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Introduction

I didn’t set out to develop a new architecture for the Internet of Things (IoT). Rather, I 
was thinking about the implications of control and scheduling within machine social 
networks in the context of Metcalfe’s Law. The coming tsunami of machine-to-machine 
interconnections could yield tremendous flows of information – and knowledge.

Once we free the machine social network (comprised of sensors and an 
unimaginable number of other devices) from the drag of human interaction, there is 
tremendous potential for creating autonomous communities of machines  that require 
only occasional interaction with, or reporting to, humans.

The conventional wisdom is that the expansive address space of IPv6 solves the IoT 
problem of myriad end devices. But the host-to-host assumptions fossilized into the IP 
protocol in the 1970s fundamentally limited its utility for the very edge of the IoT network. 
As the Internet of Things expands exponentially over the coming years, it will be expected 
to connect to devices that are cheaper, dumber, and more diverse. Traditional networking 
thinking will fail for multiple reasons. 

First, although IPv6 provides an address for these devices, the largest population of 
these appliances, sensors, and actuators will lack the horsepower in terms of processors, 
memory, and bandwidth to run  the bloated IP protocol stack. It simply does not make 
financial sense to burden a simple sensor with all of the protocol overhead needed for 
host-to-host communications.

Second, the conventional implementation of IP protocols implies networking 
knowledge on the part of device manufacturers: without centrally authorized MAC 
IDs and end-to-end management, IP falls flat. Many of the hundreds of thousands of 
manufacturers of all sizes worldwide building moisture sensors, streetlights, and toasters 
lack the technical expertise to implement legacy network technology in traditional ways. 

Third, the data needs of the IoT are completely different from the global Internet. 
Most of the communications will be terse machine-to-machine interchanges that are 
largely asymmetrical, with much more data flowing in one direction (sensor to server, 
for example) than in the other. And in most cases, losing an individual message to an 
intermittent or noisy connection will be no big deal. Unlike the traditional Internet, 
which is primarily human-oriented (and thus averse to data loss), much of the Internet 
of Things traffic will be analyzed over time, not acted upon immediately. Most of the 
end devices will be essentially autonomous, operating independently whether anyone is 
“listening” or not.

Fourth, when there are real-time sensing and response loops needed in the Internet 
of Things, traditional network architectures with their round-trip control loops will be 
problematic. Instead, a way would be needed to engender independent local control 
loops managing the “business” of appliances, sensors, and actuators while still permitting 
occasional “advise and consent” communications with central servers.
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Finally, and most importantly, traditional IP peer-to-peer relationships lock out 
much of the potential richness of the Internet of Things. There will be vast streams of 
data flowing, many of which are unknown or unplanned. Only a publish/subscribe 
architecture allows us to tap into this knowledge by discovering interesting data flows and 
relationships. And only a publish/subscribe network can scale to the tremendous size of 
the coming Internet of Things.

The only systems on earth that have ever scaled to the size and scope of the Internet 
things are natural systems: pollen distribution, ant colonies, redwoods, and so on. 
From examining these natural systems, I developed the concept of a three-tiered IoT 
architecture described in this book: simple end devices; networking specialist propagator 
nodes, and information-seeking integrator functions. In these pages, I’ll explain why 
terse, self-classified messages, networking overhead isolated to a specialized tier of 
devices, and the publish/subscribe relationships formed are the only way to fully distill 
the power of the coming Internet of Things.

Francis daCosta
Santa Clara, California, 2013 
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Chapter 1

It’s Different Out Here 

The emergence of the Internet of Things (IoT) destroys every precedent and preconceived 
notion of network architecture. To date, networks have been invented by engineers 
skilled in protocols and routing theory. But the architecture of the Internet of Things will 
rely much more upon lessons derived from nature than traditional (and ossified, in my 
opinion) networking schemes. This chapter will consider the reasons why the architecture 
for the Internet of Things must incorporate a fundamentally different architecture from 
the traditional Internet, explore the technical and economic foundations of this new 
architecture, and finally begin to outline a solution to the problem.

Why the Internet of Things Requires  
a New Solution
The architecture of the original Internet was created long before communicating with 
billions of very simple devices such as sensors and appliances was ever envisioned. 
The coming explosion of these much simpler devices creates tremendous challenges 
for the current networking paradigm in terms of the number of devices, unprecedented 
demands for low-cost connectivity, and impossibility of managing far-flung and diverse 
equipment. Although these challenges are becoming evident now, they will pose a 
greater, more severe problem as this revolution accelerates. This book describes a new 
paradigm for the Internet of Things; but first, the problem.

It’s Networking on the Frontier
The IoT architecture requires a much more organic approach compared with traditional 
networking because it represents an extreme frontier in communications. The scope and 
breadth of the devices to be connected are huge, and the connections to the edges of the 
network where these devices will be arrayed will be “low fidelity”: low-speed, lossy (where 
attenuation and interference may cause lost but generally insignificant data, as depicted 
in Figure 1-1), and intermittent. At the same time, much of the communication will be 
machine-to-machine and in tiny snatches of data, which is completely the opposite of 
networks such as the traditional Internet.
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Exploring the characteristics of the traditional Internet highlights the very different 
requirements for the frontier of the emerging Internet of Things. Conventionally, data 
networks have been over-provisioned; that is, built with more capacity than is typically 
required for the amount of information to be carried. Even the nominally “best effort” 
traditional Internet is massively over-provisioned in many aspects. If it weren’t, the 
Internet couldn’t work: protocols such as TCP/IP are fundamentally based on a mostly 
reliable connection between sender and receiver.

Because Moore’s Law provided a “safety valve” in the form of ever-increasing 
processor speeds and memory capacities, even the explosive growth of the Internet 
over the last two decades has not exceeded the capabilities of devices such as routers, 
switches, and PCs, in part because they are continually replaced at 3- to 5-year intervals 
with devices with more memory and processing power.

These devices are inherently multipurpose: they are designed with software, 
hardware, and (often) human access and controls. What is important about this point 
is that the addition of networking capability, usually in the form of protocol “stacks,” is 
nearly free. The processor power, memory, and so on already exist as byproducts of the 
devices’ prime functions.

But the vast majority of devices to be connected in the coming IoT are very 
different. They will be moisture sensors, valve controls, “smart dust,” parking meters, 
home appliances, and so on. These types of end devices almost never contain the 
processors, memory, hard drives, and other features needed to run a protocol stack. 

Figure 1-1. The results of a lossy connection at an end point
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These components are not necessary for the end devices’ prime function, and the costs 
of provisioning them with these features would be prohibitive, or at least high enough 
to exclude wide use of many applications that could otherwise be well served. So these 
simpler devices are very much “on their own” at the frontier of the network.

Today’s Internet doesn’t reach this frontier; it simply isn’t cost-effective to do so, as 
will be explored later. Thus, it isn’t possible to overprovision in the same way networks 
have traditionally been built. On the frontier, devices in every aspect should therefore be 
more self-sufficient, from their naming, to protocols, to security. There simply isn’t the 
“safety net” of device performance, over-provisioning, a defined end-to-end connection, 
and management infrastructure as in traditional networking.

It Will be (Even) Bigger than Expected
As a growing number of observers realize, one of the most important aspects of the 
emerging Internet of Things is its incredible breadth and scope. Within a few years, devices 
on the IoT will vastly outnumber human beings on the planet—and the number of devices 
will continue to grow. Billions of devices worldwide will form a network unprecedented 
in history. Devices as varied as soil moisture sensors, street lights, diesel generators, video 
surveillance systems—even the legendary Internet-enabled toasters—will all be connected 
in one fashion or another. See Figure 1-2 for some examples.
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Figure 1-2. A wide variety of end devices will be connected to the Internet of Things
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Some pundits have focused only on the myriad addresses necessary for the sheer 
arithmetic count of devices and have pronounced IPv6 sufficient for the IoT. But this 
mistakes address space for addressability. No central address repository or existing 
address translation scheme can possibly deal with the frontier aspects of the IoT. Nor 
can addresses alone create the costly needed networking “horsepower” within the 
appliances, sensors, and actuators.

Devices from millions of manufacturers based in hundreds of countries will appear 
on the IoT (and disappear) completely unpredictably. This creates one of the greatest 
challenges of the IoT: management. This is a matter both of scope and device capabilities.

Consider smartphones, for example, which are expected to become the most 
common computing and communications platforms in the world. This number has 
recently been placed at 1.4 billion, or roughly one for every five persons on the planet.  
A similar figure has been estimated for PCs, bringing the total worldwide for these two types 
of devices to about 3 billion.

These devices incorporate the processors, memory, and human interfaces necessary 
for traditional networking protocol stacks (typically IPv6 today), the human interfaces 
necessary for control, and an infrastructure for management (unique addresses, 
management servers, and so on). The prices (and profit margins) of these devices mean 
that it is cost-effective for manufacturers (and governments) to keep track of addresses, 
feature sets, software revisions, and so on.

But the situation for the actuators, sensors, and appliances of the Internet of Things 
is vastly different. Considering the number of appliances per citizen in developed 
countries alone, the number is staggering: each of these individuals probably makes use 
of dozens of these devices each day. Even residents of developing countries interact with 
multiple end devices and sensors daily—and those numbers are growing with rising 
standards of living. Add to that a vast array of traffic-light controls, security devices, and 
status sensors operated by various levels of government, and the number of potential 
IoT end devices rapidly grows to a couple of orders of magnitude greater than the world’s 
population (7 billion and counting, as of this writing).

The estimated 700 billion IoT devices (see Figure 1-3) cannot be individually 
managed; they can only be accommodated. It will simply not be possible to administer 
the addressing of this huge population of communicating machines through traditional 
means such as IPv6 nor will it be necessary to do so. Instead, self-addressing and self-
classification will provide the answers, as explained in Chapter 3.
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Terse, Purposeful, and Uncritical
The kinds of information these hundreds of billions of IoT devices exchange will also 
be very different from the traditional Internet—at least the Internet we’ve known since 
the 1990s. Much of today’s Internet traffic is primarily human-to-machine oriented. 
Applications such as e-mail, web browsing, and video streaming consist of relatively 
large chunks of data generated by machines and consumed by humans. As such, they 
tend to be asymmetrical and bursty in data flows, with a relatively large amount of data 
exchanged in each “session” or “conversation.”

But the typical IoT data flow will be nearly diametrically opposed to this model. 
Machine-to-machine communications require minimal packaging and presentation 
overhead. For example, a moisture sensor in a farmer’s field may have only a single value 
to send of volumetric water content. It can be communicated in a few characters of data, 
perhaps with the addition of a location/identification tag. This value might change slowly 
throughout the day, but the frequency of meaningful updates will be low. Similar terse 
communication forms can be imagined for millions of other types of IoT sensors and 
devices. Many of these IoT devices may be simplex or nearly simplex in data flows, simply 
broadcasting a state or reading over and over while switched on without even the capacity 
to “listen” for a reply.

5
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Figure 1-3. The quantity of devices in the Internet of Things will dwarf the traditional 
Internet and thus cannot be networked with current protocols, tools, and techniques
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This raises another aspect of the typical IoT message: it’s individually unimportant. 
For simple sensors and state machines, the variations in conditions over time may 
be small. Thus, any individual transmission from the majority of IoT devices is likely 
completely uncritical. These messages are being collected and interpreted elsewhere in 
the network, and a gap in data will simply be ignored or extrapolated (see Figure 1-4).

Figure 1-4. Multiple identical messages may be received; some are discarded

Even more complex devices, such as a remotely monitored diesel generator, should 
generate little more traffic, again in terse formats unintelligible to humans, but gathered 
and interpreted by other devices in the IoT. Overall, the meaningful amount of data 
generated from each IoT device is vanishingly small—nearly exactly the opposite of 
the trends seen in the traditional Internet. For example, a temperature sensor might 
generate only a few hundred bytes of useful data per day, about the same as a couple of 
smartphone text messages. Because of this, very low bandwidth connections might be 
utilized for savings in cost, battery life, and other factors. On the IoT frontier, just as in the 
mythical “Old West,” laconic characters will be appreciated.

Dealing with Loss
Today’s traditional Internet is extremely reliable, even if labeled “best effort.” Over-
provisioning of bandwidth (for normal situations) and backbone routing diversity have 
created an expectation of high service levels among Internet users. “Cloud” architectures 
and the structure of modern business organizations are built on this expectation of 
Internet quality and reliability.

But at the extreme edges of the network that will make up the vast statistical majority 
of the IoT, connections may often be intermittent and inconsistent in quality. Devices 
may be switched off at times or powered by solar cells with limited battery back-up. 
Wireless connections may be of low bandwidth or shared among multiple devices.

Traditional protocols such as TCP/IP are designed to deal with lossy and 
inconsistent connections by resending data. Even though the data flowing to or from any 
individual IoT device may be exceedingly small, it will grow quite large in aggregate IoT 
traffic. The inefficiencies of resending vast quantities of mostly individually unimportant 
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data are clearly an unnecessary redundancy. Again, recall that for the vast majority of IoT 
devices, a lost message (or even a substantial string of messages) is not meaningful.  
(For those devices that are sending or receiving timely mission-critical information, traditional 
Internet protocols are likely a better fit than the emerging IoT architecture.)

The Protocol Trap
It’s extremely tempting to suggest existing widely deployed protocols such as TCP/IP 
for the IoT (see the sidebar “ Why not IP for the IoT?” in Chapter 2). After all, they have 
already been engineered and are widely available in protocol stacks on billions of devices 
such as PCs and smartphones. But, as briefly noted, most of these protocols are ill-suited 
for many of the end devices with potential interest for the IoT.

The basic problem is the very robustness of these protocols. They are intrinsically 
designed for high-duty cycles, large data streams, and reliability. Each of these otherwise 
desirable characteristics is a poor fit for the IoT, as noted previously. But what’s the harm, 
one might ask? Isn’t more capability a good thing? Not for the Internet of Things.

Mind the Overhead
A key reason why robust protocols aren’t needed (or possible) for the IoT is the overhead 
they require and the minimal processing, memory, and communications capabilities 
of many very simple IoT devices. This may come as a shock to some IoT thinkers who 
envision an IP stack on every light post and refrigerator. But when the IoT is considered 
from the proper “end of the telescope”—from the edge of the network in—this 
immediately becomes impractical, for all the reasons noted previously. Instead, it makes 
sense to provide a new solution that can run side by side with existing IP–enabled end 
devices to efficiently manage the immense amount of data being generated by devices for 
which IP support is unnecessary and perhaps a liability.

Much of what has been written to date about the IoT assumes a sophisticated 
networking stack in every refrigerator, parking meter, and fluid valve, so this may be a 
difficult idea to abandon. But from the forgoing discussion, it’s obvious that these devices 
won’t need the decades of built-up network protocol detritus encoded in TCP/IP, for 
example. One must free his or her thinking from personal experiences and concepts of 
the networking of computers, smartphones (and, by definition, human users) to address 
the much simpler needs of the myriad devices at the edge of the IoT.

Burdening otherwise simple devices such as power line sensors and coffee makers 
with a full networking protocol stack would serve only to massively increase the cost and 
complexity of billions of these devices. A traditional networking protocol stack requires 
a processor, operating system, memory, and other functions. Even if consolidated 
within a single chip, the complexity, power draw, and cost of this computing power is an 
unnecessary expense in the IoT. These costs will be considered later in this chapter.

As noted previously, the vast majority of IoT devices have very basic needs of 
sending or receiving a miniscule amount of data. The physical requirements may likewise 
be very simple: an integrated chip containing only the minimal interfaces and a means of 
transmission or reception.
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More Smarts, More Risk
Although it may seem counterintuitive, dumber devices are safer. If every IoT device has 
some sort of operating system and memory, it becomes a potential subject for hacking 
or inadvertent misconfiguration. The operating systems and protocol stacks also require 
updating and management. Providing security and upgrades on the scale of the IoT for a 
massive number of devices, built and installed by millions of different manufacturers and 
individuals, is simply an impossible task (see Figure 1-5).

Figure 1-5. Contrasting the processor, OS, memory, and power necessary for traditional 
protocols vs. the IoT protocol

The Overhead of Overhead
Beyond the physical costs and management requirements, the data overhead of 
traditional networking is likewise overkill for the majority of the IoT. Traditional 
protocols are “sender-oriented”; that is, the sender must ensure that its message has 
been properly transmitted and received. This leads to extensive capabilities in terms of 
temporary storage of sent data, management of acknowledgments, and resending of lost 
or corrupted messages. And each of these robust capabilities is reflected in overhead data 
added to the message payload.

When this data overhead is considered in relation to the tiny snatches of data sent or 
received by the typical IoT device, the ratio of overhead to payload becomes ridiculous. 
Moreover, because each individual IoT message is completely uncritical, the check-and-
retransmit overhead is an unnecessary expense in bandwidth and end device cost. It 
makes the most sense, therefore, for the emerging IoT architecture to be engineered for 
an absolute minimum of data overhead.
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Humans Need Not Apply
Perhaps most importantly, traditional networking protocols and applications are almost 
all designed with the expectation of a human being on one end of the “conversation.” 
These traditional approaches are inherently designed to communicate concepts and 
context for humans.

But the networking overhead associated with smooth streaming, echoing of typed 
characters, and intelligible presentation of data are completely unnecessary at the 
machine-to-machine device level in the Internet of Things. So a large percentage of the 
processing and data overhead of traditional protocols is totally redundant for the IoT. 
An architecture for the Internet of Things should provide only the minimal amount of 
overhead that is needed—and only at the point that it is needed—to maximize efficiency 
and minimize costs.

Economics and Technology of the Internet  
of Things
One of the great promises of bringing IPv6 to the traditional Internet was that it would 
provide all the address space needed to connect every device ever needed forever—
including the Internet of Things, no matter how large it grew. And within that narrow 
definition, the promise is correct. Because of some quirks in the way that only part 
of the IPv6 address space has been released, the current theoretical number of hosts 
(communicating devices) on an IPv6 Internet is 3.4×10*38*.

This is indeed a huge number, which even the massive Internet of Things is unlikely 
to surpass. For this reason, many pundits and manufacturers (particularly those with 
a vested interest) have sanguinely said that IPv6 is already prepared for the Internet of 
Things. The world simply needs to keep doing what it has always done to incorporate the 
new IoT—there are more IP addresses available than grains of sand.

But this “head in the sand” approach ignores the key economic factor that will drive 
the deployment of the Internet of Things (as it has driven nearly every other networking 
technology): the cost at the end points. There are three broad areas where these costs 
accumulate and compel the need for a new approach in the Internet of Things: hardware 
and software, oversight and management, and security.

Functionality Costs Money
As noted earlier, traditional computing and communications devices such as PCs, tablets, 
and smartphones already incorporate processors, working memory, and storage in their 
design. These capabilities are necessary for their primary purpose. Adding IPv6 to these 
devices requires only the addition of a protocol stack that resides in storage, executes 
within working memory, and is powered by the processor.

Thus the incremental cost of adding IPv6 to these devices is indeed negligible, in fact 
barely measurable, when compared with the profit margins these devices generate. But 
these devices are not a significant portion of the Internet of Things! Numbering in the low 
billions today, their number will be dwarfed by the hundreds of billions of simple sensors 
and appliances in the IoT.
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The vast majority of these simple end devices contain no processors, memory, or 
storage; and are not data-connected in any way today. This is a key point: the future of the 
Internet of Things is networking devices that have never been connected before. These 
devices are designed to be built and sold, for the most part, at the lowest cost yielding 
the highest margin. Those sold in developing countries, in particular, must be extremely 
inexpensive. Yet they are some of the very areas in which the IoT will grow most quickly. 
To capitalize on the enormous potential of the IoT, creating a standard low-cost solution 
will enable billions of devices that would otherwise continue to be off the grid, never 
developed, or added to the massive quantity of one-off solutions that are being spawned 
even today.

Inexpensive Devices Can’t Bear Traditional Protocols
With a clearer picture of these cost realities in mind, it is immediately obvious that 
burdening moisture sensors, light bulbs, and the proverbial toaster with the additional 
hardware and software (not necessary for the basic functions of these sensors and 
appliances) needed to run traditional protocols such as IPv6 is a show-stopper. It has 
been estimated that the incremental cost of adding IPv6 to devices can be as much as 
$50, even in large quantities. (Note that beyond the processors and memory devices, 
additional Wi-Fi or Ethernet components are needed, and more power and heat 
dissipation will also be required).

Fortunately for the expansion of the Internet of Things, these simple devices do 
not require anything approaching the level of complexity offered by IPv6. Instead, 
simple modulation, broadcast, and receiving technologies will suffice, even including 
non-radio-frequency solutions such as infrared and power line networking. Assuming 
integration into silicon packages, costs for adding simple IoT networking (described in 
Chapter 2) to sensors and appliances will quickly approach $1 or less. The key is that 
this is barely “networking” in the traditional sense: broadcasting a state or receiving a 
simple instruction with no error correction, routing, or any other traditional networking 
functions. IoT devices are “dumb” in general, but they are exceedingly well-suited to a 
narrow task. At a very base level, it is easy to see that this cost argument alone is proof 
that the costs and the effort in creating a new solution for IoT devices are absolutely 
necessary. The result in not doing so would be that many of these new technologies and 
innovations would largely not come to pass. Others would be implemented at a cost that 
limits their usefulness. At what cost to growth, development, and prosperity?

And as noted previously, traditional one-size-fits-all networking protocols such 
as IPv6 burden even the smallest payloads with 1,000 bytes of data. In today’s over-
provisioned world, these wasted bytes are unnoticed. But when extrapolated to hundreds 
of billions of simple end devices sending and receiving hundreds of thousands of times 
each day, the potential for network congestion and huge expenditures by carriers is 
significant. New carrier build-outs to support the “plain vanilla” data networking of the 
IoT will be difficult to cost-justify.
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Overseeing 700 Billion Devices
The count of manufacturers building networking equipment likely numbers in the millions. 
They are relatively easy to find and track because each traditional piece of networking 
equipment is associated with a MAC ID (Media Access Control Identification) assigned to 
the manufacturer. A large number, but there is a central database of manufacturers that is 
maintained by the IEEE (Institute of Electrical and Electronics Engineers).

For those manufacturers who are today building traditional networking equipment, 
one may assume a significant amount of networking knowledge. Imagine the impact of a 
new IoT standard on the number of network-ready manufacturers out there and the boost 
that would give to the worldwide economy.

Contrast this with the likely millions of firms and individuals worldwide building 
the kinds of simple sensors, actuators, and appliances which will be connected to the 
Internet of Things. It is inconceivable that all those makers of simple devices can be 
expected to queue up for addresses assigned by any centralized authority—or that rogue 
states, organizations, or individuals wouldn’t attempt to subvert such systems.

Extending this thinking, simply scanning for hundreds of billions of IPv6 addresses 
would take literally hundreds of years. It is one thing to put addresses on nearly a trillion 
devices, but quite another to find and manage one device out of that constellation. The 
human cost to manage an Internet of Things made up solely of sophisticated IPv6 devices 
would exceed the cost of any networking project on earth to date. These costs will fall 
hardest on already strapped carriers that are already struggling to wring more revenue 
from expensive physical plant investments.

Only Where and When Needed
Of necessity, the emerging new architecture of the Internet of Things should take an 
entirely different approach, as described throughout this book. End devices have only 
locally meaningful and likely non-unique names. This is not a problem because there is 
networking intelligence elsewhere in the architecture at a much smaller (and thus more 
manageable) number of points.

And there is no need to oversee or control every maker of end devices. Because the 
IoT provides only limited networking capabilities at the end devices, there is little “harm” 
they can do on the network as a whole, and this is easily controlled through a much 
smaller number of “smarter” devices.”

This approach is totally different from IPv6, which demands that every device have 
the functionality and management to act as a “peer” on the network. The Internet of 
Things simply cannot scale if built of peers that all must be managed. Like a massive ant 
colony, the IoT will scale through specialization, individual autonomy, and localized 
effect. In this way, costs are reduced by orders of magnitude.

Security Through Simplicity (and Stupidity)
A trite statement, but ultimately true. Because the communications with the end devices 
in this emerging architecture of the Internet of Things are so basic and so specialized, 
there are limited back doors and security risks. Again, contrast this with the “peer-to-peer” 
world of the IPv6 Internet where many IP devices are exposed to hacking and  
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cracking attempts from anywhere in the world. The global cost of Internet security 
breaches has been estimated at $115 billion (Symantec, 2012). With roughly 2.4 billion 
peer-to-peer nodes on the Internet today, this roughly equates to $50 per node (user) per 
year in losses. Multiplying that figure times the projected hundreds of billions of Internet 
of Things devices creates an unsustainably high cost of IPv6 in the IoT.

By focusing on limited networking capabilities for the end devices as described 
in this book, the emerging architecture of the Internet of Things drastically reduces 
the risks and costs associated with networking the huge population of appliances, 
actuators, and sensors.

Cost and Connectivity
The key for the expected expansion of the Internet of Things is connecting hundreds of 
billions more devices at far-reduced costs and risks. Only this emerging IoT architecture 
can accomplish both in a way that is cost-effective for device manufacturers, Internet 
carriers, and users.

Solving the IoT Dilemma
With the economic and technology challenges posed by the number and unmanageable 
nature of the end devices of the Internet of Things well-defined, the next step is to 
investigate solutions. The balance of this chapter, and indeed this book, is devoted to 
exploring the concepts which may be used to create an architecture (working side by side 
with, and enhancing the potential of, the traditional IP network) for the Internet of Things 
that may practically scale to the size and scope required.

Inspiration for a New Architecture
So if traditional networking architectures are not appropriate for all the potential 
applications of the Internet of Things, where can solutions be found? In addressing 
this question, fields as diverse as robotics, embedded systems, big data, and wireless 
mesh networking contribute concepts and technology, although none of these directly 
addresses the scale and scope of the Internet of Things, nor the simplicity of the vast 
majority of IoT end points.

There are no human-produced technology systems that scale to the massive size  
of the imminent IoT. So when considering techniques and processes, it is necessary 
to turn to nature, in which systems have evolved that scale to hundreds of billions of 
individual elements exchanging information (broadly defined) in some fashion. It quickly 
becomes clear that the only highly optimized systems exhibiting this sort of scope are 
populations of the natural world: colonies of social insects, the propagation of pollen,  
the dissemination of larval young, and so on.
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Nature: The Original Big Data
The most obvious similarity between the natural systems and the emerging Internet of 
Things is scale—natural systems are truly massive. Billions and billions of individuals 
operate and interact as a population (of one species) or an ecosystem (of many species). 
Visual, aural, and chemical signals are broadcast and interpreted; gametes such as 
pollen may be distributed over vast areas by wind and currents to interact with other 
individuals of the same species; and huge groups of similar and dissimilar organisms 
share information about threats or food sources (intentionally or incidentally).

Obviously, the communication of these natural systems is not centrally controlled, 
nor are there elaborate protocols or retransmission schemes in place. Instead, species 
have evolved within the natural world in ways that make this communication possible. 
What are these characteristics that make this “networking” possible in the massive 
systems of nature?

Autonomy of Individuals
One of the most striking things about natural systems is the way in which individuals 
independently send and receive communications and act on the information. Even 
seemingly highly organized populations or colonies such as ant and bee colonies are 
actually made up of individuals making decisions independently. Because individuals 
make these choices based on simple algorithms (usually dichotomous decision points) that 
are shared by all, the actions of the colony as a whole are as efficient as if centrally directed.

Even more remarkably, the actual brain “computing power” available to many 
species in nature is quite limited. Yet they can act on stimuli, communicate threats, 
broadcast mating availability, and perform many other tasks vital for survival. In the 
natural model, the simplicity of the individual is balanced by a narrowly defined purpose 
to its communications.

In the same way, most individual end devices in the IoT can be (indeed must be) 
very simple and autonomous. As noted previously, it will not be economically  
or architecturally feasible to burden these billions of devices with large amounts of 
computing power, memory, or protocol sophistication. When powered up, these devices 
must begin sending or receiving data immediately with no setup, management, or other 
interaction. It is interesting to note that many social insects operate in much the same 
way; immediately upon emerging in adult form, they begin a task such as nurturing 
nearby young. Without this autonomy of function and independence of individuals’ 
actions, nature would not scale—and neither can the IoT.

Zones and Neighborhoods of Interest
Another aspect of natural systems that allow them to scale is the evolution of “zones” or 
“neighborhoods” of interest formed by “affinities,” which allow individuals to act upon 
a specific signal among countless other signals. A bird song is an interesting example of 
this phenomenon. Walking through a field, one may be struck by the songs being sung by 
several different bird species simultaneously. These songs can have a variety of purposes, 
such as advertising mating availability and suitability or defining territories.
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But each individual takes note only of songs from members of its own species  
(see Figure 1-6). The zones of interest, or neighborhoods of interest, of various bird species 
can overlap, and one communications medium (in this case audible frequencies 
transmitted through the air) is being used for all messages. But each individual bird acts 
only upon messages within its own group. Similarly, a viable architecture for the IoT must 
allow interested observers to define a neighborhood of interest (within the much larger 
Internet) and analyze or send data only from or to that neighborhood.

Figure 1-6. Although many different species of birds may be singing in a field, only members 
of the same species listen

In the Eyes of the Beholder
Another important aspect of scaling in the natural world is that many communications 
are receiver-oriented. This is in direct contrast with the sender-oriented nature of many 
traditional communications protocols, as described previously. Plant pollen represents 
an interesting example of this highly scalable characteristic of natural systems.

Many of us view pollen as a (literal) irritant during hay fever season. But pollen’s 
actual role in nature is in plant reproduction. Pollen released by the male plant is carried 
indiscriminately by the wind. Because pollen is a lightweight (again, literally) signal, it 
can be distributed hundreds or even thousands of miles by air currents. At some point, 
pollen falls randomly out of the air, landing on any surface. The vast majority of released 
pollen falls on bodies of water, bare ground, streets, or plants of another species, where 
it deteriorates with no effect. But some tiny portion of the total pollen released falls 
upon the appropriate flowering parts of a female plant of the same species. At this point, 
pollination takes place and seeds are generated for the next generation (see Figure 1-7).
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The communication of pollen is thus receiver–oriented. The zone or neighborhood 
of interest is defined by the receiving plant, which ignores all other signals (pollen from 
other species). The overall network (winds and so on) does not discriminate or actively 
manage the transmission of pollen in any way; it’s merely a transport mechanism. The 
“intelligence” of nature is applied only at the receiver.

In the same way, a scalable architecture for the Internet of Things out of necessity 
includes many elements that are receiver-oriented, with zones or neighborhoods of 
interest being applied at the point of data integration and collection. These integrator 
functions will build interesting streams of data from “neighborhoods” that are 
geographical, temporal, or functional.

Another way of expressing these natural-world communications interactions is in 
term of publishers and subscribers. Many individuals may “publish” information in the 
form of calls, visual displays, pollen, etc. But these are moot unless other individuals 
“subscribe” to these messages. There is no set relationship between publisher and 
subscriber, as there would be in the peer-to-peer world of traditional networking–the 
natural world is simply too large and (obviously) unmanaged. In the IoT, the principle is 
the same: the only way to fully extract information from the myriad possible sources is 
through publish/subscribe relationships, which can scale.

Signal Simplicity
In the preceding examples from nature, most “signals” are simple and have a single 
purpose. This makes them “lightweight” and easily transported through the environment, 
even to the fringes or frontiers of a territory. With a single purpose, they are also easily 
“analyzed” and acted upon at their destination. (Contrast this with the general-purpose 
nature of traditional networking protocols, designed with overhead sufficient to support 
transport of a wide variety of payloads).

Figure 1-7. In nature, only the “correct” receivers act on “messages” received, such as pollen. 
All others discard or ignore the message



CHAPTER 1 ■ IT’s DIffEREnT OuT HERE 

16

Similarly, the vast majority of data transported in the Internet of Things will be 
very simple and single-purposed in function. Many sensor-type end devices will be 
communicating only simple states or conditions. If they receive any data at all, it will be 
simple “sets” defining minor configuration changes. Other types of devices may send 
nothing and receive only simple instructions or settings from a central source or function.

Besides being lightweight, another key element of natural communications, such as 
the broadcast of pollen, is that the individual messages are self-classified. Pollen particles 
exhibit a particular size and shape that “key” them to specific receivers. Bacteria and 
viruses are likewise structured to interact with specific hosts. These natural messages 
are classified for type and content externally, that is, by their shape or form. Similarly, 
messages in the emerging IoT will have external markers that will allow action by 
intermediate network elements.

Leveraging Nature
Bringing all these concepts found in nature into the emerging architecture of the Internet 
of Things is inherently a more organic approach. The key lesson from nature is that huge 
scale is possible only with simple building blocks. Rather than building upon already 
bloated networking protocols, the architecture of the IoT must be based upon the 
minimum networking requirements—with only the minimal complexity added at the 
precise points at which it is needed.

Peer-to-Peer Is Not Equal
Because most Internet of Things communications will be machine-to-machine, it can 
be tempting to consider the IoT a peer-to-peer network: the general concept of peer-to-
peer architectures is extremely attractive. The prospect of billions of devices seamlessly 
interacting with one another would seem to allow the Internet of Things to escape 
the limitations of centralized command and control, instead taking full advantage of 
Metcalf’s Law to create more value through more interconnections.

But true peer-to-peer communication isn’t perfect democracy; it’s senseless 
cacophony. In the IoT, many devices at the edge of the network have no need to be 
connected with other devices at the edge of the network—there is zero value in the 
information (see Figure 1-8). As described previously, these devices have simple needs to 
speak and hear: perhaps sharing a few bytes of data per hour on bearing temperature and 
fuel supply for a diesel generator. Again, burdening them with protocol stacks, processing, 
and memory to allow true peer-to-peer networking is a complete waste of resources and 
creates more risk of failures, management and configuration errors, and hacking. More-
sophisticated end devices may still require IP and they can exist side by side with simpler 
devices and be optimally served by technologies required to maximize the potential of 
the Internet of Things (as will be discussed in Chapter 7).
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Transporting IoT Traffic
There is obviously a need to transport the data destined to (or originating from) these 
edge devices. The desired breakthrough for a truly universal IoT is to use increasing 
degrees of intelligence and networking capability to manage that transportation of data 
at various points in the network—but not to burden every device with the same degree of 
networking capability.

Billions of Devices; Three Functional Levels
To this point, the economic and practical reasons for a new architecture for the Internet 
of Things have been described. In addition, lessons from massively scaling systems in 
nature have been explored as possible models for communications in the IoT, along with 
the arguments for keeping the burden of communications very low on the simple end 
devices that will form the vast majority of the Internet of Things.

But if the communications intelligence and functionality does not exist within the 
end devices, other devices to transport data efficiently must be found elsewhere in the 
network. And if the data being sent and received by end devices is to be of any use, there 
must be elements of the network outside of the end devices to manage that data flow.

Figure 1-8. Machine-to-machine interconnection between devices at the network edge are 
unnecessary: toaster-to-printer, for example 
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The most powerful concept of the emerging architecture of the Internet of Things is 
division of the network into three functional classes, allowing deployment of networking 
functionality (and cost and complexity) only where and when needed. These three 
classes are:

The end devices •	

•	 Propagator nodes providing transport and gateways to the 
traditional Internet 

•	 Integrator functions offering analysis, control, and human 
interfaces to the IoT

At the edge of the network are the simple end devices, which are represented on 
the left in Figure 1-9. They transmit or receive their small amounts of data in a variety of 
ways: wirelessly over any number of protocols, via power line networking, or by being 
directly connected to a higher-level device. These edge devices simply “speak” their small 
amounts of data or listen for data directed toward them. (The means of handling this 
addressing will be discussed in detail in Chapter 6.)

