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Preface

This book is the result of the 12th International Congress on Mathematical Education
(ICME-12), which was held at Seoul, Korea from July 8, 2012 to July 15, 2012.

The International Program Committee (IPC-12) of ICME-12 took on the task of
acting as the editorial board to publish the Proceedings of the ICME-12 and
Selected Regular Lectures of the ICME-12 in two separate volumes. All conference
materials and volumes are accessible through the Open Access Program by
Springer, the ICME-12 publisher.

The Proceedings volume of ICME-12 contains the Opening and Award Cere-
monies, four Plenary Lectures and three Plenary Panels, four ICMI Awardees
Lectures, three Survey Teams reports, five National Presentations, abstracts of 55
Regular Lectures, reports of 37 Topic Study Groups, reports of 17 discussion
Groups, Closing Ceremony, and lists of participants. The Selected Regular Lectures
volume of ICME-12 contains the full versions of lectures.

The ICME-12 would not have been possible without the contribution from its
members and strategic partners. For the first time, all of the Korean mathematical
societies united to bid and host the ICME-12. The successes of ICME-12 is closely
tied to the tireless efforts of all.

A considerable amount of the ICME-12 budget was funded through private
donations by mathematically minded individuals and businesses. ChunJae Educa-
tion Inc. was one of the largest contributor of funds and services. Printing of the
ICME-12 Program Booklets and Abstracts were paid for by ChunJae Education Inc.

The Korean Ministry of Education helped to secure the balance of the budget
and assisted in the operation of ICME-12. The City of Seoul, Korea Foundation for
the Advancement of Science and Creativity, and Korea Tourism Organization were
significant funding bodies as well.

The dedicated members of the Local Organizing Committee, skilled professional
conference organizers at MCI, and staff at the COEX (Convention and Exhibition)
were integral in the successful planning and execution of ICME-12. The dedication
shown by the Local Organizing Committee for the conference was second to none
and well beyond expectation.

vii



viii Preface

Finally, the Editor would like to express his sincere thanks to all the members of
IPC-12, Korean government agencies, private donors, lecturers, members of Survey
Teams, and organizers of Topics Study Groups and Discussion Groups. Gratitude
also is extended to the more than 3,000 worldwide attendees who contributed to the
success of the ICME-12 by sharing their expertise via paper presentations or par-
ticipating in discussions. Without Prof. Hee-chan Lew’s work and devotion, this
extensive volume could not have been completed. The Editor would like to express
his heartfelt thanks to him. The Editor believes that the world mathematical society
is closer than before and leading towards more productive and friendly mathematics
classrooms around the world.

Seoul, Korea Sung Je Cho
Editor
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Congratulatory Remarks: President of Korea

Good morning, distinguished ladies and gentlemen. I offer my heartful congratu-
lations to the opening of the 12th International Congress on Mathematical Edu-
cation (ICME).

I am very pleased to welcome President William Barton of the International
Commission on Mathematical Instruction (ICMI), President Ingrid Daubechies
of the International Mathematical Union (IMU) and all the mathematical educators
here.

As the largest festivities in the realm of mathematical instructions, the ICME has
made great contributions to mathematical instruction and popularization of math
over the past half century.

Considering the significance of the ICME, I sent a letter to the ICMI requesting
to hold the Congress in Korea 9 years ago when I was the Mayor of Seoul.

Today, I am glad to see my wish has come true. Let me take this opportunity to
thank all the people who have devoted in preparing for this meeting.

Distinguished educator,

To me, mathematics is a magnificent journey of human reason in search of a clue
for the mystery surrounding the universe.

For the past long history, mathematics has been the engine of civilization,
striving to liberate humanity from famine, poverty and ignorance.

I hope the rational and creative thinking of young people will be enhanced
through math. In this way, they will make the future of humanity better.

I expect all the participants will be able to freely exchange diverse and expert
views for the advancement of mathematics at this very meaningful meeting.

As a post script, I would like to remind you that the International Expo is now
being held in the southern port city of Yeosu. Please tour the Expo by all means and
carry home fond memories of the beautiful natural and cultural landmarks of
Korea’s South Coast.
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Xviii Congratulatory Remarks: President of Korea

Korea has hosted many international events, buy I personally attach extraordi-
nary importance to this congress because the ICME can be described as a “math
education forum of Olympic proportions”. Once again, welcome to Korea.

Thank you very much.

Lee Myung-bak
10th President of the Republic of Korea
Seoul, Republic of Korea
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Opening Ceremonies



Opening Address: President of IMU

Ingrid Daubechies

It is a great pleasure for me to have the opportunity to address you, during this
opening ceremony for the 12th International Congress on Mathematical Education,
in my capacity as President of the International Mathematical Union, or IMU.

Officially, that is, with respect to the International Council for Science (or
ICSU), which itself reports to UNESCO, IMU is the umbrella organization con-
cerned with matters of global interest to mathematicians worldwide. The Interna-
tional Commission on Mathematical Instruction (or ICMI for brevity), which
organizes the quadrennial ICME meetings, is the most important sub-organization
of the IMU. In fact, and as ICMI President Bill Barton likes to remind me good-
humoredly, ICMI is older than the IMU itself, since it was created in 1908—IMU
was created only in 1920, and even then it was an earlier incarnation that stopped
functioning in the 1930s; in its present version, it was reborn in 1951.

An extremely important charge for the IMU is to organize the prestigious
quadrennial International Congresses of Mathematicians, or ICMs, the first one of
which dates back to 1893; it is probably no exaggeration to state that the IMU was
first started to ensure a regular and orderly organization of the ICMs. This is similar
to the role ICMI plays with respect to the ICME congresses, which are all held
under ICMI’s auspices and principles. Once the ICME series hit its quadrennial
rhythm, it became customary to hold the ICMs and ICMEs in interleaved even-
numbered years, keeping stride nicely with the World Cup in Soccer/Football and
the Olympic Games, which one could view as a “warm-up” for our more serious
pursuits. The next ICM will thus take place in 2014, coincidentally in this very
same city, in this very same Conference Center.

Over the years, IMU has come to stand for much more than just the umbrella
organization ensuring continuity for the ICMs. In the past few decades, IMU has
become more concerned with assisting developing countries build up their own

1. Daubechies (BX)
Duke University, Durham, USA
e-mail: ingrid @math.duke.edu

© The Author(s) 2015 3
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4 1. Daubechies

strong mathematics communities. IMU is also solidly and seriously invested in
helping develop and sustain excellent mathematics education everywhere, and at all
levels—although the work of my colleagues on the Executive Committee of the
IMU, as well as my own, is anchored in mathematics research, we all realize fully
the importance of teaching mathematical insights, understanding and skills in the
best possible way, and we are committed to help ICMI as much as we can in
pursuing this goal. These are not empty words—we are acting on our beliefs! The
following are just two examples. In setting up the new stable central Secretariat for
the IMU, it was viewed as an essential and core part of its charge that it provides a
stable administrative support and archival role for ICMI as well. On a different note,
IMU is also actively helping ICMI in finding and providing funding for the very
important CANP workshops, which build networking for mathematics educators in
less developed regions in the world.

I am personally thrilled by this tighter connection between mathematical
researchers and experts on, or researchers in, mathematical education. Whether we
decide to contribute to mathematical research, or whether we decide to invest our
creative energy in mathematics education—you and I, ICME or ICM participants,
we are ALL mathematicians, united in our love for mathematics. It was a proud
moment in my life when my son announced his decision to become a high school
teacher in mathematics; he now teaches in one of the inner city schools in Chicago,
and works hard to ignite and keep alive an interest in mathematics among his
students, bringing to this the energy and drive that he could easily have taken to
graduate school. I respect and value the commitment and engagement of teachers
like him, and I encourage all professional research mathematicians to do likewise.

Dear ICME-12 Participants, fellow mathematicians, focused on bringing the best
possible mathematics education to future generations, I salute you!

And I wish you a wonderful Congress.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
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Opening Address: President of ICMI

Bill Barton

Honourable Mr Lee, Minister of Education

Professor Sung Je Cho, Convenor of this wonderful conference

ICMI Colleagues and friends

Our moment has arrived. Isn’t this wonderful!

I am delighted to be here, to open the 12th International Congress of Mathe-
matics Education—to be honest, it is a moment I have been looking forward to for
more than 4 years. Our community is very fortunate to have attracted a conference
bid from Korea, and our Korean friends are already proving to us that we made a
very good decision to accept their bid.

These few minutes are my opportunity to address the wider ICMI community
about the things that I believe are important about mathematics education on the
international stage. I cannot detail all the many, many activities of ICMI as an
organisation: ICMI Studies, Regional conferences, Affiliated organisations, and on
and on. I urge everyone in this room to find out who their ICMI country repre-
sentative is, and ensure that they become part of their national network. You should
also subscribe to the ICMI Newsletter (on line) or become a Facebook Friend. We
survive as an organisation through your participation.

I wish to mention three topics: our major development project; the Klein Project;
and finally some comments on how our community communicates.

Since the last ICME in Mexico, ICMI as an organisation has changed dramat-
ically. We have extended our development activities significantly. It is no longer
true that we are primarily an organisation of professionals in mathematics educa-
tion. Now we spend at least half our efforts and resources on worldwide devel-
opment activities. A major part of this effort is the Capacity and Networking
Project, that we call CANP.

B. Barton (BX)
Former President of International Commission on Mathematical Instruction,
University of Auckland, Auckland, New Zealand
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The aim of CANP is to support developing regions to form self-sustaining
networks of mathematics educators, mathematicians, government officials, and, of
course, teachers. What ICMI does is to organise a two-week Workshop in a dif-
ferent region every year. Last year the first was held in Mali, this year the second
will be held in Costa Rica, and next year it will be Cambodia. A region of four or
five countries is selected, and a Scientific Committee is formed of four people from
the international community and four from the region. The Workshop is usually
about fifty people representing all the groups in the network. The focus of the
Workshop is secondary teacher education, but the aim is really to get key people in
the region working together. Funds for each CANP programme are raised sepa-
rately, we have had significant support from IMU, UNESCO, CIMPA and other
organisations.

My second topic is the Klein Project. I invite everyone to turn ON their
smartphones or open their computers—please go to the Klein Project Blog <http://
blog.kleinproject.org> ... or at least write this down, and log in at your first
opportunity. The Klein Project is a worldwide project to produce writing on con-
temporary mathematics for secondary school teachers. Note: it is not designed for
use in classrooms, but for the pleasure and satisfaction of teachers. In the Klein
Blog you will find Klein Vignettes—these are short (4—6 pages) on a contemporary
topic, written for secondary school mathematics teachers.

Over the next months you will see the Klein Blog grow—both with new
Vignettes, but also as we translate the Vignettes into any and every language. This
is a major task for our community, and I seek your help to offer to translate the
Vignettes into your languages.

Eventually there will also be a Klein Project book—a small volume aimed at
secondary teachers, that they will be able to dip into in the spare moments of their
busy teaching lives. A book that will sustain and inspire teachers mathematically.

Please will you have a look, feed back to the project with your reactions, offer to
help write more materials, and, most importantly, spread the Blog address amongst
your secondary teacher friends and networks—or anyone whom you think would be
interested.

I mention the Klein Project not because it is ICMI’s only project—it is not, we
have several others—but because it illustrates for me an very important point: that
ICMI works more closely than ever with IMU, the world body of mathematicians.
The Klein Project is a joint project with IMU, and every piece of writing is the
result of collaborations between mathematics teachers, educators, and
mathematicians.

And lest you think that ICMI is focused only on secondary teachers and
mathematicians, let me quickly say: “Look out for the next ICMI Study
announcement—it will be on Primary Mathematics”. Watch for the announcement
in December.

Finally, allow me to note that ICMI is changing in another respect—it is
changing in the way the world is changing. New technologies, new modes of
communication, new groupings, new social imperatives, new problems to be solved
and questions to be answered. ICMI must and does change, and in particular we
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change in the way we communicate. We have a Facebook page, we have a bank of
digitised publications, we have an ever increasing website. In what new ways will
we meet and communicate in four years time? We need the new members of our
community to lead us in this matter—and I call on you all to embrace the movement
forward into new worlds.

But face-to-face communication will, in my opinion, always be highly valued.
Being able to Skype my grandchildren or my research colleagues on the other side
of the world only makes me want to actually see them and spend time with them so
much more.

And this is why we are here. To greet and see and talk to each other. To make
new friends and affirm old ones. And we do this with great pleasure at the same
time as we work hard to improve the learning of mathematics in classrooms at all
levels in every country.

Thus I regard it as one of the greatest honours of my career to declare the 12th
International Congress on Mathematics Education Officially open.
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Welcome Address: Chair of IPC

Sung Je Cho

I would like to express my utmost gratitude to His Excellency Lee Myung-bak, the
President of the Republic of Korea for preparing a welcoming message for us
despite his busy schedule.

Your Excellency Lee Ju Ho, Minister of Education, Science, and Technology,
Professor Ingrid Daubechies, the President of IMU, Professor Bill Barton, the
President of ICMI, Ladies and Gentlemen, distinguished guests and participants
from all around the world, I would like to extend my warmest welcome to you all.

We, the Korean Mathematics Society and Korean Mathematics Education
Society, are very proud to host the 12th International Congress on Mathematical
Education. Our International Programme Committee has worked tirelessly through
two face-to-face meetings and numerous internet discussions. It is needless to say
that this Congress would not be possible without the dedicated and coordinated
efforts of members of the various committees, presenters and participants. We thank
all of you for making this a reality.

Mathematics has been at the heart of human culture, philosophy, technology and
advancement since the dawn of civilization. We cannot think of our modern society
apart from mathematics because mathematics influences every facet of our daily
lives. Due to the far reaching effects of mathematics in our world, mathematics
education may be one of the most efficient ways to influence betterment of man-
kind. For the week starting today, we are gathered here to nurture and cultivate the
mathematics educational environment for our future generation so that they may
become significant part of the solution and advancement of our society.

S.J. Cho ()

International Programme Committee of ICME-12,
Seoul National University, Seoul, Republic of Korea
e-mail: sungjcho@snu.ac.kr
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It is our sincere hope that this Congress would inspire wider and tighter math-
ematics education research network as well as inviting and stimulating mathematics
classrooms all over the world.

Thank you,
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Congratulatory Remarks: Minister
of Education and Science, and Technology

Ju Ho Lee

First of all, congratulations on the opening of the 12th International Congress on
Mathematical Education.

I am glad that this important math event is being held in Korea this year.

Also, it is a great pleasure to welcome math education researchers and math
teachers from more than 100 countries.

With the aim of transforming Korea into a nation of great science and tech-
nology capacity, and a nation of outstanding human talent, the Ministry of Edu-
cation, Science and Technology of Korea is focusing on three important points in
designing and implementing its policies.

The three points are “creativity”, “convergence”, and “human talent”. Creativity
enables us to think outside the box, convergence allows us to go beyond the
traditional boundaries between disciplines, and finally human talent builds the very
foundation that make all these possible.

Without a doubt, these are the most essential elements in today’s knowledge-
based society.

Math is the very subject that can foster much needed creativity and convergence,
and is becoming a core factor in raising national competitiveness.

Math is behind everything.

The ICT revolution would have been impossible without the binary system.

The technology behind the CT scans can be traced back to simultaneous
equations.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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J.H. Lee (X))
Former Minister of Education, Science and Technology, KDI School
of Public Policy and Management, Seoul, Republic of Korea
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ICMI Awards Report

Carolyn Kieran

A wonderful part of the opening session of the ICME congresses is the ICMI
Awards ceremony. The 2012 ceremony, which was presided over by Prof. Carolyn
Kieran, the chair of the ICMI Awards Committee, was no exception. Congress
participants shared in congratulating the recipients of the 2009 and 2011 compe-
titions for the Klein and Freudenthal awards. The Korean Minister of Education,
Science, and Technology, the Honorable Mr. Ju-Ho Lee, did us the honor of
presenting each award.

In 2000, the International Commission on Mathematical Instruction decided to
create two prizes given in recognition of outstanding achievement in mathematics
education research:

e the Felix Klein Award, which honours lifetime achievement in our field, and
e the Hans Freudenthal Award, which honours a major cumulative programme of
research.

Each award consists of a medal and a certificate, accompanied by a citation. The
two awards are given in odd-numbered years. A six-person Awards Committee is
responsible for selecting the awardees and for producing the citations explaining the
merits of the awardees. The members, of whom only the Chair is known, are
appointed by the President of ICMI and serve on the Committee for 8 years.

Scientific and scholarly quality is of course the fundamental characteristic
involved in reviewing the candidates’ work and merits. The first Committee, which
was appointed in 2002, agreed on four aspects of quality, four criteria of evaluation:
impact, sustainability, depth, and novelty. These criteria have been maintained
throughout the Committee’s work. Nevertheless, the field is influenced by social
and cultural conditions, traditions, values, norms, and priorities. So, there are,
inevitably, delicate balances to be struck between different dimensions, different
traditions, different cultural and ethnic regions, and—indeed—different schools of

C. Kieran (IX)
Université du Québec a Montréal, Montréal, QC, Canada
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thought. Past Klein awardees have been Guy Brousseau (2003), Ubiritan
D’ Ambrosio (2005), and Jeremy Kilpatrick (2007). Past Freudenthal awardees have
been Celia Hoyles (2003), Paul Cobb (2005), and Anna Sfard (2007).

At the 2012 ICMI Awards ceremony, the following four individuals were
honored for their contributions to the field.

e The Felix Klein Medal for 2009: awarded to IAS Distinguished Professor and
Professor Emerita Gilah C. Leder, La Trobe University, Bundoora, Victoria,
Australia.

e The Hans Freudenthal Medal for 2009: awarded to Professor Yves Chevallard,
IUFM d’Aix-Marseille, France.

e The Felix Klein Medal for 2011: awarded to the Elizabeth and Edward Connor
Professor of Education and Affiliated Professor of Mathematics, Alan H.
Schoenfeld, University of California at Berkeley, USA.

e The Hans Freudenthal Medal for 2011: awarded to Professor Luis Radford,
Université Laurentienne, Sudbury, Canada.

Gilah Leder’s citation, which was read by ICMI President Bill Barton,
acknowledged her more than thirty years of sustained, consistent, and outstanding
lifetime achievement in mathematics education research and development. Her
particular emphasis on gender success and equity in mathematics education, but
also more broadly her work on assessment, student affect, attitudes, beliefs, and
self-concepts in relation to mathematics education from school to university, as well
as her research methodology, and teacher education, have contributed to shaping
these areas and have made a seminal impact on all subsequent research.

Yves Chevallard’s citation, which was read by ICMI Vice-President Mina
Teicher, recognized his foundational development of an original, fruitful, and
influential research programme in mathematics education. The early years of the
programme focused on the notion of didactical transposition of mathematical
knowledge from outside school to inside the mathematics classroom, a transposition
that also transforms the very nature of mathematical knowledge. The theoretical
frame was further developed and gave rise to the anthropological theory of didactics
(ATD), which offers a tool for modelling and analysing a diversity of human
activities in relation to mathematics.

Alan Schoenfeld’s citation, which was read by ICMI Past-President Michéele
Artigue, recognized his more than thirty years of scholarly work that has shaped
research and theory development in mathematical learning and teaching. His fun-
damental theoretical and applied work that connects research and practice in
assessment, mathematical curriculum, diversity in mathematics education, research
methodology, and teacher education has made a seminal impact on subsequent
research. Another significant component of his achievements has been the men-
toring he has provided to graduate students and scholars, nurturing a generation of
new scholars.

Luis Radford’s citation, which was read by ICMI Vice-President Angel Ruiz,
acknowledged the outstanding contribution of the theoretically well-conceived and
highly coherent research programme that he initiated and brought to fruition over
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the past two decades. His development of a semiotic-cultural theory of learning,
rooted in his interest in the history of mathematics, has drawn on epistemology,
semiotics, anthropology, psychology, and philosophy, and has been anchored in
detailed observations of students’ algebraic activity in class. His research, which
has been documented in a vast number of scientific articles and in invited keynote
presentations, has had a significant impact on the community.

The image of the four awardees standing on the stage together, receiving their
medals and accompanying certificates from the Minister of Education—as well as
the beautiful bouquets of flowers presented by young Koreans in traditional dress—
is one that will stay with us for quite some time.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
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The Butterfly Effect

Etienne Ghys

Abstract It is very unusual for a mathematical idea to disseminate into the society
at large. An interesting example is chaos theory, popularized by Lorenz’s butterfly
effect: “does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” A
tiny cause can generate big consequences! Can one adequately summarize chaos
theory in such a simple minded way? Are mathematicians responsible for the
inadequate transmission of their theories outside of their own community? What is
the precise message that Lorenz wanted to convey? Some of the main characters of
the history of chaos were indeed concerned with the problem of communicating
their ideas to other scientists or non-scientists. I’ll try to discuss their successes and
failures. The education of future mathematicians should include specific training to
teach them how to explain mathematics outside their community. This is more and
more necessary due to the increasing complexity of mathematics. A necessity and a
challenge!

Introduction

In 1972, the meteorologist Edward Lorenz gave a talk at the 139th meeting of the
American Association for the Advancement of Science entitled “Does the flap of a
butterfly’s wings in Brazil set off a tornado in Texas?”. Forty years later, a google
search “butterfly effect” generates ten million answers. Surprisingly most answers
are not related to mathematics or physics and one can find the most improbable
websites related to movies, music, popular books, video games, religion, philoso-
phy and even Marxism! It is very unusual that a mathematical idea can disseminate
into the general society. One could mention Thom’s catastrophe theory in the
1970s, or Mandelbrot’s fractals in the 1980s, but these theories remained confined
to the scientifically oriented population. On the contrary, chaos theory, often

E. Ghys (B<)
CNRS-UMPA ENS Lyon, Lyon, France
e-mail: etienne.ghys@ens-lyon.fr

© The Author(s) 2015 19
S.J. Cho (ed.), The Proceedings of the 12th International Congress
on Mathematical Education, DOI 10.1007/978-3-319-12688-3_6



20 E. Ghys

presented through the butterfly effect, did penetrate the nonscientific population at a
very large scale. Unfortunately, this wide diffusion was accompanied with an
oversimplification of the main original ideas and one has to admit that the trans-
mission procedure from scientists to nonscientists was a failure. As an example, the
successful book The butterfly effect by Andy Andrews “reveals the secret of how
you can live a life of permanent purpose” and “shows how your everyday actions
can make a difference for generations to come” which is not exactly the message of
the founding fathers of chaos theory! In Spielberg’s movie Jurassic Park, Jeff
Goldblum introduces himself as a “chaotician” and tries (unsuccessfully) to explain
the butterfly effect and unpredictability to the charming Laura Dern; the message is
scientifically more accurate but misses the main point. If chaos theory only claimed
that the future is unpredictable, would it deserve the name “theory”? After all, it is
well known that “Prediction is very difficult, especially the future!”.! A scientific
theory cannot be limited to negative statements and one would be disappointed if
Lorenz’s message only contained this well known fact.

The purpose of this talk is twofold. On the one hand, I would like to give a very
elementary presentation of chaos theory, as a mathematical theory, and to give
some general overview on the current research activity in this domain with an
emphasis on the role of the so-called physical measures. On the other hand, I would
like to analyze the historical process of the development of the theory, its successes
and failures, focusing in particular on the transmission of ideas between mathe-
matics and physics, or from Science to the general public. This case study might
give us some hints to improve the communication of mathematical ideas outside
mathematics or scientific circles. The gap between mathematicians and the general
population has never been so wide. This may be due to the increasing complexity of
mathematics or to the decreasing interest of the population for Science. I believe
that the mathematical community has the responsibility of building bridges.

A Brief History of Chaos from Newton to Lorenz

Determinism

One of the main pillars of Science is determinism: the possibility of prediction. This is
of course not due to a single person but one should probably emphasize the funda-
mental role of Newton. As he was laying the foundations of differential calculus and
unraveling the laws of mechanics, he was offering by the same token a tool enabling
predictions. Given a mechanical system, be it the solar system or the collection of
molecules in my room, one can write down a differential equation governing the
motion. If one knows the present position and velocity of the system, one should

' See www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html for an interesting
discussion of the origin of this quotation.
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simply solve a differential equation in order to determine the future. Of course,
solving a differential equation is not always a simple matter but this implies at least
the principle of determinism: the present situation determines the future. Laplace
summarized this wonderfully in his “Essai philosophique sur les probabilités”
(Laplace, 1814):

We ought then to consider the present state of the universe as the effect of its previous state
and as the cause of that which is to follow. An intelligence that, at a given instant, could
comprehend all the forces by which nature is animated and the respective situation of the
beings that make it up, if moreover it were vast enough to submit these data to analysis,
would encompass in the same formula the movements of the greatest bodies of the universe
and those of the lightest atoms. For such an intelligence nothing would be uncertain, and
the future, like the past, would be open to its eyes.

The fact that this quotation comes from a book on probability theory shows that
Laplace’s view on determinism was far from naive (Kahane 2008). We lack the
“vast intelligence” and we are forced to use probabilities in order to understand
dynamical systems.

Sensitivity to Initial Conditions

In his little book “Matter and Motion”, Maxwell insists on the sensitivity to initial
conditions in physical phenomena (Maxwell, 1876):

There is a maxim which is often quoted, that “The same causes will always produce the
same effects.” To make this maxim intelligible we must define what we mean by the same
causes and the same effects, since it is manifest that no event ever happens more that once,
so that the causes and effects cannot be the same in all respects. [...]

There is another maxim which must not be confounded with that quoted at the beginning of
this article, which asserts “That like causes produce like effects’. This is only true when
small variations in the initial circumstances produce only small variations in the final state
of the system. In a great many physical phenomena this condition is satisfied; but there are
other cases in which a small initial variation may produce a great change in the final state of
the system, as when the displacement of the ‘points’ causes a railway train to run into
another instead of keeping its proper course.

Notice that Maxwell seems to believe that “in great many cases” there is no
sensitivity to initial conditions. The question of the frequency of chaos in nature is
still at the heart of current research. Note also that Maxwell did not really describe
what we would call chaos today. Indeed, if one drops a rock from the top of a
mountain, it is clear that the valley where it will end its course can be sensitive to a
small variation of the initial position but it is equally clear that the motion cannot be
called “chaotic” in any sense of the word: the rock simply goes downwards and
eventually stops.
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Fear for Chaos

It is usually asserted that chaos was “discovered” by Poincaré in his famous memoir
on the 3-body problem (Poincaré 1890). His role is without doubt very important,
but maybe not as much as is often claimed. He was not the first to discover
sensitivity to initial conditions. However, he certainly realized that some mechan-
ical motions are very intricate, in a way that Maxwell had not imagined. Never-
theless chaos theory cannot be limited to the statement that the dynamics is
complicated: any reasonable theory must provide methods allowing some kind of
understanding. The following famous quotation of Poincaré illustrates his despair
when confronted by the complication of dynamics (Poincaré 1890):

When we try to represent the figure formed by these two curves and their infinitely many
intersections, each corresponding to a doubly asymptotic solution, these intersections form
a type of trellis, tissue, or grid with infinitely fine mesh. Neither of the two curves must ever
cut across itself again, but it must bend back upon itself in a very complex manner in order
to cut across all of the meshes in the grid an infinite number of times. The complexity of
this figure is striking, and I shall not even try to draw it. Nothing is more suitable for
providing us with an idea of the complex nature of the three-body problem, and of all the
problems of dynamics in general [...].

One should mention that ten years earlier Poincaré had written a fundamental
memoir “Sur les courbes définies par des équations différentielles” laying the
foundations of the qualitative theory of dynamical systems (Poincaré 1881). In this
paper, he had analyzed in great detail the behavior of the trajectories of a vector
field in the plane, i.e. of the solutions of an ordinary differential equation in
dimension 2. One of his main results—the Poincaré-Bendixson theorem—implied
that such trajectories are very well behaved and converge to an equilibrium point or
to a periodic trajectory (or to a so-called “graphic”): nothing chaotic in dimension 2!
In his 1890 paper, he was dealing with differential equations in dimension 3 and he
must have been puzzled—and scared—when he realized the complexity of the
picture.

Taming Chaos

Hadamard wrote a fundamental paper on the dynamical behavior of geodesics on
negatively curved surfaces (Hadamard, 1898). He first observes that “a tiny change
of direction of a geodesic [...] is sufficient to cause any variation of the final shape
of the curve” but he goes much further and creates the main concepts of the
so-called “symbolic dynamics”. This enables him to prove positive statements,
giving a fairly precise description of the behavior of geodesics. Of course,
Hadamard is perfectly aware of the fact that geodesics on a surface define a very
primitive mechanical system and that it is not clear at all that natural phenomena
could have a similar behavior. He concludes his paper in a cautious way:
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Will the circumstances we have just described occur in other problems of mechanics? In
particular, will they appear in the motion of celestial bodies? We are unable to make such
an assertion. However, it is likely that the results obtained for these difficult cases will be
analogous to the preceding ones, at least in their degree of complexity. [...]

Certainly, if a system moves under the action of given forces and its initial conditions have
given values in the mathematical sense, its future motion and behavior are exactly known.
But, in astronomical problems, the situation is quite different: the constants defining the
motion are only physically known, that is with some errors; their sizes get reduced along the
progresses of our observing devices, but these errors can never completely vanish.

So far, the idea that some physical systems could be complicated and sensitive to
small variations of the initial conditions—making predictions impossible in practice
—remained hidden in very confidential mathematical papers known to a very small
number of scientists. One should keep in mind that by the turn of the century,
physics was triumphant and the general opinion was that Science would eventually
explain everything. The revolutionary idea that there is a strong conceptual limi-
tation to predictability was simply unacceptable to most scientists.

Popularization

However, at least two scientists realized that this idea is relevant in Science and
tried—unsuccessfully—to advertize it outside mathematics and physics, in “popular
books”.

In his widely circulated book Science and Method, Poincaré expresses the
dependence to initial conditions in a very clear way. The formulation is very close
to the butterfly slogan and even includes a devastating cyclone (Poincaré 1908):

Why have meteorologists such difficulty in predicting the weather with any certainty? Why
is it that showers and even storms seem to come by chance, so that many people think it
quite natural to pray for rain or fine weather, though they would consider it ridiculous to ask
for an eclipse by prayer? We see that great disturbances are generally produced in regions
where the atmosphere is in unstable equilibrium. The meteorologists see very well that the
equilibrium is unstable, that a cyclone will be formed somewhere, but exactly where they
are not in a position to say; a tenth of a degree more or less at any given point, and the
cyclone will burst here and not there, and extend its ravages over districts it would
otherwise have spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently comprehensive nor
sufficiently precise, and that is the reason why it all seems due to the intervention of chance.

In 1908 Poincaré was less scared by chaos than in 1890. He was no longer
considering chaos as an obstacle to a global understanding of the dynamics, at least
from the probabilistic viewpoint. Reading Poincaré’s papers of this period, with
today’s understanding of the theory, one realizes that he had indeed discovered the
role of what is called today physical measures (to be discussed later) which are at
the heart of the current approach. Unfortunately, none of his contemporaries could
grasp the idea—or maybe he did not formulate it in a suitable way—and one had to
wait for seventy years before the idea could be re-discovered!
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You are asking me to predict future phenomena. If, quite unluckily, I happened to know the
laws of these phenomena, I could achieve this goal only at the price of inextricable
computations, and should renounce to answer you; but since I am lucky enough to ignore
these laws, I will answer you straight away. And the most astonishing is that my answer
will be correct.

Another attempt to advertize these ideas outside mathematics and physics was
made by Duhem (1906) in his book The aim and structure of physical theory. His
purpose was to popularize Hadamard’s paper and he used simple words and very
efficient “slogans”:

Imagine the forehead of a bull, with the protuberances from which the horns and ears start,
and with the collars hollowed out between these protuberances; but elongate these horns
and ears without limit so that they extend to infinity; then you will have one of the surfaces
we wish to study. On such a surface geodesics may show many different aspects. There are,
first of all, geodesics which close on themselves. There are some also which are never
infinitely distant from their starting point even though they never exactly pass through it
again; some turn continually around the right horn, others around the left horn, or right ear,
or left ear; others, more complicated, alternate, in accordance with certain rules, the turns
they describe around one horn with the turns they describe around the other horn, or around
one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there
will be geodesics going to infinity, some mounting the right horn, others mounting the left
horn, and still others following the right or left ear. [...] If, therefore, a material point is
thrown on the surface studied starting from a geometrically given position with a geo-
metrically given velocity, mathematical deduction can determine the trajectory of this point
and tell whether this path goes to infinity or not. But, for the physicist, this deduction is
forever unutilizable. When, indeed, the data are no longer known geometrically, but are
determined by physical procedures as precise as we may suppose, the question put remains
and will always remain unanswered.

Unfortunately the time was not ripe. Scientists were not ready for the message...
Poincaré and Duhem were not heard. The theory went into a coma. Not completely
though, since Birkhoff continued the work of Poincaré in a strictly mathematical
way, with no attempts to develop a school, and with no applications to natural
sciences. One should mention that Poincaré’s work had also some posterity in the
Soviet Union but this was more related to the 1881 “non chaotic” theory of limit
cycles (Aubin and Dahan Dalmedico 2002).

Later I will describe Lorenz’s fundamental article which bears the technical title
“Deterministic non periodic flow”, and was largely unnoticed by mathematicians
for about ten years (Lorenz, 1963). Lorenz gave a lecture entitled “Predictability:
does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” which was
the starting point of the famous butterfly effect (Lorenz, 1972).

If a single flap of a butterfly’s wing can be instrumental in generating a tornado, so all the
previous and subsequent flaps of its wings, as can the flaps of the wings of the millions of
other butterflies, not to mention the activities of innumerable more powerful creatures,
including our own species.

If a flap of a butterfly’s wing can be instrumental in generating a tornado, it can equally well
be instrumental in preventing a tornado.
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This is not really different from Poincaré’s “a tenth of a degree more or less at
any given point, and the cyclone will burst here and not there”. However,
meanwhile, physics (and mathematics) had gone through several revolutions and
non-predictability had become an acceptable idea. More importantly, the world had
also gone through several (more important) revolutions. The message “each one of
us can change the world®” was received as a sign of individual freedom. This is
probably the explanation of the success of the butterfly effect in popular culture. It
would be interesting to describe how Lorenz’s talk reached the general population.
One should certainly mention the best seller Chaos: making a new science (Gleick
1987) (which was a finalist for the Pulitzer Prize). One should not minimize the
importance of such books. One should also emphasize that Lorenz himself
published a wonderful popular book The essence of chaos in 1993. Note that the
two main characters of the theory, Poincaré and Lorenz, wrote popular books to
make their researches accessible to a wide audience.

Lorenz’s 1963 Paper

Lorenz’s article is wonderful (Lorenz 1963). At first unnoticed, it eventually
became one of the most cited papers in scientific literature (more than 6,000 cita-
tions since 1963 and about 400 each year in recent years). For a few years, Lorenz
had been studying simplified models describing the motion of the atmosphere in
terms of ordinary differential equations depending on a small number of variables.
For instance, in 1960 he had described a system that can be explicitly solved using
elliptic functions: solutions were quasiperiodic in time (Lorenz 1960). His article
(Lorenz 1962) analyzes a differential equation in a space of dimension 12, in which
he numerically detects a sensitive dependence to initial conditions. His 1963 paper
lead him to fame.

In this study we shall work with systems of deterministic equations which are idealizations
of hydrodynamical systems.

After all, the atmosphere is made of finitely many particles, so one indeed needs
to solve an ordinary differential equation in a huge dimensional space. Of course,
such equations are intractable, and one must treat them as partial differential
equations. In turn, the latter must be discretized on a finite grid, leading to new
ordinary differential equations depending on fewer variables, and probably more
useful than the original ones.

The bibliography in Lorenz’s article includes one article of Poincaré, but not the
right one! He cites the early 1881 “non chaotic” memoir dealing with 2 dimensional
dynamics. Lorenz seems indeed to have overlooked the Poincaré’s papers that we
have discussed above. Another bibliographic reference is a book by Birkhoff (1927)

2 Subtitle of a book by Bill Clinton (2007).
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on dynamical systems. Again, this is not “the right” reference since the “significant”
papers on chaos by Birkhoff were published later. On the occasion of the 1991
Kyoto prize, Lorenz gave a lecture entitled “A scientist by choice” in which he
discusses his relationship with mathematics (Lorenz 1991). In 1938 he was a
graduate student in Harvard and was working under the guidance of... Birkhoff “on
a problem in mathematical physics”. However he seems unaware of the fact that
Birkhoff was indeed the best follower of Poincaré. A missed opportunity? On the
other hand, Lorenz mentions that Birkhoff “was noted for having formulated a
theory of aesthetics”.

Lorenz considers the phenomenon of convection. A thin layer of a viscous fluid
is placed between two horizontal planes, set at two different temperatures, and one
wants to describe the resulting motion. The higher parts of the fluid are colder,
therefore denser; they have thus a tendency to go down due to gravity, and are then
heated when they reach the lower regions. The resulting circulation of the fluid is
complex. Physicists are very familiar with the Bénard and Rayleigh experiments.
Assuming the solutions are periodic in space, expanding in Fourier series and
truncating these series to keep only a small number of terms, Salzman had just
obtained an ordinary differential equation describing the evolution. Drastically
simplifying this equation, Lorenz obtained “his” differential equation:

%:G(wa); %: —Xz+rz—y; %=xy—bz.

Here x represents the intensity of the convection, y represents the temperature
difference between the ascending and descending currents, and z is proportional to
the “distortion” of the vertical temperature profile from linearity, a positive value
indicating that the strongest gradients occur near the boundaries. Obviously, one
should not seek in this equation a faithful representation of the physical phenom-
enon. The constant ¢ is the Prandtl number. Guided by physical considerations,
Lorenz was lead to choose the numerical values r = 28, 0 = 10, b = 8/3. It was a
good choice, and these values remain traditional today. He could then numerically
solve these equations, and observe a few trajectories. The electronic computer
Royal McBee LGP-30 was rather primitive: according to Lorenz, it computed
(only!) 1,000 times faster than by hand. The anecdote is well known (Lorenz 1991):

I started the computer again and went out for a cup of coffee. When I returned about an hour
later, after the computer had generated about two months of data, I found that the new
solution did not agree with the original one. [...] I realized that if the real atmosphere
behaved in the same manner as the model, long-range weather prediction would be
impossible, since most real weather elements were certainly not measured accurately to
three decimal places.

Let us introduce some basic terminology and notation. For simplicity we shall
only deal with ordinary differential equations in R" of the form % = X(x) where x is
now a point in R” and X is a vector field in R". We shall assume that X is transversal
to some large sphere, say ||x|| = R, pointing inwards, which means that the scalar
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product x.X(x) is negative on this sphere. Denote by B the ball |x|| <R. For any
point x in B, there is a unique solution of the differential equation with initial
condition x and defined for all # > 0. Denote this solution by ¢'(x). The purpose of
the theory of dynamical systems is to understand the asymptotic behavior of these
trajectories when ¢ tends to infinity. With this terminology, one says that X is
sensitive to initial conditions if there exists some 6 > 0 such that for every ¢ > 0
one can find two points x, x’ in B with ||x — x'|| <€ and some time 7 > 0 such that
19" (x) — ¢"(x') || <.

Lorenz’s observations go much further than the fact that “his” differential
equation is sensitive to initial conditions. He notices that these unstable trajectories
seem to accumulate on a complicated compact set, which is itself insensitive to
initial conditions and he describes this limit set in a remarkably precise way. There
exists some compact set K in the ball such that for almost every initial condition x,
the trajectory of x accumulates precisely on K. This attracting set K (now called the
Lorenz attractor) approximately resembles a surface presenting a “double” line
along which two leaves merge.

Thus within the limits of accuracy of the printed values, the trajectory is confined to a pair
of surfaces which appear to merge in the lower portion. [...] It would seem, then, that the
two surfaces merely appear to merge, and remain distinct surfaces. [...] Continuing this
process for another circuit, we see that there are really eight surfaces, etc., and we finally
conclude that there is an infinite complex of surfaces, each extremely close to one or the
other of the two merging surfaces.

Lorenz (1963)

200}

Starting from an initial condition, the trajectory rapidly approaches this “two
dimensional object” and then travels “on” this “surface”. The trajectory turns
around the two holes, left or right, in a seemingly random way. Notice the analogy
with Hadamard’s geodesics turning around the horns of a bull. Besides, Lorenz
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studies how trajectories come back to the “branching line” where the two surfaces
merge, which can be parameterized by some interval [0,1]. Obviously, this interval
is not very well defined, since the two merging surfaces do not really come in
contact, although they coincide “within the limits of accuracy of the printed
values”. Starting from a point on this “interval”, one can follow the future trajectory
and observe its first return onto the interval. This defines a two to one map from the
interval to itself. Indeed, in order to go back in time and track the past trajectory of a
point in [0,1], one should be able to select one of the two surfaces attached to the
interval. On the figure the two different past trajectories seem to emanate from the
“same point” of the interval. Of course, if there are two past trajectories starting
from “one” point, there should be four, then eight, etc., which is what Lorenz
expresses in the above quotation. Numerically, the first return map is featured on
the left part of Figure, extracted from the original paper.
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Working by analogy, Lorenz compares this map to the (much simpler) following
one: f(x) = 2xif 0<x < land f(x) =2 — 2xif § <x<1 (right part of the Figure).
Nowadays the chaotic behavior of this “tent map” is well known, but this was much
less classical in 1963. In particular, the periodic points of f are exactly the rational
numbers with odd denominators, which are dense in [0,1]. Lorenz does not hesitate
to claim that the same property applies to the iterations of the “true” return
map. The periodic trajectories of the Lorenz attractor are “therefore” dense in
K. What an intuition! Finally, he concludes with a lucid question on the relevance
of his model for the atmosphere.

There remains the question as to whether our results really apply to the atmosphere. One
does not usually regard the atmosphere as either deterministic or finite, and the lack of
periodicity is not a mathematical certainty, since the atmosphere has not been observed
forever.

To summarize, this remarkable article contains the first example of a physically
relevant dynamical system presenting all the characteristics of chaos. Individual
trajectories are unstable but their asymptotic behavior seems to be insensitive to
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initial conditions: they converge to the same attractor. None of the above assertions
are justified, at least in the mathematical sense. How frustrating!

Surprisingly, an important question is not addressed in Lorenz’s article. The
observed behavior happens to be robust: if one slightly perturbs the differential
equation, for instance by modifying the values of the parameters, or by adding small
terms, then the new differential equation will feature the same type of attractor with
the general aspect of a branched surface. This property would be rigorously
established much later by Guckhenheimer and Williams.

The Lorenz attractor looks like a butterfly

Meanwhile, Mathematicians...

Lack of Communication Between Mathematicians
and Physicists?

Mathematicians did not notice Lorenz’s paper for more than ten years. The
mathematical activity in dynamical systems during this period followed an inde-
pendent and parallel path, under the lead of Smale. How can one understand this
lack of communication between Lorenz—the MIT meteorologist—and Smale—the
Berkeley mathematician? Obviously, during the 1960s the scientific community
had already reached such a size that it was impossible for a single person to master
mathematics and physics; the time of Poincaré was over. No bridge between
different sciences was available. Mathematicians had no access to the Journal of
Atmospheric Sciences.’

3 In order to find an excuse for not having noticed Lorenz paper, a famous mathematician told me
that Lorenz had published in “some obscure journal”!.
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Smale’s Axiom A

In 1959 Smale had obtained remarkable results in topology, around the Poincaré
conjecture in higher dimension. The main tool was Morse theory describing the
gradient of a (generic) function. The dynamics of such a gradient is far from
chaotic: trajectories go uphill and converge to some equilibrium point. Smale
initiated a grandiose program aiming at a qualitative description of the trajectories
of a generic vector field (on compact manifolds). His first attempt was amazingly
naive (Smale 1960). He conjectured that a generic vector field has a finite number
of equilibrium points, a finite number of periodic trajectories, and that every
trajectory converges in the future (and in the past) towards an equilibrium or a
periodic trajectory. He was therefore proposing that chaos does not exist! Poincaré,
Hadamard or Birkhoff had already published counterexamples many years earlier!
Looking back at this period, Smale wrote (1998a, b):

It is astounding how important scientific ideas can get lost, even when they are aired by
leading scientific mathematicians of the preceding decades.

Smale realized soon by himself * that the dynamics of a generic vector field is
likely to be much more complicated than he had expected. He constructed a
counterexample to his own conjecture (Smale 1961). The famous horseshoe is a
simple example of a dynamical system admitting an infinite number of periodic
trajectories in a stable way.

In order to describe this example, I should explain a classical construction (due
to Poincaré). Suppose we start with a vector field X (in a ball in R", as above). It
may happen that one can find some n — 1 dimensional disc D, which is transverse
to X and which is such that the trajectory of every point x in D intersects D infinitely
often. In such a situation, one can define a map F : D — D which associates to each
point x in D the next intersection of its trajectory with D. For obvious reasons, this
map is called the first return map. Clearly the description of the dynamics of
X reduces to the description of the iterates of F. Conversely, in many cases, one can
construct a vector field from a map F. It is often easier to draw pictures in D since it
is one dimension lower than B. In Smale’s example, D has dimension 2 and
corresponds to a vector field in dimension 3, like in Lorenz’s example. The map
F is called a horseshoe map since the image F(C) of a square C does look like a
horseshoe as in the picture.

4 Asif obeying Goethe’s dictum “Was du ererbt von deinen Vitern hast, erwirb es, um es zu
besitzen” (“That which you have inherited from your fathers, earn it in order to possess it.”).
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F(C)

The infinite intersection N™%° F(C) is a nonempty compact set K C D, and the
restriction of F to K is a homeomorphism. The intersection C N F(C) consists of
two connected components Cy and C;. Smale shows that one can choose F in such
a way that for every bi-infinite sequence a;(with @; = 0 or 1), there exists a unique
point x in K such that Fi(x) € C; for every i. In particular, periodic points of
F correspond to periodic sequences «;; they are dense in K.

More importantly, Smale shows that his example is structurally stable. Let us
come back to a vector field X defined in some ball in R" and transversal to the
boundary. One says that X is structurally stable if every vector field X' which is
close enough to X (say in the C! topology) is topologically conjugate to X: there is a
homeomorphism # of B sending trajectories of X to trajectories of X'. Andronov and
Pontryagin (1937) had introduced this concept in 1937 but in a very simple context,
certainly not in the presence of an infinite number of periodic trajectories. The proof
that the horseshoe map defines a structurally stable vector field is rather elementary.
It is based on the fact that a map F’ from D to itself close enough to F is also
described by the same infinite sequences a;.

Smale published this result in the proceedings of a workshop organized in the
Soviet Union in 1961. Anosov tells us about this “revolution” in Anosov (2006).

The world turned upside down for me, and a new life began, having read Smale’s
announcement of ‘a structurally stable homeomorphism with an infinite number of periodic
points’, while standing in line to register for a conference in Kiev in 1961. The article is
written in a lively, witty, and often jocular style and is full of captivating observations. [...]
[Smale] felt like a god who is to create a universe in which certain phenomena would occur.

Afterwards the theory progressed at a fast pace. Smale quickly generalized the
horseshoe; see for instance (Smale 1966). Anosov proved in 1962 that the geodesic
flow on a manifold of negative curvature is structurally stable (Anosov 1962)°. For
this purpose, he created the concept of what is known today as Anosov flows.
Starting from the known examples of structurally stable systems, Smale cooked up
in 1965 the fundamental concept of dynamical systems satisfying the Axiom A and
conjectured that these systems are generic and structurally stable. Smale’s (1967)

5 Surprisingly, he does not seem to be aware of Hadamard’s work. It would not be difficult to
deduce Anosov’s theorem from Hadamard’s paper.
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article “Differential dynamical systems” represents an important step for the theory
of dynamical systems (Smale 1967), a “masterpiece of mathematical literature”
according to Ruelle. But, already in 1966, Abraham and Smale found a counter-
example to this second conjecture of Smale: Axiom A systems are indeed struc-
turally stable but they are not generic (Smale 1966, Abraham and Smale 1968).

Lorenz’s Equation Enters the Scene

Lorenz’s equation pops up in mathematics in the middle of the 1970s. According to
Guckenheimer, Yorke mentioned to Smale and his students the existence of Lorenz’s
equation, which did not fit well with their approach. The well-known 1971 paper by
Ruelle and Takens (1971) still proposed Axiom A systems as models for turbulence,
but in 1975 Ruelle observed that “Lorenz’s work was unfortunately overlooked”
(Ruelle 1976a). Guckenheimer and Lanford were among the first people to have
shown some interest in this equation (from a mathematical point of view)
(Guckenheimer 1976; Lanford 1977). Mathematicians quickly adopted this new
object which turned out to be a natural counterexample to Smale’s conjecture on the
genericity of Axiom A systems. It is impossible to give an exhaustive account of all
their work. By 1982 an entire book was devoted to the Lorenz’s equation, although it
mostly consisted of a list of open problems for mathematicians (Sparrow 1982).

Bowen’s review article is interesting at several levels (Bowen, 1978). Smale’s
theory of Axiom A systems had become solid and, although difficult open questions
remained, one had a rather good understanding of their dynamics. A few ‘“dark
swans” had appeared in the landscape, like Lorenz’s examples, destroying the naive
belief in the genericity of Axiom A systems. However mathematicians were trying
to weaken the definition of Axiom A in order to leave space to the newcomer
Lorenz. Nowadays, Axiom A systems seem to occupy a much smaller place than
one thought at the end of the 1970s. The Axiom A paradigm had to abandon its
dominant position... According to (Anosov 2006):

Thus the grandiose hopes of the 1960s were not confirmed, just as the earlier naive
conjectures were not confirmed.

For a more detailed description of the “hyperbolic history” one can also read the
introduction of (Hasselblatt 2002), or (Ghys 2010). See also “What is... a horse-
shoe” by one of the main actors of the field (Shub 2005).

Lorenz’s Butterfly as Seen by Mathematicians

In order to understand Lorenz’s butterfly from a mathematical point of view,
Guckhenheimer and Williams (1979) introduced a “geometrical model” in 1979.
Remember that Lorenz had observed that “his” dynamics seems to be related to the
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iterates of a map f from an interval to itself, even though this interval and this map
were only defined “within the limits of accuracy of the printed values”. The main
idea of Guckenheimer and Williams is to start from a map f of the interval and to
construct some vector field in 3-space whose behavior “looks like” the observed
behavior of the original Lorenz equation. The question of knowing if the
constructed vector field, called the geometric Lorenz model, is actually related to
the original Lorenz equation was not considered as important. After all, the original
Lorenz equation was a crude approximation of a physical problem and it was
unclear whether it was connected with reality, and moreover mathematicians in this
group were not really concerned with reality!
The following figure is reprinted from® (Guckenheimer and Williams 1979)

This is a branched surface £ embedded in space. One can define some dynamical
system f* (t > 0) on X whose trajectories are sketched on the figure: a point in X has a
future but has no past because of the two leaves which merge along an interval. The
first return map on this interval is the given map f from the interval to itself.
The dynamics of f*is easy to understand: the trajectories turn on the surface, either on
the left or on the right wing, according to the location of the iterates of the original
map f. So far, this construction does not yield a vector field. Guckhenheimer and
Williams construct a vector field X(f) in some ball B in R3, transversal to the
boundary sphere, whose dynamics mimics f’. More precisely, denote by ¢'(x) the
trajectories of X (f) and by A the intersection N, > ¢'(B), so that for every point x in
B, the accumulation points of the trajectory ¢’(x) are contained in A. The vector field
X(f) is such that A is very close to T and that the trajectories ¢'(x) shadow f”. In
other words, for every point x in A, there is a point x" in  such that ¢'(x) and f(x')
stay at a very small distance for all positive times # > 0. This vector field X(f) is not
unique but is well defined up to ropological equivalence, i.e. up to some homeo-
morphism sending trajectories to trajectories. This justifies Lorenz’s intuition,

6 Incidentally, this figure shows that the quality of an article does not depend on that of its
illustrations.
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according to which the attractor A behaves like a branched surface. Moreover, every
vector field in B which is close to X(f) is topologically conjugate to some X (f”) for
some map f’ of the interval which is close to f. Furthermore, they construct explicitly
a two-parameter family of maps f,; which represent all possible topological
equivalence classes. In summary, up fo topological equivalence, the vector fields in
the neighborhood of X (f) depend on two parameters and are Lorenz like. This is the
robustness property mentioned above.

Hence, the open set in the space of vector fields of the form X(f) does not
contain any structurally stable vector field. If Smale had known Lorenz’s example
earlier, he would have saved time! Lorenz’s equation does not satisfy Axiom A and
cannot be approximated by an Axiom A system. Therefore any theory describing
generic dynamical systems should incorporate Lorenz’s equation.

As we have mentioned, the geometric models for the Lorenz attractor have been
inspired by the original Lorenz equation, but it wasn’t clear whether the Lorenz
equation indeed behaves like a geometric model. Smale chose this question as one
of the “mathematical problems for the next century” in 1998. The problem was
positively solved in Tucker (2002). For a brief description of the method used by
Tucker, see for instance (Viana 2000).

