we use computer algebra system-Mathem-
atica to calculate the first 6 singular point values at infinity of system (5.5.16)
for which there exist the numbers of terms 2, 14, 64, 180, 416, 846, respectively.
Simplifying them, we obtain the following theorem.

Theorem 5.5.4. The first 6 singular point values at infinity of system (5.5.16)
are given by

μ1 = a20a11 − b20b11,

μ2 ∼ 1
3
(4I0 − I2),

μ3 ∼ 4(2I1 − I2)(38λ − 7h02) − (2I2 − I3)(15h20 + 4h02 − 16λ)
96

,

μ4 ∼ 1
1680

(2I2 − I3)f4,

μ5 ∼ (2I2 − I3)(2085h20 − 1258h02 + 4776λ)
13991704889894387712000

f5,

μ6 ∼ 1
1688725139658200521113600000

h2
02(2I2 − I3)f6, (5.5.18)

where

f4 =210h20h11 − 541h20h02 + 18h11h02 + 42h2
02 − 168h02λ,

f5 =253032857528472000J3 + 2114537039332505919721h20h11

+6921878766377155200h20h02 − 510999167489700493800h2
11

−34871062234758497441h11h02 + 1639708991825843200h2
02

+6384378367684800000h20λ + 162132858540896763524h11λ

−4181742245609548800h02λ − 9251325634682880000λ2,

f6 =−43354482540693424129161616296852h20h11

+4882195524329926183734042496576h20h02

+10838886466163652594580429391013h2
11

−1220573965726107568918619767504h11h02

+127643623556931256320000h2
02. (5.5.19)



166 Chapter 5 Theory of Center-Focus and Bifurcation of Limit Cycles· · ·

In (5.5.18) and (5.5.19), μ1 and

I0 = a3
20a02 − b3

20b02, I1 = a2
20b11a02 − b2

20a11b02,

I2 = a20b
2
11a02 − b20a

2
11b02, I3 = b3

11a02 − a3
11b02 (5.5.20)

are anti-symmetric generalized rotation invariants, while λ and

J3 = b3
11a02 + a3

11b02, h20 = a20b20, h11 = a11b11, h02 = a02b02 (5.5.21)

are self-symmetric generalized rotation invariants.

Theorem 5.5.5. For system (5.5.16), the first 6 singular point values are zero
if and only if one of the following six conditions holds:

C1 : I0 = I1 = I2 = I3 = 0, a20a11 − b20b11 = 0;

C2 : 2a20 − b11 = 0, 2b20 − a11 = 0;

C3 : λ = 0, b11 = −2a20, a11 = b20 = b02 = 0, a20a02 �= 0;

C∗
3 : λ = 0, a11 = −2b20, b11 = a20 = a02 = 0, b20b02 �= 0;

C4 : λ = b20 = a20 = 0, b02 = 0, b11a02 �= 0;

C∗
4 : λ = a20 = b20 = 0, a02 = 0, a11b02 �= 0. (5.5.22)

Proposition 5.5.1. If one of condition C1 and C2 in Theorem 5.5.5 holds, then
the infinity of system (5.5.16) is an complex center.

Proof. If C1 holds, from Lemma 5.5.1, we know that the coefficients of system
(5.5.16) satisfy the condition of the extend symmetry principle. If C2 holds, system
(5.5.16) is a Hamiltonian system. Thus, this proposition holds.

Proposition 5.5.2. If one of condition C3 and C∗
3 in Theorem 5.5.5 is satisfied,

then then infinity of system (5.5.16) is an complex center.

Proof. If C3 holds, system (5.5.16) can be reduced to

dz

dT
= a20z

2 + a02w
2 + z2w,

dw

dT
= 2a20zw − zw2. (5.5.23)

This system has the following integral:

(w − 2a20)3(3z2 + 2a02w)
w

= constant. (5.5.24)

Thus, infinity of system (5.5.16) is an complex center.
Similarly, when C∗

3 holds, the conclusion of Proposition 5.5.2 is true.

Proposition 5.5.3. If one of condition C4 and C∗
4 in Theorem 5.5.5 holds, then

infinity of system (5.5.16) is an complex center.
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Proof. When C4 holds, system (5.5.16) becomes

dz

dT
= w(a11z + a02w + z2),

dw

dT
= −zw(b11 + w). (5.5.25)

By means of transformation (5.5.8), system (5.5.25) can be changed into

dξ

dT =
1
3
ξ(3 + 2b11ξ

2η + a11ξη
2 + a02η

3),

dη

dT = −1
3
η(3 + b11ξ

2η + 2a11ξη
2 + 2a02η

3). (5.5.26)

By Theorem 1.6.7, system (5.5.26) is linearizable in a neighborhood of the origin.
Thus, when C4 holds, the conclusion of Proposition 5.5.3 holds.

Similarly, when C∗
4 is satisfied, the conclusion of Proposition 5.5.3 is true.

Propositions 5.5.1, 5.5.2, 5.5.3 and Theorem 5.5.5 follow that

Theorem 5.5.6. Infinity of system (5.5.16) is an complex center, if and only if
the first 6 singular point values are zero, i.e., one of the six conditions in Theorem
5.5.5 is satisfied.

We next discuss the conditions of infinity of system (5.5.16) to be a 6-order weak
singular point. From Theorem 5.5.4, we have

Theorem 5.5.7. For system (5.5.16), infinity is a 6-order weak singular point
if and only if one the following conditions holds:

C5 :
{

a11 + 2b20 = b11 + 2a20 = 0, λ =
1

960
(99 ∓

√
2761)h20, h02 �= 0,

h11 =
1
60

(61 ±
√

2761)h02, J3 = −12638443± 238497
√

2761
378000

h2
02;

C6 : a02b02 �= 0, λ =
1
4
a02b02, a11 = 0, 63b3

11 + 4a02b
2
02 = 0;

C∗
6 : a02b02 �= 0, λ =

1
4
a02b02, b11 = 0, 63a3

11 + 4b02a
2
02 = 0. (5.5.27)

Theorem 5.5.8. If x, y, t are real variables and all the coefficients of system
(5.5.15) are real, then it is impossible that infinity of system (5.5.15) is a 6-th weak
focus.

Proof. From the conditions given in Theorem 5.5.8, we have

b20 = ā20, b11 = ā11, b02 = ā02. (5.5.28)

By Theorem 5.5.7, we only need to prove that when one of conditions of C5, C6 and
C∗

6 holds, it is impossible that (5.5.28) is satisfied.
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In fact, if condition C5 holds, then

J2
3 − 4h3

11h02

h4
02

=
157420332562049± 2995809288171

√
2761

71442000000
> 0. (5.5.29)

On the other hand, from (5.5.20) and (5.5.21), we know that when (5.5.28) is
satisfied, I3 is a pure imaginary. Then, I2

3 = J2
3 − 4h3

11h02 < 0. It implies that if
condition C5 is satisfied, then (5.5.28) does not hold.

In addition, it is easy to see that when one of condition C6 and C∗
6 holds, we

have a11b11 = 0, but not all a11 and b11 are zero. Thus, if one of condition C6 and
C∗

6 is satisfied, then (5.5.28) does not hold.

5.6 Bifurcation of Limit Cycles at Infinity

Consider the following perturbed system of (5.5.1) with two small parament ε, δ

dx

dt
=

2n+1∑
k=0

Xk(x, y, ε, δ),
dy

dt
=

2n+1∑
k=0

Yk(x, y, ε, δ), (5.6.1)

where Xk(x, y, ε, δ), Yk(x, y, ε, δ) are homogeneous polynomials of degree k in x, y,
and the coefficients are power series in ε, δ having nonzero convergent radius. Assume
that there is an integer d, such that

xY2n+1(x, y.0, 0) − yX2n+1(x, y, 0, 0) � d(x2 + y2)n+1 (5.6.2)

and
∫ 2π

0

cos θX2n+1(cos θ, sin θ, 0, 0) + sin θY2n+1(cos θ, sin θ, 0, 0)
cos θY2n+1(cos θ, sin θ, 0, 0) − sin θX2n+1(cos θ, sin θ, 0, 0)

dθ = 0. (5.6.3)

By means of transformation (5.1.5), system (5.6.1) can be changed into

dr

dθ
=−r

ϕ2n+2(θ, ε, δ) +
2n+1∑
k=1

ϕ2n+2−k(θ, ε, δ)rk

ψ2n+2(θ, ε, δ) +
2n+1∑
k=1

ψ2n+2−k(θ, ε, δ)rk

=
−ϕ2n+2(θ, ε, δ)
ψ2n+2(θ, ε, δ)

r + o(r), (5.6.4)

where

ϕk(θ, ε, δ) = cos θXk−1(cos θ, sin θ, ε, δ) + sin θYk−1(cos θ, sin θ, ε, δ),

ψk(θ, ε, δ) = cos θYk−1(cos θ, sin θ, ε, δ) − sin θXk−1(cos θ, sin θ, ε, δ). (5.6.5)
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For a sufficiently small h, we write the solution of (5.6.4) with the initial condition
r|θ=0 = h and the Poincaré succession function respectively as follows:

r = r̃(θ, h, ε, δ) =
∞∑

k=1

νk(θ, ε, δ)hk,

Δ(h, ε, δ) = r̃(2π, h, ε, δ) − h. (5.6.6)

Clearly, ν1(θ) can be expressed as

ν1(θ, ε, δ) = exp
∫ θ

0

−ϕ2n+2(ϑ, ε, δ) dϑ

ψ2n+2(ϑ, ε, δ)
. (5.6.7)

From (5.6.3) and (5.6.7), we have

ν1(2π, 0, 0) = 1. (5.6.8)

Particularly, if X2n+1, Y2n+1 are given by (5.2.1), then ν1(θ, ε, δ) = e−δθ.
Obviously, equation (5.6.4) is a particular case of equation (4.1.7).
If δ = δ(ε) in the right hand of system (5.6.1) is a power series of ε having

nonzero convergent radius, and δ(0) = 0, we can obtain a quasi succession function
L(h, ε) by computing the focal values at infinity. The method mentioned in Chapter
3 can be used to study the bifurcation of limit cycles in a neighborhood of infinity
of system (5.6.1). For an example, we discuss a class of real planar cubic system

dx

dt
= (δx − y)(x2 + y2) + X2(x, y),

dy

dt
= (x + δy)(x2 + y2) + Y2(x, y), (5.6.9)

where X2(x, y), Y2(x, y) are homogeneous polynomials of degree 2 in x, y. By means
of transformation (5.1.5), system (5.6.9) can be changed into

dr

dθ
= −r

δ + [cos θX2(cos θ, sin θ) + sin θY2(cos θ, sin θ)]r
1 + [cos θY2(cos θ, sin θ) − sin θX2(cos θ, sin θ)]r

. (5.6.10)

It is interesting that under the polar coordinates x = r cos θ, y = r sin θ, real
planar quadratic system (4.4.1) can reduce to

dr

dθ
= r

δ + [cos θX2(cos θ, sin θ) + sin θY2(cos θ, sin θ)]r
1 + [cos θY2(cos θ, sin θ) − sin θX2(cos θ, sin θ)]r

. (5.6.11)

The vector fields defined by (5.5.10) and (5.6.11) are opposite oriented. Therefore,
we can use known conclusions of the center-focus problem and bifurcations of limit
cycles for the quadratic system.
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By means of transformation z = x + iy, w = x − iy, T = it, i =
√−1, system

(5.6.9) reduce to

dz

dT
= (1 − iδ)z2w + a20z

2 + a11zw + a02w
2,

dw

dT
= −(1 + iδ)w2z − b20w

2 − b11wz − b02z
2. (5.6.12)

where the relations between aαβ, bαβ and the coefficients of X2(x, y), Y2(x, y) are
given by (3.4.3) and (3.4.4).

Obviously, system (5.6.12)δ=0 is the case of λ = 0 of system (5.5.16), namely it is
the particular case of the system (5.5.3) with a10 = a01 = b10 = b01. From Theorem
5.5.1, we have

Lemma 5.6.1. When δ = 0, system (5.6.12) has exactly 13 elementary general-
ized rotation invariants with time exponent 1 at infinity, which are listed as follows:

degree generalized rotation invariant

−1
a20b20, a11b11, a02b02 (self-symmetry)

a20a11, b20b11

−2
a3
20a02, a2

20b11a02, a20b211a02, b311a02

b320b02, b220a11b02, b20a2
11b02, a3

11b02

Remark 5.6.1. From Corollary 2.5.1 and Lemma 5.6.1, system (5.6.12)δ=0 and
the quadric system 2.5.4 have the same elementary generalized rotation invariants.
But, the order of the same generalized rotation invariant in the two systems are
difference as the time exponents are difference.

By computing the singular point values at infinity of system (5.6.12) and simpli-
fying them, we have

Theorem 5.6.1. When δ = 0, the first 4 singular point values at infinity of
system (5.6.12) are listed as follows:

μ1 = a20a11 − b20b11,

μ2 ∼ 1
3
(4I0 − I1),

μ3 ∼ 1
48

(2a02b02 − 3a20b20)(−14I1 + 5I2 + I3),

μ4 ∼ 1
1800

a2
02b

2
02(−364I1 + 220I2 − 19I3), (5.6.13)

where Ik are given by (5.5.20).

From Theorem 5.6.1, we obtain
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Theorem 5.6.2. When δ = 0, the first 4 singular point values at infinity of
system (5.6.12) are zero if and only if one of the following two conditions holds:

a20a11 − b20b11 = I0 = I1 = I2 = I3 = 0, (5.6.14)

b11 = 2a20, a11 = 2b20. (5.6.15)

From Lemma 5.6.1, we have

Theorem 5.6.3. When δ = 0, if (5.6.14) holds, the coefficients of system
(5.6.12) give rise to the condition of the extend symmetric principle. While if
(5.6.15) holds, system (5.6.12) is a Hamiltonian system.

Theorem 5.6.1, 5.6.2 and 5.6.3 follow that

Theorem 5.6.4. When δ = 0, infinity of system (5.6.12) is a complex center if
and only if μ1 = μ2 = μ3 = μ4 = 0, namely, one of the two conditions in Theorem
5.6.3 holds.

We next discuss the bifurcation of limit cycles created from infinity of system
(5.6.9). Assume that aαβ = Aαβ + iBαβ, bαβ = Aαβ − iBαβ and

δ =
1
2
ε10+N ,

A20 = −1 − 33
40

ε3, B20 =
−1
4

ε6+N ,

A11 = 2, B11 = 0,

A02 =

√
18150− 15972ε− 625ε2N

110
, B02 =

−5
22

εN . (5.6.16)

From Theorem 5.6.1, we have

Lemma 5.6.2. When (5.6.16) holds, for infinity of system (5.6.9), we have

ν1(2π, ε, δ(ε)) − 1 = −πε10+N + o(ε10+N ),

ν3(2π, ε, δ(ε)) � πε6+N , ν5(2π, ε, δ(ε)) � −πε3+N ,

ν7(2π, ε, δ(ε)) � πε1+N , ν9(2π, ε, δ(ε)) � −πεN . (5.6.17)

By Lemma 5.6.2, if (5.6.16) is satisfied, then when ε = 0, if N = 0, infinity of
system (5.6.9) is a 4-order weak focus. If N > 0, infinity of system (5.6.9) is a center,
for which the vector field is symmetric with respect to x−axis. To obtain the quasi
succession function at infinity, we need to prove the following conclusions.

Lemma 5.6.3. If (5.6.16) holds, for any positive integer k > 4, the k-th focal
value at infinity of system (5.6.9) satisfies the following formula

ν2k+1(2π, ε, δ(ε)) = O(εN ). (5.6.18)
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Proof. When (5.6.16) holds, it is easy to prove that

a20a11 − b20b11 = O(εN ),

I0 = O(εN ), I1 = O(εN ),

I2 = O(εN ), I3 = O(εN ). (5.6.19)

Thus, Lemma 5.6.1 and the construction theorem of singular point values at infinity
(Theorem 5.4.1) lead to the conclusion of this Lemma.

From Lemma 5.6.2 and 5.6.3, we have

Lemma 5.6.4. When (5.6.16) holds, the quasi succession function at infinity of
system (5.6.9) is given by

L(h, ε) = −π(ε10 − ε6h2 + ε3h4 − εh6 + h8). (5.6.20)

From Theorem 3.3.4 and Lemma 5.6.4, we obtain

Theorem 5.6.5. If (5.6.16) holds, then when 0 < ε � 1, there exist at least 4
limit cycles in a sufficiently small neighborhood of infinity of system (5.6.9), which
are close to the circles (x2 + y2)−1 = εk, k = 1, 2, 3, 4.

5.7 Isochronous Centers at Infinity of a Polynomial Systems

In this section, we extended the definition of the isochronous center to the case of
infinity for a class of polynomial systems.

We consider the following real system:

dx

dt
=

1
(x2 + y2)n

2n∑
k=0

Xk(x, y) − y,

dy

dt
=

1
(x2 + y2)n

2n∑
k=0

Yk(x, y) + x, (5.7.1)

where n is a positive integer, and Xk(x, y), Yk(x, y) are homogeneous polynomials of
degree k.

By a time rescaling t � (x2+y2)nt, system (5.7.1) becomes the system (5.2.2)δ=0.

Definition 5.7.1. For system (5.7.1), infinity is called an isochronous center, if
it is a center and the period of all periodic solutions in a neighborhood of infinity is
the same constant.

By using the transformation

x =
u

(u2 + v2)n+1
, y =

v

(u2 + v2)n+1
, (5.7.2)

system (5.7.1) can be reduced to the system (5.2.13)δ=0. We immediately have the
following conclusion.
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Theorem 5.7.1. Infinity of system (5.7.1) is a center (isochronous center) if
and only if the origin of system (5.2.13)δ=0 (or system (5.3.17)δ=0) is a center
(isochronous center).

Definition 5.7.2. Infinity of system (5.7.1) is called a complex isochronous
center, if the origin of system (5.2.13)δ=0 (or system (5.3.17)δ=0) is a complex
isochronous center.

Infinity of system (5.5.1)δ=0 is called a complex quasi isochronous center, if in-
finity of system (5.7.1) is a complex isochronous center.

By Theorem 5.7.1 and the above knowledge, to determine center conditions and
isochronous center conditions at infinity of system (5.7.1), we only need to consider
the the computation problem of singular point values and period constants at the
origin for system (5.3.17)δ=0.

To explain the mentioned idea, we consider the following real rational system

dx

dt
= −y +

X3(x, y)
(x2 + y2)2

,
dy

dt
= x +

Y3(x, y)
(x2 + y2)2

, (5.7.3)

where X3(x, y), Y3(x, y) are homogeneous polynomials of degree 3 in x, y. The
associated system of system (5.7.3) has the form

dz

dT
= z +

1
z2w2

(a30z
3 + a21z

2w + a12zw2 + a03w
3),

dw

dT
= −w − 1

z2w2
(b30w

3 + b21w
2z + b12)wz2 + b03z

3). (5.7.4)

By means of transformations

z =
ξ

ξ3η3
, w =

η

ξ3η3
, (5.7.5)

system (5.7.4) becomes

dξ

dT
= ξ +

3
5
b03ξ

8η3 +
1
5
(2a30 + 3b12)ξ7η4 +

1
5
(2a21 + 3b21)ξ6η5

+
1
5
(2a12 + 3b30)ξ5η6 +

2
5
a03ξ

4η7,

dη

dT
=−η − 3

5
a03η

8ξ3 − 1
5
(2b30 + 3a12)η7ξ4 − 1

5
(2b21 + 3a21)η6ξ5

−1
5
(2b12 + 3a30)η5ξ6 − 2

5
b03η

4ξ7. (5.7.6)

5.7.1 Conditions of Complex Center for System (5.7.6)

First, we discuss the center conditions. By using Theorem 2.3.6 to compute the
singular point values at origin of system (5.7.6) and simplify them, we obtain
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Theorem 5.7.2. The first 35 singular point values at the origin of system (5.7.6)
are given by

μ5 =
1
5
(−a21 + b21),

μ10 ∼ 1
5
(a12a30 − b12b30),

μ15 ∼ 1
40

(−9a03a
2
30 − a2

12b03 + a03b
2
12 + 9b03b

2
30),

μ20 ∼ 1
20

(a21 + b21)(3a03a
2
30 − a03a30b12 + a12b03b30 − 3b03b

2
30),

μ25 ∼ 1
120

(16a30b30 − 3a03b03)(3a03a
2
30 − a03a30b12 + a12b03b30 − 3b03b

2
30),

μ30 ∼ 0,

μ35 ∼ − 88
675

a2
30b

2
30(3a03a

2
30 − a03a30b12 + a12b03b30 − 3b03b

2
30). (5.7.7)

We know from Theorem 5.7.2 that

Theorem 5.7.3. For system (5.7.6), the first 35 singular point values are zero
if and only if one of the following four conditions holds:

C1 : a21 = b21, a12 = 3b30, b12 = 3a30,

C2 :
{

a21 = b21, |3a30 − b12| + |3b30 − a12| �= 0, a12a30 = b12b30,

a2
30a03 = b2

30b03, a30b12a03 = b30a12b03, b2
12a03 = a2

12b03,

C3 : a21 = b21 = a30 = b12 = a03 = 0, a12 = −3b30,

C∗
3 : a21 = b21 = b30 = a12 = b03 = 0, b12 = −3a30. (5.7.8)

We next discuss the conditions that the origin is a complex center.
(1) When condition C1 holds, there exist a constant s, such that a21 − b21 = s.

Thus system (5.7.6) becomes

dξ

dT
= ξ +

3
5
b03ξ

8η3 +
11
5

a30ξ
7η4 + sξ6η5 +

9
5
b30ξ

5η6 +
2
5
a03ξ

4η7,

dη

dT
= −η − 3

5
a03η

8ξ3 − 11
5

b30η
7ξ4 − sη6ξ5 − 9

5
a30η

5ξ6 − 2
5
b03η

4ξ7. (5.7.9)

System (5.7.9) has an analytic first integral

F =
ξ15η15

4 + 3b03ξ7η3 + 12a30ξ6η4 + 6sξ5η5 + 12b30ξ4η6 + 3a03ξ3η7
. (5.7.10)

Thus, the origin of system (5.7.9) is a complex center.
(2) When condition C2 holds, we denote that 3a30 − b12 = β, 3b30 − a12 = α,

then there exist complex p, q, s, such that

a30 = pβ, b30 = pα, a03 = qα2, b03 = qβ2, a21 = b21 = s. (5.7.11)
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Thus, system (5.7.6) becomes

dξ

dT
= ξ +

3
5
qβ2ξ8η3 +

1
5
(11p − 3)βξ7η4

+sξ6η5 +
1
5
(9p − 2)αξ5η6 − 2

5
qα2ξ4η7,

dη

dT
=−η − 3

5
qα2η8ξ3 − 1

5
(11p − 3)αη7ξ4

−sη6ξ5 − 1
5
(9p − 2)βη5ξ6 − 2

5
qβ2η4ξ7. (5.7.12)

For system (5.7.12), the conditions of the extended symmetric principle are satisfied.
Thus the origin of system (5.7.12) is a complex center.

(3) When one of conditions C3 and C∗
3 holds, we have

Proposition 5.7.1. If one of conditions C3 and C∗
3 holds, then the origin of

system (5.7.6) is a complex isochronous center.

Proof. When conditions C3 holds, system (5.7.6) becomes

dξ

dT
= ξ +

3
5
b03ξ

8η3 − 3
5
b30ξ

5η6,

dη

dT
= −η +

7
5
b30η

7ξ4 − 2
5
b03η

4ξ7. (5.7.13)

System (5.7.13) is linearizable by using the transformation

u = ξ
(1 − 3b30ξ

4η6)
1
10

(
1 +

3
4
b03ξ7η3

) 1
5
, v = η

(
1 +

3
4
b03ξ

7η3

) 2
15

(1 − 3b30ξ4η6)
7
30

. (5.7.14)

Thus the origin of system (5.7.14) is a complex isochronous center.
Similarly, if Condition C∗

3 holds, the origin of system (5.7.6) is also a complex
isochronous center

To sum up, we have

Theorem 5.7.4. All singular point values of the origin of (5.7.6) are zero if
and only if the first 35 singular point values of the origin are zero, i.e., one of the
four conditions in Theorem 5.7.3 holds.

Theorem 5.7.5. For system (5.7.1), infinity is a complex center if and only if
one of the four conditions in Theorem 5.7.3 holds.
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5.7.2 Conditions of Complex Isochronous Center for System (5.7.6)

We next discuss the isochronous center conditions.
(1) When condition C1 in Theorem 5.7.3 holds, we have

Proposition 5.7.2. The first 20 period constants of the origin of system (5.7.9)
are given by

τ5 = 2s, τ10 ∼ −1
2
(a03b03 + 16a30b30),

τ15 ∼ 0, τ20 ∼ −80a2
30b

2
30. (5.7.15)

From Proposition 5.7.2, we have

Proposition 5.7.3. The first 20 period constants of the origin of system (5.7.9)
are all zeros, if and only if one of the following conditions holds:

C11 : s = 0, a30 = 0, a03 = 0;

C∗
11 : s = 0, b30 = 0, b03 = 0;

C21 : s = 0, a30 = 0, b03 = 0;

C∗
21 : s = 0, b30 = 0, a03 = 0. (5.7.16)

Proposition 5.7.4. If one of condition C11 and C∗
11 holds, then the origin of

(5.7.9) is a complex isochronous center.

Proof. When condition C11 holds, system (5.7.9) becomes

dξ

dT
= ξ +

3
5
b03ξ

8η3 +
9
5
b30ξ

5η6,

dη

dT
= −η − 2

5
b03ξ

7η4 − 11
5

b30ξ
4η7. (5.7.17)

System (5.7.17) is linearizable by using the transformation

u =
ξ
√

1 + 3b30ξ4η6

(1 + 3b30ξ4η6 + 3
4b03ξ7η3)

1
5
,

v =
η(1 + 3b30ξ

4η6 + 3
4b03ξ

7η3)
2
15√

1 + 3b30ξ4η6
. (5.7.18)

Thus, the origin of (5.7.17) is a complex isochronous center.
If Condition C∗

11 is satisfied, then by using the same method as the above, we
know that the origin of system (5.7.9) is also a complex isochronous center.

Proposition 5.7.5. If one of condition C12 and C∗
12 holds, then the origin of

(5.7.9) is a complex isochronous center.
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Proof. When condition C12 holds, system (5.7.9) becomes

dξ

dT
= ξ +

9
5
b30ξ

5η6 +
2
5
a03ξ

4η7,

dη

dT
= −η − 11

5
b30ξ

4η7 − 3
5
a03ξ

3η8. (5.7.19)

By using the transformation

u = ξ4η6, v = ξ3η7, (5.7.20)

system (5.7.20) becomes

du

dT
= −2u(1 + 3b30u + a03v),

dv

dT
= −v(4 + 10b30u + 3a03v). (5.7.21)

The origin of system (5.7.21) is an integer-ratio node, similar to the proof of Theorem
1.6.1, we can prove that the origin of (5.7.19) is a complex isochronous center.

Similarly, when condition C∗
12 holds, the origin of (5.7.9) is also a complex

isochronous center.

(2) When condition C2 in Theorem 5.7.3 holds, we have

Proposition 5.7.6. The first 25 period constants of the origin of system (5.7.12)
are given by

τ5 = 2s, τ10 ∼ −1
2
αβ(−4p + 16p2 + αβq2),

τ15 ∼ 1
4
α2β2q(6p − 1), τ20 ∼ − 1

48
α3β3q2. (5.7.22)

From Proposition 5.7.6, we have

Proposition 5.7.7. The first 20 period constants of the origin of system (5.7.12)
are all zeros, if and only if one of the following conditions holds:

C21 : s = 0, q = 0, p = 0;

C22 : s = 0, q = 0, p =
1
4
;

C23 : s = 0, α = 0;

C∗
23 : s = 0, β = 0. (5.7.23)

Proposition 5.7.8. If condition C21 holds, then the origin of (5.7.12) is a
complex isochronous center.

Proof. When condition C21 holds, system (5.7.12) becomes

dξ

dT
= ξ − 3

5
βξ7η4 − 2

5
αξ5η6,

dη

dT
= −η +

3
5
αη7ξ4 +

2
5
βη5ξ6. (5.7.24)
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System (5.7.16) is linearizable by using the transformation

ξ =
ξ(1 − αξ4η6)

1
5

(1 − βξ6η4)
3
10

, η =
η(1 − βξ6η4)

1
5

(1 − αξ4η6)
3
10

. (5.7.25)

Thus, the origin of system (5.7.24) is an complex isochronous center.

Proposition 5.7.9. If condition C22 holds, then the origin of (5.7.12) is a
complex isochronous center.

Proof. When condition C22 holds, system (5.7.12) becomes

dξ

dT
= ξ − 1

20
βξ7η4, +

1
20

αξ5η6

dη

dT
= −η +

1
20

αη7ξ4 − 1
20

βη5ξ6. (5.7.26)

By using the polar coordinates ξ = ρeiθ, η = ρe−iθ and T = it, we have
dθ

dt
≡ 1.

System (5.7.26) has an isochronous center at the origin.

Proposition 5.7.10. If one of condition C23 and C∗
23 holds, then the origin of

(5.7.12) is a complex isochronous center.

Proof. When condition C23 holds, system (5.7.12) becomes

dξ

dT
= ξ +

3
5
β2qξ8η3 +

1
5
β(11p − 3)ξ7η4,

dη

dT
= −η − 2

5
β2qξ7η4 − 1

5
β(9p − 2)ξ6η5. (5.7.27)

Letting

u = ξ7η3, v = ξ6η4, (5.7.28)

system (5.7.27) becomes

du

dT
= 4u + 3β2qu2 + β(10p− 3)uv,

dv

dt
= 2v + 2β2quv + 2β(3p− 1)v2. (5.7.29)

The origin of system (5.7.29) is an integer-ratio node, similar to the proof of Theorem
1.6.1, we can prove that the origin of (5.7.29) is a complex isochronous center.

Similarly, when condition C∗
23 holds, the origin of (5.7.12) is also a complex

isochronous center.

(3) Finally, when one of conditions C3 and C∗
3 in Theorem 5.7.3 holds, according

to Proposition 5.7.1, the origin of system (5.7.6) is a complex isochronous center.
The problem of a complex isochronous center for the infinity of system (5.7.3)

and (5.7.4) are already solved completely in this section.
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The problem of a complex quasi isochronous center for the infinity of system

dx

dt
= −y(x2 + y2)2 + X3(x, y),

dy

dt
= x(x2 + y2)2 + Y3(x, y) (5.7.30)

are also already solved completely.
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Chapter 6

Theory of Center-Focus and Bifurcations

of Limit Cycles for a Class of Multiple

Singular Points

For a multiple singular point, the criteria of center-focus is very difficult. There is no
general theory for center-focus problem. Only on some particular cases, a multiple
singular points can be changed to an elementary singular points by means of suitable
transformations, we can treat the criteria problem.

In this chapter, we introduce the theory of center-focus for a class of multiple
singular points.

6.1 Succession Function and Focal Values for a Class of

Multiple Singular Points

Consider the following real planar system:

dx

dt
=

∞∑
k=2n+1

Xk(x, y),
dy

dt
=

∞∑
k=2n+1

Yk(x, y), (6.1.1)

where n is a positive integer, and Xk(x, y), Yk(x, y) are homogeneous polynomials
of degree k in x, y. Suppose that xY2n+1(x, y) − yX2n+1(x, y) is a positive (or
negative) definite function. Without loss of generality, we assume that xY2n+1(x, y)−
yX2n+1(x, y) is positive definite, then there exists a positive number d, such that

xY2n+1(x, y) − yX2n+1(x, y) � d(x2 + y2)n+1. (6.1.2)

The origin of system (6.1.1) is a multiple singular point. From (6.1.2), we know
that the origin of system (6.1.1) has no Frömmer characteristic directions. It implies
that the origin is a center or a focus. By the polar coordinate transformation

x = r cos θ, y = r sin θ, (6.1.3)
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system (6.1.1) becomes

dr

dt
= r2n+1

∞∑
k=0

ϕ2n+2+k(θ)rk ,

dθ

dt
= r2n

∞∑
k=0

ψ2n+2+k(θ)rk. (6.1.4)

Thus, we have

dr

dθ
= r

ϕ2n+2(θ) +
∞∑

k=1

ϕ2n+2+k(θ)rk

ψ2n+2(θ) +
∞∑

k=1

ψ2n+2+k(θ)rk

, (6.1.5)

where ϕk(θ), ψk(θ) are given by (2.1.5). Especially,

ϕ2n+2(θ) = cos θX2n+1(cos θ, sin θ) + sin θY2n+1(cos θ, sin θ),

ψ2n+2(θ) = cos θY2n+1(cos θ, sin θ) − sin θX2n+1(cos θ, sin θ). (6.1.6)

From (6.1.2) and (6.1.6), we obtain

ψ2n+2(θ) � d > 0. (6.1.7)

Since for all k, ϕk(θ), ψk(θ) are homogeneous polynomials of degree k in cos θ, sin θ,
we see that

ϕk(θ + π) = (−1)kϕk(θ), ψk(θ + π) = (−1)kψk(θ). (6.1.8)

Obviously, we know from (6.1.8) that system (6.1.5) is a particular case of system
(2.1.7).

For sufficiently small h, let

r = r̃(θ, h) =
∞∑

k=1

νk(θ)hk. (6.1.9)

be the solution of system (6.1.5) satisfying the initial condition r|θ=0 = h. From
(6.1.5) and (6.1.9), we obtain the expression of ν1(θ) as follows:

ν1(θ) = exp
∫ θ

0

ϕ2n+2(ω) dω

ψ2n+2(ω)
. (6.1.10)

Corollary 2.1.1 follows that if ν1(2π) = 1, then the first integer k satisfying k > 1
and νk(2π) �= 0 is an odd number.
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Definition 6.1.1. For any positive integer k, ν2k+1(2π) is called k-th focal value
at the origin of system (6.1.1).

Definition 6.1.2. For system (6.1.1):
(1) If ν1(2π) �= 1, then the origin is called a rough focus;
(2) If ν1(2π) = 1 and there exist a positive integer k, such that ν2(2π) = ν3(2π) =

· · · = ν2k−1(2π) = 0 and ν2k+1(2π) �= 0, then the origin is called a weak focus of
order k;

(3) If ν1(2π) = 1 and for all positive integers k, ν2k+1(2π) = 0, then the origin
is called a center.

By Corollary 2.1.1 and the geometric properties of Poincaré succession function
Δ(h) = r̃(2π, h) − h, we have the following conclusion.

Theorem 6.1.1. For system (6.1.1):
(1) If the origin is a rough focus , then when ν1(2π) < 1 (> 1), the origin is

stable (unstable);
(2) If the origin is a weak focus of order k, then when ν2k+1(2π) < 0 (> 0), the

origin is stable (unstable);
(3) If the origin is a center, in a neighborhood of the origin, there exists a family

of closed orbits of system (6.1.1).

6.2 Conversion of the Questions

In this section, we assume that in the right hand of system (6.1.1), the first homo-
geneous polynomial of degree 2n + 1 is as follows:

X2n+1(x, y) = (δx − y)(x2 + y2)n,

Y2n+1(x, y) = (x + δy)(x2 + y2)n. (6.2.1)

Hence, system (6.1.1) becomes

dx

dt
= (δx − y)(x2 + y2)n +

∞∑
k=2n+2

Xk(x, y),

dy

dt
= (x + δy)(x2 + y2)n +

∞∑
k=2n+2

Yk(x, y). (6.2.2)

Now, (6.1.6) reduces to

ϕ2n+2(θ) ≡ δ, ϕ2n+2(θ) ≡ 1. (6.2.3)
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Under the polar coordinates, system (6.2.2) becomes

dr

dθ
= r

δ +
∞∑

k=1

ϕ2n+2+k(θ)rk

1 +
∞∑

k=1

ψ2n+2+k(θ)rk

. (6.2.4)

It is easy to prove that the following propositions.

Proposition 6.2.1. For system (6.2.2), we have ν1(θ) = eδθ and when δ < 0 (>
0), the origin is a stable (an unstable) focus.

From Lemma 2.1.2, we obtain

Proposition 6.2.2. For system (6.2.2), if δ = 0, then all νk(θ) are polynomials
in θ, sin θ and cos θ and the coefficients of νk(θ) are polynomials in Aαβ , Bαβ.
Especially, for all k, νk(π), νk(2π) are polynomials in Aαβ, Bαβ.

Similar to Theorem 5.2.2, we have the following theorem.

Theorem 6.2.1. By the transformation

x = u(u2 + v2)n+1, y = v(u2 + v2)n+1,

dt

dτ
= (u2 + v2)−n(2n+3), (6.2.5)

system (6.2.2) can be reduced to the following analytic system:

du

dτ
=

δu

2n + 3
− v +

∞∑
k=1

P2nk+3k+1,

dv

dτ
= u +

δv

2n + 3
+

∞∑
k=1

Q2nk+3k+1, (6.2.6)

for which the origin is an elementary focus, where

P2nk+3k+1 =
[(

1
2n + 3

u2 + v2

)
X2n+1+k(u, v)

−2n + 2
2n + 3

uvY2n+1+k(u, v)
]

(u2 + v2)(k−1)(n+1),

Q2nk+3k+1 =
[(

u2 +
1

2n + 3
v2

)
Y2n+1+k(ξ, η)

−2n + 2
2n + 3

uvX2n+1+k(u, v)
]

(u2 + v2)(k−1)(n+1) (6.2.7)

are homogeneous polynomials of degree 2nk + 3k + 1 in u, v.
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This theorem tell us that our problems at a multiple singular point can be
changed to the corresponding problems at the elementary singular point O(0, 0)
of system (6.2.6). Since (6.2.6) is a particular system of (2.1.1), therefore, all con-
clusions in the theory of center-focus about system (2.1.1) can be used to system
(6.2.6).

Notice that as a special system of system (2.1.1), the right hand of system (6.2.6)
have the following particular properties:

(1) The subscripts of P2nk+3k+1, Q2nk+3k+1 form an arithmetic sequence with
the common difference 2n + 3 (k = 1, 2, · · · , 2n + 1).

(2) P2nk+3k+1 and Q2nk+3k+1 have common factor (u2 + v2)(k−1)(n+1).
(3) System (6.2.6) has a pair of conjugated complex straight line solutions u±iv =

0.
On the basis of the above properties, we can obtain some new results for the

theory of center-focus of the origin of system (6.2.6).

6.3 Formal Series, Integral Factors and Singular Point Values

for a Class of Multiple Singular Points

Under the polar coordinates

u = ρ cos θ, v = ρ sin θ, (6.3.1)

system (6.2.6) has the form

dρ

dθ
=

ρ

2n + 3
·

δ +
∞∑

k=1

ϕ2n+2+k(θ)ρk(2n+3)

1 +
∞∑

k=1

ψ2n+2+k(θ)ρk(2n+3)

. (6.3.2)

Substituting (6.1.3) and (6.2.5) in (6.3.1), we have

r = ρ2n+3. (6.3.3)

Of course, (6.3.2) can also be obtained from (6.2.4) by using transformation (6.3.3).
Write the solution of (6.3.2) satisfying the initial condition ρ|θ=0 = ρ0 as ρ =

ρ̃(θ, ρ0). The properties of the right hand of (6.2.6) follows that

Proposition 6.3.1. ρ̃(θ, ρ0)ρ−1
0 is a power series in ρ2n+3

0 , that is, ρ̃(θ, ρ0) has
the form

ρ̃(θ, ρ0) =
∞∑

m=1

σ(m−1)(2n+3)+1(θ)ρ
(m−1)(2n+3)+1
0 . (6.3.4)
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Proof. Let the solution of (6.2.4) satisfying the initial condition r|θ=0 = h be r =

r̃(θ, h) =
∞∑

m=1

νm(θ)hm. From (6.3.3), we have

ρ̃2n+3(θ, ρ0) = r̃(θ, ρ2n+3
0 ). (6.3.5)

Taking h0 = ρ2n+3
0 , then from (6.3.5), we obtain

ρ̃(θ, ρ0)
ρ0

=
(

r̃(θ, h0)
h0

) 1
2n+3

=

[ ∞∑
m=1

νm(θ)hm−1
0

] 1
2n+3

. (6.3.6)

Since the right function of (6.3.6) can be expanded as a power series in h0. Thus,
the conclusion of Proposition 6.3.1 holds.

It is easy to see that

ν1(2π) − 1 = e2πδ − 1 = 2πδ + o(δ),

σ1(2π) − 1 = e
2πδ

2n+3 − 1 =
2πδ

2n + 3
+ o(δ). (6.3.7)

Theorem 6.3.1. If δ = 0, then for any positive integer k, we have

σ2k(2n+3)+1(2π) ∼ 1
2n + 3

ν2k+1(2π),

σ(2k−1)(2n+3)+1(2π) ∼ 0, (6.3.8)

where ν2k+1(2π) is the k-th focal value of the origin of system (6.2.2), while
σ2k(2n+3)+1(2π) is the k(2n+3)-th focal value of the origin of system (6.2.6). More-
over, when m is not an integer multiple of 2n + 3, we take σm+1(2π) = 0.

Proof. If δ = 0, from (6.3.7), we have ν1(2π) = σ1(2π) = 1. From (6.3.4), we obtain

ρ̃2n+3(2π, ρ0) − ρ2n+3
0

=
2n+2∑
j=0

ρ2n+2−j
0 ρ̃j(2π, ρ0)[ρ̃(2π, ρ0) − ρ0]

= (2n + 3)ρ2n+2
0 G(ρ0)[ρ̃(2π, ρ0) − ρ0]

= (2n + 3)G(ρ0)
∞∑

m=2

σ(m−1)(2n+3)+1(2π)ρm(2n+3)
0 , (6.3.9)

where G(ρ0) is a unit formal power series in ρ0 (see Definition 1.2.3).
On the other hand, from (6.3.5), we have

ρ̃2n+3(2π, ρ0) − ρ2n+3
0 = r̃(2π, ρ2n+3

0 ) − ρ2n+3
0

=
∞∑

m=2

νm(2π)ρm(2n+3)
0 . (6.3.10)
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(6.3.9) and (6.3.10) imply that
∞∑

m=2

σ(m−1)(2n+3)+1(2π)ρm(2n+3)
0

=
1

(2n + 3)G(ρ0)

∞∑
m=2

νm(2π)ρm(2n+3)
0 . (6.3.11)

Comparing the coefficients of ρk
0 on the two sides of (6.3.11), it leads to the conclusion

of Theorem 6.3.1.

By making transformation

z = x + iy, w = x − iy, T = it, (6.3.12)

system (6.2.2) becomes

dz

dT
= (1 − iδ)zn+1wn +

∞∑
k=2n+2

Zk(z, w),

dw

dT
= −(1 + iδ)wn+1zn −

∞∑
k=2n+2

Wk(z, w), (6.3.13)

where

Zk(z, w) =
∑

α+β=k

aαβzαwβ = Yk

(
z + w

2
,
z − w

2i

)
− iXk

(
z + w

2
,
z − w

2i

)
,

Wk(z, w) =
∑

α+β=k

bαβwαzβ = Yk

(
z + w

2
,
z − w

2i

)
+ iXk

(
z + w

2
,
z − w

2i

)
.

(6.3.14)

We say that (6.2.2) and (6.3.13) are associated.
Let

ξ = u + iv, η = u − iv, T = iτ. (6.3.15)

From (6.3.12), (6.3.15) and (6.2.5), we obtain

z = ξ(ξ η)n+1, w = η(ξ η)n+1,
dT

dT = (ξ η)−n(2n+3). (6.3.16)

By transformation (6.3.16), system (6.3.13) can be changed to

dξ

dT =
(

1 − iδ

2n + 3

)
ξ + ξ

∞∑
k=1

Φk(2n+3)(ξ, η),

dη

dT = −
(

1 +
iδ

2n + 3

)
η − η

∞∑
k=1

Ψk(2n+3)(ξ, η), (6.3.17)
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where

Φk(2n+3)(ξ, η)=
[

n + 2
2n + 3

η Z2n+1+k(ξ, η)

+
n + 1
2n + 3

ξ W2n+1+k(ξ, η)
]

(ξ η)(k−1)(n+1),

Ψk(2n+3)(ξ, η)=
[

n + 2
2n + 3

ξ W2n+1+k(ξ, η)

+
n + 1
2n + 3

η Z2n+1+k(ξ, η)
]

(ξ η)(k−1)(n+1) (6.3.18)

are homogeneous polynomials of degree k(2n + 3) in ξ, η.
Clearly, system (6.3.17) can also be obtained from system (6.2.6) by using trans-

formation (6.3.15). Thus, system (6.2.6) and system (6.3.17) are associated.
We now discuss the case of δ = 0. When δ = 0, system (6.2.2), (6.2.6), (6.3.13)

and (6.3.17) can be reduced to the following forms, respectively:

dx

dt
= −y(x2 + y2)n +

∞∑
k=2n+2

Xk(x, y) = X(x, y),

dy

dt
= x(x2 + y2)n +

∞∑
k=2n+2

Yk(x, y) = Y (x, y); (6.3.19)

du

dτ
= −v +

∞∑
k=1

P2nk+3k+1(u, v) = P (u, v),

dv

dτ
= u +

∞∑
k=1

Q2nk+3k+1(u, v) = Q(u, v); (6.3.20)

dz

dT
= zn+1wn +

∞∑
k=2n+2

Zk(z, w) = Z(z, w),

dw

dT
= −wn+1zn −

∞∑
k=2n+2

Wk(z, w) = −W (z, w); (6.3.21)

dξ

dT = ξ + ξ

∞∑
k=1

Φk(2n+3)(ξ, η) = Φ(ξ, η),

dη

dT = −η − η
∞∑

k=1

Ψk(2n+3)(ξ, η) = −Ψ(ξ, η). (6.3.22)

The right hand of system (6.3.22) have the following particular properties:
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(1) The subscripts of Φk(2n+3) and Ψk(2n+3) form a arithmetic sequence with the
common difference 2n + 3 (k = 1, 2, · · · ).