Figure 1-9. The emerging architecture for the Internet of Things includes end devices, 
propagator nodes, and integrator functions

Unlike traditional protocols such as IPv6, the IoT architecture involves no error-checking, 
routing, higher-level addressing, or anything of the sort at the end devices. That’s because 
none of these is needed. Edge devices (Level I, so to speak) are fairly mindless “worker 
bees” existing on a minimum of data flow. This will suffice for the overwhelming majority 
of devices connected to the IoT.
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Propagator Nodes Add Networking Functionality 
The protocol intelligence resides elsewhere in the IoT network: within the Level II 
propagator nodes shown in the mesh in Figure 1-9. They are technologically a bit more like 
familiar traditional networking equipment such as routers, but they operate in a different 
way. Propagator nodes listen for data originating from any device. Based on a simple set 
of rules regarding the “arrow” of transmission (toward devices or away from devices), 
propagator nodes decide how to broadcast these transmissions to other propagator nodes 
or to the higher-level integrator devices discussed in the next section.

In order to scale to the immense size of the Internet of Things, these propagator 
nodes must be capable of a great deal of discovery and self-organization. They will 
recognize other propagator nodes within range, set up simple routing tables of 
adjacencies, and discover likely paths to the appropriate integrators. Similar challenges 
have been solved before with wireless mesh networking technology (among many 
others), and although the topology algorithms are complex, the amount of data exchange 
needed is small.

One of the important capabilities of propagator nodes is being able to prune and 
optimize broadcasts. Data passing from and to end devices may be combined with other 
traffic and forwarded in the general direction of their transmission “arrow.” Propagator 
nodes are perhaps the closest functional elements to the traditional idea of peer-to-peer 
networking, but they provide networking on behalf of end devices and integrator functions 
at levels “above” and “below” themselves. Any of the standard networking protocols can 
be used, and propagator nodes will perform important translation functions between 
different networks (power line or Bluetooth to ZigBee or Wi-Fi, for example).

Although the preceding describes the generic function of the propagator nodes, 
many will also incorporate an important additional capability: the capacity to be 
managed and “tuned” by integrator functions across the network. This will take the form 
of a software publishing agent within fully featured propagator nodes. As more fully 
described in Chapters 4 and 5, this publishing agent will become part of the information 
“neighborhood” created by one or more integrator functions. In much the same 
manner as a Software Defined Network, the integrator function will apply higher-level 
management to particular propagator nodes, controlling functions such as frequency of 
data transmission, network topology, and other networking functionality.

Collecting, Integrating, Acting
Integrator functions are where the data streams from hundreds to millions of devices 
are analyzed and acted upon. Integrator functions also send their own transmissions to 
get information or set values at devices—of course, the transmission arrow of this data 
is pointed toward devices. Integrator functions may also incorporate a variety of inputs, 
from big data to social networking trends, and from Facebook “likes” to weather reports.

In this emerging architecture, integrator functions are the human interface to 
the IoT. As such, they will be built to reduce the unfathomably large amounts of data 
collected over a period of time to a simple set of alarms, exceptions, and other reports for 
consumption by humans. In the other direction, they will be used to manage the IoT by 
biasing devices to operate within certain desired parameters.
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Using simple concepts such as “cluster” and “avoid” (discussed in Chapter 5), 
integrated scheduling and decision-making processes within the integrator functions 
allow much of the IoT to operate transparently and without human intervention. 
One integrator function might be needed for an average household operating on a 
smartphone, computer, or home entertainment device. Or the integrator function could 
be scaled up to a huge global enterprise, tracking and managing energy usage across a 
corporation, for example. (Integrator functions are fully explored in Chapter 5.)

When the Scope Is Too Massive
An additional device at this third level of the architecture is the filter gateway. Filter 
gateways are notionally two-armed routers, with a connection to the Internet and a 
connection to the integrator function. Integrator functions are general purpose processors 
like PCs and can be overwhelmed by very large amounts of data, denial-of-service attacks, 
and so on. So the filter gateway is an appliance that ensures that only meaningful data is 
forwarded to the integrator function. Filter gateways may use a simple set of rules (set by 
the attached integrator function) to filter the traffic presented to the integrator, restricting 
it to the “neighborhood of interest” only. These neighborhoods again can be geographic, 
functional, time-based, or some combination of many other factors.

Functional vs. Physical Packaging
When it comes to actually packaging and delivering products, some physical devices will 
certainly be combinations of architectural elements. Propagator nodes combined with one 
or more end devices certainly make sense, as will other combinations (see Figure 1-10). 
But the important concept here is to replace the idea of peer-to-peer for everything with a 
graduated amount of networking delivered as needed and where needed. In the Internet of 
Things, a division of labor is required (such as in ant and bee colonies) so that devices with 
not much to say or hear receive only the amount of networking they need–and no more.

Figure 1-10. Some devices incorporate multiple IoT functions in a single package. Here 
multiple end devices are combined with a propagator node that may provide networking 
services for additional nearby end devices
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Connecting to the “Big I”
To this point, this chapter has focused on the characteristics and functions that differentiate 
the Internet of Things from the traditional Internet (or “Big I”).

Despite the clear and compelling reasons for a new architecture and protocol at the 
very edge of the Internet of Things, it is not possible to escape a fundamental truth: in 
order to scale to billions of devices worldwide, the traditional Internet is the only viable 
backbone for transporting IoT traffic. So at some point, the lightweight IoT protocols must 
be packaged or converted to traditional Internet protocols that may take advantage of the 
deployed worldwide Internet architecture.

As briefly noted previously and more fully explored in Chapter 6, the architecture of 
the Internet of Things provides trunking and conversion functionality at richly featured 
propagator nodes. Less-featured propagator nodes also exist that communicate only with 
lightweight IoT protocols, depending on other propagator nodes for IP conversion. This is 
described in detail in Chapter 4.

Thus, connections between propagator nodes may be either traditional protocols 
such as IPv6 or lightweight IoT protocols. More importantly, richly featured propagator 
nodes will provide conversion to IPv6 for routing data between end devices and their 
associated integrator functions. In turn, integrator functions also typically include IPv6 
for direct Internet connectivity (or it can be provided by a filter gateway).

Smaller Numbers, Bigger Functionality
In addition, there is a relatively small number (still billions) of more-sophisticated end 
devices connected to the Internet of Things that incorporate mission-critical data, greater 
data requirements, and/or real–time data needs. These devices can justify the costs and 
complexity of processing, memory, and a full protocol stack, so they will connect directly 
via IPv6. An example is a video surveillance camera or complex process controller.

IPv6 data to and from these devices may still be combined with lightweight IoT data 
streams at the same integrator functions. In addition, interesting hybrid devices can 
develop that include both a lightweight IoT interface and a traditional IPv6 connection. 
In these situations, the lightweight IoT protocols might be used for normal or routine 
communications, with the IPv6 connections becoming active based on a particular event 
or condition.

Fundamentally, the IoT network protocols must coexist and interoperate with the 
traditional Internet and other networks such as Cellular 4G and LTE. The key challenge 
for the emerging Internet of Things architecture is to allow this interoperability without 
burdening the billions and billions of simpler end devices. The next chapter describes 
the simple “chirp” structure of IoT data and how it is delivered across the Internet  
of Things.
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Chapter 2

Anatomy of the Internet  
of Things 

It may appear to be a daunting task to engineer a new networking architecture for the 
Internet of Things (IoT). Yet nothing less than a completely new approach is needed. The 
Internet of Things environment is so different, and the devices to be connected so varied, 
that there has never been a networking challenge quite like it since the origin of what is 
now called the Internet.

In developing this new architecture for the Internet of Things, key lessons have 
been drawn from the development of the traditional Internet and other transformational 
technologies to provide some basic guiding principles:

It should specify as little as possible and leave much open for •	
others to innovate.

Systems must be designed to fail gracefully: seeking not to •	
eliminate errors, but to accommodate them. 

Graduated degrees of networking functionality and complexity •	
are applied only where and when needed.

The architecture is created from simple concepts that build •	
into complex systems using the analog provided by natural 
phenomena.

Meaning may be extracted from data in real time.•	

The emerging architecture for the Internet of Things is intended to be more inclusive 
of a wider variety of market participants by reducing the amount of networking knowledge 
and resources needed at the edges of the network. This architecture must also be extremely 
tolerant of failures, errors, and intermittent connections at this level. (Counter intuitively, the 
best approach is to simplify protocols at the edge rather than to make them more complex.)

In turn, increasing sophistication of networking capabilities are applied at gateways 
into the traditional Internet, in which propagator nodes provide communications services 
for armies of relatively unsophisticated devices.

Finally, meaning can be extracted from the universe of data in integrator functions 
that provide the human interface to the Internet of Things. This level of oversight is 
applied only at the highest level of the network; simpler devices, like worker bees in a 
hive, need not be burdened with computational or networking resources.
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To explore what’s needed for this new architecture, it is first necessary to abandon 
the networking status quo.

Traditional Internet Protocols Aren’t the Solution 
for Much of the IoT
When contemplating how the Internet of Things will work, it helps to forget the 
conventional wisdom regarding traditional networking schemes—especially wide area 
networking (WAN) and wireless networking. In traditional WAN and wireless networking, 
the bandwidth or spectrum is expensive and limited, and the amount of data to be 
transmitted is large and always growing. Although over-provisioning data paths in wiring 
the desktop (and a majority of the traditional Internet) is commonplace, this isn’t usually 
practical in the WAN or wireless network—it’s just too expensive. With carriers largely 
bearing the cost and passing it along to customers, wireless costs range as high as ten 
times the wired equivalents using IP.

Besides cost, there’s the matter of potential data loss and (in the wireless world) 
collisions. Traditional networking protocols include lots of checks and double-checks on 
message integrity to minimize costly retransmissions. These constraints led to today’s 
familiar protocol stacks, such as TCP/IP and 802.11.

Introducing the “Chirp”
In most of the Internet of Things, however, the situation is completely different. The costs 
of wireless and wide-area bandwidth are still high, to be sure. And because many of the 
connections at the edge of the network—the IoT frontier, so to speak—will be wireless 
and/or lossy, any Internet of Things architecture must address these factors. But the 
amounts of data from most devices will be almost immeasurably low and the delivery of 
any single message completely uncritical. As discussed previously, the IoT is lossy and 
intermittent, so the end devices will be designed to function perfectly well even if they 
miss sending or receiving data for a while—even for a long while. As discussed earlier, it is 
this self-sufficiency that eliminates the criticality of any single message.

After reviewing all existing options in considering the needs of the IoT architecture 
from the ground up, it is clearly necessary to define a new type of data frame or packet. 
This new type of packet offers only the amount of overhead and functionality needed for 
simple IoT devices at the edge of the network—and no more. These small data packets, 
which are called chirps, are the fundamental building block of the emerging architecture 
for the IoT. Chirps are different from traditional Internet protocol packets in many ways 
(see the “Why Not the IP for the IoT?” sidebar. Fundamental characteristics of chirps 
include the following:

Chirps incorporate only minimal overhead payloads, “arrows” •	
of transmission (see below), simple non-unique addresses, and 
modest checksums.

Chirps are inherently individually noncritical by design.•	

Therefore, chirps include no retransmission or acknowledgment •	
protocols.
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Any additional functions necessary for carrying chirp traffic over the traditional 
Internet, such as global addressing, routing, and so on, are handled autonomously by 
other network devices by means of adding information to received simple chirps. There 
are therefore no provisions made for these functions within a chirp packet.

Lightweight and Disposable
In contrast to traditional networking packet structures, IoT chirps are like pollen or 
bird songs: lightweight, broadly propagated, and with meaning only to the “interested” 
integrator functions or end devices. The IoT is receiver-centric, not sender-centric, as is IP. 
Because IoT chirps are so small and no individual chirp is critical, there is limited concern 
over retries and resulting broadcast storms, which are a danger in IP.

It’s true that efficient IoT propagator nodes will prune and bundle broadcasts  
(see Figure 2-1 and Chapter 4), but seasonal or episodic broadcast storms from end devices 
are much less of a problem because the chirps are small (and thus cause less congestion) 
and individually uncritical. Excessive chirps may thus be discarded by propagator nodes  
as necessary.

Figure 2-1. Chirps are typically collected within propagator nodes, bundled and 
pruned as necessary for transmission, and then typically forwarded via IPv6 over the 
traditional Internet

Functionality the IoT Needs—and Doesn’t
This very different view of networking means that huge packets, security at the publisher, 
and assured delivery of any single message are unnecessary, allowing for massive 
networks based on extremely lightweight components. In one sense, this makes the IoT 
more “female” (receiver-oriented) than the “male” structure of IP (sender-oriented).

But there is obviously no point in having an IoT if nothing ever gets through. How 
can the acknowledged unpredictable nature of connections be managed? The answer, 
perhaps surprisingly, is over-provisioning—but only very locally between chirp device and 
propagator node. That is, these short, simple chirps may be re-sent over and over again as 
a brute-force means of ensuring that some get through.
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Efficiency Out of Redundancy
As seen in Figure 2-2, because the chunks of data are so small, the costs of this  
over-provisioning at the very edge of the IoT are infinitesimal. (They are often handled 
by local Wi-Fi, Bluetooth, infrared, and so on, so they are not metered by any carrier.) 
Therefore, the benefits of this sort of scheme are huge. Because no individual message is 
critical, there’s no need for any error-recovery or integrity-checking overhead (except for 
the most basic checksum to avoid a garbled message). Each chirp message simply has an 
address, a short data field, and a checksum. In some ways, these messages are what IP 
datagrams were meant to be. Chirps are also similar in many ways to the concepts of the 
Simple Network Management Protocol (SNMP), with simple “get” and “set” functionality.

Figure 2-2. Many small chirps (machine-to-machine–oriented) are still considerably less 
data than a much longer IP packet (human-oriented)

Importantly, the cost and complexity burden on the end devices to incorporate chirp 
messaging will be very low–because it must be in the IoT. The most efficient integration 
schemes will likely be “chirp on a chip” approaches, with minimal data input/output and 
transmission/reception functionality combined in a simple standardized package.

The chirp will also incorporate the “arrow” of transmission mentioned previously, 
identifying the general direction of the message: whether toward end devices or toward 
integrator functions (see Figure 2-3). Messages moving to or from end devices need only 
the address of the end device; where it is headed or where it is from is unimportant to 
the vast majority of simple end devices. These devices are merely broadcasting and/or 
listening, and local relevancy or irrelevancy is all that matters.
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So the end devices may be awash in the ebb and flow of countless transmissions. 
They may broadcast continuously and trust that propagator nodes and integrator 
functions elsewhere in the network will delete or ignore redundant messages. Likewise, 
they may receive countless identical messages before detecting one that has changed and 
requires an action in response.

In essence, this means that the chirp protocol is “wasteful” in terms of 
retransmissions only very locally, where bandwidth is cheap or free (essentially “off the net”).
But because propagator nodes are designed to minimize the amount of superfluous or 
repeated traffic that is forwarded, WAN costs and traffic to the traditional Internet are 
vastly reduced.

Note that, unlike traditional network end devices such as smartphones and laptops, 
the largest percentage of IoT end devices likely will not include both send and receive 
functions (see Figure 2-4). An air quality sensor, for example, needs to send only the 
current state for whatever chemicals it is measuring. It begins sending when powered on, 
and repeatedly chirps this information until switched off. This may simplify significantly 
the hardware and embedded software needed at the vast majority of end points.

Figure 2-3. Each chirp includes an “arrow” of transmission that indicates its direction of 
propagation: toward end devices or toward integrator functions
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WHY NOT IP FOR THE IOT?

Although IPv6 already exists (and will at some point be ubiquitous within the traditional 
Internet), it is not the ideal format for much of the IoT traffic—for a variety of reasons 
outlined in Chapter 1 related to processing power and device memory that would be 
required in the tremendous quantity of otherwise simple and cheap end devices in the 
Internet of Things. But there are also fundamental protocol inefficiencies that make 
IPv6 unsuitable for the IoT, as discussed here. still, there will be a vast array of end 
devices that must use IP, so a dual approach to protocols, IP, and the chirp protocols 
used together to service IoT devices of all kinds would yield an optimal result. It is 
worthwhile to compare and contrast the traditional IPv6 packet format with the IoT 
chirp, considering the difference in applications for which each is designed.

IP protocols were originally designed (in the early 1970s) for peer-to-peer 
communications between large hosts. These exchanges tended to be in large blocks 
of data, so IP is fundamentally oriented toward larger payloads. In addition, because 
WAn connections were extremely expensive and unreliable at the time when these 
host-to-host links were first designed, it was critical to incorporate the addresses of 
sender and receiver, as well as error detection and retransmission capabilities within 
the protocol to make it more robust. The result is that the header overhead of a 
single IPv6 packet is fairly high: 40 bytes. (A significant amount of the overhead in IP 
is dedicated to security, encryption, and other services, none of which matters at the 
very edges of the Internet of Things where the simplest devices predominate.)

Figure 2-4. Many IoT devices will be send-only or receive-only
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Although originally imagined for machine-to-machine traffic, much of the IP traffic 
on the traditional Internet today is oriented toward human communications. This 
often consists of relatively long-duration sessions and some degree of full-duplex 
interaction over relatively costly links (at least until recently). Traditional networking 
protocols are thus designed for reliability and recoverability because nearly every 
packet is necessary for human context and understanding.

As a general-purpose protocol designed to carry data of virtually any type or degree 
of criticality, IP imposes at least this much overhead on every transmission. The 
structure of the header is strictly defined, and most aspects are unchangeable—the 
standard is absolute.

IP establishes maximum Transmission Units (mTUs) that describe the maximum 
size of data blocks that the link is expected to carry. They have increased over time 
to 1,280 bytes for IPv6, although most deployed networks have mTUs of 1,500 or 
more. Peer-to-peer host traffic will tend to be managed by the applications to come 
in larger blocks to match outbound blocks to the mTU to maximize efficiency.

With packets of these sizes, the IP overhead is a relatively small percentage of the 
overall “cost” of transmission. for example, 40 bytes of IPv6 overhead added to a 
1280 byte mTU is roughly 97% efficiency. In actual practice, the overhead is often 
doubled because an acknowledgment packet is required to be sent for each arriving 
packet. With no data payload, this acknowledgment packet is also the IPv6 minimum 
of 40 bytes. (In the host-to-host environment for which IP was originally designed, 
there would usually be some data to be sent in the return direction, though, so the 
overhead is not always wasted.)

But the Internet of Things is definitely not made up of peer-to-peer communications 
between like hosts. Because Internet of Things chirp traffic is machine-to-machine-
oriented, it is by contrast sporadic, (nearly always) simplex, and almost free 
because of low volumes of data and low duty cycles. The IoT is a publish/subscribe 
model with very simple end devices transmitting or receiving only tiny amounts 
of individually noncritical pieces of data at one time. A temperature sensor output 
might be expressed in 8 bits or fewer, for example. so for a large number of 
similar applications, the data “payload” would be only 1 byte. Applying IPv6 to this 
application with the same overhead calculation yields 40 bytes of IPv6 overhead to  
1 byte sensor data is only about 2% efficiency!

Chirps are designed to minimize overhead for this type of data in the multiple ways 
described in this chapter, such as simplifying addresses, eliminating retransmission 
overhead, and so on. most importantly, the relative structure of the chip packet adds 
differing amounts of overhead depending on the type and size of the data generated 
by the end device, ensuring maximum efficiency. only the smallest (4.5 byte total, 
3.5 byte overhead) chirp packet would be needed to send an 8-bit payload, for an 
efficiency gain of roughly an order of magnitude over IPv6 (18% vs. 2%). see the 
comparison in figure 2-5.
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In general, larger data payloads result in more efficient chirp packets, with the 
headers increasing only incrementally to match specific applications, as further 
described in Chapter 6. for example, a 4-byte end-device payload could be handled 
with the same 3.5-byte overhead, for an efficiency of more than 50%.

one other critical differences between chirps and IP packets is that chirps are 
self-classified through external markers (see “family Types” below). This makes 
it easy for integrator functions to discover new interesting data flows by looking 
for affinities with “known” data sources. The only way this could be accomplished 
in IP would be to include the classification information within the payload, which 
would require impractical deep inspection of every packet by propagator nodes and 
integrator functions.

so chirps make eminent sense in the “last mile” of network connections at the 
edge of the IoT frontier instead of IPv6. Beyond the edges of the network, the 
situation changes, however. Propagator-to-propagator or propagator-to-integrator 
communications can much more resemble host-to-host traffic because their 
transmissions may consist of bundled chirps to and from many end devices 
(increasing the size of the data blocks to be exchanged). In those situations, the 
error correction and other features of a protocol such as IP are more useful, as more 
fully described in Chapter 4. And because these communications often use the 
traditional Internet as the medium, it makes even more sense to simply use existing 
IPv6 networking protocol stacks.

note that some sensitive and proprietary applications (government, security, 
financial, and so on) will remain that also require the additional features of IP in 
terms of guaranteed delivery, security, and so on. These types of applications are not 
part of the emerging Internet of Things as defined in this book and will, of course, 
remain on traditional protocols.

Figure 2-5. Comparison of TCP/IP packet and chirp packet overheads for a 1-byte 
payload from a simple sensor
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It’s All Relative
The detailed structure of the chirp packet is described in Chapter 6, but a brief 
introduction is useful here. The key difference between the Internet of Things packet and 
other packet formats is that the meanings of values within the packet are _relative. That 
is, there is no fixed definition for the packet locating headers, addresses, and so on  
(as there is for IPv6, for example).

As seen in Figure 2-6, _markers are used in place of a fixed format definition to allow 
receiving devices to determine information such as sending address, type of sensor and data, 
arrow of transmission, and so on. These markers are both _public_ and _private_ types.

Figure 2-6. The IoT chirp packet is unique in that addressing and other information 
is determined by relative position to defined markers, not by a rigid general overall 
protocol formats

Public markers, which are found in every IoT packet, allow the receiving device 
to “parse” the incoming traffic. When a public marker is noted, the receiving device 
examines data ahead of and behind the marker for specific bits needed to determine how 
the rest of the packet will be forwarded and/or acted upon. The receiving device need 
not examine the packet except for the areas indicated by the location and type of public 
marker observed. Public markers include the basic arrow of transmission described 
previously, a limited 4-bit checksum for packet verification, and so on. Bits in the data 
field that are not part of the routing and verification information are simply treated as a 
data payload at this level of examination.

Format Flexibility
The presence of public markers within the IoT chirp packet permits the length of the IoT 
packet to vary as necessary for the specific application, device type, or message format. 
Different families of IoT packets with varying amounts of public data fields are defined to 
allow sufficient information to be added for applications that need additional context, but 
also to allow for minimal overhead for the most basic device types and generic IoT packet 
propagation.
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The use of public markers is inspired by nature, including the transcription or 
“reading” of heredity information coded in DNA within genes to create proteins needed 
for development and life. DNA strands may contain repetitions and “junk” sections that 
should not be read, but localized markers are used to indicate “start” and “stop” points for 
transcription. Receiving devices use public markers in the same way to examine IoT chirp 
packets without requiring specific byte counts or other overhead-generating restrictions.

Private Markers for Customization and Extensibility
Private markers are permitted within the generic “data” field defined by public markers 
to allow customization of data formats for specific applications, manufacturers, and so 
on. As with public markers, the private marker allows a receiving device to parse the data 
stream to locate information for specific needs.

Addressing and “Rhythms”
As noted earlier, billions of end devices of the IoT will be extremely inexpensive and may 
be manufactured by makers throughout the world, many of whom will not have extensive 
networking knowledge. For this reason, ensuring address uniqueness through a centralized 
database of device addresses for the hundreds of billions of IoT end points is a nonstarter.

Part of the public information in the IoT chirp packet will be a simple, non-unique, 
4-bit device ID applied through PC board traces, hardware straps, DIP switches, or similar 
means. As described in Chapter 6, it will combine with a randomly generated 4-bit 
pattern to ensure a much lower potential for two end devices, connected to the same 
local propagator node, to have identical identifications. (This combination of bits is also 
used to vary transmission rates in wireless environments to avoid a “deadly embrace.”)

If additional addressing specificity and/or security is required in particular 
applications, it will be possible to add this information within the private space of the 
IoT packet.

Family Types
The final public information contained in all IoT chirp packets is a classification into one 
of 255 possible chirp “families.” As described in Chapter 6, these families will primarily 
divide along type and application lines, such as sensors of various types, control valves, 
green/yellow/red status indicators, and so on. These chirp families will be defined from 
generic to more specific, and will be broad and extensible enough to allow any type of 
IoT application. As noted previously, for specific applications or devices in which more 
granularity of type classification is desired, this custom information may be defined by 
private markers within the data field.

The type and classification of the chirp packets enables one of the most far-reaching 
benefits of the IoT: the ability for data analyzers to discover and recruit new data 
sources based on affinities with information neighborhoods. Because this type and 
classification information is “external”, it may be recognized and acted upon by many IoT 
elements, such as integrator functions and propagator nodes (along with their associated 
publishing agents, if so-equipped).
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In this way, integrator functions monitoring a pressure sensor in a pipeline might 
seek out nearby temperature sensors to look for correlations that might provide richer 
information. The type and classification of the chirp packet alone conveys some potential 
knowledge that may be analyzed and coordinated with other information, and this is 
carried throughout the network as chirp packet streams are forwarded.

This feature is true even if the transmitting sensors were installed for a different 
application, by a different organization, or at a different point in time. The option for 
“public” advertising of type and classification allow broader use (and re-use) of chirp 
streams, by enabling dynamic publish/subscribe relationships to be created and 
modified over time as the IoT “learns”.

This benefit is achieved without burdening end devices. Because most end devices 
are by definition very simple in the Internet of Things, those designed to receive IoT chirp 
packets will be required to process only the most basic of elements of the protocol (for 
example, using public markers to identify packets addressed to themselves and reading 
only that data). The IoT elements making much more extensive use of the capabilities 
of the chirp packet are those that must route or analyze data from many end devices, 
specifically the propagator nodes and integrator functions. These are the propagator nodes 
and integrator functions, described briefly next and in more detail in Chapters 4 and 5.

Applying Network Intelligence  
at Propagator Nodes
As noted previously, replicating even this highly efficient chirp protocol traffic 
indiscriminately throughout the IoT would clearly choke the network, so intelligence 
must be applied at levels above the individual end devices. This is the responsibility of 
propagator nodes, which are devices that create an overarching network topology to 
organize the sea of machine-to-machine interactions that make up the Internet of Things.

Propagator nodes are typically a combination of hardware and software distantly 
similar to WiFi access points. They handle “local” end devices, meaning that they interact 
with end devices essentially within the (usually) wireless transmission range of the 
propagator node. They can be specialized or used to receive chirps from a wide array 
of end devices. Eventually, there would be tens or perhaps hundreds of thousands of 
propagator nodes in a city like Las Vegas. Propagator nodes will use their knowledge of 
adjacencies to form a near-range picture of the network. They will locate in-range nearby 
propagator nodes, as well as end devices and integrator functions either attached directly 
to or reached via those propagator nodes. This information is used to create the network 
topology: eliminating loops and creating alternate paths for survivability.

The propagator nodes will intelligently package and prune the various chirp 
messages before broadcasting them to adjacent nodes. Examining the public markers, 
the simple checksum, and the “arrow” of transmission (toward end devices or toward 
integrator functions), damaged or redundant messages will be discarded. Groups of 
messages that are all to be propagated via an adjacent node may be bundled into one 
“meta” message–a small data “stream”–for efficient transmission. Arriving “meta” 
messages may be unpacked and repacked.
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Some classes of propagator nodes will contain a software publishing agent  
(see Chapter 4). This publishing agent interacts with particular integrator functions to 
optimize data forwarding on behalf of the integrator. Propagator nodes with publishing 
agents may be “biased” to forward certain information in particular directions based 
on routing instructions passed down from the integrator functions interested in 
communicating with a particular functional, temporal, or geographic “neighborhood” 
of end devices. (Neighborhoods formed by integrator functions are further described in 
Chapter 5.) It is the integrator functions that will dictate the overall communications flow 
based on their needs to get data or set parameters in a neighborhood of IoT end devices.

In terms of discovery of new end devices, propagator nodes and integrator functions 
will be again similar to traditional networking architectures. When messages from or to new 
end devices appear, propagator nodes will forward them and add the addresses to their 
tables (see Figure 2-7). Appropriate age-out algorithms will allow for pruning the tables of 
adjacencies for devices that go offline or are mobile and are only passing through.

Figure 2-7. Propagator nodes independently build routing tables (and thus, the network 
topology) based on the discovery of adjacent propagator nodes. Although not shown here, 
the location of integrator functions and discovered end devices would also be included in 
the makeup of the topology

Transport and Functional Architectures
The emerging architecture of the Internet of Things combines two completely 
independent network topologies or architectures: transport and functional, as shown in 
Figure 2-8. The transport architecture is the infrastructure over which all traffic is moved 
and is provided primarily by propagator nodes (and the global Internet). The functional 
architecture is the virtual “zone” or “neighborhood” of interest created by integrator 
functions independent of physical paths.
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Figure 2-8. The network topology and logical topology of the Internet of Things can vary 
considerably

The transport network portion of the Internet of Things operates with little or no 
context of the actual significance of the data chirps being handled. As noted previously, 
propagator nodes build the transport network based on more-traditional networking 
concepts and routing algorithms (see Chapter 4). End chirp devices may link to 
propagator nodes in a wide variety of ways: wirelessly via radio or optical wavelengths 
(see the following “Chirps in a Wireless World” sidebar), power line networking, a direct 
physical connection, and so on. A single propagator node can be connected to a large 
number of chirp devices and provide services for all. Unless the propagator node is biased 
by the integrator function, the basic model is “promiscuous forwarding.”

CHIRPS IN A WIRELESS WORLD

one other aspect of communication to be addressed within the Internet of Things 
is the matter of wireless networking. It’s likely that many of the end device chirp 
connections in the IoT will be wireless, using a wide variety of frequencies and 
formats. This fact seems to suggest a need for something such as Carrier sense 
multiple Access with Detection (CsmA/CD), as used in 802.11 Wifi. But that’s 
another aspect of traditional networking that must be forgotten.

Again, data rates will be very small, and most individual transmissions are 
completely uncritical. Even in a location with many devices vying for airtime, the 
overall duty cycle will be very low. And most messages will be duplicates, from our 
earlier principle of over-provisioning at the edge through repetition. With that in 
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mind, an occasional collision is of zero significance. All that must be avoided is a 
“deadly embrace,” in which multiple devices, unaware of one another’s presence, 
continue transmitting at exactly the same time and colliding over and over.

The solution is a simple randomization of transmission times at every device, 
perhaps with continuously varying pauses between transmissions based on prime 
numbers, hashed end device address, or some other factors that provide uniquely 
varying transmission events.

Although the resulting communication scheme is very different from traditional 
networking protocols, it is all that is necessary for the IoT. Providing just enough 
communication at very low cost and complexity is a general IoT architectural 
principle and will be “good enough” for the Internet of Things.

As will be discussed in Chapter 4, propagator nodes bundle and convert chirp 
traffic as necessary for transport to adjacent propagator nodes and thence to integrator 
functions or chirp devices. The link between propagator nodes is typically a traditional 
networking protocol such as TCP/IP, but it can also be chirp-based.

Besides transporting the very simple chirps, the higher-level protocol packets 
created by the propagator nodes include additional contextual information not found in 
the chirps. This data may include additional address information related to location, time 
of day, and other factors, as shown in Figure 2-9. Thus, the propagator nodes increase the 
utility of the chirp data stream without burdening the vast numbers of end devices with 
networking cost and complexity. This additional contextual information is added only by 
propagator nodes and analyzed by integrator functions.

Figure 2-9. As chirps are bundled within propagator nodes, additional location, 
addressing, protocol, and other information is added
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An important difference between the IoT transport architecture and many forms 
of traditional networking is that it is fundamentally egalitarian, similar to wind currents 
carrying all types of plant pollen. Propagator nodes will forward IoT traffic to and from 
any end device or integrator function within the constraints of “trust,” “communications,” 
and “control” factors (these will be outlined in Chapter 6). The IoT can then “piggyback” 
on existing infrastructure, and each new propagator node may increase functionality for a 
variety of users and integrator functions. Fundamentally, the transport network topology 
and architecture does not create (or limit) the functional IoT network topology, which is 
created by integrator functions.

Functional Network Topology
With the transport network architecture (described previously) providing forwarding 
services for chirps in both directions (“down” toward chirp devices and “up” toward 
integrator functions), attention may now be turned to the functional IoT architecture, 
which is overlaid on the transport architecture in somewhat the same way that the 
propagation of pollen is overlaid on general wind currents in the atmosphere.

The functional network of the IoT, then, becomes less a matter of how the “wires” 
(physical or virtual) are connected and much more a matter of information that is of 
interest. The emerging architecture of the Internet is fundamentally a “publish and 
subscribe” model driven by the integrator functions. It is also receiver-oriented, with the 
machine at the far end of the transmission “arrow” determining what data is pertinent 
and useful.

Defined by Integrator Functions
At this point, a brief description of the integrator function is appropriate, with more 
detail found in Chapter 5. Integrator functions may take a wide array of physical forms, 
and multiple logical integrator functions can be deployed on one machine with a single 
connection to the traditional Internet (perhaps via a filter gateway). From a functional 
standpoint, they are somewhat autonomous creators of relationships with a select group 
of end points.

As an example, imagine an integrator function designed to monitor moisture  
content in the far-flung fields of an agribusiness concern (see Figure 2-10). The  
moisture–sensing end devices broadcast chirps at intervals, indicating the moisture  
content of the surrounding soil. The tiny chirps of data have a transport “arrow”  
pointing toward integrator functions.
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The chirps are received by in-range propagator nodes deployed by the agribusiness 
concern (or anyone else). As noted previously, these chirps leave the propagator 
nodes bundled with additional contextual information such as a full IPv6 address and 
location information, allowing a more precise location and identification of the specific 
individual sensor that is not available from the simple chirp. The transport network of the 
propagator node essentially “publishes” these data streams via the traditional Internet.

Harvesting Information from the IoT
The preceding description suggests a virtual private sensor network, with a single 
agribusiness supplier installing its own end-device sensor propagator nodes, using the 
traditional Internet to create a routing path, and then monitoring the network privately for 
its own benefit. And certainly many IoT big data “neighborhoods” are created in this way. 
But there is also a tremendous potential for building networks that rely on data provided by 
Internet of Things elements not owned, managed, and controlled by a single source.

In the emerging social networking culture in the Western world, crowd sourcing 
and data sharing is becoming more commonplace. In light of this, individuals and 
organizations may choose to install sensors, cameras, and other devices of all kinds 
locally, providing the IoT streams from these devices generically and publicly. (Note that 
many individuals and groups do this today with web cams, weather sensors, and the like 
using traditional Internet protocols such as IP).

Figure 2-10. An integrator function retrieves data from end devices such as moisture 
sensors and external feeds such as the expected precipitation and humidity, using the 
information to control irrigation valves
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Propagator nodes set to promiscuously forward generic chirps would simply  
move these packets in the general direction of integrator functions. (Note that it is 
possible for propagator nodes to be used for both private and public streams 
simultaneously—offering transport for the general good, as it were.)

An integrator function might be configured, then, to gather data from interesting end 
devices that it has discovered by searching out small data streams from specific classes of 
device, location, or other characteristics. These integrator functions might combine small 
data streams from many independent end devices installed by any number of unknown 
individuals to create interesting new big data information.

Programming and “Bias”
Human programming of the integrator function may instruct it to look for certain 
locations and types of data streams via the traditional Internet, or the integrator 
functions may identify potentially interesting candidate data streams through affinities 
with known sources. Locating appropriate moisture sensor streams on the Internet, the 
integrator function begins to receive and incorporate this data. The integrator function 
may even “bias” the publishing agent within propagator nodes (if so-equipped) for 
some efficiency in combining chirps into larger packets in small data streams or 
discarding duplicate chirps. (Attached filter gateways might also serve to prune and 
select from verbose streams in the same way. This topic is more fully discussed  
in Chapter 5).