The Concept of Physical SRB Measures

Poincaré

The main method to tackle the sensitivity to initial conditions uses probabilities.
This is not a new idea. As mentioned earlier, Laplace realized that solving differ-
ential equations requires a “vast intelligence” that we don’t have... and suggested
developing probability theory in order to get some meaningful information. In his
“Science and method”, Poincaré gives a much more precise statement. Here is an
extract of the chapter on “chance”:

When small differences in the causes produce great differences in the effects, why are the
effects distributed according to the laws of chance? Suppose a difference of an inch in the
cause produces a difference of a mile in the effect. If I am to win in case the integer part of
the effect is an even number of miles, my probability of winning will be 2. Why is this?
Because, in order that it should be so, the integer part of the cause must be an even number
of inches. Now, according to all appearance, the probability that the cause will vary
between certain limits is proportional to the distance of those limits, provided that distance
is very small.

This chapter contains much more information about Poincaré’s visionary idea
and one can even read some proofs between the lines... In modern terminology,
Poincaré considers a vector field X in a ball B in R”, as before. Instead of
considering a single point x and trying to describe the limiting behavior of ¢'(x), he
suggests choosing some probability distribution x in the ball B and to study its



The Butterfly Effect 35

evolution qﬁfk w1 under the dynamics. He then gives some arguments showing that if
L has a continuous density, and if there is “a strong sensitivity to initial conditions”,
the family of measures qS’* 1 should converge to some limit v which is independent
of the initial distribution u.” Even though individual trajectories are sensitive to
initial conditions, the asymptotic distribution of trajectories is independent of the
initial distribution, assuming that this initial distribution has a continuous density.
Amazingly, none of his contemporaries realized that this was a fundamental
contribution. This may be due to the fact that Poincaré did not write this idea in a
formalized mathematical paper but in a popular book. One would have to wait for
about seventy years before this idea could surface again.

Lorenz

We have seen that the 1972 conference of Lorenz on the butterfly emphasized the
sensitivity to initial conditions and that this idea eventually reached the general
public. However, this conference went much further:

More generally, I am proposing that over the years minuscule disturbances neither increase
nor decrease the frequency of occurrence of various weather events such as tornados; the
most they may do is to modify the sequence in which these events occur.

This is the real message that Lorenz wanted to convey: the statistical description
of a dynamical system could be insensitive to initial conditions. Unfortunately, this
idea is more complicated to explain and did not become as famous as the “easy”
idea of sensitivity to initial conditions.

Sinai, Ruelle, Bowen

Mathematicians also (re)discovered this idea in the early 1970s, gave precise
definitions and proved theorems. A probability measure v in the ball B, invariant by
¢', is an SRB measure (for Sinai-Ruelle-Bowen), also called a physical measure, if,
for each continuous function u : B — R, the set of points x such that

T

lim ! u(d)’(x))dt:/udv

T—oo T
0 B

7 Imay be exaggerating because of my excessive worship of Poincaré, but it seems to me that, in
modern terminology, Poincaré explains that the limiting probability v is absolutely continuous on
instable manifolds and may not be continuous on stable manifolds.
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has nonzero Lebesgue measure. This set of points is called the basin of v and
denoted by B(v). Sinai, Ruelle and Bowen (Sinai 1972; Ruelle 1976b; Bowen 1978)
proved that this concept is indeed relevant in the case of Axiom A dynamics. If X is
such a vector field in some ball B, there is a finite number of SRB measures v;,...,vx
such that the corresponding basins B(v;),...,B(v;) cover B, up to a Lebesgue neg-
ligible set. Of course, the proof of this important theorem is far from easy but its
general structure follows the lines sketched in Poincaré paper...

In summary, the existence of SRB measures is the right answer to the
“malediction” of the sensitivity to initial conditions. In the words of Lorenz, “the
frequency of occurrence of various weather events such as tornados” could
be insensitive to initial conditions. If for example the ball B represents the phase
space of the atmosphere and u : B — R denotes the temperature at a specific point
on the Earth, the average + fOT u( ' (x))dt simply represents the average temperature
in the time interval [0,T]. If there is an SRB measure, this average converges to
[ udv, independently of the initial position x (at least in the basin of v). The task of
the forecaster changed radically: instead of guessing the position of ¢'(x) for a large
t, he or she tries to estimate an SRB measure. This is a positive statement about
chaos as it gives a new way of understanding the word “prevision”. It is unfor-
tunate that such an important idea did not reach the general population. Poor
Brazilian butterflies! They are now unable to change the fate of the world!

The quest for the weakest conditions that guarantee the existence of SRB
measures is summarized in the book (Bonatti et al. 2005). This question is fun-
damental since, as we will see, one hopes that “almost all” dynamical systems admit
SRB measures.

The geometric Lorenz models are not Axiom A systems, hence are not covered
by the works of Sinai, Ruelle and Bowen. However, it turns out that the Lorenz
attractor supports a unique SRB measure (Bunimovich 1983; Pesin 1992). Lorenz
was right!

Palis

The history of dynamical systems seems to be a long sequence of hopes... quickly
abandoned. A non chaotic world, replaced by a world consisting of Axiom A
systems, in turn destroyed by an abundance of examples like Lorenz’s model. Yet,
mathematicians are usually optimists, and they do not hesitate to remodel the world
according to their present dreams, hoping that their view will not become obsolete
too soon. Palis (1995, 2005, 2008) proposed such a vision in a series of three
articles. He formulated a set of conjectures describing the dynamics of “almost all”
vector fields. These conjectures are necessarily technical, and it would not be useful
to describe them in detail here. I will only sketch their general spirit.

The first difficulty—which is not specific to this domain—is to give a meaning to
“almost all” dynamics. The initial idea from the 1960s was to describe an open
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dense set in the space of dynamical systems, or at least, a countable intersection of
open dense sets, in order to use Baire genericity. Yet, this notion has proved to be
too strict. Palis uses a concept of “prevalence” whose definition is technical but
which is close in spirit to the concept of “full Lebesgue measure”. Palis finiteness
conjecture asserts that in the space of vector fields on a given ball B, the existence of
a finite number of SRB measures whose basins cover almost all the ball is a
prevalent property.

Currently, the Lorenz attractor serves as a model displaying phenomena that are
believed be characteristic of “typical chaos”, at least in the framework of mathe-
matical chaos. Even so, the relevance of the Lorenz model to describe meteoro-
logical phenomena remains largely open (Robert 2001).

Communicating Mathematical Ideas?

In Poincaré’s time, the total number of research mathematicians in the world was
probably of the order of 500. Even in such a small world, even with the expository
talent of Poincaré as a writer, we have seen that some important ideas could not
reach the scientific community. The transmission of ideas in the theory of chaos,
from Poincaré to Palis has not been efficient. In the 1960s we have seen that the
Lorenz equation took ten years to cross America from the east coast to the west
coast, and from physics to mathematics. Of course, the number of scientists had
increased a lot. In our 21st century, the size of the mathematical community is even
bigger (~ 50,000 research mathematicians?) and the physical community is much
bigger. Nowadays, the risk is not only that a good idea could take ten years to go
from physics to mathematics: there could be tiny subdomains of mathematics that
do not communicate at all. Indeed, very specialized parts of mathematics that look
tiny for outsiders turn out to be of a respectable size, say of the order of 500, and
can transform into “scientific bubbles”. As Lovasz (2006) writes in his “Trends in
Mathematics: How they could Change Education?”’:

A larger structure is never just a scaled-up version of the smaller. In larger and more
complex animals an increasingly large fraction of the body is devoted to ‘overhead’: the
transportation of material and the coordination of the function of various parts. In larger and
more complex societies an increasingly large fraction of the resources is devoted to non-
productive activities like transportation information processing, education or recreation. We
have to realize and accept that a larger and larger part of our mathematical activity will be
devoted to communication.

Of course, this comment does not only apply to mathematics but to Science in
general and to the society at large. Nowadays, very few university curricula include
courses on communication aimed at mathematicians. We need to train mediators
who can transport information at all levels. Some will be able to connect two
different areas of mathematics, some will link mathematics and other sciences, and
some others will be able to communicate with the general public. It is important that
we consider this kind of activity as a genuine part of scientific research and that it
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could attract our most talented students, at an early stage of their career. We should
not only rely on journalists for this task and we should prepare some of our
colleagues for this noble purpose. We have to work together and to improve
mathematical communication. We should never forget that a mathematical giant
like Poincaré took very seriously his popular essays and books, written for many
different audiences.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Whither the Mathematics/Didactics
Interconnection? Evolution

and Challenges of a Kaleidoscopic
Relationship as Seen from an ICMI
Perspective

Bernard R. Hodgson

Abstract 1 wish in this lecture to reflect on the links between mathematics and
didactics of mathematics, each being considered as a scientific discipline in its own
right. Such a discussion extends quite naturally to the professional communities
connected to these domains, mathematicians in the first instance and mathematics
educators (didacticians) and teachers in the other. The framework I mainly use to
support my reflections is that offered by the International Commission on Mathe-
matical Instruction (ICMI), a body established more than a century ago and which
has played, and still plays, a crucial role at the interface between mathematics and
didactics of mathematics. I also stress the specificity and complementarity of the
roles incumbent upon mathematicians and upon didacticians, and discuss possible
ways of fostering their collaboration and making it more productive.
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Introduction

I wish in this lecture to reflect on the links between mathematics on the one hand,
and the didactics of mathematics on the other, each being considered as a scientific
discipline in its own right. From that perspective, mathematics is a domain with a
very long history, while didactics of mathematics, or mathematical education as it is
predominantly called by Anglophones, is of a much more recent vintage. Such a
discussion extends quite naturally to the professional communities connected to
these domains, mathematicians in the first instance, and mathematics educators
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(didacticians) and teachers in the other. The general framework I mainly use to
support my reflections is that offered by the International Commission on Mathe-
matical Instruction (ICMI), a body established more than a century ago and which
has played, and still plays, a crucial role at the interface between mathematics and
its teaching, between mathematics and didactics of mathematics.

As shown notably by the history of ICMI, there is a long tradition of eminent
mathematicians being professionally involved in educational matters, including
with regard to primary or secondary education. But the emergence, during the last
decades of the previous century, of didactics of mathematics as an internationally
recognized academic discipline has had among its effects an increase of the gap
between mathematicians and mathematical educators, culturally and otherwise.
Both mathematics and didactics depend for their development on research, founded
in each case upon specific paradigms eventually hindering the fluidity of the
communication between the two groups. While most professional mathematicians
are involved not only in the creation or application of mathematics but also in its
teaching, only a small number of them actually pay substantial attention to what
recent research in education tells about the difficulties intrinsic to the learning of
mathematics at various levels. And the development of didactics of mathematics, as
a field both of practice and of research with distinctive concepts and vocabulary,
amplifies to a certain extent the opaqueness of its results to the outsider. At the same
time some suspicion may have developed within the mathematical education
community about the role and importance of mathematicians in education. Such a
situation may be reinforced at times by somewhat naive views expressed by some
mathematicians in educational debates, as well as by the fact that, in opposition to
the early days of didactics of mathematics, a larger proportion of didacticians
nowadays, including teacher educators, have had little contact with higher mathe-
matics, say, at the graduate level or even at the advanced undergraduate level.

I mainly base my discussion both upon my 11-year experience as ICMI Sec-
retary-General (1999-2009) and on various elements stemming from activities
organised by or under the auspices of ICMI, for instance ICME congresses or ICMI
Studies, as well as on episodes from its history. I consider different contexts where
mathematics and mathematical education interact and the way these contexts have
evolved over the years. In connection with the complexity of educational issues
related to both the teaching and the learning of mathematics, I also stress the
specificity and complementarity of the roles incumbent upon mathematicians and
upon mathematical educators, and examine possible ways of fostering their col-
laboration and making it more productive, notably in the context of ICMI activities.

Linguistic Prolegomena

Before embarking on my topic per se, it may be helpful to pay attention to some
expressions appearing in the title of this lecture, so to make my use of these as clear
as possible.
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“Whither” or “Wither”

In spite of my patronymic, I share with the majority of the people in this audience
the fact that English is not my mother tongue. Besides regretting any inconvenience
stemming from my “French English”, I need to point to potential problems pro-
voked by the use of a certain vocabulary representing not only a substantial elo-
cutionary challenge for non-native English speakers like me, but that moreover is
usually not part of daily discourse. Such is possibly the case with the “whither” in
my title. I do not know if many of you had to look into a dictionary for its exact
meaning. I definitely did, when I first met this interrogative adverb. If my memory
serves me well, my first encounter with this intriguing word—or at least the first
time it really caught my attention—was in the title of one of the concluding chapters
(“Whither mathematics?”) of a thought-provoking book by Kline (1980) about the
nature and role of mathematics. I met it again many years later through the plenary
lecture “Whither mathematics education?” presented by Anna Sierpinska at ICME-
8, in 1996 (Sierpinska 1998). I remember being fascinated by the idea of the likely
future of a given matter being concealed in that single word “whither”. And this is
precisely what I have in mind in this talk about the mathematics/didactics links.

But depending on one’s pronunciation of today’s lingua franca, non-trivial
difficulties may arise when using this word. You will have noted the two aitches
(“h”) in “whither”, thus allowing to distinguish (at least visually!) this word from its
neighbour “wither”, a verb with a totally different meaning. But how is this dif-
ference to be communicated orally? I clearly was myself the source of some con-
fusion recently when discussing with a former ICMI officer the topic of the present
lecture. Quite obviously I then dropped the first aitch, either inadvertently or by a
lack of capacity of rendering it orally in a proper way. “Why are you proposing
such a strong title for your talk? was then wondering my colleague. Why do you
insist on the possibility that the interconnection between mathematics and didactics
may be drying, waning, decaying?” Such is not at all the message I aim at con-
veying in this lecture, and this is why the initial aitch is so important. As a matter of
fact, I am concerned with quite the opposite: how to ensure that this crucial aitch
never gets dropped!

Through the Kaleidoscope

Those of you aware of my long-term involvement in the mathematical preparation of
primary school teachers will possibly be familiar with my deep interest for the
kaleidoscope, a “philosophical toy” invented—and named'—in the early 19th

! The name “kaleidoscope” was coined by Brewster from the Greek words “kalos”, beautiful,
“eidos”, aspect, and “skopein”, to see. With a typical poetical flavour, the Chinese name for this
instrument, /77¢{2) (“wan hua tong”), can be translated literally as ten thousand flowers cylinder,
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century by the Scottish physicist Sir David Brewster.” This instrument, so simple yet
so fertile, is in my opinion a wonderful “attention-catcher” eventually leading to
scientific thinking, as it fascinates people of all ages through the richness and beauty
of the images created by the interplay of mirrors.” It is in my opinion an ideal vehicle
for putting teachers in contact with geometry, both practical and theoretical. The
kaleidoscope has regularly been part of my teaching with primary school teachers for
more than three decades (Hodgson 1987), and I still see as an important personal
experience for teachers to explore the explosion of images provoked by the actual
interaction of physical mirrors, notwithstanding the virtual possibilities offered by
the computer (Graf and Hodgson 1990). A thorough theoretical understanding of the
mathematical principles underlying the kaleidoscope is a challenge fully appropriate
for primary school student teachers, and I am deeply convinced that the mastery of
such a mathematical “micro-theory” can have a positive impact on their perception
of mathematics and their personal relation to it (Hodgson 2004).

My mention of the kaleidoscope in the context of this talk is more than a mere
wink to a mathematical pet subject of mine offering such a fecund pedagogical
environment. I use in my title the kaleidoscope as a metaphor in order to suggest the
changing nature of the mathematics/didactics relationship, like the stunning, if not
unpredictable, alterations provoked on the image generated by a kaleidoscope by
even a small shaking of the glass pieces inside the device. The history of ICMI, for
instance, vividly illustrates the evolution over the past century of the links between
mathematics and didactics, as well as the communities supporting these fields. But
more to my point, the complexity and richness of kaleidoscopic rosettes can also
serve as an analogy to the potential fruitfulness not only of the connections between
mathematics and didactics as scholarly domains, but also of the collaboration
between mathematicians and didacticians.

What?—and Who?

I now wish to comment on the mathematics/didactics tandem on which this talk is
based. There is possibly no need to expand on the concept of mathematics in itself,

(Footnote 1 continued)

or more appropriately, cylinder with myriads of flowers. In a similar vein, the Korean name, %3}
73 (“mén hwa gyong”), can be translated as ten thousand brightnesses mirrors, again suggesting
the proliferation of a myriad of images. Quite interestingly, the word “myriad”, used in English to
convey the idea of an extremely large number, originally designated a unit of ten thousand in
classical Greek numeration.

2 Brewster commented about his instrument that “it was impossible not to perceive that it would
prove of the highest service in all the ornamental arts, and would, at the same time, become a
popular instrument for the purposes of rational amusement.” (Brewster 1819, p. 7).

3 This fascination for the kaleidoscope has possible been rendered no better than by the famous
French writer André Gide (1869-1951), 1947 Nobel laureate in literature, in his autobiographical
Si le grain ne meurt (cf. Graf and Hodgson 1990, p. 42).
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except to stress that I am concerned here with mathematics as both a body of
knowledge and an academic discipline implemented as a subject-matter in given
teaching and learning environments, at different levels of educational systems all
around the world.* The word didactics is slightly more difficult to circumscribe. I
have in mind of course didactics of mathematics, rather than a kind of general-
purpose didactics. I am aware that in English the adjective didactic may come with a
pejorative connotation,’ and that the noun didactics could be interpreted with the
somewhat restricted meaning of “the science and art of teaching”®—see also
Kilpatrick (2003) for similar linguistic comments. Consequently the expression
mathematics education has become the one typically used among Anglophone
circles to designate the scholarly domain that has developed, especially in the second
part of the previous century, in relation to the teaching and learning of mathematics.

It is not my intent to enter here into fine discussions about the respective merits
or limitations of expressions such as didactics of mathematics and mathematics
education, and to examine their exact scope. Nor do I wish to focus on the specific
case of the so-called French school of “didactique des mathématiques”—I refer
those interested for instance to the analysis offered by Kilpatrick (2003, 2012). Still
I will mostly use here the expression didactics of mathematics (rather than the more
frequent mathematics education), partly because of my own linguistic bias, and
partly because of a kind of general agreement, especially among some of the
European countries, that seems to be emerging about its use, even in English.” In
doing so, I am in line with the description proposed by Winslew (2007), where
didactics is understood as “the study of the teaching and learning of specific
knowledge, usually within a disciplinary domain” (p. 534). In the same paper,
Winslew stresses how in some European contexts. “[d]idactics is regarded as a
continuation of the study of the scientific discipline, in much the same way as the
study of its history and philosophy” (p. 524).

4 Dossey (1992) offers an overview of various conceptions of mathematics, including in an
historical perspective, and discusses “their current and potential impact on the nature and course of
mathematics education” (p. 30). See also Kilpatrick (2008, pp. 29-31), for helpful nuances about
the question “What is mathematics?” with regard to educational contexts, in particular in con-
nection with the idea of mathematics then becoming a domain of practice.

5 Asis witnessed for instance by the following definition: “in the manner of a teacher, particularly
so as to treat someone in a patronizing way”, from the New Oxford American Dictionary (2nd
edition, 2005, electronic version included in the Mac environment).

6 According to the Oxford English Dictionary (online version), this seems to be a typical 19th-
century vision. It is in that sense for instance that the word “didactics” is used in the title of one of
the sections on the programme of the International Congress of Mathematicians held in Cambridge
in 1912—cf. Hobson and Love (1913), Section IV, Philosophy, History and Didactics.

7 1t may be of interest to note that as early as 1968, Hans Georg Steiner was using (in English) the
expression “didactics of mathematics” to designate the “new discipline” that, he claimed, had to be
established to support what he saw as “new possibilities for mathematics teaching and learning”
(cf. Steiner 1968, pp. 425-426). He presented this new discipline as “separate from the ‘meth-
odology of mathematics teaching’” (p. 426).
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Another facet of the mathematics/didactics dichotomy concerns the actors
involved in those fields. This is also far from easy to describe, as the context is
intrinsically complex and can vary considerably from one country to the other—and
even within a single country—, due to economical, social and cultural factors, as
well as local traditions. This is why the local educational structures in which these
people are to be found (vg, schools, colleges, universities, teacher education
institutes, etc., not to speak of research centres and suchlike) come in a variety of
forms. That said, I will now try to briefly identify, but without any pretention to
exhaustiveness, what may be considered as typical working environments and
structural frameworks for the colleagues I have in mind.

One obvious category of actors is that of the mathematicians, that is, people
whose main interest is with mathematics as a body of knowledge and eventually
contributing to its development through research.® To borrow from the title of a
well-known math book from the time of my graduate studies (Mac Lane 1971), they
are “working mathematicians”, active in the field. The vast majority of these people,
and especially those in the academia, will belong to a mathematics unit (depart-
ment, etc.) and be involved in some form of teaching, from courses to math majors
to large classes of engineers or graduate courses and seminars with a handful of
students. Because of such teaching duties, they are undoubtedly “educators”,
although one could think that for a number of them, educational activities do not
represent their main professional concern and would even have a possibly limited
impact on the evolution of their career (promotion, etc.). Still there seems to be a
growing number of faculty members in mathematics department developing a bona
fide interest for educational matters, notably at the tertiary level. A crucial issue then
becomes how they can find in the community the kind of support needed for their
educational endeavour. I shall say a few words about this later.

Among the mathematicians is a subset of specific interest to this talk, and to
which I myself belong: those whose teaching is substantially targeted at the
mathematical education of teachers, both of primary and of secondary school. I
have discussed in (Hodgson 2001) the importance of this specific contribution of
mathematicians’—a contribution, I maintain, that should be considered as an
intrinsic part of the “mission” of a mathematics department.

But mathematicians are of course not the only players involved in the prepa-
ration of mathematics schoolteachers. Another group of teacher educators of prime
importance will typically be found in faculties of education (or of educational
sciences). While many of them would call themselves mathematics educators, 1
prefer to use here the expression didacticians, in line with the preceding

8 While 1 fully adhere with the statement made by IMU president Ingrid Daubechies, in her
ICME-12 opening address, that the term “mathematicians” should be construed as including, for
instance, participants at an ICME congress, I am using this word, for the purpose of my talk, in a
slightly more restrictive (and customary) sense.

° “Mathematicians have a major and unique role to play in the education of teachers—they are
neither the sole nor the main contributors to this complex process, but their participation is
essential.” (Hodgson 2001, p. 501).
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comments.'” Besides the graduate supervision of future didacticians or the devel-
opment of their own research programme, a large portion of the teaching time of
didacticians, at the undergraduate level, would mostly be devoted to the education
of primary and secondary school teachers. One possible distinction between their
contribution to the education of teachers and that of the mathematicians may be the
extent to which emphasis is placed on the challenges encountered in the actual
teaching and learning of some mathematical topic. This is to be contrasted with the
attention mathematicians may give to the mastery of a given mathematical content,
both in itself and as a potential piece of mathematics to be taught, as well as its
place in the “global mathematical landscape”, for instance when seen from an
advanced standpoint a la Klein (see Klein 1932).

The actual “location” of didacticians inside the academic environment can vary a
lot, but they often belong to a faculty of education. A specific case I wish to stress is
when didactics of mathematics is attached, as an academic domain, to the same
administrative unit (vg, a given university department) to which mathematics
belongs''—a context that may be seen as related to the comments of Winslow
quoted above. Such a situation is far from being the general rule—and I would not
want to push it as an ideal universal model—, but it clearly offers an interesting
potential for fostering the links between mathematicians and didacticians, and
eventually improving mutual understanding and respect.

More generally, there is an obvious need for a community and a forum where
mathematicians and didacticians can meet in connection to issues, general or spe-
cific, related to the teaching and learning of mathematics. An interesting context to
that effect is that offered by ICMIL

A Glimpse into the History of ICMI

The International Commission on Mathematical Instruction (ICMI) celebrated in
2008 its centennial, an event that stimulated the publication of a number of papers
dealing with various aspects of its history. Detailed information about the origins of
the Commission and its evolution over the years can be found for instance in Bass
(2008b), Furinghetti et al. (2008) and Schubring (2008), three papers appearing in
the proceedings of the ICMI centennial symposium. Other papers of a historical
nature include Furinghetti (2003) and Schubring (2003), written on the occasion the

10 My reluctance to speak of “mathematics educators” in that context also stems from the fact that
in my opinion, expressions such as “mathematics educators” or “teacher educators” should not be
construed as belonging exclusively to or denoting specifically either the community of didacticians
or that of mathematicians: as stressed earlier, we are all educators, but of course with our own
specific ways of addressing educational issues.

"' As a concrete example, I mention that the position in “didactique des mathématiques™ created
in 1999 at Université Paris Diderot (a scientific university of international research fame) and first
occupied by former ICMI president Michele Artigue is attached to the mathematics department.
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centennial of L’Enseignement Mathématique—the journal which since the incep-
tion of ICMI has been its official organ—, as well as Hodgson (2009). The survey
of Howson (1984) was prepared on the occasion of the 75th anniversary of ICML.
Many ICMI-related sections are found in Lehto (1998), a book about the history of
the International Mathematical Union (IMU), the organization to which ICMI owes
its legal existence.

The beginnings of ICMI can be seen as resting upon the assumption that
mathematicians have a role to play in issues related to school mathematics—at least
at the secondary level. Its establishment resulted from a resolution adopted at the
Fourth International Congress of Mathematicians held in Rome in 1908 and
appointing a commission, under the presidency of the eminent German mathema-
tician Felix Klein, with the mandate of instigating “a comparative study of the
methods and plans of teaching mathematics at secondary schools” (Lehto 1998,
p. 13). This resolution can be seen as addressing concerns present at the turn of the
twentieth century in educational debates and provoked by the spreading of mass
education combined with a greater sensitivity towards internationalism that stim-
ulated the need for self-reflection, comparison and communication. Still today, the
formal definition of ICMI’s global mission and framework for action points to the
importance of connecting its educational enterprises with the community of
mathematicians as represented by IMU. For instance the Terms of reference of
ICMI state that “ICMI shall be charged with the conduct of the activities of IMU
bearing on mathematical or scientific education”. More details are provided below
on the recent and current links between ICMI and IMU.

A sharp distinction is manifest between the “old ICMI’s tradition” (Furinghetti
2008, p. 49) of publishing national reports and international analyses of school
curricula, as done abundantly in its early years,'? and the activities of ICMI after its
rebirth!? in 1952, at a time when the international mathematical community was
being reorganized, as a permanent commission of the then newly established IMU.
Furinghetti (2008) stresses how at that latter time “the developments of society and
schools were making the mere study and comparison of curricula and programs (...)
inadequate to face the complexity of the educational problems” (p. 49). High-
lighting the use of the “new expression ‘didactical research’ in the title of a short
lecture presented at the 1954 International Congress of Mathematicians, she pre-
sents this as a sign of an emerging shift about mathematics education, from a
“national business” mainly concerned with curricular comparisons to a “personal
business” centred on learners and teachers (Furinghetti 2008, pp. 49-50). The
1950s also saw the development of a new community, the Commission Interna-
tionale pour UEtude et 1’Amélioration de 1'Enseignement des Mathématiques

12 Fehr (1920-1921, p- 339) indicated for instance that between 1908 and 1920, ICMI, jointly
with eighteen of the countries it gathered, had produced 187 volumes containing 310 reports, for a
total of 13,565 pages.
'3 This rebirth followed a hiatus in ICMI activities around the two World Wars. Like most
international scientific organizations of that time, ICMI was deeply affected by the ongoing
international tensions.
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(CIEAEM /International Commission for the Study and Improvement of Mathe-
matics Teaching, ICSIMT), where the importance of reflecting on the students
themselves as well as on the teaching processes and classroom interactions was
strongly emphasised, in contrast to educational work typical of the time.

Such deep changes were the reflection of the emergence of a new sensitivity with
regard to educational issues. As a result, a context arose propitious not only to the
development of new approaches to study the teaching and learning of mathematics,
but also to the eventual birth of a new academic discipline, gradually accepted and
recognized as such, namely didactics of mathematics (i.e., mathematics education in
usual parlance). ICMI itself was at times strongly influenced by these changes—
Furinghetti et al. (2008) speak of a “Renaissance” of ICMI under the influence of
events from the 1950s and 1960s. But ICMI also accompanied the evolution of
didactics of mathematics, and at times even fostered it, thus contributing signifi-
cantly to its acceptance as a bona fide academic domain.

This was particularly true during the ICMI presidency of Hans Freudenthal from
1967 to 1970. This particular moment was definitely a turning point in the renewal of
ICMLI, principally because of two major events that then occurred, essentially at
Freudenthal’s personal initiative, and that proved to have a considerable long-term
impact: the establishment in 1968 of an international research journal in didactics of
mathematics (Educational Studies in Mathematics, ESM), and the launching in 1969
of a new series of international congresses (the International Congress on Mathe-
matical Education, ICME), the twelfth of which we are now celebrating in Seoul.

Bass (2008b) uses the expressions “Klein era” and “Freudenthal era” (from the
names of the first and eighth presidents of ICMI) to designate two pivotal segments
structuring the life of ICMI up to its 100th anniversary and corresponding more or
less to its first two half-centuries: from ICMI beginnings in 1908 up to World War
11, and from ICMI rebirth in 1952 to its centennial celebration. Of central interest to
my lecture is the distinction Bass introduces about the actors then involved in ICMI
circles. While those of the first period were mostly “mathematicians with a sub-
stantial, but peripheral interest in education, of whom Felix Klein was by far the
most notable example, plus some secondary teachers of high mathematical culture”
(Bass 2008b, p. 9), the majority of the players in the Freudenthal era are profes-
sional researchers in the teaching and learning of mathematics, i.e., didacticians.
Bass also adds that “[i]n this period we see also the first significant examples of
research mathematicians becoming professionally engaged with mathematics edu-
cation even at the scholarly level” (Bass 2008b, p. 10), and suggests Freudenthal as
a outstanding example of such a phenomenon—but of course the name of Hyman
Bass himself provides an eloquent example of a more recent nature. A thorny
question, in that connection, is the extent to which the growing specificity of the
main actors of the Freudenthal era may create a widening distance with the
“working mathematician” with regard to educational issues.

As discussed in Hodgson (2009), the presidency of Freudenthal resulted in what
might be rightly seen as “years of abundance” for ICMI, in the sense that the scope
and impact of its actions expanded considerably. Not only were the newly estab-
lished ESM and ICME:s highly successful, but also new elements were gradually
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added to the mission of ICMI. To name a few, ICMI introduced in the mid-1970s a
notion of Affiliated Study Groups, serving specific segments of a community
becoming more and more diverse.'* There was also a regular collaboration between
ICMI and UNESCO, contributing in particular to outreach actions of ICMI towards
developing countries. And later, in the mid-1980s, the very successful program of
ICMI Studies was initiated. Still this deep evolution of ICMI, notably through the
influence of Freudenthal himself, did not happen without some tensions with IMU,
in particular as it was often the case that IMU faced decisions that were faits
accomplis, taken without any consultation between the Executive Committees of
ICMI and IMU—such had been the case for instance with the launching of the first
ICME congress.15

Another moment of tension between IMU and ICMI happened in connection
with the program of the section on the Teaching and Popularisation of mathematics
at the 1998 International Congress of Mathematicians.'® As a consequence, the first
Executive Committee of ICMI on which I served, under the presidency of Hyman
Bass, had to deal with an episode of misunderstanding, and even mistrust, between
the communities of mathematicians and didacticians as represented by IMU and
ICML. I will come back to this episode later in this lecture and contrast it with the
very positive climate of collaboration and mutual respect between these two bodies
that now prevails.

This overview of the history of ICMI may help appreciate the origins of
didactics of mathematics as an academic domain, as well as its evolution over the
years. One can also see the changing profile of both the main actors involved in the
reflections about the teaching and learning of mathematics and the communities
gathering them, notably via the two main bodies under consideration in the context
I am discussing, ICMI and IMU.

4 HPM and PME, the first two Study Groups affiliated to ICMI, both in 1976, are typical of the
development of several specific strands in didactics of mathematics that has happened during the
last 35 years or so. The affiliation in 1994 of WFNMC, whose action is centered on mathematical
competitions, is linked to an interest of a number of mathematicians concerning the identification
and nurturing of mathematical talents. In their survey of international organizations in mathematics
education, Hodgson et al. (2013) contrast the mere three international bodies established up to the
early 1960s (ICMI—1908, CIEAEM—1950 and CIAEM—1961) with the proliferation since the
mid-1970s, each new body corresponding to a particular component of the mathematics education
landscape. They comment that “[t]he presence of such subcommunities wanting to become
institutionalized within the mathematical education world can be interpreted as a sign of the
vitality of the field and the diversity of its global community” (p. 935).

15 The interested reader will find in Lehto (1998) and Hodgson (2009) more information about
this episode of tension between IMU and ICMI resulting from Freudenthal’s initiatives.

'® Comments on this episode and its context, notably with respect to the so-called ‘Math War” in
the USA, can be found in Artigue (2008, p. 189). See also Hodgson (2009, pp. 85-86), and in
particular endnote 5, p. 94.
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Some Challenges that Mathematicians and Didacticians
Are Facing

I commented above on the fact that both mathematicians and didacticians have a
specific contribution to bring to educational issues, and in particular to the prepa-
ration of mathematical schoolteachers. In a sense they are more or less compelled to
collaborate—at least in principle. But that is easier said than done.

One point at stake, in the case of mathematicians, is the extent to which they are
willing to fully acknowledge education as part of their real responsibilities. But
there are encouraging signs on that account. For instance more and more national
societies of mathematicians, most of which are typically centred on research in
mathematics, now devote a non-negligible part of their energy and activities to
educational issues, very often with a genuine concern. A striking example, to take
one close to my personal environment, is given by the American Mathematical
Society, definitely an outstanding research-supporting body, but with pertinent and
well-focused actions about educational matters. In a similar vein, one could think of
the European Mathematical Society, whose Education Committee has launched in
2011 a series of articles in the Newsletter of the EMS under the general label ‘Solid
findings’ in mathematics education. The ‘solid findings’ papers are designed as
“brief syntheses of research on topics of international importance” (Education
Committee of the EMS, 2011 p. 47) which aim at presenting to an audience of non-
specialists (especially mathematicians and mathematics teachers) what current
research may tell us about how to improve the teaching and learning of a given
mathematical topic. The message conveyed by such societies is very clear con-
cerning the place that mathematicians may or should occupy with regard to edu-
cational matters, and even debates.!” The message is also clear, consequently, about
the responsibilities of a math department in this connection with respect to the
inclusion of education as part of its mission. But transferring this into the daily life
of the department is far from trivial.

7 In his ICME-10 plenary lecture concerning the educational involvement of mathematicians,
Bass (2008a) makes an important caveat:

I choose specifically to focus on the involvement of research mathematicians, in part to dispel
two common myths. First, it is a common belief among mathematicians that attention to
education is a kind of pasturage for mathematicians in scientific decline. My examples
include scholars of substantial stature in our profession, and in highly productive stages of
their mathematical careers. Second, many educators have questioned the relevance of con-
tributions made by research mathematicians, whose experience and knowledge is so remote
from the concerns and realities of school mathematics education. I will argue that the
knowledge, practices, and habits of mind, of research mathematicians are not only relevant to
school mathematics education, but that this mathematical sensibility and perspective is
essential for maintaining the mathematical balance and integrity of the educational process—
in curriculum development, teacher education, assessment, etc. (pp. 42—43).
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I dream of a day when it would be normal for a university math department to
open a tenure-track position in mathematics but with a very strong educational
emphasis, vg with regard to the preparation of schoolteachers or the development of
innovative teaching approaches for very large undergraduate classes. Some of this
already exists in some places,'® but at a much too modest level altogether.

But an immediate concern follows: what about promotion to a higher academic
rank? Would a significant involvement in education by a mathematician be judged
by his peers as a valuable academic activity, on a par, say, with mathematical
research or supervising graduate students? Many indicators point to the fact that this
may remain for some time a major challenge that university administrations will be
facing. But there are signs that mentalities may be changing.'® Still it would
probably be naive to expect a young mathematician recently hired by a math
department to devote much time and energy to education matters, unless the
position occupied would be very explicit on that account.

In a survey of the ICMI program of actions as seen from a Canadian perspective
that I presented at a meeting of the Canadian Mathematics Education Study Group
(Hodgson 2011), I suggested as a major challenge for the Canadian community the
question of the actual involvement of individual mathematicians—especially the
young ones—in educational matters and in activities of a group such as CMESG.
The same challenge also exists, at the international level, with regard to the par-
ticipation of mathematicians in activities of ICMI. What percentage of the people in
the present audience, for instance, would consider themselves first and foremost as
“working mathematicians”?

That said, past implications of mathematicians in educational matters have not
been always optimal, to say the least. The level of rigor typically shown by
mathematicians in their own research work is sometimes less perceptible when they
come to express opinions about educational matters, sometimes on the basis of
extremely naive observations or opinions. Bass and Hodgson (2004) comment for
instance that “mathematicians sometimes lack a sufficient knowledge and/or
appreciation of the complex nature of the problems in mathematics education”
(p. 640). A particularly eloquent episode on that account is probably that of the
Math War.?® In her presidential closing talk at the ICMI Centennial symposium,
Artigue (2008) describes not only the role of ICMI at the interface of mathematics
and mathematics education, as announced in the title of her paper, but also at the
interface of the communities of mathematicians and didacticians. She speaks of the

'8 As a concrete example, the mathematics department to which I belong has currently two such
positions for mathematicians, one established as early as in the mid-1970s for the mathematical
education of primary school teachers, and the other (mid-1990s) for secondary teachers.

19 1 have witnessed, over the past decade or so, a few successful cases of promotion for tenure or
for full professorship concerning mathematicians with a career strongly focused on education and
belonging to renowned research-oriented math departments.

20 Bass (2008a) notes about the expression “Math War” that it is “an unfortunate term coined in
the U.S. to describe the conflicts between mathematicians and educators over the content, goals,
and pedagogy of the curriculum” (p. 42).
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tensions that arose in the 1990s between those communities because “the supposed
influence of mathematics educators was considered by some mathematicians as an
important, if not the major, source of the observed difficulties in mathematics
education, leading to such extremes as the so-called Math War in the USA”
(p. 189).

Such a perception by mathematicians connects to a comment from Winslew
(2007), when he contrasts the necessary close ties he sees didactics having with the
discipline, and the reality of the “[i]nstitutional policies and tradition” that imposes
a distance between mathematicians and didactics (p. 533). He adds that “[t]he
hesitancy of mathematicians to admit the need or worth of didactics could perhaps
also be interpreted as an instance of a more general scepticism, among mathema-
ticians, with respect to educational research.” (p. 534)

But another side of the coin is related to the fact that didactics of mathematics
has grown over the past decades into a fully-fledged academic domain, so that it has
developed its specific paradigms, concepts, vocabulary. An unavoidable and
obvious consequence is an increase of the communication gap between mathe-
maticians and didacticians. Issues connected to the teaching and learning of
mathematics can no more be approached with mere naive views or ideas—fortu-
nately, one may say! But even mathematicians with a genuine interest in education
feel a greater distance, as communication has become less transparent. A body of
knowledge has now been developed, which must be grasped to a certain extent by
mathematicians wishing to be part of the ongoing reflections.?! Mathematicians will
of course be familiar with this phenomenon internally, from one branch of math-
ematics to the other, but they may not be sensitive to its importance when it comes
to educational contexts, if they have somehow developed the conviction that
educational matters could be addressed seriously even through a very rudimentary
approach. There is a responsibility for mathematicians here to keep abreast of recent
didactical developments. But maybe more to my point, there is a responsibility for
didacticians to make their work accessible without imposing unnecessary jargon or
constructs. I believe more needs to be done on that account.

I would like to conclude this part of my talk with a comment of a possibly
sensitive nature concerning the education of didacticians and the prerequisites they

2! 1t is of interest to note, in that connection, that without denying the importance for mathe-
maticians of gaining competency with respect to current developments in didactical research, some
networks are developing that allow mathematicians to discuss educational issues and develop
familiarity with ongoing work in less ‘threatening’ contexts, so to say. Such is the case for instance
of Delta, an informal collaboration network among Southern Hemisphere countries that has
developed since the end of the 1990s. In their survey of international organizations in mathematics
education, Hodgson et al. (2013) write: “A central idea of Delta is to provide a forum in which
mathematicians feel comfortable in discussing issues related to tertiary mathematics teaching and
learning without being intimidated by what some may consider educational jargon or constructs.
Many participants at the conferences are thus mathematicians wishing to report about a teaching
experience or experiment that would normally not classify as bona fide research in mathematics
education, but may still be helpful in inspiring those who want to reflect on their teaching”
(p. 927).
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should meet to be recognized as such. To make my case clear, I have in mind here
the mathematical prerequisites. This issue is even more difficult to circumscribe as it
does vary considerably from one country to the next.

As a starting vantage point, let me stress that the majority of the didacticians of
my generation, if not all, had a substantial education in mathematics before
switching to didactics of mathematics. The reason is simply that graduate studies in
mathematics education are still, in most places, of a somewhat recent vintage. So it
would not be so uncommon for a didactician of my age to have first done a certain
amount of studies in mathematics, even at the graduate level. Today, with the
development of didactics of mathematics as an autonomous academic field, the
situation has changed substantially. While in many countries the road to didactics of
mathematics is still intertwined with an important mathematical component, often
of an advanced nature, I am aware of contexts where such is not the case, contexts
where someone could be called a didactician of mathematics while having a rather
limited experience of undergraduate mathematics, if any, even of the level of basic
calculus or linear algebra. I must say that I really see problems with such a pos-
sibility. I do not wish here, of course, to express any opinion that may be received
as offensive or as a personal criticism by any individual. It is more the “system”
allowing this to happen that I want to comment on.

A didactician with no personal direct experience of mathematics at a somewhat
advanced level will in my opinion lack a global “vision of the mathematical
landscape” that I see as crucial, some aspects of it will escape his or her expertise.
I am not at all suggesting here that all didacticians of mathematics should have
followed loads of graduate math courses or experienced highly specialized math-
ematics research. But to take a concrete example, a deep understanding of basic
number systems is clearly facilitated when these are considered as steps on the road
towards the real numbers, the basic context for elementary analysis.

The present context does not allow me here to enter into fine discussions about
the mathematical background that I would hope didacticians to have experienced.
In a certain way, as may be the case with the mathematical education of teachers,
rather than a simple matter of “doing more math”, it is a matter of doing more math
that may prove to be significant in order to allow the development of a deep
intuition of the mathematical objects one is bound to meet in didactical situations.

Paying attention to this aspect is clearly a good way of facilitating communi-
cation between mathematicians and didacticians, as well as helping to foster mutual
respect and understanding, unquestionably a vital ingredient in my opinion.

ICMI at the Dawn of Its Second Century

In this final section I examine selected actions recently launched by ICMI that may
offer ways of fostering the collaboration between mathematicians and didacticians,
and making it more productive. I am not proposing these undertakings as repre-
senting a kind of “ideal future” for mathematics or for didactics, nor for their
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interconnection. But these may be considered as pointing to possible models for
concrete joint efforts bringing together the two communities discussed in this paper.

A common feature of the three projects that I discuss below is that they have
been launched jointly by ICMI and its mother organization IMU. They thus rep-
resent meeting grounds for mathematicians and didacticians as they are represented
by these two bodies. It is appropriate from that perspective to go back to the time of
the beginnings of the term of office of the first ICMI Executive Committee under
the presidency of Hyman Bass. I have already alluded earlier in this paper to two
previous events that had provoked not only tensions between ICMI and IMU as
bodies, but also between the two communities of mathematicians and didacticians:
the so-called Math War in the USA and the turmoil resulting from the setting up of
the program of the section on Teaching and Popularization of mathematics at the
1998 ICM. To use the words of Artigue (2008) in her description of the resulting
context, “tension was at its maximum” (p. 189). She also comments that when the
1999-2002 ICMI Executive started its term of office, the situation had evolved so
badly that “[v]oices asking ICMI to take its independence from a mother institution
that expressed such mistrust were becoming stronger and stronger” (p. 189). But
she finally concludes:

Retrospectively this crisis was beneficial. It obliged the ICMI EC to deeply reflect about the
nature of ICMI and what we wanted ICMI to be. This led us to reaffirm the strength of the
epistemological links between mathematics and mathematics education (...). At the same
time, we were convinced that making these links productive needed combined efforts from
IMU and ICMI; the relationships could not stay as they were. (p. 190)

Conscious and explicit efforts were thus made by the IMU and ICMI Executives
to improve the situation. I have described in Hodgson (2008, 2009) some of these
efforts, which started with the (re)establishment of regular contacts between the two
ECs, and especially between the presidents and secretaries [-general], and even-
tually resulted in the mounting of joint IMU/ICMI projects. Consequently, “after
certain periods of dormancy and at times profound distance” (Hodgson 2008,
p- 200), the IMU/ICMI relations were entering a time of welcomed harmony and
intense collaboration. Concrete examples of such collaboration are given in
Hodgson (2009, p. 87).

It should be mentioned, en passant, that a stunning outcome of this reinvigorated
relationship, totally unexpected at the time of the 1998 crisis, is the “dramatic and
historic change in the governance of ICMI” (Hodgson 2009, p. 87) represented by
the fact that since 2008, the election of its Executive occurs at its own General
Assembly (such as the one held just prior to this congress), rather than at the IMU
GA, as was the case earlier. Such a development is a strong evidence of the maturity
not only of the field represented by ICMI, but also of the relationship of ICMI with
the organization to which it owes its legal existence.*> More comments on this quite
extraordinary episode can be found in Hodgson (2009).

22 In that connection, the following comment made by IMU President Laszl6 Lovasz in his report
to the 2010 IMU General Assembly may be of interest: “The IMU has a Commission, the ICMI, to
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I now describe briefly three recent projects organized jointly by ICMI and IMU.
I believe these suggest that concrete actions bringing together mathematicians and
didacticians may contribute to resolve the issue of the mathematics/didactics
interconnection. Additional information on these projects is to be found on the
ICMI website.

The “Pipeline” Issue

Already in 2004, IMU approached ICMI, its education commission, expressing
concerns in connection with a perceived decline in the numbers and quality of
students choosing to pursue mathematics study at the university level and
requesting the collaboration of ICMI to better understand this situation. The ensuing
discussions pointed to another related phenomenon that needed to be investigated,
namely the apparently inadequate supply of mathematically qualified students
choosing to become mathematics teachers in the schools. IMU invited ICMI to
partner in this undertaking, and take responsibility for its design.

Eventually the project (coined “Pipeline”) was connected to, and became an
extension of, the work of one of the Survey Teams for ICME-11, on the topic of
“Recruitment, entrance and retention of students to university mathematical studies
in different countries”. It aimed at gathering data about different countries as well as
promoting better understanding of the situation internationally. It was decided to
focus on eight pilot countries for reasons of manageability (Australia, Finland,
France, Korea, New Zealand, Portugal, UK, and USA), and to centre the study
around four crucial transition points:

From school to undergraduate program

From undergraduate program to teacher education (and to school teaching)
From undergraduate program to higher degrees in mathematics

From higher degrees to the workforce

The final report of the Pipeline project was presented in a panel at the last
International Congress of Mathematicians held in 2010 in Hyderabad, India. The
resulting picture® is that there may not be a worldwide crisis in the numbers of
mathematically gifted students, but that there is a crisis in some of the pilot
countries. The numbers of such students in universities is susceptible to changes in
school curricula and examination systems.

(Footnote 22 continued)

deal with math education. The [IMU] General Assembly in 2006 gave a larger degree of autonomy
to this Commission, including separate elections for their officials. I would say that this did not
loosen the connections between IMU and ICMI, to the contrary, I feel that we have developed an
excellent working relationship.” (Lovasz 2010, p. 13).

2 From ICMI quadrennial report of activities 2006-2009 submitted to the 2010 IMU General
Assembly [cf. Bulletin of the International Mathematical Union 58 (2010, p. 100)].
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ICMI from Klein to Klein

It was at the first meeting of the 2007-2009 ICMI Executive Committee, under the
presidency of Michéle Artigue, and in the context of a discussion about worthy
projects that would bind the communities of mathematicians and didacticians, that
the so-called Klein project was first mentioned. The ICMI EC saw it as a valuable
undertaking to revisit the vision of ICMI first President, Felix Klein, in his mile-
stone book Elementary mathematics from an advanced standpoint, published a
century earlier and based on his lectures to secondary teachers. Klein’s aim was on
the one hand to help prospective and new teachers connect their university math-
ematics education with school mathematics and thus overcome the “double dis-
continuity” which they face when going from secondary school to university, and
then back to school as a teacher (cf. Klein 1932, p. 1). But more generally Klein
wanted to allow mathematics teachers to better appreciate the recent evolution in
mathematics itself and make connections between the school mathematics curricula
and research mathematics. This is in line with the view that a fundamental con-
tribution of mathematicians to the reflections on teaching is by providing teachers
with access to recent advances in mathematics and to conceptual clarifications (cf.
Artigue 2010).

The reflections of the ICMI EC on this project were pursued in conjunction with
the IMU EC and a Design Team responsible for the project was jointly appointed in
2008. The Klein project has already provoked a lot of very positive reactions from
mathematicians, didacticians and teachers, and it is expected to have a triple output:
a book simultaneously published in several languages, a resource DVD for teachers,
and a wiki-based web-site continually updated and intended as a vehicle for the
people who may wish to contribute to the project in an ongoing way.**

Capacity and Networking

The history of ICMI shows a long tradition of outreach initiatives with regard to
developing countries. But this prime responsibility of our community has received a
renewed attention recently. In her reviews of challenges now facing ICMI, Artigue
(2008) stresses the importance, for the successful integration of colleagues from
developing countries into the ICMI network, of developing new relationships
between “centers and peripheries”. She thus points to a necessary evolution from
the traditional “North-South” model towards “more balanced views and relation-
ships” (Artigue 2008, p. 195).

The Capacity and Networking Project (CANP) was developed by ICMI with this
spirit in mind. It aims at enhancing mathematics education at all levels in devel-
oping countries by supporting the educational capacity of those responsible for the

24 More information on the project and its evolution can be found at www.kleinproject.org.
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preparation of mathematics teachers, and creating sustained and effective networks
of teachers, mathematics educators and mathematicians in a given region. CANP
was officially launched in 2011 jointly by IMU and ICMI, in conjunction with
UNESCO. A prerequisite for the acceptability of a given proposal is some evidence
of existing collaboration between local mathematicians and mathematics educators.

Each CANP program is based on a two-week workshop of about forty partici-
pants, half from the host country and half from regional neighbours. It is primarily
aimed at mathematics teacher educators, but also includes mathematicians,
researchers, policy-makers, and key teachers. Three CANP actions have already
taken place or been announced: Mali (2011), Costa Rica (2012) and Cambodia
(2013).

Conclusion

This lecture has centred on the specificity and complementarity of the contributions
brought by mathematicians and didacticians of mathematics to the reflections on the
teaching and learning of mathematics. Another more encompassing approach would
be to consider the general framework of the sciences to which research in the
didactics of mathematics is connected because of its interdisciplinary nature. The
importance of “defining and strengthening the relations to the supporting sciences”
is discussed in Blomhgj (2008), where emphasis is placed on the need for math-
ematics education research “to benefit from new developments in the supporting
disciplines” (p. 173). In particular the author stresses that “[o]n a more political
level the relationships to the supporting disciplines are very important for the
integration of mathematics education research in academia and thereby for the
institutionalisation of our research field” (Blomhgj 2008, p. 173). Mathematics
appears of course as a fundamental cas de figure on that account.

The issue of the mathematics/didactics interconnection is clearly a very vast one
and my focus in this talk was to look at it from the vantage point of the International
Commission on Mathematical Instruction, through both its history and its current
actions. In a survey paper aiming at encouraging mathematicians’ participation to
the ICME-10 congress, Bass and Hodgson (2004) have raised the question: “So
how are mathematics and mathematics education, as domains of knowledge and as
communities of practice, now linked, and what could be the most natural and
productive kinds of connections?” Their comment was that “ICMI represents one
historical, and still evolving, response to those questions at the international level”
(p. 640). To borrow from the beautiful title of Artigue (2008), ICMI was, and is still
there, at the interface between mathematics and mathematics education.

In his reaction to Kilpatrick’s paper (2008) on the development of mathematics
education as an academic field, Dorier (2008) mentions the multiple types of
cooperation that mathematics education has developed with other academic fields
“because the development of research shows that the complexity of the reality of
education needs to be tackled from different viewpoints” (p. 45). Emphasizing the
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importance for mathematics education, amidst this diversity, “to put forward the
specificities of its objects, methods, and epistemology” (p. 45) in comparison to
other fields connected to educational issues, he notes the following:

In that sense, the relation [of mathematics education] to mathematics is essential, and the
role of ICMI is thus vital in order to maintain and develop in all its variety an academic field
specific to mathematics education that maintains a privileged relation with the mathematical
community at large. (p. 45)

But seeing as a risk that mathematics education may fail to develop as a fully-
fledged autonomous academic domain and be absorbed in related fields, Dorier
concludes that “[a] barrier against this possible dilution remains the attachment of
mathematics education to mathematics that ICMI can guarantee while encouraging
cooperative work with other academic fields connected to education” (p. 45). That
describes in a very fitting way the framework I was proposing in this talk to reflect
on the links, past and future, between mathematics and didactics and between the
main communities that support these domains.
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Mathematics Education in the National
Curriculum—with Some Reflections
on Liberal Education

Lee Don-Hee

Abstract Mathematics has been recognized and justified to be placed in the prime
core of the formal curriculum for general education. In this paper, however, some
reflections are made on the national curriculum together with mathematics educa-
tion in accordance with the tradition of “liberal education.” Liberal education is
education for liberal men. The basic education of liberal human being is the dis-
cipline of his rational powers and the cultivation of his intellect. It has sustained its
meaning and value to be different from the vocational training for the purpose of
earning one’s living. But John Dewey differently contends that the vocational
training may claim a pertinent candidate to the position playing a role in cultivating
the human mind, the intellect (or intelligence). For Dewey, important is not the
content of teaching but rather the intelligence in its operation.Intelligence is
“equipped” with some properties that are functionally related to the properties of the
problematic situation, which they take on the character of “method.” A kind of
mental process, “a methodic process,” connecting problematic situations and
resolved consequences is what Dewey qualified to be “reflective thinking,” where
the intelligence keeps itself alive and activating for its full operation. Then, we
would have two different, but closely related tasks. One is (i) the self-habituation of
methodic activity; and the other is (ii) the nurturing of children in methods. The
curricular device is bound to gratify a variety of different needs and motives. No
matter how worth studying mathematics may be, it can never be learnt unless the
body of learning materials are so organized that students may cope with its degree
of difficulty settled for the teaching purpose. Then contents must be appropriately
selected and efficiently programmed on the part of learners. Learnability is prior to
the academic loftiness at least in educational situations.
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Why Should We Teach Mathematics?