(2) Φk(2n+3) and Ψk(2n+3) have the common factor (ξη)(k−1)(n+1).
(3) System (6.3.22) have a pair of straight line solutions ξ = 0 and η = 0.
On the basis of the above properties, we have

Theorem 6.3.2. For system (6.3.22), one can derive uniquely and successively
the terms of the following formal series

F (ξ, η) = (ξη)2n+3

[
1 +

∞∑
m=1

fm(2n+3)(ξ, η)

]
, (6.3.23)

such that

dF

dT
∣∣∣∣
(6.3.22)

=
∞∑

m=1

μm(ξη)(m+1)(2n+3), (6.3.24)

where

fm(2n+3)(ξ, η) =
∑

α+β=m(2n+3)

cαβξαηβ (6.3.25)

are homogenous polynomials of degree m(2n + 3) in ξ, η, m = 1, 2, · · · and we take

c00 = 1, ck(2n+3),k(2n+3) = 0, k = 1, 2, · · · . (6.3.26)

Definition 6.3.1. For any positive integer m, μm in (6.3.24) is called the m-th
singular point value at the origin of system (6.3.21).

Theorem 6.3.3. In (6.3.25), for all α, β, when α �= β and α + β � 1, cαβ is
determined by the recursive formula

cαβ =
1

(2n + 3)(β − α)

×
∑
k,j

{[
(n + 2)α − (n + 1) + (n + 2 − k)(2n + 3)

]
ak,j−1

−[
(n + 2)β − (n + 1)α + (n + 2 − j)(2n + 3)

]
bj,k−1

}

×cα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3). (6.3.27)

For any positive integer m, μm is given by the recursive formula

μm =
2m+2n+2∑
k+j=2n+3

[
(m + n + 2 − k)ak,j−1 − (m + n + 2 − j)bj,k−1

]

×c(m+n+1)(2n+3)−(n+2)k−(n+1)j,(m+n+1)(2n+3)−(n+2)j−(n+1)k, (6.3.28)

where for all (α, β), when α < 0 or β < 0 take aαβ = bαβ = cαβ = 0.
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Proof. We see from (6.3.23) that

(ξη)−(2n+3) dF

dT
∣∣∣∣
(6.3.22)

=
∞∑

m=1

(
∂fm(2n+3)

∂ξ
ξ − ∂fm(2n+3)

∂η
η

)

+
∞∑

m=1

∞∑
s=1

[
ξ
∂ f(m−s)(2n+3)

∂ξ
+ (2n + 3)f(m−s)(2n+3)

]
Φs(2n+3)

−
∞∑

m=1

∞∑
s=1

[
η
∂f(m−s)(2n+3)

∂η
+ (2n + 3)f(m−s)(2n+3)

]
Ψs(2n+3). (6.3.29)

From (6.3.25) and (6.3.29), we have

(ξη)−(2n+3) dF

dT
∣∣∣∣
(6.3.22)

=
∞∑

m=1

∑
α+β

=m(2n+3)

(α − β)cαβξαηβ

+
∞∑

m=1

∞∑
s=1

∑
α+β

=(m−s)(2n+3)

[
(α + 2n + 3)Φs(2n+3)

− (β + 2n + 3)Ψs(2n+3)

]
cαβξαηβ . (6.3.30)

By using (6.3.18) and (6.3.30), we have

(ξη)−(2n+3) dF

dT
∣∣∣∣
(6.3.22)

=
∞∑

m=1

∑
α+β

=m(2n+3)

(α − β)cαβξαηβ

+
1

2n + 3

∞∑
m=1

∞∑
s=1

∑
α+β

=(m−s)(2n+3)

[
(nα − nβ + 2α − β + 2n + 3)ηZ2n+1+s

−(nβ − nα + 2β − α + 2n + 3)ξW2n+1+s

]
cαβξα+(s−1)(n+1)ηβ+(s−1)(n+1).

(6.3.31)

We see from (6.3.14) that

Z2n+1+s(ξ, η) =
∑

k+j=2n+2+s

ak,j−1ξ
kηj−1,

W2n+1+s(ξ, η) =
∑

k+j=2n+2+s

bj,k−1ξ
k−1ηj . (6.3.32)
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From (6.3.31) and (6.3.32), we obtain

(ξη)−(2n+3) dF

dT
∣∣∣∣
(6.3.22)

=
∞∑

m=1

∑
α+β

=m(2n+1)

(α − β)cαβξαηβ

+
1

2n + 3

∞∑
m=1

∞∑
s=1

∑
α+β

=(m−s)(2n+3)

∑
k+j=

2n+2+s

[
(nα − nβ + 2α − β + 2n + 3)ak,j−1

−(nβ − nα + 2β − α + 2n + 3)bj,k−1

]
cαβξα+(s−1)(n+1)+kηβ+(s−1)(n+1)+j .

(6.3.33)

Let

α1 = α + (s − 1)(n + 1) + k,

β1 = β + (s − 1)(n + 1) + j. (6.3.34)

Then if k + j = 2n + 2 + s, α + β = (m − s)(2n + 3), we have

α1 + β1 = m(2n + 3),

α = α1 − (n + 2)k − (n + 1)j + (n + 1)(2n + 3),

β = β1 − (n + 2)j − (n + 1)k + (n + 1)(2n + 3) (6.3.35)

and

nα − nβ + 2α − β + 2n + 3

=(n + 2)α1 − (n + 1)β1 + (n + 2 − k)(2n + 3),

nβ − nα + 2β − α + 2n + 3

=(n + 2)β1 − (n + 1)α1 + (n + 2 − j)(2n + 3). (6.3.36)

Substituting (6.3.34), (6.3.35) and (6.3.36) into (6.3.33) and using α, β instead
of α1, β1, we obtain

dF

dT
∣∣∣∣
(6.3.22)

= (ξη)2n+3
∞∑

m=1

∑
α+β=

m(2n+3)

[(α − β)cαβ + Hαβ ] ξαηβ , (6.3.37)

where

Hαβ =
1

2n + 3

×
∑
k,j

{[(n + 2)α − (n + 1)β + (n + 2 − k)(2n + 3)]ak,j−1

−[(n + 2)β − (n + 1)α + (n + 2 − j)(2n + 3)]bj,k−1]}
×cα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3). (6.3.38)
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Thus, (6.3.24) and (6.3.37) follow the conclusion of this theorem.

Remark 6.3.1. We see from (6.3.25) that α+β is an integer multiple of 2n+3.
Since for all (α, β), when α < 0 or β < 0, we have taken cαβ = 0. Thus, in the right
sides of (6.3.27) and (6.3.38), we have

2n + 3 � k + j � α + β

2n + 3
+ 2n + 2. (6.3.39)

For any positive integer m, we write the m-th singular point value at the origin
of system (6.3.22) as μ�

m.

Theorem 6.3.4. For any positive integer k, the k(2n+3)-th singular point value
μ�

k(2n+1) at the origin of system (6.3.22) and the k-th singular point value μk at the

origin (multiple singular point) of system (6.3.21) have the following relation:

μ�
k(2n+3) ∼ μk

2n + 3
(6.3.40)

and when m is not an integer multiple of 2n + 3, we have μ�
m = 0.

Proof. For function F (ξ, η) defined by (6.3.23), we denote that

F̂ (ξ, η) = F
1

2n+3 (ξ, η) = ξη

[
1 +

∞∑
m=1

fm(2n+3)(ξ, η)

] 1
2n+3

. (6.3.41)

We see from (6.3.24) and (6.3.41) that

dF̂

dT

∣∣∣∣∣
(6.3.22)

=

∞∑
m=1

μm(ξη)m(2n+3)+1

(2n + 3)

[
1 +

∞∑
m=1

fm(2n+3)(ξ, η)

](2n+2)/(2n+3)
. (6.3.42)

Thus, (6.3.42) follows the conclusion of Theorem 6.3.4.

From Theorem 6.3.1, Theorem 6.3.4 and Theorem 2.3.2, we have

Theorem 6.3.5. For any positive integer k, we have

σ2k(2n+3)+1(2π) ∼ iπ

2n + 3
μk,

ν2k+1(2π) ∼ iπμk, (6.3.43)

where σ2k(2n+3)+1(2π) is the k(2n+3)-th focal value at the origin of system (6.3.22),
while ν2k+1(2π) is the k-th focal value at the origin of system (6.3.19).
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Theorem 2.3.5, Theorem (2.3.7) and the properties of the right side functions of
system (6.3.22) imply that

Theorem 6.3.6. For system (6.3.22), one can determine successively the terms
of the following formal series

M(ξ, η) = 1 +
∞∑

m=1

gm(2n+3)(ξ, η), (6.3.44)

such that

∂(MΦ)
∂ξ

− ∂(MΨ)
∂η

=
∞∑

m=1

2mn + 3m + 1
2n + 3

λm(ξη)m(2n+3), (6.3.45)

where for any positive integer m,

gm(2n+3)(ξ, η) =
∑

α+β=m(2n+3)

dαβξαηβ (6.3.46)

are homogenous polynomials of degree m(2n + 3) in ξ, η and

λm ∼ (2n + 3)μ�
m(2n+3) ∼ μm. (6.3.47)

Similar to the proof of Theorem 6.3.3, we have

Theorem 6.3.7. In the right hand of (6.3.44), let d00 = 1 and dk(2n+3),k(2n+3)

(k = 1, 2, · · · ) is arbitrarily chosen. Then for all (α, β), when α �= β and α+β � 1,
dαβ is given by the recursive formula

dαβ =
1

(2n + 3)(β − α)

∑
k,j

{[(n + 2)α − (n + 1)β + 1]ak,j−1

− [(n + 2)β − (n + 1)α + 1]bj,k−1]}
×dα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3). (6.3.48)

For any positive integer m, λm is given by the recursive formula

λm =
2(m+n+1)∑
k+j=2n+3

(ak,j−1 − bj,k−1)

×d(1+m+n)(3+2n)−k(2+n)−j(1+n), (1+m+n)(3+2n)−j(2+n)−k(1+n), (6.3.49)

where for all (α, β), when α < 0 or β < 0, we take aαβ = bαβ = dαβ = 0.

Theorem 6.3.3 and Theorem 6.3.7 give the recursive formulas to compute directly
the singular point values at the origin by applying the coefficients of system (6.3.21).



6.3 Formal Series, Integral Factors and Singular Point Values· · · 193

Theorem 6.3.8. For system (6.3.21), one can derive successively the terms of
the following formal series

F(z, w) = zw

[
1 +

∞∑
m=1

fm(2n+3)(z, w)
(zw)m(n+1)

]
, (6.3.50)

such that

dF
dT

∣∣∣∣
(6.3.21)

= (zw)n
∞∑

m=1

μm(zw)m+1, (6.3.51)

where μm is the m-th singular point value at the origin (infinity) of system (6.3.21),
m = 1, 2, · · · .
Proof. The inverse transform of transformation (6.3.16) is

ξ = z(zw)
−(n+1)
2n+3 , η = w(zw)

−(n+1)
2n+3 ,

dT
dT

= (zw)n. (6.3.52)

From (6.3.23) and (6.3.50), we have

F(z, w) = F
(
z(zw)

−(n+1)
2n+3 , w(zw)

−(n+1)
2n+3

)
. (6.3.53)

Hence, from (6.3.52), (6.3.53) and (6.3.24) we have the conclusion of the theorem.

Theorem 6.3.9. For system (6.3.21), one can derive successively the terms of
the following formal series

M(z, w) = (zw)−n−1+ 1
2n+3

[
1 +

∞∑
m=1

gm(2n+3)(z, w)
(zw)m(n+1)

]
, (6.3.54)

such that

∂(MZ)
∂z

− ∂(MW )
∂w

= (zw)−1+ 1
2n+3

∞∑
m=1

2mn + 3m + 1
2n + 3

λm(zw)m, (6.3.55)

where λm ∼ μm, m = 1, 2, · · · .

Proof. First, from (6.3.44), we have

M(z, w) = M
(
z(zw)

−(n+1)
2n+3 , w(zw)

−(n+1)
2n+3

)
. (6.3.56)

Consider the system

dz

dT =
MZ

(zw)n
= Z(z, w),

dw

dT = − MW

(zw)n
= −W(z, w). (6.3.57)
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By the transformation

ξ = z(zw)
−(n+1)
2n+3 , η = w(zw)

−(n+1)
2n+3 , (6.3.58)

system (6.3.57) becomes

dξ

dT = M(ξ, η)Φ(ξ, η),
dη

dT = −M(ξ, η)Ψ(ξ, η). (6.3.59)

The Jacobian determinant of transformation (6.3.58) is given by

J =
∂ξ

∂z

∂η

∂w
− ∂ξ

∂w

∂η

∂z
=

1
2n + 3

(zw)−1+ 1
2n+3 . (6.3.60)

From (6.3.56), (6.3.57) and (6.3.60), we have

1
2n + 3

MZ = JZ,
1

2n + 3
MW = JW . (6.3.61)

Thus,

1
2n + 3

[
∂(MZ)

∂z
− ∂(MW )

∂w

]
=

∂(JZ)
∂z

− ∂(JW)
∂w

. (6.3.62)

Using Proposition (1.1.3) to system (6.3.57) and (6.3.59), from (6.3.60), we obtain

∂(JZ)
∂z

− ∂(JW)
∂w

=J

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]

=
1

2n + 3
(zw)−1+ 1

2n+3

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]
. (6.3.63)

From (6.3.62) and (6.3.63), we get

∂(MZ)
∂z

− ∂(MW )
∂w

= (zw)−1+ 1
2n+3

[
∂(MΦ)

∂ξ
− ∂(MΨ)

∂η

]
. (6.3.64)

Thus, (6.3.64), (6.3.45) and (6.3.58) imply the conclusion of Theorem 6.3.9.

Consider the following formal series

H(z, w) = 1 +
∞∑

m=1

hm(2n+3)(z, w)
(zw)m(n+1)

, (6.3.65)

where

hm(2n+3)(ξ, η) =
∑

α+β=m(2n+3)

eαβzαwβ (6.3.66)

are homogenous polynomials of degree m(2n + 3) in z, w ( m = 1, 2, · · · ), and
h0 = e00 = 1.

The following two theorems are given by [Liu Y.R., 2001].
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Theorem 6.3.10. For all s �= 0 and γ �= 0, one can derive successively the
terms of the following formal series

F̃ (z, w) = (zw)sH
1
γ (z, w), (6.3.67)

such that

dF̃

dT

∣∣∣∣∣
(6.3.21)

=
1
γ

(zw)n+sH
1
γ −1

∞∑
m=1

λ�
m(zw)m (6.3.68)

and for any positive integer m, λ�
m is given by

λ�
m ∼ sγμm. (6.3.69)

Theorem 6.3.11. Let s, γ be two constants. If for any positive integer m, γ(s+
n + 1 + m) �= 0, then one can derive successively the terms of the following formal
series

M̃(z, w) = (zw)sH
1
γ (z, w), (6.3.70)

such that

∂(M̃Z)
∂z

− ∂(M̃W )
∂w

=
1
γ

(zw)n+sH
1
γ −1

∞∑
m=1

λ��
m(zw)m (6.3.71)

and for any positive integer m, λ��
m is given by

λ��
m ∼ γ(s + n + 1 + m)μm. (6.3.72)

Similar to Theorem 6.3.3, we can prove the following theorem.

Theorem 6.3.12. For the formal series F̃ given by Theorem 6.3.10,
ek(2n+3),k(2n+3) can be arbitrarily chosen, k = 1, 2, · · · . When α �= β and α + β � 1,
eαβ is given by the following recursive formula

eαβ =
1

(2n + 3)(β − α)

×
∑
k,j

{[
(n + 2)α − (n + 1)β + (n + 1 − k + γs)(2n + 3)

]
ak,j−1

−[
(n + 2)β − (n + 1)α + (n + 1 − j + γs)(2n + 3)

]
bj,k−1

}

×eα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3) (6.3.73)

and for any positive integer m, λ�
m is given by the recursive formula

λ�
m =

2m+2n+2∑
k+j=2n+3

[
(m + n + 1 − k + γs)ak,j−1

−(m + n + 1 − j + γs)bj,k−1

]

×e(m+n+1)(2n+3)−(n+2)k−(n+1)j,(m+n+1)(2n+3)−(n+2)j−(n+1)k, (6.3.74)
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where for all (α, β), when α < 0 or β < 0 we take aαβ = bαβ = eαβ = 0.

Theorem 6.3.13. For the formal series M̃ in Theorem 6.3.11, ek(2n+3),k(2n+3)

can be arbitrarily chosen, k = 1, 2, · · · . When α �= β and α + β � 1, eαβ is given by
the recursive formula

eαβ =
1

(2n + 3)(β − α)

∑
k,j

{[
(n + 2)α − (n + 1)β

+(n + 1 − k + γk + γs)(2n + 3)
]
ak,j−1 −

[
(n + 2)β

−(n + 1)α + (n + 1 − j + γj + γs)(2n + 3)
]
bj,k−1

}

×eα−(n+2)k−(n+1)j+(n+1)(2n+3),β−(n+2)j−(n+1)k+(n+1)(2n+3) (6.3.75)

and for any positive integer m, λ��
m is given by the recursive formula

λ��
m =

2m+2n+2∑
k+j=2n+3

[
(m + n + 1 − k + γk + γs)ak,j−1

−(m + n + 1 − j + γj + γs)bj,k−1

]

×e(m+n+1)(2n+3)−(n+2)k−(n+1)j,(m+n+1)(2n+3)−(n+2)j−(n+1)k, (6.3.76)

where for all (α, β), when α < 0 or β < 0, we take aαβ = bαβ = eαβ = 0.

From Theorem 6.3.10 and Theorem 6.3.11, we have

Theorem 6.3.14. The origin of system (6.3.21) is a center if and only if there
exists a first integral F̃ (z, w) with the form (6.3.67).

Theorem 6.3.15. The origin of system (6.3.21) is a center if and only if there
exists a integral factor M̃(z, w) with the form (6.3.70).

6.4 The Algebraic Structure of Singular Point Values of a

Class of Multiple Singular Points

In Section 5.4, we defined the generalized rotation and similar transformation having
time exponent n and discussed its generalized rotation invariant. By transformation
(5.4.1), system (6.3.21) becomes

dẑ

dT̂
= (ẑ)n+1(ŵ)n +

∞∑
α+β=2n+2

âαβ(ẑ)α(ŵ)β ,

dŵ

dT̂
= −(ŵ)n+1(ẑ)n −

∞∑
α+β=2n+2

b̂αβ(ŵ)α(ẑ)β , (6.4.1)
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where ẑ, ŵ, T̂ are new variables, ρ, φ are complex constants, ρ �= 0 and for all (α, β)

âαβ = aαβρα+β−2n−1ei(α−β−1)φ,

b̂αβ = bαβρα+β−2n−1e−i(α−β−1)φ. (6.4.2)

Lemma 6.4.1. For any positive integer m, the m-th singular point values μm

at the origin of system (6.3.21) is m-order generalized rotation invariants of trans-
formation (5.4.1) with time exponent n, namely,

μ̂m = ρ2mμm. (6.4.3)

Proof. For function F(z, w) given by Theorem 6.3.8, let F̂ = ρ−2F(ρeiφẑ, ρe−iφŵ).
Then (5.4.1), (6.3.50) and (6.3.51) follow that

F̂ = ẑŵ

[
1 +

∞∑
m=1

ρmfm(2n+3)(ẑeiφ, ŵe−iφ)
(ẑŵ)m(n+1)

]
(6.4.4)

and

dF̂
dT̂

∣∣∣∣∣
(6.4.1)

= (ẑŵ)n
∞∑

m=1

ρ2mμm(ẑŵ)m+1. (6.4.5)

(6.4.5) leads to (6.4.3). Hence, Lemma 6.4.1 holds.

Lemma 6.4.2. For any positive integer m, the m-th singular point values μm

at the origin of system (6.3.21) is self-antisymmetry, i.e.,

μ̂∗
m = −μm. (6.4.6)

Proof. By the following transformation of antisymmetry:

z = w∗, w = z∗, T = −T, (6.4.7)

system (6.3.21) can be transformed into the following complex system:

dz∗

dT ∗ = (z∗)n+1(w∗)n +
2n∑

k=0

Wk(w∗, z∗) = W (w∗, z∗),

dw∗

dT ∗ = −(w∗)n+1(z∗)n −
2n∑

k=0

Zk(w, z) = −Z(w∗, z∗). (6.4.8)

For function F(z, w) given by Theorem 6.3.8, letting F∗ = F(w∗, z∗), then from
(6.4.7), (6.3.50) and (6.3.51) we have

F∗ =
1

z∗w∗

[
1 +

∞∑
m=1

fm(2n+3)(w∗, z∗)
(z∗w∗)m(2n+1)

]
(6.4.9)
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and

dF∗

dT ∗

∣∣∣∣
(6.4.1)

= (z∗w∗)n
∞∑

m=1

(−μ∗
m)

(z∗w∗)m+1
. (6.4.10)

It follows (6.4.6). So that, the conclusion of this lemma holds.

From Lemma 6.4.1 and Lemma 6.4.2, we obtain

Theorem 6.4.1 (The construction theorem of singular point values of
the Multiple Singular Point). For system (6.3.21), the m-th singular point value
μm at the origin can be represented as a linear combination of m-order monomial
generalized invariants and their antisymmetry forms, i.e.,

μm =
N∑

j=1

γkj(gkj − g∗kj), k = 1, 2, · · · , (6.4.11)

where N is a positive integer and γkj is a rational number, gkj and g∗kj are m-order
monomial generalized rotation invariants with time exponent n.

From Theorem 6.4.1 we have

Theorem 6.4.2 (The extended symmetric principle of the multiple sin-
gular point). For system (6.3.21), if all elementary generalized rotation invariants
g satisfy symmetric condition g = g∗, then all singular point values at the origin are
zero.

6.5 Bifurcation of Limit Cycles From a Class of Multiple

Singular Points

Consider the following perturbed system of (6.1.1) depending on two small param-
eters ε, δ as follows:

dx

dt
=

∞∑
k=2n+1

Xk(x, y, ε, δ) = X(x, y, ε, δ),

dy

dt
=

∞∑
k=2n+1

Yk(x, y, ε, δ) = Y (x, y, ε, δ), (6.5.1)

where X(x, y, ε, δ), Y (x, y, ε, δ) are power series in x, y, ε, δ having non-zero conver-
gent radius and real coefficients. We assume that there is an integer d, such that

xY2n+1(x, y.0, 0) − yX2n+1(x, y, 0, 0) � d(x2 + y2)n+1 (6.5.2)

and
∫ 2π

0

cos θX2n+1(cos θ, sin θ, 0, 0) + sin θY2n+1(cos θ, sin θ, 0, 0)
cos θY2n+1(cos θ, sin θ, 0, 0) − sin θX2n+1(cos θ, sin θ, 0, 0)

dθ = 0. (6.5.3)
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Under the polar coordinate (6.1.3), system (6.5.1) takes the form

dr

dθ
= r

ϕ2n+2(θ, ε, δ) +
∞∑

k=1

ϕ2n+2+k(θ, ε, δ)rk

ψ2n+2(θ, ε, δ) +
∞∑

k=1

ψ2n+2+k(θ, ε, δ)rk

=
ϕ2n+2(θ, ε, δ)
ψ2n+2(θ, ε, δ)

r + o(r), (6.5.4)

where ϕk(θ, ε, δ), ψk(θ, ε, δ) are given by (5.6.6).
For sufficiently small h, let the solution of equation (6.5.4) satisfying the initial

condition r|θ=0 = h and the Poincaré succession function be

r = r̃(θ, h, ε, δ) =
∞∑

k=1

νk(θ, ε, δ)hk,

Δ(h, ε, δ) = r̃(2π, h, ε, δ) − h, (6.5.5)

where

ν1(θ, ε, δ) = exp
∫ θ

0

ϕ2n+2(ϑ, ε, δ) dϑ

ψ2n+2(ϑ, ε, δ)
. (6.5.6)

From (6.5.3) and (6.5.6) we have

ν1(2π, 0, 0) = 1. (6.5.7)

Specially, if X2n+1, Y2n+1 are given by (6.2.1), then ν1(θ, ε, δ) = eδθ.
Obviously, equation (6.5.4) is the special case of equation (3.1.7).
If δ = δ(ε) given by (6.5.1) is the power series in ε having non-zero convergent

radius and real coefficients, and δ(0) = 0, then by computing the focal value at
the origin of system (6.5.1) we can obtain a quasi succession function L(h, ε), and
use the method mentioned in Chapter 3 to study bifurcation of limit cycles in a
neighborhood of the origin of system (6.5.1).

In next section, we consider a quartic system as an example.

6.6 Bifurcation of Limit Cycles Created from a Multiple

Singular Point for a Class of Quartic System

As an application of the method described above, we now study the following real
planar quartic system:

dx

dt
= (δx − y)(x2 + y2) + X4(x, y),

dy

dt
= (x + δy)(x2 + y2) + Y4(x, y), (6.6.1)
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where

X4(x, y)=−(q1 + q2 − p1q2)x4 − 2(p1 − p2 + 2p1p2)x3y − 6p1q2x
2y2

+2(−p1 + p2 + 2p1p2)xy3 − (−q1 − q2 − p1q2)y4,

Y4(x, y)=(1 + p1)(1 + p2)x4 − 2(q1 − q2 − 2p1q2)x3y − 2(−1 + 3p1p2)x2y2

−2(q1 − q2 + 2p1q2)xy3 + (−1 + p1)(−1 + p2)y4. (6.6.2)

Making the transformation z = x+ iy, w = x− iy, T = it, system (6.6.1)δ=0 becomes

dz

dT
= z2w + p1(p2 − iq2)z4 + (p1 + iq1)z3w + w2z2 + (p2 + iq2)w3z,

dw

dT
= −w2z−p1(p2+iq2)w4−(p1−iq1)w3z−w2z2−(p2−iq2)wz3. (6.6.3)

Letting

z = ξ3η2, w = η3ξ2, dT = (ξη)5dT, (6.6.4)

system (6.6.3) is transformed into the following polynomial system of degree 6:

dξ

dT = ξ +
1
5
(2 + 3p1)(p2 − iq2)ξ5η +

1
5
(2 + 3p1 + 3iq1)ξ4η2

+
1
5
(3 + 2p1 − 2iq1)ξ3η3 +

1
5
(3 + 2p1)(p2 + iq2)ξ2η4,

dη

dT =−η − 1
5
(2 + 3p1)(p2 + iq2)η5ξ − 1

5
(2 + 3p1 − 3iq1)η4ξ2

−1
5
(3 + 2p1 + 2iq1)η3ξ3 − 1

5
(3 + 2p1)(p2 − iq2)η2ξ4. (6.6.5)

for which the origin is an elementary singular point.
From Theorem 6.3.1 and Theorem 2.3.1, for any positive integer k, the k-th focal

value ν2k+1(2π) at the origin of system (6.6.1)δ=0 and the 5k-th singular point value
μ′

5k at the origin of system (6.6.5) have the following relation

ν2k+1(2π) ∼ 5iπμ′
5k. (6.6.6)

By calculating singular point values at the origin of system (6.6.5) and from (6.6.6),
we have

Theorem 6.6.1. The first 4 focal value at the origin of system (6.6.1)δ=0 are
as follows:

ν3(2π) = 2πq1,

ν5(2π) ∼ 2
3
π(p1 − 1)(p1 + 1)(p1 + 2)q2,

ν7(2π) ∼ 1
4
π(p1 − 1)(p1 + 1)(p2

2 + q2
2 − 5)q2,

ν9(2π) ∼ 35
4

π(p1 − 1)(p1 + 1)q2. (6.6.7)
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It follows the following result.

Theorem 6.6.2. The first four focal values at the origin of system (6.6.1)δ=0

are zero if and only if one of the following three conditions holds

C1 : q1 = 0, q2 = 0,

C2 : q1 = 0, p1 = −1,

C3 : q1 = 0, p1 = 1. (6.6.8)

Thus, we have

Theorem 6.6.3. If condition C1 holds, the vector fields defined by system
(6.6.1)δ=0 is symmetry with respect to x-axis.

If condition C2 holds, then system (6.6.1)δ=0 has a first integral f−3
1 f2

2 in a
neighborhood of the origin, where

f1 = x2 + y2,

f2 = 3(x2 + y2) − 2(p2 + 3)x3 − 6q2x
2y + 6(p2 − 1)xy2 + 2q2y

3. (6.6.9)

If condition C3 holds, then the right hand of system (6.6.1)δ=0 has a common
factor

x2 + y2 + 2(p2 + 1)x3 + 6q2x
2y − 2(3p2 − 1)xy2 − 2q2y

3 (6.6.10)

and there exists a first integral f1 in a neighborhood of the origin.

Form Theorem 6.6.2 and 6.6.3, we obtain

Theorem 6.6.4. For system (6.6.1)δ=0, the origin is a center if and only if the
first four focal values of the origin are zero, i.e., one of three conditions in Theorem
6.6.2 holds.

We now construct an example, such that 4 limit cycles can be created from a 4th

weak focus of system (6.6.1). If the coefficients of system (6.6.1) satisfy

δ = 7560ε8, q1 = −21525
2

ε6, q2 = 1,

p1 = −2 +
28665

8
ε4, p2 = 2 − 525

2
ε2, (6.6.11)

then by Theorem 6.6.1 we have

ν1(2π) − 1 = 15120πε8 + o(ε8),

ν3(2π) = −21525πε6 + o(ε6), ν5(2π) =
28665

4
πε4 + o(ε4),

ν7(2π) = −1575
2

πε2 + o(ε2), ν9(2π) =
105
4

π + o(1). (6.6.12)
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Therefore, the quasi succession function of (6.6.1) is given by

L(h, ε)=
105
4

π(h8 − 30h6ε2 + 273h4ε4 − 820h2ε6 + 576ε8)

=
105
4

π(h2 − 16ε2)(h2 − 9ε2)(h2 − 4ε2)(h2 − ε2). (6.6.13)

Thus, (6.6.13) and Theorem 3.3.3 imply that

Theorem 6.6.5. If the coefficients of system (6.6.1) are given by (6.6.11), then
when ε = 0, the origin is a 4-th weak focus, when 0 < |ε| � 1, there exist 4 limit
cycles in a sufficient small neighborhood of the origin, which are close to the circles
x2 + y2 = k2ε2, k = 1, 2, 3, 4.

6.7 Quasi Isochronous Center of Multiple Singular Point for

a Class of Analytic System

Making the transformation dt� = (x2 + y2)dt and dT � = (zw)ndT , system (6.2.2)δ=0

and (6.3.13)δ=0 can be respectively become

dx

dt�
=−y +

1
(x2 + y2)n

∞∑
k=2n+2

Xk(x, y),

dy

dt�
=x +

1
(x2 + y2)n

∞∑
k=2n+2

Yk(x, y) (6.7.1)

and

dz

dT
=z +

1
(zw)n

∞∑
k=2n+2

Zk(z, w),

dw

dT
=−w − 1

(zw)n

∞∑
k=2n+2

Wk(z, w). (6.7.2)

Definition 6.7.1. (1) We say that the origin of (6.7.1) (or (6.7.2)) is a com-
plex isochronous center, if the origin of (6.2.6)δ=0 (or (6.3.17)δ=0) is a complex
isochronous center.

(2) We say that origin of system (6.2.2)δ=0 (or (6.3.13)δ=0) is a complex quasi
isochronous center, if the origin of (6.7.1) (or (6.7.2)) is a complex isochronous
center.

Clearly, the functions of the right hands of system (6.7.1) and system (6.7.2) are
non-analytic at the origin. However, it is possible that the origin of these system
are a complex isochronous center. We study the following system

dx

dt�
= −y +

X4(x, y)
x2 + y2

,
dy

dt�
= x +

Y4(x, y)
x2 + y2

, (6.7.3)
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where X4, Y4 are given by (6.6.2).
We see from Theorem 6.6.4 that the origin of system (6.6.1)δ=0 is a center if and

only one of three conditions in Theorem 6.6.2 holds.

Proposition 6.7.1. If condition C1 in Theorem 6.6.2 hods, then the origin of
system (6.7.1) is an isochronous centers if and only if p1 = −1.

Proof. When condition C1 of Theorem 6.6.2 hods, then for the origin of system
(6.6.5)δ=0, we have

τ5 = −2
3
(1 + p1)(3 + 2p2

2 + p1p
2
2),

τ10 ∼ 1
6
(1 + p1)(81 + 3p1 − 40p2 − 3p2

1 − 12p1p2 + 4p2
1p2 + 9p2

2),

τ15 ∼ − 1
226800

(1 + p1)

×(99679615 + 53139921p1 − 9621062p2
1 − 4057890p3

1 + 326167p4
1 + 49953p5

1).

(6.7.4)

We see from (6.7.4) that if τ5 = τ10 = τ15 = 0, then p1 = −1. In addition, if p1 = −1
and condition C1 in Theorem 6.6.2 hods, then for system (6.6.5)δ=0, under the polar

coordinate ξ = ρeiθ, η = ρe−iθ, T = it, we have
dθ

dt
≡ 1. It implies the conclusions

of this proposition.

Proposition 6.7.2. If condition C2 in Theorem 6.6.2 hods, then the origin of
system (6.7.1) is an isochronous centers.

Proof. When condition C2 in Theorem 6.6.2 hods, then for the origin of system

(6.6.5)δ=0, under the polar coordinate ξ = ρeiθ, η = ρe−iθ, T = it, we have
dθ

dt
≡ 1.

It implies the conclusions of this proposition.

Proposition 6.7.3. If condition C3 in Theorem 6.6.2 hods, then the origin of
system (6.7.1) can not be an isochronous centers.

Proof. When condition C3 in Theorem 6.6.2 hods, then for the origin of system
(6.6.5)δ=0, we have

τ5 = −4(1 + p2
2 + q2

2), τ10 ∼ −8(2p2 − 3), τ15 ∼ 180. (6.7.5)

It implies the conclusions of this proposition.
To sum up, we have

Theorem 6.7.1. The origin of system (6.6.1)δ=0 is a quasi isochronous cen-
ter(i.e., the origin of system (6.7.1) is an isochronous center), if and only if q1 = 0
and p1 = −1.
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Chapter 7

On Quasi Analytic Systems

For a nonanalytic real planar dynamical system, there is a few papers to concern
with the study of the center problem and bifurcations of limit cycles. In this chapter,
we investigate a class of quasi-analytic systems.

7.1 Preliminary

We consider the following class of systems:

dx

dt
= δx − y +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Xk(x, y),

dy

dt
= x + δy +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Yk(x, y), (7.1.1)

where for any positive integer k,

Xk(x, y) =
∑

α+β=k

Aαβxαyβ , Yk(x, y) =
∑

α+β=k

Bαβxαyβ (7.1.2)

are homogeneous polynomials of degree k of x and y, λ is a real constant and λ �= 0.
Clearly, when λ = 1, system (7.1.1) becomes

dx

dt
= δx − y +

∞∑
k=2

Xk(x, y) = X(x, y),

dy

dt
= x + δy +

∞∑
k=2

Yk(x, y) = Y (x, y). (7.1.3)

We assume that X(x, y) and Y (x, y) are power series of x and y with non-zero
convergent radius.

Generally, for λ �= (2s + 1) where s is an positive integer, the functions of the
right hand of system (7.1.1) are non-analytic. We say that system (7.1.1) is a quasi-
analytic system corresponding to system (7.1.3).

For λ > 0 (or < 0), the linear terms of (7.1.1) are lowest (or highest) order
terms in the right hand of (7.1.1). Hence, when λ > 0, the origin of (7.1.1) is a
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center or a focus. When λ < 0, (7.1.1) has no real singular point in the equator of
Poincarè compactification. The point at infinity is a center or a focus. Therefore, it
is necessary to determine whether the origin (or the infinity) is a center (or a weak
focus) or not for all λ �= 0.

Making the transformation

x = r
1
λ cos θ, y = r

1
λ sin θ, (7.1.4)

system (7.1.1) becomes

dr

dt
= λr

[
δ +

∞∑
k=1

ϕk+2(θ)rk

]
,

dθ

dt
= 1 +

∞∑
k=1

ψk+2(θ)rk , (7.1.5)

where

ϕk(θ) = cos θXk−1(cos θ, sin θ) + sin θYk−1(cos θ, sin θ),

ψk(θ) = cos θYk−1(cos θ, sin θ) − sin θXk−1(cos θ, sin θ). (7.1.6)

From (7.1.5), we have

dr

dθ
= λr

δ +
∞∑

k=1

ϕk+2(θ)rk

1 +
∞∑

k=1

ψk+2(θ)rk

. (7.1.7)

Obviously, equation (2.1.6), i.e., the polar coordinate form of (7.1.3), differs from
(7.1.7) only in a constant factor λ.

Suppose that a solution of (7.1.3) satisfying the initial condition r|θ=0 = r0 has
the form

r = r̃(θ, r0, δ) =
∞∑

k=1

νk(θ, δ)rk
0 , (7.1.8)

where

ν1(θ, δ) = eδλθ, νk(0, δ) = 0, k = 2, 3, · · · . (7.1.9)

We know from the theory of Chapter 2 that if δ = 0, then, for the first non-zero
νk(2π, 0), we have k = 2s + 1, where s is a positive integer.
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Definition 7.1.1. For system (7.1.1), suppose that λ > 0 (or λ < 0).
(1) If δ �= 0, the origin (or the infinity) is called a rough focus.
(2) If δ = 0 and there exists a positive integer k, such that ν2(2π, 0) = ν3(2π, 0) =

· · · = ν2k−1(2π, 0) = 0, and ν2k+1(2π, 0) �= 0, then the origin (or the infinity) is called
a k−order weak focus. The ν2k+1(2π, 0) is called a k−order focal value.

(3) If δ = 0 and for all k, we have ν2k+1(2π, 0) = 0, then the origin (or the
infinity) is called a center.

It is easy to see the following conclusions hold.

Theorem 7.1.1. In the case of λ > 0, for system (7.1.1):
(1) If the origin is a rough focus, then when δ < 0 (> 0), it is stable (unstable);
(2) If the origin is a k-order weak focus, then when ν2k+1(2π, 0) < 0 (> 0), the

origin is stable (unstable);
(3) If the origin is a center, then there exists a family of closed orbits enclosing

the origin.

Theorem 7.1.2. In the case of λ < 0, for system (7.1.1):
(1) If the infinity is a rough focus, then, when δ > 0 (< 0), it is stable (unstable);
(2) If the infinity is a k-order weak focus, then when ν2k+1(2π, 0) < 0 (> 0), the

infinity is stable (unstable);
(3) If the infinity is a center, then there exists a family of closed orbits which lies

in an inner neighborhood of the equator in Poincarè compactification.

Remark 7.1.1. For λ < 0, if the infinity in Poincarè compactification of system
(7.1.1) is a stable (unstable) focus, then the equator Γ∞ in Poincaré compactification
of system (7.1.1) is a internal stable (unstable) limit cycle. If the infinity of system
(7.1.1) is a center, then, there exists a family of closed orbits which lies in an inner
neighborhood of the equator Γ∞.

Definition 7.1.2. (1) For λ > 0, if the origin of (7.1.1) is a center and the
period of any closed orbit enclosing the center is 2π, then, the origin is called an
isochronous center of (7.1.1).

(2) For λ < 0, if the infinity of (7.1.1) is a center and the period of any closed
orbit in an inner neighborhood of the equator is 2π, then, the infinity is called an
isochronous center of (7.1.1).

Clearly, for λ > 0 (< 0), when the origin (the infinity) of (7.1.1) is an center,
the origin (the infinity) of (7.1.1) is an isochronous center if and only if T (r0) ≡ 2π,
where

T (r0) =
∫ 2π

0

dθ

1 +
∞∑

k=1

ψk+2(θ)r̃k(θ, r0, 0)

. (7.1.10)
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It is difficult to study directly the problems of center-focus, isochronous center
and bifurcations of limit cycles by using (7.1.7). In next section, we shall use a
necessary transformation, such that system (7.1.1) becomes an equivalent analytic
system.

7.2 Reduction of the Problems

Let

ξ = x(x2 + y2)
λ−3

6 , η = y(x2 + y2)
λ−3

6 . (7.2.1)

Taking x = r
1
λ cos θ, y = r

1
λ sin θ, we have

ξ = r
1
3 cos θ, η = r

1
3 sin θ. (7.2.2)

Thus, for λ > 0 (< 0), (7.2.1) makes the origin (the infinity) become the origin in
(ξ, η)−plane and (7.1.1) reduce to

dξ

dt
=

δλ

3
ξ − η +

1
3

∞∑
k=1

(ξ2 + η2)k−1Pk+3(ξ, η),

dη

dt
= ξ +

δλ

3
η +

1
3

∞∑
k=1

(ξ2 + η2)k−1Qk+3(ξ, η), (7.2.3)

where for any positive integer k,

Pk+3(ξ, η) = (λξ2 + 3η2)Xk+1(ξ, η) + (λ − 3)ξηYk+1(ξ, η),

Qk+3(ξ, η) = (λη2 + 3ξ2)Yk+1(ξ, η) + (λ − 3)ξηXk+1(ξ, η) (7.2.4)

are homogeneous polynomials of degree k + 3 of x and y. Thus, the study on the
problems of center-focus and bifurcations of limit cycles for (7.1.1) is transformed
to the discussion for (7.2.3).

Notice that the functions on the right hand of (7.2.3) are a special class of (7.1.3).
Therefore, it makes sense to do new study for this system.

Remark 7.2.1. The functions on the right hand of system (7.2.3) have the
following properties:

(1) There exist two complex straight line solutions ξ + iη = 0 and ξ − iη = 0 of
(7.2.3).

(2) Expanding the two functions of the right hand of (7.2.3) as two power series
of ξ and η, then, every monomial has the degree 3k − 2, k = 1, 2, · · · .

(3) As a exponent parameter λ of (7.1.1), it becomes a coefficient parameter of
(7.2.3). Therefore, λ appears in all formulas of the focal values and period constants.
This is different from an analytic system.
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By using the polar coordinate transformation

ξ = ρ cos θ, η = ρ sin θ, (7.2.5)

system (7.2.3) becomes

dρ

dt
=

λ

3
ρ

[
δ +

∞∑
k=1

ϕk+2(θ)ρ3k

]
,

dθ

dt
= 1 +

∞∑
k=1

ψk+2(θ)ρ3k. (7.2.6)

From (7.2.6), we have

dρ

dθ
=

λ

3
ρ ·

δ +
∞∑

k=1

ϕk+2(θ)ρ3k

1 +
∞∑

k=1

ψk+2(θ)ρ3k

. (7.2.7)

Obviously, (7.2.7) can become the from (7.1.7) by using the transformation r =
ρ3.

For each small ρ0, writing the solution of (7.2.7) satisfying the initial value
ρ|θ=0 = ρ0 as ρ = ρ̃(θ, ρ0, δ), by using (7.2.3), we have the following lemma.

Lemma 7.2.1. The solution ρ = ρ̃(θ, ρ0, δ) of (7.2.7) has the form

ρ̃(θ, ρ0, δ) = ρ0

∞∑
k=0

σ3k+1(θ, δ)ρ3k
0 , (7.2.8)

where

σ1(θ, δ) = e
δλθ
3 , σ3k+1(0, δ) = 0, k = 1, 2, · · · . (7.2.9)

To find the relationship between the k-order focal value ν2k+1(2π, 0) of (7.1.1)
and the 3k-order focal value σ6k+1(2π, 0) of (7.2.3), we need the following results.

Theorem 7.2.1. σ6k+1(2π, 0) and ν2k+1(2π, 0) are algebraic equivalent, i.e.,
{
ν2k+1(2π, 0)

} ∼ {
3σ6k+1(2π, 0)

}
. (7.2.10)

Proof. Equation (7.2.7) can be become to the from (7.1.5), by using the transfor-
mation r = ρ3. So that,

r̃(θ, ρ3
0, 0) ≡ ρ̃3(θ, ρ0, 0). (7.2.11)
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From (7.2.11), when r0 = ρ3
0 we have

∞∑
k=1

νk+1(2π, 0)rk
0 =

r̃(2π, r0, 0)
r0

− 1

=
ρ̃3(2π, ρ0, 0)

ρ3
0

− 1 =

(
1 +

∞∑
k=1

σ3k+1(2π, 0)rk
0

)3

− 1

=3
∞∑

k=1

σ3k+1(2π, 0)rk
0G(r0), (7.2.12)

where

G(r0) = 1 +

( ∞∑
k=1

σ3k+1(2π, 0)rk
0

)
+

1
3

( ∞∑
k=1

σ3k+1(2π, 0)rk
0

)2

(7.2.13)

is a unit formal power series of r0. Thus, (7.2.12) and Theorem 2.2.1 give rise to the
conclusion of this theorem.