The human programming of the integrator function may now incorporate these 
streams of data on moisture content to look for changes that represent drying out 
beyond preset thresholds. Additional data, such as weather reports, air temperature, and 
irrigation reservoir levels (acquired from a variety of sources and feeds, both chirp-based 
and via the traditional Internet), might also be incorporated to provide a complete picture 
of irrigation needs for current and future periods of time.

The resulting reports might be provided for human action. Or, in a more automated 
scenario, the integrator function might respond (via its programming) to change watering 
times or durations in specific fields (if irrigation valves are also under IoT control). In this 
application, the integrator function might also analyze video surveillance streams to 
confirm that sprinklers are on and operating normally.

Note that this functional IoT network might interconnect over any transport topology. 
The agribusiness need not build out its own private network for the entire transport path; 
instead, it can use the traditional Internet for much of the transport infrastructure. The 
enterprise might deploy only the moisture sensors and some specialized propagator 
nodes, as appropriate.

This is only one example out of millions that might be imagined for the Internet 
of Things. But the basic principles of very simple devices at the edge, publish-and-
subscribe, utilization of public network transport, and integration of a variety of data 
sources apply broadly.
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Receiver-Oriented Selectivity
In the same way that female plants “select” only the appropriate pollen from the same 
species and reject foreign pollen, dust, and other material, integrator functions are 
similarly selective in choosing which chirp streams to incorporate as inputs for analysis.

Integrator functions may be programmed to “set,” configure, or otherwise 
manipulate end devices by generating “chirp” traffic of their own that is packaged for 
routing through the traditional Internet to a propagator known to be near the target end 
device. With the transmission “arrow” set in the direction of end devices, these packets 
are transported to the appropriate propagator node (typically within IPv6 packets) and 
then output as IoT chirps. Integrator functions may combine chirps for widely scattered 
end devices in a single broadcast packet, which is then pruned and rebroadcast as 
necessary by intermediate propagator nodes.

The end devices may be able to “hear” a variety of traffic, but thanks to similar 
receiver-oriented selectivity, they act upon only the specific traffic intended for them. As 
noted earlier, the intermediate routing and addressing information is primarily a function 
of the propagator nodes; end devices need only detect the simple IoT chirp addresses.

The following chapter will detail the IoT architecture relating to end devices and will 
include suggested implementation strategies and alternatives.
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Chapter 3

On the Edge

Although the backbone architectures of networks garner the most attention, the actual 
drivers of network deployments are the devices at the edge. If that statement seems odd, 
consider desktop architectures such as twisted-pair Ethernet and the near-ubiquitous  
Wi-Fi, neither of which made great strides until the technologies were embedded in 
silicon and offered nearly free on every computer and smartphone sold.

This “edge effect” is amplified by the sheer numbers. There are orders of magnitude 
more end points than networking devices in most networks. From a cost, deployment, and 
product life cycle standpoint, it’s always been true—until the end points are network-ready, 
a network architecture is only theory.

These factors apply even more directly to the Internet of Things. There will be 
literally billions of networked end points, eventually dwarfing the world population 
traditional Internet to date, as shown in Figure 3-1. But unlike any other network 
deployment, the IoT end points should be extremely inexpensive, autonomous, and 
mostly untouched by human command and control.
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A World of Different Devices
For many people, the IoT conjures up visions of smartphones, laptops, and similar 
intelligent, human-oriented devices. But in fact, the statistical bulk of the IoT will consist 
of relatively simple devices such as pollution sensors, diesel generators, air conditioning 
systems, building lighting components, and so on. Familiar computing devices, designed 
for human “high touch,” will mostly stay on the traditional Internet, but the Internet 
of Things will reach far out to the edges of the network to devices that have never been 
connected in the past.

Because these classes of devices have never been connected, there are limited 
technical models upon which to draw. The connectivity challenges are substantial: there 
may be limited bandwidth, lossy connections, intermittent links, and power-off periods. 
In addition, end devices may be mobile or stationary, appearing and disappearing 
from the network at any time. But the greatest challenges are in the manufacturing, 
deployment, and management of this vast population of end devices.

As seen in Figure 3-2, IoT devices could be virtually anything that runs on any sort 
of electricity (or provides or has access to energy such as heat, motion, or light that may 
be converted to electricity for signaling). IoT-enabled devices may be built in millions of 
factories and shops across the globe and purchased in millions of different venues. There 
is no existing (or imagined) technology or business process that could possibly manage 
this sort of far-flung, uncoordinated global supply chain.

Figure 3-1. The number of Internet-connected devices exceeded the number of humans 
in the world around 2009, but the Internet of Things will cause a further exponential 
increase in the number of devices. Sources: Cisco Systems, International Data Corporation, 
Population Reference Bureau, U.S. Census World Population Clock, United Nations 
Department of Economic and Social Affairs
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Intended to be Untended: Some Examples of IoT 
Systems
Similar to the fish shown in Figure 3-3, IoT devices must act autonomously and 
independently. It is only from an external viewpoint that the devices will appear 
coordinated. When powered up or otherwise triggered, an IoT device will simply bleat out 
its data and/or listen for its data. But that sending and receiving will have no bearing on 
most IoT devices’ prime functions.

Figure 3-2. The Internet of Things will include a dizzying variety of end devices, both 
traditional and obscure

Figure 3-3. Each fish in a school participates in group movements and behaviors when in 
contact with others, yet can also exist independently
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For example, streetlights will continue turning on and off with the setting and rising 
of the sun, regardless of whether their status messages are being received somewhere 
else. Electrical generators will continue cranking out kilowatts without ”knowing“ 
whether their terse broadcast reports on lubricant viscosity are being studied. Because 
networking on the Internet of Things frontier is so lossy, intermittent, and uncertain, it is 
important not to hamstring the devices with an end-to-end data assurance requirement.

This grows out of the recognition that the Internet of Things will only indirectly 
interact with humans. The vast majority of the communications will be machine-to-
machine: generally end devices and integrator functions exchanging information through 
lossy and intermittent links, typically through relays (propagator nodes). Humans will 
interact with the integrator functions, retrieving reports or setting parameters that bias 
the operation of the remote end devices. Interactions that are real time, mission-critical, 
or human-oriented will mainly continue to use the traditional Internet and other existing 
“reliable” networking protocols.

Because the vast majority of IoT end devices will be engineered to operate 
independently of network connectivity, individual data messages are completely 
uncritical, as noted earlier. This allows for end devices that cease sending or receiving 
when powered off, wireless links that are extremely weak or intermittent, solar-powered 
end devices and other network elements that literally “go dark,” and other realities of 
networking at the edge.

Temporary and Ad Hoc Devices
In fact, an entire class of IoT end devices may exist only transiently as hastily formed 
networks. Smart disposable “motes” may be deployed for specific purposes, perhaps 
sending data only for as long as their limited batteries last. A sensor network of this 
type might be measuring the pressure change of an intruder’s footfall, for example, in a 
temporary protective alarm ring around a facility. The cost, size, and power savings that 
come from avoiding the overhead of traditional protocols are substantial and will drive 
these devices and networks to simpler chirp architectures.

Addressing an Uncertain Frontier
One of the major issues to be addressed when contemplating the Internet of Things is 
how messages to and from end devices may be addressed. This issue was discussed 
briefly in the preceding chapter and is covered in more detail in Chapter 6, where the 
three key IoT addressing concepts are explored: self-classification of end device type 
with external markers, non-guarantee of absolute end device address uniqueness, and 
end device address derivation from the environment. These basic concepts will allow the 
uncoordinated “crowd” of end devices to be scaled into a global Internet of Things.
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Reliability Through Numbers
Although much of the Internet of Things will be generally predicated on the fact that 
individual end device connections will be lossy, intermittent, and unreliable, an 
interesting phenomenon will be the build-up of reliable information from a very large 
number of individually unreliable sources.

As an example, consider strain gauge sensors on a highway bridge (see Figure 3-4).  
It might be desirable to distribute hundreds or thousands of these at many locations on the 
bridge. Data from the gauges might be collected wirelessly and propagated to an integrator 
function monitoring the condition of the bridge. But it would be nearly impossible to wire 
an external power source to each of these sensors. In this case, it might be more practical 
to make a significant percentage of these devices “solar-powered,” energized by either the 
sun or existing streetlights on the bridge.

Figure 3-4. Thousands of individually unreliable solar–powered strain gauges on a bridge 
effectively create a single reliable integrated data source

With the movement of the sun through the sky, different sensors might be 
illuminated at different times of the day. Some cease to broadcast when in shadow, 
whereas others begin broadcasting their status when the moving sun casts light on them. 
Still other sensors’ broadcasts might be occasionally interrupted by passing vehicles. 
However, there will always be hundreds of sensors broadcasting, although no single 
sensor would be guaranteed to be active at any particular moment.

This is over-provisioning through sheer numbers of end devices, creating a net 
consistency and reliability through integration that would be impractical or prohibitively 
expensive to provide through highly reliable individual sensors. Similarly, integrator 
functions might analyze and interpolate information from a variety of unrelated devices 
to detect events or trends such as a power outage.
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Meaning from Many
At this point, it might be worthwhile to briefly consider some examples of how 
information flowing to and from simple end devices is transported and becomes 
meaningful in the machine-to-machine world of the Internet of Things (IoT applications 
will be more thoroughly explored in Chapter 7).

The true power and utility of the IoT comes when vast quantities of data from 
end devices in the form of short chirps are consolidated, analyzed, and integrated to 
create “small data” streams of rich information. The resulting small data flows percolate 
“up” and are converted into big data content. This process will be a key driver for the 
deployment of the IoT (and was the inspiration for this book). End device chirps that 
are briefly stored and analyzed at integrator functions will allow the development of 
perspective and some learning from experience.

End Devices in Dedicated Networks
In the example of streetlights mentioned previously, the on-or-off state and/or OK/Fault 
status being repeatedly transmitted by small modules within each individual streetlight 
would be collected via one or more propagator nodes. This communication, in the form 
of chirps, might be wireless or via very low speed data modulated over electrical power 
cables. Propagator nodes at central points in the street grid receiving these chirps might 
ignore repeated transmissions (or reduce the number), bundling the data for forwarding 
to an integrator function. The propagator node may add contextual information not 
available from the end devices, such as time of day, weather, location, and so on.

The combined data would then typically be encapsulated in an IP packet and forwarded 
by the propagator node toward an integrator function, as described in Chapter 4. This might 
be via the traditional Internet, a private wide area network (WAN), or some combination.

The integrator function (typically software operating on a general-purpose 
processer; see Chapter 5) would be receiving chirp data from streetlights across the 
city. From these “small data” feeds, a big data perspective could be developed based 
on analysis and integration over time or as a snapshot of status. Individual streetlight 
failures or faults beyond a previously defined threshold might cause the integrator 
function to generate an alarm and report for a human operator’s action or might even 
be integrated with scheduling software to add faulty lights to a repair worker’s schedule 
automatically. In this way, data from relatively “dumb” devices becomes a powerful tool 
for system management.

Expanding to the World
In the preceding example, the network was fairly sequestered. In fact, this might be 
desirable for security or other proprietary reasons, and the chirp protocol permits this 
(see Chapter 6). But tremendous potential uses for chirp data from simple end devices 
arise in broader settings.

The data from a significant portion of end devices will simply be transmitted with 
generic public markers (see Chapter 2) that allow it to be interpreted by any integrator 
function with an understanding of that end device classification and type (moisture 
sensor versus temperature gauge versus strain gauge, and so on).
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One of the key opportunities for new meaning extracted from “small data” is that 
integrator functions may process a wide range of nominally unrelated data sources, 
as opposed to the fixed end-to-end IP conversations typical of most of the traditional 
Internet. Integrator functions may perform something of a seemingly variable “random 
walk”—collecting data in a contingent fashion from a wide variety of end devices 
anywhere in the world based on sampling trends and events. The externally self-classified 
format of chirps allows all of the elements of the IoT to recognize potentially interesting, 
but previously unknown, data sources.

There could be huge benefit, for example, from integrating data from thousands 
of wind speed and direction sensors, barometric pressure gauges, and temperature 
readings, along with public domain weather reports, to create a highly localized footprint 
of potential tornado formation. These end-device data sources might not be centrally 
owned and controlled, but an integrator function could easily seek them out and add 
them to an ever-growing set of inputs.

The capability to handle both proprietary and generic uses of data creates the need 
for an IoT architecture and chirp protocol that can be public or private (see Chapter 2). 
Some data streams from end devices will actually be used by multiple unrelated integrator 
functions, a factor that propagator nodes must take into account when bundling and 
forwarding end device chirps (see Chapter 4).

Converting States to Chirps
For a large majority of devices on the Internet of Things, only the bare minimum amount 
of data will be contributed to these higher-level analyses. As noted previously, a simple 
On/Off state or an “OK/Fault” condition might be the only useful information that the 
end device may present. Or a simple voltage differential or current reading will be of 
interest for a moisture sensor, temperature gauge, or similar device.

For simpler devices such as these, the analog-to-digital interface may likewise be 
very simple. Ideally, integrated silicon chips will be developed, which simply detect the 
presence of voltage (or a similar condition) and directly create chirps through very simple 
logic. This obviates the need for processing, memory, or other computing functions 
within the majority of end devices.

More importantly, this means that there is no significant redesign needed for 
millions of existing un-networked devices, appliances, and machines. Instead, a 
simple connection to an existing point in end device wiring or circuitry will provide the 
information needed to create chirps.

Again, this is a departure from the thinking behind much of the Internet and 
traditional networks, in which the end devices must have all the functionality needed to 
create digital data (typically in frames or packets). Instead, much of the IoT will function 
more along the lines of telemetry, in which states and conditions are coded as simply as 
possible and then broadcast, as shown in Figure 3-5.
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It is likely (and perhaps desirable) that some number of standardized chirp formats 
will be created to handle specific very common states and conditions, such as On/Off, 
Green/Yellow/Red status states, and so on. A list of suggested potential chirp formats is 
listed in Appendix A.

“Setting” End Devices
Many of the end device examples explored thus far have been sensors and other devices 
that will simply broadcast states and conditions and listen for nothing. Although this 
situation may be true for the majority of devices in the Internet of Things, additional 
billions of devices will be receive-only or bidirectional (sending and receiving chirps).

The messages intended for these devices will typically be generated by integrator 
functions and then propagated “down” (or away from the integrator function) toward 
end devices by propagator nodes. (Propagator nodes may be directly IP-connected to the 
general-purpose computer hardware hosting the integrator function, but will more often 
be reached via the traditional Internet.)

This “direction” of travel is determined by the “arrow” of transmission within the 
chirp message markers encapsulated in IP, as discussed earlier. Integrator functions 
will generate these chirps based on human programming, preset alarm conditions, or 
through routines generated by interactions between integrator functions. At the final 
destination, the “last” propagator node strips the IP encapsulation and generates native 
chirps bound for the end device.

As before, many of the targeted end device appliances and actuators will be very 
simple and thus, the chirps will have very simple payloads. In this way, these end 
device–bound chirps may resemble the “SetRequest” of Simple Network Management 
Protocol (SNMP). A key difference with SNMP, however, is that the IoT end device need 
not acknowledge taking an action directed by the chirp, nor even the reception of an 
individual chirp. This eliminates a tremendous amount of protocol overhead throughout 
the network.

As with the end device chirps propagating “up” through the network, these chirps 
moving “down” will simply be repeated. Because each individual chirp is so tiny, and 
repeated transmissions may be squelched at the propagator node without clogging 

Figure 3-5. In millions of simple end devices, basic physical states will be converted to chirp 
payloads. An address, “arrow” of transmission, and checksum are added to this payload to 
form the complete chirp packet
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wide area connections, the cost of over-provisioning through repetition is small. In 
applications for which it may be important that the integrator function have some 
acknowledgment that a chirp was indeed acted upon, bidirectional (send and receive) 
end devices can be deployed (see Figure 3-6).

Figure 3-6. Receive-only and bidirectional end devices receive transmissions from integrator 
functions via propagator nodes, which handle broadcast bundling and unpacking en route

Where necessary, these bidirectional end devices may receive chirps (setting a 
valve position in a process control environment, for example) and also be continually 
broadcasting chirps that indicate the valve position. In this way, the integrator function 
need only repeat the command to move the valve—until eventually chirps are received, 
indicating that the valve is now in the desired position.

The unreliability of any individual transmission suggests that IoT chirp protocols 
may not be the best choice for real-time and especially critical or dangerous functions. 
Traditional Internet and other networking protocols will continue to work well in those 
situations, of course. But for billions and billions of end devices, chirp protocols will 
provide “good enough” functionality at a vastly reduced cost of bandwidth, processing, 
memory, and other factors.

The end result may be “neighborhoods” of interest built up by integrator functions 
consisting of data streams from a combination of IoT chirp protocol end devices 
(converted to IPv6 by propagators) and more sophisticated end devices communicating 
via native IPv6. Information extraction and analysis takes place within the integrator 
function, as described in Chapter 5.

Cornucopia of Connections
Many Internet of Things discussions assume wireless connectivity over traditional 
networking schemes such as Wi-Fi, Bluetooth, and so on. And it is likely that this will 
be true, particularly between propagator nodes or between propagator nodes and 
integrator functions. But connections to end devices may be widely varied—some 
quite sophisticated and others extremely prosaic. A more detailed look at wireless 
connectivity will be explored in the extensive sidebar that concludes this chapter titled 
“Wire-Less vs. Wireless.”
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Within a residence or enterprise, many end device connections to a collocated 
propagator node may be via copper media. A few of these may be dedicated wiring, but 
existing copper wiring infrastructures such as telephone, data, and especially AC power 
line wiring will often be much more cost-effective. Because a very large number of end 
devices will be plugged in to AC mains (as will the propagator nodes), there will be a 
natural opportunity to exploit this in many cases. The amount of IoT data will be low, 
as noted earlier, so existing AC power line chips and protocols (IEEE 1901 for example) 
provide more than enough capacity for Internet of Things communications.

With the low data rates and duty cycles of most IoT end devices, other potential 
existing technologies may also be considered (see Figure 3-7 “Examples of IoT End 
Devices”). Open-space optical networking techniques such as infrared (IR) may be useful 
in the home environment, for example. Although IR has mainly been used for remote 
control of home entertainment and similar devices, networking protocols such as the 
open-source Linux Infrared Remote Control (LIRC) may present an interesting low-cost 
alternative for IoT chirp networking (see the “Wire-Less vs. Wireless” sidebar).

Figure 3-7. A small sampling of IoT End Device types shows tremendous variety in 
communications types and effective data rates. Note that these are well below typical 
Internet data rates
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No matter which connection techniques are used, chirp messages to and from 
end devices need only reach a propagator node, where they will be bundled, pruned, 
and retransmitted as needed to move the traffic through the traditional Internet for 
connections to integrator functions.

Chirp on a Chip
As noted previously, many Internet of Things end devices will have relatively simple 
information to share or receive, such as simple states or conditions that may be 
communicated by the presence or absence of voltage or some other simple “signal.” 
When this is combined with the very simple structure of the IoT chirp packet, the 
potential exists for extremely cost-effective, mass-produced, integrated silicon chips. 
These could provide state detection, chirp formation and transmission technology 
(wired, IR, or radio frequency [RF]) in a single small, inexpensive, and low-power 
package. (Receive-only and bidirectional integrated devices will also exist with slightly 
different requirements.)

Development and widespread distribution of these “chirp on a hip” components 
will be critical to the expansion of the Internet of Things because they will make possible 
connections to millions of different types of relatively inexpensive devices.

“Chirp chips” might be offered in a variety of tiers, defined by the integration of 
different functions. Global positioning system (GPS) receivers, electromagnetic position 
indicators, accelerometers, and other indicators of environmental condition might 
be interesting potential add-ons, as might radio-frequency identification (RFID), as 
discussed in the section following). But it’s likely that a majority of IoT chirp chips will be 
relatively simple single-function modules optimized for lowest cost, smallest size, and 
minimal power consumption. Development and integration of chirp chips is discussed in 
more detail in Chapter 8.

Aftermarket Options
Integrated chirp chips can become available quickly for new purchases of IoT–ready OEM 
equipment. But billions of devices already exist that users will desire to have connected 
to the Internet of Things. For these devices, add-on and aftermarket alternatives need to 
be developed.

For many simple needs, such as power On/Off or Red/Yellow/Green status, a simple 
module might plug in between the end device and the AC mains. These might communicate 
via power line or wireless technologies and would require no software or configuration of 
the end devices. It can be imagined that these might be built into devices such as power bars 
and surge protectors. (In this case, the device might also function as a propagator node for 
all the attached end devices.)

Additional packaging options for aftermarket IoT connections in some applications 
could include small stand-alone devices based on Universal Serial Bus (USB) and other 
standardized interfaces, especially those that provide power as part of the interface. 
Because of the simplicity of the chirp networking protocol, add-on aftermarket devices 
may be very compact and draw little power. IoT devices will not require the high speeds 
possible over these interfaces (and their associated costs), but these standards may still 
be useful due to their wide availability in the market.
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RFID Integration in the Internet of Things
For some market participants, interest in the Internet of Things has been primarily 
around the spread of RFID capabilities. RFID is based on a small physical device (a “tag” 
or “label”) that broadcasts stored data, such as a serial number and other information. 
These devices can be self-powered, but more often are temporarily energized by RF fields 
generated by the receiving device (the “reader” or “interrogator”). RFID is widely used in 
inventory tracking and asset management, and its applications are constantly expanding.

Some have viewed each individual tag as an end device in the Internet of Things, and 
there is certainly some similarity in basic capability between a tag and a simple chirp-
enabled end device. But it seems more likely that RFID readers will actually function as 
IoT end devices, perhaps combined with a propagator node.

Because typical RFID tags communicate only identification parameters and have no 
defined interfaces to other signals (such as voltage presence or differential) within the 
device to which they are attached, they are significantly more limited than a full chirp end 
device. But interesting potential exists for combinations of RFID information and chirp 
data to be received by a propagator node, which could bind the information together 
before forwarding directly to the integrator function (see Figure 3-8).

IR Chirps

Vital Signs Monitor

Propagator node

Integrator function

RFID Reader
integrated or
separate

Digestible RFID Tag

RFID

Figure 3-8. Some applications may combine both RFID and chirp signals to provide both 
location and state inputs for analysis by an integrator function

End Devices with Higher Demands
As noted in Chapter 2, relatively simple end devices will predominate numerically within 
the Internet of Things. But there will still be billions of devices with more demanding 
communication needs, such as video surveillance systems, teller machines, and 
telepresence information kiosks, among many others. Many of these have real-time data 
requirements, high bandwidth needs, and/or human interfaces that make data reliability 
and bandwidth critical.
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For the most part, these devices will therefore remain directly connected to the existing 
Internet via traditional networking protocols such as TCP/IP. These high-data-need 
devices will certainly often share the Internet backbone with traffic from propagator 
nodes comprised of consolidations of chirps to-and from IoT end devices.

But interesting opportunities may exist for combinations of chirp and traditional 
protocols within a single device. In some cases, simpler status or environmental 
conditions that are less time-critical might be sent and received via chirps while a  
high-demand end device is in “StandBy” mode. Then when the device is fully activated 
(for a human interaction, perhaps), a traditional Internet connection is established for the 
duration of the high-data-need transaction.

Another potentially interesting application might be to make use of the IoT chirp 
interface as a back-channel or chording input to the traditional high–bandwidth  
Internet connection, perhaps in a different frequency or physical domain (see Sidebar  
“Wire-less vs. Wireless”). Chirp–enabled end devices will likely constitute the vast 
numerical majority of the Internet of Things, but billions of higher–demand IoT end 
devices will still comfortably coexist.

The Big Idea: “Small” Data
This chapter has explored the variety of Internet of Things devices in some detail. The 
only common denominator for IoT-enabled devices may be data—just a little for each: 
tiny squirts and squibs of data—a few bytes reporting moisture content of soil or wind 
direction or a short instruction to set a valve to a new position. As introduced in Chapter 2 
and more fully explained in Chapter 6, these tiny information exchanges are in the form 
of chirps: simply structured self-classified data packets with minimal overhead.

Individually not impressive or meaningful, these end device chirp data streams 
become powerful tools when combined and analyzed within integrator functions  
(see Chapter 5). But first, these myriad chirps must be transported across the Internet of 
Things networking frontier and (usually) through the traditional Internet. That job falls to 
the propagator nodes, which will be explored in the next chapter.

WIRE-LESS VS. WIRELESS

Most people picture wireless connectivity when thinking of ways to connect end 
devices in the IoT. And when thinking of wireless, most consider traditional existing 
protocols such as Bluetooth, ZigBee, Wi-Fi, and cellular/4g/LTE. Many IoT end devices 
may indeed be connected using one or more of these protocols (see Figure 3-9), but 
not only to these wireless protocols.
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Pet Phone

Figure 3-9. IoT end devices will communicate over various means: optical IR, wireless, 
power line. Many propagator nodes will be equipped with multiple physical wired and 
wireless interfaces

Again, because the total data transmitted to or received from an individual IoT 
end device is exceedingly small in the vast majority of cases, all those traditional 
protocols are by definition overkill. Many sensor-type devices will generate only 
a few bytes of data per hour, for example, and still effectively less after repeated 
identical transmissions are squelched. Even the lowest ZigBee data rates, for 
example, are on the order of 20 kilobits per second. This is multiple orders of 
magnitude greater than the data rate that will be needed for most IoT end devices, 
although there will be exceptions for other classes of IoT end devices.

due to these low data rates and duty cycles, the protocol stacks and wireless RF 
sophistication of standard chips will not be necessary for the typical IoT end device 
link. Much simpler (read: cheaper) solutions based on simple modulation schemes 
within existing unlicensed frequencies can therefore be considered.

As noted earlier, these alternatives might include power line, television white spaces 
frequencies, and open space optical links (IR or visible). The first is obviously 
potentially attractive for any end device that plugs into AC mains, as long as a 
propagator node is also plugged into the same building or household somewhere.  
IR is familiar to most of us in the form of TV and other entertainment system remotes. 
Wire-less need not be traditional wireless.
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Navigating an Already Wireless World

There may be a number of low-cost, unsophisticated wireless modulation schemes 
developed for the Internet of Things (some possible approaches are suggested in 
Chapter 6). With such small data rates and duty cycles, very low baud rates are 
needed, so signaling techniques can be quite simple. It likely goes without saying 
that virtually all IoT networking must take place in unlicensed frequencies. (It is 
somewhat contrary to the low cost and simple protocol characteristics of the IoT end 
device to consider licensed RF bands, although there is nothing in the chirp structure 
that would preclude this.)

But these new potential wireless IoT solutions will not be deployed in virgin 
territory—traditional wireless protocols such as Wi-Fi, Bluetooth, and many others 
are already widely (and unpredictably) deployed using unlicensed RF bands.

Coexistence by Camouflage

Because it will be necessary for IoT wireless signals to coexist with existing protocols 
such as Wi-Fi, this would seem to demand a traditional wireless protocol stack in 
every IoT end device and propagator node. Yet this would certainly destroy the  
low-cost model needed for widespread Internet of Things acceptance and proliferation.

The solution to this problem is based on “hiding in plain sight” within the traditional 
unlicensed RF environments based on an understanding of their operation. The key 
will be to exploit time and frequency domain differences. Because IoT chirps are so 
short and individually uncritical, they may be squeezed into “spaces” that naturally 
occur when more-sophisticated protocols are in operation (see Figure 3-10).
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Collisions? Who Cares?

Selecting Wi-Fi as an example, IoT devices may easily operate within the “quiet time” 
back-offs inherent in Carrier Sense Multiple Access with Collision detection (CSMA/
Cd). IoT end devices simply broadcast or listen for their chirps. Because the chirps are 
very short, there is little statistical likelihood of one colliding with a Wi-Fi packet, even 
within a fairly busy Wi-Fi network. And even if one collision does occur, that chirp is 
individually uncritical, and another will likely get through relatively soon. Randomized 
timing between chirps will also help avoid any “deadly embrace” problems with 
devices communicating via traditional wireless protocols (see Chapter 2).

The effect on the Wi-Fi network is also minuscule, again because of the very small 
chirps and low duty cycle of the typical Internet of Things device. So there is no 
need to burden IoT end devices or the chirp protocol with any collision detection, 
avoidance, or recovery capabilities. Propagator nodes, on the other hand, may be the 
appropriate places to incorporate either a full traditional wireless stack or a “listen 
for a pause” capability to hold transmissions and avoid unnecessary collisions (see 
Chapter 4). By bundling and pruning IoT chirp broadcasts, the propagator nodes can 
be “good citizens” within traditional wireless environments.

Figure 3-10. IoT chirps “squeezed” between Wi-Fi send-receive cycles, as fully explained  
in Chapter 6
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“Chording” and Baud Rate

When fully considering all the “wire-less” options such as power line and optical 
signaling, an interesting set of opportunities is presented. Sending or receiving 
data in multiple domains simultaneously may increase the baud rate (or decrease 
the potential for collisions and interference). An individual device might send 
simple chirps via RF and IR to increase the amount of information transferred while 
remaining “below the radar” in terms of traditional wireless networking in the same 
environment.

Like a musical chord, sending multiple pieces of information simultaneously in two 
frequency domains may offer a potential for very rich communications using the 
very simple chirp protocol. As more fully described in Chapter 6, this allows a much 
higher baud (signaling or information) rate than is possible within the bandwidth of a 
single medium.
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Chapter 4

Building a Web of Things

The massive number of Internet of Things (IoT) end devices described in the preceding 
chapter will be producing and consuming prodigious amounts of simple data in the 
form of terse chirps (see Chapter 2). But if these chirps, as described, lack the traditional 
overhead trappings of well-known protocols such as TCP/IP, how can they be moved 
across the traditional Internet—or indeed, across any network at all?

The majority of IoT end devices will, by design, be cheap, limited in power and 
memory, and rudimentary. They will not be capable of managing and controlling their 
own networking as IP devices are expected to do. This networking task will fall to the 
class of devices called propagator nodes. These nodes are technologically a bit more like 
traditional networking equipment such as switches and routers, but they operate in a 
more broadly purposed way. IoT chirp-based traffic will be bundled, pruned, converted, 
and forwarded as necessary to move it throughout the network via a variety of protocols 
and interfaces. Propagator nodes must include a chirp packet translation into an IP 
packet because some packets are intended for external consumption. And, of course, the 
same process will happen in reverse for IP traffic destined for chirp–based end devices.

Most importantly, it will be possible for the function of some classes of propagator 
nodes to be influenced by agents residing within the integrator functions described 
in Chapter 5. Biasing the networking activity of the propagator nodes will serve to 
create software–defined publish/subscribe relationships across the IoT. These logical 
relationships won’t be based on physical network topologies, but on neighborhoods of 
interest and affinities.

As an example, the affinity group for portable diesel generators operated by a global 
enterprise may be international. The resulting rollup of chirps through propagator  
nodes to “small data” to big data creates the power of the emerging Internet of Things  
(see Figure 4-1).
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Versatility in Function and Form 
Propagator nodes incorporate a number of novel concepts. Their most basic function 
will be to transport traffic on behalf of a huge range of end devices and other elements, 
including translation and gateway services to place aggregated chirp messages onto 
traditional networks such as TCP/IP. They will be expected to build an independent web 
of interconnection immediately upon power-up, discovering and connecting to nearby 
end devices, adjacent propagator nodes, and other elements.

In many ways, propagator nodes are the key building blocks of the emerging Internet 
of Things because their functionality allows the vast majority of end devices to remain 
simple and cheap, even disposable. With propagator nodes in place, IoT networks may 
be scaled to huge sizes, with each individual propagator node supporting many low-cost 
chirp–based end devices. Propagator nodes also provide connections to (and through) 
the traditional Internet to integrator functions in which meaning may be extracted from 
the “small data” of the end devices.

Architecting Trees and Leaves
The basic principles of the propagator nodes are drawn again from natural phenomena.  
If the billions of end devices are viewed as the “leaves” of the IoT, the propagator nodes 
may be seen as the “limbs” and “trunks” that connect them.

The typical tree in nature (see Figure 4-2) is structured: individual leaves do not 
connect to one another directly because they have nothing of value for one another. 
Instead, the branches, limbs, and trunks of the tree serve to bring water and nutrients to 

Figure 4-1. Propagator nodes create the web of the Internet of Things, connecting end 
devices, other propagator nodes, and integrator functions (some with filter gateways)
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the leaves and carry manufactured food from leaves to roots. From tiny shrubs to mighty 
redwoods, trees scale because they are structured based on this basic flow: the input and 
output of untold millions of end points is organized for maximum efficiency.

Figure 4-2. Trees are inherently structured: no leaf connects directly to another. Instead, 
flows are organized through trunks, limbs, and branches. Internet of Things traffic will be 
similarly structured to present data only where it has meaning. Nature’s arteries—rivers, 
trees, and so on—generally tend to be self-forming, dynamic, recursive tree-like topologies. 
Obviously, there is no computing resource available in nature to calculate a graph-based 
organization. Routing is simpler within this organic structure of recursive branching.  
(See the “Why Trees Scale” sidebar)

SIDeBar: WhY treeS SCaLe

A structured tree-like network (which can be referred to as “order n” [o(n)]), 
is linear with tree depth and therefore scales even in very large sizes. it scales 
because Moore’s law, which is also linear, is useful only when applied to counteract 
degradation effects, is also o(n). Anything more, for example, o(n-squared) systems, 
simply cannot scale with linear efficiency improvements and compensations. in 
nature, such systems would eventually reach extinction because of natural selection, 
which through trial and error over generations, would prune inefficient transport of 
nutrients from the root to leaves and vice versa (up and down the tree’s network). 
Hence, o(n) systems prevail in nature, in large part because they are inherently 
efficient—and thus scalable.
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The flow of data in an ioT context is also inherently hierarchical and tree-like. At the 
root, there is the tree trunk and its more-focused flow. The tree trunk then again 
branches out into roots and tendrils.

At the other end, branches assimilate small data emanating from the “leaves”  
(end devices). The entire process of how small data (from a myriad of end devices) 
is assimilated, pruned, modified, and then forwarded is hierarchical in the ioT, just as 
in trees.

one can imagine the two tree-like structures (roots and branches) coalescing 
into one central location: the trunk. This is where the big data services, such as 
integrator functions, reside.

No doubt other types of nutrient transport technologies exist in nature in smaller 
plants, but none has demonstrated the majestic scaling seen in trees. For the same 
reasons, tree-like structured networks will prevail at the edges of the IoT. Unlike a natural 
“tree,” human networks, with their unlimited peer-to-peer interactions, create the need 
for constant computing and updating for additions and perturbations. This is the major 
driver for using networking protocols (such as TCP/IP) with traditional Internet end 
points such as smartphones and PCs.

On Behalf of Chirps at the Edge
But the majority of end devices in the Internet of Things will communicate via the lightweight 
chirp protocol, as described in Chapter 3. chirp protocol includes only minimal addressing 
and error detection (Chapter 2). Therefore, global naming, full TCP/IP formatting, and 
protocol services must be applied elsewhere if the data is to pass to-and-from end devices.

Propagator nodes provide these services on behalf of end devices, so at least one 
propagator node must be in the communications path of any chirp end device so that the 
simple chirp transmissions may be transformed in order to be carried over the Internet 
and then interpreted by an integrator function (each of which are based on traditional 
TCP/IP). Propagator nodes perform this important function of grooming traffic for 
transmission to-and-from the traditional Internet and other TCP/IP networks.

Because they link the end-device chirp world and the broader IP-based network, 
propagator nodes will often be equipped with multiple wired and/or wireless interfaces.  
The “range” of a propagator node depends on the type of connections it has to its end 
devices. In a home network example, a propagator node might have two wireless interfaces 
(one to communicate with chirp–based end devices using infrared LEDS and a second  
IP-based connection such as Wi-Fi) to communicate with a standard 802.11 access point.