For the first nine school years of the elementary and secondary education in Korea,
mathematics is one of the major subject-matters of which the national curriculum
formally consists. In several partial amendments, mathematics has outdone other
competing subjects in the official process of allocating the weekly teaching hours.
In spite of the fact that mathematics fails to draw students’ favor and popularity, it
has been recognized and justified to be placed in the prime core of the formal
curriculum for general education, both elementary and secondary.

Mathematical study itself has occupied integral part of the human civilization as
well as intellectual life. As a matter of fact, mathematics has been taught as the core
subject-matter in the history of school curriculum everywhere in any civilized part
of the world. Its system of knowledge, together with its language and method, has
been shared among the world intellectual communities more than any other dis-
cipline, probably more than any other human undertaking.

Now, however, I would like to raise an unexpected question: Why should we
teach relevantly mathematics to all the young people at elementary and secondary
levels of education? And, does it really deserve attention as a competitive power in
curriculum development?

From the standpoint of social utility, among different points of view, there may
be four reasons, at least, why we should teach mathematics in the school. First, to
raise mathematical specialists; second, to meet needs of mathematical knowledge
required for the advanced level of professional services; third, to promote problem-
solving abilities, namely those of logical or formal reasoning; and fourth, to help
people to be familiar with basic mathematical knowledge necessitated for the
ordinary daily life.

It may be realistically the case that there must be those who devote themselves to
study the highly advanced and outstanding mathematics in any civilized society;
that mathematical knowledge must be applied to a variety of professional services;
that mathematics by its own nature shows us how to make our thinking logically
valid and how to solve efficiently complicated problems encountered in our daily
life; and that even basic rules or ideas of mathematics help us to see the complexity
of the world in organized forms by virtue of its symbolic power.

But it seems to be necessitated to recognize that only a limited number of
mathematicians and professionals are in need of training at higher levels, some
basic parts of which are already embedded in the national curriculum for the upper
or even lower secondary education. A greater part of students say that mathematics
is too unintelligible for them to learn, and that it gives them toilsome and boring
time in the class room situations. You cannot teach students anything if they are not
able, and not willing, to learn it properly. And your instructional device cannot
work in teaching mathematics if they extremely hate and stubbornly refuse to learn
it at their own will.

In order to see why we should teach mathematics in the school, and what kinds
of mathematization should be experienced, I, as a student of philosophy of
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education and, to be sure, a rank outsider, here would like to say something,
perhaps what an ordinary consumer of education experiences with reflections on the
national curriculum together with mathematics education.

Here, I would like to make some reflections in accordance with the tradition of
“liberal education.” I believe that the question should be answered in terms of values
and implications of liberal education. For it represents, in its very nature of meaning,
authentic communications between the human mind and the cultural tradition. But I
do not try to make mathematics education fitted into an orthodox admittedly dom-
inant in its tradition, but rather to discuss about how we should understand the idea
of liberal education in its consideration with teaching mathematics.

In the Tradition of Liberal Education

Liberal education is education for liberal men. Originally, as Leo Strauss mentioned,
a liberal man was a man who possessed a privilege to behave in a manner becoming a
free man, as distinguished from a slave (Strauss 1968, p. 10). A slave is also a human
being who lives yet for another human being, his master; he has no life of his own.
The master, on the other hand, has all his time for himself, that is, for the pursuits
becoming him in the world, with its meaning, of his social and intellectual life.

Nowadays, in the democratic society, however, we may say that a liberal man is
a man, a rational being, who is to live under his own will, not other’s. By education,
one becomes, and maintains oneself, a liberal man in the genuine sense. The basic
education of liberal human being is the discipline of his rational powers and the
cultivation of his intellect. Historically, it is believed that this discipline can be
achieved by the liberal arts, basically the communicational arts, namely reading,
speaking, writing, listening, reckoning, and reasoning. The three R’s (reading,
writing, and reckoning), which always signified the formal discipline, are qualified
for the essence of liberal or general education.

In the tradition of liberal education, numeracy, together with literacy, has been
integral part of human abilities for the societal life civilized more or less so as to
engage in liberal education. Plato especially points out that the mathematical studies
develop the soul in two ways: In the first place, they provoke reflection and bring
out all the contradictions that lie hid in ordinary opinions based on mere sense-
knowledge; in the second place, they take him part of the road towards the good
which is the goal of all learning and all life (Boyd and King 1975, pp. 34-35).

In his master-work, the Republic, Plato discusses an educational scheme to show
how the ideal State might be created out of programs cultivating the mind of the
youth. Up to seventeen or eighteen, the children, assumed to be the future rulers,
were all to devote themselves to gymnastics and music. After 2 years of physical
training, the youth who had proved themselves capable of more advanced studies
were to work at the mathematical sciences—arithmetic, geometry, astronomy, and
harmonics (the mathematical theory of music) from twenty to thirty. Finally a select
group who had shown distinction both of mind and character throughout the whole
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course of their previous training were to spend 5 years in the study of dialect (or
philosophy), the science of the good (ideas), before taking their place in the ranks of
the “guardians.”

There may be at least two different conceptions of liberal education: one is
intellectualistic while the other is pragmatic. Among others I want to mention here
Mortimer J. Adler as an intellectualist who stands against a pragmatist John Dewey.
The idea of liberal education itself was genetically aristocratic, for the truly free
man who can live in a manner becoming a free man is the man of leisure. But liberal
education is not simply entitled to a kind of program for the free man in a political
sense, but also understood differently so as to mention a certain principle overriding
activities cultivating the human intelligence and creativity.

For liberal education, Adler maintains that the human reason may be at first
trained in its proper operations by the communicational arts, since man is a social
animal as well as a rational one and his intellectual life is lived in a community
which can exist only through the communication of men. The intellect cannot be
accomplished merely by the three R’s, but, in addition, through furnishing it with
knowledge and wisdom, acquainting it with truth, and giving it a mastery of ideas.
At this point, he suggests that the other basic feature of liberal education appears,
namely the great books, that is, the master productions in all fields, philosophy,
science, history, and belles-lettres. These constitute the cultural tradition by which
the intellects of each generation must first be cultivated.

Mortimer J. Adler says:

... If there is philosophical wisdom as well as scientific knowledge, if the former consists
on insights and ideas that change little from time to time, and if even the latter has many
abiding concepts and a relatively constant method, If the great works of literature as well as
of philosophy touch upon the permanent moral problems of mankind and express the
universal convictions of men involved in moral conflict—if these things are so, then the great
books of ancient and medieval, as well as modern, times are repository of knowledge and
wisdom, a tradition of culture which must initiate each new generation. (Adler 1939)

In Adler’s conception, liberal education is a kind of program which provides the
youth with communicational arts (reading, writing, speaking, reckoning etc.), and
thereafter with the intellectual mediator for the constant intercourse between them
and the greatest minds in the cultural tradition. Liberal education is learning for its
own sake or for the sake of all those self-rewarding activities which include the
political, aesthetic, and speculative. It differentiates itself from vocational training
which no one should have to take without compensation, and which is just pre-
paratory to work for the sake of earning. (Adler 1951)

Intelligence, Method, and Methodic

Now, we may ask again “what for liberal education?” It is education to cultivate the
human intellect, and thus to liberate the human mind. It has sustained its meaning
and value to be different from the vocational training which is confined to learning
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skills for the purpose of earning one’s living. Traditionally, it is literate education of
a certain kind: some sort of education in letters or through letters, as tools for
developing the intellect. It has been conceived to be a kind of program for teaching
the youth in subjects, namely liberal arts, and studying the great books reminding
oneself of human excellence, of human greatness.

As John Dewey differently contends, however, that there seems to be no relevant
reason why we are to confine ourselves to literate education for teaching in so-
called liberal arts. Even the vocational training may claim a pertinent candidate to
the position playing a role in cultivating the human mind, the intellect (or intelli-
gence). For this qualification, of course, vocational training is also availed of the
capacity as efficiently a tool to be utilized as the traditional program in liberal arts.

Dewey says as follows:

... Instead of trying to split schools into two kinds, one of a trade type for children whom it
is assumed are to be employees and one of a liberal type for the children of the well-to-do, it
will aim at such a reorganization of existing schools as will give all pupils a genuine respect
for useful work, an ability to render service, and a contempt for social parasites whether
they are called tramps or leaders of ‘society.’...

... It will indeed make much of developing motor and skills, but not of a routine or
automatic type. It will rather utilize active and manual pursuits as the means of developing
constructive, intentive and creative power of mind... the individual may be able to make his
own choices and his own adjustments, and be master, so far as in him lies, of his own
economic fate... So far as method is concerned, such a conception of industrial education
will prize freedom more than docility; initiative more than automatic skills; insight and
understanding more than capacity to recite lessons or to execute tasks under the direction of
others... (Dewey 1917)

For Dewey, what must be important is not whether the content of teaching
consists of letters or non-letters for developing the mind, indeed the mind of the
liberal man, but rather whether “the human intelligence” can work properly in its
operation. Intelligence can work to solve the problem situation, trifling or serious,
that we encounter in our daily life, such as conflict with neighbors, discord within
the family, crises of confidence in business and the like. We need a social intelli-
gence to solve the problem situation, such as deep economic depression, state
security risk, vicious inflationary spiral, chronic rebellion, and the like. Academi-
cally, a variety of disciplines, theoretical or practical, are products of intelligence
managing to work out of the problem situation where academics struggle with a
systematic body of highly complicated ideas and matters. Mathematics is a structure
of resolutions painstaking with forms of mathematical intelligence.

Intelligence does not operate vacuously: It is “equipped” with some properties
that are functionally related to the properties of the problematic situation. When
these properties are systematically distinguished, formulated and organized so as to
apply to the problematic situation, they take on the character of “method.” Method
then is not outside of or divorced from material. Method may be philosophical,
literary, scientific, mathematical, or technological. Dewey writes, “The fact that the
material of a science is organized is evidence that it has already been subjected to
intelligence; it has been methodized, so to say” (Dewey 1916, p. 165). Method then
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is a logical description of intelligence in operation. Indeed, intelligence and method
are synonymous.

In this consideration, mathematics as a discipline or a subject-matter may be
admittedly said to be a sort of human product subjected to intelligence, thus its
material content methodized in such a way that it has characteristically differentiate
itself in its properties from other modes of human works.

In the educational discourses, we often refer to “intelligence” as the prime
human ability among others to be developed in teaching or training programs.
“Habit” is also referred to as objective pertinent to educational activities. But
“intelligence” or “abilities” mostly includes those which are characteristically
cognitive and self-directive, whereas “habits” mostly represents those which mainly
pertain to physical and routine actions. This is the reason why the vocational
training makes itself mistakenly different in its mode of learning from the traditional
conception of liberal education.

A general theory that accounts for habits and intelligence and their various
relationships becomes a matter of our concern. The question here, of course, is what
kind of action is both habitual and intelligent: And the problem is to distinguish the
appropriate kind of situations for the use of the terms, “habitual” and “intelligent,”
respectively, to be employed.

If method is a logical description of intelligence in operation, and indeed
intelligence and method are synonymous, then we may ask: Could methods be
habituated? Could they become habitual? These questions have to do neither with
the possibility of forming the habit of adopting methods nor with the evolution of a
method into habit. Rather, these questions have to do with the possibility of
habituating “methodic” activities. But the habit of methodic activity could still be
understood as a habit of translating methods into the pursuit of an end. This sense of
“methodic habit” implies a habit of reproduction. The intelligence that has served
methods is secondary to the intelligence functioning in methodic activities. For the
former intelligence is not activating while the latter intelligence is. Furthermore, the
powers that methods may execute are not necessarily powers of intelligence, nor are
they human powers. What we actually look for is the habit of methodizing or
controlling problem-situations, of pursuing methods, and of utilizing methodized
patterns in the pursuit of an end, that is, a methodic habit.

A kind of mental process connecting problematic situations and resolved con-
sequences is what Dewey qualified to be the process of “reflective thinking,” where
the intelligence keeps itself alive and activating for its full operation.

Dewey’s conception of reflective thinking is in somewhat temporal terms, dif-
ferent from a methodological account featuring formal properties. Dewey is not
providing a formula, but a temporal account of the activity in which the formula
does its work. Dewey’s theory of reflective thinking should therefore not be
understood to rule out the adoption of ready-made methodic formulae—those
which have been already methodized. Indeed, he cautioned us that we ignore these
at our peril. He argues that things as methodized represent the office of intelligence,
in projection, in pursuit, and in the control of new experience. In short, methodic
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habits are valued habits of intelligence. They are embodied in, or are cases of,
intelligence.

Dewey claims that reflective thinking should be an educational aim since it
carries with itself qualities significant as educational values (1933, p. 17). In the first
place, it emancipates us from merely impulsive and merely routine activity. It
enables us to direct our activities with foresight and to plan according to ends-in-
view, or purposes. Secondly, it enables us to develop and arrange “artificial” signs
to remind us by representing in advance not only “existential” consequences but
also ways of securing and avoiding them. Thirdly, since an object to which we react
is not a mere thing, but rather a thing having a definite significance or meaning,
reflective thinking enriches the object with further meanings as we compare a thing
or event as it was before with what it is after. Intelligent mastery over the object is
obtained through thinking.

Here we would have two different, but closely related tasks. One is (i) the self-
habituation of methodic activity; and the other is (ii) the nurturing of children in
methods. The first is based on the assumption that methodic activity, reflective
thinking or the problem-solving process, is not only a methodological mechanism
for teaching knowledge of substances (or subject-matters) emerging in the system
of educational values, but it is also something to teach. This means that methodic
activity is not merely a means serving in the pursuit of various educational
objectives, but also is itself a candidate for being an educational objective.

But the second task should not be understood as the fact that the educative
process is methodic because it is a process of applying the method supposedly
common to all disciplines. That is, if all disciplines are cases of method then they
should display common properties—common formal properties. The ends of var-
ious disciplines differ in form and substance; the means differ in the force of
applicability of their theories. But each is an affair of controlled means and ends. To
say again, mathematics is a discipline of mathematical method as well as mathe-
matical intelligence.

Methods are symbolic expressions of what is performed in the process of con-
trolled activity. They represent among other matters the material involved. But
substantial materials, for example, problems, issues, situations, events, or reports,
are not always of a single type in their mode of placement in the means-end
relating.

The objective common to all sciences, including mathematics, is assertion
making, conclusion drawing, proposition forming, and possibly theory structuring.
Each science is a kind of knowledge forging, hypothesis testing, prediction con-
structing, and so on. Thus, we have physiological and biological knowledge,
economic and astronomical facts, geological and biological hypotheses, historical
and anthropological reports, and philosophical and mathematical arguments. We
sometimes call all these bodies of knowledge-meaning, of course, the fruits of the
inquiries of these sciences. All are equally sciences and human achievements
according to scientific method. But each is different in the sense that each is
proceeding with different problems, materials, concepts, and terminology. Thus it
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seems unlikely that one can learn a method in a specific type of problematic
situation without experience in the conduct of dealing in and with that situation.

The implication that the educative process is a process of nurturing children in
methods leads to a theoretical corollary that the object of educational research or
inquiry may be found in the universe of methods. This is to claim that if there is a
universe of discourse, a block of conceptual equipment which more adequately
deals with the tasks of educators, it must be the universe of discourse about methods
or methodic activities in which intelligence is to be embedded. Mathematics is also
methodic in its nature.

Conditions of Mathematics for Liberal Education
in the National Curriculum

Last February, I found an interesting column in one of the issues of the daily
newspaper Joong Ang Ilbo that is published in Seoul. It was titled “No Easy and
Interesting Math Learning” written by a professor of mathematics, named Yong-Jin
Song of In-Ha University. To partly translate into English as follows:

. Mathematics for today has become a systematic discipline which has grown up
sophisticated by virtue of great geniuses intelligence in the human history, and thus it must
be difficult in its nature for ordinary people to learn. You cannot make yourself master of its
hard and tough contents without taking a well-planned course of learning. Mathematics is
the supreme product of human intellect such that even its fundamental level requests you to
undergo a well-organized training which is somewhat intensive to some extent. To be sure,
there exists no mathematics that is easy and, at the same time, interesting; but perhaps rather
there may exist such a kind of mathematics that is both difficult and interesting. Many a
thing is popular and interesting because of its difficulty: playing a game of go, golf, soccer,
computer or the like. (Song 2012)

Professor Song, however, does not mention what kind of mathematics to be
taught. Of course, he may presuppose the possibility such that its contents be
organized in accordance with the condition of learners describable in terms of age,
experience, motivation and cultural orientation. Nevertheless, he seems to assume
that the mathematics may be enjoyed exclusively by those who are intellectually
equivalent to appreciate of its value. It seems to me that he assumes there exist “the
(one and only one in kind) mathematics” which schools should teach to all young
people.

If he believes, as Karl Mannheim opposes the possibility of a sociology of
mathematics, and as Pythagoreans and Platonists believe, that mathematical truths
are eternal objects, not culturally relative (Restivo and Collins 1982), then he may
be right in the assertion that we should not be concerned with the degree of
difficulty in mathematics education.

But, as Oswald Spengler says that there is no mathematic but only mathematics,
we define mathematics as methodic products, we discussed earlier, of intelligence in
operation for the struggle with problematic situations. Mathematics is a particular
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mode of experience, distinguishable from other disciplines and arts, and the char-
acter of mathematical inquiries vary with cultural toils, and with problematic
motives and interests. There may be quite a few different ways of inclusion and
exclusion in organizing contents for different orientations.

And if learning values are appreciated, and academic needs are gratified by the
experience of mathematical difficulty, the very difficulty of “the mathematics as
such,” then it confines to a very limited number of people who can intrinsically
enjoy the subject-matter, what is called “mathematics,” just as a very limited
number of few people, the professional or ardent players, enjoy the game, go, golf,
and soccer. The difficulty provides no legitimate ground that mathematics may
outdo other competing subjects in the competitive process of allocating the weekly
teaching hours, and that it can claim to be the prime core of the national curriculum
for general education.

We cultivate the human mind (intellect or intelligence, whatever) by the
instrumentality of mathematics in association with other teaching-learning pro-
grams, that take care of, and improve, the native faculties of the mind. Therefore,
mathematics is to deserve a core subject-matter among those worthwhile to teach
for liberal education, the finished product of which is a cultured human being.
Mathematics, which cultivates and thus liberates the human mind, consists of
intrinsic values, that is, those which are good in itself. We do not necessarily
enforce it to demonstrate any practical utilities, that is, extrinsic values which are
instrumentally good for something other than itself. Even its applied ramifications
may be so organized as to materialize their cultivating and liberating powers to the
maximum extend. Even in non-academic activities where mathematics is sub-
sidiary, they must be planned to methodically activate the human potentials of
creativity and productivity.

Probably, of course, an outstanding group in mathematics can enjoy its intrinsic
value at the highly advanced level. And the well-trained professional proficiency in
teaching may open up new path into a more sophisticated realm as a benefit to
ambitious students. To them mathematics becomes not any more a painstaking
burden, but rather an enjoyable game.

The curricular device is bound to gratify a variety of different needs and motives.
No matter how worth studying mathematics may be, it can never be learnt unless
the body of learning materials are so organized that students may cope with its
degree of difficulty settled for the teaching purpose. Then contents must be
appropriately selected and efficiently programmed on the part of learners. Learna-
bility is prior to the academic loftiness in educational situations. You cannot enjoy
what you are not learnable. The variety may avail with us widely open learning
opportunities where many a different mathematical need may be gratified.

In sofar as mathematical education is concerned, we may justifiably say that
learning opportunity in its genuine sense be available to the learners, if and only if it
is not the case that its course of study is too unequivalent for the students to carry
out in the regular school activities. Especially, it is true of the national curriculum
system which is assumed to be compulsory to all youngsters.
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Quality Teaching of Mathematical
Modelling: What Do We Know,
What Can We Do?

Werner Blum

Introduction

The topic of this paper is mathematical modelling or—as it is often, more broadly,
called—applications and modelling. This has been an important topic in mathe-
matics education during the last few decades, beginning in particular with Henry
Pollak’s survey lecture (Pollak 1979) at ICME-3, Karlsruhe 1976 (my first ICME).
By using the term “applications and modelling”, both the products and the pro-
cesses in the interplay between the real world and mathematics are addressed. In
this paper, I will try to summarize some important aspects, in particular, concerning
the teaching of applications and modelling. For obvious reasons, I have to restrict
myself and hence omit some important aspects, such as gender issues or the
question of how to embed applications and modelling in curricula and lessons. My
paper is mainly a survey, only occasionally I can go into depth. I will concentrate on
the secondary school level. I hope it will become clear that we have made con-
siderable progress in the field during the last few decades, both theoretically and
empirically, although still a lot remains to be done. For those who would like to find
more on this topic I would refer to ICMI Study 14 on Modelling and Applications
in Mathematics Education (Blum et al. 2007) where one can also find a short history
of the field. Further, I would refer to the Proceedings of the ICTMA conference
series (the International Conferences on the Teaching of Mathematical Modelling
and Applications), held biennially since 1983. One can see how dynamically the
filed develops by only looking at the number of papers in these books (see the last
two Volumes: Kaiser et al. 2011, and Stillman et al. 2013).

In this paper, I will switch between theoretical aspects (Parts 2 and 4) and
empirical aspects (Parts 3, 5-7). Part 8 is on teacher education, and I will start and
close with concrete examples (Parts 1 and 9).
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Two Introductory Real World Examples

I work and live in Kassel, the city where, every five years, the “documentas” take
place, the world’s most important exhibitions for contemporary art (in 2012 with
850.000 visitors). Each documenta leaves some of its exhibits in the city. One of
those is Claes Oldenburg’s oversized pick-axe from documenta-7, 1982 (see
Fig. 1).

The story that Oldenburg invented and Kassel people like to continue to tell is
that Hercules, the landmark of Kassel (see Fig. 2), has thrown this pick-axe from his
place, in the mountain park Wilhelmshohe above Kassel, to the Fulda river. I will
come back to this story in the final part of my paper.

Fig. 1 Oldenburg’s pick-axe
in Kassel

Fig. 2 The Kassel Hercules
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The first question is: How tall would a giant have to be for this pick-axe to fit to
him? Would it fit to the Kassel Hercules himself?

Following Pollak’s famous characterization of modelling “Here is a situation—
think about it” (Pollak 1969), we begin with comparing the pick-axe and a normal
person. Using proportionality, we find that this pick-axe is about 13 m long. A
normal pick-axe measures about 1 m. So, using again a proportional model, we find
that a suitable giant would be about 25 m tall or, better perhaps, something between
20 and 30 m. The Kassel Hercules measures only 9 m, so he seems a bit too small
for this pick-axe, unfortunately.

x: 1.80~13: 1
X ~ 23.40

A second example from documenta in Kassel: During documenta everything is
more expensive in downtown Kassel. A Hercules T-shirt, for instance, as a Kassel
souvenir, costs 15.99 € downtown, whereas in the shopping mall dez which is not
far away, the same T-shirt costs only 12.99 €. The second question is: Is it
worthwhile to drive to dez in order to buy this T-shirt there?

We will solve this problem in several steps (the same steps that we have applied
also in the pick-axe example without noticing it).

Step 1: We construct a mental model of the situation (Fig. 3).

Step 2: We simplify and structure this mental model by assuming that we go by
car, that our car consumes 10 1/100 km in the city, that the gas costs 1.599 €/1
and that the distance we have to drive from downtown to the mall is 5 km.

Fig. 3 Mental map of the
situation
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Step 3: We construct a suitable mathematical model by mathematizing these
concepts and relations:

C-downtown = 15.99 €
C-dez =1299€ +2-d-a-b, d:distance, a: consumption, b: gas price
C-dez < C-downtown?

Step 4: We work mathematically by calculating C-dez ~ 12.99 € + 1.60 € =14.59 €
and by comparing: Yes, C-dez < C-downtown!

Step 5: We interpret this mathematical result in the real world: It is indeed by
1.40 € cheaper to drive to the shopping mall!

Step 6: We validate our result: Does it really make sense to drive 10 km in order
to save 1.40 €? What about using this time instead to see more of Kassel’s
beauties? What about the risk of an accident or the air pollution caused by our
trip? So perhaps we will refine our model and start again, or we will simply
decide against that simple mathematical solution.

Step 7: In the end, we write down the whole solution.

This seven-step-process is one of the many schemas for the modelling process
(Fig. 4, see Blum and Leif} 2007a).

Here are a few more such schemas (Fig. 5).

All these schemas have their specific strength and weaknesses, depending on the
respective purposes. For cognitive analyses, this seven-step-model seems particu-
larly helpful. It is a blend of models from applied mathematics (Pollak 1979;
Burghes 1986), linguistics (Kintsch and Greeno 1985) and cognitive psychology
(Staub and Reusser 1995).

1Constructing

3
real model & mathematical
prob er/_\AOmodel & problem 2 gmtm?g/
1 z . . 3 Mathematising
real situation mﬁsnuanon
& problem K7/ model 4

4 Working
6 mathematically
mathematical 5 Interpreting
real results
results

5 6 Validating

rest of the world |
mathematics 7 Exposing

Fig. 4 Seven step modelling schema
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Mathematical Modelling Competency

Here comes some theory. The topic of this paper is the teaching and learning of
mathematics in the context of relations between mathematic and the extra-mathe-
matical world. The latter is often called reality or the real world, or better, in the
words of Pollak (1979), the “rest of the world”, including nature, culture, society, or
everyday life. The process of solving real world problems by means of mathematics
can, from a cognitive point of view, be described by the schema from Fig. 4. If need
be, one has to go round the loop several times. A key concept here is the concept of
amodel. A mathematical model is a deliberately simplified and formalized image of
some part of the real world, formally speaking: a triple (D, M, f) consisting of a
domain D of the real world, a subset M of the mathematical world and a mapping
from D to M (Niss et al. 2007). Among the purposes of models are not only
describing and explaining (“descriptive models”) but also predicting and even
creating parts of the real world (“normative models”).

In the language of competencies according to Niss and colleagues (see Niss
2003), the ability to carry out those steps corresponds to certain competencies or
sub-competencies such as understanding a given real world situation or interpreting
mathematical results in relation to a situation (Blomhgj and Jensen 2007; Maal}
2006; Kaiser 2007; Turner et al. 2013). Cognitively speaking, an individual’s
competency is his/her ability to carry out certain actions in a well-aimed way.
Modelling competency in a comprehensive sense means the ability to construct and
to use or apply mathematical models by carrying out appropriate steps as well as to
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analyse or to compare given models (Blum et al. 2007). It is this comprehensive
idea of modelling that will be used in the following.

The Niss competencies are also the conceptual basis for the PISA study and for
the heart of PISA, mathematical literacy (see, e.g., OECD 2013, p. 23 ff). In large
parts, PISA items require some modelling in a broad sense. An important source for
the PISA philosophy was Hans Freudenthal’s view of “mathematical concepts,
structures and ideas as tools to organise the phenomena of the physical, social and
mental world” (Freudenthal 1983). It is an open question whether this spirit of PISA
will be preserved also in future PISA cycles.

Students’ Modelling Activities

Mathematical modelling is a cognitively demanding activity since several compe-
tencies involved, also non-mathematical ones, extra-mathematical knowledge is
required, mathematical knowledge and, in particular for translations, conceptual
ideas (in German: “Grundvorstellungen”) are necessary (e.g., in the examples in
part 1, ideas about proportional functions), and appropriate beliefs and attitude are
required, especially for more complex modelling activities.

These cognitive demands are responsible for empirical difficulty. Modelling is
indeed rather difficult for students (see, for instance, Houston and Neill 2003, or
Frejd and Arlebdck 2011). Figure 6 shows the PISA task “Rock Concert”.

The correct solution is C. In the OECD, only 26 % of all 15-year-olds have
solved this task correctly, in Finland, one of the top performing countries, only
37 %, and in Korea, another top performing country, even only 21 %. The PISA
Mathematics Expert Group has shown that the empirical difficulty of PISA

Fig. 6 PISA task “Rock
Concert” ROCK CONCERT

For a rock concert a rectangular field of size
100 m by 50 m was reserved for the audience.
The concert was completely sold out and the
field was full with all the fans standing.

Which one of the following is likely to be the
best estimate of the total number of people
attending the concert?

A 2000

B 5000

C 20000
D 50000
E 100000
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mathematics tasks can indeed be substantially explained by the competencies
needed to solve these tasks (see Turner et al. 2013).

Several studies have shown that each step in the modelling process (see Fig. 4) is
a potential cognitive barrier for students, a potential “blockage” or “red flag situ-
ation” (Goos 2002; Galbraith and Stillman 2006; Stillman 2011). “The weakest link
in their modelling chain will set the limits on what they can do” (Treilibs et al.
1980).

Here are some remarks to step 1 “Understanding the situation and constructing a
situation model”. Many students get stuck already here. This is not only or even not
primarily a cognitive deficiency. For, many students around the world have learned,
as part of the hidden curriculum, that they can survive without the effort of careful
reading and understanding given contextual tasks. Instead, they successfully follow
a substitute strategy for word problems: “Ignore the context, just extract all data
from the text and calculate something according to a familiar schema” (see, e.g.,
Nesher 1980; Baruk 1985; Schoenfeld 1991; Lave 1992; Reusser and Stebler 1997,
Verschaffel et al. 2000; Xin et al. 2007; de Bock, Verschaffel et al. 2010).
Schoenfeld and Verschaffel speak of the “suspension of sense-making” when
playing the “word problem game”. This strategy even becomes more popular with
age, and in the school context it may indeed make a lot of sense to follow this
strategy in order to pass tests and to survive. This is empirically well documented,
in very many countries. Here is a well-known example (Verschaffel et al. 2000):

450 soldiers must be bussed to their training site. Each army bus can hold 36
soldiers. How many busses are needed?

Popular answers are “12 busses remainder 18” or “12.5 busses”. Another
example of a calculation without imagining the situation clearly is:

An orchestra needs 40 min for Beethoven'’s 6th symphony. How long will it take
for Beethoven’s 9th symphony?

The popular answer is 60 min. In the PISA task “Rock Concert” (see Fig. 6), the
by far most attractive distractor (49 %) was no. 2, the one that follows exactly the
substitute strategy: 50 - 100 = 5,000.

Step 2 “Simplifying and structuring” is a source of difficulties as well. In particular,
learners are afraid of making assumptions by themselves.

Step 6 “Validating” is mostly not present at all in students’ solutions. Here
(Fig. 7) is a solution of the pick-axe task.

The answer 254.84 m for the giant’s height is, first, ridiculously accurate
(rounding off is a rare event in mathematics classrooms) and, second, obviously
much too big. However, students normally do not validate their solutions, it seems
to be part of the “contract didactique”: Checking the correctness and suitability of a
solution is exclusively the teacher’ responsibility!

I would like to mention a few other important empirical results concerning
students’ dealing with modelling tasks. Several studies have shown (Matos and
Carreira 1997; Leifl 2007; Borromeo Ferri 2011; Schukajlow 2011; Sol et al. 2011):
If students are dealing with modelling tasks independently, the process is normally
non-linear according to one of those ideal-typical loops but rather characterized by
jumps forth and back, by omissions or mini-loops. Borromeo Ferri (2007) speaks of
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Fig. 7 A student solution of
the pick-axe task
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“individual modelling routes” which are determined by individual knowledge and
preferences such as individual thinking styles.

Another well-documented observation is that students normally do not have
strategies available for solving real world problems. More generally, students
usually do not reflect upon their activities and, closely related to that, are not able to
transfer their knowledge and skills from one context or task to a different context or
task, even if there are structural similarities. For instance, in one of our projects,
grade 9 students dealt in a lesson with the “Filling up” task (see Blum and Leif3
2006) which is quite analogous to the T-Shirt task from part 1. The question is
whether it is worthwhile for a certain Mrs. Stone to drive from her hometown Trier
across the nearby border of Luxemburg, where the gas is cheaper, in order to fill up
her car there. In the following test, the students had to solve very similar tasks,
among others whether it is worthwhile to drive to a nearby strawberry field in order
to pick the berries for a cake instead of buying them in a supermarket, or whether it
is worthwhile to use cloth-diapers instead of disposable ones. For many students,
these were totally new challenges, now about strawberries and diapers instead of
cars. The PISA study also demonstrates every three years how difficult it is for 15-
year-olds to transfer their school knowledge to real world problem situations.

The phenomena just described are, as is well-known, special instances of sifu-
ated cognition, or in the words of Jiirgen Baumert: Every learning topic carries with
it the “indices” referring to its learning context. This is particularly relevant for
learning in the field of relations between the real world and mathematics (DeCorte
et al. 1996; Niss 1999). Actually, when we report on empirical results about
“modelling competency” we have to write this construct with several indices,
especially referring to the mathematical topics and the extra-mathematical contexts
involved. The question is even: Is there a “general modelling competency” at all?
Much more research is necessary into how and how far the desired transfer can be
achieved. I will come back to this aspect in parts 5 and 7.
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Aims and Perspectives of Modelling

We come back to theoretical aspects of modelling. Modelling is a cognitively
demanding activity, so why should learners have to deal with such activities? Why
is it not sufficient to learn pure mathematics in order to achieve the aims of
mathematics as a school subject? Mathematics is, as we know, a compulsory
subject at school for the following reasons (see, e.g., Niss 1996): Mathematics as

e a powerful tool for better understanding and mastering present or future real
world situations,

e a tool to develop general mathematical competencies,

e an important part of culture and society, and a world of its own.

The basis for that are general educational goals such as the ability to take part in
social life as an independent and responsible citizen.

On this background, we can distinguish between four groups of justifications for
the inclusion of applications and modelling in curricula and everyday teaching (see,
e.g., Blum and Niss 1991; Blum 2011):

1. “pragmatic” justification: In order to understand and master real world situa-
tions, suitable applications and modelling examples have to be explicitly treated;
we cannot expect any transfer from intra-mathematical activities.

2. “formative” justification: Competencies can be advanced also by engaging in
modelling activities; in particular, modelling competency can only be advanced
in this way, and argumentation competency can be advanced by “reality-related
proofs” (Blum 1998).

3. “cultural” justification: Relations to the extra-mathematical world are indis-
pensable for an adequate picture of mathematics as a science in a comprehensive
sense.

4. “psychological” justification: Real world examples may contribute to raise
students’ interest in mathematics, to motivate or structure mathematical content,
to better understand it and to retain it longer.

We can see a certain duality here (Niss et al. 2007): Whereas the first aspect
deals with mathematics as an aid for the real world, the other three aspects deal with
the opposite direction, the real world as an aid for mathematics, in a broad sense.
Instead of “justifications for the inclusion of applications and modelling” we could
also say “aims of the teaching of applications and modelling”.

In order to advance those aims, suitable examples are needed. There is a broad
spectrum of real world examples, from small dressed-up word problems to
authentic modelling problems or projects that require days or weeks. The justifi-
cations or aims just mentioned require certain specific types of examples:

e “pragmatic”: concrete authentic examples (from shopping, newspapers, taxes,
traffic flow, wind park planning, air fare calculation, ...);

e “formative”: cognitively rich examples, accompanied by meta-cognitive
activities;
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e “cultural”: either authentic examples that show students how strongly mathe-
matics shapes the world (sometimes hidden and invisible, embedded in tech-
nology—the famous relevance paradox, see e.g. Niss 1999) or epistemologically
rich examples that shed some light on mathematics as a science (including
ethno-mathematical examples); in both cases, the role of mathematics and its
relations to the real world must be made more conscious;

e “psychological’”: either interesting examples for motivation or illustration pur-
poses, to make mathematics better marketable for students (these examples
might quite well be dressed-up or whimsy problems, it is only a matter of
honesty), or mathematically rich examples that serve the purpose to make cer-
tain mathematical topics better comprehensible.

So, examples are not good or bad per se, it depends on their purpose.

It was Gabriele Kaiser’s idea, together with colleagues (see Kaiser et al. 2006),
to distinguish between various perspectives of modelling. On the basis of what I
have just presented, I have conceptualized the notion of “perspective” a bit more
formally, as a pair (aim | suitable examples), with a slightly different terminology.
So we can distinguish between six perspectives.

e (pragmatic | authentic) — “applied modelling” (Burghes, Haines, Kaiser, and
others; particularly rooted in the Anglo-Saxon tradition)

e (formative | cognitively rich) — “educational modelling” (Burkhardt/Swan,
Blomhgj, and others)

e (cultural with an emancipatory intention | authentic) — “socio-critical model-
ling” (Keitel/Jablonka, Skovsmose, Julie, Barbosa, and others)

e (cultural concerning mathematics | epistemologically rich) — “epistemological
modelling” (d’Ambrosio, Garcia, Bosch, and others; more rooted in the
Romanic tradition)

e (psychological with marketing intention | motivating) — “pedagogical mod-
elling” (by far the most important aspect in school)

e (psychological | mathematically rich) — “conceptual modelling” (Freudenthal,
de Lange, Gravemeijer, and others)

For each perspective, there is a certain model of the modelling process that is
best suitable for that purpose. For instance, for applied modelling, a four step model
“Mathematising — Math. Working — Interpreting — Validating” seems most
appropriate. There is no space here to elaborate more on this. In effect, it is more
appropriate to conceptualise a “perspective” as a tripel (aim | examples | cycle).

All these perspectives also contribute to the question of sense-making. Here, 1
mean by the “sense” of an activity the subjective meaning of this activity to the
individual whereby the individual can understand the purpose of this activity. Each
perspective offers to learners a specific aspect of sense:

“applied”: sense through understanding and mastering real world situations
“educational”: sense through realizing own competency growth
“socio-critical”: sense through understanding the role of mathematics
“epistemological”: sense through comprehending mathematics as a science
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e “pedagogical”: sense through enjoying doing mathematics
e “conceptual”: sense through understanding mathematical concepts

It is important to offer various aspects of sense since learners will react differ-
ently, also according to their beliefs about and attitudes towards mathematics. The
hope is that, by offering various aspects of sense, students’ beliefs will become
broader, and their attitudes will become more positive.

Teaching Modelling

Back from theory to practice. In the first few parts of this paper, the focus was on
learning. It is clear that all aims and purposes can only be reached by high-quality
teaching. Applications and modelling are important, and learning applications and
modelling is demanding. This implies that there have to be particularly big efforts to
make applications and modelling accessible for learners. In fact, there are such
efforts in many countries around the world. However, in everyday mathematics
teaching practice in most countries, there is still relatively few modelling. Appli-
cations in the classroom still occur mostly in the context of dressed-up word
problems. We have been deploring this gap between the educational debate and
classroom practice for decades. Why do we still have this gap? The main reason is
that teaching applications and modelling is demanding, too (Freudenthal 1973;
Pollak 1979; DeLange 1987; Burkhardt 2004; Tkeda 2007). Also the teachers have
to have various competencies available, mathematical and extra-mathematical
knowledge, ideas for tasks and for teaching as well as appropriate beliefs.
Instruction becomes more open and assessment becomes more complex. This is the
main barrier for applications and modelling.

What can we do to improve the situation? What do we know empirically about
effective teaching of applications and modelling according to those various aims
and purposes? Generally speaking, the well-known findings on quality mathematics
teaching of mathematics hold, of course, also for teaching mathematics in the
context of relations to the real world. This seems self-evident but is ignored in
classrooms around the world every day a million times.

In the following, I will present ten—in my view—important aspects for a
teaching methodology for applications and modelling, based on empirical findings.

1. A necessary condition is an effective and learner-oriented classroom man-
agement (see, e.g., Baumert et al. 2004; Hattie 2009; Timperley 2011; Kunter
and Voss 2013): using time effectively, separating learning and assessment
recognisably, using students’ mistakes constructively as learning opportunities
(motto: every wrong answer is the right answer to a different question), or
varying methods and media flexibly. For modelling, group work is particularly
suitable (Ikeda and Stephens 2001). The group is not only a social but also a
cognitive environment (co-constructive group work; see Reusser 2001).
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Just as necessary is to activate learners cognitively, to stimulate students’ own
activities. “Modelling is not a spectator sport” (Schoenfeld, personal commu-
nication), one can expect learning effects at most if students engage actively in
modelling. This is not a matter of surface structures such as whole-class
teaching versus group work versus individualized teaching, which may be
dependent on cultural backgrounds. What only counts is that learners are
cognitively active (Schoenfeld 1992). We have to distinguish carefully here
between students working independently with teacher support, on the one hand,
and, on the other hand, students working on their own, alone. Crucial for
teaching is a permanent balance between students ‘independence and teacher‘s
guidance, according to Aebli’s famous “Principle of minimal support” (Aebli
1985). I will come back to this aspect in part 6 of this paper.

Learners have to be activated not only cognitively but also meta-cognitively.
All activities ought to be accompanied by reflections and ought to be reflected
in retrospective, with the aim to advance appropriate learning strategies. Again
this is not a matter of lesson surface structures. I will elaborate more on this
aspect in part 7 of this paper.

There has to be a broad variety of suitable examples as the substance of
mathematics lessons since we cannot expect any mystical transfer from one
example or context to another. In particular, there has to be a well-aimed
variation of real world contexts as well as of mathematical contexts and topics.
As I have said in part 4, different kinds of examples may serve different
purposes and authenticity is not always required. However, if contexts are made
more authentic, the “suspension of sense-making” (see part 3) can be reduced
substantially (Palm 2007; Verschaffel et al. 2010). For instance, if the “Army
bus” task (see part 3) is embedded in a credible context where students have to
write an order form for a bus company, the number of reasonable solutions
increases substantially.

There are a lot of rich teaching/learning environments available for all aims of
application and modelling, among many others the following:

e A wealth of materials from the Shell Centre in Nottingham, the UCSMP
project, Roskilde University, the Freudenthal institute (RME) and much
more (see Blum et al. 2007, part 6).

e Dick Lesh’s Model Eliciting Activities (Lesh and Doerr 2003); they are
primarily meant as a research tool, but they can be used equally well for
teaching purposes, together with his Model Exploration Activities and
Model Adaptation Activities.

e “Real objects, contexts and actions” and “local applications” (Alsina 2007);
other outdoor activities in the same spirit are “Maths trails” (see, e.g., Shoaf
et al. 2004).

e Materials from the modelling weeks in various cities, in Germany, Singa-
pore or Queensland.
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5. Teachers ought to encourage individual solutions of modelling tasks. In
everyday teaching practice, however, teachers tend to favour strongly their own
solution, without even noticing it (Leikin and Levav-Waynberg 2007; Borromeo
Ferri and Blum 2009), also because of a limited knowledge of the “task space”.
There are several reasons for encouraging multiple solutions (Schoenfeld 1988;
Hiebert and Carpenter 1992; Krainer 1993; Neubrand 2006; Rittle-Johnson and
Star 2009; Tsamir et al. 2010): These comply with students’ individual prefer-
ences, support internal differentiation in the classroom, reflect the genuine spirit
of mathematics, and enable comparisons between and reflections on different
solutions on a meta-level. In the current project MultiMa (Schukajlow and Krug
2013), two independency-oriented teaching units with modelling tasks are
compared where in one unit students are explicitly required to produce multiple
solutions. It turned out that those students who developed several solutions had
higher learning gains.

6. Competencies such as modelling evolve in long-term learning processes,

beginning already in primary school with “implicit models” (Greer and Vers-
chaffel 2007; Borromeo Ferri and Lesh 2013) and continuing forever. Neces-
sary and not at all out-of-date are permanent integrated repeating and intelligent
practising. It is also important to have a permanent balance between focussing
on sub-competencies of modelling and focussing on modelling competency as a
whole. It is an open research question what such a balance would look like.
What would be needed is a competency development model for modelling,
theoretically sound and empirically well-founded, or several such models. This
is a big deficit in research.
An interesting approach to describe competency development comes from the
Danish KOM project (Blomhgj and Jensen 2007; Niss and Hgjgaard Jensen
2011). The authors distinguish between three dimensions in an individual’s
possession of a given mathematical competency: the “degree of coverage” of
aspects of this competency, the “radius of action” that indicates the spectrum of
contexts and situations, and the “technical level” that indicates the conceptual
and technical level of the involved mathematical entities.

7. Not only teaching but also assessment has to reflect the aims of applications and

modelling appropriately. Quality criteria such as variation of methods are rel-
evant here, too (Haines and Crouch 2001; Izard et al. 2003; Houston 2007,
Antonius et al. 2007; Vos 2007). One method is, of course, to work with fests.
As we know, tests have several functions, among others to set norms and to
illustrate the aspired aims (“What You Test Is What You Get”), but also and
particularly to diagnose students’ strengths and weaknesses in order to know
better how to help.
An interesting research question is whether and how it is possible to assess
modelling sub-competencies and general modelling competency separately. Zottl
etal. (2011) have found that the following model describes their data best (Fig. 8):
Some items measure certain sub-competencies and all items measure a general
competency.
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8. It is important to care for a parallel development of competencies and appro-
priate beliefs and attitudes. Taking into account the remarkable stability of
beliefs and attitudes, this also requires long-term learning processes.

9. There are a lot of case studies that show that digital technologies can be used as
powerful tools for modelling activities, not only in the intra-mathematical
phases (see, e.g., Borba and Villarreal 2005; Henn 2007; Geiger 2011;
Greefrath et al. 2011). Computers can be used for experiments, investigations,
simulations, visualisations or calculations. Greefrath suggests to extend the
modelling cycle by adding a third world: the technological world (Fig. 9).
What we need here are much more controlled studies into the effects of digital
technologies on modelling competency development.

10. The best message comes last. Several case studies have shown that mathe-
matical modelling can in fact be learned by secondary school students supposed
there is quality teaching (a.o. Kaiser-MeBmer 1987; Galbraith and Clatworthy
1990; Abrantes 1993; Maall 2007; Biccard and Wessels 2011; Blum and Leil3
2007b; Schukajlow et al. 2012). Some studies have shown that also students’
beliefs about mathematics can be broadened by appropriate quality teaching.

computer model

mathematical
model
real situation

mathematical

computer results

Reality Mathematics Technology

Fig. 9 The extended modelling cycle
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However, much more research is needed, especially small-scale studies using a
mixture of qualitative and quantitative methods.

In closing part 5, I would like to emphasise that all these efforts will not be
sufficient to assign applications and modelling its proper place in curricula and
classrooms and to ensure effective and sustainable learning. The implementation of
applications and modelling has to take place systemically, with all system com-
ponents collaborating closely: curricula, standards, instruction, assessment and
evaluation, and teacher education. I cannot elaborate more on this aspect.

Teacher Support for Modelling Activities

I would like to go more deeply into the second aspect mentioned in part 5: How can
the balance between students’ independent work and teacher’s guidance be put into
practice, what does “minimal support” look like? The key concept is adaptive
teacher invention (see Lei3 2010, for an overview). Such an intervention allows
students to continue their work without losing their independence—in the Vygotski
terminology: an intervention in the Zone of Proximal Development. Whether an
intervention was adaptive or not can, on principle, be only judged afterwards: Is the
cognitive barrier really overcome, has the “red flag” vanished? Adaptive inter-
ventions can be regarded as a special case of scaffolding (Smit et al. 2013). A
necessary basis for such a temporary support is a good diagnosis.

In everyday classrooms, teachers tend to strong, content-related interventions,
sometimes in order to prevent mistakes or blockages before they occur. According to
several studies (see, e.g., Leifl 2007), there are only very few strategic interventions,
and most interventions seem to be not adaptive. However, especially strategic
interventions have the potential of being adaptive (for an impressive example of a
successful strategic intervention see Blum and Borromeo Ferri 2009). Here are some
examples of strategic interventions:

Read the text carefully! Imagine the situation clearly! Make a sketch! What do
you aim at? What is missing? Which data do you need? How far have you got?
Does this result make sense for the real situation?

In the DISUM project (see Blum and Leill 2007b), a ten lesson teaching unit on
modelling in 18 grade 9 classes proved to produce significantly higher learning
gains in modelling competency in a teaching design oriented towards students’
independence with adaptive teacher interventions compared to a design with
directive teaching; see Schukajlow et al. (2012) for more details.
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Strategies for Learning Modelling

All teacher interventions and support as just discussed will have no long-term
effects if they are only applied situationally, transfer cannot be expected. Only
accompanying meta-cognitive activities may promise sustainable effects. Students
have to be enabled to see the general feature in the concrete step, in the concrete
cognitive barrier: How can I help myself in such a difficulty? How can I solve such
kind of tasks by myself? For, in assessment situations or in real life contexts, there
is no teacher support available.

A promising approach is to teach learning strategies, cognitive strategies as well
as meta-cognitive strategies such as planning, controlling or regulating. There are a
lot of empirical results concerning the effects of using strategies, mostly encour-
aging, some also disappointing (Tanner and Jones 1993; Schoenfeld 1992, 1994;
Matos and Carreira 1997; Stillman and Galbraith 1998; Kramarski et al. 2002;
Burkhardt and Pollak 2006; Desoete and Veenman 2006; Stillman 2011; for an
overview see Greer and Verschaffel 2007). One of the problems in these empirical
studies is: how to measure strategy knowledge, on the one hand, and strategy use,
on the other hand, and another problem is how to reliably link students’ activities to
their strategies.

In particular for novices in modelling there are two strategic instruments that I
would like to mention since they turned out to be successful: First, the heuristic
worked examples in the KOMMA project, with a three step schema (see Zottl et al.
2011). Second, the DISUM four step schema (“Understanding task/ Searching
mathematics/ Using mathematics/ Explaining result”; see Blum 2011, for more
details). This is not meant as a schema that students must follow but as a guiding
line, a meta-cognitive aid, particularly in case of difficulties. The problem for
students with such strategic devices is: What do these hints mean concretely (for
instance in step 2 “Make assumptions”: which, how, how many?)? Much more
research is needed into the design and use of strategic instruments for modelling.

Teacher Competencies for Modelling

Several empirical studies tell us (recently the comparative study TEDS-M, see
Schmidt et al. 2007; Blomeke et al. 2010): The teacher matters most! For quality
teaching of applications and modelling, the teacher needs a lot of different com-
petencies. As a theoretical foundation, I would like to use the competence model
from the COACTIV project (see Baumert and Kunter 2013). Here, as part of the
professional knowledge, five categories are distinguished, especially content
knowledge (CK), pedagogical content knowledge (PCK), and pedagogical/psy-
chological knowledge (PK), along the distinction made by Shulman and others.
Based on the fundamental assumption about the impact of teaching on learning
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teacher competencies — quality teaching — student learning,

the COACTIV project has shown, for a representative sample of German secondary
mathematics teachers, that subject-related teacher competencies have a strong
influence on students’ performance (see Baumert et al. 2010). Among the mediators
that significantly influence students’ performance are classroom management and
the cognitive level of tasks set for written class tests. And the TEDS-M study has
shown that competencies of beginning teachers vary a lot across different countries,
dependent on their learning opportunities. Therefore, teacher education is crucial.

What PCK is needed especially for teaching applications and modelling (see
Ball et al. 2005, in general and, in particular for modelling, Doerr 2007; Lingefjard
2013; Kaiser et al. 2010). Borromeo Ferri and Blum (2010) distinguish, in their
model, between four dimensions of teachers’ PCK for modelling: (1) a theoretical
dimension (incl. modelling cycles or aims and perspectives of modelling as back-
ground knowledge), (2) a rask dimension (incl. multiple solutions or cognitive
analyses of modelling tasks), (3) an instructional dimension (incl. interventions,
support and feedback), and (4) a diagnostic dimension (incl. recognising students’
difficulties and mistakes). Also for teachers’ learning, no transfer can be expected.
Hence, all these elements have to be included as compulsory components in teacher
education and professional development. Obviously, in most places where maths
teachers are trained, this is not (yet) the case, that means the naive faith in some
mystic transfer is strong here, too. Another myth is that teachers will gain their
necessary professional knowledge just by teaching practice. However, in the CO-
ACTIV project, there was no correlation between experience and professional
knowledge (see Kunter et al. 2013).

One way of providing future teachers with the necessary professional knowledge
is to offer specific modelling seminars already at the university, with compulsory
own teaching experiences (Borromeo Ferri and Blum 2010). Also the Model
Eliciting Activities mentioned in part 5 (see Doerr and Lesh 2011) are very efficient
learning environments both for future and for practicing teachers. Nevertheless, a
Iot has still to be done in research as well, in particular: How will the various
teacher competencies play out in teaching practice and how will they influence
student learning about applications and modelling?