7.3 Focal Values, Periodic Constants and First Integrals of

(7.2.3)

By using the transformation

z = ξ + iη, w = ξ − iη, T = it, i =
√−1, (7.3.1)

system (7.2.3)δ=0 becomes

dz

dT
= z +

z

6

∞∑
k=1

(zw)k−1Φk+2(z, w) = Z(z, w),

dw

dT
= −w − w

6

∞∑
k=1

(zw)k−1Ψk+2(z, w) = −W(z, w), (7.3.2)

where

Φk(z, w) = (λ + 3)wZk−1(z, w) − (λ − 3)zWk−1(z, w),

Ψk(z, w) = (λ + 3)zWk−1(z, w) − (λ − 3)wZk−1(z, w),

Zk(z, w) = Yk

(
z + w

2
,
z − w

2i

)
− iXk

(
z + w

2
,
z − w

2i

)
,

Wk(z, w) = Yk

(
z + w

2
,
z − w

2i

)
+ iXk

(
z + w

2
,
z − w

2i

)
. (7.3.3)

We next denote that

Zk(z, w) =
∑

α+β=k

aαβzαwβ , Wk(z, w) =
∑

α+β=k

bαβwαzβ. (7.3.4)
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Let μk be the k-th singular point value of the origin of system (7.3.2), τk be the
k-th period constant, k = 1, 2, · · · . By the properties of system (7.3.2), we have

Lemma 7.3.1. For system (7.3.2), we have

{μ3k−1} = {0}, {μ3k−2} = {0}, {τ3k−1} = {0}, {τ3k−2} = {0}. (7.3.5)

From Theorem 7.2.2 and Theorem 2.3.1, we obtain

Theorem 7.3.1.

{ν2k+1(2π, 0)} ∼ {3σ6k+1(2π, 0)} ∼ {3iπμ3k}. (7.3.6)

Denote that

T (r0) = π

(
2 −

∞∑
k=1

Tkrk
0

)
, (7.3.7)

where T (r0) is given by (7.1.10). Thus, (7.1.10), (7.2.11) and (7.3.7) follow that

T (ρ3
0) = π

(
2 −

∞∑
k=1

Tkρ3k
0

)
=

∫ 2π

0

dθ

1 +
∞∑

k=1

ψk+2(θ)ρ̃3k(θ, ρ0, 0)

. (7.3.8)

From (7.3.8) and Theorem 4.1.2, we have

Theorem 7.3.2.

{T2k−1} ∼ {0}, {T2k} ∼ {τ3k}. (7.3.9)

Definition 7.3.1. For λ > 0 (< 0), T2k is called k-th period constant of the
origin (the infinity) of system (7.1.1)δ=0.

From Theorem 7.3.2, we know that

Theorem 7.3.3. For λ > 0 (< 0), the origin (the infinity) of system (7.1.1)δ=0 is
an isochronous center, if and only if the origin of system (7.2.3)δ=0 is an isochronous
center.

Theorem 2.3.5 implies that

Theorem 7.3.4. For system (7.3.2), one can derive successively the terms of
the following formal series

M(z, w) =
∞∑

k=0

M3k(z, w), (7.3.10)
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where

M3k(z, w) =
∑

α+β=3k

cαβzαwβ (7.3.11)

is a 3k-degree homogeneous polynomial in z, w and

c00 = 1, c3k,3k = 0, k = 1, 2, · · · , (7.3.12)

such that

∂(MZ)
∂z

− ∂(MW)
∂w

=
∞∑

k=1

(3k + 1)μ�
3k(zw)3k. (7.3.13)

In addition,

{μ�
3k} ∼ {μ3k}. (7.3.14)

Similar to Theorem 2.3.6, we have

Theorem 7.3.5. When α �= β, cαβ in (7.3.11) are given successively by

cαβ =
1

6(β − α)

1
3 (α+β+6)∑

k+j=3

{
[ 2λ + (λ + 3)α + (λ − 3)β ] ak,j−1

−[ 2λ + (λ − 3)α + (λ + 3)β ] bj,k−1

}
cα−2k−j+3, β−2j−k+3 (7.3.15)

and for any positive integer m, μ�
3m in (7.3.13) are given successively by

μ�
3m =

λ

3

2m+2∑
k+j=3

(ak,j−1 − bj,k−1)c3m−2k−j+3, 3m−2j−k+3, (7.3.16)

where for k < 0 or j < 0, we take ckj = akj = bkj = 0.

From Theorem 4.2.1 and Theorem 4.2.3, we obtain

Theorem 7.3.6. Suppose that the origin of system (7.3.2) is a complex center,
then one can derive successively the terms of the following formal series

f(z, w) = z

∞∑
k=0

∑
α+β=3k

cαβzαwβ , (7.3.17)

where c00 = 1, c3k,3k = 0, k = 1, 2, · · · , such that

df

dT
= f +

z

2

∞∑
m=1

τ �
3m(zw)3m. (7.3.18)

In addition, τ �
3 = τ3, and for all positive integer m, when τ �

3 = τ �
6 = · · · = τ �

3(m−1) =
0, we have τ �

3m = τ3m.
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Theorem 7.3.7. In Theorem 7.3.6, for all pairs (α, β) with α �= β, cαβ is given
successively by

cαβ =
1

6(β − α)

1
3 (α+β+6)∑

k+j=3

[
λ(α + β − 3k − 3j + 7)(ak,j−1 − bj,k−1)

+3(α − β − k + j + 1)(ak,j−1 + bj,k−1)
]

cα−2k−j+3, β−2j−k+3, (7.3.19)

and for all positive integer m, τ �
3m is given successively by

τ �
3m =

1
3

2m+2∑
k+j=3

[ λ(6m − 3k − 3j + 7)(ak,j−1 − bj,k−1)

+3(1 − k + j)(ak,j−1 + bj,k−1)] c3m−2k−j+3, 3m−2j−k+3, (7.3.20)

in which for k < 0 or j < 0, we take ckj = akj = bkj = 0.

Clearly, Theorem 7.3.5 and Theorem 7.3.7 give two recursive formulas to deter-
mine the focal values and period constants of (7.2.3)δ=0. It can be realized easily
by computer program.

From the peculiarity of system (7.3.2), the origin of system (7.3.2) is a complex
center, if and only if there exists a first integral F (z, w) of the form

F (z, w) = zw

∞∑
k=0

F3k(z, w), (7.3.21)

where F0(z, w) ≡ 1, F3k(z, w) is a homogeneous polynomial of degree 3k in z and

w, k = 0, 1, · · · . In addition,
∞∑

k=0

F3k(z, w) are analytic in a neighborhood of the

origin.
Let F(z, w) = F s(z, w), we have

Theorem 7.3.8. The origin of system (7.3.2) is a complex center, if and only
if for any non-zero constant s, there exists a first integral F(z, w) of the form

F(z, w) = (zw)s
∞∑

k=0

F3k(z, w), (7.3.22)

where F0(z, w) ≡ 1, F3k(z, w) is a homogeneous polynomial of degree 3k in z and

w, k = 0, 1, · · · . In addition,
∞∑

k=0

F3k(z, w) are analytic in a neighborhood of the

origin.

Theorem 7.3.8 implies the following result.
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Theorem 7.3.9. For λ > 0 (< 0), the origin (the infinity) of system (7.1.1)δ=0

is a center, if and only if there exists a first integral in a neighborhood of the the
origin (the infinity) having the form

H(x, y) = (x2 + y2)
λs
3

∞∑
k=0

(x2 + y2)
(λ−3)k

2 H3k(x, y), (7.3.23)

where s is a non-zero constant, H3k(x, y) = F3k(x + iy, x − iy) is a homogeneous
polynomial of degree 3k in x and y, k = 0, 1, · · · , H0(x, y) ≡ 1. In addition,
∞∑

k=0

H3k(x, y) are analytic in a neighborhood of the origin.

7.4 Singular Point Values and Bifurcations of Limit Cycles of

Quasi-Quadratic Systems

In this section, we consider quasi-quadratic systems

dx

dt
= δx + y + (x2 + y2)

λ−1
2 X2(x, y),

dy

dt
= x + δy + (x2 + y2)

λ−1
2 Y2(x, y), (7.4.1)

where

X2(x, y) = A20x
2 + A11xy + A02y

2,

Y2(x, y) = B20x
2 + B11xy + B02y

2. (7.4.2)

By using (7.2.1), (7.4.1) becomes

dξ

dt
=

δλ

3
ξ − η +

1
3
[(λξ2 + 3η2)X2(ξ, η) + (λ − 3)ξηY2(ξ, η)],

dξ

dt
= ξ +

δλ

3
η +

1
3
[(λη2 + 3ξ2)Y2(ξ, η) + (λ − 3)ξηX2(ξ, η)]. (7.4.3)

Transformation (7.3.1) makes (7.4.3) become

dz

dT
=

(
1 − iδλ

3

)
z +

z

6
[(λ + 3)wZ2(z, w) − (λ − 3)zW2(z, w)],

dw

dT
= −

(
1 +

iδλ

3

)
w − w

6
[(λ + 3)zW2(z, w) − (λ − 3)wZ2(z, w)], (7.4.4)

where

Z2(z, w) = a20z
2 + a11zw + a02w

2,

W2(z, w) = b20w
2 + b11zw + b02z

2. (7.4.5)
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The coefficients of (7.4.4) and (7.4.1) have the following relations

a20 =
1
4
[(B20 − A11 − B02) − i(A20 + B11 − A02)],

b20 =
1
4
[(B20 − A11 − B02) + i(A20 + B11 − A02)],

a11 =
1
2
[(B20 + B02) − i(A20 + A02)],

b11 =
1
2
[(B20 + B02) + i(A20 + A02)],

a02 =
1
4
[(B20 + A11 − B02) − i(A20 − B11 − A02)],

b02 =
1
4
[(B20 + A11 − B02) + i(A20 − B11 − A02)]. (7.4.6)

The recursive formulas to compute the singular point values of origin of system
(7.4.4)δ=0 have been given by [Liu Y.R., 2002], in which we know that

Theorem 7.4.1. The first 18 singular point values at the origin of system
(7.4.4)δ=0 are given by

μ3 =
λ(b20b11 − a20a11)

3
,

μ6 =
−λΔ2

36
,

μ9 = λ

[
60H + (λ2 − 10λ − 51)a02b02)

]
Δ1 − (λ − 1)(λ + 3)a02b02Δ3

1152
,

μ12 =
−λ(λ − 1)(λ + 9)g1(λ)a2

02b
2
02Δ1

2073600
,

μ15 =
λ(λ − 1)(5λ2 + 6λ + 81)

[
24216192000J0 + g2(λ)a2

02b
2
02

]
a02b02Δ1

608662978560000
,

μ18 =
−λ(λ − 1)(λ + 9)g3(λ)a4

02b
4
02Δ1

172345713609765019484160000
, (7.4.7)

where

g1(λ)=91λ2 − 326λ− 3057,

g2(λ)=3719329667λ2 − 4236625226λ− 85125314061,

g3(λ)=114059407179219568146253λ+ 499405812207464098577649,
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H =(a20 + b11)(b20 + a11),

J0 =(a20 + b11)3a02 + (b20 + a11)3b02,

Δ1 =[(λ − 1)a20 − (λ + 1)b11]2(2a20 − b11)a02

−[(λ − 1)b20 − (λ + 1)a11]2(2b20 − a11)b02,

Δ2 =[(λ − 1)a20 − (λ + 1)b11][(λ − 3)a20 − (λ + 3)b11](2a20 − b11)a02

−[(λ − 1)b20 − (λ + 1)a11][(λ − 3)b20 − (λ + 3)a11](2b20 − a11)b02,

Δ3 =[(λ − 3)a20 − (λ + 3)b11]2(2a20 − b11)a02

−[(λ − 3)b20 − (λ + 3)a11]2(2b20 − a11)b02. (7.4.8)

Theorem 7.4.1 follows that

Theorem 7.4.2. The origin of system (7.4.4)δ=0 is a 18-th weak singular point
if and only if the following conditions hold:

(λ − 3)a20 − (λ + 3)b11 = (λ − 3)b20 − (λ + 3)a11 = 0,

H =
−(λ2 − 10λ − 51)

60
a02b02,

550918368000J0 + (206742143969λ+ 905896803117)a2
02b

2
02 = 0,

g1(λ) = 0, Δ1a02b02 �= 0. (7.4.9)

Proposition 7.4.1. If system (7.4.3)δ=0 is a real autonomous differential sys-
tem, then it is impossible that the origin is the 18-th weak focus point of the real
system (7.4.3)δ=0.

Proof. Let system (7.4.3)δ=0 be a real autonomous differential system. We have
from (7.4.6) that

b20 = ā20, b11 = ā11, b02 = ā02. (7.4.10)

Therefore, (7.4.10) follows that

a02b02 > 0, H > 0, I2
0 � 0, (7.4.11)

where

I0 = (a20 + b11)3a02 − (b20 + a11)3b02. (7.4.12)

Equation g1(λ) = 0 has two roots

λ1 =
163 −√

76189
91

, λ2 =
163 +

√
76189

91
. (7.4.13)

We have from (7.4.9) that

H |λ=λ1 =
−11738

29917 + 146
√

76189
a02b02 < 0,

H |λ=λ2 =
2(29917 + 146

√
76189

124215
a02b02 > 0. (7.4.14)
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From (7.4.11) and (7.4.14), we have λ �= λ1. When λ = λ2, we have

I2
0 ≡ J2

0 − 4H3a02b02

=
8704882981322555563249793λ2 + 37355551065521106746838369

6904876346545072896000000
a4
02b

4
02 > 0.

(7.4.15)

This result is in contradiction with (7.4.11). Hence, it gives rise to the conclusion of
this proposition.

From the Theorem 7.4.1, it is easily proved that

Theorem 7.4.3. The origin of system (7.4.4)δ=0 is a 15-th weak singular point
if and only if the following conditions holds:

(λ − 3)a20 − (λ + 3)b11 = (λ − 3)b20 − (λ + 3)a11 = 0,

λ = λ2, H =
2(29917 + 146

√
76189)

124215
a02b02,

(24216192000J0 + g2(λ)a2
02b

2
02)a02b02Δ1 �= 0. (7.4.16)

The conditions of Theorem 7.4.3 can be realized in real domain. The following
conclusion are given by [Liu Y.R., 2002]

Theorem 7.4.4. For system (7.4.3), if

a20 = b20 = λ + 3, a11 = b11 = λ − 3, λ =
163 + 2

√
76189

91
,

a02 =
3057

√
10 i�

107059 + 1162
√

76189
, b02 =

−3057
√

10 i�
107059 + 1162

√
76189

, (7.4.17)

then, the origin of system (7.4.3)δ=0 is a stable 15-th weak focus point. By small
perturbation, there exist 5 limit cycles in a sufficiently small neighborhood of the
origin.

7.5 Integrability of Quasi-Quadratic Systems

We know from Theorem 7.4.1 that

Theorem 7.5.1. For system (7.4.4)δ=0, the first 18 singular point values are
zero if and only if one of the following 10 conditions are satisfied:

C1 : 2a20 − b11 = 2b20 − a11 = 0;

C2 :

⎧⎪⎨
⎪⎩

a20a11 = b20b11, |2a20 − b11| + |2b20 − a11| �= 0,

a3
20a02 = b3

20b02, a2
20b11a02 = b2

20a11b02,

a20b
2
11a02 = b20a

2
11b02, b3

11a02 = a3
11b02;
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C3 : λ = 1, a11 = b11 = 0;

C4 : λ = 1, a20 + 2b11 = b20 + 2a11 = 0, a11b11 = a02b02;

C5 : λ = 3, a11 = b11 = a20 = a02 = 0, b20b02 �= 0;

C∗
5 : λ = 3, b11 = a11 = b20 = b02 = 0, a20a02 �= 0;

C6 :

{
(λ − 3)a20 − (λ + 3)b11 = 0,

b20 = a11 = b02 = 0, (λ − 3)a02 �= 0;

C∗
6 :

{
(λ − 3)b20 − (λ + 3)a11 = 0,

a20 = b11 = a02 = 0, (λ − 3)b02 �= 0;

C7 :

{
(λ − 1)a20 − (λ + 1)b11 = (λ − 1)b20 − (λ + 1)a11 = 0,

b02 = 0, (λ + 3)(λ − 1)a02 �= 0;

C∗
7 :

{
(λ − 1)a20 − (λ + 1)b11 = (λ − 1)b20 − (λ + 1)a11 = 0,

a02 = 0, (λ + 3)(λ − 1)b02 �= 0.
(7.5.1)

Proposition 7.5.1. When C1 holds, there exists the integral factor of system
(7.4.4)δ=0 as follows:

M1 = (zw)−1[6 + (3 − λ)(b02z
3 + 3a20z

2w + 3b20w
2z + a02w

3)]−1. (7.5.2)

Proposition 7.5.2. When C2 holds, the coefficients of the right hand satisfy the
conditions of the extended symmetric principle.

Proposition 7.5.3. When C3 holds, there exists the integral factor of system
(7.4.4)δ=0 as follows:

M2 = z2w2[1 + 2zw(a20z + b20w) + (a2
20 + b20b02)z4w2

+3(a20b20 − a02b02)z3w3 + (b2
20 + a20a02)w4z2

+(a20b20 − a02b02)(b02z
3 + a20z

2w + b20w
2z + a02w

3)z3w3]−1. (7.5.3)

Proposition 7.5.4. When C4 holds, system there exists the integral factor of
system (7.4.4)δ=0 as follows:

M3 =
z2w2

(1−2b11z2w−2a11w2z−a11b02z4w2+2a11b11z3w3−b11a02w4z2)
5
2
. (7.5.4)

Proposition 7.5.5. When one of C5 and C∗
5 holds, there exists the integral

factor of system (7.4.4)δ=0 as follows:

M4 =
1

z3w3
exp

−2(b02z
3 + a02w

3)
3

. (7.5.5)

Proposition 7.5.6. When one of C6 and C∗
6 holds, there exists the integral

factor of system (7.4.4)δ=0 as follows:

M5 = (zw)−3

(
6

3 − λ
+ b02z

3 + a02w
3

) λ+9
3λ−9

. (7.5.6)
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Proposition 7.5.7. If one of C7 and C∗
7 holds, then system (7.4.4)δ=0 is lin-

earizable in a neighborhood of the origin.

Proof. When C7 holds, system (7.4.4)δ=0 becomes

dz

dT
= z +

2
3
(a20 + b11)z3w +

1
3
(b20 + a11)z2w2 +

λ + 3
6

a02zw3,

dw

dT
= −w +

λ − 3
6

a02w
4 − 2

3
(b20 + a11)w3z − 1

3
(a20 + b11)w2z2. (7.5.7)

We see from Theorem 1.6.7 that system (7.5.7) is linearizable in a neighborhood of
the origin. Similarly, we can prove that if C∗

7 is satisfied, then system (7.4.4)δ=0 is
also linearizable in a neighborhood of the origin.

Theorem 1.8.28, Theorem 7.5.1 and Proposition 7.5.1 ∼ Proposition 7.5.7 imply
that

Theorem 7.5.2. The origin of system (7.4.4)δ=0 is a complex center, if and
only if the first 18 singular point values are all zero, i.e., one of the 10 conditions
in Theorem 7.5.1 is satisfied.

7.6 Isochronous Center of Quasi-Quadratic Systems

The first 18 singular point values of the origin of system (7.4.4)δ=0 are all zero if
and only if one of the 10 conditions of Theorem 7.5.1 is satisfied. In this section, we
shall solve completely the problem of complex isochronous centers of the origin for
system (7.4.4)δ=0.

7.6.1 The Problem of Complex Isochronous Centers Under the Condi-
tion of C1

When condition C1 holds, system (7.4.4)δ=0 becomes

dz

dT
= z − λ − 3

6
b02z

4 − λ − 9
6

a20z
3w +

λ + 9
6

b20z
2w2 +

λ + 3
6

a02w
3z,

dw

dT
= −w +

λ − 3
6

a02w
4 +

λ − 9
6

b20w
3z − λ + 9

6
a20w

2z2 − λ + 3
6

b02wz3.

(7.6.1)

Using Theorem 7.3.5, we have

Lemma 7.6.1. The first 15 period constants of the origin of system (7.6.1) are
given by

τ3 =
−1
3

(a02b02 + 9a202b20)(λ + 3),

τ6 ∼ −1
2

(a3
20a02 + b3

20b02 − 9a2
20b

2
20)(λ + 1)(λ + 3)(λ + 9),
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τ9 ∼ 3
32

a20b20(a3
20a02 + b3

20b02)(λ + 3)(λ + 6)(λ + 15)(2λ + 3)(5λ + 3),

τ12 ∼ −21
160

a4
20b

4
20λ(λ + 1)(λ + 3)(λ + 9)(359λ2 + 2010λ + 3231),

τ15 ∼ −6435
4

a5
20b

5
20(λ + 3)(820λ + 819). (7.6.2)

This lemma follows that

Lemma 7.6.2. The first 15 periodic constants of system (7.6.1) are all zero if
and only if one of the following 7 conditions is satisfied:

C11 : λ = −3;

C12 : a20 = b02 = 0;

C∗
12 : b20 = a02 = 0;

C13 : a20 = a02 = 0, λ = −1;

C∗
13 : b20 = b02 = 0, λ = −1;

C14 : a20 = a02 = 0, λ = −9;

C∗
14 : b20 = b02 = 0, λ = −9. (7.6.3)

Proposition 7.6.1. if C11 holds, then the origin of system (7.6.1) is an isochronous
center.

Proof. When C11 holds, system (7.6.1) becomes

dz

dT
= z(1 + b02z

3 + 2a20z
2w + b20zw2),

dw

dT
= −w(1 + a02w

3 + 2b20w
2z + a20wz2). (7.6.4)

It has the first integral

z3w3

1 + b02z3 + 3a20z2w + 3b20w2z + a02w3
= c. (7.6.5)

Let z = reiθ, w = re−iθ, T = it. (7.6.5) becomes

r3 = cg(θ) +
√

c + c2g2(θ), (7.6.6)

where

g(θ) =
1
2
(b02e

3iθ + 3a20e
iθ + 3b20e

−iθ + a02e
−3iθ). (7.6.7)

Thus, system (7.6.4) follows that

dt

dθ
=

1
1 + g(θ)r3

= 1 − cg(θ)√
c + c2g2(θ)

. (7.6.8)

Hence, we obtain
∫ 2π

0

dt

dθ
dθ ≡ 2π.
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Proposition 7.6.2. If one of C12 and C∗
12 holds, then the origin of system

(7.6.1) is a complex isochronous center.

Proof. When C12 holds, system (7.6.1) becomes

dz

dT
= z +

λ + 9
6

b20z
2w2 +

λ + 3
6

a02zw3,

dw

dT
= −w +

λ − 3
6

a02w
4 +

λ − 9
6

b20w
3z. (7.6.9)

According to Theorem 1.6.8, system (7.6.9) is linearizable in a neighborhood of the
origin. So that, the origin of (7.6.9) is a complex isochronous center. Similarly, if
C∗

12 holds, the same conclusion as the above is true.

Proposition 7.6.3. If one of C13 and C∗
13 holds, then the origin of system

(7.6.1) is a complex isochronous center.

Proof. When C13 holds, system (7.6.1) can be reduced to

dz

dT
= z +

2
3
b02z

4 +
4
3
b20z

2w2,

dw

dT
= −w − 5

3
b20w

3z − 1
3
b02wz3. (7.6.10)

By the transformation

ξ = z
(
1 + 2b20w

2z
)(

1 +
2
3
b02z

3 + 2b20zw2

)−1
3

,

η = w
(
1 + 2b20zw2

)−1
(

1 +
2
3
b02z

3 + 2b20w
2z

) 1
6

, (7.6.11)

system (7.6.10) can be linearized. So that, the origin of (7.6.10) is a complex
isochronous center. The same conclusion is true for the condition C∗

13.

Proposition 7.6.4. If one of C14 and C∗
14 holds, then the origin of system

(7.6.1) is a complex isochronous center.

Proof. When C14 holds, system (7.6.1) becomes

dz

dT
= z(1 + 2b02z

3),
dw

dT
= −w(1 + 3b20w

2z − b02z
3). (7.6.12)

By the transformation

ξ = z(1 + 2b02z
3)

−1
3 ,

η = w(1 + 2b02z
3)

1
3 (1 + 6b20w

2z + 2b02z
3)

−1
2 , (7.6.13)

system (7.6.12) can be linearized. So that, the origin of system (7.6.12) is a complex
isochronous center. The same conclusion is true for the condition C∗

14.



222 Chapter 7 On Quasi Analytic Systems

To sum up, Proposition 7.6.1 ∼ Proposition 7.6.4 follow that

Theorem 7.6.1. The origin of system (7.6.1) is a complex isochronous center if
and only if the first 15 period constants are all zero, i.e., one of the seven conditions
in Lemma 7.6.2 is satisfied.

7.6.2 The Problem of Complex Isochronous Centers Under the
Condition of C2

Write that 2a20−b11 = B, 2b20−a11 = A. When C2 is satisfied, there exist constants
p and q, such that

a20 = pβ, b20 = pα, a02 = qα3, b02 = qβ3. (7.6.14)

In this case, system (7.4.4)δ=0 becomes

dz

dT
=z − 1

6
r − 3)qβ3(z4 − 1

6
(3 − 9p − r + pr)βz3w

+
1
6
(−3 + 9p − r + pr)αz2w2 +

1
6
(r + 3)qα3zw3,

dw

dT
=−w +

1
6
(r − 3)qα3w4 +

1
6
(3 − 9p− r + pr)αw3z

−1
6
(−3 + 9p − r + pr)βw2z2 − 1

6
(3 + r)qβ3wz3. (7.6.15)

By calculating period constants, we have

Lemma 7.6.3. The first 12 period constants of the origin of system (7.6.15) are
all zero if and only if one of the following 8 conditions hold:

C21 : p =
1
3
, q = 0, αβ �= 0;

C22 : q = 0, −1 + 3p − λ + pλ = 0;

C23 : p =
1
2
, q =

−1
2αβ

, λ = 3, αβ �= 0;

C24 : p =
3
10

, q =
−3

10αβ
, λ = −1, αβ �= 0;

C25 : p =
5
12

, q =
−1
4αβ

, λ = 1, αβ �= 0;

C26 : p =
7
20

, q =
3

20αβ
, λ = 1, αβ �= 0;

C27 : β = 0;

C∗
27 : α = 0. (7.6.16)

Proposition 7.6.5. If C21 holds, then the origin of system (7.6.15) is a complex
isochronous center.
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Proof. When C21 holds, system (7.6.15) becomes

dz

dT
=

1
9
z(9 + λβz2w − λαzw2),

dw

dT
= −1

9
w(9 + λαw2z − λβwz2). (7.6.17)

Let z = reiθ, w = re−iθ, T = it. We have
dθ

dt
≡ 1. Thus, this proposition is

true.

Proposition 7.6.6. If C22 holds, then the origin of system (7.6.15) is a complex
isochronous center.

Proof. When C22 holds, system (7.6.15) becomes

dz

dT
= z +

1
3
(3p − 1)(2βz + αw)z2w,

dw

dT
= −w − 1

3
(3p − 1)(2αw + βz)w2z. (7.6.18)

Let

ξ = zf
−2
3

1 f
1
3
2 , η = wf

1
3
1 f

−2
3

2 , (7.6.19)

where

f1 = 1 + (3p − 1)βz2w, f2 = 1 + (3p − 1)αzw2. (7.6.20)

By using (7.6.19), system (7.6.18) can be linearized. It follows the conclusion of this
proposition.

Proposition 7.6.7. If C23 holds, then the origin of system (7.6.15) is a complex
isochronous center.

Proof. When C23 holds, system (7.6.15) becomes

dz

dT
= z +

βz3w

2
− α2zw3

2β
,

dw

dT
= −w − αw3z

2
+

β2wz3

2α
. (7.6.21)

System (7.6.21) has the following function of the time-angle difference:

G1 =
(αw − βz)3i

12αβ
. (7.6.22)

By Theorem 4.4.4, the conclusion of this proposition holds.

Proposition 7.6.8. If C24 holds, then the origin of system (7.6.15) is a complex
isochronous center.
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Proof. Suppose that the condition C24 is satisfied. Then system (7.6.15) becomes

dz

dT
=

z

30αβ
(30αβ − 6β3z3 − 5αβ2z2w + 2βα2zw2 − 3α3w3),

dw

dT
=

−w

30αβ
(30αβ − 6α3w3 − 5βα2w2z + 2αβ2wz2 − 3β3z3). (7.6.23)

System (7.6.23) has the following function of the time-angle difference:

G2 =
i

4
log

β(5α − β2z3 − αβz2w)
α(5β − α2w3 − αβw2z)

. (7.6.24)

Thus, Theorem 4.4.4 implies the conclusion of this proposition.

Proposition 7.6.9. If C25 holds, then the origin of system (7.6.15) is a complex
isochronous center.

Proof. Suppose that the condition C25 is satisfied. Then, (7.6.15) becomes

dz

dT
=

z

36αβ
(36αβ − 3β3z3 + 8αβ2z2w + βα2zw2 − 6α3w3),

dw

dT
= − w

36αβ
(36αβ − 3α3w3 + 8βα2w2z + αβ2wz2 − 6β3z3). (7.6.25)

There exists a transformation

ξ = zf
−1
3

3 f
2
3
4 f

−1
6

5 , η = wf
2
3
3 f

−1
3

4 f
−1
6

5 , (7.6.26)

where

f3 = 1 − β2z3

12α
+

βz2w

6
− αzw2

12
,

f4 = 1 − α2w3

12β
+

αw2z

6
− βz2

12
,

f5 = 1 +
2βz2w

3
+

2αzw2

3
, (7.6.27)

such that (7.6.25) reduces to a linear system. This gives the conclusion of the
Proposition 7.6.9.

Proposition 7.6.10. If C26 holds, then the origin of system (7.6.15) is a complex
isochronous center.

Proof. Suppose that the condition C26 is satisfied. Then, (7.6.15) becomes

dz

dT
=

z

60αβ
(60αβ + 3β3z3 + 8αβ2z2w − 5βα2zw2 + 6α3w3),

dw

dT
= − w

60αβ
(60αβ + 3α3w3 + 8βα2w2z − 5αβ2wz2 + 6β3z3). (7.6.28)
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There exists a transformation

ξ = zf
−1
3

6 f
2
3
7 f

−2
3

8 , η = wf
2
3
6 f

−1
3

7 f
−2
3

8 , (7.6.29)

where

f6 = 1 +
β2z3

20α
+

βz2w

10
+

αzw2

20
,

f7 = 1 +
α2w3

20β
+

αw2z

10
+

βwz2

20
,

f8 = 1 +
βz2w

5
+

αzw2

5
, (7.6.30)

such that (7.6.9) reduces to a linear system. This gives the conclusion of the Propo-
sition 7.6.10.

Proposition 7.6.11. If one of C27 and C∗
27 holds, then the origin of system

(7.6.15) is a complex isochronous center.

Proof. Suppose that the condition C27 is satisfied. Then, system (7.6.15) becomes

dz

dT
= z +

1
6
(−3 + 9p − λ + pλ)αz2w2 +

1
6
(3 + λ)qα3zw3,

dw

dT
= −w +

1
6
(3 − 9p − λ + pλ)αzw3 +

1
6
(−3 + λ)qα3w4. (7.6.31)

According to Theorem 1.6.8, system (7.6.31) is linearizable in a neighborhood of the
origin. So that, the origin of (7.6.31) is a complex isochronous center. Similarly, we
can prove that the origin of system (7.6.15) is also a complex isochronous center, if
C∗

27 holds.

Thus, Proposition 7.6.5 ∼ Proposition 7.6.11 imply that

Theorem 7.6.2. The origin is a complex isochronous center of system (7.6.15)
if and only if the first 12 period constants of the origin are all zero, i.e., one of the
8 conditions holds in Lemma 7.6.3.

7.6.3 The Problem of Complex Isochronous Centers Under the Other
Conditions

If C3 holds, we can figure out that the third period constant of the origin of system

(7.4.4)δ=0 is τ3 =
−4
3

a02b02. Thus, we have

Lemma 7.6.4. If condition C3 holds and τ3 = 0, then one of the following
conditions holds:

C31 : λ = 1, a11 = b11 = b02 = 0;

C∗
31 : λ = 1, a11 = b11 = a02 = 0. (7.6.32)
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Theorem 7.6.3. If one of C31 and C∗
31 holds, then the origin of system (7.4.4)δ=0

is a complex isochronous center.

Proof. If C31 holds, then system (7.4.4)δ=0 becomes

dz

dT
=

z

3
(3 + 2a20z

2w + b20zw2 + 2a02w
3),

dw

dT
=

−w

3
(3 + a02w

3 + 2b20w
2z + a20wz2). (7.6.33)

According to Theorem 1.6.7, system (7.6.33) is linearizable in a neighborhood of the
origin. So that, the origin of (7.6.33) is a complex isochronous center. Similarly, we
can prove that the origin of system (7.6.1) is also a complex isochronous center, if
C∗

31 holds.

If C4 holds, we can figure out that the third period constant of the origin of
system (7.4.4)δ=0 is τ3 = 2

3a02b02. Thus, we have

Lemma 7.6.5. If condition C4 holds and τ3 = 0, then one of the following
conditions holds:

C41 : a20 = b11 = b02 = 0, b20 + 2a11 = 0, λ = 1;

C∗
41 : b20 = a11 = a02 = 0, a20 + 2b11 = 0, λ = 1;

C42 : b20 = a11 = b02 = 0, a20 + 2b11 = 0, λ = 1;

C∗
42 : a20 = b11 = a02 = 0, b20 + 2a11 = 0, λ = 1. (7.6.34)

Proposition 7.6.12. If one of C41 and C∗
41 holds, then the origin of system

(7.4.4)δ=0 is a complex isochronous center.

Proof. If C41 holds, then system (7.4.4)δ=0 becomes

dz

dT
=

z

3
(3 + 2a02w

3),

dw

dT
=

−w

3
(3 + a02w

3 − 3a11zw2). (7.6.35)

According to Theorem 1.6.8, system (7.6.35) is linearizable in a neighborhood of the
origin. So that, the origin of (7.6.35) is a complex isochronous center. Similarly, we
can prove that the origin of system (7.6.1) is also a complex isochronous center, if
C∗

41 holds.

Proposition 7.6.13. If one of C42 and C∗
42 holds, then the origin of system

(7.4.4)δ=0 is a complex isochronous center.
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Proof. If C42 holds, then system (7.4.4)δ=0 becomes

dz

dT
= z − b11z

3w +
2
3
a02zw3,

dw

dT
= w +

1
3
a02w

4. (7.6.36)

There exists a transformation

ξ = xf
−1
2

9 f
2
3
10, η = wf

−1
3

10 , (7.6.37)

where

f9 = 1 − 2b11z
2w − a02b11z

2w4, f10 = 1 +
1
3
a02w

3, (7.6.38)

such that (7.6.36) reduce to a linear system. Hence, the origin of system (7.6.36)
is a complex isochronous center. Similarly, we can prove that the origin of system
(7.4.4)δ=0 is also a complex isochronous center if C∗

42 holds.

From Lemma 7.6.5, Proposition 7.6.12 and Proposition 7.6.13, we have

Theorem 7.6.4. Suppose that the condition C4 is satisfied. Then, the origin
of system (7.4.4)δ=0 is a complex isochronous center, if and only if one of four
conditions in Lemma 7.6.5 holds.

Theorem 7.6.5. If one of C5 and C∗
5 holds, then the origin of system (7.4.4)δ=0

is a complex isochronous center.

Proof. Suppose that the condition C5 is satisfied. Then, (7.4.4)δ=0 becomes

dz

dT
= z,

dw

dT
= −w(1 + b02z

3 + b20zw2). (7.6.39)

There exists a transformation

ξ = z, v = wf
−1
2

11 , (7.6.40)

where

f11 = (1 + 2b20zw2)e
−2
3 b02z3

+ 4b20b02z
2w2

∫ z

0

ze
−2
3 b02z3

dz, (7.6.41)

such that (7.6.39) reduce to a linear system. Hence, the origin of system (7.6.39)
is a complex isochronous center. Similarly, we can prove that the origin of system
(7.4.4)δ=0 is also a complex isochronous center if C∗

5 holds.

Theorem 7.6.6. If one of C6 and C∗
6 holds, then the origin of system (7.4.4)δ=0

is a complex isochronous center.
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Proof. Suppose that the condition C6 is satisfied. Then, system (7.4.4)δ=0 becomes

dz

dT
= z +

2λ

λ − 3
b11z

3w +
λ + 3

6
a02zw3,

dw

dT
= −w +

λ − 3
6

a02w
4. (7.6.42)

There exists a transformation

ξ = zf
−1
3

12 f
−1
2

13 , η = wf
−1
3

12 , (7.6.43)

where

f12 = 6 − (λ − 3)a02w
3,

f13 =
(

f12 +
24λ

λ − 3
b11z

2w

)
f

λ+9
3λ−9
12 +

24λ(λ + 9)
λ − 3

a02b11z
2w2

∫ w

0

wf
18−2λ
3λ−9

12 dw,

(7.6.44)

such that (7.6.42) reduce to a linear system. So that, the origin of system (7.6.42)
is a complex isochronous center. Similarly, we can prove that the origin of system
(7.4.4)δ=0 is also a complex isochronous center if C∗

6 holds.

Finally, when one of C7 and C∗
7 holds, Proposition 7.5.7 gives directly rise to the

conclusion that the origin is a complex isochronous center.
From tha above discission, we know that the isochronous center problem of the

quasi-quadratic systems have been solved completely.

7.7 Singular Point Values and Center Conditions for a Class

of Quasi-Cubic Systems

Consider the following quasi-cubic systems

dz

dT
= (1 − iδ)z + (zw)λ−1Z3(z, w),

dw

dT
= −(1 + iδ)w − (zw)λ−1W3(z, w), (7.7.1)

where

Z3(z, w) = a30z
3 + a21z

2w + a12zw2 + a03w
3,

W3(z, w) = b30w
3 + b21w

2z + b12wz2 + b03z
3. (7.7.2)

By the transformation z = x + iy, w = x − y, T = it, system (7.7.1) becomes

dx

dt
= −y + δx + (x2 + y2)λ−1X3(x, y),

dy

dt
= x + δy + (x2 + y2)λ−1Y3(x, y), (7.7.3)
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where X3(x, y), Y3(x, y) are homogeneous polynomials of degree 3 of x and y. By
using the transformation (7.2.1), system (7.7.3) becomes

dξ

dt
=

δλ

3
ξ − η +

1
3
(ξ2 + η2)P5(ξ, η),

dξ

dt
= ξ +

δλ

3
η +

1
3
(ξ2 + η2)Q5(ξ, η), (7.7.4)

where

P5(ξ, η) = (λξ2 + 3η2)X3(ξ, η) + (λ − 3)ξηY3(ξ, η),

Q5(ξ, η) = (λη2 + 3ξ2)Y3(ξ, η) + (λ − 3)ξηX3(ξ, η). (7.7.5)

The associated system of system (7.7.4) is given by

dz

dT
=

(
1 − iδλ

3

)
z +

1
6
z2wΦ5(z, w),

dw

dT
= −

(
1 +

iδλ

3

)
w − 1

6
w2zΨ5(z, w), (7.7.6)

where

Φ5(z, w) = (λ + 3)wZ3(z, w) − (λ − 3)zW3(z, w),

Ψ5(z, w) = (λ + 3)zW3(z, w) − (λ − 3)wZ3(z, w). (7.7.7)

Theorem 7.7.1. The first 27 singular point values at the origin of system
(7.7.6)δ=0 are given by

μ3 =
1
3
λ(a21 − b21),

μ6 ∼ 1
3
λ(b30b12−a30a12),

μ9 ∼ 1
24

λ(2Δ1 − λΔ2),

μ12 ∼ 1
24

λ(a21 + b21)Δ1,

μ15 ∼ 1
288

λ[8(a30 + b12)(b30 + a12) + (λ2 − λ − 8)a03b03]Δ1,

μ18 ∼ 0,

μ21 ∼ 1
46080

λ2(λ − 1)(3λ − 8)(5λ + 13)a2
03b

2
03Δ1,

μ24 ∼ −7
13824

λ2(λ − 1)a03b03J0Δ1,

μ27 ∼ 121
13824000

λ2(λ − 1)(3λ − 8)a3
03b

3
03Δ1, (7.7.8)
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where

Δ1 = (3a30 − b12)(a30 + b12)a03 − (3b30 − a12)(b30 + a12)b03,

Δ2 = (a30 − b12)(3a30 − b12)a03 − (3b30 − a12)(b30 − a12)b03,

J0 = (a30 + b12)2a03 + (b30 + a12)2b03. (7.7.9)

Theorem 7.7.2. The first 27 singular point values of system (7.7.6)δ=0 are zero,
if and only if one of the following 6 conditions is satisfied:

C1 : a21 − b21 = 0, 3a30 − b12 = 3b30 − a12 = 0;

C2 :

�
a21 = b21, a30a12 = b30b12, a2

30a03 = b2
30b03,

a30b12a03 = b30a12b03, b2
12a03 = a2

12b03;

C3 :

�
λ = 1, a21 = b21 = 0, a03b03 = 4a12b12,

a30 + 3b12 = b30 + 3a12 = 0;

C4 :

⎧
⎨
⎩

λ =
8
3
, a21 = b21 = 0, a30 − 7b12 = b30 − 7a12 = 0,

b2
12a03 + a2

12b03 = 0, a03b03 = 144a12b12, a03b03 �= 0;

C5 :

�
a21 = b21 = b30 = a12 = b03 = 0,

(λ − 2)a30 − (λ + 2)b12 = 0;

C∗
5 :

�
a21 = b21 = a30 = b12 = a03 = 0,

(λ − 2)b30 − (λ + 2)a12 = 0.
(7.7.10)

Proposition 7.7.1. If C1 holds, then system (7.7.6)δ=0 has the integral factor

M1 = (zw)−1g−1
1 , (7.7.11)

where

g1 = 1 − λ − 2
4

zw
�
b03z

4 + 4a30z
3w + (a21 + b21)z2w2 + 4b30w

3z + a30w
4
�
. (7.7.12)

Proposition 7.7.2. If C2 holds, then the coefficients of the right hand of system
(7.7.6)δ=0 satisfy the conditions of the extended symmetric principle.

Proposition 7.7.3. If C3 holds, then (7.7.1)δ=0 is an integrable cubic system.

Proposition 7.7.4. If C4 holds, then system (7.7.6)δ=0 has the integral factor

M2 = (zw)−3g
5
6
2 , (7.7.13)

where

g2 =1 − 1
3
zw(b03z

4 + 24b12z
3w + 24a12zw3 + a03w

4)

− 1
108

z2w2(−3b2
03z

8 − 240b03b12z
7w − 8640b2

12z
6w2

+1296a12b03z
5w3 + 130a03b03z

4w4 + 1296a03b12z
3w5

−8640a2
12z

2w6 − 240a03a12zw7 − 3a2
03w

8). (7.7.14)
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Proposition 7.7.5. If one of C5 and C∗
5 holds, then system (7.7.6)δ=0 has the

integral factor

M3 = (zw)
−11
2 g3, (7.7.15)

where

g3 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�
1 − 1

4
(λ − 2)(b03z

5w + a03w
5z)

� λ+4
2(λ−2)

, if λ �= 2,

exp
�−3

4
(b03z

5w + a03w
5z)

�
, if λ = 2.

(7.7.16)

Theorem 1.8.26, Theorem 7.7.2 and Proposition 7.7.1 ∼ Proposition 7.7.5 follow
that

Theorem 7.7.3. The origin of system (7.7.6)δ=0 is a complex center, if and
only if the first 27 singular point values are all zero, i.e., one of the 6 conditions in
Theorem 7.7.2 is satisfied.

Bibliographical Notes

The singular point values and center conditions of system (7.7.1) and (7.7.3) were
discussed in [Xiao P., 2005] and [Llibre etc, 2009a]. The materials of this chapter
are taken by [Xiao P., 2005; Liu Y.R., 2002; Liu Y.R. etc, 2008a].



Chapter 8

Local and Non-Local Bifurcations of

Perturbed Zq-Equivariant Hamiltonian

Vector Fields

In order to obtain more limit cycles and various configuration patterns of their rela-
tive dispositions, we indicated in [Li Jibin etc, 1987-1992] that an efficient method is
to perturb the symmetric Hamiltonian systems having maximal number of centers,
i.e., to study the weakened Hilbert’s 16th problem for the symmetric planar poly-
nomial Hamiltonian systems, since bifurcation and symmetry are closely connected
and symmetric systems play pivotal roles as a bifurcation point in all planar Hamil-
tonian system class. To investigate perturbed Hamiltonian systems, we should first
know the global behavior of unperturbed polynomial systems, namely, determine
the global property for the families of real planar algebraic curves defined by the
Hamiltonian functions. Then by using proper perturbation techniques, we shall ob-
tain the global information of bifurcations for the perturbed non-integrable systems.
In this sense, we say that our study method is to consider integrally two parts of
Hilbert’s 16th problem.