Isolating and Securing the Edge
As described here, the propagator nodes’ prime function is linking the chirp–based 
end-devices to one or more integrator functions. These integrator functions are reached 
via the IP network, with the propagator nodes performing the bridging between the 
chirp subnetwork and its IP parent network. Without accredited propagator nodes as 
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the “middle man,” chirp devices are unreachable from the IP side of the network. This 
is intentional: chirp devices become inherently secure if they are invisible in the IP 
addressable space of devices. Propagators are thus essential to providing the final level of 
control of mission-critical remote systems.

Autonomy and Coordination
With no practical way for the Internet of Things to be engineered in an overall top-down 
way (maximally efficient) nor to be effectively over-provisioned to the edge (minimally 
efficient), propagator nodes must be designed to independently develop reasonably 
efficient network architectures. This will require a balance between autonomy and 
cooperation that may be provided only by the use of robot-like intelligence distributed in 
each propagator node.

We’ll examine first the general techniques used by all propagator nodes in creating 
the IoT architecture and then later explore different classes and modes of operation in 
their specific applications.

Upon power-up, each propagator node will assess its surroundings for possible 
connections to other IoT devices, including the type, characteristics, and functionality 
of adjacent communicating elements. These connections might be end devices, other 
propagator nodes, or integrator functions (and their associated filter gateways, as 
discussed in Chapter 5). Depending on the specific interfaces available (discussed 
below), these connections can be wired or wireless, via the traditional Internet, or even 
internal to the propagator node depending on packaging choices (see below). This same 
start-up procedure is repeated if a primary networking link is lost.

In some ways, this is similar to the discovery mechanisms used by other networking 
devices such as switches and routers. But unlike most IP-based devices, the overall 
structure of the network is “bottom-up,” with each individual node having the power to 
create a structured (loop-free) path through negotiation with its peers. This is distinct 
from many traditional networks, which are engineered top-down using the capabilities 
designed into IP for the task (and shouldering the IP overhead to do so).

Structuring a Networking Path
The propagator node begins its startup by looking for a path to one or more integrator 
functions. Occasionally, this will be a direct wired or wireless connection (perhaps 
through the integrator functions’ associated filter gateway). But in the majority of cases, 
there will be no directly connected integrator function. (Integrator functions are always 
connected via IP, so at least one propagator node in the path must be equipped to convert 
traffic from chirp to IP and back, as described below.)

Where there is no locally connected integrator function, the propagator node will 
exchange information with any other propagator node that is connected, wirelessly or 
wired. Each propagator node will build its own table of adjacencies, a logical network 
tree, so this information may be shared to permit the independent intelligence in each 
propagator node to determine a reasonably efficient path to one or more integrator 
functions.
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Routes are weighted based on the number of “hops” (node-to-node connections) 
required to reach the integrator functions and may also consider adjacent propagator 
node loading and bandwidth available. Trade-offs are made between taking a more 
reliable but circuitous (more hops) route to the destination integrator function versus a 
more direct, but more loaded, connection. Similar to cars in rush-hour traffic, freeways 
are less efficient when crowded than a more circuitous city street route.

As seen in Figure 4-3, some propagator nodes may discover direct paths to the Internet 
(top node), which will usually provide the best path to one or more integrator nodes using 
an IP connection. But many propagator nodes will not have a direct path to the Internet and 
will instead connect via adjacent propagator nodes using either chirp or IP protocols.

Figure 4-3. When functioning generically, individual propagator nodes consider path 
information shared by adjacent nodes in building a reasonably efficient path to one or more 
integrator functions

Many alternate paths may also be discovered (dotted lines); each individual 
propagator node will choose only one primary connection based on the information on 
speed, congestion, number of hops (node-to-node connections), past reliability, and 
so on provided by adjacent propagator nodes via housekeeping frames (see below). 
Alternate paths are kept in reserve in case of path or intermediate node failure, or 
significant speed/quality changes.
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The establishment of a path to one or more integrator functions defines the “arrow” 
of transmission introduced in Chapter 2 and described more fully in Chapter 6. The 
path definition allows the propagator node to make the basic routing decisions for traffic 
destined for end devices versus integrator functions. This tree-based calculation maps to 
both the physical and the logical subnetwork of chirp devices.

The “arrow” may be loosely thought of as an overall inherent direction similar to 
upstream/uphill or downstream/downhill flows in nature. The task of the propagator 
nodes is to organize themselves to provide efficient flows in both directions, possibly 
through alternative paths.

The basic routing algorithm will also be weighted to make some specific decisions, 
such as preferring a wired connection to wireless if other factors are equal, but will also take 
note of path quality information from adjacent nodes (reliability over time, and so on).

Path decisions are revisited periodically to encompass perturbations and failures, 
the addition of new network elements, and updated path quality information. With each 
propagator node and transmission path added to the network, the immediately adjacent 
propagator nodes will reexamine their path analysis in order to maintain reasonably 
efficient paths to one or more integrator functions. Propagator nodes also perform a fresh 
search of possible adjacent nodes at regular intervals to discover potential new paths and 
new adjacent propagator nodes.

Structuring a Tree—with Redundancy
In a logical view, the typical Internet of Things relationship will be one or a few integrator 
functions to thousands or millions of end devices. Given the basic premise that only a 
branching tree may scale to the huge network size inherent in the Internet of Things, the 
most efficient overall network topology will thus take the form of a tree with limbs and 
branches at the high-volume “end device” edge of the network.

But there may be many possible paths discovered by each propagator node 
as it examines the data provided by adjacent propagator nodes. Without an overall 
computation of the entire network structure (which would be impossible), some method 
is required to avoid circular routing paths.

Individual propagator nodes create the necessary tree structure as they populate 
their routing tables with potential paths. Alternate possible paths that are deemed less 
desirable due to hop count, bandwidth, or quality history are noted but not activated. 
Instead, they are retained as potential backup paths if the primary chosen path is lost for 
a significant amount of time, as shown in Figure 4-4.
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In this way, failover to an alternate path may take place reasonably quickly. Routing 
path data will be regularly “aged out” of the table as required to keep the information on 
possible redundant paths as current as possible.

Housekeeping
As noted previously, a small amount of link and path quality data must be regularly 
exchanged between adjacent nodes as a housekeeping message. In order for this to be 
reasonably efficient, there are two classes of information exchanged, circulated to all 
known adjacent nodes.

A “full” housekeeping message contains a complete “snapshot” of information on 
adjacencies and link paths from each node and is generated and broadcast every 60 to 
600 seconds. The full housekeeping message would typically be in the range of 1,000 to 
2,000 bytes of data. A “light” housekeeping packet includes only changes from the last 
“full” update and is generated every 15 to 60 seconds, with a size of 10 to 100 bytes of data. 

Figure 4-4. Alternate paths that are not in use are maintained in propagator node routing 
tables for use as alternate paths in case of the failure of a data path or adjacent propagator 
node. In the example above, a failure at Node A causes Node B to activate a back-up route. But 
Node C makes its own routing decision and may select Node D as a better choice rather than 
following its previous “parent.” The tree structure (no loops) is maintained in the new routing
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When there have been no changes, this lightweight packet provides a confirmation to 
adjacent propagator nodes that the broadcasting propagator node is still functioning.

This means that a new propagator node joining the network must wait for a 
full housekeeping packet before it can complete its path analysis. But even light 
housekeeping packets provide useful information by indicating the presence of an 
adjacent propagator node.

Propagator nodes also maintain tables of the identities of attached end devices and 
report this information to adjacent nodes via full housekeeping packets.

By Any Means
To this point, there has been no distinction made between the different possible 
networking protocols used for connections between propagator nodes. This has been 
intentional, as the general network decision-making is the same. Individual link paths 
are abstracted as different channels, each with its own weighting, see Figure 4-5. In some 
cases, the link between propagator nodes may be simple chirp protocols; in other cases, 
full TCP/IP connections via the traditional Internet.

Figure 4-5. Propagator nodes treat every possible link type as a different channel, abstracting 
the route-decision algorithm from specific protocols. Although operating at vastly different 
speeds, any of the three links from the propagator node at left could be used as a path to an 
integrator function via the Internet

In the latter case, the propagator node will typically use Dynamic Host Configuration 
Protocol (DHCP) so that it can communicate on the network using the IP. Housekeeping 
packets between propagator nodes will be encapsulated within TCP/IP (along with all the 
other traffic via that path, of course). As noted before, chirp protocol communication and 
the associated end devices are isolated “behind” the propagator node network.
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Take Out the Thrash
As with any networking system, it is critical to avoid hysteresis and thrashing in the 
structure of the networking “tree” formed by propagator nodes that might be caused 
by rapidly changing or inconsistent path quality. This might be caused by degraded or 
failed wireless links or the loss of one or more propagator nodes due to power outage or 
equipment failure. These changes in the availability and/or quality of individual links 
or nodes will “ripple” through adjacent propagator nodes in the path of the logically 
structured tree. The ability to manage such perturbations is especially critical in the 
Internet of Things, where communications at the edge of the network may be intermittent 
and of low quality as a matter of course.

Fortunately, the generally low data rates and completely uncritical nature of any 
individual transmission of the Internet of Things (see Chapter 2) means that a relatively 
high damping may be applied to the path determination algorithms. The goal is only 
reasonable efficiency, not overall network optimization, again because of the unique 
nature of the traffic on the IoT and the capability of propagator nodes to monitor, prune, 
and tune overall network performance. The tree-based topology ensures that individual 
propagator node decisions to route via one propagator node versus another are driven by 
the overall tree route efficiency. This is covered in more depth in Chapter 6.

The Power of Bias and the Role of the  
Integrator Function
The previous general description includes the basic network capabilities common to all 
propagator nodes. But the greatest power of the Internet of Things will come as integrator 
functions create vast networks of data streams encompassing very large numbers of end 
devices. Based on “neighborhoods of interest” and “affinity” (fully described in Chapter 5),  
the tiny chirps of end devices are aggregated into small data streams at the propagator 
nodes, coalesced into big data, and then transformed into useful information at the 
integrator functions.

This is the essence of the publish/subscribe model in the context of the Internet 
of Things: the end devices simply broadcast data in the form of chirps without any 
knowledge of how or where this data will be used. The integrator functions independently 
create neighborhoods of interest by selecting from available data sources.

For efficiency’s sake, it makes sense for the path this data takes, from end device 
through propagator nodes and on toward the integrator functions, to be actively and 
intelligently managed as a publish/subscribe model defined by the integrator functions.

This will be achieved by a publishing agent within some classes of propagator 
nodes (Figure 4-6). This publishing agent may be biased by instructions from one or 
more integrator nodes to create specific data paths and/or bundle chirp data in specific 
combinations. Because chirp data is inherently self-classified by external markers, 
publishing agents may act upon the data by type.
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Figure 4-6. To unlock the full power of the Internet of Things, some classes of propagator 
node will contain a publishing agent that may be directed by one or more integrator functions 
to create and modify a publish/subscribe data flow

Because most of the data paths in these types of relationships will be via the 
traditional Internet, TCP/IP protocols will be the norm for links from the propagator 
nodes to integrator functions. This is a logical accompaniment to the publish/subscribe 
model, in which the end points are known.

The relationship between the integrator function and publishing agent in the 
propagator node will often be proprietary. For example, a particular manufacturer may 
provision a publishing agent in its own line of propagator nodes for specific use with 
that same manufacturer’s integrator function. Although the propagator node might also 
function generically for other Internet of Things traffic, data from specific types of end 
devices might preferentially be packed for publishing to that integrator function.

Bias and Influence
Although the proprietary relationships described previously will be more typical, there 
may also be situations where the data being aggregated by a particular propagator node 
is required by multiple integrator functions for multiple applications or users, either 
simultaneously or over time.

The publishing agent will respond to the most recent and most frequent biasing 
messages from the integrator functions. More frequent and more recent messages will 
reinforce an existing publish/subscribe relationship, while less-frequent messages will allow  
the propagator node to revert to a more generic function of simply propagating all chirps 
promiscuously. Over time, this means that the publish/subscribe model may shift 
organically in response to changing needs, seasonality, events, and so on.

One could consider the example of transit bus schedules, in which routes and timing 
are managed centrally. The transportation of chirp–cased small data is similarly driven by 
the needs of the big data centers and their subscription preferences for the published small 
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data flows. Setting up the schedules and routes is managed from the top down because bias 
and interest in some chirp streams change when and how chirps are transmitted.

In effect, the relationship of integrator functions and propagator nodes is a form of 
software-defined networking driven by publish/subscribe agents operating on behalf of 
integrator functions—completely independent of the physical network topology. This is 
more fully described in Chapter 5.

Degrees of Functionality
Varying end user requirements and applications will create the need for multiple classes 
of propagator nodes (see Figure 4-7). Specific types of propagator nodes will contain 
a publishing agent that may interact with one or more integrator functions. But other 
classes of propagator nodes will function more generically.

Figure 4-7. Depending on the application, differing levels of propagator node functionality 
will be needed. Data forwarding is more selective moving left to right

The most basic class of propagator node might be dubbed the “chirp-peater.” 
Aggregated chirp messages for associated end devices are simply packaged and 
forwarded to one or more adjacent propagator nodes. This simplest class of propagator 
nodes will include only chirp interfaces, with another nearby propagator node providing 
TCP/IP gateways and other functions. One version of this class of propagator nodes may 
be designed to act as a client to an 802.11 access point for easiest integration of chirp 
protocol end devices into existing wireless networks in the home and office.

More powerful propagator nodes will be equipped with more sophisticated 
networking protocol stacks, gateways, and interfaces. Key among these will be TCP/IP 
gateways that permit routing through the Internet. They can be used for connections to 
integrator functions, for propagator-node-to-propagator-node links, and for integration 
of end devices that include a full TCP/IP stack. Some percentage of these fully featured 
devices will include the publishing agent described previously, which may often be part 
of a proprietary publish/subscribe overlay on the general propagator node functions.

But many propagator nodes will be deployed in a “promiscuous broadcast” mode, 
transporting all received traffic based on the “arrow” of transmission contained within 
the chirp packet markers. Although there will be little or no routing specificity in these 
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transmissions, there will typically be management of repeated transmission, broadcast 
trimming and pruning, and so on (described below and more fully in Chapter 6).  
Propagator nodes deployed in this mode will transport IoT traffic on behalf of any 
device and may become an important part of public and open source Internet of Things 
networks of unprecedented scope that have yet to be fully conceptualized.

Aggregating End Points
The other “side” of the propagator node consists of the array of interfaces facing the  
chirp-equipped end devices. Here too, propagator nodes will have many different 
physical and logical interfaces, both wired and wireless. Beyond traditional interfaces 
such as Ethernet, 802.11 Wi-Fi, Bluetooth, and so on, wide usage of optical interfaces such 
as infrared and other low-cost alternatives such as power line networking will also be 
found, as seen in Figure 4-8.

5
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Figure 4-8. A wide variety of end device physical interfaces may be accommodated, all 
communicating via chirp protocols. Propagator nodes will vary in the type and number of 
interfaces provided based on user requirements
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Whatever the mix of physical interfaces chosen, the chirp will be the fundamental 
data interface to most end devices. As noted in Chapter 3, there will be many bidirectional 
end devices, but the majority will likely be primarily or solely simplex, whether transmit 
or receive. In addition, as discussed before, many of these devices will have relatively low 
information rates, whatever their transmission rate. In other words, in many cases there 
will be a tremendous amount of repetition in the data that is sent or received by end user 
devices, which is the subject of the next section.

Dumping the Dupes
Devices such as pressure and moisture sensors, depending on the granularity of their 
measurement capabilities, will likely send the same value repeatedly for long periods of 
time. In the reverse direction, the valve servo in a process control application may remain 
in the same position for extended durations. So in these cases, there will be repeated 
reports or commands of identical data being sent.

More sophisticated propagator nodes will be designed with consideration of this 
excessive duplication of data that will likely be a hallmark of much of the Internet of 
Things. Data streams will be monitored and duplicate messages deleted and/or spoofed 
locally to avoid transmitting unneeded repetitive data to-and-from integrator functions.

Especially for those propagator nodes equipped with an internal publishing agent 
(described previously), the integrator functions may bias the propagator node to transmit 
only data indicative of readings that exceed certain thresholds in frequency and/or value.

These propagator node capabilities will limit the amount of IoT data to be 
transmitted. Even though individual chirps are much more compact and efficient than 
traditional protocols such as TCP/IP, the massive scale of the Internet of Things makes it 
critical to limit inconsequential repeated data wherever possible. Techniques to be used 
are more fully described in Chapter 6.

Loading the Bus: The Propagator Node Transit System
Another key function of propagator nodes will be managing and packaging broadcasts at 
all levels in the network. Lightweight chirps are ideal for the typical low-speed, low-duty 
cycle communication between end device and propagator node in the IoT. But if each of 
these chirps is then enveloped individually in a (relatively) huge TCP/IP packet before 
forwarding to the next propagator node, all efficiencies are lost.

Instead, propagator nodes will use their knowledge of adjacencies and routes 
through the network to accumulate chirps that may be efficiently forwarded together 
to the next propagator node (as noted previously, repeated chirps may be deleted or 
spoofed). At each successive node, these “buses” may be unloaded, some packets 
removed and others added, and then forwarded again, as shown in Figure 4-9.
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This process of consolidation, pruning, and forwarding adds a delay at every 
intermediate point, both for processing time and a lag as the propagator node waits for a 
certain period to fill the “bus” as much as possible before transmitting. But in the world of 
the Internet of Things, these delays will have no impact on the usefulness of the data.

Bus sizes will be chosen based on the characteristics of the channel over which they 
will be forwarded. For TCP/IP paths, propagator nodes will attempt to fill out a packet 
before forwarding. For other paths, the “bus” size will also be adjusted for maximum 
efficiency.

Where the publishing agents in specific propagator nodes have been biased 
by an integrator function, these routing preferences and (typically) TCP/IP packet 
characteristics will take precedence over the more mechanical process defined above.

Weathering the Storms
In any network capable of broadcasts, the potential for debilitating broadcast storms is 
present. Propagator nodes inherently limit broadcast storm propagation through the 
overall tree-like structure, deletion of repeated data, and consolidation and pruning of 
broadcasts to and from end devices.

Detailed descriptions of the propagator node techniques used for managing traffic 
to-and-from end devices are found in Chapter 6.

Figure 4-9. For maximum efficiency in communication between propagator nodes, a “bus” 
departs periodically for adjacent propagator nodes or integrator functions via the traditional 
Internet or other data paths. Bus size is optimized for the particular path. At an intermediate 
propagator node, “buses” are reexamined, local traffic removed, and additional onward 
traffic added as appropriate
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Dodging the Collisions
As noted in Chapter 2, the simplified chirp protocols incorporate no error checking, 
collision detection, or collision avoidance. Instead, simple randomization schemes 
and variable back-offs ensure that the tiny chirps may be squeezed between other 
transmission in the same wireless spectrum without the risk of a “deadly embrace.” 
Propagator nodes use these same techniques on the chirp interfaces.

What’s in a Name?
A key premise of the emerging architecture for the Internet of Things is that end user 
devices are burdened with only the very simple chirp protocol. As described in Chapter 2, 
the names applied by end devices in chirps are incomplete and likely will not be unique 
across the network.

This limitation would be problematic if chirps were simply transmitted as-is to other 
devices. But propagator nodes provide the additional context and addressing specificity 
needed to create unique addressing, as shown in Figure 4-10. These details are developed 
from the routing table adjacencies and other information available to the propagator 
node, as described in detail in Chapter 6.

Figure 4-10. As chirps are bundled within propagator nodes, additional location, 
addressing, protocol, and other information is added

Propagator nodes may then “publish” these small data streams onward toward the 
appropriate integrator function via the propagator node network or, with addition of the 
appropriate IPv6 encapsulation, directly via the traditional Internet.

For data whose “arrow” points toward the end device, the procedure is reversed: 
headers and formatting needed for routing to the target propagator node are stripped 
by that device, and only a lightweight chirp is transmitted to the end device using that 
device’s simple non-unique address.
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Packaging Options
There will be many packaging combinations of end devices, propagator nodes, integrator 
functions, and so on. A particularly interesting combination may be a propagator node 
with an on-board specialized integrator function. An example of this combination might 
be designed for local analysis of video surveillance and alarm data, with only exceptions 
and unusual combinations of data being propagated up to a central site.

Propagator nodes will certainly be packaged with existing types of networking and 
home entertainment equipment, including routers, Wi-Fi access points, LAN switches, 
set-top boxes, and so on. There will also be packaging options with nontraditional devices 
such as smart meters, vehicles, televisions, air conditioning and lighting equipment, and 
various household appliances as shown in Figure 4-11. Propagator nodes may require 
little or no human intervention and may be unobtrusively packaged as a wall wart or in 
other inconspicuous form factors.

Figure 4-11. Propagator nodes will be available in many form factors and in combination 
with other devices from the IoT, including end devices and integrator functions

Commercial environments will find propagator nodes (often in combination with 
end devices) in manufacturing equipment, process control devices, vehicles, and  
many more.

Although it is likely that some instantiations of the propagator node will be  
software-only on platforms such as smartphones, tablets, or PCs, these devices typically 
will have two limitations: insufficient number and variety of interfaces for connecting to 
end user devices and the transient nature of their location.

Packaging options and example network configurations are further discussed in 
Chapter 7.
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Building Blocks of the IoT 
Propagator nodes truly are the fundamental components of the tree-like structure 
of the emerging architecture for the Internet of Things. Propagator nodes create 
reasonably efficient networks for the transport of IoT data while controlling broadcasts 
and eliminating unnecessary repetitive data. They make possible the conversion of the 
lightweight protocols at the edge of the network to the more robust protocols demanded 
in the traditional Internet and elsewhere.

The next chapter will explore the “business end” of all these data flows: the  
human-facing integrator functions.
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Chapter 5

Small Data, Big Data,  
and Human Interaction

Integrator functions are the location in the Internet of Things (IoT) where the chirps from 
hundreds to millions of end devices are analyzed and acted upon. Integrator functions 
also send their own chirps to get information or to set values at devices—of course, these 
chirps’ transmission arrow (refer to Chapter 3) is pointed toward devices. Integrator 
functions may also incorporate a variety of external inputs, from big data to social 
networking trends to weather reports.

Integrator functions serve as the human interface to the IoT. As such, they will be 
designed to reduce the unfathomably large amounts of data collected over a period of 
time to a simpler set of alarms, exceptions, and other reports for consumption by humans 
(or computers). In the other direction, they will be used to manage the IoT by biasing 
agents within propagator nodes (refer to Chapter 3) and other devices to operate within 
certain desired parameters.

In this way, integrator functions create the publish/subscribe network that extracts 
meaning from the Internet of Things. Integrator functions define neighborhoods and 
affinities that are the key relationships within the IoT, regardless of geographical location 
or network topologies (see Figure 5-1).
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Using simple concepts such as “cluster” and “avoid,” integrated scheduling and 
decision-making processes within the integrator functions will allow much of the IoT to 
operate transparently and without human intervention. Only a single integrator function 
might be needed for an average household, operating on a smartphone, computer, or 
home entertainment device. Or the integrator function could be distributed and scaled 
up on racks of far-flung processors for a huge global enterprise, tracking and managing 
energy usage across a corporation, for example.

The “Brains” of the IoT
The most typical form of integrator function consists of specialized software operating on 
standard off-the-shelf computing platforms. Requirements for the integrator function are 
for the most part similar to those of other computing-intensive applications: processor 
horsepower and memory.

For maximum economy of scale and full exploitation of Moore’s Law over time, 
widely deployed computing platforms and operating systems will likely be the primary 
targets for integrator function software development. Computing power and memory 
will be commensurate with the amount of data to be analyzed and/or the quantity and 
sophistication of the end devices to be controlled. Low-end home automation may be 
achieved with a smartphone and an appropriate app, while monitoring an extensive 
global process control enterprise (such as oil production) might require clusters of  
high-end processors with redundancy and fail-over capabilities (see Figure 5-2.).

Figure 5-1. Integrator functions are logically at the center of the Internet of Things publish/
subscribe network, although their physical location is unrestricted
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Fortunately, the processor and software development paths (clustered processors, 
Apache Hadoop distributed file systems, converged network adapters, solid-state storage, 
etc.) that support expanding big data applications will seamlessly incorporate the 
emerging Internet of Things integrator function as well.

For Once, IP Makes Sense
To minimize cost and complexity, chirp protocols have been described in the preceding 
chapters for the end devices that will form the vast numerical majority of the Internet of 
Things. As explained, these simple protocols will not be sufficient (or even formatted) 
for transport across the global Internet. Instead, data streams to and from end devices 
will pass through one or more propagator nodes before routing via standard IP over the 
Internet (or rarely, a private IP network or VPN) to one or more integrator functions.

The logic in requiring an IP-capable propagator node in the data path now becomes 
obvious: at the lower networking protocol levels, integrator functions may simply rely 
on standard IP networking capabilities already deployed in typical operating systems 
with a simple connection made to the Internet via Gigabit Ethernet or other existing and 
widely deployed interfaces. The architecture of the integrator function builds on many 
of the same principles as cloud-based computing and will benefit from investments and 
developers in cloud-based servers and Internet backbone build-outs.

IP–based integrator functions also directly incorporate legacy Internet of Things 
devices that offer only IP interfaces. This creates an easy transition to the emerging 
IoT architecture for millions of already installed sensors and actuators, as well as for 
higher–performance end devices that will remain IP. Integrator functions can also interact 
directly with millions of existing web-based data feeds and services, creating richer 
meaning when these sources are combined with IoT data streams.

The downside to this approach of leveraging the global Internet and commercial 
systems is that very large data streams and busy network interfaces could bog down a 
general-purpose processor. For this reason, filter gateways (see following) may often be 
deployed as a specialized appliance to forward only meaningful data (as determined 
by the integrator function). This ensures that the computing resources of the integrator 
function may be focused purely on analysis and control tasks.

Figure 5-2. Integrator functions may be hosted on a very wide range of general-purpose 
and broadly deployed computers and devices
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Extracting the Streams
But as described in preceding chapters and more fully in Chapter 6, the majority of 
Internet of Things data bundled and forwarded by propagator nodes consists of a distilled 
stream of chirps encapsulated in IP, not wasteful discrete IP packets for each end device 
(see Figure 5-3). An internal gateway process within the integrator function must unpack 
and identify chirp streams for action.

Figure 5-3. Chirps from IoT end devices are aggregated, pruned, and bundled in the 
propagator node network; then encapsulated in IP for delivery to an integrator function as 
a small data “stream” from which the data may be analyzed. A similar process operates in 
reverse to deliver data to end devices

Similarly, for outbound traffic such as control packets to valves in a process control 
application, the integrator function will package chirps within IP packets in a form 
understandable by the propagator node network. Along their path, these packets will  
be disassembled, reassembled, repeated, and pruned as necessary to reach the target  
end devices.

Analysis and Control
With the various inbound streams identified and separated, the integrator function may 
begin forming a “picture” of the neighborhood in which it is interested. Neighborhoods 
are described more fully later, but they basically consist of a universe of devices that 
correspond to the type, location, activity level, and so on that the integrator function 
has been programmed to seek out. For inbound streams, the end devices are publishing 
data to which the integrator function subscribes. (And the inverse is true for end devices 
controlled by the integrator function.)

But the integrator function is not necessarily limited to a hard-coded set of specific 
locations or device types in forming the publish/subscribe neighborhood. A broader set 
of possible relationships, called affinities, may allow an integrator function to create a 
neighborhood from unrelated end device streams if an interesting or recurring pattern is 
noted among devices (see Figure 5-4).
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This capability begins to tap into the tremendous potential of the Internet of Things 
to create useful information and meaning by collecting information from a wide array 
of devices, many of which may have been deployed by other entities for other purposes. 
To fully appreciate the potential, it is necessary to look beyond traditional end-to-end 
networks and even software-defined networking concepts to examine the development 
of meaning from a wide array of sources. One way to appreciate this concept is through a 
neighborhood analogy.

Chirps to “Small Data” to Big Data: An Example
The build-up of data from many devices is similar in some ways to the build-up of 
musical tunes from discrete notes. Individually, an isolated note offers no musical 
information (emotional content, beauty, etc. as determined by a listener). But a series of 
notes from many sources (the instruments in a symphony, for example) form tunes that 
human listeners may interpret.

Similarly, chirp sequences (in parallel or serial flow) form “tunes” after a fashion. 
The chirp stream “tune” is used as a signature pattern or a data payload. Or a concatenated 
and encrypted version of both (see Chapter 6) where encryption includes delayed 
transmission as in syncopation. Multiple tunes are really a jumbled version of hidden 
information, where even the silence may have meaning, known only to intended receivers.

Although humans can hear a birdsong, the chirp sequence “meaning” is known only 
to the birds. Although humans hear the tune, they cannot decipher it (see Figure 5-5). 
Birdsong signatures (“blue jay”) and payload (“intruder”) are both tunes, so it is unclear 
where one sort of tune melds into another. Hence, humans can hear all the myriad bird 
conversations in the park and yet understand none—they do not have a decoder key.

Figure 5-4. Integrator functions subscribe to interesting data streams published by IoT end 
devices. An integrator function’s “neighborhood” may span the globe. “Affinities” with other 
potentially associated data may also be exploited to create richer information
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Bird chirps respond to changes in the environment. For example, a cat walks through 
the park. Human eyes can follow it, noticing how the chirps follow the cat’s motion as it 
moves from one tree to another. Chirp tunes will change both in the sequence of tones 
and their intensity. An observer may be able to discern activities common to the same 
consensual domain by matching patterns in two different sensor domains (eyes and ears) 
and “putting two and two together.” Multiple sensor fusion (eyes and ears, in this case) 
drives the human inference engine.

Over the course of a month, the cat may visit different parts of the neighborhood. 
Although there may be trends to these movements, the sampling duration may need to 
be months to accurately pinpoint “affected” regions. The quantity of data to be analyzed 
is considerable. Some may need to be stored and reviewed later by the big data analysis 
engines that are predicting trends based on past history.

Over time, it is noted that this “small” data pattern repeats itself around dusk most 
nights. “Big” data engines may then infer that a nocturnal animal (e.g., a cat) is causing 
a “disturbance” in the “reference“ signal. Individual chirps and even the combination 
of chirp streams that create “small” data are unintelligible in isolation. But they may be 
processed into a more coherent form, which in turn is used to draw conclusions about the 
environment not transmitted per se in each “small” data transmission.

Putting small events together to infer a complex event or trend is difficult, whether in 
the natural world or the Internet of Things. It may require a control system component, 
Bayesian reasoning, to filter out the noise from reference signal disruption. “Small” data 
events, based on observation, propagate “up” for “big” data analysis and action. An 
immense number of small events feed myriad chirps that may be integrated into complex 
event analysis.

Figure 5-5. The movement of the neighborhood cat sets off “alarms” in a number of “sensor 
devices” (birds). A human observer may correlate information from multiple senses and 
understand what is taking place



CHAPTER 5 ■ SmAll DATA, Big DATA, AnD HumAn inTERACTion 

83

This example has described only one sort of event (birdsong) in one neighborhood. 
But as seen in the following section, additional richness in analysis comes when 
integrator nodes expand on the concept of neighborhoods by actively seeking out and 
incorporating affinities.

Neighborhoods and Affinities
Internet of Things neighborhoods may be thought of as interesting aggregations of data 
sources that may be examined and collected by an integrator function. Locating and 
subscribing to a particular chirp stream may be directed by human programming  
(e.g., “monitor all moisture sensors in agricultural fields in these four counties”).

In this case, the neighborhood is defined geographically, so the integrator function 
may seek out interesting data streams from many candidates by searching for a particular 
“signature” of device type (from markers in the chirp packet; see Chapter 6) and location 
information appended by propagator nodes. Subscribing to these streams allows the 
integrator function to build up not only a snapshot of current conditions but also to 
observe changes over time. This data may then be used to generate reports or alarms as 
needed for human observation.

But the preceding example is not much different from a point-to-point IP data stream 
type of relationship. In fact, IoT neighborhoods need not be bounded by geography, end 
device type, or any other characteristic. Nor need they be preset by human operators. 
Instead, they may collect chirps across a wide spectrum of small data flows.

By subscribing to soil moisture sensors, temperature gauges, weather reports, 
reservoir levels, electric utility time-of-day rates, video images of crop height and ripeness, 
and so on, it might be possible to create a model that will allow the most cost-effective and 
timely irrigation of fields, for example. This could be effected either by outputting a report 
to a human field hand, or the integrator function might simply open the correct valves for 
the precise time needed (see Figure 2-8).

Independent but interacting elements of the real world, each of which is represented 
by data flows and sources (whether from Internet of Things end devices, the global 
Internet, or another source) represent affinities of data. These discovered affinities of 
data may prove to be much more powerful than human programmers might predict 
in advance. For that reason, it is fundamental that the underlying architecture of the 
IoT integrator function software allows for independent searching out of potentially 
interesting data sources by intelligence operating within the integrator functions.  
(The mechanics of this affinity-seeking intelligence is more fully explored in Chapter 6.)

Note that not every deployed integrator function will incorporate this independent  
data-seeking capability. In many cases, the role of the integrator function will be more 
narrowly defined to a specific application or locale, partly for cost and control factors, but also 
to allow the use of cheaper computing platforms (owing to the need to analyze less data).

Public, Private, and Some of Each
The broad architectural definition of the integrator function and its varied application 
uses mean that there will be different kinds of neighborhoods formed. This is enabled by 
the incorporation of public and private markers in the structure of the chirps themselves 
(see Chapter 6). As in the previous birdsong example, the chirp structure contains both 
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addressing and payload information in a form that will be unintelligible without the 
proper “key.”

Somewhat akin to a Virtual Private Network (VPN) in traditional IP networking, chirps 
with private markers may traverse a broad network alongside chirps with public markers. 
In the integrator function publish/subscribe model, security is provided at the end point 
only. As in trees, where a particular pollen particle may be propagated in any direction, 
but only a receiver (the flower) programmed to “receive” the message will act upon it,  
so chirps with a private marker will be inert to any but the desired integrator function.

These private chirps might be seen in Original Equipment Manufacturer (OEM) 
environments, in which, for example, an application that monitors diesel generators and 
schedules maintenance as required (low fuel, hot bearing, clogged filter, etc.) might be 
offered for a specific manufacturer and then only for those units under warranty.

Other chirps (likely the statistical majority) will be public, available for inspection by 
any “interested” integrator function that builds the chirp stream into a neighborhood.  
As with emerging social networking norms, in which a wide variety of information is 
made publicly available by individuals, it is likely that some entities deploying some types 
of end devices will use public markers only, making those chirp streams available to any 
integrator function that detects it and subscribes. Again, subscription is an activity of the 
integrator function only; not of the end device.

It is likely that the some of the most interesting and powerful big data applications of 
the Internet of Things will come through some combination of public and private chirp 
streams and small data flows (see Figure 5-6). So hybrid environments with private and 
public chirp streams sharing portions of propagator networks will be quite common.

Figure 5-6. Although some proprietary applications will use private markers to restrict 
use of chirp data, most chirp streams will be fully public for analysis by any “interested” 
integrator function
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Bias Bonus
The potential power of noncontiguous information neighborhoods formed though 
integrator node affinities selecting among millions of chirp streams is enticing. But 
seeking out specific chirp streams from desired devices in the cacophony of the Internet 
of Things will also be important. Especially for OEM and proprietary networks that go 
beyond generic functions, some method of network tuning may be helpful.