A Final Real World Example

I would like to come back to the example in part 1, Oldenburg’s oversized pick-axe
in Kassel. The story that the Kassel Hercules has thrown this pick-axe to the Fulda
river is very nice, but we may ask: Is it conceivable?
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Fig. 10 The angle between axe and river

The first question is: Is the axis correct from the pick-axe to the Hercules?
Hercules cannot be seen from the Fulda bank, but we can just measure the angle
between the pick-axe and the Fulda River in reality and at the same time the angle
between the line Hercules-axe and the river on the map (Fig. 10).

In both cases we find approximately 85°. Since angles are preserved under
similarity transformations, this shows that the axis is correct indeed.

The second question is: Can Hercules really throw that far? This depends on a
more basic question: Is Hercules able to hold this pick-axe at all? See part 1:
Oldenburg’s pick-axe is 13 times as long as a normal axe. So, using a cubic model,
it weighs more than 2,000 times a normal axe, thus approximately 5 tons. Kassel’s
Hercules measures 9 m, 5 times a normal man’s height, and Hercules is, as one
knows from history, much stronger than normal people. The world record in
weight-lifting is ¥ ton. Now we can apply two different models. If we assume that
the power for weight-lifting only grows proportionally with height, Hercules will be
able to hold at most 1.5 tons but not 5 tons, unfortunately. However, if we assume



Quality Teaching of Mathematical Modelling: What Do We Know ... 91

quadratic growth with height, Hercules will be able to hold even 6 tons. I would like
to leave this question open: Which model is more appropriate? Personally, I prefer
the quadratic model in order not to run down such a nice story about a hero and his
pick-axe.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Introduction

Empirical research over recent decades points to the high influence of teachers on
students’ learning of mathematics. Teachers have been identified as key agents of
educational change (Fullan 1993; Krainer 2011). Amongst others, the compre-
hensive meta-analysis on student learning by Hattie (2003) found that teachers’
impact on students’ learning is high. Identified factors that contribute to major
sources of variation in student performance include the students (50 %) and
teachers (30 %) as the most important factors, whereas home, schools, principals,
peer effects (altogether 20 %) play a less important role.

Thus intensive research in mathematics teacher education is needed. There is
increasing literature about relevant results, however, large-scale findings about the
conditions, processes, and effects of mathematics teacher education are rare (Adler
et al. 2005). Since Mathematical Content Knowledge (MCK) and Mathematical
Pedagogical Content Knowledge (MPCK) play a fundamental role for teachers’
effectiveness (Shulman 1986; Baumert et al. 2010), the education of future teachers
is a crucial phase in teachers’ professional development and a key time for com-
municating pedagogical innovations, especially because many teachers tend to
teach as they have been taught.

The Teacher Education and Development Study in Mathematics (TEDS-M) is
the first cross-national data-based study about initial mathematics teacher education
with large-scale samples (Tatto et al. 2011, 2012; Loewenberg-Ball et al. 2012).
The study collected data from 23,000 future mathematics teachers (primary and
lower-secondary) from 17 countries' in 2008—2009.

The TEDS-M study drew nationally representative samples and conducted large
scale surveys of teacher education institutions, teacher educators, and future
teachers to provide substantive information on how institutions organize and pre-
pare future teachers to teach mathematics at the primary and secondary levels. The
study also successfully created instruments for measuring the MCK and MPCK of
future teachers at the international level in different types of program groups.

TEDS-M was a collaborative effort of worldwide institutions, launched by the
International Association for the Evaluation of Educational Achievement (IEA) to
address concerns raised by the Third International Mathematics and Science Study
(TIMSS). The study is an ambitious attempt to move the study of teacher education
and its outcomes in the direction of scientific research with the goal to inform
policy. The study was directed by Michigan State University (MSU) in collabo-
ration with the Australian Council for Educational Research (ACER), and National
Research Centres in all 17 countries and received important funding from the
National Science Foundation (USA), and the IEA.

' Botswana, Canada (was unable to meet IEA sampling requirements), Chile, Chinese Taipei
(Taiwan), Georgia, Germany, Malaysia, Norway, Philippines, Oman, Poland, Russia, Singapore,
Spain, Switzerland, Thailand, and USA.
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TEDS-M posed questions at three levels: (a) Policies: What are the teacher
education policies of the participating countries that support the mathematics and
related knowledge for teaching of their future teachers? (b) Practices: What
learning opportunities in teacher education programs allow future teachers to attain
mathematics and related knowledge for teaching? (c) Outcomes: What is the level
and depth of the mathematics and related knowledge for teaching attained by future
teachers at the end of their initial teacher education programs? TEDS-M aimed at
bringing these three components—policies, practices and outcomes of mathematics
teacher education—together. As a result, the findings should be of interest to
educational policy makers and researchers, mathematicians and mathematics edu-
cators. In the same way that teachers are the key to educational change in schools,
mathematicians and mathematics educators are—together with the future teachers
themselves—the key drivers of change and innovation in mathematics teacher
education.

Comparisons between countries are complex. Outcomes from the study show
significant differences in outcome measures between future teachers in different
programs in different countries. Since the participating countries have a diverse
level of “human development” (formerly “standard of living”), as measured by the
Human Development Index (HDI),” it is important to take this into account when
comparing countries performance in TEDS-M. A study by Blomeke (2011, p. 19)
shows a close correlation between the countries’ TEDS-M outcome measures and
their HDI. However, related to this index, some countries achieved higher than
expected in TEDS-M, others lower. The Blomeke study indicates Taiwan, Russia,
and Thailand as “overachieving” countries and the USA, Norway, and Chile as
“underachieving” countries compared to their level of human development. From
the case of Taiwan, we will learn what factors may have a positive influence on the
education of future mathematics teachers graduating with high levels of MCK and
MPCK. We will also see that Chile and Norway, both performing below their
expectations compared to HDI, started reforms as a consequence of their TEDS-M
results. Thus, this study offers opportunities to compare with other countries, to
look for communalities and differences, as well as for (relative) strengths and
weaknesses. However, in order to learn more deeply from other countries and
probably to take relevant actions fitting to a country’s own context, it is important to
look in a more detailed way at program characteristics. TEDS-M is both, a starting
point for diverse comparisons among countries, as well as a chance to investigate
the quality of teacher education programs and the learning opportunities they offer
to future teachers of mathematics.

2 The HDI is a comparative measure of life expectancy, literacy, education, and standards of
living for countries worldwide.
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The Organization of the Plenary Panel on TEDS-M

The Plenary Panel on TEDS-M at ICME-12 involved four Panel Members: Feng-
Jui Hsieh (Taiwan), Konrad Krainer (Austria, Chair), Ray Peck (Australia), and
Maria Teresa Tatto (USA).

After a short introduction of the Plenary Panel members by Mi-Kyung Ju (Korea,
Presider), some basic information about TEDS-M and the Plenary Panel by the
chair, the other Panel members gave inputs on the following topics:

e Teaching and teacher knowledge: A focus on MCK and MPCK (Ray Peck)

e Teacher education and quality: The performance of Taiwan in an international
context (Feng-Jui Hsieh)

e Research in teacher education and TEDS-M: International findings and impli-
cations for future policy research (Maria Teresa Tatto)

In order to support the audience in actively following the presentations, each
input included a short activity for the whole audience. Given the fact, that in a
Plenary Panel with some thousand people it is not easy to have open discussions,
the Panel team invited Audience representatives. They are well-known experts with
diverse background (mathematics, mathematics education or pedagogy), some
having deeper knowledge about TEDS-M: Deborah Loewenberg Ball (USA),
Mellony Graven (South Africa), Maitree Inprasitha (Thailand), Liv Sissel Gronmo
(Norway), Leonor Varas (Chile), and Ildar Safuanov (Russia).

The Audience representatives were prepared to respond to questions raised by
the chair of the Panel each related to the corresponding topic presented by the three
panelists.

Teaching and Teacher Knowledge: A Focus on MCK
and MPCK

Why Is Teacher Knowledge Important?

Anthony and Walshaw (2009, p. 25) remind us that knowledge helps teachers
recognize, and then act upon, the teaching opportunities that come up in the
moment. Understanding the ‘big ideas’ of mathematics, permits teachers to rec-
ognize mathematics as a ‘coherent and connected system’. This in turn enables
them to ‘make sense of and manage multiple student viewpoints’. With strong
content and pedagogical content knowledge teachers can help students to develop
‘mathematically grounded understandings’.

Research into student achievement in mathematics has strongly supported the
importance and significance of teacher knowledge. For example, Hill et al. (2005),
found that the mathematical knowledge of teachers was significantly related to
student achievement gains in both first and third grades after controlling for key
student- and teacher-level covariates.
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Defining Teacher Knowledge in TEDS-M

Teacher knowledge for teaching mathematics in TEDS-M was narrower than that
defined by Shulman (1986). It was limited to the knowledge that could be
reasonably demonstrated by future teachers in their final year of their programs on a
written 60 min assessment. It was also limited to the knowledge that was considered
important and culturally meaningful to the 17 participating countries.

In short, the knowledge for teaching mathematics in TEDS-M was confined to
two dimensions—mathematics content knowledge (MCK) and mathematics peda-
gogical content knowledge (MPCK). MCK is mathematics that teachers know and
can do whereas MPCK is knowledge about how to assist students to learn math-
ematics. MPCK is not knowledge that ordinary citizens possess. It is theoretical and
experiential knowledge learned from studying and working in mathematics edu-
cation. The focus of MCK in TEDS-M was on the mathematics that the future
teachers would be required to teach plus some content 2 or 3 years beyond that.

Because TEDS-M was an international study, the decision was taken to make
use of the TIMSS content frameworks for Year 8 and Advanced (Mullis et al. 2005;
Garden et al. 2006). The MPCK framework in TEDS-M was developed by the
TEDS-M international team, after a review of the literature and was informed in
part by the framework used by the Mathematics Teaching in the 21st Century
Project (MT21) (Blomeke et al. 2008; Schmidt et al. 2011) which focused on
middle school mathematics teacher preparation in six countries. The final version of
the MPCK framework was arrived at following a critical review by international
experts in the field.

The TEDS-M MPCK framework consists of three sub-domains.

Mathematical curricular knowledge:

knowing the school mathematics curriculum, establishing appropriate learning goals,
identifying key ideas in learning programs, selecting possible pathways and seeing con-
nections within the curriculum, knowing different assessment formats and purposes

Knowledge of planning for mathematics teaching and learning:

selecting appropriate activities, predicting typical students’ responses, including miscon-
ceptions, planning appropriate methods for representing mathematical ideas, linking
didactical methods and instructional designs, identifying different approaches for solving
mathematical problems, choosing assessment formats and items

Enacting mathematics for teaching and learning:

explaining or representing mathematical concepts or procedures, generating fruitful ques-
tions, diagnosing responses, including misconceptions, analysing or evaluating students’
mathematical solutions or arguments, analysing the content of students’ questions,
responding to unexpected mathematical issues, providing appropriate feedback
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Measuring Teacher Knowledge in TEDS-M

The TEDS-M study measured knowledge found ‘in the mind’, not that ‘in the body’
as seen and found ‘in our practices’ (Connelly and Clandinin 1988). So, unlike the
study by Huckstep et al. (2003), there was not the opportunity in TEDS-M to
observe how the mathematics content knowledge of future primary teachers was
enacted in practical teaching during school-based placements.

In TEDS-M, content knowledge was assessed by a combination of simple and
complex multiple-choice items, together with short and extended constructed
response items. Scoring guides for the constructed-response items were refined
using responses from the field trial and for most extended constructed-response
items, partial credit could be awarded.

Short activity for the audience

In order to sketch the difference between MCK and MPCK items, selected
MCK and MPCK examples covering a range of attributes from the released
TEDS-M item pool were presented to the audience including item statistics.
The audience was invited to participate in providing “informed answers” to
the items presented. Their answers were then contrasted with those obtained
in the TEDS-M study by using “percent correct” information.

The total score points for each future teacher were analyzed using item response
theory (Wu et al. 2007). This enabled four scales for knowledge for teaching
mathematics to be constructed: MCK and MPCK for both primary and secondary.
Tables and charts were created showing the distribution of country scale scores by
program group.

Six “anchor points” were defined and described, two for each MCK scale and
one for each MPCK scale. This enabled the achievement of future teachers in each
program group to be described against the anchor points. It is hoped that these will
provide useful benchmarks for future work. An example of the primary MPCK
anchor point follows.

Primary MPCK Anchor Point

Future primary teachers who scored at this anchor point were generally able to recognize
the correctness of a teaching strategy for a particular concrete example, and to evaluate
students” work when the content was conventional or typical of primary grades. They were
likely to identify the arithmetic elements of single-step story problems that influence their
difficulty. Although future primary teachers at the primary MPCK anchor point were likely
to be able to interpret some students’ work, their responses were often unclear or imprecise.
In addition, future teachers at the anchor point were unlikely to use concrete representations
to support students’ learning or to recognize how a student’s thinking is related to a
particular algebraic representation. They generally were unlikely to understand some
measurement or probability concepts needed to reword or design a task. These future
teachers also were unlikely to know why a particular teaching strategy made sense, if it
would always work, or whether a strategy could be generalized to a larger class of
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problems. They were unlikely to be aware of common misconceptions or to conceive useful
representations of numerical concepts.

For the 15 countries whose data could be analyzed, nine of the 21 program types
across the four defined program groups had the majority of their future teachers at
or above this anchor point on the MPCK scale. In some cases, items worth two
score points (partial credit items) were able to measure levels of knowledge above
and below anchor points. An example of this is item MFC410* shown in Fig. 1.

Future teachers at the primary MPCK anchor point were able to achieve partial
credit (1 out of a maximum of two score points) with a probability of at least 0.7 on this

MFC410
Imagine that two <primary> students in the same class have created the following

representations to show the number of teeth lost by their classmates.

[Mary] drew pictures of her classmates on cards to make this graph.

[Sally] cut out pictures of teeth to make this graph.
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From a data presentation point of view, how are the representations
alike and how are they different?

Alike:
Different:

Fig. 1 Item MFC410, primary MPCK—sub-domain Enacting, data, two score points

3 Alejandra Sorto, formerly of Michigan State University, is acknowledged for this item.
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Table 1 Scoring guide for MFC410
Code Response Item: MFC410

Correct response

20 Responses that indicate how the representations are alike AND how they are
different

‘Alike’ examples

* They both show the same data/same number of teeth lost

» They are both pictorial representations

e They are both forms of bar graphs

» They are both skewed in the same direction

‘Different’ examples

» Mary has grouped the data/done a frequency tally whereas Sally has not
« In Mary’s graph each bar or column represents the number of teeth lost,
whereas in Sally’s graph each column or stack represents a student

* Mary’s graph is categorized by the number of teeth lost whereas Sally’s is
person by person

Partially correct response

10 The ‘alike’ description is acceptable but the ‘different’ description is not
acceptable, trivial or is missing

‘Alike’ example

* They both show the same number of teeth lost

‘Different’ example

* Mary’s is easier to comprehend than Sally’s

11 The ‘different’ description is acceptable but the ‘alike’ description is not
acceptable, trivial or is missing

‘Alike’ example

» They both made graphs about teeth (Trivial)

‘Different’ example

* Sally made a column for each student whereas Mary made a column for
each number of teeth lost

Incorrect response

70 Responses that are insufficient or trivial
‘Alike’ examples

» They are both graphs

» Both graphs are about teeth

‘Different’ examples

* Mary used numbers, Sally didn’t

* Mary’s is hard to read, Sally’s is easier

79 Other incorrect (including crossed out, erased, stray marks, illegible, or off
task)

99 Non-response (blank)
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item. Only future teachers well above the anchor point were able to achieve full credit
on this item. Twenty-nine percent (29 %) of the international sample of future teachers
achieved full credit on this item and another 37 % were able to achieve partial credit.

The following Table 1 shows the scoring guide for MFC410. On this item, for the
international sample, 29 % were awarded full credit, 37 % partial credit, and 23 % no
credit. Eleven percent (11 %) of the international sample of future teachers chose not
to respond. The future teachers who achieved partial credit found it harder to say
how the representations were different (6 %) than how they were alike (31 %).

This work is described in more detail in recent TEDS-M publications (Senk et al.
2012; Tatto et al. 2012; Tatto 2013).

Views from Audience Representatives

The chair asked two Audience representatives to respond to two questions: “Is
what TEDS-M measured valued by the mathematics education community (with a
particular focus on the MPCK items)? How well has TEDS-M contributed
knowledge to the field?”

Maitree Inprasitha (Thailand) stressed that before TEDS-M, most education
faculties in Thailand provided only mathematics content courses (MCK) to future
teachers. Now education faculties have started incorporating the idea of MPCK into
teacher preparation curriculum. More recently, the Khon Kaen University received
a grant to create a network among education faculties in order to redefine courses
for future teachers who are majoring in mathematics education. Through this net-
work, mathematics education faculty staff attend seminars and workshops hosted by
the education faculty of Khon Kaen university.

Ildar Safuanov (Russia) indicated extensive research arising from TEDS-M in his
country. Although Russia has strong MCK and MPCK results, research looks for
fields where future teachers have difficulties (e.g., in constructing different inter-
pretations of theoretical contents) in order to achieve improvements. Research also
shows that there is a relationship between the quality of education of future teachers
and their attitudes to teaching mathematics (e.g., related to an orientation on con-
ceptual models and cognitive-constructivist approaches to teaching mathematics).

Teacher Education and Quality: The Performance of Taiwan
in an International Context

Becoming a Teacher in Taiwan

Teaching in Taiwan is attractive in terms of income, working hours, career
development opportunities, and job security. As a result, candidates face rigorous
evaluation and serious competition throughout the process of becoming a teacher.
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Future teachers must obtain a bachelor’s degree, complete the initial teacher edu-
cation curriculum, and finish a practicum before they are evaluated in the yearly-
held, national-common teacher qualification assessment. The average passing rates
of the qualification assessments for the years of 2007-2010 was 67.4 %.

To get a tenure teaching position, qualified teachers must also undergo a public,
competitive, on-site-screening process administered by the school district or indi-
vidual schools. The screenings are not held only for future teachers, but for all the
practicing teachers who want to change schools. The average pass rates of the
screenings across the country for the recent years 2007-2010 at the primary, lower
secondary and upper secondary levels were 3.5, 11.9, and 6.5 %," respectively
(Hsieh et al. 2012a). Regarding the future teachers, the average rates of employment
for tenure teaching positions for 2007-2010 were lower than 3.4 % for the primary
level and 20.2 % for the secondary level.

What Taiwan Learned from TEDS-M on Teaching
Knowledge

As a participating country in TEDS-M, Taiwan intended to examine how future
teachers performed and what the weaknesses and strengths of teachers were on
teaching knowledge as compared to other countries. The results of MCK and
MPCK achievement for future teachers, especially at the primary level, challenged
the expectations of Taiwanese scholars in two areas. First, Taiwan ranked number
one in performance. Second, Taiwan’s percentages of correct answers for some
primary items with low-level of difficulty were low.

In Taiwan, future teachers are expected to be knowledgeable and to master the
concepts and skills on the field they intend to teach. It is expected that at least 80 %
(if not 100 %) of future teachers should provide correct answers for any item at their
teaching level. However, Taiwan’s data showed that, in the lower secondary-level
study, 30 % of MCK and 33 % of MPCK items did not meet the desired 80 %
threshold. For the primary-level study, 36 % of MCK and 83 % of MPCK items did
not achieve the 80 % threshold. For the type of thought-oriented mathematical
competence primary-level items,” a high rate of 70 % of items did not reach the
80 % threshold. These results are a strong warning for the Taiwanese teacher
education system.

4 People may attend many screenings, so the actual rates of people who pass the screenings
should be higher than these data.

3 This is a type of MCK that contrasts with another MCK-type: content-oriented mathematical
competence. For more information concerning this section, see the relevant article by Hsieh et al.
(2012b).
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Why Taiwan Performed Well

The Taiwan TEDS-M team was interested in analyzing how Taiwanese future
teachers performed for MCK items with respect to different curricular levels. For
this analysis, TEDS-M knowledge items were classified according to four curricular
levels: primary, lower secondary, upper secondary or tertiary. The results showed
that, in comparison to all participating countries, Taiwan demonstrated a unique
pattern in the lower secondary-level study. As shown in Fig. 2, the pattern exhibited
in Taiwan was high achievement with respect to the percentage of correct answers
for items from primary, lower secondary, and upper secondary levels, but a sharp
decline in percent correct on the tertiary level items. Singapore, which demonstrated
performance similar to Taiwan for TIMSS, showed MCK achievement patterns
different from those for Taiwan. Singapore, Germany, and Switzerland did not
show achievement on primary-level MCK items as high as Taiwan but did show a
sharp decline from primary to upper secondary levels. For all other countries
(except for Taiwan, Singapore, Germany, and Switzerland), MCK achievement
remained approximately the same from secondary to tertiary levels. Since Tai-
wanese lower secondary-level teacher education programs emphasize mostly ter-
tiary-level mathematics (but do not cover primary-level mathematics), these data
show that one of the reasons Taiwan performed better in MCK is that it recruits
high-achieving students for secondary teacher education programs.

This idea also explains why Taiwan performed well in MPCK for the lower
secondary-level study. Mathematical concepts applied for almost all MPCK items
appear in the lower secondary-level, a level in which Taiwan excelled.

For the primary-level study, future Taiwanese teachers achieved high results for
primary-level MCK items, lower secondary- and upper secondary-level items (see
Fig. 3).

This result may demonstrate that Taiwan recruits high-achieving students for
primary teacher education programs. However, a question remains as to why

90% 90%
80% —— Taiwan &ov
70%
g Sy Poland 70%
60% - 3
Russia 60% -
50% -4 - —e—Botswana
ok O, W siekees i .
40% r S Singapore ao —4— Chile
s 0
- Thailand o \\\ —o—Malaysia
) 4 N
20% —@— US-Public Norway
10% 20%
0% 10%
(Q'a-*\\ (L:é" ‘\‘:""'L & 5\"’\‘\ ("’QSJ \L’é, é-“é‘\
& & & € & &
RS S R

Fig. 2 Percentage of correct answers for MCK items across different levels in the lower
secondary-level study for certain countries
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Fig. 3 Percentage of correct answers for MCK items across different levels in the primary-level
study for certain countries

Singapore, which performed worse on the MCK than Taiwan, achieved results
similar to Taiwan for the MPCK test. Further research is required to examine factors
influencing relevant knowledge achievements.

Other TEDS-M data show that Taiwan may have demonstrated superior per-
formance, especially in the lower secondary-level, because of the following rea-
sons: Taiwan teaches more topics in both school- and tertiary-level mathematics
than other countries, and future Taiwanese teachers have increased opportunities to
perform challenging problems (thought-oriented). This finding is consistent with
findings from analyses of relationships between Opportunity to Learn (OTL),

MCK, and MPCK (Hsieh et al. 2012a).

Short activities related to single-item performance
The following questions were posed to the audience.
Example 1: (a lower secondary-level item)

Letd= [P
i

' it
q} mB-[ ”]. Thcn.-!%BisdeﬁntdlobeI:p q"]_
5 vy W n osw

Is it true that if 4 @ B = O, then either A = O or B = O (where O represents the zero matrix)?
Justify your answer.

The operation defined in Example 1, MFC814,° a tertiary-level MCK item,
is not taught in relevant courses. To correctly answer this problem, a test-
taker must observe the relationships between mathematical objects, devise
formal or informal mathematical arguments, and transform heuristic argu-
ments into valid proofs.

S The Knowledge of Algebra for Teaching (KAT) project, Michigan State University, is
acknowledged for item MFC814.
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Question 1: What percentage of future mathematics teachers at the sec-

ondary level can answer this item correctly in your country?

Example 2: (a lower secondary-level item)

A mathematics teacher wants to show some students how to prove the quadratic formula.

Determine whether each of the following types of knowledge is needed in order to understand a
proof of this result.
Check gne box in each row,

Needed Not needed

A How to solve linear equations. 0, a,
B.  How to solve equations of the form x? = k,where k > 0. 0, 0,
C.  How to complete the square of a tnnomuial. 0, 0,
D.  How to add and subtract complex numbers. 0, 0,

Example 2, MFC712, is an MPCK item concerning a formal approach for

teaching the quadratic formula. Option C is considered necessary to under-
standing a proof of the formula.

Question 2: In which of the following situations will future teachers in

your country know that option C is necessary? Answer Yes or No to each.

If they know how to prove the quadratic formula and attempt to prove it
when answering this item.

If they know the pre-requisites for learning how to prove the quadratic
formula.

If they have watched a teacher teaching approaches for proving the
quadratic formula.

If they have had experience teaching how to prove the quadratic formula.
If they have been taught by faculty in their teacher education programs
how to demonstrate the quadratic formula.

Example 3: (a primary-level item)
How many decimal numbers are there between 0.20 and 0.30?

Check one box.
A 9 o,
B. 10 0,
C 9 O,
D. An infinite number O

A special feature of Example 3, MEC304,’ is that 0.2 is expressed as 0.20.
Question 3: At what grade do teachers teach the addition of decimals with

three digits in your country?

7 Ttem MFC304 is one of a pool of items developed for TEDS-M by Doug Clarke, Peter Sullivan,
Kaye Stacey, Ann Roche, and Ray Peck, Melbourne, Australia.
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Discussion of other MCK and MPCK items can be found in an article by Hsieh
et al. (2012b).

Views from Audience Representatives

After a short exchange with the audience, the chair asked two Audience rep-
resentatives to “describe any interventions that have been undertaken in Chile and
Norway as a consequence of disappointing TEDS-M results.”

Liv Sissel Gronmo (Norway) stressed that although there was disappointment
with the results, there have been few interventions so far. In particular, concerning
the problem that future teachers do not have the necessary competence in mathe-
matics, no measures have been taken so far. On the contrary, a recent change in
teacher education has expanded the amount of general pedagogy which seems to be
a step in the wrong direction.

Maria Leonor Varas (Chile) reported that TEDS-M results had—after a first
shock—a distinguishable impact in Chile at different levels. For example, it
accelerated decisions and deepened interventions that were in the process of
implementation (e.g., outcome standards for teacher preparation programs and
entrance examinations for teachers). It also led to an increased engagement of
mathematicians in teacher preparation in collaboration with mathematics educators
(e.g., jointly developing standards for teacher preparation as well as preparing
books and materials to support its implementation).

Research in Teacher Education and TEDS-M: International
Findings and Implications for Future Policy Research

Research has begun to advance our understanding of the knowledge considered
most important for school mathematics teaching (e.g., Baumert et al. 2010; Hill
et al. 2007; Schmidt et al. 2011; Tatto 2008; Tatto et al. 2010). For more than a
decade, recommendations from relevant societies and expert groups have empha-
sized that future teachers of school mathematics need to develop a deep under-
standing of the mathematics they will teach (Conference Board of Mathematical
Sciences 2001), and that to be successful “... mathematics teachers need prepara-
tion that covers knowledge of mathematics, of how students learn mathematics and
of mathematical pedagogy” (National Research Council 2010, p. 123; Education
Committee of the EMS 2012). Importantly for our discussion today are calls to
collect “... quantitative and qualitative data about the programs of study in math-
ematics offered and required at teacher preparation institutions ... to improve
understanding of what sorts of preparation approaches are most effective at
developing effective teachers” (National Research Council 2010, p. 124). In this



The TEDS-M: Important Issues, Results and Questions 113

session, we will present some of the challenges involved in doing research in
teacher education, the main findings that are emerging from the study, and plans for
future research including a new study of novice mathematics teachers.

To recap, the overall goal of TEDS-M was to study in a group of countries how
primary and secondary school mathematics teachers learn to teach subject matter
content effectively to a wide variety of students as a result of their preparation
programs. This comparative approach to exploring teacher education and its
influence cross-nationally helped us to understand the combination of teacher
education policies, learning opportunities, and levels of mathematics knowledge
that future teachers reach in those countries where pupils show high mathematics
achievement vis-a-vis those who do not. As we have said in previous articles, the
intent of TEDS-M is to replace myths about when, what, and how teachers learn,
with facts and conclusions backed by rigorous research (Tatto et al. 2011).

Methods

The most important challenges we encountered were methodological such as the
sampling, the instrument development, and, given the diversity of programs we
encountered, the approaches to describe the results. TEDS-M used comparative and
survey research methods to produce correlational analyses. Original data were col-
lected through the examination of policy documents; assessments of mathematics
teaching knowledge; and questionnaires. TEDS-M implemented a two-stage sam-
pling design: (a) selected samples representative of the national population of
institutions offering initial teacher education to the target populations; (b) all pro-
grams in those institutions were included in the survey; (c) within institutions (and
programs), samples of educators and of future teachers were surveyed. Samples had
to reach the rigorous IEA sampling standards. Sampling errors were computed using
balanced half-sample repeated replication (Fay 1989; Lohr 1999; McCarthy 1966;
Tatto et al. 2012). The development of anchor points to interpret the knowledge
scores in a meaningful way represented both a challenge and an important step
forward in teacher education research. Anchor points can assist teacher preparation
programs worldwide to establish benchmarks of performance for their graduates
using TEDS-M assessments and analyses. These assessment tools were developed
collaboratively and represent meaningful international standards (Tatto et al. 2012).

Data Sources

Policy and context data were collected using country reports, questionnaires, and
interviews. TEDS-M conducted (a) surveys of the teacher education institutions
using an institutional program questionnaire; (b) surveys of educators and mentors
of future teachers in the institutions using a teacher educator questionnaire; and (c)
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surveys of future teachers in the sampled institutions. Questions on future teacher
knowledge of mathematics and mathematics pedagogy were investigated via
assessments developed for that purpose.

Results

The results of our study are presented in detail in the TEDS-M international report:
Policy, Practice, and Readiness to Teach Primary and Secondary Mathematics in 17
Countries (Tatto et al. 2012), which is available for download from the TEDS-M
webpage http://teds.educ.msu.edu/, or from the IEA webpage at http://www.iea.nl3.

For this presentation, we will only briefly highlight the key international findings
from the mathematics knowledge assessments at the primary and lower secondary
levels and discuss patterns in the organization of teacher preparation programs that
indicate promising directions for policy.

Tables 2 and 3 show the descriptive statistics for mathematics content knowl-
edge (MCK), by program group for the future teachers participating in the study at
the primary and lower secondary levels. The tables show a key analysis strategy
employed in TEDS-M: that is the way results were presented by “program groups”
in order to cater for the different structures of teacher education systems. Table 2
reveals the variation in MCK scores across and within program groups. Given the
international mean set at 500 and the standard deviation at 100 it can be seen that
the difference in mean MCK scores between some countries, even in the same
program group, was between one and two standard deviations. Here it will be
helpful to illustrate the use of the anchor points—see above—to interpret TEDS-M
results. In the high-scoring countries within each program group, the majority of
future teachers had scores at or above the higher MCK anchor point. Differences
between countries within program groups tended to be larger among the secondary
groups (Table 3) than among the primary groups (Table 2). The results in the
United States of America illustrate these differences.

Table 2 shows that in the USA more than 90 % of future primary teachers reach
Anchor Point 1, but only 50 % reach Anchor Point 2, whether generalists or
specialists; this places the USA below Taiwan, Singapore, and Switzerland in
Group 2: primary generalists, and well below Poland, Singapore, Germany, and
Thailand in Group 4: primary specialists. Table 3 shows the results of the secondary
groups. Close to 70 % of the USA teachers do not even reach Anchor Point 1 in
Group 5: lower secondary teachers preparing to teach to Grade 10, placing them
below Singapore, Switzerland, Poland, Germany, and Norway. USA future
teachers, however, do better in the program Group 6: lower and upper secondary
teachers prepared to teach Grade 11 and above in reaching Anchor Point 1, yet they
still score well below the future teachers from Taiwan, Singapore, Germany, and
the Russian Federation. While in all of these other countries more than 60 % of
future teachers reach Anchor Point 2, more than 55 % of USA future teachers fail to
reach the same benchmark.
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What may help explain these results? Our study shows that the design of teacher
education programs and curricula content and orientation may have substantial
effects on the level of knowledge that future teachers are able to acquire. In general,
programs where future teachers are more successful in our assessments have rig-
orous standards in selecting those who enter the program, they have a demanding
and sequential (versus repetitive) university and school mathematics curriculum,
frequent formative evaluations (written and oral), and stringent graduation
requirements. A conceptual, problem solving, and active learning orientation seems
to characterize the views of mathematics among those future teachers who score
higher in our assessments, likely reflecting the way they themselves learned
mathematics and the views that their programs espouse (Tatto et al. 2012; Tatto
et al. in press).

What could be some of the policy implications emerging from TEDS-M?
Teacher education programs can increase their effectiveness by selecting future
teachers according to their characteristics (e.g., previous school performance) and
strengthening formative and summative evaluation as they progress through their
program. In fact previous performance in school, gender and socioeconomic status
are characteristics that seemed to explain in some degree the knowledge that future
teachers demonstrate at the end of their formal initial teacher education (Tatto et al.
in press).

A general conclusion of our analysis is that future teachers, who did well in their
previous schooling, and specifically in high school, perform better in our mathe-
matics knowledge for teaching assessments (Tatto et al. in press). In all countries,
opportunities to learn university level mathematics and mathematics of the school
curriculum, and reading research on teaching and mathematics were related to
future teachers’ knowledge as measured in our assessments. The more traditional
view of mathematics as a finished product has given way to a more contemporary
view of mathematics as a process of inquiry (Ernest 1989, p. 250), and to the idea
that mathematics is better learned through a conceptual and inquiry-based form of
learning. In general, successful programs seemed to be more coherently organized
around the idea of what effective teachers need to know (Tatto et al. in press).

For primary programs, the most important positive influence of teacher educa-
tion on mathematics knowledge for teaching is the opportunity to learn school level
mathematics, specifically in the areas of function, probability, and calculus (Tatto
et al. in press). Another important yet negative association with knowledge as
measured by our assessment was found among future teachers who as a group hold
the exclusive view that can be summarized as “mathematics is a collection of rules
and procedures that prescribe how to solve a problem”. This is a view that stands in
contrast with the more accepted view, supported by cognitive science research on
learning that, “in addition to getting a right answer in mathematics, it is important to
understand why the answer is correct” and that in addition to learning basic facts,
“teachers should allow pupils to figure out their own ways to solve a mathematical
problem.” While the first is a view that may be espoused by teacher education
programs, it could also be a “naive view” held by future teachers based on
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commonly held “cultural norms” and which remains unchallenged and unchanged
by their program. In other words, the program may end up reinforcing traditional
ways of teaching and learning, already acquired by future teachers in their own
schooling (Tatto 1999).

For secondary programs the most important influence on knowledge for teaching
is the opportunity to learn university level mathematics, specifically geometry, and
the opportunity to read research in teaching and learning (Tatto et al. in press). As in
the primary programs the exclusive view that “mathematics is a collection of rules
and procedures that prescribe how to solve a problem” had a negative association
with performance in our assessment.

One conclusion of this study is that teacher education programs’ quality of
opportunities to learn—as measured by their association with high levels of
mathematics teaching knowledge, coherence on program philosophy and approa-
ches, and internal and external quality assurance and accountability mechanisms,
are all features that seem to contribute to increased levels of mathematics knowl-
edge for teaching among future teachers. While the TEDS-M study is limited in
how much it can tell us about the effects of high quality teacher education on initial
teaching practice, it provides the basis for the development of further inquiry into
this unexplored yet essential question: what elements contribute to the development
of high quality teachers?

A further study, FIRSTMATH, will attempt to answer this question. This is a
study of novice teachers’ development of mathematical knowledge for teaching and
the influence of previous preparation, school context and opportunities to learn-on-
the-job, on that knowledge. FIRSTMATH will explore the connections between
initial teacher education and what is learned on the job as it concerns knowledge,
skills, and curricular content; and the degree to which standards, accountability, and
other similar mechanisms operate to regulate the support that beginning teachers of
mathematics receive during their first years of teaching. For more information on
TEDS-M and FIRSTMATH consult the following websites: http://teds.educ.msu.
edu/ and http://firstmath.educ.msu.edu/.

Views from Audience Representatives

Finally, the chair asked two Audience representatives their view on “how
mathematics (teacher) educators in their country value TEDS-M as a contribution to
research.”

Mellony Graven (South Africa) highlighted that her country did not participate in
TEDS-M (but did in the preceding MT21 study), partially for cost reasons. In South
Africa, many teacher educators are unaware of the study, and the local literature on
mathematics (teacher) education shows little take up or mention of the study.

Deborah Loewenberg Ball (USA) stressed the importance of TEDS-M: it has
advanced the international conversation about what it means to be mathematically
well-prepared for teaching, it has raised questions about the degree to which
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common measures of mathematical knowledge for teaching can be developed, and
it has made possible more common research about selection, education, and effects
on initial teaching across countries.

The Panel closed with concluding words by the Panel members, expressing
thanks to the IPC including the Panel-liaison Gabriele Kaiser (Germany) and the
local organizers including Mi-Kyung Ju (South Korea) as the presider of the Panel.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Mathematics Education in East Asia
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Abstract Students in East Asia have been performing extremely well in international
studies of mathematics achievements such as TIMSS and PISA. On the other hand,
education practices in East Asian countries look different from Western practices, and
some practices look very backward and contradictory to what are considered as good
practices. Given these intriguing phenomena, this plenary panel aims to discuss
different aspects of mathematics education in these East Asian countries, and illustrate
its salient features with examples. These aspects include classroom teaching in regular
schools and tutorial schools, and pre-service and in-service teacher education and
development. The reasons behind the distinctive features of mathematics education in
East Asia are then explored, and it is argued that the common Confucian Heritage
Culture (CHC) that these countries share best explain these features. This panel
presentation is not meant to promote the superior student achievement or good
educational practices in East Asia. Rather, it highlights the cultural differences
between CHC and Western cultures, rather than the superiority of one over the other.
A cultural explanation also means that simple transplant of educational policies and
practices from one culture to another will not work. The panel points to the important
role culture plays in accounting for educational practices and student achievement.
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Introduction

Students in East Asia have been performing extremely well in international studies
of mathematics achievements such as TIMSS and PISA (Beaton et al. 1996; Mullis
et al. 1997, 2000, 2004, 2008, 2012; OECD 2001, 2003, 2004, 2010). On the other
hand, classroom studies show that mathematics teaching in these countries is
rather backward and traditional. International studies on teacher education and
development also show that practices in East Asian countries are markedly different
from those in “western” countries. Furthermore, comparative studies in teacher
knowledge seem to suggest that mathematics teachers in East Asia have more solid
understanding of the subject matter as well.

Given these intriguing phenomena, this plenary panel aims to present the current
picture of different aspects of mathematics education in these East Asian countries
more vividly, and to explore into the reasons behind these distinctive features of
mathematics education. In this panel presentation, East Asia is a cultural rather than
geographic demarcation. East Asian “countries” refer to systems or economies that
are under the influence of the Confucian Heritage Culture, or CHC in short. They
include China, Hong Kong, Japan, Korea, Singapore, and Taiwan. The classroom
practices, teacher education and development, as well as the educational and socio-
cultural contexts in these East Asian countries will be discussed and illustrated with
examples.

Classroom Teaching in East Asia

Classroom Teaching in Regular Schools

There have been many studies about the features of mathematics classroom
teaching in East Asia. For example, Zhang et al. (2004) stated that the most
coherent and visible principle for mathematics instruction in China is emphasizing
the importance of foundations, and the principle of “basic knowledge and basic
skills” was explicitly put forward for the teaching of mathematics. Gu et al. (2004)
claimed that teaching with variation is a Chinese way of promoting effective
mathematics learning. According to Gu et al. (2004) which was based on a series of
longitudinal mathematics teaching experiments in China, meaningful learning
enables learners to establish a substantial and non-arbitrary connection between
their new knowledge and previous knowledge. Classroom activities can be devel-
oped to help students establish this kind of connection by experiencing certain
dimensions of variation. The theory suggests that two types of variation are helpful
for meaningful learning, “conceptual variation” and “procedural variation”
(Gu et al. 2004).

A number of comparative studies of classroom teaching in East Asian countries
and western countries have been conducted, and among them Leung’s study
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provided the most comprehensive interpretation of mathematics teaching in East
Asia. In an attempt to search for an East Asian identify in mathematics education,
Leung (2001) characterized the salient features of classroom teaching in East Asia
and those in the West. He presented six dichotomies of teaching and learning:
product (content) versus process; rote learning versus meaningful learning; studying
hard versus pleasurable learning; extrinsic versus intrinsic motivation; whole class
teaching versus individualized learning; and competence of teachers: subject matter
versus pedagogy. Among the six dichotomies, product (content) versus process and
whole class teaching versus individualized learning capture best the essence of the
differences in mathematics teaching between East Asia and the West.

Two lesson videos were analyzed and discussed in the plenary panel session. As
a representative East Asian lesson, an 11th grade Chinese lesson in Shanghai
dealing with trigonometric ratio was chosen. In this review lesson, the teacher
arranged the mathematics content on trigonometric ratio according to the structure
of the knowledge which had already been dealt with in the class, and students
accepted and internalized the knowledge structure and reflected on their own
understanding. The Chinese lesson shows heavy dependence on teacher’s expla-
nation, and the teacher emphasized acquiring mathematics knowledge. Mathematics
teaching was analogous to getting the body of knowledge across from the teacher to
the students.

For the Western lesson, an 8th grade US lesson in San Diego dealing with linear
function was chosen as a representative one. This lesson was characterized as a
‘guided development lesson’ by the local researchers. The lesson started with some
individual activities on exploring the characteristics of functions, and then the
teacher invited a student to share his opinion with his classmates. Students were
given ample activities and investigations. This lesson seems to support the
contemporary Western view that the critical attribute of mathematics is its
distinctive way or process of dealing with reality. This process gives rise to a body
of knowledge, which is also worthwhile subject matter for study. Since the critical
attribute is the process, it is more important to get hold of the process rather than the
content arising out of the process.

The Chinese lesson is affirming the importance of the teacher and the subject
matter, while student-centered education is the basic tenor in the US lesson. We are
not implying that all East Asian countries are on one side of the dichotomies and all
western countries are on the other side. In fact, it is a matter of the relative positions
of the two cultures on a continuum rather than two incompatible standpoints.

Teaching in Tutorial Schools

It is well known that there are various types of tutorial schools outside the formal
educational system in East Asia. These tutorial schools provide supplementary help
in academic subjects both for following-up what is taught in regular schools and for
preparing for entrance examinations to the next school levels. The content of the
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Table 1 Expenditure for

private tutoring (2012 data Country Total expenditure for private tutoring (billion)
taken from Asian Hong Kong | US$0.255
Developmental Bank) Singapore US$0.682

Japan US$12.1

Korea US$17.3

courses in those schools can be remedial or accelerated. Tutorial schools range from
two or three students meeting in the home of a teacher to hundreds of students in
dozens of classes in campuses all over the country.

A huge amount of money is involved in private tutoring. The expenditure for
some countries in East Asia is shown in Table 1.

There are both advantages and drawbacks in having such institutions. First,
tutorial schools help students to learn, and thus extend their human capital which
can in turn contribute to economic development. On the other hand, tutorial schools
usually maintain or exacerbate social and economic inequalities. Also, tutorial
schools may dominate students’ lives and restrict their leisure time in ways that are
psychologically and educationally undesirable.

Tutorial Schools or Private Tutoring in Japan

Table 2 shows the percentages of Japanese students in grades 6 and 9 who attended
tutorial (Juku) schools, including lessons with private tutors (Ministry of Education,
Science, Sports, and Culture, 2010). Roughly half of grade 6 students attended
some form of outside school education and more than 62 % of grade 9 students
attended tutorials. In reality, there are some differences between the urban areas and
small cities or rural areas in students’ attendance. In urban areas, there are large
Juku schools with a competitive atmosphere mostly attended by students preparing
for the university entrance examination. On the other hand, many rural Juku schools
for elementary and junior high schools are more informal, and basically aim to
provide immediate improvement of school performance. Besides Juku schools

Table 2 Attendance of grade 6 and grade 9 Japanese students in Juku schools, including lessons
with private tutors (National Institute for Educational Policy Research 2010)

vearo NGORG]

0% 50% 100%
B Attending ® Not Attending
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Table 3 Learning in Juku schools (National Institute for Educational Policy Research 2010)

Do you study in Juku schools (including private tutors)? 6th graders 9th graders
(1) Not attending 52.1 379
(2) Learning advanced content or difficult topics 23.5 18.1
(3) Learning the topic taught but not well-understood in schools 7.5 10.0
(4) Both (2) and (3) 8.5 25.9
(5) Others 8.2 7.9

which provide supplementary help in academic subjects, there are enrichment
classes on other activities such as swimming, piano, or abacus.

Table 3 shows the various purposes for attending Juku schools. As Table 3
shows, in general learning advanced content or difficult topics is the major purpose
of the Japanese students’ attendance.

Two Japanese tutorial schools were described in the plenary panel session, one
mainly for elementary and junior high school students, and the other mainly for
senior high school students. They have different courses and systems. The first
tutorial school is a Juku School in Tsukuba City, and the number of students is
roughly 400. The school offers “afterschool classes” in weekday evenings for
teaching advanced topics, and they provide a bus service to pick up students. The
school runs a “Study Camp” every year during the summer vacation, where
students stay in a hotel for a few days and learn together.

The other school belongs to an affiliated group of tutorial schools of more than
120 schools all over the country. The school is for university intended senior high
school students who prepare for the entrance examination to universities. It pro-
vides students with an ICT-enhanced self-learning system that emphasizes a PDCA
(Plan-Do-Check-Action) cycle for learning with immediate feedback. All the
lectures are delivered through a Local Area Network. Each student comes to
the tutorial school after their regular school class and learns with a computer. The
progress of their learning is monitored by the teachers at the school and the students
have the opportunities for consulting with the teachers periodically to discuss about
their choice of intended university and so on.

Tutorial Schools in Korea

Korea conducts a national survey annually on tutorial schools. Based on the survey
done in 2011 with 46,000 students and parents, 50.2 % of elementary and
secondary students were participating in mathematics tutorial schools. This rate was
the highest among all the subjects.

There are a variety of tutorial schools in Korea according to the achievement
levels of the students, their purposes of attending tutorial schools, etc.:

e Repetition of school mathematics content
e Accelerated learning
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e Preparing for mathematics contests or the Mathematics Olympiad
e Preparing for entrance examinations of gifted schools

To reduce the country’s addiction to private, after-hours tutoring academies
(called hagwons), the authorities have begun enforcing a curfew to stop children
from studying in hagwons after 10 p.m. (TIME magazine, 25 Sep 2011).

Teacher Education and Development

“The success of any plan for improving educational outcomes depends on the
teachers who carry it out and thus on the abilities of those attracted to the field and
their preparation” (National Research Council 2010, p. 1). In East Asia, respecting
teachers and attaching importance to education are an unchanging theme and a
traditional virtue (Wang 2012). Teachers play the role of a guide, and instruction is
teacher dominated and student involvement is minimal (Leung 2001). On the other
hand teachers try to understand their students’ learning and want their students to be
happy in the future, which means that they need to work hard in school (Ferreras
et al. 2010). They bear the responsibility if students do not study hard or work well.
One of the Chinese idioms illustrates this typical characteristic of teachers in East
Asia: Unpolished jade never shines; To teach without severity is the teacher‘s
laziness (EFIK, PRES: BAT=, Jh218).

In the following section, how teacher preparation and development in East Asia
are carried out will be presented.

Pre-service Education: How to Become a Mathematics
Teacher in East Asia

There are diversities in terms of the mechanism for preparing teachers. Some East
Asian systems (such as in Korea or in Mainland China) provide an integrated approach
where prospective teachers acquire a teacher certificate through a four-year bachelor
degree program at a comprehensive university or teacher education university. Some
systems (such as Hong Kong or Japan) adopt an end-on approach where prospective
teachers complete a bachelor degree and then take a one- or two-year Post Graduate
Certificate in Education program. Notwithstanding these differences, some similar
characteristics of pre-service teacher training in teachers colleges and normal
universities can be summarized as follows (Li et al. 2008, p. 70):

e Providing prospective teachers with a solid foundation of mathematical
knowledge and advanced mathematical literacy;
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e Emphasizing the review and study of elementary mathematics. It is believed that
a profound understanding of elementary mathematics and strong problem-
solving abilities in this field are crucial to becoming a qualified mathematics
teacher.

The model in each system has its own strengths and weaknesses with regard to
acquiring subject matter knowledge, pedagogical knowledge and teaching skills,
but they share similar characteristics. The contents of the mathematics teacher
preparation programs in some selected institutions are shown in Table 4.

As can be seen in Table 4, the Korean (minimum 30 %), Chinese (41 %) and
Japanese (33 %) programs emphasize the foundations of mathematics knowledge in
terms of its systematic structure, and the demand for logical reasoning. These
features could reflect the belief that high quality teaching requires that teachers have
a deep knowledge of the subject matter. But, the ways such a belief is reflected in
practice depend on the specific contexts found in different countries.

Most of the systems require prospective teachers to obtain a government-issued
certificate or license signifying that the candidates have completed the required
professional preparation. In many systems, candidates also need to take a teacher
employment test, and there is an emphasis on subject matter knowledge in this test
in different countries.

Table 4 Outline of Teacher preparation courses for secondary mathematics majors by selected
institutions

Mathematics (%) | Mathematics General Teaching General or other
(required and education (%) pedagogy (%) practicum courses (%)
elective) (e.g. (e.g. Methodology (e.g. Philosophy (%) (e.g. Foreign
Linear algebra, of mathematics of educational language, health
number theory, education, and history of and sports
real analysis, curriculum in education, subjects)
complex analysis, | mathematics curriculum and
differential education, problem | evaluation,
geometry, solving and educational
topology, mathematics method and
probability and competition) technology,
statistics) educational
psychology)

China' |41 8 10 12 29

Japan® |33 15 16 10 26

Korea® |30 6 13 3 48

! East China Normal University
2 Hiroshima University
3 Specified by the MOE of Korea (minimum units. Most students take more mathematics, mathematics
education and general education courses)
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Teacher Employment Test (TET) in Korea

In Korea, to be employed by national and public schools, a certified teacher must
pass the teacher employment test administered by the 16 Metropolitan and
Provincial Offices of Education (Ingersoll 2009, p. 58). The competition rates for
mathematics in TET differ from one school district to another, but the average
competition rate is higher than 10:1, i.e., more than 10 candidates compete for one
place.

In the TET administered by the MOE of Korea, the core subjects are ‘mathe-
matics’, ‘mathematics education’, and ‘general pedagogy’. To examine whether a
prospective teacher has successfully developed the practical competency to teach in
the classroom, the TET consists of three stages. Table 5 shows the core subjects in
the three stages of the examination.

In the first stage, the TET includes 26 questions about mathematics (52 %), 14
questions about mathematics education (28 %), and 40 questions about general
pedagogy (20 %) in the form of multiple choice items. In the second stage, the test

Table 5 The core subjects and three stages of the Korean TET

Area Contents Relevant Percent

knowledge Stage Stage Stage
L(%) |2(%) |3 (%)
Mathematics Linear algebra Content 52 55-60 |0
Abstract algebra knowledge
Number theory

Real analysis

Complex analysis

Differential geometry

Topology

Probability and statistics

Discrete mathematics

Mathematics Mathematics curriculum Pedagogical 28 3540 |60
education and Evaluation, History of content
mathematics education, knowledge

Theory of instruction in
mathematics, psychology of
teaching mathematics

General Philosophy of education General 20 0 40
pedagogy and history of education, pedagogical
curriculum and evaluation. knowledge

educational method and
technology educational
psychology, educational
sociology, educational
administration and
management
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sets four questions from mathematics (60-65 %) and mathematics education
(3540 %) in the form of essay items; there are no questions about general
pedagogy.

In the final stage, the TET assesses candidates by in-depth interview and micro-
teaching. In the interview, candidates are given a set of questions related to practical
issues involving school teaching such as class management and administration
issues. In micro-teaching, candidates are asked to develop a teaching plan for a
given mathematical topic. They are required to integrate certain instruction features
such as using ICT and collaborative learning into the plan. After they set up their
plans, they conduct micro-teaching based on the plans for 20 min. The final
decision of teacher selection is based on the cumulative scores through the three
stages.

Employment Test in Japan

Due to a decline in the school age population in Japan in recent years, the job
opportunities for prospective teachers are limited and only about 30-40 % of
graduates of teacher training colleges are able to secure employment in public
schools. In principle, mathematics teachers at secondary schools teach only math-
ematics, whereas teachers at elementary schools teach most subjects. Because of
this difference, more courses in pedagogy are required for those intending to teach
at the lower grade levels, whereas those intending to teach at the upper grade levels
are required to take more mathematics. In addition to the academic course work,
teacher-training programs include a practicum (teaching practice). Prospective
elementary school teachers are required to spend at least four weeks in a school for
teaching practice and those for lower and upper secondary school are required to
spend at least two weeks. The practicum is usually preceded and followed by a total
of 15-30 h of related guidance and reflections. The national universities for teacher
training have affiliated schools for the purpose of teaching practice.

The board of education of each prefecture gives a teacher certificate to a person
who has completed the prescribed basic qualifications and credits at the authorized
colleges and universities. The competition rates of Teacher Employment differ
among school levels and from one school district (prefecture) to another, but the
average competition rate was about 6:1 in 2011 (see Table 6).