8.1 Zq-Equivariant Planar Vector Fields and an Example

Let G be a compact Lie group of transformations acting on Rn. A mapping Φ : Rn →
Rn is called G-equivariant if for all g ∈ G and x ∈ Rn, Φ(gx ) = gΦ(x ). A function
H : Rn → R, is called G-invariant function if for all x ∈ Rn, H(gx ) = H(x ). If Φ
is a G-equivariant mapping, the vector field dx/dt = Φ(x ) is called a G-equivariant
vector field.

Consider the (x, y) real planar polynomial system of the degree n

dx

dt
= X(x, y),

dy

dt
= Y (x, y), (En)

where X(x, y), Y (x, y) are real polynomials of x and y with the degree n. Let q be a
positive integer. A group Zq is called a cyclic group if it is generated by a real planar
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counterclockwise rotation through
2π

q
about the origin. Making the transforma-

tion
z = x + iy, w = x − iy, T = it

the system (En) becomes its associated system

dz

dT
= Z(z, w),

dw

dT
= −W (z, w), (E∗

n)

where

Z(z, w) = Y (x, y) − iX(x, y) =
n∑

α+β=0

aαβzαwβ ,

W (z, w) = Y (x, y) + iX(x, y) =
n∑

α+β=0

bαβwαzβ, (8.1.1)

and ∀(α, β), we have bαβ = āαβ .
[Li Jibin and Zhao Xiaohua, 1989] proved the following result.

Theorem 8.1.1. A vector field defined by (E∗
n) is Zq-equivariant, if and only if

the functions Z(z, w) and W (z, w) have the following form:

Z(z, w) =
∑
j=1

gj(zw)wjq−1 +
∑
j=0

hj(zw)zjq+1,

W (z, w) =
∑
j=1

ḡj(zw)zjq−1 +
∑
j=0

h̄j(zw)wjq+1, (8.1.2)

where gj(ζ) and hj(ζ) are polynomials with complex coefficients in ζ. In addition,
(E∗

n) is a Hamiltonian system having Zq-equivariance, if and only if (8.1.2) holds
and

∂Z

∂z
− ∂W

∂w
≡ 0. (8.1.3)

Theorem 8.1.2. A Zq-invariant function I(z, w) has the following form:

I(z, w) =
∑
j=1

gj(zw)wjq +
∑
j=0

hj(zw)zjq. (8.1.4)

Corollary 8.1.1. (1) For the planar polynomial systems of degree 5, all non-
trivial Zq-equivariant vector fields have the following forms:

(a) q = 6, Z(z, w) = (a10 + a21zw + a32z
2w2)z + a05w

5;

(b) q = 5, Z(z, w) = (a10 + a21zw + a32z
2w2)z + a04w

4;

(c) q = 4, Z(z, w) = (a10 + a21zw + a32z
2w2)z + (a03 + a14zw)w3 + a05z

5;
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(d) q = 3,

Z(z, w) = (a10 + a21zw + a32z
2w2)z + (a02 + a13zw)w2 + a40z

4 + a05w
5;

(e) q = 2,

Z(z, w) = (a10 + a21zw + a32z
2w2)z + (a01 + a12zw + a23z

2w2)w

+ (a30 + a41zw)z3 + (a03 + a14zw)w3 + a50z
5 + a05w

5,

where aαβ are complex. The above Z(z, w) define Zq-equivariant Hamiltonian vector
fields if and only if a10 − b10 = a21 − b21 = a32 − b32 = 0 and

for q = 4, a14 = 5b05,

for q = 3, a13 = 4b40;

for q = 2, a12 = 3b30, a23 = 2b41, a14 = 5b50.

(2) For the planar polynomial systems of degree m− 1(m � 7), when q = m, m−
1, m− 2, m− 3, Zq-equivariant Hamiltonian vector fields defined by (8.1.1) have the
following forms:

(a)q = m, Z(z, w) = z

[ m
2 ]−1∑
β=0

aβ+1,β(zw)β + a0,m−1w
m−1;

(b)q = m − 1, Z(z, w) = z

[ m
2 ]−1∑
β=0

aβ+1,β(zw)β + a0,m−2w
m−2;

(c)q = m − 2, Z(z, w) = z

[ m
2 ]−1∑
β=0

aβ+1,β(zw)β + a0,m−1z
m−1

+
[
a0,m−3 − (m − 1)b1,m−2zw

]
wm−3;

(d)q = m − 3, Z(z, w) = z

[ m
2 ]−1∑
β=0

aβ+1,β(zw)β + a0,m−2z
m−2

+
[
a0,m−4 − (m − 2)b1,m−3zw

]
wm−4,

where aβ+1,β are all real.

Corollary 8.1.2. System (E∗
n) is Zq-equivariant if and only if: ∀(α, β), when

(α − β − 1)/q is not a integer, we have aαβ = bαβ = 0.

Obviously, system (E∗
n) define Hamiltonian vector fields if and only if ∀(α, β),

we have (α + 1)aα+1,β = (β + 1)bβ+1,α.
A group Dq is called dihedral group of order 2q which is characterized as the

symmetry group of the regular q-gon. It is generated by two elements, the (plane)
rotation by an angle 2π/q and a reflection in R2.

Theorem 8.1.3. A vector field defined by (E∗
n) is Dq-eqiuivariant, if and only

if all coefficients of the functions gj(zw) and hj(zw) in (8.1.2) are real numbers.
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The orbits of Hamiltonian polynomial systems given by Corollary 8.1.1 define
different families of sextic (m = 6) algebraic curves having Zq-equivariance. One
of the main questions in real algebraic geometry is to describe what schemes of the
mutual arrangement (schemes or configurations) of ovals can be realized by curves
of given degree. By using some Zq-equivariant Hamiltonian systems, we can realize
a lot of configurations of ovals for planar algebraic curves of degree m.

As an example, we consider a Z2-Equivariant Planar Vector Fields

dx

dt
= −y(−1 + ay2 − ay4 + y6),

dy

dt
= x(−1 + bx2 − bx4 + x6), (8.1.5)

where b � a > 3. Equation (8.1.5) has the Hamiltonian function as follows:

H(x, y) =
1
2
(x2 + y2) − 1

4
(bx4 + ay4) +

1
6
(bx6 + ay6) − 1

8
(x8 + y8). (8.1.6)

Clearly, the Hamiltonian H(x, y) is negative definite at infinity.
Denote that

x1 =
1
2

√
2(b − 1) − 2

√
(b − 1)2 − 4, x3 =

1
2

√
2(b − 1) + 2

√
(b − 1)2 − 4,

y1 =
1
2

√
2(a − 1) − 2

√
(a − 1)2 − 4, y3 =

1
2

√
2(a − 1) + 2

√
(a − 1)2 − 4,

It is easy to see that system (8.1.5) has 25 centers at (0, 0), (1, 0), (0, 1), (1,±1),
(x1, ±y1), (x1,±y3), (x3,±y1), (x3,±y3) and their Z2-equivariant symmetric points,
24 saddle points at (x1, 0), (x3, 0), (0, y1), (0, y3), (x1,±1), (x3,±1), (1, ±y1),
(1, ±y3) and their Z2-equivariant symmetric points. we denote that

hc
0 = H(0, 0), hc

1 = H(1, 0), hc
2 = H(0, 1), hc

3 = H(1, 1),
hc

4 = H(x1, y1), hc
5 = H(x3, y3), hc

6 = H(x3, y1), hc
7 = H(x1, y3),

hs
1 = H(x1, 0), hs

2 = H(0, y1), hs
3 = H(1, y1), hs

4 = H(x1, 1),

hs
5 = H(x2, 1), hs

6 = H(x3, 0), hs
7 = H(1, y3), hs

8 = H(0, y3),

where

H(0, 0) = 0, H(1, 0) =
3
8
− 1

12
b, H(0, 1) =

3
8
− 1

12
a, H(1, 1) = hc

1 + hc
2.

Obviously, for b > a > 3, hs
1 < hs

2, hs
3 < hs

4, hs
8 < hs

5, hs
7 < hs

6. To
compare hs

i (i = 1 ∼ 8) in the first quadrant of the (a, b) parametric plane, we have
the following four curves :

(C1) b = a;

(C2) b = 4.5, in which hs
2 = hs

3, hs
7 = hs

8;
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(C3) b =
1
4

[
18 + 2(a − 3)(a2 − 2a − 3)

3
2

]
, in which hs

2 = hs
7;

(C4) b =
1
4

[
18 − 2(a − 3)(a2 − 2a − 3)

3
2

]
, in which hs

3 = hs
8.

There are other bifurcation curves by comparing some hs
i . These curves partition

the
π

4
-angle region of the first quadrant in (a, b)-parametric plane into different

regions. For example, we give 9 different phase portraits of (8.1.5), which are shown
in figures (1)∼(9) of Fig.8.1.1, when hi (i = 1 ∼ 8) have the following orders:

(1) (2)

(3) (a, b) ∈ (C4) (4)
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(5) (a, b) ∈ (C2) (6)

(7) (a, b) ∈ (C3) (8)

(9)

Fig.8.1.1 Some phase portraits of system (8.1.5)
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(1) −∞ < hs
1 < hs

2 < hs
8 < hs

6 < hs
3 < hs

7 < hs
4 < hs

5;

(2) −∞ < hs
1 < hs

2 < hs
8 < hs

3 < hs
4 < hs

7 < hs
6 < hs

5;

(3) (a, b) ∈ (C4), −∞ < hs
1 < hs

2 < hs
8 = hs

3 < hs
4 < hs

7 < hs
6 < hs

5;

(4) −∞ < hs
1 < hs

2 < hs
3 < hs

4 < hs
8 < hs

7 < hs
6 < hs

5;

(5) (a, b) ∈ (C2),−∞ < hs
1 < hs

2 = hs
3 < hs

4 < hs
8 = hs

7 < hs
6 < hs

5;

(6) −∞ < hs
1 < hs

3 < hs
2 < hs

4 < hs
7 < hs

8 < hs
6 < hs

5;

(7) (a, b) ∈ (C3),−∞ < hs
3 < hs

1 < hs
7 = hs

2 < hs
4 < hs

8 < hs
6 < hs

5;

(8) −∞ < hs
3 < hs

1 = hs
7 < hs

2 < hs
4 = hs

8 < hs
6 < hs

5;

(9) −∞ < hs
3 < hs

1 < hs
2 < hs

4 < hs
7 = hs

8 < hs
6 < hs

5.

As h is varied, the level curves H(x, y) = h of the Hamiltonian defined by (8.1.6)
give rise to different eighth algebraic curves in the affine real plane.

For an example, we consider figure (1) of Fig.8.1.1, i.e., G = (a, b) = (3.2, 3.48).
We have

ξ1 = 0.7118903630, ξ2 = 1.404710686, η1 = 0.8010882788, η2 = 1.248301875,

hc
1 = 0.085, hc

2 = 0.1083333333, hc
3 = 0.1933333333,

hc
4 = 0.2083547972, hc

5 = 0.2778383751, hc
6 = 0.2714227698,

hc
7 = 0.2147704034, hs

1 = 0.09719593344, hs
2 = 0.1111588638,

hs
3 = 0.1961588638, hs

4 = 0.2055292667, hs
5 = 0.2685972390,

hs
6 = 0.160263906, hs

7 = 0.2025744701, hs
8 = 0.1175744701,

−∞< 0 < hc
1 < hs

1 < hc
2 < hs

2 < hs
8 < hs

6 < hc
3 < hs

3

< hs
7 < hs

4 < hc
4 < hc

7 < hs
5 < hc

6 < hc
5.

As h increases from −∞ to hc
5, the schemes of ovals of the eighth algebraic curves will

be varied. This change process is shown in figures (1)∼(24) of Fig.8.1.2. Similarly,
we can discuss other phase portraits in Fig.8.1.1

(1) −∞ < h < 0 (2) 0 < h < hc
1 (3) hc

1 < h < hs
1
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(4)h = hs
1 (5) hs

1 < h < hc
2 (6) hc

2 < h < hs
2

(7) h = hs
2 (8) hs

2 < h < hs
8 (9) h = hs

8

(10) hs
8 < h < hs

6 (11) h = hs
6 (12) hs

6 < h < hc
3

(13) hc
3 < h < hs

3 (14) h = hs
3 (15) hs

3 < h < hs
7
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(16) h = hs
7 (17) hs

7 < h < hs
4 (18) h = hs

4

(19) hs
4 < hc

4 (20) hc
4 < h < hc

7 (21) hc
7 < h < hs

5

(22) h = hs
5 (23) hs

5 < h < hc
6 (24) hc

6 < h < hc
5

Fig.8.1.2 Different schemes of ovals defined by (8.1.6)

We see from Fig.8.1.2 that as h increases from −∞ to hc
5 the schemes of ovals of

the eighth algebraic curves defined by H(x, y) = h are varied as follows.
(1) h ∈ (−∞, 0), there is a global periodic orbit family {Γh

8}, enclosing 49 singular
points.

(2) h ∈ (0, hc
1), there exists a periodic orbit family {Γh

0}, enclosing the center
(0, 0). Together with {Γh

8} there exist two families of periodic orbits.
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(3) h ∈ (hc
1, h

s
1), there exist 2 families of periodic orbits {Γh

1i}, i = 1, 2, enclosing
the centers (1, 0) and (−1, 0), respectively. Together whit {Γh

0} and {Γh
8} there exist

4 families periodic orbits.
(4) h = hs

1, there are two heteroclinic orbits {Γhs
1

0i }, i = 1, 2 and two homoclinic
orbits {Γhs

1
1i }, i = 1, 2, and a periodic orbit {Γhs

1
8 }.

(5) hs
1 < h < hc

2, there exist two families of periodic orbits: {Γh
(1−2)}, enclosing

5 finite singular points, and {Γh
8}.

(6) h ∈ (hc
2, h

s
2), there exist 4 families of periodic orbits: {Γh

(1−2)}, enclosing 5
finite singular points, and {Γh

2i}, i = 1, 2, enclosing the singular point (0, 1) and
(0,−1), respectively, and a global periodic orbit {Γh

8}, enclosing all 49 singular
points.

(7) h = hs
2, there are two heteroclinic orbits {Γhs

2
(1−2)} and two homoclinic orbits

{Γhs
1

2i }, i = 1, 2 and a global periodic orbit {Γhs
2

8 }, enclosing all 49 singular points.
(8) h ∈ (hs

2, h
s
8), there exist two families of periodic orbits {Γh

(2−8)}, enclosing
9 finite singular points, and a periodic orbit family {Γh

8}, enclosing all 49 singular
points.

(9) h = hs
8, there are 2 heteroclinic orbits {Γhs

8
(2−8)i}, i = 1, 2 and 2 heteroclinic

orbits {Γhs
8

(8−6)i}, ı = 1, 2.

(10) h ∈ (hs
8, h

s
6), there exist two families of periodic orbits {Γh

(8−6)}, i = 1, 2,

enclosing 19 singular points.
(11) h = hs

6, there are 4 homoclinic orbits {Γhs
6

(6−3)i}, i = 1, 2, 3, 4.

(12) h ∈ (hs
6, h

c
3), there exist 4 families of periodic orbits {Γh

(6−3)}, enclosing 9
finite singular points.

(13) hc
3 < h < hs

3, there are 4 families of periodic orbits {Γh
(6−3)i}, and {Γh

3i}, i =
1, 2, 3, 4.

(14) h = hs
3, there exist 4 homoclinic orbits {Γhs

3
3i }, i = 1, 2, 3, 4, enclosing one

singular point (1, 1) and its z2-symmetric points, respectively, and there exist 4
homoclinic orbits {Γhs

3
(6−3)i}, i = 1, 2, 3, 4, enclosing 9 singular points, respectively.

(15) h ∈ (hs
3, h

s
7), there exist 4 families of periodic orbits {Γh

(3−7)}, enclosing 7
finite singular points,respectively.

(16) h = hs
7, there are 8 homoclinic orbits {Γhs

7
(7−4)i}, i = 1, 2, 3, 4 and {Γhs

7
(7−5)i},

i = 1, 2, 3, 4.

(17) h ∈ (hs
7, h

s
4), there exist 8 families of periodic orbits {Γh

(7−4)i}, i = 1, 2, 3, 4
and {Γh

(7−5)i}, i = 1, 2, 3, 4, enclosing 3 finite singular points, respectively.

(18) h = hs
4, there are 8 homoclinic orbits {Γhs

4
7i }, i = 1, 2, 3, 4, {Γhs

4
4i }, i = 1, 2, 3, 4

and 4 periodic orbits {Γhs
4

(7−5)i}.
(19) h ∈ (hs

4, h
c
4), there exist 12 families of periodic orbits: {Γh

7i}, i = 1, 2, 3, 4,

enclosing the singular point (x1, y3) and its Z2-equivariant symmetry points, and
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{Γh
4i}, i = 1, 2, 3, 4, enclosing the singular point (x1, y1) and its Z2-equivariant

symmetry points, and {Γh
(7−5)i}, i = 1, 2, 3, 4, enclosing 3 finite singular points,

respectively.
(20) h ∈ (hc

4, h
c
7), there exist 8 families of periodic orbits:{Γh

7i}, i = 1, 2, 3, 4,

enclosing the singular point (x1, y3) and its Z2-equivariant symmetry points, and
{Γh

(7−5)i}, i = 1, 2, 3, 4, enclosing 3 finite singular points, respectively.
(21) h ∈ (hc

7, h
s
5), there exist 4 families of periodic orbits {Γh

(7−5)i}, i = 1, 2, 3, 4,

enclosing 3 finite singular points, respectively.
(22) h = hs

5, there are 8 homoclinic orbits Γhs
5

5i , ı = 1, 2, 3, 4 and {Γhs
5

6i }, i =
1, 2, 3, 4.

(23) h ∈ (hs
5, h

c
6), there exist 8 families of periodic orbits: {Γh

5i}, i = 1, 2, 3, 4
and {Γh

6i}, i = 1, 2, 3, 4.

(24) h ∈ (hc
6, h

c
5), there exist 4 families of periodic orbits {Γh

5i}, i = 1, 2, 3, 4.

Notice that as h increases the periodic orbits Γh
0 , Γh

1i, Γh
(1−2), Γh

2 , Γh
3 expand

outwards, all other periodic orbits contract inwards.

8.2 The Method of Detection Functions: Rough

Perturbations of Zq-Equivariant Hamiltonian Vector Fields

Consider the following perturbed planar Hamiltonian system

dx

dt
=

∂H

∂y
− εx

[
p(x, y) − λ

]
,

dy

dt
= −∂H

∂x
− εy

[
p(x, y) − λ

]
, (8.2.1)

where H(x, y) is the Hamiltonian, p(0, 0) = 0, 0 < ε � 1, λ ∈ R. Because the
perturbations in the right hand of (8.2.1) always have two linear terms λx and λy,
so that it is called rough perturbations.

Suppose that the origin in the phase plane is a singular point of (8.2.1) and the
following conditions hold:

(A1) The unperturbed system (8.2.1)ε=0 is a Zq-equivariant Hamiltonian vector
field. For h ∈ (h1, h2) one branch family of the curves {Γh} defined by the Hamil-
tonian function H(x, y) = h lies in a period annulus enclosing at least one singular
point. As h increases, Γh expands outwards. When h → h1, Γh approaches a singu-
lar point or an inner boundary of the period annulus consisting of a heteroclinic (or
homoclinic) loop.

(A2) Surrounding the period annulus, there exists a heteroclinic (or homoclinic)
loop Γh2 at h = h2 connecting some hyperbolic saddle points (αi, βi), 1 � i � q.

(A3) The divergence 2ε[λ − F (x, y)] ≡ 2ε

[
λ − x

2
∂p

∂x
− y

2
∂p

∂y
− p(x, y)

]
of the

perturbed vector field is a Zq-invariant function.
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We define the function

λ = λ(h) =

∫∫

Dh

F (x, y)dxdy
∫∫

Dh

dxdy

=
ψ(h)
φ(h)

, (8.2.2)

which is called a detection function corresponding to the periodic family {Γh}. The
graph of λ = λ(h) in the plane (h, λ) is called a detection curve, where Dh is the
area inside Γh.

Clearly, if H(x, y) = h is a polynomial, then λ(h) is a ratio between two Abelian
integrals. In this case, λ(h) is a differentiable function with respect to h. Of course,
when the degree of H(x, y) is more than 4, classical mathematical analysis can-
not provide the calculating method for λ(h) in general. We must use a numerical
technique to compute these Abelian integrals. Our following approach is computa-
tional. It is satisfying that for finding much more limit cycles and their complicated
patterns.

On the basis of the Poincaré-Pontrjagin-Andronov theorem on the global center
bifurcation and Melnikov method (see [Melnikov, 1963]), we have the following two
conclusions (as in [Li Jibin etc, 1985, 1992]):

Theorem 8.2.1 (Bifurcation of limit cycles). Suppose that the conditions
(A1) and (A3) hold. For a given λ = λ0, considering the set S of the intersection
points of the straight line λ = λ0 and the curve λ = λ(h) in the (h, λ)-plane, we have

(1) If S consists of exactly one point (h0, λ0) and λ�(h) > 0(< 0), then there
exists a stable(unstable) limit cycle of (8.2.1) near Γh0 ;

(2) If S consists of two points (h0, λ0) and (h̃0, λ0) having h̃0 > h0 and λ�(h̃0) >

0, λ�(h0) < 0, then there exist two limit cycles near Γh̃0 and Γh0 respectively, the
former is stable and the latter is unstable;

(3) If S contains a point (h0, λ0) and λ�(h0) = λ��(h0) = · · · = λ(k−1)(h0) = 0,

but λ(k)(h0) �= 0, then (8.2.1) has at most k limit cycles near Γh0 ;
(4) If S is empty, then (8.2.1) has no limit cycle.

Theorem 8.2.2 (Bifurcation parameter created by a heteroclinic or
homoclinic loop). Suppose that the conditions (A1), (A2) and (A3) hold. Then
for 0 < ε � 1, when λ = λ(h2) + O(ε), system (8.2.1) has a heteroclinic (or
homoclinic) loop having Zq-equivariance.

The following two propositions describe the properties of the detection function
at the boundary values of h.

Proposition 8.2.1 (The parameter value of Hopf bifurcation). Suppose
that as h → h1, the periodic orbit Γh of (8.2.1) approaches a singular point (ξ, η),
then at this point the Hopf bifurcation parameter value is given by



244 Chapter 8 Local and Non-Local Bifurcations of Perturbed Zq-Equivariant· · ·

bH = λ(h1) + O(ε) = lim
h→h1

λ(h) + O(ε) = F (ξ, η) + O(ε). (8.2.3)

Proposition 8.2.2 (Bifurcation direction of heteroclinic or homoclinic
loop). Suppose that as h → h2, the periodic orbit Γh of (8.2.1) approaches a het-
eroclinic (or homoclinic) loop connecting a hyperbolic saddle point (α, β), where the
saddle point value satisfies

SQ(α, β) = 2εσ(α, β) ≡ 2ε
[
λ(h2) − F (α, β)

]
> 0 (< 0),

then we have

λ�(h2) = lim
h→h2

λ�(h) = −∞ (+∞). (8.2.4)

Remark 8.2.1. (1) If Γh contracts inwards as h increases, then the stability of
limit cycles mentioned in Theorem 8.2.1 and the sign of λ�(h2) in (8.2.4) have the
opposite conclusion.

(2) If the curve Γh defined by H(x, y) = h (h ∈ (h1, h2)) consists of m com-
ponents of oval families having Zq-equivariance, then Theorem 8.2.1 gives rise to
simultaneous global bifurcations of limit cycles from all these m oval families.

(3) If (8.2.1)ε=0 has several different period annuluses filled by periodic orbit
families {Γh

i }, then by calculating detection functions for every oval families, the
global information of bifurcations of system (8.2.1) can be obtained.

We notice that the hypothesis (A3) is very important symmetry condition to
guarantee simultaneous global bifurcations of limit cycles from all symmetric ovals
of unperturbed systems. There were some errors which appeared in some literatures
(the authors used asymmetric perturbations to give symmetric bifurcations of limit
cycles). Work in this area requires a great deal of care.

8.3 Bifurcations of Limit Cycles of a Z2-Equivariant

Perturbed Hamiltonian Vector Fields

In this section, we use the method of detection functions to study the following
Z2-equivariant perturbed polynomial Hamiltonian vector field of degree 7:

dx

dt
=−y(−1 + ay2 − ay4 + y6)

−εx(x6 + py6 + qx4y2 + mx2y4 + nx4 + ly4 + ex2y2 + gx2 + ky2 − λ),

dy

dt
= x(−1 + bx2 − bx4 + x6)

−εy(x6 + py6 + qx4y2 + mx2y4 + nx4 + ly4 + ex2y2 + gx2 + ky2 − λ).

(8.3.1)
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Our main result of this section is the following theorem.

Theorem 8.3.1. For all small ε > 0, there is a parameter group G = (a, b) =
(3.2, 3.48), PG = (p, q, m, n, l, e, g, k) and λ = λ̃ ∈ (λ44(hs

4), max(λ56(h)) =
(3.931785676, 3.931785952), where

p = −0.680337, q = 0.728, m = −0.01983226, n = −5.5693079,

l = 2.971005, e = −2.3624684728, g = 10.3882075, k = −3.067249,

such that system (8.3.1) has at least 50 limit cycles with the configuration as Fig.8.3.1.
It implies that H(7) � 50.

Fig.8.3.1 The configuration of 50 limit cycles of (8.3.1)

Corresponding to (8.3.1), the function F(x,y) defined in Section 8.2, (A3) for the
divergence of the perturbed vector field has the form

F (x, y) = 4x6 + 4py6 + 4qx4y2 + 4mx2y4 + 3nx4 + 3ly4 + 3ex2y2 + 2gx2 + 2ky2.

(8.3.2)

We consider the case G = (a, b) = (3.2, 3.48).
We compute 16 detection functions defined by (8.2.2) which correspond to the

above 16 types of period annuluses laid by
{
Γh

i

}
, i = 0 ∼ 8 and {Γh

(i−j)}, i, j =
1 ∼ 8.

λi(h)=

∫∫

Dh
i

F (x, y)dxdy

∫∫

Dh
i

dxdy

=
ψi

φi

=
1
φi

[4Ii1(h) + 4pIi2(h) + 4qIi3(h) + 4mIi4(h) + 3nIi5(h)

+3lIi6(h) + 3eIi7(h) + 2gIi8(h) + 2kIi9(h)]
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=4Ji1(h) + 4pJi2(h) + 4qJi3(h) + 4mJi4(h) + 3nJi5(h)

+3lJi6(h) + 3eJi7(h) + 2gJi8(h) + 2kJi9(h), (8.3.3)

where i = 0, · · · , 15, Jij =
Iij

φi(h)
, j = 1 ∼ 9 and Dh

i is the area inside Γh
i , i = 0 ∼ 8

and {Γh
(i−j)}, i, j = 1 ∼ 8.

Ii1(h) =
∫∫

Dh
i

x6dxdy, Ii2(h) =
∫∫

Dh
i

y6dxdy, Ii3(h) =
∫∫

Dh
i

x4y2dxdy,

Ii4(h) =
∫∫

Dh
i

x2y4dxdy, Ii5(h) =
∫∫

Dh
i

x4dxdy, Ii6(h) =
∫∫

y4dxdy,

Ii7(h) =
∫∫

Dh
i

x2y2dxdy, Ii8(h) =
∫∫

Dh
i

x2dxdy, Ii9(h) =
∫∫

Dh
i

y2dxdy.

For the given parameter group G, the functions Jij(h) can be numerically calculated
to a given degree of accuracy (in this section, up to 8 digits accuracy after the decimal
point).

By using the theory given in Section 8.2, we immediately obtain the following
values of bifurcation parameters and bifurcation direction detection.

8.3.1 Hopf Bifurcation Parameter Values

(1) Bifurcation from the origin (0,0):

bH
0 = F (0, 0) + O(ε) = λ0(hc

0) + O(ε) = 0 + O(ε);

(2) Simultaneous bifurcations from the center (1,0) and its Z2-equivariant sym-
metry point:

bH
1 = F (1, 0) + O(ε) = λ1(hc

1) + O(ε) = 4 + 3n + 2g + O(ε);

(3) Simultaneous bifurcations from the center (0,1) and its Z2-equivariant sym-
metry point:

bH
2 = F (0, 1) + O(ε) = λ2(hc

2) + O(ε) = 4p + 3l + 2k + O(ε);

(4) Simultaneous bifurcations from the center (1,1) and its Z2-equivariant sym-
metry points:

bH
3 =F (1, 1) + O(ε) = λ3(hc

3) + O(ε)

=4 + 4p + 4q + 4m + 3n + 3l + 3e + 2g + 2k + O(ε);
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(5) Simultaneous bifurcations from the center (x1, y1)and its Z2-equivariant sym-
metry points:

bH
4 =F (ξ2, η2) + O(ε) = λ7(hc

4) + O(ε)

=0.5206413704+ 1.057163732p+ 0.659285010q + 0.8348486100m

+ 0.7705018932n+ 1.235500041l + 0.9756818745e

+ 1.013575778g + 1.283484861k + O(ε);

(6) Simultaneous bifurcations from the center (x3, y3)and its Z2-equivariant sym-
metry points:

bH
5 =F (x3, y3) + O(ε) = λ5(hc

5) + O(ε)

=30.73132664 + 15.13483632p+ 24.26871502q + 19.16515143m

+ 11.68069811n + 7.284499974l + 9.224318133e

+ 3.946424222g + 3.116515142k + O(ε);

(7) Simultaneous bifurcations from the center (x3, y1) and its Z2-equivariant
symmetry points:

bH
6 =F (x3, y1) + O(ε) = λ6(hc

6) + O(ε)

=30.73132664 + 1.057163732p+ 9.994666124q + 3.250538192m

+ 11.68069811n + 1.235500041l + 3.798881808e+ 3.946424222g

+ 1.283484861k + O(ε);

(8) Simultaneous bifurcations from the center(x1, y3) and its Z2-equivariant sym-
metry points:

bH
7 =F (x1, y3) + O(ε) = λ5(hc

7) + O(ε)

=0.5206413704+ 15.13483632p + 1.600853878q + 4.922261820m

+ 0.7705018932n+ 7.284499974l + 2.369118194e

+ 1.013575778g + 3.116515142k + O(ε).

8.3.2 Bifurcations from Heteroclinic or Homoclinic Loops

(1) The heteroclinic bifurcation value from Γhs
1

0i :

λ0(hs
1) =4

[
J01(hs

1) + pJ02(hs
1) + qJ03(hs

1) + mJ04(hs
1)

]

+ 3
[
nJ05(hs

1) + lJ06(hs
1) + eJ07(hs

1)
]

+ 2
[
gJ08(hs

1) + kJ09(hs
1)

]

=0.01847349678+ 0.008628383552p+ 0.001096236119q

+ 0.0009416294268m+ 0.05147676987n+ 0.3177776748l

+ 2.849669323e + 0.1708886847g + 0.1357139172k;
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(2) The homoclinic bifurcation value from Γhs
1

1i :

λ1(hs
1) =4

[
J11(hs

1) + pJ12(hs
1) + qJ13(hs

1) + mJ14(hs
1)

]

+ 3
[
nJ15(hs

1) + lJ16(hs
1) + eJ17(hs

1)
]

+ 2
[
gJ18(hs

1) + kJ19(hs
1)

]

=3.611784974 + 0.000004518102844p+ 0.0222157829q

+ 0.0002817271755m+ 2.701412176n+ 0.0002165886604l

+ 0.01691288606e+ 1.860157372g + 0.01170095915k;

(3) The homoclinic loop bifurcation value from Γhs
1

(1−2)i :

λ12(hs
1) =4

[
J12a1(h

s
1) + pJ12a2(h

s
1) + qJ12a3(h

s
1) + mJ12a4(h

s
1)

]

+ 3
[
nJ12a5(h

s
1) + lJ12a6(h

s
1) + eJ12a7(h

s
1)

]
+ 2

[
gJ12a8(h

s
1) + kJ12a9(h

s
1)

]

=0.619127664 + 0.007186827272p+ 0.004626557344q

+ 0.0008313208604m+ 0.4944371853n+ 0.02650203403l

+ 0.00914146392e+ 0.4532650618g + 0.1149840416k;

(4) The homoclinic loop bifurcation value from Γhs
2

(1−2)i:

λ12(hs
2) =4

[
J12b1(h

s
2) + pJ12b2(h

s
2) + qJ12b3(h

s
2) + mJ12b4(h

s
2)

]

+ 3
[
nJ12b5(h

s
2) + lJ12b6(h

s
2) + eJ12b7(h

s
2)

]
+ 2

[
gJ12b8(h

s
2) + kJ12b9(h

s
2)

]

=1.634387781+ 0.0397726711p+ 0.02472219963q

+ 0.002861286998m+ 1.239285198n + 0.09018424998l

+ 0.03143078892e+ 1.035484067g + 0.2586575882k;

(5) The homoclinic bifurcation value from Γhs
2

2i :

λ2(hs
2) =4

[
J21(hs

2) + p(J22h
s
2) + qJ23(hs

2) + mJ24(hs
2)

]

+ 3
[
nJ25(hs

2) + lJ26(hs
2) + eJ27(hs

2)
]

+ 2
[
gJ28(hs

2) + kJ29(hs
2)

]

=0.00000005221480448+ 3.743975326p+ 0.0000146116802q

+ 0.005160125348m+ 0.00001111664026n+ 2.813468786l

+ 0.003907110966e+ 0.00266141767g + 1.916502045k;

(6) The homoclinic loop bifurcation value from Γhs
2

(2−8)i:

λ28(hs
2) =4

[
J28a1(h

s
2) + pJ28a2(h

s
2) + qJ28a3(h

s
2) + mJ28a4(h

s
2)

]

+ 3
[
nJ28a5(h

s
2) + lJ28a6(h

s
2) + eJ28a7(h

s
2)

]
+ 2

[
gJ28a8(h

s
2) + kJ28a9(h

s
2)

]
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=1.528568166+ 0.2796039501p+ 0.02312248899q

+ 0.003010126949m+ 1.159047502n + 0.2665052762l

+ 0.02964874849e+ 0.9686132178g + 0.3659959262k,

(7) The homoclinic loop bifurcation value from Γhs
8

(2−8)i:

λ28(hs
8) =4

[
J28b1(h

s
8) + pJ28b2(h

s
8) + qJ28b3(h

s
8) + mJ28b4(h

s
8)

]

+ 3
[
nJ28b5(h

s
8) + lJ28b6(h

s
8) + eJ28b7(h

s
8)

]
+ 2

[
gJ28b8(h

s
8) + kJ28b9(h

s
8)

]

=1.372838402+ 0.7130790244p+ 0.02496369812q

+ 0.005925672356m+ 0.9688062621n+ 0.5469176559l

+ 0.03004169472e+ 0.6924383026g + 0.5056410860k;

(8) The homoclinic bifurcation value from Γhs
8

8 :

λ8(hs
8) =4

[
J81(hs

8) + pJ82(hs
8) + qJ83(hs

8) + mJ84(hs
8)

]

+ 3
[
nJ85(hs

8) + lJ86(hs
8) + eJ87(hs

8)
]

+ 2
[
gJ88(hs

8) + kJ89(hs
8)

]

=8.450862632 + 5.105966132p+ 3.636837927q

+ 3.134050664m + 3.641439873n+ 3.336393348l

+ 1.823126874e + 1.657717122g + 1.384773977k;

(9) The heteroclinic loop bifurcation value from Γhs
8

(8−6)i:

λ86(hs
8) =4

[
J86a1(h

s
8) + pJ86a2(h

s
8) + qJ86a3(h

s
8) + mJ86a4(h

s
8)

]

+ 3
[
nJ86a5(h

s
8) + lJ86a6(h

s
8) + eJ86a7(h

s
8)

]
+ 2

[
gJ86a8(h

s
8) + kJ86a9(h

s
8)

]

=9.754388324 + 5.914983032p + 4.30201944q

+ 3.710142403m+ 4.133645955n + 3.850117674l

+ 2.153350750e+ 1.835487881g + 1.546679654k;

(10) The homoclinic bifurcation value from Γhs
6

6 :

λ6(hs
6) =4

[
J61(hs

6) + pJ62(hs
6) + qJ63(hs

6) + mJ64(hs
6)

]

+ 3
[
nJ65(hs

6) + lJ66(hs
6) + eJ67(hs

6)
]

+ 2
[
gJ68(hs

6) + kJ69(hs
6)

]

=7.155564872 + 6.199982264p+ 3.530078178q

+ 3.339413539m + 3.343305972n+ 3.066794199l

+ 1.962417754e + 1.646792689g + 1.590722154k;
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(11) The homoclinic loop bifurcation value from Γhs
3

(6−3)i:

λ63(hs
3) =4

[
J361(hs

3) + pJ362(hs
3) + qJ363(hs

3) + mJ364(hs
3)

]

+ 3
[
nJ365(hs

3) + lJ366(hs
3) + eJ367(hs

3)
]

+ 2
[
gJ368(hs

3) + kJ369(hs
3)

]

=11.76423828+ 4.48408094p + 5.12115052q

+ 3.79492621m + 5.254572348n + 2.572807483l

+ 2.640530609e + 2.37684288g + 1.566411436k;

(12) The homoclinic bifurcation value from Γhs
3

3i :

λ3(hs
3) =4

[
J31(hs

3) + pJ32(hs
3) + qJ33(hs

3) + mJ34(hs
3)

]

+ 3
[
nJ35(hs

3) + lJ36(hs
3) + eJ37(hs

3)
]

+ 2
[
gJ38(hs

3) + kJ39(hs
3)

]

=3.962380738 + 3.746263574p+ 3.787478389q

+ 3.718889686m + 2.9641166n + 2.815010396l

+ 2.849669323e + 1.982244017g + 1.917167834k;

(13) The homoclinic loop bifurcation value from Γhs
3

(3−7)i:

λ37(hs
3) =4

[
J371(hs

3) + pJ372(hs
3) + qJ373(hs

3) + mJ374(hs
3)

]

+ 3
[
nJ375(hs

3) + lJ376(hs
3) + eJ377(hs

3)
]

+ 2
[
gJ378(hs

3) + kJ379(hs
3)

]

=12.11002223+ 4.516781536p + 5.180259832q

+ 3.798296204m + 5.356087002n+ 2.562072875l

+ 2.63126143e + 2.394331786g + 1.550865659k;

(14) The homoclinic bifurcation value from Γhs
7

7i :

λ7(hs
7) =4

[
J71(hs

7) + pJ72(hs
7) + qJ73(hs

7) + mJ74(hs
7)

]

+ 3
[
nJ75(hs

7) + lJ76(hs
7) + eJ77(hs

7)
]

+ 2
[
gJ78(hs

7) + kJ79(hs
7)

]

=13.11694704 + 7.1741212p + 8.364053504q

+ 6.711148228m + 5.590494093n+ 3.812008314l

+ 3.908296332e + 2.405761824g + 2.02425938k;

(15) The homoclinic loop bifurcation value from Γhs
7

(7−4)i:

λ741(hs
7) =4

[
J741(hs

7) + pJ742(hs
7) + qJ743(hs

7) + mJ744(hs
7)

]

+ 3
[
nJ745(hs

7) + lJ746(hs
7) + eJ747(hs

7)
]

+ 2
[
gJ748(hs

7) + kJ749(hs
7)

]
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=0.7858417652+ 8.108441212p + 1.50483635q

+ 3.278742351m+ 0.9616798872n+ 4.417631181l

+ 1.916102631e+ 1.102333304g + 2.313089952k;

(16) The homoclinic loop bifurcation value from Γhs
7

(7−5)i:

λ751(hs
7) =4

[
J751(hs

7) + pJ752(hs
7) + qJ753(hs

7) + mJ754(hs
7)

]

+ 3
[
nJ755(hs

7) + lJ756(hs
7) + eJ757(hs

7)
]

+ 2
[
gJ758(hs

7) + kJ759(hs
7)

]

=18.40792832 + 6.773226916p+ 11.30717893q

+ 8.183911196m+ 7.576607154n + 3.552150081l

+ 4.763098827e+ 2.965031712g + 1.900329115k;

(17) The homoclinic loop bifurcation value from Γhs
4

(4−7)i :

λ47(hs
4) = 4

[
J471(hs

4) + pJ472(hs
4) + qJ473(hs

4) + mJ474(hs
4)

]

+ 3
[
nJ475(hs

4) + lJ476(hs
4) + eJ477(hs

4)
]

+ 2
[
gJ478(hs

4) + kJ479(hs
4)

]

=0.7043393632+ 12.87612256p + 1.754596815q

+ 4.609943068m+ 0.8994385899n+ 6.448646343l

+ 2.337070265e+ 1.068560984g + 2.910511176k;

(18) The homoclinic bifurcation value from Γhs
4

(4−4)i:

λ44(hs
4) =4

[
J441(hs

4) + pJ442(hs
4) + qJ443(hs

4) + mJ444(hs
4)

]

+ 3
[
nJ445(hs

4) + lJ446(hs
4) + eJ447(hs

4)
]

+ 2
[
gJ448(hs

4) + kJ449(hs
4)

]

=0.56571565 + 1.42863293p + 0.7373783236q

+ 1.004593847m + 0.8028564387n+ 1.468520833l

+ 1.062299310e + 1.027178501g + 1.379538797k;

(19) The heteroclinic bifurcation value from Γhs
4

4i :

λ4(hs
4) =4

[
J41(hs

4) + pJ42(hs
4) + qJ43(hs

4) + mJ44(hs
4)

]

+ 3
[
nJ45(hs

4) + lJ46(hs
4) + eJ47(hs

4)
]

+ 2
[
gJ48(hs

4) + kJ49(hs
4)

]

=0.6570780724+ 8.97330446p + 1.407794252q

+ 3.38076334m + 0.866510622n + 4.750761078l

+ 1.902459768e + 1.054452362g + 2.388553358k;
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(20) The heteroclinic bifurcation value from Γhs
5

(5−5)i:

λ55(hs
5) =4

[
J551(hs

5) + pJ552(hs
5) + qJ553(hs

5) + mJ554(hs
5)

]

+ 3
[
nJ555(hs

5) + lJ556(hs
5) + eJ557(hs

5)
]

+ 2
[
gJ558(hs

5) + kJ559(hs
5)

]

=30.32576921+ 12.81935486p + 22.3809865q

+ 16.80312911m + 11.55980965n+ 6.427436025l

+ 8.545855461e + 3.922899756g + 2.90521144k;

(21) The heteroclinic bifurcation value from Γhs
5

(5−6)i :

λ56(hs
5) =4

[
J561(hs

5) + pJ562(hs
5) + qJ563(hs

5) + mJ564(hs
5)

]

+ 3
[
nJ565(hs

5) + lJ566(hs
5) + eJ567(hs

5)
]

+ 2
[
gJ568(hs

5) + kJ569(hs
5)

]

=30.6043408 + 1.430604303p+ 10.71292984q

+ 3.860168266m + 11.6428985n + 1.469740995l

+ 4.077323181e + 3.939085054g + 1.380040031k;

(22) The heteroclinic bifurcation value from Γhs
5

5i :

λ5(hs
5) =4

[
J51(hs

5) + pJ52(hs
5) + qJ53(hs

5) + mJ54(hs
5)

]

+ 3
[
nJ55(hs

5) + lJ56(hs
5) + eJ57(hs

5)
]

+ 2
[
gJ58(hs

5) + kJ59(hs
5)

]

=30.42297952 + 8.845137676p+ 18.30930269q

+ 12.28655488m + 11.58880433n+ 4.697399295l

+ 6.986516913e + 3.928547774g + 2.372987788k.