As introduced in Chapter 4, one class of propagator nodes will be equipped with 
an internal publishing agent that is accessible to one or more integrator nodes. These 
publishing agents may interact with complementary processes in the integrator function 
to cause the propagator nodes to preferentially forward some types of packets, perform 
proprietary chirp bundling, spoof repeated chirps (or refrain from spoofing), and perform 
other roles on behalf of the integrator function.

In this fashion, integrator functions may construct preferred networks, optimize  
data flows, and seek out specific types and locations of end devices. The publishing 
agent–integrator function interaction my again be proprietary or more open. The 
proprietary interaction is relatively straightforward because there is (by definition) an 
IP-based connection between integrator function and propagator node. This will allow 
for secure tuning of data flows between propagator node and integrator function, in a 
manner similar to a software-defined network.

But in a pubic (or mixed) environment, the situation is more complex. Because 
propagator nodes may be servicing multiple chirp streams, bias must be defined in a way 
that is neither proprietary nor permanent. The effect of an integrator function on such a 
(non-private) publishing agent will ebb and flow in an organic way. Repeated interactions 
with a particular integrator function will bias the propagator more heavily in favor of that 
integrator functions publish/subscribe requests, as seen in Figure 5-7.
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But if, over time, that interaction ceases or is reduced in frequency, the propagator 
node will revert to a more promiscuous (nonbiased) forwarding model or will respond 
to a different integrator function that shows more “interest” by more active biasing. The 
weights and dwell times of this biasing may be configurable at the propagator node.

Searching for and Managing Agents
Publishing agent–equipped propagator nodes will typically advertise summaries of 
attached end-device types (including those farther down the “tree” accessed via other 
propagator nodes), locations, and other characteristics. Integrator functions may 
use this information to identify publishing agents that have offered interesting chirp 
streams. (There will also be secure proprietary modes in which propagator nodes do not 
advertise available data types; instead being specifically targeted by integrator function 
programming.)

The integrator function establishes a connection to one or (often) many of the 
publishing agent(s) in order to read and then set certain parameters. It is likely that these 
publishing-agent-equipped propagator nodes will be placed at logical “junctions” for 
“branches” of the Internet of Things, creating useful points for management and control. 
Because publishing agents always reside in propagator nodes that are equipped with an 
IP gateway, standard IP protocols will be a straightforward medium for their interaction 
with integrator functions.

Figure 5-7. Some classes of propagator nodes will contain publishing agents. The agents 
interact with integrator functions to “tune” the data forwarding. The bias of the propagator 
node may be reconfigured over time and fade out if not reinforced by the integrator 
function. Publishing agents also advertise the availability of potentially interesting new end 
devices for possible subscription by the associated integrator function
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This integrator function bias will include settings regarding frequency of 
transmission for target chirp streams (every chirp, periodic, only when state changes, 
etc.), exception handling, multicast bundling/pruning, and so on. Propagator nodes will 
announce discovery of new candidate chirp streams for potential inclusion in preferred 
forwarding lists. Integrator functions will also restrict the forwarding of some chirp 
streams to limit the proliferation of unneeded or redundant data.

The biasing of a publishing agent by a particular integrator function is not 
permanent; over time, requests by other integrator functions may take precedence if 
there is not “reinforcement” by the originally requesting integrator function. This will 
allow for organic reconfiguration of the network due to changing needs, seasonality, and 
other factors.

High- and Low-Level “Loops”
An interesting byproduct of this architecture is that there will essentially be two 
networking “loops” operating in the network when publishing agents are present in the 
propagator nodes and are biased by integrator functions.

Propagator-node-based processing for end devices, operating closer to the devices, 
provides a more equitable distribution of resources. Integrator functions are thus freed 
from handling communications chores for thousands of end devices.

That more mundane work of pruning and aggregation is then delegated to  
publish/subscribe agents within the propagator nodes, closer to the end devices. The 
control loop is then effectively split into two isochronous control loops: one loop between 
the end devices and the biased publish/subscribe agents within propagator nodes, and 
the second between those agents and their associated subscribing integrator functions.

In the traditional IP–based thin client model, there was effectively one control loop 
between devices and servers, so end-to-end delays, error checking and correction, and 
so on are necessary (not to mention a costly full IP stack in each device, as discussed 
previously). But with the agent located within the propagator node, end devices may 
continue to converse in simple terse chirps. The end device chirp stream is being 
converted into a small data flow, to which integrator functions may subscribe. The overall 
architecture is more scalable and more efficient by disassociating the two control loops, 
as seen in Figure 5-8.
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In this distributed and balanced setting, the publishing agent within the local 
propagator node acts as an extension of the integrator function, managing the exceptions 
that interest them: the higher-level loop. The task of pruning and aggregating is delegated 
to a lower level of control. Round-tripping is obviated.

Using the Mars Rover as an analogy, Mission Control is kept abreast of “interesting” 
developments, but local control of sensors/actuators is handled autonomously by 
resident software agents. This obviates needless round-tripping between the rover 
and earth, providing a more equitable distribution of tasks and resources. This is more 
efficient because it also reduces both traffic and server load. The output from biased 
publishing agents is a more palatable edited small data flow.

Regardless of whether device communication is IP- or chirp-based, a layered control 
loop (with agents as intermediaries acting as the translation mechanisms between the 
upper and lower control loops) is inherently more efficient than round-tripping.

By contrast, in the traditional IP thin client model, that translation would take place 
in the cloud, demanding that data originate from end devices in a format palatable to 
big data consumers. Agents and their location within the lower control loop reduce this 
burden on the end devices of the IoT.

Agents are bilingual by design. End device-to-publishing agent conversations can be 
in one language (chirps), more suitable for lower-level conversations. The sensor-motor 
control loop of the Mars Rover involves a different vocabulary than the command control 

Figure 5-8. Traditional IP networking models extend the control loop end-to-end, 
demanding deterministic performance and burdening end devices with expensive processor 
power and memory. The emerging Internet of Things architecture creates separate control 
loops, allowing minimal networking investment at the end device and providing better 
local control without the delays of round-tripping
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loop with Mission Control. Local software enables sensors and actuators to be in a close, 
tight control loop and to do what they were designed for. Other software, with access to 
this lower control layer, provides Mission Control with the level of granularity needed.

An intermediate agent-based architecture is also closer to the publish/subscribe 
frameworks that big data systems are familiar with, and so may allow for easy extension 
to the Internet of Things integrator function architectures. Through web services, 
cloud servers subscribe to multiple sources of data. Big data systems may be viewed 
as marketplaces in which publishers/subscribers or data providers and consumers 
meet and exchange. The “exchange” is one service that enterprise middleware software 
provides at Layers 7 and above on the network stack. For example, Tibco (www.tibco.com) 
provides a platform in which real-time feeds are both published and consumed. Multiple 
and diverse applications employ generic and extensible real-time publish/subscribe 
“exchange” infrastructure to conduct business. The existence of these models should 
make the incorporation of integrator function data very straightforward.

Human Interface and Control Points
In the Internet of Things, the integrator function collects the small data flows that develop 
from combining chirp streams. Somewhat like the human observer in the earlier birdsong 
example, the integrator function may correlate events and observe patterns from millions 
of chirps that would be unintelligible (individually or en masse) to a human observer.

Thus the integrator function is the point at which data may be turned into information 
for consumption by humans. Reports may be generated which highlight conditions in the 
field, thresholds for certain events calculated and alarms posted, and so on.

For example, a power plant (see Figure 5-9) might monitor thousands of points for 
temperature variation, vibration, fluid leakage, and other factors. An integrator function 
would not only monitor individual sensors for out-of-tolerance values but might also 
examine the interaction of changing values across multiple types of sensors deployed 
on a variety of equipment. Does an increase in temperature and vibration at a number 
of related locations represent a potential trouble spot developing, even if no individual 
sensor is reporting an out-of-tolerance situation? The integrator function could report 
this situation (and even schedule preventative maintenance), avoiding unexpected 
downtime under future peak loads.

http://www.tibco.com/
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In a complementary way, desired end point settings and configurations may be 
entered into the integrator function for dissemination across the network. In this case, the 
integrator function may be given broad commands (“reduce discretionary electrical use”), 
which results in a wide variety of different end devices at many locations being targets, 
perhaps in a specific order. In this example, the integrator function might use time-of-day, 
weather, and other information to determine where and by how much the usage may 
be cut, rolling the reconfigurations and shutdowns across the globe with regard to the 
impact of sunlight.

As the name implies, a key characteristic of the integrator function is the intelligent 
digestion and consolidation of information. For humans interacting with the Internet 
of Things, the contrasting information of underlying trends and emergent events and 
alarms are the most important outputs of the integrator function, harnessing the power of 
myriad IoT end devices.

Machines and Metcalfe
But beyond human interfaces, the IoT integrator function may play a powerful role in 
pure machine-to-machine networks. In accordance with Metcalfe’s Law, the “value” 
of a communicating network increases with the square of the number of participant 
members. With large numbers of integrator functions communicating and coordinating 
with one another, information, resources, and schedules may be shared and optimized 
without human intervention.

Figure 5-9. By monitoring thousands of end devices and sensors of various types, an 
integrator function might infer an impending need for maintenance in a location even 
though no individual sensor is yet out-of-threshold
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As an example, neighborhood electrical generators plugged into a smart grid energy 
network with solar panels or wind power sources might be used to support excessive 
loads during peak times for home appliances. The integrator functions interacting with 
the various electrical generators and appliances may exchange information to conserve 
the joint resources and exploit the cheapest sources by studying the patterns in terms of 
when devices are in use and how much power is typically drawn. The distributed system 
can thus “schedule” operation into optimal timeslots using Bayesian reasoning.

Over time, machine learning agents within integrator functions may suggest that 
some competencies be “fused.” Fused competencies are, as the name suggests, tightly 
coupled, largely self-sufficient capabilities between neighborhoods of end devices 
monitored and controlled by interacting integrator functions.

“Socially networked” integrator functions will also obviously have much broader 
potential views of events and trends, making possible more useful analysis than any 
single integrator function.

Collaborative Scheduling Tools
One potentially compelling area for the use of machine-to-machine integrator function 
interactions is in the area of collaborative scheduling. The example described previously 
is one instantiation, but broader scheduling efficiencies can be imagined across much 
broader domains.

The underlying fundamental scheduling principle to be exploited is “cluster” versus 
“avoid”: that is, what activities, events, or elements create more efficiencies when brought 
together (multiple packages for adjacent addresses sharing the same delivery van, for 
example) versus those that create more efficiencies when separated (many delivery 
trucks that must share the same loading dock, for example). By considering a variety of 
data sources and providing “back pressure” to reschedule or reorder some events or tasks, 
interacting integrator nodes might allow better use of scarce resources with learning and 
improved optimization taking place over time.

Packaging and Provisioning
As noted in the introduction, the Internet of Things integrator function is software 
running on a general-purpose processor with the appropriate performance 
characteristics and interfaces. With the promulgation of minimal necessary standards 
and open source code, a wide variety of different organizations and individuals could 
begin to rapidly create integrator function software to run on many different platforms.

These applications will be programming-intensive to tailor to specific needs, but 
making available open-source software modules delivering basic functionality will speed 
deployment. These open-source components are an important part of the Internet of 
Things development blueprint (see Chapter 8). The possibility of running integrator 
function software on virtually any device from a smartphone on up permits the analysis 
and control functionality to scale to any size with off-the-shelf hardware.
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Distributed Integrator Functions
To this point, the discussion of integrator functions has assumed a processor location likely 
some distance (physically and or logically) from the end devices with which it is interacting. 
And for a significant portion of the Internet of Things, this will likely make sense. As noted 
elsewhere, for the typical case, data rates will be low, the delivery of any single individual 
chirp uncritical, and synchronization unimportant. But this will not true everywhere.

Video surveillance and monitoring is one application in which the blasé passenger’s 
description of a bumpy flight is apt: “hours of tedium punctuated by moments of terror.” 
The vast majority of many video surveillance streams are unchanging: the view of a 
hallway or an unopened gate, perhaps. But the amount of streaming data created by that 
unchanging scene is substantial, depending on the video CODEC in use.

If all that video data were to be propagated through the Internet to a distant 
integrator function, the bandwidth, delay, and jitter (variation in delay) would be 
substantial. But if instead a distributed integrator function were placed at the location of 
the video camera, substantial processing could be done locally, with only exceptions or 
events (a human crossing the field of view, for example) generating a message to a distant 
site and triggering real-time video streaming or recording.

Similarly, process control and other real-time functions might best be served by a 
localized integrator function that could interpret local conditions from chirps produced 
by temperature and flow sensors, and then generate chirps to adjust a valve accordingly, 
as seen in Figure 5-10.

Figure 5-10. To maximize the response to changing conditions, local flow analysis might 
take place at an integrator function co-deployed with the nearest propagator. Nominal 
variations in flow or pressure could be managed by the local action of adjusting valves, 
whereas periodic status reports and exceptions beyond specific tolerances would be 
forwarded to an integrator function with a “broader” view
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At the very edges of the Internet of Things, the need for compact integrator function 
implementations that use a minimum of power and space will demand very small-footprint  
System-on-a-Chip (SoC) solutions such as Intel’s Quark family. These compact 
microprocessor systems still run standard operating system software and will thus be 
good targets for rapid development and deployment of distributed integrator function 
designs, as opposed to fully custom hardware.

In addition to the typical general-purpose processor used for most integrator 
functions, some distributed integrator functions will certainly also be implemented on 
customized hardware, often packaged in combination with end device or propagator 
node hardware.

Location, Location, Location
Application designers determining the optimal location for the IoT integrator function 
will wish to balance the efficiency of a position near the monitored or controlled devices 
with the broader perspective that can be gained from placement farther (logically) from 
the end device. The ability to build a publish/subscribe neighborhood that incorporates 
varied data sources may outweigh the nominal efficiency of being near the point of 
analysis or control.

A related decision point is setting the threshold for “phoning home” to a headquarters 
or oversight location versus managing as best as possible with the information available 
locally. The incredible diversity of Internet of Things applications will likely create a 
commensurate variety of deployment approaches.

Filtering the Streams
To make software development and application proliferation easy, the integrator function 
is specifically architected to operate on general-purpose hardware. Although this type of 
equipment is well-suited to crunching the large amounts of data potentially generated by 
thousands or millions of IoT devices, it is generally not optimized for interface to the  
Internet. Millions of data streams, many of which are of no interest or even ill-intentioned,  
may arrive at an exposed PC or server Ethernet interface.

In busy applications, handling all this traffic to search out the meaningful IoT 
small data streams would slow the main processor and reduce its capacity for the main 
integrator function tasks. So the emerging Internet of Things architecture allows for an 
additional appliance called the filter gateway.

The filter gateway sits between the global Internet and the general-purpose 
processor (see Figure 5-11). Essentially its function is as a “two-armed” router (for 
example, Gigabit Ethernet in/Gigabit Ethernet out), providing network service, security, 
and firewall capabilities. The filter gateway simply discards non-relevant data to reduce 
the load on the general-purpose hardware running the integrator function software.
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It is likely that existing router and/or security appliance hardware may be adapted 
to this role. A key software addition to off-the-shelf or open-source devices will be a 
publishing agent within the filter gateway. It will perform the same function as the 
publishing agent found in some classes of propagator nodes, allowing the integrator 
function to “tune” the data streams it sends and receives through the biasing techniques 
described previously.

Accessing the Power of the Internet of Things
The integrator function turns the numberless streams of data from Internet of Things 
end devices into rich publish/subscribe information sources and extracts meaning from 
potential chaos. In the next chapter, the protocols of the emerging Internet of Things 
architecture are explored in detail.

Figure 5-11. Filter gateways act as firewalls to off-load network interface tasks from the 
general-purpose processors running integrator function software
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Chapter 6

Architecture for the Frontier

The general architecture of the Internet of Things (IoT) has been introduced in the 
preceding chapters, including concepts such as terse self-classified chirp protocols, 
structured tree networks, and the publish/subscribe framework. In addition, there has 
been an introduction to the key building blocks of the emerging Internet of Things: end 
devices, propagator nodes (and associated publishing agents), and integrator functions 
(and associated filter gateways). This chapter will explore the deeper architectural details 
of the Internet of Things, beginning with chirp formation at the edge of the network and 
continuing through to the propagation though the network, and finally to the implications 
of a publish/subscribe IoT world.

The key principle of the Internet of Things architecture is the segregation of 
networking cost and complexity to the propagator nodes, permitting much simpler 
components and architectures at the billions of simple end devices. These intermediate 
elements then bridge the gap between raw data chirps and big data meaning. With 
the assumption that the networking capabilities are in place within propagator nodes, 
individual end device appliances, sensors, and actuators may be implemented with a 
simple specialized language and vocabulary: the bare minimum necessary for what they 
were designed to do. Each type of device can use its own specialized format to chirp in its 
own dialect—no overarching standard common language is needed in every end device. 
Devices can remain simple, whereas propagator nodes (and publishing agents,  
if installed) can be arbitrarily complex.

A Necessary Alternative to IP
Beyond efficiency (large packet formats, etc.), there is a more fundamental reason to 
support a different transport protocol instead of couching a new description language 
inside the payload section of an IP packet. And the key factor is the need to support a 
one-to-many/many-to-one publish/subscribe framework.

Recall that the packet type ID in the IP packet header provides the information 
needed to drive traditional IP routing according to associated packet handlers. Adding 
a large number of new packet handlers, vocabulary, and protocols optimized to support 
the exploding variety of Internet of Things end devices to IP would pose challenges of 
scale, scope, and manageability. Routers would need software revisions to know how to 
route these new types of packets. That new software would in turn need to be deployed 
across the entire router network core and edge routers, including hundreds of thousands 
of legacy routers.
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IP formats were originally designed for only the coarsest classifications of packet-
type routing handlers; for example, voice, video, web browsing, and file transfer. 
Application-specific granularity (such as Devices ➤ Sensors ➤ Moisture ➤ Device-Type-A)  
cannot be easily expressed in a traditional format that was intended to address sender-
oriented communications based on IP addresses and MAC IDs. If this type of data 
granularity were to be expressed within the payload section of an IP packet, the process 
of peering deep into each payload would slow down traffic unacceptably at each 
network device. These are the inherent limitations to IP sender-oriented, point-to-point 
traffic flow.

A Big Problem, and Getting Bigger
Although there are many expected classifications for appliance, sensor, and actuator 
types, this will be an evolving field into perpetuity. Providing specialized packet 
handlers within traditional IP routers to handle the routing needs of end device types 
yet undreamed-of is simply not practical. New types of end devices—and combinations 
of end devices, as illustrated in Figure 6-1— will constantly be added to the Internet of 
Things. There will also be the need for real-time localized control of semiautonomous 
relationships between sensors and actuators (see Figure 6-2), creating localized 
communities of machine-to-machine communications that are just beginning.

Figure 6-1. Combinations of different sensor types within one physical package, each 
generating uniquely marked chirp packets, are just one example of the benefits of self-
classified chirp protocols. In this example, an on-board propagator node could efficiently 
combine the chirp streams into “busloads” of small data for interpretation by one or more 
integrator functions
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These new applications will thus require their own private small data streams  
and/or terse, tight local control loops. Standards-committee processes for IP and 
backbone routing take a long time and are understandably biased toward maintaining 
the status quo: that is, IP protocols used for nearly all communications (including the 
Internet of Things). Despite this, a more organic underlying architecture is needed that 
can be adapted rapidly to new end devices, independent of the techniques used for data 
transmission and analysis.

The primary reason for chirp–based end devices is their inherent simplicity and the 
fact that the chirp protocol may organically evolve to support device categories not yet 
dreamed of, let alone yet defined as to how they interact with humans and the world. 
Burdening these emerging publisher/subscriber relationships with the detritus and 
restrictions of a solely IP-based transport scheme is simply too small a canvas for the 
developers of these new products to create within (or to manage, build, and afford to 
produce once designed).

Figure 6-2. In many emerging applications, local feedback from sensors and the 
corresponding commands to actuators will be needed in real time. A local control loop, 
illustrated here, uses data from positioning and video sensors to guide actuator movements 
(top). The risks, costs, and time associated with sending the real-time control traffic round-
trip to a server(bottom) is not viable due to the risks of delay, jitter, and/or lost control 
packets (whether chirp-based or IP). But status reports and exceptions may still be reported 
to higher-level integrator functions while the local control loop manages real-time needs
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An Alternative Inspired by Nature
To solve problems of massive scale and generic broadcast infrastructures, nature uses 
a receiver-oriented architecture. Pollen “publishers” (plants) have no “receiver” (flower) 
address per se, nor do they know where their ultimate destination will be. A pollen 
category–based identification scheme is receiver-oriented: the self-categorized pollen 
simply travels in all possible directions; it is not destination-based or flowing in a 
predefined point-to-point relationship. It is the onus of the subscriber to accept (target 
flower) or reject (sneezing allergic human) the pollen. Publishing within classified 
categories in a natural environment (defined by genus and species) connects pollen  
to flowers in an inherently more efficient manner, but nature allows for evolution to take 
place over time. Thus, the “protocol” of pollen is externally marked with a  
self-classification recognized by receivers and may change over time.

A Protocol Based on Category Classifications 
What would a similar extensible protocol look like within the chirp structures of the 
Internet of Things? In nature’s DNA sequencing, there are strands of genetic code that are 
recognizable. Sometimes these specific genetic sequences serve as a marker that helps 
identify a distinct DNA sequence: relationships can be seen as the sequences repeat. 
Genetic fingerprinting is extensible as scientists learn more and more and can probe 
deeper into smaller sequences of information. The markers point to meaningful locations 
within the DNA sequence.

In nature’s world of publish/subscribe, pollen is being published for subscriber 
flowers. Pollination is essentially a selective pattern match. The same logic will be applied 
to the IoT publish/subscribe world. In this case, rather than the wind distributing pollen 
promiscuously, a network of propagator nodes may use the structure of the chirp packet 
to direct data to an appropriate “receiver.”

Chirp packets intentionally lack a target address; in a publish/subscribe world, the 
receiver chooses chirp streams and small data flows. So when these chirps are received by 
the first propagator node, what is needed to forward the arriving chirps in the appropriate 
direction? Recall that propagator nodes are aggregating and pruning chirps to form 
multichirp packets for transmission to the appropriate adjacent propagator node for 
eventual delivery to the integrator function(s).

Skeletal Architecture of Chirp Packets
A system that locates the end device publishers and integrator function subscribers 
efficiently and develops the correct routes is of common interest to both publishers 
and subscribers. Propagator nodes, as discussed previously, require some category 
description from the end devices to enable the matchmaking. What does this descriptor 
look like?

As an analogy, consider again bird chirps, the sounds of which may be organized 
based on the study of individual bird categories. Bird types may be identified by chirp/
tune/melody. Hence those subscribers interested in melodies from doves can now 
receive those recordings, based on a bird category. The categories will have to support 
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different levels of granularity—some bird enthusiasts are interested only in doves near 
their homes. Hence the category field should be sufficiently flexible in design to support 
further drill-down.

In nature, melody/tunes and DNA structures incorporate marker strands of 
information that provide a common pattern across members of the category. The same is 
true for markers within Internet of Things chirp packets. These markers occur at specific 
locations and are of specific defined patterns.

A familiar example is the global telephone numbering system, in which information 
of increasing granularity is found in known standard locations. Country code, area code, 
exchange, and subscriber identification are progressively used to route the call to its final 
destination.

Within the Internet of Things, the final destination may not be known (again, due to 
the publish/subscribe nature of the IoT). So the chirps must be self-classified in a similar 
granular fashion to allow other network elements to act upon them.

For example, a given chirp category may have an 8-bit marker, which is always found 
in the fourth byte of the bit stream. (This pattern is indicated by the format of the chirp 
packet’s offset marker, as shown in Figure 6-3).

One way of expressing this category classification is seen through an example. 
Consider a combination of a 4-byte classification and one additional marker byte of 8 bits. 
This can be expressed as 4.8(XXXX), where XXXX are more levels of granularity that may 
be gleaned from the 4 bytes by knowing the specific marker pattern format of the 8 bits 
and what that format entails. In this case, the 8-bit marker explains how to decode the 
4-byte public classification. This will include the end device type (moisture sensor versus 

Figure 6-3. The marker offset pointer allows IoT elements to recognize the locations of 
the chirp packet's public and private markers without examining more deeply within the 
packet, making routing and other networking decisions more rapid. The markers in turn 
provide information on how to interpret the end device's self-classified category and type
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street light, for example) and the way the 4 bytes of data are structured. The 4.8 pattern 
format alone would be sufficient information for a propagator node to make basic routing 
decisions (see below).

Additional information can be obtained from the value of the 8-bit marker. Consider 
an 8-bit marker pattern that is 1.1.1.1.1.1.1.1 (or 255). This value of 255 may indicate a 
format in which each of the preceding 4 bytes is a 1-byte classification subcategory. Thus, 
a 4-byte category may now be interpreted as A.B.C.D., where the letters occupy 1 byte 
each and indicate some subcategory. The complete interpretation of the category is thus 
4.8.255.A.B.C.D.

The chirp packet will also contain the actual payload of the sensor values, but note 
that these have not been discussed so far. This is intentional, as it demonstrates that the 
propagator node may route quickly and efficiently on only the first bytes of data received 
without deeper examination of the chirp packet.

This enables a quick bit mask to look for all publishers in categories 4.8.255, and 
so on. Propagator nodes with internal publishing agents capable of acting upon further 
granularity in the chirp signature will need to access a reference that provides a map or 
implicit field markers for A.B.C.D within the category field. Thus, it can be imagined that 
all of the following provide successively deeper classifications of the chirp packet:

4.

4.8.

4.8.255

4.8.255.A

4.8.255.A.B

Thus, the propagator nodes, depending on their access to internal field data, can 
provide multiple levels of granularity in addressing (and may potentially act upon the 
complete chirp packet through a publishing agent that is aware of the meaning of the full 
address).

The simplest category of 4.8 may be sufficient for coarse aggregation: chirps of 
the same “feather” may be flocked together (see the “Scheduling the Bus” section that  
below). But additional levels of granularity in propagator node bus scheduling and 
routing are supported by considering more data.

Larger and infrequent buses might cover 4.8.XX categories, while smaller “shuttles” 
for more-frequently-requested data may specify precisely what is of interest; e.g., 
4.8.255.A.B.C.XX. Chirp self-categorization thus drives the loading of multichirp–packet 
forwarding buses, their contents, and their frequency, at differing levels of granularity.

Note that A.B.C.D is distinct from B.A.C.D. In general, there are 4*4*4*4 or 255  
non-null combinations for a four-letter vocabulary: A, B, C, D.

Obviously, the 255 combinations allowed provide tremendous flexibility in the way 
the 4-byte category is interpreted. Like DNA, the alphabet may be terse and small, but the 
patterns depicting the categories are not. An exceptional variety of content may thus be 
expressed within short chirp packets.

In fact, the category system is flexible enough that the simplest data payloads may be 
expressed within the public category alone with no separate payload. They would be very 
basic states expressible in a few bytes.
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Individual Information within Chirp Signatures
Beyond category information, bird chirps also carry individual and private information. 
Nature’s random number generator changes the individual birds chirp tonal qualities 
governing each bird. This serves as a form of identification. Thus, mother birds know 
each of their children’s distinctive chirps, although all are using the same broad general 
chirp format and its associated shared vocabulary.

The Internet of Things counterpart of this sort of individual identification within 
the chirp packet is labeled “Sensor Data Transmission Parameters” in Figure 6-3. 
In combination with the “Sensory Category Classifier” seen in Figure 6-3, chirp 
identification parameters can include the following:

Chirps with distinctively different patterns (i.e., tunes)•	

Public category classification, including some specific (though •	
not unique) end device identification; e.g., the last four digits of 
the manufacturer stock keeping unit (SKU) number of the device

Additional identification information is added by the connecting propagator node:

•	 Lineage based: For example, an end device associated with a 
kitchen propagator node 

•	 Location based: For example, located in a kitchen, close to 
the toaster (derived from signal strength analysis, not a logical 
connection) 

Note that the combination of a chirp tune (in this example, its last 4 SKU digits),  
its location, and its lineage collectively can define a distinct end device sensor or actuator. 
Although none is globally unique, the combination will likely be sufficiently distinctive for 
the vast majority of applications. The absolute uniqueness of the address is not required.

The combinations have inherent randomness because their constituent elements 
(e.g. transmission pattern of chirps) are random. They are not required to be unique, 
as are IP or MAC ID addresses, so there is no burden of maintaining a global database. 
Purely local “pretty good” distinction in the bird chirp is sufficient for the mother bird.  
By the same token, “pretty good” distinction for local end devices is sufficient for 
propagator nodes.

Note that individual data, while often in the private section, may also be present in 
the public section. Thus, some common types of end devices (e.g., temperature sensors) 
may not need a private section: the data may not need to be secured.

“Light” Error Detection and Security
The combination of marker and public category classification provides a first level of light 
error detection. For example, if the 8-bit marker described previously calls for a 4-byte 
category classification, but some other value is found instead, an error is recognized, 
and the chirp is discarded. Similarly, if the marker is corrupted and does not match the 
(correct) category classification, the chirp is likewise discarded. This is the reason why the 
marker occurs after the category classification within the chirp packet; it acts as a simple 
error-detection mechanism without creating any additional overhead.
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Errors that occur elsewhere deeper in the chirp packet may elude this first level 
of error-checking, but any mismatches of markers and classification will eventually be 
detected. The presence of any propagator node that compares the sequences within 
the chirp stream will eventually result in this chirp being discarded. Because chirps are 
typically repetitive, the loss of this single corrupted chirp is not critical. Note, however, 
that corrupted chirps are being progressively pruned; often before the chirps are 
combined into IP packets.

Unlike the capabilities of IP packet headers, this light error detection allows a small 
number of errors to be propagated through part of the local network. But the savings in 
overhead for each chirp packet is well worth the small cost of handling some bad packets 
through portions of the network.

Generic Chirp Handling
The deeper chirp packet examination described above pertains primarily to propagator 
node networks containing publish/subscribe agents. If the propagator node has no 
publishing agent installed, small data flows are managed by the network topology and 
the arrow of transmission incorporated in the public marker: either toward integrator 
functions or toward end devices.

Here, the network topology of uplinks and downlinks (refer to Chapter 4) is being 
used to help move data toward an appropriate destination. Note that the directions can 
encompass both the propagator node topology and the parent IP–based network tree in a 
hybrid mesh network that incorporates both.

Incognito Chirp Transport 
Some classification categories of chirps might have to travel incognito. That is, they 
expect propagators to rebroadcast them, potentially in all directions, until an appropriate 
publishing agent or integrator function discovers them.

“Incognito” chirp streams create the equivalent of a Virtual Private Network (VPN) 
within the IoT. They constitute a category that is indecipherable by nonproprietary 
publishing agents and integrator functions. Although they may be transported generically 
by the propagator node network, they typically could not pass through the chirp-to-IP 
interface as is. In the typical application, there will be a separate propagator node with 
a corresponding proprietary publishing agent somewhere on the “chirp” side of the 
network that has the “key” to interpret the private information within the chirp packets. 
From this, they may generate IP traffic that could traverse the global Internet to be acted 
upon by integrator functions also programmed to be part of the incognito network.

A “4.0” category chirp implies a marker at byte 4, but its length is not specified. 
Agents with bit mask filtering can locate such semi-incognito chirps because they know 
what the marker is. Note that the marker can be arbitrarily long or short. Short markers 
increase the occurrence of false positives with other marker types (e.g., the 4-bit marker 
1.0.1.1 shares 4 bits with the 8-bit marker 1.0.1.1.0.0.1.1). Publishing agents that have  
this level of information can also glean other data from the packet melody/strands to 
filter out undesired or malformed chirp packets; these packets will not cross over to the  
IP network.
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A “0.0” category chirp does not specify either the location or size of the marker. This 
is completely incognito, and the propagator node may continue to rebroadcast the chirp 
both up and down the propagator node tree until it reaches end devices, a publishing 
agent within a propagator node, or integrator functions of the network (depending on the 
arrow of transmission). Recall that native chirp devices have no access to the IP network 
except through propagator nodes, so IP traffic congestion is limited.

In some situations, a 0.0 chirp might want to specify the arrow of transmission and 
nothing else (e.g., up or down the tree). Because each category has its own vocabulary 
and language, privately defined 0.0 chirp families may choose to use a unique location 
in the chirp packet for the arrow of transmission. Languages defining the meaning of the 
data comprised of bit streams are both versatile and secure because they are generally 
receiver-oriented and do not require a deeper understanding within the propagator 
nodes.

IP–based end devices may also use category patterns as part of their data 
classification schemes. In that case, IP-based packet headers will specify the end device 
MAC ID or serial number within the payload along with the category classification. 
IP-based agents in the integrator functions or local to the IP interface of a publishing 
agent–equipped propagator node could then act on end device identification and 
category classification. Thus, a single integrator function may incorporate chirp streams 
aggregated into small data flows transmitted over IP and the traditional Internet, as well 
as more sophisticated end devices sending and receiving in native IP.

By the same token, end devices may include a specific IP address where they want 
their chirps to be sent in their private payload or public category type. The chirp interface 
of a publishing agent–equipped propagator node receives this chirp, which may be 
pruned and repackaged as needed for IP transmission to the specified address.

Transmission Agility Information within the Chirp
If chirping end devices share the same wireless medium (such as in Wi-Fi), one part of 
the public category section will also contain chirp transmission characteristics. In other 
words, the basic chirp structure must support network agility, even if a large majority of 
the end devices cannot act upon it themselves. Smarter, more agile devices can become 
aware that simpler chirp devices will be active at the intervals specified.

Thus, data related to when and how often the end devices chirp and what pattern 
they use (as in melody/tunes or rhythm) is needed by both propagator nodes and smarter 
agile end devices to ensure that elements of the network can anticipate and hear chirps 
distinctly and without collocated interference on the same “channel” from other devices. 
(Note that in nature, bird chirps are often interleaved; birds are aware of each other and 
may actively avoid transmitting simultaneously.)

This data also gives propagator nodes the option to shift smarter, more agile 
chirp devices to other times. Or the propagator node, after review of local client device 
transmission patterns, can forward a request for a change to the dipswitch settings of a 
simple end device. An indication of whether specific end devices support such flexibility 
is again part of the pattern marker. Thus, after some tuning, there may be sufficient 
distinction in the melodies so that propagator nodes can easily recognize individual end 
device “offspring” by their pattern of transmission.
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Extensible, Nonunique, Pattern-driven 
A broader view of the chirp architecture emerges. It contains patterns, defining other 
patterns, each of which provides a more refined level of detail. Defined levels of access to 
that detail can reveal:

What type (category)of chirp is being transported?•	

How often is this data published?•	

What is its publishing frequency pattern? (Perhaps it is dynamic •	
or it may need observation over time, implying learning and 
discovery.)

What are the distinguishing features of individual chirp devices, •	
such as serial number, location, and lineage?

What is the information on the transmission pattern that enables •	
agile devices to share the same medium without interference?

Note that all of this information is easily discerned by rudimentary bit masks—that 
is, if a particular pattern is known. One example is a propagator node that is instructed 
to look at bit location 13 in all 4.8.11 packets. If that bit is set to “1”, it indicates a universal 
flag for “unit malfunction, type 1”. The propagator node is required to convert that 
information into an IP packet and forward it to the manufacturer specified in another 
segment of the chirp packet.

The public section defines the chirp category needed for bus scheduling and 
packaging of packets (as noted previously). Without this category information, the 
propagator node would not know which direction to send the packets, as in which bus 
route to employ going up or down trees, and where to clone more packets for multicast 
transmissions when multiple subscribers exist.

The second, often private, section is the message: what a particular end device is 
saying and some (typically proprietary) information about this end device. It uses the 
same concepts as the public section, but it has its own markers and definitions of what 
those patterns signify and hence the location the implicit private field markers. The 
4.8.11.A.B.C.D category family may use a completely different scheme for the private 
section than the 4.8.11.A.B.D.C category family.