Table 6 Applicants, employees, and competition rate in 2011 by school levels (data source
Ministry of Education of Japan, as of 1 June 2011)

School level Applicants Those who Employees Competition
took the test rate

Primary school 63,800 57,817 12,882 4.5

Lower secondary school 71,212 63,125 8,068 7.8

Upper secondary school 42,506 37,629 4,904 7.7
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For some prefectures, the average competition rate is more than 10 (Iwate 13.6;
Nagasaki 13.3), for others, less than 10 (Tokyo 5.7; Toyama 3.7). Each prefecture
prepares and conducts an employment test that is conducted at two phases. The first
phase is a paper and pencil test (one day in July), and the test subjects consist of
general education, mathematics, and mathematics education. The second phase is
an interview and micro-teaching (around October).

Teaching Skills Competition for Prospective Mathematics Teachers
in China

In China, the mathematicians in teacher education institutions still value the structure
and nature of mathematics, and hope to provide students with a refined and profound
mathematics foundation, a broad and concise mathematics background, and further
try to help students to master mathematics more easily and properly. And they leave
the responsibility of connecting higher mathematics to elementary mathematics and
the responsibility of providing high quality mathematics pedagogical knowledge to
mathematics educators. Furthermore, enhancing the teaching skills of prospective
teachers becomes an important part of the teacher preparation program.

At the end of 1996, the Ministry of Education issued “Suggestions on Teacher
Education Reform and Development”, emphasizing curriculum reform in order to
face the challenges of the 21st Century. Much importance was attached to the
cultivation of scientific thinking and methods, as well as the practical and creative
abilities of students, to establish stable bases for teaching practices (Yang et al.
2012, p. 212). Since then different kinds of practice-oriented pre-service programs
have been launched and carried out.

Since 2008, the Department of International Cooperation and Exchanges, and
the Department of Teacher Education of the Ministry of Education in China,
together with Toshiba Company, have been organizing annual competitions on
“practice in innovative teaching skills”. Students from normal universities/colleges
can participate in this competition, but they should first win the local competitions
organized by their universities. Only a few students have the honor to take part in
the national competition. This competition includes three parts: a lesson plan (jico
an) is designed, the candidates teach a lesson (mo ni ke), and after that they should
explain the didactical concepts of their lesson (shuo ke). Through such competi-
tions, most prospective teachers engage in being trained in teaching skills. Many
universities/colleges invite excellent school mathematics teachers to tutor the
prospective teachers for these competitions (Fu and Han 2010).

In-service Teacher Education and Development

The success of an education system depends on the appropriate preparation and
continuous development of highly qualified teachers. It is widely recognized in East
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Asian education communities that learning to teach in the classroom is a life-long
process for teachers. As pointed out above, for becoming a mathematics teacher in
this region, it is necessary to acquire a teacher certificate for a particular type of
schools by completing credits in teacher training courses offered by universities and
colleges. Besides these formal systems of teacher preparation, there are other
important aspects in the process of mathematics teacher education in East Asia
(Leung and Li 2010; Li and Shimizu 2009). In this section, some characteristics of
in-service mathematics teacher education and development in East Asia are
described.

Stigler and Hiebert (1999) suggested that it is important to examine and learn the
ways employed to improve the quality of mathematics classroom instruction in
high-achieving education systems in East Asia. A good example is lesson study,
which is now familiar to educators around the world. Lesson study is an important
practice utilized in Japan to improve the quality of mathematics instruction and to
develop teaching competence by promoting collaboration among teachers
(Fernandez and Yoshida 2004). There are many other approaches developed and
used in the pursuit of excellence in teacher development in different education
systems in East Asia. For example, the model of exemplary lesson development is
developed and used in mainland China (Huang and Bao 2006). Instructional con-
tests are organized to identify and promote excellent mathematics instruction in
several educational systems (e.g., Li and Li 2009; Lin and Li 2009). Master teachers
are also an important part of the teaching culture in some education systems in East
Asia, and play an important role in nurturing that culture (Li et al. 2008). Some
examples of these approaches are provided below.

Lesson Study in Japan

Lesson study, originated in Japan, is a common element in approaches to profes-
sional developments whereby a group of teachers collaborate to study the subject
matter, instruction, and how students think and understand in the classroom. The
original term for lesson study, jugyo kenkyu in Japanese, literally means the study of
lesson. The origin of lesson study can be traced back to late 1890s, when teachers at
elementary schools affiliated to the normal schools started to study lessons by
observing and examining them critically (Inagaki 1995). Groups of teachers started
to have study meetings on newly proposed teaching methods. The original way of
observing and examining lessons has spread nationwide with some major refine-
ments and improvements. The activities of lesson study include planning and
implementing the “research lesson” as the core of the whole activity, followed by
post-lesson discussion and reflection by participants. A lesson plan plays the key
role as a medium for the teachers to share and discuss the ideas to be examined
through the process of lesson study.

Lesson study takes place in various contexts (Shimizu 2002). Pre-service
teacher-training programs at universities and colleges, for example, include lesson
study as a crucial and challenging part in the final week of student teaching practice.
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In-service teachers also have opportunities to participate in lesson study. It may be
held within their schools, outside their schools but in the same school district, city
or prefecture, and even at the national level. Teachers at university-affiliated schools
that have a mission to develop a new approach to teaching often open their lesson
study for demonstrating an approach or new teaching materials they developed.

Lesson study is a problem solving process whereby a group of teachers work on a
problem related to a certain theme. The theme can be related to examining the ways
for teaching a new content or for using new teaching materials in relation to the
revision of the national curriculum guidelines or to assessing students’ learning of a
certain difficult topic in mathematics such as common fractions or ratio. The first step
of lesson study is defining the problem. In some cases, teachers themselves pose a
problem to be solved, such as how to introduce the concept of common fractions, or
what is an effective way to motivate students to learn mathematics. Second, planning
lesson follows after the problem is defined. A group of teachers collaboratively
develop a lesson plan. A lesson plan typically includes analysis of the task to be
presented and of the mathematical connections both between the current topic and
previous topics (and forthcoming ones in some cases) and within the topic, antici-
pation of students’ approaches to the task, and planning of instructional activities
based on them. The third step is a research lesson in which a teacher teaches the
planned lesson with observation by colleagues. In most cases, a detailed record of
teacher and student utterances is taken by the observers for discussion in a post-lesson
meeting. Evaluation of the lesson in the post-lesson meeting focuses on issues such as
the role of the implemented tasks, students’ responses to the tasks, appropriateness of
the teacher’s questioning, and so on. Based on the evaluation of the lesson, a revised
lesson plan is developed, and the lesson is taught again in another class. These entire
process forms a cycle of lesson study.

In lesson study, an outside expert is often invited as an advisor who facilitates
and makes comments on the improvement of the lesson in the post-lesson
discussion (Fernandez and Yoshida 2004). The expert may be an experienced
teacher, a supervisor, a principal of a different school, or a professor from a nearby
university. In some cases, the expert is not only invited as a commentator in the
discussion on site, the group of teachers may meet with him/her several times prior
to conducting the research lesson to discuss issues such as reshaping the objective
of the lesson, clarifying the role of the task to be posed in the classroom, antic-
ipating students’ responses to the task, and so on. In this context, the outside expert
can be a collaborator who shares the responsibility for the quality of the lesson with
the teachers, and not just an authority who directs the team of teachers.

After researchers in the U.S. introduced lesson study to the mathematics
education community during the late 1990s, the term “lesson study” spread among
researchers and educators in the U.S. and later around the world (Lewis 2002). One
of the most influential books that discusses about lesson study is The Teaching Gap
(Stigler and Hiebert 1999). Since then, school teachers in different countries have
been trying to implement lesson study in their own education systems. A central
question in the “adoption” of the lesson study approach in other places has been
raised from the perspective of teaching as a cultural activity.
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In the Japanese education system, improvement of teaching and learning through
lesson study over a long period of time can take place within a context in which
clear learning goals for students are shared among teachers in relation to the
national curriculum standards as well as the voluntary hard efforts of the teachers
with the support of the administrators. There are challenges to be resolved in
practice and research possibilities to be explored in each context.

Teaching Research Groups and Mentorship in China

In the Chinese mainland, almost all mathematics teachers are involved in teaching
research activities from the first day of their service, in order to obtain practical
knowledge and achieve in-service professional development. This is guaranteed by
the policy of “the four-level teaching research network comprising about 100,000
officers” (Yang et al. 2012, p. 216). These officers play an important role in China’s
education system in managing and guiding school-based teaching research activi-
ties on the one hand, and bridging the gap between teaching theories and practice
on the other.

The basic units of teaching research network activities are teaching research
groups and a mentoring system. They cater to the practical needs and professional
development of in-service teachers.

Teaching Research Groups in China

Chinese teachers have a tradition of discussing and reviewing each other’s lessons,
and gradually it has become a unique culture of opening up one’s classroom and
discussing one’s teaching with others. All the schools in China have teaching
research groups, and teachers observing and discussing each other’s lessons is
commonly guaranteed by the teaching research system. There is more than
50 years’ history since a school-based teaching research system was set up in
China. In Secondary School Teaching Research Group Rulebook (draft) issued by
MOE in 1957, the study function of the teaching research group was emphasized:
“A Teaching Research Group is an organization to research teaching. It is not an
administrative department. Its task is to organize teachers to do teaching research in
order to improve the quality of education, and not to deal with administrative
affairs” (Ministry of Education 1957).

Facing challenges of curriculum reform since the 21st Century, the school-based
teaching research system is experiencing changes. The changes result not only from
changes in the way of teaching and the way of research, but also from changes in
the way of learning and the way of experiencing for teachers. The current essential
activities of teaching research groups include:

e Action research on classroom teaching to improve effectiveness, whereby
several practical research methods are developed, such as analyzing crucial
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teaching events (Yang 2009), classroom observation (Huang and Zhang 2011),
and so on.

e Development of a distinctive teaching research culture to build up a teacher
community through promoting helping each other and inquiring cooperatively
(Yao 2010), or to construct a learning environment to promote teachers’
professional development in teaching practice through the learning of teaching
theories and the analysis of classroom teaching case studies (Gu and Wang
2003).

e Discussion of mathematics contents and corresponding teaching methods to
deepen understand and to modify teaching plans [even though this is one of the
typical activities, it is facing new challenge because of students’ development
(Wang 2011)].

Mentoring for Mathematics Teaching in China

Chinese schools have a tradition of arranging for an experienced teacher to be the
mentor for a young teacher when the later just begins the teaching career. In this
mentoring system, sometimes a new teacher has two mentors: one provides
instructions on teaching and another provides guidance on tutoring students. The
experienced teacher (mentor) should undertake the responsibility to discuss
teaching methods, teaching contents and students’ learning styles, etc., with the
novice teacher supervised by him/her. The new teacher is expected to observe the
mentor’s lessons frequently and learn from him/her enthusiastically and humbly.
The school encourages new teachers to conduct open lessons regularly and to
participate in teaching contests (Yang et al. 2012). The mentor should try to do co-
teaching and hold lesson discussion meetings with the mentee, and to suggest
alternative teaching practices and ideas (Mao and Yue 2011). In some schools, a
ceremony is even held to honor mentors of new teachers and to award them with
mentoring certificates.

Mathematics Festival in Korea

The Ministry of Education in Korea provides compulsory in-service teacher training
programs, which Korean teachers should take when they are in the 4th or 5th year
of teaching. However many teachers are not satisfied with this teacher training
program because it is not very relevant to their classroom teaching. Thus mathe-
matics teacher organizations set up their own teacher training program called
‘mathematics festival’, and this program has been very successful. Mathematics
teachers pay the participation fees from their own pocket.

Mathematics festival is a four-day program, and it consists of a variety of
lectures and workshops. The lectures mostly combine theory with its application to
classroom teaching. Workshops deal with practical teaching ideas including
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teaching/learning material, manipulatives, teaching tips, etc. Here are examples of
lectures and workshops in the 2012 mathematics festival held in January.

e How to teach circumcenter in grade 8

Harmonics of saxophone from the perspective of mathematics
Interdisciplinary approach: STEAM (Science, Technology, Engineering, Art,
and Mathematics)

Mathematics magic

Geogebra, GSP 5.0, Cabri 3D

Lecture about millennium problems

Lecture about pentomino with participants’ hands-on experience
Lecture about real world situation (height of shoes)

Lecture about mathematics and music with musical performance
Computer session with Geogebra

Computer session with Cabri 3D

Hands-on experience to make a traditional 3-dim figure
Zonodom.

Discussion

As mentioned earlier, this presentation is not meant to show that all East Asian
countries are on one side of the extreme and all Western countries are on the other
side. But the presentations above do show that there are distinctive features in the
classroom teaching and teacher education and development in East Asian countries
which are markedly different from the corresponding practices in Western coun-
tries. What are the causes of these differences?

Confucian Heritage Culture

There are obviously factors at the personal and institutional levels that have caused
the differences. But explanation won’t be complete without resorting to factors at
the socio-cultural levels. China, Korea, Japan share a common culture, the Con-
fucian Heritage Culture (CHC) (Biggs 1996a). A major characteristic of CHC is the
social orientation of its people, in contrast to individual orientation typically found
in Western societies. Social Orientation is a “tendency to act in accordance with
external expectations or social norms, rather than with internal wishes or personal
integrity” (Yang 1981, p. 161). It emphasizes integration and harmony, in contrast
to independence and individualism in Western cultures (Taylor 1987, p. 235).
People in CHC treasure the community, much more so than the individual. Related
characteristics of CHC include compliance, obedience, respect for superiors, and
filial piety (Z£).
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Another more relevant characteristic in the Confucian culture is its emphasis on
education, and CHC parents are known to attach great importance to the education
and achievement of their children. This rests upon the Confucian presumption that
everyone is educable [differences in intelligence... do not inhibit one’s educability
(Lee 1996, pp. 28-29)] and perfectible [“sagehood is a state that any man can
achieve by cumulative effort” (Chai 1965)]. This in turn motivates CHC learners to
exercise their effort and will power in their study.

On CHC’s emphasis on the community, of course it is the individual who learns,
so effective teaching must address the needs of the individual. But too much stress
on the individual may exaggerate and aggravate the individual differences that
already exist. Also, human beings are social beings, and learning almost always
takes place in a social context. Western societies may have gone too far in their
attempt to care for the individual, and an optimal emphasis on the individual’s role
in the community may provide important incentives to learn.

Characteristics of CHC Related to Mathematics Learning
Examination Culture

China is the first country in the world where a national examination system was
instituted (Sui Dynasty, A.D. 600). Examinations have always been the route for
upward social mobility, and there is a great trust in examination as a fair method of
differentiating between the able and the less able. Examination has acquired the
status of something of value in itself and becomes an important incentive for
studying.

Belief in Effort

In CHC, studying is considered a hardship: one should persevere in order to suc-
ceed, and is not supposed to “enjoy” the studying. “Asian parents teach their
children early that the route to success lies in hard work™ (Stevenson 1987), and this
is consistent with the old Chinese saying that “Diligence compensates for stupidity”
(LLEH%M ). There is a much stronger attribution of success and failure to internal
and controllable factors (effort) rather than incontrollable ones (innate ability). This
is consistent with the strong belief in effort (or Gambaru, which means pushing on,
persisting, not giving up) in Japan. Japanese teachers invariably tell parents that “it
would be good if the child would just gambaru a little more” (White 1987, p. 30).

The Japanese also emphasize on self-discipline (Kuro). The idea of self-disci-
pline in Japan is slightly different from that in the West. One should do one’s best
and keep on struggling, even when being unsuccessful in the end. But this is not a
pointless sacrifice. In Japan pushing on, persisting and not giving up are in
themselves considered important. The way something is done is more important
than the accomplishment in the end.
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Stress on Memorization and Practice

Liu (1986) observed the following beliefs in CHC:

If the purpose is to acquire the knowledge contained in an article, then the best strategy is to
memorize the article. ... If the purpose is to acquire any new cognitive skill, then the best
strategy is to practice repeatedly (Liu 1986, pp. 80-82).

This however does not imply rote learning or rule out creativity. As Biggs
observed, “the Chinese believe in skill development first, which typically involves
repetitive, as opposed to rote learning, after which there is something to be creative
with” (Biggs 1996a, p. 55).

Stress on Reflection

In the Confucian tradition of learning, there is a also strong emphasis on reflection,
as the saying “Seeking knowledge without thinking is labour lost; thinking without
seeking knowledge is perilous” (ZEMAENE, S MAZENFE) shows. A true
Confucian scholar is one who dedicates himself to studying or seeking knowledge
through a lot of practice and memorization. But he also constantly reflects upon
what he is practicing and memorizing until he fully grasps the knowledge.

Discussion

Students should enjoy their studies, but they should be taught to rediscover the
satisfaction which comes only after hard work. Practice, examination and memo-
rization, when done properly, may each have a place in education. Practice and
memorization should not be equated with rote learning, and examination is not a
necessary evil. If conducted properly, it provides a good incentive for studying.

The Chinese Language

The Japanese and Korean languages are strongly influenced by the Chinese
language. For example, the Japanese language still uses a lot of Kanji (Chinese
characters). There are features of the Chinese language which are favourable to
the learning of mathematics. For example, the Chinese language uses classifiers
between every cardinal number and the objects being quantified. This “unscramble
the confusion that otherwise surrounds conservation of numbers ... explicitness and
pragmatic retention of the essential semantic elements in the vocabulary it uses for
mathematics” (Brimer and Griffin 1985, p. 23). The regular number system in
Chinese also enhances the learning of arithmetic.

As for spoken Chinese, it is a monosyllabic language, where one syllable con-
stitutes one morpheme. In particular, the short pronunciation of the numbers zero to
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ten makes it easy to process. As Hoosain observed, “the shortest average pronun-
ciation duration of a Chinese number is 265 ms, significantly shorter than the
corresponding average of 321 ms in pronouncing a number in English” (Hoosain
1984).

For written Chinese, it is logographic in nature. Chinese words are represented
by a large number of different visual symbols known as characters, which are made
up of components (radicals), and have an imaginary square as a basic writing unit.
Chinese characters put emphasis on the spatial layout of strokes, and the orthog-
raphy of Chinese is based on the spatial organization of the components of the
characters. Lai (2008) pointed out that Chinese characters possess visual properties
such as connectivity, closure, linearity and symmetry which are faster and easier to
be captured by vision. Studies show that there is a close relationship between the
visual-spatial properties of Chinese characters and Chinese people’s childhood
experience with learning the Chinese orthography. Lai (2008) found that 5 year old
Chinese children in Hong Kong, compared to English speaking 5 year olds in
Australia, have higher visual perceptual and geometric skills, and higher visual-
motor integration skills than motor-reduced visual perceptual skills. Lai used both
the motor control theory and the psychogeometric theory of Chinese-character
writing to account for the surprising results. It seems that the experience of writing
Chinese characters influences one’s visual perceptual skills.

Implications

The superior performance of East Asian students in international studies in math-
ematics naturally prompts one to ask what can be learned from it, especially when
one is facing grave problems in mathematics education in the home country. Some
education practices in East Asian countries look different from Western practices,
and some practices look very backward and contradictory to what are considered as
good practices. Biggs (1996b) introduced the term Chinese Learner’s Paradox to
describe this contradictory phenomenon. But the phenomenon is a paradox only for
someone who does not understand the culture. For someone in the culture,
education is so important an endeavour that of course students are expected to do
well. Compared to students in some other cultures, CHC students work relatively
hard, and it is just natural that they do better in these international studies.

This panel presentation is not meant to promote the high achievement of East
Asian students, or good educational practices in East Asia, or the superiority of the
CHC. It is meant to highlight the cultural differences between CHC and Western
cultures, rather than the superiority of one over the other. Theoretically, it hints at
the important role culture could play in accounting for educational practices and
student achievement. Practically, it provides references for educators in other
cultures on education policies and practices. But if culture does impact upon
educational practices and student achievement, a cultural explanation also means
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that simple transplant of educational policies and practices from one culture to
another won’t work. One can imitate the practices, but cannot transplant the culture,
and most practices are effective only in the culture concerned.

Conclusion

In learning from another country, it is important to take any cultural differences that
may exist into consideration, and then determine how much can or cannot be
learned from another culture. There is a Chinese saying, “Knowing yourself and
knowing others, then you will win every battle” (FOC2F01%, BEX B A%). In learning
from another country or region, we should “know others”—not just the student
achievement, not just the educational practices, but also the cultural values behind
the practices. One should also know oneself—knowing or reflecting upon one’s
own cultural values. Then one will win any battle in this war of improving
mathematics education in one’s own country.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Gender and Mathematics Education
Revisited

Gilah C. Leder

Introduction

Beginning in the early 1970s, systematic documentation in many countries of
subtle, yet consistent gender differences in mathematics performance and partici-
pation in post compulsory mathematics courses in favor of males served as a
catalyst for action. In these settings, new legislation and special interventions were
introduced to redress demonstrated achievement disparities in mathematics. An
important aim of the panel session was to describe the current situation in countries
where gender equity is enshrined in legislation at the political level, and, by
drawing on recent research and contemporary data gathering tools, to document
whether or not inequities have been removed in practice or continue to exist in
countries where concern and action about gender differences in mathematics
learning have a long standing history.

There are also a significant number of countries where gender and mathematics
learning issues have typically been ignored, are still not well recognized by their
governments or valued in the wider community. To document the situation in those
countries and highlight what progress has been made in those settings were also
central aims of the panel’s presentation.

The notions of gender parity and gender equality are a unifying thread weaved
throughout the presentation. The former is described by UNESCO (2012) as “aim
(ing) at achieving equal participation for girls and boys in education”, while

gender equality is understood more broadly as the right to gain access and participate in
education, as well as to benefit from gender-sensitive and gender-responsive educational
environments and to obtain meaningful education outcomes that ensure that education
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benefits translate into greater participation in social, economic and political development of
their societies. Achieving gender parity is therefore understood as only a first step towards
gender equality. (UNESCO 2012, p. 21)

In brief, the areas covered in the session reflected the different perspectives and
geographic diversity of the panelists. Attention was given to regions where issues
about gender and mathematics education remain barely on the agenda and relatively
little is known outside those countries about work and research that have been
undertaken. The more widely disseminated research findings and common
assumptions about gender and mathematics learning, based on research particularly
in Western countries, were also revisited and updated.

The order of presentations was part of our overall message. We therefore started
off with presentations from regions where gender and mathematics is not widely
seen as a primary issue of concern and/or about which relatively little is known in
Western countries—whose research is disseminated widely—and moved to surveys
of areas where gender equity is enshrined in legislation at the political level, but in
practice inequities continue to exist.

To begin, data referring to India were presented by Jayasree Subramanian. This
was followed by Nouzha El Yacoubi whose presentation also covered a large
region where concern and progress re-gender and mathematics are still not well
known or recognized in the wider research community, and then by Maria Trigu-
eros Gaisman who focused on Mexico. The final three presentations also covered
wide geographic areas, in alphabetical order: Australia, Europe, and the United
States. Pertinent research and issues were presented respectively by Helen Forgasz,
Lovisa Sumpter and Sarah Lubienski.

Each panelist sketched realities, achievements, and outcomes in mathematics
education and gender in the area in which she lives and works and of which she has
first hand knowledge. Reference was also made to examples of dissonance between
theory and practice with respect to mathematics education and gender. Highlighted,
too, were pressing next step(s) to improve the situation in the context represented
by each speaker. If translated into a realistic and focused research agenda, and if
taken up, these steps can move the field forwards.
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Introduction

Even in the developed countries, where equity in Education was reached a long
time ago, the rates of enrollment of girls in mathematics courses are relatively low.
The gender problem and mathematics education has been studied since 1970 and
some factors of that representativeness have been identified, in particular in the
developed countries. But this area of research is still unexplored in the developing
countries. In Africa, specifically, little research has been done until now on Gender
and mathematics education despite the millennium goals recommending equity in
education and the encouragement of African females to choose mathematics studies
and to embrace scientific and technological careers.

Nevertheless, the role of women in the scientific development of Africa has been
definitively recognized as a crucial and determining factor in building and rein-
forcing the continent’s scientific and technological capacities, because no African
country can afford to leave 50 % of its population, out of its development process.

It is evident that Education in general in Africa was, and is till now, seriously
affected by poverty, but with respect to the education of girls, history, religion and
culture were, and they remain, important influencing factors.

These socio-cultural barriers are more pronounced when they come to scientific,
technical and vocational education and, are unfortunately, tragic when they concern
mathematics education.

The Current Situation in Africa

According to the UNESCO Institute for Statistics report published in September
2010, the lowest literacy rates were observed in sub-Saharan Africa, where the adult
literacy rate for males is 71.6 and 53.6 % for females and in Northern Africa it is
respectively 76.7 and 58.1 %. It should be highlighted that more than half of the
adult population is still illiterate in the ten following countries: Gambia (55 %),
Senegal (58 %), Benin (59 %), Sierra Leone (60 %), Guinea (62 %), Ethiopia
(64 %), Chad (67 %), Burkina Faso (71 %), Niger (71 %), and Mali (74 %).

The net enrolment ratio in the primary school age population in sub-Saharan
Africa countries is around 52.3 % girls (and 60.7 % boys), except in a very few
countries where almost all girls of primary school age are enrolled at schools.

But there is a substantial drop out among girls at the secondary school level; it is
due to socio-cultural (early marriage), financial reasons, institutional barriers and
poor performance of girls. The Trends in Mathematics and Science Study (TIMSS)
reported that between 68 and 90 % of African students in grade eight failed to reach
the low benchmark in mathematics (IEA 2003). And unfortunately no significant
progress was registered in TIMSS 2007. It is a pity that Africa was so poorly
represented in such an important international assessment of the mathematics and
science knowledge of fourth and eighth grade students. For example in TIMSS
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2007, only six African countries have participated among 59 Countries namely:
Algeria-Botswana-Egypt-Ghana-Morocco and Tunisia, and there was no African
country among the 8§ Benchmarking participants. The African countries partici-
pating in TIMSS 1995 through 2007 are as follows:

Country Grade 4 Grade 8
1995 2003 2007 1995 1999 2003 2007
Algeria X

Botswana
Egypt
Ghana
Morocco

e R R I

Lol R I I e

Tunisia

As for upper secondary school, the enrollment ratio of girls is just about 17 % in
Sub-Saharan Africa, so only a few girls have the opportunity to be enrolled in
scientific classes, and among that population very few choose Mathematics courses.
The best registered percentage for enrollment of girls in Mathematics at that level is
about 30 % (Huggins and Randell 2007) and this percentage decreases with grade
level and is about 10 % for the tertiary level.

The Causes

The factors identified in contributing to the gender problem in mathematics edu-
cation in the developed countries remain valid for Africa, but other factors should
be added like negative socio-cultural attitudes, household tasks at home, gender
biased curriculum, poor didactic materials, lack of school facilities (dormitories),
lack of sponsorship, unmotivated and unqualified mathematics teachers, lack of
moral and financial parental support, lack of self confidence among the girls, poor
performance in exams, and so on.

Interventions Introduced

First, the African Union (UN) has set up mechanisms and special committees at the
ministerial level for monitoring progress towards attainment for Education For All
(EFA). Gender mainstreaming has been identified and adopted as a strategy for
achieving gender equity. In particular, special projects were launched with the aim
of increasing the enrollment of African girls in Science, mathematics and tech-
nology, and to encourage African women to embrace scientific and technological
careers. The programs included: “Special Project on Scientific, Technical and
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Vocational Education of Girls in Africa in the framework of the UNESCO’s
Medium-Term Strategy” (1996-2001); “Africa’s Science and Technology” project
launched in 2007 by the African Union Summit of the Heads of State and Gov-
ernment; “Africa and Gender Equity” including “Science, technology and engi-
neering education” in the UNESCO Medium-Term 2008-2013, as well as other
initiatives sponsored by the World Bank, USAID, NEPAD (New Partnership for
Africa’s Development), UNICEF, and some non-governmental organizations
(NGO’s).

A special program for reducing gender disparities in science, technology and
innovation has also been undertaken by the United Nations Economic Commission
for the East African Community member countries. This, Huggins and Randell
(2007) advocated, should serve as a case study for the other African regions.

There have been various other activities, for example, international conferences
on Gender, Science and Technology were held in: Beijing (1995), Arusha (1997),
Harare (1997) where national surveys of 21 African countries, assessing the par-
ticipation of girls and women in scientific education and vocational training, were
given, (Hoffmann-Barthes and Malpede 1997), Dakar (2000), Cairo (2006), Ba-
mako and Ségou (2009), Paris (2010): UNESCO Expert Group Meeting.

Some camps and competitions for African girls have been organized through
Africa, including: Camp of Excellence in Sciences and Mathematics for Young
African Girls held, since 2000, in Mali and other African countries; Girls STEM
(Science, Technology, Engineering and Mathematics) Camp initiative (Abuja 2011),
Miss Mathématique (created in Ivory Coast and recently in Benin) and so on.

Conclusion and Suggestions

Despite these initiatives, females’ participation in Africa, in Science, and Tech-
nology, and in particular in Mathematics, from primary through tertiary education
to the career level is still very low. This could be explained by, among other factors,
the persistent socio-cultural barriers, lack of clear policy guidelines for increasing
the rates of enrollment of African girls in mathematics, lack of assessment and
follow up of the various undertaken initiatives, lack of gender analysis expertise and
SO on.

A valorized image of African women in mathematics education and mathematics
careers should be promoted and gender stereotypes with regard to mathematics
careers should be countered by parents, teachers and all other actors in the school
and societal environments.

Interventions for females should aim to achieve equity of outcomes rather than
just equal access to educational opportunities in mathematics. So permanent
assessment and relevant follow up are key elements in any undertaken initiative.
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Introduction

In the area of Mathematics Education in Mexico, research on gender has produced
interesting findings. Some studies have analyzed gender differences in relation to
results attained on performance tests, while others have focused on more specific
topics, such as spatial visualization, the differential relations that mathematics
teachers may establish with female and male students at various educational levels,
the distinct attitudes of girls and boys towards mathematics and towards the use of
technology as an aid in teaching and learning mathematics.

At the same time there has been an emerging trend on the development of
educational policies to reduce the gender gap in education at all levels, and to foster
equity in academic work.


http://www.uneca.org/%e2%80%a6/codist-iireportexecutivesumma
http://www.uneca.org/%e2%80%a6/codist-iireportexecutivesumma

152 G.C. Leder

Results of Gender Studies at Elementary Education

Since the first study (Bosch and Trigueros 1996) no substantial gender differences
have been observed in different tests in primary school (Gonzélez 2003; Rivera
2003; Ursini, et al. 2010). However, PISA results indicate that gender differences
favoring boys appear in the transition to secondary school. Studies on students’
attitudes towards the subject (Ursini et al. 2004, 2007; Campos 2006; Ursini and
Sanchez 2008; Ursini 2010) show that self-confidence favoring boys, and percep-
tion of mathematic as a male domain, start to develop at around 13 years of age,
with boys attributing good performance to intelligence or skills and girls to effort
and obedience. Interestingly, teachers were found to characterize differences in
children’s performance in the same terms (Ramirez 2006; Ramirez and Ursini
2008).

Regarding the use of technology in the learning of Mathematics, Ursini and
Sanchez (2008) found that boys held a pragmatic view of technology while gitls
considered it as a resource to construct knowledge. They found that the use of
technology helped to develop positive attitudes towards mathematics, particularly
among girls, and suggested that using technology with guiding activities to foster
group-work and discussion, helped to modify certain cultural patterns of conduct
which can foster equity.

The use of technology also modified teachers conception of Mathematics
learning (Trigueros and Lozano 2008; Rodriguez and Ursini 2008) with females
focusing more on exploration and investigation to develop students’ self-confi-
dence, independence and creativity and males on developing skills needed by
students to move forward in their education.

Results of Gender Studies at Higher Education

As at the elementary school level, in higher education no specific gender differences
have been found in different studies in mathematics grades and the gender
inequality in access to higher education detected in earlier studies (Bosch and
Trigueros 1996) has been constantly decreasing. The largest university in Mexico
reported in 2009 (Saavedra 2010) that the percentage of female students was larger
than that of male students and that graduation percentages also favored women
(56 % of women graduated against 50 % of men). However, there is still a severe
under-representation of women in mathematics. Only 38 % of women enroll in
mathematics programs, and 43 % of all students who graduate from these programs
are women. The gender gap is greater when considering access to post-graduate
education. In 2008 only 30 % of students in postgraduate programs were women,
although in programs related to mathematics education female students comprised
45 %.
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In a study involving university professors (Espinosa 2007), it was found that
they considered male students to be more proficient in mathematics than females.
They expressed the same beliefs as those found among teachers in elementary
school about women being successful in mathematics because of their effort and
discipline. Observation of classes detected a more passive attitude of female stu-
dents and a tendency of male students to be more participative.

Although results show that, in general, female students are more perseverant in
their studies, it seems that they still consider mathematics as a male domain, too
competitive for women and that professors’ beliefs tend to reinforce this
conception.

Results of Gender Studies on Faculty

In the last few years there has been a large increase in the academic profession in
Mexico, but problems related to gender in the access to work at universities are still
present. Only 40 % of professors are women. This gap widens in the case of
mathematics departments where women represent less than 25 % of all professors
and many of them work in mathematics education (Saavedra 2010).

In terms of research, according to 2009 data from the National System of
Researchers, women researchers in the area corresponding to physics and mathe-
matics, which is the largest area of the system, represent only 19 % of all
researchers with 23 % of them investigating in mathematics. Percentages of female
researchers diminish as levels related to productivity rate increase, with only 3 % of
women at the top level.

Some of these differences can be related to perception of mathematics as an
occupation which is difficult to combine with family life, but results show gender as
a determinant of the choice of mathematics as a field of study independently of
school achievement.

Policies to Reduce the Gender Gap and Stereotypes

The ministry of Education has developed several initiatives since 2008 to incor-
porate the gender perspective in all the educational programs to help to change
stereotypes that contribute to gender inequity. Among the more important are a
revision of content of all the mandatory primary school textbooks from a gender
perspective to foster a change in socio-cultural patterns, and the distribution of
books on gender equity and prevention of violence for teachers and students.
Together with international organizations, the ministry has developed projects for
school communities where people participate in activities designed to reflect on
gender stereotypes and their change. Technology is used to show different behavior
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patterns in particular situations together with questions asking users to reflect,
comment and discuss if they find those behaviors appropriate or not and why.

A revision of the published policies from different universities in Mexico reveals
that in the last 10 years there has been an increase in policies intended to foster
women’s access to higher education and to reduce the barriers for female faculty.
Most of the universities nowadays have developed innovative programs to reduce
inequalities for women researchers, teachers and students. These include mandatory
seminars to discuss gender issues, awards designed for women faculty and students
and specific programs to recruit women as faculty. However, only a few of them
have been designed specifically to increase the number of women researchers in
STEM related careers or to strengthen the academic position of women researchers
and their participation in academic activities.

Some of these policies have shown some positive impact, however, their
implementation is unequal in different regions of the country, and some of them
have had implementation problems in practice. The effective advancement of
women as faculty, in particular, seems to be prevented by everyday practices that
tend to ignore policies, or at least to apply them in a limited way.

Conclusions

This review of studies on gender and mathematics in Mexico shows that although
some advance in reducing the gender gap in mathematics has been achieved, there
is still much work to be done in terms of policies and programs to change socio-
cultural perceptions which inhibit the development of women in mathematics and
mathematics related areas. More efforts are also needed to increase participation of
women as faculty and as decision makers in areas related to mathematics, science
and technology.
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Introduction

In this paper I draw attention to four areas in which gender equity in mathematics
education has yet to be fully achieved in Australia, and where indications are that
we are going backwards: (i) achievement in TIMSS and PISA,; (ii) participation and
achievement in higher level mathematics; (iii) use of technologies for mathematics
learning; and (iv) public perceptions of gender issues in mathematics.

Australian Context

Despite laws and government policy decrying inequity, the realities of gender
equity have not yet been fully realized in Australia. This is evident with respect to
educational levels, occupations and salaries. Despite higher proportions of women
than men having Year 12 or equivalent qualifications, bachelor-level degrees, and
higher literacy and numeracy skill levels (Australian Bureau of Statistics 2012),
graduate median starting salaries still show a $2,000 difference in favor of men, a
consistent pattern over the past decade. When it comes to educational pathways
leading to career options, males remain dominant in the physical sciences, and
females in the humanities and social sciences.

TIMSS and PISA Results

Australian results in all years of TIMSS and PISA are shown in Table 1. The data
reveal a disturbing pattern. Mean scores on TIMSS for grade 4 and grade 8 show an
increasing gender gap favoring males, with the 2007 grade 8 score differences
reaching statistical significance. For the PISA results, the gender gap in mean scores
favors males in all years, but in 2006 and 2009, the score differences were also
statistically significant.

Thomson et al. (2011, p. 299) claimed that “the re-emergence of gender dif-
ference as shown in PISA since 2006 are a salutary reminder to (Australian) schools
and systems that this is still a significant issue and that if Australia is to improve its
performance in mathematics, girls’ scores must improve”.

Participation and Achievement in Grade 12 Mathematics

The Victorian (Australia) grade 12 mathematics subject enrolment figures reveal a
consistent pattern over time. Three mathematics options are offered at grade 12:
Specialist Mathematics (most challenging, calculus-based), Mathematical Methods
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Table 1 TIMSS (1995-2007) and PISA (2000-2009) results for Australia
TIMSS 1995* TIMSS 1999 TIMSS 2003 TIMSS 2007

Grade 4 F = 545, No Grade 4 F =497, F =513,
M = 547 M = 500 M =519
2 points 3 points 6 points
M > F) M > F) M > F)

Grade 8 F =532, F =524, F =499, F = 488,
M =527 M = 526 M =511 M = 504
5 points 2 points 12 points 16 points
F>M) M >F) M>F) M > F)*

Final year of F =510,

schooling M = 540
30 points
M > F)*

15 year olds F =527, F =522, F =513, F =509,
M = 539 M =527 M = 527 M =519
12 points 5 points 14 points 10 points
M >F) M >F) M > F)* M > F)*
PISA 2000 PISA 2003 PISA 2006 PISA 2009

15 year olds F =527, F =522, F =513, F = 509,
M =539 M = 527 M = 527 M =519
12 points 5 points 14 points 10 points
M >F) M >F) M > F)* M > F)*

Legend: F female; M male; *statistical significant difference
Data sourced from various IEA, OECD, and Australian Council for Educational Research reports
of TIMSS and PISA results
% Gill et al. (2002). Student achievement in England. Results in reading, mathematical and
scientific literacy among 15-year-olds from OECD PISA 2000 study (p. 47). London: The
Stationery Office (HMSO)

(includes calculus, pre-requisite for many university-level science-related courses),
and Further Mathematics (least challenging, with an emphasis on statistics). The
data in Fig. 1 reveal that enrolments have declined over time in Specialist mathe-
matics while increasing in Further Mathematics. Yet, consistently, there have been
higher proportions of males than females enrolled in all three options.
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Fig. 1 Enrolment trends 2007-2009 in VCE mathematics subjects
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Table 2 Highest achievers (top 2 %) in VCE mathematics (2007-2009)

Subject Gender 2007 2008 2009
(N =65) (N =60) (N =59)
n % n % n %
Specialist mathematics Female 15 23.1 14 23.3 14 23.7
Male 49 75.4 44 73.3 45 76.3
Unknown 1 1.5 2 33 -
Mathematical methods Female 50 25.1 53 25.7 67 33.7
Male 133 66.8 150 72.8 131 65.8
Unknown 16 8.0 3 1.5 1 0.5
Further mathematics Female 114 36.5 114 35.5 139 42.1
Male 187 59.9 205 63.9 191 57.9
Unknown 11 3.5 2 0.6

An even more disturbing trend is found when the very highest achievers in these
three mathematics options are considered, that is, the top 2 %. It is found that males
outperform females at a rate that is disproportionate to their enrolments in these
subjects (see Table 2 for data from 2007 to 2009). The data in Table 2 reveal that
more than 50 % of the highest achievers in each of the three VCE subjects were
male and that this pattern persisted over the three year period, 2007-2009.

Technologies for Mathematics Learning

The adoption of computers and calculators in mathematics classrooms has received
much research attention in Australasia; less common is research incorporating
gender as a variable—see Geiger et al. (2012) for an overview of recent Austral-
asian research. Technology (and ICT), like mathematics, is considered a male
domain. Hence, when technology is brought into the mathematics classroom, the
effect of this combination with respect to gender issues clearly demands greater
research interest than is evident. Researchers examining computer and/or sophis-
ticated calculator use for mathematics learning and gender have found that those
who appear to benefit more from the use of the technologies are those who are
comfortable with the technology, that is, it is more likely to be boys than girls, but
not necessarily boys with the highest mathematical capabilities. Much of the work
on mathematics, technology, and gender has focused on the affective domain. Here
it is clear that boys’ confidence and competence levels with the technologies are
more positive than girls’, that boys more strongly than girls say they enjoy learning
mathematics with technology, and that this is also the expectation of teachers and
parents.
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Is it more important for girls or boys to study
mathematics?
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Fig. 2 Response frequency by country: is it more important for girls or boys to study
mathematics?

Public Perceptions of Gender Issues in Mathematics

Early explanatory models for gender differences in mathematics learning incorpo-
rated the views of society at large as critical contributing influences. Until recently,
however, the views of the general public have rarely been sought. Very recent
survey data reveal that the male stereotype is alive and well in the views of the
Australian public and elsewhere in the world (e.g., Forgasz et al. 2012).

The extent of the view that mathematics is a male domain varies across the
globe. In many countries, a large proportion of respondents to an online survey
indicated that it is equally important for boys and girls to study mathematics (see
Fig. 2). However, compared to girls, many believed that: boys are better at math-
ematics (see Fig. 3) and that parents and teachers also believe this, that boys are
better with calculators and computers (see Fig. 4), and that boys are more suited to
careers in science-related and computer occupational fields. As can be seen in
Figs. 2, 3 and 4, Australian respondents’ views on these issues fell somewhere
between the extremes, with respect to response frequencies.

Final Words

The picture portrayed in the four brief snapshots above reveal a gendered world of
mathematics learning that has changed little over the thirty year period in which
research into this area began. The apparent gains made to reduce the gender gap
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Who are better at mathematics?

Fig. 3 Response frequency by country: who are better at mathematics?
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Fig. 4 Response frequency by country: who are better at using computers, girls or boys?

favoring males in participation, achievement, and attitudes during the 1980s and
1990s, appears to have been eroded to the point of a clear backward trajectory
emerging in Australia. Believing that there was no longer a “girl problem” with
respect to mathematics, with the consequential reduction in vigilance as curricula
and practices have changed, may be largely to blame.
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Taking a European Perspective
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Taking a European Perspective

In this paper I look at how gender and mathematics education has been studied in
Europe with the aim of highlighting trends but also discussing emerging themes.
The main question posed in this paper is: What research focus in gender and
mathematics can we find in papers that have been published during the years of
2007-2011? Gender is here defined as an “analytic category which humans think
about and organize their social activity rather than as a natural consequence of sex
difference” (Harding 1986, p. 17), emphasizing gender as something individuals do
and create rather than something you have as a person. In order to talk about
different foci of research on gender and mathematics, I follow Bjerrum Nielsen
(2003) and use the following four aspects of gender: (1) structural gender, e.g.
research of different groups within structures such as professions, level of education
or social background; (2) symbolic gender e.g. studies looking at symbols and
discourses that are attributed to a specific gender creating norms telling us what is
normal and what is deviant; (3) personal gender e.g. studies on how girls and boys
feel or think about various items or studies looking at individual’s development of
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gender; and, (4) interactional gender e.g. research looking at how people interact
with each other or how the social context is created. By using these four aspects
different parts of the concept ‘gender’ can be emphasized.

Method

The data that constitute the base for the analysis were generated from the ERIC
database, February 2012. The search terms were ‘mathematics’ and ‘gender’, peer-
reviewed journal articles published within the last 5 years. By choosing only
mathematics and not ‘math’ or ‘maths’ some papers were inevitably not included.
The number of papers resulting from this search was 585. Thereafter I classified
what could be considered European research; defined here as data collected in at
least one European country, although the author/s could be positioned in any
country. The list was narrowed down to 181 papers. Using Harding’s (1986) def-
inition of gender means that [ have excluded all papers only using gender to denote
division of sex, e.g. studies looking at sex-differences in performance (total 51
papers). I also excluded papers not on mathematics (e.g. using mathematics as a
notion of intelligence or focusing on another subject e.g. chemistry, 23 papers) and
papers that have a general international scope (11 papers). Most papers within this
category were large-scale comparisons, e.g. results from international tests. Finally,
four papers (all from Turkey) were not available online and therefore could not be
analyzed. This left a total of 92 papers. The papers were divided into the four
categories. If a paper dealt with multiple aspects, the main focus was selected. This
is a simple division and it should be stressed that most papers are more complex and
touch several aspects either in the background to the study, factors in the analysis
and/or in the discussion of results. However, this division provided information for
discussing main trends and themes.

Results and Discussion

The results were summarized in tables. Table 3 shows the number of papers pro-
duced by the different European countries in alphabetical order and the aspect of
gender.

One paper has been marked as ‘Europe’ since the focus of the paper was evenly
distributed among the participating countries; Garcia-Aracil (2008) compared col-
lege major and earning gaps in seven European countries. The countries that pro-
duced most papers during this period are UK and Germany followed by Finland.
There are differences between the countries in which aspects of gender have been
studied. Papers from UK, Finland, Sweden and Israel covered all aspects of gender
whereas there was no paper focusing on interactional gender from Germany or
Turkey. Looking closer at the papers from Germany, all of them were quantitative
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Table 3 Aspect of gender and number of papers by country

Country Number Gender aspect®

Europe® 1 1

Belgium 2 1,1

Croatia 1 3

Cyprus 1 1

Estonia 0.5° 4

Finland 12.5° 1,1,1,1,1,2,2,2,3,3,3,4,4

France 3 2,3,3

Germany 16 1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3
Greece 1 3

Iceland 2 1,1

Ireland 2 1,3

Israel 5 1,1,2,3, 4

Italy 2 2,2

The Netherlands 7 1,1,1,3,3,3,3

Norway 2 1,1

Spain 3 2,3,3

Sweden 6 1,1,2,3,3,4

Turkey 7 1,1,1,2,2,3,3

UK 17 1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4

Note The number of papers is 92

# Seven European countries

® Comparative study Finland and Estonia

¢ Gender aspect: [ structural; 2 symbolic; 3 personal; 4 interactional

studies, often large-scale, and most of them (10 of 12) were published in a journal
not specific for mathematics education.

Let us look at the main focus of the selected papers. This is the number of papers
covering different aspects of gender: structural, 30 papers (33 %); symbolic, 18
papers (20 %); personal, 38 papers (41 %); interactional, 6 papers (7 %). Most
papers focused on structural gender or personal gender, whereas only six papers
were on interactional gender. What these six papers have in common is that all of
them looked at people’s conceptions in relation to each other or to a development,
e.g. Francis (2008) who studied interactions in different classes, where one of the
classes presented is a math class. The majority of papers in structural and symbolic
gender were quantitative studies, e.g., Ammann et al. (2010) who studied the
number of students enrolled in undergraduate mathematics courses and Réty and
Kaérkkainen (2011) who looked at parents’ stereotyping. We find a bigger variation
of methods for data collection moving to the category ‘personal gender’, e.g.
Mendick (2008) who used interviews when studying two students’ conceptions
about transitions between levels. Four papers focused on mathematics at preschool
level. Klein et al. (2010) studied pre-school teachers’ attributions of children’s
achievements in mathematics, and Ojala and Talts (2007) looked at pre-school
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teachers’ evaluations of achievements. Palmer (2009, 2010) studied pre-school
teacher education when writing about alternative mathematical practices.

As mentioned earlier, German papers were mainly found in non-mathematics
education journals. This seemed to be a general trend. The top five journals in terms
of publications relevant for this review were: British Educational Research Journal,
7 papers (8 %); European Journal Psychology Education, 5 papers (5 %); Gender
and Education, 5 papers (5 %); International Journal of Mathematical Education in
Science and Technology, 5 papers (5 %); Scandinavian Journal of Educational
Research, 4 papers (4 %). The discussion about mathematics and gender mainly
took place in journals that do not aim specifically towards mathematics education.

With respect to selecting areas for future research, the first topic I see as an
emerging theme is research focusing on interactional gender. Four of the six papers
on this aspect were published in 2010, possibly indicating an upcoming topic.
Overall, there were few studies looking at “doing gender” in educational settings
compared to the number of papers studying people “having gender”. The most
common type of paper was one reporting a large-scale quantitative study focusing
on conceptions of different kinds, often related to mathematical achievement. Very
few projects drew on qualitative measures in order to find out more about what
‘doing gender’ implies at various levels. Also, not many papers had a strong
mathematical focus. A second theme for future is research looking at more content
specific issues. The third area I see as an area that as yet has not been addressed in
detail is research focusing on children under the age of five. There were only four
papers aiming at pre-school mathematics, but not a single paper focused on pre-
school students themselves. If we are to understand how personal gender is con-
structed, we need to know more about the process from the very beginning.
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Gender and Mathematics Education in the United States
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Introduction

Over the past several decades, the United States has made considerable progress
toward gender equity in education. Substantial achievements have been made, such
as the closure of gender gaps in high school mathematics course taking and college
attendance (Lacampagne et al. 2007). In fact, some U.S. writers now argue that girls
are more advantaged than boys, given that girls tend to score higher in reading, get
better grades in school, and complete more bachelor degrees (e.g., Sommers 2000).
However, gaps remain in mathematics achievement, affect, and ultimately the
pursuit of high-status STEM careers.

Achievement

U.S. gender disparities in secondary mathematics achievement generally favor boys
and are similar in size to those of many other industrialized nations (Else-Quest et al.
2010; OECD). However, TIMSS data suggest that significant mathematics score
gaps favoring boys occur earlier in the U.S. than in most participating countries
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(Mullis et al. 2008). Most recently, studies using data from the U.S. Early Childhood
Longitudinal Study (ECLS), indicate that U.S. boys’ and girls’ mathematics profi-
ciency is similar at the start of school (roughly age 5), but a significant male
advantage emerges by age 8 (Robinson and Lubienski 2011). Regardless of grade
level or dataset, U.S. mathematics gender gaps tend to be largest at the upper end of
the achievement distribution (McGraw et al. 2006; Robinson and Lubienski 2011).

Affect

As in most countries participating in TIMSS and PISA, girls in the U.S. report
having substantially less mathematical confidence than boys (Else-Quest et al.
2010). Recent analyses of ECLS data reveal that this trend exists already in U.S.
primary schools, with gaps in confidence being substantially larger than gaps in
both actual performance and interest in mathematics. Moreover young students’
confidence predicts later gains in both mathematics achievement and interest
(Lubienski et al. 2012).

Careers

Although women in the U.S. are at least as likely as men to pursue many science-
related careers (e.g., biology), women remain under-represented in higher-paying,
mathematics-intensive fields, such as engineering and computer science, in which
women earn less than 20 % of bachelor’s degrees (Snyder and Dillow 2011). These
career patterns are a primary factor underlying earnings disparities among male and
female college graduates, with U.S. women earning only 69 % of comparable
men’s salaries (Dey and Hill 2007).

Teachers and Students

U.S. girls are more compliant than boys in school (Rathbun et al. 2004), and boys
are more likely than girls to exhibit a performance goal orientation, striving to
“show off” their knowledge (Kenney-Benson et al. 2006). These patterns could
cause boys to use more bold, invented methods during problem solving and could
shape teachers’ and students’ views of who is “smart” (Fennema et al. 1998). Past
research has revealed ways in which U.S. teachers attend more to boys than to girls
(Sadker and Sadker 1986), and to attribute boys’ mathematics success to ability and
girls’ success to effort (Fennema et al. 1990). More recent research reveals that U.S.
elementary teachers rate boys’ proficiency in mathematics—but not in reading—
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higher than that of girls with equal test scores and similar classroom behavior
(Robinson et al. 2012).

The Field of Mathematics

Recent research highlights subtle barriers to women’s participation in mathematical
fields. Lacampagne et al. (2007) emphasize the importance of women having a
sense of belonging in mathematics, good relationships with faculty, flexibility in
negotiating family responsibilities, and mathematical confidence. However, U.S.
males remain more confident of their mathematical abilities relative to females with
equal test scores (Correll 2001). Given that the opposite is true for reading, societal
views about mathematics and gender likely influence students’ perceptions of their
own abilities.

Lingering Questions

The findings summarized thus far raise several questions. For example, why do girls
report less mathematical confidence than their achievement merits? Why do U.S.
teachers under-rate girls’ competence in mathematics but not in literacy, relative to
boys with similar behavior and achievement? (Robinson et al. 2012).

And finally, why do gaps in mathematics-related STEM fields remain so sub-
stantial despite the closure of key gaps in U.S. mathematics course-taking and
college mathematics majors? One U.S. study provides an interesting insight. Males
were nearly four times as likely to choose a quantitative college major than females
with equal mathematics achievement, but this pattern was largely due to women’s
relatively strong verbal abilities (Correll 2001). In other words, women had other
options, consistent with Eccles’ (1986) argument that women make reasoned
choices and do not simply avoid math. Interventions could fruitfully target girls’
knowledge about ways in which a combination of mathematics and verbal skills
could be a powerful asset in meaningful, STEM-related careers.