8.3.3 The Values of Bifurcation Directions of Heteroclinic and Homo-
clinic Loops

(1) σ0 =λ0(hs
1) − F (x1, 0)

= − 0.5021678736+ 0.008628383552p+ 0.001096236119q

+ 0.0009416294268m− 0.7190251233n+ 0.03177776748l

+ 2.849669323e− 0.8426870933g + 0.1357139172k;

(2) σ1 =λ1(hs
1) − F (x1, 0)

=3.091143604 + 0.000004518102844p+ 0.0222157829q

+ 0.0002817271755m+ 1.930910283n + 0.0002165886604l

+ 0.01691288606e+ 0.846581594g + 0.01170095915k;



8.3 Bifurcations of Limit Cycles of a Z2-Equivariant· · · 253

(3) σ121 =λ1(hs
1) − F (x1, 0)

=0.00000005221480448+ 2.686811594p+ 0.0000146116802q

+ 0.005160125348m+ 0.00001111664026n+ 1.577968745l

+ 0.003907110966e+ 0.00266141767g + 0.633017184k;

(4) σ2 =λ2(hs
2) − F (0, y1)

=0.0984862936+ 0.007186827272p+ 0.004626557344q

+ 0.0008313208604m− 0.2760647079n+ 0.02650203403l

+ 0.00914146392e− 0.5603107162g + 0.1149840416k;

(5) σ122 =λ2(hs
2) − F (0, y1)

=0.00000005221480448+ 2.686811594p+ 0.0000146116802q

+ 0.005160125348m+ 0.00001111664026n+ 1.577968745l

+ 0.003907110966e+ 0.00266141767g + 0.633017184k;

(6) σ8 =λ8(hs
8) − F (0, y3)

=8.450862632− 10.02887019p+ 3.636837927q

+ 3.134050664m+ 3.641439873n− 3.948106626l

+ 1.823126874e+ 1.657717122g− 1.731741165k;

(7) σ281 =λ28(hs
2) − F (0, y1)

=1.528568166− 0.7775597819p+ 0.02312248899q

+ 0.003010126949m+ 1.159047502n− 0.9689947648l

+ 0.02964874849e+ 0.9686132178g− 0.9174889348k;

(8) σ282 =λ28(hs
8) − F (0, y3)

=1.372838402− 14.4217573p + 0.02496369812q

+ 0.005925672356m+ 0.9688062621n− 6.737582318l

+ 0.03004169472e+ 0.6924383026g− 2.610874056k;

(9) σ86 =λ8(hs
8) − F (0, y3)

=9.754388324− 9.219853288p+ 4.30201944q

+ 3.710142403m+ 4.133645955n− 3.434382300l

+ 2.15335075e+ 1.835487881g − 1.569835488k;

(10) σ6 =λ6(hs
6) − F (x3, 0)

= − 23.57576177+ 6.199982264p + 3.530078178q

+ 3.339413539m− 8.337392138n + 3.066794199l

+ 1.962417754e− 2.299631533g + 1.590722154k;
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(11) σ63 =λ63(hs
3) − F (1, y1)

= 7.76423828 + 3.426917208p+ 2.554180798q

+ 2.147592822m + 2.254572348n+ 1.337307442l

+ 0.715303318e + 0.37684288g + 0.282926575k;

(12) σ3 =λ3(hs
3) − F (1, y1)

= − 0.037619262 + 2.689099842p+ 1.220508667q

+ 2.071556298m− 0.0358834n + 1.579510355l

+ 0.924442032e− 0.017755983g + 0.633682973k;

(13) σ37 =λ37(hs
3) − F (1, y1)

=8.11002223 + 3.459617804p+ 2.61329011q

+ 2.150962816m + 2.356087002n+ 1.326572834l

+ 0.706034139e + 0.394331786g + 0.267380798k;

(14) σ7 =λ7(hs
7) − F (1, y3)

=9.11694704− 7.96071512p + 2.13102322q

− 3.001518404m + 2.590494093n− 3.47249166l

− 0.766476381e + 0.405761824g− 1.092255762k;

(15) σ741 =λ741(hs
7) − F (1, y3)

= − 3.214158235− 7.026395108p− 4.728193934q

− 6.433924281m− 2.038320113n− 2.866868793l

− 2.758670082e− 0.897666696g− 0.80342519k;

(16) σ751 =λ751(hs
7) − F (1, y3)

=14.40792832− 8.361609404p+ 5.074148646q

− 1.528755436m + 4.576607154n− 3.732349893l

+ 0.088326114e + 0.965031712g− 1.216186027k;

(17) σ47 =λ47(hs
4) − F (x1, 1)

=0.1836979928+ 8.87612256p + 0.727260957q

+ 2.582791512m + 0.1289366967n+ 3.448646343l

+ 0.816706598e + 0.054985206g + 0.910511176k;

(18) σ44 =λ44(hs
4) − F (x1, 1)

=0.0450742796+ 10.52043547p− 0.2899575344q

− 1.022557709m + 0.0323545455n− 1.531479167l

− 0.458064357e + 0.013602723g− 0.620461203k;
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(19) σ4 =λ4(hs
4) − F (x1, 1)

=0.136436702 + 9.43672181p + 0.380458394q

+ 1.353611784m+ 0.0960087288n+ 1.750761078l

+ 0.382096101e+ 0.040876584g + 0.388553358k;

(20) σ55 =λ55(hs
5) − F (x3, 1)

= − 0.40555743 + 8.81935486p + 6.80672236q

+ 8.910280666m− 0.12088846n + 3.427436025l

+ 2.626219128e− 0.023524466g + 0.90521144k;

(21) σ56 =λ56(hs
5) − F (x3, 1)

= − 0.12698584− 2.569395697p− 4.8613343q

− 4.032680178m− 0.03779961n− 1.530259005l

− 1.842313152e− 0.007339168g− 0.619959969k;

(22) σ5 =λ5(hs
5) − F (x3, 1)

= − 0.30834712 + 4.845137676p+ 2.73503855q

+ 4.393706436m− 0.09189378n + 1.697399295l

+ 1.06688058e− 0.017876448g + 0.372987788k

8.3.4 Analysis and Conclusions

We notice that the above bifurcation parameter values λi(hc
j), λl(hs

k) and the values
of bifurcation directions of heteroclinic and homoclinic loops σi are 52 linear com-
binations of the perturbed parameter group GP = (p, q, m, n, l, e, g, k) in which all
coefficients are determined by the unperturbed parameter group G = (a, b).

Our main idea is to control the perturbed parameter group GP such that system
(8.3.1) has more limit cycles and interesting configurations of limit cycles. We now
assume that the following 9 conditions hold.

(A1) λ3(hs
3) − λ4(hs

4) − 0.000004 = 0, i.e.

3.305294126− 9.690458236p+ 2.379684137q

+0.338126346m + 2.097605978n− 1.935750682l

+0.947209555e+ 0.927791655g − 0.471385524k = 0;

(A2) λ47(hs
4) − λ44(hs

4) = 0, i.e.

− 0.1386317132− 11.44748963p− 1.017218491q

− 3.605349221m− 0.0965821512n− 4.980125510l

− 1.274770955e− 0.041382483g− 1.530972379k = 0;
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(A3) λ5(hs
5) − λ55(hs

5) = 0, i.e.

− 0.09721031 + 3.974217184p+ 4.07168381q

+ 4.51657423m− 0.02899468n + 1.730036730l

+ 1.559338548e− 0.005648018g + 0.532223652k = 0;

(A4) λ7(hs
7) − 0.0000074806− λ4(hs

4) = 0, i.e.

12.45986133− 6.262600610p+ 6.956259252q

+3.330384888m + 4.723983471n− 0.938752764l

+2.005836564e+ 1.351309462g − 0.364293978k = 0;

(A5) λ44(hs
4) − λ55(hs

5) = 0, i.e.

− 29.76005356+ 1.70108061p− 21.64360818q

− 15.79853526m− 10.75695321n− 4.958915192l

− 7.483556151e− 2.895721255g− 1.525672643k = 0;

(A6) σ4 > 0, i.e.

0.1364367020+ 9.43672181p + 0.380458394q

+1.353611784m + 0.0960087288n+ 1.750761078l

+0.382096101e+ 0.040876584g + 0.388553358k > 0;

(A7) σ5 > 0, i.e.

− 0.30834712 + 4.845137676p+ 2.73503855q

+ 4.393706436m− 0.09189378n + 1.697399295l

+ 1.066880580e− 0.017876448g + 0.372987788k > 0;

(A8) λ44(hs
4) − λ4(hc

4) > 0, i.e.

9.11694704− 7.960715120p + 2.131023220q

−3.001518404m + 2.590494093n− 3.472491660l

−0.766476381e+ 0.405761824g − 1.092255762k > 0;

(A9) σ282 > 0, i.e.

0.0450742796 + 13.46327174p+ 0.0780933136q

+0.1697452370m+ 0.0323545455n+ 0.233020792l

+0.0866174355e+ 0.013602723g + 0.096053936k > 0.
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This condition group implies that

n = −4.959044757− 218.7859884q− 189.4342184m− 65.57083389e,

g = 8.145249994+ 811.1774884q + 704.3383284m+ 243.1040413e,

p = 2.735300854+ 2189.269964q + 1906.335655m + 660.0711271e,

l = −10.43117841− 8516.324523q− 7416.925354m− 2567.734602e,

k = 13.48130813 + 11324.34856q + 9863.015869m + 3413.831129e,

3410.376340q + 2967.465567m+ 1027.306312e < −2.156351598,

− 390.5034948q− 339.7885394m− 117.7244154e < 0.5724654325,

79.45248062q + 69.14974198m+ 23.95556181e < −0.1242491626,

− 3.493693868 < e < −2.341298974,

− 0.04501413607 < m < 0.2064423284,

0.7251234415 < q < 1.075899527.

Let
m = −0.01983226, q = 0.728, e = −2.3624684728.

Then, we have

n = −5.5693079, g = 10.3882075, l = 2.971005,

p = −0.680337, k = −3.067249.

Write GP = (p, q, m, n, l, e, g, k), where

p = −0.680337, q = 0.728, m = −0.01983226, n = −5.5693079,

l = 2.971005, e = −2.3624684728, g = 10.3882075, k = −3.067249.

Under this parameter group we obtain the following results.

λ1(hc
1) = 8.0684913, λ2(hc

2) = 0.057169, λ3(hc
3) = 3.87092584,

λ4(hc
4) = 3.931781015, λ5(hc

5) = 3.955940327, λ6(hc
6) = 3.925790544,

λ7(hc
7) = 4.015918357, λ0(hs

1) = −5.552190597, λ1(hs
1) = 7.831451565,

λ12(hs
1) = 2.276985007, λ12(hs

2) = 4.880448863, λ2(hs
2) = −0.048460718,

λ28(hs
2) = 4.561323043, λ28(hs

8) = 2.706368228, λ86(hs
8) = 6.441822038,

λ8(hs
8) = 5.860872204, λ6(hs

6) = 3.524650018, λ63(hs
3) = 4.394373129,

λ3(hs
3) = 3.931798368, λ37(hs

3) = 4.414874768, λ7(hs
7) = 3.931792091,

λ741(hs
7) = 3.898490328, λ751(hs

7) = 3.946081102, λ47(hs
4) = 3.931783666,

λ44(hs
4) = 3.931785676, λ4(hs

4) = 3.931784361, λ55(hs
5) = 3.931782966,

λ56(hs
5) = 3.931785105, λ5(hs

5) = 3.931783670,

max(λ44(h)) = 3.948799772, max(λ56(h)) = 3.931785952,
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and

σ0 < 0, σ1 > 0, σ2 > 0, σ121 < 0, σ122 > 0, σ8 > 0, σ281 > 0, σ282 > 0,

σ86 > 0, σ8 > 0, σ6 < 0, σ63 > 0, σ3 < 0, σ37 > 0, σ7 > 0, σ741 > 0,

σ751 > 0, σ44 > 0, σ47 > 0, σ4 > 0, σ55 > 0, σ56 > 0, σ5 > 0.

It follows that under the parameter conditions of G and PG, system (8.3.1) has
the graphs of detection curves shown in Fig.8.3.2.

Fig.8.3.2 Graphs of detection curves of (8.3.1) with parameters G and PG

We see from Fig.8.3.2 that when

λ̃ ∈ (
λ44(hs

4), max(λ56(h)
)

= (3.931785676, 3.931785952), (8.3.4)

in the straight line λ = λ̃ intersects the curves λ = λ37(h), λ = λ44(h), λ = λ6(h)
at two points, and also intersects the curves λ = λ3(h), λ = λ63(h), λ = λ86(h),
λ = λ28(h), λ = λ12(h), λ = λ7(h), λ = λ5(h) at one point, respectively.

Hence, by using the Z2-equivariance of (8.3.1) and the results in Section 8.2, we
obtain the conclusion of Theorem 8.3.1.

8.4 The Rate of Growth of Hilbert Number H(n) with n

While it has not been possible to obtain uniform upper bounds for H(n) in the
near future, there has been success in finding lower bounds (see Bibliographical
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notes below). In this section, we shall use idea stated in §8.4.1 and the method
posed by [Christopher and Lloyd, 1995] to investigate some perturbed Z2-(or Z4-)
equivariant planar Hamiltonian vector field sequences of degree n(n = 2k − 1 and
n = 3 × 2k−1 − 1 ). We obtain some new lower bounds for H(n) in Hilbert’s 16th
problem and configurations of compound eyes of limit cycles. In addition, we give
some correct rates of growth of Hilbert number H(n) with n are obtained.

8.4.1 Preliminary Lemmas

We consider the following perturbed planar polynomial Hamiltonian system

dx

dt
= −∂H

∂y
+ εR1(x, y) = f1(x, y) + εR1(x, y),

dy

dt
=

∂H

∂x
+ εR2(x, y) = f2(x, y) + εR2(x, y), (8.4.1)

where H(x, y) is the Hamiltonian, 0 < ε � 1.

The following lemma is given by [Christopher and Lloyd, 1995].

Lemma 8.4.1. (1) Suppose that R2(x, y) = 0, p = (xc, yc) is a non-degenerate
center of the unperturbed Hamiltonian system of (8.4.1) and let U be a neighborhood
of p. For n ∈ Z, there is ε0 and a polynomial R1(x, y) of degree 2n + 1 such that
the perturbed system (8.4.1) has at least n limit cycles in U for 0 < ε < ε0. Without
loss of generality, suppose that p = (0, yc) is on the y-axis. Then, the perturbation
term R1(x, y) can have the form

R(x) =
n∑

k=0

(−1)kηkx2(n−k)+1, (8.4.2)

where η0 = 1 and ηk � ηk−1 (k = 1, · · · , n).
(2) Suppose that (8.4.1) has N collinear non-degenerate centers and R2(x, y) = 0.

Then the ηk of (8.4.2) can be so chosen that n limit cycles appear around each of
the centers simultaneously.

Suppose the following conditions hold:
(A1) The unperturbed system (8.4.1)ε=0 defines a Zq-equivariant Hamiltonian

vector field (q � 2) for which all centers are non-degenerate and all saddle points
are hyperbolic.

(A2) When h ∈ (−∞, h1)(or h ∈ (h1,∞)), one branch family of the curves {Γh}
defined by the Hamiltonian function H(x, y) = h lies in a global period annulus
enclosing all finite singular points of (8.4.1)ε=0. As h → h1, Γh approaches an inner
boundary of the period annulus consisting of a heteroclinic (or homoclinic) loop.

We know from [Li Jibin and Li Cunfu, 1995] that the condition (A2) holds if
and only if the Hamiltonian H(x, y) of (8.4.1)ε=0 is positive (or negative) definite at
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infinity. Let d0 be the maximal diameter of the area inside the inner boundary and
A > d0. For the “quadruple transformation” defined by [Christopher and Lloyd,
1995] (p222), we have the following generalized result.

Lemma 8.4.2. Suppose that (A1) and (A2) hold. Then the map

(x, y) → (X2 − A, Y 2 − A) (8.4.3)

transforms (8.4.1) into a new system which has the same orbits as

dX

dt
= −∂Hd

∂Y
+ εY R1(X2 − A, Y 2 − A),

dY

dt
=

∂Hd

∂X
+ εXR2(X2 − A, Y 2 − A), (8.4.4)

where Hd(X, Y ) = H(X2 − A, Y 2 − A) is the new Hamiltonian of the unperturbed
system (8.4.4)ε=0. Furthermore, we have

(1) For the unperturbed system (8.4.4)ε=0, it has four times as many period
annuluses as (8.4.1)ε=0 which lie in each quadrant and do not intersect the X-
axis and Y -axis. At all image points except the origin of the singular points of
(8.4.1)ε=0, their Hamiltonian values are preserved. There exist new singular points
(Xi, 0) and (0, Yj) on the axes where Xi and Yj satisfy f1(X2

i − A,−A) = 0 and
f2(−A, Y 2

j − A) = 0, respectively. There is a global period annulus surrounding all
finite singular points of (8.4.4)ε=0.

(2) For the perturbed system (8.4.4), it has four copies of the existing limit cycles
of (8.4.1). These limit cycles do not intersect the X and Y axes, if the “shift
constant” A is moderately large.

As an example to understand Lemma 8.4.2, we consider a Z6-equivariant Hamil-
tonian system of degree 5:

dx

dt
=−y + 2δ(x2 + y2)y − α(x2 + y2)2y

+β[5(x2 + y2)2y − 20(x2 + y2)y3 + 16y5],
dy

dt
=x − 2δ(x2 + y2)x + α(x2 + y2)2x

+β[5(x2 + y2)2x − 20(x2 + y2)x3 + 16x5], (8.4.5)

or in the polar coordinate form

dr

dt
= βr5 sin 6θ,

dθ

dt
= 1 − 2δr2 + (α + β cos 6θ)r4,

which has the Hamiltonian

H(r, θ) = −1
2
r2 +

1
2
δr4 − 1

6
(α + β cos 6θ)r6.
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Suppose that α > β > 0, α + β > 1 and δ =
1
2
(α + β + 1). We see that the system

(8.4.5) has 25 finite singular points at (0, 0) and (z1, 0), (z2, 0),
(

z3,
1
6
π

)
,

(
z4,

1
6
π

)

and their Z6-equivariant symmetric points.
Let G = (α, β, δ) = (1.4, 0.25, 1.325). We have z1 = 0.7784989442, z2 = 1, z3 =

0.6895372608, z4 = 1.352363188 and

h1 = H(z1, 0) = −0.12090603,

h2 = H(z2, 0) = −0.1125,

h3 = H

(
z3,

1
6
π

)
= −0.1085647965,

h4 = H

(
z4,

1
6
π

)
= 0.1290200579.

In this case, the phase portrait of (8.4.5) is shown in figure (1) of Fig.8.4.1 (only
homoclinic and heteroclinic orbits are drawn in all phase portraits of this paper).
Under the map (x, y) → (x2−3, y2−3), the new system of degree 11 is Z2-equivariant.
It has 109 finite simple singular points and the phase portrait shown in figure (2) of
Fig.8.4.1.

(1) Phase portrait of a fifth system (2) Four copies of (1)

Fig.8.4.1 Four copies of a Z6-equivariant Hamiltonian system

We also need to use the following obvious conclusion.

Lemma 8.4.3. Suppose that the Hamiltonian function H(x, y) of (8.4.1)ε=0

is Zq-invariant, then the Hamiltonian function Hd(X, Y ) = H(X2 − A, Y 2 − A)
of (8.4.4)ε=0 is Z2-invariant. In other words, the orbits of (8.4.4)ε=0 have Z2-
equivariant symmetry. Thus, if Γh

i is a closed orbit around a center Ci of (8.4.4)ε=0
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on an axis for any h ∈ (hc, hs), then

I(h)=
∮

Γh
i

(Y R1(X2 − A, Y 2 − A)dY − XR2(X2 − A, Y 2 − A)dX)

=
∫∫

intΓh
i

2XY

[
∂R1(X2 − A, Y 2 − A)

∂(X2 − A)
+

∂R2(X2 − A, Y 2 − A)
∂(Y 2 − A)

]
dXdY

=0. (8.4.6)

This lemma implies that the perturbation terms of the right hand of (8.4.4) do
not create any limit cycle around the neighborhood of a center on an axis.

In the following subsections, we shall consider the following perturbed Hamilto-
nian system sequence:

dx

dt
= −∂Hk

∂y
+ εPk(x, y),

dy

dt
=

∂Hk

∂x
+ εQk(x, y), (PHk)

for k = 2, 3, · · · , where

Hk+1(x, y) = Hk(x2 − Ak−1, y2 − Ak−1),

Pk+1(x, y) = Pk(x2 − Ak−1, y2 − Ak−1),

Qk+1(x, y) = Qk(x2 − Ak−1, y2 − Ak−1).

8.4.2 A Correction to the Lower Bounds of H(2k − 1) Given in
[Christopher and Lloyd, 1995]

We first discuss the system given in [Christopher and Lloyd, 1995]. Suppose that
H2(x, y) = (x2 − 1)2 + (y2 − 1)2, i.e., we consider the cubic system

dx

dt
= −4y(y2 − 1) + ε

[
1
3
(x − y)3 − ε(x − y)

]
,

dy

dt
= 4x(x2 − 1). (8.4.7)

Let (8.4.7) be the system (PH2). Then (PH2)ε=0 is a Z4-equivariant system

which has the phase portrait shown in figure(1) of Fig.8.4.2. Since P2(x, y) =
1
3
(x−

y)3 − ε(x − y) and Q2(x, y) = 0. By using Lemma 8.4.1, it follows that there
exist at least 3 limit cycles around 3 centers (−1,−1), (0, 0) and (1, 1) of (8.4.7)ε=0,

respectively.
We now consider the map: (x, y) → (x2 − 1, y2 − 1). By Lemma 8.4.2, under

this map, the unperturbed system (PH3)ε=0 has the phase portrait shown in figure
(2) in Fig.8.4.2 . For the perturbed system (PH3), the perturbed terms become

P
(1)
3 (x, y) = yP2(x2 − 1, y2 − 1). As the first step, the map creates a new system
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having at least 12 = 4×3 limit cycles surrounding the image points of (−1,−1), (0, 0)
and (1, 1), respectively.

As the second step, by using Lemma 8.4.1, we take P
(2)
3 (x) = η0x

7 − η1x
5 +

η2x
3 − η3x. Thus, around 3 = 22 − 1 centers on the y-axis of (PH3)ε=0, at least

9 = 3 × 3 limit cycles are created.

(1) A cubic system (2) A system of degree 7

(3) A system of degree 15

Fig.8.4.2 Copies of a Z4-equivariant polynomial vector fields

Let P3(x, y) = P
(1)
3 (x, y) + P

(2)
3 (x), then the system (PH3) has at least S3 =

4 × 3 + 3 × 3 = 21 limit cycles.
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We next consider the map:(x, y) → (x2 − 2, y2 − 2). By Lemma 8.4.2, under this
map, the unperturbed system (PH4)ε=0 has the phase portrait shown in figure (3)
in Fig.8.4.2. The same two-step method as the above shows that the system (PH4)
has at least S4 = 4 × 21 + 7 × 7 = 133 limit cycles.

By using inductive method for the system (PHk), first, taking the map: (x, y) →
(x2−2k−2, y2−2k−2), we have the perturbed terms P

(1)
k+1(x, y) = yPk(x2−2k−2, y2−

2k−2). Second, by using Lemma 8.4.1 to perturb the 2k − 1 centers on the y-axis of
(PHk+1)ε=0, we obtain the perturbed terms P

(2)
k+1(x) as (8.4.2). It gives 2k − 1 limit

cycles. Hence, by using Pk+1(x, y) = P
(1)
k+1(x, y)+P

(2)
k+1(x, y) as the perturbation for

(PHk+1), we have
Sk+1 = 4 × Sk + (2k − 1)2.

Let Sk = 4kσk. Then

σk+1 =σk +
1
4
− 1

2k+1
+

1
4k+1

.

σk =σk−1 +
1
4
− 1

2k
+

1
4k

=σ2 +
1
4
(k − 2) −

(
1
23

+ · · · + 1
2k

)
+

(
1
43

+ · · · + 1
4k

)

=σ2 +
1
4
k − 35

48
+

1
2k

− 1
3 × 4k

. (8.4.8)

Note that σ2 =
3
16

. Thus,

Sk = 4k−1

(
k − 13

6

)
+ 2k − 1

3
. (8.4.9)

Remark 8.4.1. It was stated in Ref. [Christopher and Lloyd, 1995] (p223) that
“We take R(x, y) to be of the form yR1(x) + R2(y), · · · . We then construct R2(y),
· · · , to be a polynomial of degree 2k+1 − 1 so that 2k − 1 limit cycles appear near
each of the 2k − 1 centers on the x-axis.” The last conclusion is incorrect! Because
∂

∂x
R2(y) ≡ 0, under the perturbed terms given in [Christopher and Lloyd, 1995] (for

which R2(x, y) ≡ 0 in (8.4.1)), it has no contribution to the divergence of the vector
field. Therefore, the term R2(y) cannot create any limit cycle from the centers on
the x-axis.

Write that n = 2k − 1. Then k = log2(n + 1) =
ln(n + 1)

ln 2
. From (8.4.9), we

obtain

Proposition 8.4.1. By using the Z4-equivariant systems (PHk) to create limit
cycles, where Qk(x, y) = 0 and (PH2) is (8.4.7), we have

H(n) � 1
4
(n + 1)2

[
ln(n + 1)

ln 2
− 13

6

]
+ n +

2
3
. (8.4.10)
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This proposition is the correction of Theorem 3.4 of Ref. [Christopher and Lloyd,
1995].

8.4.3 A New Lower Bound for H(2k − 1)

In this subsection, we consider the perturbed Z2-equivariant vector field (see [Li
Jibin etc, 1987]):

dx

dt
= y(1 − y2) + εx(y2 − x2 − λ),

dy

dt
= −x(1 − 2x2) + εy(y2 − x2 − λ), (8.4.11)

where 0 < ε � 1. The system (8.4.11)ε=0 has Hamiltonian

H2(x, y) = −2x4 − y4 + 2(x2 + y2). (8.4.12)

There exist 9 finite singular points of (8.4.11)ε=0 which are the intersection points

of the straight lines x = 0, x = ± 1√
2

and y = 0, y = ±1. The phase portrait of

(8.4.11)ε=0 is shown in figure (2) of Fig.8.4.3.
Let (8.4.10) be the system (PH2) and suppose that −4.80305 + O(ε) < λ <

−4.79418 + O(ε). We know from [Li Jibin etc, 1987] that the system (PH2) has at
least 11 limit cycles having the configuration shown in figure (1) of Fig. 8.4.3. By
taking the map: (x, y) → (x2 − 3, y2 − 3), the new unperturbed system (PH3)ε=0

(1) 11 limit cycles (2) The system (8.4.11)ε=0
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(3) A system of degree 7

Fig.8.4.3 Four copies of system (8.4.11)

has 49 finite singular points which are intersection points of the straight lines x =

0, x = ±
√

3 ± 1√
2
, x = ±√

3 and y = 0, y = ±√
2, y = ±√

3, y = ±2. The phase

portrait of (PH3)ε=0 is shown in figure (3) of Fig. 8.4.3.
The first perturbed terms of (PH3) have the forms:

P
(1)
3 (x, y) = y(x2 − 3)

[
(y2 − 3)2 − (x2 − 3)2 − λ

]
,

Q
(1)
3 (x, y) = x(y2 − 3)

[
(y2 − 3)2 − (x2 − 3)2 − λ

]
.

These are polynomials of degree 7. Hence, firstly, we have from Lemma 8.4.2 that
there exist 4 × 11 = 44 limit cycles of (PH3) under the first perturbations P

(1)
3 and

Q
(1)
3 . By Lemma 8.4.3, the above perturbations do not create limit cycle around the

centers on the y-axis. Thus, secondly, we use Lemma 8.4.1 to add new perturbation
terms P

(2)
3 and Q

(2)
3 = 0 such that 3 × 3 limit cycles appear around the 3 = 22 − 1

centers of (PH3)ε=0 on the y-axis. To sum up, two sets of perturbations give rise to
S3 = 4 × 11 + 3 × 3 = 53 limit cycles of (PH3).

By using inductive method, similar to that in §8.4.2, from the “quadruple trans-
formation”

(x, y) → (x2 − 3k−1, y2 − 3k−1)

and the bifurcations of small amplitude limit cycles around the centers on the y-axis
for the system (PHk+1), k = 3, 4, · · · , we have

Sk+1 = 4 × Sk + (2k − 1)2 (8.4.13)
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limit cycles. Note that S2 = 11. Thus we obtain from (8.4.12) and (8.4.8) that

Sk = 4k−1

(
k − 1

6

)
+ 2k − 1

3
. (8.4.14)

Proposition 8.4.2. By using the Z2-equivariant systems (PHk) to yield limit
cycles, where (PH2) is (8.4.11), we have

H(n) � 1
4
(n + 1)2

[
ln(n + 1)

ln 2
− 1

6

]
+ n +

2
3
. (8.4.15)

8.4.4 Lower Bound for H(3 × 2k−1 − 1)

In this subsection, we consider the perturbed Z2-equivariant vector field of degree 5
(see [Li Jibin etc, 2001]):

dx

dt
=−y(1 − by2 + y4)

−εx(px4 + qy4 + gx2y2 + mx2 + ny2 − λ),
dy

dt
=x(1 − ax2 + x4)

−εy(px4 + qy4 + gx2y2 + mx2 + ny2 − λ). (8.4.16)

or its polar coordinate form:

dr

dt
=

1
4

sin 2θ
[
(b − a) − (b + a) cos 2θ + 2r2 cos 2θ

]
r3

−εr5(p cos4 θ + q sin4 θ + g cos2 θ sin2 θ)

−εr[r2(m cos2 θ + n sin2 θ) − λ],
dθ

dt
=1 − 1

8
[
3(a + b) + 4(a − b) cos 2θ + (a + b) cos 4θ

]
r2

+
1
8
(5 + 3 cos 4θ)r4, (8.4.17)

where a > b > 2. (8.4.16)ε=0 and (8.4.17)ε=0 have the Hamiltonian functions as
follows:

H(x, y) = −1
2
(x2 + y2) +

1
4
(ax4 + by4) − 1

6
(x6 + y6), (8.4.18)

H1(r, θ)=−1
2
r2 +

1
32

(3(a + b) + 4(a − b) cos 2θ

+(a + b) cos 4θ)r4 − 1
48

(5 + 3 cos 4θ)r6. (8.4.19)
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Denote that

ξ1 =

√
a −√

a2 − 4
2

, ξ2 =

√
a +

√
a2 − 4
2

,

η1 =

√
b −√

b2 − 4
2

, η2 =

√
b +

√
b2 − 4
2

.

It is easy to see that the system (8.4.16) has 13 centers at

(0, 0), (ξ1, η1), (ξ1,−η1), (ξ2, 0), (ξ2, η2), (ξ2,−η2), (0, η2)

and their Z2-equivariant symmetric points, 12 saddle points at

(0, η1), (ξ1, 0), (ξ1, η2), (ξ1,−η2), (ξ2, η1), (ξ2,−η1)

and their Z2-equivariant symmetric points. We have from (8.4.18) that

hc
0 =H(0, 0) = 0,

hc
1 =H(ξ1, η1) = H(ξ1,−η1)

= − 1
24

[
6(a + b) − (a3 + b3) + (a2 − 4)

3
2 + (b2 − 4)

3
2

]
,

hc
2 =H(ξ2, 0) = − 1

24

[
6a − a3 − (a2 − 4)

3
2

]
,

hc
3 =H(0, η2) = H(0,−η2) = − 1

24

[
6b − b3 − (b2 − 4)

3
2

]
,

hc
4 =H(ξ2, η2) = H(ξ2,−η2)

= − 1
24

[
6(a + b) − (a3 + b3) − (a2 − 4)

3
2 − (b2 − 4)

3
2

]
;

and

hs
1 = H(ξ1, 0) = − 1

24

[
6a − a3 + (a2 − 4)

3
2

]
,

hs
2 = H(0, η1) = − 1

24

[
6b − b3 + (b2 − 4)

3
2

]
,

hs
3 = H(ξ1, η2) = − 1

24

[
6(a + b) − (a3 + b3) + (a2 − 4)

3
2 − (b2 − 4)

3
2

]
,

hs
4 = H(ξ2, η1) = − 1

24

[
6(a + b) − (a3 + b3) − (a2 − 4)

3
2 + (b2 − 4)

3
2

]
.

Suppose that (a, b) = (2.5, 2.3). We have

ξ1 = 0.7071067812, ξ2 = 1.415213562,

η1 = 0.762960789, η2 = 1.310683347,
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and

hc
1 = −0.2436732647, hs

2 = −0.1290899314,

hs
3 = −0.1215767351, hs

1 = −0.1145833333,

hc
3 = −0.0069934018, hs

4 = 0.03757673603,

hc
4 = 0.1596732652, hc

2 = 0.16666666667,

−∞ < hc
1 < hs

2 < hs
3 < hs

1 < hc
3 < 0 < hs

4 < hc
4 < hc

2.

The unperturbed system (8.4.16)ε=0 has the phase portrait of figure (2) in
Fig.8.4.4. In [Li Jibin etc, 2001], we showed that when

(p, q, g, m, n)

=(−.144543, 1.157350656, −3.328234861, 3.014502, 6.564525872),

λ ∈
(

λ1(hs
2), min

(
max(λ1(h), max(λ6(h)

))

≈(9.319050412, 9.319051762),

the system (8.4.16) has at least 23 limit cycles having the configuration shown in
figure (1) of Fig.8.4.4.

We now take (8.4.16) as (PH2). Under the map (x, y) → (x2 − 3, y2 − 3), the
new system (PH3)ε=0 has the phase portrait shown in figure (3) of Fig.8.4.4. There
exist 121 finite singular points of (PH3)ε=0 consisting of the intersection points of
the straight lines x = 0, x = ±√

3 ± ξi, x =
√

3 and y = 0, y = ±√
3 ± ηi, y =

√
3, i =

1, 2. There are 5 = 3 × 22−1 − 1 centers on the y-axis.

(1) 23 limit cycles (2) The system (8.4.16)ε=0
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(3) A system of degree 11

Fig.8.4.4 Four copies of (8.4.16)ε=0

By Lemma 8.4.2, the perturbed terms

P
(1)
3 (x, y) =y(x2 − 3)

[
p(x2 − 3)4 + q(y2 − 3)4

+ g(x2 − 3)2(y2 − 3)2 + m(x2 − 3)2 + n(y2 − 3)2 − λ
]
,

Q
(1)
3 (x, y) =x(y2 − 3)

[
p(x2 − 3)4 + q(y2 − 3)4

+ g(x2 − 3)2(y2 − 3)2 + m(x2 − 3)2 + n(y2 − 3)2 − λ
]

quadruple the number of limit cycles of (PH2), i.e., there exist 92 = 4 × 23 limit
cycles of (PH3). Next, by using Lemma 8.4.1 to perform secondary perturbation
for 5 centers on the y-axis of (PH3)ε=0, we have P

(2)
3 = η0x

11 − η1x
9 + · · ·+ η4x

3 −
η5x, Q

(2)
3 (x, y) = 0. It give rise to 52 = (3 × 22−1 − 1)2 = 25 limit cycles. Thus, the

system (PH3) has at least 92+25=117 limit cycles.
Again by using inductive method, suppose that the system (PHk) has Sk limit

cycles. First, transform the system (PHk) by the quadruple map: (x, y) → (x2 −
3k−1, y2 − 3k−1). Then perform secondary perturbation to the centers on the y-axis
of (PHk+1)ε=0. We have

Sk+1 = 4 × Sk + (3 × 2k−1 − 1)2. (8.4.20)

Also let Sk = 4kσk. Similar to the computation of (8.4.1), we have

σk =σ2 +
9
16

(k − 2) − 3
2
(

1
23

+ · · · + 1
2k

) + (
1
43

+ · · · + 1
4k

)

=σ2 +
9
16

k − 71
48

+
3

2k+1
− 1

3 × 4k
. (8.4.21)
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Notice that σ2 =
23
16

. Thus,

Sk = 4k−1

(
9
4
k − 1

6

)
+ 3 × 2k−1 − 1

3
. (8.4.22)

Let n = 3 × 2k−1 − 1. Then, k − 1 = log2

(
n + 1

3

)
=

ln(n + 1) − ln 3
ln 2

. We have

from (8.4.22) that

Proposition 8.4.3. By considering the Z2-equivariant systems (PHk) to yield
limit cycles, where (PH2) is (8.4.16), we have

H(n) � 1
4
(n + 1)2

[
ln(n + 1) − ln 3

ln 2
+

25
27

]
+ n +

2
3
.

Denote that μ =
1

4 ln 2
≈ 0.360673. To sum up, the Proposition 8.4.1 ∼ Propo-

sition 8.4.3 imply that

Theorem 8.4.1. There are two sequences of n = 2k−1 and n = 3×2k−1−1, k =
2, 3, · · · , and a constant μ = (4 × ln 2)−1 such that the number H(n) of limit cycles
of the systems (PHk) grows at least as rapidly as μ(n + 1)2 ln(n + 1).

Bibliographical Notes

Up to now, we know that a given system (En) always has a finite number of limit
cycles [Ilyashenko, 1991] and that H(2) � 4, H(3) � 12, H(5) � 24, H(7) �
50, H(9) � 80( see [Shi Songling, 1980; Chen Lansun and Wan Mingshu, 1979;
Chan,H. et al, 2001; Li Jibin et al, 1987; Li Jibin et al, 2001; Yu Pei and Han
Maoan,2005; Liu Yingrong and Huang Wentao,2005; Lloyd, 1988; Luo Dingjun et
al, 1997; Perko, 1991; Ye Yanqian, 1995]). Also by considering a small neighborhood

of a singular point, H(n) � 1
2
[n2 + 5n − 20 − 6(−1)n] for n � 6 [Otrokov, 1954].

[Christopher and Lloyd,1995] showed that H(2k − 1) � 4k−1

(
2k − 35

6

)
+3.2k − 5

3
(for example H(7) � 25) by perturbing some families of closed orbits of a Hamil-
tonian system sequence in small neighborhoods of some center points and using a
“quadruple transformation”. The method given by them is very interesting. Un-
fortunately, the computation of a lower bound is not correct (see Remark 8.4.1).
Therefore, we need to correct and develop their work.



Chapter 9

Center-Focus Problem and Bifurcations of

Limit Cycles for a Z2-Equivariant Cubic

System

In this chapter, we study the Z2-equivariant cubic system which is represented by
(EZ2

3 ). We first solve completely the problem of center-focus for this class of systems.
Then, considering the bifurcation of limit cycle created from infinity, we show that
a cubic system has at least 13 limit cycles.

9.1 Standard Form of a Class of System (EZ2
3 )

In this section, we consider the following system (EZ2
3 ) having at least two finite

elementary focuses

dx

dt
= X1(x, y) + X3(x, y) = X(x, y),

dy

dt
= Y1(x, y) + Y3(x, y) = Y (x, y), (9.1.1)

where Xk(x, y), Yk(x, y) are homogeneous real polynomials of order k with respect
to x and y, k = 1, 3.

Suppose that system (9.1.1) has at least two finite elementary focuses. We as-
sume that two of them are at the points (±1, 0) (otherwise, we make proper linear
transformation).

Definition 9.1.1. If the functions of the right hand of system (9.1.1) satisfy

X(1, 0) = Y (1, 0) = 0,

∂X(1, 0)
∂x

=
∂Y (1, 0)

∂y
= δ,

∂X(1, 0)
∂y

= −1,
∂Y (1, 0)

∂x
= 1, (9.1.2)

then we say that system (9.1.1) has the standard form.
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Obviously, when system (9.1.1) has the standard form, the linearized systems of
(9.1.1) at the point (±1, 0) have the forms:

dx

dt
= δ(x ∓ 1) − y,

dy

dt
= (x ∓ 1) + δy. (9.1.3)

Lemma 9.1.1. If system (9.1.1) has at least two finite elementary focuses, then
by using suitable linear transformation, it makes (9.1.1) become the standard form.

Proof. Without lose of generality, suppose that system (9.1.1) has two elementary
focuses at the points (±1, 0). We have

X(1, 0) = Y (1, 0) = 0,
X(1, 0)

∂y

∂Y (1, 0)
∂x

�= 0. (9.1.4)

Write that

p =
∂X(1, 0)

∂x
+

∂Y (1, 0)
∂y

,

q =
∂X(1, 0)

∂x

∂Y (1, 0)
∂y

− ∂X(1, 0)
∂y

∂Y (1, 0)
∂x

(9.1.5)

and
p2 − 4q = −4s2, p = 2sδ, s > 0. (9.1.6)

Then, by the transformation

∂Y (1, 0)
∂x

x̃ =
∂Y (1, 0)

∂x
x +

(
∂Y (1, 0)

∂y
− δs

)
y,

∂Y (1, 0)
∂x

ỹ = sy, t̃ = st, (9.1.7)

system (9.1.1) becomes the standard form.

On the basis of (9.1.2) and Lemma 9.1.1, we have

Theorem 9.1.1. If system (9.1.1) has at least two finite elementary focuses, by
a proper linear transformation, (9.1.1) can be reduced to the following standard form

dx

dt
= − δ

2
x − (a1 + 1)y +

δ

2
x3 + a1x

2y + a2xy2 + a3y
3,

dy

dt
= −1

2
x + (δ − a4)y +

1
2
x3 + a4x

2y + a5xy2 + a6y
3. (9.1.8)

Obviously, (±1, 0) are elementary focuses of system (9.1.8) and the linearized
systems at the points (±1, 0) are (9.1.3). Letting

x = ±(u + 1), y = ±v, t = ±τ, (9.1.9)
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system (9.1.8) becomes

du

dτ
= δu − v +

3δ

2
u2 + 2a1uv + a2v

2 +
δ

2
u3 + a1u

2v + a2uv2 + a3v
3,

dv

dτ
= u + δv +

3
2
u2 + 2a4uv + a5v

2 +
1
2
u3 + a4u

2v + a5uv2 + a6v
3. (9.1.10)

9.2 Liapunov Constants, Invariant Integrals and the

Necessary and Sufficient Conditions of the

Existence for the Bi-Center

When δ = 0, system (9.1.8) becomes

dx

dt
= −(a1 + 1)y + a1x

2y + a2xy2 + a3y
3,

dy

dt
= −1

2
x − a4y +

1
2
x3 + a4x

2y + a5xy2 + a6y
3 (9.2.1)

and system(9.1.10) becomes

du

dτ
= −v + a1(2 + u)uv + a2(1 + u)v2 + a3v

3,

dv

dτ
= u +

3
2
u2 +

1
2
u3 + a4(2 + u)uv + a5(1 + u)v2 + a6v

3. (9.2.2)

We denote that

A1 = 2(1 + a5)a4 + (2 + a1 + a5)a2,

A2 = 2(1 + a1)(1 + a5) − a3,

A3 = 3a4 + (a1 + a5)(5a2 + 4a4),

A4 = 6(a1 + a5)(1 + a1) + (5a2 − 2a4)a4. (9.2.3)

By using the transformation z = u + iv, w = u − iv, T = it, system (9.2.2) can
become its associated system. Applying the formula in Theorem 2.3.6, we obtain
the first Liapunov constants at (±1, 0) of (9.2.1). We find that there exist 6 terms in
V3 and when V3 = 0, there are 25, 118, 350, 831, 1717 terms in V5, V7, V9 V11 V13,

respectively. By some tricks of the simplification, we know that

Theorem 9.2.1. The first 6 Liapunov constants of (9.2.1) at the singular points
(±1, 0) are as follows:

V3 =
1
4
(a2 + 2a1a2 − 2a4 + 2a2a5 − 2a4a5 + 3a6),

V5∼ 1
36

(−3A2A3 + 2A1A4),
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V7∼ 1
864

h0h3,

V9∼ 1
45360

h0h4,

V11 ∼ 1
698544

h0h5,

V13 ∼ −44
85562001

a2(a2 − a4)(2a2 − a4)(4a2 − a4)

×(5a2 − a4)(2a2 + a4)(4a2 + a4)h0h6, (9.2.4)

where

h0 =3(a1 + a5)A2 − 2a4A1,

h3 =30a2 − 54a1a2 − 84a2
1a2 + 70a3

2 − 105a2a3 + 36a4 + 36a1a4

−70a2
2a4 − 84a3a4 − 52a2a

2
4 + 16a3

4 + 126a2a5 + 126a1a2a5,

h4 =108(1 + a1)2(5a2 − 8a4)

−12(1 + a1)(525a3
2 − 420a2

2a4 − 110a2a
2
4 + 92a3

4)

+5(539a5
2 − 560a3

2a
2
4 + 448a2

2a
3
4 + 96a2a

4
4 − 64a5

4),

h5 =
[ − 4(1 + a1)2(128a2 − 97a4)

+4(1 + a1)(3136a3
2 − 2401a2

2a4 + 440a2a
2
4 + 94a3

4)

−a4(7007a4
2 − 784a3

2a4 + 2352a2
2a

2
4 − 1256a2a

3
4 + 16a4

4)
]

×(9 + 9a1 + 4a2
4),

h6 =9038315a2
2 + 4146497a2a4 + 191510a2

4. (9.2.5)

Lemma 9.2.1. The resultant of h4, h5 with respect to a1 is

R(h4, h5, a1)=a5
2(a2 − a4)3(2a2 − a4)(4a2 − a4)2

×(5a2 − a4)(2a2 + a4)(4a2 + a4)Δ(a2, a4), (9.2.6)

where
Δ(a2, a4) = 20a3

2 − 35a2
2a4 − 20a2a

2
4 − a3

4. (9.2.7)

This lemma tell us that if the first six Liapunov constants at (±1, 0) of (9.2.1)
are all zeros, then, the common factor between V13 and R(h4, h5, a1) is zero. Thus
we have

Lemma 9.2.2. If the first six Liapunov constants at the singular points (±1, 0)
of (9.2.1) are all zeros, then,

a2(a2 − a4)(2a2 − a4)(4a2 − a4)(5a2 − a4)(2a2 + a4)(4a2 + a4)h0 = 0. (9.2.8)
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Theorem 9.2.2. The first six Liapunov constants of (9.2.1) at the singular
points (±1, 0) are all zero, if and only if one of the following conditions is satisfied:

(C1) : a4 = 0, a1 = −a5, a6 = −1
3
a2;

(C2) : a4 = 0, a1 + a5 �= 0, a2 = a6 = 0;

(C3) : h0 = 0, a1 + a5 �= 0,

a6 =
1
3
(−a2 − 2a1a2 + 2a4 − 2a2a5 + 2a4a5),

2(1 + a1)(a1 + a5)2 − a2
4(1 + 2a1 + 2a5) = 0;

(C4) : 2(1 + a5)a4 + (2 + a1 + a5)a2 = 0,

a3 = 2(1 + a1)(1 + a5),

a6 =
1
3
(−a2 − 2a1a2 + 2a4 − 2a2a5 + 2a4a5);

(C5) : a4 �= 0, a1 =
1
2
(−2 + 3a2

4), a2 = a4,

a3 = a2
4(1 − a2

4 + a5), a6 = a4(1 − a2
4);

(C6) : a4 �= 0, a1 =
1
8
(−8 + 5a2

4), a2 =
1
2
a4,

a5 = −1
8
(8 + a2

4), a3 = − 5
32

a4
4, a6 =

1
4
a4(2 − a2

4);

(C7) : a4 �= 0, a1 = − 1
32

(32 + 15a2
4),

a2 =
1
4
a4, a3 =

1
512

a2
4(64 + 15a2

4),

a5 = − 1
32

(96 + 17a2
4), a6 = − 3

16
a4(4 + a2

4);

(C8) : a4 �= 0, a1 = − 1
50

(50 + 21a2
4),

a2 =
1
5
a4, a3 =

1
1250

a2
4(250 + 63a2

4),

a5 = − 1
50

(200 + 39a2
4), a6 = − 1

25
a4(35 + 9a2

4);

(C9) : a4 �= 0, a1 = −1
9
(9 + 4a2

4),

a2 = 0, a3 = 0, a6 =
2
3
a4(1 + a5);

(C10) : a4 �= 0, a1 = −1
8
(8 + 3a2

4), a2 = −1
2
a4,

a3 =
3
16

a2
4(4 + a2

4 + 4a5), a6 =
1
8
a4(4 − a2

4 + 8a5);

(C11) : a4 �= 0, a1 = − 1
32

(32 + 15a2
4),
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a2 = −1
4
a4, a3 =

1
512

a2
4(832 + 495a2

4),

a5 =
1
32

(160 + 111a2
4), a6 =

1
16

a4(76 + 45a2
4).