The public and private parts of the chirp packet are separated by a publically known 
public section end marker that can be of variable lengths. For example, it may be 4 bits or 8, 
depending when whether 15 or 255 different types of (public) chirp patterns are needed.

Some default public markers will be provided through consensus or standards 
bodies and working groups (see Chapter 8). They will be reserved for common use by end 
device manufacturers of a specific category (e.g., all moisture sensor manufacturers might 
use a category such as A.B.C.D.E.F, a 6-byte category address).

Category Byte Size
Many simple devices may require only 1 byte for a category (255 variants) and another 
4-bit marker for the pattern type (see Figure 6-4). Thus, each of the 255 category numbers 
may be interpreted up to 15 distinct ways. This allows for close to 212 interpretations of a 
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1-byte category field. Similarly, a 6-byte category field would allow for (248 -1) variants, 
each supporting 255 patterns (8-bit marker). The “genetic code” describing an end device 
category may be expressed in multiple ways using this extensible pattern based–format, 
which would permit additional categories to be defined over time.

For non-incognito (non-zero-byte) public sections, the marker type provides all the 
information needed to interpret it. The pattern defines where the content subsections/
fields reside within the public section. Hence simple devices may use a larger public 
section to include data that is also public. Here, no private section is needed or used. 

A zero-byte location is defined to mean that there is no public section. The marker 
type points to a data pattern that provides the information needed to interpret the 
private section, following the (empty) public section. The marker pattern is then used 
to interpret what follows generally as a payload. Thus, the flexible use of the marker 
pattern is supported beyond its initial intended use. A marker pattern and the associated 
classification of the data packet may together constitute an IP packet payload. This is 
relevant to IP-based sensor streams that prefer native IP connectivity over chirp-to-IP 
bridging through propagator nodes.

Marker Pattern Templates
Sharing the same marker type at the specified locations within the chirp packet 
engenders collaboration between manufacturers of the same sensor type. They may agree 
to jointly use a range of marker types (200–220, for example), which would be common 

Figure 6-4. Chirp packet size is variable; appliances, sensors, and actuators sending or 
receiving only small amounts of data may have a correspondingly low overhead applied to 
their chirp packets. Markers indicating chirp packet length are external to the data field to 
allow quick analysis by network elements and incorporate device type and classification
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fields, but each may then use other fields (both in the public and private sections) to 
provide more detailed and/or secure information. A shared used marker pattern template 
emerges through this collaboration.

Creating a new marker type (say, 221) may not require the traditional central 
standards body review process because the repercussions are limited to that group of 
manufacturers. For example, introducing a new marker type in location 1, affects only 
the 1-byte public category users. Within that, it affects those who want to use the same 
marker pattern number. Contrast this with the challenges inherent in defining a new IP 
header format. IP headers must universally comply with IP requirements in order to be 
readable, with any change potentially affecting all users.

The marker template is therefore an organically evolving pattern-masking 
scheme that helps integrator functions delve deeper into the public section/category 
classification ID. As such, it loosely resembles IPv4 or IPv6, which are subsections of the 
entire IP address.

Note, however, that IP addressing is destination-based, so after the packet reaches its 
destination the payload is extracted. Then the information, perhaps still device-specific, 
must be device-abstracted. Next come pruning and aggregation in the generation of small 
data. The small data is now publishable within the distributed processing of big data 
servers (e.g. Apache Hadoop–based). It must now be inserted into the publish/subscribe 
framework of web-based services.

The situation is much simpler in the Internet of Things through the use of chirp 
category marker templates. Small data streams are generated closer to the end device 
source by propagator nodes, in which data can potentially have more real-time impact 
in tighter sensing-control-actuation loops. And because chirp-based traffic is category-
based, finer granularity is simply a matter of loading the appropriate publishing agents 
at any level within the propagator node network or chirp-aware integrator functions that 
know how to look into IP encapsulations of aggregated small data.

The category section is a bit stream with contiguous fields, like strands in a DNA 
sequence. Knowing how to look into it helps better decipher the end device chirp 
category. But this requires more processing and is therefore intended for integrator 
function subscribers interested in finer granularity. As the chirp streams become 
aggregated into small data flows and move through the network, information continues 
to be disseminated with finer targeting to the interested integrator function subscribers, 
who can also drill down, if they prefer, by requesting broader category searches. As noted 
in Chapter 5, this can be through biasing of the publishing agents within propagator 
nodes that are so-equipped.

But even without a publishing agent within the propagator nodes, the lowest level of 
granularity needed is simply the marker location and its number. Hence, a byte 6, 4-bit 
marker, with value 1.0.1.1 is sufficient to have the chirp aggregated toward an appropriate 
agent for type 06.4.11. This may be a publishing agent in another propagator node or an 
integrator function.

Finer Control via Agents
At the first agent with an understanding of 6.4 buses, specialized 6.4.11 processes may 
peruse the category pattern to uncover two more subcategories, each of which might 
be specified by the pattern description to be 1 byte each. Such an expanded category 
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might be interpreted as 6.4.11.250.250. Subscribers willing to pay for this level of detail 
are alerted to the availability of a small data stream with that category classification. 
Thus end-device chirps can be very specific in terms of the type of agent they may be 
transmitted toward using a variable pattern template structure.

Publishing agents in the propagator node path allow chirp streams of specific 
types to somewhat manage the network that carries them because manufacturers can 
decide where those agents are placed along the route, starting with 6.4.11 and becoming 
progressively finer.

The “bus” transmission schedules of aggregated packets are now driven by the 
amount of traffic and any delivery timing specifics set by the subscribing integrator 
function(s). The size and content of the small data streams are being managed to ensure 
timely delivery in dynamically changing scenarios. This becomes a more tractable 
problem as more exploration into the chirp category is possible closer to the chirp 
publishers. However, having pattern matching agents 6.8.001 through 6.8.255 (8-bit 
marker) resident at a local propagator node requires more CPU processing, which may be 
suitable for an enterprise application propagator node but it is overkill for the home.

Hence, multiple types of propagator nodes emerge, some perhaps to generate small 
data streams for specific category types. Or SIM cards slots may be provided, so that 
additional categories of chirp packet–handling publishing agents may be supported. 
Some of these bus-handling specializations will be secured to specific hardware; others 
may be software agents/apps.

Scheduling the Bus
The “bus-loading” process is roughly akin to placing human passengers on the proper 
bus route to reach the appropriate destination. For schoolchildren on the first day of 
classes, the available information might be the passenger’s name and grade from a 
nametag. While the child does not know the correct route or even the destination address, 
the teacher supervising bus loading has the requisite knowledge of the routing network to 
make correctly decide upon which bus to place the passenger.

At the propagator node, then, arriving chirp packets will be collected and then be 
directed to the “bus” (transmission path) best suited for them. This must be determined 
largely by public information provided by the chirp packet markers. (If there are 
publishing agents deployed within the propagator node network, chirp packets may be 
examined further to determine how they should be forwarded or discarded.)

Ultimately, only the subscribing receiver, typically an integrator function, will look at 
the full chirp to determine if there is information sought by that receiver. The propagator 
nodes need only basic information from the chirp packet markers to make initial routing 
decisions. Further, there can be small changes in the data; it need not be error-free. As long 
as the markers are not corrupted, the faulty data will still find its way along the network.

Propagators simply need to know what direction to send the data – up or down 
the network tree in light of the transmission “arrow” found within a marker. This is 
not complex in a tree structure with O(n) routing (see sidebar “Why Trees Scale” in 
Chapter 4). Recall, this is not a peer-to-peer network, requiring an O(n2) computation 
of the routing paths, as suggested by traditional sensor networks, e.g. ZigBee. Thus, the 
direction (up/down) suffices in tree structures. And the direction for an end device chirp 
packet should point to where subscribers are.
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Routing on Category Classifications
The shared routing table within the meshed propagator node network keeps track of 
where the clients are, includes chirp devices and publishing agents. Some chirp routing 
agents may be on the chirp-to-IP bridge, and capable of securely accessing the entire 
category fingerprint, perusing the contents and decide what to do with it.

The efficient path of the chirp data is thus gated, filtered and then redirected at 
progressively finer sieves, akin to Zip code classifications for postal mail. Letters that fit 
“standard” patterns (size and weight) are processed efficiently. Others will be dealt with 
after the simple stuff is completed—this is how greedy algorithms work. The price paid 
for the flexible chirp format is that nonstandard package types will emerge and must be 
handled, albeit less efficiently.

For maximum efficiency in local pruning and aggregation, it is best to place 
publishing agents closer to the end devices’ raw published data streams. Here the 
publishing agents have more control over what is forwarded and how. A subscription 
model would defray the cost of transport and pruning.

In addition to the task of aggregation in building small data stream buses, propagator 
nodes may also be required to perform pruning in response to their subscriber 
preferences. Traffic flowing upward from remote moisture sensors in the wine country in 
France to an Amazon–hosted cloud service in the United States could well be small, but 
given the number of such sensors, the IP traffic is significant. IP traffic is not free; some 
means to control what is sent over IP is needed—specifically, the pruning of repetitive 
data close to its source (as opposed to at the integrator function).

As an example, in one network there might be a handful of 4.8.XX chirp category end 
devices; others are all 2.4.XX or 6.8.XX. It would make sense to move the 4.8.XX agents to 
a propagator node that handles more 4.8.XX buses. A 4.8.XX bus central “hub” emerges, 
at least temporarily, based on the center of gravity where 4.8.XX end devices and their 
subscribers are located. Some chirps may have more hops to travel; but by economies of 
scale, 4.8.XX bus deliveries and scheduling become easier and less costly.

Dynamic loading on the network is examined by the propagator nodes forming the 
hybrid mesh tree (of both IP and chirp devices) from the IP connection downward toward 
the chirp end devices. System administrators are notified as to the best locations to locate 
publishing agents on the propagator nodes. This will alter the data paths and streamline 
flow. Further, if the publishing agent is mobile (as in not locked-in to a particular physical 
device), the network can automatically move the publishing agents to optimize overall 
traffic flows. This is akin to changing the physical network topology to meet changing 
latency and throughput requirements.

Managing the Load
Both the physical network topology and the logical network (based on where publishing 
agents and integrator functions reside) eventually stabilize and learn to adapt the 
topology to provide stable, tunable bus forwarding schedules and routes for the small 
data streams.
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Chirps may be merged, pruned, or aggregated at each propagator node along 
the path, based both on network topology and (if present) publishing agent biasing 
by integrator functions. This is necessary for a variety of reasons: some repetitive data 
may be discarded, new paths discovered, rerouting around failures and congestion, 
termination of subscriptions by integrator functions, and so on. The “publish” and 
“subscribe” sides of the Internet of Things are thus in dynamic alignment.

Propagator Node Networks and Operation
The foregoing chirp architectures and routing algorithms are acted upon by an 
interconnected network of propagator nodes and the traditional Internet, as introduced 
in Chapter 4. For the reason outlined there, tree-like structures are chosen as the most 
scalable and efficiently self-organizing structure for these networking elements of the 
Internet of Things. The propagator node network connects the end devices at the frontier 
of the Internet of Things without requiring IP connectivity end to end.

Trees are older than man and have a highly evolved networking structure that is 
both efficient and adaptive. The structure is recursive: any part of the tree replicates the 
same structure. The underground roots are an inverted tree and branches are miniature 
horizontal trees, all connected through the trunk. In a network of trees, some are “rooted” 
to the tree trunk; others through relay nodes. The logical and physical network of 
branches all follow one simple rule: the “uplink” (the head of the branch) is always one. 
A pitch fork branch (one with three roots to the tree trunk) would be considered a freak 
of nature. It is this simple rule—one uplink only—that ensures O(n) routing. Scalable 
networks are thus possible.

A Tree Grows in the IoT
Nature’s tree structure is emulated in the emerging IoT architecture. For example, 
consider the propagators P0, P1, P2, and P3, as shown in Figure 6-5. P0 is the “root” node 
because it has access to the IP network. P0-P1-P2 form a “string of pearls” relay for chirp 
clients C3 and C4. C3 and C4 both share the lineage P0.P1.P2 and hence are identified as 
siblings. This lineage becomes part of their identity.
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Propagator nodes form sections of a subtree, the simplest example of which is a 
string of pearls (e.g., P0 ➤ P1 ➤ P2). Forming a link in the chain requires at least two 
interfaces: uplink and downlink transceivers. “Transceivers” here may be any form of 
network link: wired or wireless at a variety of speeds and with a wide variety of protocol 
types. Each separate transmission path or channel is a networking “slot” that may be 
assigned as a link in the growing topology. Generally speaking, “uplink” corresponds to 
moving toward the IP “root”; “downlink” is moving away.

For example, P1 slot 0 is an uplink connecting to P0 Slot 0. P2 slot 3 is a downlink 
providing connectivity to P2 uplink slot 0. By convention, slot 0 refers to the uplink, 
except for root nodes (P0). “Root” propagator nodes have only downlinks; their uplink 
is the IP bridge connecting either to a directly attached integrator function or (more 
typically) to the global Internet.

The propagator nodes in Figure 6-5 are shown with four transceivers, which could 
be infrared LEDs or other short-range wireless transceivers. They are placed in the 
general vicinity and with arbitrary orientation. Propagator nodes periodically scan the 
environment and reorient/reassign the slots, so there is always one uplink connecting to 
a parent propagator node. The choice is based on the best available effective throughput, 
all the way back to a root propagator node.

The parent selections are not always based on the smallest number of “hops” to the 
Root (a hop is counted for each propagator node in the chain). For example, P2 may be 
able to “see” P0, but the throughput of the direct link between P0 and P2 is inferior overall 
to a path from P0to P1and on to P2. In the event it was not, P2 would logically reorient its 
uplink, so Slot 3 would now be the Uplink facing Slot 0 of P0.

Thus, a -slot propagator node, with arbitrary orientation, may logically reassign slots 
0 through 3 to ensure connectivity back to an upstream root node. The slots 0 to 3 are thus 
being dynamically reassigned to maintain an effective tree-based network topology.

Figure 6-5. Propagator nodes form a structured tree for networking efficiency. The 
propagator node with an IP connection (typically to the Internet) is designated as the "root" 
node. The rest organize their links accordingly, designating links as "uplinks" (toward the 
IP connection) and "downlinks" (away from the IP connection)
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Propagator nodes are placed in locations where they can connect to end devices and 
form a chain of propagator-node-to propagator-node tree branches as shown previously, 
all the way back to a “root” node (that bridges to IP). The primary function of the 
propagator nodes is to send upstream “relevant” data. In some cases, this data is being 
promiscuously forwarded in a public way, based simply on the arrow of transmission 
(toward the end device or toward the propagator node).

In other cases, the publishing agents residing within propagator nodes may be 
biased by integrator functions to include and exclude certain classes and categories of 
data based on the markers contained within the chirp streams (as described previously).

Choosing Parents Wisely 
At the most basic level, propagator nodes are relays. Relays connecting to a “root” node 
form the branches of a tree. On power up, the primitive behavior is to become associated 
with a parent that provides a path upstream to the root propagator node. Generally, the 
closer the parent to the root propagator node, the better. The preference may therefore 
be, at a rudimentary level, to connect to parents with a low hop count: 0 for the root, 1 for 
one removed, and so on.

In a general sense, it can be expected that the bulk of Internet of Things traffic is 
moving mostly toward integrator functions reached via the global Internet, so there is 
more traffic and contention for bandwidth closer to the root propagator node. Hence, in 
addition to noting the candidate parent propagator nodes within its connection “zone,” 
propagator nodes must also be able to send a “probe request” to determine the signal 
quality for transmission. Additionally, each device would need to know how many 
“sibling” propagator nodes it must contend with for access to the IP root. Siblings are 
additional propagator nodes linked to the same parent.

Because sibling propagator nodes are part of their own subtrees, the descendants 
of those siblings are also indirectly competing for the parent node’s resources. In short, 
a tremendous amount of information must be sifted through before a propagator node 
selects a parent. And the situation can change unpredictably. A simplified notification 
of the presence to a candidate parent is required. At the base level, connected nodes 
transmit, through housekeeping frames, their “lineage” and “costs” of connectivity; for 
example:

Name•	

Current parent’s name•	

How many hops they are from the root node (“hop cost”)•	

“Toll cost” of using this propagator node (i.e., its availability)•	

Based on current processing power usage at propagator node•	

Based on number of active chirp end devices and propagator •	
node descendants

Overall link quality (speed, reliability, etc.) of the path back •	
to the root propagator node
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Name-parentname-hoplevel-tollcost thus defines a broadcast beacon. Propagator 
node names are not globally unique; they are simply unique within a lineage subtree. 
Hence propagator node names, all the way up to the root, may be duplicated as long as 
the lineage path remains unique. Thus, two sibling propagator nodes may not share the 
same name, so a new propagator node with the same name as a current child propagator 
node will not be permitted to join that subtree.

The decision to join is then simplified to whether a prospective parent toll-cost/hop-
cost ratio meets desired characteristics of current chirp packets that the prospective child 
propagator node would be transporting. The prospective incoming propagator node does 
not actually know what that data profile would be; it has not yet joined the network.

But it does potentially have access to chirp devices in its vicinity and can perform a 
rudimentary profile analysis, with the presumption that this is a representative sample 
set. Based on the profiling, if more latency is acceptable to the category of end device 
connected to the propagator node, a higher hop cost would be acceptable. Otherwise, a 
switch to a propagator node closer to the root, but at a higher toll cost, will be initiated. 
This is roughly an approximation of actual link quality when connected and having actual 
chirp devices connected to it.

It is tempting to suggest that the propagator node make a hasty connection and 
perhaps later, switch parents, but this is costly. Propagator nodes might then switch 
parents constantly, causing local oscillations (switching back and forth between 
subtrees), which eventually percolate to the top and decrease overall network efficiency 
substantially.

“Mother” propagator nodes (those with siblings) can therefore not “abandon the 
nest” while descendants are switching around; it would simply feed the chaos. Hence 
decay functions are built into the hierarchical control system that manages the network 
tree topology. Permission to switch parents travels at least as far up as the parent of both 
subtrees because both are being affected by the switch. If the child propagator nodes of 
those parents have settled down from a previous switch, permission is granted.

Scanning and Switching
In order to discover candidate parents, each relay propagator node must scan its 
environment periodically, preferably a broad scan covering multiple frequency and 
protocol “channels” available to the transceivers (again channels may be any type of 
wired or wireless link). If the propagator node has an additional dedicated scanning 
radio, its normal function of transporting chirps is not interrupted. Otherwise, the 
propagator node must request a scan “lunch break” from its parent to use its radios to 
scan on frequencies other than the one it is using for connection to the parent. At that 
point, it will need to tell its incoming link from its parent to “hold all messages.”  
During that period, the end device clients are effectively temporarily disconnected, as 
shown in Figure 6-6.
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A parent propagator node would have multiple scan requests, which would be 
permitted in some weighted, round-robin manner, favoring child propagator nodes with 
more clients, for example. Using such a round-robin scheme, each sibling propagator 
node of a single parent would be granted a timed lunch break, so that no two siblings 
scan at the same time, thereby missing each other. The siblings may know of each other, 
but without mutual probe requests, they have little knowledge of the signal strength and 
tested link quality. Further, because the current “mother” parent’s siblings (e.g., aunts) 
are also potential parent candidates, none of them may be in scan mode, either. Hence 
the scan request is being permitted by a parent’s parent or grandmother. By the same 
token, the decision to allow a propagator node to switch is therefore also addressed by at 
least a grandparent to the requester propagator node.

In general, changes within a subtree (child moving from mother to aunt) will 
not affect the grandparent aggregated upstream throughput because both the aunt 
and mother are its children. So if the shift request is within the parent’s siblings, the 
perturbation is contained and temporal. In general, it is at least grandmothers of the 
intended parent candidate who provide the final permissions.

For network topologies with less than a small number of hops, it is more efficient to 
let the root propagator node address both switch and scan requests. The root propagator 
node will generally have more processors and memory because it also handles the  
chirp-to-IP interface. As one of many “hubs” for the chirp data streams, it is also the logical 
place for publishing agents to reside (and perhaps collocated integrator functions).

Some of those publishing agents may want to have a say in the changes in network 
topology, so publishing agents may be part of the control plane managing the physical 

Figure 6-6. Because each individual propagator node is responsible for finding its own 
best link to the IP connections, each must occasionally cease transmitting and receiving 
with its current “parent” to scan for alternative connections that might be of higher quality 
(higher speed, lower hop count, etc.). During these scanning periods, linked propagator 
nodes are instructed to hold traffic temporarily for the scanning node
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network. Because the physical network and logical network map to each other, the 
only option is to change the network topology by moving propagator node connections 
around, based on the global (root level) toll cost/hop cost criteria. The network topology 
is thus managed to be in dynamic alignment with end device traffic and subscriber 
demand. 

As with “workers” in insect colonies, the primary function of every propagator node, 
all the way from the edges of the network to the root propagator node, is identical. Each 
wants to improve its lot, but with a view to long–term network stability. This is akin to 
ant or bee colonies, in which the common good affects all positively. Thus a propagator 
node may be directed by the root propagator node to switch parents because it would 
streamline the small data publishing flows. Or nodes may be directed to disassociate a 
chirping end device and have another sibling (aunt) adopt the orphan. So each of the 
sibling propagator nodes may, over time, become specialist hubs for end device category 
clusters and the social network coalesces towards more efficient routing. This is akin 
to trees changing their growth to adapt to changes in sun and shade. Adaptive network 
trees, like natural trees, are driven by the common good of the entire tree, including all 
constituents, down to the chirp end devices at the edges.

Specialized and Basic Routing 
Although in many cases links between propagator nodes will be IP-based, the extensible 
chirp protocol may also be used between propagator nodes to provide information 
at various levels of granularity. Within the propagator node community there may be 
specialist propagator nodes that will connect only to other specialist relay propagator 
nodes. They may limit their relay efforts to specific chirp categories or classes of end 
devices, thereby forming a private and exclusive logical chirp network. These specialists 
may use other non–specialist propagator nodes to provide the transport and routing 
between other specialist propagator nodes, but in effect the meaning of the data being 
routed is accessible only intraspecialist.

In order to support routing requests from the wider community, all propagator nodes 
collaborate when possible in service to the larger network. Thus basic routing is part of a 
common protocol and language; extensions are specialist/publishing agent–based.

The basic routing is similar to Layer 2 wired Ethernet switch stacks and their 
wireless mesh node equivalents (see Figure 6-7). In both cases, the tree topology ensures 
scalable O(n) routing overhead. In each case, there is only one uplink. The “flatness” of 
Layer 2-based (“switched”) networks eliminates the need for additional processing and 
protocols required of routed networks, such as the router-based global Internet.
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Housekeeping Frames for Network Intelligence
As noted earlier, the very basic “housekeeping” information that relay propagator nodes 
may transmit must minimally include the hop cost, toll cost, and parent name. The parent 
name is needed so that a prospective child can talk directly to the parent. Recall that 
the grandparent manages scan and switch events, so it knows whether a better parent is 
available, but is out to lunch performing a scan. A propagator node might be left awaiting 
association permission from a prospective parent node’s parent until a scan is over. This 
delay ensures that after connections are made, they do not have to switch to a better 
candidate that is discovered after some later scans. The grandparent is being proactive.

Figure 6-7. In order to obtain reasonable routing efficiency without traditional routing 
overhead, the propagator node mesh is a flat structured tree, much like a “stack” of 
Ethernet local area network (LAN) switches. But unlike the LAN switch stack, distributed 
intelligence in each propagator node manages uplinks and downlinks to avoid loops while 
also maintaining alternative paths to allow for rerouting around failures
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Thus, the very basic housekeeping frame from all propagator nodes must contain:

My name•	

My parent name •	

My hop level (from the root node)•	

My toll cost •	

Newly powered–up or unconnected “orphan” propagator nodes send and receive 
probe requests from multiple connected nodes in their vicinity during their scanning 
period after power up. From these, the “orphan” propagator node can surmise which 
candidates are siblings, based on their parent name. Should it join any sibling, it is 
assured of collaborative alternatives within the same subtree (the aunts). This engenders 
its “survival” in terms of redundant paths with minimal changes; the rest of the subtree 
back to the root propagator node would be unchanged for between-sibling switches. 
Routing updates are needed only at the last hop. In contrast, switching between entire 
subtrees is more onerous, especially if that subtree’s siblings are not available as backups. 
Survival favors joining subtrees with multiple accessible sibling mother/aunts. 

Latency and Throughput Tradeoffs
Exchange of housekeeping frames enabled orphans to discover the presence of potential 
parents. Potential parents’ relative proximity is measured during probe requests to 
determine effective link quality, which is included with topology analysis in the selection 
process. The total available throughput in a string-of-pearls link is simply that of the 
weakest link–the link with the worst “performance”.

Candidate parents may thus receive pings to test aggregate link quality all the 
way up to the root propagator node. In general, each propagator node has an inherent 
predilection to choose the best “lineage” to connect with. But there are tradeoffs. 
Ideally, all things being equal, propagator nodes would want to connect as close to root 
propagator nodes as possible because Internet of Things traffic is largely upstream. 
However, the link quality of a direct wireless connection to a lower-hop-count but 
physically more-distant propagator node may be much worse than routing through more 
intermediary propagator nodes.

In the previous examples, overall back haul throughput from all upstream traffic to 
the root degrades as the tree topology is modified by toll-cost and hop-cost ratios favoring 
low hop cost (as shown on the right of Figure 6-8). But when the toll cost of lower-speed 
links is considered, the topology at left in Figure 6-8 is actually more efficient overall.
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In addition to overall link quality ascertained through pings, the availability of 
the candidate parent to service additional requests drives the final decision. Great 
overall backhaul throughput is academic if the node is already saturated, based on its 
limited processing power. Toll cost provides information to the nodes regarding levels 
of availability. Higher-toll-cost propagator nodes are being selective, mindful of their 
own limitations and therefore protecting their existing clients from being crowded out. 
Thus allegiances are formed, wherein propagator nodes develop preferences to belong 
to particular subtrees that demonstrate healthy characteristics (e.g., multiple sibling 
accessibility, etc.)

Routing Table Updates 
Having joined the network, propagator nodes must now begin relaying chirp broadcasts 
in their vicinity. Propagator nodes would typically have one uplink to maintain the tree 
structure, although multiple uplinks servicing disparate trees (to avoid cycles) are also 
permitted. Multiple downlinks can service both chirp and IP traffic on both the same and 
distinct wireless interfaces. The uplinks could be either chirp- or IP-based (e.g., Wi-Fi or 
Ethernet).

For each disparate uplink, routing tables are maintained that provide Layer 2 
switching network functionality. Packets are moved either up the tree or down the tree via 
the immediate children, along the tree branches. The decision is based on a condensed 
routing table, updated by each propagator node, based on a full housekeeping frame sent 
periodically and circulated within the relevant subtree.

Figure 6-8. Although lower hop cost (fewer node-to-node links) is a first-order 
approximation of best overall performance (on the right), sometimes lower speed link paths 
(due to distance, perhaps) make a higher-hop-count topology more efficient (on the left)
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Each housekeeping frame is tagged with a counter number. Because housekeeping 
frames will travel multiple paths in broadcasts, propagator nodes ensure that the same 
counter number is not rebroadcast. Further, each propagator node (and its publishing 
agent, if so equipped) may decide how far up or down the tree to provide the broadcast. 
For example, a parent switch to sibling aunt requires no further broadcasts than the last 
hop routing table.

Eventually, each propagator node is aware of the following:

Its own immediate children•	

In the case of relay propagator nodes, their children, and so on •	

Adjacent propagator nodes that may serve as alternate parents •	

Its current overall current link quality and throughput•	

Through scanning, the overall link quality of alternate parents •	

Over time, the cost of switching back and forth is reduced by developing more data 
on the current parent and on its alternatives. This information leads to stable networks at 
the local levels.

The routing table is available to all members of the current subtree to (at least) the 
level of a grandparent. Each propagator node is aware of is entire subtree of descendants 
below it, at least two hops down. After that, the knowledge is somewhat irrelevant 
because its grandchildren, on having the packets delivered to them, will know how to 
relay them further. All the grandparent needs to know is roughly where the chirp parent 
propagator node resides—the portion of its descendant subtree (a general direction of 
routing suffices). If chirp devices move around, one or two packets intended for them 
will be lost (recall that there is no retry or retransmission in chirps). For each chirp 
descendant under its care, propagator nodes need to be aware only of the following:

The chirp device descendant’s immediate parent propagator node •	

The location of that parent propagator node within its subtree •	
(e.g., lineage) 

That the lineage path from the root propagator node to chirp •	
device exists 

Some chirps will be picked up by multiple propagator nodes, and each will 
rebroadcast the packets in the directions specified by the arrow of transmission. However, 
in each case it will tag the packet with the chirp device’s immediate propagator node, 
which is the last part of a lineage tree. Multiple chirp packets will thus travel separately 
upstream through different relay paths, from multiple propagator nodes that pick up the 
chirps in their vicinity. Multiple lineage paths are available. 

Multiple paths are useful when redundancy is desirable. Such is not the case with 
chirp sensor data (given the relative unimportance of any single chirp), so pruning of 
multiple paths is performed at the grandparent level. Chirp packets are relayed through 
one node only, typically the node closest to it and therefore the best link quality. Others, 
also picking up the chirps directly from the devices, are directed to ignore those chirps. 
The chirp device is now assigned a unique lineage or relay path back to the root. Thus, 
even in the case of unidirectional chirp streams, an association is made to prune 
redundant traffic.
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The Power of Local Agents and Integrator 
Functions 
When local publishing agents are added to propagator nodes, a tree-based, scalable, 
hierarchy-driven control system emerges. Filters are applied to progressively reduce 
redundant data upstream and to define preferred routes or destinations. Here is the 
beginning of small data flows, as chirp data being sent upstream continues to be more 
refined as it passes through multiple rule–based logical sieves.

As streams of chirps travel upstream toward the IP root in this model of the Internet 
of Things, agents within propagator nodes at strategic (often branching) locations along 
the route may perform local pruning, aggregation, and exception handling, thereby 
reducing the traffic and improving load performance. Because multiple agents can be 
operating on the same data, some form of collaborative scheduling and sharing of timing 
requirements is needed.

Task Scheduling within the Internet of Things
In the emerging Internet of Things’ three-tiered architecture, propagator nodes manage 
the flow of aggregated and pruned data between end devices and integrator functions. 
When these propagator nodes incorporate a publishing agent (and the requisite IP 
interface), they may have access to two vital pieces of information supplied by integrator 
functions that are the receivers in the publish/subscribe framework. This information 
includes the following:

•	 For routing: The location of the integrator function that is in 
search of data characterized by its specific category or originating 
location (the publish/subscribe “neighborhood” described in 
Chapter 5)

•	 For scheduling priority: Timing requirements for delivery of 
the data (outdated data may have no value and need not be 
propagated through the network), along with estimates of time 
required for data to reach integrator functions

Communication between integrator functions and publishing agents takes place 
over the IP interface using standard Representational State Transfer (RESTful) or Simple 
Object Access Protocol (SOAP) protocols.

Through their exchange of housekeeping frames and observed traffic routing delays, 
propagator nodes are aware of how much time is taken moving packets across their 
managed chirp network, across the chirp-to-IP bridge. On the chirp side, latency is more 
deterministic: a simple count of the number of hops to the root node defines, in large 
part, the delay. On the IP side, things are more complex because the IP highway is being 
shared by other devices from other communities.

Propagator nodes are, however, in periodic communication with destination IP 
addresses. Simple ACK protocols within the RESTful API can provide current or predicted 
estimates of IP traffic. Working backward, propagator nodes back-calculate when chirp 
bus loads should leave. This feeds the collaborative scheduling and stack management 



CHAPTER 6 ■ ARCHiTECTuRE foR THE fRonTiER

120

routines. The scheduler may also drive aggregation (bulking) to ensure an equitable 
compromise between bus size, its frequency, and the IP cost at different times.

Smaller bus loads will leave more frequently for passengers in a rush; others will be 
compensated by a lower bus price for travelling on larger but less frequent departures. 
Some buses may arrive earlier, others later, but the schedule stacking is usually managed 
proactively. Supply and demand of the chirp packets and their arrival is driven by 
dynamic subscriber demands. This is a dynamic form of prioritizing, based on chirp 
useful life and subscriber demand information generated by the integrator function(s).

Higher-level Interchange
Similar standard IP-based protocols are used between integrator functions and filter 
gateways, as well as to create relationships among two or more integrator functions as 
neighborhoods and affinities are created, modified, and abandoned over time based on 
known and discovered data sources.

As noted in Chapter 5, integrator functions may be collocated with propagator nodes 
in some applications. These distributed integrator functions may be relatively simple, 
but their strength lies in numbers and their ability to support multiple interpretations of 
the same data. Distributed integrator functions in this scenario initiate corresponding 
actions with significantly lower latency than if everything were sent round-trip to distant 
integrator functions. There are situations in which chirp data needs must propagate all 
the way up, but like the Mars Rover, when latency matters, some level of local autonomy is 
essential to the survival of a network burdened at the edges.

the pOWer OF pUBLIShING aGeNtS

An example illustrates the savings in iP traffic and improvement in responsiveness 
for a 100-sensor network. Consider, for simplicity, a ten-node string of pearls chain, 
with each relay propagator node supporting ten sensors, all the way back up to 
the root. for example, these sensors could be part of an underground coal mining 
tunnel, with propagator nodes forming the lifeline for both iP and chirp traffic.

Simple rule-based logic in distributed integrator functions watches the methane gas 
occurrence across the tunnel. The development of methane in one region could also 
affect adjacent regions, so a blob of methane gas publishers may appear abruptly 
and unexpectedly.

Sending such “exception handling” upstream to big data servers is clearly valuable. 
it is questionable whether routine and acceptable readings would be transmitted. 
But without some local handling, there may be no way of defining an exception, 
without a base line of routine readings. Hence publishing agents may also maintain 
some short history.

in lower-end and consumer versions of propagator nodes, there would be limited 
agents available—most data may be pushed upstream to parent propagator nodes 
and on to separate integrator functions. But multihop paths and their associated 
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latency may be unacceptable for some mission-critical enterprise applications. in a 
previous era, Programmable Logic Controllers (PLCs) wired to sensors and actuators 
on the factory floor, managed the deluge of real-time, latency-sensitive machine-
to-machine traffic, escalating only that which fell out of their rule-based relay 
ladder logic diagrams used by PLCs. Today, that same approach can be applied to 
rule-based agents residing on propagator nodes, close to the sensor/actuators. This 
reduces latency for enterprise class machine-to-machine communications.

Managing Multiple Isochronous Relationships
As introduced in Chapter 5, regardless of whether device communication is IP- or chirp-
based, independent control loops (with publishing agents as intermediaries acting as 
the translation mechanisms between the upper and lower control loops) are inherently 
more efficient than round-tripping. Some devices, such as smartphones, are inherently 
chirp-capable (e.g., IR and Wi-Fi) and can participate in both control loops, acting like a 
bridge between the two banks of the river, each with its own control loops.

Beyond round-trip latency considerations, there is a more fundamental reason 
for this tiered control and communications model. The language and vocabulary of 
end devices is fundamentally divergent from that at the big data server level. Sensors 
publish their limited view of the world, whereas big data provides insights into a more 
comprehensive world view, incorporating multiple sensor streams, past history, future 
trends, and so on. Because function dictates language and vocabulary, some form of 
translation is required—one cannot expect purpose-built machinery to communicate 
directly without translation.

In the contemporary IP-based thin-client model, any translation of data to a format 
palatable to big data consumers must take place before sensor data enters the IP network. 
Needless to say, that puts the onus on the end devices and their machine-to-machine 
communication protocols to be intelligible. What was a terse, purpose-built dialect now 
has to be interpreted in a device-abstracted language. Agents and their location within 
the local control loop reduce this burden, as shown in Figure 6-2.