A Final Word About Research Methods for Studying Gender
and Mathematics

The findings synthesized above are from a wide variety of qualitative and quanti-
tative studies. Given the continued development of more sophisticated statistical
methods, as well as the availability of large-scale, longitudinal datasets containing
hundreds of variables, quantitative research on gender can go far beyond simply
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confirming the persistence of gaps in mathematics performance (Lubienski 2008).
However, qualitative studies are continually needed to explore the factors under-
lying relationships found in large-scale data, as well as to develop the most
important variables to be added to future, large-scale efforts.
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Panel on “Gender and Mathematics Education
Revisited”—Final Comments
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In our culture ... being “good in math” is ‘being bright’, and being bright in mathematics is
associated with control, mastery, quick understanding, leadership. Unsuccessful mathe-
matics implies the opposite ... (Reisman and Kaufman 1980, p. 36)

The journey into the field of gender and mathematics education provided by the
panelists served as a return visit to the field for some of the audience but signified a
new, previously untraveled journey for others. Given the importance in many
countries attached to mathematics, it is an intellectual journey well worth the effort.
So what have we learnt?

Irrespective of the theoretical stance taken, it seems that there is considerable
commonality in the external factors likely to facilitate or impede the pathway
towards achieving gender parity and gender equality: the cultural, social, political
and economic environments, systemic factors, historical precedents and community
expectations.
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Similarities permeate the different presentations. Despite decades of research it
seems that evidence is still found of subtle but consistent gender differences in favor
of males, particularly in mathematics performance and participation in post com-
pulsory and advanced mathematics courses, on selected mathematical tasks on
standardized or large scale tests, and among high performing students.

Some of the special interventions introduced in Western countries to redress
demonstrated achievement disparities in mathematics learning have been taken up
more widely, directly or with realistic adaptations.

Unanticipated between country differences were also reported. For example,
research from Mexico suggested that girls are advantaged by technology—a finding
not replicated in Australia. Perceptions (by the public in Australia) that teachers
believe boys and girls are equally good at mathematics are seemingly at variance
with reports from the USA that teachers rate boys and girls differently with respect
to mathematics achievement.

Clearly, challenges remain before the goals of gender parity and gender equality
are achieved, or even principally achieved, in an enlarged number of countries. The
more modest goal of improved access for all, including females, to mathematics
learning also remains elusive.

Constructive and contextually relevant recommendations have been made in the
various panel presentations. The claim that “feminism has made its greatest con-
tributions by asking new questions, often at odds with fundamental assumptions in
a discipline” (Schiebinger 2001, p. 187) provokes a set of further questions which
sharpen areas worthy of renewed and careful scrutiny. For example: Who, in our
different countries, decides who should benefit from education; what mathematics
should be taught, and to whom? Who determines educational and scientific prior-
ities promoted for short and longer term funding? These are among practical
starting points. For any changes in the current answers to be achieved, followed by
constructive practical interventions, close cooperation between individuals and
organizations is required. How well this challenge is met warrants careful and
persistent monitoring.
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Teaching Mathematics in Tomorrow’s
Society: A Case for an Oncoming
Counter Paradigm

Yves Chevallard

Abstract The historical analysis of mathematics teaching at secondary level shows
the succession in time of different school paradigms. The present paper describes
and tries to analyse a new didactic paradigm, still at an early age, the paradigm “of
questioning the world”, which relies heavily on four interrelated concepts, that of
inquiry and of being “Herbartian”, “procognitive”, and “exoteric”. It is the author’s
ambition to show, however succinctly, how the present crisis in mathematics
education could hopefully be solved along these lines, which preclude recurring to
strategies seeking only to patch up the old, still dominant paradigm “of visiting
works”.

Keywords Anthropological theory of the didactic . Inquiry . Mathematics -
Paradigm of questioning the world - Research and study path

The Anthropological Theory of the Didactic

I formally began working on mathematics education when I joined the Institute for
research on mathematics teaching (IREM) in Marseilles (France) more than forty
years ago—in February of 1972 to be precise. I write these lines qua 2009 recipient
of the Hans Freudenthal Medal, an honour of which I am immensely proud. It is
thus my wish to respond to it by indulging in a quick outline of the main con-
clusions at which I have arrived, letting interested readers judge for themselves the
cogency of such views.

First of all, I must say that this presentation will draw upon the theoretical
framework which my name has come to be associated with, I mean ATD, i.e. the
anthropological theory of the didactic. Just as there are economic or political facts,
there are didactic facts, which I will refer to as a whole as the didactic. The didactic is
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a vital dimension of human societies. In a slightly simplified way, one can say that it
is made up of the motley host of social situations in which some person does
something—or even manifests an intention to do so—so that some person may
“study”—and “learn”—something. The something to be studied (and learnt) is
known as the didactic stake in the situation. As you can see, this formulation formally
refers to two persons. I will use the letter y to denote the first person, and the letter x to
denote the second, so that we can say that y does, or intends to do, something to help
x study (and learn) something. Of course, at times, y and x can be one and the same
person. In such a (fundamental) case of self-directed learning, x helps him/herself
study the didactic stake. The “something” that y does or intends to do is metaphor-
ically called a didactic gesture and is part of the didactic as a whole.

Basically, didactics is the science studying the conditions that govern such
“didactic situations”, i.e. social situations which hinge on some “didactic triplet”
comprising some x, some y, and some didactic stake O. The didactics of mathematics
is concerned with those cases in which the didactic stake O is regarded as pertaining to
mathematics. More generally speaking, O is what is called, in ATD, a “work”, i.e.
anything, material or immaterial, created by deliberate human action, with a view to
achieving definite functions. To obtain more generality, let me substitute a set X of
persons for the person x, arriving thus at the “didactic triplet” (X, y, O), which can
model a typical high-school class—X being the group of students, and y the teacher to
whom it befalls to teach the work O. Naturally, we can also consider triplets of the
form (X, Y, O), where Yis a team of didactic “helpers” that may include a full-fledged
teacher alongside “assistants” of different kinds. Let me add here that, in ATD, a
condition is said to be a constraint for a person or an institution if it cannot be
modified by this person or institution, at least in the short run. Now the basic question
in didactics is somewhat the following: given a set of constraints K imposed upon a
didactic triplet (x, y, O), what conditions can x and y create or modify—i.e. what
didactic gestures can they make—in order for x to achieve some determined relation
to O? This will be the starting point for what follows.

The Paradigm of Visiting Works and Its Shortcomings

The prospective view on the didactic dimension in our societies that I wish to make
explicit—and, I hope, clear—can be encapsulated in a crucial historical fact: the old
didactic paradigm still flourishing in so many scholastic institutions is bound to give
way to a new paradigm still taking its first steps. To cut a longer story short, I define a
didactic paradigm as a set of rules prescribing, however implicitly, what is to be
studied—what the didactic stakes O can be—and what the forms of studying them are.

The “old” paradigm I’ve just mentioned has been preceded by a number of
distinct, sometimes long-forgotten paradigms. The most archaic of these didactic
paradigms disappeared, in many countries, during the nineteenth century. In the
field of mathematics as well as in many other fields of knowledge, it was organised
around the study of doctrines or systems—of mathematics, of philosophy,
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etc.—approached from outside and considered as outstanding achievements in the
history of human creation. Within this paradigm, one used to study Euclid’s Ele-
ments in the way most of us may still study (or aspire to study) Plato’s or Hegel’s
systems of philosophy. This initial paradigm—which I call the paradigm of “hailing
and studying authorities and masterpieces”—has gradually given way to the school
paradigm that nowadays all of us, willingly or not, are supposed to revel in, which
evolved in the course of centuries from the older paradigm of studying “grand
systems”. The “great men” supposed to have authored those systems were waved
aside and the systems crushed into smaller pieces of knowledge of which the
authorised labels—Pythagoras, Thales, Euclid, Gauss, etc., as far as mathematics is
concerned—still record their origins.

In the framework of the anthropological theory of the didactic, this paradigm is
known as the paradigm of “visiting works” or—according to a metaphor used in
ATD—*"of visiting monuments”, for each of those pieces of knowledge—e.g.,
Heron’s formula for the area of a triangle—is approached as a monument that
stands on its own, that students are expected to admire and enjoy, even when they
know next to nothing about its raisons d’étre, now or in the past.

In spite of the long-standing devotion of so many teachers and educators to this
unending intellectual pilgrimage, notwithstanding the often admirable docility of so
many students in accepting the teacher as a guide, this once pervasive paradigm is
currently on the wane. This has come to be so, it can be argued, because the
paradigm of visiting monuments tends both to make little sense of the works thus
visited—"“Why does this one happen to be here?”, “What is its utility?”” remain
generally unanswered questions. The interested reader may want to check how this
applies to a number of mathematical entities. For example, what purpose does the
notion of reflex angle serve? The same question can be raised about angles in
general, and also about parallel lines, intersecting lines, rays, line segments, and so
on. Of course, the same goes for the reduction of fractions or polynomial expansion,
with the notion of decimal number, and what have you. In what situations can this
mathematical entity prove useful, if not utterly unavoidable, and how? Because
these questions are usually hushed up—yvisiting a monument is no place to raise
“What for?” or “So what?” questions—, students are reduced to almost mere
spectators, even when educators passionately urge them to “enjoy” the pure spec-
tacle of mathematical works.

A number of factors explain at least partially the long dominance of the paradigm
of visiting works as monuments as well as its present decline—and, I suggest, its
impending demise. Historically, the first cause seems to be the congruity of this
paradigm with the social structure of formerly undemocratic countries or, since
more recent times, weakly or incompletely democratic. Such societies are founded
on an all-pervasive pattern inseparably linking those in command positions, on the
one hand, and those in obedience positions, on the other hand. Almost all institu-
tions (be they families, schools, or nations) hinge on some replica of this funda-
mental, dualistic pattern. I shall not go into debate, here, about this age-old social
structuring. I only want to emphasise the specific risks that the functioning of this
ubiquitous power structure easily generates, in the form of abuses of authority,
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power, or rank—call them as you like. The existence of a dualistic configuration
with one in authority and one in obedience may for sure be vindicated, on a
“technical” basis, as needed to keep institutions going. But such a technically
justified twofold structure is normally limited in time and, above all, in scope.
Authority is, or should be, restricted to a specified number of specific situations, and
should therefore refrain from encroaching on every aspect of life—unless it changes
into tyranny. But respecting this rule is not everyone’s forte. The classical paradigm
of visiting “monuments of knowledge,” however small, suffers today, at many
levels, from the constant abuses of pedagogic power that its historical kinship with
the dualistic pattern of power mechanically generates.

The consequences of this historical situation are many. First and foremost, I shall
mention a consequence already alluded to: the resistless evolution of the school
mathematics curriculum towards a form of epistemological “monumentalism” in
which knowledge comes in chunks and bits sanctified by tradition and whose
supposed “beauty” has been enhanced by the patina of age; that students have to
visit, bow to, enjoy, have fun with and even “love”. All this of course is but a
daydream, as far as the mass of students—not the happy few, who need very little
attention—is concerned.

The main effect of this long-term situation is the growing tendency among
students to develop a relation to “official”, scholastic knowledge in agreement with
what I shall term the “Recycle bin/Empty recycle bin” principle: all the knowledge
taught may legitimately be forgotten or, more exactly, ignored, as soon as exams
have been passed. Of course this is presumably as old as the school-and-exam
system. But it has shaped a relation to knowledge as driven by institutional, short-
term, and labile motives, which stands away from the functional approach to
knowledge based on its real-world utility—to understand a situation, be it mathe-
matical or not, make a decision, or postpone it to allow for further study of the
problem addressed.

A correlate, if not properly a consequence, is to be found in a yet more chal-
lenging fact: what little knowledge remains after the school years is rarely regarded
as something that could bear on situations one might face outside school—and this
seems particularly true in the case of mathematical knowledge. School-generated
knowledge tends therefore to be unusable, in that its “remnants” are unable to
perform their specific function. But there is more to it than that. Visiting a monument
basically boils down to listening to a report or account made by the teacher-guide
about the monument visited—what we call in the French of ATD an exposé, a word
from whose meaning the negative connotation it has acquired in English must be
expelled in this context. By its very nature, any account, a report, or an expos¢ skips
“details”, i.e. aspects that, more or less arbitrarily, choice-makers have ignored or
altogether discarded. To give just one example, in the French curriculum—as is the
case, I presume, in many other mathematics curricula across the world—, tradition
has it that the algebraic solving of cubic equations is overlooked, while quadratic
equations are emphatically considered. In his/her scholastic visit of the mathematical
universe, the student thus reaches an endpoint beyond which lie mathematical
_territories that, more often than not, will remain indefinitely terra incognita to
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him/her. What will be of this student if, in later life, they need to know what a cubic
equation is and how it can possibly be solved? School education along the lines of
the current paradigm has no clear answer to that question, it seems.

The relation to knowledge and ignorance thus associated with the visiting of
mathematical works has become increasingly unsuited to people’s needs and wants,
up to the point that there currently exists a widespread belief that mathematical
knowledge is something one can almost altogether dispense with—whereas, in a
not so remote past, mathematics could be regarded as the key to a vast number of
individual as well as collective problems. In this respect, the chief flaw in the
paradigm of visiting monuments, which relates to the undemocratic ethos in which
this paradigm originated, has to do with the choice of “monuments” to visit at
school. As we know, this choice is usually the combined result of a long-lasting
tradition, on the one hand, and of irregularly spaced, hectic reforms, on the other. In
no way, it seems, the decisions made go beyond what the people in charge of this
choice-making think opportune, fit, or even “good” for the edification of the
mounting generations. In no way, it seems, is the choice of the monuments to be
visited made on an experimental basis or at least on a large and supposedly relevant
experiential basis. In what follow, I will try to adduce evidence that such a “feat”
can be achieved provided we opt for the emerging didactic paradigm I call the
“paradigm of questioning the world”.

Questioning the World: Towards a New Didactic Paradigm

Up to a point, we might soon discard the current didactic world in favour of a new
paradigm which, when contrasted with the old one, looks like a counterparadigm—
although, as we shall see, it isn’t doomed to break off all contact with its predecessor.
The main changes that I shall stress are few but radical. Let us consider again a triplet
(X, Y, 0). An almost inconspicuous but crucial tenet of traditional education is that the
members x of X are children or adolescents: traditionally, the educational endeavour
is about young people, before they attain maturity. When maturity has been reached,
everyone is supposed to be educated—well or badly, that is another question. In
contrast with this view of education, in the didactic paradigm of questioning the
world, education is a lifelong process. The x in the triplet (x, y, O) can be a toddler as
well as a mature adult or an older person. A society’s didactic endeavour is regarded
(and assessed) as applying to all—to citizens no less than to future citizens. Conse-
quently, the assessment of this crucial endeavour can no longer focus on young
people only: not only should we explore what 15-year olds happen to know, but we
should extend this quest to people aged 30 to (at least) 70. More than anything,
society’s didactic effort is not simply known by what people know: it should be
appraised on the basis of what they can learn—and how they can do so.

A second, central tenet of the paradigm of questioning the world is that, in order
to learn something about some work O, x has to study O, often with the help of
some y. You don’t learn to solve a cubic equation by chance; you have to stop and
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consider the question that arises before you. In today’s common culture, many
people, it seems, have a propensity to shun every question to which the answer is
not obvious to them. What the new didactic paradigm aims to create is a new
cognitive ethos in which, when any question Q arises, x will consider it, and, as
often as possible, will study it in order to arrive at a valuable answer A, in many
cases with a little help from some y. In other words, x is supposed not to sys-
tematically balk at situations involving problems that he/she never came across or
never solved. For reasons I shall not comment on, I call Herbartian—after
the German philosopher and founder of pedagogy Johann Heinrich Herbart
(1776-1841)—this receptive attitude towards yet unanswered questions and
unsolved problems, which is normally the scientist’s attitude in his field of research
and should become the citizen’s in every domain of activity.

The new didactic paradigm wants the future as well as the full-blown citizen to
become Herbartian. Let me give three easy, miscellaneous examples of possibly
impending “open” questions. First example: many people engaged in social science
research but who have had little contact with statistics during their school or college
years may come across Pearson chi-squared test, bump into the elusive notion of
degrees of freedom, and become obsessed with the question “What does the
expression ‘degrees of freedom’ mean exactly?” Second example: physics students
may be upset about having to use the curious symbol “proportional to” (<), “an
eight lying on its side with a piece removed” (Miller 2011), without having the
slightest idea about how the manipulation of this symbol can be justified in
mathematical terms, particularly as concerns the intriguing conclusion that, if a
variable z is proportional to variables x and y, then z will also be proportional to
their product xy. Third example: anyone interested in the question of biodiversity
may stumble upon a mathematical equation such as this:

1

H=1-—"
1+ 4N,

(1)

For the unrepentant non-mathematician, the first question will be: “What does
that mean? What does that entail?” For all of us, I suppose, a second question will
soon emerge: “Where does it come from? How can it be arrived at?” Of course, the
pre-Herbartian citizen generally ignores all these questions because he/she usually
recoils from anything seemingly mathematical. But the citizen in tune with the new
didactic paradigm will face the questions, and, whenever possible, will come to
grips with each of them. How is that possible?

In the didactic world shaped by the paradigm of visiting monuments, most people
behave “retrocognitively”. I use the word “retrocognition” not in its old parapsy-
chological sense but simply to express the cognitive attitude that leads one to refer
preferentially and almost exclusively to knowledge already known to one. Retro-
cognition in this sense is governed by the quasi-postulate according to which, once
your school and college years are over, if you don’t know in advance the answer to the
question that faces you, then you’d better renounce all pretension to arrive at a
sensible answer. This, of course, correlates with the propensity I mentioned earlier for
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staying away from unheard-of questions. By contrast, the paradigm of questioning
the world calls for a very different attitude, that I dub procognitive (in a sense
unrelated to the use of the word in denoting a drug that “reduces delirium or dis-
orientation’’), and which inclines one to behave as if knowledge was essentially still to
discover and still to conquer—or to rediscover and conquer anew. In the retrocog-
nitive bent, therefore, knowing is “knowing backwards’’; whereas in the procognitive
dedication, knowing is “knowing forwards”.

In the scenario I present, how does one construct and validate an answer A to a
question Q? Basically, inquiring into a question Q requires a twofold move. In the first
place, the “inquirer” x will search the relevant literature for existing answers to question
(O—a move traditionally banned at school, while to the contrary it is unavoidable in
scientific research. In ATD itis common to denote an existing answer by the letter A with
a small lozenge or diamond—a “thin” thombus—in superscript, AO, in order to express
that such an answer has been created and diffused by some institution which, in some
sense, hallmarked it. Of course an answer A® needs not be “true” or “valid”; butitisupto
x to evaluate answers A to see if they are relevant—which also departs from school
usage, in which answers provided by the teacher are guaranteed by the same token. In
order to arrive at a proper answer—usually denoted by the letter A with a small heart in
superscript regarded as the “maker’s mark”: A¥—, the inquirer x has to use “tools”,
mathematical or not, i.e. works of different nature. It is from the combined study of the
“hallmarked” answers A® and of the works O (used as tools both to study answers A°
and to construct an answer A") that the process of research for an answer A will get
under way.

The inquiry led by x into Q opens up a path called a research and study path (or
trail, or track, or course, etc.). To proceed along this path, the inquiry team X has to
use knowledge—relating to answers A® as well as to the other works O—hitherto
unknown to its members, that the team will have to get familiar with to be able to
continue on the trail towards answer A¥. A necessary condition in this respect is for
X and for every member x of X to behave procognitively, looking forward to
meeting new knowledge—new works—without further ado.

Some more didactic aspects should be stressed here. Firstly, in the paradigm of
questioning the world, encountering new knowledge or e-encountering old, half-
forgotten knowledge along the research and study path is the way that inquirers
x learn—they learn or relearn the answers Ao, the working tools O and, finally, the
answer AY. Tt should then be clear that the contents learnt, in this context, have not
been planned in advance—contrary to what is usual in the paradigm of visiting
monuments—and are determined essentially by two factors: by the question
0 being studied, in the first place, and then by the research and study path covered,
which in turn is determined by the A® and the O encountered and studied in order to
build up the answer A¥. Secondly, it must be emphasised that studying a (mathe-
matical or non-mathematical) work O—the same holds for the answers A% —is
determined by the project of arriving at an answer A¥. Contrary to the fiction forced
upon x and y in the paradigm of visiting works, there is no such thing as a “normal”
or “natural” study of a given work O. All exposés are special, none is exhaustive,
and most fail to conceal their arbitrariness. The study of a work O in the context of
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an inquiry into some question Q will heavily depend, both quantitatively and
qualitatively, on the use of O in the making of the answer A¥Y. What should be clear
in such a context-bound study of O is that the knowledge of O thus acquired by the
investigators is functionally coherent because it is cohered by the inquiry into
question Q, so that the raisons d’étre of O that do explain its use in the case in point
are readily apparent.

Society, School, and the New Paradigm

The paradigm of questioning the world and the inquiries that make it a reality do
not exist in a vacuum. They must have a basis in society and in school. Once again
let me stress here that the field of relevance of the didactic schema—called the
Herbartian schema—outlined so far extends to the whole of society—it is not
conceived as being restricted to school. Any person can represent x in a didactic
triplet (x, y, O). [A didactic “helper” y may fail to exist, in which case it is common
to write the triplet in the form (x, &, O): the didactic triplet is then reduced in actual
fact to a 2-tuple.] Of course it is easy to spot an outstanding difference. In many
modern societies, going to school during the first part of one’s life—while you’re a
youngster—is compulsory. Admittedly, there is no such thing as compulsory
education for adults in general. In this respect, the scenario advocated here supposes
a fundamental change, with the extension of the right to education into the right to
lifelong education for all, provided by an adequate infrastructure that we could
continue to call “school”, but in a sense that goes back to ancient Greece and, more
precisely, to the Greek word skhole, which originally designated spare time devoted
to leisure (this was still its meaning in the time of Plato, for example), but which
evolved to mean “studious leisure”, “place for intellectual argument”, and “time for
liberal studies”. The new role of the didactic in our societies thus implies the
development of a ubiquitous institution that, in what follows, I shall term, more
genuinely, skhole. Of course, school as we know it is a key component of skhole,
even though, in its present form, it remains largely foreign to the new didactic
paradigm. But school is not all of skhole. For example, for adults as well as for
younger people, a good part of skhole takes place at home: home skholeing will be,
and already is, a master component of skhole. In what follows, skhole will be
approached for its capacity to favour the development and flourishing of the par-
adigm of questioning the world—even though parts of it are still under the control
of the old school paradigm.

I begin by considering the case of adults’ skholeing—of which today’s “adults
schooling”, as we may call it, is but a meagre component. In truth, many citizens
are already, though partially, equipped to inquire on their own into the many
questions that may beset them, for example in their daily life. This being noted,
what are the main constraints that hinder, and what are the conditions that might
favour the development of adults’ skholeing? The first condition lies in the fact that,
instead of fleeing when faced with questions, x duly confronts them. To do so, x has
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to formulate them explicitly, at least for him/herself. Simple as it may sound, such a
move conflicts with a fundamental determinant of our cultures, the disjunction
between “masters” and “underlings”, if I may say so, that forbids the latter to raise
questions about the world—natural or social—, or, as the saying goes, to put it “into
question”, while “masters” have alone the legitimacy to question the world and to
change it. Sheer observation—but this conclusion can easily be submitted to
experimentation—shows that most people get excited at daring to pose on their own
the merest question. Historically, posing questions was the privilege of the mighty,
although it has become a defining right of citizens; but it is a right not yet exercised
as it should in a fully developed democracy.

Let us suppose that some citizen has decided to inquire into some question Q,
becoming thus an inquirer x in a triplet (x, ?, Q). At this stage of his/her study, two
problems face him/her. On the one hand, x may think of getting help from some
people Y; on the other hand, he/she will have to “search the world” for answers A% to
question Q and relevant works O. The first of these two problems has no systematic
solution today. The second problem has a good approximate solution. It consists in
the sum total of the information provided by the Internet and especially the Web. In
fact, I shall refer to the Internet sensu latissimo—in the broadest sense—, a sense
that, against current usage, includes... all the libraries in the world, because any
document is either available on the Internet or can be regarded as not yet available on
the Internet. To take here just one example, in the case of an inquiry into the
mathematics of the “proportional to” symbol (&), when starting from Jeff Miller’s
well-known website on the Earliest uses of symbols of relation (2011), one is led to
Florian Cajori’s classic book on the history of mathematical notations (1993, vol. 1,
p- 297), which in turn refers the inquirer to three older books, authored respectively
by Emerson (1768), who was the introducer of the symbol &, Chrystal (1866), and
Castle (1905). Today, all of these books are available online for free. Let us also
observe that the Internet allows most inquirers x to find help from occasional helpers
y, for example on Internet forums and discussion threads, so that the main solution to
the second problem also supplies a (partial) solution to the first problem.

Making inquiries on the Internet sensu latissimo meets with well-recognised dif-
ficulties. First, if x is almost certain to come across at least some relevant resources,
documents allowing him/her to go further and deeper into the question studied may be
scarce. Second, the inquirer x can prove unable both to find out relevant documents
that do exist and to make the most of what little information he/she culled. The
inquirer’s intellectual equipment—or more exactly the inquirer’s praxeological
equipment, in a sense of the word praxeology proper to ATD—thus rests on two
pillars: the capacity to locate resources, online and offline, and the knowledge nec-
essary to take advantage of them. This leads to the question of making good use of the
works O gathered. Most general questions Q entail the use of works O pertaining to
different branches of knowledge, so that the study of Q is bound to be a co-disciplinary
pursuit, bringing together for acommon endeavour tools from different “disciplines”.
It should be stressed at this point that what I’ve called a citizen is not a person reduced
to being a member of a political community. But, much to the contrary, he/she is
considered according to his/her accomplishments and potential, particularly as an
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inquirer into questions of any breed. It results from this that a citizen does not only
have to be educated in many fields but, in the procognitive perspective of the new
didactic paradigm, a citizen must be ready to study and learn, even from scratch, fields
of knowledge new to him/her. A citizen is not only a law-abiding person; he/she also
has to become a knowledgeable person, indefinitely ready to study works hitherto
unknown to him/her, just because some inquiry calls for their study.

The citizen I portray here may feel unable to live up to what is thus required of
him/her. This feeling essentially results from the old didactic organisation of school
and society that has imposed upon us the illusion according to which, for any
knowledge need we may experience, there somewhere exists a providential person
who can teach us whatever we want to know. Such a puerile belief leads to pas-
sivity and submission to events outside our reach. In the paradigm of questioning
the world, attending a course or a conference on some subject of interest is certainly
not disregarded. But we should take them as means to a common end—Ilearning
something on some determined work O supposed to be useful in order to bring forth
an answer A¥ to question Q. In such a situation, because of a relation to ignorance
and knowledge resulting from exposure to the old school paradigm, we are prone to
feel frustrated at not having all the knowledge needed—all of history, biology,
mathematics, physics, chemistry, philosophy, linguistics, sociology, and so on
indefinitely. The character implicitly fantasised here is what I’ve come to call an
esoteric (using thus the adjective also as a noun), who is supposed to already know
all the knowledge needed (the idea most people have of “a historian”, “a biologist”,
“a mathematician™, “a physicist”, etc., is commonly akin to this fantasy). By
contrast, an exoteric has to study and learn indefinitely, and will never reach the
elusive status of esoteric. Indeed, all true scholars are exoteric and should remain so
in order to remain scholars: esotericism, as I define it here, is a fable.

The citizen in the new paradigm is therefore called upon to become Herbartian,
procognitive, and exoteric. How can we promote this new citizenship? Beyond
being possessed by the epistemological passion necessary to go all the way from
pure ignorance to adequate knowledge, a crucial condition is, for sure, the time
allotted to study and research in an adult’s life. More often than not, it seems, this
time tends to zero as years pass by. In this respect, I suggest that we repeat again
and again the founding trick of the ancient Greeks—that of transmuting leisure
time, which some of our contemporaries seem to enjoy so abundantly, into study
and research time, in the authentic tradition of skhole. Such a pursuit pertains to
what Freud once called Kulturarbeit, “civilisational work”—a radical change still to
come, which is a sine qua non of the emergence of the new didactic paradigm.

The problem of the time allotted to study and research has an easy solution when
it comes to ordinary schooling: youngsters go to school to study, in accordance with
skhole’s defining principle. But in what measure does school welcome the new
didactic paradigm? I shall not dwell too long on this subject. I will, however,
suggest that in too many cases, the so-called “inquiry-based” teaching resorts to
some form or another of “fake inquiries”, most often because the generating
question Q of such an inquiry is but a naive trick to get students to find and study
works O that the teacher will have determined in advance. Of course, this is the
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plain consequence of the domination of the paradigm of visiting works, which
implies that curriculum contents are defined in terms of works O. In contradis-
tinction, in the paradigm of questioning the world, the curriculum is defined in
terms of questions Q. However, the works O studied in consequence of inquiring
into these questions Q play a central role in the process of defining and refining the
curriculum: starting from a set Q of “primary” questions, the curriculum contents
C eventually studied will include the questions Q and answers AY, together with the
answers A® and the works O.

At this point two questions arise, though. The first question relates to the set Q of
“primary” questions: where do these questions come from, and according to what
mechanisms? In the case of a national curriculum, the set of primary questions to be
studied at school constitutes the “core curriculum”, and therefore the foundation of
the national pact between society and school. Consequently, it is up to the nation to
watchfully and democratically decide what the set Q will consist of and to peri-
odically revise and update its contents on the basis of a careful monitoring of the
curriculum’s life-cycle. Because it is essential to the relationship between a society
and its schooling system, the core curriculum—i.e. the “primary” questions—will
play a decisive part in the society’s skhole. But it should be obvious that the
curriculum is not precisely defined by the primary questions alone. The inquiries
entailed by these questions are in no way uniquely defined: as we know, an inquiry
may follow different paths of study and research, and the questions inquired into as
well as the other works encountered and, up to a point, studied, are indeed path-
dependent. As a result, even if the core curriculum (in the sense defined above) has
been made precise, the ensuing curriculum might well look fuzzily defined because
of its built-in variability. How can this situation be managed for the better?

Let us consider didactic triplets (X, ¥, O) with O a (finite!) family of questions.
We can envisage two types of didactic triplets associated with a class of students.
First, there is a seminar, in which O is a dynamic family of questions comprising
the primary questions and the questions their study will generate. (Remember that
the scenario delineated is supposed to apply to advanced students as well as to...
toddlers, so that the words I use here must be taken in a very broad sense, which
allows for their adaptation to a wide variety of concrete conditions.) This seminar
will essentially be co-disciplinary, for primary questions rarely fall into a unique
disciplinary domain. Second, there will be disciplinary workshops to study the
questions and works put forward in the seminar but which pertain essentially to a
given discipline—there will be for example a chemistry workshop, a mathematics
workshop, a history workshop, a biology workshop, and so on. The activated
workshops may vary depending on the primary questions studied in the seminar.
The key fact is that, in this two-step process (seminar plus workshops), some works
O and disciplines will be insistently recurrent, because they will be more often
called upon in the inquiries, while others will be encountered erratically or will
almost never turn up. This “degree of mobilization” of a work O, if averaged
nationally across all the seminars held at a given school level, gives the “degree of
membership” of the work O to the curriculum regarded, metaphorically, as a
continually redefined fuzzy set—a view more adequate to the true nature of a real
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curriculum. As indicated above, and contrary to the age-old habit of imposing a
curriculum founded essentially on opinion, the paradigm of questioning the world
makes it possible to bring to light in an organic way which resources are really used
in trying to question and know the world, both natural and social.

What Will Be the Place of Mathematics?

At a given point in time, an inquiry may come to a stop because some useful tool
proves unavailable to the inquirers. One major reason for which an inquiry may thus
grind to a halt is that the mastery of essential parts of some work O, ideally required to
continue progress, lie well beyond the inquirers’ reach. This, it should be stressed, is
the common law of inquiry, be it at school or in a research team, and is definitely not
the preserve of “low-level exoterics™: it is part and parcel of the art of inquiry—such
an “incident” is but one of the twists and turns in an inquirer’s venture. But the path
followed in a given inquiry, whatever its determinants, has crucial consequences in
the didactic scenario displayed above: if a work O is very rarely drawn upon in
seminars and workshops across the nation, then this work O will eventually vanish
from the national curriculum. To be quite frank, this can result in the disappearing of
parts of traditional school disciplines; for the place occupied by a discipline in the new
curriculum will depend on its effectiveness in providing tools for inquiring into the
curriculum-generated questions; it will depend no longer on any formerly or recently
established hierarchy of disciplines, held to be the unquestionable legacy of the past.
Traditionally flourishing disciplines should then worry about their future at school:
will they continue to thrive or will they soon languish? The question is put to every
discipline, and especially to mathematics.

If knowledge is valued according to what it enables us to rationally understand
and achieve, the problem we are confronted with is not so much the fate of the
disciplines as the value and quality of the inquiries going on in the seminars and
workshops. From this point of view, the foregoing scenario can be improved
substantially by allowing for the possibility to append “control questions” to any
question pertaining to the curriculum. In some sense, this adds, to the bottom-up
information flow emanating nationwide from the seminars and workshops, a top-
down regulatory control on schools, operated by supervisory authorities. Any
question Q can indeed be supplemented meaningfully by one or a series of “side
questions” Q* that will be touchstones for controlling the quality, thoroughness and
profundity of an inquiry into question Q. It is in this way that it becomes possible to
point out meaningfully—and not out of sheer pretentiousness—the utility of such
and such work O to get deeper into the question studied. For example, to a question
about biodiversity, one might relevantly add a question about genetic diversity and,
in turn, a question about the meaning and interest of Eq. (1) above, a question likely
to draw the inquirers’ attention to the importance of... mathematics in inquiring
into genetic diversity.
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For mathematics as well as for a myriad of works pertaining to the most varied
fields of knowledge, such a system of control questions seems indispensable to
remind the x and the y that inquiring into some question may require the use of tools
that will first appear, from within the cultural limits that they are precisely expected
to transcend, as far removed from the matter under study. This is particularly true in
the case of mathematical works. For deep-rooted historical reasons, mathematics is
today both formally revered and, at the same time, energetically shunned.
Numerous people flee away from mathematics as soon as they are no longer obliged
to “do” mathematics. This has determined many mathematics educators to engage
in a strategy of seduction, with a view to regaining the favour of “mathematical
non-believers” by convincing them that, as the saying goes, “maths is fun”! Let me
say tersely that this strategy has two main demerits and that, in my view, it should
be as such utterly discarded. The first defect seems to be liberally ignored in today’s
educational world: for deep political and moral reasons, the instruction imparted at
school must refrain from manipulating feelings and beliefs—we must be unim-
peachable as far as the liberty of conscience of x (and y) is concerned. Conse-
quently, mathematics educators must resist the temptation to try to induce students
to “love” mathematics: their unique mission is to let them know mathematics, which
is a bit more demanding! Love and hate are personal, intimate feelings that belong
to the private sphere proper. Of course, it is highly probable that knowing math-
ematics better will result in some form of keenness towards mathematics. But all
this entirely pertains to every single person’s conscience.

The second defect of the much acclaimed seduction strategy is its very low yield,
if I may say so. The problem with mathematics—as with other disciplines—is a
mass problem. The root of it lies, in my view, in the process of cultural rejection
that mathematics has suffered for a long time now, with the crucial consequence
that, outside mathematical institutions proper, mathematics vanishes from the “lay”
scene, so much so that many documents about topics not substantially foreign to
mathematics can show no trace at all of mathematics, a fact which jeopardises the
quality of many inquiries. Let me give here a simple example. Consider the
question “Why does ice float in water?” Part of the answer is: because ice is less
dense than liquid water. Now why is ice less dense than liquid water? The usual
answer is that the arrangement of H,O molecules occupies more space in ice than in
liquid water. A closer look at this answer leads to some easy calculations (Ravera
2012). Indeed, it can be shown that, under certain conditions, the unit cell of ice has
a height of 737 pm (i.e. 737 x 10~'? m), with its base a rhombus with sides of
length 452 pm and an angle of 60°. The volume of the unit cell is therefore

3
V= g x 4522 x 737 x 1075L 2)

The molar mass of water is approximately 18 g/mol. The mass of a unit cell of
ice is known to be that of four molecules of water. Avogadro’s number is taken here
to be 6.02 x 10%* mol™'. Hence the mass M of a unit cell:
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4 x 18
6.02 x 1053 ° (3)

The density of ice is therefore:
d =

M
T~ 91Tg/L (4)

This (approximate) result confirms that ice is lighter than liquid water. The
calculation uses elementary tools that are all (supposedly) mastered at age 15. In
spite of this, this calculation is generally withheld from most relevant presentations
available on the Internet. This is no exception to the rule. In a majority of cases, the
mathematics of the topic being presented is decidedly absent, as if it had never
existed. This is typically what mathematics educators must combat. In this respect,
as far as mathematics is concerned, the “touchstone questions” that should be
appended tentatively to any question proposed for study come down to this: “What
are the mathematics of the matter, and how can awareness of them enhance the
quality of your answer?”

Is this really a way out of the historic trap in which mathematics has been lured?
I believe so. The seduction strategy, which is successful with an insignificant
number of people, is but another pitfall. In my view, the only realistic solution will
consist in trying to rationally persuade the citizens and, to begin with, the students
that dispensing with mathematics may crucially impoverish our understanding and
drastically reduce the quality of our involvement in both the natural and the social
world. This, of course, will not be achieved through fine words only. It needs daily
action, in schools as well as outside schools, especially in the leisure time given to
learning by the citizenry to enrich their lives. In this pursuit, mathematics educators
will play a crucial, though different, part.

For centuries, mathematics as a cultural institution thrived on a twofold self-
presentation: it was understood as being composed, on the one hand, of “pure”
mathematics, and, on the other hand, of “mixed” mathematics, with its pervasive
ethos and slightly imperialistic touch. The “mixed” part, later called “applied”
mathematics, has steadily declined at school during the last decades, while what
remained of the former part—pure, though elementary, mathematics—tried to
symbolise and maintain the old “empire”. It is my belief that this time has now
come to an end. Today, we have to revive the epistemological spirit of mixed
mathematics, although without any cultural arrogance, but with the political and
social will necessary to revitalise the idea that mathematics is for us, human beings,
a solution, not a problem.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Mathematics for All? The Case
for and Against National Testing

Gilah C. Leder

Abstract National numeracy tests were introduced in Australia in 2008. Their
format and scope are described and appraised in this paper. Of the various group
performance trends presented in the annual national NAPLAN reports two (gender
and Indigeneity) are discussed in some detail. For these, the NAPLAN findings are
compared with broader international data. Recent Australian research spawned by,
or benefitting from, the NAPLAN tests is also summarised. In some of this work,
ways of using national test results productively and constructively are depicted.

Keywords National tests «+ Gender - Indigeneity

Introduction

It should come as no surprise... that the introduction of a national regime of standardised
external testing would become a lightning rod of claim and counter-claim and a battle-
ground for competing educational philosophies. The National Assessment Program—Lit-
eracy and Numeracy (NAPLAN) is a substantial educational reform. Its introduction has
been a source of debate and argument (Sidoti and Keating 2012, p. 3).

Formal assessment of achievement has a long history. Kenney and Schloemer
(2001) point to the use, more than three thousand years ago, of official written
examinations for selecting civil servants in China. The birth of educational
assessment is, however, generally traced to the 19th century and its subsequent
growth has undoubtedly been intertwined with advancements in the measurement
of human talents and abilities (Lundgren 2011). Over time the development of large
scale, high stake testing and explorations of its results have proliferated. “Many
nations”, wrote Postlethwaite and Kellaghan (2009), “have now established
national assessment mechanisms with the aim of monitoring and evaluating the
quality of their education systems across several time points” (p. 9). More recently,
Eurydice (2011) also drew attention to the widespread practice of national testing
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throughout Europe, confined in some countries to a limited number of core cur-
riculum subjects but in others comprising a broad testing regime. Large scale
national assessment programs, with particular emphasis on numeracy and literacy',
were introduced in Australia in 2008—after extensive consultation and much
heated debate within and beyond educational and political circles.

The NAPLAN Numeracy Tests

Until 2007, Australian states and territories ran their own numeracy and literacy
testing programs. Although much overlap could be found in the assessment
instruments used in the different states, there were also variations—some subtle,
others substantial—in these tests.

The first National Assessment Program—ULiteracy and Numeracy (NAPLAN)
tests were administered in May 2008 and have been conducted annually since then.
For the first time, students in Years 3, 5, 7, and 9, irrespective of their geographic
location in Australia, sat for a common set of tests, administered nation-wide. The
Numeracy tests contain both multiple choice and open-ended items. Their scope
and content are informed by the Statements of Learning for Mathematics (Curric-
ulum Corporation 2006). The ‘what’ students are taught is described by four broad
numeracy strands. These are Algebra, function and pattern; Measurement, chance
and data; Number; and Space, though some questions may overlap into more than
one strand. Instructional strategy, the ‘how’ of mathematics is described by profi-
ciency strands. “The proficiency strands—Understanding, Fluency, Problem solv-
ing and Reasoning—describe the way content is explored or developed through the
‘thinking’ and ‘doing’ of mathematics” (Australian Curriculum, Reporting and
Assessment Authority ACARA 2010). In Years 3 and 5, the papers are expected to
be completed without calculator use. Two distinct papers are set for Year 7 and 9
students—one is expected to be completed without the use of a calculator; for the
other calculator usage is allowed.

The NAPLAN numeracy scores for Years 3, 5, 7, and 9 are reported on a
common scale which is divided into achievement bands. For each of these year
levels, the proportion of students with scores in the six proficiency bands consid-
ered appropriate for that level is shown. For Year 3, 5, 7, and 9 these are bands one
to six; three to eight; bands four to nine; and bands five to ten respectively. Each
year, results of the NAPLAN tests are published in considerable detail, distributed
to each school, and made readily available to the public.

The advantages anticipated by the introduction of national tests to replace the
variety of tests previously administered by the different Australian states and

! Sample assessment tests have been administered to selected groups of students in Years 6 and
10 in Scientific Literacy (Year 6 students only), Civics and Citizenship, and Information Com-
munication Technology Literacy. These sample assessments were introduced respectively in 2003,
2004, 2005 and are held on rolling a three-yearly basis.
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territories were similar to those commonly put forward in the wider literature (e.g.,
Postlethwaite and Kellaghan, 2009) as a rationale or justification for introducing
national tests: assessment consistency across different constituencies, increased
accountability, and a general driver for improvement.

ACARA is responsible for the development of the national assessment program
and the collection, analysis, and reporting of data. The procedures followed are
described clearly on the ACARA website and are consistent with those generally
advocated for large scale assessment testings (Joint committee on testing practices
2004). Guidance on interpreting the vast amount of data in the National Report is
provided in the document itself (ACARA, 2011a) and in multiple ancillary docu-
ments (see e.g., ACARA, 2011b; Northern Territory Government n.d). NAPLAN
achievement outcomes are reported not only at the national level, but also by state
and territory data; by gender; by Indigenous status; by language background status?;
by geolocation (metropolitan, provincial, remote and very remote); and by parental
educational background and parental occupation. Each of these categories which
are clearly not mutually exclusive, has been shown, separately, to have an impact
on students” NAPLAN score. Broad performance trends for the different groupings
have been summarised as follows:

In Australia, girls have typically performed better on tests of verbal skills..., while boys have
typically performed better on tests of numerical skills... Children from remote areas, children
from lower socioeconomic backgrounds and children of Indigenous background have tended
to perform less well on measures of educational achievement (NAPLAN 2011b, p. 255).

It is beyond the scope of this paper to look at each of the categories mentioned
above. Instead, the focus is on two groups of special interest: girls/boys and
Indigenous students. What trends can be discerned in the years of NAPLAN data
available at the time of writing this paper?

Trends in NAPLAN Data: Gender and Indigeneity

Data for Years 3 and 9 by gender and Indigeneity are shown in Tables 1 and 2
respectively.
From these tables it can be seen that:

Gender

e The mean NAPLAN score for males is invariably higher than that for females.
e The standard deviation for males is also consistently higher than for females,
that is the range of the NAPLAN scores for males is higher than that for females.

2 LBOTE, language background other than English, defined as “A student is classified as LBOTE
if either the student or parents/guardians speak a language other than English at home.”
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Table 1 Numeracy Year 3 students, NAPLAN achievement data 2008-2011

Group All M F Indigenous | Non- Indigenous
\year Indigenous | year 5%
2008 Mean 3969 |400.6 |393.1 327.6 400.5 408.0
S.D 70.4 72.8 67.6 70.6 68.4 65.8
>National 95.0 % |94.6 % |95.5 % |78.6 % 96.0 % 69.2 %
min® (%)

2009 Mean 3939 3975 |390.2 |320.5 397.7 420.5
S.D 72.9 75.3 70.0 76.0 70.6 66.4
>National 94.0 % |93.5% (945 % |74.0 % 952 % 74.2 %
min (%)

2010 Mean 3954 13978 3929 3253 399.0 416.9
S.D. 71.8 74.0 69.3 71.2 69.8 70.5
>National 943 % |93.7 % [949 % |76.6 % 953 % 714 %
min (%)

2011 Mean 398.1 |402.6 3935 |3344 401.7 421.1
S.D. 70.6 73.0 67.6 65.0 69.1 64.0
>National 95.6 % 952 % |96.0 83.6 % 96.4 % 75.2 %
min (%)

@ T refer to the data in the last column later in the paper. To save space the information is included
in this table

® National minimum standards: The second lowest band on the achievement scale represents the
national minimum standard expected of students at each year level

Table 2 Numeracy Year 9 students, NAPLAN achievement data 2008-2011

Group All M F Indigenous | Non- Year 7

\year Indigenous | Non-Indigenous

2008 Mean 582.2 586.5 5776 |515.1 585.7 548.6
S.D 70.2 72.0 68.1 65.6 68.7 71.6
>National 93.6 % |93.7% [93.6% |72.5 % 94.8 % 96.4 %
min (%)

2009 Mean 589.1 5924 | 585.6 |520.2 592.4 547.0
S.D 67.0 69.2 64.4 63.2 65.3 69.4
>National 95.0% 947 % 952 % |75 % 96 % 95.8 %
min (%)

2010 Mean 585.1 591.1 578.8 515.2 588.5 551.4
S.D 70.4 72.7 67.4 64.7 68.8 70.8
>National 93.1 % (933 % (929 % |70.4 % 94.3 % 96.1 %
min (%)

2011 Mean 583.4 5893 577.3 515.8 586.7 548.5
S.D 72.1 74.7 68.7 62.2 70.8 72.1
>National 93.0% |93.0% [93.0% |72 % 94.1 % 95.5 %
min (%)

(Data in both tables adapted from ACARA 2011a)
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e At the Year 3 level a higher proportion of females than males score above the
national minimum standard NAPLAN score. There is no such consistency at the
Year 9 level, with a marginally higher proportion of males performing at or
above the minimum level in some years (e.g., 2008, 2010) and a marginally
higher proportion of females performing at or above the minimum level in other
years (e.g., 2009).

Indigeneity

e Each year, non-Indigenous students do (a lot) better than Indigenous students.
From Table 1 it can be seen that Year 5 Indigenous students performed just above
the level of Year 3 non-Indigenous students; from Table 2 that Year 9 Indigenous
students performed below the level of Year 7 non-Indigenous students.

e In 2011, there was a noticeable increase, compared with the previous years, in the
percentage of Indigenous students at Year 3 who performed at or above the
national minimum standard. No such increase is apparent at the other Year levels.

Also relevant are the following:

e In 2011, between 240,000 and 250,000 non-Indigenous students sat for the Years
3,5, 7, and 9 NAPLAN papers. For the Years 3, 5, and 7 papers close to 13,000
Indigenous students participated. A smaller number, about 10,000 sat for the Year
9 paper. Thus at the different Year levels, Indigenous students comprised between
4 and 5 % of the national groups involved in the NAPLAN tests.”

e The exemption rates for the two groups are similar: around 2 % for Indigenous
students and about 1 % for non-Indigenous students.

These summaries for gender and Indigenous performance outcomes are set
against a broader context in the next sections.

Gender

In many countries, including Australia, active concern about gender differences in
achievement and participation in mathematics can be traced back to the 1970s. Two
reliable findings were given particular prominence: that consistent between-gender
differences were invariably dwarfed by much larger within-group differences; and
that students who opted out of post compulsory mathematics courses often
restricted their longer term educational and career opportunities. These general-
izations remain relevant.

* The proportion of school students in Australia identified as Aboriginal and/or Torres Strait
Islanders has risen from 3.5 % in 2001 to almost 5 % in 2011(http://www.abs.gov.au/ausstats/
abs @ .nsf/Lookup/4221.0main+features402011).
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Evidence of progress towards gender equity more broadly than with respect to
mathematics learning specifically has been mapped in many different ways:

Whereas the challenge of gender equality was once seen as a simple matter of increasing
female enrolments, the situation is now more nuanced, and every country, developed and
developing alike, faces policy issues relating to gender equality. Girls continue to face
discrimination in access to primary education in some countries, and the female edge in
tertiary enrolment up through the master’s level disappears when it comes to PhDs and
careers in research. On the other hand, once girls gain access to education their levels of
persistence and attainment often surpass those of males. High repetition and dropout rates
among males are significant problems (UNESCO 2012, p. 107).

As can be seen from large scale data bases such as NAPLAN, some gender
differences in mathematics performance remain. What explanations for this have
been proffered?

Explanatory Models

Over the years a host of, often subtly different, explanatory models for gender
differences in mathematics learning outcomes have been proposed. They invariably
contain a range of interacting factors—both person-related and environmental.
Common to many models is an

...emphasis on the social environment, the influence of other significant people in that
environment, students’ reactions to the cultural and more immediate context in which
learning takes place, the cultural and personal values placed on that learning and the
inclusion of learner-related affective, as well as cognitive, variables (Leder 1992, p. 609).

A comprehensive overview of research concerned with gender differences in
mathematics learning is beyond the scope of this paper. Instead, some recent
publications, the majority with at least a partial cross-national perspective and
published in a variety of outlets, are listed to sketch the range of factors invoked as
explanatory or contributing factors for the differences still captured. Included is
work in which the need for a repositioning of perspective to examine gender
differences, via a different theoretical (often feminist and/or socio-cultural) frame-
work, is prosecuted, as well as several articles in which there are strong attempts to
rebut the notion that gender differences persist.

Gender Differences: Possible Explanations

e Kaiser et al. (2012) found, in a large study involving over 1,200 students, that
“the perception of mathematics as a male domain is still prevalent among
German students, and that this perception is stronger among older students. This
is either reinforced by the peer group, parents or teachers” (p. 137).

e Kane and Mertz (2012) concluded “that gender equity and other sociocultural
factors, not national income, school type, or religion per se, are the primary
determinants of mathematics performance at all levels of boys and girls” (p. 19).
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e Stoet and Geary (2012) challenged but ultimately supported the notion of ste-
reotype threat (provided it is carefully operationalized) as an explanation for the
higher performance of males in mathematics, particularly at the upper end.

e Wai et al. (2010) examined 30 years of research “on sex differences in cognitive
abilities” and focussed particularly on differences in favour of males found in
the top 5 %. As well as highlighting the role of sociocultural factors they
concluded: “Our findings are likely best explained via frameworks that examine
multiple perspectives simultaneously” (p. 8).

e “Traditionally, all societies have given preference to males over females when it
comes to educational opportunity, and disparities in educational attainment and
literacy rates today reflect patterns which have been shaped by the social and
education policies and practices of the past. As a result, virtually all countries
face gender disparities of some sort” (UNESCO 2012, p. 21).

Gender Differences: Have They Disappeared?

e Else-Quest (2010) used a meta-analysis of PISA and TIMSS data to examine the
efficacy of the gender stratification hypothesis (that is, societal stratification and
inequality of opportunity based on gender) as an explanation for the continuing
gender gap in mathematics achievement reported in some, but not in other,
countries. They concluded that “considerable cross-national variability in the
gender gap can be explained by important national characteristics reflecting the
status and welfare of women” (p. 125) and that “the magnitude of gender
differences in math also depends, in part, upon the quality of the assessment of
mathematics achievement” (p. 125).

e Hyde and Mertz (2009) drew on contemporary data from within and beyond the
U.S. to explore three major questions: (1) “Do gender differences in mathe-
matics performance exist in the general population? (2) Do gender differences
exist among the mathematically talented? (3) Do females exist who possess
profound mathematical talent?” (p. 8801). They summarised respectively: (1)
Yes, in the U.S. and also in some other countries; (2) Yes, there are more males
than females are amongst the highest scoring students, but not consistently in all
ethnic groups. Where this occurs, the higher proportion of males is “largely an
artefact of changeable sociocultural factors, not (due to) immutable, innate
biological differences between the sexes” (p. 8801); and (3) Yes, there are
females with profound mathematical talent.

Gender Differences: Looking for New Directions

e Erchick (2012) argued that consideration of conceptual clusters, rather than
topics in relative isolation, should lead to new questions in as yet fallow ground
to be found in the field of gender differences in mathematics. Three clusters are
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proposed: “Feminism/Gender/Connected Social Constructs; Mathematics/
Equity/Social Justice Pedagogies; and Instruction/Perspectives on Mathematics/
Testing” (p. 10).

e Jacobsen (2012) is among many of those who argue for a reframing of the deficit
model approach to gender differences in which male performance and experi-
ence are considered the norm to one recognizing the social construction of
gender and accepting that females may learn in different, but not inferior, ways
from males. One approach to translating this theoretical perspective into practice
is also described.