Proof. We first prove the sufficiency.
Substituting each condition (Cj) (j = 1, 2, · · · , 11) into the above formulas of

V3, V5, · · · , V13, respectively, it follows that V3 = V5 = · · · = V13 = 0. Thus, the
sufficiency of this theorem holds.

We next prove that every condition (Cj) is the necessary condition such that
V3 = V5 = · · · = V13 = 0. By Lemma 9.2.2, we need to consider the following four
cases.

(1) If a4 = 0 and h0 �= 0 then Lemma 9.2.2 implies that a2 = 0. Hence, the
relationship

4V3 = 3a6 = 0,

h0 = 3(a1 + a5)(2 + 2a1 − a3 + 2a5 + 2a1a5) �= 0 (9.2.9)

follows the condition (C2).
(2) If h0 �= 0 and a2(a2 − a4)(2a2 + a4) = 0, by solving V3 = V5 = · · · = V13 = 0,

we have

18a1 = −18 + 25a2
2 + 10a2a4 − 8a2

4,

12a3 = −a2(−20a2 + 8a4 + 5a2a
2
4 + 7a3

4 − 20a2a5 + 8a4a5),

6a6 = 2a2 + 4a4 − 5a2
2a4 − a2a

2
4 − 4a2a5 + 4a4a5. (9.2.10)

Thus, when a2 = 0, we obtain the condition (C9). When a2 − a4 = 0, we have the
condition (C5). When 2a2 + a4 = 0, it gives rise to the condition (C10).

(3) If h0 �= 0 and (2a2 − a4)(4a2 − a4)(5a2 − a4)(4a2 + a4) = 0. By solving
V3 = V5 = · · · = V13 = 0, we have

6a4a1 =160a3
2 − 6a4 − 45a2

2a4 − 10a2a
2
4,

18a2
4a3 =a2(1920a3

2 − 1344a2
2a4 + 132a2a

2
4 + 647a3

2a
2
4

+30a3
4 − 556a2

2a
3
4 + 103a2a

4
4 + a5

4),

6a3
4a5 =−(960a3

2 − 672a2
2a4 + 36a2a

2
4 + 320a3

2a
2
4

+36a3
4 − 237a2

2a
3
4 + 28a2a

4
4 + 6a5

4),

9a2
4a6 =−(960a3

2 − 672a2
2a4 + 39a2a

2
4 + 400a3

2a
2
4

+24a3
4 − 269a2

2a
3
4 + 29a2a

4
4 + 5a5

4). (9.2.11)

Hence, when 2a2 − a4 = 0, we have the condition (C6). When 4a2 − a4 = 0, we
obtain the condition (C7). When 5a2 − a4 = 0, we have the condition (C8). When
4a2 + a4 = 0, we obtain the condition (C11).
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(4) If h0 = V3 = V5 = 0, we consider the following three subcases. A1 = A2 = 0
imply that (C4) holds. If |A1|+ |A2| �= 0 and |a4|+ |a1 +a5| �= 0, (C3) holds. Finally,
we get condition (C1) when |A1| + |A2| �= 0 and a4 = a1 + a5 = 0.

We now prove that the origin of (9.2.2) is a center when each condition (C1) ∼
(C11) of Theorem 9.2.2 holds.

(1) Suppose that the condition (C1) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=−(a1 + 1)y + a1x

2y + a2xy2 + a3y
3,

dy

dt
=−1

2
x +

1
2
x3 − a1xy2 − 1

3
a2y

3. (9.2.12)

It is easy to see that the following conclusion holds.

Proposition 9.2.1. System (9.2.12) is a Hamiltonian system with the Hamilto-
nian quantity

F1(x, y)=
1
4
[x2 − 2(1 + a1)y2]

− 1
24

[3x4 − 12a1x
2y2 − 8a2xy3 − 6a3y

4]. (9.2.13)

As an example, we use Fig.9.2.1 to show some phase portraits of system (9.2.13).
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Fig.9.2.1 Some phase portraits of (9.2.12)

(2) Suppose that the condition (C2) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
= y(−1 − a1 + a1x

2 + a3y
2),

dy

dt
=

1
2
x(−1 + x2 + 2a5y

2). (9.2.14)

Proposition 9.2.2. Let

g1 = (2 + a1 + a5) − (a1 + a5)x2 − 2(a3 − a1a5 + a2
5)y

2,

g2 = −1 + x2 + 2a5y
2,

γ1 = 2a3 + (a1 − a5)2. (9.2.15)
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System (9.2.14) has an integral factor

M2(x, y) = f−1
1 (9.2.16)

and a first integral
F2(x, y) = f1f

(a1+a5)
2 , (9.2.17)

where

f1 = g2
1 − γ1g

2
2,

f2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
g1 +

√
γ1g2

g1 −√
γ1g2

� 1√
γ1

, if γ1 > 0;

exp
2g2

g1
, if γ1 = 0;

exp
�

2√−γ1
arctan

g2

g1

�
, if γ1 < 0.

(9.2.18)

(3) Suppose that the condition (C3) holds, we have

Proposition 9.2.3. Under the condition (C3), system (9.2.1) has an integral
factor

M3(x, y) = f
2(a1+a5)
3 (9.2.19)

and a first integral
F3(x, y) = f

(1+2a1+2a5)
3 f4, (9.2.20)

where

f3 =(a1 + a5)x − a4y,

f4 =(2 + a1 + a5)[a4x + 2(1 + a1)(a1 + a5)y]

−(1 + a1 + a5)[a4x
3 + 2(1 + a1)(a1 + a5)x2y

+2a4(1 + a5)xy2 + 2a3(a1 + a5)y3]. (9.2.21)

Remark 9.2.1. Suppose that the condition (C3) holds. Let

a1 + a5 = γ, a4 = b4γ. (9.2.22)

By solving 2(1 + a1)(a1 + a5)2 − a2
4(1 + 2a1 + 2a5) = 0, we obtain the expression of

a1. By solving h0 = 0, we obtain the expression a3. Thus, condition (C3) can be
reduced to

(C̃3) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ �= 0, a4 = b4γ, a1 =
1
2
(−2 + b2

4 + 2b2
4γ),

a5 =
1
2
(2 − b2

4 + 2γ − 2b2
4γ),

a6 =
1
3
(−a2 − 2a2r + 4b4γ − b3

4r + 2b4γ
2 − 2b3

4γ
2),

a3 =−1
6
b4(8a2 − 12b4 + 3b3

4 + 4a2γ

−14b4γ + 8b3
4γ − 4b4γ

2 + 4b3
4γ

2).

(9.2.23)
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(4) Suppose that the condition (C4) holds. Let

γ2 = 1 + a1 + a5, γ3 = 2 + 2a1 + a2
4,

g3 = 1 − x2 − 2y2 − 2a5y
2. (9.2.24)

We have

Proposition 9.2.4. Under the condition (C4), system (9.2.1) has an integral
factor

M4(x, y) = f−γ2
5 f−1

6 (9.2.25)

and a first integral
F4(x, y) = f5f6f

a4
7 , (9.2.26)

where

f5 =

�
(1 + γ2g3)

1
γ2 , if γ2 �= 0;

eg3 , if γ2 = 0,

f6 =x2 + 2a4xy − 2(1 + a1)y2,

f7 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
x + a4y −√

γ3 y

x + a4y +
√

γ3 y

� 1√
γ3

, if γ3 > 0;

exp
−2y

x + a4y
, if γ3 = 0;

exp
� −2√−γ3

arctan
y

x + a4y

�
, if γ3 < 0.

(9.2.27)

Remark 9.2.2. Under the condition (C4), if a2 = a4 = 0, then, a6 = A1 = 0.

Thus, when a1 + a5 = 0, the condition (C1) holds; When a1 + a5 �= 0, the condition
(C2) holds. In addition, if |a2| + |a4| �= 0, then, A1 = 0 implies that there exits a
constant γ such that

2 + a1 + a5 = 2γa4, 1 + a5 = −γa2. (9.2.28)

In this case, the condition (C4) can be changed to

(C̃4) :

⎧⎪⎨
⎪⎩

a2a4 �= 0, a1 = −1 + (a2 + 2a4)γ,

a3 = −2a2(a2 + 2a4)γ2,

a5 = −1 − a2γ, a6 = a2(1 − 2a4γ).

(9.2.29)

(5) Suppose that the condition (C5) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=−3

2
a2
4y +

1
2
(−2 + 3a2

4)x
2y + a4xy2 + a2

4(1 − a2
4 + a5)y3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y + a5xy2 + a4(1 − a2
4)y

3. (9.2.30)
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Proposition 9.2.5. Let

γ4 =−2 + a2
4 + 2a5,

g4 =2a2
4(2 + a2

4 + 2a5) − γ4(2 + a2
4 + 2a5)(x2 − a2

4y
2)

−(a2
4 − 2a5)γ4(−x + a4y)2

×(−x2 − 2a4xy − 2y2 + 2a2
4y

2 − 2a5y
2),

g5 =a2
4 − 2(x2 − a2

4y
2)

+(−1 + a2
4)(−x + a4y)2(−x2 − 2a4xy − 4y2 + 3a2

4y
2). (9.2.31)

System (9.2.30) has an integral factor

M5(x, y) = f2
8 f

−4+3a2
4+2a5
2

9 (9.2.32)

and a first integral
F5 = f9f

2
10, (9.2.33)

where

f8 =x − a4y,

f9 =

⎧
⎨
⎩

[a2
4 + (−1 + a2

4)(−x2 + a2
4y

2)]
1

1−a2
4 , if 1 − a2

4 �= 0;

e−1+x2−y2
, if 1 − a2

4 = 0,

f10 =

⎧
⎪⎨
⎪⎩

g
1

γ4
4 , if γ4 �= 0;

exp
g5

4a2
4

, if γ4 = 0.

(9.2.34)

(6) Suppose that the condition (C6) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=−5

8
a2
4y +

1
8
(−8 + 5a2

4)x
2y +

1
2
a4xy2 − 5

32
a4
4y

3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y

−1
8
(8 + a2

4)xy2 +
1
4
a4(2 − a2

4)y
3. (9.2.35)

Proposition 9.2.6. System (9.2.35) has an integral factor

M6(x, y) = f
−16+5a2

4
6

11 f
−8+a2

4
6

12 (9.2.36)

and a first integral
F6 = f5

11f12f
6
13, (9.2.37)
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where

f11 =2x − a4y, f12 = 2x + 5a4y,

f13 =

⎧
⎪⎨
⎪⎩

�
8 + (−2 + a2

4)(4 − 4x2 + a2
4y

2)
� 1

−2+a2
4 , if − 2 + a2

4 �= 0;

exp
2 − 2x2 + y2

4
, if − 2 + a2

4 = 0.
(9.2.38)

(7) Suppose that the condition (C7) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=

15
32

a2
4y − 1

32
(32 + 15a2

4)x
2y

+
1
4
a4xy2 +

1
512

a2
4(64 + 15a2

4)y
3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y

− 1
32

(96 + 17a2
4)xy2 − 3

16
a4(4 + a2

4)y
3. (9.2.39)

Proposition 9.2.7. System (9.2.39) has an integral factor

M7(x, y) = f
−8
3

14 (9.2.40)

and a first integral
F7(x, y) = f−5

14 f3
15, (9.2.41)

where

f14 =48a2
4(4x + 3a4y) − (8 + 3a2

4)(4x + a4y)3,

f15 =2560a4
4(4x + 5a4y)

−80a2
4(16 + 5a2

4)(4x + a4y)2(4x + 3a4y)

+(8 + 3a2
4)(16 + 5a2

4)(4x + a4y)5. (9.2.42)

(8) Suppose that the condition (C8) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=

21
50

a2
4y − 1

50
(50 + 21a2

4)x
2y

+
1
5
a4xy2 +

1
1250

a2
4(250 + 63a2

4)y
3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y

− 1
50

(200 + 39a2
4)xy2 − 1

25
a4(35 + 9a2

4)y
3. (9.2.43)
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Proposition 9.2.8. System (9.2.43) has an integral factor

M8(x, y) = f
−10
3

16 (9.2.44)

and a first integral
F8(x, y) = f−7

16 f3
17, (9.2.45)

where

f16 =225a2
4(5x + 3a4y) − (25 + 9a2

4)(5x + a4y)3,

f17 =1968750a6
4(5x + 7a4y)

+525a2
4(25 + 7a2

4)(25 + 9a2
4)(5x + a4y)4(5x + 3a4y)

−78750a4
4(25 + 7a2

4)(5x + a4y)(5x + 3a4y)2

−(25 + 7a2
4)(25 + 9a2

4)
2(5x + a4y)7. (9.2.46)

(9) Suppose that the condition (C9) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=

4
9
a2
4y − 1

9
(9 + 4a2

4)x
2y,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y + a5xy2 +
2
3
a4(1 + a5)y3. (9.2.47)

Proposition 9.2.9. System (9.2.47) has an integral factor

M9(x, y) = f−3
18 f

9−8a2
4+18a5
2

19 (9.2.48)

and a first integral

F9 =(3x + 4a4y)f−2
18 f

9(3+2a5)
2

19

−6(1 + a5)
�

f
9(3+2a5)

2
19 dx

9 + (9 + 4a2
4)(−1 + x2)

, (9.2.49)

where

f18 =3x + 2a4y,

f19 =

⎧⎨
⎩

[9 + (9 + 4a2
4)(−1 + x2)]

1
9+4a2

4 , if 9 + 4a2
4 �= 0;

e
−1+x2

9 , if 9 + 4a2
4 = 0.

(9.2.50)

Remark 9.2.3. When 9+4a2
4 = 0, a4 is a complex number, the above results of

the integrability of (9.2.1) are also true when the parameter group (a1, a2, a3, a4, a5, a6)
is complex.
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(10) Suppose that the condition (C10) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=

3
8
a2
4y − 1

8
(8 + 3a2

4)x
2y

−1
2
a4xy2 +

3
16

a2
4(4 + a2

4 + 4a5)y3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y

+a5xy2 +
1
8
a4(4 − a2

4 + 8a5)y3. (9.2.51)

Proposition 9.2.10. The singular points (±1, 0) of system (9.2.51)are centers.

Proof. By using the transformation

ξ =
1
2
− 2(2x + 3a4y)

(2x + a4y)3
,

η =
2y

2x + a4y
, dτ =

1 + a4η

1 − 2ξ
dt, (9.2.52)

system (9.2.51) becomes

dξ

dτ
=

1
16

η(1 − 2ξ)
[−16 + 3a2

4(8 + a2
4 + 8a5)η2

]
,

dη

dτ
=

1
8

[
8ξ + (8 − 3a2

4 + 8a5)η2 − a2
4(8 + a2

4 + 8a5)η4
]
. (9.2.53)

The above transformation makes (±1, 0) of (9.2.51) become the origin (0, 0) of
(9.2.53). In addition,

ξ = (x − 1) + h.o.t., η = y + h.o.t., near (1, 0),

ξ = −(x + 1) + h.o.t., η =−y + h.o.t., near (−1, 0). (9.2.54)

Clearly, the vector field defined by (9.2.53) is symmetric with respect to the
ξ-axis. It implies that the conclusion of this proposition.

(11) Suppose that the condition (C11) holds. Under this parameter condition,
system (9.2.1) becomes

dx

dt
=

15
32

a2
4y − 1

32
(32 + 15a2

4)x
2y

−1
4
a4xy2 +

1
512

a2
4(832 + 495a2

4)y
3,

dy

dt
=−1

2
x − a4y +

1
2
x3 + a4x

2y

+
1
32

(160 + 111a2
4)xy2 +

1
16

a4(76 + 45a2
4)y

3. (9.2.55)
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Proposition 9.2.11. The singular points (±1, 0) of system (9.2.55) are centers.

Proof. Let

g6 = (256x3 + 576a4x
2y − 528a2

4xy2 − 540a4
4xy2 − 932a3

4y
3 − 585a5

4y
3). (9.2.56)

By using the transformation

ξ =
4y

4x + 3a4y

√
12x + 13a4y

3(4x + 3a4y)
,

η =
1
2
− 8(4x + 5a4y)3

(4x + 3a4y)5
− 4y2(12x + 13a4y)

3(4x + 3a4y)6
g6,

dτ =
(4x + 3a4y)3

16(4x + 5a4y)

√
3(4x + 3a4y)
12x + 13a4y

dt, (9.2.57)

system (9.2.55) becomes the following Lienard system

dξ

dτ
=η +

1
64

ξ2[448 + 192a2
4 − a2

4(528 + 297a2
4ξ

2],

dη

dτ
=− 1

512
ξ(4 − 3a2

4ξ
2)[4 + (48 + 27a2

4)ξ
2]

×[32 − a2
4(240a2

4 + 135a2
4)ξ

2]. (9.2.58)

The transformation (9.2.57) makes the singular points (±1, 0) of (9.2.55) become
the origin of (9.2.58) and we have

ξ = y + h.o.t., η = (x − 1) + h.o.t., near (1, 0),

ξ = −y + h.o.t., η = −(x + 1) + h.o.t., near (−1, 0). (9.2.59)

Obviously, the vector field defined by (9.2.58) is symmetric with respect to the
η-axis. It implies that the conclusion of this proposition.

Theorem 9.2.1,Theorem 9.2.2 and Propositions 9.2.1∼ Propositions 9.2.11 imply
that

Theorem 9.2.3. The singular points (±1, 0) of system (9.2.1) are centers if and
only if the first 6 Liapunov constants are all zeros, namely, one of 11 conditions in
Theorem 9.2.2 holds.

9.3 The Conditions of Six-Order Weak Focus and

Bifurcations of Limit Cycles

We know from Theorem 9.2.1 and Lemma 9.2.1 that if (±1, 0) of system (9.2.1) are
weak focus of order 6, then we have
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Δ(a2, a4) = 20a3
2 − 35a2

2a4 − 20a2a
2
4 − a3

4 = 0, a4h0 �= 0. (9.3.1)

Let a2 = λa4. It is easy to see that the function Δ(λ, 1) has three zeros at

λ1 =
7
12

+
√

97
6

cos θ0 = 2.21224585 · · · ,

λ2 =
7
12

+
√

97
6

cos
(

θ0 − 2π

3

)
= −0.05557708 · · · ,

λ3 =
7
12

+
√

97
6

cos
(

θ0 +
2π

3

)
= −0.40666876 · · · , (9.3.2)

where

θ0 =
1
3

arctan

(
36

√
2319

4451

)
. (9.3.3)

By Theorem 9.2.1, we have

Theorem 9.3.1. For system (9.2.1), (±1, 0) are weak focuses of order 6 if and
only if

Δ(λ, 1) = 0, a4h0 �= 0, (a1, a2, a3, a5, a6) = (ã1, ã2, ã3, ã5, ã6), (9.3.4)

where

ã1 =
1
18

[−18 + (−8 + 154λ + 385λ2)a2
4],

ã2 =λa4,

ã3 =− 1
64800

a2
4[2880(8 + 74λ + 143λ2)

+(3578819 + 73223024λ + 158462585λ2)a2
4],

ã5 =− 1
90

[126 + (44 + 320λ + 797λ2)a2
4],

ã6 =− 1
675

a4[45(4 − 19λ) + (502 + 6820λ + 16105λ2)a2
4]. (9.3.5)

Lemma 9.3.1. Suppose that Δ(λ, 1) = 0 and (a1, a2, a3, a5, a6) = (ã1, ã2, ã3, ã5,

ã6). Then h0 = 0 if and only if

λ = λ1, a2
4 = ω1, or a2

4 = ω2, (9.3.6)

where
ω1 = 0.03274565 · · · , ω2 = 0.03453237 · · · . (9.3.7)
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Proof. When (a1, a2, a3, a5, a6) = (ã1, ã2, ã3, ã5, ã6), we have

h0 =
a2
4(5468369 + 111981560λ+ 242266355λ2)

593806218257103750
h̃0, (9.3.8)

where

h̃0 =158348324868561a4
4

+260090(1927442096+ 735778623λ− 734798180λ2)a2
4

+275(1591628188157+ 1932176311266λ− 1198485512456λ2) (9.3.9)

is a quadratic polynomial in a2
4. Δ(λ, 1) = h̃0 = 0 imply that

a2
4 =

−5(1927442096+735778623λ−734798180λ2)

6088212729

± 25
√

6(−2600381406258223−14988190268053629λ+7306440411744220λ2 )

6088212729
. (9.3.10)

When λ = λ2 and λ = λ3, (9.3.10) follows that a2
4 is not a positive real number.

But when λ = λ1, a2
4 = ω1, ω2, where ω1 = 0.03274565 · · · , ω2 = 0.03453237 · · · .

Namely Lemma 9.3.1 holds

According to Theorem 9.3.1 and Lemma 9.3.1, we have

Theorem 9.3.2. (±1, 0) are weak focuses of order 6 of system (9.2.1) if and
only if

Δ(λ, 1) = 0, a4 �= 0, (a1, a2, a3, a5, a6) = (ã1, ã2, ã3, ã5, ã6) (9.3.11)

and when λ = λ1, a2
4 �= ω1, ω2.

Theorem 9.3.3. Suppose that (±1, 0) are weak focuses of order 6 of system
(9.2.1). Then, when

|δ| +
6∑

k=1

|ak − ãk| � 1, (9.3.12)

by making a small perturbation of the coefficient group of (δ, a1, a2, a3, a5, a6) of
system (9.1.8), there exist 6 small amplitude limit cycles in a small neighborhood of
(±1, 0), respectively.

Proof. Because (±1, 0) are weak focuses of order 6 of system (9.2.1) and (9.3.4) holds,
Theorem 9.2.1 follows that when Δ(λ, 1) = 0, a4h0 �= 0, the Jacbin of the function
group (V3, V5, V7, V9, V11) with respect to (a1, a2, a3, a5, a6) at (ã1, ã2, ã3, ã5, ã6) is
given by
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J =
∂(V3, V5, V7, V9, V11)
∂(a1, a2, a3, a5, a6)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V3

∂a1

∂V3

∂a2

∂V3

∂a3

∂V3

∂a5

3
4

∂V5

∂a1

∂V5

∂a2

∂V5

∂a3

∂V5

∂a5
0

∂V7

∂a1

∂V7

∂a2

∂V7

∂a3

∂V7

∂a5
0

∂V9

∂a1

∂V9

∂a2
0 0 0

∂V11

∂a1

∂V11

∂a2
0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
539(8602456533509+175937693579696λ+380614976209391λ2 )

12538266255360
a13
4 h3

0 �= 0. (9.3.13)

Thus Theorem 3.1.4 follows that Theorem 9.3.3 holds.

Under conditions of Theorem 9.2.1 and Theorem 9.3.1, V13 = a11
4 κ �= 0, where

κ=
−11

354294000000
[(56794007957132160

−3379058706136258840a2
4 + 50225301517577575587a4

4)

+(1161552717525657600− 69108607749089418880a2
4

+1027209339522075478992a4
4)λ + (2512846172532009600

−149506172061524927560a2
4 + 2222214298048672809225a4

4)λ
2)]. (9.3.14)

Theorem 9.2.1 and Theorem 9.3.2 imply that

Lemma 9.3.2. If

a4 �= 0, Δ(λ, 1) = 0, δ = 259200κa11
4 ε12,

a1 = ã1 + c0ε
4,

a2 = ã2 +
104
45

(13 + 220λ + 460λ2)a3
4ε

2,

a3 = ã3 + c1ε
2 + c2ε

4 + c3ε
6 + c4ε

8,

a5 = ã5 + c5ε
2 + c6ε

4 + c7ε
6 + c8ε

8,

a6 = ã6 + c9ε
2 + c10ε

4 + c11ε
6 + c12ε

8 + c13ε
10, (9.3.15)

and a2
4 �= ω1, ω2, when λ = λ1, where c0 ∼ c13 are given by §9.7, then the first six

focal values at (±1, 0) of system (9.1.8) are as follow

ν1(2π) − 1 = 518400a11
4 κπε12 + o(ε12),

ν3(2π) = −773136a11
4 κπε10 + o(ε10),

ν5(2π) = 296296a11
4 κπε8 + o(ε8),
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ν7(2π) = −44473a11
4 κπε6 + o(ε6),

v9(2π) = 3003a11
4 κπε4 + o(ε4),

ν11(2π) = −91a11
4 κπε2 + o(ε2),

ν13(2π) = a11
4 κπ + o(1). (9.3.16)

Theorem 9.3.4. Under the condition in Lemma 9.3.2, there exists a positive
number ε0 > 0, such that system (9.1.8) has exactly 12 limit circles, which are close
to the circles (x ∓ 1)2 + y2 = k2ε2 when 0 < |ε| < ε0, k = 1, 2, 3, 4, 5, 6.

Proof. By Lemma 9.3.2, the quasi succession function at (±1, 0) of system (9.1.8) is
that

L(h, ε)=a11
4 κπη(518400ε12 − 773136h2ε10 + 296296h4ε8

−44473h6ε6 + 3003h8ε4 − 91h10ε2 + h12)

=a11
4 κπ

6∏
k=1

(h2 − k2ε2), (9.3.17)

(9.3.17) and Theorem 3.3.3 imply this theorem.

9.4 A Class of (EZ2
3 ) System With 13 Limit Cycles

In this section, we consider the following system having two weak focuses of order
6:

dx

dt
=−(ã1 + 1)y + ã1x

2y + ã2xy2 + ã3y
3,

dy

dt
=−1

2
x +

1
2
x3 − ã1xy2 − 1

3
ã2y

3, (9.4.1)

where (ã1, ã2, ã3, ã5, ã6) are given by (9.3.5), Δ(λ, 1) = 0, a4 �= 0 and a2
4 �= ω1, ω2

when λ = λ1.
Write the functions of the right hand of system (9.4.1) as follows:

X1(x, y) = −(ã1 + 1)y, Y1(x, y) = −1
2
x − a4y,

X3(x, y) = ã1x
2y + ã2xy2 + ã3y

3,

Y3(x, y) =
1
2
x3 + a4x

2y + ã5xy2 + ã6y
3. (9.4.2)

By (9.3.5), every component of the group (ã1, ã2, ã3, ã5, ã6) is a polynomial in λ, a4

with the rational coefficients. λ ∈ {λ1, λ2, λ3} and a4 is a free parameter. We are
going to consider the bifurcation condition of limit cycles of (9.4.1) created from the
infinity (i.e., the equator Γ∞ of the Poincar’e sphere). Let
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P2(x, y)=2[xX1(x, y) + yY1(x, y)] = −(3 + 2ã1)xy − 2a4y
2,

Q2(x, y)=2[xY1(x, y) − yX1(x, y)] = −x2 − 2a4xy + 2(1 + ã1)y2,

P4(x, y)=2[xX3(x, y) + yY3(x, y)]

=(1 + 2ã1)x3y + 2(ã2 + a4)x2y2 + 2(ã3 + ã5)xy3 + 2ã6y
4,

Q4(x, y)=2[xY3(x, y) − yX3(x, y)]

=x4 + 2a4x
3y + 2(ã5 − ã1)x2y2 + 2(ã6 − ã2)xy3 − 2ã3y

4. (9.4.3)

It is known that system (9.4.1) has no real singular point on the equator Γ∞ if
and only if Q4(x, y) is positive definite.

Suppose that Q4(x, y) is positive definite. In order to investigate the stabi-
lity and bifurcations of limit circles on the equator Γ∞ of (9.4.1), by making the
transformation

x =
cos θ

ρ
, y =

sin θ

ρ
, (9.4.4)

system (9.4.1) becomes

dρ

dθ
= −ρ

P4(cos θ, sin θ) + P2(cos θ, sin θ)ρ2

Q4(cos θ, sin θ) + Q2(cos θ, sin θ)ρ2
. (9.4.5)

According to (9.4.3),
Q4(cos θ, sin θ)|θ=0 = 1. (9.4.6)

Clearly, the right hand side of (9.4.5) is an odd function with respect to ρ, Hence,
the solution of (9.4.5) satisfying the initial condition ρ|θ=0 = h has the form

ρ =
∞∑

k=0

ν̃2k+1(θ)h2k+1. (9.4.7)

Substituting (9.4.7) into (9.4.5), we obtain

ν̃1(θ) = exp
∫ θ

0

−P4(cosϕ, sin ϕ)
Q4(cos ϕ, sin ϕ)

dϕ, (9.4.8)

ν̃3(θ) = ν̃1(θ)
∫ θ

0

∣∣∣∣∣
P4(cosϕ, sin ϕ),Q4(cosϕ, sin ϕ)

P2(cosϕ, sin ϕ),Q2(cosϕ, sin ϕ)

∣∣∣∣∣
ν̃2
1(ϕ)dϕ

Q2
4(cosϕ, sin ϕ)

. (9.4.9)

Because

4P4(cos θ, sin θ) ≡ 2R2(cos θ, sin θ) − d

dθ
Q4(cos θ, sin θ), (9.4.10)

where

R2 = a4 cos2 θ + 2(ã1 + ã5) cos θ sin θ + (ã2 + 3ã6) sin2 θ. (9.4.11)
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(9.4.8) and (9.4.10) follows that

ν̃1(θ) = 4
√

Q4(cos θ, sin θ) · eG(θ),

ν̃1(2π) − 1 = eG(2π) − 1, (9.4.12)

where

G(θ) = −1
2

∫ θ

0

R2(cos ϕ, sin ϕ)
Q4(cosϕ, sin ϕ)

dϕ. (9.4.13)

By (9.4.12), we know that the infinity is a weak focus of (9.4.1) only if Q4(x, y)
is positive definite and G(2π) = 0.

We see from (9.4.9), (9.4.12) and (9.4.13), when G(2π) = 0, ν̃1(θ) is a periodic
function of period π and

ν̃3(2π) = 2
∫ π

0

∣∣∣∣∣
P4(cos ϕ, sin ϕ),Q4(cosϕ, sin ϕ)

P2(cos ϕ, sin ϕ),Q2(cosϕ, sin ϕ)

∣∣∣∣∣
e2G(ϕ)dϕ

Q
3
2
4 (cos ϕ, sin ϕ)

. (9.4.14)

Lemma 9.4.1. Suppose that system (9.4.1) has no real singular point on the
equator Γ∞ and G(2π) = 0. Then, a4 is a real zero of the following polynomial H1

of degree 15 in a2
4:

H1 =24488801280000000000+ 770943744000000000000a2
4

−469421964289260000000000a4
4

+36075095205512305500000000a6
4

−1143110740438000496812500000a8
4

+11013872157343419644770312500a10
4

+67294307690668435658116875000a12
4

+8216045042989819669497109375a14
4

−455712654622496257745066187500a16
4

−817172022465840200592407725000a18
4

−57549976589616052075594587500a20
4

+1286475949345038306506007073750a22
4

+1637228153622181244360199321500a24
4

+934842729588870230115343355500a26
4

+263170086745751773461987484900a28
4

+29615860952895797456782793171a30
4 . (9.4.15)

Theorem 9.4.1. System (9.4.1) has no real singular point on the equator Γ∞
and G(2π) = 0 if and only if a4 = ±a∗

4, λ = λ2, where a∗
4(= 0.81233628 · · ·) is the

largest real zero of the function H1.
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Lemma 9.4.1 and Theorem 9.4.1 will be proved in Section 9.5.

Lemma 9.4.2.

dG(2π)
da4

∣∣∣∣
a4=±a∗

4 , λ=λ2

= 17.00901058 · · · > 0. (9.4.16)

Lemma 9.4.3.

ν̃3(2π)
∣∣∣∣
a4=±a∗

4, λ=λ2

≈ ±5.36546× 1011. (9.4.17)

The proofs of Lemma 9.4.2 and Lemma 9.4.3 will be given in Section 9.6.
We see from Theorem 9.4.1, Lemma 9.4.2 and Lemma 9.4.3 that the equator Γ∞

of system (9.4.1) is a unstable (stable) inner limit cycle when λ = λ2, a4 = a∗
4 (or

a4 = −a∗
4). When λ = λ2, a4 = a∗

4(1 − σ) (or a4 = −a∗
4(1 − σ)) and 0 < σ � 1, the

equator Γ∞ of system (9.4.1) is a stable (unstable) inner limit cycle.
By using well known Hopf bifurcation theorem, we have

Theorem 9.4.2. When λ = λ2, a4 = a∗
4(1 − σ) (or a4 = −a∗

4(1 − σ)) for
0 < σ � 1, system (9.4.1) has exactly a unstable (or a stable) limit cycle near the
equator.

Theorem 9.3.3 and Theorem 9.4.2 imply the following main result.

Theorem 9.4.3. For system (EZ2
3 ), 6 limit cycles can be created respectively in

two small neighborhoods of two weak focuses of 6 order. In addition, in a inner
neighborhood of the equator, there exists a larger limit cycle. Therefore, there exist
13 limit cycles with the scheme 1 ⊃ (6

⋃
6).

When λ = λ2, a4 = ±a∗
4, by solving (9.3.14), we have κ = 0.00037809 · · · > 0.

Thus, Theorem 9.3.4 and Theorem 9.4.3 follow that

Theorem 9.4.4. Suppose that the coefficients of system (9.1.8) are given by
(9.3.15), where λ = λ2, a4 = a∗

4(1 − σ) (or a4 = −a∗
4(1 − σ)). Then, we have

(1) When ε = σ = 0, (±1, 0) are unstable (or stable) weak focus of 6 order, the
equator Γ∞ of system (9.1.8) is a unstable (or a stable) inner limit cycle.

(2) When ε = 0, 0 < σ � 1, (±1, 0) are unstable (or stable) weak focus of 6
order, and in the neighborhood of the equator, there exists a unique unstable (or
stable) limit cycle.

(3) When 0 < |ε| � σ � 1, there exist 6 limit cycles in a neighborhoods of
(±1, 0), respectively. In a neighborhood of the equator, there exists a unique unstable
(or stable) limit cycle. Namely, there exist 13 limit cycles. Furthermore, the equator
Γ∞ is a inner stable (or unstable) limit cycle.
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9.5 Proofs of Lemma 9.4.1 and Theorem 9.4.1

In order to know the exact value of G(2π), we need to have factorization of Q4(x, y).
Because the coefficient of the term x4 in Q4(x, y) is 1. It implies that Q4(x, y) is
positive definite if and only if there exist two positive numbers α, β and two constants
γ1, γ2, such that

Q4(x, y) = [(x + γ1y)2 + α2y2][(x + γ2y)2 + β2y2]. (9.5.1)

Expanding the right hand of (9.5.1) and comparing the coefficients of the same pow-
ers with (9.4.3), it follows from (9.3.5) that α, β, γ1, γ2 are solutions of the equations
f1 = f2 = f3 = f4 = 0, where

f1 =a4 − γ1 − γ2,

f2 =36 + 4a2
4 + 45α2 + 45β2 + 1090a2

4λ + 2722a2
4λ

2

+45γ2
1 + 180γ1γ2 + 45γ2

2 ,

f3 =180a4 + 502a3
4 − 180a4λ + 6820a3

4λ + 16105a3
4λ

2

+675β2γ1 + 675α2γ2 + 675γ2
1γ2 + 675γ1γ

2
2 ,

f4 =23040a2
4 + 3578819a4

4 − 32400α2β2 + 213120a2
4λ

+73223024a4
4λ + 411840a2

4λ
2 + 158462585a4

4λ
2

−32400β2γ2
1 − 32400α2γ2

2 − 32400γ2
1γ

2
2 . (9.5.2)

Remark 9.5.1. It is easy to show that if (α, β, γ1, γ2) is a complex solution group
of the equations f1 = f2 = f3 = f4 = 0, then Q4(x, y) always has the factorization
(9.5.1) whether Q4(x, y) is positive definite or not.

Lemma 9.5.1. System (9.4.1) has no real singular point on the equator if and
only if there exist three positive numbers α, β, γ, such that

Q4(x, y) = [(x +
1
2
a4y − a4γy)2 + α2y2][(x +

1
2
a4y + a4γy)2 + β2y2]. (9.5.3)

Proof. Because a4 �= 0, we see from f1 = 0 that there exists a γ such that

γ1 =
1
2
a4 − γa4, γ2 =

1
2
a4 + γa4. (9.5.4)

We can assume that γ � 0 and prove that γ �= 0. In fact, we see from f1 = f2 = 0
that

α2 + β2 = −4
5

+ 2γ2a2
4 −

1
90

(143 + 2180λ + 5444λ2)a2
4. (9.5.5)

Since we have Δ(λ, 1) = 0, (9.5.5) implies that α2 + β2 < − 4
5 + 2γ2a2

4. It follows
that γ �= 0.



9.5 Proofs of Lemma 9.4.1 and Theorem 9.4.1 295

Substituting (9.5.4) into (9.5.2), we know that f2 = f3 = 0 if and only if

α2 = f5, β2 = f6, (9.5.6)

where

f5 =
1

2700γ
(180 − 269a2

4 − 1080γ − 2145a2
4γ + 2700a2

4γ
3

+360λ + 2710a2
4λ − 32700a2

4γλ + 8620a2
4λ

2 − 81660a2
4γλ2),

f6 =
1

2700γ
(−180 + 269a2

4 − 1080γ − 2145a2
4γ + 2700a2

4γ
3

−360λ− 2710a2
4λ − 32700a2

4γλ − 8620a2
4λ

2 − 81660a2
4γλ2). (9.5.7)

Lemma 9.5.2. System (9.4.1) has no real singular point on the equator if and
only if F1 = 0, f5 > 0, f6 > 0 and γ > 0, where

F1 =32400 + 213480a2
4 + 8910016a4

4 + 129600λ

+6988320a2
4λ + 179010340a4

4λ + 129600λ2

+15915600a2
4λ

2 + 386328865a4
4λ

2

−180(6480− 5760a2
4 + 255463a4

4 + 136800a2
4λ

+5439976a4
4λ + 465120a2

4λ
2 + 11877880a4

4λ
2)γ2

+162000a2
4(72 + 143a2

4 + 2180a2
4λ + 5444a2

4λ
2)γ4

−29160000a4
4γ

6. (9.5.8)

Proof. Submitting (9.5.4), (9.6.6) into f4, it is easy to show that f4 = Δ(λ, 1) = 0
if and only if F1 = 0. Thus Lemma 9.5.2 holds.

Denote that

n1 =(β2 − α2)

×(−1440 + 943a2
4 + 900α2 − 4320λ + 31780a2

4λ + 75700a2
4λ

2)

−60(3α2 + β2)(−72 − 43a2
4 + 150a2

4λ + 376a2
4λ

2)γ

+4a2
4(−1440 + 943a2

4 − 675α2 − 225β2

−4320λ + 31780a2
4λ + 75700a2

4λ
2)γ2

−240a2
4(−72 − 43a2

4 + 150a2
4λ + 376a2

4λ
2)γ3 − 3600a4

4γ
4,

n2 =−(β2 − α2)

×(−1440 + 943a2
4 + 900β2 − 4320λ + 31780a2

4λ + 75700a2
4λ

2)

+60(α2 + 3β2)(−72 − 43a2
4 + 150a2

4λ + 376a2
4λ

2)γ

+4a2
4(−1440 + 943a2

4 − 225α2 − 675β2

−4320λ + 31780a2
4λ + 75700a2

4λ
2)γ2
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+240a2
4(−72 − 43a2

4 + 150a2
4λ + 376a2

4λ
2)γ3 − 3600a4

4γ
4,

n3 =−15(α2 − β2)(−72 − 43a2
4 + 150a2

4λ + 376a2
4λ

2)

+a2
4(−1440 + 943a2

4 + 450α2 + 450β2 − 4320λ

+31780a2
4λ + 75700a2

4λ
2)γ + 900a4

4γ
3. (9.5.9)

Substituting (9.5.3) into (9.4.13) and using the method of partial integration, we
have

Lemma 9.5.3. When θ ∈
(
−π

2
,
π

2

)
,

G(θ) =
G1(θ) − G1(0)

1800αβ(α2 − 2αβ + β2 + 4a2
4γ

2)(α2 + 2αβ + β2 + 4a2
4γ

2)
, (9.5.10)

where

G1(θ)=a4βn1 arctan
2a4(1 − 2γ) + [a2

4(1 − 2γ)2 + 4α2)]tanθ

4α

+a4αn2 arctan
2a4(1 + 2γ) + [a2

4(1 + 2γ)2 + 4β2]tanθ

4β

+2αβn3 log
4α2tan2θ + (2 + a4 − 2a4γ tan θ)2

4β2tan2θ + (2 + a4 + 2a4γ tan θ)2
. (9.5.11)

Lemma 9.5.4.

G(2π) =
−a4π(αf7 + βf8)

900αβ(α2 + 2αβ + β2 + 4a2
4γ

2)
, (9.5.12)

where

f7 =1440 − 943a2
4 + 900β2 + 4320γ

+2580a2
4γ + 900a2

4γ
2 + 4320λ− 31780a2

4λ

−9000a2
4γλ − 75700a2

4λ
2 − 22560a2

4γλ2,

f8 =1440 − 943a2
4 + 900α2 − 4320γ

−2580a2
4γ + 900a2

4γ
2 + 4320λ− 31780a2

4λ

+9000a2
4γλ − 75700a2

4λ
2 + 22560a2

4γλ2. (9.5.13)

Proof. Because the integrand of the right hand of (9.4.13) is a periodic function of
period π, Lemma 9.5.3 implies that

G(2π)=2
[
G

(π

2

)
− G

(
−π

2

)]

=
2

[
G1

(π

2

)
− G1

(
−π

2

)]

1800αβ(α2 − 2αβ + β2 + 4a2
4γ

2)(α2 + 2αβ + β2 + 4a2
4γ

2)

=
2πa4(βn1 + αn2)

1800αβ(α2 − 2αβ + β2 + 4a2
4γ

2)(α2 + 2αβ + β2 + 4a2
4γ

2)
. (9.5.14)

(9.5.9) and (9.5.14) give the conclusion of this Lemma.
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Remark 9.5.2. When αf7 +βf8 �= 0, the function G(θ) has jump discontinuous
points at θ =

π

2
± kπ, k = 0, 1, 2, · · · . When αf7 + βf8 = 0, for θ ∈ (−∞,∞), G(θ)

is a continuous periodic function of period π.

Lemma 9.5.5. Suppose that system (9.4.1) has no real singular point on the
equator. Then G(2π) = 0 if and only if f7f8 � 0 and F2 = 0, where

F2 =777600a2
4(48600− 99630a2

4 − 4001235a4
4 + 142751540a6

4

+194400λ− 1590300a2
4λ − 78937845a4

4λ + 2920922183a6
4λ

−3877200a2
4λ

2 − 170418660a4
4λ

2 + 6319248215a6
4λ

2)γ4

−216(104976000+ 1138989600a2
4 − 83650309200a4

4

−949863385800a6
4 + 68019121524943a8

4 + 419904000λ

+24686856000a2
4λ − 1705595216400a4

4λ − 19423812453480a6
4λ

+1391129313186520a8
4λ + 51858144000a2

4λ
2

−3691578067200a4
4λ

2 − 42021926420400a6
4λ

2

+3009500477048005a8
4λ

2)γ2 + 1133740800+ 6858432000a2
4

−3027453103440a4
4 − 30040565308416a6

4

+2789782868404321a8
4 + 15116544000λ+ 170222083200a2

4λ

−61921065003840a4
4λ − 614438279223480a6

4λ

+57056708189236408a8
4λ − 133959025108800a4

4λ
2

+30233088000λ2 + 376625894400a2
4λ

2

−1329260609063880a6
4λ

2 + 123433679684533387a8
4λ

2. (9.5.15)

Proof. Lemma 9.5.2 follows that if system (9.4.1) has no real singular point on the
equator, then, F1 = 0. We see from (9.5.12) that G(2π) = 0 if and only if f7f8 � 0
and α2f2

7 − β2f2
8 = 0. From (9.6.6) and (9.5.13), by using F1 = 0 and Δ(λ, 1) = 0,

we have
α2f2

7 − β2f2
8 =

1
30375a2

4γ
3
F2. (9.5.16)

It follows the Lemma 9.5.5.