An Organic Solution for the IoT
One cannot always know, a priori, the type of categories of interest for specific integrator 
functions, any more than winds can always provide focused beams of pollen to their 
awaiting subscribers. Some discovery is needed, though; at the very least, notification 
from “mother” propagator nodes that a new category of sensor chirps has become active 
in a geo location under its care (e.g., a subtree of the network). Notification summaries of 
sensor activity would therefore be periodically provided. Interested integrator function 
subscribers can then direct their publishing agents within propagator nodes (if available) 
to provide the level of granularity/aggregation/pruning/exception handling needed to 
optimize data gathering.

Over time, an agent-based, machine-to-machine social network emerges, tapping 
into the full richness of data offered by the Internet of Things.
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Chapter 7

Examples and Applications

Lots of information about Internet of Things applications has been published to date, but 
virtually all these examples assume a continuation of current networking architecture 
models. Specifically, IPv6 extended to the very edge of the network, with end devices 
powerful enough (in terms of processor, memory, etc.) to run an IP protocol stack. But  
as has been described in preceding chapters, this architecture is unsuitable for the  
“next wave” of IoT end devices to be brought onto the network. They will simply be too 
cheap, too numerous, too hard to manage, and too varied to support the traditional 
networking model.

Another incorrect assumption made about the future of the Internet of Things is 
that the data models will remain much the same as today: well-defined, one-to-one 
relationships between IP–equipped end devices and big data servers at the core of a 
network accessed over the “cloud.” But this traditional approach cannot fully exploit the 
potential richness and power of the IoT for a number of reasons:

Data handling and storage at the big data servers•	

Impracticalities of end-to-end control loops•	

Inability to exploit a publish/subscribe world made up of •	
neighborhoods and affinities of end devices

This chapter will first explore the impact each of these issues has on potential new 
IoT applications and then provide specific examples of new potential IoT applications.

Controlling the Cacophony
Machine-to-machine data interchanges are currently tedious: all raw, device-specific 
data must first be sanitized and then formatted to conform to big data representation 
schemes based on application programming interfaces (APIs) such as Representational 
State Transfer (REST) or Simple Object Access Protocol (SOAP). Next, the IP-stack-based 
transceivers on current end devices must send the data without collision with other 
IP device traffic, often using Carrier Sense Multiple Access with Collision Avoidance/
Detection (CSMA/CA or CSMA/CD). This is a lot of work for a simple temperature sensor, 
with its restricted and terse purpose-built vocabulary.
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The users of big data are interested in an integration of small data: the device-
abstracted, protocol-abstracted information streams. The onus of converting sensor raw 
data to big, data-friendly “small” data cannot be easily delegated to every end device as 
has been imagined to date for the Internet of Things. Managing diverse device driver 
interfaces and their specific interfaces and protocols rapidly spins out of control at the 
scope of the emerging IoT.

As the number of edge devices proliferates, the network effects of the traffic 
generated by billions of publishers and subscribers overwhelms the processor and 
memory processor enhancements enabled by Moore’s Law (which is linear), as shown 
in Figure 7-1. Recall that machine-to-machine communities and their interactions are 
more akin to social networks; in other words, they are Metcalfe’s Law or O(n2) (Order-n-
Squared)–based. The data processing, storage, and networking requirements for cloud-
based IoT analysis and control services will not be able to keep up with the deluge of 
small data emanating from the edges of the network. (They can barely keep pace, even in 
today’s simplified and managed end-to-end thin-client IP applications.)
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Figure 7-1. Much of the current thinking on the Internet of Things assumes that constant 
hardware improvements (due to Moore’s Law) will allow traditional networking schemes 
to be extended to the IoT. But in fact, the machine social network will grow much faster 
(Metcalfe's Law) and will require a more specialized architecture

This will be true either for chirp-based networks or legacy IP end devices; the 
amounts of data are simply too great. For this reason, the emerging IoT architecture 
removes the overhead of the task of aggregating and transporting data from both the end 
devices and the big data servers. It instead segregates it within propagator nodes that can 
be deployed near the edges of the network (refer to Chapter 4).
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Intelligence Near the Edge
The emerging Internet of Things architecture also provides for migration of intelligence 
toward the edge of the network in the form of publishing agents within the propagator 
nodes and/or distributed integrator functions. Through these capabilities, IoT 
applications may rely on these distributed intelligences to manage the conversion of 
chirp data streams to and from end devices such as sensors and actuators to small data 
flows that are more easily consumed by the big data integrator functions. This process will 
enable the rapid proliferation of a dizzying variety of applications using very simple,  
low-cost, or intermittently available end devices that are simply not possible with 
traditional IP networking schemes.

Incorporating Legacy Devices
An added benefit of this architecture is that applications requiring more-sophisticated 
end devices that do justify the cost and complexity of IP on board (video surveillance, 
for example) may also use the same architecture, easing the load on big data servers and 
making possible the extended publish/subscribe network of neighborhoods and affinities 
(see the following sidebar). The core objective is to encourage and manage a more 
equitable division of labor, one that only improves with time, as devices at the edge are 
permitted to be simpler in function. Simpler devices will rapidly proliferate at the edge 
once a supporting network infrastructure is in place that can both manage chirp streams 
on behalf of the end devices and create small data flows suitable for the benefit of big data 
integrator functions. See the following “Nailing a License Plate to a Stump” sidebar.

NaILING a LICeNSe pLate tO a StUMp

many of today’s internet of Things commentators have hailed the address expansion 
incorporated within iPv6 as the solution for the ioT. And it is certainly mathematically 
true that iPv6 creates more than 340 undecillion (more than 3.4×1038) potential 
addresses, which some have said is enough to assign one to every atom on the 
surface of the earth. (For logistical reasons, the practical limit is likely much less.) 
But compared with the roughly 4 billion unique addresses possible with iPv4, that is 
indeed a substantial improvement and certainly sufficient to address every potential 
end device in any conceivable internet of Things.

But this analysis confuses addresses with functionality. it would certainly be 
possible to nail an automobile license plate to a tree stump (see Figure 7-2), which 
would make the stump uniquely identifiable and thus potentially addressable. But 
it does not magically enable the stump to drive away on the highway like a car. it is 
obviously missing the horsepower (a motor), means of transportation (wheels), and 
intelligence (a driver) to make any usefulness on the highway impossible.
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in the same way, the capability to address an end device sensor or actuator is only a 
small part of the issue in the ioT. Without burdening the end device with horsepower 
(memory and processor), means of transportation (iP stack), and intelligence 
(central management and oversight), its data cannot make it to the “information 
superhighway,” either.

Thus, the iPv6 address space alone doesn’t solve the essential application problem 
in the ioT: enabling the connection of billions of end devices that are too simple to 
support full networking. The new emerging architecture of the internet of Things 
creates the simple chirp structure that allows for the development of applications 
without demanding untenable requirements at the end devices.

Staying in the Loop(s)
One of the key challenges of extending legacy IP architectures to the Internet of Things 
is the inherent constraint created by using a protocol originally developed for host-to-
host communications (peer-to-peer, by definition) to the very different and inherently 
asymmetrical world of the IoT. One of the impacts of this legacy on IoT applications is 
the difficulty of managing control loops over long distances and via the nondeterministic 
global Internet. Unlike a host-to-host interaction, IoT end devices and actuators often 
have very little or no intelligence of their own, so the task of managing them would  
fall to integrator functions accessed via some sort of round–trip control loop over a  
long-distance link.

Round-trip control via IP and the global Internet is an impractical means of controlling 
simple end devices at the extreme edges of the Internet of Things, especially because 
some may be only intermittently connected. Instead, localized control through distributed 
intelligence in nearby propagator nodes allows autonomous or semiautonomous control 
via on-board integrator functions or publishing agents (see Figure 6-2).

Given the delay and jitter (variation in delay) inherent in the global Internet, the 
existing IP network is a cumbersome and ultimately impractical solution for control of 
myriad simple end devices, as shown previously. But (as described in Chapter 6) the 

IPV6 IPV6

Figure 7-2. Addressing is not performance
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emerging IoT allows the control loops to be decoupled and thus become isochronous.  
An efficient lower-level local control loop may be in place between the propagator node 
and end device, whereas occasional updates and exceptions are communicated upstream 
to subscribed integrator functions. In turn, “tuning” and configuration messages may 
occasionally be received from integrator functions for implementation at the local end 
device actuator.

Okay on their Own
This multilevel control will allow for IoT applications that may function substantially 
autonomously in real time most of the time, including for extended periods when out 
of communication with a distant integrator function. This option of a much more rapid 
response from a local publishing agent or integrator function is a key feature of the emerging 
Internet of Things for autonomous and semiautonomous (advise and consent) tasks.

This distribution of intelligence throughout the emerging IoT architecture bodes well 
for its future. More autonomy means less supervisory control and less drain on resources 
required for round-tripping. The predictive elements (integrator functions) become more 
seasoned at being proactive, and reactive elements give way to proactive behavior. The 
overall system evolves to be more predictive, lean, and agile.

All the World Is a Subscription
Another legacy limitation of the host-to-host nature of IPv6 is that connections are 
inherently point-to-point between known devices. (Routers are required to create 
and manage these relationships.) This creates isolated “silos” of data, in that there are 
separate sets of end devices deployed for different functions. So in contrast with the 
emerging IOT, they may not be able to contribute their information to an integrator 
function, even if the combination would provide much more powerful information.

As described in Chapter 5, the emerging Internet of Things architecture is not 
limited by the concept of preset device-to-device relationships. Instead, integrator 
functions will create information neighborhoods made up of a wide variety of small 
data flows forwarded by propagator functions from many chirp data streams. The lowly 
chirp-enabled sensor is now a participant of the connected world, without changing its 
fundamentally simple function of publishing a specific category of real-time, raw, simply 
formatted data.

Exploring Affinities
Many new classes of IoT applications will be possible, in which integrator functions seek 
out potentially useful information by examining affinities between many publishing 
sources (see Figure 7-3). An example of this is temperature, pressure, and vibration; or 
small data streams that seem to vary in relationship to one another, or in relationships to 
an Internet data source, such as weather reports. Again, this would be more difficult in 
the traditional IP point-to-point environment, in which different device types tend to be 
segregated from one another.



CHAPTER 7 ■ ExAmPlEs And APPliCATions

128

In a world in which the data emanating from many IoT applications may be marked 
as public small data streams by their owners, the potential exists for incredible insights 
and efficiencies of scale as integrator functions build extensive subscriptions. The key 
aspect setting these applications apart from legacy Internet of Things applications 
built on traditional IPv6 networking is that the relationships between end devices and 
integrator functions may be unknown at the outset. Instead, they are built and refined 
over time by the integrator functions. A larger social network for data exchange emerges. 
The data streams will span the gamut: chirp sensory data, changing subscriber patterns, 
preferred data routing paths on specific days, and so on. End devices, propagator nodes, 
and the publishing agents within will “belong” to multiple “information social networks” 
informed by neighborhoods of subscribed data.

Social Machines
The information social networks will be free to grow to quite large sizes simply because 
machines are not constrained by Dunbar’s Number (which theoretically limits the 
maximum interactions that humans can actively support to fewer than 200). Freed from 
legacy-style, predefined peer-to-peer interactions with thousands (or millions) of end 
devices by the distribution of networking intelligence and decoupling of control loops, 
integrator functions will be able to digest unprecedented amounts of distilled and 
directed data (see Figure 7-4).

Propagator Node

Integrator 
function

Local actuator 
control

Machine equipped 
with IoTsensors 
and actuators

Sensor
data

-Big data analysis
-Data visualization
-Human interface

Intelligence flows 
to-and-from 
machine

Figure 7-3. Unlike traditional networks, many important and illuminating relationships 
may be unknown at the time of installation of an Internet of Things application. But over 
time, integrator functions may expand their “neighborhood” of information sources by 
exploring other data streams that share some affinities with the existing neighborhood of 
data sources. These new sources may be included for a time to “test” their usefulness, and 
may be later dropped or replaced and new sources explored
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Figure 7-4. Distributed networking capabilities in an ever-expanding mesh of propagator 
nodes will provide more and more refinement in pruning and tuning of chirp data streams 
to create more efficient small data flows. This growing efficiency will allow integrator 
functions to analyze more end points with less processing of individual data packets. The 
IoT will become more useful as the architecture expands

From the machine-to-machine IoT perspective, intelligence is inferences drawn 
over time from multiple and diverse data sources. The proliferation over time of more 
and varied chirp–enabled end devices and propagator nodes will continue to expand the 
available universe of potentially interesting data streams. As more propagator nodes are 
added with the growth of the Internet of Things, the overall application data exchange 
flow rates will continue to improve linearly through the proactive use of pruning/
aggregation/exception handling, as shown previously. But the Metcalfe’s Law network 
effect of the information will be growing even more rapidly in an O(n2) relationship.

Agriculture
Managing an agricultural enterprise is a difficult, multivariate endeavor; many  
man-made and natural factors are in play. In Figure 7-5, a lower–level local control loop 
applied by a distributed integrator function autonomously “manages” the actuators 
controlling the irrigation system valves (when they turn on or off, based on local moisture 
level sensors). This isochronous loop monitors and controls the amount of water applied 
locally within specific zones, avoiding over- or under-watering. But there is no need for 
round-trip control by a distant higher-level integrator function or for burdening a distant 
integrator function with a continuous stream of data from local moisture sensors.
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In the less-than-perfect world, however, patterns of water absorption by the crops 
are not easily discernible by these lower-level control loops. An airborne drone equipped 
with appropriate sensors (such as infrared) may be deployed to scan the corn field and 
collect a more global view of the terrain and where more water may be needed. The 
drone provides this information through its wireless interfaces to a smartphone or other 
general-purpose processor running an integrator function operating at a “higher” level 
than the moisture-sensor-irrigation-valve control loop. The integrator function correlates 
this to the current sprinkler map and fine-tunes it to ensure more even water distribution. 
Farmers may also be provided with suggestions regarding changing the terrain to provide 
slopes for more efficient irrigation. A few weeks later, the drone conducts another survey. 
Over time, the lower control loop, in conjunction with the upper control loop, generates a 
more comprehensive view of its region of interest.

The cost of one sophisticated but “remote” sensor (the drone) may be lower than 
implanting multiple simpler moisture sensors. The control loop is still being closed, and 
the drone and sensor ensemble is more modular, reusable, and upgradeable. Economies 
of scale kick in. The drone may be used by a farming community, a shared resource. If 
the control loop is being monitored weekly, the same drone can be used to close multiple 
control loops in adjoining farms. A swarm of such drones can be used to cover large areas 
in a low-cost, scalable manner.

IP interfaces

Pruning and Filtering at Closer to Device. 

IP Overhead as M2M communities expand
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Figure 7-5. A wide variety of sensors and other data sources combine to optimize yields 
and profitability from a farm field. Although lower-level control loops might monitor and 
manage irrigation through distributed integrator functions, additional integrator functions 
deployed at a “higher” level may take a wider variety of information into their analysis
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The integrator functions may also discover and subscribe to a variety of other data 
streams and sources to create a richer combination of information. Weather forecasts, 
spot produce prices, the current cost of transportation, the availability and cost of 
contract field workers, and many other factors may be taken into account. Some of these 
other data streams will not be generated through the farmers’ own efforts, but made 
available by others with public markers on the data streams. Trend analysis of these 
factors over time may point to the ideal moment to harvest the crop for maximum profits. 
The community of farmers, through shared resources and the integration of many data 
sources (some unforeseen at the time the application was first deployed), can compete 
more effectively with those in other regions.

ShOW Me YOUr Data; I’LL ShOW YOU MINe

The previous farming example suggests that the group shares information of similar 
type for a similar goal: all are farmers in a specific area. But because the emerging 
internet of Things architecture is fundamentally based on a publish/subscribe model, 
the creators and consumers of data streams may not be always have as much (or 
anything) in common. For example, a restaurant owner might want to know about 
foot traffic in a nearby shopping mall in order to target ads for video kiosks or  
instant coupons on social media. A trucking company might want to know about 
unusual traffic patterns created by an accident and detected by in-pavement or 
video-intersection sensors in order to reroute their fleet.

These and many more as-yet-unimagined opportunities may exist for sharing of data 
streams that are already being created. A nonmonetary “exchange” market place 
might emerge—or even one based on market pricing or auction models. Because 
the chirp protocol is category-based and publish-friendly, chirp streams and small 
data flows from nonaligned organizations can be acted upon. A key enabler of these 
potential exchanges is that the entire ioT architecture is oriented toward a publish/
subscribe model rather than defined peer-to-peer relationships, even at the lowest 
levels. The chirps from the simplest sensor can be shared with an unlimited number 
of integrator functions without any change or reconfiguration required.

Home Health Care
The agricultural example described cooperative use of a population of Internet of Things 
sensors and actuators by defining information neighborhoods of related elements and 
seeking out affinities of potentially related and pertinent information. But other IoT 
applications will be more restrictive in their deployment and operation. The need for 
secure, private, and purpose-built communications will proliferate within local  
machine-to-machine communities.
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Because individual sensors need not be burdened with the processor, power, and 
memory overhead required to support IPv6, they might be smaller, lighter, cheaper, and 
less invasive, which could include wearable and ingestible form factors. With the local 
analysis enabled by the emerging Internet of Things architecture, readings from many 
sensors may be considered together, along with variables such as room temperature 
and time of day, allowing a more-sophisticated combined analysis rather than simply 
alarming on one boundary condition.

This private information neighborhood becomes adaptive and self-learning to 
provide the first-tier reporting and response initiation autonomously. If the patient’s heart 
rate or breathing becomes erratic, the patient and caregiver will know immediately based 
on alarms and other feedback devices triggered by the local integrator function. Notice 
of the exception condition would also be transmitted to distant medical personnel, who 
are made aware of it immediately. The stimulus-response is more proactive, potentially 
averting or reducing the severity of an event. Round-trip communication to a distant 
integrator function is now restricted to escalated issues only. 
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Figure 7-6. A home heath IoT application might use a variety of sensors and other inputs, 
including wearables and ingestibles, to create a complete picture of a convalescing patient’s 
condition. Local alarms may be triggered for particular threshold readings or combinations 
of conditions and events. Periodic regular reports and occasional exceptions may be 
forwarded to off-site medical personnel for emergent response or long-term analysis

In Figure 7-6, a small private IoT community of “vital signs” sensors feeds into a local 
integrator function for analysis and pattern matching near the network edge (the patient). 
Proactive monitoring and management of medication dosage and/or additional home 
care is also logically delegated to a private patient’s home via additional sensors or inputs 
from a caregiver’s smartphone.
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Safe and Efficient Process Control
Natural resource– and commodities-processing enterprises such as oil refineries 
present a demanding “analog” application. Maintaining liquid flow rates, temperatures, 
and pressures may be critical to ensuring higher yields of end products. Keeping values 
within tolerances may help avoid leaks and spills, mitigating environmental impacts, 
and government fines; not to mention worker and public safety. Environmental 
monitoring sensors (air, water, vibration, etc.) can also help keep the plant operating 
within required specifications.

In these types of applications, the more data that can be gathered at more points, 
along with autonomous or semiautonomous feedback loops allowing for control of 
actuators such as valves and vents, the better. Chirp-based sensors can be smaller, 
cheaper, more rugged, and demand less power than traditional IP-based devices, 
allowing them to be deployed in greater numbers and with less management and 
technical support. Redundancy through sheer number of sensors is a corollary benefit.

As with other applications, lower-level control loops might allow near-instantaneous 
response to local factors, such as actuating a valve to reduce the flow of ingredients to 
moderate a chemical reaction that is exceeding norms, with only exceptions sent “up the 
line” for additional monitoring and analysis. This would be much more efficient than 
requiring a round–trip data exchange for small adjustments.

A “carpet” of moisture sensors below key pipes and junctions might detect leaks at 
their earliest stages, long before they would be otherwise noticed. Footfall, wireless, or 
infrared sensors might help track personnel to ensure safe practices and operations, as 
well as to allow rapid response and rescue in case of an emergency.

Another advantage of deploying a wide variety of sensors in large numbers is the 
capability to analyze data flows from many devices. A neighborhood of interest might include 
liquid detectors, temperature monitors, and vibration sensors. Combinations of changing 
readings might pinpoint a future maintenance problem such as a worn bearing that is 
leaking slightly, a bit hotter than normal, and creating a small vibration in the equipment. 
Recognizing this state earlier allows work to be scheduled without excessive downtime, even 
when no individual sensor type showed out-of-tolerance readings on its own.

Better Perimeter Security and Surveillance
Facilities are only as secure as their most vulnerable access point. One way to increase 
security is again to increase the number of points being monitored. A field of footfall 
sensor “motes” is impractical if each must be burdened with the overhead of a full IP 
networking stack. It would be impractical to wire them all, and a combination of solar and 
battery power might be enough to drive simple chirp logic (see Figure 7-7).
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As “swarming” algorithms become more sophisticated, very simple airborne or 
ground drones might help patrol vulnerable areas of the perimeter. Autonomous local 
coordination of drone travel (along specific routes, in response to detected potential 
breaches, etc.) could be combined with the propagation of alert and alarm messages as 
dictated by the situation.

Similarly, video camera “swarms,” operating in coordinated manner, could track/
follow persons of interest as necessary. A camera swarm might collectively focus its 
attention to look for particular patterns or people. The cameras may be stationary, 
but through handoffs to others in the shared network, they still effectively provide 
ubiquitous surveillance coverage. In places where cameras are not deployed, mobile 
units with cameras will provide the needed continuity. Video surveillance will operate 
seamlessly as mobile and stationary cameras are employed as members of a collective 
intelligence community.

As discussed in Chapter 5, because integrator functions are IP-based, they may 
incorporate native IP data streams from more sophisticated cameras and sensors, 
combining these with small data flows aggregated by propagator nodes from chirp device 
streams. A single point of analysis and control thus manages both legacy and emerging 
devices. They might include biohazard, radiation, and other threat sensors.
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Figure 7-7. In the emerging IoT architecture, networking demands on end device sensors 
are minimal, enabling many more of them (both in type and sheer number) to be “seeded” 
into the environment to improve installation security
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Faster Factory Floors
With the increasing automation of the factory floor, the autonomous or semiautonomous 
lower–level control and feedback loops made possible through distributed intelligence 
within the Internet of Things may allow for higher production and better use of human 
resources. If integrator functions can handle lower-level adjustments and controls of 
operating machinery, human eyes and minds may be freed for longer-term analysis and 
optimization, based on exception and historical data collected at a higher level.

Machine autodiagnosis, parts supplies and quality, temperature and emission 
sensing all can be combined with video analysis of production lines and conveyers to 
maximize efficiency. As with some other applications, a key benefit of the emerging 
Internet of Things is the potential small size and cost of chirp–based end devices, 
allowing for much broader usage.

For example, industrial robots in factory automation are increasingly equipped with 
force and vision sensing for adaptive motion control. They are capable of stopping upon 
encountering an obstacle without damaging themselves or the obstacle. Factory floor 
environments that once needed to be rigidly structured (to ensure that “dumb” robots 
operated safely) are now more flexible in their designs with sensor-guided control.

Mobile robots, as in Automatic Guided Vehicles (AGVs) previously were required to 
move on preset paths, following lines inlaid or painted on the floor. More AGVs now use 
location markers on passageways and real=time data from other AGVs to collaboratively 
determine collision-free trajectories in factories with no markings on the floor. Sensor–
driven path planning in real time in untaught factory floor environments is now practical; 
it was unthinkable only a decade ago. As more IoT sensor end devices become part of 
smart buildings, the character of industrial robots will continue to become more adaptive 
to changes in the environment. This will significantly reduce the cost of preplanned 
factory automation infrastructure.

True Home Automation
A new class of home and enterprise Access Points (APs) will be developed with the 
appropriate end device chirp transceiver built in, as shown in Figure 7-8. These will 
support both legacy Wi-Fi (IP) and chirp communications, and will typically include 
an IoT propagator node and (often) a publishing agent or an integrator function. These 
ambidextrous devices will appear as two logically distinct devices, even if they are using 
the same transceivers (for example, 2.4GHz unlicensed band radios). Thus each of these 
chirp-aware APs in the house, part of a mesh network, can provide access to all publishers 
and subscribers within the home legacy and Internet of Things communities. Each node 
and its agents can be regulated by a supervisory control system, which can move agents, 
remove them, update them, and so on. 
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In actual packaging, propagator nodes may be stackable, as shown previously, 
supporting multiple interfaces and their disparate tree-like networks (e.g., Wi-Fi and 
chirp infrared). Device-specific agents would reside on the propagator node networks, 
specific to one type of transceiver interface and sensor type. This would encompass 
a tight low-level interface with language and protocol specific to the device and its 
function. Thus a temperature sensor need “know” nothing more than how to transmit 
its temperature over an IR link. If no transmission is received, its agent “knows” that 
something is amiss, not the device. Further, to simplify matters, only the publishing agent 
needs to know how to parse and read meaning into the terse chirp stream, pruning, 
aggregating, and forwarding small data flows toward integrator functions as appropriate.

Local home automation monitoring and control will take the form of an  
on-board integrator function. This might be managed by a front panel or (more likely)  
a smartphone/tablet/PC app and would provide an extensible means of interacting with 
all the devices in the home, whether chirp-based or legacy IP. This could easily expand 
to include alarm and home entertainment functions. There will also exist “translator” 

Propagator node +
power line network

Infrared interface to
home entertainment 

Propagator node +
power line network

Infrared interface to
home entertainment 

Wi-Fi and Ethernet

Figure 7-8. In home and small office environments, attractive modular packaging will 
allow consumers to “build up” combinations of needed functions based on a "base" 
propagator node with IP functionality mated to additional transceivers to serve new and 
legacy devices. These “stacks” would often include a local integrator function serving as the 
home automation hub. This hub would be accessed wirelessly by an app on a smartphone, 
tablet, or PC



CHAPTER 7 ■ ExAmPlEs And APPliCATions

137

modules to permit non-Wi-Fi/non-chirp devices (such as TV remotes) to be incorporated 
as data sources or control points (much as a universal TV remote today). One of these 
modules will likely be a replacement for the home AC main plug. A simple chirp-based 
interface could provide information about energy usage and allow remote power-on/
power-off.

Legacy translators such as these will be important for many years until Internet of 
Things–enabled devices replace current technology. Given that the life of some large 
appliances is 15 years (as opposed to 2–3 years for electronic technology), transition 
technologies are needed (see Figure 7-9).

Propagator node
with on-board

integrator function

Home Automation

Power line

Infrared

Bluetooth

Wi-Fi/Ethernet

Direct wiring

Figure 7-9. The Internet of Things home hub brings together security, entertainment, 
activity monitoring, environmental comfort, energy usage and other interests within a 
single intelligent framework. Simple chirp protocols will suffice for the overwhelming 
majority of end devices in the home environment, but legacy IP and non-IP (e.g., TV 
remote) streams may also be supported

This will bring about true home automation, with a variety of appliances, sensors, 
and other devices smoothly coordinated via a single point of intelligence, as discussed 
previously. The fabled Internet of Things toaster need not be burdened with a processor, 
memory, and an IP stack—a simple chirp interface will do. Physical interfaces may be 
varied, as noted in Chapter 2: Infrared, Bluetooth, Power Line, and other interfaces may 
all come together at the propagator node. Clusters of simple chirp devices, many not even 
yet imagined, will connect via these interfaces. Integrator functions will interpolate events 
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and data, detecting movement in the house and adjusting heating and cooling zones, for 
example, or turning off lights in unused rooms.

IoT end devices will also be able to communicate tersely and cogently with external 
integrator functions, reaching these via the IP interface of the home propagator node and 
the home’s high-speed broadband Internet link. For example, the trashcan might chirp 
its level of “fullness," which the home network relays to the garbage collection company. 
Trucks and arrival times are accurately scheduled.

In another example, kitchen appliances might transmit status to a contracted 
appliance maintenance-and-repair depot, which would in turn schedule a repair visit to 
cover multiple devices (as shown in Figure 7-10). A list of those repairs is made available 
to services in that locality, if permitted. The home user can also specify the schedules that 
suit her, as opposed to the other way around. The combined information is a "request for 
quote" sent to multiple repair service subscribers. One may be selected. The repairman’s 
visit is scheduled/confirmed by the home user. Alternatively, she may choose to have 
the parts mailed to her and do it herself. Another set of electrical appliance retailers will 
present their bids.

Coupons and offers to
shoppers in-store or near
by via social media/text

Bulletins to staff with
sales incentives

Exterior electronic
signage 

“Sell by” dates

Store foot traffic

Locations of
“checked-in”

customers

Propagator node(s) 
with on -board 

integrator function

Competitor offers

Stock on shelves

Stock in warehouse

Locations of trucks
with stock

Video of street,
parking lots

Length of check-
out lines

Call in extra staff

Profitability

Supplier offers

Figure 7-10. Although many home automation IoT applications will be localized, the 
potential exists for end devices to update distant contracted organizations about their 
status and health. Maintenance reminders and service visits may be scheduled in response. 
Major appliance and equipment OEMs may offer these services to their own customers; 
others may offer a service supporting many different brands and types of equipment
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The IoT-enabled home may also coordinate with smart meters for gas and 
(especially) electric utilities to minimize usage during expensive time-of-day 
billing periods by throttling down or turning off some appliances and scheduling 
operations with an eye to maximum economies of cost and utility demand, as well 
as current and expected weather. Cooperative programs with utilities may offer 
additional price advantages if the utility is allowed to bias these decisions to match 
its generating capacities.

Wholesale and Retail: Beyond RFID
Dozens of Internet of Things applications have already been suggested and/or are being 
rolled-out now, both for online merchandisers and brick-and-mortar locations. To date, 
these applications have often been based on technologies such as Radio-Frequency 
Identification (RFID) along with IP-based readers and sensors. RFID chips are generally 
inert until powered-up by a nearby reader, so there may be many applications in which a 
simple chirp-based device will provide more functionality.

In the competitive world of retailing, well-stocked and properly “fronted” (products 
aligned to the shelf edge) displays are more enticing to shoppers. Low-cost, chirp-based 
sensors might be deployed along a shelf edge. Powered by overhead light, they might 
identify when product displays require attention. Or sensors in the floor or shoppers’ 
carts might trigger coupon deals and other offerings based on location within the store.

Shoppers who have “checked-in” to a specific store on social media might welcome 
these offerings catered to their location and path through the store. As in an earlier 
example, foot or parking lot traffic might be used to gauge the type, number, and 
attractiveness of offers presented. After all, there’s no need to offer major discounts at this 
moment if it is known that the parking lot is currently filling up. This is another area in 
which a variety of data streams, including factors such as current and expected weather, 
might be brought together by an integrator function for autonomous or semiautonomous 
action (see Figure 7-11).
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In the back-end and wholesale environments, inexpensive and/or disposable (even 
biodegradable) shock and temperature sensors might monitor shipping conditions in 
transit and help track stock in the warehouse. Efficiently rotating stock based on first-in-
first-out or expiration dates might be aided by more data from individual containers or 
cases. (And then there is the oft-told IoT tale of the refrigerator noticing that one is low on 
milk, seeing that one’s location is near the store, and generating a text reminder to pick up 
a half-gallon on the way home.)

A Broader “Net” in Natural Sciences
As with the security examples noted previously, a larger number and great geographic 
spread of sensors is important for improving the usefulness of natural science 
observations. Strain and crack gauges spread over very large areas might allow better 
monitoring of geological conditions, perhaps leading to prediction capabilities for 
natural events such as earthquakes and volcanic eruptions. Detection of snow levels, 
CO2 emissions (as from a wildfire), air and water pollution, and many other parameters 
may be much easier with cheaper, lighter, and more-easily-managed end devices. Small, 
cheap, solar-powered IoT chirp devices might allow scientists to cast broader nets for 
data than before.

Speaking of nets, wild and farmed animal populations (fish, cattle, birds, and so on) 
might also be monitored with implantable and/or digestible chirp devices. As with many 
other applications, the promiscuous forwarding built into the basic chirp architecture 
and the propagator node might allow recruitment of a very wide-ranging network of 
nonaligned propagator nodes as a “free” propagation medium for this data. This might 
allow a collection of data from far afield without the cost of building out a propagator 
node network specifically for one application. A sparse mesh network of “volunteer”  

Figure 7-11. Combining data from many sources, a retailer might make available offers 
and coupons specifically related to stock on hand, store traffic, weather conditions, and 
many other factors
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IP–capable propagator nodes (which are more power-hungry) will provide the networking 
path, but the underlying lower level of end devices will remain light and terse in their 
communication protocols.

Living Applications
Emerging IoT applications will be “alive" in the sense of being adaptive, self-healing, 
self-forming, and largely collaborative. The architectural foundations will together enable 
unprecedented innovation in the development and deployment of new applications in 
the Internet of Things:

Minimal networking requirements for end devices•	

Provision for local autonomy of action•	

Distributed intelligence to offload both end devices and integrator •	
functions

A flexible publish/subscribe model creating neighborhoods of •	
information
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Chapter 8

Pathways to the Internet  
of Things

This book has described the details of an emerging new architecture for the Internet of 
Things. But new architectures rarely displace legacy systems unless there is an overarching 
benefit that drives their adoption. For the IoT, the major benefit can be expressed in the 
unique new relationships possible between the myriad end devices and the big data 
servers that analyze and control the data flowing to and from those end devices.

Data Drives a Change
Fundamentally, the coming billions of Internet of Things devices will simply generate too 
much data to be analyzed in traditional ways. Instead of the usual one-to-one predefined 
IP legacy topology, only a publish/subscribe model allows the big data servers to be 
selective and adaptive in the choice of data to operate upon, and is thus smarter over time.

Even more importantly, the big data analyzers will not even know what data streams 
would be useful until they discover the data. Information neighborhoods created through 
data stream affinities will present opportunities for selecting and combining small data 
flows from many different kinds of end devices, not all of which are even part of a specific 
application. This allows IoT applications to become smarter and smarter over time, as ever 
more end devices are installed (see Figure 7-4). Whatever initial purpose these end devices 
serve, they may also unexpectedly and unpredictably benefit other applications that 
discover their data outputs and find them useful (if the chirp streams are made public).

When initially installed, specific appliances, sensors, and actuators may serve a 
particular application. But over time, new end devices may be deployed by the same or 
other organizations. Data streams from these new devices may also be recognized by 
“affinities” of place, time, or correlation to be incorporated into the original application’s 
information “neighborhood.”

Classification is the Challenge, Chirp is the Answer
So if the only way that IoT can reach its potential is through (often) ad hoc publishing 
and subscription of data streams, what does that say about the data being sent and 
received by end devices? Simply put, that data must be externally classified so that future 
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known and unknown subscribers can locate, identify, and act upon it. This is completely 
different from traditional IP networking, in which the external packet components are 
essentially generic, and thus any classification (moisture sensor versus streetlight versus 
toaster, and so on) must take place within the data payload itself. In essence, the packet 
structure of the chirps is potential knowledge; chirps are not merely the containers of 
information.

The self-describing classification inherent in the very structure of the chirp packet 
(refer to Chapter 6) is designed to make publish/subscribe relationships possible across 
applications, vendors, locations, and time. These self-describing classifications will 
identify characteristics that allow data subscribers to distinguish between all manner 
of sensors, actuators, and other devices. This is the prerequisite first step toward 
determining whether the data being generated by these devices is potentially useful and 
is necessary to make possible a publish/subscribe network with the eventual scope of the 
Internet of Things.

The power of self-classified data streams is the fundamental driver of a new 
emerging IoT architecture. (Even if IP capability in all devices were free, and it’s not, there 
would remain a need for a set of commonly understood self-classifications carried within 
the IP packet payload to enable broad publish/subscribe utility, as shown in Figure 8-1. 
(See the following “Chirps in IP Packets? Why?” sidebar.) The steps of implementing the 
network architecture needed to create and transport these self-classified data streams are 
the subject of this chapter.