In some of the publications listed (as well as in others not listed here) gender
differences are minimized while in others they are given centre-stage. Collectively,
a complex rather than simplistic network of interweaving and sometimes con-
trasting pressures emerges from this body of work. After four decades of research
on gender and mathematics, there is only limited consensus on the size and
direction of gender differences in performance in mathematics and stark variation in
the explanations put forward to account when differences are found.

The NAPLAN scores summarised in Tables 1 and 2 also require a nuanced
rather than uni-dimensional reading. When performance on the NAPLAN test is
described in terms of mean scores, the small but consistent gender differences in
favour of males mirror those obtained in other large scale tests such as the Trends in
International Mathematics and Science Study (TIMSS) and the OECD Programme
for International Student Assessment (PISA)*. But in terms of another set of
NAPLAN achievement criteria, the percentage of students achieving above the
minimum national average, the small differences reported generally favour girls in
the earlier years of schooling, in each of 2008-2011 at Year 3; for three of the four
years (2009-2011) for Years 5 and 7; but in only one year (2009) at the Year 9
level. Clearly, gender differences in performance on the NAPLAN tests are small,
consistent or variable, depending on the measuring scale and the method of
reporting used.

Assessment: Gender Neutral or not?

That gender differences in mathematics learning may be concealed or revealed by
the assessment method used is not a new discovery. Else-Quest et al. (2010) judged
that “the magnitude of gender differences in math also depends, in part, upon the
quality of the assessment of mathematics achievement” (p. 125). Dowling and

* Differences in the samples involved in the three tests are worth noting. NAPLAN is adminis-
tered to all students in Years 3, 5, 7, and 9. It is best described as a census test. The TIMSS tests,
aimed at students in Years 4 and 8, and the PISA tests administered to 15-year-old students, are
restricted to “a light sample (of) about 5 % of all Australian students at each year or age level”
(Thomson, p. 76).
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Burke (2012) pointed to the 2009 General Certificate of Secondary Education
examinations in the U.K. as the first occasion in a decade for boys to perform better
than girls in an external examination. “This reversal coincided with a change in the
form of the examination” (p. 94), they noted.

A now somewhat dated, yet still striking, example of the impact of the format of
examinations on apparent gender differences in mathematics achievement is pro-
vided by Cox et al. (2004). They tracked gender differences in performance in the
high stake, end of Year 12 examinations in Victoria, Australia for the years 1994—
1999, a sustained period of stability in the state’s external assessment regime.
Student performance in three different mathematics subjects—Further Mathematics
(the easiest and most popular of the three mathematics subjects offered at Year 12),
Mathematical Methods (a pre-requisite for many tertiary courses), and Specialist
Mathematics (the most demanding of the three mathematics subjects)—were among
the results inspected. For each of these three subjects there were three different
examination components. These were common assessment task (CAT) 1 consisting
of a school assessed investigative project or problem, to be completed over several
weeks; CAT 2, a strictly timed examination comprising multiple choice and short
answer questions; and CAT 3, also a strictly timed examination paper with prob-
lems requiring extended answers. Thus CATs 2 and 3 followed the format of
traditional timed examinations.

During the period monitored, a student enrolled in a mathematics subject in Year
12 was required to complete three assessment tasks in that subject. A test of general
ability was also administered to the Year 12 cohort. These combined requirements
provided a unique opportunity to compare the performance of the same group of
students on timed and untimed examinations and on papers with items requiring
substantially and substantively different responses. In brief:

e Males invariably performed better (had a higher mean score) than females on the
mathematics/science/technology component of the general ability test.

e In Further Mathematics, females outperformed males in CAT 1 and in CAT 2 in
all of the six years of data considered, and on CAT 3 for five of the six years.

e In Mathematical Methods, females performed better than males in all of the six
years on CAT 1; males outperformed females on CAT 2 and CAT 3 for the six
years examined.

e In Specialist Mathematics, females performed better than males in all of the six
years on CAT 1 and in five of the six years on CAT 3. However males out-
performed females on CAT 2 for each of the six years examined.

Thus whether as a group males or females could be considered to be “better” at
mathematics depends on which subject or which test component is highlighted. If
the least challenging and most popular mathematics subject, Further Mathematics,
is referenced then the answer is females. If for all three mathematics subjects the
focus is confined to the CAT 1 component, the investigative project or problem
assessment task, done partly at school and partly at home, then again the answer is
females. But if the focus is on the high stake Mathematical Methods subject, the
subject which often serves as a prerequisite for tertiary courses, and on the
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traditional examination formats of CAT 2 and CAT 3 in that subject, then the
answer is males. Collectively these data illustrate that the form of assessment
employed can influence which group, males or females, will have the higher mean
performance score in mathematics. Would the small but consistent differences
found in favour of males’ mean performance on the NAPLAN papers disappear if
the tests were changed from their traditional strictly timed, multiple choice and
short answer format to one resembling the CAT 1 requirements?

Changes to the Year 12 assessment procedures in Victoria were introduced in
2000, seemingly in response to concerns about student and teacher workload and to
issues related to the authentication of student work for the teacher-assessed CATs.
The changes were described by Forgasz and Leder (2001) as follows:

For the three VCE mathematics subjects the assessment changes involve the CAT 1
investigative project task being replaced with (generously) timed, classroom based tasks, to
be assessed by teachers but with the scores to be moderated by externally set, timed
examination results. It is worth recalling that it was on the now replaced format of CAT I,
the investigative project, that females, on average, consistently outperformed males in all
three mathematics studies from 1994 to 1999. Is it too cynical to speculate that this
consistent pattern of superior female achievement was a tacit factor contributing to the
decision to vary the assessment of the CAT 1 task? It is difficult to predict the longer term
effects of the new... assessment procedures on students’ overall mathematics performance
and study scores. Is there likely to be a return to earlier patterns of superior male perfor-
mance in mathematics? If so, will this satisfy those who are arguing that males are currently
the educationally disadvantaged group? (p. 63)

Indigeneity

That there is no ambiguity about the differences in the performance on the NA-
PLAN tests between Indigenous and non-Indigenous students is clearly apparent
from Tables 1 and 2, and widely emphasized elsewhere. Thomson et al. (2011), for
example, examined the 2009 PISA data for Australian students and reported a
substantial difference between the average performance of Indigenous and non-
Indigenous students on the mathematical literacy assessment component. What
message is conveyed by the reporting of these differences?

Gutiérrez (2012) has compellingly used the term “gap gazing” to describe pre-
occupation with performance differences between selected groups of students and
has argued convincingly that highlighting such differences can be counter-pro-
ductive and reinforce stereotyping. “In its most simplistic form, this approach points
out there is a problem but fails to offer a solution... (T)hat it is the analytic lens
itself that is the problem, not just the absence of a proposed solution” (Gutiérrez
2012, p. 31) should not be ignored.

As mentioned earlier, the results of NAPLAN testings are widely disseminated
and described in media outlets. Forgasz and Leder (2011) compared the more
nuanced reporting of students’ results on these tests in scholarly outlets with the
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more superficial tone of print media reports. According to these authors “media
reports on students’ performance in mathematics testing regimes appear to rely
heavily on the executive summaries that accompany the full reports of these data...
(T)he more detailed and complex analyses undertaken of entire data sets are often
omitted” (p. 218). These comments apply equally to the simplified reporting of
gender differences, and differences in performance between Indigenous and non-
Indigenous students. It is the arguments advanced in the “more superficial tone of
the print media reports” that capture the attention of the general public and shape
the sociocultural norms and expectations of the broader society. These norms and
expectations are, as mentioned above, among the factors identified by Hyde and
Mertz (2009) (among others) as contributing to or averting the emergence of gender
difference in performance in mathematics.

Unease has been expressed, both nationally and internationally, about the neg-
ative impact of high stake, national testing. Common concerns:

range from the reliability of the tests themselves to their impact on the well-being of
children. This impact includes the effect on the nature and quality of the broader learning
experiences of children which may result from changes in approaches to learning and
teaching, as well as to the structure and nature of the curriculum (Polesel 2012, p. 4).

Disadvantages stemming from blanket reporting of results in large scale exam-
inations have also been widely discussed and selectively elaborated by Berliner
(2011). Although his remarks were aimed at indiscriminate and shallow reporting of
the PISA results of selected groups of students in the USA, many of his comments are
equally applicable to the coverage of performance of Indigenous students on the
Australian NAPLAN tests. Three of his concerns seem highly relevant with respect to
the portrayal of the numeracy results of Indigenous students: “what was not repor-
ted”, “social class”, and “the rest of the curriculum”.

What Was not Reported

Each year the NAPLAN data are published, the rather high proportion of Indige-
nous students who fail to meet the nationally prescribed minimum numeracy

standard attracts the attention of educators and the wider community. As noted by
Forgasz and Leder (2011), p. 213:

The lower performance of Indigenous students, compared with the wider Australian school
population, attracted sustained media attention. The discovery that Aboriginal students
living in metropolitan areas as a group performed almost as well as their non-Indigenous
peers received less media attention than the more startling finding that Aboriginal students
living in remote communities had an extremely high failure rate of 70-80 %. ‘A combi-
nation of low employment and poor social conditions were explanations offered for the
distressingly poor performance... their different pass rates are the result of different
schooling’ (and a high level of absenteeism).

Aggregating data for all Indigenous students overlooks the large diversity within
this group, the range of different needs that inevitably accompany such diversity and
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the fact that there are also Indigenous students who perform at the highest level on the
NAPLAN test. Pang et al. (2011) identified how valuable data are lost when the
performance of a multi ethnic group is described and treated as a single entity, rather
than reportedly separately for each constituent group. “Educational policies and
statistical practices in which achievement is measured using the (group) aggregate
result in over-generalized findings” (p. 384) and hide, rather than identify, the
strengths and needs of the different subgroups. These remarks are highly relevant
given the many subgroups within the Indigenous community. Gross reporting of
achievement outcomes fails to recognize the substantially different backgrounds,
locations, needs, and capabilities of individuals within the broader group.

Social Class

There is much diversity in the home background of Indigenous students. Some live in
remote areas; others in urbanized centres with access, inside and outside the home, to
the same resources as non-Indigenous students. Social class related differences in
performance apply to both Indigenous and non-Indigenous students. Although In-
digeneity and family background are among the categories reported separately for
group results on the NAPLAN test, there is no explicit information about the inter-
active effects of these variables on performance. To paraphrase Berliner (2011): the
scores of Indigenous students, as a group, are likely to remain low, “not because of the
quality of its teachers and administrators, necessarily, but because of the distribution
of wealth and poverty and the associated social capital that exist in schools” (p. 83) in
different metropolitan and remote communities. In the reporting of NAPLAN data for
Indigenous students, the emphasis is disproportionately on those performing below
expectations without sufficient recognition of confounding, contributing factors,
while high performing Indigenous students remain largely invisible.

The Rest of the Curriculum

Under this heading Berliner (2011) focuses particularly on the narrowing of the
curriculum, within and beyond mathematics, when the perceived scope and
requirements of a national testing program overshadow other considerations and
influence the delivery of educational programs. Although this criticism cannot be
ignored with respect to the NAPLAN tests, [ want to focus here on another, equally
pervasive issue.

In recent years, many special programs for Indigenous students have been
devised, and implemented with varying degrees of success. Difficulties associated
with achieving a satisfactory synchrony between the intended and experienced
curriculum for Indigenous students in remote communities have been discussed by
Jorgensen and Perso (2012).
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In the central desert context, the Indigenous people speak their home languages which are
shaped by, and also shape, their worldviews. In Pitjantjatjara, for example, the language is
quite restricted in terms of number concepts. The lands of the desert are quite stark with few
resources so the need for a complex language for number is limited. As such, the counting
system is one of ‘one, two, three, big mob’. It is rare that a collection of three or more
occurs so the need for a more developed number system is not apparent. Even when living
in community, the need for number is limited. Few people are aware of their birthdates, and
numbers in community are very limited in terms of home numbers or prices in the local
store. As such, the immersion in number that is common in urban and regional centres is
very limited in remote communities. Therefore, many of the taken for granted assumptions
about number that are part of a standard curriculum are limited in this context. This makes
teaching many mathematical/number concepts quite challenging as it is not only the
teaching of mathematical concepts and processes but a process of induction into a new
culture and new worldview (Jorgensen and Perso, pp. 127-128).

Many Indigenous students live and learn in conditions more closely aligned to
mainstream educational life in Australia than that depicted for Pitjantjatjara. Nev-
ertheless, this snapshot of the prevailing norms and customs of one community
highlights factors that will confound a simplistic interpretation of Indigenous group
performance data.

NAPLAN and Mathematics Education Research

Not surprisingly, the introduction of NAPLAN has already fuelled a variety of
research projects. An overview of work referring substantively to NAPLAN data
and presented at the joint conference in 2011 of the Australian Association for
Mathematics Teachers (AAMT) and Mathematics Education Research Group of
Australasia (MERGA) is summarized in Table 3. It provides a useful indication of
the scope and diversity of these investigations.5 It is worth noting that the 2011
conference represented the first time the two associations held a fully joint con-
ference. According to Clark et al. (2011) it was a unique opportunity for “practi-
tioners and researchers to discuss key issues and themes in mathematics education,
so that all can benefit from the knowledge gained through rigorous research and the
wisdom of practice” (p. iii). In addition to “participants from almost every uni-
versity in Australia and New Zealand, teachers from government and nongovern-
ment schools systems throughout Australia and officers from government Ministries
of Education” (Clark. et al. 2011), p. iii, there were authors and presenters from a
range of other countries.’

3 Details are extracted from the published proceedings of this joint conference, comprising 130
papers. The proceedings consisted of two sets of papers: Research papers and Professional
papers, reviewed respectively according to established MERGA and AAMT reviewing processes.
S These included Singapore, the United States of America, Papua New Guinea and the United
Kingdom.
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Reference to NAPLAN tests was made in some 10 % of the published papers. As
can be seen from Table 3, aspects covered in these papers included issues pertaining
to the development of the tests, interpreting the published results of the tests, using
test results for curriculum development, and examining the performance of groups
of interest, specifically boys and girls and Indigenous students. In some papers
reference to NAPLAN data was very much secondary to the core issue explored, for
example its (seemingly increasing) use as part of a series of measures to identify a
specific group worthy, or in need of, further attention. What could be learnt from
the NAPLAN tests about the performance and numeracy needs of high achieving
students has, however, not yet attracted research attention. The finding by Pierce
and Chick is particularly disturbing. When asked about the statistical and graphical
summaries of NAPLAN data relevant to their students the reactions of teachers in
their sample ranged “from those verging on the statistics-phobic ... through to deep
engagement with the issues”. The NAPLAN national reports contain much valuable
and potentially usable data. But how much of these are actually understood and
used constructively?

Final Words

After collating information from some 70 public opinion polls in which questions
about the efficacy of national tests were included, Phelps (1998) reported:

The majorities in favor of more testing, more high-stakes testing, or higher stakes in testing
have been large, often very large, and fairly consistent over the years and across polls and
surveys and even across respondent groups (with the exception of some producer groups:
principals, local administrators, and, occasionally, teachers) (p. 14) .

The data on which Phelps based his conclusions are now somewhat dated. How
the Australian public today values national tests, and in particular the NAPLAN
testing regime, is a question still waiting to be investigated. When planning future
research activities, whether linked to NAPLAN, to gender and mathematics per-
formance, to issues pertaining to Indigenous students, or to the needs of highly able
students, the recommendation of Purdie and Buckley (2010) is well worth heeding:

Although it is important to continue small, contextualised investigations of participation
and engagement issues, more large-scale research is called for. Unless this occurs,
advancement will be limited because sound policy and generalised practice cannot be
extrapolated from findings that are based on small samples drawn from diverse commu-
nities (p. 21).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Early Algebraic Thinking:
Epistemological, Semiotic,
and Developmental Issues

Luis Radford

Abstract In this article I present some findings of an ongoing 5-year longitudinal
research program with young students. The chief goal of the research program is a
careful and systematic investigation of the genesis of embodied, non-symbolic
algebraic thinking and its progressive transition to culturally evolved forms of
symbolic thinking. The investigation draws on a cultural-historical theory of
teaching and learning—the theory of objectification—that emphasizes the sensible,
embodied, social, and material dimension of human thinking and that articulates a
cultural view of development as an unfolding dialectic process between culturally
and historically constituted forms of mathematical knowing and semiotically
mediated classroom activity.

Keywords Sensuous cognition - Vygotsky - Arithmetic versus algebraic thinking

Introduction

In light of the legendary difficulties that the learning of algebra presents to students,
it has been suggested that a progressive introduction to algebra in the early grades
may facilitate students’ access to more advanced algebraic concepts later on
(Carraher and Schliemann 2007). An early development of algebraic thinking may,
in particular, ease students’ contact with algebraic symbolism (Cai and Knuth 2011).

The theoretical grounding of this idea and its practical implementation remain,
however, a matter of controversy. Traditionally, algebra has been taught only after
students have had the opportunity to acquire a substantial knowledge of arithmetic.

L. Radford (IX)
Université Laurentienne, Ontario, Canada
e-mail: Lradford @laurentian.ca

© The Author(s) 2015 209
S.J. Cho (ed.), The Proceedings of the 12th International Congress
on Mathematical Education, DOI 10.1007/978-3-319-12688-3_15



210 L. Radford

That is, arithmetic thinking has been assumed to be a prerequisite for the emergence
and development of algebraic thinking. Clearly, an introduction to algebra in the early
grades does not conform to such an assumption. Now, if this is so, if algebra needs not
to come after arithmetic, the question is: What is the difference and relationship
between these two disciplines? Evading these questions does not do us any favours.

In the next section, I briefly discuss the question of the relationship between
algebra and arithmetic. Drawing on historical and educational research, I suggest an
epistemological distinction between the forms of thinking that are required in both
disciplines. Then, I present some findings of a 5-year longitudinal classroom
research program where 8-year old students were followed as they moved from
Grade 2 to Grade 6. I shall focus in particular on the genesis and development of
embodied, non-symbolic algebraic thinking and its progressive transition to cultural
forms of symbolic thinking.

Arithmetic and Algebra: Filiations and Ruptures

The question of the filiations and ruptures between arithmetic and algebra was one
of the major educational research themes in the 1980s and 1990s. This question was
at the heart of several research programs. It was often discussed in various PME’s
Working Groups and research reports (Bednarz et al. 1996; Sutherland et al. 2001).

Filloy and Rojano’s (1989) work points to one of the fundamental breaks
between arithmetic and algebra—what they call a cur. This cut was observed in
clinical studies where students faced equations of the form Ax + B = Cx + D. To
solve equations of this form, the arithmetic methods of “reversal operations”—
which are effective to solve equations of the type Ax + B = D (the students usually
subtract B from D and divide by A)—are no longer applicable. The students have to
resort to a truly algebraic idea: to operate on the unknown. In order to operate on
the unknown, or on indeterminate quantities in general (e.g., variables, parameters),
one has to think analytically. That is, one has to consider the indeterminate
quantities as if they were something known, as if they were specific numbers (see,
e.g., Kieran 1989, 1990; Filloy et al. 2007). From a genetic viewpoint, this way of
thinking analytically—where unknown numbers are treated on a par with known
numbers—distinguishes arithmetic from algebra. And it is so characteristic of
algebra that French mathematician Frangois Viéte (one of the founders of modern
symbolic algebra) identified algebra as an analytic art (Victe 1983).

A consequence of this difference between arithmetic and algebra is the
following. Because of algebra’s analytic nature, formulas in algebra are deduced.
Failing to notice this central analytic characteristic of algebra may lead us to think
that the production of formulas in patterns (regardless of how they were produced)
is a symptom of algebraic thinking. But as Howe (2005) notes, producing a formula
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might merely be a question of guessing the formula and trying it. I completely agree
with him that there is nothing algebraic in trying and guessing. Try-and-guess
strategies are indeed based on arithmetic concepts only.

Epistemological research has also made a contribution to the conversation about
the distinction between arithmetic and algebra. This research suggests that the
difference between these disciplines cannot be cast in terms of notations, as it has
often been thought. The alphanumeric algebraic symbolism that we know today is
indeed a recent invention. In the west it appeared during the Renaissance, along
with other forms of representation, like perspective in painting and space repre-
sentation, underpinned by changes in modes of production and new forms of labour
division. The birth of algebra is not the birth of its modern symbolism. In his
Elements, Euclid resorted to letters without mobilizing algebraic ideas. Ancient
Chinese mathematicians mobilized algebraic ideas to solve systems of equations
without using notations. Babylonian scribes used geometric diagrams to think
algebraically. As a result, the use of letters in algebra is neither a necessary nor a
sufficient condition for thinking algebraically. Naturally, our modern algebraic
symbolism allows us to carry out transformations of expressions that may be
difficult or impossible with other forms of symbolism. However, as we shall see in a
moment, the rejection of the idea that notations are a manifestation of algebraic
thinking, opens up new avenues to the investigation of elementary forms of
algebraic thinking in young students.

Some Background of the Research

The investigation of young students’ algebraic thinking that I report here started in
2007. The decade before, I was interested in investigating adolescent and young
adults’ algebraic thinking. From 1998 to 2006 I had the opportunity to follow
several cohorts of students from Grade 7 until the end of high school. Like many of
my colleagues, I started focusing on symbolic algebra, that is, an algebraic activity
mediated by alphanumeric signs. One of my goals was to understand the processes
students undergo in order to build symbolic algebraic formulas. My working
hypothesis was that in order to understand the manner in which students bestow
meaning to alphanumeric expressions, we should pay attention to language
(Radford 2000). However, during the analysis of hundreds of hours of videotaped
lessons, it became apparent that our students were not resorting only to language,
but also to gestures, and other sensuous modalities in ways that were far from mere
byproducts of interaction. It was clear that gestures and other embodied forms of
action were an integral part of the students’ signifying process and cognitive
functioning. The problem was to come up with suitable and theoretically articulated
explanatory principles, in order to provide an interpretation of the students’ algebraic
thinking that would integrate those embodied elements that the video analyses
put into evidence. Although by the early 2000s, some linguists and cognitive
psychologists had developed interesting work around the question of embodiment
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(Lakoff and Nufiez 2000), their accounts were not easy to apply to such complex
settings as classrooms; nor were they necessarily taking into account the historical
and cultural dimension of knowledge. In the following years, with the help of some
students and collaborators, I was able to refine our theoretical approach and reveal
non-conventional, embodied forms of algebraic thinking (Radford 2003). In Radford
et al. (2007), we reported a passage in which Grade 9 students displayed an amazing
array of sensuous modalities to come up with an algebraic formula in a pattern
activity. What is amazing in the reported passage is the subtle coordination of words,
written signs, drawn figures, gestures, perception, and rhythm. Figure 1 presents an
interesting series of gestures that a student makes while trying to perceive a math-
ematical structure behind the sequence. Focusing on the first term of the sequence
(which is shown in the three first pictures of Fig. 1), Mimi, the student, points with her
index to the first circle on the top row and says “one;” she moves the finger to the first
circle on the bottom row and repeats “one.” Then she moves the index to her right and
makes a kind of circular indexical gesture to point to the three remaining circles,
while saying “plus three.” She starts again the same series of gestures, this time
pointing to the second term of the sequence (see second term in Pic 4 of Fig. 1),
saying now “two, two plus three.” She restarts the same series of gestures in dealing
with the third term (see third term of the sequence in Fig. 1, Pic 4; we have added
dashed lines to the terms of the sequence to indicate the circles that Mimi points to as
she makes her gestures). In doing so, Mimi reveals an embodied formula that, instead
of being made up of letters, is made up of words and gestures: the formula is
displayed in concreto: “one, one, plus three; two, two plus three; three, three, plus
three.” She then applied the formula to Term 10 (which was not drawn and had to be
imagined): “you will have 10 dots [i.e., circles] (she makes a gesture on the desk to
indicate the position of the circles), 10 dots (she makes a similar gesture), plus 3.” The
embodied formula rests on a use of variables and functional relations that conform to
the requirement of analyticity that, as I suggested previously, is characteristic of
algebra. Although the variable ‘number of the term’ is not represented through a
letter, it appears embodied in its surrogates—the particular numbers the variable
takes. The formula is then shown as the series of calculations on the instantiated
variable. And, as such, the formula is algebraic. Now, our Grade 9 students did use
alphanumeric symbolism and built the formula “n + n + 3,” which was then trans-
formed into “n x 2 + 3” (Radford et al. 2007). Hence, these Grade 9 students went
unproblematically from an embodied form of thinking to a symbolic one.
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Fig. 1 A Grade 9 student displaying an impressive multimodal coordination of semiotic
resources. Recostructed from the video
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We came back to other published and unpublished analyses and noticed that the
subtle multimodal coordination of senses and signs was a widespread phenomenon
in adolescents. Then arose a research question that has kept me busy for the past
6 years: would similar embodied forms of algebraic thinking be accessible to young
students? And if yes, how would these embodied forms of thinking develop as the
students moved from one grade to the next? As Grade 2 students are still learning to
read and write in Ontario, Grade 2 looked like a good place to start. This is how I
moved to a primary school and embarked on a new longitudinal research.

Grade 2: Young Students’ Non-symbolic Algebraic
Thinking

The first generalizing activity in our Grade 2 class was based on the sequence
shown in Fig. 2.

We asked the students to extend the sequence up to Term 6. In subsequent
questions, we asked them to find out a procedure to determine the number of
rectangles in Terms 12 and 25. Figure 3 shows the answers provided by two
students: Carlos and James.

Contrary to what we observed in our research with adolescent students, in
extending the sequence, most of our Grade 2 students focused on the numerical aspect
of the terms only. Counting was the leading activity. Generally speaking, to extend a
figural sequence, one needs to grasp a regularity that involves the linkage of two
different structures: one spatial and the other numerical. From the spatial structure
emerges a sense of the rectangles’ spatial position, whereas their numerosity emerges
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Fig. 2 The first terms of a sequence that Grade 2 students investigated in an algebra lesson
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Fig. 3 To the left, Carlos, counting aloud, points sequentially to the squares in the top row of
Term 3. In the middle, Carlos’ drawing of Term 5. To the right, James’ drawing of Terms 5 (top)
and 6 (bottom)
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from a numerical structure. While Carlos attends to the numerical structure in the
generalizing activity, the spatial structure is not coherently emphasized. This does not
mean that Carlos, James and the other students do not see the figures as composed of
two horizontal rows. What this means is that the emphasis on the numerical structure
somehow leaves in the background the geometric structure. We could say that the
shape of the terms of the sequence is used to facilitate the counting process. Thus, as
picture 1 in Fig. 3 shows, Carlos always counted the rectangles in a spatial orderly
way. The geometric structure, however, does not come to be related to the numerical
one in a meaningful and efficient way. It is not surprising within this context, then,
that the students encountered difficulties in answering our questions about Terms 12
and 25. Without resorting to an efficient way of counting, the counting process of
rectangles one-by-one in remote terms beyond the perceptual field became extremely
difficult.

Because of their spatial connotation, it might not be surprising that, in extending
the sequences, our young students did not use deictic terms, like “bottom” or “top.”
In the cases in which the students did succeed in linking the spatial and numerical
structures, the spatial structure appeared only ostensibly, i.e., “top” and “bottom”
rows were not part of the students’ discourse but were made apparent through
pointing and actual row counting: they remained secluded in the embodied realm of
action and perception. The next day, the teacher discussed the sequence with the
students and referred to the rows in an explicit manner to bring to the students’
attention the linkage of the numerical and spatial structures. To do so, the teacher
drew the first five terms of the sequence on the blackboard and referred to an
imaginary student who counted by rows. “This student,” she said to the class,
“noticed that in Term 1 (she pointed to the name of the term) there is one rectangle on
the bottom (and she pointed to the rectangle on the bottom), one on the top (pointing
to the rectangle), plus one dark rectangle (pointing to the dark rectangle).” Next, she
moved to Term 2 and repeated in a rhythmic manner the same counting process,
coordinating the spatial deictics “bottom” and “top,” the corresponding spatial rows
of the figure, and the number of rectangles therein. To make sure that everyone was
following, she started again from Term 1 and, at Term 3, she invited the students to
join her in the counting process, going together up to Term 5 (see Fig. 4).

Then, the teacher asked the class about the number of squares in Term 25. Mary
raised her hand and answered: “25 on the bottom, 25 on top, plus 1.” The class

A

Fig. 4 The teacher and the students counting rhythmically say (see Pic 1) “Term 5”, (Pic 2) “5 on
the bottom”, (Pic 3) “5 on top”, (Pic 4) “plus 1.”
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Fig. 5 Karl explaining Term 50

spent some time dealing with “remote” terms, such as Terms 50 and 100. Figure 5
shows Karl explaining to the teacher and his group-mates what Term 50 looks like.
In picture 1, Karl moves his arm and his body from left to right in a vigorous
manner to indicate the bottom row of Term 50, while saying that there would be 50
white rectangles there. He moves his arm a bit further and repeats the moving arm-
gesture to signify the top row of Term 50. Then he makes a semi-circle gesture in
the air to signify the dark square.
The students played for a while with remote terms. In Karl’s group, one of the
questions revolved around Term 500 and Term 50:
Karl How about doing 500 plus 500?
Erica  No. Do something simpler
Karl (Talking almost at the same time) 500 plus 500 equals 1000
Erica  plus 1, 1001
Karl plus 1, equals 1001
Cindy (Talking about Term 50) 50 plus 50, plus 1 equals 101

Schematically speaking, the students’ answer to the question of the number of
rectangles in remote particular terms was “x + x + 17 (where x was always a specific
number). The formula, I argue, is algebraic in nature, even if it is not expressed in
standard notations. In this case, indeterminacy and analyticity appear in an intuited
form, rather than explicitly. A natural question is: Is this all that Grade 2 students
are capable of? In fact, the answer is no. As we shall see in the next section, we
were able to create conditions for the emergence of more sophisticated forms of
algebraic thinking.

Beyond Intuited Indeterminacy: The Message Problem

On the fifth day of our pattern generalization teaching-learning sequence, the teacher
came back to the sequence from the first day (Fig. 2). To recapitulate, she invited
some groups to share in front of the class what they had learned about that sequence
in light of previous days’ classroom discussions and small group work. Then, she
asked a completely new question to the class. She took a box and, in front of the
students, put in it several cards, each one having a number: 5, 15, 100, 104, etc. Each
one of these numbers represented the number of a term of the sequence shown in
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Fig. 2. The teacher invited a student to choose randomly one of the cards and put it
into an envelope, making sure that neither the student herself nor the teacher nor
anybody else saw the number beforehand. The envelope, the teacher said, was going
to be sent to Tristan, a student from another school. The Grade 2 students were
invited to send a message that would be put in the envelope along with the card. In
the message the students would tell Tristan how to quickly calculate the number of
rectangles in the term indicated on the card. The number of the term was hence
unknown. Would the students be able to generalize the embodied formula and
engage with calculations on this unknown number? In other terms, would our Grade
2 students be able to go beyond intuited indeterminacy and its corresponding
elementary form of algebraic thinking? As in the previous days, the students worked
in small groups of three. The usual response was to give an example. For instance,
Karl suggested: “If the number [on the card] is 50, you do 50, plus 50, plus 1.” The
teacher commended the students for the idea, but insisted that the number could be
something else and asked if there would be another way to say it without resorting to
examples. After an intense discussion, the students came up with a suggestion:

Erica It’s the number he has, the same number at the bottom, the same number

at the top, plus 1...
Teacher That is excellent, but don’t forget: he doesn’t have to draw [the term]. He
just has to add... So, how can we say it, using this good idea?

Erica We can use our calculator to calculate!
Teacher Ok. And what is he going to do with the calculator?
Erica He will put the number... (she pretends to be inserting a number into the

calculator)... plus the same number, plus 1 (as she speaks, she pretends
to be inserting the number again, and the number 1).

Another group suggested “twice the number plus 1.” Naturally, the use of the
calculator is merely virtual. In the students’ real calculator, all inputs are specific
numbers. Nevertheless, the calculator helped the students to bring forward the
analytic dimension that was apparently missing in the students’ explicit formula.
Through the virtual use of the calculator, calculations are now performed on this
unspecified instance of the variable—the unknown number of the figure.

Let me summarize our Grade 2 students’ accomplishments during the first week
that they were exposed to algebra. In the beginning, most of our students were
dealing with figural sequences like the one in Fig. 1 through a focus on numerosity.
Finding out the number of elements (rectangles, in the example here discussed) in
remote terms was not easy. The joint counting process in which the teacher and
students engaged during the second day helped the students to move to other ways
of seeing sequences. The joint counting process made it possible for the students to
notice and articulate new forms of mathematical generalization. In particular, they
became aware of the fact that the counting process can be based on a relational
idea: to link the number of the figure to relevant parts of it (e.g. the squares on the
bottom row). This requires an altogether new perception of the number of the term
and the terms themselves. The terms appear now not as a mere bunch of ordered
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rectangles but as something susceptible to being decomposed, the decomposed
parts bearing potential clues for algebraic relationships to occur. Interestingly
enough, historically speaking, the “decomposition” of geometric figures in simpler
forms (e.g., straight lines) was systematically developed in the 17th century by
Descartes in his Geometry, a central book in the development of algebraic ideas.
The decomposition of figures permitted the creation of relationships between
known and unknown numbers and the carrying out of calculations on them
“without making a distinction between known and unknown [parts]” (Descartes
1954, p. 8). Our examples—as well as those reported by other researchers with
other Grade 2 students—suggest that the linkage of spatial and numerical structures
constitutes an important aspect of the development of algebraic thinking. Such a
linkage rests on the cultural transformation in the manner in which sequences can
be seen—a transformation that may be termed the domestication of the eye
(Radford 2010). For the modern mathematician’s eye, the complexity behind the
perception of simple sequences like the one our Grade 2 students tackled remains in
the background, to the extent that to see things as the mathematician’s eye does,
ends up seeming natural. However, as our results intimate, there is nothing natural
there. To successfully attend to what is algebraically meaningful is part of learning
to think algebraically. This cultural transformation of the eye is not specific to
Grade 2 students. It reappears in other parts of the students’ developmental
trajectory. It reappears, later on, when students deal with factorization, where
discerning structural synfactic forms become a pivotal element in recognizing
common factors or prototypical expressions.

All in all, the linkage of spatial and numerical structures resulted, as we have
seen, in the emergence of an elementary way of algebraic thinking that manifested
itself in the embodied constitution of a formula where the variable is expressed
through particular instances, which we can schematize as “x + x +1” (where x was
always a specific number). This formula, I argued on semiotic and epistemological
grounds, is genuinely algebraic. That does not mean that all formulas provided by
young students are algebraic. To give an example, one of the students suggested
that to find out the number of elements in Term 100, you keep adding 2, and 2 and 2
to Term 1 until you get to Term 100. This is an example of arithmetic generalization
—mnot of an algebraic one, as there is no analyticity involved. The ‘“Message
Problem” offered the students a possibility to go beyond intuitive indeterminacy
and to think, talk, and calculate explicitly on an unknown number. Although several
students were able to produce an explicit formula (e.g., “the number plus the
number, plus 17 or “twice the number plus 17), other students produced a formula
where the general unknown number was represented through an example. This is
what Mason (1996) calls seeing the general in or through the particular. Both the
explicit formula and the general-through-the-particular formula bear witness to a
more sophisticated form of elementary algebraic thinking than the embodied one
where the variable and the formula are displayed in action.

Revealing our Grade 2 students’ aforementioned elementary, pre-symbolic
forms of algebraic thinking responded to our first research question—i.e., whether
the embodied forms of thinking that we observed in adolescents are accessible to
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younger students. Yet, there are differences. Adolescents in general tend to gesture,
talk and symbolize in harmonious coordinated manners (often after a period of
mismatch between words and gestures (Arzarello and Edwards 2005; Radford
2009a). Our young students, in contrast, tend to gesture with energetic intensity (see
e.g. Fig. 5). The energetic intensity may decrease as the students become more and
more aware of the variables and the relationship between known and unknown
numbers. However, the energetic intensity remains relatively pronounced as
compared to what we have seen in adolescents (Radford 2009a, b). This
phenomenon may be a token of a problem related to our second research question,
namely: How does young students’ algebraic thinking develop?

Developmental questions are very tricky, as psychologists know very well. It is
not enough to collect data year after year and merely compare what students did in
Year 1, to what they did in Year 2, etc. Exposing differences shows something but
does not explain anything. 1 struggled with the question of the development of
students’ mathematical thinking for about a decade when I was doing research with
adolescents, and I have to confess that I was unable to come up with something
satisfactory. Yet, my research with adolescents helped me to envision a sensuous
and material conception of mathematical cognition (Radford 2009b) that was
instrumental in tackling the developmental question. Before going further in my
account of what the students did in the following years, I need to dwell on the
question of development first.

Thinking and Its Development

In contrast to mental cognitive approaches, thinking, I have suggested (Radford
2009b), is not something that solely happens ‘in the head.” Thinking may be
considered to be made up of material and ideational components: it is made up of
(inner and outer) speech, objectified forms of sensuous imagination, gestures,
tactility, and our actual actions with cultural artifacts. Thus, in Fig. 5, for instance,
Karl is thinking with and through the body in the same way that he is thinking
through and in language and the arsenal of conceptual categories it provides for us
to notice, highlight, and attend to things, and intend them in certain cultural topical
ways. The same can be said of the teacher in Fig. 4. Although it might be argued
that the teacher and the student are merely communicating ideas, I would retort that
this division between thinking and communicating makes sense only within the
context of a conception of the mind as a private space within us, where ideas
are created, computed and only then communicated. This computational view of the
mind has a long history in our Western idealist and rationalist philosophical
traditions. The view that I am sketching here goes against the dualistic assumption
of mind versus body or ideal versus material. Thinking appears here as a an ideal-
material form of reflection and action, which does not occur solely in the head but
also in and through a sophisticated semiotic coordination of speech, body, gestures,
symbols and tools. This is why, during difficult conversations, rather than digging
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in the head first to find the ideas that we want to express, we hear ourselves thinking
as we talk, and realize, at the same time as our interlocutors, what we are thinking
about.

Now to say that thinking is made up of (inner and outer) speech, objectified
forms of sensuous imagination, gestures, tactility, and our actual actions with
cultural artifacts does not mean that thinking is a collection of items. If we come
back to our examples, Carlos (see Fig. 3, left), while moving the upper part of his
body, was resorting to pointing gestures and words to count the rectangles in the
first terms of the sequence. Words and gestures were guiding his perceptual activity
to deal with the numerosity of the terms. Like Carlos, Karl moved his upper body,
made arm- and hand-gestures and resorted to language (Fig. 5). In stating the
formula “the number plus the number, plus 1,” Erica gestured as if she was pressing
keys in the calculator keyboard (Radford 2011). Yet, the relationship between
perception, gestures and words is not the same. What it means is that thinking is not
a mere collection of items. Thinking is rather a dynamic unity of material and ideal
components. This is why the same gesture (e.g. an indexical gesture pointing to the
rectangles on top of Term 3) may mean something conceptually sophisticated or
something very simple. That is, the real significance of a component of thinking can
only be recognized by the role such a component plays in the context of the unity of
which it is a part.

Now I can formulate my developmental question. If thinking is a systemic unity
of ideational and material components, it would be wrong to study its development
by focusing on one of its components only. Thus, the development of algebraic
thinking cannot be reduced to the development of its symbolic component (notation
use, for instance). The development of algebraic thinking must be studied as a
whole, by taking into account the interrelated dialectic development of its various
components (Radford 2012). If in a previous section I talked about the ‘domesti-
cation of the eye,’ this domestication has to be related to the ‘domestication of the
hand’ as well. And, indeed, this is what happened in our Grade 2 class from the
second day on. As we recall, the teacher (Fig. 4) made extensive use of gestures and
an explicit use of rhythm, and linguistic deictics, followed later by the students,
who started using their hands and their eyes in novel ways, opening up new
possibilities to use efficient and evolved cultural forms of mathematical general-
ization that they successfully applied to other sequences with different shapes.

To sum up, it is not only the tactile, the perceptual, or the symbol-use activity
that is developmentally modified. In the same way as perception develops, so do
speech (e.g., through spatial deictics) and gesture (through rhythm and precision).
Perception, speech, gesture, and imagination develop in an interrelated manner.
They come to form a new unity of the material-ideational components of thinking,
where words, gestures, and signs more generally, are used as means of objectifi-
cation, or as Vygotsky (Vygotsky 1987), p. 164 put it, “as means of voluntary
directing attention, as means of abstracting and isolating features, and as a means of
[...] synthesizing and symbolising”. Within this context, to ask the question of the
development of algebraic thinking is to ask about the appearance of new systemic
structuring relationships between the material-ideational components of thinking
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(e.g., gesture, inner and outer speech) and the manner in which these relationships
are organized and reorganized. It is through these developmental lenses that I
studied the data collected in the following years and that I summarize in the rest of
this article, focusing on Grades 3 and 4.

Grade 3: Semiotic Contraction

As usual, in Grade 3 the students were presented with generalizing tasks to be
tackled in small groups. The first task featured a figural sequence, S,, having
n circles horizontally and n—1 vertically, of which the first four terms were given.
Contrary to what he did first in Grade 2, from the outset, Carlos perceived the
sequence taking advantage of the spatial configuration of its terms. Talking to his
teammates about Term 4 he said: “here (pointing to the vertical part) there are four.
Like you take all this [i.e., the vertical part] together (he draws a line around), and
you take all this [i.e., the horizontal part] together (he draws a line around; see
Fig. 6, pic 1). So, we should draw 5 like that (through a vertical gesture he indicates
the place where the vertical part should be drawn) and (making a horizontal gesture)
5 like that” (see Fig. 6, pics 2-3).

When the teacher came to see the group, she asked Carlos to sketch for her Term
10, then Term 50. The first answer was given using unspecified deictics and
gestures. He quickly said: “10 like this (vertical gesture) and 10 like that” (hori-
zontal gesture). The specific deictic term “vertical” was used in answering the
question about Figure 50. He said: “50 on the vertical... and 49...” When the
teacher left, the students kept discussing how to write the answer to the question
about Term 6. Carlos wrote: “6 vertical and 5 horizontal.”

In developmental terms, we see the evolution of the unity of ideational-material
components of algebraic thinking. Now, Carlos by himself and with great ease
coordinates gestures, perception, and speech. The coordination of these outer
components of thinking is much more refined compared to what we observed in
Grade 2. This refinement is what we have called a semiotic contraction (Radford
2008a), that is, a genetic process in the course of which choices are made between
what counts as relevant and irrelevant; it leads to a contraction of previous semiotic
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Fig. 6 To the left, Term 4 of the given sequence. Middle, Carlos’s vertical and horizontal gestures
while imagining and talking about the still to be drawn Term 5. To the right, Carlos’s drawings of
Terms 5 and 6
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activity, resulting in a more refined linkage of semiotic resources. It entails a deeper
level of consciousness and intelligibility of the problem at hand and is a symptom
of learning and conceptual development.

Grade 4: The Domestication of the Hand

To check developmental questions, in Grade 4 we gave the students the sequence
with which they started in Grade 2 (see Fig. 2). This time, from the outset, Carlos
perceived the terms as being divided into two rows. Talking to his teammates and
referring to the top row of Term 5, he said as if talking about something banal: “5
white squares, ‘cause in Term 1, there is 1 white square (making a quick pointing
gesture)... Term 2, 2 [squares] (making another quick pointing gesture); 3, (another
quick pointing gesture) 3.” He drew the five white squares on the top row of Term 5
and added: “after that you add a dark square.” Then, referring to the bottom row of
Term 4: “there are 4; there [Term 5] there are 5.” When the teacher came to see their
work, Carlos and his teammates explained “We looked at Term 2, it’s the same
thing [i.e., 2 white squares on top]... Term 6 will have 6 white squares.”

There was a question in the activity in which the students were required to
explain to an imaginary student (Pierre) how to build a big term of the sequence (the
“Big Term Problem”). In Grade 2, the students chose systematically a particular
term. This time, Carlos wrote: “He needs [to put as many white squares as] the
number of the term on top and on the bottom, plus a dark square on top.”

The “Message Problem” Again

At the end of the lesson, the students tackled the “Message Problem” again. As
opposed to the lengthy process that, in Grade 2, preceded the building of a message
without particular examples (Radford 2011), this time the answer was produced
quicker:

David The number of the term you calculate twice and add one. That’s it!
Carlos  (Rephrasing David’s idea) twice the number plus one

The activity finished with a new challenge. The teacher asked the students to add
to the written message a “mathematical formula.” After a discussion in Carlos’s
group concerning the difference between a phrase and a mathematical formula, the
students agreed that a formula should include operations only. Carlos’s formula is
shown in pic 3 of Fig. 7.

From a developmental perspective, we see how Carlos’s use of language has
been refined. In Grade 2 he was resorting to particular terms (Term 1,000) to answer
the same question about the “big term.” Here he deals with indeterminacy in an
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Fig. 7 Left, Carlos’ drawings of Terms 5 and 6. Right, Carlos’s formulas

easy way, through the expression “the number of the term.” He even goes further
and produces two symbolic expressions to calculate the total of squares in the
unspecified term (Fig. 7, right). The semiotic activities of perceiving, gesturing,
languaging, and symbolizing have developed to a greater extent. They have reached
an interrelational refinement and consistency that was not present in Grade 2 and
was not fully developed in Grade 3. This cognitive developmental refinement
became even more apparent when the teacher led the students to the world of
notations, as we shall now see.

The Introduction to Notations

The introduction to notations occurred when the students discussed their answers to
homework based on the sequence shown in Fig. 8. The discussion took place right
after the general discussion about the “Message Problem” alluded to in the previous
sub-section.

The teacher gave the students the opportunity to compare and discuss their
answers to the homework by working in small groups. In Carlos’ group, the terms
of the sequence were perceived as made up of two rows, each one having the same
number as the number of the term plus an addition of two squares at the end (see pic
2 in Fig. 8). As Carlos suggests, referring to Term 15, “15 on top, 15 at the bottom,
plus 2, that is 32.” Or alternatively, as Celia, one of Carlos’ teammates, explains,
“I5 + 1 equals 16, then 16 + 16... which makes 32.” After about 10 min of small-
group discussion, the teacher encouraged the students to produce a formula like the
one that they just provided for the “Message Problem.” Then, the class moved to a
general discussion where various groups presented their findings. Erica went to the
Interactive White Smart Board (ISB) and suggested the following formula:
“l + 1 + 2x__ = __” The teacher asked whether it would be possible to write,
instead of the underscores, something else. One student suggested putting an
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Fig. 8 Pic 1 (left), the sequence of the homework. Pic 2 (right), Carlos’ decomposition of Term 3
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interrogation mark. The teacher acknowledged that interrogation mark could also be

used, and asked for other ideas. Samantha answered with a question:

Samantha A letter?

Teacher Ah! Could I write one plus one plus two times n? What does n mean?

A student A number...

Teacher Could we write that (i.e., one plus one plus two times n) equals n?
(Some students answered yes, others no; talking to Erica who is at the
whiteboard) Ok. Write it, write your formula (Erica writes
1+1+2x%xn=n)

Carlos No, because n (meaning the first one) is not equal to n (meaning the
second one)

Teacher Ah! Why do you say that n is not equal to n?

Carlos Because if you do 2 times n, that will not equal [the second] n

Teacher Wow!

In order not to rush the students into the world of notations, the teacher decided
to delay the question of using a second letter to designate the total. As we shall see,
this question will arise in the next activity. In the meantime, the formula was left as
I1+1+2xn=__

The next activity started right away. The students were provided with the new
activity sheet that featured the sequence shown in Fig. 9. The students were
encouraged to come up with as many formulas as possible to determine the number
of squares in any term of the sequence.

During the small-group discussion, William offers a way to perceive the terms.
Talking to Carlos, and referring to Term 6, which they drew on the activity sheet,
William says (talking about the top row): “There are 8 [squares], because 6 + 2 = 8.
You see, on the bottom it’s always the number of the term, you see?” His utterance
is accompanied by a precise two-finger gesture through which he indicates the
bottom row (see Fig. 10, left). He continues: “then, on the top, it’s always plus 2”
(making the gesture shown in Fig. 10, right).
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Fig. 9 The featured sequence of the new activity

Fig. 10 William making precise gestures to refer to Term 6
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The answer to the “Message Problem” was provided without difficulties.
Without hesitation, Carlos said: “Ok. Double the number and add 2.” The class
moved to a general discussion, which was a space to discuss different forms of
perceiving the sequence and of writing a formula. Marianne went to the ISB and
suggested that the terms could be imagined as divided into two equal rows and that
one square is added to the left and one to the right of the top row. In Fig. 11,
referring to Term 3, she points first to the top row (imagined as made up of three
squares; see Fig. 11, Pic 1). Then she points to the bottom row (Pic. 2), then to the
extra square at the top right (Pic. 3) and to the extra square at the top left (Pic. 4).
Celia proposed that a term was the same as the previous one to which two squares
are added at the right end. In Fig. 11, Pic 5 and 6, she hides the two rightmost
squares in Terms 2 and 3 to show that what remains in each case is the previous
term. The developmental sophistication that the perception-gesture-language
systemic unity has achieved is very clear.

Then, the students presented their formulas. Carlos presented the following
formula: N + N + 2 = _. The place for the variable in the formula is symbolized with
a letter and the underscore sign. Letters in Carlos’s formula appear timidly drawn,
still bearing the vestiges of previous symbolizations (see Fig. 7, right).

The teacher asked if it would be possible to use another letter to designate the
result:

Teacher Well, we started with letters [in your formula]. Maybe we could continue
with letters?

Carlos No!

Teacher Why not?

Carlos An 1?

Teacher Why 1?

Caleb The answer (in French, la réponse)

Carlos completed the formula as follows: : N + N + 2 = R. Other formulas were
provided, as shown in Fig. 12:

Pic 1

Pic 4 Pic 5 Pic 6

Fig. 11 Marianne’s (Pic. 1-4) and Celia’s (Pic. 5-6) gestures
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Fig. 12 Left, some formulas from the classroom discussion. Right, formulas from Erica’s group

Synthesis and Concluding Remarks

In the first part of the article I suggested that algebraic thinking cannot be reduced to
an activity mediated by notations. As I argued in previous work, a formula to
calculate the number of rectangles in sequences like the one presented in Fig. 2,
such as “2n + 1,” can be attained by arithmetic trial-and-error methods. Algebraic
thinking, I suggested, is rather characterized by the analytic manner in which it
deals with indeterminate numbers. A rigorous video analysis convinced us that
students signify indeterminate numbers through recourse to a plethora of semiotic
embodied resources that, rather than being merely a by-product of thinking,
constitute the very sensible texture of it. From this sensuous perspective on human
cognition, it is not difficult to appreciate that 7—8-year-old students can effectively
start thinking algebraically. In the second part of the article I dealt with the question
of the development of algebraic thinking. Algebraic thinking—Iike all cultural
forms of thinking (e.g., aesthetic, legal, political, artistic)—is a theoretical form that
has emerged, evolved and refined in the course of cultural history. It pre-existed in a
developed ideal form before the students engaged in our classroom activities. The
greatest characteristic of child development consists in how this ideal form exerts a
real influence on the child’s thinking. But how can this ideal form exert such an
influence on the child? Vygotsky’s answer is: under particular conditions of
interaction between the ideal form and the child (1994). In our case, the particular
conditions of interaction between algebraic thinking as a historical ideal form and
our Grade 2 students were constituted by a sequence of activities that were inten-
tional bearers of this ideal form. Naturally, the students cannot discern the theo-
retical intention behind our questions, as this cultural ideal form that we call
algebraic thinking has still to be encountered and cognized. The lengthy, creative,
and gradual processes through which the students encounter, and become
acquainted with historically constituted cultural meanings and forms of (in our case
algebraic) reasoning and action is what I have termed, following Hegel, objectifi-
cation (Radford 2008b).

The objectification of ideal forms requires a temporal continuity and stability of
the knowledge that is being objectified. The objectification of ideal forms requires
also the mutual emotional and ethical engagement of teacher and students in the joint
activity of teaching-learning (Radford and Roth 2011; Roth and Radford 2011).



226 L. Radford

Drawing on the aforementioned idea of sensuous cognition and development,
I suggested that the development of algebraic thinking can be studied in terms of the
appearance of new systemic structuring relationships between the material-idea-
tional components of thinking (e.g., gesture, inner and outer speech) and the manner
in which these relationships are organized and reorganized in the course of the
students’ engagement in activity. The analysis of our experimental data focused on
revealing those relationships and their progressive refinement. We saw how, for
instance, the development of perception is consubstantial with the development of
gestural and symbolic activity.

The whole story, however, is much more complex. As Vygotsky (1994) argued
forcefully development can only be understood if we take into consideration the
manner in which the student is actually emotionally experiencing the world. The
emotional experience [perezhivanie] is, the Russian psychologist contended in a
lecture given at the end of his life, the link between the subject and his/her
surrounding, between the always changing subject (the perpetual being in the
process of becoming) and his/her always conceptually, politically, ideologically
moving societal environment. The explicit and meaningful insertion of perezhivanie
into developmental accounts is, I suppose, still a trickier problem to conceptualize
and investigate—an open research problem for sure.
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How We Think: A Theory of Human
Decision-Making, with a Focus
on Teaching

Alan H. Schoenfeld

Abstract Suppose a person is engaged in a complex activity, such as teaching.
What determines what that person does, on a moment-by-moment basis, as he or
she engages in that activity? What resources does the person draw upon, and why?
What shapes the choices the person makes? I claim that if you know enough about a
teacher’s knowledge, goals, and beliefs, you can explain every decision he or she
makes, in the midst of teaching. In this paper I give examples showing what shapes
teachers’ decision-making, and explain the theory.