Proof of Lemma 9.4.1. Lemma 9.5.2 and Lemma 9.5.5 follow that if system
(9.4.1) has no real singular point on the equator Γ∞ and G(2π) = 0, then F1 = F2 =
Δ(λ, 1) = 0, a4γ �= 0. Thus, using Mathematica program, we obtain

Res(Res(F1, F2, γ), Δ(λ, 1), λ) = a36
4 H6

0H4
1 = 0, (9.5.17)

where H1 is given by (9.4.15),

H0 = −28800− 1389200a2
4 + 1293760a4

4 + 5630539a6
4. (9.5.18)
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Next we prove that H0 �= 0 by finding contradiction. Suppose that H0 = 0, then

M1 = Res(H0, F1, a4) = 0, M2 = Res(H0, F2, a4) = 0.

By using Mathematica, we know that M1, M2 are two polynomials with respect to
γ, λ. The highest common factor of Res(M1, Δ(λ, 1), λ) and Res(M2, Δ(λ, 1), λ) is
γ12. Thus, when H0 = F1 = F2 = Δ(λ, 1) = 0, we have γ = 0. This contradicts the
conditions of Lemma 9.5.2. Thus Lemma 9.4.1 holds.

Lemma 9.5.6. When F1 = F2 = H1 = Δ(λ, 1) = 0, a4 �= 0, λ is a polynomial
of degree 14 of a2

4 with rational coefficients, i.e., λ = H2, where

H2 =
1
m

14∑
k=0

bka2k
4 (9.5.19)

and m, b0, b1, · · · , b14 are given by §9.7.

Proof. By using Mathematica, we see that
√

Res(F1, F2, γ) is a polynomial in a4, λ.
Making this polynomial with Δ(λ, 1) to do mutual division with respect to λ, we
have a8

4(F3 − F4λ) = 0. Hence, when F1 = F2 = H1 = Δ(λ, 1) = 0, a4 �= 0, we have

λ =
F3

F4
, (9.5.20)

where F3, F4 are two polynomials of a2
4 with rational coefficients. The highest com-

mon factor of F4 and H1 is 1. By the polynomials theory, there exist two polynomials
F5, F6 in a2

4 with rational coefficients, such that

F4F5 + H1F6 ≡ 1. (9.5.21)

(9.5.20) and (9.5.21) imply that

λ =
F3F5

F4F5
= F3F5, (9.5.22)

when F1 = F2 = H1 = Δ(λ, 1) = 0, a4 �= 0. Using H1 = 0 to eliminate the terms
of a4 with power exponents larger than 28 in the expansion of F3F5. We obtain the
conclusion of the Lemma 9.5.6.

Remark 9.5.3. Using Mathematica, we obtain

Δ(H2, 1) = H1F7, (9.5.23)

where F7 is a polynomial of a2
4. Thus, H1 = 0 follows that Δ(H2, 1) = 0.

Lemma 9.5.7. Suppose that γ �= 0, H1 = 0, λ = H2. Then, F1 = F2 = 0 if
and only if F2 = 0.
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Proof. By using Mathematica, it is easy to verify from Δ(H2, 1) = 0 that

48q2
0F1 + (1800a2

4q0γ
2 − q1)F2 = H3(a4, λ)γ2 + H4(a4, λ), (9.5.24)

where

q0 =48600− 99630a2
4 − 4001235a4

4 + 142751540a6
4 + 194400λ

−1590300a2
4λ − 78937845a4

4λ + 2920922183a6
4λ

−3877200a2
4λ

2 − 170418660a4
4λ

2 + 6319248215a6
4λ

2,

q1 =−17496000− 42573600a2
4 + 11777807700a4

4

−640423404750a6
4 + 11135043548357a8

4− 69984000λ

−1567836000a2
4λ + 240482822400a4

4λ

−13097306243370a6
4λ + 227734631514230a8

4λ

−3316464000a2
4λ

2 + 520536499200a4
4λ

2

−28333646277600a6
4λ

2 + 492670092977045a8
4λ

2. (9.5.25)

In (9.5.24), H3(a4, λ) and H4(a4, λ) are two polynomials in a4, λ with rational coef-
ficients, for which the highest power exponent of λ is 2. And we have

H3(a4, H2) = H1F8, H4(a4, H2) = H1F9,

where F8, F9 are two polynomials in a2
4. Thus when H1 = 0, λ = H2, we have

H3 = H4 = 0. Hence, when H1 = 0, λ = H2, (9.5.24) follows that

48q2
0F1 + (1800a2

4q0γ
2 − q1)F2 = 0. (9.5.26)

Again using Mathematica, we know that Res(q0, H1, a4) is a polynomial in λ, for
which with Δ(λ, 1) are relatively prime. Thus, when H1 = Δ(λ, 1) = 0, q0 �= 0.
Therefore, from (9.5.26), we obtain the conclusion of this Lemma 9.5.7.

Remark 9.5.4. Notice that all operations in the above lemmas are rational op-
erations, by using Mathematica to polynomials of a4, λ, γ with rational coefficients.
So that, they have no any rounding error.

The Proof of Theorem 9.4.1. Necessary: It follows from Lemma 9.4.1,
Lemma 9.5.5 and Lemma 9.5.6 that if system (9.4.1) has no real singular point
on the equator and G(2π) = 0, then H1 = F2 = 0, λ = H2. We can find that
H1|a2

4=ζ has exact four positive zeros a2
4 = ζk, k = 1, 2, 3, 4, where

ζ1 = 0.65989022 · · · , ζ2 = 0.37330788 · · · ,
ζ3 = 0.03359415 · · · , ζ4 = 0.01780119 · · · (9.5.27)
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and ζ1 = (a∗
4)2. Thus, in order to make H1 = 0 and λ = H2, it has to satisfy the

following 4 conditions:

C1 : a2
4 = ζ1, λ = λ2,

C2 : a2
4 = ζ2, λ = λ2,

C3 : a2
4 = ζ3, λ = λ1,

C4 : a2
4 = ζ4, λ = λ1. (9.5.28)

From (9.5.26), when H1 = 0, λ = H2 and

γ2 =
q1

1800a2
4q0

, (9.5.29)

we have F1 = 0. For γ2 given by (9.5.29), we obtain the following computational
results:

γ2 =

⎧
⎪⎪⎨
⎪⎪⎩

−0.08092370 · · · , if a2
4 = ζ1, λ = λ2,

0.01951104 · · · , if a2
4 = ζ2, λ = λ2,

0.22561073 · · · , if a2
4 = ζ3, λ = λ1,

190.45459957 · · · , if a2
4 = ζ4, λ = λ1.

(9.5.30)

By (9.5.30), if one of the conditions C2, C3, C4 is satisfied and γ2 is defined by
(9.5.29), then F1 = 0, γ2 > 0. Furthermore, (9.5.5) and (9.5.30) imply that

α2 + β2 =

⎧
⎨
⎩

−0.94577861 · · · , if a2
4 = ζ2, λ = λ2,

−12.58341028 · · · , if a2
4 = ζ3, λ = λ1,

−0.27130003 · · · , if a2
4 = ζ4, λ = λ1.

(9.5.31)

Clearly, α2 + β2 is negative. By Lemma 9.5.2 and Remark 9.5.1, we obtain the
necessary of this theorem.

Sufficiency: When the condition C1 holds, we see from F2 = 0 , (9.6.6) and
(9.5.13) that

γ = 0.95518279 · · · ,

α2 = 0.02182871 · · · , β2 = 0.09886412 · · · ,

f7 = 8243.65696363 · · · , f8 = −3873.59848007 · · · .
(9.5.32)

Lemma 9.5.2, Lemma 9.5.5 and Lemma 9.5.7 imply the sufficiency of this theorem.

9.6 The Proofs of Lemma 9.4.2 and Lemma 9.4.3

When λ = λ2 and a4 is varied in a small neighborhood of ±a∗
4, Theorem 9.4.1 implies

that Q4(x, y) is positive definite. Thus, we see from Lemma 9.5.1 and Lemma 9.5.2
that Q4(x, y) has the factorization as (9.5.3), where α, β, γ satisfy

α2 = f5, β2 = f6, F1 = 0. (9.6.1)
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It implies that α, β, γ are continuous functions of a2
4. When

∂F1

∂γ
�= 0, we can

calculate
dα

da4
,

dβ

da4
,

dγ

da4
and by using (9.5.14), we can find

dG(2π)
da4

. By (9.5.14)

and (9.5.16), we have
G(2π) = H5F2, (9.6.2)

where

H5 =
−π

27337500a4αβγ3(α2 + 2αβ + β2 + 4a2
4γ

2)(αf7 − βf8)
. (9.6.3)

By (9.5.32), when λ = λ2 and a4 is varied in a small neighborhood of ±a∗
4, we

obtain αf7 − βf8 > 0.

Lemma 9.6.1. When F1 = H1 = Δ(λ, 1) = 0, we have
∂F1

∂γ
�= 0.

Proof. By using Mathematica, we know that Res
(

F1,
∂F1

∂γ
, γ

)
is a polynomial in

a4, λ. For the resultant of this polynomial and Δ(λ, 1) with respect to λ, it is
a polynomial of a4, which is prime with the polynomial H1. Thus, this lemma
holds.

Proof of Lemma 9.4.2

Proof. When λ = λ2 and a4 is varied in a small neighborhood of ±a∗
4 , Lemma 9.5.2

implies that F1 = 0. We see from Lemma 9.6.1 that

dγ

da4
= −∂F1

∂a4

/
∂F1

∂γ
. (9.6.4)

(9.6.2) and (9.6.4) follow that when λ = λ2, at a4 = ±a∗
4, we have

dG(2π)
da4

= H5
dF2

da4
= H5

(
∂F1

∂γ

∂F2

∂a4
− ∂F2

∂γ

∂F1

∂a4

) /
∂F1

∂γ
. (9.6.5)

Using (9.5.32), (9.6.3) and (9.6.5), we obtain

dG(2π)
da4

∣∣∣∣
a4=±a∗

4 , λ=λ2

= 17.00901058 · · · . (9.6.6)

Then, Lemma 9.4.2 holds.

Proof of Lemma 9.4.3

Proof. By using (9.4.14), (9.5.10) and (9.5.32) to compute, we have that Lemma
9.4.3 holds.
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9.7 Appendix

c0 = 4004
939195 (594561331+12159853840λ+26305992745λ2)a6

4,

c1 =− 104
455625 (−1074510+452297684a2

4−21857085λ

+9250222925a2
4λ−47246400λ2+20011444745a2

4λ2)a4
4,

c2 =− 13
31697831250 (2558716387449552+1013924199420034321a2

4

+52332524917779600λ+20736808593910992256a2
4λ

+113214060155936160λ2+44860994915155953859a2
4λ2)a6

4,

c3 = −26
24962042109375 (−2505649578712461828360+1435447422350937850454657a2

4

−51245617654399769951760λ+29357812780720622598192416a2
4 λ

−110862255246939470854440λ2+63511252100124300505455635a2
4λ2)a8

4,

c4 = −13
11329547209494127560905908185258052295450390625

×(−31834460290713919579083281019136199779853763043200000

+50280260932461639855623872865520590812238414266800000a2
4

+6365021324691796815400929707842167502489513617516480000a4
4

+57259561083570503256091720196239707527029823176530770400a6
4

−5746283610376483087751237895938940357206343623688256986400a8
4

+649846631231070052107661520445798338133894874027033648917807a10
4

−651171308515396915028594335554609014646473804062080000λ

+1028322466139960504393080463711907756405729048913680000a2
4 λ

+130177523057425237007563600201174967602039292098802208000a4
4 λ

+1171074244239424146532781705576096546132899285293528528000a6
4 λ

−117523160886860981291242154839583128481670374217405899553280a8
4 λ

+13290682359031702403896437369325210492560868821295597635210000a10
4 λ

−1408739766249350098044568988501631958183010730094080000λ2

+2224618732623284121083329748456342776528481557535040000a2
4 λ2

+281619644127217978175922220374204092025950234649115680000a4
4 λ2

+2533444581900216017380135702052534033344828405678997364000a6
4 λ2

−254243841462741792188480943393426556725577682816903219855200a8
4 λ2

+28752410275787415274115592423234227686652051162404968443078445a10
4 λ2)a2

4,

c5 =−104
3375 (180+18317a2

4−2025λ+373439a2
4λ−6660λ2+807620a2

4λ2)a2
4,

c6 = 52
65221875 (−14640825890+277794403047a2

4−297642955430λ
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+5682054029130a2
4λ−643354561400λ2+12292426157715a2

4λ2)a4
4,

c7 = −416
184904015625 (−20183385331212507+2971382709418174442a2

4−412796851484198355λ

+60770804241575838161a2
4λ−893026165172960340λ2+131468576418175907831a2

4λ2)a6
4,

c8 = 1664
511645004860105000294937342896376559375

×(108860103505395151810421890871440964979720

+174103681879414520761136159458903752571815a2
4

−10557357616993051187063587884723483133192010a4
4

+156861433129261054037861541885554846857378251a6
4

+2311942086469272701580432648879926909975400λ

+3621108841362360016619289562154317939678125a2
4λ

−215846749820364988164980114966120038295542310a4
4λ

+3208158102172947586570870728190270495607385813a6
4λ

+5027394357647431888386160966577548423111200λ2

+7851739732470236473683967444019078955305700a2
4λ2

−466930391365533503019328911089191159220412440a4
4λ2

+6940378973092320074653506846195325346427210480a6
4λ2),

c9 = −104
10125 (−2679+67652a2

4−53790λ+1389194a2
4λ−117060λ2+3007532a2

4λ2)a3
4,

c10 = −104
1760990625 (152217275580+25959189233645a2

4+3106111900860λ+530914901675948a2
4λ

+6717064481280λ2+1148554667524115a2
4λ2)a5

4,

c11 = −208
924520078125 (−55324412125423200+27911714110836463963a2

4

−1131514912456026120λ+570851179670703914920a2
4λ

−2447869640821698600λ2+1234951436665000410505a2
4λ2)a7

4,

c12 = 1664
83922571922178722673377097668578165151484375

×(−15583426332122373999281701317970676482828104000

−23891149373767040074636852963343188844405944500a2
4

+1398494859372864280452777486185639782423058722200a4
4

−20793724322697563749127889076387518827736461552550a6
4

−9707002224940525802338273507828750607471648608651812a8
4

+1429035705368691279125794047999381103393371923503049563a10
4

−308838558171646666927676025307026981981932112000λ

−481657725556160268425252765418742742402603296500a2
4λ
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+28610443258382367246628444191252339953749095009000a4
4λ

−425271149947718077830876419109038170441002139083300a6
4λ

−198527896338605010832955718278602835685067281710568300a8
4 λ

+29226680152648068103911007398642534109910980164052081012a10
4 λ

−665120046911974977664090336426461197656217280000λ2

−1039909056612189336615325693624189379525811690000a2
4λ2

+61896970814722727872213287892247516133181626834000a4
4λ2

−920009919003345718714045444351200198668529238142550a6
4λ2

−429485513310802642360546161171960366525002618072581080a8
4 λ2

+63227566203473001110005154354345428715380731301618997941a10
4 λ2)a4,

c13 = 13
33569028768871489069350839067431266060593750 ×

(−4040205092075217603862475032779911919096132362403840

−6313720500235766190675753060783427329906110269870080a2
4

+375651463192764333261425365487437865341361202842787840a4
4

−5583567470484805513994084581188403174298092037520826368a6
4

+4693766296112163253393898683177878958618737696194359680a8
4

−279263824441095674891306422385346838792741503249616883320a10
4

+4150892602142403983926935824603530249787675757718894268751a12
4

−82632819838886726884258829868258612352273189240012800λ

−129130109212039115957602442092652287080925644033945600a2
4 λ

+7682832680274963868683889895540070630201612896542924800a4
4 λ

−114195286313436287529831721901137693721362327782148632576a6
4 λ

+95997046040395840702680712182933461502967213072165324800a8
4 λ

−5711511926905246144144229474804367855377698640154882394240a10
4 λ

+84894177226224001992666441721005962217714575442125870700816a12
4 λ

−178764503729383404203403601980269512002134207034163200λ2

−279354249526317031945953522931124592655758960850944000a2
4 λ2

+16620662751872805587639269962363364226394854431066030080a4
4 λ2

−247044481054784797022208066454576065774106626431621836800a6
4 λ2

+207675300550152899924828413787343853013720775912715420800a8
4 λ2

−12356004739316987035148856963617616057492861928103728203880a10
4 λ2
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+183655898748902198758426425776820926875135138559382371030925a12
4 λ2)a3

4,

m =41768861099732811507005593611646374236805368532722796304266557197195552700000000

40269749660833784102730754868241173225875313540958021030644938927835937920050666

60140089967669946316611433155969040351460015344542405511035570117375152062710,

b0 =133044732241688250129897645400021066090787419135379646332915211181851004248541

33074443255206144160082848298871381787422856569544217176386954421990273292015801

94110039187275928082176088793039126831249241415685346698100477058442570825000000,

b1 =1934234333754748946841567262351339056161062881680376463975517652845723302

37593455612044682944712048056992395396957872838664842053837667629212299915007276

5450055602803114392713055900512548736710402698508094834731289270886348800000000,

b2 =−1304086348652361001504528329700875532056818601220393247517143398575230655319

66015172812800179804978560701304020511967849367060216459026837192352946746385599

72851827031031632566019361322811477543817721009100136779391416121070540800000000,

b3 =103572979665013063817681177641403590462440193902902884676511988412878390186393

27908024921638778609056804200520176323188746642895922493614282349832731909920992

12062565245562426201672460230309648002075930824242396963357840881994478840000000,

b4 =−3460089866550368464115993377149611861085983900612920426835200721074487360806731

35640227253191954709488674460537317215542982703744822887815376493192915183887486

81693099420924226663330813424207204782943964064431644448241366153766864679000000,

b5 =40268480405535264666026335762209781098632654229856321754438831540885455299110807

84536121208490652906224184294417903710712261498631604275499765696065112488974511

13576747645034682498705532813119661391531685620417255350204783974586683544725000,

b6 =78039454039961170914384772040880996940137141355112920288216945991979382573568304

96396716256962035053198167397759898221743273266600626539983493606941561946111039

47424392967563838044014685779506651507583047675051175402270906818823761126621875,

b7 =−300182457140231178604251863371151864149881728448383375632262387574260513198215899

20016392408324507364145794241993059100657117059767940037273233977641093481750995

47202927563542202059490306652133862900553259677827175137705363782242284278652500,

b8 =−869565851019757275424312259473714626201935566018902874848586658678384836299613261

78584564266834474549631419735132815626720746305252067760582202899623888879219632

10388043070402781239360014924074377800878165544067697215604197082137278595275000,
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b9 =−351215895944591709669958029992291472177924645159423648585456748610439038468724173

31876868416434077877520832728387553549296093296068600637174930021814620752528369

19760268964065707016059698892649273598719535138119499434467174672913633103496500,

b10 =1136734450218184171868703323402624899193778935067822782343810554037144092784693946

19694936062270258789013022233978282296183597310914589599475309120050094795980126

3978360199546544363857996470132228766300966062769477324868138447442219392301110,

b11 =1758537836625989707675920419880598705835165713131162670862091838470166751372796326

4954563538615811784215607181115902004652848158254485655426947783252095775914348

36976364035424660761708522472839528481644522771064844337498003568656527343117700,

b12 =1090207524559549387874861711346072433102837433983516445965949895646153252938941281

87679233530160151431933195777501859766129895098057209186046743779570574334805468

12913648850418781253711176096485628875358010200191617158012607460091024125124080,

b13 =322651898840812916854837680011336850966749180188399810590009633200100408087458236

41291757383448775615551522083856805273297884172070469517508008409636013814501143

41821263609286230076704935433258418799768104803836971289380534968847770021460476,

b14 =37581541338721502665448857904407239421659394133860592481017760576209065297804531

14149594176635059879272781147765426412700898207260332189646547073028908102374075

37509832177899639544708691594205316929398289424810073677303066024011374998517151.
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The center-focus problem at the origin of system (EZ2
3 ) was solved by [Sibirskii,

1965], furthermore, shortened expressions of the first five Liapunov constants of
the origin had been given by [Liu Y.R., 1987] and [Liu Y.R. etc, 1989]. If system
(EZ2

3 ) have two elementary focuses, the first result of there exist at least 12 small-
amplitude limit cycles was proved by [Yu P. etc 2004; Yu P. etc 2005a; Yu P. etc
2005b]. In [Liu Y.R. etc, 2005], for a class of system (EZ2

3 ) with five free parameters
and two elementary focuses, shortened expressions of the first six Liapunov constants
were obtained, center-focus problem was solved, a new proof of there existing 12 limit
circles for (EZ2

3 ) system was given.
In [Li J.B. etc, 2010] and [Liu Y.R. etc, 2011b], the authors considered the most

general case that system (EZ2
3 ) is a six-parameter system which has two elementary

focuses (or centers). For this system, shortened expressions of the first six Liapunov
constants of two elementary focuses are obtained, center-focus problem was solved
completely. The conclusion that there exist at most 12 small-amplitude limit cycles
with the scheme 6

⋃
6 was proved. Because the system having two elementary weak



9.7 Appendix 307

focuses of order 6 keep to have a free parameter, in [Li J.B. etc, 2010] and [Liu Y.R.
etc, 2011c], the authors obtained a larger limit cycle by the bifurcation from the
equator. Therefore, the existence of 13 limit cycles with the scheme 1 ⊃ (6

⋃
6) had

been proved.
By considering Poincar’e bifurcations from some period annuluses, i.e., investi-

gating the numbers of some Abelian integrals, [Li C.Z. etc, 2009a] also obtained the
existence of existence of 13 limit cycles for a symmetric cubic system with different
disposition.



Chapter 10

Center-Focus Problem and Bifurcations of

Limit Cycles for Three-Multiple Nilpotent

Singular Points

Suppose that the origin of a real planar analytic system is an isolate singular point
and at this point, the eigenvalues of the coefficient matrix of the linearized system
are all zeros, but the coefficients of the linear terms are not all zero. In this case, the
origin is called a nilpotent singular point, for which the study on the center-focus
problem and bifurcations of limit cycles is more difficult. Recent years, the authors
of this book made some new contributions on this study direction. In this chapter,
we introduce their new results.

10.1 Criteria of Center-Focus for a Nilpotent Singular Point

Let the origin be a isolate singular point and it is nilpotent. Then, by making a
proper linear transformation, a planar autonomous analytic system can be reduced
to the following form:

dx

dt
= Φ(x, y) = y +

∞∑
k+j=2

akjx
kyj ,

dy

dt
= Ψ(x, y) =

∞∑
k+j=2

bkjx
kyj, (10.1.1)

where Φ(x, y), Ψ(x, y) are analytic in a neighborhood of the origin. Clearly, a nilpo-
tent singular point is a multiple point. By the discussion in Section 1.2, we have

Proposition 10.1.1. Suppose that y = f(x) is the unique solution of f(x) +
Φ(x, f(x)) = 0 in a neighborhood of the origin of system (10.1.1), where f(0) = 0.
If we have

Ψ(x, f(x)) = αxm + o(xm), α �= 0, (10.1.2)

then the multiplicity of the origin is m.
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The result in Section 1.2 tell us that a m-multiple singular point can be decom-
posed exactly into m complex elementary singular point.

On the basis of the discussion in [Amelikin etc, 1982] we have

Proposition 10.1.2. The origin of system (10.1.1) is a focus (or an enter) if
and only if

Ψ(x, f(x) = αx2n−1 + o(x2n−1), α �= 0,[
∂Φ
∂x

+
∂Ψ
∂y

]

y=f(x)

= βxn−1 + o(xn−1),

β2 + 4nα < 0, (10.1.3)

where n is a positive integer.

In order to solve the center and focus problem, in [Amelikin etc, 1982], the
authors made the transformation

x = (−α)
−1

2n−2 x1, y = (−α)
−1

2n−2 y1 + f(x) (10.1.4)

and introduces the Lyapunov polar coordinates

x1 = rCsϑ, y1 = −rnSnϑ, (10.1.5)

such that the concepts of focal values and the successor function of the origin for
system (10.1.1) were defined.

The normal forms of system (10.1.1) are discussed in some paper. Form Theorem
19.10 in [Amelikin etc, 1982], we have

Theorem 10.1.1. If condition (10.1.3) is satisfied, then there exist the following
formal series

u = x +
∞∑

k+j=2

a�
kjx

kyj ,

v = y +
∞∑

k+j=2

b�kjx
kyj,

dt

dτ
= 1 +

∞∑
k+j=1

c�kjx
kyj, (10.1.6)

such that by the above transformation, system (10.1.1) is reduced to the following
Liénard equations

du

dτ
= v + F (u),

dv

dτ
= αu2n−1, (10.1.7)

where
F (u) =

1
n

βun + o(un). (10.1.8)
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According to [Álvarez etc, 2006], we have

Theorem 10.1.2. If condition (10.1.3) holds, then there exist the power series
having the form (10.1.6) with non-zero convergence radius, such that by the above
transformation, system (10.1.1) is reduced to the following Liénard equations

du

dτ
= v,

dv

dτ
= αu2n−1 + v

∞∑
k=n−1

Bkuk, Bn−1 = β. (10.1.9)

In addition, for all k, B2k play the role of Lyapunov constants of the origin of
(10.1.1).

To find the coefficients a�
kj , b�kj , c�kj of transformation (10.1.6) and Bk in (10.1.9),

it is very tedious and hard work.
Especially, if system (10.1.1) is symmetric with the origin, which can be written

as
dx

dt
= y +

∞∑
k=1

X2k+1(x, y),
dy

dt
=

∞∑
k=1

Y2k+1(x, y), (10.1.10)

where X2k+1(x, y), Y2k+1(x, y) are homogenous polynomial of degree 2k + 1 in x, y.
Amelikin et al in Chapter 18 of [Amelikin etc, 1982] gave the following conclusion.

Theorem 10.1.3. For system (10.1.10), if the conditions in (10.1.3) are satis-
fied, then there exists a positive definite formal power series F (x, y) in a neighborhood
of the origin, such that

dF

dt

∣∣∣∣
(10.1.10)

=
∞∑

k=[ 3n+1
2 ]

Vkx2k. (10.1.11)

Remark 10.1.1. Generally, for (10.1.1), when the conditions in (10.1.3) hold,
there always exists a positive definite Lyapunov functions in a neighborhood of the
origin. However, the Lyapunov functions may be not a formal power series of x, y.

Example 10.1.1. For system

dx

dt
= y + μx2 + λx3,

dy

dt
= −2x3 + 2μxy + 2λμx4, (10.1.12)

we have the Lyapunov function

F = (x4 + y2) exp
(
2μ arctan

y

x2

)
, (10.1.13)

such that
dF

dt
= 4λ(1 + μ2)x6 exp

(
2μ arctan

y

x2

)
. (10.1.14)

Clearly, F is not a formal power series of x, y.
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10.2 Successor Functions and Focus Value of Three-Multiple

Nilpotent Singular Point

In this section, we assume that m = 3 in (10.1.2). Then, Proposition 10.1.2 follows
that

Proposition 10.2.1. The origin of system (10.1.1) is a three-multiple focus(or
center), if and only if

b20 = 0, (2a20 − b11)2 + 8b30 < 0. (10.2.1)

Without loss of generality, under condition (10.2.1), we can assume that

a20 = μ, b20 = 0, b11 = 2μ, b30 = −2. (10.2.2)

Otherwise, by letting

2a20 + b11 = 4μ, (2a20 − b11)2 + 8b30 = −16λ2 (10.2.3)

and making the transformation

ξ = λx, η = λy +
1
4
(2a20 − b11)λ2x2, (10.2.4)

it gives rise to the mentioned case. When (10.2.2) holds, system (10.1.1) becomes
the following:

dx

dt
= y + μx2 +

∞∑
k+2j=3

akjx
kyj = X(x, y),

dy

dt
= 2μxy − 2x3 +

∞∑
k+2j=4

bkjx
kyj = Y (x, y). (10.2.5)

By using the generalized polar coordinate transformation

x = r cos θ, y = r2 sin θ, (10.2.6)

system (10.2.5) is changed as follows:

dr

dt
=

r cos θX(r cos θ, r2 sin θ) + sin θY (r cos θ, r2 sin θ)
r(1 + sin2 θ)

=
r

1 + sin2 θ

∞∑
k=1

Rk(θ)rk,

dθ

dt
=

cos θY (r cos θ, r2 sin θ) − 2r sin θX(r cos θ, r2 sin θ)
r2(1 + sin2 θ)

=
r

1 + sin2 θ

∞∑
k=0

Qk(θ)rk , (10.2.7)
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where

R1(θ) = cos θ[sin θ(1 − 2 cos2 θ) + μ(cos2 θ + 2 sin2 θ)],

Q0(θ) = −2(cos4 θ + sin2 θ) � −3
2
. (10.2.8)

Thus, we have

dr

dθ
=

r

∞∑
k=1

Rk(θ)rk−1

∞∑
k=0

Qk(θ)rk

=
R1(θ)
Q0(θ)

r + o(r). (10.2.9)

Let

r = r̃(θ, h) =
∞∑

k=1

νk(θ)hk, (10.2.10)

be a solution of (10.2.9) satisfying the initial condition r|θ=0 = h where h is small
and

ν1(θ) = exp
∫ θ

0

R1(θ)
Q0(θ)

dθ, νk(0) = 0, k = 2, 3, · · · . (10.2.11)

Submitting (10.2.10), (10.2.11) into (10.2.9), νk(θ) can be solved successively.
Especially, we have

ν1(θ) =
1

(cos4 θ + sin2 θ)
1
4 exp

(
1
2
μ arctan

sin θ

cos2 θ

) . (10.2.12)

It follows that
ν1(kπ) = 1, k = 0, ±1, ±2, · · · . (10.2.13)

Proposition 10.2.2. Under the transformation r → −r, θ → π − θ, equation
(10.2.9) is invariant.

Proposition 10.2.3. When |θ| < 4π, |h| � 1, we have

−r̃(π − θ, h) ≡ r̃(θ,−r̃(π, h)) (10.2.14)

Proof. By Proposition 10.2.2, r = −r̃(π − θ, h) is a solution of (10.2.9) satisfying
r|θ=0 = −r̃(π, h). On the other hand, r = r̃(θ,−r̃(π, h)) is a solution of (10.2.9)
satisfying the same initial condition. Thus, by the uniqueness of solution, (10.2.14)
holds.

Moreover, (10.2.9) is invariant under the transformation r → −r, θ → θ − 2π. It
implies that
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Proposition 10.2.4. When |θ| < 4π, |h| � 1 ,

r̃(θ − 2π, h) ≡ r̃(θ, r̃(−2π, h)), (10.2.15)

r̃(θ + 2π, h) ≡ r̃(θ, r̃(2π, h)). (10.2.16)

Because for all sufficiently small r, we have
dθ

dt
< 0. Hence, we can define the

successor functions of system (10.2.9) in a small neighborhood of the origin as follows:

Δ(h) = r̃(−2π, h) − h =
∞∑

k=2

νk(−2π)hk. (10.2.17)

Proposition 10.2.3 and Proposition 10.2.4 follow the following result.

Theorem 10.2.1. For any positive integer m, ν2m+1(−2π) has the form

ν2m+1(−2π) =
m∑

k=1

ξ(k)
m ν2k(−2π), (10.2.18)

where ξ
(k)
m is a polynomial of νj(π), νj(2π), νj(−2π) (j = 2, 3, · · · , 2m) with rational

coefficients.

Definition 10.2.1. Let fk, gk be continuous and boundary functions with respect
to μ and aij , bij , k = 1, 2, · · · . Suppose that for an integer m, there exists a group(
ξ
(m)
1 , ξ

(m)
2 , · · · , ξ

(m)
m−1

)
of continuous and boundary functions in μ, aij , bij such that

fm = gm +
(
ξ
(m)
1 f1 + ξ

(m)
2 f2 + · · · + ξ

(m)
m−1fm−1

)
. (10.2.19)

Then, we say that fm and gm are equivalent, written by fm ∼ gm. If for any integer
m, we have fm ∼ gm, we say that the sequences of functions {fm} and {gm} are
equivalent, written by {fm} ∼ {gm}.

Remark 10.2.1. It is easy to see from Definition 10.2.1 that the following con-
clusions hold:

(1) The equivalent relationship of the sequences of functions is self-reciprocal,
symmetric and transmissible.

(2) If for some integer m, fm ∼ gm, then, when f1 = f = · · · = fm−1 = 0, we
have fm = gm.

(3) The relationship f1 ∼ g1 implies that f1 = g1.

By Theorem 10.2.1, we have

Proposition 10.2.5. For any positive integer m, ν2m+1(−2π) ∼ 0.
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Remark 10.2.2. We know from Theorem 10.2.1 that when k > 1 for the first
non-zero νk(−2π), k is an even integer. This fact is different from the center-focus
problem for the elementary singular points.

Definition 10.2.2. For system (10.2.5):
(1) For any positive integer m, ν2m(−2π) is called the m-order focal value of the

origin;
(2) If ν2(−2π) �= 0, the origin is called 1-order weak focus; if there is an integer

m > 1, such that ν2(−2π) = ν4(−2π) = · · · = ν2m−2(−2π) = 0, but ν2m(−2π) �= 0,
then, the origin is called m-order weak focus;

(3) If for all positive integer we have ν2m(−2π) = 0, then, the origin is called a
center.

Theorem 10.2.1 follows that

Theorem 10.2.2. If the origin of system (10.2.5) is a m-order weak focus, it is
stable when ν2m(−2π) < 0 and unstable when ν2m(−2π) > 0. If the origin of system
(10.2.5) is a nilpotent center, then in a neighborhood of the origin of (10.2.5), all
solutions are periodic solutions.

10.3 Bifurcation of Limit Cycles Created from Three-Multiple

Nilpotent Singular Point

In this section, we consider the perturbed system of system (10.2.5)

dx

dt
= δx + X(x, y) = δx + y + μx2 +

∞∑
k+2j=3

akjx
kyj,

dy

dt
= 2δy + Y (x, y) = 2δy + 2μxy − 2x3 +

∞∑
k+2j=4

bkjx
kyj . (10.3.1)

Clearly, when 0 < |δ| � 1, in a neighborhood of the origin, there exist one elementary
node at the origin and two complex singular points of system (10.2.5) at (x1, y1) and
(x2, y2) where

x1,2 =
−δ

(μ ± i)
+ o(δ), y1,2 =

±iδ2

(μ ± i)2
+ o(δ2). (10.3.2)

When δ → 0, those three singular points coincide to become a three-multiple singular
point O(0, 0).

By generalized polar coordinate transformation (10.2.6), the linearized system

dx

dt
= δx,

dy

dt
= 2δy (10.3.3)
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becomes
dr

dt
= δr =

rR0(θ)
1 + sin2 θ

,
dθ

dt
= 0, (10.3.4)

where
R0(θ) = (1 + sin2 θ)δ. (10.3.5)

Nonlinear system (10.3.1) is transformed into

dr

dθ
=

∞∑
k=0

Rk(θ)rk

∞∑
k=0

Qk(θ)rk

=
R0(θ)
Q0(θ)

+ O(r), (10.3.6)

by the same transformation (10.2.6).
Let

r = r̃(θ, h, δ) = ν0(θ, δ) +
∞∑

k=1

νk(θ, δ)hk, (10.3.7)

be a solution of system (10.3.6) satisfying the initial condition r|θ=0 = h, where h is
sufficiently small and

ν0(0, δ) = 0, ν1(0, δ) = 1, νk(0, δ) = 0, k = 2, 3, · · · . (10.3.8)

Denote that

ν0(θ, δ) = A0(θ)δ + o(δ),

νk(θ, δ) = νk(θ, 0) + Ak(θ)δ + o(δ), k = 1, 2, · · · . (10.3.9)

We have from (10.2.13), (10.3.7) and (10.3.9) that the successive function in a neigh-
borhood of the origin of system (10.3.1) is as follows:

Δ(h, δ)= r̃(−2π, h, δ) − h

=[A0(−2π)δ + o(δ)] + [A1(−2π)δ + o(δ)] h

+
∞∑

k=2

[νk(−2π, 0) + Ak(−2π)δ + o(δ)] hk. (10.3.10)

Proposition 10.3.1. In (10.3.9),

A0(θ) =
−ν1(θ, 0)

2

∫ θ

0

(1 + sin2 θ)dθ

ν1(θ, 0)(cos4 θ + sin2 θ)
, (10.3.11)

where
ν1(θ, 0) =

1

(cos4 θ + sin2 θ)
1
4 exp

(
1
2
μ arctan

sin θ

cos2 θ

) . (10.3.12)
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From (10.3.11), we have

A0(−2π) =
1
2

∫ 2π

0

(1 + sin2 θ)dθ

ν1(θ, 0)(cos4 θ + sin2 θ)
> 0. (10.3.13)

Proof. Submitting (10.3.7), (10.3.9) into (10.3.6), we have

dA0(θ)
dθ

=
1

Q1(θ)
[
(1 + sin2 θ) + cos θR1(θ)A0(θ)

]
. (10.3.14)

(10.3.8) and (10.3.14) follow the results of (10.3.11) and (10.3.12).

We see from (10.3.7) and (10.3.9) that r̃(θ, h, δ) = ν1(θ, 0)h + o(h) if δ = o(h),
when 0 < h � 1, |θ| < 4π. Thus we have

Theorem 10.3.1. If the origin of system (10.3.1)δ=0 is a center, then there is
no periodic solution in a neighborhood of the origin of (10.3.1) when 0 < |δ| � 1.

Theorem 10.3.2. Suppose that the origin of system (10.3.1)δ=0 is a m-order
weak focus. Then, we have

(1) When δν2m(−2π, 0) > 0, there is no periodic solution in a neighborhood of
the origin.

(2) When δν2m(−2π, 0) < 0, there exists a unique limit cycle which encloses the
elementary node O(0, 0) with initial value

r|θ=0 =
[−A0(−2π)δ
ν2m(−2π, 0)

] 1
2m

+ o(δ
1

2m ). (10.3.15)

Proof. Under the condition of this theorem, we have from (10.3.10) that

Δ(h, 0) = ν2m(−2π, 0)h2m + o(h2m), Δ(0, δ) = A0(−2π)δ + o(δ). (10.3.16)

By using the implicit function theorem to solve

Δ(h, δ) = 0, δ|h=0 = 0, (10.3.17)

we have uniquely the following result:

δ = −ν2m(−2π, 0)
A0(−2π)

h2m + o(h2m). (10.3.18)

Thus, we obtain

h = ±
[−A0(−2π)δ
ν2m(−2π, 0)

] 1
2m

+ o(δ
1

2m ). (10.3.19)

This means that Theorem 10.3.2 holds.
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Remark 10.3.1. Under the condition of Theorem 10.3.2, when δ is varied
from zero to nonzero, the origin (three-multiple nilpotent singular point) of system
(10.3.1)δ=0 is split to become one elementary node at the origin and two complex
singular points. A limit cycle enclosing the elementary node O(0, 0) is created. This
an interesting bifurcation behavior which is different from usual Hopf bifurcation.

Example 10.3.1. Considering the system

dx

dt
= δx + y + +ax(x4 + y2)k,

dy

dt
= 2δy − 2x3 + 2ay(x4 + y2)k, (10.3.20)

where k is a positive integer. When δ = a = 0 system (10.3.20) is a Hamiltonian
system with the Hamiltonian

H(x, y) = x4 + y2. (10.3.21)

We see from
dH

dt

∣∣∣∣
(10.3.20)

= 4H(δ + aHk) (10.3.22)

that there exists a unique limit cycle aHk = −δ enclosing elementary node O(0, 0)
of system (10.3.20) when δa < 0. �

In order to consider multiple bifurcations of the origin, we next discuss the per-
turbed system as follows:

dx

dt
= δx + y + μ(ε, δ)x2 +

∞∑
k+2j=3

akj(ε, δ)xkyj = X(x, y, ε, δ),

dy

dt
=2δy + 2μ(ε, δ)xy − 2x3 +

∞∑
k+2j=4

bkj(ε, δ)xkyj = Y (x, y, ε, δ), (10.3.23)

where X(x, y, ε, δ), Y (x, y, ε, δ) are power series of x, y, ε, δ with real coefficients and
non-zero convergence radius.

Under generalized polar coordinates (10.2.5), write the solution of (10.3.23) sa-
tisfying the initial condition r|θ=0 = h as follows:

r = r̃(θ, h, ε, δ) = ν0(θ, ε, δ) +
∞∑

k=1

νk(θ, ε, δ)hk, (10.3.24)

where |h| is sufficiently small and

ν0(0, ε, δ) = 0, ν1(0, ε, δ) = 1, νk(0, ε, δ) = 0, k = 2, 3, · · · . (10.3.25)
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Denote that
νk(θ, ε, δ) = νk(θ, ε, 0) + δgk(θ, ε, δ), (10.3.26)

where gk(θ, ε, δ) are analytic for sufficient small ε, δ when |θ| < 4π. It is easy to
prove that

Proposition 10.3.2. ν0(θ, ε, 0) ≡ 0, g0(θ, 0, 0) = A0(θ), ν1(−2π, ε, 0) ≡ 1.

(10.3.27)

We now suppose that δ = δ(ε) be a power series of ε with real coefficients and
non-zero convergence radius, δ(0) = 0. Then successor function of (10.3.23)δ=δ(ε) in
a small neighborhood of the origin is given by

Δ(h, ε)= r̃(−2π, h, ε, δ(ε)) − h

= ν0(−2π, ε, δ(ε)) + [ν1(−2π, ε, δ(ε)) − 1]h +
∞∑

k=2

νk(−2π, ε, δ(ε))hk. (10.3.28)

We see from (10.3.26), 10.3.27 and (10.3.28) that

Δ(h, ε)= δ(ε)
∞∑

k=0

gk(−2π, ε, δ(ε))hk

+
∞∑

k=2

νk(−2π, ε, 0)hk. (10.3.29)

Definition 10.3.1. Suppose that for |ε)| � 1, h = h(ε) is a continuous func-
tion of real variable ε, which takes its value in the complex field. If h(0) = 0 and
Δ(h(ε), ε) ≡ 0, then h = h(ε) is called a zero of Δ(h, ε).

Similar to Proposition 10.2.3, we obtain

Proposition 10.3.3. For r̃(θ, h, ε, δ) defined by (10.3.24), when |θ| < 4π, |h| �
1, we have

−r̃(π − θ, h, ε, δ) ≡ r̃(θ,−r̃(π, h, ε, δ), ε, δ). (10.3.30)

It follows that

Proposition 10.3.4. For a sufficiently small ε, if h = h(ε) is a real zero of the
successor function Δ(h, ε), then so is h = −r̃(π, h(ε), ε, δ(ε)).

Proposition 10.3.4 tell us that there exists a pair of the real zeros of Δ(h, ε).

Definition 10.3.2. Suppose that k is a positive integer and k � 2. If there exist
k−1 power series ξ2(ε), ξ3(ε), · · · , ξk−1(ε) and ν̃k(ε) in ε with non-zero convergence
radius, such that

νk(−2π, ε, 0) = ν̃k(ε) +
k−1∑
s=2

ξs(ε)νs(−2π, ε, 0), (10.3.31)



10.3 Bifurcation of Limit Cycles Created from Three-Multiple Nilpotent· · · 319

then, we say that νk(−2π, ε, 0) and ν̃k(ε) are analytic equivalence, denoted by

νk(−2π, ε, 0) � ν̃k(ε). (10.3.32)

Furthermore, if for any positive integer k > 2, ν2(−2π, ε, 0) = ν̃2(ε) and νk(−2π, ε, 0)
� ν̃k(ε), then we say that the two sequences of functions {νk(−2π, ε, 0)} and {ν̃k(ε)}
are analytic equivalent, written by

{νk(−2π, ε, 0)} � {ν̃k(ε)}. (10.3.33)

By Theorem 10.2.1, we have

Proposition 10.3.5. For any positive integer k,

ν2k+1(ε, 0) � 0. (10.3.34)

Because for any k, νk(−2π, h, ε, δ(ε)) is power series of ε. By Theorem 10.2.1,
when 0 < |ε| � 1, if Δ(h, ε) is not always equal to zero, the following conditions
hold.