Figure 8-1. An important distinction between chirp–based IoT packets and traditional 
IP is that the classification of the data type is part of the public and private markers of the 
chirp packet—easily “seen” and quickly acted upon by intermediate networking devices. By 
contrast, the only possible location for self-classification in IP packets is within the payload 
itself, which requires slower deep examination of the packet at intermediate hops
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The Ends are the Means
This book has described an emerging new architecture for the Internet of Things, 
designed to address the realities of connecting billions of relatively unsophisticated devices 
at the very edge of the network. The case has been made for a new terse self-classified 
protocol of chirps to be the communications medium to these devices, but there are 
currently no commercially available chirp end devices or chirp-enabled propagator nodes. 
The need for light, purpose-built protocols and devices is revolutionary, and these are 
early days.

An overnight replacement of existing IP networking protocols in the Internet of 
Things is impossible—and fortunately will not be required. As with most networking 
evolutions (twisted-pair Ethernet, Wi-Fi, and so on), the end points will eventually be 
the major numerical and technical drivers for change, and the support of both chirp 
and IP protocols to end devices side by side will be necessary to allow for network 
transformation. This will also be true for existing big data servers at the core of the 
nascent IoT: they cannot be changed out instantaneously. Fortunately, the propagator 
node architecture provides an ideal means for a gradual (“and”) migration to take place, 
as described in detail here.

Many different organizations will play a role in the promulgation of the chirp-based  
Internet of Things. The suppliers of the thousands of types of end devices (from appliances 
to sensors to automobiles) will work with industry leaders in silicon integration and 
platform technology such as Intel Corporation to create integrated “chirp chips” in many 
different configurations and price points. Networking suppliers and home automation 
developers will build propagator nodes and also incorporate propagator node technology 
within existing types of equipment such as switches, routers, access points, set-top boxes, 
and more.

Carriers will make adaptations to the emerging chip-based architectures, many likely 
offering cloud-based services for interpreting and analyzing the small data flows from 
chirp streams, perhaps in combination with existing big data system suppliers. Large 
global Original Equipment Manufacturers (OEMs) will likely also be an important first 
class of customer and an early promoter of chirp-based protocols because they will be 
able to incorporate the technology end to end in their systems in parallel with the efforts 
of standards bodies and working groups, although these groups will most certainly play 
an important role in the long term.

Begin at the Edge
Fundamentally, the need for chirp-based protocols and the networking architecture 
to support them starts at the end device sensors and actuators that cannot use IPv6 for 
connectivity to the Internet of Things for the reasons of cost and complexity and that 
require self-classification that would be unwieldy in IP in any case. As described in 
Chapter 6, classification of these chirp–based end devices by type and function will take 
place via an extensible marker system carried within the chirp packet and will be easily 
visible as these packets transit the network.

Initially, the use of chirp classification categories could be proprietary or vendor-specific 
for an OEM supplying both the end devices and the integrator function/big data services, 
but the classifications will rapidly be formalized across organizations. (See more details 
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of how these classifications could be created and managed in the following “Working in 
Groups” section). Once data streams are encoded in chirps with category classifications 
as to their type included, the data is inherently publish-ready, and some of the scaling 
benefits of the emerging IoT architecture can be seen.

CHIRPS IN IP PACKETS? WHY?

In advance of the proliferation of native chirp-based networks, the chirp information 
could also be specified within the payload section of a traditional IP packet by an 
“adapter” propagator node, which would encapsulate simpler terse data in the form 
of chirps with their inherent classification. This would allow subscribing big data 
systems to incorporate this information immediately and make possible a migration 
to the integrator function systems described in Chapter 5. The legacy IP packet 
containing chirp-formatted data will still need routing to reach a point-to-point 
destination, where the software is capable of deciphering the payload and acting on 
the data. That will likely be the first place where chirp protocols will be deployed.

The outgoing IP stream from the adapter propagator node could be wi-fi  
standards–based (i.e., 802.11). on the incoming chirp streams, the transceivers 
and their device drivers would need to look like ports on a local area network (LAn) 
switch for the Layer 2 hierarchical switch stack analogy to hold water. As long as 
the chirp device drivers on the adapter propagator node look and feel like IP “ports” 
on a legacy 802.11 access point (AP) “switch,” multiple types of streams can be 
supported within the same AP. Alternately, network appliances may be installed to 
provide the chirp-to-IP interface, using wi-fi as a means to connect to the legacy  
IP network.

This technique provides one means of integrating chirp streams into legacy big 
data systems and may be an important transition path in the early days of chirp 
end devices. But it does not provide many of the other benefits of true chirp-based 
protocols such as broader data neighborhoods free of predefined IP peer-to-peer 
relationships and the tighter control loops made possible by distributing intelligence 
closer to the end devices in the form of publishing agents and localized integrator 
functions within propagator nodes. (note that these limitations would be in place 
regardless of whether chirp protocols or IP are used.) The benefits of richer 
information usage and better control loops are much more attainable in native chirp 
networking and become even more compelling as the number of devices increases 
exponentially at the edge of the network.

In the long term, most propagator node/AP combinations will have support for native 
chirps and legacy IP built-in (see the following “Propagator nodes Provide the ‘And’” 
section), but other transitional APs could be imagined that provide powered UsB 
sockets for device manufacturers to provide the chirp interface separately that are 
tuned for the specific chirp devices that they manufacture.
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Making a Mark
In order to increase applicability of their end devices (and thus increase revenue), 
multiple suppliers of the same type of appliance, sensor, or actuator will be motivated to 
use the same formats in expressing their chirp data. It will thus be possible for their end 
devices to be incorporated across a broader range of integrator functions (from many 
suppliers) and in so doing, increase the number of potential applications.

Note that the chirp protocol uses both public and private sections, each with its 
own markers. Thus manufacturer-specific information and vendor-specific data can 
be safely represented within the same public category classifications. So although 
a marker of (for example) 6.8.11 might be used for a general category of moisture 
sensors, additional proprietary data within private segments of the chirps might specify 
vendor-specific features. In this form of incremental markers and meanings, a broad 
range of integrator functions provided by many different manufacturers and in support 
of different applications might add this moisture sensor chirp data stream to their 
information “neighborhood” and obtain some minimal data. This could take place even 
if the subscribing application was unknown to or even unthought-of by the organization 
originally deploying the moisture sensor.

But additional data might be included in a private section of the chirp, accessible 
only to integrator functions and other distributed intelligence in the network that 
possessed the correct “key.” In our theoretical case, salinity or acidity might also be 
measured by the same sensor, but information on those parameters would be transported 
in proprietary private data segments within the same chirp packet as are the “generic” 
moisture readings.

Acting on Markers
Multiple intelligent agents may thus be acting on different strings within the chirp packet. 
The common propagator node operation may simply prune and bundle chirp streams 
into small data flows published to a wide variety of potential subscribers. Again, these 
subscribers may have the key to the proprietary additional data—or they may not.

In other specific propagator nodes, publishing agents may be biased by particular 
integrator functions to peer deeper into the private payload section and perform a 
more customized next level of routing and processing. This might include preferential 
routing to specific integrator function locations, “spoofing” by emulating round-trip 
acknowledgments locally, setting up specific forwarding bus timings or lower-level 
control loops, and so on.

Propagator Nodes Provide the “and”
In the early days, chirp-enabled devices will be the minority traffic on the Internet of 
Things. Simply because of the extensive installed base, large numbers of IP-equipped 
end devices will need to be accommodated as well. For that reason, many first-
wave propagator node implementations will provide both chirp-ready and legacy IP 
connections such as Ethernet and Wi-Fi.
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This emerging new class of hybrid devices will use chirp- and IP protocols 
interchangeably. These ambidextrous network elements will appear as two logically 
distinct devices, even if they are using the same transceivers (e.g., 2.4GHz unlicensed 
band radios). The added advantage of these IP-equipped devices is that they will also 
often have the processing power to house publishing agents, as required.

The input of these devices will be of three possible types as shown in Figure 8-2. 
Some IP packets will be the unmodified legacy IP streams from traditional devices. 
A second possible type (as noted in the sidebar “Chirps in IP Packets? Why?”) will be 
encapsulated chirp streams within IP packets, intended for big data servers that are not 
yet fully chirp-aware. And a third class will be native emerging IoT architecture chirp data 
streams. This latter packet type will be intended specifically for chirp-aware integrator 
functions. Depending on the needs of the servers at the final destination, the transition 
propagator node will aggregate small data flows of chirp streams into IP packets or will 
simply pass them through legacy IP packets.

Figure 8-2. Hybrid transition propagator nodes will handle legacy IP traffic, encapsulated 
chirp traffic, and native IoT chirps aggregated into small data streams
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As noted elsewhere, there will be many different packaging options for propagator 
nodes, including some with integrator functions on board that might handle some 
analysis and control tasks for their associated chirp end devices.

Because of their key role in translating and merging both legacy and emerging 
networks, transition propagator nodes of this type will necessarily be one of the first 
examples of equipment to be developed and marketed along with the first chirp-enabled 
end devices. Although some initial applications may be proprietary and OEM-vendor-specific, 
it is expected that more generic versions will also appear rapidly.

Open-Source Networking Solutions
One key to accelerating the development and proliferation of these translating generic 
propagator nodes will be taking full advantage of open-source technologies. One likely 
base (among a number of possibilities) upon which to build propagator node functions 
is OpenWrt, an operating system/embedded operating system based on the Linux kernel 
and primarily used on embedded devices to route network traffic. A chirp-enabled 
branch of this code could be produced quickly to allow rapid development of new 
propagator nodes, along with immediate integration into existing networking equipment 
operating under OpenWrt.

Gaining Access
Wi-Fi access points are one of the most numerous deployed networking solutions today, 
allowing a variety of devices equipped with 802.11 wireless capability to be connected 
into a network (today, nearly always IP-based). As such, they represent an attractive 
candidate for replacement by transition propagator nodes from a network topology 
standpoint. Virtually none of today’s deployed APs supports the type of secure application 
layer and field upgradeability needed to incorporate chirp–enabled propagator node 
software directly.

But a new combined AP/propagator node device (likely based on OpenWrt) will 
include both traditional AP and IoT chirp–enabled propagator node capabilities, as 
seen in Figure 8-3. One key will be making the propagator node portion of the combined 
device “responsible” for both legacy and chirp communications to ensure that no 
changes are required for legacy IP IoT devices or big data servers. Multiple forms of 
connectivity will be made available over many different interfaces (e.g., Wi-Fi, IR, 
Bluetooth, Power Line, etc.).
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Clusters of simple chirp devices, currently not even imagined, will “connect” 
via these interfaces, with propagator nodes tasked to do the heavy lifting needed for 
conversion to small data streams, including routing and delivery via the logical “bus” 
described in Chapter 6. Much of this will occur without the need for arduous standards 
body consensus—at least initially (see the following “The Standards Conundrum” 
section). The chirp-enabled propagator nodes will integrate smoothly with existing IP 
devices and use the existing global Internet for transport. Even if chirp end devices use 
the same wireless frequencies as IP traffic (e.g., unlicensed bands), the propagator nodes 
will take over the timing and beaconing of all the wireless interfaces (both chirp-and IP-
based), enforcing time slot reservations ensuring that chirp- and IP devices don’t “speak” 
at the same time using existing capabilities within 802.11. Collaborative coexistence  
will be supported at all times within the emerging ecosystem because the propagator 
node/AP units are both chirp- and IP-aware.

It is hoped that using an open-source software model (see the previous 
discussion) for the development of propagator node capabilities may make it relatively 
straightforward for at least some existing AP manufacturers to quickly provide combined 
propagator node/AP units. These manufacturers would have the capability to extend 
the AP functionality to include an applications layer and also provide the device-layer 
abstractions so that new chirp devices can be supported with a “standard” interface to the 
chirp-to-IP bridge.

Figure 8-3. Combination propagator node/AP devices will be an efficient means of 
merging traditional IP data with IoT chirp streams, sharing a single connection to the 
global Internet
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The Standards Conundrum 
In the longer term, it is expected that a variety of standards bodies and working groups 
will formalize the specifics of the chirp packet and other elements of the emerging 
Internet of Things architecture. But the impending explosion in the growth of the IoT 
means that there is no time to wait for a drawn-out standard process before beginning 
to deploy this architecture. So a two-pronged approach will be necessary: de facto 
standards, working groups, and recommended practices allowing products to be brought 
to market quickly; along with a longer-term standards effort to codify these practices 
into standards. An example may be drawn from earlier machine-to-machine technology 
developments.

Machine-to-machine (M2M) communications are not new. Factory automation  
(e.g., robots, “intelligent” machines) has thrived on tight sensor–actuator control loops, 
where myriad sensors “feed” into Programmable Logic Controllers (PLCs) through the 
wired analog and digital I/O ports of the PLC controller. Relatively simple rule-based 
logic has been used to control complex machines composed of hundreds of sensors 
and actuators. The “circuits” turn on, based on logical switches turning on or off based 
on sensor data. When a circuit turns “on,” actuators are activated. As a simple example, 
turning on a light switch closes a circuit to send electricity to a light bulb. Multiple 
such circuits, running concurrently within the PLC, have and do coordinate complex 
manufacturing processes.

These M2M communications and the tight control loops resulting from the 
custom-programmed circuits have clearly demonstrated the ability to generate complex 
competence from simple end devices such as sensors and actuators. Protocols and device 
drivers are often created by application software developers to meet the requirements 
of the specific process control required. A thriving manufacturing industry has evolved 
over the last two decades, based on proprietary, purpose-built, and terse sensor-actuator 
communications.

Standards existed for these sensors and actuators, but they were often home-grown  
by the sensor and actuator manufacturers, many times through Special Interest Groups 
(SIGs) within larger communities such as IEEE. However, because the device communications 
were local and entirely within a small community (e.g., a manufacturing line), there  
was no need for an overarching standard such as IP. In addition, in most cases the 
sensors/actuators are directly wired to the PLC controllers. There is no shared wireless 
spectrum to negotiate.

As more M2M sensors and actuators become wireless, sharing the same “air space” 
(i.e., unlicensed radio frequency spectrum) will become a challenge. Standard protocols 
such as ZigBee and Bluetooth evolved to support smaller communities of devices. 
However, all such devices were intended largely for human consumption of information 
and therefore were IP-based. They are currently being used to connect devices as part of a 
home audio system or home lighting system, being controlled by a home user’s computer 
or smartphone. Note that they are human-in-the-loop systems; they are intended for 
humans to more conveniently control their environment, using the smartphone, for 
example, to remotely connect to their home lighting/heating systems or to link external 
keyboards or headphones to computers.
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Machine-to-Machine Communications and Autonomy
More autonomous systems have evolved, where needed, to support more complex 
interactions from machine to machine and the machine with its environment. Although 
the human is still in the loop in a high-level control or advisory capacity, the devices are 
required to take more control in order to free up the human to do other tasks or because 
the human cannot respond adequately or in time (see Figure 7-3). This is exacerbated by 
the round-trip delays introduced in typical IP point-to-point relationships. By decoupling 
control loops, the emerging Internet of Things allows for rapid autonomous action near 
the edges of the network while still allowing long-term trends to be analyzed and overall 
control to take place at a higher level.

As described in earlier chapters, existing legacy protocols were originally intended 
for host-to-host or human-to-host conversations, not for the terse (and predominantly 
one-way) exchanges between myriad simple chirping end devices and big data integrator 
functions. But chirps will become the prevalent form of M2M communications in the IoT. 
Just as birds don’t need to learn a common language to communicate effectively across 
the same medium (the air), so the end devices in the IoT may use only simple chirps 
optimized for their classification and function, counting on propagator nodes to make the 
conversions needed to allow use of the global Internet as the communications backbone.

It is simpler to delegate to these propagator nodes the task of performing translations 
across end device communities than to force everyone to use the same overly complex 
(and over-featured) legacy protocol formats. Overarching standards become less relevant 
as information neighborhoods become smarter at what they do within their areas of 
expertise. Autonomy and local control loops will also be much easier to operate and 
maintain without the IP overhead and round-trip communication necessary in legacy 
networks. This is another argument for simple and specialized chirp-based conversations 
between machines.

Shared Vocabularies and de facto Standards
In the machine-to-machine manufacturing application examples, the systems that 
currently use simplified communications schemes are generally private. In the emerging 
Internet of Things, publishing and subscribing to data streams is the primary activity, so 
obviously there is a critical need for shared vocabularies. A simple but open scheme, such 
as chirp-based networking, provides the potential for tremendous economies of scale in 
place of private vocabularies.

Networking standards such as IP were based on communication protocols at the 
lower level of routing and networking without specifying payload vocabularies. As long 
as the IP packet headers were universally understood, the payload portion of the packet 
would be routed correctly to the requested destination. The contents of the payload were 
decipherable by the recipient at the destination address; everything else served primarily 
as indicators of a routing infrastructure.

Because many agents will be performing similar tasks, shared networking techniques 
and payload vocabularies within application segments (e.g., moisture sensors) will 
engender reusability of data. Thus major OEMS such as General Electric, Samsung, 
Siemens, and Honeywell (among many others) may cooperate on the chirp protocol for 
products that overlap in functionality as a first level of interoperability.
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This cooperation may also extend to some common functionality between OEMs 
in the publishing agent resident on some classes of propagator nodes. Although it 
would require a great deal of coordinated collaboration, it also would reduce the overall 
complexity of the system. Because the publishers and subscribers for similar devices will 
share common interests, there is value in sharing the same computing resources resident 
on the propagator nodes.

Propagator nodes are operating close to the edge of the network, so using the 
same publishing agents makes things simpler. Through the common vocabulary of 
similar devices, a new form of standards will emerge: one that is more focused on 
communicating state information versus networking/routing flow. Hegemonies exist 
within application segments in which collaboration is implicit. For example, the same 
repair centers service multiple types of home appliances (e.g., washing machines) from 
competing brands, or multiple pieces of different equipment at one site (see Figure 8-4). 
Providing the same vocabulary for diagnostics would make it simpler for a repair staffer to 
do the work.

Figure 8-4. In some cases, multiple networks may share information and network elements. 
Here, three types of machines from different manufacturers report usage and trends to 
independent integrator functions for each manufacturer, but they share status and alarm 
reports to a common third-party service company

In time, sophisticated combined subsystems of analysis and control may develop 
organically near the edge of the network. These systems of systems, each capable of 
functioning autonomously, will increasingly continue to do so. Humans will be in the 
loop only for analysis of trends or periodic tuning and tweaking.



CHAPTER 8 ■ PATHwAys To THE InTERnET of THIngs 

154

Build it and End Devices will Come
The explosion of smart devices (e.g., smartphones, home automation products) occurred 
because the support infrastructure was both prevalent and inexpensive. Internet 
connectivity became ubiquitous, at least in developed countries. This ready Internet 
access connected the lower–level consumer products to the higher end of cloud services 
and their applications.

A three-tiered ecosystem emerged: at the top, cloud-based applications could be 
downloaded to devices (computers and smartphones) via the middle layer of Internet 
connectivity, performed by an expanding network support infrastructure. Devices were 
thus “connected” to the cloud. New devices such as the Apple iPod were conceivable, in 
which the heavy lifting was performed by an intermediary computer connected to cloud 
applications. Some (agents, for example) could also run locally on the computer. In terms 
of the end device/propagator node/integrator function model of the IoT, end devices can 
similarly become widespread quickly when the network is there to support them.

In terms of a three-layered framework, at least two of three pieces must be available 
because only then would the cost of developing the third piece become economically 
viable. For example, iPods, with their limited inherent communications functionality  
(i.e., no IP stack), could not exist if computers running iTunes software did not exist as  
an intermediary or if the global Internet did not exist as a connection to cloud-based 
music services. In that framework, the “end device” (iPod) was supported by computer 
software downloaded to computers (propagator nodes within the IoT) connected to the 
cloud-based services via the Internet (the IoT’s integrator functions).

OEM Leverage
In the legacy concept of the Internet of Things, IP is needed at each point (end device, 
networking element, and server). But for a chirp-based IoT to develop and proliferate, 
some use must be made of the existing elements to avoid the cost, complexity, and 
elapsed time necessary for a complete ground-up build-out.

OEM manufacturers are a likely first place where chirp-based disruptions would 
occur. OEMs are typically not interested in providing networking infrastructure, but their 
highest-end products (e.g., refrigerators, TVs) are becoming connected via IP. There is 
enough computing horsepower in these products to potentially serve as chirp–based 
propagator nodes for the OEM’s large number of simpler, more lightweight devices 
that will never justify IP. The higher-cost devices would therefore support their less-
sophisticated, chirp–based “country cousins.”

There is incentive, therefore, to purchase a GE toaster if one owns a GE refrigerator, 
without burdening the toaster with its own IP connectivity. Or the presence of a Samsung 
TV would ensure that other Samsung devices, using low cost infrared transceivers (as in 
the TV remote), would coexist as part of the home entertainment system without each 
component requiring its own IP connectivity.
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The “two-out-of-three” model makes sense for both manufacturers and consumers, 
as shown in Figure 8-5. Consumers pay less for their low-end devices (toasters) and 
their connectivity. Manufacturers can leverage their brands to provide interoperable 
families of products, all of which are connected in some fashion. In later years, they might 
potentially be updated via downloadable software to service chirp-based devices. And if 
desired, OEM manufacturers could use private markers and payloads in the chirp streams 
to lock-in buyers—although there will also be incentives to make public some or all of the 
information.

Figure 8-5. Like a downloadable media player that is only economically viable if cost-effective 
computing power and global connectivity are already present, so an OEM’s installed IP 
device and the global Internet might enable new low–cost end devices

Applications-developer communities similar to Apple and Android application 
marketplaces will be encouraged to provide new applications for these newly connected 
devices. Ecosystems will emerge in which smarter IP-based products support their 
simpler chirp-enabled products. Giving away a free chirp-enabled toaster with every 
refrigerator purchase begins to make sense—the toaster becomes a useful device for 
control by the ‘fridge. In this case, the refrigerator is the computer running applications 
on behalf of the toaster, which is still a purpose-built device. This mirrors the case of iTunes 
on a computer managing the simpler iPod in a previous generation of the three-layered 
ecosystem.

Shared Software and Business Process Vocabularies
Linux and its variants have become established as a primary embedded–system operating 
environment, largely due to open software initiatives. Proof-of-concept propagator nodes 
and publishing agents now being developed are currently based on Linux variants, and 
many future implementations will likely follow suit.
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In the enterprise business world, Java is widely used for programming applications 
that may be written once and (theoretically, at least) used in many places. Programming 
in Java is simpler and more enterprise-business-process friendly. Translation 
mechanisms will evolve to convert business processes originally expressed in visual 
programming languages or in Java to simple rules that will be downloaded to integrator 
functions and/or the publishing agents on the propagator nodes. And this will be true for 
other enterprise software, as well.

Software as a Service (SaaS) has become a staple in cloud-based computing, and its 
counterpart in the Internet of Things may be a set of functions to be loaded on propagator 
nodes. Multiple propagator nodes from diverse manufacturers will need to connect and 
support a variety of big data services, so it is likely that the means to do so, including 
the translation mechanisms, will be made available as open source. Large enterprises 
and OEMs may use customized versions with proprietary protocols to access the private 
section of chirp protocols, but the ecosystem will support common vocabularies and 
processes to a large degree. Hence the semantics of an operation will be understood by 
the same category of devices, regardless of their brand.

The need to communicate in the same manner to big data cloud servers will drive 
common APIs and high–level control languages, as in the case of shared vocabularies. 
Although standards may emerge for these vocabularies in the long term, OEMS, working 
groups, and special interest groups will continue to promote this collaboration, driven by 
mutual interests and common practices.

Working in Groups
All in all, an organic process is expected for the development and deployment of the 
emerging Internet of Things architecture. But certain basic structures and tenants are 
keys to the success of the IoT. It is especially critical that the basic chirp structure be 
agreed upon and top-level classifications defined by a critical mass of IoT constituent 
organizations. The goal would be to reach a consensus rapidly on crucial parameters, 
permitting many companies and organizations to move quickly to develop their own 
products.

There are multiple alternate paths this development might take. One successful 
model is that followed by Bluetooth technology, which essentially began as a 
development within one company, but was shepherded by a handful of large companies 
collaborating as a special interest group. The time for successful interoperability testing 
and adoption of the technology was measured in years, however. The author favors a 
potentially more rapid approach, based on the open-source model (as seen with the 
OpenWrt distribution for Linux-based networking).

Whatever direction the initial development takes, the primary task will be definition 
of the highest levels of the chirp marker classification structure. It is anticipated that 
a one-byte first-order classification will provide a sufficient starting point for later 
added granularity. With these roughly 255 end-device categories set, working groups 
oriented toward specific industries could further define lower levels of addressing 
granularity. (Recall that the chirp marker structure is extensible to a very large numbers of 
classifications encompassing future needs.)
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After the basics of the IoT are described, and products based on early versions of the 
definitions and parameters are being offered, it is likely that some standards body, such 
as the IEEE, will adopt chirp technologies into an existing standard as a working group 
or initiate a new standards effort. This would likely be driven by a larger player or OEM 
wishing to embrace standardization.

The rapidly expanding number of Internet of Things devices will create the need for 
this emerging technology in short order, so approaches that require minimum time to 
fruition are desirable.

Call to Constituencies for the IoT
Many different kinds of organization will have a stake in the success of the emerging 
Internet of Things. This section briefly describes what steps will be required of each of 
these constituencies.

Semiconductor Providers 
Integrated Circuit (IC) “chirp chips” will be necessary for reasons of cost and power 
consumption at the end devices. Because of the minimal hardware and memory demands 
of the chirp protocol, the initial versions of these ICs may also be relatively simple, with 
greater integration, lower cost, and lower power consumption coming over time.

For propagator nodes, many off-the-shelf System-on-a-Chip (SoC) and System-in-a- 
Package solutions designed for data processing and network interfaces for traditional 
networking devices may be useful as building blocks, along with additional specialized 
ICs for the chirp “side” of the devices. For smaller packages in which publishing agents or  
integrator functions are incorporated, emerging compact devices such as Intel’s Quark SoC 
may be preferred. Integrator functions will usually operate on general-purpose processors, 
and filter gateways may use existing router hardware.

The key challenge for semiconductor providers will be a quick determination of the 
specific parameters of the chirp protocol to allow rapid development. It is hoped that 
one or more semiconductor vendors will participate in early working groups and special 
interest groups.

Appliance and Other End Device Manufacturers
A number of sensor, actuator, and appliance manufacturers have already incorporated 
IP protocol stacks into their more sophisticated Internet of Things products. For these 
products, incorporating chirp self-classified data formats within IP payloads as an interim 
step toward the emerging IoT architecture may be a matter of software revision only. But 
the vast majority of end device types that will eventually be connected to the IoT do not 
yet have any network interface.

For these devices, the problem is somewhat chicken-and-egg: they will likely not 
be able to cost-effectively move forward until IC chirp chips are available for specific 
applications; and the semiconductor manufacturers may not move ahead rapidly with 
optimized chirp chips until the end devices are being developed. As noted in  
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“Major End-to-End OEMs” below, OEMs with a vested interest in end-to-end systems 
may develop the first wave of end devices with native chirp protocols, which may serve to 
accelerate broader deployment.

On the plus side, because the chirp protocol requires no central registry of network 
addresses (as the MAC IDs needed for Ethernet, 802.11, Bluetooth, and others), end 
device manufacturers may move quickly and independently to adopt chirp technology. 
Working from published top-level device-type classifications and the overall chirp packet 
structure, they may easily build devices that will interoperate with propagator nodes and 
integrator functions built by others.

Networking Equipment Vendors 
Because the technology requirements are very similar, many of today’s leading 
networking equipment vendors may move directly into the propagator node business. 
The only challenge may be philosophical rather than technical: a willingness to give 
up the mantra of “IPv6 everywhere” for the Internet of Things. The benefit, of course, is 
access to the new market to connect hundreds of billions of new devices. “Greenfield” 
markets are often more profitable than ongoing commoditizing sectors, so this alone may 
provide ample justification for investment.

But even vendors who steadfastly remain in the IP-only camp will still find their 
products used in expansions of the global Internet infrastructure needed between 
propagator nodes and integrator functions. Upon reaching the Internet, packets are 
packets – and the rising tide of the IoT will lift many boats. Existing IPv6 router devices 
may also be a good basis for the IoT filter gateways needed in some applications. In many 
cases, only configuration and programming will be needed.

Home Automation/Entertainment Suppliers 
A tremendous potential exists for expansion of home networking in the form of  
chirp-enabled networking. One focus may be the TV set-top box (or a smart TV) that 
already increasingly includes Internet access. One can imagine future devices that 
connect not only to existing home equipment via infrared interfaces and the Internet 
via cable or Wi-Fi but also link the rest of the devices in the home via Power Line, Wi-Fi, 
or other technologies. Alternately, combination home propagator node/APs with the 
appropriate chirp transceivers built in will support both Wi-Fi IP and chirp traffic.

A local integrator function within the propagator node could provide the “brains” 
for home entertainment, climate control, security, energy management, and so on. 
Because this device will have access to a much broader set of devices as well as other data 
sources such as weather reports and utility updates, it will optimize the operation of the 
home as not previously possible. Unlike expensive proprietary solutions offered to date, 
proliferation of compatible chirp-enabled products will reduce costs, allow expansion 
over time, and eliminate reliance on single-vendor offerings.

Coordination with nascent standards work in the home automation space, and some 
integration or translation of existing open- or quasi-open-source technologies such as 
C-Bus, Insteon, KNX, X10, and ZigBee, will likely be important to acceptance of chirp-
based end devices in the home.
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Carriers and Big Data Providers
At the most basic level, major carriers will need to do nothing to support traffic from 
the emerging Internet of Things. Beyond the IP–equipped propagator nodes, traffic 
will be identical to all other Internet traffic and can be carried via the same backbone 
infrastructure. But there will be tremendous opportunities for cloud–based integrator 
functions, whether simply in the form of “power-by-the-hour” servers or value-added 
analysis and control services. The classification-based chirp protocol allows for 
preferential routing of specific small data flows, if desired.

Similarly, today’s big data providers may integrate small data flows emanating from 
aggregated chirp data streams relatively straightforwardly with today’s equipment and 
architectures. Big data customer optimization and the opportunity for new enhanced 
services will come as more propagator nodes are deployed that include on-board 
publishing agents. As big data providers move to the integrator function model for data 
analysis and control, they will be able to “bias” the distributed publishing agents (refer to 
Chapter 5) to allow independent local control loops for autonomous functions, as well as 
to tune the type, amount, and frequency of data being forwarded.

Major End-to-End OEMs 
As mentioned earlier, one of the ways that long standardization cycles may be avoided 
in the implementation of the chirp-enabled Internet of Things is through the actions of 
large global Original Equipment Manufacturers (OEMs). Many of these OEMS already 
deliver solutions that reach from the edges of the enterprise or home to large centralized 
organizations. In many applications, these OEMs already use IP-powered networks 
extended by the global Internet to reach far-flung end devices, although data structures 
within the IP payload may be proprietary. But the emerging chirp-enabled architecture 
for the Internet of Things will benefit these OEMs in two ways.

The first and perhaps most obvious is that the cost (for processing, memory, power, 
and management) will be much lower for chirp-enabled end devices than for IP-enabled 
end devices. This cost savings will allow many more types and classes of equipment to 
be brought into the network, in which they may be monitored or controlled by the OEM 
systems. This extends the reach and differentiates lower-end equipment from generic 
competitors.

The second benefit is especially unique to the self-classified chirp traffic 
characteristic of the IoT: the capability to seek out and recruit non-proprietary data 
streams into an information neighborhood to provide added value to the OEM customer. 
The story is told of a global OEM that delivered a large robotic precision assembly system 
to India and set the machine up precisely as had been done in other parts of the world. 
Performance was poor with many breakdowns.

Eventually, an on-site engineer recognized that the higher ambient temperature 
was causing a deterioration of the low-viscosity lubricant called for in the manufacturer’s 
specs developed in cooler climates. When this lubricant was replaced with a version more 
suitable for the environment, the equipment operated reliably. In earlier times, this sort 
of observation required an on-site human to make the observation and analysis.

But in the new world of the Internet of Things, the OEM might be able to recruit 
chirp data streams from existing nearby sensors that would provide temperature, 
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humidity, or other parameters that would help diagnose a fault condition at a distant 
installation. Because of the self-classified chirp protocol, these sensors could be installed 
by anyone, not necessarily the OEM. Unplanned and previously unknown data sources 
may be exploited along with data from the OEM’s own equipment for a better experience 
for the end customer (refer to Figure 7-4).

Global Scope, Vast Numbers, Constant 
Adaptation, New Insights
As many have suggested in the past, it would certainly be theoretically possible for 
the Internet of Things to remain on traditional protocols such as IPv6. But for all the 
reasons described in this book, that path would close off the unprecedented potential 
of the Internet of Things. The scope is simply too large and the costs too great to expect 
traditional protocols to meet the need. Delaying deployment of a new architecture is no 
solution because it will never be possible to catch up.

The emerging Internet of Things architecture is designed to manage the 
unprecedented coming tsunami of data flowing to-and-from billions of end devices for 
applications both mundane and innovative. Lightweight self-identified protocols at the 
edge of the network, distributed networking intelligence, and ever-learning analysis 
and control functions will deliver on the promise of the IoT. Far from merely addressing 
billions of end points, this new architecture enables them to provide the information 
needed for powerful new knowledge, control, and efficiency in the final phase of the 
evolution of the Internet.
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Foreword

With the rise of machines talking with machines in the Internet of Things, a new category 
of applications will demand evolutionary changes in the infrastructure of networks. 
Traditional networks were built to keep the enterprise at the center, resulting in star 
topologies and round-trip communications from edge devices to the servers at the center 
of the network. The Internet was similarly designed around information at the center of 
the network connected to people at the edges.

But machines are different from people, with different communications needs. 
Machines operate more independently in real-time and their actions affect the physical 
world immediately. Feedback and control of these local actions is critical for top 
performance and safety. Unlike the traditional end-to-end Internet, the Internet of Things 
must address these deterministic local control loops to insure business process reliability.

The different needs of machine communications can be seen in three aspects: real-
time response, deterministic performance, and security and safety. All three aspects make 
demands on networking – closed control loops near the machines (to reduce latency), 
reduced costs of data transmission (in light of the rapidly expanding population of 
machines), and segregation of communications (to reduce noise and increase security).

With the increased number of devices and variety of applications, Metcalfe’s Law is 
exploding with the number of new machines and the amount of data they generate. The 
only way for technology to keep up with the coming expansion of the Internet of Things is 
to manage the machine data flows differently from the way human application-oriented 
traffic has been handled with current protocols.

This book describes a critical new approach for the Internet of Things that makes 
it possible to extract meaning in context from the billions of new data sources that will 
emerge. This new approach recognizes the different demands of machine-to-machine 
networks and proposes an evolutionary three-tiered architecture to enable the next phase 
of the Internet.

Francis daCosta is distinctively qualified to develop this new IoT architecture. His 
diverse background in autonomous robotics, embedded systems, big data analysis, 
and wireless networking places him at the center of the all of the different technologies 
which must combine to address the Internet of Things. When Francis talks about 
communications realms, segregation of data streams, determinism, security, and control 
loops, I know that he is taking an innovative and disruptive approach in the evolutionary 
world of networks. This new architecture provides the urgently needed tools to address 
the expanding needs of the machines that join the physical world to the digital world in 
the Internet of Things.

Alok Batra
CEO, MQIdentity, Inc.

Former CTO & Chief Architect, GE Global Software Center, Industrial Internet Platform
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