Keywords Decision-making - Teaching - Theory

Introduction

I became a mathematician for the simple reason that I love mathematics. Doing
mathematics can be a source of great pleasure: when you come to understand it, the
subject fits together beautifully. Here I am not necessarily referring to advanced
mathematics. The child who notices that every time she adds two odd numbers the
result is even, wonders why, and the figures out the reason why:

Each odd number is made up of a number of pairs, and one ‘extra.” When you add two odd
numbers together, the extras make a pair. That means that the sum is made up of pairs, so
it’s even!

is doing real mathematics. It was that kind of experience that led me into
mathematics in the first place.

Sadly, very few people develop this kind of understanding, or this kind of
pleasure in doing mathematics. It was this realization, and the thought that it might
be possible to do something to change it, that led me into mathematics education.
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For more than 35 years I have pursued the question, “How can we develop deeper
understandings of mathematical thinking, problem solving, and teaching, so that we
can help more children experience the pleasures of doing mathematics?”

My early work was devoted to mathematical problem solving. I read Pdlya’s
(1945) book How to Solve It early in my mathematical career, and it resonated. Polya
said that mathematicians used a wide range of problem solving strategies, which he
called heuristics. When he described them, I recognized them—I used them too! I
wondered, though, why I had not explicitly been taught those strategies. The answer,
I learned, was that when people tried to teach the strategies described in Polya’s
books, students did not learn to use them effectively. This was disappointing, but it
also represented a lovely challenge. Could we understand such problem solving
strategies well enough so that we could help students learn to use them effectively?

Thus began a decade’s worth of work in which I tried to develop an understanding
of problem solving: What do effective problem solvers do, which enables them to
solve difficult problems? What do ineffective problem solvers do, that causes them to
fail in their problem solving attempts? What can we do, as teachers, to help students
become more effective problem solvers? My answers to those questions, which are
summarized very briefly below, were published in my 1985 book Mathematical
Problem Solving. The book resulted from a decade of simultaneous research on and
teaching of problem solving, in which my theoretical ideas were tried in the class-
room, and my experience in the classroom gave rise to more theoretical ideas.

Mathematical Problem Solving represented a solid first step in a research
agenda. By the time it was written, I knew enough about problem solving to help
students become more effective problem solvers. A next, logical goal was to help
mathematics teachers to help their students develop deeper understandings of
mathematics. In many ways, of course, teaching is an act of problem solving—but it
is so much more. The challenge was, could I develop a theoretical understanding of
teaching in ways that allowed me to understand how and why teachers make the
choices they do, as they teach? Could that understanding then be used to help
teachers become more effective? Moreover, to the degree that teaching is typical of
knowledge-intensive decision making, could the theoretical descriptions of teaching
be used to characterize decision making in other areas as well?

Those questions have been at the core of my research agenda for the past
25 years. My answers to them now exist, in a new book, How We Think
(Schoenfeld 2010). The purpose of this paper is to illustrate and explain the main
ideas in the book. Because my current research has evolved from my earlier
problem solving work, I set the stage for the discussion that follows with a brief
description of that work—what it showed and, more importantly, the questions that
it did not answer. That will allow me to describe what a complete theory should be
able to accomplish. I then turn to the main body of this paper, three studies of
teaching. In those examples I show how, under certain circumstances, it is possible
to model the act of teaching, to the point where one can provide a grounded
explanation of every decision that a teacher makes during an extended episode of
teaching. Following that, I give some other examples to suggest that the theory is
general, and I make a few concluding comments.
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The Challenge

Suppose that you are in the middle of some “well practiced” activity, something
you have done often so that it is familiar to you. Depending on who you are, it
might be

cooking a meal

fixing a car

teaching a class

doing medical diagnosis or brain surgery.

The challenge is this: If I know “enough” about you, can I explain (i.e., build a
cognitive model that explains) every single action you take and every decision you
make?

My goal for this paper is to describe an analytic structure that does just that—an
analytic structure that explains how and why people act the way they do, on a moment-
by-moment basis, in the midst of complex, often social activities such as teaching.

My major claim is this: People’s in-the-moment decision making when they
teach, and when they engage in other well practiced, knowledge intensive activities,
is a function of their knowledge and resources, goals, and beliefs and orientations.
Their decisions and actions can be “captured” (explained and modeled) in detail
using only these constructs.

The main substance of this paper (as in the book) consists of three analyses of
teaching, to convey the flavor of the work. Of course, it is no accident that I chose
mathematics teaching as the focal area for my analyses. I am, after all, a mathe-
matics educator! But more to the point, teaching is a knowledge intensive, highly
interactive, dynamic activity. If it is possible to validate a theory that explains
teachers’ decision making in a wide range of circumstances, then that theory should
serve to explain all well practiced behavior.

Background: Problem Solving

As discussed above, my current work is an outgrowth of my earlier research on
mathematical problem solving. Here I want to summarize the core findings of that
work, to show how it lays the groundwork for my current research.

My major argument about mathematical problem solving (see Schoenfeld 1985,
for detail) was that it is possible to explain someone’s success or failure in trying to
solve problems on the basis of the following four things:

1. Knowledge (or more broadly, resources). This is not exactly shocking—but,
knowing what knowledge and resources a problem solver has potentially at his
or her disposal is important.

2. Problem solving strategies, also known as “heuristics.” We know from Pdlya’s
work that mathematicians use heuristic strategies, “rules of thumb for making
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progress when you do not know a direct way to a solution.” Faculty pick up
these strategies by themselves, through experience. Typically, students don’t use
them. But, my research showed that students can learn to use them.

3. “Metacognition,” or “Monitoring and self-regulation.” Effective problem
solvers plan, and they keep track of how well things are going as they imple-
ment their plans. If they seem to be making progress, they continue; if there are
difficulties, they re-evaluate and consider alternatives. Ineffective problem
solvers (including most students) do not do this. As a result, they can fail to
solve problems that they could solve. Students can learn to be more effective at
these kinds of behaviors.

4. Beliefs. Students’ beliefs about themselves and the nature of the mathematical
enterprise, derived from their experiences with mathematics, shape the knowl-
edge they draw upon during problem solving and the ways they do or do not use
that knowledge. For example, students who believe that “all problems can be
solved in 5 min or less” will stop working on problems even though, had they
persevered, they might have solved them. Students who believe that “proof has
nothing to do with discovery or invention” will, in the context of “discovery”
problems, make conjectures that contradict results they have just proven. (see
Schoenfeld 1985).

In sum: By 1985 we know what “counted” in mathematical problem solving, in the
sense that we could explain, post hoc, what accounted for success or failure. As the
ensuing 25 years have shown, this applied to all “goal-oriented” or problem solving
domains, including mathematics, physics, electronic trouble-shooting, and writing.

BUT... There was a lot that the framework that I have just described did not do.
In the research I conducted for Mathematical Problem Solving, people worked in
isolation on problems that I gave them to solve. Thus: the goals were established
(i.e., “solve this problem”); the tasks didn’t change while people worked on them;
and social interactions and considerations were negligible.

In addition, Mathematical Problem Solving offered a framework, not a theory.
Above and beyond pointing out what is important—which is what a framework
does—a theory should provide rigorous explanations of how and why things fit
together. That is what my current work is about. What I have been working on for
the past 25 years is a theoretical approach that explains how and why people make
the choices they do, while working on issues they care about and have some
experience with, amidst dynamically changing social environments.

I can think of no better domain to study than teaching. Teaching is knowledge
intensive. It calls for instant decision making in a dynamically changing environ-
ment. It’s highly social. And, if you can model teaching, you can model just about
anything! I will argue that if you can model teaching, you can model: shopping;
preparing a meal; an ordinary day at work; automobile mechanics; brain surgery (or
any other medical practice), and other comparably complex, “well practiced”
behaviors. All of these activities involve goal-oriented behavior—drawing on
available resources (not the least of which is knowledge) and making decisions in
order to achieve outcomes you value.
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The goal of my work, and this paper, is to describe a theoretical architecture that
explains people’s decision-making during such activities.

How Things Work

My main theoretical claim is that goal-oriented “acting in the moment”—including
problem solving, tutoring, teaching, cooking, and brain surgery—can be explained
and modeled by a theoretical architecture in which the following are represented:
Resources (especially knowledge); Goals; Orientations (an abstraction of beliefs,
including values, preferences, etc.); and Decision-Making (which can be modeled
as a form of subjective cost-benefit analysis). For substantiation, in excruciating
detail, please see my book, How we Think. To briefly provide substantiation I will
provide three examples in what follows. But first, a top-level view of how things
work is given in Fig. 1. The basic structure is recursive: Individuals orient to
situations and decide (on the basis of beliefs and available resources) how to pursue
their goals. If the situation is familiar, they implement familiar routines; if things are

How Things Work

e Anindividual enters into a particular context with a specific body of resources, goals,
and orientations.

e The individual takes in and orients to the situation. Certain pieces of information and
knowledge become salient and are activated.

e Goals are established (or reinforced if they pre-existed).

e Decisions consistent with these goals are made, consciously or unconsciously,
regarding what directions to pursue and what resources to use:

- If the situation is familiar, then the process may be relatively automatic, where the
action(s) taken are in essence the access and implementation of scripts, frames,
routines, or schemata.

- If the situation is not familiar or there is something non-routine about it, then
decision-making is made by a mechanism that can be modeled by (i.e., is consistent
with the results of) using the subjective expected values of available options, given
the orientations of the individual.

e Implementation begins.
e Monitoring (whether it is effective or not) takes place on an ongoing basis.
e This process is iterative, down to the level of individual utterances or actions:

- Routines aimed at particular goals have sub-routines, which have their own
subgoals;

- If a subgoal is satisfied, the individual proceeds to another goal or subgoal;

- If a goal is achieved, new goals kick in via decision-making;

- Ifthe process is interrupted or things don’t seem to be going well, decision-making
kicks into action once again. This may or may not result in a change of goals and/or
the pathways used to try to achieve them.

Fig. 1 How things work, in outline. From Schoenfeld (2010), p. 18, with permission
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unfamiliar or problematic, they reconsider. It may seem surprising, but if you know
enough about an individual’s resources, goals, and beliefs, this approach allows you
to model their behavior (after a huge amount of work!) on a line-by-line basis.

First Teaching Example, Mark Nelson

Mark Nelson is a beginning teacher. In an elementary algebra class, Nelson has
worked through problems like, x°/x*> = ? Now he has assigned

(a)m® /o, (b)Y /32, and ())&
for the class to work. Nelson expects the students to have little trouble with m®/m?
and x*y"/x*y%, but to be “confused” about x°>/x°; he plans to “work through” their
confusion. Here is what happens.
Nelson calls on students to give answers to the first two examples. He has a
straightforward method for doing so:

e He asks the students what they got for the answer, and confirms that it is correct.
e He asks how they got the answer.
e Then he elaborates on their responses.

Thus, for example, when a student says the answer to problem (b) is xy, Nelson
asks “why did you get xy?” When the student says that he subtracted, Nelson asks,
“What did you subtract? When the student says “3 minus 2,” Nelson elaborates:

OK. You looked at the x’s [pointing to x-terms in numerator and denominator] and
[pointing to exponents] you subtracted 3 minus 2. That gave you x to the first [writes x on
the board]. And then [points to y terms] you looked at the y’s and said [points to the
exponents] 7 minus 6, gives you y to the first [writes y on board].

He then asks what to do with x*/x°. They expand and “cancel.” The board shows

. Pointing to that expression, he says, “what do I have?”” The responses are

LRI 2

“zero,” “zip,” “nada,” and “nothing” ... not what he wants them to see! He tries
various ways to get the students to see that “cancelling” results in a “1”, for
example,

Nelson: “What’s 5/5?”

Students: “1.”

Nelson: “But I cancelled. If there’s a 1 there [in 5/5], isn’t there a 1 there
[pointing to the cancelled expression]?”

Students: “No.”
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Defeated, he slumps at the board while students argue there’s “nothing there.”
He looks as if there is nothing he can say or do that will make sense to the students.

He tries again. He points to the expression and asks what the answer is.
%C CXxx

A student says “x to the zero over 1.” Interestingly, Nelson mis-hears this as “x to
the zero equals 1,” which is the correct answer. Relieved, he tells the class,

“That’s right. Get this in your notes: x’/x° = x° = 1.”
Any number to the zero power equals 1.”

To put things simply, this is very strange. Nelson certainly knew enough
mathematics to be able to explain that if x # 0,

(5=
X
but he didn’t do so. WHY?

There is a simple answer, although it took us a long time to understand it. The
issue has to do with Nelson’s beliefs and orientations about teaching. One of
Nelson’s central beliefs about teaching—the belief that the ideas you discuss must
be generated by the students—shaped what knowledge he did and did not use.

In the first example above (reducing the fraction x°y’/x*y°), a student said he had
subtracted. The fact that the student mentioned subtraction gave Nelson “permis-
sion” to explain, which he did: “OK. You looked at the x’s and you subtracted
3 minus 2. That gave you x to the first. And then you looked at the y’s and said
7 minus 6, gives you y to the first.”

But in the case of example (c), x’/x°, he was stymied—when he pointed to the
XXXXX

expression and asked “what do I have?” the only answers from the students
ok

LR INT

”

were “zero,” “zip,” “nada,” and “nothing.” Nobody said “1.” And because of his
belief that he had to “build on” what students say, Nelson felt he could not proceed
with the explanation. Only later, when he mis-heard what a student said, was he
able to finish up his explanation.

[Note: This brief explanation may or may not seem convincing. I note that full
detail is given in the book, and that Nelson was part of the team that analyzed his
videotape. So there is strong evidence that the claims I make here are justified.]

Second Teaching Example, Jim Minstrell

Here too I provide just a very brief description.
Jim Minstrell is an award-winning teacher who is very thoughtful about his
teaching. It is the beginning of the school year, and he is teaching an introductory



236 A.H. Schoenfeld
lesson that involves the use of mean, median, and mode. But, the main point of the
lesson is that Minstrell wants the students to see that such formulas need to be used
sensibly.

The previous day eight students measured the width of a table. They obtained
these values:

106.8; 107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0 cm.

Minstrell wants the students to discuss the “best number” to represent the width
of the table. His plan is for the lesson to have three parts:

1. Which numbers (all or some?) should they use?
2. How should they combine them?
3. With what precision should they report the answer?

Minstrell gave us a tape of the lesson, which we analyzed. The analysis pro-
ceeded in stages. We decomposed the lesson into smaller and smaller “episodes,”
noting for each episode which goals were present, and observing how transitions
corresponded to changes in goals. In this way, we decomposed the entire lesson—
starting with the lesson as a whole, and ultimately characterizing what happened on
a line-by-line basis. See Figs. 2 and 3 (next pages) for an example of analytic detail.
Figure 2 shows the whole lesson, and then breaks it into major episodes (lesson

First Level
of Parsing
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of Parsing

Third Level
of Parsing

Fourth Level
of Parsing

First five goals
(See legend)

Resources

(See legend)
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Fork/Closure

. 220 @733
Method 1: Computing
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Goal Legend (corresponding to the partial list of goals represented above
a. Have the class interact as a community of Inquiry, with freedom to explore, conjecture, reason things through.
b. Have students experience physics as a way of making sense of the world.

c. Provide a warm, positive atmosphere in which students feel valued, encouraged to speak, etc.

d. Deal with administrivia.

e. Provide information about the day's activites.

Goals, Form: See 1.3.
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Fig. 2 A “top level” view of Minstrell’s lesson, “unfolding” in levels of detail. (With permission,
from Schoenfeld 2010, pp. 96-97)
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[1.2.2.3] (39B-99A)

Major Unplanned Excursion:
Exploration of an alternative
formula for arithmetic
average

Initiating event (trigger):
A student suggests an idea that
"is a little complicated" but
*might work."

Beliefs:

« Teacher should follow
students' lead in thinking
where appropriate.

« Content is relevant and
appropriate.

Goals

« All overarching goals are
active (see narrative).

« Explore and clarify the
the properties of the
student's proposed formula.

« Have content emerge from
students if possible.

« Note: Second goal especially is
emergent (unplanned).

Method/action plan:
« Interactive elicitation using
reflective tosses

Episode type:
« As above, interactive
elicitation (a familiar
classroom routine).

Knowledge base:

« Immediate recognition and
understanding of proposed
student formula.

« Memory of which students
were familiar with which
ideas.

Terminating event:

« Satisfactory elaboration of
student’s method and
comparison with standard and
alternative methods.

Note: This entire episode was
unplanned. The time and effort
spent on it reflect Minstrell's
commitment to the goal of
taking student ideas

seriously and pursuing them
where possible.

[1.2.23.1] (39A-76)

Impromptu Excursion:
Clarifying the nature of
a "complicated” formula

proposed by a student

Initiating event, beliefs,
goals, method, and episode
type are all as identified

in Episode 1.2.2.3.

Specific content goal:

« Have students come to
conclusion that the
"complicated" formula
yields the arithmetic
average.

Terminating event:
« The specific content goal
immediately above is
achieved.

‘

1

[1.2.23.1.1] (39A-40)
Student Comment
[.2.23.1.2] (41-62A)

Clarifying What the
Student Suggested
Specific (emergent)
content goal
« Make sure the class
understands the nature
of the proposed formula.
Method
« Interactive elicitation using
reflective tosses.
Terminating event:
« The content goal is achieved.

[1.2.2.3.13] (628-76)
Showing the "Complicated"
Formula is the
Arithmetic Average
Specific content goal
« Have class conclude the
formulas are the same.
Method
« Interactive elicitation,
calling on a specific
student to provide content.
Terminating event:
« The content goal is achieved.

[12232] (77-99A)

‘

[1.2.23.21] 7
Student Comment

237

Comparing "weighted"
and "unweighted" formulas
for the average

Initiating event:

« Student comment about
possible confusion between
the two formulas.

Beliefs, goals, method, and
episode type are all as
identified in Episode 1.2.2.3.

Specific content goal:
« Clarify the difference
between the two formulas.

Terminating event:
« The specific content goal
immediately above is
achieved.

4

[1.2.2.3.2.2] (78-86)
Framing and Clarifying
the Comparison
Specific (emergent)
content goal:
« Make sure the issue
is clear to the students.
Method
« Interactive elicitation using
reflective tosses.
Terminating event:
« Student consensus (by
assertion) they are not
the same - goal achieved.

Note

The next level of detai,
which shows Minstrell's
use of interactive
elicitation to achieve
the goals specified in
episodes
[1.2.2.3.1.2],
12.23.1.3),
[1.2.2.3.2.2], and
[1.2.2.3.2.3],
is not given here.

That is just to save space.

The analysis is straight-
forward.

[1.2.23.23] (87-99A)
Framing and Clarifying
the Comparison
Specific (emergent)
content goal:

« Work through compelling
example to make sure the
difference is understood

Method

« Interactive elicitation using
reflective tosses.

Terminating event:

« Content goal clearly
achieved; teacher summarizes
with mini-lecture.

Fig. 3 A more fine-grained parsing of Episode [1.2.2.3]. (From Schoenfeld 2010, pp. 116-117,

with permission)

segments), each of which has its own internal structure. Most of the lesson was very
simple to analyze in this way.

Minstrell has a flexible “script” for each part of the lesson:

e He will raise the issue;
He will ask the class for a suggestion;
He will clarify and pursue the student suggestion by asking questions, inserting
some content if necessary.

Once the suggestion has been worked through, he will ask for more suggestions.
When students run out of ideas, he may inject more ideas, or move to the next part

of the lesson.

In this way, the lesson unfolds naturally, and it is easy to “capture” it—see Fig. 2
for a “top level” summary of how the lesson unfolded. The episodes in the second
and third columns, which correspond to an analysis of the lesson as taught, show
that Minstrell did cover the big topics as planned.
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A line-by-line analysis (see Schoenfeld 1998, 2010) shows that when Minstrell
was dealing with expected subject matter, he followed the “script” described above
very closely. So, it is easy to model Minstrell’s behavior when he is on familiar
ground.

But what about unusual events? Remember the data: The eight values the stu-
dents had obtained for the width of the table were

106.8; 107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0 cm.

As the lesson unfolded, Minstrell asked the students about “a way of getting the
best value.” (see box 1.2.2 in the third column of Fig. 2.) As the class proceeded,
one student mentioned the idea of using the “average” and, when asked by
Minstrell, provided a definition. (Box 1.2.2.1 in the fourth column of Fig. 2.)
Another student mentioned mode (Box 1.2.2.2). Then, a student said:

This is a little complicated but I mean it might work. If you see that 107 shows up 4 times,
you give it a coefficient of 4, and then 107.5 only shows up one time, you give it a
coefficient of one, you add all those up and then you divide by the number of coefficients
you have.

This is an unexpected comment, which does not fit directly with Minstrell’s
flexible script. The question is, can we say what Minstrell would do when some-
thing unexpected, like this, arises in the middle of his lesson?

Before proceeding, I want to point out that there is a wide range of responses,
which teachers might produce. I have seen responses like all of the following:

That’s a very interesting question. I’ll talk to you about it after class.

Excellent question. I need to get through today’s plans so you can do tonight’s assigned
homework, but I’ll discuss it tomorrow.

That’s neat. What you’ve just described is known as the ‘weighted average.” Let me briefly
explain how you can work with that...

Let me write that up as a formula and see what folks think of it.
Let’s make sure we all understand what you’ve suggested, and then explore it.

So, teachers might do very different things. Is it possible to know what Minstrell
will do? According to our model of Minstrell, (1) His fundamental orientation
toward teaching is that physics is a sense-making activity and that students should
experience it as such; (2) One of his major goals is to support inquiry and to honor
student attempts at figuring things out; (3) His resource base includes favored
techniques such as “reflective tosses”—asking questions that get students to
explain/elaborate on what they said.

Thus, the model predicts that he will pursue the last option—making sure that
the students understand the issue that the student has raised (including the ambi-
guity about how you add the coefficients; do you divide by 5 or 8?) and pursuing it.
He will do so by asking the students questions and working with the ideas they
produce.
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This is, in fact, what Minstrell did. Figure 3 shows how that segment of the
lesson evolved. It is an elaboration of Box 1.2.2.3 in Fig. 2.

As noted above, it is possible to model Minstrell’s decision. The model shows
that, when faced with options such as those listed above, Minstrell is by far most
likely to pursue the one I have indicated. The computations take about seven pages
of text, so I will spare you the detail! More generally:

We have found that we were able to capture Minstrell’s routine decision-making,
on a line-by-line basis, by characterizing his knowledge/resources and modeling
them as described in Fig. 1, “How Things Work;” and,

We were able to model Minstrell’s non-routine decision-making using a form
of subjective expected value computation, where we considered the various alter-
natives and looked at how consistent they were with Minstrell’s beliefs and values
(his orientations).

In summary, we were able to model every decision Minstrell made during the
hour-long class.

Third Teaching Example, Deborah Ball

Some years ago, at a meeting, Deborah Ball showed a video of a third grade
classroom lesson she had taught. The lesson was amazing—and it was controver-
sial. In it,

e Third graders argued on solid mathematical grounds;

e The discussion agenda evolved as a function of classroom conversations;

e The teacher seemed at times to play a negligible role, and she made at least one
decision that people said was not sensible.

In addition, I had little or no intuition about what happened. Thus, this was a
perfect tape to study! There were major differences from cases 1 and 2:

the students were third graders instead of high school students;
psychological (developmental) issues differed because of the children’s age;
the “control structure” for the classroom was much more “organic”;

the teacher played a less obvious “directing” role.

The question was, could I model what happened in this lesson? If so, then the
theory covered an extremely wide range of examples, which would comprise
compelling evidence of its general validity. If not, then I would understand the
limits of the theory. (Perhaps, for example, it would only apply to teacher-directed
lessons at the high school level.)

Here is what happened during the lesson. Ball’s third grade class had been
studying combinations of integers, and they had been thinking about the fact that,
for example, the sum of two even numbers always seemed to be even. The previous
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day Ball’s students had met with some 4th graders, to discuss the properties of even
numbers, odd numbers, and zero. Ball had wanted her students to see that these
were complex issues and that even the “big” fourth graders were struggling with
them. The day after the meeting (the day of this lesson), Ball started the class by
asking what the students thought about the meeting:

e How do they think about that experience?
e How do they think about their own thinking and learning?

Ball had students come up to the board to discuss “what they learned from the
meeting.” The discussion (a transcript of which is given in full in Schoenfeld 2008,
2010) covered a lot of territory, with Ball seemingly playing a small role as students
argued about the properties of zero (is it even? odd? “special”?). For the most part,
Ball kept her students focused on the “meta-level” question: what did they learn
about their own thinking from the meeting with the fourth graders the previous day?

But then, after a student made a comment, Ball interrupted him to ask a
mathematical question about the student’s understanding. This question, which
took almost 3 min to resolve, completely disrupted the flow of the lesson. Many
people, when watching the tape of the lesson, call that decision a “mistake.” How
could Ball, who is a very careful, thoughtful, and experienced teacher, do such a
thing? If the decision was arbitrary or capricious in some way, that is a problem for
the theory. If highly experienced teachers make arbitrary decisions, it would be
impossible to model teachers’ decision making in general.

In sum, this part of the lesson seems to unfold without Ball playing a directive
role in its development—and she made an unusual decision to interrupt the flow of
conversation. Can this be modeled? The answer is yes. A fine-grained analysis
reveals that Ball has a “debriefing routine” that consists of asking questions and
fleshing out answers. That routine is given in Fig. 4.

In fact, Ball uses that routine five times in the first 6 min of class. Moreover, once
you understand Ball’s plans for the lesson, her unexpected decision—what has been
called her “mistake” by some—can be seen as entirely reasonable and consistent with
her agenda. This has been modeled in great detail. For the full analysis, see Schoenfeld
2010; for an analytic diagram showing the full analysis, download Appendix E from
my web page, http://www-gse.berkeley.edu/faculty/ AHSchoenfeld/AHSchoenfeld.
html.

To sum things up: As in the two previous cases, (1) We were able to model
Ball’s routine decision-making, on a line-by-line basis, by characterizing her
knowledge/resources and modeling them as described in Fig. 1. (2) We were able to
model Ball’s non-routine decision-making as a form of subjective expected value
computation.

In short, we were able to model every move Ball made during the lesson
segment.


http://www-gse.berkeley.edu/faculty/AHSchoenfeld/AHSchoenfeld.html
http://www-gse.berkeley.edu/faculty/AHSchoenfeld/AHSchoenfeld.html
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Provide context
and background Legend

about the topic. :I Action

< > Decision Point
E Ask class, "What

| (else) can you say
= about the topic?”
Call on a student.

Have the class
work through the
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Is clarification
called for?

Does the response
raise other issues?

No
Y
No Seek closure. >
E Either provide or
Is clarification called Yes ask student for
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No |
Would expansion or Highlight paticular _
reframing be useful? Yea __ aspects of td
discussion for class.
No
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warrant more -+
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topic?

No

Move to next item
on agenda.

Fig. 4 A flexible, interruptible routine for discussing a topic. (From Schoenfeld 2010, p. 129, with
permission)



242 A.H. Schoenfeld

Yet More Examples
Making Breakfast (or Any Other Meal)

If you look at Fig. 1, you can see that it would be easy to model decision-making
during cooking. Usually we have fixed routines for cooking familiar meals. And if
something changes (for example, when my daughter asks me to make a fancy
breakfast), that calls for a “non-routine” decision, which can also be modeled.
Readers might enjoy creating models of their own cooking practices and decision
making.

Routine Medical Diagnosis and Practice

To see if my ideas worked outside of the classroom, I asked my doctor if I could
tape and analyze one of my office visits with her. She said yes; an analysis of our
conversation is given in How We Think. The conversation was easy to model,
because the doctor follows a straightforward (and flexible) script. Modeling a two-
person interaction is a lot easier than modeling a classroom; it is more like modeling
a tutoring interaction. When the person being modeled (in this case, the doctor) only
has to pay attention to one other person (instead of the 30 children a teacher has to
pay attention to), decision-making is comparatively simple—and simple to model.

I should also note that there is a very large artificial intelligence literature on
modeling doctors’ decision making—there are computer programs that make
diagnoses, etc. (The field is well established: see, e.g., Clancey and Shortliffe 1984).
So, the idea that it is possible to capture doctors’ routine decision making is not
new. More recent, and also consistent with my emphasis on beliefs as shaping
behavior, there are studies (e.g., Groopman 2007) of how doctors’ stereotypes
(beliefs and orientations) regarding patient behavior lead them to miss what should
be straightforward diagnoses.

Discussion

The approach I have outlined in this paper “covers” routine and non-routine
problem solving, routine and non-routine teaching, cooking, and brain surgery—
and every other example of “well practiced,” knowledge-based behavior that I can
think of. All told, I believe it works pretty well as a theory of “how we think.”

Readers have the right to ask, why would someone spend 25 years trying to
build and test a theory like this? Here is my response.

First, theory building and testing should be central parts of doing research in
mathematics education. That is how we make progress.
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Second, the more we understand something the better we can make it work;
when we understand how something skillful is done we can help others do it. This
was the idea behind my problem solving work, where an understanding of problem
solving helped me to help students become better problem solvers. I believe that a
comparably deep understanding of teachers’ decision making can be used to help
mathematics teachers become more effective.

Third, this approach has the potential to provide tools for describing develop-
mental trajectories of teachers. Beginning teachers, for example, often struggle with
issues of classroom “management”—of creating an orderly classroom environment
in which their students can learn productively. While teachers are struggling at this,
they have little time or attention to devote to some of the more subtle aspects of expert
teaching, such as teaching responsively—listening carefully to what their students
say, diagnosing what the students understand and misunderstand, and shaping
the lesson so that it helps move the students forward mathematically. The more we
understand what teachers understand at particular points in their careers, the more we
will be able to provide relevant professional development activities for them. An
understanding of teachers’ developmental trajectories can help us help teachers get
better at helping their students learn. (see Chap. 8 of Schoenfeld 2010, for detail.)

Fourth and finally, it’s fun! The challenge of understanding human behavior has
proved itself to be every bit as interesting and intellectually rewarding as the
challenge of understanding mathematics. It has occupied me for the past 35 years,
and I look forward to many more years of explorations. Exploring questions of how
teachers’ understandings develop, and of how and when one can foster the
development of mathematics teachers’ expertise, are intellectually challenging.
Equally important, addressing them can, over the long run, lead to improvements in
mathematics teaching and learning.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Curriculum and the Role of Research
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Abstract The survey team collected information on the development and use of
curriculum from 11 diverse countries around the world. The data show that a
common set of mathematics learning goals are established in almost all countries.
However, only a few countries report a substantial role for research in designing
and monitoring the development of their curriculum. The data also suggest great
variation among countries at the implementation level.
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Introduction

This report is based on an analysis of responses to survey questions on curriculum
standards and goals from 11 countries: Australia, Brazil, Egypt, England, China,
Honduras, Indonesia, Japan, Namibia, Peru, and six states in the United States.! The
paper is organized in five sections: standards/curricular goals; relation of standards
to the status quo, the role of textbooks in enacting the curriculum, the role of
technology in classrooms, and teacher support related to standards/curricular goals.”
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The intent of the report is to allow others to examine their standards/curriculum
goals relative to those of other countries across the world.

Standards/Curricular Goals

Who Is Responsible for the Development of Standards/
Curricular Goals?

In most countries the ministry of education establishes curricular standards. In the
United States, however, control of education is a state’s right, and in many states,
for example, Montana, state constitutions give control of education to local districts.
The federal government influences education through funding initiatives, such as
the No Child Left Behind Act in 2001. The 2010 Common Core State Standards
(CCSS) initiative is not a federal program but has been adopted and is being
implemented by 45 of the 50 states and the District of Columbia. China also does
not have a mandated national curriculum. China Mainland, including Shanghai, has
common standards; Hong Kong, Taiwan and Macau create their own standards/
curriculum goals.

In many countries, standards/curricular goals are set by historical tradition or
cultural norms. For example, Namibia used the Cambridge curriculum when they
became independent in 1990 and only recently has begun to develop their its own
standards. Brazil ‘s standards are attributed to the history of the discipline, the
prescribed curricula, and the comparative analysis among national documents from
different historical periods and national and international documents. Some coun-
tries base their standards and guidelines on those of countries with high achieve-
ment scores on recent international exams. For example, both England and the
United States cite countries such those from the Pacific Rim and Finland as
resources for their new standards. Peru noted that an analysis of documents from
other countries in South American and from TIMSS, Programme for International
Student Assessment (PISA), and National Council of Teachers of Mathematics
(NCTM) contributed to the development of their Disefio Curricular Nacional
(CND) (National Curricular Design) (2009).

Why Standards?

Over time, many countries have changed from local standards to national standards.
For example, Brazil found that the lack of national standards contributed to unequal
opportunity for education. For much the same reason, the documented difference in
the rigor and quality of individual state standards, the state governors in the United
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States supported the development and adoption of the CCSS. The new US stan-
dards are intended to be substantially more focused and coherent.

Standards are viewed as political: i.e., Brazil suggests that mathematics curric-
ular goals depend more on political timing, election campaigns and government
administrations, where “the logic of an education agenda that transcends govern-
ments and politicians’ mandates, set as a goal for a democratic and developed
society, is not the rule” (Response to ICME 12 Curriculum Survey 2011, p. 6). In
the United States the two major political parties have different views on education,
its funding and its goals. This has recently given rise to the creation of publicly
funded schools governed by a group or organization with a legislative contract or
charter from a state or jurisdiction that exempts the school from selected state or
local regulations in keeping with its charter. Hong Kong also reported that writing
standards seems to be more politically based than research based. Many of the
changes in England’s National Curriculum (NC) are the result of criticism from the
current government that the NC is over-prescriptive, includes non-essential mate-
rial, and specifies teaching method rather than content. In Peru each new curricular
proposal is viewed as an adjustment to the prior curriculum. In this process, radical
changes do occur, such as changing the curriculum by capabilities (CND 2005) to
the curriculum by competencies (CND 2008) in the secondary education level.
These decisions are often the result of a policy change with each new government.

In most countries surveyed, a diverse team, including mathematics education
researchers, ministry of education staff, curriculum supervisors, and representatives
of boards of education are responsible for developing the standards/goals. In some
countries (Japan, Australia) teachers are involved, but in others the design teams are
primarily experts from universities, teaching universities or the ministry of
education (Indonesia, Egypt). The design of the framework for the National
Curriculum in England is carried out by a panel of four, not necessarily mathematics
educators, charged to reflect the view of the broader mathematics education
community including teachers.

What Is the Role of Research?

Research has different interpretations and meanings in relation to the development
and implementation of standards or curricula guidelines. One common response in
the surveys was to cite as research the resources used in preparing standards (for
example, other countries’ standards). In addition, the degree to which research is
used in compiling the standards often depends on the vision, perspectives and
beliefs of the team responsible for the development.

The use of research related to student learning in developing standards/curricular
goals is not common among the countries surveyed. A typical description of the
process was given by Hong Kong, where the development team might do a liter-
ature review and refer to documents of other countries, but the process is not
necessarily well structured and often depends on the expertise of the team members.
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England, however, noted that the first version of their National Curriculum (NC)
was largely based on the Concepts in Secondary Mathematics and Science project,
(Hart 1981) that sought to formulate hierarchies of understanding in 10 mathe-
matical topics normally taught in British secondary schools based on the results of
testing 10,000 children in 1976 and 1977. The NC was also based on the ILEA
Checkpoints (1979) and the Graded Assessment in Mathematics (1988-1990)
projects. The original research-based design of the NC had many unintended
consequences. Although the attainment targets were intended to measure learning
outcomes on particular tasks, the levels were used to define the order in which
topics should be taught, rather than paying attention to the development of concepts
over time. The processes of mathematics, originally called “Using and applying
mathematics” were defined in a general way related to progressions and levels that
made interpretation difficult. As a consequence, the NC was revised several times
and as of summer 2012 was again in the process of revision.

After a 1996 survey showed that social segmentation in Brazil seemed to be an
obstacle to access to a quality education, research led to the development of the
National Curricular Parameters in Brazil (1997). The Board of National Standards
for Education (Badan Standar Nasional Pendidikan) in Indonesia examined the
national needs for education, the vision of the country, societal demands, challenges
for the future, and used their findings in developing the curriculum (Ministry of
National Education 2006).

What Is the Nature of Standards?

In Brazil, Indonesia, Namibia and Peru, the standards/curricular frameworks are
general and provide overarching guidelines for the development of discipline
specific content. In the United States, Australia, and Japan, the mathematical
standards essentially stand alone, although supporting documents may illustrate
how the maths standards fit into the larger national education philosophy and
perspective. Some standards include process goals. For example, Australia includes
standards for four proficiencies (understanding, fluency, problem solving and
reasoning) based on those described in Adding It Up (Kilpatrick et al. 2001). The
new Australian standards want students to see that mathematics is about creating
connections, developing strategies, and effective communication, as well as
following rules and procedures. The United States CCSS has mathematical practice
standards specifying eight “habits of mind” students should have when doing
mathematics. In Brazil ideas such as “learn to learn”, “promote independence”,
“learn to solve problems” are being incorporated into new curricula. In Peru and
Indonesia the emphasis is primarily on the processes of problem solving, reasoning
and proof, and mathematical communication.
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In some cases standards reinforce the role of education in responding to the
needs of the country. For example, the Curriculum for Basic Education (1st-9th
grade) in Honduras (Department of Education 2003) was developed under three
axes: personal, national and cultural identity, and democracy and work. The four
pillars of lifelong learning defined by Delors (1996) (personal fulfilment, active
citizenship, social inclusion and employability/adaptability) were used to define
the mathematical content and methodological guides with problem solving as the
central umbrella. Namibia’s National Curriculum for a Basic Education outlines
the aims of a basic education for the society of the future and specifies a few very
general learning outcomes for each educational level (Namibia MoE 2008).

Standards span different sets of school grades or levels and differ in generality.
Some countries have grade specific standards for what students should know
throughout their primary and secondary schooling (i.e., US, Japan). Australia
specifies a common curriculum for grades 1-10 and course options for students in
upper secondary. Egypt and Honduras have curricular goals for students in grades
1-9 (age 14). At the high school level, Honduras focuses on post high school
preparation with more than 53 career- focused schools for students.

The development of fractions in Australia by the Australian Curriculum and
Assessment Reporting Authority (ACARA 2011), the Japanese Ministry of
Education, Culture, Sports, Science and Technology (MEXT 2008), the Ministry of
Education in Namibia (MoE 2005, 2006), and the US (CCSS 2010) illustrates the
difference in standards across countries In grade 1, the standards/goals in the US,
Namibia and Australia introduce words such as half, quarter and whole; this
happens in grade 2 in Japan. Both US and Japan treat fraction as a number on the
number line beginning in grade 3, emphasize equal partitioning of a unit and
consider a fraction as composed of unit fractions: 4/3 = 4 units of 1/3. Australia
suggests relating fractions to a number line only for unit fractions in grade 3, while
Namibia does not mention fractions in relation to the number line. Equivalent
fractions are taught in grade 4 in US, Japan, and Australia and in grade 6 in
Namibia. Addition and subtraction of fractions with like denominators occurs in
grade 4 in Japan, with unlike denominators in grade 5 in the US and Japan, and
grade 7 in Namibia and Australia. Australia and Namibia have fractions as parts of
collections in grade 2 and again in grade 4 in Namibia, but fractions as subsets of a
collection are not mentioned in the standards/goals in the US and Japan. Students
are expected to multiply and divide fractions in grade 5 in the US (with the
exception of division of a fraction by a fraction, which happens in grade 6), in grade
6 in Japan, and in grade 7 in Australia and Namibia.

The next section describes what is taught in classrooms and how this relates to
the standards/curricular goals of the country.
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Examining the Status Quo

How Are Standards/Goals Related to the Implemented
Curriculum?

Standards play different roles in shaping curriculum. For example, as described
above, Peru does not have National Standards, but the mathematics learning goals
for students are set out in the Curriculum National Design. With this as a guide,
each of the country’s regions develops a regional curriculum that considers the
diversity of cultures and languages. Similarly, since 2005 Indonesia has National
Standards for Education, which include standards for content in each subject area
and curriculum structure. Based on these and competency standards, every school
develops their own curriculum considering the vision of the school, local culture
and students’ background. In many of the US states, for example Massachusetts,
standards provide a framework with the details of the curriculum, including the
materials used for teaching and learning established at the district and school level.
Japanese schools base their curricula on the national Course of Study (CS), a
“Teaching Guide,” resources and guidelines developed by local boards of education
in the prefecture, and planning guides from textbook companies. Adaptions are
sometimes made based on the situation of the school and its students. When the
prefectural or the municipal boards of education develop their own model plans,
such as the “nine year schooling system” (ShoChu-Ikkan-Kyoiku), the school in the
prefecture or the municipality follows those plans and makes revisions to the CS
accordingly.

In some instances, countries turn to other countries with more resources for
support in implementing the standards. For example, the Japan International
Cooperation Agency supported Honduras in developing curriculum and resources
for teachers. Macau uses resources from China Mainland, Hong Kong and Canada.

What Drives the Implemented Curriculum?

Standards, textbooks, or high-stakes examinations seem to drive what happens in
classrooms in the countries surveyed. While Hong Kong indicated that standards
play that role, teachers in Brazil, Taiwan, Egypt, Honduras, and Japan rely on
textbooks, and China mainland cited both textbooks and practice books.

In several countries high stakes examinations are significant in determining what
teachers actually teach. In the United States, with the exception of Montana, the
states surveyed indicated they followed the curriculum based on the state standards,
but in reality most teachers teach only to what they know from experience will be
tested (Au 2007). The implemented curriculum in England also seems to be shaped
by what is assessed, which determines the nature of the tasks students meet in
classrooms. The curriculum in Indonesia is determined both by textbooks and the
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national examination. Entrance examinations of leading universities impact the
curriculum in Brazil and Macau (95 % of the students in Macau attend private
schools to prepare for university).

How Do Countries Monitor Implementation
of the Curriculum?

Countries use several strategies for monitoring and evaluating the enacted curric-
ulum: large scale research studies conducted by the government or a private agency,
small focused research studies on what is being taught and learned, student
achievement on high stakes assessments, and approval of textbooks teachers use to
deliver the curriculum. Relatively large-scale research studies on students’
achievement are carried out in Honduras under the auspices of the Inter-American
Development Bank and USAID. The Ministry of Education in Brazil investigated
the incorporation of the National Curricular Parameters (PCN) into textbooks and
other materials supporting teachers’ work, but little research has been dedicated to
any of the various stages in the process of curriculum development including the
curriculum enacted in classrooms.

Japan administers national assessments on a regular basis in mathematics and
Japanese for students in the sixth year of elementary school and the third year of
lower secondary school. The results often reveal challenges in knowledge and skill
utilization, which lead to revisions in educational policies and classroom lesson
plans. These assessments are viewed as invaluable in monitoring and revising the
curriculum.

In the United States, perhaps the most significant change in the last decade has
been the increasing role of high stakes assessments measuring student achievement
in elementary/secondary education. Every year each state assesses each student in
grades 3-8 and assesses students once in grades 9—12 using a common state
assessment, typically consisting of multiple-choice procedural questions. The
results are used to evaluate teachers, administrators, and the curriculum. Little or no
evidence exists correlating success on these tests with curriculum (or any other
factor). This has not deterred federal and state levels policy makers from making
use of the assessment results in these ways. The emphasis on high stakes assess-
ment and accountability are seen in England as well, although it is not clear that the
results have contributed to changes in the curriculum or standards.

How Are Changes Made to the Standards/Curricular Goals?

Change occurs in different ways. In the US, the most recent change was brought
about by entities outside of the government and teachers. Japan bases changes in
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goals/standards on research examining student learning. Standards teams summa-
rize, examine, and investigate the results of research studies on what has been
achieved though the current Course of Study (CS) and the results of pilot trials of
new goals/standards in designated “research schools” (Kenkyu-Kaihatsu-Gakko).
They monitor emerging trends, societal needs and international assessments. For
example, the most recent revisions to the CS in Japan for elementary and lower
secondary schools were in March 2008 and for upper secondary and special needs
education in March 2009. In this CS, the aim of mathematics education stresses the
student’s abilities to express their thinking and utilize mathematics in daily social
life. In the CS for lower secondary schools, a new curricular strand “Use of Data”
was added to enrich the content of statistics in the compulsory education. Inter-
national mathematics assessments have helped statistics became a requirement in
upper secondary schools. Taiwan and Hong Kong use some research supported by
the government to construct and modify the curriculum as well as to inform teacher
professional development and resource materials.

The Role of Textbooks

Survey responses indicated commercial publishers, private organizations, and
government related organizations were involved in textbook development and
distribution but to different degrees. The use of supplementary materials or teacher
created worksheets was common in many of the countries. Many countries mentioned
national standards/curricular guidelines as tools used in textbook development.

What is the approval or vetting process for textbooks?

In most of the countries with the exception of England and some of the states in
the United States, some formal approval is necessary before texts can be used. For
example, in Japan, textbooks are edited for adherence to the national curriculum
and must be examined and authorized by MEXT. However, each textbook company
can design and develop a textbook series with a final draft submitted to MEXT for
examination and subsequent revision. During the development process, profes-
sionals (such as university researchers and teachers) play a large role in textbook
design and development.

Many countries (China, Indonesia, Australia) have multiple textbook options for
each grade level. Textbook adoption procedures vary, with decisions made at the
national level (Brazil), state level (North Carolina), district level (Japan for
elementary and lower secondary), school level (Japan for upper secondary) or even
at an individual level (Taiwan). For the most part, the content would be the same
across textbook options for each grade level since standards were the main drivers
of the textbook development. Textbooks differ in the extent to which the contents
are ordered and compiled but often have a similar style. Teachers in England make
less use of textbooks than many other countries, and there is no uniform adoption
procedure (Askew et al. 2010). In addition, public examination bodies produce
textbooks that contain exercises from compilations of past examination questions
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that are popular with British teachers who see them as preparation for high-stakes
assessment.

What Is the Role of Research in the Development
of Textbooks?

Most countries mentioned an indirect or no use of research in textbook development.
In the United States and England textbooks that are developed through large projects
typically involve some research. In the United States, some curriculum materials
(such as CMP 2012) are research based and developed with government or other
sources of funding. Designers study trialling in classrooms, identify issues that
emerge, what is working and not working to inform the next iteration of materials.
The cycle may have several iterations, depending on funding and on commercial
sales. (If the materials market poorly, the development is quickly terminated.)

Textbooks authored by individual teachers or commercial publishers did not
seem to be noticeably influenced by pilot studies, research or research related to
learning. In organizing textbook content, Japan makes use of research on high
stakes assessment (the National Assessment of Academic Ability and other
assessments implemented by local governments), the content and sequence of
the old textbooks, and information obtained from teachers on the usability of the
textbook and on the students’ responses to the textbook problems during the lesson.
In Brazil, some authors of mathematics textbooks use research, or rely on research
results, to develop books.

Focused research projects on aspects of the curriculum, supplements to illustrate
the standards, pilot studies of initiatives, action research and/or small seed projects are
common in Hong Kong and Japan. In the United States, research studies on student
learning typically focus on specific content areas or the development of a single
concept, such as understanding cardinality (i.e., Clements 2012) and have little direct
connection to the curriculum. Graduate students carry out many such projects in the
United States and in other countries such as Brazil, England and Australia.

The Role of Technology in the Curriculum

What Is the Relationship Between Standards/Curricular
Goals and Technology?

From a broad perspective, interacting with technology is seen in most countries as a
critical life skill. In Peru, for example, the aim is to develop students’ “skills and
attitudes that will enable them to use and benefit from ICT ... thus enhancing the
autonomous learning throughout life” (MoE 2009, p. 17). The National Curricular
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Parameters (1997) in Brazil cite the value of technology as important for preparing
students for their work outside of school. Australia defines Information and
Communication Technology (ICT) as one of seven basic capabilities, i.e., the
“skills, behaviours and dispositions that, together with curriculum content in each
learning area and the cross curriculum priorities, will assist students to live and
work successfully in the twenty-first century” (ACARA 2012, p. 10) Namibia has
much the same statement in their National Curriculum for Basic Education
emphasizing creating and learning to use software such as Word or Excel. Hong
Kong’s Technology Learning Targets calls for technology to enhance learning and
teaching; provide platforms for discussions; help students construct knowledge; and
engage students in an active role in the learning process, understanding, visualizing
and exploring math, experiencing the excitement and joy of learning maths.

Some countries such as Namibia and Peru do not outline how technology should
be used in the mathematics curriculum. Others describe the use of technology in
mathematics classrooms in very general terms. Indonesia, for example, calls for the
use of technology to develop understanding of abstract ideas by simulation and
animation. In mainland China, the Nine Year Compulsory Education Mathematics
Curriculum Standards emphasized the use of technology to benefit student under-
standing of the nature of mathematics. In Macau the standards call for educators to
consider the impact of computers and calculators on the content and approaches
in mathematics teaching and learning. In Taiwan, technology should support
understanding, facilitate instruction, and enhance connections to the real world.
England’s curriculum documents are more specific, consistently encouraging the
use of appropriate ICT tools to solve numerical and graphical problems, to represent
and manipulate geometrical configurations and to present and analyse data.

The standards/curricular goals of some countries provide general goals for
incorporating technology into the curriculum and then describe specific instances.
For example, the United States Common Core State Standards (2010) for mathe-
matical practices call for students to visualize the results of varying assumptions,
exploring consequences, and comparing predictions; engage students in activities
that deepen understanding of concepts; create opportunities for and learning—
comparing and contrasting solutions and strategies, creating patterns, generating
simulations of problem situations. These generalizations are followed by statements
throughout, such as in grade 7, “Draw (freehand, with ruler and protractor, and with
technology) geometric shapes with given conditions” (p. 50) or in algebra, “find the
solutions approximately, e.g., using technology to graph the functions, make tables
of values, or find successive approximations” (p. 66). The new Australian Math-
ematics Curriculum specifically calls for the use of calculators to check solutions
beginning in grade 3 and, by year 10 includes general statements about the use
of technology, “Digital technologies, such as spreadsheets, dynamic geometry
software and computer algebra software, can engage students and promote under-
standing of key concepts (p. 11)”. The curriculum provides specific examples: i.e.,
students should “Solve linear simultaneous equations, using algebraic and graphical
techniques including using digital technology (p. 61).”
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Japan has explicit learning goals for the use of technology and its Course of
Study provides a guide for teachers that describes how calculators and computers
can be used, with specific grade level examples under three headings; (1) as tools
for calculation, (2) as teaching materials, and (3) as information/communication
networks.

How Is Technology Used in Classrooms?

Respondents cited general issues related to the use of ICT. In England, for example,
inspection reports based on evidence from 192 schools between 2005 and 2007
criticized schools’ use of ICT, finding effective usage was decreasing and the
potential of ICT to enhance the learning of mathematics rarely realized. In Brazil,
the number of schools equipped with technological resources is increasing; how-
ever, programs using the technology are still restricted to pilot projects.

In Japan a 2010 survey on ICT facilities found that computers (98.7 %), digital
cameras (98.1 %), and CD players (95.2 %) were used almost daily or at least two
to three times a week (MEXT 2011). Yet, results from international studies such as
TIMSS indicate little actual computer use in Japanese mathematics classrooms. At
least one computer is typically available in classrooms in Egypt, Peru, China
mainland and Macau but rarely used for mathematics instruction. Honduras has a
one laptop per child program, but the lack of suitable mathematics related activities
limits the use of laptops in classrooms. This was also identified as a problem in
England. Brazil reported that a preliminary analysis of research conducted in the
country suggests that technologies are used very little. Teachers are uncomfortable
with laptops and have few resources for using them.

The availability of technological tools for students varied among countries and
within countries. Some have class sets of calculators available; others expect
students to provide their own (China Mainland, Macau, Hong Kong). Some schools
have computer labs; some have class sets of laptops, while others use a single
computer with overheard display (common in China Mainland). Many schools in
England have a separate computer suite, where pupils learn to use ICT as a
mathematical tool, for example using spreadsheets to generate number patterns or
present statistical information but their use to enhance mathematics learning is
limited.

Some use computers to provide practice procedures and skills (England, Macau,
North Carolina). Some (China mainland, Taiwan, North Carolina) use technology
as a way to differentiate instruction. North Caroline describes using interactive sites
that allow the learner to manipulate data and objects and then provide immediate
feedback; video, games, and other learning activities for struggling students, and
providing advanced students with online activities that challenge and invite further
learning; real world math practice using tools like Google Earth for measurement,
stock market simulations, digital cameras for capturing real-life examples of
geometric figures, Skype or other conferencing tools to interact with scientists and
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mathematicians. Formative and summative assessment was also indicated as a way
of bringing technology into the classroom.

Interactive whiteboards are becoming increasingly common, although their role
in learning mathematics is not well documented. They are heavily used in Great
Britain (in about 75 % of schools) (Schachter 2010), and usage is growing in Japan
from 16,403 in 2009 to 60,474 in 2011 (MEXT 2011) and the United States with
51 % of classrooms (Gray 2010). According to England an advantages of inter-
active white boards include high-quality, diagrams and relevant software to support
learning through, for example, construction of graphs or visualization of transfor-
mations. A negative effect of interactive whiteboards seemed to be a reduction in
pupils