Condition 10.3.1. There exist a natural number N and a positive integer m,
such that

A0(−2π)δ(ε) = λ0ε
l0+N + o(εl0+N ),

ν2(−2π, ε, 0) = λ1ε
l1+N + o(εlk+N ),

ν2k(−2π, ε, 0) � λkεlk+N + o(εlk+N), k = 2, 3, · · · , m, (10.3.35)

where l0, l1, · · · , lm−1 are positive integers, λ0, λ1, · · · , λm are independent of ε. In
addition,

lm = 0, λm �= 0,

ν2m+2k(−2π, ε, 0) = O(εN ), k = 1, 2, · · · . (10.3.36)

Remark 10.3.2. (1) In (10.3.35) and (10.3.36), if there is a s ∈ {2, 3, · · · , m−
1}, such that ν2s(−2π, ε, 0) ≡ 0, then we take λs = 0, ls = +∞. If N = 0, we take
εN ≡ 1.

(2) If Condition 10.3.1 holds, the origin of system (10.3.23)δ=ε=0 is a m-order
weak focus when N = 0 and a center when N > 0.

Proposition 10.3.4 and the proof of Weierstrass preparation theorem imply the
following conclusion.

Theorem 10.3.3. Suppose that Condition 10.3.1 holds. Then, we have
(1) There exist positive number h0, ε0, such that function Δ(h, ε) has exactly 2m

complex zeros (in the multiplicity) at the region {|h| < h0, |ε| < ε0}.
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(2) When 0 < |ε| � 1, in a small neighborhood of the origin, system (10.3.23)δ=δ(ε)

has at most m limit cycles enclosing the elementary node O(0, 0).
(3) When 0 < |ε| � 1, in a small neighborhood of the origin, system (10.3.23)δ=0

has at most m − 1 limit cycles.

Definition 10.3.3. Suppose that Condition 10.3.1 holds. The function

L(h, ε) = λ0ε
l0 + λ1ε

l1h2 + · · · + λkεlkh2k + · · · + λmεlmh2m (10.3.37)

is called a quasi successor function of (10.3.23)δ=δ(ε) in a neighborhood of the origin.

Similar to Theorem 3.3.2, we have

Theorem 10.3.4. Suppose that
(1) Condition 10.3.1 holds and 0 < ε � 1.
(2) There exist exact s zeros having positive first term in all 2m zeros of L(h, ε).
(3) These s positive first terms are different each other.

Then,
(1) Δ(h, ε) has exact s positive zeros.
(2) System (10.3.23)δ=δ(ε) has exactly s limit cycles in a neighborhood of the

origin.

For the case 0 < −ε � 1, replacing ε by −ε in the quasi successor function, we
obtain the corresponding result.

Similar to the proof of Theorem 3.3.3, we have

Theorem 10.3.5. Suppose that
(1) Condition 10.3.1 holds and 0 < ε � 1.
(2) There exists a positive integer d, such that

lk = (m − k)d, k = 0, 1, · · · , m. (10.3.38)

(3) G(η) =
∞∑

k=0

λkη2k has exact m simple positive zeros η1, η2, · · · , ηm.

Then
(1) Δ(h, ε) has exact m positive zeros h = ηkε

d
2 + o(ε

d
2 ), k = 1, 2, · · · , m.

(2) System (10.3.23)δ=δ(ε) has exactly m limit cycles in a sufficiently small neigh-
borhood of the origin.

The same as Theorem 3.3.4, we have

Theorem 10.3.6. Suppose that Condition 10.3.1 holds. In addition,

λk−1λk < 0, k = 1, 2, · · · , m,

lk−1 − lk > lk − lk+1, k = 1, 2, · · · , m − 1. (10.3.39)
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Then, when 0 < ε � 1, Δ(h, ε) has exact m positive zeros h = hk(ε) given by

hk(ε) =
√−λk−1

λk
ε

lk−1−lk
2 + o(ε

lk−1−lk
2 ), k = 1, 2, · · · , m. (10.3.40)

Correspondingly, system (10.3.23)δ=δ(ε) has exactly m limit cycles in a sufficiently
small neighborhood of the origin.

Theorem 10.3.7. If δ(ε) = λ0ε + o(ε), λ0 �= 0 and the origin is a center of
system (10.3.23)δ=ε=0, then there is no limit cycle of system (10.3.23)δ=δ(ε) in a
sufficiently small neighborhood of the origin when 0 < |ε| � 1.

Proof. Under Condition of Theorem 10.3.8, the quasi successor function of system
(10.3.23)δ=δ(ε) is L(h, ε) = λ0ε. Theorem 10.3.4 follows the conclusion of this theo-
rem.

Finally, we consider system

dx

dt
= δx + y + μ(γ, δ)x2 +

∞∑
k+2j=3

akj(γ, δ)xkyj = X(x, y,γ, δ),

dy

dt
=2δy + 2μ(γ, δ)xy − 2x3 +

∞∑
k+2j=4

bkj(γ, δ)xkyj = Y (x, y,γ, δ), (10.3.41)

where γ = {γ1, γ2, · · · , γn} is a vector in the n-dimension parameters space. X

(x, y,γ, δ), Y (x, y,γ, δ) are analytic with respect to x, y, δ, γ in the region {|x| �
1, |y| � 1, |δ| � 1, |γ − γ0| � 1}.

Similar to Theorem 3.1.4, we have

Theorem 10.3.8. Suppose that
(1) The origin of system (10.3.41)γ=γ0, δ=0 is a m-order weak focus, n � m−1.
(2) There exist j1, j2, · · · , jm−1 ∈ {1, 2, · · · , n}, such that

D(ν2, ν4, · · · , ν2m−2)
D(γj1 , γj2 , · · · , γjm−1)

∣∣∣∣
γ=γ0

�= 0, (10.3.42)

where ν2k is the k-th focus value of system (10.3.41)δ=0.
Then, by choosing proper parameters in the region {0 < ||γ−γ0|| � 1, 0 < |δ| �

1}, system (10.3.41) has exactly m limit cycles in a sufficiently small neighborhood
of the origin.
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10.4 The Classification of Three-Multiple Nilpotent Singular

Points and Inverse Integral Factor

On the basis of Theorem 10.1.1 and Theorem 10.1.2, we know that

Theorem 10.4.1. For system (10.2.5), one can derive successively the terms of
the following series with non-zero convergence radius:

u(x, y) = x +
∞∑

α+β=2

a�
αβxαyβ ,

v(x, y) = y +
∞∑

α+β=2

b�αβxαyβ , b�20 = −μ,

ζ(x, y) = 1 +
∞∑

α+β=1

c�αβxαyβ (10.4.1)

such that by the transformation

u = u(x, y), v = v(x, y), dt = ζ(x, y)dτ, (10.4.2)

system (10.2.5) is reduced to the following Liénard equations

du

dτ
= v + 2μu2 +

∞∑
k=1

Aku4k +
∞∑

k=1

Bku4k+2 +
∞∑

k=1

Cku2k+1 = U(u, v),

dv

dτ
= −2(1 + μ2)u3 = V (u, v), (10.4.3)

In addition, the origin of system (10.2.5) is a center if and only if for all k, Ck = 0.

Definition 10.4.1. Write that B0 = 2μ.
(1) If μ �= 0, the origin of system (10.2.5) is called a three-multiple nilpotent

singular point of 0-class.
(2) If μ = 0 and there exists a positive integer s, such that B0 = B1 = · · · =

Bs−1 = 0, but Bs �= 0, the origin of system (10.2.5) is called a three-multiple nilpo-
tent singular point of s-class.

(3) If μ = 0 and for all positive integers s, Bs = 0, the origin of system (10.2.5)
is called a three-multiple nilpotent singular point of ∞-class.

If the origin of system (10.2.5) is a center, system (10.4.3) has the form

du

dτ
= v + 2μu2 +

∞∑
k=1

Aku4k +
∞∑

k=1

Bku4k+2,

dv

dτ
= −2(1 + μ2)u3. (10.4.4)
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The vector field defined by system (10.4.4) is symmetry with respect to v axis. By
the transformation

w = u2, v = v, dτ = −dτ �

2u
(10.4.5)

system (10.4.4) can reduce to

dw

dτ � = −v − 2μw −
∞∑

k=1

Akw2k −
∞∑

k=1

Bkw2k+1,

dv

dτ � = (1 + μ2)w. (10.4.6)

Obviously, in the wOv phase plane, the origin of system (10.4.6) is an elementary
singular point (focus or center). For any positive integer k, let ν∗

2k+1(2π) be the k-th
focal value of the origin of system (10.4.6)μ=0, it is easy to see that

{
ν∗
2k+1(2π)

} ∼
{
−2

(2k + 1)!!
(2k + 2)!!

Bkπ

}
. (10.4.7)

If μ �= 0, the origin of system (10.4.6) is a rough focus. In this case, Theorem
2.1 in [Qin Y.X., 1985] follows that by using an analytic transformation

ξ = w + h.o.t., η = v + μw + h.o.t., (10.4.8)

system (10.4.6)μ�=0 can be reduced to a linear system

dξ

dτ � = −μξ − η,
dη

dτ � = ξ − μη. (10.4.9)

When μ = 0, Theorem 4.1 in [Amelikin etc, 1982] tell us that for system
(10.4.6)μ=0, one can construct successively the terms of a formal series of w, v

ξ = w + h.o.t., η = v + h.o.t., (10.4.10)

such that system (10.4.6)μ=0 becomes a normal form as follows:

dξ

dτ � =−η +
1
2

∞∑
k=1

(γkξ − τkη)(ξ2 + η2)k,

dη

dτ � = ξ +
1
2

∞∑
k=1

(τkξ + γkη)(ξ2 + η2)k, (10.4.11)

where {
ν∗
2k+1(2π)

} ∼ {πγk}, (10.4.12)

and when all γk = 0, ξ, η are power series of w, v with non-zero convergent radius,
τk is the k-th period constant of the origin of system (10.4.11).
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When μ = 0, (10.4.7) and (10.4.12) imply that

{γk} ∼
{
−2

(2k + 1)!!
(2k + 2)!!

Bk

}
∼

{
1
π

ν∗
2k+1(2π)

}
. (10.4.13)

We see from (10.4.1), (10.4.5), (10.4.8) and (10.4.10) that when x = r cos θ, y =
r2 sin θ ,

u = x + o(r), v = y − μx2 + o(r2), w = x2 + o(r2),

ξ = x2 + o(r2), η = y + o(r2). (10.4.14)

It is easy to prove that

Theorem 10.4.2. If the origin of system (10.2.5) is 0-class, then, system (10.4.9)
has an analytic inverse integral factor

ξ2 + η2 = x4 + y2 + o(r4) (10.4.15)

and a first integral

(ξ2 + η2) exp
(
−μ arctan

η

ξ

)
. (10.4.16)

If the origin of system (10.2.5) is s-class, then, the origin of system (10.4.11) is
a s order weak focus and (10.4.11) has a formal inverse integral factor

Ds = Hs+1

(
1 +

∞∑
k=1

γs+k

γs
Hk

)
= Hs+1 (10.4.17)

and a first integral
f(H)

1 + sγsf(H) arctan η
ξ

. (10.4.18)

In addition, if the origin of system (10.2.5) is ∞-class, the origin of system
(10.4.11) is a center, and (10.4.11) has a formal inverse integral factor

D∞ = 1 +
1
2

∞∑
k=1

τkHk (10.4.19)

and a first integral H, where

H = ξ2 + η2 = x4 + y2 + o(r4),

H = H

(
1 +

∞∑
k=1

γs+k

γs
Hk

) 1
s+1

= x4 + y2 + o(r4),

f(H) =
(
−s

∫ D∞
Hs+1

dH

)−1

= Hs + o(Hs). (10.4.20)
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Remark 10.4.1. By Theorem 10.4.2, if the origin of system (10.2.5) is ∞-class,
then, when the origin is a center, for any natural number s, system (10.4.11) has an
analytic inverse integral factor (ξ2 + η2)s+1D∞.

In order to obtain the inverse integral factor of system (10.4.4) when the origin
is a center, we need to use the following result which can be proved by the chain
rule for the differentiation. Write that

g = − ∂(ξ, η)
∂(w, v)

∂(w, v)
∂(u, v)

dτ

dτ � , (10.4.21)

M(u, v) =

⎧
⎪⎨
⎪⎩

(ξ2 + η2)g−1, if s = 0,

Hg
−1
s+1 , if 0 < s < ∞,

(ξ2 + η2)(D∞g−1)
1

s+1 , if s = ∞,

(10.4.22)

g,M are formal series of u, v, and g = 1 + h.o.t.. Moreover, when x = r cos θ, y =
r2 sin θ,

M(u, v) = u4 + (v + μu2)2 + o(r4) = x4 + y2 + o(r4). (10.4.23)

By Theorem 10.4.2 and Proposition 1.1.4, we have

Theorem 10.4.3. If the origin of system (10.4.4) is 0-class, then, in a neigh-
borhood of the origin, system (10.4.4) has an analytic inverse integral factor M and
a first integral (10.4.16).

If the origin of system (10.4.4) is s-class, in a neighborhood of the origin, system
(10.4.4) has a formal inverse integral factor Ms+1 and a first integral (10.4.18).

If the origin of system (10.4.4) is ∞-class, in a neighborhood of the origin, system
(10.4.4) has an analytic inverse integral factor D∞g−1and a first integral ξ2 + η2.
In addition, for any natural number s, Ms+1 is also an inverse integral factor of
system (10.4.4).

We see from Proposition 1.1.4, if the origin of (10.2.5) is a center, then for systems
(10.2.5) and (10.4.4), we have

∂(u, v)
∂(x, y)

dt

dτ
= 1 + h.o.t., (10.4.24)

Theorem 10.4.3 implies the following result.

Theorem 10.4.4. Denote that

M = x4 + y2 + o(r4) = x4 + y2 +
∞�

k+2j=5

ckjx
kyj . (10.4.25)
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If the origin of system (10.2.5) is 0-class, then, when the origin of system (10.2.5)
is a center, in a neighborhood of the origin, system (10.2.5) has an analytic inverse
integral factor M and a first integral (10.4.16).

If the origin of system (10.2.5) is s-class, then, when the origin of system (10.2.5)
is a center, in a neighborhood of the origin, system (10.2.5) has an analytic inverse
integral factor Ms+1 and a first integral (10.4.18).

If the origin of system (10.2.5) is ∞-class, then, when the origin of system
(10.2.5) is a center, in a neighborhood of the origin, system (10.2.5) has an ana-
lytic inverse integral factor

M∞ = 1 + h.o.t. (10.4.26)

and an analytic first integral ξ2 + η2.

Theorem 10.4.5. If the origin of system (10.2.5) is ∞-class and it is a center,
then, for any natural number s, system (10.2.5) has the inverse integral factor Ms+1,
where M = x4 + y2 + o(r4) is a power series of x, y with non-zero convergent radius.

Proof. Under the conditions of Theorem 10.4.5, Theorem 10.4.4 follows that system
(10.2.5) has the inverse integral factor M∞ = 1+h.o.t. and a first integral ξ2 +η2 =
x4 + y2 + o(r4). Hence, for any natural number s, M∞(ξ2 + η2)s+1 is the inverse
integral factor of system (10.2.5). Hence Theorem 10.4.5 holds.

Theorem 10.4.6. If system (10.2.5) has a inverse integral factor M s+1
1 , where

M1(x, y) = x4 + y2 + o(r4) is a power series of x, y, s ∈ N , then (10.2.5) must be
s-class or ∞-class.

Proof. Suppose that system (10.2.5) is k-class which is different from natural num-
ber s, by Theorem 10.4.4, system (10.2.5) has inverse integral factor Mk+1

2 , where
M2(x, y) = x4 + y2 + o(r4) is a power series of x, y. Then system (10.2.5) has a
first integral F (x, y) = M s+1

1 M
−(k+1)
2 . Therefore, we have that the origin of system

(10.2.5) is a center and (10.2.5) is ∞-class. it is contradict with condition.

10.5 Quasi-Lyapunov Constants For the Three-Multiple Nilpo-

tent Singular Point

By Definition 10.4.1, the origin of system (10.2.5) is 0-class when μ �= 0.

Proposition 10.5.1. If the origin of system (10.2.5) is s-class, then,

sμ = 0. (10.5.1)

Theorem 10.5.1. If the origin of system (10.2.5) is s-class or ∞-class, one can
construct successively the terms of the formal power series M(x, y) = x4+y2+o(r4),
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such that

∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)

=
1

M s+2

∞∑
m=1

(2m − 4s − 1)λm

[
x2m+4 + o(r2m+4)

]
, (10.5.2)

i.e., (
∂X

∂x
+

∂Y

∂y

)
M − (s + 1)

(
∂M

∂x
X +

∂M

∂y
Y

)

=
∞∑

m=1

λm

[
(2m − 4s − 1)x2m+4 + o(r2m+4)

]
. (10.5.3)

Proof. If the origin of system (10.2.5) is s-class or ∞-class, Theorem 10.4.3 follows
that system (10.4.4) has inverse integral factor Ms+1 in a neighborhood of the origin,
where M given by (10.4.23) is a power series of u, v. Thus, for system (10.4.3), we
have

∂

∂u

(
U

Ms+1

)
+

∂

∂v

(
V

Ms+1

)
=

∂

∂u

(
1

Ms+1

∞∑
m=1

Cmu2m+1

)

=
1

Ms+2

∞∑
m=1

Cm[(2m − 4s − 3)(1 + μ2)u2m+4

+2μ(2m − 2s− 1)u2m+2v + (2m + 1)u2mv2 + o(r2m+4)], (10.5.4)

i.e.,
(

∂U

∂u
+

∂V

∂v

)
M− (s + 1)

(
∂M
∂u

U +
∂M
∂v

V

)

=
∞∑

m=1

Cm[(2m − 4s − 3)(1 + μ2)u2m+4

+2μ(2m− 2s − 1)u2m+2v + (2m + 1)u2mv2 + o(r2m+4)]. (10.5.5)

Write that

M∗ =
1

s + 1

∞∑
m=1

Cmu2m+1v, (10.5.6)

then,
(

∂U

∂u
+

∂V

∂v

)
M∗ − (s + 1)

(
∂M∗

∂u
U +

∂M∗

∂v
V

)

=
∞∑

m=1

Cm

[
2(1 + μ2)u2m+4 − 2μ(2ms + 2m + s − 1)

s + 1
u2m+2v

−(2m + 1)u2mv2 + o(r2m+4)
]
. (10.5.7)
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Let
M̃ = M + M∗ = u4 + (v + μu2)2 + o(r4). (10.5.8)

By (10.5.5), (10.5.7) and (10.5.8), we have

(
∂U

∂u
+

∂V

∂v

)
M̃ − (s + 1)

(
∂M̃
∂u

U +
∂M̃
∂v

V

)

=
∞∑

m=1

Cm

[
(2m − 4s − 1)(1 + μ2)u2m+4

−4sμ(s + 2)
s + 1

u2m+2v + o(r2m+4)
]
. (10.5.9)

By (10.5.1) and (10.5.9), we have

(
∂U

∂u
+

∂V

∂v

)
M̃ − (s + 1)

(
∂M̃
∂u

U +
∂M̃
∂v

V

)

=
∞∑

m=1

Cm

[
(2m − 4s − 1)(1 + μ2)u2m+4 + o(r2m+4)

]
. (10.5.10)

It implies that

∂

∂u

(
U

M̃s+1

)
+

∂

∂v

(
V

M̃s+1

)

=
1

M̃s+2

∞∑
m=1

(2m − 4s − 1)(1 + μ2)Cm

[
u2m+4 + o(r2m+4)

]
. (10.5.11)

Denote that

M(x, y) = M̃
[
ζ

∂(u, v)
∂(x, y)

] −1
s+1

= x4 + y2 + o(r4), (10.5.12)

where u = u(x, y), v = v(x, y), ζ = w(x, y) are given by (10.4.1). (10.5.11) and
Proposition 1.1.3 follow that

∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)

=
∂(u, v)
∂(x, y)

[
∂

∂u

(
U

M̃s+1

)
+

∂

∂v

(
V

M̃s+1

)]

=
∂(u, v)
∂(x, y)

1
M̃s+2

∞∑
m=1

(2m − 4s − 1)(1 + μ2)Cm

[
u2m+4 + o(r2m+4)

]
. (10.5.13)

From (10.4.1), (10.5.12) and (10.5.13), we obtain (10.5.2). Since λm = (1 + μ2)Cm,
it follows the conclusion of Theorem 10.5.1.
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Theorem 10.5.2. For system (10.2.5), if there exists a natural number s and a
formal series M(x, y) = y2 + x4 + o(r4), such that (10.5.2) holds, then

{ν2m(−2π)} ∼ {σmλm} . (10.5.14)

where

σm =
1
2

∫ 2π

0

(1 + sin2 θ) cos2m+4 θdθ

(cos4 θ + sin2 θ)
2m+7

4 exp
(

2m − 1
2

μ arctan
sin θ

cos2 θ

) > 0. (10.5.15)

The proof of Theorem 10.5.2 is given in next section Section 10.6.

Definition 10.5.1. If there exist a natural number s and a formal series M(x, y)
= y2+x4+o(r4), such that (10.5.2) holds, then, λm is called the m-th quasi-Lyapunov
constant of the origin of system (10.2.5), m = 1, 2, · · · .

We see from Theorem 10.5.1 and Theorem 10.5.2 that

Theorem 10.5.3. If the origin of system (10.2.5) is s-class, then, the origin of
system (10.2.5) is a center if and only if there is an inverse integral factor Ms+1,
where M = x4 + y2 + o(r4) is a power series of x, y.

Theorem 10.5.4. If the origin of system (10.2.5) is ∞-class, then, the origin
of system (10.2.5) is a center if and only if there exist a natural number s and an
inverse integral factor Ms+1, where M = x4 + y2 + o(r4) is a power series of x, y.

10.6 Proof of Theorem 10.5.2

Let Ω(h, h′) be a region (see Fig.10.6.1) enclosed by the following four oriented curves
Γ1, Γ2, Γ3, Γ4 given by

Γ1 : r = r̃(θ, h), θ : 0 → −2π,

Γ2 : y = 0, x : h̃ → h̃′,

Γ3 : r = r̃(θ, h′), θ : −2π → 0,

Γ4 : y = 0, x : h′ → h, (10.6.1)

where 0 < h′ − h � h � 1 and

h̃ = r̃(−2π, h), h̃′ = r̃(−2π, h′). (10.6.2)



330 Chapter 10 Center-Focus Problem and Bifurcations of Limit Cycles...

Fig.10.6.1 The region Ω(h, h′)

Let M(x, y) = x4 + y2 + o(r4) be a formal series of x, y, s be a natural number.
Define that.

I = lim
h′→h

1
h� − h

∫∫

Ω(h,h′)

[
∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)]
dxdy. (10.6.3)

We have the following conclusion.

Lemma 10.6.1.

I =
2

h4s+2

∞∑
m=1

(2m − 4s− 1) ν2m(−2π)gm(h)h2m, (10.6.4)

where for all m, gm(h) is a formal series of h, and gm(0) = 1.

Proof. Notice that the integrand function of (10.6.1) has no singularity in the region
Ω(h, h�). By using known Green formulas, we obtain

I = lim
h′→h

1
h� − h

4∑
k=1

∫

Γk

Xdy − Y dx

M s+1
. (10.6.5)

In the orbits Γ1 and Γ3, we have
∫

Γ1

Xdy − Y dx

M s+1
= 0,

∫

Γ3

Xdy − Y dx

M s+1
= 0. (10.6.6)

Let
Y (x, 0)

M s+1(x, 0)
=

−2g(x)
x4s+1

, (10.6.7)

where g(x) is a formal series of x, and g(0) = 1. We see from (10.6.5) and (10.6.6)
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that

I =2 lim
h′→h

1
h� − h

[ ∫

Γ2

g(x)
x4s+1

dx +
∫

Γ4

g(x)
x4s+1

dx

]

=2 lim
h′→h

1
h� − h

[ ∫ h̃′

h̃

g(x)
x4s+1

dx +
∫ h

h′

g(x)
x4s+1

dx

]

=2 lim
h′→h

1
h� − h

[ ∫ h̃′

h′

g(x)
x4s+1

dx −
∫ h̃′

h

g(x)
x4s+1

dx

]
. (10.6.8)

(10.6.2) and (10.6.8) follow that

I =2
d

dh

∫ h̃

h

g(x)
x4s+1

dx

=
2g(h̃)
h̃4s+1

dh̃

dh
− 2g(h)

h4s+1

=
2g(h̃)
h̃4s+1

[
1 +

∞∑
k=2

kνk(−2π)hk−1

]
− 2g(h)

h4s+1

= I∗1 + I∗2 , (10.6.9)

where

h̃ = r̃(−2π, h) = h +
∞∑

k=2

νk(−2π)hk,

I∗1 =
2g(h̃)
h̃4s+1

− 2g(h)
h4s+1

,

I∗2 =
2g(h̃)
h̃4s+1

∞∑
k=2

kνk(−2π)hk−1. (10.6.10)

(10.6.10) implies that

I∗1 =
d

dh

(
2g(h)
h4s+1

)
(h̃ − h) [1 + o(1)]

=−2(4s + 1)
G1(h)
h4s+2

∞∑
k=2

νk(−2π)hk,

I∗2 =2
G2(h)
h4s+2

∞∑
k=2

kνk(−2π)hk, (10.6.11)

where Gk(h) is a formal series of h, and Gk(0) = 1, k = 1, 2.
By (10.6.9) and (10.6.11), we know that

I =
2

h4s+2

∞∑
k=2

[
kG2(h) − (4s + 1)G1(h)

]
νk(−2π)hk. (10.6.12)
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Thus, (10.6.12) and Theorem 10.2.1 imply that

I =
2

h4s+2

∞∑
m=1

(2m − 4s − 1)ν2m(−2π)h2mgm(h), (10.6.13)

where gm(h) = 1+o(1) is a formal series of h. This gives rise to the proof of Lemma
10.6.1.

Theorem 10.6.1. If there exists a formal series of x, y given by M(x, y) =
x4 + y2 + o(r4), such that

∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)
=

1
M s+2

∞∑
m=1

dmFm(x, y), (10.6.14)

where ∀m, κm �= 0, then

{ν2m(−2π)} ∼
{

dmκm

2m− 4s− 1

}
, (10.6.15)

where
Fm(x, y) = fm(x2, y) + o(r4m+4) (10.6.16)

is a formal series of x, y, fm(x2, y) is a homogeneous polynomial of degree m + 2 of
x2, y,

κm =
1
2

∫ 2π

0

(1 + sin2 θ)fm(cos2 θ, sin θ)dθ

(cos4 θ + sin2 θ)
2m+7

4 exp
(

2m − 1
2

μ arctan
sin θ

cos2 θ

) . (10.6.17)

Proof. The Jacobin of the transformation (10.2.6) is as follows:

J =
∂(x, y)
∂(r, θ)

= r2(1 + sin2 θ). (10.6.18)

For the double integral defined by (10.6.3), making the transformation (10.2.6), then,
we see from (10.6.14) that

I = lim
h′→h

1
h� − h

∫ 0

−2π

dθ

∫ r̃(θ,h′)

r̃(θ,h)

[
∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)]
J dr

=
∫ 0

−2π

[
∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)]
J

∂r̃(θ, h)
∂h

dθ. (10.6.19)

By (10.6.14), (10.6.18) and (10.6.19), we have

I =
∞∑

m=1

dmAm(h), (10.6.20)
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where

Am(h) =
∫ 0

−2π

r2(1 + sin2 θ)Fm(x, y)
M s+2

∂r̃(θ, h)
∂h

dθ. (10.6.21)

In (10.6.21), we have set

x = r cos θ, y = r2 sin θ, r = r̃(θ, h) = ν1(θ)h +
∞∑

k=2

νk(θ)hk (10.6.22)

and we have

r̃ = ν1(θ)h + o(h),

F (x, y) = fm(cos2 θ, sin θ)ν2m+4
1 (θ)h2m+4 + o(h2m+4),

∂r̃

∂h

∣∣∣∣
h=0

= ν1(θ),

M = (cos4 θ + sin2 θ)ν4
1 (θ)h4 + o(h4). (10.6.23)

Thus, (10.6.21) and (10.6.23) imply that

Am(h) =
1

h4s+2
cmh2mg̃m(h), (10.6.24)

where g̃m(h) are formal series of h,

cm =
∫ 2π

0

(1 + sin2 θ)fm(cos2 θ, sin θ)
(cos4 θ + sin2 θ)s+2

ν2m−4s−1
1 (θ)dθ. (10.6.25)

(10.2.14), (10.5.1) and (10.6.25) follow that

cm = 2κm. (10.6.26)

By (10.6.20), (10.6.24) and (10.6.26), we have

I =
2

h4s+2

∞∑
m=1

dmκmh2mg̃m(h). (10.6.27)

We see from (10.6.13) and (10.6.27) that

∞∑
m=1

(2m − 4s − 1)ν2m(−2π)h2mgm(h) =
∞∑

m=1

dmκmh2mg̃m(h). (10.6.28)

It follows (10.6.15). Hence, Theorem 10.6.1 holds.

We see from (10.5.15) and (10.6.17) that if fm(x, y) = x2m+4, then κm = σm.

Thus, we know that Theorem 10.5.2 is a special case of Theorem 10.6.1.
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10.7 On the Computation of Quasi-Lyapunov Constants

In this section, we study the computation method of quasi-Lyapunov constants. For
the right hand of system (10.2.5), we write that

X(x, y) = y +
∞∑

k=2

Xk(x, y) = y +
∞∑

k+j=2

akjx
kyj,

Y (x, y) =
∞∑

k=2

Yk(x, y) =
∞∑

k+j=2

bkjx
kyj, (10.7.1)

where Xk(x, y), Yk(x, y) are homogeneous polynomial of degree k of x, y and

a20 = μ, b20 = 0, b11 = 2μ, b30 = −2. (10.7.2)

We have

Theorem 10.7.1. For any positive integer s and a given number sequence

{c0β}, β � 3, (10.7.3)

one can construct successively the terms with the coefficients cαβ satisfying α �= 0 of
the formal series

M(x, y) = y2 +
∞∑

α+β=3

cαβxαyβ =
∞∑

m=2

Mk(x, y), (10.7.4)

such that
∂

∂x

(
X

M s+1

)
+

∂

∂y

(
Y

M s+1

)
=

1
M s+2

∞∑
m=5

ωmxm , (10.7.5)

where for all k, Mk(x, y) is homogeneous polynomial of degree k of x, y, cαβ , ωm are
all polynomials with rational coefficients of μ and akj , bkj , c0β.

Remark 10.7.1. Because sμ = 0, we see from (10.7.4) that

c30 = 0, c21 = −2
sμ

s + 1
= 0, c12 =

a11 − 2sb02

s + 1
,

c40 = 1 +
2s2μ2

(s + 1)2
= 1,

c31 =
1

s + 1
a30 − μ

3(s + 1)2
a11 − 2s + 1

3(s + 1)
b21,

c22 =
a21 − sb12 − μc03

s + 1
+

(2sb02 − a11)(2b02 + a11)
2(s + 1)2

,

c13 =
a12 − (2s − 1)b03 + (2sb02 − a11)a02 + [a11 − (3s + 1)b02]c03

s + 1
,

ω5 = −8
sμ[(s + 1)2 + s2μ2]

(s + 1)2
= 0. (10.7.6)
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Thus, when x = r cos θ, y = r2 sin θ, M(x, y) = x4 + y2 + o(r4).

Remark 10.7.2. By Theorem 10.5.3, we can determine a natural number s

and constant sequence {c0β}, such that {ω2k+1} = {0}. Therefore, Theorem 10.5.3
implies that if s and {c0β} are solutions of the equations {ω2k+1} = {0}, then

{λm} ∼
{

ω2m+4

2m − 4s − 1

}
. (10.7.7)

Equation (10.7.5) is equivalent to
(

∂X

∂x
+

∂Y

∂y

)
M − (s + 1)

(
∂M

∂x
X +

∂M

∂y
Y

)
=

∞∑
m=3

ωmxm. (10.7.8)

Clearly, equation (10.7.8) is linear with respect to the unknown function M , so that,
we can find the following recursive formulas for the computations of cαβ and ωm.
Namely, we have

Theorem 10.7.2. For α � 1, α + β � 3 in (10.7.4) and (10.7.5), cαβ can be
uniquely determined by the recursive formulas

cαβ =
1

(s + 1)α
(Aα−1,β+1 + Bα−1,β+1) , (10.7.9)

when m � 5, ωm can be uniquely determined by the recursive formulas

ωm = Am,0 + Bm,0, (10.7.10)

where

Aαβ =
α+β−1∑
k+j=2

[
k − (s + 1)(α − k + 1)

]
akjcα−k+1,β−j,

Bαβ =
α+β−1∑
k+j=2

[
j − (s + 1)(β − j + 1)

]
bkjcα−k,β−j+1. (10.7.11)

Notice that in (10.7.11), we set

c00 = c10 = 0 = c01 = 0,

c20 = c11 = 0, c02 = 1 (10.7.12)

and when α < 0 or β < 0 , cαβ = 0.

Proof. We have
(

∂X

∂x
+

∂Y

∂y

)
M − (s + 1)

(
∂M

∂x
X +

∂M

∂y
Y

)

=
∞∑

m=3

[
−(s + 1)

∂Mm

∂x
y + Φm(x, y) + Ψm(x, y)

]
, (10.7.13)
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where

∂Mm

∂x
y =

�
α+β=m

αcα,βxα−1yβ+1

= c1,m−1y
m + 2c2,m−2xym−1 + · · · + mcm0x

m−1y (10.7.14)

and

Φm =
m−1�
n=2

�
∂Xn

∂x
Mm+1−n − (s + 1)

∂Mm+1−n

∂x
Xn

�
,

Ψm =
m−1�
n=2

�
∂Yn

∂y
Mm+1−n − (s + 1)

∂Mm+1−n

∂y
Yn

�
(10.7.15)

are homogenous polynomials of degree m of x, y. (10.7.15) implies that

Φm =
m−1�
n=2

�
k+j=n

α+β=m+n−1

[k − (s + 1)α]akjcαβxα+k−1yβ+j ,

Ψm =
m−1�
n=2

�
k+j=n

α+β=m+n−1

[j − (s + 1)β]bkjcαβxα+kyβ+j−1. (10.7.16)

Thus,
Φm =

�
α+β=m

Aαβxαyβ , Ψm =
�

α+β=m

Bαβxαyβ, (10.7.17)

where Aαβ , Bαβ are given by (10.7.11). Hence, (10.7.13), (10.7.14) and (10.7.17)
follow that�

∂X

∂x
+

∂Y

∂y

�
M − (s + 1)

�
∂M

∂x
X +

∂M

∂y
Y

�

=
∞�

m=3

⎡
⎣ �

α+β=m

−(s + 1)αcα,βxα−1yβ+1 +
�

α+β=m

(Aαβ + Bαβ)xαyβ

⎤
⎦ . (10.7.18)

By using (10.7.8) and (10.7.18), we obtain the conclusion of Theorem 10.7.2.

10.8 Bifurcations of Limit Cycles Created from a Three-Multiple

Nilpotent Singular Point of a Cubic System

In this section, we discuss the following cubic system

dx

dt
= y − 2xy + (−a4 + a7)x2y + a6y

2 + a2xy2 + a5y
3,

dy

dt
= −2x3 + a1x

2y + y2 + a4xy2 + a3y
3. (10.8.1)
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By Theorem 10.7.1 and Theorem 10.7.2, we can determine a positive integer s and a
formal series M(x, y) = x4 +y2 +o(r4), such that (10.7.5) holds. Using the recursive
formulas and computer algebra method, for example, Mathematica, we have

Theorem 10.8.1. For system (10.8.1), the first 8 quasi-Lyapunov constants of
the origin are as follows:

λ1 =
1
3
a1,

λ2 ∼ 2
5
(a2 + 3a3),

λ3 ∼ 4
21

a7(3a3 − 5a6),

λ4 ∼ 4
945

a6a7(735 − 105a4 + 71a7),

λ5 ∼ 8
121275

a6a7(176400 + 18375a5 + 5460a7 + 12250a2
6 − 32a2

7),

λ6 ∼ 32
7449316875

a6a7f6,

λ7 ∼ 32
895908296236078125

a6a7f7,

λ8 ∼ 32
31270967072166673965472734375

a6a7f8. (10.8.2)

where

f6 =30866913000+ 2089303650a7 − 1188495000a2
6 + 29397690a2

7

−15232875a2
6a7 − 110996a3

7,

f7 =−44389456322515920000− 2155807164550977000a7

+1647138037233150000a2
6 + 11437991172477450a2

7

+910916029415875a3
7 + 22121192499656250a4

6

−798220526556a4
7,

f8 =9423379312441682897451542400000

+1514298765681319947369112800000a7

+82859324997946429848009339000a2
7

+1864567030459291902188584650a3
7

+14562086011231729200961815a4
7

−2666191085683953547508a5
7. (10.8.3)

Lemma 10.8.1. If the origin of system (10.8.1) is a center, then, a6a7 = 0.
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Proof. By theorem 10.8.1, it only need to prove that equations f6 = f7 = f8 = 0
have no real solution. In fat, let

m1 =22(1066395363913341000+ 28799529917404050a7

+10618172399835000a2
6 + 262642872352770a2

7

+136092531222375a2
6a7 − 991653026468a3

7),

m2 =3(64680 + 829a7)2,

m3 =12997486087387652517672078195922800000

−365468973428419037174314657615275000a7

−6636084295245265658315014527681000a2
7

−193072016330746017200389316240550a3
7

−158395474078481780708311488885a4
7

−442002223918290634023459292a5
7,

m4 =−829(604792809107550− 26154872314410a7

+10468656247875a2
6 + 76281002036a2

7). (10.8.4)

Then

m1f6 + m2f7 = 687241R1,

m3f6 + m4R1

56703582655256691000
= −297991502749037725377750000a2

6 − R2, (10.8.5)

where R1, R2 are polynomial of a7 as follows:

R1 =243072129127249422000000

+39631081641240889800000a7

+2255796909810283455000a2
7 + 55422352230619563000a3

7

+524676790165767750a4
7 + 492626020125225a5

7

+1128890456908a6
7,

R2 =−5598205484096735678668500000

−103015830580161330796965000a7

+13819265426965160101653000a2
7

+338887648622295179419950a3
7

+278022008486800728465a4
7 + 775819806495910828a5

7. (10.8.6)

(10.8.5) and (10.8.6) imply that

R1 = 0, 297991502749037725377750000a2
6 = −R2. (10.8.7)
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if f6 = f7 = 0.
Because f8 is also a polynomial of a7, which has no common factor with R1.

Therefore, Lemma 10.8.1 holds.

Theorem 10.8.1 and Lemma 10.8.1 follow that

Theorem 10.8.2. The first 8 quasi-Lyapunov constants of system (10.8.1) all
are zeros if and only if one of the following conditions holds:

a1 = 0, a2 = −3a3, a7 = 0; (10.8.8)

a1 = 0, a2 = 0, a3 = 0, a6 = 0. (10.8.9)

When condition (10.8.8) is satisfied, system (10.8.1) becomes

dx

dt
= y − 2xy − a4x

2y + a6y
2 − 3a3xy2 + a5y

3,

dy

dt
= −2x3 + y2 + a4xy2 + a3y

3. (10.8.10)

When (10.8.9) is satisfied, system (10.8.1) becomes

dx

dt
= y − 2xy + (−a4 + a7)x2y + a5y

3,

dy

dt
= −2x3 + y2 + a4xy2. (10.8.11)

Obviously, (10.8.10) is a Hamilton system. System (10.8.11) is symmetric with
respect to the x-axis. Hence, we have

Theorem 10.8.3. The origin of system (10.8.1) is a center if and only if the
first 8 quasi- Lyapunov constants are all zero, i.e., one of conditions of Theorem
10.8.2 holds.

By Theorem 10.8.1 and Lemma 10.8.1, we have

Theorem 10.8.4. The origin of system (10.8.1) is a 8-order weak focus if and
only if

a1 = 0, a2 = −3a3, a3 =
5
3
a6, a4 =

1
105

(735 + 71a7),

a5 =
−2

18375
(88200 + 2730a7 + 6125a2

6 − 16a2
7) (10.8.12)

and a6, a7 satisfy (10.8.7).
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Remark 10.8.1. By using computer to do computations, we find that equation
R1 = 0 has exact solutions a7 = A7 and a7 = Ã7, where

A7 = −13.506311 . . . , Ã7 = −28.122170 . . . . (10.8.13)

(10.8.7) follows that

a2
6|a7=A7 = 8.42971 . . . , a2

6|a7=Ã7
= −2.85598 . . . . (10.8.14)

Thus, the origin of system (10.8.1) is a 8-order weak focus if and only if (10.8.12)
holds and

a7 = A7, 297991502749037725377750000a2
6 = −R2. (10.8.15)

Finally, we consider the perturbed system of system (10.8.1) as follows:

dx

dt
= δx + y − 2xy + (−a4 + a7)x2y + a6y

2 + a2xy2 + a5y
3,

dy

dt
= 2δy − 2x3 + a1x

2y + y2 + a4xy2 + a3y
3. (10.8.16)

Theorem 10.8.5. If the origin of system (10.8.16)δ=0 is a 8-order weak focus,
making a small perturbations to the coefficients of system (10.8.16)δ=0, then, in a
small neighborhood of the origin, there exist at least 8 small amplitude limit cycles
of system (10.8.16), which enclosing the origin O(0, 0) (an elementary node).

Proof. When one of two conditions in Theorem (10.8.15) holds, we have

J =
D(λ1, λ2, λ3, λ4, λ5, λ6, λ7)
D(a1, a2, a3, a4, a5, a6, a7)

=
∂λ1

∂a1

∂λ2

∂a2

∂λ3

∂a3

∂λ4

∂a4

∂λ5

∂a5

∣∣∣∣∣∣∣∣

∂λ6

∂a6

∂λ6

∂a7

∂λ7

∂a6

∂λ7

∂a7

∣∣∣∣∣∣∣∣

=
524288a3

6a
4
7J0

145850034635282007923510207264053225163895703125
, (10.8.17)

where

J0 =−35556835165626695730382523897078827369474800000

−5744800734016092753769033241386032801141960000a7

−323075438519129601860973591482667203995191000a2
7

−7693402576858950297023303846220072236593800a3
7

−64394670570018037637346981474598827583140a4
7

+76862330062195974590661486322086814547a5
7. (10.8.18)

Because there is no common factor between J0 and R1. Thus, when the origin of
system (10.8.16)δ=0 is a 8 order weak focus, we have J �= 0. Theorem 10.3.8 implies
that Theorem 10.8.5 holds.
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Bibliographical Notes

There are different topological phase portraits in a neighborhood of a nilpotent
singular point (see [Zhang Z.F. etc, 1992]). In Section 17-19 of [Amelikin etc, 1982],
the authors introduced some study results before 1980s.

In[Amelikin etc, 1982; Takens, 1974; Strozyna etc, 2002; Moussu, 1982; Álvarez
etc, 2005; Álvarez etc, 2006], by considering the normal forms of (10.1.1), the authors
studied the computation problem of the focal values.

The content of this chapter is taken from the recent papers [Liu Y.R. etc, 2009a;
Liu Y.R. etc, 2009b; Liu Y.R. etc, 2011a; Liu Y.R. etc, 2011d].
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Acta Math. 24, 1-88.

[Blows etc, 1984a] Blows T.R. and Lloyd N.G., The number of limit cycles of certain poly-

nomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 98, 215-239.

[Blows etc, 1984b] Blows T.R. and Lloyd N.G., The number of small-amplitude limit cycles

of Liénard equations Math. Proc. Cambridge Philos.Soc. 95, 359-366.



Bibliography 343

[Blows etc, 1993] Blows T.R. and Rousseau C., Bifurcation at infinity in polynomial vector

fields, J. Diff. Equs. 104, 215-242.

[Blows etc, 1994] Blows, T. R. and Perko, L. M., Bifurcation of limit cycles from centers

and separatrix cycles of planar analytic systems, SIAM Rev. 36, 341-376.

[Bonin etc, 1988] Bonin G. and Legault J., Comparison de la methode des constants de

Liapunov et la bifurcation de Hopf, Canad. Math. Bull. 31(2), 200-209.

[Bruno, 1989] Bruno A.D., Local Methods in Nonlinear Differential Equations, Springer-

Verlag, New York.

[Cai S.L. ect, 1987] Cai Suilin and Zhang Pingguang, A quadratic system with a weak

saddle, J. Math. Res. Exp. 1,63-68.

[Cai S.L. etc, 1988] Cai Suilin,Zhang Pingguang , A quadratic system with a weak saddle

II, Ann. Diff. Equs. 4(2), 131-142.

[Cai S.L., 1989] Cai Suilin, Survey of planar quadratic differential systems, Adv. in Math.

(China) 18, 5-21.
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of Math. Stud. 17, Princeton University Press.

[ Lynch etc, 1999] Lynch S. and Christopher C.J., Limit cycles in highly nonlinear differ-

ential equations, J. Sound Vibration 224(3), 505-517.

[Ma Z.E. etc, 1983] Ma Zhien and Wang Ernian, The stability of a loop formed the sepa-

ratrix of a saddle point and the condition to produce a limit cycle, Chin. Ann. Math.

4A (1), 105-110 (in Chinese).

[Mao R. etc, 1996] Mao Rui and Wang Duo, Jumping property of Liapunov values, Sci. in

China Ser.A 39(12), 1280-1287.
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